National Library of Energy BETA

Sample records for reduce air flows

  1. Technology Solutions Case Study: Overcoming Comfort Issues Due to Reduced Flow Room Air Mixing

    SciTech Connect (OSTI)

    2015-03-01

    Energy efficiency upgrades reduce heating and cooling loads on a house. With enough load reduction and if the HVAC system warrants replacement, the HVAC system is often upgraded with a more efficient, lower capacity system that meets the loads of the upgraded house. In this project, IBACOS studied when HVAC equipment is downsized and ducts are unaltered to determine conditions that could cause a supply air delivery problem and to evaluate the feasibility of modifying the duct systems using minimally invasive strategies to improve air distribution.

  2. Reduce air, reduce compliance cost new patented spray booth technology

    SciTech Connect (OSTI)

    McGinnis, F.

    1997-12-31

    A New Paint Spray Booth System that dramatically reduces air volumes normally required for capturing and controlling paint overspray that contains either Volatile Organic Compounds (VOC) or Hazardous Air Pollutants (HAP), or both. In turn, a substantial reduction in capital equipment expenditures for air abatement systems and air make-up heaters as well as related annual operating expenses is realized.

  3. Reduce Air Infiltration in Furnaces | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Air Infiltration in Furnaces Reduce Air Infiltration in Furnaces This tip sheet describes ... PROCESS HEATING TIP SHEET 5 PDF icon Reduce Air Infiltration in Furnaces (January 2006) ...

  4. Sabdia's Radial Flow Air Bearing Heat Exchanger

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Sandia's Radial Flow ir Bearing Heat Exchanger 2014 Building Technologies Office Peer Review Sandia's TRL 5 Air Bearing Heat exchanger technology (a. k. a. The Sandia Cooler) ...

  5. Split-flow regeneration in absorptive air separation

    DOE Patents [OSTI]

    Weimer, R.F.

    1987-11-24

    A chemical absorptive separation of air in multiple stage of absorption and desorption is performed with partial recycle of absorbent between stages of desorption necessary to match equilibrium conditions in the various stages of absorption. This allows reduced absorbent flow, reduced energy demand and reduced capital costs. 4 figs.

  6. Split-flow regeneration in absorptive air separation

    DOE Patents [OSTI]

    Weimer, Robert F.

    1987-01-01

    A chemical absorptive separation of air in multiple stage of absorption and desorption is performed with partial recycle of absorbent between stages of desorption necessary to match equilibrium conditions in the various stages of absorption. This allows reduced absorbent flow, reduced energy demand and reduced capital costs.

  7. Laboratory Evaluation of Air Flow Measurement Methods for Residential...

    Office of Scientific and Technical Information (OSTI)

    Returns Citation Details In-Document Search Title: Laboratory Evaluation of Air Flow Measurement Methods for Residential HVAC Returns This project improved the accuracy of air flow...

  8. Novel Application of Air Separation Membranes Reduces NOx Emissions...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Application of Air Separation Membranes Reduces NOx Emissions Technology available for licensing: Selective permeation of gases using an air separation membrane. Can be retrofitted to ...

  9. Retrofitting Inefficient Rooftop Air-Conditioning Units Reduces...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Retrofitting Inefficient Rooftop Air-Conditioning Units Reduces U.S. Navy Energy Use As ... One such technology- retrofitting rooftop air- conditioning units with an advanced rooftop ...

  10. Novel Application of Air Separation Membranes Reduces NOx Emissions |

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Argonne National Laboratory Application of Air Separation Membranes Reduces NOx Emissions Technology available for licensing: Selective permeation of gases using an air separation membrane. Can be retrofitted to existing engines Significantly reduces NOx emissions (as much as 70%) with just a 2% nitrogen enrichment of intake air PDF icon air_separation_membranes

  11. Reduce Air Infiltration in Furnaces; Industrial Technologies...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Secondary parameters that affect the amount of air leakage include these: * The furnace firing rate * The flue gas velocity through the stack or the stack cross-section area * The ...

  12. Review of air flow measurement techniques

    SciTech Connect (OSTI)

    McWilliams, Jennifer

    2002-12-01

    Airflow measurement techniques are necessary to determine the most basic of indoor air quality questions: ''Is there enough fresh air to provide a healthy environment for the occupants of the building?'' This paper outlines airflow measurement techniques, but it does not make recommendations for techniques that should be used. The airflows that will be discussed are those within a room or zone, those between rooms or zones, such as through doorways (open or closed) or passive vents, those between the building and outdoors, and those through mechanical air distribution systems. Techniques that are highlighted include particle streak velocimetry, hot wire anemometry, fan pressurization (measuring flow at a given pressure), tracer gas, acoustic methods for leak size determination, the Delta Q test to determine duct leakage flows, and flow hood measurements. Because tracer gas techniques are widely used to measure airflow, this topic is broken down into sections as follows: decay, pulse injection, constant injection, constant concentration, passive sampling, and single and multiple gas measurements for multiple zones.

  13. Novel Application of Air Separation Membranes Reduces Engine NOx Emissions

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    - Energy Innovation Portal Vehicles and Fuels Vehicles and Fuels Find More Like This Return to Search Novel Application of Air Separation Membranes Reduces Engine NOx Emissions Alternative to Exhaust Gas Recirculation that involves the nitrogen enrichment of intake air. Argonne National Laboratory Contact ANL About This Technology <p> Schematic representation of the air separation process through a membrane module</p> Schematic representation of the air separation process through

  14. Combustor air flow control method for fuel cell apparatus

    DOE Patents [OSTI]

    Clingerman, Bruce J. (Palmyra, NY); Mowery, Kenneth D. (Noblesville, IN); Ripley, Eugene V. (Russiaville, IN)

    2001-01-01

    A method for controlling the heat output of a combustor in a fuel cell apparatus to a fuel processor where the combustor has dual air inlet streams including atmospheric air and fuel cell cathode effluent containing oxygen depleted air. In all operating modes, an enthalpy balance is provided by regulating the quantity of the air flow stream to the combustor to support fuel cell processor heat requirements. A control provides a quick fast forward change in an air valve orifice cross section in response to a calculated predetermined air flow, the molar constituents of the air stream to the combustor, the pressure drop across the air valve, and a look up table of the orifice cross sectional area and valve steps. A feedback loop fine tunes any error between the measured air flow to the combustor and the predetermined air flow.

  15. Pressure-flow reducer for aerosol focusing devices

    DOE Patents [OSTI]

    Gard, Eric; Riot, Vincent; Coffee, Keith; Woods, Bruce; Tobias, Herbert; Birch, Jim; Weisgraber, Todd

    2008-04-22

    A pressure-flow reducer, and an aerosol focusing system incorporating such a pressure-flow reducer, for performing high-flow, atmosphere-pressure sampling while delivering a tightly focused particle beam in vacuum via an aerodynamic focusing lens stack. The pressure-flow reducer has an inlet nozzle for adjusting the sampling flow rate, a pressure-flow reduction region with a skimmer and pumping ports for reducing the pressure and flow to enable interfacing with low pressure, low flow aerosol focusing devices, and a relaxation chamber for slowing or stopping aerosol particles. In this manner, the pressure-flow reducer decouples pressure from flow, and enables aerosol sampling at atmospheric pressure and at rates greater than 1 liter per minute.

  16. Managing the Drivers of Air Flow and Water Vapor Transport in Existing Single Family Homes (Revised)

    SciTech Connect (OSTI)

    Cummings, J.; Withers, C.; Martin, E.; Moyer, N.

    2012-10-01

    This document focuses on managing the driving forces which move air and moisture across the building envelope. While other previously published Measure Guidelines focus on elimination of air pathways, the ultimate goal of this Measure Guideline is to manage drivers which cause air flow and water vapor transport across the building envelope (and also within the home), control air infiltration, keep relative humidity (RH) within acceptable limits, avoid combustion safety problems, improve occupant comfort, and reduce house energy use.

  17. New Air Cleaning Strategies for Reduced Commercial Building Ventilation Energy

    SciTech Connect (OSTI)

    Sidheswaran, Meera; Destaillats, Hugo; Sullivan, Douglas P.; Fisk, William J.

    2010-10-27

    Approximately ten percent of the energy consumed in U.S. commercial buildings is used by HVAC systems to condition outdoor ventilation air. Reducing ventilation rates would be a simple and broadly-applicable energy retrofit option, if practical counter measures were available that maintained acceptable concentrations of indoor-generated air pollutants. The two general categories of countermeasures are: 1) indoor pollutant source control, and 2) air cleaning. Although pollutant source control should be used to the degree possible, source control is complicated by the large number and changing nature of indoor pollutant sources. Particle air cleaning is already routinely applied in commercial buildings. Previous calculations indicate that particle filtration consumes only 10percent to 25percent of the energy that would otherwise be required to achieve an equivalent amount of particle removal with ventilation. If cost-effective air cleaning technologies for volatile organic compounds (VOCs) were also available, outdoor air ventilation rates could be reduced substantially and broadly in the commercial building stock to save energy. The research carried out in this project focuses on developing novel VOC air cleaning technologies needed to enable energy-saving reductions in ventilation rates. The minimum required VOC removal efficiency to counteract a 50percent reduction in ventilation rate for air cleaning systems installed in the HVAC supply airstream is modest (generally 20percent or less).

  18. Air-flow regulation system for a coal gasifier

    DOE Patents [OSTI]

    Fasching, George E.

    1984-01-01

    An improved air-flow regulator for a fixed-bed coal gasifier is provided which allows close air-flow regulation from a compressor source even though the pressure variations are too rapid for a single primary control loop to respond. The improved system includes a primary controller to control a valve in the main (large) air supply line to regulate large slow changes in flow. A secondary controller is used to control a smaller, faster acting valve in a secondary (small) air supply line parallel to the main line valve to regulate rapid cyclic deviations in air flow. A low-pass filter with a time constant of from 20 to 50 seconds couples the output of the secondary controller to the input of the primary controller so that the primary controller only responds to slow changes in the air-flow rate, the faster, cyclic deviations in flow rate sensed and corrected by the secondary controller loop do not reach the primary controller due to the high frequency rejection provided by the filter. This control arrangement provides at least a factor of 5 improvement in air-flow regulation for a coal gasifier in which air is supplied by a reciprocating compressor through a surge tank.

  19. Laboratory Evaluation of Air Flow Measurement Methods for Residential...

    Office of Scientific and Technical Information (OSTI)

    research team at Lawrence Berkeley National Laboratory addressed the issue that typical tools used by contractors in the field to test air flows may not be accurate enough to...

  20. LABORATORY EVALUATION OF AIR FLOW MEASUREMENT METHODS FOR RESIDENTIAL...

    Office of Scientific and Technical Information (OSTI)

    tools used by contractors in the field to test air flows may not be accurate enough to ... The team developed guidance on performance of current diagnostics as well as a draft test ...

  1. Laser sheet light flow visualization for evaluating room air flowsfrom Registers

    SciTech Connect (OSTI)

    Walker, Iain S.; Claret, Valerie; Smith, Brian

    2006-04-01

    Forced air heating and cooling systems and whole house ventilation systems deliver air to individual rooms in a house via supply registers located on walls ceilings or floors; and occasionally less straightforward locations like toe-kicks below cabinets. Ideally, the air velocity out of the registers combined with the turbulence of the flow, vectoring of air by register vanes and geometry of register placement combine to mix the supply air within the room. A particular issue that has been raised recently is the performance of multiple capacity and air flow HVAC systems. These systems vary the air flow rate through the distribution system depending on the system load, or if operating in a ventilation rather than a space conditioning mode. These systems have been developed to maximize equipment efficiency, however, the high efficiency ratings do not include any room mixing effects. At lower air flow rates, there is the possibility that room air will be poorly mixed, leading to thermal stratification and reduced comfort for occupants. This can lead to increased energy use as the occupants adjust the thermostat settings to compensate and parts of the conditioned space have higher envelope temperature differences than for the well mixed case. In addition, lack of comfort can be a barrier to market acceptance of these higher efficiency systems To investigate the effect on room mixing of reduced air flow rates requires the measurement of mixing of supply air with room air throughout the space to be conditioned. This is a particularly difficult exercise if we want to determine the transient performance of the space conditioning system. Full scale experiments can be done in special test chambers, but the spatial resolution required to fully examine the mixing problem is usually limited by the sheer number of thermal sensors required. Current full-scale laboratory testing is therefore severely limited in its resolution. As an alternative, we used a water-filled scale model of a room in which whole-field supply air mixing maps of two vertical planes were measured using a Planar Laser-Induced Fluorescence (PLIF) measurement technique. Water marked with fluorescent dye was used to simulate the supply airflow; and the resulting concentrations within the water filled model show how the supply air mixes with the room air and are an analog for temperature (for thermal loads) or fresh air (for ventilation). In addition to performing experiments over a range of flow rates, we also changed register locations and examined the effects for both heating and cooling operation by changing the water density (simulating air density changes due to temperature changes) using dissolved salt.

  2. Reduce Air Infiltration in Furnaces (English/Chinese) (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2011-10-01

    Chinese translation of the Reduce Air Infiltration in Furnaces fact sheet. Provides suggestions on how to improve furnace energy efficiency. Fuel-fired furnaces discharge combustion products through a stack or a chimney. Hot furnace gases are less dense and more buoyant than ambient air, so they rise, creating a differential pressure between the top and the bottom of the furnace. This differential, known as thermal head, is the source of a natural draft or negative pressure in furnaces and boilers. A well-designed furnace (or boiler) is built to avoid air leakage into the furnace or leakage of flue gases from the furnace to the ambient. However, with time, most furnaces develop cracks or openings around doors, joints, and hearth seals. These openings (leaks) usually appear small compared with the overall dimensions of the furnace, so they are often ignored. The negative pressure created by the natural draft (or use of an induced-draft fan) in a furnace draws cold air through the openings (leaks) and into the furnace. The cold air becomes heated to the furnace exhaust gas temperature and then exits through the flue system, wasting valuable fuel. It might also cause excessive oxidation of metals or other materials in the furnaces. The heat loss due to cold air leakage resulting from the natural draft can be estimated if you know four major parameters: (1) The furnace or flue gas temperature; (2) The vertical distance H between the opening (leak) and the point where the exhaust gases leave the furnace and its flue system (if the leak is along a vertical surface, H will be an average value); (3) The area of the leak, in square inches; and (4) The amount of operating time the furnace spends at negative pressure. Secondary parameters that affect the amount of air leakage include these: (1) The furnace firing rate; (2) The flue gas velocity through the stack or the stack cross-section area; (3) The burner operating conditions (e.g., excess air, combustion air temperature, and so on). For furnaces or boilers using an induced-draft (ID) fan, the furnace negative pressure depends on the fan performance and frictional losses between the fan inlet and the point of air leakage. In most cases, it would be necessary to measure or estimate negative pressure at the opening. The amount of air leakage, the heat lost in flue gases, and their effects on increased furnace or boiler fuel consumption can be calculated by using the equations and graphs given in Industrial Furnaces (see W. Trinks et al., below). Note that the actual heat input required to compensate for the heat loss in flue gases due to air leakage would be greater than the heat contained in the air leakage because of the effect of available heat in the furnace. For a high-temperature furnace that is not maintained properly, the fuel consumption increase due to air leakage can be as high as 10% of the fuel input.

  3. Annular fuel and air co-flow premixer

    DOE Patents [OSTI]

    Stevenson, Christian Xavier; Melton, Patrick Benedict; York, William David

    2013-10-15

    Disclosed is a premixer for a combustor including an annular outer shell and an annular inner shell. The inner shell defines an inner flow channel inside of the inner shell and is located to define an outer flow channel between the outer shell and the inner shell. A fuel discharge annulus is located between the outer flow channel and the inner flow channel and is configured to inject a fuel flow into a mixing area in a direction substantially parallel to an outer airflow through the outer flow channel and an inner flow through the inner flow channel. Further disclosed are a combustor including a plurality of premixers and a method of premixing air and fuel in a combustor.

  4. Low-Flow Liquid Desiccant Air-Conditioning: Demonstrated Performance and Cost Implications

    SciTech Connect (OSTI)

    Kozubal, E.; Herrmann, L.; Deru, M.; Clark, J.; Lowenstein, A.

    2014-09-01

    Cooling loads must be dramatically reduced when designing net-zero energy buildings or other highly efficient facilities. Advances in this area have focused primarily on reducing a building's sensible cooling loads by improving the envelope, integrating properly sized daylighting systems, adding exterior solar shading devices, and reducing internal heat gains. As sensible loads decrease, however, latent loads remain relatively constant, and thus become a greater fraction of the overall cooling requirement in highly efficient building designs, particularly in humid climates. This shift toward latent cooling is a challenge for heating, ventilation, and air-conditioning (HVAC) systems. Traditional systems typically dehumidify by first overcooling air below the dew-point temperature and then reheating it to an appropriate supply temperature, which requires an excessive amount of energy. Another dehumidification strategy incorporates solid desiccant rotors that remove water from air more efficiently; however, these systems are large and increase fan energy consumption due to the increased airside pressure drop of solid desiccant rotors. A third dehumidification strategy involves high flow liquid desiccant systems. These systems require a high maintenance separator to protect the air distribution system from corrosive desiccant droplet carryover and so are more commonly used in industrial applications and rarely in commercial buildings. Both solid desiccant systems and most high-flow liquid desiccant systems (if not internally cooled) add sensible energy which must later be removed to the air stream during dehumidification, through the release of sensible heat during the sorption process.

  5. Method and apparatus for reducing cold-phase emissions by utilizing oxygen-enriched intake air

    DOE Patents [OSTI]

    Poola, Ramesh B.; Sekar, Ramanujam R.; Stork, Kevin C.

    1997-01-01

    An oxygen-enriched air intake control system for an internal combustion engine includes air directing apparatus to control the air flow into the intake of the engine. During normal operation of the engine, ambient air flowing from an air filter of the engine flows through the air directing apparatus into the intake of the engine. In order to decrease the amount of carbon monoxide (CO) and hydrocarbon (HC) emissions that tend to be produced by the engine during a short period of time after the engine is started, the air directing apparatus diverts for a short period of time following the start up of the engine at least a portion of the ambient air from the air filter through a secondary path. The secondary path includes a selectively permeable membrane through which the diverted portion of the ambient air flows. The selectively permeable membrane separates nitrogen and oxygen from the diverted air so that oxygen enriched air containing from about 23% to 25% oxygen by volume is supplied to the intake of the engine.

  6. Air Flow North America Corp.- FE Dkt. No. 14-206-LNG

    Broader source: Energy.gov [DOE]

    The Office of Fossil Energy gives notice of receipt of an Application filed December 16, 2014, by Air Flow North America Corp. (Air Flow), seeking a long-term multi-contract authorization to export...

  7. Air Flow North America Corp. – FE Dkt. No. 14-53-LNG (Re-export)

    Broader source: Energy.gov [DOE]

    The Office of Fossil Energy (FE) of the Department of Energy (DOE) gives notice of receipt of an application filed on March 25, 2014, by Air Flow North America Corp. (AIR FLOW) requesting short...

  8. Laboratory Evaluation of Air Flow Measurement Methods for Residential HVAC Returns

    SciTech Connect (OSTI)

    Walker, Iain; Stratton, Chris

    2015-07-01

    This project improved the accuracy of air flow measurements used in commissioning California heating and air conditioning systems in Title 24 (Building and Appliance Efficiency Standards), thereby improving system performance and efficiency of California residences. The research team at Lawrence Berkeley National Laboratory addressed the issue that typical tools used by contractors in the field to test air flows may not be accurate enough to measure return flows used in Title 24 applications. The team developed guidance on performance of current diagnostics as well as a draft test method for use in future evaluations. The series of tests performed measured air flow using a range of techniques and devices. The measured air flows were compared to reference air flow measurements using inline air flow meters built into the test apparatus. The experimental results showed that some devices had reasonable results (typical errors of 5 percent or less) but others had much bigger errors (up to 25 percent).

  9. Reduced energy and volume air pump for a seat cushion

    DOE Patents [OSTI]

    Vaughn, Mark R.; Constantineau, Edward J.; Groves, Gordon E.

    1997-01-01

    An efficient pump system for transferring air between sets of bladders in a cushion. The pump system utilizes a reversible piston within a cylinder in conjunction with an equalizing valve in the piston which opens when the piston reaches the end of travel in one direction. The weight of a seated user then forces air back across the piston from an inflated bladder to the previously deflated bladder until the pressure is equalized. In this fashion the work done by the pump is cut in half. The inflation and deflation of the different bladders is controlled to vary the pressure on the several pressure points of a seated user. A principal application is for wheel chair use to prevent pressure ulcers.

  10. Reduced energy and volume air pump for a seat cushion

    DOE Patents [OSTI]

    Vaughn, M.R.; Constantineau, E.J.; Groves, G.E.

    1997-08-19

    An efficient pump system is described for transferring air between sets of bladders in a cushion. The pump system utilizes a reversible piston within a cylinder in conjunction with an equalizing valve in the piston which opens when the piston reaches the end of travel in one direction. The weight of a seated user then forces air back across the piston from an inflated bladder to the previously deflated bladder until the pressure is equalized. In this fashion the work done by the pump is cut in half. The inflation and deflation of the different bladders is controlled to vary the pressure on the several pressure points of a seated user. A principal application is for wheel chair use to prevent pressure ulcers. 12 figs.

  11. Opportunities to Reduce Air-Conditioning Loads Through Lower Cabin Soak Temperatures

    SciTech Connect (OSTI)

    Farrington, R.; Cuddy, M.; Keyser, M.; Rugh, J.

    1999-07-12

    Air-conditioning loads can significantly reduce electric vehicle (EV) range and hybrid electric vehicle (HEV) fuel economy. In addition, a new U. S. emissions procedure, called the Supplemental Federal Test Procedure (SFTP), has provided the motivation for reducing the size of vehicle air-conditioning systems in the United States. The SFTP will measure tailpipe emissions with the air-conditioning system operating. If the size of the air-conditioning system is reduced, the cabin soak temperature must also be reduced, with no penalty in terms of passenger thermal comfort. This paper presents the impact of air-conditioning on EV range and HEV fuel economy, and compares the effectiveness of advanced glazing and cabin ventilation. Experimental and modeled results are presented.

  12. Economizer control assembly for regulating the volume flow of outdoor ambient air

    SciTech Connect (OSTI)

    Michaels, D.D. Jr.

    1984-10-23

    An economizer assembly is disclosed wherein a sliding door is utilized for covering an outdoor ambient air opening allowing outdoor ambient air flow into a space to be conditioned. A motor shaft arrangement connected via a rotating drive rod is utilized to slidably displace the door to any position necessary to effectively regulate air flow. The utilization of this economizer control arrangement with a rooftop type air conditioning unit is further disclosed.

  13. Investigation of Countercurrent Helium-Air Flows in Air-ingress Accidents for VHTRs

    SciTech Connect (OSTI)

    Sun, Xiaodong; Christensen, Richard; Oh, Chang

    2013-10-03

    The primary objective of this research is to develop an extensive experimental database for the air- ingress phenomenon for the validation of computational fluid dynamics (CFD) analyses. This research is intended to be a separate-effects experimental study. However, the project team will perform a careful scaling analysis prior to designing a scaled-down test facility in order to closely tie this research with the real application. As a reference design in this study, the team will use the 600 MWth gas turbine modular helium reactor (GT-MHR) developed by General Atomic. In the test matrix of the experiments, researchers will vary the temperature and pressure of the helium— along with break size, location, shape, and orientation—to simulate deferent scenarios and to identify potential mitigation strategies. Under support of the Department of Energy, a high-temperature helium test facility has been designed and is currently being constructed at Ohio State University, primarily for high- temperature compact heat exchanger testing for the VHTR program. Once the facility is in operation (expected April 2009), this study will utilize high-temperature helium up to 900°C and 3 MPa for loss-of-coolant accident (LOCA) depressurization and air-ingress experiments. The project team will first conduct a scaling study and then design an air-ingress test facility. The major parameter to be measured in the experiments is oxygen (or nitrogen) concentration history at various locations following a LOCA scenario. The team will use two measurement techniques: 1) oxygen (or similar type) sensors employed in the flow field, which will introduce some undesirable intrusiveness, disturbing the flow, and 2) a planar laser-induced fluorescence (PLIF) imaging technique, which has no physical intrusiveness to the flow but requires a transparent window or test section that the laser beam can penetrate. The team will construct two test facilities, one for high-temperature helium tests with local sensors and the other for low- temperature helium tests with the PLIF technique. The results from the two instruments will provide a means to cross-calibrate the measurement techniques.

  14. Use of exhaust gas as sweep flow to enhance air separation membrane performance

    DOE Patents [OSTI]

    Dutart, Charles H.; Choi, Cathy Y.

    2003-01-01

    An intake air separation system for an internal combustion engine is provided with purge gas or sweep flow on the permeate side of separation membranes in the air separation device. Exhaust gas from the engine is used as a purge gas flow, to increase oxygen flux in the separation device without increasing the nitrogen flux.

  15. Low-Flow Liquid Desiccant Air-Conditioning: Demonstrated Performance...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ... This shift toward low sensible heat ratio (SHR) systems is a ... air below the dew-point temperature and then reheating it to ... Treatment of indoor air requires a separate analysis, which ...

  16. Laboratory Evaluation of Air Flow Measurement Methods for Residential HVAC Returns for New Instrument Standards

    SciTech Connect (OSTI)

    Walker, Iain; Stratton, Chris

    2015-08-01

    This project improved the accuracy of air flow measurements used in commissioning California heating and air conditioning systems in Title 24 (Building and Appliance Efficiency Standards), thereby improving system performance and efficiency of California residences. The research team at Lawrence Berkeley National Laboratory addressed the issue that typical tools used by contractors in the field to test air flows may not be accurate enough to measure return flows used in Title 24 applications. The team developed guidance on performance of current diagnostics as well as a draft test method for use in future evaluations. The study team prepared a draft test method through ASTM International to determine the uncertainty of air flow measurements at residential heating ventilation and air conditioning returns and other terminals. This test method, when finalized, can be used by the Energy Commission and other entities to specify required accuracy of measurement devices used to show compliance with standards.

  17. Laboratory Evaluation of Air Flow Measurement Methods for Residential...

    Office of Scientific and Technical Information (OSTI)

    used in commissioning California heating and air conditioning systems in Title 24 (Building and Appliance Efficiency Standards), thereby improving system performance and...

  18. LABORATORY EVALUATION OF AIR FLOW MEASUREMENT METHODS FOR RESIDENTIAL HVAC RETURNS

    SciTech Connect (OSTI)

    Walker, Iain; Stratton, Chris

    2015-02-01

    This project improved the accuracy of air flow measurements used in commissioning California heating and air conditioning systems in Title 24 (Building and Appliance Efficiency Standards), thereby improving system performance and efficiency of California residences. The research team at Lawrence Berkeley National Laboratory addressed the issue that typical tools used by contractors in the field to test air flows may not be accurate enough to measure return flows used in Title 24 applications. The team developed guidance on performance of current diagnostics as well as a draft test method for use in future evaluations. The series of tests performed measured air flow using a range of techniques and devices. The measured air flows were compared to reference air flow measurements using inline air flow meters built into the test apparatus. The experimental results showed that some devices had reasonable results (typical errors of 5 percent or less) but others had much bigger errors (up to 25 percent). Because manufacturers’ accuracy estimates for their equipment do not include many of the sources of error found in actual field measurements (and replicated in the laboratory testing in this study) it is essential for a test method that could be used to determine the actual uncertainty in this specific application. The study team prepared a draft test method through ASTM International to determine the uncertainty of air flow measurements at residential heating ventilation and air conditioning returns and other terminals. This test method, when finalized, can be used by the Energy Commission and other entities to specify required accuracy of measurement devices used to show compliance with standards.

  19. Study of flow fields induced by surface dielectric barrier discharge actuator in low-pressure air

    SciTech Connect (OSTI)

    Che, Xueke E-mail: st@mail.iee.ac.cn; Nie, Wansheng; Tian, Xihui; Hou, Zhiyong; He, Haobo; Zhou, Penghui; Zhou, Siyin; Yang, Chao; Shao, Tao E-mail: st@mail.iee.ac.cn

    2014-04-15

    Surface dielectric barrier discharge (SDBD) is a promising method for a flow control. Flow fields induced by a SDBD actuator driven by the ac voltage in static air at low pressures varying from 1.0 to 27.7?kPa are measured by the particle image velocimetry method. The influence of the applied ac voltage frequency and magnitude on the induced flow fields is studied. The results show that three different classes of flow fields (wall jet flow field, complex flow field, and vortex-shape flow field) can be induced by the SDBD actuator in the low-pressure air. Among them, the wall jet flow field is the same as the tangential jet at atmospheric pressure, which is, together with the vertical jet, the complex flow field. The vortex-shape flow field is composed of one vertical jet which points towards the wall and two opposite tangential jets. The complex and the vortex-shape flow fields can be transformed to the wall jet flow field when the applied ac voltage frequency and magnitude are changed. It is found that the discharge power consumption increases initially, decreases, and then increases again at the same applied ac voltage magnitude when the air pressure decreases. The tangential velocity of the wall jet flow field increases when the air pressure decreases. It is however opposite for the complex flow field. The variation of the applied ac voltage frequency influences differently three different flow fields. When the applied ac voltage magnitude increases at the same applied ac voltage frequency, the maximal jet velocity increases, while the power efficiency increases only initially and then decreases again. The discharge power shows either linear or exponential dependences on the applied ac voltage magnitude.

  20. Test report, air flow control device for 241-SY waste tankventilation

    SciTech Connect (OSTI)

    Tuck, J.A.

    1997-06-03

    This documents the testing of a passively operated, constant air flow control device for in-duct applications on waste tank ventilation systems in the 50-1000 SCFM range.

  1. Reducing or stopping the uncontrolled flow of fluid such as oil from a well

    DOE Patents [OSTI]

    Hermes, Robert E

    2014-02-18

    The uncontrolled flow of fluid from an oil or gas well may be reduced or stopped by injecting a composition including 2-cyanoacrylate ester monomer into the fluid stream. Injection of the monomer results in a rapid, perhaps instantaneous, polymerization of the monomer within the flow stream of the fluid. This polymerization results in formation of a solid plug that reduces or stops the flow of additional fluid from the well.

  2. Effects of low velocity air flow over alumina-silica insulating boards in solar environments

    SciTech Connect (OSTI)

    Maxwell, C.R.; Mulholland, G.P.; Couch, W.A.

    1987-01-01

    Results are reported from an experiment designed to determine whether low velocity air flow over insulating boards can increase their survivability in severe solar environments. The experiment was conducted at the Flux Gage Calibration Station located at Sandia National Laboratories' Solar Thermal Test Facility. Preliminary results indicate that the useful life for these boards can be significantly increased by air flowing over the hot surface of the board.

  3. Technique for measuring air flow and carbon dioxide flux in large, open-top chambers

    SciTech Connect (OSTI)

    Ham, J.M.; Owensby, C.E.; Coyne, P.I.

    1993-10-01

    Open-Top Chambers (OTCs) are commonly used to evaluate the effect of CO{sub 2},O{sub 3}, and other trace gases on vegetation. This study developed and tested a new technique for measuring forced air flow and net CO{sub 2} flux from OTCs. Experiments were performed with a 4.5-m diam. OTC with a sealed floor and a specialized air delivery system. Air flow through the chamber was computed with the Bernoulli equation using measurements of the pressure differential between the air delivery ducts and the chamber interior. An independent measurement of air flow was made simultaneously to calibrate and verify the accuracy of the Bernoulli relationship. The CO{sub 2} flux density was calculated as the product of chamber air flow and the difference in CO{sub 2} concentration between the air entering and exhausting from the OTC (C{sub in}-C{sub out}). Accuracy was evaluated by releasing CO{sub 2} within the OTC at known rates. Data were collected with OTCs at ambient and elevated CO{sub 2} ({approx}700 {mu}mol{sup -1}). Results showed the Bernoulli equation, with a flow coefficient of 0.7, accurately measured air flow in the OTC within {+-}5% regardless of flow rate and air duct geometry. Experiments in ambient OTCs showed CO{sub 2} flux density ({mu}mol m{sup -2} s{sup -1}), computed from 2-min averages of air flow and C{sub in} - C{sub out,} was typically within {+-} 10% of actual flux, provided that the exit air velocity at the top of the OTC was greater than 0.6 m s{sup -1}. Obtaining the same accuracy in CO{sub 2}-enriched OTCs required a critical exit velocity near 1.2 m s{sup -1} to minimize the incursion of ambient air and prevent contamination of exit gas sample. When flux data were integrated over time to estimate daily CO{sub 2} flux ({mu}mol m{sup -2} d{sup -1}), actual and measured values agreed to within {+-}2% for both ambient and CO{sub 2}-enriched chambers, suggesting that accurate measurements of daily net C exchange are possible with this technique.

  4. Turbine exhaust diffuser with region of reduced flow area and outer boundary gas flow

    DOE Patents [OSTI]

    Orosa, John

    2014-03-11

    An exhaust diffuser system and method for a turbine engine. The outer boundary may include a region in which the outer boundary extends radially inwardly toward the hub structure and may direct at least a portion of an exhaust flow in the diffuser toward the hub structure. At least one gas jet is provided including a jet exit located on the outer boundary. The jet exit may discharge a flow of gas downstream substantially parallel to an inner surface of the outer boundary to direct a portion of the exhaust flow in the diffuser toward the outer boundary to effect a radially outward flow of at least a portion of the exhaust gas flow toward the outer boundary to balance an aerodynamic load between the outer and inner boundaries.

  5. Retrofitting Inefficient Rooftop Air-Conditioning Units Reduces U.S. Navy Energy Use (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2014-04-01

    As part of the U.S. Navy's overall energy strategy, the National Renewable Energy Laboratory (NREL) partnered with the Naval Facilities Engineering Command (NAVFAC) to demonstrate market-ready energy efficiency measures, renewable energy generation, and energy systems integration. One such technology - retrofitting rooftop air-conditioning units with an advanced rooftop control system - was identified as a promising source for reducing energy use and costs, and can contribute to increasing energy security.

  6. Coal flow aids reduce coke plant operating costs and improve production rates

    SciTech Connect (OSTI)

    Bedard, R.A.; Bradacs, D.J.; Kluck, R.W.; Roe, D.C.; Ventresca, B.P.

    2005-06-01

    Chemical coal flow aids can provide many benefits to coke plants, including improved production rates, reduced maintenance and lower cleaning costs. This article discusses the mechanisms by which coal flow aids function and analyzes several successful case histories. 2 refs., 10 figs., 1 tab.

  7. Flow directing means for air-cooled transformers

    DOE Patents [OSTI]

    Jallouk, Philip A.

    1977-01-01

    This invention relates to improvements in systems for force-cooling transformers of the kind in which an outer helical winding and an insulation barrier nested therein form an axially extending annular passage for cooling-fluid flow. In one form of the invention a tubular shroud is positioned about the helical winding to define an axially extending annular chamber for cooling-fluid flow. The chamber has a width in the range of from about 4 to 25 times that of the axially extending passage. Two baffles extend inward from the shroud to define with the helical winding two annular flow channels having hydraulic diameters smaller than that of the chamber. The inlet to the chamber is designed with a hydraulic diameter approximating that of the coolant-entrance end of the above-mentioned annular passage. As so modified, transformers of the kind described can be operated at significantly higher load levels without exceeding safe operating temperatures. In some instances the invention permits continuous operation at 200% of the nameplate rating.

  8. Turbine exhaust diffuser flow path with region of reduced total flow area

    DOE Patents [OSTI]

    Orosa, John A.

    2012-12-25

    An exhaust diffuser system and method for a turbine engine includes an inner boundary and an outer boundary with a flow path defined therebetween. The inner boundary is defined at least in part by a hub that has an upstream end and a downstream end. The outer boundary has a region in which the outer boundary extends radially inward toward the hub. The region can begin at a point that is substantially aligned with the downstream end of the hub or, alternatively, at a point that is proximately upstream of the downstream end of the hub. The region directs at least a portion of an exhaust flow in the diffuser toward the hub. As a result, the exhaust diffuser system and method can achieve the performance of a long hub system while enjoying the costs of a short hub system.

  9. Uncertainty Analysis for a Virtual Flow Meter Using an Air-Handling Unit Chilled Water Valve

    SciTech Connect (OSTI)

    Song, Li; Wang, Gang; Brambley, Michael R.

    2013-04-28

    A virtual water flow meter is developed that uses the chilled water control valve on an air-handling unit as a measurement device. The flow rate of water through the valve is calculated using the differential pressure across the valve and its associated coil, the valve command, and an empirically determined valve characteristic curve. Thus, the probability of error in the measurements is significantly greater than for conventionally manufactured flow meters. In this paper, mathematical models are developed and used to conduct uncertainty analysis for the virtual flow meter, and the results from the virtual meter are compared to measurements made with an ultrasonic flow meter. Theoretical uncertainty analysis shows that the total uncertainty in flow rates from the virtual flow meter is 1.46% with 95% confidence; comparison of virtual flow meter results with measurements from an ultrasonic flow meter yielded anuncertainty of 1.46% with 99% confidence. The comparable results from the theoretical uncertainty analysis and empirical comparison with the ultrasonic flow meter corroborate each other, and tend to validate the approach to computationally estimating uncertainty for virtual sensors introduced in this study.

  10. The potential for reducing urban air temperatures and energy consumption through vegetative cooling

    SciTech Connect (OSTI)

    Kurn, D.M.; Bretz, S.E.; Huang, B.; Akbari, H.

    1994-05-01

    A network of 23 weather stations was used to detect existing oases in Southern California. Four stations, separated from one another by 15--25 miles (24--40 km), were closely examined. Data were strongly affected by the distance of the stations from the Pacific Ocean. This and other city-scale effects made the network inadequate for detection of urban oases. We also conducted traverse measurements of temperature and humidity in the Whittier Narrows Recreation Area in Los Angeles County on September 8--10, 1993. Near-surface air temperatures over vegetated areas were 1--2{degrees}C lower than background air temperatures. We estimate that vegetation may lower urban temperatures by 1{degrees}C, while the establishment of vegetative canopies may lower local temperatures by an additional 2{degrees}C. An increase in vegetation in residential neighborhoods may reduce peak loads in the Los Angeles area by 0.3 GW, and reduce energy consumption by 0.2 BkWh/year, saving $20 million annually. Large additional savings would result from regional cooling.

  11. Internal air flow analysis of a bladeless micro aerial vehicle hemisphere body using computational fluid dynamic

    SciTech Connect (OSTI)

    Othman, M. N. K. E-mail: zuradzman@unimap.edu.my E-mail: khairunizam@unimap.edu.my E-mail: s.yaacob@unimap.edu.my E-mail: abadal@unimap.edu.my; Zuradzman, M. Razlan E-mail: zuradzman@unimap.edu.my E-mail: khairunizam@unimap.edu.my E-mail: s.yaacob@unimap.edu.my E-mail: abadal@unimap.edu.my; Hazry, D. E-mail: zuradzman@unimap.edu.my E-mail: khairunizam@unimap.edu.my E-mail: s.yaacob@unimap.edu.my E-mail: abadal@unimap.edu.my; Khairunizam, Wan E-mail: zuradzman@unimap.edu.my E-mail: khairunizam@unimap.edu.my E-mail: s.yaacob@unimap.edu.my E-mail: abadal@unimap.edu.my; Shahriman, A. B. E-mail: zuradzman@unimap.edu.my E-mail: khairunizam@unimap.edu.my E-mail: s.yaacob@unimap.edu.my E-mail: abadal@unimap.edu.my; Yaacob, S. E-mail: zuradzman@unimap.edu.my E-mail: khairunizam@unimap.edu.my E-mail: s.yaacob@unimap.edu.my E-mail: abadal@unimap.edu.my; Ahmed, S. Faiz E-mail: zuradzman@unimap.edu.my E-mail: khairunizam@unimap.edu.my E-mail: s.yaacob@unimap.edu.my E-mail: abadal@unimap.edu.my; and others

    2014-12-04

    This paper explain the analysis of internal air flow velocity of a bladeless vertical takeoff and landing (VTOL) Micro Aerial Vehicle (MAV) hemisphere body. In mechanical design, before produce a prototype model, several analyses should be done to ensure the product's effectiveness and efficiency. There are two types of analysis method can be done in mechanical design; mathematical modeling and computational fluid dynamic. In this analysis, I used computational fluid dynamic (CFD) by using SolidWorks Flow Simulation software. The idea came through to overcome the problem of ordinary quadrotor UAV which has larger size due to using four rotors and the propellers are exposed to environment. The bladeless MAV body is designed to protect all electronic parts, which means it can be used in rainy condition. It also has been made to increase the thrust produced by the ducted propeller compare to exposed propeller. From the analysis result, the air flow velocity at the ducted area increased to twice the inlet air. This means that the duct contribute to the increasing of air velocity.

  12. Thermal characteristics of air flow cooling in the lithium ion batteries experimental chamber

    SciTech Connect (OSTI)

    Lukhanin A.; Rohatgi U.; Belyaev, A.; Fedorchenko, D.; Khazhmuradov, M.; Lukhanin, O; Rudychev, I.

    2012-07-08

    A battery pack prototype has been designed and built to evaluate various air cooling concepts for the thermal management of Li-ion batteries. The heat generation from the Li-Ion batteries was simulated with electrical heat generation devices with the same dimensions as the Li-Ion battery (200 mm x 150 mm x 12 mm). Each battery simulator generates up to 15W of heat. There are 20 temperature probes placed uniformly on the surface of the battery simulator, which can measure temperatures in the range from -40 C to +120 C. The prototype for the pack has up to 100 battery simulators and temperature probes are recorder using a PC based DAQ system. We can measure the average surface temperature of the simulator, temperature distribution on each surface and temperature distributions in the pack. The pack which holds the battery simulators is built as a crate, with adjustable gap (varies from 2mm to 5mm) between the simulators for air flow channel studies. The total system flow rate and the inlet flow temperature are controlled during the test. The cooling channel with various heat transfer enhancing devices can be installed between the simulators to investigate the cooling performance. The prototype was designed to configure the number of cooling channels from one to hundred Li-ion battery simulators. The pack is thermally isolated which prevents heat transfer from the pack to the surroundings. The flow device can provide the air flow rate in the gap of up to 5m/s velocity and air temperature in the range from -30 C to +50 C. Test results are compared with computational modeling of the test configurations. The present test set up will be used for future tests for developing and validating new cooling concepts such as surface conditions or heat pipes.

  13. Air mass flow estimation in turbocharged diesel engines from in-cylinder pressure measurement

    SciTech Connect (OSTI)

    Desantes, J.M.; Galindo, J.; Guardiola, C.; Dolz, V.

    2010-01-15

    Air mass flow determination is needed for the control of current internal combustion engines. Current methods are based on specific sensors (as hot wire anemometers) or indirect estimation through manifold pressure. With the availability of cylinder pressure sensors for engine control, methods based on them can be used for replacing or complementing standard methods. Present paper uses in cylinder pressure increase during the intake stroke for inferring the trapped air mass. The method is validated on two different turbocharged diesel engines and compared with the standard methods. (author)

  14. The Need to Reduce Mobile Source Emissions in the South Coast Air Basin

    Broader source: Energy.gov [DOE]

    2004 Diesel Engine Emissions Reduction (DEER) Conference Presentation: South Coast Air Quality Management District

  15. Managing the Drivers of Air Flow and Water Vapor Transport in Existing Single-Family Homes

    SciTech Connect (OSTI)

    Cummings, James; Withers, Charles; Martin, Eric; Moyer, Neil

    2012-10-01

    This report is a revision of an earlier report titled: Measure Guideline: Managing the Drivers of Air Flow and Water Vapor Transport in Existing Single-Family Homes. Revisions include: Information in the text box on page 1 was revised to reflect the most accurate information regarding classifications as referenced in the 2012 International Residential Code. “Measure Guideline” was dropped from the title of the report. An addition was made to the reference list.

  16. Technology Solutions Case Study: Overcoming Comfort Issues Due to Reduced

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Flow Room Air Mixing | Department of Energy Case Study: Overcoming Comfort Issues Due to Reduced Flow Room Air Mixing Technology Solutions Case Study: Overcoming Comfort Issues Due to Reduced Flow Room Air Mixing Energy efficiency upgrades reduce heating and cooling loads on a house. With enough load reduction and if the heating, ventilating, and air-conditioning (HVAC) system warrants replacement, the HVAC system is often upgraded with a more efficient, lower capacity system that meets the

  17. New Air Cleaning Strategies for Reduced Commercial Building Ventilation Energy ? FY11 Final Report

    SciTech Connect (OSTI)

    Sidheswaran, Meera; Destaillats, Hugo; Cohn, Sebastian; Sullivan, Douglas P.; Fisk, William J.

    2011-10-31

    The research carried out in this project focuses on developing novel volatile organic compounds (VOCs) air cleaning technologies needed to enable energy-saving reductions in ventilation rates. we targeted a VOC air cleaning system that could enable a 50% reduction in ventilation rates. In a typical commercial HVAC system that provides a mixture of recirculated and outdoor air, a VOC air cleaner in the supply airstream must have a 15% to 20% VOC removal efficiency to counteract a 50% reduction in outdoor air supply.

  18. Experimental Validation of Stratified Flow Phenomena, Graphite Oxidation, and Mitigation Strategies of Air Ingress Accidents

    SciTech Connect (OSTI)

    Chang Ho Oh; Eung Soo Kim; Hee Cheon No; Nam Zin Cho

    2008-12-01

    The US Department of Energy is performing research and development (R&D) that focuses on key phenomena that are important during challenging scenarios that may occur in the Next Generation Nuclear Plant (NGNP) Program / GEN-IV Very High Temperature Reactor (VHTR). Phenomena identification and ranking studies (PIRT) to date have identified the air ingress event, following on the heels of a VHTR depressurization, as very important (Schultz et al., 2006). Consequently, the development of advanced air ingress-related models and verification and validation (V&V) are very high priority for the NGNP program. Following a loss of coolant and system depressurization, air will enter the core through the break. Air ingress leads to oxidation of the in-core graphite structure and fuel. The oxidation will accelerate heat-up of the bottom reflector and the reactor core and will cause the release of fission products eventually. The potential collapse of the bottom reflector because of burn-off and the release of CO lead to serious safety problems. For estimation of the proper safety margin we need experimental data and tools, including accurate multi-dimensional thermal-hydraulic and reactor physics models, a burn-off model, and a fracture model. We also need to develop effective strategies to mitigate the effects of oxidation. The results from this research will provide crucial inputs to the INL NGNP/VHTR Methods R&D project. This project is focused on (a) analytical and experimental study of air ingress caused by density-driven, stratified, countercurrent flow, (b) advanced graphite oxidation experiments, (c) experimental study of burn-off in the bottom reflector, (d) structural tests of the burnt-off bottom reflector, (e) implementation of advanced models developed during the previous tasks into the GAMMA code, (f) full air ingress and oxidation mitigation analyses, (g) development of core neutronic models, (h) coupling of the core neutronic and thermal hydraulic models, and (i) verification and validation of the coupled models.

  19. Rotating stall control of an axial flow compressor using pulsed air injection

    SciTech Connect (OSTI)

    D`Andrea, R.; Behnken, R.L.

    1997-10-01

    This paper presents the use of pulsed air injection to control rotating stall in a low-speed, axial flow compressor. In the first part of the paper, the injection of air is modeled as an unsteady shift of the compressor characteristic, and incorporated into a low dimensional model of the compressor. By observing the change in the bifurcation behavior of this model subject to nonlinear feedback, the viability of various air injection orientations is established. An orientation consistent with this analysis is then used for feedback control. By measuring the unsteady pressures near the rotor face, a control algorithm determines the magnitude and phase of the first mode of rotating stall and controls the injection of air in the front of the rotor face. Experimental results show that this technique eliminates the hysteresis loop normally associated with rotating stall. A parametric study is used to determine the optimal control parameters for suppression of stall. The resulting control strategy is also shown to suppress surge when a plenum is present. Using a high-fidelity model, the main features of the experimental results are duplicated via simulations.

