Powered by Deep Web Technologies
Note: This page contains sample records for the topic "reduce air emissions" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

Novel Application of Air Separation Membranes Reduces Engine NOx Emissions  

Nitrogen oxide (NOx) emissions pose risks to human health, and so they need to be reduced. One very effective tool for reducing engine in-cylinder temperature and, hence NOx emissions (NOx is a strong function of temperature), is Exhaust Gas ...

2

Utilizing intake-air oxygen-enrichment technology to reduce cold- phase emissions  

DOE Green Energy (OSTI)

Oxygen-enriched combustion is a proven, serious considered technique to reduce exhaust hydrocarbons (HC) and carbon monoxide (CO) emissions from automotive gasoline engines. This paper presents the cold-phase emissions reduction results of using oxygen-enriched intake air containing about 23% and 25% oxygen (by volume) in a vehicle powered by a spark-ignition (SI) engine. Both engineout and converter-out emissions data were collected by following the standard federal test procedure (FTP). Converter-out emissions data were also obtained employing the US Environmental Protection Agency`s (EPA`s) ``Off-Cycle`` test. Test results indicate that the engine-out CO emissions during the cold phase (bag 1) were reduced by about 46 and 50%, and HC by about 33 and 43%, using nominal 23 and 25% oxygen-enriched air compared to ambient air (21% oxygen by volume), respectively. However, the corresponding oxides of nitrogen (NO{sub x}) emissions were increased by about 56 and 79%, respectively. Time-resolved emissions data indicate that both HC and CO emissions were reduced considerably during the initial 127 s of the cold-phase FTP, without any increase in NO, emissions in the first 25 s. Hydrocarbon speciation results indicate that all major toxic pollutants, including ozone-forming specific reactivity factors, such as maximum incremental reactivity (NUR) and maximum ozone incremental reactivity (MOIR), were reduced considerably with oxygen-enrichment. Based on these results, it seems that using oxygen-enriched intake air during the cold-phase FTP could potentially reduce HC and CO emissions sufficiently to meet future emissions standards. Off-cycle, converter-out, weighted-average emissions results show that both HC and CO emissions were reduced by about 60 to 75% with 23 or 25% oxygen-enrichment, but the accompanying NO{sub x}, emissions were much higher than those with the ambient air.

Poola, R.B.; Ng, H.K.; Sekar, R.R. [Argonne National Lab., IL (United States); Baudino, J.H. [Autoresearch Labs., Inc., Chicago, IL (United States); Colucci, C.P. [National Renewable Energy Lab., Golden, CO (United States)

1995-12-31T23:59:59.000Z

3

Tracking Progress in Reducing Mercury Air Emissions Compiled by the Northeast States for Coordinated Air Use Management (NESCAUM)  

E-Print Network (OSTI)

The Northeast states have taken steps since at least the 1990s to reduce and eliminate mercury emitted to the air from local sources. These steps occurred despite objections often raised against them asserting that they would be ineffective. The objections typically invoke the existence of a global pool of mercury created by mercury emissions from around the world that dominates local and regional mercury deposition. According to this argument, local and regional mercury emission reductions should have negligible benefits for the local and regional environment because the reductions will be overwhelmed by mercury deposition from the global mercury pool. While a global mercury pool does exist, a wealth of real world observations shows that changes in local and regional mercury air emissions are in fact readily seen within fairly short time periods in the local and regional environment. This is indeed borne out by the results seen in the Northeast and elsewhere in the United States. The following sections present the results of scientific studies showing local and regional connections between changes in mercury air emissions and changes in mercury appearing in the environment. These are grouped according to the type of mercury emission source: 1) mercury from coal combustion, 2) mercury from waste incineration, and 3) mercury from smelters. While the main focus is on the Northeast, we include studies from outside the region to further illustrate the connections between changes in local and regional mercury emissions and changes in mercury found in the environment.

unknown authors

2007-01-01T23:59:59.000Z

4

Reducing Diesel Engine Emissions  

NLE Websites -- All DOE Office Websites (Extended Search)

Reducing Reducing Diesel Engine Emissions 2 0 1 0 Green TransporTaTion TechnoloGies Compared to traditional gasoline engines, diesel engines require less maintenance, generate energy more efficiently, and produce less carbon dioxide emissions. But when uncontrolled, diesel engines churn out harmful emissions like particu- late matter (PM) and nitrogen oxides (NO x ). Researchers at Argonne National Laboratory are currently working to develop

5

Saving Energy and Reducing Emissions from the Regeneration Air System of a Butane Dehydrogenation Plant  

E-Print Network (OSTI)

Texas Petrochemicals operates a butane dehydrogenation unit producing MTBE for reformulated gasoline that was originally constructed when energy was cheap and prior to environmental regulation. The process exhausts 900,000 pounds per hour of air at 900 to 1100°F containing CO and VOC. By installing a furnace/heat recovery steam generator, Texas Petrochemicals achieved significant reductions of VOC, CO, and NOx, along with energy savings.

John, T. P.

1998-04-01T23:59:59.000Z

6

Proposal to reduce greenhouse gas emissions via landfill gas management in Greater Buenos Aires, Argentina. Final report  

DOE Green Energy (OSTI)

The purpose of this project was to evaluate the feasibility of reducing the emission of greenhouse gases by collection, flaring, and possibly beneficially using the gas from landfills in Greater Buenos Aires, Argentina (GBA). Another purpose was to prepare a proposal to the US Initiative on Joint Implementation (USIJI) for a project to collect and possibly use the landfill gas (LFG). The project was carried out from September 30, 1997 through September 30, 1998. Collection and flaring of gas is feasible provided private firms have sufficient incentive to obtain greenhouse gas emission reduction benefits. The value of those benefits that would be required to motivate funding of an LFG management project was not explicitly determined. However, one independent power producer has expressed an interest in funding the first phase of the proposed project and paid for a detailed feasibility study which was conducted in August and September of 1998. As a result of this project, a proposal was submitted to the USIJI Evaluation Panel in June, 1998. In August, 1998, an office was established for reviewing and approving joint implementation proposals. The proposal is currently under review by that office.

Jones, D.B.

1998-10-01T23:59:59.000Z

7

Saving Fuel, Reducing Emissions  

E-Print Network (OSTI)

lower greenhouse gas emissions from electricity productionAssessment of Greenhouse Gas Emissions from Plug-in Hybridof national greenhouse gas emissions. Both motor vehicle

Kammen, Daniel M.; Arons, Samuel M.; Lemoine, Derek M.; Hummel, Holmes

2009-01-01T23:59:59.000Z

8

Reduce Air Infiltration in Furnaces  

Science Conference Proceedings (OSTI)

This DOE Industrial Technologies Program tip sheet describes how to save energy and costs by reducing air infiltration in industrial furnaces; tips include repairing leaks and increasing insulation.

Not Available

2006-01-01T23:59:59.000Z

9

Radionuclide Air Emission Report for 2011  

E-Print Network (OSTI)

LBNL-470E-20Ģ1 Radionuclide Air Emission Report for Preparedfor Emissions of Radionuclides Other Than Radon FromFugitive Air Emissions of Radionuclides from Diffuse Sources

Wahl, Linnea

2012-01-01T23:59:59.000Z

10

Radionuclide Air Emission Report for 2009  

E-Print Network (OSTI)

the public from airborne radionuclide emissions. We requestfor Emissions of Radionuclides Other Than Radon FromFugitive Air Emissions of Radionuclides from Diffuse Sources

Wahl, Linnea

2010-01-01T23:59:59.000Z

11

Air Emission Inventory for the INEEL -- 1999 Emission Report  

Science Conference Proceedings (OSTI)

This report presents the 1999 calendar year update of the Air Emission Inventory for the Idaho National Engineering and Environmental Laboratory (INEEL). The INEEL Air Emission Inventory documents sources and emissions of nonradionuclide pollutants from operations at the INEEL. The report describes the emission inventory process and all of the sources at the INEEL, and provides nonradionuclide emissions estimates for stationary sources.

Zohner, Steven K

2000-05-01T23:59:59.000Z

12

Impacts of reducing shipboard NOx? and SOx? emissions on vessel performance  

E-Print Network (OSTI)

The international maritime community has been experiencing tremendous pressures from environmental organizations to reduce the emissions footprint of their vessels. In the last decade, air emissions, including nitrogen ...

Caputo, Ronald J., Jr. (Ronald Joseph)

2010-01-01T23:59:59.000Z

13

Radionuclide Air Emission Report for 2008  

E-Print Network (OSTI)

Fugitive Air Emissions of Radionuclides from Diffuse SourcesHazardous Air Pollutants (Radionuclides), Availability ofLBNL to Revise Its Radionuclide NESHAP Monitoring Approach,”

Wahl, Linnea

2009-01-01T23:59:59.000Z

14

Reducing SF6 Emissions @ PPPL  

NLE Websites -- All DOE Office Websites (Extended Search)

96.4 88.4 Fuel Consumption Emissions 2015 1823.8 Fugitive Emissions Refrigerant 160 241.2 SF6 38360 21042.8 Scope 2 -Indirect Electricity Purchase 13816 13855 Scope 3 -...

15

Radionuclide Air Emission Report for 2007  

E-Print Network (OSTI)

for Emissions of Radionuclides Other Than Radon FromHazardous Air Pollutants (Radionuclides), Availability ofLBNL to Revise Its Radionuclide NESHAP Monitoring Approach,”

Wahl, Linnea

2008-01-01T23:59:59.000Z

16

Cermet Filters To Reduce Diesel Engine Emissions  

DOE Green Energy (OSTI)

Pollution from diesel engines is a significant part of our nation's air-quality problem. Even under the more stringent standards for heavy-duty engines set to take effect in 2004, these engines will continue to emit large amounts of nitrogen oxides and particulate matter, both of which affect public health. To address this problem, the Idaho National Engineering and Environmental Laboratory (INEEL) invented a self-cleaning, high temperature, cermet filter that reduces heavy-duty diesel engine emissions. The main advantage of the INEEL cermet filter, compared to current technology, is its ability to destroy carbon particles and NOx in diesel engine exhaust. As a result, this technology is expected to improve our nation's environmental quality by meeting the need for heavy-duty diesel engine emissions control. This paper describes the cermet filter technology and the initial research and development effort.Diesel engines currently emit soot and NOx that pollute our air. It is expected that the U.S. Environmental Protection Agency (EPA) will begin tightening the regulatory requirements to control these emissions. The INEEL's self-cleaning, high temperature cermet filter provides a technology to clean heavy-duty diesel engine emissions. Under high engine exhaust temperatures, the cermet filter simultaneously removes carbon particles and NOx from the exhaust gas. The cermet filter is made from inexpensive starting materials, via net shape bulk forming and a single-step combustion synthesis process, and can be brazed to existing structures. It is self-cleaning, lightweight, mechanically strong, thermal shock resistant, and has a high melting temperature, high heat capacity, and controllable thermal expansion coefficient. The filter's porosity is controlled to provide high removal efficiency for carbon particulate. It can be made catalytic to oxidize CO, H2, and hydrocarbons, and reduce NOx. When activated by engine exhaust, the filter produces NH3 and light hydrocarbon gases that can effectively destroy the NOx in the exhaust. The following sections describe cermet filter technology and properties of the INEEL filter.

Kong, Peter

2001-08-05T23:59:59.000Z

17

Reducing Emissions Through Sustainable Transport: Proposal for...  

Open Energy Info (EERE)

Approach Jump to: navigation, search Tool Summary Name: Reducing Emissions Through Sustainable Transport: Proposal for a Sectoral Approach AgencyCompany Organization: GTZ...

18

2008 LANL radionuclide air emissions report  

SciTech Connect

The emissions of radionuclides from Department of Energy Facilities such as Los Alamos National Laboratory (LANL) are regulated by the Amendments to the Clean Air Act of 1990, National Emissions Standards for Hazardous Air Pollutants (40 CFR 61 Subpart H). These regulations established an annual dose limit of 10 mrem to the maximally exposed member of the public attributable to emissions of radionuclides. This document describes the emissions of radionuclides from LANL and the dose calculations resulting from these emissions for calendar year 2008. This report meets the reporting requirements established in the regulations.

Fuehne, David P.

2009-06-01T23:59:59.000Z

19

2010 LANL radionuclide air emissions report /  

SciTech Connect

The emissions of radionuclides from Department of Energy Facilities such as Los Alamos National Laboratory (LANL) are regulated by the Amendments to the Clean Air Act of 1990, National Emissions Standards for Hazardous Air Pollutants (40 CFR 61 Subpart H). These regulations established an annual dose limit of 10 mrem to the maximally exposed member of the public attributable to emissions of radionuclides. This document describes the emissions of radionuclides from LANL and the dose calculations resulting from these emissions for calendar year 2010. This report meets the reporting requirements established in the regulations.

Fuehne, David P.

2011-06-01T23:59:59.000Z

20

Emission Regulations Reduced Impact of Climate Change in CA  

NLE Websites -- All DOE Office Websites (Extended Search)

Emission Regulations Emission Regulations Reduced Impact of Climate Change in CA Emission Regulations Reduced Impact of Climate Change in CA Study shows clean diesel programs slashed black carbon, a powerful short-term contributor to global warming June 13, 2013 | Tags: Climate Research, Hopper Jon Weiner 510-486-4014 jrweiner@lbl.gov CA-BC-graphic.jpg Sacramento - Reductions in emissions of black carbon since the late 1980s, mostly from diesel engines as a result of air quality programs, have resulted in a measurable reduction of concentrations of global warming pollutants in the atmosphere, according to a first-of-its-kind study examining the impact of black carbon on California's climate. The study, funded by the California Air Resources Board and led by Dr. Veerabhadran Ramanathan of the Scripps Institution of Oceanography at the

Note: This page contains sample records for the topic "reduce air emissions" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

Radioactive air emissions 1992 summary. Progress report  

Science Conference Proceedings (OSTI)

This report summarizes, by radionuclide or product and by emitting facility, the Laboratory`s 1992 radioactive air emissions. In 1992, the total activity of radionuclides emitted into the air from Laboratory stacks was approximately 73,500 Ci. This was an increase over the activity of the total 1991 radioactive air emissions, which was approximately 62,400 Ci. Total 1992 Laboratory emissions of each radionuclide or product are summarized by tables and graphs in the first section of this report. Compared to 1991 radioactive air emissions, total tritium activity was decreased, total plutonium activity was decreased, total uranium activity was decreased, total mixed fission product activity was increased, total {sup 41}Ar activity was decreased, total gaseous/mixed activation product (except {sup 41}Ar) activity was increased, total particulate/vapor activation product activity was increased, and total {sup 32}P activity was decreased. Radioactive emissions from specific facilities are detailed in this report. Each section provides 1992 data on a single radionuclide or product and is further divided by emitting facility. For each facility from which a particular radionuclide or product was emitted, a bar chart displays the air emissions of each radionuclide or product from each facility over the 12 reporting periods of 1992, a line chart shows the trend in total emissions of that radionuclide or product from that facility for the past three years, the greatest activity during the 1990--1992 period is discussed, and unexpected or unusual results are noted.

Wahl, L. [comp.

1993-10-01T23:59:59.000Z

22

EIA - AEO2010 - Updated State air emissions regulations  

Gasoline and Diesel Fuel Update (EIA)

Updated State air emissions regulations Updated State air emissions regulations Annual Energy Outlook 2010 with Projections to 2035 Updated State air emissions regulations Regional Greenhouse Gas Initiative The Regional Greenhouse Gas Initiative (RGGI) is a program that includes 10 Northeast States that have agreed to curtail and reverse growth in their CO2 emissions. The RGGI program includes all electricity generating units with a capacity of at least 25 mega-watts and requires an allowance for each ton of CO2 emitted [30]. The first year of mandatory compliance was in 2009. Each participating State was provided a CO2 budget consisting of a history-based baseline with a cushion for emissions growth, so that meeting the cap is expected to be relatively easy initially and become more stringent in subsequent years. The requirements are expected to cover 95 percent of CO2 emissions from the region's electric power sector. Overall, the RGGI States as a whole must maintain covered emissions at a level of 188 million tons CO2 for the next 4 years, after which a mandatory 2.5-percent annual decrease in CO2 emissions through 2018 is expected to reduce the total for covered CO2 emissions in the RGGI States to 10 percent below the initial calculated bud-get. Although each State was given its own emissions budget, allowances are auctioned at a uniform price across the entire region.

23

Reducing dust emissions at OAO Alchevskkoks coke battery 10A  

Science Conference Proceedings (OSTI)

Coke battery 10A with rammed batch is under construction at OAO Alchevskkoks. The design documentation developed by Giprokoks includes measures for reducing dust emissions to the atmosphere. Aspiration systems with dry dust trapping are employed in the new components of coke battery 10A and in the existing coke-sorting equipment. Two-stage purification of dusty air in cyclones and bag filters is employed for the coke-sorting equipment. This system considerably reduces coke-dust emissions to the atmosphere.

T.F. Trembach; E.N. Lanina [Giprokoks, the State Institute for the Design of Coke-Industry Enterprises, Kharkov (Ukraine)

2009-07-15T23:59:59.000Z

24

The Power to Reduce CO2 Emissions  

Science Conference Proceedings (OSTI)

In 2007 EPRI released its first Prism analysis [EPRI 2007], providing a technically and economically feasible roadmap for the electricity sector as it seeks to reduce greenhouse gas emissions. The Prism analysis provided a comprehensive assessment of potential CO2 reductions in key technology areas of the electricity sector. In 2009 EPRI, updated the analysis to reflect economic and technological changes that have the potential to affect projected emissions and the technologies to address them. The upda...

2010-12-07T23:59:59.000Z

25

Impact of Vehicle Air-Conditioning on Fuel Economy, Tailpipe Emissions, and Electric Vehicle Range: Preprint  

DOE Green Energy (OSTI)

Vehicle air-conditioning can significantly impact fuel economy and tailpipe emissions of conventional and hybrid electric vehicles and reduce electric vehicle range. In addition, a new US emissions procedure, called the Supplemental Federal Test Procedure, has provided the motivation for reducing the size of vehicle air-conditioning systems in the US. The SFTP will measure tailpipe emissions with the air-conditioning system operating. Current air-conditioning systems can reduce the fuel economy of high fuel-economy vehicles by about 50% and reduce the fuel economy of today's mid-sized vehicles by more than 20% while increasing NOx by nearly 80% and CO by 70%.

Farrington, R.; Rugh, J.

2000-09-22T23:59:59.000Z

26

Energy and air emission implications of a decentralized wastewater system  

NLE Websites -- All DOE Office Websites (Extended Search)

and air emission implications of a decentralized wastewater system and air emission implications of a decentralized wastewater system Title Energy and air emission implications of a decentralized wastewater system Publication Type Journal Article Year of Publication 2012 Authors Shehabi, Arman, Jennifer R. Stokes, and Arpad Horvath Journal Environmental Research Letters Volume 7 Issue 2 Abstract Both centralized and decentralized wastewater systems have distinct engineering, financial and societal benefits. This paper presents a framework for analyzing the environmental effects of decentralized wastewater systems and an evaluation of the environmental impacts associated with two currently operating systems in California, one centralized and one decentralized. A comparison of energy use, greenhouse gas emissions and criteria air pollutants from the systems shows that the scale economies of the centralized plant help lower the environmental burden to less than a fifth of that of the decentralized utility for the same volume treated. The energy and emission burdens of the decentralized plant are reduced when accounting for high-yield wastewater reuse if it supplants an energy-intensive water supply like a desalination one. The centralized facility also reduces greenhouse gases by flaring methane generated during the treatment process, while methane is directly emitted from the decentralized system. The results are compelling enough to indicate that the life-cycle environmental impacts of decentralized designs should be carefully evaluated as part of the design process.

27

Coal Biomodification to Reduce Mercury Emissions  

NLE Websites -- All DOE Office Websites (Extended Search)

Road P.O. Box 880 Morgantown, WV 26507-0880 304-285-4132 heino.beckert@netl.doe.gov Coal BiomodifiCation to ReduCe meRCuRy emissions Description In partnership with a number of...

28

Modeling the Capacity and Emissions Impacts of Reduced Electricity...  

NLE Websites -- All DOE Office Websites (Extended Search)

Modeling the Capacity and Emissions Impacts of Reduced Electricity Demand Title Modeling the Capacity and Emissions Impacts of Reduced Electricity Demand Publication Type Report...

29

Air Pollution Control Regulations: No. 3 - Particulate Emissions...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

3 - Particulate Emissions from Industrial Processes (Rhode Island) Air Pollution Control Regulations: No. 3 - Particulate Emissions from Industrial Processes (Rhode Island)...

30

Abatement of Air Pollution: Control of Carbon Dioxide Emissions...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Carbon Dioxide EmissionsCarbon Dioxide Budget Trading Program (Connecticut) Abatement of Air Pollution: Control of Carbon Dioxide EmissionsCarbon Dioxide Budget Trading Program...

31

FETC Programs for Reducing Greenhouse Gas Emissions  

SciTech Connect

Mark Twain once quipped that everyone talks about the weather but no one does anything about it. With interest in global climate change on the rise, researchers in the fossil-energy sector are feeling the heat to provide new technology to permit continued use of fossil fuels but with reduced emissions of so-called `greenhouse gases.` Three important greenhouse gases, carbon dioxide, methane, and nitrous oxide, are released to the atmosphere in the course of recovering and combusting fossil fuels. Their importance for trapping radiation, called forcing, is in the order given. In this report, we briefly review how greenhouse gases cause forcing and why this has a warming effect on the Earth`s atmosphere. Then we discuss programs underway at FETC that are aimed at reducing emissions of methane and carbon dioxide.

Ruether, J.A.

1998-02-01T23:59:59.000Z

32

Options for reducing carbon dioxide emissions  

Science Conference Proceedings (OSTI)

Improvements in energy efficiency can significantly reduce the annual growth in greenhouse gas emissions. Such improvements occur when energy intensity is reduced; no reduction in energy services is required. Using the concept of cost of conserved energy'' to develop conservation supply curves similar to resource supply curves, researchers consistently find that electricity and natural gas savings of nearly 50% of current consumption are possible for US buildings. Such reductions in energy consumption directly reduce emissions of greenhouse gases. To capture these savings, we must continue to develop energy-efficient technologies and strategies. This paper describes three recent energy-efficient technologies that benefited from energy conservation research and development (R D) funding: high-frequency ballasts, compact fluorescent lamps, and low-emissivity windows. Other advanced technologies and strategies of spectrally selective windows, superwindows, electrochromic windows, advanced insulation, low-flow showerheads, improved recessed lamp fixtures, whitening surfaces and planting urban trees, daylighting, and thermal energy storage are also discussed. 33 refs., 9 figs., 3 tabs.