  20. Simplified configuration for the combustor of an oil burner using a low pressure, high flow air-atomizing nozzle

    DOE Patents [OSTI]

    Butcher, Thomas A.; Celebi, Yusuf; Fisher, Leonard

    2000-09-15

    The invention relates to clean burning of fuel oil with air. More specifically, to a fuel burning combustion head using a low-pressure, high air flow atomizing nozzle so that there will be a complete combustion of oil resulting in a minimum emission of pollutants. The improved fuel burner uses a low pressure air atomizing nozzle that does not result in the use of additional compressors or the introduction of pressurized gases downstream, nor does it require a complex design. Inventors:

  1. A REDUCED-BOUNDARY-FUNCTION METHOD FOR LONGITUDINAL SOLUTION DISPERSION IN SYMMETRIC CONFINED FLOWS

    SciTech Connect (OSTI)

    Xu Zhijie

    2013-07-01

    We present a reduced-boundary-function method for longitudinal solute transport in symmetric laminar flows. Flow is confined by two flat plates separated by a distance of 2a or by a tube with a radius of a (Figure 1). The standard advection-diffusion equation is mapped onto the boundary (r = a and r = 0, where r is the distance from the centerline shown in Figure 1). The original problem of solving c(x,r,t) is reduced to solve the solutions of c at the boundary, and the problem dimensionality is reduced from 3 to 2. Final results show that the boundary concentration ca(x,t) = c(x, r = a,t) is advected at the mean velocity with a dispersion equal to the molecular diffusion. The centerline concentration c0(x,t) = c(x,r = 0,t) is also advected at the mean velocity, but with a dispersion much larger than the Taylor dispersion. The cross-sectional average concentration is in agreement with the classical Taylor dispersion by neglecting higher order contributions. This study is relevant to the upscaling of solute transport.

  2. Modeling the Air Flow in the 3410 Building Filtered Exhaust Stack System

    SciTech Connect (OSTI)

    Recknagle, Kurtis P.; Barnett, J. M.; Suffield, Sarah R.

    2013-01-23

    Additional ventilation capacity has been designed for the 3410 Building filtered exhaust stack system. The updated system will increase the number of fans from two to three and will include ductwork to incorporate the new fan into the existing stack. Stack operations will involve running various two-fan combinations at any given time. The air monitoring system of the existing two-fan stack was previously found to be in compliance with the ANSI/HPS N13.1-1999 standard, however it is not known if the modified (three-fan) system will comply. Subsequently, a full-scale three-dimensional (3-D) computational fluid dynamics (CFD) model of the modified stack system has been created to examine the sampling location for compliance with the standard. The CFD modeling results show good agreement with testing data collected from the existing 3410 Building stack and suggest that velocity uniformity and flow angles will remain well within acceptance criteria when the third fan and associated ductwork is installed. This includes two-fan flow rates up to 31,840 cfm for any of the two-fan combinations. For simulation cases in which tracer gas and particles are introduced in the main duct, the model predicts that both particle and tracer gas coefficients of variance (COVs) may be larger than the acceptable 20 percent criterion of the ANSI/HPS N13.1-1999 standard for each of the two-fan, 31,840 cfm combinations. Simulations in which the tracers are introduced near the fans result in improved, though marginally acceptable, COV values for the tracers. Due to the remaining uncertainty that the stack will qualify with the addition of the third fan and high flow rates, a stationary air blender from Blender Products, Inc. is considered for inclusion in the stack system. A model of the air blender has been developed and incorporated into the CFD model. Simulation results from the CFD model that includes the air blender show striking improvements in tracer gas mixing and tracer particle dispersion. The results of these simulations suggest the air blender should be included in the stack system to ensure qualification of the stack.

  3. Mitigating the Impacts of Uncontrolled Air Flow on Indoor Environmental Quality and Energy Demand in Non-Residential Buildings

    SciTech Connect (OSTI)

    Hugh I. Henderson; Jensen Zhang; James B. Cummings; Terry Brennan

    2006-07-31

    This multi-faceted study evaluated several aspects of uncontrolled air flows in commercial buildings in both Northern and Southern climates. Field data were collected from 25 small commercial buildings in New York State to understand baseline conditions for Northern buildings. Laboratory wall assembly testing was completed at Syracuse University to understand the impact of typical air leakage pathways on heat and moisture transport within wall assemblies for both Northern and Southern building applications. The experimental data from the laboratory tests were used to verify detailed heat and moisture (HAM) simulation models that could be used to evaluate a wider array of building applications and situations. Whole building testing at FSEC's Building Science Laboratory (BSL) systematically evaluated the energy and IAQ impacts of duct leakage with various attic and ceiling configurations. This systematic test carefully controlled all aspects of building performance to quantify the impact of duct leakage and unbalanced flow. The newest features of the EnergyPlus building simulation tool were used to model the combined impacts of duct leakage, ceiling leakage, unbalanced flows, and air conditioner performance. The experimental data provided the basis to validate the simulation model so it could be used to study the impact of duct leakage over a wide range of climates and applications. The overall objective of this project was to transfer work and knowledge that has been done on uncontrolled air flow in non-residential buildings in Florida to a national basis. This objective was implemented by means of four tasks: (1) Field testing and monitoring of uncontrolled air flow in a sample of New York buildings; (2) Detailed wall assembly laboratory measurements and modeling; (3) Whole building experiments and simulation of uncontrolled air flows; and (4) Develop and implement training on uncontrolled air flows for Practitioners in New York State.

  4. Daily air pollution effects on children's respiratory symptoms and peak expiratory flow

    SciTech Connect (OSTI)

    Vedal, S.; Schenker, M.B.; Munoz, A.; Samet, J.M.; Batterman, S.; Speizer, F.E.

    1987-06-01

    To identify acute respiratory health effects associated with air pollution due to coal combustion, a subgroup of elementary school-aged children was selected from a large cross-sectional study and followed daily for eight months. Children were selected to obtain three equal-sized groups: one without respiratory symptoms, one with symptoms of persistent wheeze, and one with cough or phlegm production but without persistent wheeze. Parents completed a daily diary of symptoms from which illness constellations of upper respiratory illness (URI) and lower respiratory illness (LRI) and the symptom of wheeze were derived. Peak expiratory flow rate (PEFR) was measured daily for nine consecutive weeks during the eight-month study period. Maximum hourly concentrations of sulfur dioxide, nitrogen dioxide, ozone, and coefficient of haze for each 24-hour period, as well as minimum hourly temperature, were correlated with daily URI, LRI, wheeze, and PEFR using multiple regression models adjusting for illness occurrence or level of PEFR on the immediately preceding day. Respiratory illness on the preceding day was the most important predictor of current illness. A drop in temperature was associated with increased URI and LRI but not with increased wheeze or with a decrease in level of PEFR. No air pollutant was strongly associated with respiratory illness or with level of PEFR, either in the group of children as a whole, or in either of the symptomatic subgroups; the pollutant concentrations observed, however, were uniformly lower than current ambient air quality standards.

  5. Temperature, humidity and air flow in the emplacement drifts using convection and dispersion transport models

    SciTech Connect (OSTI)

    Danko, G.; Birkholzer, J.T.; Bahrami, D.; Halecky, N.

    2009-10-01

    A coupled thermal-hydrologic-airflow model is developed, solving for the transport processes within a waste emplacement drift and the surrounding rockmass together at the proposed nuclear waste repository at Yucca Mountain. Natural, convective air flow as well as heat and mass transport in a representative emplacement drift during post-closure are explicitly simulated, using the MULTIFLUX model. The conjugate, thermal-hydrologic transport processes in the rockmass are solved with the TOUGH2 porous-media simulator in a coupled way to the in-drift processes. The new simulation results show that large-eddy turbulent flow, as opposed to small-eddy flow, dominate the drift air space for at least 5000 years following waste emplacement. The size of the largest, longitudinal eddy is equal to half of the drift length, providing a strong axial heat and moisture transport mechanism from the hot to the cold drift sections. The in-drift results are compared to those from simplified models using a surrogate, dispersive model with an equivalent dispersion coefficient for heat and moisture transport. Results from the explicit, convective velocity simulation model provide higher axial heat and moisture fluxes than those estimated from the previously published, simpler, equivalent-dispersion models, in addition to showing differences in temperature, humidity and condensation rate distributions along the drift length. A new dispersive model is also formulated, giving a time- and location-variable function that runs generally about ten times higher in value than the highest dispersion coefficient currently used in the Yucca Mountain Project as an estimate for the equivalent dispersion coefficient in the emplacement drift. The new dispersion coefficient variation, back-calculated from the convective model, can adequately describe the heat and mass transport processes in the emplacement drift example.

  6. An air flow sensor for neonatal mechanical ventilation applications based on a novel fiber-optic sensing technique

    SciTech Connect (OSTI)

    Battista, L.; Sciuto, S. A.; Scorza, A.

    2013-03-15

    In this work, a simple and low-cost air flow sensor, based on a novel fiber-optic sensing technique has been developed for monitoring air flows rates supplied by a neonatal ventilator to support infants in intensive care units. The device is based on a fiber optic sensing technique allowing (a) the immunity to light intensity variations independent by measurand and (b) the reduction of typical shortcomings affecting all biomedical fields (electromagnetic interference and patient electrical safety). The sensing principle is based on the measurement of transversal displacement of an emitting fiber-optic cantilever due to action of air flow acting on it; the fiber tip displacement is measured by means of a photodiode linear array, placed in front of the entrance face of the emitting optical fiber in order to detect its light intensity profile. As the measurement system is based on a detection of the illumination pattern, and not on an intensity modulation technique, it results less sensitive to light intensity fluctuation independent by measurand than intensity-based sensors. The considered technique is here adopted in order to develop two different configurations for an air flow sensor suitable for the measurement of air flow rates typically occurring during mechanical ventilation of newborns: a mono-directional and a bi-directional transducer have been proposed. A mathematical model for the air flow sensor is here proposed and a static calibration of two different arrangements has been performed: a measurement range up to 3.00 Multiplication-Sign 10{sup -4} m{sup 3}/s (18.0 l/min) for the mono-directional sensor and a measurement range of {+-}3.00 Multiplication-Sign 10{sup -4} m{sup 3}/s ({+-}18.0 l/min) for the bi-directional sensor are experimentally evaluated, according to the air flow rates normally encountered during tidal breathing of infants with a mass lower than 10 kg. Experimental data of static calibration result in accordance with the proposed theoretical model: for the mono-directional configuration, the coefficient of determination r{sup 2} is equal to 0.997; for the bi-directional configuration, the coefficient of determination r{sup 2} is equal to 0.990 for positive flows (inspiration) and 0.988 for negative flows (expiration). Measurement uncertainty {delta}Q of air flow rate has been evaluated by means of the propagation of distributions and the percentage error in the arrangement of bi-directional sensor ranges from a minimum of about 0.5% at -18.0 l/min to a maximum of about 9% at -12.0 l/min.

  7. Demonstration of split-flow ventilation and recirculation as flow-reduction methods in an Air Force paint spray booth. Final technical report, February 1991-October 1992

    SciTech Connect (OSTI)

    Hughes, S.; Ayer, J.; Sutay, R.

    1994-07-01

    During a series of painting operations in a horizontal-flow paint spray booth at Travis AFB, CA, baseline concentrations of four classes of toxic airborne pollutants were measured at 24 locations across a plane immediately forward of the exhaust filters, in the exhaust duct, and inside and outside the respirator in the painter`s breathing zone (BZ). The resulting data were analyzed and used to design a modified ventilation system that (1) separates a portion of the exhaust exiting the lower portion of the booth, which contains a concentration of toxic pollutants greater than the average at the exhaust plane (split-flow); and (2) provides an option to return the flow from the upper portion of the exhaust to the intake plenum for mixing with fresh air and recirculation through the booth (recirculation). After critical review by cognizant Air Force offices and an experimental demonstration showing that a flame ionization detector monitoring the air entering the booth is able to detect excursions above the equivalent exposure limit for the solvents in the paint, the exhaust duct was reconfigured for split-flow and recirculating ventilation. A volunteer painter was briefed on the increased risk of exposure during recirculation, and on the purposes and possible benefits of this study. He then signed an informed consent form before participating in the recirculation tests. A series of tests generally equivalent to the baseline series was conducted during split-flow and recirculating ventilation, and three tests were performed during only split-flow ventilation.

  8. Reduced

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Reduced intermittency in the magnetic turbulence of reversed field pinch plasmas L. Marrelli and L. Frassinetti Consorzio RFX, Associazione EURATOM-ENEA sulla Fusione, Corso Stati Uniti, 4 35127 Padova, Italy a͒ P. Martin Consorzio RFX, Associazione EURATOM-ENEA sulla Fusione, Corso Stati Uniti, 4 35127 Padova, Italy a͒ and Dipartimento di Fisica G. Galilei, Universitàt di Padova, 35131 Padova, Italy D. Craig and J. S. Sarff Department of Physics and Center for Magnetic Self-Organization in

  9. Low flow fume hood

    DOE Patents [OSTI]

    Bell, Geoffrey C. (Pleasant Hill, CA); Feustel, Helmut E. (Albany, CA); Dickerhoff, Darryl J. (Berkeley, CA)

    2002-01-01

    A fume hood is provided having an adequate level of safety while reducing the amount of air exhausted from the hood. A displacement flow fume hood works on the principal of a displacement flow which displaces the volume currently present in the hood using a push-pull system. The displacement flow includes a plurality of air supplies which provide fresh air, preferably having laminar flow, to the fume hood. The displacement flow fume hood also includes an air exhaust which pulls air from the work chamber in a minimally turbulent manner. As the displacement flow produces a substantially consistent and minimally turbulent flow in the hood, inconsistent flow patterns associated with contaminant escape from the hood are minimized. The displacement flow fume hood largely reduces the need to exhaust large amounts of air from the hood. It has been shown that exhaust air flow reductions of up to 70% are possible without a decrease in the hood's containment performance. The fume hood also includes a number of structural adaptations which facilitate consistent and minimally turbulent flow within a fume hood.

  10. Define and Quantify the Physics of Air Flow, Pressure Drop and Aerosol Collection in Nuclear Grade HEPA Filters

    SciTech Connect (OSTI)

    Moore, Murray E.

    2015-02-23

    Objective: Develop a set of peer-review and verified analytical methods to adjust HEPA filter performance to different flow rates, temperatures and altitudes. Experimental testing will measure HEPA filter flow rate, pressure drop and efficiency to verify the analytical approach. Nuclear facilities utilize HEPA (High Efficiency Particulate Air) filters to purify air flow for workspace ventilation. However, the ASME AG-1 technical standard (Code on Nuclear Air and Gas Treatment) does not adequately describe air flow measurement units for HEPA filter systems. Specifically, the AG-1 standard does not differentiate between volumetric air flow in ACFM (actual cubic feet per minute)compared to mass flow measured in SCFM (standard cubic feet per minute). More importantly, the AG-1 standard has an overall deficiency for using HEPA filter devices at different air flow rates, temperatures, and altitudes. Technical Approach: The collection efficiency and pressure drops of 18 different HEPA filters will be measured over a range of flow rates, temperatures and altitudes. The experimental results will be compared to analytical scoping calculations. Three manufacturers have allocated six HEPA filters each for this effort. The 18 filters will be tested at two different flow rates, two different temperatures and two different altitudes. The 36 total tests will be conducted at two different facilities: the ATI Test facilities (Baltimore MD) and the Los Alamos National Laboratory (Los Alamos NM). The Radiation Protection RP-SVS group at Los Alamos has an aerosol wind tunnel that was originally designed to evaluate small air samplers. In 2010, modifications were started to convert the wind tunnel for HEPA filter testing. (Extensive changes were necessary for the required aerosol generators, HEPA test fixtures, temperature control devices and measurement capabilities.) To this date, none of these modification activities have been funded through a specific DOE or NNSA program. This is expected to require six months of time, after receipt of funding. Benefits: US DOE facilities that use HEPA filters will benefit from access to the new operational measurement methods. Uncertainty and guesswork will be removed from HEPA filter operations.

  11. Nonlinear propagation of a high-power focused femtosecond laser pulse in air under atmospheric and reduced pressure

    SciTech Connect (OSTI)

    Geints, Yu E; Zemlyanov, A A; Ionin, Andrei A; Kudryashov, Sergei I; Seleznev, L V; Sinitsyn, D V; Sunchugasheva, E S

    2012-04-30

    This paper examines the propagation of focused femtosecond gigawatt laser pulses in air under normal and reduced pressure in the case of Kerr self-focusing and photoionisation of the medium. The influence of gas density on the beam dimensions and power and the electron density in the plasma column in the nonlinear focus zone of the laser beam has been studied experimentally and by numerical simulation. It has been shown that, in rarefied air, the radiation-induced reduction in the rate of plasma formation diminishes the blocking effect of the plasma on the growth of the beam intensity in the case of tight focusing. This allows higher power densities of ultrashort laser pulses to be reached in the focal waist region in comparison with beam self-focusing under atmospheric pressure.

  12. Coupled Physical/Chemical and Biofiltration Technologies to Reduce Air Emissions from Forest Products Industries

    SciTech Connect (OSTI)

    Gary D. McGinnis

    2001-12-31

    The research is a laboratory and bench-scale investigation of a system to concentrate and destroy volatile organic compounds (VOCs), including hazardous air pollutants, formed from the drying of wood and the manufacture of wood board products (e.g., particle board and oriented strandboard). The approach that was investigated involved concentrating the dilute VOCs (<500 ppmv) with a physical/chemical adsorption unit, followed by the treatment of the concentrated voc stream (2,000 to 2,500 ppmv) with a biofiltration unit. The research program lasted three years, and involved three research organizations. Michigan Technological University was the primary recipient of the financial assistance, the USDA Forest Products Laboratory (FPL) and Mississippi State University (MSU) were subcontractors to MTU. The ultimate objective of this research was to develop a pilot-scale demonstration of the technology with sufficient data to provide for the design of an industrial system. No commercialization activities were included in this project.

  13. In situ secondary organic aerosol formation from ambient pine forest air using an oxidation flow reactor

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Palm, B. B.; Campuzano-Jost, P.; Ortega, A. M.; Day, D. A.; Kaser, L.; Jud, W.; Karl, T.; Hansel, A.; Hunter, J. F.; Cross, E. S.; et al

    2015-11-04

    Ambient air was oxidized by OH radicals in an oxidation flow reactor (OFR) located in a montane pine forest during the BEACHON-RoMBAS campaign to study biogenic secondary organic aerosol (SOA) formation and aging. High OH concentrations and short residence times allowed for semi-continuous cycling through a large range of OH exposures ranging from hours to weeks of equivalent (eq.) atmospheric aging. A simple model is derived and used to account for the relative time scales of condensation of low volatility organic compounds (LVOCs) onto particles, condensational loss to the walls, and further reaction to produce volatile, non-condensing fragmentation products. MoremoreSOA production was observed in the OFR at nighttime (average 4 ?g m-3 when LVOC fate corrected) compared to daytime (average 1 ?g m-3 when LVOC fate corrected), with maximum formation observed at 0.41.5 eq. days of photochemical aging. SOA formation followed a similar diurnal pattern to monoterpenes, sesquiterpenes, and toluene + p-cymene concentrations, including a substantial increase just after sunrise at 07:00 LT. Higher photochemical aging (> 10 eq. days) led to a decrease in new SOA formation and a loss of preexisting OA due to heterogeneous oxidation followed by fragmentation and volatilization. When comparing two different commonly used methods of OH production in OFRs (OFR185 and OFR254), similar amounts of SOA formation were observed. We recommend the OFR185 mode for future forest studies. Concurrent gas-phase measurements of air after OH oxidation illustrate the decay of primary VOCs, production of small oxidized organic compounds, and net production at lower ages followed by net consumption of terpenoid oxidation products as photochemical age increased. New particle formation was observed in the reactor after oxidation, especially during times when precursor gas concentrations and SOA formation were largest. Approximately 6 times more SOA was formed in the reactor from OH oxidation than could be explained by the VOCs measured in ambient air. Several recently-developed instruments quantified ambient semi- and intermediate-volatility organic compounds (S/IVOCs) that were not detected by a PTR-TOF-MS. An SOA yield of 2480 % from those compounds can explain the observed SOA, suggesting that these typically unmeasured S/IVOCs play a substantial role in ambient SOA formation. Our results allow ruling out condensation sticking coefficients much lower than 1. Our measurements help clarify the magnitude of SOA formation in forested environments, and demonstrate methods for interpretation of ambient OFR measurements.less

  14. GENERATION, TRANSPORT AND DEPOSITION OF TUNGSTEN-OXIDE AEROSOLS AT 1000 C IN FLOWING AIR-STEAM MIXTURES.

    SciTech Connect (OSTI)

    GREENE,G.A.; FINFROCK,C.C.

    2001-10-01

    Experiments were conducted to measure the rates of oxidation and vaporization of pure tungsten rods in flowing air, steam and air-steam mixtures in laminar flow. Also measured were the downstream transport of tungsten-oxide condensation aerosols and their region of deposition, including plateout in the superheated flow tube, rainout in the condenser and ambient discharge which was collected on an array of sub-micron aerosol filters. The nominal conditions of the tests, with the exception of the first two tests, were tungsten temperatures of 1000 C, gas mixture temperatures of 200 C and wall temperatures of 150 C to 200 C. It was observed that the tungsten oxidation rates were greatest in all air and least in all steam, generally decreasing non-linearly with increasing steam mole fraction. The tungsten oxidation rates in all air were more than five times greater than the tungsten oxidation rates in all steam. The tungsten vaporization rate was zero in all air and increased with increasing steam mole fraction. The vaporization rate became maximum at a steam mole fraction of 0.85 and decreased thereafter as the steam mole fraction was increased to unity. The tungsten-oxide was transported downstream as condensation aerosols, initially flowing upwards from the tungsten rod through an 18-inch long, one-inch diameter quartz tube, around a 3.5-inch radius, 90{sup o} bend and laterally through a 24-inch horizontal run. The entire length of the quartz glass flow path was heated by electrical resistance clamshell heaters whose temperatures were individually controlled and measured. The tungsten-oxide plateout in the quartz tube was collected, nearly all of which was deposited at the end of the heated zone near the entrance to the condenser which was cold. The tungsten-oxide which rained out in the condenser as the steam condensed was collected with the condensate and weighed after being dried. The aerosol smoke which escaped the condenser was collected on the sub-micron filter assemblies. There was no aerosol generation for the case of all air, so the plateout, condensate and smoke were all zero. For the case of all steam, there was very little plateout in the superheated regions (several percent) and the rest of the aerosol was collected in the condensate from the condenser. There was no smoke discharge into the filters. For the experiments with intermediate air-steam fractions, there was some aerosol plateout, considerable aerosol in the condensate and aerosol smoke discharged from the condenser with the escaping air.

  15. Mid-section of a can-annular gas turbine engine with an improved rotation of air flow from the compressor to the turbine

    DOE Patents [OSTI]

    Little, David A.; Schilp, Reinhard; Ross, Christopher W.

    2016-03-22

    A midframe portion (313) of a gas turbine engine (310) is presented and includes a compressor section with a last stage blade to orient an air flow (311) at a first angle (372). The midframe portion (313) further includes a turbine section with a first stage blade to receive the air flow (311) oriented at a second angle (374). The midframe portion (313) further includes a manifold (314) to directly couple the air flow (311) from the compressor section to a combustor head (318) upstream of the turbine section. The combustor head (318) introduces an offset angle in the air flow (311) from the first angle (372) to the second angle (374) to discharge the air flow (311) from the combustor head (318) at the second angle (374). While introducing the offset angle, the combustor head (318) at least maintains or augments the first angle (372).

  16. Computational fluid dynamics simulation of the air/suppressant flow in an uncluttered F18 engine nacelle

    SciTech Connect (OSTI)

    Lopez, A.R.; Gritzo, L.A.; Hassan, B.

    1997-06-01

    For the purposes of designing improved Halon-alternative fire suppression strategies for aircraft applications, Computational Fluid Dynamics (CFD) simulations of the air flow, suppressant transport, and air-suppressant mixing within an uncluttered F18 engine nacelle were performed. The release of inert gases from a Solid Propellant Gas Generator (SPGG) was analyzed at two different injection locations in order to understand the effect of injection position on the flow patterns and the mixing of air and suppression agent. An uncluttered engine nacelle was simulated to provide insight into the global flow features as well as to promote comparisons with previous nacelle fire tests and recent water tunnel tests which included little or no clutter. Oxygen concentration levels, fuel/air residence times that would exist if a small fuel leak were present, velocity contours, and streamline patterns are presented inside the engine nacelle. The numerical results show the influence of the gent release location on regions of potential flame extinction due to oxygen inerting and high flame strain. The occurrence of inflow through the exhaust ducts on the aft end of the nacelle is also predicted. As expected, the predicted oxygen concentration levels were consistently higher than the measured levels since a fire was not modeled in this analysis. Despite differences in the conditions of these simulations and the experiments, good agreement was obtained between the CFD predictions and the experimental measurements.

  17. Improvement to Air2Air Technology to Reduce Fresh-Water Evaporative Cooling Loss at Coal-Based Thermoelectric Power Plants

    SciTech Connect (OSTI)

    Ken Mortensen

    2011-12-31

    This program was undertaken to enhance the manufacturability, constructability, and cost of the Air2Air{TM} Water Conservation and Plume Abatement Cooling Tower, giving a validated cost basis and capability. Air2Air{TM} water conservation technology recovers a portion of the traditional cooling tower evaporate. The Condensing Module provides an air-to-air heat exchanger above the wet fill media, extracting the heat from the hot saturated moist air leaving in the cooling tower and condensing water. The rate of evaporate water recovery is typically 10% - 25% annually, depending on the cooling tower location (climate). This program improved the efficiency and cost of the Air2Air{TM} Water Conservation Cooling Tower capability, and led to the first commercial sale of the product, as described.

  18. Low-Flow Liquid Desiccant Air Conditioning: General Guidance and Site Considerations

    SciTech Connect (OSTI)

    Kozubal, E.; Herrmann, L.; Deru, M.; Clark, J.

    2014-09-01

    Dehumidification or latent cooling in buildings is an area of growing interest that has been identified as needing more research and improved technologies for higher performance. Heating, ventilating, and air-conditioning (HVAC) systems typically expend excessive energy by using overcool-and-reheat strategies to dehumidify buildings. These systems first overcool ventilation air to remove moisture and then reheat the air to meet comfort requirements. Another common strategy incorporates solid desiccant rotors that remove moisture from the air more efficiently; however, these systems increase fan energy consumption because of the high airside pressure drop of solid desiccant rotors and can add heat of absorption to the ventilation air. Alternatively, liquid desiccant air-conditioning (LDAC) technology provides an innovative dehumidification solution that: (1) eliminates the need for overcooling and reheating from traditional cooling systems; and (2) avoids the increased fan energy and air heating from solid desiccant rotor systems.

  19. Stabilized three-stage oxidation of DME/air mixture in a micro flow reactor with a controlled temperature profile

    SciTech Connect (OSTI)

    Oshibe, Hiroshi; Nakamura, Hisashi; Tezuka, Takuya; Hasegawa, Susumu; Maruta, Kaoru

    2010-08-15

    Ignition and combustion characteristics of a stoichiometric dimethyl ether (DME)/air mixture in a micro flow reactor with a controlled temperature profile which was smoothly ramped from room temperature to ignition temperature were investigated. Special attention was paid to the multi-stage oxidation in low temperature condition. Normal stable flames in a mixture flow in the high velocity region, and non-stationary pulsating flames and/or repetitive extinction and ignition (FREI) in the medium velocity region were experimentally confirmed as expected from our previous study on a methane/air mixture. In addition, stable double weak flames were observed in the low velocity region for the present DME/air mixture case. It is the first observation of stable double flames by the present methodology. Gas sampling was conducted to obtain major species distributions in the flow reactor. The results indicated that existence of low-temperature oxidation was conjectured by the production of CH{sub 2}O occured in the upstream side of the experimental first luminous flame, while no chemiluminescence from it was seen. One-dimensional computation with detailed chemistry and transport was conducted. At low mixture velocities, three-stage oxidation was confirmed from profiles of the heat release rate and major chemical species, which was broadly in agreement with the experimental results. Since the present micro flow reactor with a controlled temperature profile successfully presented the multi-stage oxidations as spatially separated flames, it is shown that this flow reactor can be utilized as a methodology to separate sets of reactions, even for other practical fuels, at different temperature. (author)

  20. FINAL REPORT on Experimental Validation of Stratified Flow Phenomena, Graphite Oxidation, and Mitigation Strategies of Air Ingress Accidents

    SciTech Connect (OSTI)

    Chang H. Oh; Eung S. Kim; Hee C. NO; Nam Z. Cho

    2011-01-01

    The U.S. Department of Energy is performing research and development that focuses on key phenomena that are important during challenging scenarios that may occur in the Next Generation Nuclear Plant (NGNP)/Generation IV very high temperature reactor (VHTR). Phenomena Identification and Ranking studies to date have identified the air ingress event, following on the heels of a VHTR depressurization, as very important. Consequently, the development of advanced air ingress-related models and verification & validation are of very high priority for the NGNP Project. Following a loss of coolant and system depressurization incident, air ingress will occur through the break, leading to oxidation of the in-core graphite structure and fuel. This study indicates that depending on the location and the size of the pipe break, the air ingress phenomena are different. In an effort to estimate the proper safety margin, experimental data and tools, including accurate multidimensional thermal-hydraulic and reactor physics models, a burn-off model, and a fracture model are required. It will also require effective strategies to mitigate the effects of oxidation, eventually. This 3-year project (FY 2008–FY 2010) is focused on various issues related to the VHTR air-ingress accident, including (a) analytical and experimental study of air ingress caused by density-driven, stratified, countercurrent flow, (b) advanced graphite oxidation experiments, (c) experimental study of burn-off in the core bottom structures, (d) structural tests of the oxidized core bottom structures, (e) implementation of advanced models developed during the previous tasks into the GAMMA code, (f) full air ingress and oxidation mitigation analyses, (g) development of core neutronic models, (h) coupling of the core neutronic and thermal hydraulic models, and (i) verification and validation of the coupled models.

  1. Vertical flow chemical detection portal

    DOE Patents [OSTI]

    Linker, K.L.; Hannum, D.W.; Conrad, F.J.

    1999-06-22

    A portal apparatus is described for screening objects or persons for the presence of trace amounts of chemical substances such as illicit drugs or explosives. The apparatus has a test space, in which a person may stand, defined by two generally upright sides spanned by a horizontal transom. One or more fans in the transom generate a downward air flow (uni-directional) within the test space. The air flows downwardly from a high pressure upper zone, past the object or person to be screened. Air moving past the object dislodges from the surface thereof both volatile and nonvolatile particles of the target substance. The particles are entrained into the air flow which continues flowing downward to a lower zone of reduced pressure, where the particle-bearing air stream is directed out of the test space and toward preconcentrator and detection components. The sides of the portal are specially configured to partially contain and maintain the air flow. 3 figs.

  2. Vertical flow chemical detection portal

    DOE Patents [OSTI]

    Linker, Kevin L.; Hannum, David W.; Conrad, Frank James

    1999-01-01

    A portal apparatus for screening objects or persons for the presence of trace amounts of chemical substances such as illicit drugs or explosives. The apparatus has a test space, in which a person may stand, defined by two generally upright sides spanned by a horizontal transom. One or more fans in the transom generate a downward air flow (uni-directional) within the test space. The air flows downwardly from a high pressure upper zone, past the object or person to be screened. Air moving past the object dislodges from the surface thereof both volatile and nonvolatile particles of the target substance. The particles are entrained into the air flow which continues flowing downward to a lower zone of reduced pressure, where the particle-bearing air stream is directed out of the test space and toward preconcentrator and detection components. The sides of the portal are specially configured to partially contain and maintain the air flow.

  3. FY-09 Report: Experimental Validation of Stratified Flow Phenomena, Graphite Oxidation, and Mitigation Strategies of Air Ingress Accidents

    SciTech Connect (OSTI)

    Chang H. Oh; Eung S. Kim

    2009-12-01

    The Idaho National Laboratory (INL), under the auspices of the U.S. Department of Energy, is performing research and development that focuses on key phenomena important during potential scenarios that may occur in the Next Generation Nuclear Plant (NGNP)/Gen-IV very high temperature reactor (VHTR). Phenomena Identification and Ranking Studies to date have identified that an air ingress event following on the heels of a VHTR depressurization is a very important incident. Consequently, the development of advanced air ingress-related models and verification and validation data are a very high priority for the NGNP Project. Following a loss of coolant and system depressurization incident, air will enter the core through the break, leading to oxidation of the in-core graphite structure and fuel. If this accident occurs, the oxidation will accelerate heat-up of the bottom reflector and the reactor core and will eventually cause the release of fission products. The potential collapse of the core bottom structures causing the release of CO and fission products is one of the concerns. Therefore, experimental validation with the analytical model and computational fluid dynamic (CFD) model developed in this study is very important. Estimating the proper safety margin will require experimental data and tools, including accurate multidimensional thermal-hydraulic and reactor physics models, a burn-off model, and a fracture model. It will also require effective strategies to mitigate the effects of oxidation. The results from this research will provide crucial inputs to the INL NGNP/VHTR Methods Research and Development project. The second year of this three-year project (FY-08 to FY-10) was focused on (a) the analytical, CFD, and experimental study of air ingress caused by density-driven, stratified, countercurrent flow; (b) advanced graphite oxidation experiments and modeling; (c) experimental study of burn-off in the core bottom structures, (d) implementation of advanced graphite oxidation models into the GAMMA code, and (f) air ingress and oxidation mitigation analyses of the whole air-ingress scenario.

  4. Ford Van Dyke: Compressed Air Management Program Leads to Improvements that Reduce Energy Consumption at an Automotive Transmission Plant

    SciTech Connect (OSTI)

    2010-06-25

    Staff at the Ford Van Dyke Transmission Plant in Sterling Heights, Michigan, have increased the efficiency of the plants compressed air system to enhance its performance while saving energy and improving production.

  5. Final Report Recommended Actions to Reduce Electrical Peak Loads at the Marine Corps Air Station at Camp Pendleton, California

    SciTech Connect (OSTI)

    Hail, John C.; Brown, Daryl R.; McCullough, Jeffrey J.; Underhill, Ronald M.

    2001-05-08

    PNNL conducted a walk-through audit of Marine Corps Air Station at Camp Pendleton. The audit inspected a significant portion of the site and identified a large number of similar energy saving opportunities across all building types.

  6. Demonstration of split-flow ventilation and recirculation as flow-reduction methods in an Air Force paint spray booth. Final report, 15 February 1991-9 October 1992

    SciTech Connect (OSTI)

    Hughes, S.; Ayer, J.; Sutay, R.

    1994-07-27

    During a series of painting operations in a horizontal-flow paint spray booth at Travis AFB, CA, baseline concentrations of four classes of toxic airborne pollutants were measured at 24 locations across a plane immediately forward of the exhaust filters, in the exhaust duct, and inside and outside the respirator in the painter`s breathing zone (BZ). The resulting data were analyzed and used to design a modified ventilation system that (1) separates a portion of the exhaust exiting the lower portion of the booth, which contains a concentration of toxic pollutants greater than the average at the exhaust plane (split-flow); and (2) provides an option to return the flow from the upper portion of the exhaust to the intake plenum for mixing with fresh air and recirculation through the booth (recirculation). After critical review by cognizant Air Force offices and an experimental demonstration showing that a flame ionization detector monitoring the air entering the booth is able to detect excursions above the equivalent exposure limit for the solvents in the paint, the exhaust duct was reconfigured for split-flow and recirculating ventilation. A volunteer painter was briefed on the increased risk of exposure during recirculation, and on the purposes and possible benefits of this study. He then signed an informed consent form before participating in the recirculation tests. A series of tests generally equivalent to the baseline series was conducted during split-flow and recirculating ventilation, and three tests were performed during only split-flow ventilation.

  7. After the Clean Air Mercury Eule: prospects for reducing mercury emissions from coal-fired power plants

    SciTech Connect (OSTI)

    Jana B. Milford; Alison Pienciak

    2009-04-15

    Recent court decisions have affected the EPA's regulation of mercury emissions from coal burning, but some state laws are helping to clear the air. In 2005, the US EPA issued the Clean Air Mercury Rule (CAMR), setting performance standards for new coal-fired power plants and nominally capping mercury emissions form new and existing plants at 38 tons per year from 2010 to 2017 and 15 tpy in 2018 and thereafter; these down from 48.5 tpy in 1999. To implement the CAMR, 21 states with non-zero emissions adopted EPA's new source performance standards and cap and trade program with little or no modification. By December 2007, 23 other states had proposed or adopted more stringent requirements; 16 states prohibited or restricted interstate trading of mercury emissions. On February 2008, the US Court of Appeal for the District of Columbia Circuit unanimously vacated the CAMR. This article assesses the status of mercury emission control requirements for coal-fired power plants in the US in light of this decision, focusing on state actions and prospects for a new federal rule. 34 refs., 1 fig.

  8. Demonstration of split-flow ventilation and recirculation as flow-reduction methods in an Air Force paint spray booth. Volume 2. Final report, 15 February 1991-9 January 1992

    SciTech Connect (OSTI)

    Hughes, S.; Ayer, J.; Sutay, R.

    1994-07-27

    During a series of painting operations in a horizontal-flow paint spray booth at Travis AFB, CA, baseline concentrations of four classes of toxic airborne pollutants were measured at 24 locations across a plane immediately forward of the exhaust filters, in the exhaust duct, and inside and outside the respirator in the painter`s breathing zone (BZ). The resulting data were analyzed and used to design a modified ventilation system that (1) separates a portion of the exhaust exiting the lower portion of the booth, which contains a concentration of toxic pollutants greater than the average at the exhaust plane (split-flow); and (2) provides an option to return the flow from the upper portion of the exhaust to the intake plenum for mixing with fresh air and recirculation through the booth (recirculation). After critical review by cognizant Air Force offices, and an experimental demonstration showing that a flame ionization detector monitoring the air entering the booth is able to detect excursions above the equivalent exposure limit for the solvents in the paint, the exhaust duct was reconfigured for split-flow and recirculating ventilation.

  9. Demonstration of split-flow ventilation and recirculation as flow-reduction methods in an Air Force paint spray booth. Volume 1. Final report, 15 February 1991-9 January 1992

    SciTech Connect (OSTI)

    Hughes, S.; Ayer, J.; Sutay, R.

    1994-07-27

    During a series of painting operations in a horizontal-flow paint spray booth at Travis AFB, CA, baseline concentrations of four classes of toxic airborne pollutants were measured at 24 locations across a plane immediately forward of the exhaust filters, in the exhaust duct, and inside and outside the respirator in the painter`s breathing zone (BZ). The resulting data were analyzed and used to design a modified ventilation system that (1) separates a portion of the exhaust exiting the lower portion of the booth, which contains a concentration of toxic pollutants greater than the average at the exhaust plane (split-flow); and (2) provides an option to return the flow from the upper portion of the exhaust to the intake plenum for mixing with fresh air and recirculation through the booth (recirculation). After critical review by cognizant Air Force offices, and an experimental demonstration showing that a flame ionization detector monitoring the air entering the booth is able to detect excursions above the equivalent exposure limit for the solvents in the paint the exhaust duct was reconfigured for split-flow and recirculating ventilation.

  10. Energy Savings with Acceptable Indoor Air Quality Through Improved...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Air Flow Control in Residential Retrofit Energy Savings with Acceptable Indoor Air Quality Through Improved Air Flow Control in Residential Retrofit Sealed duct penetrations. ...

  11. Two-dimensional model of the air flow and temperature distribution in a cavity-type heat receiver of a solar stirling engine

    SciTech Connect (OSTI)

    Makhkamov, K.K.; Ingham, D.B.

    1999-11-01

    A theoretical study on the air flow and temperature in the heat receiver, affected by free convection, of a Stirling Engine for a Dish/Stirling Engine Power System is presented. The standard {kappa}-{epsilon} turbulence model for the fluid flow has been used and the boundary conditions employed were obtained using a second level mathematical model of the Stirling Engine working cycle. Physical models for the distribution of the solar insolation from the Concentrator on the bottom and side walls of the cavity-type heat receiver have been taken into account. The numerical results show that most of the heat losses in the receiver are due to re-radiation from the cavity and conduction through the walls of the cavity. It is in the region of the boundary of the input window of the heat receiver where there is a sensible reduction in the temperature in the shell of the heat exchangers and this is due to the free convection of the air. Further, the numerical results show that convective heat losses increase with decreasing tilt angle.

  12. Fuel cell stack with passive air supply

    DOE Patents [OSTI]

    Ren, Xiaoming; Gottesfeld, Shimshon

    2006-01-17

    A fuel cell stack has a plurality of polymer electrolyte fuel cells (PEFCs) where each PEFC includes a rectangular membrane electrode assembly (MEA) having a fuel flow field along a first axis and an air flow field along a second axis perpendicular to the first axis, where the fuel flow field is long relative to the air flow field. A cathode air flow field in each PEFC has air flow channels for air flow parallel to the second axis and that directly open to atmospheric air for air diffusion within the channels into contact with the MEA.

  13. Experimental investigation of supersonic low pressure air plasma flows obtained with different arc-jet operating conditions

    SciTech Connect (OSTI)

    Lago, Viviana; Ndiaye, Abdoul-Aziz

    2012-11-27

    A stationary arc-jet plasma flow at low pressure is used to simulate some properties of the gas flow surrounding a vehicle during its entry into celestial body's atmospheres. This paper presents an experimental study concerning plasmas simulating a re-entry into our planet. Optical measurements have been carried out for several operating plasma conditions in the free stream, and in the shock layer formed in front of a flat cylindrical plate, placed in the plasma jet. The analysis of the spectral radiation enabled the identification of the emitting species, the determination of the rotational and vibrational temperatures in the free-stream and in the shock layer and the determination of the distance of the shock to the flat plate face. Some plasma fluid parameters like, stagnation pressure, specific enthalpy and heat flux have been determined experimentally along the plasma-jet axis.

  14. Air ejector augmented compressed air energy storage system

    DOE Patents [OSTI]

    Ahrens, F.W.; Kartsounes, G.T.

    Energy is stored in slack demand periods by charging a plurality of underground reservoirs with air to the same peak storage pressure, during peak demand periods throttling the air from one storage reservoir into a gas turbine system at a constant inlet pressure until the air presure in the reservoir falls to said constant inlet pressure, thereupon permitting air in a second reservoir to flow into said gas turbine system while drawing air from the first reservoir through a variable geometry air ejector and adjusting said variable geometry air ejector, said air flow being essentially at the constant inlet pressure of the gas turbine system.

  15. Air ejector augmented compressed air energy storage system

    DOE Patents [OSTI]

    Ahrens, Frederick W.; Kartsounes, George T.

    1980-01-01

    Energy is stored in slack demand periods by charging a plurality of underground reservoirs with air to the same peak storage pressure, during peak demand periods throttling the air from one storage reservoir into a gas turbine system at a constant inlet pressure until the air pressure in the reservoir falls to said constant inlet pressure, thereupon permitting air in a second reservoir to flow into said gas turbine system while drawing air from the first reservoir through a variable geometry air ejector and adjusting said variable geometry air ejector, said air flow being essentially at the constant inlet pressure of the gas turbine system.

  16. AIR RADIOACTIVITY MONITOR

    DOE Patents [OSTI]

    Bradshaw, R.L.; Thomas, J.W.

    1961-04-11

    The monitor is designed to minimize undesirable background buildup. It consists of an elongated column containing peripheral electrodes in a central portion of the column, and conduits directing an axial flow of radioactively contaminated air through the center of the column and pure air through the annular portion of the column about the electrodes. (AEC)

  17. Recirculating electric air filter

    DOE Patents [OSTI]

    Bergman, Werner

    1986-01-01

    An electric air filter cartridge has a cylindrical inner high voltage eleode, a layer of filter material, and an outer ground electrode formed of a plurality of segments moveably connected together. The outer electrode can be easily opened to remove or insert filter material. Air flows through the two electrodes and the filter material and is exhausted from the center of the inner electrode.

  18. Recirculating electric air filter

    DOE Patents [OSTI]

    Bergman, W.

    1985-01-09

    An electric air filter cartridge has a cylindrical inner high voltage electrode, a layer of filter material, and an outer ground electrode formed of a plurality of segments moveably connected together. The outer electrode can be easily opened to remove or insert filter material. Air flows through the two electrodes and the filter material and is exhausted from the center of the inner electrode.

  19. Compressed Air

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Lighting Compressed Air ESUE Motors Federal Agriculture Compressed Air Compressed Air Roadmap The Bonneville Power Administration created the roadmap to help utilities find energy...

  20. Alpha-environmental continuous air monitor inlet

    DOE Patents [OSTI]

    Rodgers, John C.

    2003-01-01

    A wind deceleration and protective shroud that provides representative samples of ambient aerosols to an environmental continuous air monitor (ECAM) has a cylindrical enclosure mounted to an input on the continuous air monitor, the cylindrical enclosure having shrouded nozzles located radially about its periphery. Ambient air flows, often along with rainwater flows into the nozzles in a sampling flow generated by a pump in the continuous air monitor. The sampling flow of air creates a cyclonic flow in the enclosure that flows up through the cylindrical enclosure until the flow of air reaches the top of the cylindrical enclosure and then is directed downward to the continuous air monitor. A sloped platform located inside the cylindrical enclosure supports the nozzles and causes any moisture entering through the nozzle to drain out through the nozzles.

  1. Air Quality

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Air Quality Air Quality To preserve our existing wilderness-area air quality, LANL implements a conscientious program of air monitoring. March 17, 2015 Real-time data monitoring ...

  2. Combustion in a multiburner furnace with selective flow of oxygen

    DOE Patents [OSTI]

    Bool, III, Lawrence E.; Kobayashi, Hisashi

    2004-03-02

    Improved operational characteristics such as improved fuel efficiency, reduction of NOx formation, reduction of the amount of unburned carbon in the ash, and lessened tendency to corrosion at the tube wall, in a multi-burner furnace are obtained by reducing the flow rate of combustion air to the burners and selectively individually feeding oxidant to only some of the burners.

  3. Portable instrument and method for detecting reduced sulfur compounds in a gas

    DOE Patents [OSTI]

    Gaffney, J.S.; Kelly, T.J.; Tanner, R.L.

    1983-06-01

    A portable real time instrument for detecting concentrations in the part per billion range of reduced sulfur compounds in a sample gas. Ozonized air or oxygen and reduced sulfur compounds in a sample gas stream react to produce chemiluminescence in a reaction chamber and the emitted light is filtered and observed by a photomultiplier to detect reduced sulfur compounds. Selective response to individual sulfur compounds is achieved by varying reaction chamber temperature and ozone and sample gas flows, and by the use of either air or oxygen as the ozone source gas.

  4. Elbow mass flow meter

    DOE Patents [OSTI]

    McFarland, Andrew R.; Rodgers, John C.; Ortiz, Carlos A.; Nelson, David C.

    1994-01-01

    Elbow mass flow meter. The present invention includes a combination of an elbow pressure drop generator and a shunt-type mass flow sensor for providing an output which gives the mass flow rate of a gas that is nearly independent of the density of the gas. For air, the output is also approximately independent of humidity.

  5. Method for reducing fuel cell output voltage to permit low power operation

    DOE Patents [OSTI]

    Reiser, Carl A.; Landau, Michael B.

    1980-01-01

    Fuel cell performance is degraded by recycling a portion of the cathode exhaust through the cells and, if necessary, also reducing the total air flow to the cells for the purpose of permitting operation below a power level which would otherwise result in excessive voltage.

  6. Air Quality

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Air Quality Air Quality Tour The Laboratory calculates the dose to the maximally exposed individual (MEI) to determine effects of Laboratory operations on the public. Open full...