Rosenfeld, A.H.; Price, L.

1991-08-01T23:59:59.000Z

33

2006 LANL Radionuclide Air Emissions Report  

SciTech Connect

This report describes the impacts from emissions of radionuclides at Los Alamos National Laboratory (LANL) for calendar year 2006. This report fulfills the requirements established by the Radionuclide National Emissions Standards for Hazardous Air Pollutants (Rad-NESHAP). This report is prepared by LANL's Rad-NESHAP compliance team, part of the Environmental Protection Division. The information in this report is required under the Clean Air Act and is being reported to the U.S. Environmental Protection Agency (EPA). The highest effective dose equivalent (EDE) to an off-site member of the public was calculated using procedures specified by the EPA and described in this report. LANL's EDE was 0.47 mrem for 2006. The annual limit established by the EPA is 10 mrem per year. During calendar year 2006, LANL continuously monitored radionuclide emissions at 28 release points, or stacks. The Laboratory estimates emissions from an additional 58 release points using radionuclide usage source terms. Also, LANL uses a network of air samplers around the Laboratory perimeter to monitor ambient airborne levels of radionuclides. To provide data for dispersion modeling and dose assessment, LANL maintains and operates meteorological monitoring systems. From these measurement systems, a comprehensive evaluation is conducted to calculate the EDE for the Laboratory. The EDE is evaluated as any member of the public at any off-site location where there is a residence, school, business, or office. In 2006, this location was the Los Alamos Airport Terminal. The majority of this dose is due to ambient air sampling of plutonium emitted from 2006 clean-up activities at an environmental restoration site (73-002-99; ash pile). Doses reported to the EPA for the past 10 years are shown in Table E1.

David P. Fuehne

2007-06-30T23:59:59.000Z

34

Dynamics of Implementation of Mitigating Measures to Reduce CO2 Emissions from Commercial Aviation  

E-Print Network (OSTI)

Increasing demand for air transportation and growing environmental concerns motivate the need to implement measures to reduce CO2 emissions from aviation. Case studies of historical changes in the aviation industry have ...

Kar, Rahul

2010-07-13T23:59:59.000Z

35

Dynamics of implementation of mitigating measures to reduce CO? emissions from commercial aviation  

E-Print Network (OSTI)

Increasing demand for air transportation and growing environmental concerns motivate the need to implement measures to reduce CO? emissions from aviation. Case studies of historical changes in the aviation industry have ...

Kar, Rahul, 1979-

2010-01-01T23:59:59.000Z

36

Reducing Emissions in Plant Flaring Operations  

E-Print Network (OSTI)

Since 2006, one of the largest integrated energy and chemical companies in the world has actively pushed toward optimization and upgrading of pipelines, refineries and petrochemical plants in China for the purpose of minimizing energy consumption, lowering emissions and maximizing production. Saving energy and reducing emissions are the internal requirements for every division of this major corporation. To achieve the public goals the company set, they issued a five year plan called Methods on Energy and Water Saving Management which was applied to all operating equipment in the 13 company owned oil and gas fields, the 22 refineries and 3 pipeline companies. The plan for the refineries focused on key areas such as improving energy efficiency, utilizing latest technologies and reducing green house gas emissions.1 The company also created a Green Team with the objective of achieving zero injury, zero pollution, and zero accidents for all production facilities. These Green Teams advocated the company's new HSE (Health Safety & Environment) culture by eliminating energy-consuming and highly polluting production equipment and facilities that fell behind in the use of technologically advanced equipment.

Duck, B.

2011-01-01T23:59:59.000Z

37

Radionuclide Air Emission Report for 2011  

SciTech Connect

Berkeley Lab operates facilities where radionuclides are produced, handled, stored, and potentially emitted. These facilities are subject to the EPA radioactive air emission regulations in 40 CFR 61, Subpart H. Radionuclides may be emitted from stacks or vents on buildings where radionuclide production or use is authorized or they may be emitted as diffuse sources. In 2011, all Berkeley Lab sources were minor sources of radionuclides (sources resulting in a potential dose of less than 0.1 mrem/yr [0.01 mSv/yr]). These minor sources included about 90 stack sources and one source of diffuse emissions. There were no unplanned airborne radionuclide emissions from Berkeley lab operations. Emissions from minor sources (stacks and diffuse emissions) were measured by sampling or monitoring or were calculated based on quantities used, received for use, or produced during the year. Using measured and calculated emissions, and building-specific and common parameters, Laboratory personnel applied the EPA-approved computer codes, CAP88-PC and COMPLY, to calculate the effective dose equivalent to the maximally exposed individual (MEI).

Wahl, Linnea

2012-06-04T23:59:59.000Z

38

Regional emissions of air pollutants in China.  

SciTech Connect

As part of the China-MAP program, sponsored by the US National Aeronautics and Space Administration, regional inventories of air pollutants emitted in China are being characterized, in order that the atmospheric chemistry over China can be more fully understood and the resulting ambient concentrations in Chinese cities and the deposition levels to Chinese ecosystems be determined with better confidence. In addition, the contributions of greenhouse gases from China and of acidic aerosols that counteract global warming are being quantified. This paper presents preliminary estimates of the emissions of some of the major air pollutants in China: sulfur dioxide (SO{sub 2}), nitrogen oxides (NO{sub x}), carbon monoxide (CO), and black carbon (C). Emissions are estimated for each of the 27 regions of China included in the RAINS-Asia simulation model and are subsequently distributed to a 1{degree} x 1{degree} grid using appropriate disaggregation factors. Emissions from all sectors of the Chinese economy are considered, including the combustion of biofuels in rural homes. Emissions from larger power plants are calculated individually and allocated to the grid accordingly. Data for the period 1990-1995 are being developed, as well as projections for the future under alternative assumptions about economic growth and environmental control.

Streets, D. G.

1998-10-05T23:59:59.000Z

39

Radionuclide Air Emission Report for 2007  

Science Conference Proceedings (OSTI)

Berkeley Lab operates facilities where radionuclides are handled and stored. These facilities are subject to the U.S. Environmental Protection Agency (EPA) radioactive air emission regulations in Code of Federal Regulations (CFR) Title 40, Part 61, Subpart H (EPA 1989). The EPA regulates radionuclide emissions that may be released from stacks or vents on buildings where radionuclide production or use is authorized or that may be emitted as diffuse sources. In 2007, all Berkeley Lab sources were minor stack or building emissions sources of radionuclides (sources resulting in a potential dose of less than 0.1 mrem/yr [0.001 mSv/yr]), there were no diffuse emissions, and there were no unplanned emissions. Emissions from minor sources either were measured by sampling or monitoring or were calculated based on quantities received for use or produced during the year. Using measured and calculated emissions, and building-specific and common parameters, Laboratory personnel applied the EPA-approved computer code, CAP88-PC, Version 3.0, to calculate the effective dose equivalent to the maximally exposed individual (MEI). The effective dose equivalent from all sources at Berkeley Lab in 2007 is 1.2 x 10{sup -2} mrem/yr (1.2 x 10{sup -4} mSv/yr) to the MEI, well below the 10 mrem/yr (0.1 mSv/yr) EPA dose standard. The location of the MEI is at the University of California (UC) Lawrence Hall of Science, a public science museum about 1500 ft (460 m) east of Berkeley Lab's Building 56. The estimated collective effective dose equivalent to persons living within 50 mi (80 km) of Berkeley Lab is 3.1 x 10{sup -1} person-rem (3.1 x 10{sup -3} person-Sv) attributable to the Lab's airborne emissions in 2007.

Wahl, Linnea; Wahl, Linnea

2008-06-13T23:59:59.000Z

40

Radionuclide Air Emission Report for 2009  

SciTech Connect

Berkeley Lab operates facilities where radionuclides are handled and stored. These facilities are subject to the EPA radioactive air emission regulations in 40CFR61, Subpart H (EPA 1989). Radionuclides may be emitted from stacks or vents on buildings where radionuclide production or use is authorized or they may be emitted as diffuse sources. In 2009, all Berkeley Lab sources were minor sources of radionuclides (sources resulting in a potential dose of less than 0.1 mrem/yr [0.001 mSv/yr]). These minor sources included more than 100 stack sources and one source of diffuse emissions. There were no unplanned emissions from the Berkeley Lab site. Emissions from minor sources (stacks and diffuse emissions) either were measured by sampling or monitoring or were calculated based on quantities used, received for use, or produced during the year. Using measured and calculated emissions, and building-specific and common parameters, Laboratory personnel applied the EPA-approved computer code, CAP88-PC, to calculate the effective dose equivalent to the maximally exposed individual (MEI). The effective dose equivalent from all sources at Berkeley Lab in 2009 is 7.0 x 10{sup -3} mrem/yr (7.0 x 10{sup -5} mSv/yr) to the MEI, well below the 10 mrem/yr (0.1 mSv/yr) dose standard. The location of the MEI is at the University of California (UC) Lawrence Hall of Science, a public science museum about 1500 ft (460 m) east of Berkeley Lab's Building 56. The estimated collective effective dose equivalent to persons living within 50 mi (80 km) of Berkeley Lab is 1.5 x 10{sup -1} person-rem (1.5 x 10{sup -3} person-Sv) attributable to the Lab's airborne emissions in 2009.

Wahl, Linnea

2010-06-01T23:59:59.000Z

Note: This page contains sample records for the topic "reduce air emissions" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

Radionuclide Air Emission Report for 2008  

SciTech Connect

Berkeley Lab operates facilities where radionuclides are handled and stored. These facilities are subject to the U.S. Environmental Protection Agency (EPA) radioactive air emission regulations in Code of Federal Regulations (CFR) Title 40, Part 61, Subpart H (EPA 1989). Radionuclides may be emitted from stacks or vents on buildings where radionuclide production or use is authorized or they may be emitted as diffuse sources. In 2008, all Berkeley Lab sources were minor sources of radionuclides (sources resulting in a potential dose of less than 0.1 mrem/yr [0.001 mSv/yr]). These minor sources include more than 100 stack sources and one source of diffuse emissions. There were no unplanned emissions from the Berkeley Lab site. Emissions from minor sources (stacks and diffuse emissions) either were measured by sampling or monitoring or were calculated based on quantities used, received for use, or produced during the year. Using measured and calculated emissions, and building-specific and common parameters, Laboratory personnel applied the EPA-approved computer code, CAP88-PC, to calculate the effective dose equivalent to the maximally exposed individual (MEI). The effective dose equivalent from all sources at Berkeley Lab in 2008 is 5.2 x 10{sup -3} mrem/yr (5.2 x 10{sup -5} mSv/yr) to the MEI, well below the 10 mrem/yr (0.1 mSv/yr) dose standard. The location of the MEI is at the University of California (UC) Lawrence Hall of Science, a public science museum about 1500 ft (460 m) east of Berkeley Lab's Building 56. The estimated collective effective dose equivalent to persons living within 50 mi (80 km) of Berkeley Lab is 1.1 x 10{sup -1} person-rem (1.1 x 10{sup -3} person-Sv) attributable to the Lab's airborne emissions in 2008.