  7. Air Quality

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Air Quality Air Quality Tour The Laboratory calculates the dose to the maximally exposed individual (MEI) to determine effects of Laboratory operations on the public.

  8. Air Quality

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Air Quality Air Quality Tour The Laboratory calculates the dose to the maximally exposed individual (MEI) to determine effects of Laboratory operations on the public.

  9. A hybrid method for hydrodynamic-kinetic flow Part I: A particle-grid method for reducing stochastic noise in kinetic regimes

    SciTech Connect (OSTI)

    Alaia, Alessandro; Puppo, Gabriella

    2011-06-20

    In this work we present a hybrid particle-grid Monte Carlo method for the Boltzmann equation, which is characterized by a significant reduction of the stochastic noise in the kinetic regime. The hybrid method is based on a first order splitting in time to separate the transport from the relaxation step. The transport step is solved by a deterministic scheme, while a hybrid DSMC-based method is used to solve the collision step. Such a hybrid scheme is based on splitting the solution in a collisional and a non-collisional part at the beginning of the collision step, and the DSMC method is used to solve the relaxation step for the collisional part of the solution only. This is accomplished by sampling only the fraction of particles candidate for collisions from the collisional part of the solution, performing collisions as in a standard DSMC method, and then projecting the particles back onto a velocity grid to compute a piecewise constant reconstruction for the collisional part of the solution. The latter is added to a piecewise constant reconstruction of the non-collisional part of the solution, which in fact remains unchanged during the relaxation step. Numerical results show that the stochastic noise is significantly reduced at large Knudsen numbers with respect to the standard DSMC method. Indeed in this algorithm, the particle scheme is applied only on the collisional part of the solution, so only this fraction of the solution is affected by stochastic fluctuations. But since the collisional part of the solution reduces as the Knudsen number increases, stochastic noise reduces as well at large Knudsen numbers.

  10. Air Sealing

    SciTech Connect (OSTI)

    2000-02-01

    This fact sheet describes ventilation and the importance of sealing air leaks and providing controlled ventilation.

  11. Vietnam-Integrated Action Plan to Reduce Vehicle Emissions |...

    Open Energy Info (EERE)

    and reduce air pollution. Furthermore, they are required to ensure that Viet Nam's air quality meets the average standards set by the Association of Southeast Asian Nation...

  12. Air conditioning system

    DOE Patents [OSTI]

    Lowenstein, Andrew; Miller, Jeffrey; Gruendeman, Peter; DaSilva, Michael

    2005-02-01

    An air conditioner comprises a plurality of plates arranged in a successively stacked configuration with portions thereof having a spaced apart arrangement, and defining between successive adjacent pairs of plates at the spaced apart portions a first and second series of discrete alternating passages wherein a first air stream is passed through the first series of passages and a second air stream is passed through the second series of passages; and said stacked configuration of plates forming integrally therewith a liquid delivery means for delivering from a source a sufficient quantity of a liquid to the inside surfaces of the first series of fluid passages in a manner which provides a continuous flow of the liquid from a first end to a second end of the plurality of plates while in contact with the first air stream.

  13. Elbow mass flow meter

    DOE Patents [OSTI]

    McFarland, A.R.; Rodgers, J.C.; Ortiz, C.A.; Nelson, D.C.

    1994-08-16

    The present invention includes a combination of an elbow pressure drop generator and a shunt-type mass flow sensor for providing an output which gives the mass flow rate of a gas that is nearly independent of the density of the gas. For air, the output is also approximately independent of humidity. 3 figs.

  14. Reducing Power Factor Cost

    Broader source: Energy.gov [DOE]

    Low power factor is expensive and inefficient. Many utility companies charge an additional fee if your power factor is less than 0.95. Low power factor also reduces your electrical system’s distribution capacity by increasing current flow and causing voltage drops. This fact sheet describes power factor and explains how you can improve your power factor to reduce electric bills and enhance your electrical system’s capacity.

  15. ISOTHERMAL AIR INGRESS VALIDATION EXPERIMENTS

    SciTech Connect (OSTI)

    Chang H Oh; Eung S Kim

    2011-09-01

    Idaho National Laboratory carried out air ingress experiments as part of validating computational fluid dynamics (CFD) calculations. An isothermal test loop was designed and set to understand the stratified-flow phenomenon, which is important as the initial air flow into the lower plenum of the very high temperature gas cooled reactor (VHTR) when a large break loss-of-coolant accident occurs. The unique flow characteristics were focused on the VHTR air-ingress accident, in particular, the flow visualization of the stratified flow in the inlet pipe to the vessel lower plenum of the General Atomic’s Gas Turbine-Modular Helium Reactor (GT-MHR). Brine and sucrose were used as heavy fluids, and water was used to represent a light fluid, which mimics a counter current flow due to the density difference between the stimulant fluids. The density ratios were changed between 0.87 and 0.98. This experiment clearly showed that a stratified flow between simulant fluids was established even for very small density differences. The CFD calculations were compared with experimental data. A grid sensitivity study on CFD models was also performed using the Richardson extrapolation and the grid convergence index method for the numerical accuracy of CFD calculations . As a result, the calculated current speed showed very good agreement with the experimental data, indicating that the current CFD methods are suitable for predicting density gradient stratified flow phenomena in the air-ingress accident.

  16. Air filter

    SciTech Connect (OSTI)

    Jackson, R.E.; Sparks, J.E.

    1981-03-03

    An air filter is described that has a counter rotating drum, i.e., the rotation of the drum is opposite the tangential intake of air. The intake air has about 1 lb of rock wool fibers per 107 cu. ft. of air sometimes at about 100% relative humidity. The fibers are doffed from the drum by suction nozzle which are adjacent to the drum at the bottom of the filter housing. The drum screen is cleaned by periodically jetting hot dry air at 120 psig through the screen into the suction nozzles.

  17. High-Compression-Ratio; Atkinson-Cycle Engine Using Low-Pressure Direct Injection and Pneumatic-Electronic Valve Actuation Enabled by Ionization Current and Foward-Backward Mass Air Flow Sensor Feedback

    SciTech Connect (OSTI)

    Harold Schock; Farhad Jaberi; Ahmed Naguib; Guoming Zhu; David Hung

    2007-12-31

    This report describes the work completed over a two and one half year effort sponsored by the US Department of Energy. The goal was to demonstrate the technology needed to produce a highly efficient engine enabled by several technologies which were to be developed in the course of the work. The technologies included: (1) A low-pressure direct injection system; (2) A mass air flow sensor which would measure the net airflow into the engine on a per cycle basis; (3) A feedback control system enabled by measuring ionization current signals from the spark plug gap; and (4) An infinitely variable cam actuation system based on a pneumatic-hydraulic valve actuation These developments were supplemented by the use of advanced large eddy simulations as well as evaluations of fuel air mixing using the KIVA and WAVE models. The simulations were accompanied by experimental verification when possible. In this effort a solid base has been established for continued development of the advanced engine concepts originally proposed. Due to problems with the valve actuation system a complete demonstration of the engine concept originally proposed was not possible. Some of the highlights that were accomplished during this effort are: (1) A forward-backward mass air flow sensor has been developed and a patent application for the device has been submitted. We are optimistic that this technology will have a particular application in variable valve timing direct injection systems for IC engines. (2) The biggest effort on this project has involved the development of the pneumatic-hydraulic valve actuation system. This system was originally purchased from Cargine, a Swedish supplier and is in the development stage. To date we have not been able to use the actuators to control the exhaust valves, although the actuators have been successfully employed to control the intake valves. The reason for this is the additional complication associated with variable back pressure on the exhaust valves when they are opened. As a result of this effort, we have devised a new design and have filed for a patent on a method of control which is believed to overcome this problem. The engine we have been working with originally had a single camshaft which controlled both the intake and exhaust valves. Single cycle lift and timing control was demonstrated with this system. (3) Large eddy simulations and KIVA based simulations were used in conjunction with flow visualizations in an optical engine to study fuel air mixing. During this effort we have devised a metric for quantifying fuel distribution and it is described in several of our papers. (4) A control system has been developed to enable us to test the benefits of the various technologies. This system used is based on Opal-RT hardware and is being used in a current DOE sponsored program.

  18. Promising Technology: Variable-Air-Volume Ventilation System

    Broader source: Energy.gov [DOE]

    Variable-air-volume (VAV) ventilation saves energy compared to a constant-air-volume (CAV) ventilation system, mainly by reducing energy consumption associated with fans.

  19. Air Handler Condensate Recovery at the Environmental Protection...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Air Handler Condensate Recovery at the Environmental Protection Agency's Science and ... The plan aimed to reduce potable water usage through an air handler condensate recovery ...

  20. Air-to-air turbocharged air cooling versus air-to-water turbocharged air cooling

    SciTech Connect (OSTI)

    Moranne, J.-P.; Lukas, J.J.

    1984-01-01

    In Europe, turbocharged air in diesel engines used in on-road vehicles is cooled only by air. It is expected that by 1990, ten to twelve percent of European heavy trucks with diesel engines will cool turbocharged air by water. Air-to-air turbocharges air cooling is reviewed and the evolution of air-to-water turbocharged air cooling presented before the two systems are compared.

  1. air force

    National Nuclear Security Administration (NNSA)

    en NNSA, Air Force Complete Successful B61-12 Life Extension Program Development Flight Test at Tonopah Test Range http:nnsa.energy.govmediaroompressreleases...

  2. Permanent-magnet-less machine having an enclosed air gap

    DOE Patents [OSTI]

    Hsu, John S.

    2013-03-05

    A permanent magnet-less, brushless synchronous system includes a stator that generates a magnetic rotating field when sourced by an alternating current. An uncluttered rotor disposed within the magnetic rotating field is spaced apart from the stator to form an air gap relative to an axis of rotation. A stationary excitation core spaced apart from the uncluttered rotor by an axial air gap and a radial air gap substantially encloses the stationary excitation core. Some permanent magnet-less, brushless synchronous systems include stator core gaps to reduce axial flux flow. Some permanent magnet-less, brushless synchronous systems include an uncluttered rotor coupled to outer laminations. The quadrature-axis inductance may be increased in some synchronous systems. Some synchronous systems convert energy such as mechanical energy into electrical energy (e.g., a generator); other synchronous systems may convert any form of energy into mechanical energy (e.g., a motor).

  3. Permanent-magnet-less machine having an enclosed air gap

    DOE Patents [OSTI]

    Hsu, John S.

    2012-02-07

    A permanent magnet-less, brushless synchronous system includes a stator that generates a magnetic rotating field when sourced by an alternating current. An uncluttered rotor disposed within the magnetic rotating field is spaced apart from the stator to form an air gap relative to an axis of rotation. A stationary excitation core spaced apart from the uncluttered rotor by an axial air gap and a radial air gap substantially encloses the stationary excitation core. Some permanent magnet-less, brushless synchronous systems include stator core gaps to reduce axial flux flow. Some permanent magnet-less, brushless synchronous systems include an uncluttered rotor coupled to outer laminations. The quadrature-axis inductance may be increased in some synchronous systems. Some synchronous systems convert energy such as mechanical energy into electrical energy (e.g., a generator); other synchronous systems may convert any form of energy into mechanical energy (e.g., a motor).

  4. NREL Reduces Climate Control Loads in Electric Vehicles (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2014-08-01

    NREL demonstrates that zonal climate control can reduce air conditioning power and improve range while maintaining driver thermal sensation.

  5. Hill Air Force Base | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Energy savings performance contracting at Hill Air Force Base generated much interest ... There was a need to reduce energy and water use at Hill Air Force Base, which is subjected ...

  6. The Clean Air Mercury Rule

    SciTech Connect (OSTI)

    Michael Rossler

    2005-07-01

    Coming into force on July 15, 2005, the US Clean Air Mercury Rule will use a market-based cap-and-trade approach under Section 111 of the Clean Air Act to reduce mercury emissions from the electric power sector. This article provides a comprehensive summary of the new rule. 14 refs., 2 tabs.

  7. Closeout of IE Compliance Bulletin 86-03: Potential failure of multiple ECCS (Emergency Core Cooling System) pumps due to single failure of air-operated valve in minimum flow recirculation line

    SciTech Connect (OSTI)

    Foley, W.J.; Dean, R.S.; Hennick, A. )

    1990-10-01

    Documentation is provided in this report for the closeout of IE Compliance Bulletin 86-03 regarding the potential failure of multiple Emergency Core Cooling System (ECCS) pumps due to a single failure of an air-operated valve in a minimum flow recirculation line. Closeout is based on the implementation and verification of four actions required by the bulletin. Evaluation of utility responses and NRC/Region inspection reports in accordance with specific criteria indicates that the bulletin is closed for 116 (98%) of the 118 nuclear power facilities in operation or under construction to which it was issued for action. Facilities which were shut down indefinitely or permanently or which had construction halted indefinitely were not included in this review. A follow-up item is proposed for the two (2) facilities with open bulletin status. It is concluded that the bulletin concern has been resolved, pending closeout by the NRC of Zion 1,2. Background information is provided in the Introduction and Appendix A.

  8. Improved Battery Pack Thermal Management to Reduce Cost and Increase Energy Density: Cooperative Research and Development Final Report, CRADA Number CRD-12-499

    SciTech Connect (OSTI)

    Smith, K.

    2013-10-01

    Under this CRADA NREL will support Creare's project for the Department of Energy entitled 'Improved Battery Pack Thermal Management to Reduce Cost and Increase Energy Density' which involves the development of an air-flow based cooling product that increases energy density, safety, and reliability of hybrid electric vehicle battery packs.

  9. History of Air Conditioning | Department of Energy

    Energy Savers [EERE]

    Efficiency Standards Drive Improvements As air conditioning use soared in the 1970s, the energy crisis hit. In response, lawmakers passed laws to reduce energy consumption across...

  10. RAPID SEPARATION METHOD FOR ACTINIDES IN EMERGENCY AIR FILTER SAMPLES

    SciTech Connect (OSTI)

    Maxwell, S.; Noyes, G.; Culligan, B.

    2010-02-03

    A new rapid method for the determination of actinides and strontium in air filter samples has been developed at the Savannah River Site Environmental Lab (Aiken, SC, USA) that can be used in emergency response situations. The actinides and strontium in air filter method utilizes a rapid acid digestion method and a streamlined column separation process with stacked TEVA, TRU and Sr Resin cartridges. Vacuum box technology and rapid flow rates are used to reduce analytical time. Alpha emitters are prepared using cerium fluoride microprecipitation for counting by alpha spectrometry. The purified {sup 90}Sr fractions are mounted directly on planchets and counted by gas flow proportional counting. The method showed high chemical recoveries and effective removal of interferences. This new procedure was applied to emergency air filter samples received in the NRIP Emergency Response exercise administered by the National Institute for Standards and Technology (NIST) in April, 2009. The actinide and {sup 90}Sr in air filter results were reported in {approx}4 hours with excellent quality.

  11. Fact Sheet: Vanadium Redox Flow Batteries (October 2012)

    Energy Savers [EERE]

    temperature window Vanadium Redox Flow Batteries Improving the performance and reducing the cost of vanadium redox flow batteries for large-scale energy storage Redox flow ...

  12. HVAC Cabinet Air Leakage Test Method - Building America Top Innovation |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Cabinet Air Leakage Test Method - Building America Top Innovation HVAC Cabinet Air Leakage Test Method - Building America Top Innovation While HVAC installers have improved their air sealing practices to reduce the amount of air leaking at ducts and duct boots, testing showed that distribution systems still leaked at air handlers and furnace HVAC Air Leakage Fig 1 Air handler furnace cabinet with pressure taps.jpg cabinets. This has hampered the ability of HVAC

  13. Inertial impaction air sampling device

    DOE Patents [OSTI]

    Dewhurst, Katharine H.

    1990-01-01

    An inertial impactor to be used in an air sampling device for collection of respirable size particles in ambient air which may include a graphite furnace as the impaction substrate in a small-size, portable, direct analysis structure that gives immediate results and is totally self-contained allowing for remote and/or personal sampling. The graphite furnace collects suspended particles transported through the housing by means of the air flow system, and these particles may be analyzed for elements, quantitatively and qualitatively, by atomic absorption spectrophotometry.

  14. Inertial impaction air sampling device

    DOE Patents [OSTI]

    Dewhurst, K.H.

    1990-05-22

    An inertial impactor is designed which is to be used in an air sampling device for collection of respirable size particles in ambient air. The device may include a graphite furnace as the impaction substrate in a small-size, portable, direct analysis structure that gives immediate results and is totally self-contained allowing for remote and/or personal sampling. The graphite furnace collects suspended particles transported through the housing by means of the air flow system, and these particles may be analyzed for elements, quantitatively and qualitatively, by atomic absorption spectrophotometry. 3 figs.

  15. Inertial impaction air sampling device

    DOE Patents [OSTI]

    Dewhurst, K.H.

    1987-12-10

    An inertial impactor to be used in an air sampling device for collection of respirable size particles in ambient air which may include a graphite furnace as the impaction substrate in a small-size, portable, direct analysis structure that gives immediate results and is totally self-contained allowing for remote and/or personal sampling. The graphite furnace collects suspended particles transported through the housing by means of the air flow system, and these particles may be analyzed for elements, quantitatively and qualitatively, by atomic absorption spectrophotometry. 3 figs.

  16. REVIEW OF AIR FLOW MEASUREMENT TECHNIQUES

    Office of Scientific and Technical Information (OSTI)

    ... the tracer gas injection system and anticipate the next ... that happens when a change in concentration is called for. ... The discussion focuses on one class of tracer techniques - ...

  17. Check Burner Air to Fuel Ratios; Industrial Technologies Program...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Air-gas ratios can be determined by flow metering of air and fuel or flue gas analysis. Sometimes, a combination of the two works best. Use the Available Heat Chart below to ...

  18. NREL Provides Guidance to Improve Air Mixing and Thermal Comfort...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    proper air mixing and thermal comfort in homes. As U.S. homes become more energy efficient, heating, ventilation, and cooling (HVAC) systems will be downsized, and the air flow ...

  19. Practical application of large eddy simulation to film cooling flow analysis on gas turbine airfoils

    SciTech Connect (OSTI)

    Takata, T.; Takeishi, K.; Kawata, Y.; Tsuge, A.

    1999-07-01

    Large eddy simulation (LES) using body-fitted coordinates is applied to solve film cooling flow on turbine blades. The turbulent model was tuned using the experimental flow field and adiabatic film cooling effectiveness measurements for a single row of holes on a flat plate surface. The results show the interaction between the main stream boundary layer and injected film cooling air generates kidney and horseshoe shaped vortices. Comparison of the temperature distribution between experimental results and present analysis has been conducted. The non-dimensional temperature distribution at x/d = 1 is dome style and quantitatively agrees with experimental results. LES was also applied to solve film cooling on a turbine airfoil. If LES was applied to solve whole flow field domain large CPU time would make the solution impractical. LES, using body-fitted coordinates, is applied to solve the non-isotropic film cooling flow near the turbine blade. The cascade flow domain, with a pitch equal to one film cooling hole spacing, is solved using {kappa}-{epsilon} model. By using such a hybrid numerical method, CPU time is reduced and numerical accuracy is insured. The analytical results show the interaction between the flow blowing through film cooling holes and mainstream on the suction and pressure surfaces of the turbine airfoil. They also show the fundamental structure of the film cooling air flow is governed by arch internal secondary flow and horseshoe vortices which have a similar structure to film cooling air flow blowing through a cooling hole on a flat plate. In the flow field, the effect of turbulent structure on curvature (relaminarization) and flow pattern, involving the interaction between main flow and the cooling jet, are clearly shown. Film cooling effectiveness on the blade surface is predicted from the results of the thermal field calculation and is compared with the test result.

  20. Strategy Guideline. Compact Air Distribution Systems

    SciTech Connect (OSTI)

    Burdick, Arlan

    2013-06-01

    This guideline discusses the benefits and challenges of using a compact air distribution system to handle the reduced loads and reduced air volume needed to condition the space within an energy efficient home. The decision criteria for a compact air distribution system must be determined early in the whole-house design process, considering both supply and return air design. However, careful installation of a compact air distribution system can result in lower material costs from smaller equipment, shorter duct runs, and fewer outlets; increased installation efficiencies, including ease of fitting the system into conditioned space; lower loads on a better balanced HVAC system, and overall improved energy efficiency of the home.

  1. Air cathode structure manufacture

    DOE Patents [OSTI]

    Momyer, William R.; Littauer, Ernest L.

    1985-01-01

    An improved air cathode structure for use in primary batteries and the like. The cathode structure includes a matrix active layer, a current collector grid on one face of the matrix active layer, and a porous, nonelectrically conductive separator on the opposite face of the matrix active layer, the collector grid and separator being permanently bonded to the matrix active layer. The separator has a preselected porosity providing low IR losses and high resistance to air flow through the matrix active layer to maintain high bubble pressure during operation of the battery. In the illustrated embodiment, the separator was formed of porous polypropylene. A thin hydrophobic film is provided, in the preferred embodiment, on the current collecting metal grid.

  2. Protective supplied-breathing-air garment

    DOE Patents [OSTI]

    Childers, E.L.; von Hortenau, E.F.

    1982-05-28

    A breathing-air garment for isolating a wearer from hostile environments containing toxins or irritants is disclosed. The garment includes a suit and a separate head-protective enclosure or hood engaging a suit collar in sealing attachment. The hood and suit collar are cylindrically shaped and dimensioned to enable the wearer to withdraw his hands from the suit sleeves to perform manual tasks within the hood interior. Breathing air is supplied from an external air line with an air-delivery hose attached to the hood interior. The hose feeds air into an annular halo-like fiber-filled plenum having spaced discharge orifices attached to the hood top wall. A plurality of air exhaust/check valves located at the suit extremities cooperate with the hood air-delivery system to provide a cooling flow of circulating air from the hood throughout the suit interior. A suit entry seal provided on the suit sealed with an adhesive sealing flap.

  3. Protective supplied breathing air garment

    DOE Patents [OSTI]

    Childers, Edward L.; von Hortenau, Erik F.

    1984-07-10

    A breathing air garment for isolating a wearer from hostile environments containing toxins or irritants includes a suit and a separate head protective enclosure or hood engaging a suit collar in sealing attachment. The hood and suit collar are cylindrically shaped and dimensioned to enable the wearer to withdraw his hands from the suit sleeves to perform manual tasks within the hood interior. Breathing air is supplied from an external air line with an air delivery hose attached to the hood interior. The hose feeds air into an annular halo-like fiber-filled plenum having spaced discharge orifices attached to the hood top wall. A plurality of air exhaust/check valves located at the suit extremities cooperate with the hood air delivery system to provide a cooling flow of circulating air from the hood throughout the suit interior. A suit entry seal provided on the suit rear torso panel permits access into the suit and is sealed with an adhesive sealing flap.

  4. Protective supplied breathing air garment

    DOE Patents [OSTI]

    Childers, E.L.; Hortenau, E.F. von.

    1984-07-10

    A breathing air garment is disclosed for isolating a wearer from hostile environments containing toxins or irritants includes a suit and a separate head protective enclosure or hood engaging a suit collar in sealing attachment. The hood and suit collar are cylindrically shaped and dimensioned to enable the wearer to withdraw his hands from the suit sleeves to perform manual tasks within the hood interior. Breathing air is supplied from an external air line with an air delivery hose attached to the hood interior. The hose feeds air into an annular halo-like fiber-filled plenum having spaced discharge orifices attached to the hood top wall. A plurality of air exhaust/check valves located at the suit extremities cooperate with the hood air delivery system to provide a cooling flow of circulating air from the hood throughout the suit interior. A suit entry seal provided on the suit rear torso panel permits access into the suit and is sealed with an adhesive sealing flap. 17 figs.

  5. Room air monitor for radioactive aerosols

    DOE Patents [OSTI]

    Balmer, D.K.; Tyree, W.H.

    1987-03-23

    A housing assembly for use with a room air monitor for simultaneous collection and counting of suspended particles includes a casing containing a combination detector-preamplifier system at one end, a filter system at the other end, and an air flow system consisting of an air inlet formed in the casing between the detector-preamplifier system and the filter system and an air passageway extending from the air inlet through the casing and out the end opposite the detector-preamplifier combination. The filter system collects suspended particles transported directly through the housing by means of the air flow system, and these particles are detected and examined for radioactivity by the detector-preamplifier combination. 2 figs.

  6. Room air monitor for radioactive aerosols

    DOE Patents [OSTI]

    Balmer, David K.; Tyree, William H.

    1989-04-11

    A housing assembly for use with a room air monitor for simultaneous collection and counting of suspended particles includes a casing containing a combination detector-preamplifier system at one end, a filter system at the other end, and an air flow system consisting of an air inlet formed in the casing between the detector-preamplifier system and the filter system and an air passageway extending from the air inlet through the casing and out the end opposite the detector-preamplifier combination. The filter system collects suspended particles transported directly through the housing by means of the air flow system, and these particles are detected and examined for radioactivity by the detector-pre The U.S. Government has rights in this invention pursuant to Contract No. DE-AC04-76DP03533 between the Department of Energy and Rockwell International Corporation.

  7. Capture and Use of Coal Mine Ventilation Air Methane

    SciTech Connect (OSTI)

    Deborah Kosmack

    2008-10-31

    CONSOL Energy Inc., in conjunction with MEGTEC Systems, Inc., and the U.S. Department of Energy with the U.S. Environmental Protection Agency, designed, built, and operated a commercial-size thermal flow reversal reactor (TFRR) to evaluate its suitability to oxidize coal mine ventilation air methane (VAM). Coal mining, and particularly coal mine ventilation air, is a major source of anthropogenic methane emissions, a greenhouse gas. Ventilation air volumes are large and the concentration of methane in the ventilation air is low; thus making it difficult to use or abate these emissions. This test program was conducted with simulated coal mine VAM in advance of deploying the technology on active coal mine ventilation fans. The demonstration project team installed and operated a 30,000 cfm MEGTEC VOCSIDIZER oxidation system on an inactive coal mine in West Liberty, WV. The performance of the unit was monitored and evaluated during months of unmanned operation at mostly constant conditions. The operating and maintenance history and how it impacts the implementation of the technology on mine fans were investigated. Emission tests showed very low levels of all criteria pollutants at the stack. Parametric studies showed that the equipment can successfully operate at the design specification limits. The results verified the ability of the TFRR to oxidize {ge}95% of the low and variable concentration of methane in the ventilation air. This technology provides new opportunities to reduce greenhouse gas emissions by the reduction of methane emissions from coal mine ventilation air. A large commercial-size installation (180,000 cfm) on a single typical mine ventilation bleeder fan would reduce methane emissions by 11,000 to 22,100 short tons per year (the equivalent of 183,000 to 366,000 metric tonnes carbon dioxide).

  8. Fluid-bed air-supply system

    DOE Patents [OSTI]

    Zielinski, Edward A.; Comparato, Joseph R.

    1979-01-01

    The air-supply system for a fluidized-bed furnace includes two air conduits for the same combustion zone. The conduits feed separate sets of holes in a distributor plate through which fluidizing air flows to reach the bed. During normal operation, only one conduit and set of holes is used, but the second conduit and set of holes is employed during start-up.

  9. Cold air systems: Sleeping giant

    SciTech Connect (OSTI)

    MacCracken, C.D. )

    1994-04-01

    This article describes how cold air systems help owners increase the profits from their buildings by reducing electric costs and improving indoor air quality through lower relative humidity levels. Cold air distribution involves energy savings, cost savings, space savings, greater comfort, cleaner air, thermal storage, tighter ducting, coil redesign, lower relative humidities, retrofitting, and improved indoor air quality (IAQ). It opens a door for architects, engineers, owners, builders, environmentalists, retrofitters, designers, occupants, and manufacturers. Three things have held up cold air's usage: multiple fan-powered boxes that ate up the energy savings of primary fans. Cold air room diffusers that provided inadequate comfort. Condensation from ducts, boxes, and diffusers. Such problems have been largely eliminated through research and development by utilities and manufacturers. New cold air diffusers no longer need fan powered boxes. It has also been found that condensation is not a concern so long as the ducts are located in air conditioned space, such as drop ceilings or central risers, where relative humidity falls quickly during morning startup.

  10. Reducing Petroleum Despendence in California: Uncertainties About

    Broader source: Energy.gov (indexed) [DOE]

    tip sheet describes how to save process heating energy and costs by reducing air infiltration in industrial furnaces; tips include repairing leaks and increasing insulation. PROCESS HEATING TIP SHEET #5 PDF icon Reduce Air Infiltration in Furnaces (January 2006) More Documents & Publications Furnace Pressure Controllers Load Preheating Using Flue Gases from a Fuel-Fired Heating System Department of Energy

    fact sheet describes ten effective ways to save energy and money in industrial

  11. Flow Coefficient

    Office of Scientific and Technical Information (OSTI)

    this type of flow in porous and fractured rocks, including flow in geothermal reservoirs. ... and Renewable Energy, Office of Geothermal and Wind Technologies of the U.S. ...

  12. Air Leakage and Air Transfer Between Garage and Living Space

    SciTech Connect (OSTI)

    Rudd, A.

    2014-09-01

    This research project focused on evaluation of air transfer between the garage and living space in a single-family detached home constructed by a production homebuilder in compliance with the 2009 International Residential Code and the 2009 International Energy Conservation Code. The project gathered important information about the performance of whole-building ventilation systems and garage ventilation systems as they relate to minimizing flow of contaminated air from garage to living space. A series of 25 multi-point fan pressurization tests and additional zone pressure diagnostic testing characterized the garage and house air leakage, the garage-to-house air leakage, and garage and house pressure relationships to each other and to outdoors using automated fan pressurization and pressure monitoring techniques. While the relative characteristics of this house may not represent the entire population of new construction configurations and air tightness levels (house and garage) throughout the country, the technical approach was conservative and should reasonably extend the usefulness of the results to a large spectrum of house configurations from this set of parametric tests in this one house. Based on the results of this testing, the two-step garage-to-house air leakage test protocol described above is recommended where whole-house exhaust ventilation is employed. For houses employing whole-house supply ventilation (positive pressure) or balanced ventilation (same pressure effect as the Baseline condition), adherence to the EPA Indoor airPLUS house-to-garage air sealing requirements should be sufficient to expect little to no garage-to-house air transfer.

  13. Liquid metal reactor air cooling baffle

    DOE Patents [OSTI]

    Hunsbedt, Anstein

    1994-01-01

    A baffle is provided between a relatively hot containment vessel and a relatively cold silo for enhancing air cooling performance. The baffle includes a perforate inner wall positionable outside the containment vessel to define an inner flow riser therebetween, and an imperforate outer wall positionable outside the inner wall to define an outer flow riser therebetween. Apertures in the inner wall allow thermal radiation to pass laterally therethrough to the outer wall, with cooling air flowing upwardly through the inner and outer risers for removing heat.

  14. Liquid metal reactor air cooling baffle

    DOE Patents [OSTI]

    Hunsbedt, A.

    1994-08-16

    A baffle is provided between a relatively hot containment vessel and a relatively cold silo for enhancing air cooling performance. The baffle includes a perforate inner wall positionable outside the containment vessel to define an inner flow riser therebetween, and an imperforate outer wall positionable outside the inner wall to define an outer flow riser therebetween. Apertures in the inner wall allow thermal radiation to pass laterally therethrough to the outer wall, with cooling air flowing upwardly through the inner and outer risers for removing heat. 3 figs.

  15. Air Sealing Your Home | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Your Home Air Sealing Your Home Save on heating and cooling costs by checking for air leaks in common trouble spots in your home. Save on heating and cooling costs by checking for air leaks in common trouble spots in your home. Reducing the amount of air that leaks in and out of your home is a cost-effective way to cut heating and cooling costs, improve durability, increase comfort, and create a healthier indoor environment. Caulking and weatherstripping are two simple and effective air-sealing

  16. Air Leakage and Air Transfer Between Garage and Living Space

    SciTech Connect (OSTI)

    Rudd, Armin

    2014-09-01

    This research project focused on evaluation of air transfer between the garage and living space in a single-family detached home constructed by a production homebuilder in compliance with the 2009 International Residential Code and the 2009 International Energy Conservation Code. The project gathered important information about the performance of whole-building ventilation systems and garage ventilation systems as they relate to minimizing flow of contaminated air from garage to living space. A series of 25 multi-point fan pressurization tests and additional zone pressure diagnostic testing characterized the garage and house air leakage, the garage-to-house air leakage, and garage and house pressure relationships to each other and to outdoors using automated fan pressurization and pressure monitoring techniques. While the relative characteristics of this house may not represent the entire population of new construction configurations and air tightness levels (house and garage) throughout the country, the technical approach was conservative and should reasonably extend the usefulness of the results to a large spectrum of house configurations from this set of parametric tests in this one house. Based on the results of this testing, the two-step garage-to-house air leakage test protocol described above is recommended where whole-house exhaust ventilation is employed.

  17. Pressurized solid oxide fuel cell integral air accumular containment

    DOE Patents [OSTI]

    Gillett, James E.; Zafred, Paolo R.; Basel, Richard A.

    2004-02-10

    A fuel cell generator apparatus contains at least one fuel cell subassembly module in a module housing, where the housing is surrounded by a pressure vessel such that there is an air accumulator space, where the apparatus is associated with an air compressor of a turbine/generator/air compressor system, where pressurized air from the compressor passes into the space and occupies the space and then flows to the fuel cells in the subassembly module, where the air accumulation space provides an accumulator to control any unreacted fuel gas that might flow from the module.

  18. Graphene-based battery electrodes having continuous flow paths...

    Office of Scientific and Technical Information (OSTI)

    Title: Graphene-based battery electrodes having continuous flow paths Some batteries can ... Metal-air batteries can benefit from such electrodes. In particular Li-air batteries show ...

  19. Regenerative air heater

    DOE Patents [OSTI]

    Hasselquist, P.B.; Baldner, R.

    1980-11-26

    A gas-cooled steel skirt is used to support a refractory cored brick matrix and dome structure in a high temperature regenerative air heater useful in magnetohydrodynamic power generation. The steel skirt thermally expands to accommodate the thermal expansion of the dome structure despite substantial temperature differential thereby reducing relative movement between the dome bricks. Gas cooling of the steel skirt allows the structure to operate above its normal temperature during clean-out cycles and also allows for the control of the thermal expansion of the steel skirt.

  20. Regenerative air heater

    DOE Patents [OSTI]

    Hasselquist, Paul B.; Baldner, Richard

    1982-01-01

    A gas-cooled steel skirt is used to support a refractory cored brick matrix and dome structure in a high temperature regenerative air heater useful in magnetohydrodynamic power generation. The steel skirt thermally expands to accommodate the thermal expansion of the dome structure despite substantial temperature differential thereby reducing relative movement between the dome bricks. Gas cooling of the steel skirt allows the structure to operate above its normal temperature during clean-out cycles and also allows for the control of the thermal expansion of the steel skirt.

  1. TEP process flow diagram

    SciTech Connect (OSTI)

    Wilms, R Scott; Carlson, Bryan; Coons, James; Kubic, William

    2008-01-01

    This presentation describes the development of the proposed Process Flow Diagram (PFD) for the Tokamak Exhaust Processing System (TEP) of ITER. A brief review of design efforts leading up to the PFD is followed by a description of the hydrogen-like, air-like, and waterlike processes. Two new design values are described; the mostcommon and most-demanding design values. The proposed PFD is shown to meet specifications under the most-common and mostdemanding design values.

  2. Large volume flow-through scintillating detector

    DOE Patents [OSTI]

    Gritzo, Russ E.; Fowler, Malcolm M.

    1995-01-01

    A large volume flow through radiation detector for use in large air flow situations such as incinerator stacks or building air systems comprises a plurality of flat plates made of a scintillating material arranged parallel to the air flow. Each scintillating plate has a light guide attached which transfers light generated inside the scintillating plate to an associated photomultiplier tube. The output of the photomultiplier tubes are connected to electronics which can record any radiation and provide an alarm if appropriate for the application.

  3. Air transparent soundproof window

    SciTech Connect (OSTI)

    Kim, Sang-Hoon; Lee, Seong-Hyun

    2014-11-15

    A soundproof window or wall which is transparent to airflow is presented. The design is based on two wave theories: the theory of diffraction and the theory of acoustic metamaterials. It consists of a three-dimensional array of strong diffraction-type resonators with many holes centered on each individual resonator. The negative effective bulk modulus of the resonators produces evanescent wave, and at the same time the air holes with subwavelength diameter existed on the surfaces of the window for macroscopic air ventilation. The acoustic performance levels of two soundproof windows with air holes of 20mm and 50mm diameters were measured. The sound level was reduced by about 30 - 35dB in the frequency range of 400 - 5,000Hz with the 20mm window, and by about 20 - 35dB in the frequency range of 700 - 2,200Hz with the 50mm window. Multi stop-band was created by the multi-layers of the window. The attenuation length or the thickness of the window was limited by background noise. The effectiveness of the soundproof window with airflow was demonstrated by a real installation.

  4. Numerical simulation of gas flow through unsaturated fractured rock at Yucca Mountain, Nevada

    SciTech Connect (OSTI)

    Cooper, C.A.

    1990-01-01

    Numerical analysis is used to identify the physical phenomena associated with barometrically driven gas (air and water vapor) flow through unsaturated fractured rock at Yucca Mountain, Nevada. Results from simple finite difference simulations indicate that for a fractured rock scenario, the maximum velocity of air out of an uncased 10 cm borehole is 0.002 m s{sub {minus}1}. An equivalent porous medium (EPM) model was incorporated into a multiphase, multicomponent simulator to test more complex conceptual models. Results indicate that for a typical June day, a diurnal pressure wave propagates about 160 m into the surrounding Tiva Canyon hydrogeologic unit. Dry air that enters the formation evaporates water around the borehole which reduces capillary pressure. Multiphase countercurrent flow develops in the vicinity of the hole; the gas phase flows into the formation while the liquid phase flows toward the borehole. The effect occurs within 0.5 m of the borehole. The amount of water vapor leaving the formation during 1 day is 900 cm{sup 3}. This is less than 0.1% of the total recharge into the formation, suggesting that the barometric effect may be insignificant in drying the unsaturated zone. However, gas phase velocities out of the borehole (3 m s{sup {minus}1}), indicating that observed flow rates from wells along the east flank of Yucca Mountain were able to be simulated with a barometric model.

  5. High gas flow alpha detector

    DOE Patents [OSTI]

    Bolton, Richard D.; Bounds, John A.; Rawool-Sullivan, Mohini W.

    1996-01-01

    An alpha detector for application in areas of high velocity gas flows, such as smokestacks and air vents. A plurality of spaced apart signal collectors are placed inside an enclosure, which would include smokestacks and air vents, in sufficient numbers to substantially span said enclosure so that gas ions generated within the gas flow are electrostatically captured by the signal collector means. Electrometer means and a voltage source are connected to the signal collectors to generate an electrical field between adjacent signal collectors, and to indicate a current produced through collection of the gas ions by the signal collectors.

  6. High gas flow alpha detector

    DOE Patents [OSTI]

    Bolton, R.D.; Bounds, J.A.; Rawool-Sullivan, M.W.

    1996-05-07

    An alpha detector for application in areas of high velocity gas flows, such as smokestacks and air vents. A plurality of spaced apart signal collectors are placed inside an enclosure, which would include smokestacks and air vents, in sufficient numbers to substantially span said enclosure so that gas ions generated within the gas flow are electrostatically captured by the signal collector means. Electrometer means and a voltage source are connected to the signal collectors to generate an electrical field between adjacent signal collectors, and to indicate a current produced through collection of the gas ions by the signal collectors. 4 figs.

  7. Shroud leakage flow discouragers

    DOE Patents [OSTI]

    Bailey, Jeremy Clyde; Bunker, Ronald Scott

    2002-01-01

    A turbine assembly includes a plurality of rotor blades comprising a root portion, an airfoil having a pressure sidewall and a suction sidewall, and a top portion having a cap. An outer shroud is concentrically disposed about said rotor blades, said shroud in combination with said tip portions defining a clearance gap. At least one circumferential shroud leakage discourager is disposed within the shroud. The leakage discourager(s) increase the flow resistance and thus reduce the flow of hot gas flow leakage for a given pressure differential across the clearance gap to improve overall turbine efficiency.

  8. Metal-Air Batteries

    SciTech Connect (OSTI)

    Zhang, Jiguang; Bruce, Peter G.; Zhang, Gregory

    2011-08-01

    Metal-air batteries have much higher specific energies than most currently available primary and rechargeable batteries. Recent advances in electrode materials and electrolytes, as well as new designs on metal-air batteries, have attracted intensive effort in recent years, especially in the development of lithium-air batteries. The general principle in metal-air batteries will be reviewed in this chapter. The materials, preparation methods, and performances of metal-air batteries will be discussed. Two main metal-air batteries, Zn-air and Li-air batteries will be discussed in detail. Other type of metal-air batteries will also be described.

  9. Industrial Assessment Centers - Small Manufacturers Reduce Energy & Increase Productivity

    SciTech Connect (OSTI)

    2015-11-06

    Since 1976, the Industrial Assessment Centers (IACs), administered by the US Department of Energy, have supported small and medium-sized American manufacturers to reduce energy use and increase their productivity and competitiveness. The 24 IACs, located at premier engineering universities around the country (see below), send faculty and engineering students to local small and medium-sized manufacturers to provide no-cost assessments of energy use, process performance and waste and water flows. Under the direction of experienced professors, IAC engineering students analyze the manufacturer’s facilities, energy bills and energy, waste and water systems, including compressed air, motors/pumps, lighting, process heat and steam. The IACs then follow up with written energy-saving and productivity improvement recommendations, with estimates of related costs and payback periods.

  10. Improving Air Quality with Solar Energy; U.S. DOE Clean Energy and Air Quality Integration Initiative Fact Sheet Series

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Air Quality with Solar Energy Many states are seeking additional air pollution control strategies. Zero-emission solar technologies, such as solar electricity and solar water heating, can help air quality and energy offcials in cities, states, and federal agencies improve air quality, achieve Clean Air Act goals, and reduce pollution control costs for both industry and taxpayers. Solar technologies provide energy for heating, cooling, and lighting homes and heating water without any direct

  11. Air exchange effectiveness of conventional and task ventilation for offices

    SciTech Connect (OSTI)

    Fisk, W.J.; Faulkner, D.; Prill, R.J.

    1991-12-01

    Air quality and comfort complaints within large buildings are often attributed to air distribution problems. We define three air exchange effectiveness parameters related to air distribution. The first two indicate the indoor air flow pattern (i.e., the extent of short circuiting, mixing, or displacement flow) for an entire building or region. The third parameter is most useful for assessments of the spatial variability of ventilation. We also define the air diffusion effectiveness which indicates the air flow pattern within specific rooms or sections of buildings. The results of measurements of these parameters in US office buildings by the authors and other researchers are reviewed. Almost all measurements indicate very limited short circuiting or displacement flow between locations of air supply and removal. However, a moderate degree of short circuiting is evident from a few measurements in rooms with heated supply air. The results of laboratory-based measurements by the authors are consistent with the field data. Our measurements in office buildings do indicate that ventilation rates can vary substantially between indoor locations, probably due to variation in air supply rates between locations rather than variation in the indoor air flow patterns. One possible method of improving air distribution is to employ task ventilation with air supplied closer to the occupant`s breathing zone. We have evaluated two task ventilation systems in a laboratory setting. During most operating conditions, these systems did not provide a region of substantially increased ventilation where occupants breath. However, both systems are capable of providing substantially enhanced ventilation at the breathing zone under some operating conditions. Therefore, task ventilation is a potential option for using ventilation air more effectively.

  12. Air exchange effectiveness of conventional and task ventilation for offices

    SciTech Connect (OSTI)

    Fisk, W.J.; Faulkner, D.; Prill, R.J.

    1991-12-01

    Air quality and comfort complaints within large buildings are often attributed to air distribution problems. We define three air exchange effectiveness parameters related to air distribution. The first two indicate the indoor air flow pattern (i.e., the extent of short circuiting, mixing, or displacement flow) for an entire building or region. The third parameter is most useful for assessments of the spatial variability of ventilation. We also define the air diffusion effectiveness which indicates the air flow pattern within specific rooms or sections of buildings. The results of measurements of these parameters in US office buildings by the authors and other researchers are reviewed. Almost all measurements indicate very limited short circuiting or displacement flow between locations of air supply and removal. However, a moderate degree of short circuiting is evident from a few measurements in rooms with heated supply air. The results of laboratory-based measurements by the authors are consistent with the field data. Our measurements in office buildings do indicate that ventilation rates can vary substantially between indoor locations, probably due to variation in air supply rates between locations rather than variation in the indoor air flow patterns. One possible method of improving air distribution is to employ task ventilation with air supplied closer to the occupant's breathing zone. We have evaluated two task ventilation systems in a laboratory setting. During most operating conditions, these systems did not provide a region of substantially increased ventilation where occupants breath. However, both systems are capable of providing substantially enhanced ventilation at the breathing zone under some operating conditions. Therefore, task ventilation is a potential option for using ventilation air more effectively.

  13. Hickam Air Force Base

    Broader source: Energy.gov [DOE]

    Hickam Air Force Base spans 2,850 acres in Honolulu, Hawaii. The military base is home to the 15th Airlift Wing, the Hawaii Air National Guard, and the Pacific Air Forces headquarters.

  14. Air-cooled Condensers in Next-generation Conversion Systems

    Broader source: Energy.gov [DOE]

    DOE Geothermal Program Peer Review 2010 - Presentation. Project objective: to reduce the costs associated with the generation of electrical power from air-cooled binary plants.

  15. Eliminate Inappropriate Uses of Compressed Air; Industrial Technologie...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    air that may be inappropriate and suggests alternative ways to perform these tasks. ... The plant took several action steps identifed in the table to eliminate or reduce these ...

  16. air_water.cdr

    Office of Legacy Management (LM)

    122011 Air Monitoring Groundwater Monitoring Surface Water Monitoring A continuously operating air monitoring network was in place from 1986 through 2000 for the Weldon Spring ...

  17. Primary zone air proportioner

    DOE Patents [OSTI]

    Cleary, Edward N. G.

    1982-10-12

    An air proportioner is provided for a liquid hydrocarbon fueled gas turbine of the type which is convertible to oil gas fuel and to coal gas fuel. The turbine includes a shell for enclosing the turbine, an air duct for venting air in said shell to a gasifier, and a fuel injector for injecting gasified fuel into the turbine. The air proportioner comprises a second air duct for venting air from the air duct for mixing with fuel from the gasifier. The air can be directly injected into the gas combustion basket along with the fuel from the injector or premixed with fuel from the gasifier prior to injection by the fuel injector.

  18. Swozzle based burner tube premixer including inlet air conditioner for low emissions combustion

    DOE Patents [OSTI]

    Tuthill, Richard Sterling; Bechtel, II, William Theodore; Benoit, Jeffrey Arthur; Black, Stephen Hugh; Bland, Robert James; DeLeonardo, Guy Wayne; Meyer, Stefan Martin; Taura, Joseph Charles; Battaglioli, John Luigi

    2002-01-01

    A burner for use in a combustion system of a heavy-duty industrial gas turbine includes a fuel/air premixer having an air inlet, a fuel inlet, and an annular mixing passage. The fuel/air premixer mixes fuel and air into a uniform mixture for injection into a combustor reaction zone. The burner also includes an inlet flow conditioner disposed at the air inlet of the fuel/air premixer for controlling a radial and circumferential distribution of incoming air. The pattern of perforations in the inlet flow conditioner is designed such that a uniform air flow distribution is produced at the swirler inlet annulus in both the radial and circumference directions. The premixer includes a swozzle assembly having a series of preferably air foil shaped turning vanes that impart swirl to the airflow entering via the inlet flow conditioner. Each air foil contains internal fuel flow passages that introduce natural gas fuel into the air stream via fuel metering holes that pass through the walls of the air foil shaped turning vanes. By injecting fuel in this manner, an aerodynamically clean flow field is maintained throughout the premixer. By injecting fuel via two separate passages, the fuel/air mixture strength distribution can be controlled in the radial direction to obtain optimum radial concentration profiles for control of emissions, lean blow outs, and combustion driven dynamic pressure activity as machine and combustor load are varied.