Wahl, Linnea

2009-05-21T23:59:59.000Z

42

Opportunities to Reduce Air-Conditioning Loads Through Lower Cabin Soak Temperatures  

DOE Green Energy (OSTI)

Air-conditioning loads can significantly reduce electric vehicle (EV) range and hybrid electric vehicle (HEV) fuel economy. In addition, a new U. S. emissions procedure, called the Supplemental Federal Test Procedure (SFTP), has provided the motivation for reducing the size of vehicle air-conditioning systems in the United States. The SFTP will measure tailpipe emissions with the air-conditioning system operating. If the size of the air-conditioning system is reduced, the cabin soak temperature must also be reduced, with no penalty in terms of passenger thermal comfort. This paper presents the impact of air-conditioning on EV range and HEV fuel economy, and compares the effectiveness of advanced glazing and cabin ventilation. Experimental and modeled results are presented.

Farrington, R.; Cuddy, M.; Keyser, M.; Rugh, J.

1999-07-12T23:59:59.000Z

43

Air Emission Inventory for the Idaho National Engineering and Environmental Laboratory - Calendar Year 1999 Emission Report  

Science Conference Proceedings (OSTI)

This report presents the 1999 calendar year update of the Air Emission Inventory for the Idaho National Engineering and Environmental Laboratory (INEEL). The INEEL Air Emission Inventory documents sources and emissions of nonradionuclide pollutants from operations at the INEEL. The report describes the emission inventory process and all of the sources at the INEEL, and provides nonradionuclide emissions estimates for stationary sources.

Zohner, S.K.

2000-05-30T23:59:59.000Z

44

Air Emission Inventory for the Idaho National Engineering and Environmental Laboratory - Calendar Year 1998 Emissions Report  

SciTech Connect

This report presents the 1998 calendar year update of the Air Emission Inventory for the Idaho National Engineering and Environmental Laboratory (INEEL). The INEEL Air Emission Inventory documents sources and emissions of nonradionuclide pollutants from operations at the INEEL. The report describes the emission inventory process and all of the sources at the INEEL, and provides nonradiological emissions estimates for stationary sources.

S. K. Zohner

1999-10-01T23:59:59.000Z

45

Alternative Fuels Data Center: Wisconsin Reduces Emissions With Natural Gas  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Wisconsin Reduces Wisconsin Reduces Emissions With Natural Gas Trucks to someone by E-mail Share Alternative Fuels Data Center: Wisconsin Reduces Emissions With Natural Gas Trucks on Facebook Tweet about Alternative Fuels Data Center: Wisconsin Reduces Emissions With Natural Gas Trucks on Twitter Bookmark Alternative Fuels Data Center: Wisconsin Reduces Emissions With Natural Gas Trucks on Google Bookmark Alternative Fuels Data Center: Wisconsin Reduces Emissions With Natural Gas Trucks on Delicious Rank Alternative Fuels Data Center: Wisconsin Reduces Emissions With Natural Gas Trucks on Digg Find More places to share Alternative Fuels Data Center: Wisconsin Reduces Emissions With Natural Gas Trucks on AddThis.com... Oct. 2, 2010 Wisconsin Reduces Emissions With Natural Gas Trucks

46

Reducing Greenhouse Emissions and Fuel Consumption  

E-Print Network (OSTI)

the Emissions and Fuel Consumption Impacts of IntelligentTravel Time, Fuel Consumption and Weigh Station Efficiency.EMISSIONS AND FUEL CONSUMPTION - Sustainable Approaches for

Shaheen, Susan; Lipman, Timothy

2007-01-01T23:59:59.000Z

47

FETC Programs for Reducing Greenhouse Gas Emissions  

NLE Websites -- All DOE Office Websites (Extended Search)

Federal Energy Technology Center Federal Energy Technology Center Pittsburgh, Pennsylvania Morgantown, West Virginia FETC's Customer Service Line: (800) 553-7681 FETC's Homepage: http://www.fetc.doe.gov/ DOE/FETC-98/1058 (DE98002029) FETC Programs for Reducing Greenhouse Gas Emissions John A. Ruether February 1998 2 Disclaimer This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein

48

Global Atmospheric Pollution Forum Air Pollutant Emission Inventory | Open  

Open Energy Info (EERE)

Global Atmospheric Pollution Forum Air Pollutant Emission Inventory Global Atmospheric Pollution Forum Air Pollutant Emission Inventory Jump to: navigation, search Tool Summary Name: Global Atmospheric Pollution (GAP) Forum Air Pollutant Emission Inventory Agency/Company /Organization: BOC foundation, U.S. Environment Protection Agency (EPA) and Swedish International Development Cooperation Agency (SIDA) Complexity/Ease of Use: Moderate Website: sei-international.org/rapidc/gapforum/html/emissions-manual.php Cost: Free Related Tools Global Atmospheric Pollution Forum Air Pollutant Emission Inventory World Induced Technical Change Hybrid (WITCH) Energy Development Index (EDI) ... further results Find Another Tool FIND DEVELOPMENT IMPACTS ASSESSMENT TOOLS A manual that provides formulation of methods and assessment of good

49

(DDBS) System Doubles Pot Suction, Reduces Roof Emission  

Science Conference Proceedings (OSTI)

... Suction (DDBS) System Doubles Pot Suction, Reduces Roof Emission .... Phase Change Materials in Thermal Energy Storage for Concentrating Solar Power ...

50

The effects of oxygen-enriched intake air on FFV exhaust emissions using M85  

Science Conference Proceedings (OSTI)

This paper presents results of emission tests of a flexible fuel vehicle (FFV) powered by an SI engine, fueled by M85 (methanol), and supplied with oxygen-enriched intake air containing 21, 23, and 25 vol% O2. Engine-out total hydrocarbons (THCs) and unburned methanol were considerably reduced in the entire FTP cycle when the O2 content of the intake air was either 23 or 25%. However, CO emissions did not vary much, and NOx emissions were higher. HCHO emissions were reduced by 53% in bag 1, 84% in bag 2, and 59% in bag 3 of the FTP cycle with 25% oxygen-enriched intake air. During cold-phase FTP,reductions of 42% in THCs, 40% in unburned methanol, 60% in nonmethane hydrocarbons, and 45% in nonmethane organic gases (NMOGs) were observed with 25% enriched air; NO{sub x} emissions increased by 78%. Converter-out emissions were also reduced with enriched air but to a lesser degree. FFVs operating on M85 that use 25% enriched air during only the initial 127 s of cold-phase FTP or that use 23 or 25% enriched air during only cold-phase FTP can meet the reactivity-adjusted NMOG, CO, NO{sub x}, and HCHO emission standards of the transitional low-emission vehicle.

Poola, R.B.; Sekar, R.; Ng, H.K. [Argonne National Lab., IL (United States); Baudino, J.H. [Autoresearch Labs., Inc., Chicago, IL (United States); Colucci, C.P. [National Renewable Energy Lab., Golden, CO (United States)

1996-05-01T23:59:59.000Z

51

Reducing flare emissions from chemical plants and refineries through the application of fuzzy control system  

Science Conference Proceedings (OSTI)

Increasing legislative requirements on a global basis are driving the development of solutions to reduce emission. Flaring and venting of waste hydrocarbon gases is a known contributor to pollution and increasing pressure is being exerted onto operators ... Keywords: air assist, combustion, combustion efficiency, emissions, flare, fuzzy control, member ship function, steam injection, toxic gas

A. Alizadeh-Attar; H. R. Ghoohestani; I. Nasr Isfahani

2007-04-01T23:59:59.000Z

52

Reducing flare emissions from chemical plants and refineries through the application of fuzzy control system  

Science Conference Proceedings (OSTI)

Increasing legislative requirements on a global basis are driving the development of solutions to reduce emission. Flaring and venting of waste hydrocarbon gases is a known contributor to pollution and increasing pressure is being exerted onto operators ... Keywords: air assist, combustion, combustion efficiency, emissions, flare, fuzzy control, member ship function, steam injection, toxic gas

A. Alizadeh-Attar; H. R. Ghoohestani; I. Nasr Isfahani

2007-06-01T23:59:59.000Z

53

Mexico-NAMA on Reducing GHG Emissions in the Cement Sector | Open Energy  

Open Energy Info (EERE)

Mexico-NAMA on Reducing GHG Emissions in the Cement Sector Mexico-NAMA on Reducing GHG Emissions in the Cement Sector Jump to: navigation, search Name CCAP-Mexico-NAMA on Reducing GHG Emissions in the Cement Sector Agency/Company /Organization Center for Clean Air Policy (CCAP) Sector Energy Focus Area Industry, - Industrial Processes Topics Implementation, Low emission development planning, -NAMA, Market analysis, Policies/deployment programs Website http://www.ccap.org/docs/resou Program Start 2011 Program End 2011 Country Mexico UN Region Central America References CCAP-Mexico-NAMA on Reducing GHG Emissions in the Cement Sector[1] CCAP-Mexico-NAMA on Reducing GHG Emissions in the Cement Sector Screenshot "This interim report presents the preliminary results of the first phase of the study - an evaluation of sectoral approach issues and opportunities

54

CCAP-Mexico-NAMA on Reducing GHG Emissions in the Cement Sector | Open  

Open Energy Info (EERE)

CCAP-Mexico-NAMA on Reducing GHG Emissions in the Cement Sector CCAP-Mexico-NAMA on Reducing GHG Emissions in the Cement Sector Jump to: navigation, search Name CCAP-Mexico-NAMA on Reducing GHG Emissions in the Cement Sector Agency/Company /Organization Center for Clean Air Policy (CCAP) Sector Energy Focus Area Industry, - Industrial Processes Topics Implementation, Low emission development planning, -NAMA, Market analysis, Policies/deployment programs Website http://www.ccap.org/docs/resou Program Start 2011 Program End 2011 Country Mexico UN Region Central America References CCAP-Mexico-NAMA on Reducing GHG Emissions in the Cement Sector[1] CCAP-Mexico-NAMA on Reducing GHG Emissions in the Cement Sector Screenshot "This interim report presents the preliminary results of the first phase of the study - an evaluation of sectoral approach issues and opportunities

55

Infrared Continental Surface Emissivity Spectra Retrieved from AIRS Hyperspectral Sensor  

Science Conference Proceedings (OSTI)

Atmospheric Infrared Sounder (AIRS; NASA Aqua platform) observations over land are interpreted in terms of monthly mean surface emissivity spectra at a resolution of 0.05 ?m and skin temperature. For each AIRS observation, an estimation of the ...

E. Péquignot; A. Chédin; N. A. Scott

2008-06-01T23:59:59.000Z

56

Air Pollution Control Regulations: No. 13 - Particulate Emissions...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Pollution Control Regulations: No. 13 - Particulate Emissions from Fossil Fuel Fired Steam or Hot Water Generating Units (Rhode Island) Air Pollution Control Regulations: No. 13...

57

Environmental policymaking for air transportation : toward an emissions trading system.  

E-Print Network (OSTI)

??Aviation is at a turning point. Considerable improvements in aircraft emissions efficiencies are expected through technological improvements, air traffic management, and managerial strategies. But global… (more)

De Serres, Martine.

2007-01-01T23:59:59.000Z

58

Colorado Air Pollutant Emission Notice (APEN) Form | Open Energy...  

Open Energy Info (EERE)

Form Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Reference Material: Colorado Air Pollutant Emission Notice (APEN) Form Details Activities (0) Areas (0) Regions...

59

Indoor air quality and the emissions of VOCs from interior ...  

U.S. Energy Information Administration (EIA)

How to Cite. Tshudy, J. A. (1995), Indoor air quality and the emissions of VOCs from interior products. J Vinyl Addit Technol, 1: 155–158. doi: ...