  19. Bubbles Help Break Energy Storage Record for Lithium Air-Batteries

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Bubbles Help Break Energy Storage Record for Lithium Air-Batteries Bubbles Help Break Energy Storage Record for Lithium Air-Batteries Foam-base graphene keeps oxygen flowing in ...

  20. Flow chamber

    DOE Patents [OSTI]

    Morozov, Victor

    2011-01-18

    A flow chamber having a vacuum chamber and a specimen chamber. The specimen chamber may have an opening through which a fluid may be introduced and an opening through which the fluid may exit. The vacuum chamber may have an opening through which contents of the vacuum chamber may be evacuated. A portion of the flow chamber may be flexible, and a vacuum may be used to hold the components of the flow chamber together.

  1. Precombustion control of air toxics

    SciTech Connect (OSTI)

    Akers, D.J.; Harrison, C.; Nowak, M.; Toole-O`Neil, B.

    1996-12-31

    If regulation of hazardous air pollutant emissions from utility boilers occurs in the next few years, the least-cost, lowest-risk control method for many utilities is likely to be some form of coal cleaning. Approximately 75 percent of coal mined east of the Mississippi River is already cleaned before it is used by the electric utility industry. Current methods of coal cleaning reduce ash and sulfur content by removing ash-forming and sulfur-bearing minerals; these same methods have the capability to remove large amounts of most of the 14 elements named as hazardous air pollutants (HAPs) in Title III of the 1990 Amendments to the Clean Air Act.

  2. Cromer Cycle Air Conditioner

    Broader source: Energy.gov [DOE]

    New Air Conditioning System Uses Desiccant to Transfer Moisture and Increase Efficiency and Capacity

  3. Air exchange effectiveness in office buildings: Measurement techniques and results

    SciTech Connect (OSTI)

    Fisk, W.J.; Faulkner, D.

    1992-07-01

    We define two air exchange effectiveness parameters which indicate the extent of short circuiting, mixing, or displacement air flow in an entire building, the air diffusion effectiveness which indicates the air flow pattern locally, and the normalized local age of air. After describing two tracer gas procedures for measuring these parameters, we discuss assumptions inherent in the data analysis that are often violated in large office buildings. To obtain valuable data, careful selection of buildings for measurements and assessments to determine if operating conditions are reasonably consistent with the assumptions are necessary. Multiple factors, in addition to the air flow pattern in the occupied space, can affect measurement results, consequently, the interpretation of measurements is not straightforward. We summarize the results of measurements in several office buildings and in a research laboratory. Almost all measurements indicate that the extent of both short circuiting and displacement flow is small. A moderate amount of short circuiting is evident from a few measurements in rooms with heated supply air. Ages of air and their reciprocals (local ventilation rates) often vary substantially between rooms, probably because of room-to-room variation in the rate of air supply. For future research, we suggest assessments of measurement accuracy, development of measurement approaches that may be practically applied for a broader range of buildings, and a greater focus on pollutant removal efficiencies.

  4. Pressure compensated flow control valve

    DOE Patents [OSTI]

    Minteer, Daniel J.

    1999-01-01

    The invention is an air flow control valve which is capable of maintaining a constant flow at the outlet despite changes in the inlet or outlet pressure. The device consists of a shell assembly with an inlet chamber and outlet chamber separated by a separation plate. The chambers are connected by an orifice. Also located within the inlet chamber is a port controller assembly. The port controller assembly consists of a differential pressure plate and port cap affixed thereon. The cap is able to slide in and out of the orifice separating the inlet and outlet chambers. When the pressure differential is sufficient, the differential pressure plate rises or falls to maintain a constant air flow. Movement of the port controller assembly does not require the use of seals, diaphragms, tight tolerances, bushings, bearings, hinges, guides, or lubricants.

  5. Determining the Right Air Quality for Your Compressed Air System |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy the Right Air Quality for Your Compressed Air System Determining the Right Air Quality for Your Compressed Air System This tip sheet outlines the main factors for determining the right air quality for compressed air systems. COMPRESSED AIR TIP SHEET #5 PDF icon Determining the Right Air Quality for Your Compressed Air System (August 2004) More Documents & Publications Effect of Intake on Compressor Performance Improving Compressed Air System Performance: A Sourcebook

  6. Generic air sampler probe tests

    SciTech Connect (OSTI)

    Glissmeyer, J.A.; Ligotke, M.W.

    1995-11-01

    Tests were conducted to determine the best nozzle and probe designs for new air sampling systems to be installed in the ventilation systems of some of the waste tanks at the Hanford Site in Richland, Washington. Isokinetic nozzle probes and shrouded probes were tested. The test aerosol was sodium-fluorescein-tagged oleic acid. The test parameters involved particle sizes from 1 to 15 {mu}m, air velocities from 3 to 15 m/s. The results of the tests show that shrouded probes can deliver samples with significantly less particle-size bias then the isokinetic nozzle probes tested. Tests were also conducted on two sample flow splitters to determine particle loss as a function of aerodynamic particle size. The particle size range covered in these tests was 5 to 15 {mu}m. The results showed little particle loss, but did show a bias in particle concentration between the two outlets of each splitter for the larger particle sizes.

  7. Isokinetic air sampler

    DOE Patents [OSTI]

    Sehmel, George A.

    1979-01-01

    An isokinetic air sampler includes a filter, a holder for the filter, an air pump for drawing air through the filter at a fixed, predetermined rate, an inlet assembly for the sampler having an inlet opening therein of a size such that isokinetic air sampling is obtained at a particular wind speed, a closure for the inlet opening and means for simultaneously opening the closure and turning on the air pump when the wind speed is such that isokinetic air sampling is obtained. A system incorporating a plurality of such samplers provided with air pumps set to draw air through the filter at the same fixed, predetermined rate and having different inlet opening sizes for use at different wind speeds is included within the ambit of the present invention as is a method of sampling air to measure airborne concentrations of particulate pollutants as a function of wind speed.

  8. Reducing VOC Press Emission from OSB Manufacturing

    SciTech Connect (OSTI)

    Dr. Gary D. McGinnis; Laura S. WIlliams; Amy E. Monte; Jagdish Rughani: Brett A. Niemi; Thomas M. Flicker

    2001-12-31

    Current regulations require industry to meet air emission standards with regard to particulates, volatile organic compounds (VOCs), hazardous air pollutants (HAPs) and other gases. One of many industries that will be affected by the new regulations is the wood composites industry. This industry generates VOCs, HAPs, and particulates mainly during the drying and pressing of wood. Current air treatment technologies for the industry are expensive to install and operate. As regulations become more stringent, treatment technologies will need to become more efficient and cost effective. The overall objective of this study is to evaluate the use of process conditions and chemical additives to reduce VOC/HAPs in air emitted from presses and dryers during the production of oriented strand board.

  9. Variable oxygen/nitrogen enriched intake air system for internal combustion engine applications

    DOE Patents [OSTI]

    Poola, Ramesh B.; Sekar, Ramanujam R.; Cole, Roger L.

    1997-01-01

    An air supply control system for selectively supplying ambient air, oxygen enriched air and nitrogen enriched air to an intake of an internal combustion engine includes an air mixing chamber that is in fluid communication with the air intake. At least a portion of the ambient air flowing to the mixing chamber is selectively diverted through a secondary path that includes a selectively permeable air separating membrane device due a differential pressure established across the air separating membrane. The permeable membrane device separates a portion of the nitrogen in the ambient air so that oxygen enriched air (permeate) and nitrogen enriched air (retentate) are produced. The oxygen enriched air and the nitrogen enriched air can be selectively supplied to the mixing chamber or expelled to atmosphere. Alternatively, a portion of the nitrogen enriched air can be supplied through another control valve to a monatomic-nitrogen plasma generator device so that atomic nitrogen produced from the nitrogen enriched air can be then injected into the exhaust of the engine. The oxygen enriched air or the nitrogen enriched air becomes mixed with the ambient air in the mixing chamber and then the mixed air is supplied to the intake of the engine. As a result, the air being supplied to the intake of the engine can be regulated with respect to the concentration of oxygen and/or nitrogen.

  10. Exploring the concept of compressed air energy storage (CAES) in lined rock caverns at shallow depth: A modeling study of air tightness and energy balance

    SciTech Connect (OSTI)

    Kim, H.-M.; Rutqvist, J.; Ryu, D.-W.; Choi, B.-H.; Sunwoo, C.; Song, W.-K.

    2011-07-15

    This paper presents a numerical modeling study of coupled thermodynamic, multiphase fluid flow and heat transport associated with underground compressed air energy storage (CAES) in lined rock caverns. Specifically, we explored the concept of using concrete lined caverns at a relatively shallow depth for which constructing and operational costs may be reduced if air tightness and stability can be assured. Our analysis showed that the key parameter to assure long-term air tightness in such a system was the permeability of both the concrete lining and the surrounding rock. The analysis also indicated that a concrete lining with a permeability of less than 110{sup -18} m{sup 2} would result in an acceptable air leakage rate of less than 1%, with the operational pressure range between 5 and 8 MPa at a depth of 100 m. It was further noted that capillary retention properties and the initial liquid saturation of the lining were very important. Indeed, air leakage could be effectively prevented when the air-entry pressure of the concrete lining is higher than the operational air pressure and when the lining is kept moist at a relatively high liquid saturation. Our subsequent energy-balance analysis demonstrated that the energy loss for a daily compression and decompression cycle is governed by the air-pressure loss, as well as heat loss by conduction to the concrete liner and surrounding rock. For a sufficiently tight system, i.e., for a concrete permeability off less than 110{sup -18} m{sup 2}, heat loss by heat conduction tends to become proportionally more important. However, the energy loss by heat conduction can be minimized by keeping the air-injection temperature of compressed air closer to the ambient temperature of the underground storage cavern. In such a case, almost all the heat loss during compression is gained back during subsequent decompression. Finally, our numerical simulation study showed that CAES in shallow rock caverns is feasible from a leakage and energy efficiency viewpoint. Our numerical approach and energy analysis will next be applied in designing and evaluating the performance of a planned full-scale pilot test of the proposed underground CAES concept.

  11. Turbine inter-disk cavity cooling air compressor

    DOE Patents [OSTI]

    Chupp, Raymond E. (Oviedo, FL); Little, David A. (Oviedo, FL)

    1998-01-01

    The inter-disk cavity between turbine rotor disks is used to pressurize cooling air. A plurality of ridges extend radially outwardly over the face of the rotor disks. When the rotor disks are rotated, the ridges cause the inter-disk cavity to compress air coolant flowing through the inter-disk cavity en route to the rotor blades. The ridges eliminate the need for an external compressor to pressurize the air coolant.

  12. Turbine inter-disk cavity cooling air compressor

    DOE Patents [OSTI]

    Chupp, R.E.; Little, D.A.

    1998-01-06

    The inter-disk cavity between turbine rotor disks is used to pressurize cooling air. A plurality of ridges extend radially outwardly over the face of the rotor disks. When the rotor disks are rotated, the ridges cause the inter-disk cavity to compress air coolant flowing through the inter-disk cavity en route to the rotor blades. The ridges eliminate the need for an external compressor to pressurize the air coolant. 5 figs.

  13. Flow battery

    DOE Patents [OSTI]

    Lipka, Stephen M.; Swartz, Christopher R.

    2016-02-23

    An electrolyte system for a flow battery has an anolyte including [Fe(CN).sub.6].sup.3- and [Fe(CN).sub.6].sup.4- and a catholyte including Fe.sup.2+ and Fe.sup.3+.

  14. Detecting Air Leaks

    Broader source: Energy.gov [DOE]

    You may already know where some air leakage occurs in your home, such as an under-the-door draft, but you'll need to find the less obvious gaps to properly air seal your home.

  15. Determining the Right Air Quality for Your Compressed Air System...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    coating, climate control Process Air Food and pharmaceutical process air, ... Contaminants can enter a compressed air system at the compressor intake, or can be ...

  16. Simple Interactive Models for better air quality (SIM-air) |...

    Open Energy Info (EERE)

    Interactive Models for better air quality (SIM-air) Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Simple Interactive Models (SIM-air) AgencyCompany Organization:...

  17. Air Sparging Decision Tool

    Energy Science and Technology Software Center (OSTI)

    1996-06-10

    The Air Sparging Decision Tool is a computer decision aid to help environmental managers and field practitioners in evaluating the applicability of air sparging to a wide range of sites and for refining the operation of air sparging systems. The program provides tools for the practitioner to develop the conceptual design for an air sparging system suitable for the identified site. The Tool provides a model of the decision making process, not a detailed designmore » of air sparging systems. The Tool will quickly and cost effectively assist the practitioner in screening for applicability of the technology at a proposed site.« less

  18. Desiccant Enhanced Evaporative Air Conditioning: Parametric Analysis and Design; Preprint

    SciTech Connect (OSTI)

    Woods, J.; Kozubal, E.

    2012-10-01

    This paper presents a parametric analysis using a numerical model of a new concept in desiccant and evaporative air conditioning. The concept consists of two stages: a liquid desiccant dehumidifier and a dew-point evaporative cooler. Each stage consists of stacked air channel pairs separated by a plastic sheet. In the first stage, a liquid desiccant film removes moisture from the process (supply-side) air through a membrane. An evaporatively-cooled exhaust airstream on the other side of the plastic sheet cools the desiccant. The second-stage indirect evaporative cooler sensibly cools the dried process air. We analyze the tradeoff between device size and energy efficiency. This tradeoff depends strongly on process air channel thicknesses, the ratio of first-stage to second-stage area, and the second-stage exhaust air flow rate. A sensitivity analysis reiterates the importance of the process air boundary layers and suggests a need for increasing airside heat and mass transfer enhancements.

  19. EPA Presentation: Reducing Pollution from Power Plants, October 29, 2010

    Broader source: Energy.gov [DOE]

    Presentation to the Electricity Advisory Committe on October 29, 2010 by the US Environmental Protection Agency Office of Air and Radiation on Reducing Pollution from Power Plants and the need for...

  20. Effects of radiation and compression on propagating spherical flames of methane/air mixtures near the lean flammability limit

    SciTech Connect (OSTI)

    Chen, Zheng [State Key Laboratory for Turbulence and Complex Systems, Department of Mechanics and Aerospace Engineering, College of Engineering, Peking University, Beijing 100871 (China)

    2010-12-15

    Large discrepancies between the laminar flame speeds and Markstein lengths measured in experiments and those predicted by simulations for ultra-lean methane/air mixtures bring a great concern for kinetic mechanism validation. In order to quantitatively explain these discrepancies, a computational study is performed for propagating spherical flames of lean methane/air mixtures in different spherical chambers using different radiation models. The emphasis is focused on the effects of radiation and compression. It is found that the spherical flame propagation speed is greatly reduced by the coupling between thermal effect (change of flame temperature or unburned gas temperature) and flow effect (inward flow of burned gas) induced by radiation and/or compression. As a result, for methane/air mixtures near the lean flammability limit, the radiation and compression cause large amounts of under-prediction of the laminar flame speeds and Markstein lengths extracted from propagating spherical flames. Since radiation and compression both exist in the experiments on ultra-lean methane/air mixtures reported in the literature, the measured laminar flame speeds and Markstein lengths are much lower than results from simulation and thus cannot be used for kinetic mechanism validation. (author)

  1. Reduced-vibration tube array

    DOE Patents [OSTI]

    Bruck, Gerald J.; Bartolomeo, Daniel R.

    2004-07-20

    A reduced-vibration tube array is disclosed. The array includes a plurality of tubes in a fixed arrangement and a plurality of damping members positioned within the tubes. The damping members include contoured interface regions characterized by bracing points that selectively contact the inner surface of an associated tube. Each interface region is sized and shaped in accordance with the associated tube, so that the damping member bracing points are spaced apart a vibration-reducing distance from the associated tube inner surfaces at equilibrium. During operation, mechanical interaction between the bracing points and the tube inner surfaces reduces vibration by a damage-reducing degree. In one embodiment, the interface regions are serpentine shaped. In another embodiment, the interface regions are helical in shape. The interface regions may be simultaneously helical and serpentine in shape. The damping members may be fixed within the associated tubes, and damping member may be customized several interference regions having attributes chosen in accordance with desired flow characteristics and associated tube properties.

  2. A fundamentally new approach to air-cooled heat exchangers.

    SciTech Connect (OSTI)

    Koplow, Jeffrey P.

    2010-01-01

    We describe breakthrough results obtained in a feasibility study of a fundamentally new architecture for air-cooled heat exchangers. A longstanding but largely unrealized opportunity in energy efficiency concerns the performance of air-cooled heat exchangers used in air conditioners, heat pumps, and refrigeration equipment. In the case of residential air conditioners, for example, the typical performance of the air cooled heat exchangers used for condensers and evaporators is at best marginal from the standpoint the of achieving maximum the possible coefficient of performance (COP). If by some means it were possible to reduce the thermal resistance of these heat exchangers to a negligible level, a typical energy savings of order 30% could be immediately realized. It has long been known that a several-fold increase in heat exchanger size, in conjunction with the use of much higher volumetric flow rates, provides a straight-forward path to this goal but is not practical from the standpoint of real world applications. The tension in the market place between the need for energy efficiency and logistical considerations such as equipment size, cost and operating noise has resulted in a compromise that is far from ideal. This is the reason that a typical residential air conditioner exhibits significant sensitivity to reductions in fan speed and/or fouling of the heat exchanger surface. The prevailing wisdom is that little can be done to improve this situation; the 'fan-plus-finned-heat-sink' heat exchanger architecture used throughout the energy sector represents an extremely mature technology for which there is little opportunity for further optimization. But the fact remains that conventional fan-plus-finned-heat-sink technology simply doesn't work that well. Their primary physical limitation to performance (i.e. low thermal resistance) is the boundary layer of motionless air that adheres to and envelops all surfaces of the heat exchanger. Within this boundary layer region, diffusive transport is the dominant mechanism for heat transfer. The resulting thermal bottleneck largely determines the thermal resistance of the heat exchanger. No one has yet devised a practical solution to the boundary layer problem. Another longstanding problem is inevitable fouling of the heat exchanger surface over time by particulate matter and other airborne contaminants. This problem is especially important in residential air conditioner systems where often little or no preventative maintenance is practiced. The heat sink fouling problem also remains unsolved. The third major problem (alluded to earlier) concerns inadequate airflow to heat exchanger resulting from restrictions on fan noise. The air-cooled heat exchanger described here solves all of the above three problems simultaneously. The 'Air Bearing Heat Exchanger' provides a several-fold reduction in boundary layer thickness, intrinsic immunity to heat sink fouling, and drastic reductions in noise. It is also very practical from the standpoint of cost, complexity, ruggedness, etc. Successful development of this technology is also expected to have far reaching impact in the IT sector from the standpointpoint of solving the 'Thermal Brick Wall' problem (which currently limits CPU clocks speeds to {approx}3 GHz), and increasing concern about the the electrical power consumption of our nation's information technology infrastructure.

  3. Advanced Overfire Air system and design

    SciTech Connect (OSTI)

    Gene berkau

    2004-07-30

    The objective of the proposed project is to design, install and optimize a prototype advanced tangential OFA air system on two mass feed stoker boilers that can burn coal, biomass and a mixture of these fuels. The results will be used to develop a generalized methodology for retrofit designs and optimization of advanced OFA air systems. The advanced OFA system will reduce particulate and NOx emissions and improve overall efficiency by reducing carbon in the ash and excess oxygen. The advanced OFA will also provide capabilities for carrying full load and improved load following and transitional operations.

  4. Flow cytometer

    DOE Patents [OSTI]

    van den Engh, Ger

    1995-01-01

    A Faraday cage enclosing the flow chamber of a cytometer and ground planes associated with each field deflection plate in concert therewith inhibit electric fields from varying the charge on designated events/droplets and further concentrates and increases forces applied to a charged event passing therethrough for accurate focus thereof while concomitantly inhibiting a potential shock hazard.

  5. Flow cytometer

    DOE Patents [OSTI]

    Van den Engh, G.

    1995-11-07

    A Faraday cage is described which encloses the flow chamber of a cytometer. Ground planes associated with each field deflection plate inhibit electric fields from varying the charge on designated events/droplets and further concentrates. They also increase forces applied to a passing charged event for accurate focus while concomitantly inhibiting a potential shock hazard. 4 figs.

  6. Experimentally Measured Interfacial Area during Gas Injection into Saturated Porous Media: An Air Sparging Analogy

    SciTech Connect (OSTI)

    Crandall, Dustin; Ahmadi, Goodarz; Smith, Duane H., Bromhal, Grant

    2010-01-01

    The amount of interfacial area (awn) between air and subsurface liquids during air-sparging can limit the rate of site remediation. Lateral movement within porous media could be encountered during air-sparging operations when air moves along the bottom of a low-permeability lens. This study was conducted to directly measure the amount of awn between air and water flowing within a bench-scale porous flow cell during the lateral movement of air along the upper edge of the cell during air injections into an initially water-saturated flow cell. Four different cell orientations were used to evaluate the effect of air injection rates and porous media geometries on the amount of awn between fluids. Air was injected at flow rates that varied by three orders of magnitude, and for each flow cellover this range of injection rates little change in awn was noted. A wider variation in awn was observed when air moved through different regions for the different flow cell orientations. These results are in good agreement with the experimental findings of Waduge et al. (2007), who performed experiments in a larger sand-pack flow cell, and determined that air-sparging efficiency is nearly independent of flow rate but highly dependent on the porous structure. By directly measuring the awn, and showing that awn does not vary greatly with changes in injection rate, we show that the lack of improvement to remediation rates is because there is a weak dependence of the awn on the air injection rate.

  7. Comments on reducing regulatory burden | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    reducing regulatory burden Comments on reducing regulatory burden Comments on reducing regulatory burden from Ingersoll Rand, Residential Solutions, manufacturer of Trane and American Standard residential air conditioners, heat pumps, furnaces, and accessories PDF icon Comments on reducing regulatory burden More Documents & Publications Regulatory Burden RFI [76 FR 75798] Notice of Availability of Preliminary Plan for Retrospective Analysis of Existing Rules 2014-09-18 Issuance: Energy

  8. Determining the Right Air Quality for Your Compressed Air System - Compressed Air Tip Sheet #5

    SciTech Connect (OSTI)

    2004-08-01

    BestPractices Program tip sheet discussing how to determine the right air quality for compressed air systems.

  9. Linear air-fuel sensor development

    SciTech Connect (OSTI)

    Garzon, F.; Miller, C.

    1996-12-14

    The electrochemical zirconia solid electrolyte oxygen sensor, is extensively used for monitoring oxygen concentrations in various fields. They are currently utilized in automobiles to monitor the exhaust gas composition and control the air-to-fuel ratio, thus reducing harmful emission components and improving fuel economy. Zirconia oxygen sensors, are divided into two classes of devices: (1) potentiometric or logarithmic air/fuel sensors; and (2) amperometric or linear air/fuel sensors. The potentiometric sensors are ideally suited to monitor the air-to-fuel ratio close to the complete combustion stoichiometry; a value of about 14.8 to 1 parts by volume. This occurs because the oxygen concentration changes by many orders of magnitude as the air/fuel ratio is varied through the stoichiometric value. However, the potentiometric sensor is not very sensitive to changes in oxygen partial pressure away from the stoichiometric point due to the logarithmic dependence of the output voltage signal on the oxygen partial pressure. It is often advantageous to operate gasoline power piston engines with excess combustion air; this improves fuel economy and reduces hydrocarbon emissions. To maintain stable combustion away from stoichiometry, and enable engines to operate in the excess oxygen (lean burn) region several limiting-current amperometric sensors have been reported. These sensors are based on the electrochemical oxygen ion pumping of a zirconia electrolyte. They typically show reproducible limiting current plateaus with an applied voltage caused by the gas diffusion overpotential at the cathode.

  10. Parametric System Curves: Correlations Between Fan Pressure Rise and Flow for Large Commercial Buildings

    SciTech Connect (OSTI)

    Sherman, Max; Wray, Craig

    2010-05-19

    A substantial fraction of HVAC energy use in large commercial buildings is due to fan operation. Fan energy use depends in part on the relationship between system pressure drop and flow through the fan, which is commonly called a "system curve." As a step toward enabling better selections of air-handling system components and analyses of common energy efficiency measures such as duct static pressure reset and duct leakage sealing, this paper shows that a simple four-parameter physical model can be used to define system curves. Our model depends on the square of the fan flow, as is commonly considered. It also includes terms that account for linear-like flow resistances such as filters and coils, and for supply duct leakage when damper positions are fixed or are changed independently of static pressure or fan flow. Only two parameters are needed for systems with variable-position supply dampers (e.g., VAV box dampers modulating to control flow). For these systems, reducing or eliminating supply duct leakage does not change the system curve. The parametric system curve may be most useful when applied to field data. Non-linear techniques could be used to fit the curve to fan pressure rise and flow measurements over a range of operating conditions. During design, when measurements are unavailable, one could use duct design calculation tools instead to determine the coefficients.

  11. Personal continuous air monitor

    DOE Patents [OSTI]

    Morgan, Ronald G.; Salazar, Samuel A.

    2000-01-01

    A personal continuous air monitor capable of giving immediate warning of the presence of radioactivity has a filter/detector head to be worn in the breathing zone of a user, containing a filter mounted adjacent to radiation detectors, and a preamplifier. The filter/detector head is connected to a belt pack to be worn at the waist or on the back of a user. The belt pack contains a signal processor, batteries, a multichannel analyzer, a logic circuit, and an alarm. An air pump also is provided in the belt pack for pulling air through the filter/detector head by way of an air tube.

  12. Adsorption air conditioner

    DOE Patents [OSTI]

    Rousseau, Jean L. I.

    1979-01-01

    A solar powered air conditioner using the adsorption process is constructed with its components in a nested cylindrical array for compactness and ease of operation.

  13. Equivalence in Ventilation and Indoor Air Quality

    SciTech Connect (OSTI)

    Sherman, Max; Walker, Iain; Logue, Jennifer

    2011-08-01

    We ventilate buildings to provide acceptable indoor air quality (IAQ). Ventilation standards (such as American Society of Heating, Refrigerating, and Air-Conditioning Enginners [ASHRAE] Standard 62) specify minimum ventilation rates without taking into account the impact of those rates on IAQ. Innovative ventilation management is often a desirable element of reducing energy consumption or improving IAQ or comfort. Variable ventilation is one innovative strategy. To use variable ventilation in a way that meets standards, it is necessary to have a method for determining equivalence in terms of either ventilation or indoor air quality. This study develops methods to calculate either equivalent ventilation or equivalent IAQ. We demonstrate that equivalent ventilation can be used as the basis for dynamic ventilation control, reducing peak load and infiltration of outdoor contaminants. We also show that equivalent IAQ could allow some contaminants to exceed current standards if other contaminants are more stringently controlled.

  14. Secondary air injection system and method

    DOE Patents [OSTI]

    Wu, Ko-Jen; Walter, Darrell J.

    2014-08-19

    According to one embodiment of the invention, a secondary air injection system includes a first conduit in fluid communication with at least one first exhaust passage of the internal combustion engine and a second conduit in fluid communication with at least one second exhaust passage of the internal combustion engine, wherein the at least one first and second exhaust passages are in fluid communication with a turbocharger. The system also includes an air supply in fluid communication with the first and second conduits and a flow control device that controls fluid communication between the air supply and the first conduit and the second conduit and thereby controls fluid communication to the first and second exhaust passages of the internal combustion engine.

  15. History of Air Conditioning

    Broader source: Energy.gov [DOE]

    We take it for granted but what would life be like without the air conditioner? Once considered a luxury, this invention is now an essential, allowing us to cool everything from homes, businesses, businesses, data centers, laboratories and other buildings vital to our daily lives. Explore this timeline to learn some of the key dates in the history of air conditioning.

  16. Portable oven air circulator

    DOE Patents [OSTI]

    Jorgensen, Jorgen A.; Nygren, Donald W.

    1983-01-01

    A portable air circulating apparatus for use in cooking ovens which is used to create air currents in the oven which transfer heat to cooking foodstuffs to promote more rapid and more uniform cooking or baking, the apparatus including a motor, fan blade and housing of metallic materials selected from a class of heat resistant materials.

  17. Protective air lock

    DOE Patents [OSTI]

    Evans, Herbert W.

    1976-03-30

    A device suitable for preventing escape and subsequent circulation of toxic gases comprising an enclosure which is sealed by a surrounding air lock, automatic means for partially evacuating said enclosure and said air lock and for ventilating said enclosure and means for disconnecting said enclosure ventilating means, whereby a relatively undisturbed atmosphere is created in said enclosure.

  18. Saving energy and improving IAQ through application of advanced air cleaning technologies

    SciTech Connect (OSTI)

    Fisk, W.J; Destaillats, H.; Sidheswaran, M.A.

    2011-03-01

    In the future, we may be able use air cleaning systems and reduce rates of ventilation (i.e., reduce rates of outdoor air supply) to save energy, with indoor air quality (IAQ) remaining constant or even improved. The opportunity is greatest for commercial buildings because they usually have a narrower range of indoor pollutant sources than homes. This article describes the types of air cleaning systems that will be needed in commercial buildings.

  19. Reducible oxide based catalysts

    DOE Patents [OSTI]

    Thompson, Levi T.; Kim, Chang Hwan; Bej, Shyamal K.

    2010-04-06

    A catalyst is disclosed herein. The catalyst includes a reducible oxide support and at least one noble metal fixed on the reducible oxide support. The noble metal(s) is loaded on the support at a substantially constant temperature and pH.

  20. NREL and California Air Agency to Test Clean Diesel Fuels

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    California Air Agency to Test Clean Diesel Fuels For more information contact: Sarah Holmes Barba, 303-275-3023 email: Sarah Barba Golden, Colo., Oct. 4, 2000 - The U.S. Department of Energy's (DOE) National Renewable Energy Laboratory (NREL) will test Fischer-Tropsch synthetic diesel fuel for California's South Coast Air Quality Management District (SCAQMD) to determine if using the fuel can help reduce air pollution. Fischer-Tropsch fuels can be produced from natural gas, biomass or coal. They

  1. Development of vehicle magnetic air conditioner (VMAC) technology. Final

    Office of Scientific and Technical Information (OSTI)

    report (Technical Report) | SciTech Connect Development of vehicle magnetic air conditioner (VMAC) technology. Final report Citation Details In-Document Search Title: Development of vehicle magnetic air conditioner (VMAC) technology. Final report The objective of Phase I was to explore the feasibility of the development of a new solid state refrigeration technology - magnetic refrigeration - in order to reduce power consumption of a vehicle air conditioner by 30%. The feasibility study was

  2. Membranes for Reverse-Organic Air Separations | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Membranes for Reverse-Organic Air Separations Membranes for Reverse-Organic Air Separations New Membranes Use Reverse Separation to Reduce Pollutant Emissions Many industrial applications need a process to separate pollutants known as volatile organic compounds (VOCs) from air in order to protect the environment and save energy. One such application is the venting of vapor from underground storage tanks (UST) used in gasoline storage and dispensing. These vapors, which can build up and create

  3. Thermal-Hydraulic Analysis of an Experimental Reactor Cavity Cooling System with Air. Part I: Experiments; Part II: Separate Effects Tests and Modeling

    SciTech Connect (OSTI)

    Corradin, Michael; Anderson, M.; Muci, M.; Hassan, Yassin; Dominguez, A.; Tokuhiro, Akira; Hamman, K.

    2014-10-15

    This experimental study investigates the thermal hydraulic behavior and the heat removal performance for a scaled Reactor Cavity Cooling System (RCCS) with air. A quarter-scale RCCS facility was designed and built based on a full-scale General Atomics (GA) RCCS design concept for the Modular High Temperature Gas Reactor (MHTGR). The GA RCCS is a passive cooling system that draws in air to use as the cooling fluid to remove heat radiated from the reactor pressure vessel to the air-cooled riser tubes and discharged the heated air into the atmosphere. Scaling laws were used to preserve key aspects and to maintain similarity. The scaled air RCCS facility at UW-Madison is a quarter-scale reduced length experiment housing six riser ducts that represent a 9.5° sector slice of the full-scale GA air RCCS concept. Radiant heaters were used to simulate the heat radiation from the reactor pressure vessel. The maximum power that can be achieved with the radiant heaters is 40 kW with a peak heat flux of 25 kW per meter squared. The quarter-scale RCCS was run under different heat loading cases and operated successfully. Instabilities were observed in some experiments in which one of the two exhaust ducts experienced a flow reversal for a period of time. The data and analysis presented show that the RCCS has promising potential to be a decay heat removal system during an accident scenario.

  4. Volatile organic compound and particulate emission studies of AF (Air Force) paint-booth facilities. Phase 1. Final report, February-December 1987

    SciTech Connect (OSTI)

    Ayer, J.; Wolbach, D.

    1988-07-01

    This study presents the results of volatile organic compound (VOC) and particulate emission surveys performed at three Air Force painting facilities. The three facilities -- one in McClellan AFB buildings 655 and two at Travis AFB in buildings 550 and 1014 -- did not meet local VOC emission standards. The possibility of reducing these emissions with recirculation modifications and various VOC reduction and control strategies is discussed. Although VOC emissions from paint spray booths can be controlled by add-on control systems, control is expensive for present air flow rates. The use of air recirculation within the spray booth can reduce the cost of VOC emission controls by reducing the quantity of air that requires processing. Recirculation systems were designed for two of the painting facilities included in this study. In designing the systems, various criteria such as paint booth VOC concentrations and health and safety standards were considered. Add-on VOC emission-control systems that can be used in conjunction with the recirculation system are evaluated. The devices of interest are a solvent incineration system and an activated-carbon adsorption bed. The VOC removal efficiency, initial capital investment and operating costs for both of these technologies are discussed.

  5. Modeling of coupled thermodynamic and geomechanical performance of underground compressed air energy storage (CAES) in lined rock caverns

    SciTech Connect (OSTI)

    Rutqvist, J.; Kim, H. -M.; Ryu, D. -W.; Synn, J. -H.; Song, W. -K.

    2012-02-01

    We applied coupled nonisothermal, multiphase fluid flow and geomechanical numerical modeling to study the coupled thermodynamic and geomechanical performance of underground compressed air energy storage (CAES) in concrete-lined rock caverns. The paper focuses on CAES in lined caverns at relatively shallow depth (e.g., 100 m depth) in which a typical CAES operational pressure of 5 to 8 MPa is significantly higher than both ambient fluid pressure and in situ stress. We simulated a storage operation that included cyclic compression and decompression of air in the cavern, and investigated how pressure, temperature and stress evolve over several months of operation. We analyzed two different lining options, both with a 50 cm thick low permeability concrete lining, but in one case with an internal synthetic seal such as steel or rubber. For our simulated CAES system, the thermodynamic analysis showed that 96.7% of the energy injected during compression could be recovered during subsequent decompression, while 3.3% of the energy was lost by heat conduction to the surrounding media. Our geomechanical analysis showed that tensile effective stresses as high as 8 MPa could develop in the lining as a result of the air pressure exerted on the inner surface of the lining, whereas thermal stresses were relatively smaller and compressive. With the option of an internal synthetic seal, the maximum effective tensile stress was reduced from 8 to 5 MPa, but was still in substantial tension. We performed one simulation in which the tensile tangential stresses resulted in radial cracks and air leakage though the lining. This air leakage, however, was minor (about 0.16% of the air mass loss from one daily compression) in terms of CAES operational efficiency, and did not significantly impact the overall energy balance of the system. However, despite being minor in terms of energy balance, the air leakage resulted in a distinct pressure increase in the surrounding rock that could be quickly detected using pressure monitoring outside the concrete lining.

  6. Renewables and air quality

    SciTech Connect (OSTI)

    Wooley, D.R.

    2000-08-01

    The US heavy reliance on fossil fuels is a central obstacle to improving air quality and preventing catastrophic climate change. To solve this problem will require a combination of financial incentives and market rules that strongly encourage development of renewable energy resources to meet electric power demand. One promising policy option is to allow renewable energy resources to directly participate in air pollution emission trading mechanisms. Currently, the clean air benefits of renewable energy generally go unrecognized by regulators, under-appreciated by consumers and uncompensated by markets. Renewable energy is a key clean air alternative to conventional electricity generation, and the development of renewables could be stimulated by changes to the Clean Air Act's emissions trading programs. As Congress revisits clean air issues over the next several years, renewable energy representatives could push for statutory changes that reward the renewable energy industry for the air quality benefits it provides. By also becoming involved in key US Environmental Protection Agency (EPA) and state rule-making cases, the renewables industry could influence the structure of emissions trading programs and strengthen one of the most persuasive arguments for wind, solar and biomass energy development.

  7. Air Sample Conditioner Helps the Waste Treatment Plant Meet Emissions Standards

    SciTech Connect (OSTI)

    Glissmeyer, John A.; Flaherty, Julia E.; Pekour, Mikhail S.

    2014-12-02

    The air in three of the Hanford Site Waste Treatment and Immobilization Plant (WTP) melter off-gas discharge stacks will be hot and humid after passing through the train of emission abatement equipment. The off-gas temperature and humidity levels will be incompatible with the airborne emissions monitoring equipment required for this type of stack. To facilitate sampling from these facilities, an air sample conditioner system will be installed to introduce cool, dry air into the sample stream to reduce the temperature and dew point. This will avoid thermal damage to the instrumentation and problematic condensation. The complete sample transport system must also deliver at least 50% of the particles in the sample airstream to the sample collection and on-line analysis equipment. The primary components of the sample conditioning system were tested in a laboratory setting. The sample conditioner itself is based on a commercially-available porous tube filter design. It consists of a porous sintered metal tube inside a coaxial metal jacket. The hot gas sample stream passes axially through the porous tube, and the dry, cool air is injected into the jacket and through the porous wall of the inner tube, creating an effective sample diluter. The dilution and sample air mix along the entire length of the porous tube, thereby simultaneously reducing the dew point and temperature of the mixed sample stream. Furthermore, because the dilution air enters through the porous tube wall, the sample stream does not come in contact with the porous wall and particle deposition is reduced in this part of the sampling system. Tests were performed with an environmental chamber to supply air with the temperature and humidity needed to simulate the off-gas conditions. Air from the chamber was passed through the conditioning system to test its ability to reduce the temperature and dew point of the sample stream. To measure particle deposition, oil droplets in the range of 9 to 11 micrometer aerodynamic diameter were injected into the environmental chamber and drawn through the conditioning system, which included a filter to capture droplets that passed through the conditioner. The droplets were tagged with a fluorescent dye which allowed quantification of droplet deposition on each component of the system. The tests demonstrated the required reductions in temperature and moisture, with no condensation forming when heat tracing was added on the upstream end of the sample conditioner. Additionally, tests indicated that the system, operating at several flow rates and in both vertical and horizontal orientations, delivers nearly all of the sampled particles for analysis. Typical aerosol penetration values were between 98 and 99%. PNNL, Bechtel National Inc., and the instrument vendor are working to implement the sample conditioner into the air monitoring systems used for the melter off-gas exhaust streams. Similar technology may be useful for processes in other facilities with air exhaust streams with elevated temperature and/or humidity.

  8. Air Shower Simulations

    SciTech Connect (OSTI)

    Alania, Marco; Gomez, Adolfo V. Chamorro; Araya, Ignacio J.; Huerta, Humberto Martinez; Flores, Alejandra Parra; Knapp, Johannes

    2009-04-30

    Air shower simulations are a vital part of the design of air shower experiments and the analysis of their data. We describe the basic features of air showers and explain why numerical simulations are the appropriate approach to model the shower simulation. The CORSIKA program, the standard simulation program in this field, is introduced and its features, performance and limitations are discussed. The basic principles of hadronic interaction models and some gerneral simulation techniques are explained. Also a brief introduction to the installation and use of CORSIKA is given.

  9. Air heating system

    DOE Patents [OSTI]

    Primeau, John J.

    1983-03-01

    A self-starting, fuel-fired, air heating system including a vapor generator, a turbine, and a condenser connected in a closed circuit such that the vapor output from the vapor generator is conducted to the turbine and then to the condenser where it is condensed for return to the vapor generator. The turbine drives an air blower which passes air over the condenser for cooling the condenser. Also, a condensate pump is driven by the turbine. The disclosure is particularly concerned with the provision of heat exchanger and circuitry for cooling the condensed fluid output from the pump prior to its return to the vapor generator.

  10. Reduced shear power spectrum

    SciTech Connect (OSTI)

    Dodelson, Scott; /Fermilab /Chicago U., Astron. Astrophys. Ctr. /Northwestern U.; Shapiro, Charles; /Chicago U. /KICP, Chicago; White, Martin J.; /UC, Berkeley, Astron.

    2005-08-01

    Measurements of ellipticities of background galaxies are sensitive to the reduced shear, the cosmic shear divided by (1-{kappa}) where {kappa} is the projected density field. They compute the difference between shear and reduced shear both analytically and with simulations. The difference becomes more important an smaller scales, and will impact cosmological parameter estimation from upcoming experiments. A simple recipe is presented to carry out the required correction.

  11. Recent Progress in Retrieving Air Temperature Profiles and Air...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Recent Progress in Retrieving Air Temperature Profiles and Air-Sea Temperature Differences from Infrared and Microwave Scanning Radiometer Data D. Cimini University of L'Aquila ...

  12. Building America Case Study: Air Leakage and Air Transfer Between...

    Energy Savers [EERE]

    Air Leakage and Air Transfer Between Garage and Living Space Waldorf, Maryland PROJECT INFORMATION Project Name: Ventilation Effectiveness Location: Waldorf, MD Partners: Building ...

  13. Comprehensive air monitoring plan: general monitoring report

    SciTech Connect (OSTI)

    Not Available

    1980-03-31

    Recommendations are provided for general monitoring of hydrogen sulfide (H/sub 2/S) in ambient air in parts of Colusa, Lake, Mendocino, Napa, and Sonoma counties potentially impacted by emissions from geothermal development projects in the Geysers-Calistoga Known Geothermal Resource Area. Recommendations for types, placement, performance guidelines, and criteria and procedure for triggering establishment and termination of CAMP monitoring equipment were determined after examination of four factors: population location; emission sources; meteorological considerations; and data needs of permitting agencies and applicants. Three alternate financial plans were developed. Locations and equipment for immediate installation are recommended for: two air quality stations in communities where the State ambient air quality standard for H/sub 2/S has been exceeded; three air quality trend stations to monitor progress in reduction of H/sub 2/S emissions; two meteorological observation stations to monitor synoptic wind flow over the area; and one acoustic radar and one rawinsonde station to monitor air inversions which limit the depth of the mixing layer.

  14. Evaluation of Air Mixing and Thermal Comfort From High Sidewall Supply Air Jets

    SciTech Connect (OSTI)

    Ridouane, El Hassan

    2011-09-01

    Uniform mixing of conditioned air with room air is an essential factor for providing comfort in homes. The objective of the study outlined in this report is to resolve the issue that the flow rates that are required to meet the small remaining thermal loads are not large enough to maintain uniform mixing in the space.and maintain uniform temperatures within future homes. The results provide information to guide the selection of high sidewall supply diffusers to maintain proper room mixing for heating and cooling of high performance homes.

  15. Environmental continuous air monitor for ambient transuranic particulates

    SciTech Connect (OSTI)

    Rodgers, J.C.; Moore, M.E. [Los Alamos National Lab., NM (United States)

    1995-12-31

    We have constructed a working prototype of an environmental continuous air monitor (ECAM) for outdoor applications. The ECAM device is designed to continuously monitor the presence of transuranic contaminant aerosol below a size of 10 mm aerodynamic diameter. In remote operation, the ECAM can transmit radiological and meteorological data to a central processing location, where we have implemented geographical mapping and GPS capabilities into an integrated software package. The Canberra Alpha Sentry Monitor, a commercially available continuous air monitor (CAM) for indoor room applications, was used as the basic building block for the prototype. We increased the sample air flow to 4 cubic feet per minute (CFM) compared to the design air flow rate of 2 CFM. We also added a spread-spectrum radio data link between the CAM RS-232 serial port and a distant radio receiver that enables remote monitoring. In order to avoid collecting the large diameter particle fraction containing most of the inert mass that causes sample burial and alpha spectrum degradation, a Model 254 PM10 size-fractionating Wet from Graseby-Andersen was fitted to the Alpha Sentry Monitor. We removed the top cover of the CAM unit, and routed openings in the top surface of the CAM inlet. This allows air to flow into the inlet, down a collection tube, and then vertically into the CAM without the elbow and horizontal transition piece of the present in-line adapter. The air flows through a 47 mm filter, and the transuranic contamination is counted by a solid state alpha radiation detector, which is placed at a distance of 5 mm above the filter. The increased air flow significantly improves CAM alarm sensitivity and response time to an estimated level of 3.8x10-12 mCi/ml for an integration period 30 minutes. At the same time, the fractionating inlet removes a substantial amount of inert dust and thus enables extended monitoring without frequent maintenance.

  16. Laboratory Evaluation of Air Flow Measurement Methods for Residential...

    Office of Scientific and Technical Information (OSTI)

    Close Cite: Bibtex Format Close 0 pages in this document matching the terms "" Search For Terms: Enter terms in the toolbar above to search the full text of this document for ...

  17. Laboratory Evaluation of Air Flow Measurement Methods for Residential...

    Office of Scientific and Technical Information (OSTI)

    ... for Petroleum and Energy Research, Bartlesville, OK (United ... for Science and Education (ORISE), Oak Ridge, TN ... Country of Publication: United States Language: English ...

  18. Laboratory Evaluation of Air Flow Measurement Methods for Residential HVAC

    Office of Scientific and Technical Information (OSTI)

    Returns for New Instrument Standards (Technical Report) | SciTech Connect Name Name ORCID Search Authors Type: All Book/Monograph Conference/Event Journal Article Miscellaneous Patent Program Document Software Manual Technical Report Thesis/Dissertation Subject: Identifier Numbers: Site: All Alaska Power Administration, Juneau, Alaska (United States) Albany Research Center (ARC), Albany, OR (United States) Albuquerque Complex - NNSA Albuquerque Operations Office, Albuquerque, NM (United

  19. Technology Solutions Case Study: Air Leakage and Air Transfer Between Garage and Living Space, Waldorf, Maryland

    SciTech Connect (OSTI)

    2014-11-01

    In this project, Building Science Corporation worked with production homebuilder K. Hovnanian to evaluate air transfer between the garage and living space in a single-family detached home constructed by a production homebuilder in compliance with the 2009 International Residential Code and the 2009 International Energy Conservation Code. The project gathered important information about the performance of whole-building ventilation systems and garage ventilation systems as they relate to minimizing flow of contaminated air from garage to living space. A series of 25 multipoint fan pressurization tests and additional zone pressure diagnostic testing measured the garage and house air leakage, the garage-to-house air leakage, and garage and house pressure relationships to each other and to outdoors using automated fan pressurization and pressure monitoring techniques. While the relative characteristics of this house may not represent the entire population of new construction configurations and air tightness levels (house and garage) throughout the country, the technical approach was conservative and should reasonably extend the usefulness of the results to a large spectrum of house configurations from this set of parametric tests in this one house. Based on the results of this testing, the two-step garage-to-house air leakage test protocol described above is recommended where whole-house exhaust ventilation is employed. For houses employing whole-house supply ventilation (positive pressure) or balanced ventilation (same pressure effect as the baseline condition), adherence to the EPA Indoor airPLUS house-to-garage air sealing requirements should be sufficient to expect little to no garage-to-house air transfer.

  20. Guide to Air Sealing

    SciTech Connect (OSTI)

    2011-02-01

    Air sealing is one of the most cost-effective ways to improve the comfort and energy efficiency of your home. Hire a certified professional contractor for best results.