60

Air Emission Inventory for the Idaho National Engineering Laboratory, 1993 emissions report  

Science Conference Proceedings (OSTI)

This report presents the 1993 update of the Air Emission Inventory for the Idaho National Engineering Laboratory (INEL). The purpose of the Air Emission Inventory is to commence the preparation of the permit to operate application for the INEL, as required by the recently promulgated Title V regulations of the Clean Air Act. The report describes the emission inventory process and all of the sources at the INEL and provides emissions estimates for both mobile and stationary sources.

Not Available

1994-06-01T23:59:59.000Z

Note: This page contains sample records for the topic "reduce air emissions" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

Vietnam-Integrated Action Plan to Reduce Vehicle Emissions | Open Energy  

Open Energy Info (EERE)

Vietnam-Integrated Action Plan to Reduce Vehicle Emissions Vietnam-Integrated Action Plan to Reduce Vehicle Emissions Jump to: navigation, search Name Vietnam-Integrated Action Plan to Reduce Vehicle Emissions Agency/Company /Organization Asian Development Bank Focus Area Transportation Topics Implementation, Policies/deployment programs, Background analysis Resource Type Guide/manual Website http://www.adb.org/documents/o Program Start 2002 Country Vietnam UN Region South-Eastern Asia References Vietnam-Integrated Action Plan to Reduce Vehicle Emissions[1] Background "A major goal of this strategy is to reduce mobile sources of air pollution in Viet Nam's largest cities. According to this strategy, industry, business units, management agencies and the transport sector must carefully control pollutant emissions such as carbon monoxide (CO), carbon dioxide

62

Policies to Reduce Emissions from the Transportation Sector | Open Energy  

Open Energy Info (EERE)

Policies to Reduce Emissions from the Transportation Sector Policies to Reduce Emissions from the Transportation Sector Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Policies to Reduce Emissions from the Transportation Sector Agency/Company /Organization: PEW Center Sector: Climate Focus Area: Transportation, People and Policy Phase: Evaluate Options, Develop Goals, Prepare a Plan Resource Type: Guide/manual User Interface: Other Website: www.pewclimate.org/DDCF-Briefs/Transportation Cost: Free References: Policies To Reduce Emissions From The Transportation Sector[1] Provide an overview of policy tools available to reduce GHG emissions from the transportation sector. Overview Provide an overview of policy tools available to reduce GHG emissions from the transportation sector. Outputs include: General Information

63

Reducing Greenhouse Emissions and Fuel Consumption  

E-Print Network (OSTI)

Compressed natural gas (CNG) vehicles offer similar emissionsimilar GHG emission levels as CNG vehicles and diesel vehi­BRT buses . The 40-foot CNG buses used in a BRT system

Shaheen, Susan; Lipman, Timothy

2007-01-01T23:59:59.000Z

64

Analysis of Strategies for Reducing Multiple Emissions from Power ...  

U.S. Energy Information Administration (EIA)

Analysis of Strategies for Reducing Multiple Emissions from Power Plants: ... Over the next decade, power plant operators may face significant requirements ...

65

Increased Energy Efficiency and Reduced HF Emissions with New ...  

Science Conference Proceedings (OSTI)

Presentation Title, Increased Energy Efficiency and Reduced HF Emissions with New Heat Exchanger. Author(s), Anders Kenneth Sorhuus, Geir Wedde, Ketil A.

66

Reducing emissions to improve nuclear test detection | National...  

National Nuclear Security Administration (NNSA)

Reducing emissions to improve nuclear test detection | National Nuclear Security Administration Our Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear...

67

Increasing Energy Efficiency and Reducing Emissions from China...  

NLE Websites -- All DOE Office Websites (Extended Search)

from China's Cement Kilns: Audit Report of Two Cement Plants in Shandong Province, China Title Increasing Energy Efficiency and Reducing Emissions from China's Cement Kilns:...

68

Air Emission Inventory for the Idaho National Engineering Laboratory: 1992 emissions report  

Science Conference Proceedings (OSTI)

This report presents the 1992 Air Emission Inventory for the Idaho National Engineering Laboratory. Originally, this report was in response to the Environmental Oversight and Monitoring Agreement in 1989 between the State of Idaho and the Department of Energy Idaho Field Office, and a request from the Idaho Air Quality Bureau. The current purpose of the Air Emission Inventory is to provide the basis for the preparation of the INEL Permit-to-Operate (PTO) an Air Emission Source Application, as required by the recently promulgated Title V regulations of the Clean Air Act. This report includes emissions calculations from 1989 to 1992. The Air Emission Inventory System, an ORACLE-based database system, maintains the emissions inventory.

Stirrup, T.S.

1993-06-01T23:59:59.000Z

69

Air Emissions and Oil Displacement Benefits  

E-Print Network (OSTI)

, Washington, DC). 31. US Environmental Protection Agency (2007) EGRID Emission Data for 2005 (Clean Energy

Michalek, Jeremy J.

70

Definition: Reduced Co2 Emissions | Open Energy Information  

Open Energy Info (EERE)

Co2 Emissions Co2 Emissions Jump to: navigation, search Dictionary.png Reduced Co2 Emissions Functions that provide this benefit can lead to avoided vehicle miles, decrease the amount of central generation needed to their serve load (through reduced electricity consumption, reduced electricity losses, more optimal generation dispatch), and or reduce peak generation. These impacts translate into a reduction in CO2 emissions produced by fossil-based electricity generators and vehicles.[1] Related Terms electricity generation, reduced electricity losses, smart grid References ā†‘ SmartGrid.gov 'Description of Benefits' An in LikeLike UnlikeLike You like this.Sign Up to see what your friends like. line Glossary Definition Retrieved from "http://en.openei.org/w/index.php?title=Definition:Reduced_Co2_Emissions&oldid=502618

71

NREL: Vehicle Ancillary Loads Reduction - Air Conditioning and Emissions  

NLE Websites -- All DOE Office Websites (Extended Search)

Conditioning and Emissions Conditioning and Emissions Air conditioning and indirect emissions go together in the sense that when a vehicle's air conditioning system is in use, fuel economy declines. When more petroleum fuel is burned, more pollution and greenhouse gases are emitted. An additional, "direct" source of greenhouse gas emissions is the refrigerant used in air conditioning. Called HFC-134a, this pressurized gas tends to seep through tiny openings and escapes into the atmosphere. It can also escape during routine service procedures such as system recharging. NREL's Vehicle Ancillary Loads Reduction team applied its vehicle systems modeling expertise in a study to predict fuel consumption and indirect emissions resulting from the use of vehicle air conditioning. The analysis

72

Reducing Emissions Through Sustainable Transport: Proposal for a Sectoral  

Open Energy Info (EERE)

Reducing Emissions Through Sustainable Transport: Proposal for a Sectoral Reducing Emissions Through Sustainable Transport: Proposal for a Sectoral Approach Jump to: navigation, search Tool Summary Name: Reducing Emissions Through Sustainable Transport: Proposal for a Sectoral Approach Agency/Company /Organization: GTZ Sector: Energy Focus Area: Transportation Topics: Implementation, Pathways analysis Resource Type: Publications Website: www.transport2012.org/bridging/ressources/files/1/817,Transport_sector Reducing Emissions Through Sustainable Transport: Proposal for a Sectoral Approach Screenshot References: Reducing Emissions Through Sustainable Transport[1] Summary "The large mitigation potential and associated co-benefits of taking action in the land transport sector can be tapped into by a sectoral approach drawing financial resources from a transport window, in the short term

73

Air Pollution Emissions and Abatement (Minnesota)  

Energy.gov (U.S. Department of Energy (DOE))

A person who controls the source of an emission must notify the Pollution Control Agency immediately of excessive or abnormal unpermitted emissions, and must take immediate or reasonable steps to...

74

Abatement of Air Pollution: Control of Sulfur Compound Emissions  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Abatement of Air Pollution: Control of Sulfur Compound Emissions Abatement of Air Pollution: Control of Sulfur Compound Emissions (Connecticut) Abatement of Air Pollution: Control of Sulfur Compound Emissions (Connecticut) < Back Eligibility Agricultural Commercial Construction Fed. Government Fuel Distributor General Public/Consumer Industrial Installer/Contractor Institutional Investor-Owned Utility Local Government Low-Income Residential Multi-Family Residential Municipal/Public Utility Nonprofit Residential Retail Supplier Rural Electric Cooperative Schools State/Provincial Govt Systems Integrator Transportation Tribal Government Utility Program Info State Connecticut Program Type Environmental Regulations Provider Department of Energy and Environmental Protection These regulations set limits on the sulfur content of allowable fuels (1.0%

75

A performance standards approach to reducing CO{sub 2} emissions from electric power plants  

Science Conference Proceedings (OSTI)

The CO{sub 2} emission performance standard policies outlined in this paper could complement a cap-and-trade program that puts a price on carbon and serve to significantly reduce the CO{sub 2} emissions from coal use for electricity generation. Emission performance standards have a long history in the United States and have been successfully used to control emissions of various air pollutants from electric generators. This paper explores the rationale for using emission performance standards and describes the various types of performance standard policies. Emission performance standards that address CO{sub 2} emissions could promote the deployment of carbon capture and storage technology coupled with new and existing coal-fueled electric power plants. 28 refs., 4 figs., 4 tabs.

Rubin, E.S. [Carnegie Mellon University, Pittsburgh, PA (United States)

2009-06-15T23:59:59.000Z

76

Air Emission Regulations for the Prevention, Abatement, and Control of Air  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Air Emission Regulations for the Prevention, Abatement, and Control Air Emission Regulations for the Prevention, Abatement, and Control of Air Contaminants (Mississippi) Air Emission Regulations for the Prevention, Abatement, and Control of Air Contaminants (Mississippi) < Back Eligibility Agricultural Commercial Construction Developer Fed. Government Fuel Distributor General Public/Consumer Industrial Installer/Contractor Institutional Investor-Owned Utility Local Government Low-Income Residential Multi-Family Residential Municipal/Public Utility Nonprofit Residential Retail Supplier Rural Electric Cooperative Schools State/Provincial Govt Systems Integrator Transportation Tribal Government Utility Program Info State Mississippi Program Type Environmental Regulations Siting and Permitting Provider Department of Environmental Quality The Air Emission Regulation for the Prevention, Abatement and Control of

77

Emission estimates for air pollution transport models.  

SciTech Connect

The results of studies of energy consumption and emission inventories in Asia are discussed. These data primarily reflect emissions from fuel combustion (both biofuels and fossil fuels) and were collected to determine emissions of acid-deposition precursors (SO{sub 2} and NO{sub x}) and greenhouse gases (CO{sub 2} CO, CH{sub 4}, and NMHC) appropriate to RAINS-Asia regions. Current work is focusing on black carbon (soot), volatile organic compounds, and ammonia.

Streets, D. G.

1998-10-09T23:59:59.000Z

78

Impact of Air Emissions Controls on Coal Combustion Products  

Science Conference Proceedings (OSTI)

Coal combustion products (CCPs) have been extensively studied and well characterized over the last 30 years. However, new air emissions control technologies at power plants will change the characteristics of some existing CCPs. These changes may affect the selection of appropriate management methods for high-volume CCPs with respect to both disposal and use. This report examines evolving air emissions controls and their likely impact on CCPs.