  1. Air bag restraint device

    DOE Patents [OSTI]

    Marts, Donna J.; Richardson, John G.

    1995-01-01

    A rear-seat air bag restraint device is disclosed that prevents an individual, or individuals, from continuing violent actions while being transported in a patrol vehicle's rear seat without requiring immediate physical contact by the law enforcement officer. The air bag is activated by a control switch in the front seat and inflates to independently restrict the amount of physical activity occurring in the rear seat of the vehicle while allowing the officer to safely stop the vehicle. The air bag can also provide the officer additional time to get backup personnel to aid him if the situation warrants it. The bag is inflated and maintains a constant pressure by an air pump.

  2. Air bag restraint device

    DOE Patents [OSTI]

    Marts, D.J.; Richardson, J.G.

    1995-10-17

    A rear-seat air bag restraint device is disclosed that prevents an individual, or individuals, from continuing violent actions while being transported in a patrol vehicle`s rear seat without requiring immediate physical contact by the law enforcement officer. The air bag is activated by a control switch in the front seat and inflates to independently restrict the amount of physical activity occurring in the rear seat of the vehicle while allowing the officer to safely stop the vehicle. The air bag can also provide the officer additional time to get backup personnel to aid him if the situation warrants it. The bag is inflated and maintains a constant pressure by an air pump. 8 figs.

  3. Air Sealing Windows

    SciTech Connect (OSTI)

    2009-05-14

    This information sheet addresses windows and may also be applied to doors and other pre-assembled elements installed in building enclosures that also perform an air barrier function.

  4. Compressed Air Systems

    Broader source: Energy.gov [DOE]

    There are incentives for variable frequency drive screw compressors (10-40 HP), air receivers/tanks for load/no-load compressors, cycling refrigerated dryers (up to 200 CFM capacity), no-loss...

  5. Breathing zone air sampler

    DOE Patents [OSTI]

    Tobin, John

    1989-01-01

    A sampling apparatus is provided which comprises a sampler for sampling air in the breathing zone of a wearer of the apparatus and a support for the sampler preferably in the form of a pair of eyeglasses. The sampler comprises a sampling assembly supported on the frame of the eyeglasses and including a pair of sample transport tubes which are suspended, in use, centrally of the frame so as to be disposed on opposite sides of the nose of the wearer and which each include an inlet therein that, in use, is disposed adjacent to a respective nostril of the nose of the wearer. A filter holder connected to sample transport tubes supports a removable filter for filtering out particulate material in the air sampled by the apparatus. The sample apparatus is connected to a pump for drawing air into the apparatus through the tube inlets so that the air passes through the filter.

  6. Reducing current reversal time in electric motor control

    DOE Patents [OSTI]

    Bredemann, Michael V

    2014-11-04

    The time required to reverse current flow in an electric motor is reduced by exploiting inductive current that persists in the motor when power is temporarily removed. Energy associated with this inductive current is used to initiate reverse current flow in the motor.

  7. Air Products & Chemicals, Inc.

    Office of Energy Efficiency and Renewable Energy (EERE)

    Air Products is partnering with Denbury Green Pipeline – Texas, LLC to capture and sequester one million tons of carbon dioxide per year from two existing steam-methane reformers at Air Products’ hydrogen-production facility in Port Arthur, Texas. The captured CO2 is transported by pipeline to oil fields in eastern Texas for enhanced oil recovery. The total award value of the project is $431 million, with $284 million comprising DOE’s 66 percent share.

  8. Using Wireless Technology to Reduce Facility Energy Usage | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Wireless Technology to Reduce Facility Energy Usage Using Wireless Technology to Reduce Facility Energy Usage This presentation details the U.S. Department of Energy's TEAM initiative's wireless technologies and their applications. PDF icon Using Wireless Technology to Reduce Facility Energy Usage (December 4, 2009) More Documents & Publications New and Emerging Technologies Figure 1: Chamber experiment to study impact of air movement on thermal comfort using personally controlled

  9. Solar-Powered Air Stripping at the Rocky Flats Site, Colorado - 12361

    SciTech Connect (OSTI)

    Boylan, John A.

    2012-07-01

    The U.S. Department of Energy's Rocky Flats Site (the Site), near Denver, Colorado, is a former nuclear weapons facility that was constructed beginning in 1951. With the end of the Cold War, the Site was cleaned up and closed in 2005. Four gravity-driven groundwater treatment systems were installed during cleanup, and their continued operation was incorporated into the final remedy for the Site. All utilities, including electrical power, were removed as part of this closure, so all Site electrical power needs are now met with small solar-powered systems. The Mound Site Plume Treatment System (MSPTS) was installed in 1998 as an innovative system based on zero-valent iron (ZVI). Groundwater flow from the Mound source area containing elevated concentrations of volatile organic compounds (VOCs), primarily in the tetrachloroethene (PCE)-trichloroethene (TCE) family of chlorinated solvents, is intercepted by a collection trench and routed to twin ZVI treatment cells. Later, in 2005, remediation of VOC-contaminated soils at a second up-gradient source area included adding an electron donor to the backfill to help stimulate biodegradation. This reduced concentrations of primary constituents but caused down-gradient groundwater to contain elevated levels of recalcitrant degradation byproducts, particularly cis-1,2-dichloroethene and vinyl chloride. A gravel drain installed as part of the 2005 remediation directs contaminated groundwater from this second source area to the MSPTS for treatment. This additional contaminant load, coupled with correspondingly reduced residence time within the ZVI media due to the increased flow rate, resulted in reduced treatment effectiveness. Elevated concentrations of VOCs were then detected in MSPTS effluent, as well as in surface water at the downstream performance monitoring location for the MSPTS. Subsequent consultations with the Site regulators led to the decision to add a polishing component to reduce residual VOCs in MSPTS effluent. Initially, several alternatives such as commercial air strippers and cascade aerators were evaluated; resulting cost estimates exceeded $100,000. After several simpler alternatives were considered and prototype testing was conducted, the existing effluent metering manhole was converted to house a spray-nozzle based, solar-powered air stripper, at a cost of approximately $20,000. About two-thirds of this cost was for the solar power system, which was initially designed to only provide power for 12 hours per day. Performance data are being collected and adjustments made to optimize the design, determine maintenance requirements, and establish power needs for continuous operation. Analytical data confirm the air stripper is sharply reducing concentrations of residual contaminants. (authors)

  10. Air Quality | Open Energy Information

    Open Energy Info (EERE)

    Air Quality Jump to: navigation, search Retrieved from "http:en.openei.orgwindex.php?titleAirQuality&oldid612070" Feedback Contact needs updating Image needs updating...

  11. ARM - Lesson Plans: Air Pressure

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Teachers' Toolbox Lesson Plans Lesson Plans: Air Pressure Objective The objective of this ... Important Points to Understand Air has weight and exerts pressure on everything with which ...

  12. Particle impactor assembly for size selective high volume air sampler

    DOE Patents [OSTI]

    Langer, Gerhard

    1988-08-16

    Air containing entrained particulate matter is directed through a plurality of parallel, narrow, vertically oriented impactor slots of an inlet element toward an adjacently located, relatively large, dust impaction surface preferably covered with an adhesive material. The air flow turns over the impaction surface, leaving behind the relatively larger particles according to the human thoracic separation system and passes through two elongate exhaust apertures defining the outer bounds of the impaction collection surface to pass through divergent passages which slow down and distribute the air flow, with entrained smaller particles, over a fine filter element that separates the fine particles from the air. The elongate exhaust apertures defining the impaction collection surface are spaced apart by a distance greater than the lengths of elongate impactor slots in the inlet element and are oriented to be normal thereto. By appropriate selection of dimensions and the number of impactor slots air flow through the inlet element is provided a nonuniform velocity distribution with the lower velocities being obtained near the center of the impactor slots, in order to separate out particles larger than a certain predetermined size on the impaction collection surface. The impaction collection surface, even in a moderately sized apparatus, is thus relatively large and permits the prolonged sampling of air for periods extending to four weeks.

  13. Turbine blade tip flow discouragers

    DOE Patents [OSTI]

    Bunker, Ronald Scott

    2000-01-01

    A turbine assembly comprises a plurality of rotating blade portions in a spaced relation with a stationery shroud. The rotating blade portions comprise a root section, a tip portion and an airfoil. The tip portion has a pressure side wall and a suction side wall. A number of flow discouragers are disposed on the blade tip portion. In one embodiment, the flow discouragers extend circumferentially from the pressure side wall to the suction side wall so as to be aligned generally parallel to the direction of rotation. In an alternative embodiment, the flow discouragers extend circumferentially from the pressure side wall to the suction side wall so as to be aligned at an angle in the range between about 0.degree. to about 60.degree. with respect to a reference axis aligned generally parallel to the direction of rotation. The flow discouragers increase the flow resistance and thus reduce the flow of hot gas flow leakage for a given pressure differential across the blade tip portion so as to improve overall turbine efficiency.

  14. System and method for conditioning intake air to an internal combustion engine

    SciTech Connect (OSTI)

    Sellnau, Mark C.

    2015-08-04

    A system for conditioning the intake air to an internal combustion engine includes a means to boost the pressure of the intake air to the engine and a liquid cooled charge air cooler disposed between the output of the boost means and the charge air intake of the engine. Valves in the coolant system can be actuated so as to define a first configuration in which engine cooling is performed by coolant circulating in a first coolant loop at one temperature, and charge air cooling is performed by coolant flowing in a second coolant loop at a lower temperature. The valves can be actuated so as to define a second configuration in which coolant that has flowed through the engine can be routed through the charge air cooler. The temperature of intake air to the engine can be controlled over a wide range of engine operation.

  15. 2013 R&D 100 Award: DNATrax could revolutionize air quality detection and tracking

    SciTech Connect (OSTI)

    Farquar, George

    2014-04-03

    A team of LLNL scientists and engineers has developed a safe and versatile material, known as DNA Tagged Reagents for Aerosol Experiments (DNATrax), that can be used to reliably and rapidly diagnose airflow patterns and problems in both indoor and outdoor venues. Until DNATrax particles were developed, no rapid or safe way existed to validate air transport models with realistic particles in the range of 1-10 microns. Successful DNATrax testing was conducted at the Pentagon in November 2012 in conjunction with the Pentagon Force Protection Agency. This study enhanced the team's understanding of indoor ventilation environments created by heating, ventilation and air conditioning (HVAC) systems. DNATrax are particles comprised of sugar and synthetic DNA that serve as a bar code for the particle. The potential for creating unique bar-coded particles is virtually unlimited, thus allowing for simultaneous and repeated releases, which dramatically reduces the costs associated with conducting tests for contaminants. Among the applications for the new material are indoor air quality detection, for homes, offices, ships and airplanes; urban particulate tracking, for subway stations, train stations, and convention centers; environmental release tracking; and oil and gas uses, including fracking, to better track fluid flow.

  16. 2013 R&D 100 Award: DNATrax could revolutionize air quality detection and tracking

    ScienceCinema (OSTI)

    Farquar, George

    2014-07-22

    A team of LLNL scientists and engineers has developed a safe and versatile material, known as DNA Tagged Reagents for Aerosol Experiments (DNATrax), that can be used to reliably and rapidly diagnose airflow patterns and problems in both indoor and outdoor venues. Until DNATrax particles were developed, no rapid or safe way existed to validate air transport models with realistic particles in the range of 1-10 microns. Successful DNATrax testing was conducted at the Pentagon in November 2012 in conjunction with the Pentagon Force Protection Agency. This study enhanced the team's understanding of indoor ventilation environments created by heating, ventilation and air conditioning (HVAC) systems. DNATrax are particles comprised of sugar and synthetic DNA that serve as a bar code for the particle. The potential for creating unique bar-coded particles is virtually unlimited, thus allowing for simultaneous and repeated releases, which dramatically reduces the costs associated with conducting tests for contaminants. Among the applications for the new material are indoor air quality detection, for homes, offices, ships and airplanes; urban particulate tracking, for subway stations, train stations, and convention centers; environmental release tracking; and oil and gas uses, including fracking, to better track fluid flow.

  17. Breakthrough Flow Battery Cell Stack: Transformative Electrochemical Flow Storage System (TEFSS)

    SciTech Connect (OSTI)

    2010-09-09

    GRIDS Project: UTRC is developing a flow battery with a unique design that provides significantly more power than today's flow battery systems. A flow battery is a cross between a traditional battery and a fuel cell. Flow batteries store their energy in external tanks instead of inside the cell itself. Flow batteries have traditionally been expensive because the battery cell stack, where the chemical reaction takes place, is costly. In this project, UTRC is developing a new stack design that achieves 10 times higher power than today’s flow batteries. This high power output means the size of the cell stack can be smaller, reducing the amount of expensive materials that are needed. UTRC’s flow battery will reduce the cost of storing electricity for the electric grid, making widespread use feasible.

  18. International Symposium on Air Breathing Engines, 8th, Cincinnati, OH, June 14-19, 1987, Proceedings

    SciTech Connect (OSTI)

    Billig, F.S.

    1987-01-01

    The present conference on air-breathing aircraft engine technology considers topics in inlet design, radial-flow turbomachinery, fuel injection and combustion systems, axial flow compressor design and performance, ramjet configurations, turbine flow phenomena, engine control and service life, fluid flow-related problems, engine diagnostic methods, propfan design, combustor performance and pollutant chemistry, combustion dynamics, and engine system analysis. Attention is given to thrust-vectoring systems, supersonic missile air intakes, three-dimensional centrifugal compressors, airblast atomizers, secondary flows in axial flow compressors, axial compressor blade tip clearance flows, hydrogen scramjets with sidewall injection, the performance of a variable-geometry turbine, advanced tip clearance control systems, rotary jet mixing, fan blade aeroelastic behavior, flow dynamics in combustion processes, and the technology of low cost turbomachinery.

  19. Performance of a double pass solar air collector

    SciTech Connect (OSTI)

    Ramani, B.M.; Gupta, Akhilesh; Kumar, Ravi

    2010-11-15

    Double pass counter flow solar air collector with porous material in the second air passage is one of the important and attractive design improvement that has been proposed to improve the thermal performance. This paper presents theoretical and experimental analysis of double pass solar air collector with and without porous material. A mathematical model has been developed based on volumetric heat transfer coefficient. Effects of various parameters on the thermal performance and pressure drop characteristics have been discussed. Comparison of results reveals that the thermal efficiency of double pass solar air collector with porous absorbing material is 20-25% and 30-35% higher than that of double pass solar air collector without porous absorbing material and single pass collector respectively. (author)

  20. Thermal efficiency of single-pass solar air collector

    SciTech Connect (OSTI)

    Ibrahim, Zamry; Ibarahim, Zahari; Yatim, Baharudin; Ruslan, Mohd Hafidz

    2013-11-27

    Efficiency of a finned single-pass solar air collector was studied. This paper presents the experimental study to investigate the effect of solar radiation and mass flow rate on efficiency. The fins attached at the back of absorbing plate to improve the thermal efficiency of the system. The results show that the efficiency is increased proportional to solar radiation and mass flow rate. Efficiency of the collector archived steady state when reach to certain value or can be said the maximum performance.

  1. Flow Integrating Section for a Gas Turbine Engine in Which Turbine Blades are Cooled by Full Compressor Flow

    SciTech Connect (OSTI)

    Steward, W. Gene

    1999-11-14

    Routing of full compressor flow through hollow turbine blades achieves unusually effective blade cooling and allows a significant increase in turbine inlet gas temperature and, hence, engine efficiency. The invention, ''flow integrating section'' alleviates the turbine dissipation of kinetic energy of air jets leaving the hollow blades as they enter the compressor diffuser.

  2. High strength air-dried aerogels

    DOE Patents [OSTI]

    Coronado, Paul R.; Satcher, Jr., Joe H.

    2012-11-06

    A method for the preparation of high strength air-dried organic aerogels. The method involves the sol-gel polymerization of organic gel precursors, such as resorcinol with formaldehyde (RF) in aqueous solvents with R/C ratios greater than about 1000 and R/F ratios less than about 1:2.1. Using a procedure analogous to the preparation of resorcinol-formaldehyde (RF) aerogels, this approach generates wet gels that can be air dried at ambient temperatures and pressures. The method significantly reduces the time and/or energy required to produce a dried aerogel compared to conventional methods using either supercritical solvent extraction. The air dried gel exhibits typically less than 5% shrinkage.

  3. Environmental continuous air monitor inlet with combined preseparator and virtual impactor

    DOE Patents [OSTI]

    Rodgers, John C.

    2007-06-19

    An inlet for an environmental air monitor is described wherein a pre-separator interfaces with ambient environment air and removes debris and insects commonly associated with high wind outdoors and a deflector plate in communication with incoming air from the pre-separator stage, that directs the air radially and downward uniformly into a plurality of accelerator jets located in a manifold of a virtual impactor, the manifold being cylindrical and having a top, a base, and a wall, with the plurality of accelerator jets being located in the top of the manifold and receiving the directed air and accelerating directed air, thereby creating jets of air penetrating into the manifold, where a major flow is deflected to the walls of the manifold and extracted through ports in the walls. A plurality of receiver nozzles are located in the base of the manifold coaxial with the accelerator jets, and a plurality of matching flow restrictor elements are located in the plurality of receiver nozzles for balancing and equalizing the total minor flow among all the plurality of receiver nozzles, through which a lower, fractional flow extracts large particle constituents of the air for collection on a sample filter after passing through the plurality of receiver nozzles and the plurality of matching flow restrictor elements.

  4. AIR COOLED NEUTRONIC REACTOR

    DOE Patents [OSTI]

    Fermi, E.; Szilard, L.

    1958-05-27

    A nuclear reactor of the air-cooled, graphite moderated type is described. The active core consists of a cubicle mass of graphite, approximately 25 feet in each dimension, having horizontal channels of square cross section extending between two of the opposite faces, a plurality of cylindrical uranium slugs disposed in end to end abutting relationship within said channels providing a space in the channels through which air may be circulated, and a cadmium control rod extending within a channel provided in the moderator. Suitable shielding is provlded around the core, as are also provided a fuel element loading and discharge means, and a means to circulate air through the coolant channels through the fuel charels to cool the reactor.

  5. Zonal flow dynamics in the double tearing mode with antisymmetric shear flows

    SciTech Connect (OSTI)

    Mao, Aohua [School of Physics and Optoelectronic Technology, Dalian University of Technology, Dalian 116024 (China) [School of Physics and Optoelectronic Technology, Dalian University of Technology, Dalian 116024 (China); Graduate School of Energy Science, Kyoto University, Uji, Kyoto 6110011 (Japan); Li, Jiquan, E-mail: lijq@energy.kyoto-u.ac.jp [Graduate School of Energy Science, Kyoto University, Uji, Kyoto 6110011 (Japan)] [Graduate School of Energy Science, Kyoto University, Uji, Kyoto 6110011 (Japan); Liu, Jinyuan, E-mail: jyliu@dlut.edu.cn [School of Physics and Optoelectronic Technology, Dalian University of Technology, Dalian 116024 (China)] [School of Physics and Optoelectronic Technology, Dalian University of Technology, Dalian 116024 (China); Kishimoto, Yasuaki [Graduate School of Energy Science, Kyoto University, Uji, Kyoto 6110011 (Japan) [Graduate School of Energy Science, Kyoto University, Uji, Kyoto 6110011 (Japan); Institude of Advanced Energy, Kyoto University, Uji, Kyoto 6110011 (Japan)

    2014-05-15

    The generation dynamics and the structural characteristics of zonal flows are investigated in the double tearing mode (DTM) with antisymmetric shear flows. Two kinds of zonal flow oscillations are revealed based on reduced resistive magnetohydrodynamics simulations, which depend on the shear flow amplitudes corresponding to different DTM eigen mode states, elaborated by Mao et al. [Phys. Plasmas 20, 022114 (2013)]. For the weak shear flows below an amplitude threshold, v{sub c}, at which two DTM eigen states with antisymmetric or symmetric magnetic island structure are degenerated, the zonal flows grow oscillatorily in the Rutherford regime during the nonlinear evolution of the DTMs. It is identified that the oscillation mechanism results from the nonlinear interaction between the distorted islands and the zonal flows through the modification of shear flows. However, for the medium shear flows above v{sub c} but below the critical threshold of the Kelvin-Helmholtz instability, an oscillatory growing zonal flow occurs in the linear phase of the DTM evolution. It is demonstrated that the zonal flow oscillation originates from the three-wave mode coupling or a modulation instability pumped by two DTM eigen modes with the same frequency but opposite propagating direction. With the shear flows increasing, the amplitude of zonal flow oscillation increases first and then decreases, whilst the oscillation frequency as twice of the Doppler frequency shift increases. Furthermore, impacts of the oscillatory zonal flows on the nonlinear evolution of DTM islands and the global reconnection are also discussed briefly.

  6. Energy Savings with Acceptable Indoor Air Quality Through Improved Air Flow Control in Residential Retrofit

    Broader source: Energy.gov [DOE]

    Lead Performer: Gas Technology Institute—Des Plaines, IL Partners: -- University of Illinois, Urbana IL -- Midwest Energy Efficiency Alliance, Chicago IL

  7. Naval electrochemical corrosion reducer

    DOE Patents [OSTI]

    Clark, Howard L.

    1991-10-01

    A corrosion reducer for use with ships having a hull, a propeller mounted a propeller shaft and extending through the hull, bearings supporting the shaft, at least one thrust bearing and one seal. The improvement includes a current collector and a current reduction assembly for reducing the voltage between the hull and shaft in order to reduce corrosion due to electrolytic action. The current reduction assembly includes an electrical contact, the current collector, and the hull. The current reduction assembly further includes a device for sensing and measuring the voltage between the hull and the shaft and a device for applying a reverse voltage between the hull and the shaft so that the resulting voltage differential is from 0 to 0.05 volts. The current reduction assembly further includes a differential amplifier having a voltage differential between the hull and the shaft. The current reduction assembly further includes an amplifier and a power output circuit receiving signals from the differential amplifier and being supplied by at least one current supply. The current selector includes a brush assembly in contact with a slip ring over the shaft so that its potential may be applied to the differential amplifier.

  8. Low volume flow meter

    DOE Patents [OSTI]

    Meixler, Lewis D.

    1993-01-01

    The low flow monitor provides a means for determining if a fluid flow meets a minimum threshold level of flow. The low flow monitor operates with a minimum of intrusion by the flow detection device into the flow. The electrical portion of the monitor is externally located with respect to the fluid stream which allows for repairs to the monitor without disrupting the flow. The electronics provide for the adjustment of the threshold level to meet the required conditions. The apparatus can be modified to provide an upper limit to the flow monitor by providing for a parallel electronic circuit which provides for a bracketing of the desired flow rate.

  9. Compressed air energy storage system

    DOE Patents [OSTI]

    Ahrens, Frederick W.; Kartsounes, George T.

    1981-01-01

    An internal combustion reciprocating engine is operable as a compressor during slack demand periods utilizing excess power from a power grid to charge air into an air storage reservoir and as an expander during peak demand periods to feed power into the power grid utilizing air obtained from the air storage reservoir together with combustible fuel. Preferably the internal combustion reciprocating engine is operated at high pressure and a low pressure turbine and compressor are also employed for air compression and power generation.

  10. Compressed air energy storage system

    DOE Patents [OSTI]

    Ahrens, F.W.; Kartsounes, G.T.

    An internal combustion reciprocating engine is operable as a compressor during slack demand periods utilizing excess power from a power grid to charge air into an air storage reservoir and as an expander during peak demand periods to feed power into the power grid utilizing air obtained from the air storage reservoir together with combustion reciprocating engine is operated at high pressure and a low pressure turbine and compressor are also employed for air compression and power generation.

  11. Minimize Compressed Air Leaks | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Compressed Air Leaks Minimize Compressed Air Leaks This tip sheet outlines a strategy for compressed air leak detection and provides a formula for cost savings calculations. COMPRESSED AIR TIP SHEET #3 PDF icon Minimize Compressed Air Leaks (August 2004) More Documents & Publications Eliminate Inappropriate Uses of Compressed Air Determine the Cost of Compressed Air for Your Plant Analyzing Your Compressed Air System

  12. Effect of air on energy and rise-time spectra measured by proportional gas counter

    SciTech Connect (OSTI)

    Kawano, T.; Tanaka, M.; Isozumi, S.; Isozumi, Y.; Tosaki, M.; Sugiyama, T.

    2015-03-15

    Air exerts a negative effect on radiation detection using a gas counter because oxygen contained in air has a high electron attachment coefficient and can trap electrons from electron-ion pairs created by ionization from incident radiation in counting gas. This reduces radiation counts. The present study examined the influence of air on energy and rise-time spectra measurements using a proportional gas counter. In addition, a decompression procedure method was proposed to reduce the influence of air and its effectiveness was investigated. For the decompression procedure, the counting gas inside the gas counter was decompressed below atmospheric pressure before radiation detection. For the spectrum measurement, methane as well as various methane and air mixtures were used as the counting gas to determine the effect of air on energy and rise-time spectra. Results showed that the decompression procedure was effective for reducing or eliminating the influence of air on spectra measurement using a proportional gas counter. (authors)

  13. BEETIT: Building Cooling and Air Conditioning

    SciTech Connect (OSTI)

    2010-09-01

    BEETIT Project: The 14 projects that comprise ARPA-E’s BEETIT Project, short for “Building Energy Efficiency Through Innovative Thermodevices,” are developing new approaches and technologies for building cooling equipment and air conditioners. These projects aim to drastically improve building energy efficiency and reduce greenhouse gas emissions such as carbon dioxide (CO2) at a cost comparable to current technologies.

  14. Development of a Zirconia-Based Electrochemical Sensor for the Detection of Hydrogen in Air

    SciTech Connect (OSTI)

    Brosha, E; Mukundan, R; Lujan, R; Garzon, F; Woo, L; Worsley, M; Glass, B

    2008-07-16

    Mixed potential sensors utilizing a machined, dense indium-tin oxide working electrode (In{sub 2}O{sub 3}:SnO{sub 2}; 90%:10%), a Pt wire counter electrode, and porous YSZ electrolyte were prepared using ceramic tape casting methods. The response of these devices to hydrogen concentrations up to 2% in air were studied from 600 to 740 C. The sensor response exhibited a reversible behavior and a fast response time with sensitivity increasing with decreasing temperature. GC analysis confirmed significant heterogeneous oxidation of the H{sub 2} on heated furnace tube wall surfaces thus driving sensor response at H{sub 2} concentrations greater than a few hundred ppm. The transition to a cold wall, miniature platform heater significantly reduced hydrogen oxidation although some flow rate dependence remains.

  15. Film cooling air pocket in a closed loop cooled airfoil

    DOE Patents [OSTI]

    Yu, Yufeng Phillip; Itzel, Gary Michael; Osgood, Sarah Jane; Bagepalli, Radhakrishna; Webbon, Waylon Willard; Burdgick, Steven Sebastian

    2002-01-01

    Turbine stator vane segments have radially inner and outer walls with vanes extending between them. The inner and outer walls are compartmentalized and have impingement plates. Steam flowing into the outer wall plenum passes through the impingement plate for impingement cooling of the outer wall upper surface. The spent impingement steam flows into cavities of the vane having inserts for impingement cooling the walls of the vane. The steam passes into the inner wall and through the impingement plate for impingement cooling of the inner wall surface and for return through return cavities having inserts for impingement cooling of the vane surfaces. To provide for air film cooing of select portions of the airfoil outer surface, at least one air pocket is defined on a wall of at least one of the cavities. Each air pocket is substantially closed with respect to the cooling medium in the cavity and cooling air pumped to the air pocket flows through outlet apertures in the wall of the airfoil to cool the same.

  16. Air Proportional Counter

    DOE Patents [OSTI]

    Simpson, J.A. Jr.

    1950-12-05

    A multiple wire counter utilizing air at atmospheric pressure as the ionizing medium and having a window of a nylon sheet of less than 0.5 mil thickness coated with graphite. The window is permeable to alpha particles so that the counter is well adapted to surveying sources of alpha radiation.

  17. AIR M A IL

    Office of Legacy Management (LM)

    MEMORlAL DRIVE AIR M A IL . AtFxb.-zf .7.-i- M r. s. .II. Gown - Gentlemen: Re: A.E.C. Contract No. We assume the weight of the 9-l2" biscuits will:be 107'poutids ...

  18. Retrofitting Air Conditioning and Duct Systems in Hot, Dry Climates

    SciTech Connect (OSTI)

    Shapiro, C.; Aldrich, R.; Arena, L.

    2012-07-01

    This technical report describes CARB's work with Clark County Community Resources Division in Las Vegas, Nevada, to optimize procedures for upgrading cooling systems on existing homes in the area to implement health, safety, and energy improvements. Detailed monitoring of five AC systems showed that three of the five systems met or exceeded air flow rate goals.

  19. Flow distribution channels to control flow in process channels...

    Office of Scientific and Technical Information (OSTI)

    Flow distribution channels to control flow in process channels Citation Details In-Document Search Title: Flow distribution channels to control flow in process channels You are ...

  20. Ventilation System Effectiveness and Tested Indoor Air Quality Impacts

    SciTech Connect (OSTI)

    Rudd, Armin; Bergey, Daniel

    2014-02-01

    In this project, Building America research team Building Science Corporation tested the effectiveness of ventilation systems at two unoccupied, single-family, detached lab homes at the University of Texas - Tyler. Five ventilation system tests were conducted with various whole-building ventilation systems. Multizone fan pressurization testing characterized building and zone enclosure leakage. PFT testing showed multizone air change rates and interzonal airflow. Cumulative particle counts for six particle sizes, and formaldehyde and other Top 20 VOC concentrations were measured in multiple zones. The testing showed that single-point exhaust ventilation was inferior as a whole-house ventilation strategy. This was because the source of outside air was not direct from outside, the ventilation air was not distributed, and no provision existed for air filtration. Indoor air recirculation by a central air distribution system can help improve the exhaust ventilation system by way of air mixing and filtration. In contrast, the supply and balanced ventilation systems showed that there is a significant benefit to drawing outside air from a known outside location, and filtering and distributing that air. Compared to the exhaust systems, the CFIS and ERV systems showed better ventilation air distribution and lower concentrations of particulates, formaldehyde and other VOCs. System improvement percentages were estimated based on four system factor categories: balance, distribution, outside air source, and recirculation filtration. Recommended system factors could be applied to reduce ventilation fan airflow rates relative to ASHRAE Standard 62.2 to save energy and reduce moisture control risk in humid climates. HVAC energy savings were predicted to be 8-10%, or $50-$75/year.

  1. Ventilation System Effectiveness and Tested Indoor Air Quality Impacts

    SciTech Connect (OSTI)

    Rudd, A.; Bergey, D.

    2014-02-01

    Ventilation system effectiveness testing was conducted at two unoccupied, single-family, detached lab homes at the University of Texas - Tyler. Five ventilation system tests were conducted with various whole-building ventilation systems. Multizone fan pressurization testing characterized building and zone enclosure leakage. PFT testing showed multizone air change rates and interzonal airflow. Cumulative particle counts for six particle sizes, and formaldehyde and other Top 20 VOC concentrations were measured in multiple zones. The testing showed that single-point exhaust ventilation was inferior as a whole-house ventilation strategy. It was inferior because the source of outside air was not direct from outside, the ventilation air was not distributed, and no provision existed for air filtration. Indoor air recirculation by a central air distribution system can help improve the exhaust ventilation system by way of air mixing and filtration. In contrast, the supply and balanced ventilation systems showed that there is a significant benefit to drawing outside air from a known outside location, and filtering and distributing that air. Compared to the Exhaust systems, the CFIS and ERV systems showed better ventilation air distribution and lower concentrations of particulates, formaldehyde and other VOCs. System improvement percentages were estimated based on four System Factor Categories: Balance, Distribution, Outside Air Source, and Recirculation Filtration. Recommended System Factors could be applied to reduce ventilation fan airflow rates relative to ASHRAE Standard 62.2 to save energy and reduce moisture control risk in humid climates. HVAC energy savings were predicted to be 8-10%, or $50-$75/year.

  2. Multiphase flow calculation software

    DOE Patents [OSTI]

    Fincke, James R.

    2003-04-15

    Multiphase flow calculation software and computer-readable media carrying computer executable instructions for calculating liquid and gas phase mass flow rates of high void fraction multiphase flows. The multiphase flow calculation software employs various given, or experimentally determined, parameters in conjunction with a plurality of pressure differentials of a multiphase flow, preferably supplied by a differential pressure flowmeter or the like, to determine liquid and gas phase mass flow rates of the high void fraction multiphase flows. Embodiments of the multiphase flow calculation software are suitable for use in a variety of applications, including real-time management and control of an object system.

  3. A methodology for evaluating air pollution strategies to improve the air quality in Mexico City

    SciTech Connect (OSTI)

    Barrera-Roldan, A.S.; Guzman, F.; Hardie, R.W.; Thayer, G.R.

    1995-05-01

    The Mexico City Air Quality Research Initiative has developed a methodology to assist decision makers in determining optimum pollution control strategies for atmospheric pollutants. The methodology introduces both objective and subjective factors in the comparison of various strategies for improving air quality. Strategies or group of options are first selected using linear programming. These strategies are then compared using Multi-Attribute Decision Analysis. The decision tree for the Multi-Attribute Decision Analysis was generated by a panel of experts representing the organizations in Mexico that are responsible for formulating policy on air quality improvement. Three sample strategies were analyzed using the methodology: one to reduce ozone by 33% using the most cost effective group of options, the second to reduce ozone by 43% using the most cost effective group of options and the third to reduce ozone by 43% emphasizing the reduction of emissions from industrial sources. Of the three strategies, the analysis indicated that strategy 2 would be the preferred strategy for improving air quality in Mexico City.

  4. Air Conditioning | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Heat & Cool » Home Cooling Systems » Air Conditioning Air Conditioning Air conditioners cost U.S. homeowners more than $11 billion each year, and regular maintenance can keep your air conditioner running efficiently. | Photo courtesy of ©iStockphoto/JaniceRichard Air conditioners cost U.S. homeowners more than $11 billion each year, and regular maintenance can keep your air conditioner running efficiently. | Photo courtesy of ©iStockphoto/JaniceRichard Two-thirds of all homes in the

  5. Air-breathing fuel cell stacks for portable power applications

    SciTech Connect (OSTI)

    Wilson, M.S.; DeCaro, D.; Neutzler, J.K.; Zawodzinski, C.; Gottesfeld, S.

    1996-10-01

    Increasing attention is being directed towards polymer electrolyte fuel cells as battery replacements because of their potentially superior energy densities and the possibility of `mechanical` refueling. On the low end of the power requirement scale (ca. 10 W), fuel cells can compete with primary and secondary batteries only if the fuel cell systems are simple, inexpensive, and reliable. Considerations of cost and simplicity (and minimal parasitic power) discourage the use of conventional performance enhancing subsystems (e.g., humidification, cooling, or forced-reactant flow). We are developing a stack design that is inherently self-regulating to allow effective operation without the benefit of such auxiliary components. The air cathode does not use forced flow to replenish the depleted oxygen. Instead, the oxygen in the air must diffuse into the stack from the periphery of the unit cells. For this reason the stack is described as `air-breathing.` This configuration limits the ability of water to escape which prevents the polymer electrolyte membranes from drying out, even at relatively high continuous operation temperatures (+60 degrees C). This results in stacks with reliable and stable performance. This air-breathing configuration assumes a unique stack geometry that utilizes circular flow-field plates with an annular hydrogen feed manifold and the single tie-bolt extending up through the central axis of the stack. With this geometry, the hydrogen supply to the unit cells is radially outward, and the air supply is from the periphery inward. This configuration has several advantages. The entire periphery is free to air access and allows greater heat conduction to enhance cooling. Furthermore, all of the components in the stack (e.g., the flow-fields, seals and membrane/electrode assemblies), are radially symmetrical, so part fabrication is simple and the entire system is potentially low-cost. Lastly, this configuration is compact and lightweight.

  6. Highly simplified lateral flow-based nucleic acid sample preparation and passive fluid flow control

    SciTech Connect (OSTI)

    Cary, Robert E.

    2015-12-08

    Highly simplified lateral flow chromatographic nucleic acid sample preparation methods, devices, and integrated systems are provided for the efficient concentration of trace samples and the removal of nucleic acid amplification inhibitors. Methods for capturing and reducing inhibitors of nucleic acid amplification reactions, such as humic acid, using polyvinylpyrrolidone treated elements of the lateral flow device are also provided. Further provided are passive fluid control methods and systems for use in lateral flow assays.

  7. Pressure reducing regulator

    DOE Patents [OSTI]

    Whitehead, John C. (Davis, CA); Dilgard, Lemoyne W. (Willits, CA)

    1995-01-01

    A pressure reducing regulator that controls its downstream or outlet pressure to a fixed fraction of its upstream or inlet pressure. The regulator includes a housing which may be of a titanium alloy, within which is located a seal or gasket at the outlet end which may be made of annealed copper, a rod, and piston, each of which may be made of high density graphite. The regulator is insensitive to temperature by virtue of being without a spring or gas sealed behind a diaphragm, and provides a reference for a system in which it is being used. The rod and piston of the regulator are constructed, for example, to have a 1/20 ratio such that when the downstream pressure is less than 1/20 of the upstream pressure the regulator opens and when the downstream pressure exceeds 1/20 of the upstream pressure the regulator closes.

  8. Pressure reducing regulator

    DOE Patents [OSTI]

    Whitehead, J.C.; Dilgard, L.W.

    1995-10-10

    A pressure reducing regulator that controls its downstream or outlet pressure to a fixed fraction of its upstream or inlet pressure is disclosed. The regulator includes a housing which may be of a titanium alloy, within which is located a seal or gasket at the outlet end which may be made of annealed copper, a rod, and piston, each of which may be made of high density graphite. The regulator is insensitive to temperature by virtue of being without a spring or gas sealed behind a diaphragm, and provides a reference for a system in which it is being used. The rod and piston of the regulator are constructed, for example, to have a 1/20 ratio such that when the downstream pressure is less than 1/20 of the upstream pressure the regulator opens and when the downstream pressure exceeds 1/20 of the upstream pressure the regulator closes. 10 figs.

  9. Bubbles Help Break Energy Storage Record for Lithium Air-Batteries

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Bubbles Help Break Energy Storage Record for Lithium Air-Batteries Bubbles Help Break Energy Storage Record for Lithium Air-Batteries Foam-base graphene keeps oxygen flowing in batteries that holds promise for electric vehicles January 25, 2012 Linda Vu, lvu@lbl.gov, +1 510 495 2402 Using a new approach, the team built a graphene membrane for use in lithium-air batteries, which could, one day, replace conventional batteries in electric vehicles. Resembling coral, this porous graphene material

  10. Flow duct for nuclear reactors

    DOE Patents [OSTI]

    Straalsund, Jerry L.

    1978-01-01

    Improved liquid sodium flow ducts for nuclear reactors are described wherein the improvement comprises varying the wall thickness of each of the walls of a polygonal tubular duct structure so that each of the walls is of reduced cross-section along the longitudinal center line and of a greater cross-section along wall junctions with the other walls to form the polygonal tubular configuration.

  11. New Truck Stop Electrification Station Maps Help Truckers Reduce Idling -

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    News Releases | NREL New Truck Stop Electrification Station Maps Help Truckers Reduce Idling April 21, 2006 Golden, Colo. - A new internet-based mapping program is helping truckers find truck stops with idle reduction facilities-on-site systems that can substantially cut fuel use while reducing air emissions. Idle reduction systems hold great promise for the approximately 500,000 long-haul trucks with sleeper cabs currently operating in the United States. Estimates show idle reduction

  12. FLUIDIC: Metal Air Recharged

    ScienceCinema (OSTI)

    Friesen, Cody

    2014-04-02

    Fluidic, with the help of ARPA-E funding, has developed and deployed the world's first proven high cycle life metal air battery. Metal air technology, often used in smaller scale devices like hearing aids, has the lowest cost per electron of any rechargeable battery storage in existence. Deploying these batteries for grid reliability is competitive with pumped hydro installations while having the advantages of a small footprint. Fluidic's battery technology allows utilities and other end users to store intermittent energy generated from solar and wind, as well as maintain reliable electrical delivery during power outages. The batteries are manufactured in the US and currently deployed to customers in emerging markets for cell tower reliability. As they continue to add customers, they've gained experience and real world data that will soon be leveraged for US grid reliability.

  13. FLUIDIC: Metal Air Recharged

    SciTech Connect (OSTI)

    Friesen, Cody

    2014-03-07

    Fluidic, with the help of ARPA-E funding, has developed and deployed the world's first proven high cycle life metal air battery. Metal air technology, often used in smaller scale devices like hearing aids, has the lowest cost per electron of any rechargeable battery storage in existence. Deploying these batteries for grid reliability is competitive with pumped hydro installations while having the advantages of a small footprint. Fluidic's battery technology allows utilities and other end users to store intermittent energy generated from solar and wind, as well as maintain reliable electrical delivery during power outages. The batteries are manufactured in the US and currently deployed to customers in emerging markets for cell tower reliability. As they continue to add customers, they've gained experience and real world data that will soon be leveraged for US grid reliability.

  14. Fresh air indoors

    SciTech Connect (OSTI)

    Kull, K.

    1988-09-01

    This article describes and compares ventilation systems for the control of indoor air pollution in residential housing. These include: local exhaust fans, whole-house fans, central exhaust with wall ports, and heat-recovery central ventilation (HRV). HRV's have a higher initial cost than the other systems but they are the only ones that save energy. Homeowners are given guidelines for choosing the system best suited for their homes in terms of efficiency and payback period.

  15. Air conditioning apparatus

    SciTech Connect (OSTI)

    Ouchi, Y.; Otoshi, Sh.

    1985-04-09

    The air conditioning apparatus according to the invention comprises an absorption type heat pump comprising a system including an absorber, a regenerator, a condenser and an evaporator. A mixture of lithium bromide and zinc chloride is used as an absorbent which is dissolved to form an absorbent solution into a mixed solvent having a ratio by weight of methanol to water, the ratio falling in a range between 0.1 and 0.3. Said solution is circulated through the system.

  16. Fundamentals of Compressed Air Systems

    Broader source: Energy.gov [DOE]

    Find out how a compressed air system works and the benefits of optimal compressed air system performance. This initial class demonstrates how to compute the current cost of your plant's compressed...

  17. ARM - Instrument - ccn-air

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    govInstrumentsccn-air Documentation Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Error occurred. Instrument "ccn-air" does not exist.

  18. ARM - Instrument - cpc-air

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    govInstrumentscpc-air Documentation Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Error occurred. Instrument "cpc-air" does not exist.

  19. ARM - Instrument - hk-air

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    govInstrumentshk-air Documentation Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Error occurred. Instrument "hk-air" does not exist.

  20. Combustion air preheating

    SciTech Connect (OSTI)

    Wells, T.A.; Petterson, W.C.

    1986-10-14

    This patent describes a process for steam cracking hydrocarbons to cracked gases in a tubular furnace heated by burning a mixture of fuel and combustion air and subsequently quenching the cracked gases. Waste heat is recovered in the form of high pressure steam and the combustion air is preheated prior to introduction into the furnace. The improvement described here comprises: (a) superheating the high pressure steam and expanding at least a portion of the superheated high pressure steam through a first turbine to produce shaft work and superheated medium pressure steam at a temperature between 260/sup 0/ and 465/sup 0/ C.; (b) expanding at least a portion of the superheated medium pressure steam through a second turbine to produce shaft work and low pressure steam at a temperature between 120/sup 0/ and 325/sup 0/ C.; and (c) preheating the combustion air by indirect heat exchange with at least a portion of the superheated medium pressure stream and at least a portion of the low pressure steam.

  1. Air quality committee

    SciTech Connect (OSTI)

    Not Available

    1980-01-01

    Committees on air quality, coal, forest resources, and public lands and land use report on legislative, judicial, and administrative developments in 1979. There was no new significant air quality legislation, but a number of lawsuits raised questions about State Implementation Plans, prevention of significant deterioration, the Clean Air Act Amendments, new source performance standards, and motor vehicle emissions. Efforts to increase coal utilization emphasized implementation of the Power Plant and Industrial Fuel Use Act of 1978 and the Surface Mining Program. New legislation protects certain forest products from exploitation and exportation. Forest-related lawsuits focused on the RARE II process. Land-use legislation modified credit assistance to coastal zones and the language of interstate land sales, established a new agency to consolidate flood-insurance programs, and added protection to archaeological resources. Land-use-related lawsuits covered coastal zone management, interstate land sales, Indian reservations, and land-use planning in the context of civil rights, antitrust action, exclusionary zoning, comprehensive planning, and regional general welfare. Other suits addressed grants, leasing, claims, grazing rights, surveys, and other matters of public lands concern. Administrative actions centered on implementing the Coastal Zone Management Act, establishing the Council of Energy Resource Tribes, and developing guidelines for energy development. 147 references. (DCK)

  2. OPTIMIZATION OF COAL PARTICLE FLOW PATTERNS IN LOW NOX BURNERS

    SciTech Connect (OSTI)

    Jost O.L. Wendt; Gregory E. Ogden; Jennifer Sinclair; Caner Yurteri

    2001-08-20

    The proposed research is directed at evaluating the effect of flame aerodynamics on NO{sub x} emissions from coal fired burners in a systematic manner. This fundamental research includes both experimental and modeling efforts being performed at the University of Arizona in collaboration with Purdue University. The objective of this effort is to develop rational design tools for optimizing low NO{sub x} burners to the kinetic emissions limit (below 0.2 lb./MMBTU). Experimental studies include both cold and hot flow evaluations of the following parameters: flame holder geometry, secondary air swirl, primary and secondary inlet air velocity, coal concentration in the primary air and coal particle size distribution. Hot flow experiments will also evaluate the effect of wall temperature on burner performance. Cold flow studies will be conducted with surrogate particles as well as pulverized coal. The cold flow furnace will be similar in size and geometry to the hot-flow furnace but will be designed to use a laser Doppler velocimeter/phase Doppler particle size analyzer. The results of these studies will be used to predict particle trajectories in the hot-flow furnace as well as to estimate the effect of flame holder geometry on furnace flow field. The hot-flow experiments will be conducted in a novel near-flame down-flow pulverized coal furnace. The furnace will be equipped with externally heated walls. Both reactors will be sized to minimize wall effects on particle flow fields. The cold-flow results will be compared with Fluent computation fluid dynamics model predictions and correlated with the hot-flow results with the overall goal of providing insight for novel low NO{sub x} burner geometry's.

  3. Maintaining System Air Quality | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Maintaining System Air Quality Maintaining System Air Quality This tip sheet discusses how to maintain air quality in compressed air systems through proper use of equipment. COMPRESSED AIR TIP SHEET #12 PDF icon Maintaining System Air Quality (August 2004) More Documents & Publications Remove Condensate with Minimal Air Loss Engineer End Uses for Maximum Efficiency Stabilizing System Pressure

  4. Stewarding a Reduced Stockpile

    SciTech Connect (OSTI)

    Goodwin, B T; Mara, G

    2008-04-18

    The future of the US nuclear arsenal continues to be guided by two distinct drivers: the preservation of world peace and the prevention of further proliferation through our extended deterrent umbrella. Timely implementation of US nuclear policy decisions depends, in part, on the current state of stockpile weapons, their delivery systems, and the supporting infrastructure within the Department of Defense (DoD) and the Department of Energy's National Nuclear Security Administration (NNSA). In turn, the present is a product of past choices and world events. Now more than ever, the nuclear weapons program must respond to the changing global security environment and to increasing budget pressures with innovation and sound investments. As the nation transitions to a reduced stockpile, the successes of the Stockpile Stewardship Program (SSP) present options to transition to a sustainable complex better suited to stockpile size, national strategic goals and budgetary realities. Under any stockpile size, we must maintain essential human capital, forefront capabilities, and have a right-sized effective production capacity. We present new concepts for maintaining high confidence at low stockpile numbers and to effectively eliminate the reserve weapons within an optimized complex. We, as a nation, have choices to make on how we will achieve a credible 21st century deterrent.