2008-10-15T23:59:59.000Z

79

New Air Cleaning Strategies for Reduced Commercial Building Ventilation Energy  

SciTech Connect

Approximately ten percent of the energy consumed in U.S. commercial buildings is used by HVAC systems to condition outdoor ventilation air. Reducing ventilation rates would be a simple and broadly-applicable energy retrofit option, if practical counter measures were available that maintained acceptable concentrations of indoor-generated air pollutants. The two general categories of countermeasures are: 1) indoor pollutant source control, and 2) air cleaning. Although pollutant source control should be used to the degree possible, source control is complicated by the large number and changing nature of indoor pollutant sources. Particle air cleaning is already routinely applied in commercial buildings. Previous calculations indicate that particle filtration consumes only 10percent to 25percent of the energy that would otherwise be required to achieve an equivalent amount of particle removal with ventilation. If cost-effective air cleaning technologies for volatile organic compounds (VOCs) were also available, outdoor air ventilation rates could be reduced substantially and broadly in the commercial building stock to save energy. The research carried out in this project focuses on developing novel VOC air cleaning technologies needed to enable energy-saving reductions in ventilation rates. The minimum required VOC removal efficiency to counteract a 50percent reduction in ventilation rate for air cleaning systems installed in the HVAC supply airstream is modest (generally 20percent or less).

Sidheswaran, Meera; Destaillats, Hugo; Sullivan, Douglas P.; Fisk, William J.

2010-10-27T23:59:59.000Z

80

Incentives for reducing emissions in Krakow  

SciTech Connect

This effort is identifying, specific incentives that may be used by Krakow city officials to encourage, residents to change the way they heat their homes and businesses in order to reduce pollution. This paper describes the incentives study for converting small coal or coke-fired boilers to gas in the Old Town area. A similar study looked at incentives for expanding the district heating system and future analyses will be performed for home stove options.

Uberman, R. [Polinvest Ltd., Krakow (Poland); Pierce, B. [Brookhaven National Lab., Upton, NY (United States); Lazecki, A. [Biuro Rozwoju Krakowa, Krakow (Poland)

1994-06-01T23:59:59.000Z

Note: This page contains sample records for the topic "reduce air emissions" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

National Emission Standards for Hazardous Air Pollutants - Radionuclide Emissions, Calendar Year 2010  

SciTech Connect

The U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office operates the Nevada National Security Site (NNSS, formerly the Nevada Test Site) and North Las Vegas Facility (NLVF). From 1951 through 1992, the NNSS was the continental testing location for U.S. nuclear weapons. The release of radionuclides from NNSS activities has been monitored since the initiation of atmospheric testing. Limitation to underground detonations after 1962 greatly reduced radiation exposure to the public surrounding the NNSS. After nuclear testing ended in 1992, NNSS radiation monitoring focused on detecting airborne radionuclides from historically contaminated soils. These radionuclides are derived from re-suspension of soil (primarily by wind) and emission of tritium-contaminated soil moisture through evapotranspiration. Low amounts of tritium are also emitted to air at the NLVF, an NNSS support complex in North Las Vegas. To protect the public from harmful levels of man-made radiation, the Clean Air Act, National Emission Standards for Hazardous Air Pollutants (NESHAP) (Title 40 Code of Federal Regulations [CFR] Part 61 Subpart H) (CFR, 2010a) limits the release of radioactivity from a U.S. Department of Energy (DOE) facility to that which would cause 10 millirem per year (mrem/yr) effective dose equivalent to any member of the public. This limit does not include radiation unrelated to NNSS activities. Unrelated doses could come from naturally occurring radioactive elements, from sources such as medically or commercially used radionuclides, or from sources outside of the United States, such as those from the damaged Fukushima nuclear power plant in Japan. Because this report is intended to discuss radioactive air emissions during calendar year 2010, data on radionuclides in air from the 2011 Fukushima nuclear power plant releases are not presented but will be included in the report for calendar year 2011. The NNSS demonstrates compliance with the NESHAP limit by using environmental measurements of radionuclide air concentrations at critical receptor locations (U.S. Environmental Protection Agency [EPA] and DOE, 1995). This method was approved by the EPA for use on the NNSS in 2001(EPA, 2001a) and has been the sole method used since 2005. Six locations on the NNSS have been established to act as critical receptor locations to demonstrate compliance with the NESHAP limit. These locations are actually pseudo-critical receptor stations, because no member of the public actually resides at these onsite locations. Compliance is demonstrated if the measured annual average concentration is less than the NESHAP Concentration Levels (CLs) for Environmental Compliance listed in 40 CFR 61, Appendix E, Table 2 (CFR, 2010a). For multiple radionuclides, compliance is demonstrated when the sum of the fractions (determined by dividing each radionuclide's concentration by its CL and then adding the fractions together) is less than 1.0. In 2010, the potential dose from radiological emissions to air, resulting from both current and past NNSS activities, at onsite compliance monitoring stations was well below the 10 mrem/yr dose limit. Air sampling data collected at all air monitoring stations had average concentrations of radioactivity that were a fraction of the CL values. Concentrations ranged from less than 1 percent to a maximum of 17 percent of the allowed NESHAP limit. Because the nearest member of the public resides about 20 kilometers from potential release points on the NNSS, dose to the public would be only a small fraction of that measured on the NNSS. The potential dose to the public from NLVF emissions was also very low at 0.000032 mrem/yr, more than 300,000 times lower than the 10 mrem/yr limit.

NSTec Ecological and Environmental Monitoring

2011-06-30T23:59:59.000Z

82

Radioactive air emissions notice of construction portable temporary radioactive air emission units - August 1998  

SciTech Connect

This notice of construction (NOC) requests a categorical approval for construction and operation of three types of portable/temporary radionuclide airborne emission units (PTRAEUs). These three types are portable ventilation-filter systems (Type I), mobile sample preparation facilities (Type II), and mobile sample screening and analysis facilities (Type 111). Approval of the NOC application is intended to allow construction and operation of the three types of PTRAEUs without prior project-specific approval. Environmental cleanup efforts on the Hanford Site often require the use of PTRAEUs. The PTRAEUs support site characterization activities, expedited response actions (ERAs), sampling and monitoring activities, and other routine activities. The PTRAEUs operate at various locations around the Hanford Site. Radiation Air Emissions Program, Washington Administrative Code (WAC) 246-247, requires that the Washington State Department of Health (WDOH) be notified before construction of any new emission that would release airborne radioactivity. The WDOH also must receive notification before any modification of an existing source. This includes changes in the source term or replacement of emission control equipment that might significantly contribute to the offsite maximum dose from a licensed facility. During site characterization activities, ERAs, sampling and monitoring activities, and other routine activities, the PTRAEUs might require startup immediately. The notification period hampers efforts to complete such activities in an effective and timely manner. Additionally, notification is to be submitted to the WDOH when the PTRAEUs are turned off. The U.S. Department of Energy, Richland Operations Office (DOE-RL) potentially could generate several notifications monthly. The WDOH would be required to review and provide approval on each NOC as well as review the notices of discontinued sources. The WDOH regulation also allows facilities the opportunity to request a single categorical license that identifies limits and conditions of operations for similar multipurpose temporary and or portable emission units. The DOE-RL will submit annually to the WDOH a report summarizing the log books maintained on the individual PTRAEUs that are used during the reporting period. The report will supply information needed to ensure compliance with the condition of operations. The NOC includes a general description of the three types of PTRAEUs, tracking mechanisms, emissions control systems, and radioactivity handling limits (RHLs) for the PTR4EUs. The NOC is based on hypothetical data to demonstrate how emission estimates could be calculated. Tracking will be performed and monitoring will be conducted for compliance with both federal and state regulations. Type I units will use a single isotope based on a calculated RHL (source term) to determine emissions, dose, and monitoring requirements. Type I1 and 111 units will use field data and process knowledge to determine emissions, dose, and monitoring requirements. New PTRAEUs that conform to any of the three types of PTRAEUs described in this application will be added to the next annual report after the units are placed in service. New PTRAEUs, which do not conform to any of the three types of PTRAEUs described in this application, will require approval on an individual basis by the WDOH before startup.

FRITZ, D.W.

1999-07-22T23:59:59.000Z

83

Reducing Air-Conditioning System Energy Using a PMV Index  

E-Print Network (OSTI)

The control system of central air-conditioning, based on PMV, not only improves thermal comfort but also reduces system energy consumption. A new thermal comfort degree softsensor model is built via use of the CMAC neural network nonlinear calibration function. It can realize on-line detection of thermal comfort. At the same time it can also realize real-time control of central air-conditioning system based on PMV. Simulation results demonstrate the simplicity and effectiveness of the presented method.

Li, H.; Zhang, Q.

2006-01-01T23:59:59.000Z

84

Florida County Seeks to Reduce Emissions and Improve Traffic | Department  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Florida County Seeks to Reduce Emissions and Improve Traffic Florida County Seeks to Reduce Emissions and Improve Traffic Florida County Seeks to Reduce Emissions and Improve Traffic September 27, 2010 - 10:30am Addthis A worker synchronizes a traffic light on State Road A1A in St. Augustine, FL. | Energy Department Photo | A worker synchronizes a traffic light on State Road A1A in St. Augustine, FL. | Energy Department Photo | Lindsay Gsell What does this project do? St. Johns County, Florida uses Recovery Act funding to resynchronize 23 traffic signals at five major segments of roadway. The new light patterns will save nearly 729,000 gallons of gas and reduce CO2 emissions by more than 2,200 metric tons. The intersection of State Road A1A and State Road 312 in St. Augustine is messy at 5 o'clock. On one side, tourists returning from Florida's

85

Reducing emissions to improve nuclear test detection | National Nuclear  

NLE Websites -- All DOE Office Websites (Extended Search)

Reducing emissions to improve nuclear test detection | National Nuclear Reducing emissions to improve nuclear test detection | National Nuclear Security Administration Our Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure Continuing Management Reform Countering Nuclear Terrorism About Us Our Programs Our History Who We Are Our Leadership Our Locations Budget Our Operations Media Room Congressional Testimony Fact Sheets Newsletters Press Releases Speeches Events Social Media Video Gallery Photo Gallery NNSA Archive Federal Employment Apply for Our Jobs Our Jobs Working at NNSA Blog Home > NNSA Blog > Reducing emissions to improve nuclear test detection Reducing emissions to improve nuclear test detection Posted By Office of Public Affairs In early November, medical isotope producers met with nuclear explosion

86

DOE News Release - DOE Reduces Petroleum Use and Exhaust Emissions...  

NLE Websites -- All DOE Office Websites (Extended Search)

DOE Reduces Petroleum Use and Exhaust Emissions by Promoting Electric Vehicle Use in Federal Fleets The U.S. Department of Energy has provided incremental funding to 37 Federal...

87

Reducing CO2 Emissions: Technology, Uncertainty, Decision Making...  

NLE Websites -- All DOE Office Websites (Extended Search)

Reducing CO2 Emissions: Technology, Uncertainty, Decision Making and Consumer Behavior Speaker(s): Ins Magarida Lima de Azevedo Date: October 31, 2012 - 4:00pm Location: 90-3122...

88

Cal Climate Action Partnership: Reducing Greenhouse Gas Emissions...  

NLE Websites -- All DOE Office Websites (Extended Search)

Cal Climate Action Partnership: Reducing Greenhouse Gas Emissions at UC Berkeley Speaker(s): Fahmida Ahmed Date: January 11, 2007 - 12:00pm Location: 90-3122 Seminar HostPoint of...