  5. Air Handler Condensate Recovery at the Environmental Protection Agency's

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Science and Ecosystem Support Division | Department of Energy Handler Condensate Recovery at the Environmental Protection Agency's Science and Ecosystem Support Division Air Handler Condensate Recovery at the Environmental Protection Agency's Science and Ecosystem Support Division Case study details EPA's decision to address water conservation and management for its Science and Ecosystem Support Division due to a severe drought. The plan aimed to reduce potable water usage through an air

  6. Portable wastewater flow meter

    DOE Patents [OSTI]

    Hunter, Robert M.

    1999-02-02

    A portable wastewater flow meter particularly adapted for temporary use at a single location in measuring the rate of liquid flow in a circular entrance conduit of a sewer manhole both under free flow and submerged, open channel conditions and under fill pipe, surcharged conditions, comprising an apparatus having a cylindrical external surface and an inner surface that constricts the flow through the apparatus in such a manner that a relationship exists between (1) the difference between the static pressure head of liquid flowing through the entrance of the apparatus and the static pressure head of liquid flowing through the constriction, and (2) the rate of liquid flow through the apparatus.

  7. Portable wastewater flow meter

    DOE Patents [OSTI]

    Hunter, Robert M.

    1990-01-01

    A portable wastewater flow meter particularly adapted for temporary use at a single location in measuring the rate of liquid flow in a circular entrance conduit of a sewer manhole both under free flow and submerged, open channel conditions and under full pipe, surcharged conditions, comprising an apparatus having a cylindrical external surface and an inner surface that constricts the flow through the apparatus in such a manner that a relationship exists between (1) the difference between the static pressure head of liquid flowing through the entrance of the apparatus and the static pressure head of liquid flowing through the constriction, and (2) the rate of liquid flow through the apparatus.

  8. Hybrid and Advanced Air Cooling

    Broader source: Energy.gov [DOE]

    DOE Geothermal Program Peer Review 2010 - Presentation. This project will identify and analyze advanced air cooling strategies thatallow air-cooled geothermal power plants to maintain a high electric power output during periods of high air dry bulb temperatures while minimizing water consumption.

  9. System and method for reducing combustion dynamics in a combustor

    DOE Patents [OSTI]

    Uhm, Jong Ho; Johnson, Thomas Edward; Zuo, Baifang; York, William David

    2013-08-20

    A system for reducing combustion dynamics in a combustor includes an end cap having an upstream surface axially separated from a downstream surface, and tube bundles extend through the end cap. A diluent supply in fluid communication with the end cap provides diluent flow to the end cap. Diluent distributors circumferentially arranged inside at least one tube bundle extend downstream from the downstream surface and provide fluid communication for the diluent flow through the end cap. A method for reducing combustion dynamics in a combustor includes flowing fuel through tube bundles that extend axially through an end cap, flowing a diluent through diluent distributors into a combustion chamber, wherein the diluent distributors are circumferentially arranged inside at least one tube bundle and each diluent distributor extends downstream from the end cap, and forming a diluent barrier in the combustion chamber between at least one pair of adjacent tube bundles.

  10. Evaluation of Air Mixing and Thermal Comfort From High Sidewall Supply Air Jets

    SciTech Connect (OSTI)

    Ridouane, E. H.

    2011-09-01

    Uniform mixing of conditioned air with room air is an essential factor for providing comfort in homes. The higher the supply flow rates the easier to reach good mixing in the space. In high performance homes, however, the flow rates required to meet the small remaining thermal loads are not large enough to maintain uniform mixing in the space. The objective of this study is to resolve this issue and maintain uniform temperatures within future homes. We used computational fluid dynamics modeling to evaluate the performance of high sidewall air supply for residential applications in heating and cooling modes. Parameters of the study are the supply velocity, supply temperature, diffuser dimensions, and room dimensions. Laboratory experiments supported the study of thermal mixing in heating mode; we used the results to develop a correlation to predict high sidewall diffuser performance. For cooling mode, numerical analysis is presented. The results provide information to guide the selection of high sidewall supply diffusers to maintain proper room mixing for heating and cooling of high performance homes. It is proven that these systems can achieve good mixing and provide acceptable comfort levels. Recommendations are given on the operating conditions to guarantee occupant comfort.

  11. Uses of upper-air meteorological data for air quality data analysis and modeling

    SciTech Connect (OSTI)

    Lindsey, C.G.; Dye, T.S.; Ray, S.E.; Roberts, P.T.

    1996-12-31

    A series of regional-scale field studies have been conducted in recent years to study meteorological and photochemical processes that lead to ozone episodes (periods of high ozone concentration) and other types of reduced air quality. An important component of these studies has been to increase the temporal and spatial resolution of aloft measurements of winds, temperatures, and related parameters over those provided by the twice-per-day National Weather Service (NWS) balloon sounding network. Supplemental upper-air stations deployed for these studies have been equipped with a variety of observing systems, including rawinsonde sounding systems, Doppler radar wind profilers, radio acoustic sounding systems (RASS, for temperature profiling), Doppler acoustic sounders (sodar), tethersondes, lidar, and aircraft-based measurements, among others. The upper-air data collected during these programs have been used.

  12. Baseline air quality study at Fermilab

    SciTech Connect (OSTI)

    Dave, M.J.; Charboneau, R.

    1980-10-01

    Air quality and meteorological data collected at Fermi National Accelerator Laboratory are presented. The data represent baseline values for the pre-construction phase of a proposed coal-gasification test facility. Air quality data were characterized through continuous monitoring of gaseous pollutants, collection of meteorological data, data acquisition and reduction, and collection and analysis of discrete atmospheric samples. Seven air quality parameters were monitored and recorded on a continuous real-time basis: sulfur dioxide, ozone, total hydrocarbons, nonreactive hydrocarbons, nitric oxide, nitrogen oxides, and carbon monoxide. A 20.9-m tower was erected near Argonne's mobile air monitoring laboratory, which was located immediately downwind of the proposed facility. The tower was instrumented at three levels to collect continuous meteorological data. Wind speed was monitored at three levels; wind direction, horizontal and vertical, at the top level; ambient temperature at the top level; and differential temperature between all three levels. All continuously-monitored parameters were digitized and recorded on magnetic tape. Appropriate software was prepared to reduce the data. Statistical summaries, grphical displays, and correlation studies also are presented.

  13. Aire Valley Environmental | Open Energy Information

    Open Energy Info (EERE)

    Aire Valley Environmental Jump to: navigation, search Name: Aire Valley Environmental Place: United Kingdom Product: Leeds-based waste-to-energy project developer. References: Aire...

  14. Common Air Conditioner Problems | Department of Energy

    Office of Environmental Management (EM)

    Common Air Conditioner Problems Common Air Conditioner Problems A refrigerant leak is one common air conditioning problem. | Photo courtesy of iStockphotoBanksPhotos. A...

  15. Analyzing Your Compressed Air System; Industrial Technologies...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Industry Training * Fundamentals of Compressed Air ... Compressed air needs are defned by the air quality and ... Plants with a fatter load profle can use simpler control ...

  16. ARM - Field Campaign - AIRS Validation Sonde Support

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    The AIRS instrument was intended to make highly accurate measurements of air temperature, humidity, clouds, and surface temperature. The data collected by AIRS was...

  17. ARM - Field Campaign - AIRS Validation Sonde Support

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    The AIRS instrument is intended to make highly accurate measurements of air temperature, humidity, clouds, and surface temperature. The data collected by AIRS will be...

  18. California Air Resources Board | Open Energy Information

    Open Energy Info (EERE)

    Air Resources Board Jump to: navigation, search Logo: California Air Resources Board Name: California Air Resources Board Place: Sacramento, California Website: www.arb.ca.gov...

  19. Tips: Air Conditioners | Department of Energy

    Energy Savers [EERE]

    Air Conditioners Tips: Air Conditioners Bigger isn't always better for an air conditioner. Learn effective ways to stay cool while saving energy. | Photo courtesy of ...

  20. Air Risk Information Support Center

    SciTech Connect (OSTI)

    Shoaf, C.R.; Guth, D.J.

    1990-12-31

    The Air Risk Information Support Center (Air RISC) was initiated in early 1988 by the US Environmental Protection Agency`s (EPA) Office of Health and Environmental Assessment (OHEA) and the Office of Air Quality Planning and Standards (OAQPS) as a technology transfer effort that would focus on providing information to state and local environmental agencies and to EPA Regional Offices in the areas of health, risk, and exposure assessment for toxic air pollutants. Technical information is fostered and disseminated by Air RISCs three primary activities: (1) a {open_quotes}hotline{close_quotes}, (2) quick turn-around technical assistance projects, and (3) general technical guidance projects. 1 ref., 2 figs.

  1. Simplified air change effectiveness modeling

    SciTech Connect (OSTI)

    Rock, B.A.; Anderson, R.; Brandemuehl, M.J.

    1992-06-01

    This paper describes recent progress in developing practical air change effectiveness modeling techniques for the design and analysis of air diffusion in occupied rooms. The ultimate goal of this continuing work is to develop a simple and reliable method for determining heating, ventilating, and air-conditioning (HVAC) system compliance with ventilation standards. In the current work, simplified two-region models of rooms are used with six occupancy patterns to find the air change effectiveness. A new measure, the apparent ACH effectiveness, yields the relative ventilation performance of an air diffusion system. This measure can be used for the prediction or evaluation of outside air delivery to the occupants. The required outside air can be greater or less than that specified by ventilation standards such as ASHRAE Standard 62-89.

  2. Hot air drum evaporator

    DOE Patents [OSTI]

    Black, Roger L.

    1981-01-01

    An evaporation system for aqueous radioactive waste uses standard 30 and 55 gallon drums. Waste solutions form cascading water sprays as they pass over a number of trays arranged in a vertical stack within a drum. Hot dry air is circulated radially of the drum through the water sprays thereby removing water vapor. The system is encased in concrete to prevent exposure to radioactivity. The use of standard 30 and 55 gallon drums permits an inexpensive compact modular design that is readily disposable, thus eliminating maintenance and radiation build-up problems encountered with conventional evaporation systems.

  3. New system reduces sludge management costs

    SciTech Connect (OSTI)

    Roll, R.R. ); Koser, M.R. )

    1993-06-01

    This article describes a recently completed a $2.7-million project to upgrade the sludge dewatering and stabilizing system at a 48-mgd wastewater treatment facility in Niagara Fall, New York. The work was necessitated by the deteriorated condition of the plant's original vacuum filters and increasing costs to landfill the dewatered sludge. The new equipment has restored sludge production capacity while reducing the final material's moisture content. The Niagara Falls plant is one of the few municipal physical-chemical treatment plants built in this country, and is the largest still functioning. Constructed in the mid-1970s, it was designed to treat a combination of domestic sewage and industrial wastes. One third of the flow and one half of the solids are industrial in nature. The changes made reduced electrical power consumption and sanitary landfill costs.

  4. Aluminum-based metal-air batteries

    DOE Patents [OSTI]

    Friesen, Cody A.; Martinez, Jose Antonio Bautista

    2016-01-12

    Provided in one embodiment is an electrochemical cell, comprising: (i) a plurality of electrodes, comprising a fuel electrode that comprises aluminum and an air electrode that absorbs gaseous oxygen, the electrodes being operable in a discharge mode wherein the aluminum is oxidized at the fuel electrode and oxygen is reduced at the air electrode, and (ii) an ionically conductive medium, comprising an organic solvent; wherein during non-use of the cell, the organic solvent promotes formation of a protective interface between the aluminum of the fuel electrode and the ionically conductive medium, and wherein at an onset of the discharge mode, at least some of the protective interface is removed from the aluminum to thereafter permit oxidation of the aluminum during the discharge mode.

  5. High Efficiency Room Air Conditioner

    SciTech Connect (OSTI)

    Bansal, Pradeep

    2015-01-01

    This project was undertaken as a CRADA project between UT-Battelle and Geberal Electric Company and was funded by Department of Energy to design and develop of a high efficiency room air conditioner. A number of novel elements were investigated to improve the energy efficiency of a state-of-the-art WAC with base capacity of 10,000 BTU/h. One of the major modifications was made by downgrading its capacity from 10,000 BTU/hr to 8,000 BTU/hr by replacing the original compressor with a lower capacity (8,000 BTU/hr) but high efficiency compressor having an EER of 9.7 as compared with 9.3 of the original compressor. However, all heat exchangers from the original unit were retained to provide higher EER. The other subsequent major modifications included- (i) the AC fan motor was replaced by a brushless high efficiency ECM motor along with its fan housing, (ii) the capillary tube was replaced with a needle valve to better control the refrigerant flow and refrigerant set points, and (iii) the unit was tested with a drop-in environmentally friendly binary mixture of R32 (90% molar concentration)/R125 (10% molar concentration). The WAC was tested in the environmental chambers at ORNL as per the design rating conditions of AHAM/ASHRAE (Outdoor- 95F and 40%RH, Indoor- 80F, 51.5%RH). All these modifications resulted in enhancing the EER of the WAC by up to 25%.

  6. Reducing gas generators and methods for generating a reducing gas

    DOE Patents [OSTI]

    Scotto, Mark Vincent; Perna, Mark Anthony

    2015-11-03

    One embodiment of the present invention is a unique reducing gas generator. Another embodiment is a unique method for generating a reducing gas. Other embodiments include apparatuses, systems, devices, hardware, methods, and combinations for generating reducing gas. Further embodiments, forms, features, aspects, benefits, and advantages of the present application will become apparent from the description and figures provided herewith.

  7. Radionuclide air emissions annual report for calendar year 1994

    SciTech Connect (OSTI)

    Not Available

    1995-04-04

    This report presents the results of the Pinellas Plant air sampling program for the year of 1994. Topics discussed include: site description; source description; air emissions data; dose assessments; description of dose model; summary of input parameters of dose model; unplanned releases; and diffuse emissions. Included in the attachments of this document are: non-radon individual dose assessment; non-radon population dose assessment; summary of stack flow rate measurements; HOTSPOT computer model run; and meteorological data for the Pinellas Plant for 1994.

  8. Co-benefits of mitigating global greenhouse gas emissions for future air

    Office of Scientific and Technical Information (OSTI)

    quality and human health (Journal Article) | SciTech Connect Co-benefits of mitigating global greenhouse gas emissions for future air quality and human health Citation Details In-Document Search Title: Co-benefits of mitigating global greenhouse gas emissions for future air quality and human health Reducing greenhouse gas (GHG) emissions also influences air quality. We simulate the co-benefits of global GHG reductions on air quality and human health via two mechanisms: a) reducing co-emitted

  9. Evaluating Radionuclide Air Emission Stack Sampling Systems

    SciTech Connect (OSTI)

    Ballinger, Marcel Y.

    2002-12-16

    The Pacific Northwest National Laboratory (PNNL) operates a number of research and development (R&D) facilities for the U.S. Department of Energy at the Hanford Site, Washington. These facilities are subject to Clean Air Act regulations that require sampling of radionuclide air emissions from some of these facilities. A revision to an American National Standards Institute (ANSI) standard on sampling radioactive air emissions has recently been incorporated into federal and state regulations and a re-evaluation of affected facilities is being performed to determine the impact. The revised standard requires a well-mixed sampling location that must be demonstrated through tests specified in the standard. It also carries a number of maintenance requirements, including inspections and cleaning of the sampling system. Evaluations were performed in 2000 2002 on two PNNL facilities to determine the operational and design impacts of the new requirements. The evaluation included inspection and cleaning maintenance activities plus testing to determine if the current sampling locations meet criteria in the revised standard. Results show a wide range of complexity in inspection and cleaning activities depending on accessibility of the system, ease of removal, and potential impact on building operations (need for outages). As expected, these High Efficiency Particulate Air (HEPA)-filtered systems did not show deposition significant enough to cause concerns with blocking of the nozzle or other parts of the system. The tests for sampling system location in the revised standard also varied in complexity depending on accessibility of the sample site and use of a scale model can alleviate many issues. Previous criteria to locate sampling systems at eight duct diameters downstream and two duct diameters upstream of the nearest disturbances is no guarantee of meeting criteria in the revised standard. A computational fluid dynamics model was helpful in understanding flow and contaminant mixing in an exhaust system and may be useful to identify potential sampling locations in an exhaust system that are likely to meet criteria in the revised standard.

  10. Redox Flow Batteries: An Engineering Perspective

    SciTech Connect (OSTI)

    Chalamala, Babu R.; Soundappan, Thiagarajan; Fisher, Graham R.; Anstey, Mitchell A.; Viswanathan, Vilayanur V.; Perry, Mike L.

    2014-10-01

    Redox flow batteries are well suited to provide modular and scalable energy storage systems for a wide range of energy storage applications. In this paper, we review the development of redox flow battery technology including recent advances in new redox active materials and systems. We discuss cost, performance, and reliability metrics that are critical for deployment of large flow battery systems. The technology, while relatively young, has the potential for significant improvement through reduced materials costs, improved energy and power efficiency, and significant reduction in the overall system cost.

  11. Central Air Conditioning | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Central Air Conditioning Central Air Conditioning Central air conditioners circulate cool air through a system of supply and return ducts. | Photo courtesy of ©iStockphoto/DonNichols. Central air conditioners circulate cool air through a system of supply and return ducts. | Photo courtesy of ©iStockphoto/DonNichols. Central air conditioners circulate cool air through a system of supply and return ducts. Supply ducts and registers (i.e., openings in the walls, floors, or ceilings covered by

  12. Gas-Dynamic Transients Flow Networks

    Energy Science and Technology Software Center (OSTI)

    1987-09-01

    TVENT1P predicts flows and pressures in a ventilation system or other air pathway caused by pressure transients, such as a tornado. For an analytical model to simulate an actual system, it must have (1) the same arrangement of components in a network of flow paths; (2) the same friction characteristics; (3) the same boundary pressures; (4) the same capacitance; and (5) the same forces that drive the air. A specific set of components used formore » constructing the analytical model includes filters, dampers, ducts, blowers, rooms, or volume connected at nodal points to form networks. The effects of a number of similar components can be lumped into a single one. TVENT1P contains a material transport algorithm and features for turning blowers off and on, changing blower speeds, changing the resistance of dampers and filters, and providing a filter model to handle very high flows. These features make it possible to depict a sequence of events during a single run. Component properties are varied using time functions. The filter model is not used by the code unless it is specified by the user. The basic results of a TVENT1P solution are flows in branches and pressures at nodes. A postprocessor program, PLTTEX, is included to produce the plots specified in the TVENT1P input. PLTTEX uses the proprietary CA-DISSPLA graphics software.« less

  13. Rebalancing electrolytes in redox flow battery systems

    DOE Patents [OSTI]

    Chang, On Kok; Pham, Ai Quoc

    2014-12-23

    Embodiments of redox flow battery rebalancing systems include a system for reacting an unbalanced flow battery electrolyte with a rebalance electrolyte in a first reaction cell. In some embodiments, the rebalance electrolyte may contain ferrous iron (Fe.sup.2+) which may be oxidized to ferric iron (Fe.sup.3+) in the first reaction cell. The reducing ability of the rebalance reactant may be restored in a second rebalance cell that is configured to reduce the ferric iron in the rebalance electrolyte back into ferrous iron through a reaction with metallic iron.

  14. Solid oxide fuel cell power plant having a fixed contact oxidation catalyzed section of a multi-section cathode air heat exchanger

    DOE Patents [OSTI]

    Saito, Kazuo; Lin, Yao

    2015-02-17

    The multi-section cathode air heat exchanger (102) includes at least a first heat exchanger section (104), and a fixed contact oxidation catalyzed section (126) secured adjacent each other in a stack association. Cool cathode inlet air flows through cool air channels (110) of the at least first (104) and oxidation catalyzed sections (126). Hot anode exhaust flows through hot air channels (124) of the oxidation catalyzed section (126) and is combusted therein. The combusted anode exhaust then flows through hot air channels (112) of the first section (104) of the cathode air heat exchanger (102). The cool and hot air channels (110, 112) are secured in direct heat exchange relationship with each other so that temperatures of the heat exchanger (102) do not exceed 800.degree. C. to minimize requirements for using expensive, high-temperature alloys.

  15. Ultrasonic flow metering system

    DOE Patents [OSTI]

    Gomm, Tyler J.; Kraft, Nancy C.; Mauseth, Jason A.; Phelps, Larry D.; Taylor, Steven C.

    2002-01-01

    A system for determining the density, flow velocity, and mass flow of a fluid comprising at least one sing-around circuit that determines the velocity of a signal in the fluid and that is correlatable to a database for the fluid. A system for determining flow velocity uses two of the inventive circuits with directional transmitters and receivers, one of which is set at an angle to the direction of flow that is different from the others.

  16. Reactive Air Aluminization

    SciTech Connect (OSTI)

    Choi, Jung-Pyung; Chou, Y. S.; Stevenson, Jeffry W.

    2011-10-28

    Ferritic stainless steels and other alloys are of great interest to SOFC developers for applications such as interconnects, cell frames, and balance of plant components. While these alloys offer significant advantages (e.g., low material and manufacturing cost, high thermal conductivity, and high temperature oxidation resistance), there are challenges which can hinder their utilization in SOFC systems; these challenges include Cr volatility and reactivity with glass seals. To overcome these challenges, protective coatings and surface treatments for the alloys are under development. In particular, aluminization of alloy surfaces offers the potential for mitigating both evaporation of Cr from the alloy surface and reaction of alloy constituents with glass seals. Commercial aluminization processes are available to SOFC developers, but they tend to be costly due to their use of exotic raw materials and/or processing conditions. As an alternative, PNNL has developed Reactive Air Aluminization (RAA), which offers a low-cost, simpler alternative to conventional aluminization methods.

  17. Building America Case Study: Air Leakage and Air Transfer Between Garage and Living Space, Waldorf, Maryland (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2014-11-01

    This research project focused on evaluation of air transfer between the garage and living space in a single-family detached home constructed by a production homebuilder in compliance with the 2009 International Residential Code and the 2009 International Energy Conservation Code. The project gathered important information about the performance of whole-building ventilation systems and garage ventilation systems as they relate to minimizing flow of contaminated air from garage to living space. A series of 25 multi-point fan pressurization tests and additional zone pressure diagnostic testing characterized the garage and house air leakage, the garage-to-house air leakage, and garage and house pressure relationships to each other and to outdoors using automated fan pressurization and pressure monitoring techniques. While the relative characteristics of this house may not represent the entire population of new construction configurations and air tightness levels (house and garage) throughout the country, the technical approach was conservative and should reasonably extend the usefulness of the results to a large spectrum of house configurations from this set of parametric tests in this one house. Based on the results of this testing, the two-step garage-to-house air leakage test protocol described above is recommended where whole-house exhaust ventilation is employed. For houses employing whole-house supply ventilation (positive pressure) or balanced ventilation (same pressure effect as the Baseline condition), adherence to the EPA Indoor airPLUS house-to-garage air sealing requirements should be sufficient to expect little to no garage-to-house air transfer.

  18. Air Force Renewable Energy Programs

    Broader source: Energy.gov [DOE]

    Presentation covers Air Force Renewable Energy Programs and is given at the Spring 2011 Federal Utility Partnership Working Group (FUPWG) meeting.

  19. Air Cooling | Open Energy Information

    Open Energy Info (EERE)

    Air cooling is limited on ambient temperatures and typically require a larger footprint than Water Cooling, but when water restrictions are great enough to prevent the...

  20. Air bearing vacuum seal assembly

    DOE Patents [OSTI]

    Booth, Rex

    1978-01-01

    An air bearing vacuum seal assembly capable of rotating at the speed of several thousand revolutions per minute using an air cushion to prevent the rotating and stationary parts from touching, and a two stage differential pumping arrangement to maintain the pressure gradient between the air cushion and the vacuum so that the leak rate into the vacuum is, for example, less than 1 .times. 10.sup.-4 Pa m.sup.3 /s. The air bearing vacuum seal has particular application for mounting rotating targets to an evacuated accelerator beam tube for bombardment of the targets with high-power charged particle beams in vacuum.

  1. Clean Air Act, Section 309

    Energy Savers [EERE]

    CLEAN AIR ACT 309* 7609. Policy review (a) The Administrator shall review and comment in writing on the environmental impact of any matter relating to duties and ...

  2. Activation of Air and Utilities in the National Ignition Facility

    SciTech Connect (OSTI)

    Khater, H; Pohl, B; Brererton, S

    2010-04-08

    Detailed 3-D modeling of the NIF facility is developed to accurately simulate the radiation environment within the NIF. Neutrons streaming outside the NIF Target Chamber will activate the air present inside the Target Bay and the Ar gas inside the laser tubes. Smaller levels of activity are also generated in the Switchyard air and in the Ar portion of the SY laser beam path. The impact of neutron activation of utilities located inside the Target Bay is analyzed for variety of shot types. The impact of activating TB utilities on dose received by maintenance personnel post-shot is analyzed. The current NIF facility model includes all important features of the Target Chamber, shielding system, and building configuration. Flow of activated air from the Target Bay is controlled by the HVAC system. The amount of activated Target Bay air released through the stack is very small and does not pose significant hazard to personnel or the environment. Activation of Switchyard air is negligible. Activation of Target Bay utilities result in a manageable dose rate environment post high yield (20 MJ) shots. The levels of activation generated in air and utilities during D-D and THD shots are small and do not impact work planning post shots.

  3. Similarity Solution for Multi-Phase Fluid and Heat Flow in Radial Geometry

    Energy Science and Technology Software Center (OSTI)

    1994-12-02

    SIMSOL calculates transient fluid and heat flow for a uniform geologic medium containing water (in both liquid and vapor phases) and air, surrounding a constant-strength linear heat source.

  4. Method and apparatus for measuring coupled flow, transport, and reaction processes under liquid unsaturated flow conditions

    DOE Patents [OSTI]

    McGrail, Bernard P.; Martin, Paul F.; Lindenmeier, Clark W.

    1999-01-01

    The present invention is a method and apparatus for measuring coupled flow, transport and reaction processes under liquid unsaturated flow conditions. The method and apparatus of the present invention permit distinguishing individual precipitation events and their effect on dissolution behavior isolated to the specific event. The present invention is especially useful for dynamically measuring hydraulic parameters when a chemical reaction occurs between a particulate material and either liquid or gas (e.g. air) or both, causing precipitation that changes the pore structure of the test material.

  5. AIR QUALITY IMPACTS OF LIQUEFIED NATURAL GAS IN THE SOUTH COAST AIR BASIN OF CALIFORNIA

    SciTech Connect (OSTI)

    Carerras-Sospedra, Marc; Brouwer, Jack; Dabdub, Donald; Lunden, Melissa; Singer, Brett

    2011-07-01

    The effects of liquefied natural gas (LNG) on pollutant emission inventories and air quality in the South Coast Air Basin of California were evaluated using recent LNG emission measurements by Lawrence Berkeley National Laboratory and the Southern California Gas Company (SoCalGas), and with a state-of-the-art air quality model. Pollutant emissions can be affected by LNG owing to differences in composition and physical properties, including the Wobbe index, a measure of energy delivery rate. This analysis uses LNG distribution scenarios developed by modeling Southern California gas flows, including supplies from the LNG receiving terminal in Baja California, Mexico. Based on these scenarios, the projected penetratino of LNG in the South Coast Air Basin is expected to be limited. In addition, the increased Wobbe index of delivered gas (resulting from mixtures of LNG and conventional gas supplies) is expected to cause increases smaller than 0.05 percent in overall (area-wide) emissions of nitrogen oxides (NOx). BAsed on the photochemical state of the South Coast Air Basin, any increase in NOx is expected to cause an increase in the highest local ozone concentrations, and this is reflected in model results. However, the magnitude of the increase is well below the generally accepted accuracy of the model and would not be discernible with the existing monitoring network. Modeling of hypothetical scenarios indicates that discernible changes to ambient ozone and particulate matter concentrations would occur only at LNG distribution rates that are not achievable with current or planned infrastructure and with Wobbe index vlaues that exceed current gas quality tariffs. Results of these hypothetical scenarios are presented for consideration of any proposed substantial expansion of LNG supply infrastructure in Southern California.

  6. Impacts of Mixing on Acceptable Indoor Air Quality in Homes

    SciTech Connect (OSTI)

    Sherman, Max H.; Walker, Iain I.

    2010-01-01

    Ventilation reduces occupant exposure to indoor contaminants by diluting or removing them. In a multi-zone environment such as a house, every zone will have different dilution rates and contaminant source strengths. The total ventilation rate is the most important factor in determining occupant exposure to given contaminant sources, but the zone-specific distribution of exhaust and supply air and the mixing of ventilation air can play significant roles. Different types of ventilation systems will provide different amounts of mixing depending on several factors such as air leakage, air distribution system, and contaminant source and occupant locations. Most U.S. and Canadian homes have central heating, ventilation, and air conditioning systems, which tend to mix the air; thus, the indoor air in different zones tends to be well mixed for significant fractions of the year. This article reports recent results of investigations to determine the impact of air mixing on exposures of residential occupants to prototypical contaminants of concern. We summarize existing literature and extend past analyses to determine the parameters than affect air mixing as well as the impacts of mixing on occupant exposure, and to draw conclusions that are relevant for standards development and for practitioners designing and installing home ventilation systems. The primary conclusion is that mixing will not substantially affect the mean indoor air quality across a broad population of occupants, homes, and ventilation systems, but it can reduce the number of occupants who are exposed to extreme pollutant levels. If the policy objective is to minimize the number of people exposed above a given pollutant threshold, some amount of mixing will be of net benefit even though it does not benefit average exposure. If the policy is to minimize exposure on average, then mixing air in homes is detrimental and should not be encouraged. We also conclude that most homes in the US have adequate mixing already, but that new, high-performance homes may require additional mixing. Also our results suggest that some differentiation should be made in policies and standards for systems that provide continuous exhaust, thereby reducing relative dose for occupants overall.

  7. Lateral flow strip assay

    DOE Patents [OSTI]

    Miles, Robin R.; Benett, William J.; Coleman, Matthew A.; Pearson, Francesca S.; Nasarabadi, Shanavaz L.

    2011-03-08

    A lateral flow strip assay apparatus comprising a housing; a lateral flow strip in the housing, the lateral flow strip having a receiving portion; a sample collection unit; and a reagent reservoir. Saliva and/or buccal cells are collected from an individual using the sample collection unit. The sample collection unit is immersed in the reagent reservoir. The tip of the lateral flow strip is immersed in the reservoir and the reagent/sample mixture wicks up into the lateral flow strip to perform the assay.

  8. Flow Split Venturi, Axially-Rotated Valve

    DOE Patents [OSTI]

    Walrath, David E.; Lindberg, William R.; Burgess, Robert K.; LaBelle, James

    2000-02-22

    The present invention provides an axially-rotated valve which permits increased flow rates and lower pressure drop (characterized by a lower loss coefficient) by using an axial eccentric split venturi with two portions where at least one portion is rotatable with respect to the other portion. The axially-rotated valve typically may be designed to avoid flow separation and/or cavitation at full flow under a variety of conditions. Similarly, the valve is designed, in some embodiments, to produce streamlined flow within the valve. An axially aligned outlet may also increase the flow efficiency. A typical cross section of the eccentric split venturi may be non-axisymmetric such as a semicircular cross section which may assist in both throttling capabilities and in maximum flow capacity using the design of the present invention. Such a design can include applications for freeze resistant axially-rotated valves and may be fully-opened and fully-closed in one-half of a complete rotation. An internal wide radius elbow typically connected to a rotatable portion of the eccentric venturi may assist in directing flow with lower friction losses. A valve actuator may actuate in an axial manner yet be uniquely located outside of the axial flow path to further reduce friction losses. A seal may be used between the two portions that may include a peripheral and diametrical seal in the same plane. A seal separator may increase the useful life of the seal between the fixed and rotatable portions.

  9. Office of radiation and indoor air: Program description

    SciTech Connect (OSTI)

    Not Available

    1993-06-01

    The goal of the Environmental Protection Agency`s (EPA) Office of Radiation and Indoor Air is to protect the public and the environment from exposures to radiation and indoor air pollutants. The Office develops protection criteria, standards, and policies and works with other programs within EPA and other agencies to control radiation and indoor air pollution exposures; provides technical assistance to states through EPA`s regional offices and other agencies having radiation and indoor air protection programs; directs an environmental radiation monitoring program; responds to radiological emergencies; and evaluates and assesses the overall risk and impact of radiation and indoor air pollution. The Office is EPA`s lead office for intra- and interagency activities coordinated through the Committee for Indoor Air Quality. It coordinates with and assists the Office of Enforcement in enforcement activities where EPA has jurisdiction. The Office disseminates information and works with state and local governments, industry and professional groups, and citizens to promote actions to reduce exposures to harmful levels of radiation and indoor air pollutants.

  10. System and method for reducing combustion dynamics in a combustor

    DOE Patents [OSTI]

    Uhm, Jong Ho; Johnson, Thomas Edward; Zuo, Baifang; York, William David

    2015-09-01

    A system for reducing combustion dynamics in a combustor includes an end cap having an upstream surface axially separated from a downstream surface, and tube bundles extend from the upstream surface through the downstream surface. A divider inside a tube bundle defines a diluent passage that extends axially through the downstream surface, and a diluent supply in fluid communication with the divider provides diluent flow to the diluent passage. A method for reducing combustion dynamics in a combustor includes flowing a fuel through tube bundles, flowing a diluent through a diluent passage inside a tube bundle, wherein the diluent passage extends axially through at least a portion of the end cap into a combustion chamber, and forming a diluent barrier in the combustion chamber between the tube bundle and at least one other adjacent tube bundle.

  11. Distribution and Room Air Mixing Risks to Retrofitted Homes

    SciTech Connect (OSTI)

    Burdick, A.

    2014-12-01

    ​Energy efficiency upgrades reduce heating and cooling loads on a house. With enough load reduction and if the HVAC system warrants replacement, the HVAC system is often upgraded with a more efficient, lower capacity system that meets the loads of the upgraded house. For a single-story house with ceiling supply air diffusers, ducts are often removed and upgraded. For houses with ducts that are embedded in walls, the cost of demolition precludes the replacement of ducts. The challenge with the use of existing ducts is that the reduced airflow creates a decreased throw at the supply registers, and the supply air and room air do not mix well, leading to potential thermal comfort complaints. This project investigates this retrofit scenario. The issues and solutions discussed here are relevant to all climate zones, with emphasis on climates that require cooling.

  12. Distribution and Room Air Mixing Risks to Retrofitted Homes

    SciTech Connect (OSTI)

    Burdick, A.

    2014-12-01

    ?Energy efficiency upgrades reduce heating and cooling loads on a house. With enough load reduction and if the HVAC system warrants replacement, the HVAC system is often upgraded with a more efficient, lower capacity system that meets the loads of the upgraded house. For a single-story house with ceiling supply air diffusers, ducts are often removed and upgraded. For houses with ducts that are embedded in walls, the cost of demolition precludes the replacement of ducts. The challenge with the use of existing ducts is that the reduced airflow creates a decreased throw at the supply registers, and the supply air and room air do not mix well, leading to potential thermal comfort complaints. This project investigates this retrofit scenario. The issues and solutions discussed here are relevant to all climate zones, with emphasis on climates that require cooling.

  13. ISOTHERMAL AIR INGRESS VALIDATION EXPERIMENTS AT IDAHO NATIONAL LABORATORY: DESCRIPTION AND SUMMARY OF DATA

    SciTech Connect (OSTI)

    Chang H. Oh; Eung S. Kim

    2010-09-01

    Idaho National Laboratory performed air ingress experiments as part of validating computational fluid dynamics code (CFD). An isothermal stratified flow experiment was designed and set to understand stratified flow phenomena in the very high temperature gas cooled reactor (VHTR) and to provide experimental data for validating computer codes. The isothermal experiment focused on three flow characteristics unique in the VHTR air-ingress accident: stratified flow in the horizontal pipe, stratified flow expansion at the pipe and vessel junction, and stratified flow around supporting structures. Brine and sucrose were used as heavy fluids and water was used as light fluids. The density ratios were changed between 0.87 and 0.98. This experiment clearly showed that a stratified flow between heavy and light fluids is generated even for very small density differences. The code was validated by conducting blind CFD simulations and comparing the results to the experimental data. A grid sensitivity study was also performed based on the Richardson extrapolation and the grid convergence index method for modeling confidence. As a result, the calculated current speed showed very good agreement with the experimental data, indicating that the current CFD methods are suitable for predicting density gradient stratified flow phenomena in the air-ingress accident.

  14. Inhomogeneity of fluid flow in Stirling engine regenerators

    SciTech Connect (OSTI)

    Jones, J.D. )

    1989-10-01

    The literature relating to inhomogeneity of flow regenerators is briefly reviewed. It is noted that, in contrast to other applications of regenerators, relatively little attention has been paid to the consequences of flow inhomogeneity for thermal regeneration in Stirling cycle machines. The construction of regenerator capsules for a large stationary Stirling engine is described. A test rig is developed to measure the gas velocity profile across the face of the packed regenerator capsules under steady flow conditions. Measured flow profiles for a number of different matrix materials and construction techniques are presented, and it is noted that stacked-mesh regenerator matrices tend to display marked inhomogeneities of flow. The consequences of flow inhomogeneity for flow friction and regenerator effectiveness are analyzed theoretically, and approximate formulae deduced. One method for reducing flow inhomogeneity in stacked-screen matrice

  15. A source of PCB contamination in modified high-volume air samplers

    SciTech Connect (OSTI)

    Basu, I.; O'Dell, J.M.; Arnold, K.; Hites, R.A.

    2000-02-01

    Modified Anderson High Volume (Hi-Vol) air samplers are widely used for the collection of semi-volatile organic compounds (such as PCBs) from air. The foam gasket near the main air flow path in these samplers can become contaminated with PCBs if the sampler or the gasket is stored at a location with high indoor air PCB levels. Once the gasket is contaminated, it releases PCBs back into the air stream during sampling, and as a result, incorrectly high air PCB concentrations are measured. This paper presents data demonstrating this contamination problem using measurements from two Integrated Atmospheric Deposition Network sites: one at Sleeping Bear Dunes on Lake Michigan and the other at Point Petre on Lake Ontario. The authors recommend that these gaskets be replaced by Teflon tape and that the storage history of each sampler be carefully tracked.

  16. Outside Air Ventilation Controller- Building America Top Innovation

    Broader source: Energy.gov [DOE]

    This Building America Innovations profile describes Building America research showing automated night ventilation can reduce cooling energy costs up to 40% and peak demand up to 50% in California’s hot-dry central valley climates and can eliminate the need for air conditioning altogether in the coastal marine climate.

  17. Building America Top Innovations 2012: Outside Air Ventilation Controller

    SciTech Connect (OSTI)

    none,

    2013-01-01

    venThis Building America Top Innovations profile describes Building America research showing how automated night ventilation can reduce cooling energy costs up to 40% and peak demand up to 50% in California’s hot-dry central valley climates and can eliminate the need for air conditioning altogether in the coastal marine climate.

  18. Common Air Conditioner Problems | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Common Air Conditioner Problems Common Air Conditioner Problems A refrigerant leak is one common air conditioning problem. | Photo courtesy of ©iStockphoto/BanksPhotos. A refrigerant leak is one common air conditioning problem. | Photo courtesy of ©iStockphoto/BanksPhotos. One of the most common air conditioning problems is improper operation. If your air conditioner is on, be sure to close your home's windows and outside doors. For room air conditioners, isolate the room or a group of

  19. Why does LANL sample the air?

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Why does LANL sample the air? Why does LANL sample the air? As the most significant pathway, air is monitored to ensure that any possible release is quickly detected. Diagram of air quality monitors within an exhaust stack. Nuclear facilities have three additional air sampling systems. LANL samples and analyzes air to assess effects on workers, the public, animals, and plants. As the most significant pathway, air is monitored to ensure that any possible release is quickly detected. How we do it

  20. Title III hazardous air pollutants

    SciTech Connect (OSTI)

    Todd, R.

    1995-12-31

    The author presents an overview of the key provisions of Title III of the Clean Air Act Amendments of 1990. The key provisions include the following: 112(b) -- 189 Hazardous Air Pollutants (HAP); 112(a) -- Major Source: 10 TPY/25 TPY; 112(d) -- Application of MACT; 112(g) -- Modifications; 112(I) -- State Program; 112(j) -- The Hammer; and 112(r) -- Accidental Release Provisions.

  1. ARM - Instrument - co-air

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    govInstrumentsco-air Documentation ARM Data Discovery Browse Data Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Instrument : Carbon Monoxide- Airborne (CO-AIR) Instrument Categories Airborne Observations, Atmospheric Carbon Contact(s) Stephen Springston Brookhaven National Laboratory (631) 344-4477 srs@bnl.gov

  2. ARM - Instrument - gustprobe-air

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    govInstrumentsgustprobe-air Documentation ARM Data Discovery Browse Data Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Instrument : Aircraft Gust Probe (GUSTPROBE-AIR) Instrument Categories Airborne Observations Contact(s) Annette Koontz Pacific Northwest National Laboratory Developer (509) 375-3609 annette.koontz@pnnl

  3. High efficiency novel window air conditioner

    SciTech Connect (OSTI)

    Bansal, Pradeep

    2015-07-24

    This paper presents the technical development of a high efficiency window air conditioner. In order to achieve higher energy efficiency ratio (EER), the original capacity of the R410A unit was downgraded by replacing the original compressor with a lower capacity but higher EER compressor, while all heat exchangers and the chassis from the original unit were retained. The other subsequent major modifications included – the AC fan motor being replaced with a brushless high efficiency electronically commuted motor (ECM) motor, the capillary tube being replaced with a needle valve to better control the refrigerant flow and refrigerant set points, and R410A being replaced with drop-in environmentally friendly binary mixture of R32 (85% molar concentration)/R125 (15% molar concentration). All these modifications resulted in significant EER enhancement of the modified unit.

  4. In-line real time air monitor

    DOE Patents [OSTI]

    Wise, Marcus B.; Thompson, Cyril V.

    1998-01-01

    An in-line gas monitor capable of accurate gas composition analysis in a continuous real time manner even under strong applied vacuum conditions operates by mixing an air sample with helium forming a sample gas in two complementary sample loops embedded in a manifold which includes two pairs of 3-way solenoid valves. The sample gas is then analyzed in an ion trap mass spectrometer on a continuous basis. Two valve drivers actuate the two pairs of 3-way valves in a reciprocating fashion, so that there is always flow through the in-line gas monitor via one or the other of the sample loops. The duty cycle for the two pairs of 3-way valves is varied by tuning the two valve drivers to a duty cycle typically between 0.2 to 0.7 seconds.

  5. High efficiency novel window air conditioner

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Bansal, Pradeep

    2015-01-01

    This paper presents the technical development of a high efficiency window air conditioner. In order to achieve higher energy efficiency ratio (EER), the original capacity of the R410A unit was downgraded by replacing the original compressor with a lower capacity but higher EER compressor, while all heat exchangers and the chassis from the original unit were retained. The other subsequent major modifications included – the AC fan motor being replaced with a brushless high efficiency electronically commuted motor (ECM) motor, the capillary tube being replaced with a needle valve to better control the refrigerant flow and refrigerant set points, andmore » R410A being replaced with drop-in environmentally friendly binary mixture of R32 (85% molar concentration)/R125 (15% molar concentration). All these modifications resulted in significant EER enhancement of the modified unit.« less

  6. High efficiency novel window air conditioner

    SciTech Connect (OSTI)

    Bansal, Pradeep

    2015-01-01

    This paper presents the technical development of a high efficiency window air conditioner. In order to achieve higher energy efficiency ratio (EER), the original capacity of the R410A unit was downgraded by replacing the original compressor with a lower capacity but higher EER compressor, while all heat exchangers and the chassis from the original unit were retained. The other subsequent major modifications included – the AC fan motor being replaced with a brushless high efficiency electronically commuted motor (ECM) motor, the capillary tube being replaced with a needle valve to better control the refrigerant flow and refrigerant set points, and R410A being replaced with drop-in environmentally friendly binary mixture of R32 (85% molar concentration)/R125 (15% molar concentration). All these modifications resulted in significant EER enhancement of the modified unit.

  7. In-line real time air monitor

    DOE Patents [OSTI]

    Wise, M.B.; Thompson, C.V.

    1998-07-14

    An in-line gas monitor capable of accurate gas composition analysis in a continuous real time manner even under strong applied vacuum conditions operates by mixing an air sample with helium forming a sample gas in two complementary sample loops embedded in a manifold which includes two pairs of 3-way solenoid valves. The sample gas is then analyzed in an ion trap mass spectrometer on a continuous basis. Two valve drivers actuate the two pairs of 3-way valves in a reciprocating fashion, so that there is always flow through the in-line gas monitor via one or the other of the sample loops. The duty cycle for the two pairs of 3-way valves is varied by tuning the two valve drivers to a duty cycle typically between 0.2 to 0.7 seconds. 3 figs.

  8. Options for reducing carbon dioxide emissions

    SciTech Connect (OSTI)

    Rosenfeld, A.H.; Price, L.

    1991-08-01

    Improvements in energy efficiency can significantly reduce the annual growth in greenhouse gas emissions. Such improvements occur when energy intensity is reduced; no reduction in energy services is required. Using the concept of cost of conserved energy'' to develop conservation supply curves similar to resource supply curves, researchers consistently find that electricity and natural gas savings of nearly 50% of current consumption are possible for US buildings. Such reductions in energy consumption directly reduce emissions of greenhouse gases. To capture these savings, we must continue to develop energy-efficient technologies and strategies. This paper describes three recent energy-efficient technologies that benefited from energy conservation research and development (R D) funding: high-frequency ballasts, compact fluorescent lamps, and low-emissivity windows. Other advanced technologies and strategies of spectrally selective windows, superwindows, electrochromic windows, advanced insulation, low-flow showerheads, improved recessed lamp fixtures, whitening surfaces and planting urban trees, daylighting, and thermal energy storage are also discussed. 33 refs., 9 figs., 3 tabs.

  9. High air volume to low liquid volume aerosol collector

    DOE Patents [OSTI]

    Masquelier, Donald A.; Milanovich, Fred P.; Willeke, Klaus

    2003-01-01

    A high air volume to low liquid volume aerosol collector. A high volume flow of aerosol particles is drawn into an annular, centripetal slot in a collector which directs the aerosol flow into a small volume of liquid pool contained is a lower center section of the collector. The annular jet of air impinges into the liquid, imbedding initially airborne particles in the liquid. The liquid in the pool continuously circulates in the lower section of the collector by moving to the center line, then upwardly, and through assistance by a rotating deflector plate passes back into the liquid at the outer area adjacent the impinging air jet which passes upwardly through the liquid pool and through a hollow center of the collector, and is discharged via a side outlet opening. Any liquid droplets escaping with the effluent air are captured by a rotating mist eliminator and moved back toward the liquid pool. The collector includes a sensor assembly for determining, controlling, and maintaining the level of the liquid pool, and includes a lower centrally located valve assembly connected to a liquid reservoir and to an analyzer for analyzing the particles which are impinged into the liquid pool.

  10. AIR FORCE SPECIAL WEAPONS CENTER

    Office of Legacy Management (LM)

    HEADQUARTERS aII?y 9 AIR FORCE SPECIAL WEAPONS CENTER 1 AIR FORCE SYSTEMS COMMAND . - KlRTlAND AIR FORCE BASE, NEW MEXICO - k FINAL REPORT O N AIR FORCE PARTICIPATION PROJECT RULISON .1 O c t o b e r 1969 P r e p a r e d by : CONT INENTAL TEST D I V I S ION DIRECTORATE OF NUCLEAR FIELD OPERATIONS This page intentionally left blank INDEX AIR FORCE PARTICIPATION I N PROJECT RULISON FINAL REPORT PARAGRAPH BASIC REPORT SUBJECT R e f e r e n c e s PAGE 2 G e n e r a l 1 3 P l a n n i n g 3 4 Command

  11. Atmospheric Chemistry and Air Pollution

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Gaffney, Jeffrey S.; Marley, Nancy A.