89

Radionuclide Air Emission Report for 2008  

E-Print Network (OSTI)

particulate air Joint BioEnergy Institute Lawrence Hall ofBuilding 978, the Joint BioEnergy Institute, are shown onStreet Facility) Joint BioEnergy Institute (JBEI) C-14, Cd-

Wahl, Linnea

2009-01-01T23:59:59.000Z

90

Radionuclide Air Emission Report for 2009  

E-Print Network (OSTI)

particulate air Joint BioEnergy Institute Lawrence Hall ofBuilding 978, the Joint BioEnergy Institute, are shown onStreet Facility) Joint BioEnergy Institute (JBEI) Produced

Wahl, Linnea

2010-01-01T23:59:59.000Z

91

DOE Releases Draft Strategic Plan for Reducing Greenhouse Gas Emissions  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Releases Draft Strategic Plan for Reducing Greenhouse Gas Releases Draft Strategic Plan for Reducing Greenhouse Gas Emissions through Deployment of Advanced Technology DOE Releases Draft Strategic Plan for Reducing Greenhouse Gas Emissions through Deployment of Advanced Technology September 22, 2005 - 10:45am Addthis WASHINGTON, DC - The Department of Energy today released for public review and comment a plan for accelerating the development and reducing the cost of new and advanced technologies that avoid, reduce, or capture and store greenhouse gas emissions - the technology component of a comprehensive U.S. approach to climate change. The technologies developed under the Climate Change Technology program will be used and deployed among the United States' partners in the Asia-Pacific Partnership for Clean Development that was announced earlier this year.

92

The Effect of Reduced Evaporator Air Flow on the Performance of a Residential Central Air Conditioner  

E-Print Network (OSTI)

This paper discusses the measured degradation in performance of a residential air conditioning system operating under reduced evaporator air flow. Experiments were conducted using a R-22 three-ton split-type cooling system with a short-tube orifice expansion device. Results are presented here for a series of tests in which the evaporator air flow was reduced from 25 to 90% below what is normally recommended for this air conditioner. At present, very little information is available which quantifies the performance of a residential cooling system operating under degraded conditions such as reduced evaporator air flow. Degraded performance measurements can provide information which could help electric utilities evaluate the potential impact of system-wide maintenance programs.

Palani, M.; O'Neal, D.; Haberl, J.

1992-05-01T23:59:59.000Z

93

Amplified radio emission from cosmic ray air showers in thunderstorms  

E-Print Network (OSTI)

Cosmic ray air showers produce radio emission, consisting in large part of geosynchrotron emission. Since the radiation mechanism is based on particle acceleration, the atmospheric electric field can play an important role. Especially inside thunderclouds large electric fields can be present. We examine the contribution of an electric field to the emission mechanism theoretically and experimentally. Two mechanisms of amplification of radio emission are considered: the acceleration radiation of the shower particles and the radiation from the current that is produced by ionization electrons moving in the electric field. We selected and evaluated LOPES data recorded during thunderstorms, periods of heavy cloudiness and periods of cloudless weather. We find that during thunderstorms the radio emission can be strongly enhanced. No amplified pulses were found during periods of cloudless sky or heavy cloudiness, suggesting that the electric field effect for radio air shower measurements can be safely ignored during non-thunderstorm conditions.

Stijn Buitink; for the LOPES collaboration

2007-02-16T23:59:59.000Z

94

Technology Opportunities to Reduce U.S. Greenhouse Gas Emissions  

SciTech Connect

The rise in greenhouse gas emissions from fossil fuel combustion and industrial and agricultural activities has aroused international concern about the possible impacts of these emissions on climate. Greenhouse gases--mostly carbon dioxide, some methane, nitrous oxide and other trace gases--are emitted to the atmosphere, enhancing an effect in which heat reflected from the earth's surface is kept from escaping into space, as in a greenhouse. Thus, there is concern that the earth's surface temperature may rise enough to cause global climate change. Approximately 90% of U.S. greenhouse gas emissions from anthropogenic sources come from energy production and use, most of which are a byproduct of the combustion of fossil fuels. On a per capita basis, the United States is one of the world's largest sources of greenhouse gas emissions, comprising 4% of the world's population, yet emitting 23% of the world's greenhouse gases. Emissions in the United States are increasing at around 1.2% annually, and the Energy Information Administration forecasts that emissions levels will continue to increase at this rate in the years ahead if we proceed down the business-as-usual path. President Clinton has presented a two-part challenge for the United States: reduce greenhouse gas emissions and grow the economy. Meeting the challenge will mean that in doing tomorrow's work, we must use energy more efficiently and emit less carbon for the energy expended than we do today. To accomplish these goals, President Clinton proposed on June 26, 1997, that the United States ''invest more in the technologies of the future''. In this report to Secretary of Energy Pena, 47 technology pathways are described that have significant potential to reduce carbon dioxide emissions. The present study was completed before the December 1997 United Nations Framework Convention on Climate Change and is intended to provide a basis to evaluate technology feasibility and options to reduce greenhouse gas emissions. These technology pathways (which are described in greater detail in Appendix B, Technology Pathways) address three areas: energy efficiency, clean energy, and carbon sequestration (removing carbon from emissions and enhancing carbon storage). Based on an assessment of each of these technology pathways over a 30-year planning horizon, the directors of the Department of Energy's (DOE's) national laboratories conclude that success will require pursuit of multiple technology pathways to provide choices and flexibility for reducing greenhouse gas emissions. Advances in science and technology are necessary to reduce greenhouse gas emissions from the United States while sustaining economic growth and providing collateral benefits to the nation.

National Lab Directors, . .

2001-04-05T23:59:59.000Z

95

Technology Opportunities to Reduce U.S. Greenhouse Gas Emissions  

SciTech Connect

The rise in greenhouse gas emissions from fossil fuel combustion and industrial and agricultural activities has aroused international concern about the possible impacts of these emissions on climate. Greenhouse gases--mostly carbon dioxide, some methane, nitrous oxide and other trace gases--are emitted to the atmosphere, enhancing an effect in which heat reflected from the earth's surface is kept from escaping into space, as in a greenhouse. Thus, there is concern that the earth's surface temperature may rise enough to cause global climate change. Approximately 90% of U.S. greenhouse gas emissions from anthropogenic sources come from energy production and use, most of which are a byproduct of the combustion of fossil fuels. On a per capita basis, the United States is one of the world's largest sources of greenhouse gas emissions, comprising 4% of the world's population, yet emitting 23% of the world's greenhouse gases. Emissions in the United States are increasing at around 1.2% annually, and the Energy Information Administration forecasts that emissions levels will continue to increase at this rate in the years ahead if we proceed down the business-as-usual path. President Clinton has presented a two-part challenge for the United States: reduce greenhouse gas emissions and grow the economy. Meeting the challenge will mean that in doing tomorrow's work, we must use energy more efficiently and emit less carbon for the energy expended than we do today. To accomplish these goals, President Clinton proposed on June 26, 1997, that the United States ''invest more in the technologies of the future''. In this report to Secretary of Energy Pena, 47 technology pathways are described that have significant potential to reduce carbon dioxide emissions. The present study was completed before the December 1997 United Nations Framework Convention on Climate Change and is intended to provide a basis to evaluate technology feasibility and options to reduce greenhouse gas emissions. These technology pathways (which are described in greater detail in Appendix B, Technology Pathways) address three areas: energy efficiency, clean energy, and carbon sequestration (removing carbon from emissions and enhancing carbon storage). Based on an assessment of each of these technology pathways over a 30-year planning horizon, the directors of the Department of Energy's (DOE's) national laboratories conclude that success will require pursuit of multiple technology pathways to provide choices and flexibility for reducing greenhouse gas emissions. Advances in science and technology are necessary to reduce greenhouse gas emissions from the United States while sustaining economic growth and providing collateral benefits to the nation.

National Lab Directors, . .

2001-04-05T23:59:59.000Z

96

Wind Energy and Air Emission Reduction Benefits: A Primer  

Wind Powering America (EERE)

Wind Energy and Air Emission Wind Energy and Air Emission Reduction Benefits: A Primer D. Jacobson D.J. Consulting LLC McLean, Virginia C. High Resource Systems Group Inc. White River Junction, Vermont Subcontract Report NREL/SR-500-42616 February 2008 NREL is operated by Midwest Research Institute ā—¸ Battelle Contract No. DE-AC36-99-GO10337 National Renewable Energy Laboratory 1617 Cole Boulevard, Golden, Colorado 80401-3393 303-275-3000 * www.nrel.gov Operated for the U.S. Department of Energy Office of Energy Efficiency and Renewable Energy by Midwest Research Institute * Battelle Contract No. DE-AC36-99-GO10337 Subcontract Report NREL/SR-500-42616 February 2008 Wind Energy and Air Emission Reduction Benefits: A Primer D. Jacobson D.J. Consulting LLC McLean, Virginia

97

Reducing Forestry Emissions in Indonesia | Open Energy Information  

Open Energy Info (EERE)

Emissions in Indonesia Emissions in Indonesia Jump to: navigation, search Name Reducing Forestry Emissions in Indonesia Agency/Company /Organization Center for International Forestry Research Sector Land Focus Area Forestry Topics Implementation, Policies/deployment programs, Pathways analysis, Background analysis Resource Type Guide/manual Website http://prod-http-80-800498448. Country Indonesia UN Region South-Eastern Asia References Reducing Forestry Emissions in Indonesia[1] Overview "In this paper, we look critically at the trade-offs between development pathways based on land-intensive enterprises and climate change mitigation. Without a coordinated approach to multiple objectives, efforts in one area could undermine efforts in the other. For example, potential major

98

National Emission Standards for Hazardous Air Pollutants - Radionuclide Emissions, Calendar Year 2011  

SciTech Connect

The U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office operates the Nevada National Security Site (NNSS) and North Las Vegas Facility (NLVF). From 1951 through 1992, the NNSS was the continental testing location for U.S. nuclear weapons. The release of radionuclides from NNSS activities has been monitored since the initiation of atmospheric testing. Limitation to underground detonations after 1962 greatly reduced radiation exposure to the public surrounding the NNSS. After nuclear testing ended in 1992, NNSS radiation monitoring focused on detecting airborne radionuclides from historically contaminated soils. These radionuclides are derived from re-suspension of soil (primarily by wind) and emission of tritium-contaminated soil moisture through evapotranspiration. Low amounts of legacy-related tritium are also emitted to air at the NLVF, an NNSS support complex in North Las Vegas. To protect the public from harmful levels of man-made radiation, the Clean Air Act, National Emission Standards for Hazardous Air Pollutants (NESHAP) (Title 40 Code of Federal Regulations [CFR] Part 61 Subpart H) limits the release of radioactivity from a U.S. Department of Energy (DOE) facility to that which would cause 10 millirem per year (mrem/yr) effective dose equivalent to any member of the public. This limit does not include radiation unrelated to NNSS activities. Unrelated doses could come from naturally occurring radioactive elements, from sources such as medically or commercially used radionuclides, or from sources outside of the United States, such as the damaged Fukushima nuclear power plant in Japan. Radionuclides from the Fukushima nuclear power plant were detected at the NNSS in March 2011 and are discussed further in Section III. The NNSS demonstrates compliance with the NESHAP limit by using environmental measurements of radionuclide air concentrations at critical receptor locations. This method was approved by the EPA for use on the NNSS in 2001 and has been the sole method used since 2005. Six locations on the NNSS have been established to act as critical receptor locations to demonstrate compliance with the NESHAP limit. These locations are actually pseudo-critical receptor stations, because no member of the public actually resides at these onsite locations. Compliance is demonstrated if the measured annual average concentration is less than the NESHAP Concentration Levels (CLs) for Environmental Compliance listed in 40 CFR 61, Appendix E, Table 2. For multiple radionuclides, compliance is demonstrated when the sum of the fractions (determined by dividing each radionuclide's concentration by its CL and then adding the fractions together) is less than 1.0. In 2011, the potential dose from radiological emissions to air, resulting from both current and past NNSS activities, at onsite compliance monitoring stations was well below the 10 mrem/yr dose limit. Air sampling data collected at all air monitoring stations had average concentrations of radioactivity that were a fraction of the CL values. Concentrations ranged from less than 1% to a maximum of 12.2% of the allowed NESHAP limit. Because the nearest member of the public resides about 20 kilometers from potential release points on the NNSS, dose to the public would be only a small fraction of the value measured on the NNSS. The potential dose to the public from NLVF emissions was also very low at 0.000024 mrem/yr, more than 400,000 times lower than the 10 mrem/yr limit.