    2003-01-01

    Atmospheric chemistry is an important discipline for understanding air pollution and its impacts. This mini-review gives a brief history of air pollution and presents an overview of some of the basic photochemistry involved in the production of ozone and other oxidants in the atmosphere. Urban air quality issues are reviewed with a specific focus on ozone and other oxidants, primary and secondary aerosols, alternative fuels, and the potential for chlorine releases to amplify oxidant chemistry in industrial areas. Regional air pollution issues such as acid rain, long-range transport of aerosols and visibility loss, and the connections of aerosols to ozonemore » and peroxyacetyl nitrate chemistry are examined. Finally, the potential impacts of air pollutants on the global-scale radiative balances of gases and aerosols are discussed briefly.« less

  12. Oxygen-reducing catalyst layer

    DOE Patents [OSTI]

    O'Brien, Dennis P.; Schmoeckel, Alison K.; Vernstrom, George D.; Atanasoski, Radoslav; Wood, Thomas E.; Yang, Ruizhi; Easton, E. Bradley; Dahn, Jeffrey R.; O'Neill, David G.

    2011-03-22

    An oxygen-reducing catalyst layer, and a method of making the oxygen-reducing catalyst layer, where the oxygen-reducing catalyst layer includes a catalytic material film disposed on a substrate with the use of physical vapor deposition and thermal treatment. The catalytic material film includes a transition metal that is substantially free of platinum. At least one of the physical vapor deposition and the thermal treatment is performed in a processing environment comprising a nitrogen-containing gas.

  13. Compressor discharge bleed air circuit in gas turbine plants and related method

    DOE Patents [OSTI]

    Anand, Ashok Kumar; Berrahou, Philip Fadhel; Jandrisevits, Michael

    2002-01-01

    A gas turbine system that includes a compressor, a turbine component and a load, wherein fuel and compressor discharge bleed air are supplied to a combustor and gaseous products of combustion are introduced into the turbine component and subsequently exhausted to atmosphere. A compressor discharge bleed air circuit removes bleed air from the compressor and supplies one portion of the bleed air to the combustor and another portion of the compressor discharge bleed air to an exhaust stack of the turbine component in a single cycle system, or to a heat recovery steam generator in a combined cycle system. In both systems, the bleed air diverted from the combustor may be expanded in an air expander to reduce pressure upstream of the exhaust stack or heat recovery steam generator.

  14. Compressor discharge bleed air circuit in gas turbine plants and related method

    DOE Patents [OSTI]

    Anand, Ashok Kumar; Berrahou, Philip Fadhel; Jandrisevits, Michael

    2003-04-08

    A gas turbine system that includes a compressor, a turbine component and a load, wherein fuel and compressor discharge bleed air are supplied to a combustor and gaseous products of combustion are introduced into the turbine component and subsequently exhausted to atmosphere. A compressor discharge bleed air circuit removes bleed air from the compressor and supplies one portion of the bleed air to the combustor and another portion of the compressor discharge bleed air to an exhaust stack of the turbine component in a single cycle system, or to a heat recovery steam generator in a combined cycle system. In both systems, the bleed air diverted from the combustor may be expanded in an air expander to reduce pressure upstream of the exhaust stack or heat recovery steam generator.

  15. University of Arizona Compressed Air Energy Storage

    SciTech Connect (OSTI)

    Simmons, Joseph; Muralidharan, Krishna

    2012-12-31

    Boiled down to its essentials, the grant’s purpose was to develop and demonstrate the viability of compressed air energy storage (CAES) for use in renewable energy development. While everyone agrees that energy storage is the key component to enable widespread adoption of renewable energy sources, the development of a viable scalable technology has been missing. The Department of Energy has focused on expanded battery research and improved forecasting, and the utilities have deployed renewable energy resources only to the extent of satisfying Renewable Portfolio Standards. The lack of dispatchability of solar and wind-based electricity generation has drastically increased the cost of operation with these components. It is now clear that energy storage coupled with accurate solar and wind forecasting make up the only combination that can succeed in dispatchable renewable energy resources. Conventional batteries scale linearly in size, so the price becomes a barrier for large systems. Flow batteries scale sub-linearly and promise to be useful if their performance can be shown to provide sufficient support for solar and wind-base electricity generation resources. Compressed air energy storage provides the most desirable answer in terms of scalability and performance in all areas except efficiency. With the support of the DOE, Tucson Electric Power and Science Foundation Arizona, the Arizona Research Institute for Solar Energy (AzRISE) at the University of Arizona has had the opportunity to investigate CAES as a potential energy storage resource.

  16. Polyoxometalate flow battery

    DOE Patents [OSTI]

    Anderson, Travis M.; Pratt, Harry D.

    2016-03-15

    Flow batteries including an electrolyte of a polyoxometalate material are disclosed herein. In a general embodiment, the flow battery includes an electrochemical cell including an anode portion, a cathode portion and a separator disposed between the anode portion and the cathode portion. Each of the anode portion and the cathode portion comprises a polyoxometalate material. The flow battery further includes an anode electrode disposed in the anode portion and a cathode electrode disposed in the cathode portion.

  17. Solids mass flow determination

    DOE Patents [OSTI]

    Macko, Joseph E.

    1981-01-01

    Method and apparatus for determining the mass flow rate of solids mixed with a transport fluid to form a flowing mixture. A temperature differential is established between the solids and fluid. The temperature of the transport fluid prior to mixing, the temperature of the solids prior to mixing, and the equilibrium temperature of the mixture are monitored and correlated in a heat balance with the heat capacities of the solids and fluid to determine the solids mass flow rate.

  18. Reducing Regulatory Burden | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Request for information on reducing regulatory burden PDF icon Reducing Regulatory Burden More Documents & Publications Reducing Regulatory Burden DOE Comments Regulatory Burden RFI Reducing Regulatory Burden

  19. Emission Regulations Reduced Impact of Climate Change in CA

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Emission Regulations Reduced Impact of Climate Change in CA Emission Regulations Reduced Impact of Climate Change in CA Study shows clean diesel programs slashed black carbon, a powerful short-term contributor to global warming June 13, 2013 Jon Weiner 510-486-4014 jrweiner@lbl.gov CA-BC-graphic.jpg Sacramento - Reductions in emissions of black carbon since the late 1980s, mostly from diesel engines as a result of air quality programs, have resulted in a measurable reduction of concentrations of

  20. Reducing dust emissions at OAO Alchevskkoks coke battery 10A

    SciTech Connect (OSTI)

    T.F. Trembach; E.N. Lanina

    2009-07-15

    Coke battery 10A with rammed batch is under construction at OAO Alchevskkoks. The design documentation developed by Giprokoks includes measures for reducing dust emissions to the atmosphere. Aspiration systems with dry dust trapping are employed in the new components of coke battery 10A and in the existing coke-sorting equipment. Two-stage purification of dusty air in cyclones and bag filters is employed for the coke-sorting equipment. This system considerably reduces coke-dust emissions to the atmosphere.

  1. Excess flow shutoff valve

    DOE Patents [OSTI]

    Kiffer, Micah S.; Tentarelli, Stephen Clyde

    2016-02-09

    Excess flow shutoff valve comprising a valve body, a valve plug, a partition, and an activation component where the valve plug, the partition, and activation component are disposed within the valve body. A suitable flow restriction is provided to create a pressure difference between the upstream end of the valve plug and the downstream end of the valve plug when fluid flows through the valve body. The pressure difference exceeds a target pressure difference needed to activate the activation component when fluid flow through the valve body is higher than a desired rate, and thereby closes the valve.

  2. Multiple sort flow cytometer

    DOE Patents [OSTI]

    Van den Engh, Ger (Seattle, WA); Esposito, Richard J. (Seattle, WA)

    1996-01-01

    A flow cytometer utilizes multiple lasers for excitation and respective fluorescence of identified dyes bonded to specific cells or events to identify and verify multiple events to be sorted from a sheath flow and droplet stream. Once identified, verified and timed in the sheath flow, each event is independently tagged upon separation from the flow by an electrical charge of +60, +120, or +180 volts and passed through oppositely charged deflection plates with ground planes to yield a focused six way deflection of at least six events in a narrow plane.

  3. Multiple sort flow cytometer

    DOE Patents [OSTI]

    Engh, G. van den; Esposito, R.J.

    1996-01-09

    A flow cytometer utilizes multiple lasers for excitation and respective fluorescence of identified dyes bonded to specific cells or events to identify and verify multiple events to be sorted from a sheath flow and droplet stream. Once identified, verified and timed in the sheath flow, each event is independently tagged upon separation from the flow by an electrical charge of +60, +120, or +180 volts and passed through oppositely charged deflection plates with ground planes to yield a focused six way deflection of at least six events in a narrow plane. 8 figs.

  4. INEEL AIR MODELING PROTOCOL ext

    SciTech Connect (OSTI)

    C. S. Staley; M. L. Abbott; P. D. Ritter

    2004-12-01

    Various laws stemming from the Clean Air Act of 1970 and the Clean Air Act amendments of 1990 require air emissions modeling. Modeling is used to ensure that air emissions from new projects and from modifications to existing facilities do not exceed certain standards. For radionuclides, any new airborne release must be modeled to show that downwind receptors do not receive exposures exceeding the dose limits and to determine the requirements for emissions monitoring. For criteria and toxic pollutants, emissions usually must first exceed threshold values before modeling of downwind concentrations is required. This document was prepared to provide guidance for performing environmental compliance-driven air modeling of emissions from Idaho National Engineering and Environmental Laboratory facilities. This document assumes that the user has experience in air modeling and dose and risk assessment. It is not intended to be a "cookbook," nor should all recommendations herein be construed as requirements. However, there are certain procedures that are required by law, and these are pointed out. It is also important to understand that air emissions modeling is a constantly evolving process. This document should, therefore, be reviewed periodically and revised as needed. The document is divided into two parts. Part A is the protocol for radiological assessments, and Part B is for nonradiological assessments. This document is an update of and supersedes document INEEL/INT-98-00236, Rev. 0, INEEL Air Modeling Protocol. This updated document incorporates changes in some of the rules, procedures, and air modeling codes that have occurred since the protocol was first published in 1998.

  5. Method for reducing pressure drop through filters, and filter exhibiting reduced pressure drop

    DOE Patents [OSTI]

    Sappok, Alexander; Wong, Victor

    2014-11-18

    Methods for generating and applying coatings to filters with porous material in order to reduce large pressure drop increases as material accumulates in a filter, as well as the filter exhibiting reduced and/or more uniform pressure drop. The filter can be a diesel particulate trap for removing particulate matter such as soot from the exhaust of a diesel engine. Porous material such as ash is loaded on the surface of the substrate or filter walls, such as by coating, depositing, distributing or layering the porous material along the channel walls of the filter in an amount effective for minimizing or preventing depth filtration during use of the filter. Efficient filtration at acceptable flow rates is achieved.

  6. CSP Tower Air Brayton Combustor

    Broader source: Energy.gov [DOE]

    This fact sheet describes a concentrating solar power tower air Brayton combustor project awarded under the DOE's 2012 SunShot CSP R&D award program. The team, led by the Southwest Research Institute, is working to develop an external combustor that allows for the mixing of CSP-heated air with natural gas in hybridized power plants. This project aims to increase the temperature capabilities of the CSP tower air receiver and gas turbine to 1,000ºC and achieve energy conversion efficiencies greater than 50%.

  7. Personal cooling air filtering device

    DOE Patents [OSTI]

    Klett, James; Conway, Bret

    2002-08-13

    A temperature modification system for modifying the temperature of fluids includes at least one thermally conductive carbon foam element, the carbon foam element having at least one flow channel for the passage of fluids. At least one temperature modification device is provided, the temperature modification device thermally connected to the carbon foam element and adapted to modify the temperature of the carbon foam to modify the temperature of fluids flowing through the flow channels. Thermoelectric and/or thermoionic elements can preferably be used as the temperature modification device. A method for the reversible temperature modification of fluids includes the steps of providing a temperature modification system including at least one thermally conductive carbon foam element having flow channels and at least one temperature modification device, and flowing a fluid through the flow channels.

  8. EPA Air Pollution and the Clean Air Act Webpage | Open Energy...

    Open Energy Info (EERE)

    Air Pollution and the Clean Air Act Webpage Jump to: navigation, search OpenEI Reference LibraryAdd to library Web Site: EPA Air Pollution and the Clean Air Act Webpage Abstract...

  9. Swimming motility reduces Azotobacter vinelandii deposition to silica surfaces

    SciTech Connect (OSTI)

    Lu, Nanxi; Massoudieh, Arash; Liang, Xiaomeng; Hu, Dehong; Kamai, Tamir; Ginn, Timothy R.; Zilles, Julie L.; Nguyen, Thanh H.

    2015-09-16

    The role of swimming motility on bacterial transport and fate in porous media was evaluated. We present microscopic evidence showing that strong swimming motility reduces attachment of Azotobacter vinelandii cells to silica surfaces. Applying global and cluster statistical analyses to microscopic videos taken under non-flow conditions, wild type, flagellated A. vinelandii strain DJ showed strong swimming ability with an average speed of 13.1 ?m/s, DJ77 showed impaired swimming averaged at 8.7 ?m/s, and both the non-flagellated JZ52 and chemically treated DJ cells were non-motile. Quantitative analyses of trajectories observed at different distances above the collector of a radial stagnation point flow cell (RSPF) revealed that both swimming and non-swimming cells moved with the flow when at a distance of at least 20 ?m from the collector surface. Near the surface, DJ cells showed both horizontal and vertical movement diverging them from reaching surfaces, while chemically treated DJ cells moved with the flow to reach surfaces, suggesting that strong swimming reduced attachment. In agreement with the RSPF results, the deposition rates obtained for two-dimensional multiple-collector micromodels were also lowest for DJ, while DJ77 and JZ52 showed similar values. Strong swimming specifically reduced deposition on the upstream surfaces of the micromodel collectors.

  10. High speed flow cytometric separation of viable cells

    DOE Patents [OSTI]

    Sasaki, D.T.; Van den Engh, G.J.; Buckie, A.M.

    1995-11-14

    Hematopoietic cell populations are separated to provide cell sets and subsets as viable cells with high purity and high yields, based on the number of original cells present in the mixture. High-speed flow cytometry is employed using light characteristics of the cells to separate the cells, where high flow speeds are used to reduce the sorting time.

  11. High speed flow cytometric separation of viable cells

    DOE Patents [OSTI]

    Sasaki, Dennis T. (Mountain View, CA); Van den Engh, Gerrit J. (Seattle, WA); Buckie, Anne-Marie (Margate, GB)

    1995-01-01

    Hematopoietic cell populations are separated to provide cell sets and subsets as viable cells with high purity and high yields, based on the number of original cells present in the mixture. High-speed flow cytometry is employed using light characteristics of the cells to separate the cells, where high flow speeds are used to reduce the sorting time.

  12. Hybrid membrane--PSA system for separating oxygen from air

    DOE Patents [OSTI]

    Staiger, Chad L.; Vaughn, Mark R.; Miller, A. Keith; Cornelius, Christopher J.

    2011-01-25

    A portable, non-cryogenic, oxygen generation system capable of delivering oxygen gas at purities greater than 98% and flow rates of 15 L/min or more is described. The system consists of two major components. The first component is a high efficiency membrane capable of separating argon and a portion of the nitrogen content from air, yielding an oxygen-enriched permeate flow. This is then fed to the second component, a pressure swing adsorption (PSA) unit utilizing a commercially available, but specifically formulated zeolite compound to remove the remainder of the nitrogen from the flow. The system is a unique gas separation system that can operate at ambient temperatures, for producing high purity oxygen for various applications (medical, refining, chemical production, enhanced combustion, fuel cells, etc . . . ) and represents a significant advance compared to current technologies.

  13. Prototype Systems for Measuring Outdoor Air Intake Rates in Rooftop Air Handlers

    SciTech Connect (OSTI)

    Fisk, William J.; Chan, Wanyu R.; Hotchi, Toshifumi

    2015-01-01

    The widespread absence of systems for real-time measurement and feedback control, of minimum outdoor air intake rates in HVAC systems contributes to the poor control of ventilation rates in commercial buildings. Ventilation rates affect building energy consumption and influence occupant health. The project designed fabricated and tested four prototypes of systems for measuring rates of outdoor air intake into roof top air handlers. All prototypes met the ±20% accuracy target at low wind speeds, with all prototypes accurate within approximately ±10% after application of calibration equations. One prototype met the accuracy target without a calibration. With two of four prototype measurement systems, there was no evidence that wind speed or direction affected accuracy; however, winds speeds were generally below usually 3.5 m s-1 (12.6 km h-1) and further testing is desirable. The airflow resistance of the prototypes was generally less than 35 Pa at maximum RTU air flow rates. A pressure drop of this magnitude will increase fan energy consumption by approximately 4%. The project did not have resources necessary to estimate costs of mass produced systems. The retail cost of components and materials used to construct prototypes ranged from approximately $1,200 to $1,700. The test data indicate that the basic designs developed in this project, particularly the designs of two of the prototypes, have considerable merit. Further design refinement, testing, and cost analysis would be necessary to fully assess commercial potential. The designs and test results will be communicated to the HVAC manufacturing community.

  14. Flow cytometry aids basic cell biology research and drug discovery

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Flow cytometry aids basic cell biology research and drug discovery Flow cytometry aids basic cell biology research and drug discovery Life Technologies Corporation and LANL have released the Attune® Acoustic Focusing Cytometer, featuring a reduced footprint, reduced consumables, and an affordable price. April 3, 2012 Attune® Acoustic Focusing Cytometer The Attune® Acoustic Focusing Cytometer achieves sample throughput at rates over 10 times faster than other cytometers-up to 1,000 μL per

  15. DunoAir | Open Energy Information

    Open Energy Info (EERE)

    DunoAir Jump to: navigation, search Name: DunoAir Place: Hessen, Germany Zip: 6865 VX Sector: Wind energy Product: Doorwerth-based wind project developer. References: DunoAir1...

  16. Is there something in the air?

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Control the Present Is there something in the air? Is there something in the air? LANL implements a conscientious program of sampling to ensure air quality. August 1, 2013 ...

  17. Metal-Air Battery - Energy Innovation Portal

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Find More Like This Return to Search Metal-Air Battery Battelle Memorial Institute Contact ... The open electrochemical cells may function as metal-air batteries.Benefits Metal-air ...

  18. Why does LANL sample the air?

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Why does LANL sample the air? Why does LANL sample the air? As the most significant pathway, air is monitored to ensure that any possible release is quickly detected. Diagram of ...

  19. Heating, Ventilation and Air Conditioning Efficiency

    Energy Savers [EERE]

    Functions of HVAC Systems The purpose of a Heating, Ventilation and Air Conditioning ... energy efficiency as one of the design factors 3 Air Air is the major conductor of heat. ...

  20. Instream Flow Project

    Broader source: Energy.gov [DOE]

    As a part of the Department of Energy’s Water Power Program, the Instream Flow Project was carried out by Oak Ridge National Laboratory, Pacific Northwest National Laboratory, and Argonne National Laboratory to develop tools aimed at defining environmental flow needs for hydropower operations.

  1. Microelectromechanical flow control apparatus

    DOE Patents [OSTI]

    Okandan, Murat

    2009-06-02

    A microelectromechanical (MEM) flow control apparatus is disclosed which includes a fluid channel formed on a substrate from a first layer of a nonconducting material (e.g. silicon nitride). A first electrode is provided on the first layer of the nonconducting material outside the flow channel; and a second electrode is located on a second layer of the nonconducting material above the first layer. A voltage applied between the first and second electrodes deforms the fluid channel to increase its cross-sectional size and thereby increase a flow of a fluid through the channel. In certain embodiments of the present invention, the fluid flow can be decreased or stopped by applying a voltage between the first electrode and the substrate. A peristaltic pumping of the fluid through the channel is also possible when the voltage is applied in turn between a plurality of first electrodes and the substrate. A MEM flow control assembly can also be formed by providing one or more MEM flow control devices on a common substrate together with a submicron filter. The MEM flow control assembly can optionally include a plurality of pressure sensors for monitoring fluid pressure and determining flow rates through the assembly.

  2. Commercial Compressed Air Systems Program

    Broader source: Energy.gov [DOE]

    There are incentives for variable frequency drive screw compressors (10-40 HP), air receivers/tanks for load/no-load screw and vane compressors, cycling refrigerated thermal mass dryers (up to 30...

  3. ARM - Instrument - inletcvi-air

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    govInstrumentsinletcvi-air Documentation Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Error occurred. Instrument "inletcvi

  4. ARM - Instrument - inletisok-air

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    govInstrumentsinletisok-air Documentation Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Error occurred. Instrument "inletisok

  5. Clean Air Act | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Services » Environment » Environmental Policy and Assistance » Clean Air Act Clean Air Act The primary law governing the Department of Energy (DOE) air pollution control activities is the Clean Air Act (CAA). This law defines the role of the U.S. Environmental Protection Agency (EPA) and state, local and tribal air programs in protecting and improving the nation's air quality and stratospheric ozone layer by regulating emissions from mobile and stationary sources. The CAA contains titles

  6. Air-Conditioning Basics | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Air-Conditioning Basics Air-Conditioning Basics August 16, 2013 - 1:59pm Addthis Air conditioning is one of the most common ways to cool homes and buildings. How Air Conditioners Work Air conditioners employ the same operating principles and basic components as refrigerators. Refrigerators use energy (usually electricity) to transfer heat from the cool interior of the refrigerator to the relatively warm surroundings; likewise, an air conditioner uses energy to transfer heat from the interior

  7. Use of Geophysical Techniques to Characterize Fluid Flow in a Geothermal Reservoir

    Broader source: Energy.gov [DOE]

    Project objectives: Joint inversion of geophysical data for ground water flow imaging; Reduced the cost in geothermal exploration and monitoring; & Combined passive and active geophysical methods.

  8. Nonisothermal Two-Phase Porous Flow

    Energy Science and Technology Software Center (OSTI)

    1992-02-21

    NORIA is a finite element program that simultaneously solves four nonlinear parabolic, partial differential equations that describe the transport of water, water vapor, air, and energy through partially saturated porous media. NORIA is designed for the analysis of two-dimensional, non-isothermal, unsaturated porous flow problems. Nearly all material properties, such as permeability, can either be set to constant values or defined as functions of the dependent and independent variables by user-supplied subroutines. The gas phase ismore » taken to be ideal. NORIA is intended to solve nonisothermal problems in which large gradients are expected in the gas pressure.« less

  9. The Clean Air Interstate Rule

    SciTech Connect (OSTI)

    Debra Jezouit; Frank Rambo

    2005-07-01

    On May 12, 2005, EPA promulgated the Clean Air Interstate Rule, which overhauls and expands the scope of air emissions trading programs in the eastern United States. The rule imposes statewide caps on emissions of nitrogen oxides and sulfur dioxide to be introduced in two phases, beginning in 2009. This article briefly explains the background leading up to the rule and summarizes its key findings and requirements. 2 refs., 1 fig., 1 tab.

  10. Mobile Source Air Toxics Rule (released in AEO2008)

    Reports and Publications (EIA)

    2008-01-01

    On February 9, 2007, the Environmental Protection Agency (EPA) released its MSAT2 rule, which will establish controls on gasoline, passenger vehicles, and portable fuel containers. The controls are designed to reduce emissions of benzene and other hazardous air pollutants. Benzene is a known carcinogen, and the EPA estimates that mobile sources produced more than 70% of all benzene emissions in 1999. Other mobile source air toxics, including 1,3-butadiene, formaldehyde, acetaldehyde, acrolein, and naphthalene, also are thought to increase cancer rates or contribute to other serious health problems.

  11. Clean Air Interstate Rule (released in AEO2009)

    Reports and Publications (EIA)

    2009-01-01

    Clean Air Interstate Rule (CAIR) is a cap-and-trade program promulgated by the Environmental Protection Agency in 2005, covering 28 eastern U.S. states and the District of Columbia. It was designed to reduce sulfur dioxide (SO2) and nitrogen oxide (NOx) emissions in order to help states meet their National Ambient Air Quality Standards (NAAQS) for ozone and particulate matter (PM2.5) and to further emissions reductions already achieved through the Acid Rain Program and the NOx State Implementation Plan call program. The rule was set to commence in 2009 for seasonal and annual NOx emissions and in 2010 for SO2 emissions.

  12. Reduced shedding regenerator and method

    DOE Patents [OSTI]

    Qiu, Songgang; Augenblick, John E.; Erbeznik, Raymond M.

    2007-05-22

    A reduced shedding regenerator and method are disclosed with regenerator surfaces to minimize shedding of particles from the regenerator thereby alleviating a source of potential damage and malfunction of a thermal regenerative machine using the regenerator.

  13. Ductless Mini-Split Air Conditioners

    Broader source: Energy.gov [DOE]

    Ductless mini-split air conditioners are a good choice if you want a zoned air conditioning system but have no ducts in your house.

  14. Preheated Combustion Air | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Preheated Combustion Air This tip sheet describes how to improve process heating efficiency by preheating combustion air for burners. PROCESS HEATING TIP SHEET 1 PDF icon ...

  15. Compressed Air Storage Strategies | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    PDF icon Compressed Air Storage Strategies (August 2004) More Documents & Publications Compressed Air System Control Strategies Stabilizing System Pressure Effect of Intake on ...

  16. Save the World Air | Open Energy Information

    Open Energy Info (EERE)

    the World Air Jump to: navigation, search Name: Save the World Air Place: Santa Barbara, California Zip: 93101 Product: California-based, device manufacturer for better fuel...

  17. Room Air Conditioners | Department of Energy

    Office of Environmental Management (EM)

    frequently. Based on size alone, an air conditioner generally needs 20 Btu for each square foot of living space. Other important factors to consider when selecting an air...

  18. Central Air Conditioning | Department of Energy

    Office of Environmental Management (EM)

    Air supply and return ducts come from indoors through the home's exterior wall or roof to connect with the packaged air conditioner, which is usually located outdoors....

  19. Maintaining System Air Quality | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Maintaining System Air Quality (August 2004) More Documents & Publications Remove Condensate with Minimal Air Loss Engineer End Uses for Maximum Efficiency Stabilizing System...

  20. Property:AirMeasurement | Open Energy Information

    Open Energy Info (EERE)

    String Description MHK Axial Load Measurement Categories Used in FormTemplate MHKSensor & MHKInstrument Allows Values Barometric Pressure (Air);Precipitation (Air);Relative...

  1. Aerosol Oxidation Speeds Up in Smoggy Air

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Aerosol Oxidation Speeds Up in Smoggy Air Print Organic aerosols (nanometer-sized liquid or solid particles suspended in air) are important constituents of the troposphere, and ...

  2. Reactive Air Aluminizing - Energy Innovation Portal

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Find More Like This Return to Search Reactive Air Aluminizing Pacific Northwest National Laboratory Contact PNNL About This Technology Reactive Air Aluminizing process diagram ...

  3. Heating Ventilation and Air Conditioning Efficiency | Department...

    Energy Savers [EERE]

    Heating Ventilation and Air Conditioning Efficiency Heating Ventilation and Air Conditioning Efficiency This presentation covers common pitfalls that lead to wasted energy in ...

  4. ARM - Lesson Plans: Air Density and Temperature

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Teachers' Toolbox Lesson Plans Lesson Plans: Air Density and Temperature Objective The objective of this activity is to investigate the effect of temperature on the density of air. ...

  5. Lithium Air Electrodes - Energy Innovation Portal

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Lithium Air Electrodes Pacific Northwest National Laboratory Contact PNNL About This Technology A comparison chart illustrates that Li-Air electrodes offer the highest energy ...

  6. Hopi Tribe Clean Air Partnership Project

    Energy Savers [EERE]

    HOPI TRIBE CLEAN AIR PARTNERSHIP PROJECT Roger Tungovia, Project Manager Ken Lomayestewa, ... Change the name from Hopi Clean Air Partnership Project to Hopi Renewable Energy Office ...

  7. Air Liquide Hydrogen Energy | Open Energy Information

    Open Energy Info (EERE)

    Hydrogen Energy Jump to: navigation, search Logo: Air Liquide Hydrogen Energy Name: Air Liquide Hydrogen Energy Address: 6, Rue Cognacq-Jay Place: Paris, France Zip: 75321 Sector:...

  8. Design considerations for the cross jet air mixing in the municipal solid waste incinerators

    SciTech Connect (OSTI)

    Ryu, C.K.; Choi, S.

    1995-12-31

    In the mass-burning municipal solid waste incinerators, overfire air injection plays a key role in the improvement of mixing and reaction between oxygen and incomplete combustion products and/or pollutants. However, design parameters of overfire air nozzles are not well understood and sometimes confusing. In this paper, major design parameters of the cross jet air nozzles are discussed along with flow simulation results for the simplified furnace geometry. The overall performance of the jet air mixing and the effects of design parameters are quantitatively evaluated. The flow simulation results are interpreted in terms of the penetration depth of the jet into the main flow, the size of the recirculation zone and the ratio of the unmixed portion of the gas flow. The momentum flux ratio(J) of the jet to the cross flow strongly affects the penetration depth of the jet and the mixing of two flow streams. As the inter-nozzle distance (S in non-dimensional form) decreases, the penetration depth decreases but the size of recirculation zone increases and the resultant mixing deteriorates. The degree of mixing of the jet with the cross gas stream is evaluated in terms of the mass-averaged probability distribution of the relative concentration. Fresh air disperses more efficiently into the gas stream as J and S increase. The momentum flux ratio and the inter-nozzle distance are considered as important design parameters, and optimum values of these variables can be chosen for the given furnace conditions. This numerical evaluation also provides the basis of the similarity consideration for the cold flow model tests and the validity of the 2-dimensional idealization.

  9. Improved particle impactor assembly for size selective high volume air sampler

    DOE Patents [OSTI]

    Langer, G.

    1987-03-23

    Air containing entrained particulate matter is directed through a plurality of parallel, narrow, vertically oriented apertures of an inlet element toward an adjacently located, relatively large, dust impaction surface preferably covered with an adhesive material. The air flow turns over the impaction surface, leaving behind, the relatively larger particles and passes through two elongate apertures defining the outer bounds of the impaction collection surface to pass through divergent passages which slow down and distribute the air flow, with entrained smaller particles, over a fine filter element that separates the fine particles from the air. By appropriate selection of dimensions and the number of inlet apertures air flow through the inlet element is provided a nonuniform velocity distribution with the lower velocities being obtained near the center of the inlet apertures, to separate out particles larger than a certain predetermined size on the impaction collection surface. The impaction collection surface, even in a moderately sized apparatus, is thus relatively large and permits the prolonged sampling of air for periods extending to four weeks. 6 figs.

  10. Control of flow through a vapor generator

    DOE Patents [OSTI]

    Radcliff, Thomas D.

    2005-11-08

    In a Rankine cycle system wherein a vapor generator receives heat from exhaust gases, provision is made to avoid overheating of the refrigerant during ORC system shut down while at the same time preventing condensation of those gases within the vapor generator when its temperature drops below a threshold temperature by diverting the flow of hot gases to ambient and to thereby draw ambient air through the vapor generator in the process. In one embodiment, a bistable ejector is adjustable between one position, in which the hot gases flow through the vapor generator, to another position wherein the gases are diverted away from the vapor generator. Another embodiment provides for a fixed valve ejector with a bias towards discharging to ambient, but with a fan on the downstream side of said vapor generator for overcoming this bias.

  11. An empirical analysis of exposure-based regulation to abate toxic air pollution

    SciTech Connect (OSTI)

    Marakovits, D.M.; Considine, T.J.

    1996-11-01

    Title III of the 1990 Clean Air Act Amendments requires the Environmental Protection Agency to regulate 189 air toxics, including emissions from by-product coke ovens. Economists criticize the inefficiency of uniform standards, but Title III makes no provision for flexible regulatory instruments. Environmental health scientists suggest that population exposure, not necessarily ambient air quality, should motivate environmental air pollution policies. Using an engineering-economic model of the United States steel industry, we estimate that an exposure-based policy can achieve the same level of public health as coke oven emissions standards and can reduce compliance costs by up to 60.0%. 18 refs., 3 figs., 1 tab.

  12. Magnetic Refrigeration Technology for High Efficiency Air Conditioning

    SciTech Connect (OSTI)

    Boeder, A; Zimm, C

    2006-09-30

    Magnetic refrigeration was investigated as an efficient, environmentally friendly, flexible alternative to conventional residential vapor compression central air conditioning systems. Finite element analysis (FEA) models of advanced geometry active magnetic regenerator (AMR) beds were developed to minimize bed size and thus magnet mass by optimizing geometry for fluid flow and heat transfer and other losses. Conventional and magnetocaloric material (MCM) regenerator fabrication and assembly techniques were developed and advanced geometry passive regenerators were built and tested. A subscale engineering prototype (SEP) magnetic air conditioner was designed, constructed and tested. A model of the AMR cycle, combined with knowledge from passive regenerator experiments and FEA results, was used to design the regenerator beds. A 1.5 Tesla permanent magnet assembly was designed using FEA and the bed structure and plenum design was extensively optimized using FEA. The SEP is a flexible magnetic refrigeration platform, with individually instrumented beds and high flow rate and high frequency capability, although the current advanced regenerator geometry beds do not meet performance expectations, probably due to manufacturing and assembly tolerances. A model of the AMR cycle was used to optimize the design of a 3 ton capacity magnetic air conditioner, and the system design was iterated to minimize external parasitic losses such as heat exchanger pressure drop and fan power. The manufacturing cost for the entire air conditioning system was estimated, and while the estimated SEER efficiency is high, the magnetic air conditioning system is not cost competitive as currently configured. The 3 ton study results indicate that there are other applications where magnetic refrigeration is anticipated to have cost advantages over conventional systems, especially applications where magnetic refrigeration, through the use of its aqueous heat transfer fluid, could eliminate intermediate heat exchangers or oil distribution issues found in traditional vapor compression systems.

  13. Remove Condensate with Minimal Air Loss | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Remove Condensate with Minimal Air Loss This tip sheet outlines several condensate removal methods as part of maintaining compressed air system air quality. COMPRESSED AIR TIP ...

  14. Rotor bore and turbine rotor wheel/spacer heat exchange flow circuit

    DOE Patents [OSTI]

    Caruso, Philip M.; Eldrid, Sacheverel Quentin; Ladhani, Azad A.; DeMania, Alan Richard; Palmer, Gene David; Wilson, Ian David; Rathbun, Lisa Shirley; Akin, Robert Craig

    2002-01-01

    In a turbine having closed-circuit steam-cooling passages about the rim of the rotor during steady-state operation, compressor discharge air is supplied to the rotor bore for passage radially outwardly into the wheel space cavities between the wheels and spacers. Communicating slots and channels in the spacers and wheels at circumferentially spaced positions enable egress of the compressor discharge air into the hot gas flow path. At turbine startup, cooling air flows through the closed-circuit steam passages to cool the outer rim of the rotor while compressor discharge air pre-warms the wheels and spacers. At steady-state, cooling steam is supplied in the closed-circuit steam-cooling passages and compressor discharge air is supplied through the bore and into the wheel space cavities to cool the rotor.

  15. Test report for calibration grooming and alignment of the LDUA purge air supply (LDUA SYSTEM 5230)

    SciTech Connect (OSTI)

    Potter, J.D.

    1996-05-21

    The Light Duty Utility Arm (LDUA) is a remotely operated manipulator used to enter into underground waste tanks through one of the tank risers. National Electric Code requirements mandate that the in-tank portions of the LDUA be maintained at a positive pressure for entrances into a flammable atmosphere. The LDUA Purge Air Supply System (PASS) uses small portable air compressors to provide a constant low flow of instrument grade air for this purpose. This document contains the results, conclusions and recommendations arrived at by the calibration grooming and alignment tests performed on the PASS in accordance with WHC-SD-WM-TC-070.

  16. Characterization of Dry-Air Aged Granules of Silver-Functionalized Silica

    Office of Scientific and Technical Information (OSTI)

    Aerogel (Technical Report) | SciTech Connect Dry-Air Aged Granules of Silver-Functionalized Silica Aerogel Citation Details In-Document Search Title: Characterization of Dry-Air Aged Granules of Silver-Functionalized Silica Aerogel This is a letter report to complete level 3 milestone "Assess aging characteristics of silica aerogels" for DOE FCRD program. Recently, samples of Ag0-functionalized silica aerogel were aged in flowing dry air for up to 6 months and then loaded with

  17. Flame holding tolerant fuel and air premixer for a gas turbine combustor

    DOE Patents [OSTI]

    York, William David; Johnson, Thomas Edward; Ziminsky, Willy Steve

    2012-11-20

    A fuel nozzle with active cooling is provided. It includes an outer peripheral wall, a nozzle center body concentrically disposed within the outer wall in a fuel and air pre-mixture. The fuel and air pre-mixture includes an air inlet, a fuel inlet and a premixing passage defined between the outer wall in the center body. A gas fuel flow passage is provided. A first cooling passage is included within the center body in a second cooling passage is defined between the center body and the outer wall.

  18. Tank depletion flow controller

    DOE Patents [OSTI]

    Georgeson, Melvin A.

    1976-10-26

    A flow control system includes two bubbler tubes installed at different levels within a tank containing such as radioactive liquid. As the tank is depleted, a differential pressure transmitter monitors pressure differences imparted by the two bubbler tubes at a remote, shielded location during uniform time intervals. At the end of each uniform interval, balance pots containing a dense liquid are valved together to equalize the pressures. The resulting sawtooth-shaped signal generated by the differential pressure transmitter is compared with a second sawtooth signal representing the desired flow rate during each time interval. Variations in the two signals are employed by a control instrument to regulate flow rate.

  19. Passive Room-to-Room Air Transfer, Fresno, California (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2014-02-01

    Field testing was performed in a retrofit unoccupied test house in Fresno, California. Three air-based heating, ventilation, and air conditioning (HVAC) distribution systems - a typical airflow ducted system to the bedrooms, a low airflow ducted system to the bedrooms, and a system with no ductwork to the bedrooms - were evaluated during heating, cooling, and midseason conditions. The relative ability of each of the three systems was assessed with respect to relevant Air Conditioning Contractors of America (ACCA) and ASHRAE standards for house temperature uniformity and stability, respectively. Computational fluid dynamics (CFD) modeling also was performed and refined based on comparison to field test results to determine the air flow rate into the bedrooms of over-door and bottom-of-door air transfer grilles.

  20. Reduced waste generation, FY 1986

    SciTech Connect (OSTI)

    Not Available

    1986-02-01

    The United States Department of Energy is committed to the principles of minimizing the quantity and transuranic content of its transuranium (TRU) waste being generated at its nuclear facilities. The reasons are to reduce costs associated with waste handling and disposal, and also to reduce radiation exposure to workers and risk for radionuclide release to man and the environment. The purpose of this document is to provide the USDOE with a plan of research and development tasks for waste minimization, and is prepared so as to provide the maximum impact on volumes based on cost/benefit factors. The document is to be updated annually or as needed to reflect current and future tasks. The Reduced Waste Generation (RWG) tasks encompass a wide range of activities with the principal goals of (1) preventing the generation of waste and (2) converting TRU waste into low-level wastes (LLW) by sorting or decontamination. Concepts for reducing the volume such as in incineration and compaction are considered within the discipline of Reduced Waste Generation, but are considered as somewhat developed technology with only a need for implementation. 33 refs.

  1. OPTIMIZATION OF COAL PARTICLE FLOW PATTERNS IN LOW NOX BURNERS

    SciTech Connect (OSTI)

    Jost O.L. Wendt; Gregory E. Ogden; Jennifer Sinclair; Stephanus Budilarto

    2001-09-04

    It is well understood that the stability of axial diffusion flames is dependent on the mixing behavior of the fuel and combustion air streams. Combustion aerodynamic texts typically describe flame stability and transitions from laminar diffusion flames to fully developed turbulent flames as a function of increasing jet velocity. Turbulent diffusion flame stability is greatly influenced by recirculation eddies that transport hot combustion gases back to the burner nozzle. This recirculation enhances mixing and heats the incoming gas streams. Models describing these recirculation eddies utilize conservation of momentum and mass assumptions. Increasing the mass flow rate of either fuel or combustion air increases both the jet velocity and momentum for a fixed burner configuration. Thus, differentiating between gas velocity and momentum is important when evaluating flame stability under various operating conditions. The research efforts described herein are part of an ongoing project directed at evaluating the effect of flame aerodynamics on NO{sub x} emissions from coal fired burners in a systematic manner. This research includes both experimental and modeling efforts being performed at the University of Arizona in collaboration with Purdue University. The objective of this effort is to develop rational design tools for optimizing low NO{sub x} burners. Experimental studies include both cold-and hot-flow evaluations of the following parameters: primary and secondary inlet air velocity, coal concentration in the primary air, coal particle size distribution and flame holder geometry. Hot-flow experiments will also evaluate the effect of wall temperature on burner performance.

  2. Microbial methods of reducing technetium

    DOE Patents [OSTI]

    Wildung, Raymond E. [Richland, WA; Garland, Thomas R. [Greybull, WY; Gorby, Yuri A. [Richland, WA; Hess, Nancy J. [Benton City, WA; Li, Shu-Mei W. [Richland, WA; Plymale, Andrew E. [Richland, WA

    2001-01-01

    The present invention is directed toward a method for microbial reduction of a technetium compound to form other compounds of value in medical imaging. The technetium compound is combined in a mixture with non-growing microbial cells which contain a technetium-reducing enzyme system, a stabilizing agent and an electron donor in a saline solution under anaerobic conditions. The mixture is substantially free of an inorganic technetium reducing agent and its reduction products. The resulting product is Tc of lower oxidation states, the form of which can be partially controlled by the stabilizing agent. It has been discovered that the microorganisms Shewanella alga, strain Bry and Shewanelia putrifacians, strain CN-32 contain the necessary enzyme systems for technetium reduction and can form both mono nuclear and polynuclear reduced Tc species depending on the stabilizing agent.

  3. Main roll for an air press of a papermaking machine

    DOE Patents [OSTI]

    Beck, David A.

    2004-03-09

    A roll for use in an air press assembly of a papermaking machine has a pair of ends associated therewith. The roll includes a pair of edge portions with each edge portion extending to one of the pair of ends. Each edge portion has an edge surface portion composed of a first material, the first material having a first hardness. The roll further includes a middle portion located between the pair of edge portions, the middle portion having a middle surface portion composed of a second material. The second material has a second hardness, the second material being harder than the first material. The first material is preferably a soft, seal material which promotes reduced air leakage from the air press assembly.

  4. Inductively coupled plasma torch with laminar flow cooling

    DOE Patents [OSTI]

    Rayson, Gary D.; Shen, Yang

    1991-04-30

    An improved inductively coupled gas plasma torch. The torch includes inner and outer quartz sleeves and tubular insert snugly fitted between the sleeves. The insert includes outwardly opening longitudinal channels. Gas flowing through the channels of the insert emerges in a laminar flow along the inside surface of the outer sleeve, in the zone of plasma heating. The laminar flow cools the outer sleeve and enables the torch to operate at lower electrical power and gas consumption levels additionally, the laminar flow reduces noise levels in spectroscopic measurements of the gaseous plasma.

  5. Analytical modeling of a hydraulically-compensated compressed-air energy-storage system

    SciTech Connect (OSTI)

    McMonagle, C.A.; Rowe, D.S.

    1982-12-01

    A computer program was developed to calculate the dynamic response of a hydraulically-compensated compressed air energy storage (CAES) system, including the compressor, air pipe, cavern, and hydraulic compensation pipe. The model is theoretically based on the two-fluid model in which the dynamics of each phase are presented by its set of conservation equations for mass and momentum. The conservation equations define the space and time distribution of pressure, void fraction, air saturation, and phase velocities. The phases are coupled by two interface equations. The first defines the rate of generation (or dissolution) of gaseous air in water and can include the effects of supersaturation. The second defines the frictional shear coupling (drag) between the gaseous air and water as they move relative to each other. The relative motion of the air and water is, therefore, calculated and not specified by a slip or drift-velocity correlation. The total CASE system is represented by a nodal arrangement. The conservation equations are written for each nodal volume and are solved numerically. System boundary conditions include the air flow rate, atmospheric pressure at the top of the compensation pipe, and air saturation in the reservoir. Initial conditions are selected for velocity and air saturation. Uniform and constant temperature (60/sup 0/F) is assumed. The analytical model was used to investigate the dynamic response of a proposed system.Investigative calculations considered high and low water levels, and a variety of charging and operating conditions. For all cases investigated, the cavern response to air-charging, was a damped oscillation of pressure and flow. Detailed results are presented. These calculations indicate that the Champagne Effect is unlikely to cause blowout for a properly designed CAES system.

  6. Complex Flow Workshop Report

    SciTech Connect (OSTI)

    none,

    2012-05-01

    This report documents findings from a workshop on the impacts of complex wind flows in and out of wind turbine environments, the research needs, and the challenges of meteorological and engineering modeling at regional, wind plant, and wind turbine scales.

  7. Parallel flow diffusion battery

    DOE Patents [OSTI]

    Yeh, Hsu-Chi; Cheng, Yung-Sung

    1984-08-07

    A parallel flow diffusion battery for determining the mass distribution of an aerosol has a plurality of diffusion cells mounted in parallel to an aerosol stream, each diffusion cell including a stack of mesh wire screens of different density.

  8. Parallel flow diffusion battery

    DOE Patents [OSTI]

    Yeh, H.C.; Cheng, Y.S.

    1984-01-01

    A parallel flow diffusion battery for determining the mass distribution of an aerosol has a plurality of diffusion cells mounted in parallel to an aerosol stream, each diffusion cell including a stack of mesh wire screens of different density.

  9. Effect of air-staging on anthracite combustion and NOx formation

    SciTech Connect (OSTI)

    Weidong Fan; Zhengchun Lin; Youyi Li; Jinguo Kuang; Mingchuan Zhang

    2009-01-15

    Experiments were carried out in a multipath air inlet one-dimensional furnace to assess NOx emission characteristics of the staged combustion of anthracite coal. These experiments allowed us to study the impact of pulverized coal fineness and burnout air position on emission under both deep and shallow air-staged combustion conditions. We also studied the impact of char-nitrogen release on both the burning-out process of the pulverized coal and the corresponding carbon content in fly ash. We found that air-staged combustion affects a pronounced reduction in NOx emissions from the combustion of anthracite coal. The more the air is staged, the more NOx emission is reduced. In shallow air-staged combustion (f{sub M} = 0.85), the fineness of the pulverized coal strongly influences emissions, and finer coals result in lower emissions. Meanwhile, the burnout air position has only a weak effect. In the deep air-staged combustion (f{sub M} = 0.6), the effect of coal fineness is smaller, and the burnout air position has a stronger effect. When the primary combustion air is stable, NOx emissions increase with increasing burnout air. This proves that, in the burnout zone, coal char is responsible for the discharge of fuel-nitrogen that is oxidized to NOx. The measurement of secondary air staging in a burnout zone can help inhibit the oxidization of NO caused by nitrogen release. Air-staged combustion has little effect on the burnout of anthracite coal, which proves to be suitable for air-staged combustion. 31 refs., 11 figs., 1 tab.

  10. Electrochemical flow capacitors

    DOE Patents [OSTI]

    Gogotsi, Yury; Presser, Volker; Kumbar, Emin Caglan

    2015-11-05

    The present invention generally relates to devices for energy storage technologies, and more particularly to electrochemical flow capacitor systems and applications. In some aspects, these flow capacitors have at least one electrode comprising a non-stationary solid or semi-solid composition comprising supercapacitive particles and an electrolytic solvent in electrical communication with at least one current collector, and energy is stored and/or released by charging and/or discharging the electrode(s).

  11. Electrochemical flow capacitors

    DOE Patents [OSTI]

    Gogotsi, Yury; Presser, Volker; Kumbur, Emin Caglan

    2015-10-27

    The present invention generally relates to devices for energy storage technologies, and more particularly to electrochemical flow capacitor systems and applications. In some aspects, these flow capacitors have at least one electrode comprising a non-stationary solid or semi-solid composition comprising supercapacitive particles and an electrolytic solvent in electrical communication with at least one current collector, and energy is stored and/or released by charging and/or discharging the electrode(s).

  12. Scaled Experimental Modeling of VHTR Plenum Flows

    SciTech Connect (OSTI)

    ICONE 15

    2007-04-01

    Abstract The Very High Temperature Reactor (VHTR) is the leading candidate for the Next Generation Nuclear Power (NGNP) Project in the U.S. which has the goal of demonstrating the production of emissions free electricity and hydrogen by 2015. Various scaled heated gas and water flow facilities were investigated for modeling VHTR upper and lower plenum flows during the decay heat portion of a pressurized conduction-cooldown scenario and for modeling thermal mixing and stratification (thermal striping) in the lower plenum during normal operation. It was concluded, based on phenomena scaling and instrumentation and other practical considerations, that a heated water flow scale model facility is preferable to a heated gas flow facility and to unheated facilities which use fluids with ranges of density to simulate the density effect of heating. For a heated water flow lower plenum model, both the Richardson numbers and Reynolds numbers may be approximately matched for conduction-cooldown natural circulation conditions. Thermal mixing during normal operation may be simulated but at lower, but still fully turbulent, Reynolds numbers than in the prototype. Natural circulation flows in the upper plenum may also be simulated in a separate heated water flow facility that uses the same plumbing as the lower plenum model. However, Reynolds number scaling distortions will occur at matching Richardson numbers due primarily to the necessity of using a reduced number of channels connected to the plenum than in the prototype (which has approximately 11,000 core channels connected to the upper plenum) in an otherwise geometrically scaled model. Experiments conducted in either or both facilities will meet the objectives of providing benchmark data for the validation of codes proposed for NGNP designs and safety studies, as well as providing a better understanding of the complex flow phenomena in the plenums.

  13. Magnetically stimulated fluid flow patterns

    ScienceCinema (OSTI)

    Martin, Jim; Solis, Kyle

    2014-08-06

    Sandia National Laboratories' Jim Martin and Kyle Solis explain research on the effects of magnetic fields on fluid flows and how they stimulate vigorous flows. Fluid flow is a necessary phenomenon in everything from reactors to cooling engines in cars.

  14. Magnetically stimulated fluid flow patterns

    SciTech Connect (OSTI)

    Martin, Jim; Solis, Kyle

    2014-03-06

    Sandia National Laboratories' Jim Martin and Kyle Solis explain research on the effects of magnetic fields on fluid flows and how they stimulate vigorous flows. Fluid flow is a necessary phenomenon in everything from reactors to cooling engines in cars.

  15. Analysis of Flow in Pilot Operated Safety and Relief Valve of Nuclear Reactor Coolant System

    SciTech Connect (OSTI)

    Kwon, Soon-Bum; Lee, Dong-Won; Kim, In-Goo; Ahn, Hyung-Joon; Kim, Hho-Jung

    2004-07-01

    When the POSRV equipped in a nuclear power plant opens in instant by a failure in coolant system of PWR, a moving shock wave generates, and propagates downstream of the valve, inducing a complicated unsteadiness. The moving shock wave may exert severe load to the structure. In this connection, a method of gradual opening of the valve is used to reduce the load acting on the wall at the downstream of the POSRV. In the present study, experiments and calculations are performed to investigate the detail unsteady flow at the various pipe units and the effect of valve opening time on the flow downstream of the valve. In calculation by using of air as working fluid, 2-dimensional, unsteady compressible Navier-Stokes equations are solved by finite volume method. It was found that when the incident shock wave passes through the pipe unit, it may experience diffraction, reflection and interaction with a vortex. Furthermore, the geometry of the pipe unit affects the reflection type of shock wave and changes the load acting on the wall of pipe unit. It was also turned out that the maximum force acting on the wall of the pipe unit becomes in order of T-junction, 108 deg. elbow and branch in magnitude, respectively. And, the results obtained that show that the rapid pressure rise due to the moving shock wave by instant POSRV valve opening is attenuated by employing the gradual opening. (authors)

  16. Tips: Air Ducts | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Tips: Air Ducts Tips: Air Ducts Air ducts: out of sight, out of mind. The unsealed ducts in your attic and crawlspaces lose air, and uninsulated ducts lose heat -- wasting energy and money. Air ducts: out of sight, out of mind. The unsealed ducts in your attic and crawlspaces lose air, and uninsulated ducts lose heat -- wasting energy and money. Your air ducts are one of the most important systems in your home, and if the ducts are poorly sealed or insulated they are likely contributing to

  17. High Energy Efficiency Air Conditioning

    SciTech Connect (OSTI)

    Edward McCullough; Patrick Dhooge; Jonathan Nimitz

    2003-12-31

    This project determined the performance of a new high efficiency refrigerant, Ikon B, in a residential air conditioner designed to use R-22. The refrigerant R-22, used in residential and small commercial air conditioners, is being phased out of production in developed countries beginning this year because of concerns regarding its ozone depletion potential. Although a replacement refrigerant, R-410A, is available, it operates at much higher pressure than R-22 and requires new equipment. R-22 air conditioners will continue to be in use for many years to come. Air conditioning is a large part of expensive summer peak power use in many parts of the U.S. Previous testing and computer simulations of Ikon B indicated that it would have 20 - 25% higher coefficient of performance (COP, the amount of cooling obtained per energy used) than R-22 in an air-cooled air conditioner. In this project, a typical new R-22 residential air conditioner was obtained, installed in a large environmental chamber, instrumented, and run both with its original charge of R-22 and then with Ikon B. In the environmental chamber, controlled temperature and humidity could be maintained to obtain repeatable and comparable energy use results. Tests with Ikon B included runs with and without a power controller, and an extended run for several months with subsequent analyses to check compatibility of Ikon B with the air conditioner materials and lubricant. Baseline energy use of the air conditioner with its original R-22 charge was measured at 90 deg F and 100 deg F. After changeover to Ikon B and a larger expansion orifice, energy use was measured at 90 deg F and 100 deg F. Ikon B proved to have about 19% higher COP at 90 deg F and about 26% higher COP at 100 deg F versus R-22. Ikon B had about 20% lower cooling capacity at 90 deg F and about 17% lower cooling capacity at 100 deg F versus R-22 in this system. All results over multiple runs were within 1% relative standard deviation (RSD). All of these values agree well with previous results and computer simulations of Ikon B performance versus R-22. The lower cooling capacity of Ikon B is not a concern unless a particular air conditioner is near its maximum cooling capacity in application. Typically, oversized A/C systems are installed by contractors to cover contingencies. In the extended run with Ikon B, which lasted about 4.5 months at 100 deg F ambient temperature and 68% compressor on time, the air conditioner performed well with no significant loss of energy efficiency. Post-run analysis of the refrigerant, compressor lubricant oil, compressor, compressor outlet tubing, and the filter/dryer showed minor effects but nothing that was considered significant. The project was very successful. All objectives were achieved, and the performance of Ikon B indicates that it can easily be retrofitted into R-22 air conditioners to give 15 - 20% energy savings and a 1 - 3 year payback of retrofit costs depending on location and use. Ikon B has the potential to be a successful commercial product.

  18. Chapter 22: Compressed Air Evaluation Protocol

    SciTech Connect (OSTI)

    Benton, N.

    2014-11-01

    Compressed-air systems are used widely throughout industry for many operations, including pneumatic tools, packaging and automation equipment, conveyors, and other industrial process operations. Compressed-air systems are defined as a group of subsystems composed of air compressors, air treatment equipment, controls, piping, pneumatic tools, pneumatically powered machinery, and process applications using compressed air. A compressed-air system has three primary functional subsystems: supply, distribution, and demand. Air compressors are the primary energy consumers in a compressed-air system and are the primary focus of this protocol. The two compressed-air energy efficiency measures specifically addressed in this protocol are: high-efficiency/variable speed drive (VSD) compressor replacing modulating compressor; compressed-air leak survey and repairs. This protocol provides direction on how to reliably verify savings from these two measures using a consistent approach for each.

  19. Combustion characteristics of pulverized coal and air/gas premixed flame in a double swirl combustor

    SciTech Connect (OSTI)

    Kamal, M.M.

    2009-07-01

    An experimental work was performed to investigate the co-firing of pulverized coal and premixed gas/air streams in a double swirl combustor. The results showed that the NOx emissions are affected by the relative rates of thermal NOx formation and destruction via the pyrolysis of the fuel-N species in high temperature fuel-rich zones. Various burner designs were tested in order to vary the temperature history and the residence time across both coal and gas flames inside the furnace. It was found that by injecting the coal with a gas/air mixture as a combined central jet surrounded by a swirled air stream, a double flame envelope develops with high temperature fuel-rich conditions in between the two reaction zones such that the pyrolysis reactions to N{sub 2} are accelerated. A further reduction in the minimum NOx emissions, as well as in the minimum CO concentrations, was reported for the case where the coal particles are fed with the gas/air mixture in the region between the two swirled air streams. On the other hand, allocating the gas/air mixture around the swirled air-coal combustion zone provides an earlier contact with air and retards the NOx reduction mechanism in such a way that the elevated temperatures around the coal particles allow higher overall NOx emissions. The downstream impingement of opposing air jets was found more efficient than the impinging of particle non-laden premixed flames for effective NOx reduction. In both cases, there is an upstream flow from the stagnation region to the coal primary combustion region, but with the case of air impingement, the hot fuel-rich zone develops earlier. The optimum configuration was found by impinging all jets of air and coal-gas/air mixtures that pronounced minimum NOx and CO concentrations of 310 and 480ppm, respectively.

  20. Developing air quality goals and policies for long-range plans

    SciTech Connect (OSTI)

    Full, D.J.; Mitchell, D.

    1995-12-01

    Air Quality Guidelines for General Plans (Air Quality Guidelines) is a guidance document and resource for cities and counties to use to address air quality in their long-range planning efforts. It includes goals, policies, and programs that when adopted as part of a long-range plan will reduce vehicle trips and miles traveled and improve air quality. Although this is a voluntary program, the San Joaquin Valley Unified Air Pollution Control District (District) has strongly encouraged cities and counties in the San Joaquin Valley to use their land use and transportation planning authority to help achieve air quality goals by adopting the policies and programs suggested by the Air Quality Guidelines. Implementing the goals and policies will result in a win-win situation where cities, counties, and developers save money through more efficient land use and transportation systems and where the public benefits from a more livable community and better air quality. The purpose of the Air Quality Guidelines is threefold: (1) to provide local planning agencies with a comprehensive set of goals and policies that will improve air quality if adopted as part of a long-range plan; (2) to provide a guide to cities and counties for determining which goals and policies are appropriate in their particular community; and (3) to provide justification and rationale for the goals and policies that will convince decision-makers and the public that they are appropriate and necessary.

  1. Selective flow path alpha particle detector and method of use

    DOE Patents [OSTI]

    Orr, Christopher Henry; Luff, Craig Janson; Dockray, Thomas; Macarthur, Duncan Whittemore

    2002-01-01

    A method and apparatus for monitoring alpha contamination are provided in which ions generated in the air surrounding the item, by the passage of alpha particles, are moved to a distant detector location. The parts of the item from which ions are withdrawn can be controlled by restricting the air flow over different portions of the apparatus. In this way, detection of internal and external surfaces separately, for instance, can be provided. The apparatus and method are particularly suited for use in undertaking alpha contamination measurements during the commissioning operations.

  2. Graphene-based battery electrodes having continuous flow paths

    DOE Patents [OSTI]

    Zhang, Jiguang; Xiao, Jie; Liu, Jun; Xu, Wu; Li, Xiaolin; Wang, Deyu

    2014-05-24

    Some batteries can exhibit greatly improved performance by utilizing electrodes having randomly arranged graphene nanosheets forming a network of channels defining continuous flow paths through the electrode. The network of channels can provide a diffusion pathway for the liquid electrolyte and/or for reactant gases. Metal-air batteries can benefit from such electrodes. In particular Li-air batteries show extremely high capacities, wherein the network of channels allow oxygen to diffuse through the electrode and mesopores in the electrode can store discharge products.

  3. 13 EER Window Air Conditioner

    Energy Savers [EERE]

    ... HXs - unfortunately not suitable for WACs - Replace the capillary tube with a needle valve for better control of refrigerant flow - Replace AC fan motor with ECM DC fan motor - ...

  4. Measured Air Distribution Effectiveness for Residential Mechanical Ventilation Systems

    SciTech Connect (OSTI)

    Sherman, Max; Sherman, Max H.; Walker, Iain S.

    2008-05-01

    The purpose of ventilation is dilute or remove indoor contaminants that an occupant is exposed to. In a multi-zone environment such as a house, there will be different dilution rates and different source strengths in every zone. Most US homes have central HVAC systems, which tend to mix the air thus the indoor conditions between zones. Different types of ventilation systems will provide different amounts of exposure depending on the effectiveness of their air distribution systems and the location of sources and occupants. This paper will report on field measurements using a unique multi-tracer measurement system that has the capacity to measure not only the flow of outdoor air to each zone, but zone-to-zone transport. The paper will derive seven different metrics for the evaluation of air distribution. Measured data from two homes with different levels of natural infiltration will be used to evaluate these metrics for three different ASHRAE Standard 62.2 compliant ventilation systems. Such information can be used to determine the effectiveness of different systems so that appropriate adjustments can be made in residential ventilation standards such as ASHRAE Standard 62.2.

  5. Challenges and Potential Solutions for Reducing Climate Control Loads in Conventional and Hybrid Vehicles

    SciTech Connect (OSTI)

    Farrington, R.B., Anderson, R., Blake, D.M., Burch, S.D.; Cuddy, M.R., Keyser, M.A., Rugh, J.P.

    1999-01-01

    The National Renewable Energy Laboratory, a U.S. Department of Energy national laboratory, is collaborating with U.S. automotive manufacturers to develop innovative techniques to reduce national fuel consumption and vehicle tailpipe emissions by reducing vehicle climate control loads. A new U.S. emissions test, the Supplemental Federal Test Procedure (SFTP), will soon begin measuring tailpipe emissions with the air conditioning system operating. Modeled results show that emissions of oxides of nitrogen (NOx) and carbon monoxide (CO) more than double during the air conditioning part of the SFTP. Reducing the transmittance of the glazing can have a greater impact on the cabin soak temperature than ventilating the vehicle during a hot soak. Reducing the amount of outside air can decrease cooling and heating loads but requires that the recirculated air be cleaned. We discuss a photocatalytic oxidation air-cleaning process for removing volatile organic compounds and bioareosols. We conclude with an example of modeling the thermal comfort of the occupants. An auxiliary load increase of only 400 Watts (W) results in a 0.4 km/L (1 mpg) decrease for a conventional 11.9-L/100-km (28-mpg) vehicle. If every vehicle in the United States were to save only 0.4 km/L (1 mpg), $4 billion (U.S. dollars) would be saved annually in gasoline and oil costs. Further information can be found at http://www.ctts.nrel.gov/auxload.html.

  6. National Security Science and Technology Initiative: Air Cargo Screening

    SciTech Connect (OSTI)

    Bingham, Philip R; White, Tim; Cespedes, Ernesto; Bowerman, Biays; Bush, John

    2010-11-01

    The non-intrusive inspection (NII) of consolidated air cargo carried on commercial passenger aircraft continues to be a technically challenging, high-priority requirement of the Department of Homeland Security's Science and Technology Directorate (DHS S&T), the Transportation Security Agency and the Federal Aviation Administration. The goal of deploying a screening system that can reliably and cost-effectively detect explosive threats in consolidated cargo without adversely affecting the flow of commerce will require significant technical advances that will take years to develop. To address this critical National Security need, the Battelle Memorial Institute (Battelle), under a Cooperative Research and Development Agreement (CRADA) with four of its associated US Department of Energy (DOE) National Laboratories (Oak Ridge, Pacific Northwest, Idaho, and Brookhaven), conducted a research and development initiative focused on identifying, evaluating, and integrating technologies for screening consolidated air cargo for the presence of explosive threats. Battelle invested $8.5M of internal research and development funds during fiscal years 2007 through 2009. The primary results of this effort are described in this document and can be summarized as follows: (1) Completed a gap analysis that identified threat signatures and observables, candidate technologies for detection, their current state of development, and provided recommendations for improvements to meet air cargo screening requirements. (2) Defined a Commodity/Threat/Detection matrix that focuses modeling and experimental efforts, identifies technology gaps and game-changing opportunities, and provides a means of summarizing current and emerging capabilities. (3) Defined key properties (e.g., elemental composition, average density, effective atomic weight) for basic commodity and explosive benchmarks, developed virtual models of the physical distributions (pallets) of three commodity types and three explosive benchmarks combinations, and conducted modeling and simulation studies to begin populating the matrix of commodities, threats, and detection technologies. (4) Designed and fabricated basic (homogeneous) commodity test pallets and fabricated inert stimulants to support experiments and to validate modeling/simulation results. (5) Developed/expanded the team's capabilities to conduct full-scale imaging (neutron and x-ray) experiments of air cargo commodities and explosive benchmarks. (6) Conducted experiments to improve the collection of trace particles of explosives from a variety of surfaces representative of air cargo materials by means of mechanical (air/vibration/pressure), thermal, and electrostatic methods. Air cargo screening is a difficult challenge that will require significant investment in both research and development to find a suitable solution to ensure the safety of passengers without significantly hindering the flow of commodities. The initiative funded by Battelle has positioned this group to make major contributions in meeting the air cargo challenge by developing collaborations, developing laboratory test systems, improving knowledge of the challenges (both technical and business) for air cargo screening, and increasing the understanding of the capabilities for current inspection methods (x-ray radiography, x-ray backscatter, etc.) and potential future inspection methods (neutron radiography, fusion of detector modalities, advanced trace detection, etc.). Lastly, air cargo screening is still an issue that will benefit from collaboration between Department of Energy Laboratories and Battelle. On January 7, 2010, DHS Secretary Napolitano joined White House Press Secretary Robert Gibbs and Assistant to the President for Counterterrorism and Homeland Security John Brennan to announce several recommendations DHS has made to the President for improving the technology and procedures used to protect air travel from acts of terrorism. (This announcement followed the 25 Dec'09 Delta/Northwest Airlines Flight 253 terror attack.) Secretary Napolitano out

  7. High Performance OLEDs with Air-stable Nanostructured Electrodes - Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Innovation Portal Building Energy Efficiency Building Energy Efficiency Find More Like This Return to Search High Performance OLEDs with Air-stable Nanostructured Electrodes Lawrence Berkeley National Laboratory Contact LBL About This Technology Technology Marketing SummaryScientists at Berkeley Lab have modified the cathode-organic layer of an OLED device to significantly enhance electron injection efficiency and reduce the sensitivity of the cathode to environmental degradation by water

  8. Tritium gettering from air with hydrogen uranyl phosphate

    SciTech Connect (OSTI)

    Souers, P.C.; Uribe, F.S.; Stevens, C.G.; Tsugawa, R.T.

    1985-01-01

    Hydrogen uranyl phosphate (HUP), a solid proton electrolyte, getters tritium gas and water vapor from air by DC electrical action. We have reduced the formation of residual tritiated water to less than 2%, and demonstrated that HUP can clean a 5.5 m/sup 3/ working glove box. Data are presented to illustrate the parameters of the gettering and a model is derived. Two other tritium gettering electrolytes have been discovered. 9 refs., 5 figs., 3 tabs.

  9. Laboratory Testing of Aerosol for Enclosure Air Sealing

    SciTech Connect (OSTI)

    Harrington, C.; Modera, M.

    2012-05-01

    Space conditioning energy use can be significantly reduced by addressing uncontrolled infiltration and exfiltration through the envelope of a building. A process for improving the air tightness of a building envelope by sealing shell leaks with an aerosol sealing technology is presented. Both retrofit and new construction applications are possible through applying this process either in attics and crawlspaces or during rough-in stage.

  10. Transonic airfoil and axial flow rotary machine

    DOE Patents [OSTI]

    Nagai, Naonori; Iwatani, Junji

    2015-09-01

    Sectional profiles close to a tip 124 and a part between a midportion 125 and a hub 123 are shifted to the upstream of an operating fluid flow in a sweep direction. Accordingly, an S shape is formed in which the tip 124 and the part between the midportion 125 and the hub 123 protrude. As a result, it is possible reduce various losses due to shook, waves, thereby forming a transonic airfoil having an excellent aerodynamic characteristic.

  11. Correlated Electrons in Reduced Dimensions

    SciTech Connect (OSTI)

    Bonesteel, Nicholas E

    2015-01-31

    This report summarizes the work accomplished under the support of US DOE grant # DE-FG02-97ER45639, "Correlated Electrons in Reduced Dimensions." The underlying hypothesis of the research supported by this grant has been that studying the unique behavior of correlated electrons in reduced dimensions can lead to new ways of understanding how matter can order and how it can potentially be used. The systems under study have included i) fractional quantum Hall matter, which is realized when electrons are confined to two-dimensions and placed in a strong magnetic field at low temperature, ii) one-dimensional chains of spins and exotic quasiparticle excitations of topologically ordered matter, and iii) electrons confined in effectively ``zero-dimensional" semiconductor quantum dots.

  12. Reducing carbon dioxide to products

    DOE Patents [OSTI]

    Cole, Emily Barton; Sivasankar, Narayanappa; Parajuli, Rishi; Keets, Kate A

    2014-09-30

    A method reducing carbon dioxide to one or more products may include steps (A) to (C). Step (A) may bubble said carbon dioxide into a solution of an electrolyte and a catalyst in a divided electrochemical cell. The divided electrochemical cell may include an anode in a first cell compartment and a cathode in a second cell compartment. The cathode may reduce said carbon dioxide into said products. Step (B) may adjust one or more of (a) a cathode material, (b) a surface morphology of said cathode, (c) said electrolyte, (d) a manner in which said carbon dioxide is bubbled, (e), a pH level of said solution, and (f) an electrical potential of said divided electrochemical cell, to vary at least one of (i) which of said products is produced and (ii) a faradaic yield of said products. Step (C) may separate said products from said solution.

  13. Ferroelectric capacitor with reduced imprint

    DOE Patents [OSTI]

    Evans, Jr., Joseph T.; Warren, William L.; Tuttle, Bruce A.; Dimos, Duane B.; Pike, Gordon E.

    1997-01-01

    An improved ferroelectric capacitor exhibiting reduced imprint effects in comparison to prior art capacitors. A capacitor according to the present invention includes top and bottom electrodes and a ferroelectric layer sandwiched between the top and bottom electrodes, the ferroelectric layer comprising a perovskite structure of the chemical composition ABO.sub.3 wherein the B-site comprises first and second elements and a dopant element that has an oxidation state greater than +4. The concentration of the dopant is sufficient to reduce shifts in the coercive voltage of the capacitor with time. In the preferred embodiment of the present invention, the ferroelectric element comprises Pb in the A-site, and the first and second elements are Zr and Ti, respectively. The preferred dopant is chosen from the group consisting of Niobium, Tantalum, and Tungsten. In the preferred embodiment of the present invention, the dopant occupies between 1 and 8% of the B-sites.

  14. Buoyancy-driven heat transfer and flow between a wetted heat source and an isothermal cube

    SciTech Connect (OSTI)

    Close, D.J.; Peck, M.K.; White, R.F.; Mahoney, K.J. )

    1991-05-01

    This paper describes flow visualization and heat transfer experiments conducted with a heat source inside an isothermal cube filled with a saturated or near-saturated gas/vapor mixture. The mixture was formed by vaporizing liquid from the surface of the heat source, and allowing it to condense on the surfaces of the cube, which was initially filled with a noncondensing gas. Visualization studies showed that for air and ethanol below 35C, and for air and water, the flow patterns were similar with the hot plume rising from the source. For air and ethanol above 35C the flow pattern reversed with the hot plume flowing downward. For temperatures spanning 35C, which is the zero buoyancy temperature for the ethanol/water azeotrope and air, no distinct pattern was observed. Using water, liquid droplets fell like rain throughout the cube. Using ethanol, a fog of droplets moved with the fluid flow. Heat transfer experiments were made with water and air, and conductances between plate and cube of around 580 W{center dot}m{sup {minus}2}{center dot}K{sup {minus}1} measured. Agreement between the similarity theory developed for saturated gas/vapor mixtures, and correlations for single component fluids only, was very good. Together with qualitative support from the visualization experiments, the theory developed in a earlier paper deriving a similarity relationship between single fluids and gas/vapor mixtures has been validated.

  15. Piezoelectric axial flow microvalve

    DOE Patents [OSTI]

    Gemmen, Randall; Thornton, Jimmy; Vipperman, Jeffrey S.; Clark, William W.

    2007-01-09

    This invention is directed to a fuel cell operable with a quantity of fuel and a quantity of an oxidizer to produce electrical power, the fuel cell including a fuel cell body including a labyrinth system structured to permit the fuel and the oxidizer to flow therethrough; at least a first catalyst in fluid communication with the labyrinth; and at least a first microvalve operably disposed within at least a portion of the labyrinth. The microvalve utilizes a deflectable member operable upon the application of a voltage from a voltage source. The microvalve includes an elongated flow channel formed therein and extending substantially longitudinally between the first and second ends to permit substantially longitudinal flow of the fluid therethrough and between the first and second ends; and the deflectable member disposed on the valve body, the deflectable member including at least a first piezoelectric portion that is piezoelectrically operable to deflect the deflectable member between an open position and a closed position upon the application of a voltage, the deflectable member in the closed position being operable to resist the flow of the fluid through the flow channel.

  16. Energy and materials flows in the production of liquid and gaseous oxygen

    SciTech Connect (OSTI)

    Shen, S.; Wolsky, A.M.

    1980-08-01

    Liquid and gaseous oxygen is produced in an energy-intensive air separation processo that also generates nitrogen. More than 65% of the cost of oxygen is attributable to energy costs. Energy use and materials flows are analyzed for various air separation methods. Effective approaches to energy and material conservation in air separation plants include efficient removal of contaminants (carbon dioxide and water), centralization of air products user-industries so that large air separation plants are cost-effective and the energy use in transportation is minimized, and increased production of nitrogen. Air separation plants can produce more than three times more nitrogen than oxygen, but present markets demand, at most, only 1.5 times more. Full utlization of liquid and gaseous nitrogen should be encouraged, so that the wasted separation energy is minimized. There are potential markets for nitrogen in, for example, cryogenic separation of metallic and plastic wastes, cryogenic particle size reduction, and production of ammonia for fertilizer.

  17. MapReduce SVM Game

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Vineyard, Craig M.; Verzi, Stephen J.; James, Conrad D.; Aimone, James B.; Heileman, Gregory L.

    2015-08-10

    Despite technological advances making computing devices faster, smaller, and more prevalent in today's age, data generation and collection has outpaced data processing capabilities. Simply having more compute platforms does not provide a means of addressing challenging problems in the big data era. Rather, alternative processing approaches are needed and the application of machine learning to big data is hugely important. The MapReduce programming paradigm is an alternative to conventional supercomputing approaches, and requires less stringent data passing constrained problem decompositions. Rather, MapReduce relies upon defining a means of partitioning the desired problem so that subsets may be computed independently andmore » recom- bined to yield the net desired result. However, not all machine learning algorithms are amenable to such an approach. Game-theoretic algorithms are often innately distributed, consisting of local interactions between players without requiring a central authority and are iterative by nature rather than requiring extensive retraining. Effectively, a game-theoretic approach to machine learning is well suited for the MapReduce paradigm and provides a novel, alternative new perspective to addressing the big data problem. In this paper we present a variant of our Support Vector Machine (SVM) Game classifier which may be used in a distributed manner, and show an illustrative example of applying this algorithm.« less

  18. MapReduce SVM Game

    SciTech Connect (OSTI)

    Vineyard, Craig M.; Verzi, Stephen J.; James, Conrad D.; Aimone, James B.; Heileman, Gregory L.

    2015-08-10

    Despite technological advances making computing devices faster, smaller, and more prevalent in today's age, data generation and collection has outpaced data processing capabilities. Simply having more compute platforms does not provide a means of addressing challenging problems in the big data era. Rather, alternative processing approaches are needed and the application of machine learning to big data is hugely important. The MapReduce programming paradigm is an alternative to conventional supercomputing approaches, and requires less stringent data passing constrained problem decompositions. Rather, MapReduce relies upon defining a means of partitioning the desired problem so that subsets may be computed independently and recom- bined to yield the net desired result. However, not all machine learning algorithms are amenable to such an approach. Game-theoretic algorithms are often innately distributed, consisting of local interactions between players without requiring a central authority and are iterative by nature rather than requiring extensive retraining. Effectively, a game-theoretic approach to machine learning is well suited for the MapReduce paradigm and provides a novel, alternative new perspective to addressing the big data problem. In this paper we present a variant of our Support Vector Machine (SVM) Game classifier which may be used in a distributed manner, and show an illustrative example of applying this algorithm.

  19. Strong interactions in air showers

    SciTech Connect (OSTI)

    Dietrich, Dennis D.

    2015-03-02

    We study the role new gauge interactions in extensions of the standard model play in air showers initiated by ultrahigh-energy cosmic rays. Hadron-hadron events remain dominated by quantum chromodynamics, while projectiles and/or targets from beyond the standard model permit us to see qualitative differences arising due to the new interactions.

  20. Investigation of the mechanism in Rijke pulse combustors with tangential air and fuel injection. Final report

    SciTech Connect (OSTI)

    Zinn, B.T.; Jagoda, J.I.; Daniel, B.R.; Bai, T.

    1993-03-01

    To study the mechanisms that control the operation of this combustor, an experimental setup is developed with access for detailed optical measurements. Propane is employed as fuel because the absence of liquid drops and combustion generated particulates in the combustion region significantly simplifies the optical diagnostics. The experimental techniques utilized include acoustic pressure measurements, space and time resolved radiation measurements, steady temperature measurements, exhaust flow chemical analysis, high speed video and intensified images of the reacting flow field by a computer based CCD camera imaging system. Flow visualization by the imaging system and the results from radiation intensity distribution measurements suggest that the periodic combustion processes caused by periodic vortex shedding and impingement provide the energy required to sustain the pressure oscillations. High radiation intensity occurs during a relatively short period of time and is in phase with the pressure oscillations, indicating that Rayleigh`s criterion is satisfied. Periodic variations of the air and fuel flow rates and, consequently, the air/fuel ratio of the reacting mixture inside the combustor appear to be another mechanism that contributes to the occurrence of periodic combustion and heat release processes. The presence of this mechanism has been uncovered by acoustic pressure measurements that revealed the presence of traveling pressure waves inside the air and fuel feed lines. These traveling waves produce periodic fuel and air feed rates which, in turn, result in periodic combustion and heat release processes within the combustor.

  1. Building America Case Study: Ventilation System Effectiveness and Tested Indoor Air Quality Impacts, Tyler, Texas

    SciTech Connect (OSTI)

    2015-08-01

    ?Ventilation system effectiveness testing was conducted at two unoccupied, single-family, detached lab homes at the University of Texas - Tyler. Five ventilation system tests were conducted with various whole-building ventilation systems. Multizone fan pressurization testing characterized building and zone enclosure leakage. PFT testing showed multizone air change rates and interzonal airflow filtration. Indoor air recirculation by a central air distribution system can help improve the exhaust ventilation system by way of air mixing and filtration. In contrast, the supply and balanced ventilation systems showed that there is a significant benefit to drawing outside air from a known outside location, and filtering and distributing that air. Compared to the Exhaust systems, the CFIS and ERV systems showed better ventilation air distribution and lower concentrations of particulates, formaldehyde and other VOCs. System improvement percentages were estimated based on four System Factor Categories: Balance, Distribution, Outside Air Source, and Recirculation Filtration. Recommended System Factors could be applied to reduce ventilation fan airflow rates relative to ASHRAE Standard 62.2 to save energy and reduce moisture control risk in humid climates. HVAC energy savings were predicted to be 8-10%, or $50-$75/year. Cumulative particle counts for six particle sizes, and formaldehyde and other Top 20 VOC concentrations were measured in multiple zones. The testing showed that single-point exhaust ventilation was inferior as a whole-house ventilation strategy.

  2. ISSUANCE 2015-05-01: Commercial Package Air Conditioners and Commercial Warm Air Furnaces Working Group; Notice of Open Meetings

    Broader source: Energy.gov [DOE]

    Commercial Package Air Conditioners and Commercial Warm Air Furnaces Working Group; Notice of Open Meetings

  3. Evaluation of a two-stage biofilter for treatment of POTW waste air

    SciTech Connect (OSTI)

    Chitwood, D.E.; Devinny, J.S.; Reynolds, F.E. Jr.

    1999-09-30

    Recent efforts have been made to reduce releases of air toxics and smog precursors from wastewater treatment plants. Hydrogen sulfide is commonly the primary odor and is an important target for removal. Its oxidation, however, generates sulfuric acid and sometimes elemental sulfur, which can create substantial operational problems for biofilters. Declining pH may inhibit the organisms that degrade compounds other than hydrogen sulfide and may hasten aging of organic biofilter media. A two-stage biofilter has been designed and installed at the Ohio Valley Sanitary District wastewater treatment plant. The first stage is an enclosed system with a medium of small, inert, porous stones. It is called an acid gas biofilter. The second stage is a section of a traditional open biofilter filled with wood chips. The acid gas biofilter effectively removed H{sub 2}S and volatile organic compounds while causing much lower headloss than traditional biofilters. However, considerable flow heterogeneity in both the acid gas biofilter and the wood chip biofilter was observed. The two-stage system presumably will have a longer bed life because the first stage bed is inert and because the second stage is protected from acidification by removal of H{sub 2}S in the first stage.

  4. Using a Ventilation Controller to Optimize Residential Passive Ventilation For Energy and Indoor Air Quality

    SciTech Connect (OSTI)

    Turner, William; Walker, Iain

    2014-08-01

    One way to reduce the energy impact of providing residential ventilation is to use passive and hybrid systems. However, these passive and hybrid (sometimes called mixed-mode) systems must still meet chronic and acute health standards for ventilation. This study uses a computer simulation approach to examine the energy and indoor air quality (IAQ) implications of passive and hybrid ventilation systems, in 16 California climate zones. Both uncontrolled and flow controlled passive stacks are assessed. A new hybrid ventilation system is outlined that uses an intelligent ventilation controller to minimise energy use, while ensuring chronic and acute IAQ standards are met. ASHRAE Standard 62.2-2010 – the United States standard for residential ventilation - is used as the chronic standard, and exposure limits for PM2.5, formaldehyde and NO2 are used as the acute standards.The results show that controlled passive ventilation and hybrid ventilation can be used in homes to provide equivalent IAQ to continuous mechanical ventilation, for less use of energy.

  5. Parametric study of atmospheric pressure microwave-induced Ar/O{sub 2} plasmas and the ambient air effect on the plasma

    SciTech Connect (OSTI)

    Moon, Se Youn; Choe, W.

    2006-10-15

    A torch type microwave-induced afterglow plasma was produced at atmospheric pressure using an open-ended fused silica concentric double tube assisted by Ar and O{sub 2} supply gases. The plasma emerged from the end of the discharge tube and was exposed to ambient air. A parametric study of the plasma characteristics was performed by measuring the temperature, density, and plasma volume as the operational parameters such as microwave power, gas flow rate, and its composition were varied. The excitation temperature (T{sub exc}) obtained from the Ar I emission spectrum ranged from 3010 to 4350 K and the rotational temperature (T{sub rot}) measured from the OH and O{sub 2} diatomic molecular spectra ranged from 2250 to 3550 K. The electron density (n{sub e}) from the H{sub {beta}} Stark broadening width at the plasma core was in the range of 6.6 to 7.6x10{sup 14} cm{sup -3}. The two-dimensional distribution of T{sub exc} and T{sub rot} was also obtained. Experiments while varying the Ar and O{sub 2} gas flow rate and the O{sub 2}/Ar ratio showed that n{sub e} was reduced but T{sub exc} was increased as the O{sub 2} flow rate was increased. Using an additional dielectric tube for shielding the plasma from the ambient air demonstrated a significantly enlarged plasma length and lower T{sub rot} due to the nitrogen entrainment, as compared to the unshielded case.

  6. Flow distribution channels to control flow in process channels (Patent) |

    Office of Scientific and Technical Information (OSTI)

    SciTech Connect Flow distribution channels to control flow in process channels Citation Details In-Document Search Title: Flow distribution channels to control flow in process channels The invention describes features that can be used to control flow to an array of microchannels. The invention also describes methods in which a process stream is distributed to plural microchannels. Authors: Tonkovich, Anna Lee ; Arora, Ravi ; Kilanowski, David Publication Date: 2014-10-28 OSTI Identifier:

  7. Microwave fluid flow meter

    DOE Patents [OSTI]

    Billeter, Thomas R.; Philipp, Lee D.; Schemmel, Richard R.

    1976-01-01

    A microwave fluid flow meter is described utilizing two spaced microwave sensors positioned along a fluid flow path. Each sensor includes a microwave cavity having a frequency of resonance dependent upon the static pressure of the fluid at the sensor locations. The resonant response of each cavity with respect to a variation in pressure of the monitored fluid is represented by a corresponding electrical output which can be calibrated into a direct pressure reading. The pressure drop between sensor locations is then correlated as a measure of fluid velocity. In the preferred embodiment the individual sensor cavities are strategically positioned outside the path of fluid flow and are designed to resonate in two distinct frequency modes yielding a measure of temperature as well as pressure. The temperature response can then be used in correcting for pressure responses of the microwave cavity encountered due to temperature fluctuations.

  8. Electrocapturing flow cell

    DOE Patents [OSTI]

    Morozov, Victor

    2011-04-05

    A flow cell for electrophoretically-assisted capturing analytes from a flow. The flow cell includes a specimen chamber, a first membrane, a second membrane, a first electrode chamber, and a second electrode chamber. The specimen chamber may have a sample inlet and a sample outlet. A first portion of the first membrane may be coupled to a first portion of the specimen chamber. A first portion of the second membrane may be coupled to a second portion of the specimen chamber. The first electrode chamber may be configured to accept a charge. A portion of the first electrode chamber may be coupled to a second portion of the first membrane. A second electrode chamber may be configured to accept an opposite charge. A portion of the second electrode chamber may be coupled to a second portion of the second membrane.

  9. Evaporation of water with single and multiple impinging air jets

    SciTech Connect (OSTI)

    Trabold, T.A.; Obot, N.T. )

    1991-08-01

    An experimental investigation of impingement water evaporation under a single jet and arrays of circular jets was made. The parametric study included the effects of jet Reynolds number and standoff spacing for both single and multiple jets, as well as surface-to-nozzle diameter ratio and fractional nozzle open area for single and multiple jets, respectively. The nozzle exit temperature of the air jet, about the same as that of the laboratory, was 3-6C higher than that of the evaporating water. Predictive equations are provided for mass transfer coefficient in terms of the flow and geometric conditions.

  10. Natural air motion and stratification in passive buildings

    SciTech Connect (OSTI)

    Balcomb, J.D.; Jones, G.F.; Yamaguchi, Kenjiro

    1984-01-01

    Natural convection is a major mechanism for heat distribution in many passive solar buildings, especially those with sunspaces. To better understand this mechanism, observations of air velocities and temperatures have been made in 13 different houses that encompass a wide variety of one- and two-story geometries. This paper extends previous reports. Results from one house are described in detail, and some generalizations are drawn from the large additional mass of data taken. A simple mathematical model is presented that describes the general nature of airflow and energy flow through an aperture.

  11. Flow Battery System Design for Manufacturability.

    SciTech Connect (OSTI)

    Montoya, Tracy Louise; Meacham, Paul Gregory; Perry, David; Broyles, Robin S.; Hickey, Steven; Hernandez, Jacquelynne

    2014-10-01

    Flow battery energy storage systems can support renewable energy generation and increase energy efficiency. But, presently, the costs of flow battery energy storage systems can be a significant barrier for large-scale market penetration. For cost- effective systems to be produced, it is critical to optimize the selection of materials and components simultaneously with the adherence to requirements and manufacturing processes to allow these batteries and their manufacturers to succeed in the market by reducing costs to consumers. This report analyzes performance, safety, and testing requirements derived from applicable regulations as well as commercial and military standards that would apply to a flow battery energy storage system. System components of a zinc-bromine flow battery energy storage system, including the batteries, inverters, and control and monitoring system, are discussed relative to manufacturing. The issues addressed include costs and component availability and lead times. A service and support model including setup, maintenance and transportation is outlined, along with a description of the safety-related features of the example flow battery energy storage system to promote regulatory and environmental, safety, and health compliance in anticipation of scale manufacturing.

  12. Optimization of Coal Particle Flow Patterns in Low N0x Burners

    SciTech Connect (OSTI)

    Caner Yurteri; Gregory E. Ogden; Jennifer Sinclair; Jost O.L. Wendt

    1998-03-06

    The proposed research is directed at evaluating the effect of flame aerodynamics on NOX emissions tlom coal fired burners in a systematic manner. This fimdamental research includes both experimental and modeling efforts being petiormed at the University of Arizona in collaboration with Purdue University. The objective of this effort is to develop rational design tools for optimizing low NOX burners to the kinetic emissions limit (below 0.2 lb./MMBTU). Experimental studies include both cold and hot flow evaluations of the following parameters: flame holder geometry, secondary air swirl, primary and secondary inlet air velocity, coal concentration in the primary air and coal particle size distribution. Hot flow experiments will also evaluate the effect of wall temperature on burner performance. Cold flow studies will be conducted with surrogate particles as well as pulverized coal. The cold flow furnace will be similar in size and geometry to the hot-flow furnace but will be designed to use a laser Doppler velocimeter/phase Doppler particle size analyzer. The results of these studies will be used to predict particle trajectories in the hot-flow fhrnace as well as to estimate the effect of flame holder geometry on furnace flow field. The hot-flow experiments will be conducted in a novel near-flame down-flow pulverized coal furnace. The fhrnace will be equipped with externally heated walls. Both reactors will be sized to minimize wall effects on particle flow fields. The cold-flow results will be compared with Fluent computation fluid dynamics model predictions and correlated with the hot-flow results with the overall goal of providing insight for novel low NOX burner geometry's.

  13. DOE Requires Air-Con International to Cease Sales of Inefficient Air Conditioners and Proposes Penalties

    Broader source: Energy.gov [DOE]

    The Department has issued a Notice of Noncompliance Determination and Proposed Civil Penalty to Air-Con, International, requiring Air-Con to cease the sale of certain air-conditioning systems in...

  14. Flow line sampler

    DOE Patents [OSTI]

    Nicholls, Colin I.

    1992-07-14

    An on-line product sampling apparatus and method for measuring product samples from a product stream (12) in a flow line (14) having a sampling aperture (11), includes a sampling tube (18) for containing product samples removed from flow line (14). A piston (22) removes product samples from the product stream (12) through the sampling aperture (11) and returns samples to product stream (12). A sensor (20) communicates with sample tube (18), and senses physical properties of samples while the samples are within sample tube (18). In one embodiment, sensor (20) comprises a hydrogen transient nuclear magnetic resonance sensor for measuring physical properties of hydrogen molecules.

  15. History of Air Conditioning | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    History of Air Conditioning History of Air Conditioning July 20, 2015 - 3:15pm Addthis Paul Lester Paul Lester Digital Content Specialist, Office of Public Affairs MORE ON AIR CONDITIONING Check out our Energy Saver 101 infographic to learn how air conditioners work. Go to Energy Saver for more tips and advice on home cooling. Stay up-to-date on how the Energy Department is working to improve air conditioning technology. We take the air conditioner for granted, but imagine what life would be

  16. Room Air Conditioners | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Room Air Conditioners Room Air Conditioners A room air conditioner is one solution to cooling part of a house. | Photo courtesy of ©iStockphoto/kschulze. A room air conditioner is one solution to cooling part of a house. | Photo courtesy of ©iStockphoto/kschulze. Room or window air conditioners cool rooms rather than the entire home or business. If they provide cooling only where they're needed, room air conditioners are less expensive to operate than central units, even though their

  17. The Oklahoma Field Test: Air-conditioning electricity savings from standard energy conservation measures, radiant barriers, and high-efficiency window air conditioners

    SciTech Connect (OSTI)

    Ternes, M.P.; Levins, W.P.

    1992-08-01

    A field test Involving 104 houses was performed in Tulsa, Oklahoma, to measure the air-conditioning electricity consumption of low-income houses equipped with window air conditioners, the reduction in this electricity consumption attributed to the installation of energy conservation measures (ECMS) as typically installed under the Oklahoma Weatherization Assistance Program (WAP), and the reduction achieved by the replacement of low-efficiency window air conditioners with high-efficiency units and the installation of attic radiant barriers. Air-conditioning electricity consumption and indoor temperature were monitored weekly during the pre-weatherization period (June to September 1988) and post-weatherization period (May to September 1989). House energy consumption models and regression analyses were used to normalize the air-conditioning electricity savings to average outdoor temperature conditions and the pre-weatherization indoor temperature of each house. The following conclusions were drawn from the study: (1) programs directed at reducing air-conditioning electricity consumption should be targeted at clients with high consumption to improve cost effectiveness; (2) replacing low-efficiency air conditioners with high-efficiency units should be considered an option in a weatherization program directed at reducing air-conditioning electricity consumption; (3) ECMs currently being installed under the Oklahoma WAP (chosen based on effectiveness at reducing space-heating energy consumption) should continue to be justified based on their space-heating energy savings potential only; and (4) attic radiant barriers should not be included in the Oklahoma WAP if alternatives with verified savings are available or until further testing demonstrates energy savings or other benefits in this typo of housing.

  18. Air sampling in the workplace. Final report

    SciTech Connect (OSTI)

    Hickey, E.E.; Stoetzel, G.A.; Strom, D.J.; Cicotte, G.R.; Wiblin, C.M.; McGuire, S.A.

    1993-09-01

    This report provides technical information on air sampling that will be useful for facilities following the recommendations in the NRC`s Regulatory Guide 8.25, Revision 1, ``Air sampling in the Workplace.`` That guide addresses air sampling to meet the requirements in NRC`s regulations on radiation protection, 10 CFR Part 20. This report describes how to determine the need for air sampling based on the amount of material in process modified by the type of material, release potential, and confinement of the material. The purposes of air sampling and how the purposes affect the types of air sampling provided are discussed. The report discusses how to locate air samplers to accurately determine the concentrations of airborne radioactive materials that workers will be exposed to. The need for and the methods of performing airflow pattern studies to improve the accuracy of air sampling results are included. The report presents and gives examples of several techniques that can be used to evaluate whether the airborne concentrations of material are representative of the air inhaled by workers. Methods to adjust derived air concentrations for particle size are described. Methods to calibrate for volume of air sampled and estimate the uncertainty in the volume of air sampled are described. Statistical tests for determining minimum detectable concentrations are presented. How to perform an annual evaluation of the adequacy of the air sampling is also discussed.

  19. US energy flow, 1991

    SciTech Connect (OSTI)

    Borg, I.Y.; Briggs, C.K.

    1992-06-01

    Trends in energy consumption and assessment of energy sources are discussed. Specific topics discussed include: energy flow charts; comparison of energy use with 1990 and earlier years; supply and demand of fossil fuels (oils, natural gas, coal); electrical supply and demand; and nuclear power.

  20. Flow cytometry apparatus

    DOE Patents [OSTI]

    Pinkel, D.

    1987-11-30

    An obstruction across the flow chamber creates a one-dimensional convergence of a sheath fluid. A passageway in the obstruction directs flat cells near to the area of one-dimensional convergence in the sheath fluid to provide proper orientation of flat cells at fast rates. 6 figs.