NSTec Ecological and Environmental Monitoring

2012-06-19T23:59:59.000Z

99

National Emission Standards for Hazardous Air Pollutants - Radionuclide Emissions Calendar Year 2012  

SciTech Connect

The U.S. Department of Energy, National Nuclear Security Administration Nevada Field Office (NNSA/NFO) operates the Nevada National Security Site (NNSS) and North Las Vegas Facility (NLVF). From 1951 through 1992, the NNSS was the continental testing location for U.S. nuclear weapons. The release of radionuclides from NNSS activities has been monitored since the initiation of atmospheric testing. Limitation to underground detonations after 1962 greatly reduced radiation exposure to the public surrounding the NNSS. After nuclear testing ended in 1992, NNSS radiation monitoring focused on detecting airborne radionuclides from historically contaminated soils. These radionuclides are derived from re-suspension of soil (primarily by wind) and emission of tritium-contaminated soil moisture through evapotranspiration. Low amounts of legacy-related tritium are also emitted to air at the NLVF, an NNSS support complex in North Las Vegas. To protect the public from harmful levels of man-made radiation, the Clean Air Act, National Emission Standards for Hazardous Air Pollutants (NESHAP) (Title 40 Code of Federal Regulations [CFR] Part 61 Subpart H) (CFR 2010a) limits the release of radioactivity from a U.S. Department of Energy (DOE) facility to that which would cause 10 millirem per year (mrem/yr) effective dose equivalent to any member of the public. This limit does not include radiation unrelated to NNSS activities. Unrelated doses could come from naturally occurring radioactive elements, from sources such as medically or commercially used radionuclides, or from sources outside of the United States, such as the damaged Fukushima nuclear power plant in Japan in 2011. NNSA/NFO demonstrates compliance with the NESHAP limit by using environmental measurements of radionuclide air concentrations at critical receptor locations on the NNSS (U.S. Environmental Protection Agency [EPA] and DOE 1995). This method was approved by the EPA for use on the NNSS in 2001 (EPA 2001a) and has been the sole method used since 2005. Six locations on the NNSS have been established to act as critical receptor locations to demonstrate compliance with the NESHAP limit. These locations are actually pseudo-critical receptor stations, because no member of the public actually resides at these onsite locations. Compliance is demonstrated if the measured annual average concentration is less than the NESHAP Concentration Levels (CLs) for Environmental Compliance listed in 40 CFR 61, Appendix E, Table 2 (CFR 2010a). For multiple radionuclides, compliance is demonstrated when the sum of the fractions (determined by dividing each radionuclide’s concentration by its CL and then adding the fractions together) is less than 1.0. In 2012, the potential dose from radiological emissions to air, resulting from both current and past NNSS activities, was well below the 10 mrem/yr dose limit. Air sampling data collected at all air monitoring stations had average concentrations of radioactivity that were a fraction of the CL values. Concentrations ranged from less than 0.5% to a maximum of 11.1% of the allowed NESHAP limit. Because the nearest member of the public resides about 9 kilometers from potential release points on the NNSS, dose to the public would be only a small fraction of the value measured on the NNSS. The potential dose to the public from NLVF emissions was also very low at 0.000024 mrem/yr, more than 400,000 times lower than the 10 mrem/yr limit.

Warren, R.

2013-06-10T23:59:59.000Z

100

U.S. DOE 2004 LANL Radionuclide Air Emissions  

SciTech Connect

Amendments to the Clean Air Act, which added radionuclides to the National Emissions Standards for Hazardous Air Pollutants (NESHAP), went into effect in 1990. Specifically, a subpart (H) of 40 CFR 61 established an annual limit on the impact to the public attributable to emissions of radionuclides from U.S. Department of Energy facilities, such as the Los Alamos National Laboratory (LANL). As part of the new NESHAP regulations, LANL must submit an annual report to the U.S. Environmental Protection Agency headquarters and the regional office in Dallas by June 30. This report includes results of monitoring at LANL and the dose calculations for the calendar year 2004.

K.W. Jacobson

2005-08-12T23:59:59.000Z

Note: This page contains sample records for the topic "reduce air emissions" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

Air Pollution Control Systems for Stack and Process Emissions  

Science Conference Proceedings (OSTI)

Strict environmental regulations at the federal and local levels require that industrial facilities control emissions of particulates, nitrogen oxides (NOx), sulfur dioxide (SO2), volatile organic compounds (VOCs), and hazardous air pollutants. To comply with regulations, industries must either modify the processes or fuels they use to limit the generation of air pollutants, or remove the pollutants from the process gas streams before release into the atmosphere. This report provides a comprehensive disc...

2001-03-30T23:59:59.000Z

102

Physical Sciences Facility Air Emission Control Equivalency Evaluation  

SciTech Connect

This document presents the adequacy evaluation for the application of technology standards during design, fabrication, installation and testing of radioactive air exhaust systems at the Physical Sciences Facility (PSF), located on the Horn Rapids Triangle north of the Pacific Northwest National Laboratory (PNNL) complex. The analysis specifically covers the exhaust portion of the heating, ventilation and air conditioning (HVAC) systems associated with emission units EP-3410-01-S, EP-3420-01-S and EP 3430-01-S.

Brown, David M.; Belew, Shan T.

2008-10-17T23:59:59.000Z

103

Sequim Site Radionuclide Air Emissions Report for Calendar Year 2012  

SciTech Connect

This report is prepared to document compliance with the Code of Federal Regulations (CFR), Title 40, Protection of the Environment, Part 61, National Emission Standards for Hazardous Air Pollutants (NESHAP), Subpart H, National Emission Standards for Emissions of Radionuclides Other than Radon from Department of Energy Facilities and ashington Administrative Code (WAC) Chapter 246-247, Radiation Protection Air Emissions. This report meets the calendar year 2012 Sequim Site annual reporting requirement for its operations as a privately-owned facility as well as its federally-contracted status that began in October 2012. Compliance is indicated by comparing the estimated dose to the maximally exposed individual (MEI) with the 10 mrem/yr Environmental Protection Agency (EPA) standard. The MSL contains only sources classified as fugitive emissions. Despite the fact that the regulations are intended for application to point source emissions, fugitive emissions are included with regard to complying with the EPA standard. The dose to the Sequim Site MEI due to routine operations in 2012 was 9E-06 mrem (9E-08 mSv). No non-routine emissions occurred in 2012. The MSL is in compliance with the federal and state 10 mrem/yr standard.

Snyder, Sandra F.; Barnett, J. M.; Gervais, Todd L.

2013-04-01T23:59:59.000Z

104

Yellowstone Agencies Plan to Reduce Emissions | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Yellowstone Agencies Plan to Reduce Emissions Yellowstone Agencies Plan to Reduce Emissions Yellowstone Agencies Plan to Reduce Emissions March 15, 2010 - 11:14am Addthis Castle Geyser at Yellowstone National Park | File photo Castle Geyser at Yellowstone National Park | File photo Joshua DeLung The 10 federal land organizations - including two national parks, six national forests and two national wildlife refuges - in the Greater Yellowstone Area comprise an entire ecosystem of their own. Straddling Wyoming's borders with Montana and Idaho, the region draws millions of visitors a year, attracted by the dramatic landscapes, geothermal activity and chances to spot wildlife like bison, elk and grizzly bear. Thanks to funding from the U.S. Department of Energy's Federal Energy Management Program, the Greater Yellowstone Coordinating Committee will

105

Capturing Fugitives to Reduce DOE's GHG Emissions | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Capturing Fugitives to Reduce DOE's GHG Emissions Capturing Fugitives to Reduce DOE's GHG Emissions Capturing Fugitives to Reduce DOE's GHG Emissions November 15, 2011 - 2:04pm Addthis An electrician foreman for the Western Area Power Administration checks a circuit breaker at the Ault Substation in eastern Colorado. The circuit breaker, containing 85 lbs of SF6, protects equipment in the substation against damage from excessive electrical currents | Courtesy of Western Area Power Administration. An electrician foreman for the Western Area Power Administration checks a circuit breaker at the Ault Substation in eastern Colorado. The circuit breaker, containing 85 lbs of SF6, protects equipment in the substation against damage from excessive electrical currents | Courtesy of Western Area Power Administration.

106

Air Emissions Reduction Assistance Program (Iowa) | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Emissions Reduction Assistance Program (Iowa) Emissions Reduction Assistance Program (Iowa) Air Emissions Reduction Assistance Program (Iowa) < Back Eligibility Agricultural Commercial Construction Fed. Government Fuel Distributor General Public/Consumer Industrial Installer/Contractor Institutional Investor-Owned Utility Local Government Low-Income Residential Multi-Family Residential Municipal/Public Utility Nonprofit Residential Retail Supplier Rural Electric Cooperative Schools State/Provincial Govt Systems Integrator Transportation Tribal Government Utility Savings Category Alternative Fuel Vehicles Hydrogen & Fuel Cells Buying & Making Electricity Water Home Weatherization Solar Wind Program Info State Iowa Program Type Environmental Regulations Provider Iowa Department of Natural Resources The State of Iowa may provide financial assistance in the form of loans

107

Radioactive air emissions notice of construction HEPA filtered vacuum radioactive air emission units  

Science Conference Proceedings (OSTI)

This notice of construction (NOC) requests a categorical approval for construction and operation of certain portable high-efficiency particulate air (HEPA) filtered vacuum radionuclide airborne emission units (HVUs). Approval of this NOC application is intended to allow operation of the HVUs without prior project-specific approval. This NOC does not request replacement or supersedence of any previous agreements/approvals by the Washington State Department of Health for the use of vacuums on the Hanford Site. These previous agreement/approvals include the approved NOCs for the use of EuroClean HEPA vacuums at the T Plant Complex (routine technical meeting 12/10/96) and the Kelly Decontamination System at the Plutonium-Uranium Extraction (PUREX) Plant (routine technical meeting 06/25/96). Also, this NOC does not replace or supersede the agreement reached regarding the use of HEPA hand-held/shop-vacuum cleaners for routine cleanup activities conducted by the Environmental Restoration Project. Routine cleanup activities are conducted during the surveillance and maintenance of inactive waste sites (Radioactive Area Remedial Action Project) and inactive facilities. HEPA hand-held/shop-vacuum cleaners are used to clean up spot surface contamination areas found during outdoor radiological field surveys, and to clean up localized radiologically contaminated material (e.g., dust, dirt, bird droppings, animal feces, liquids, insects, spider webs, etc.). This agreement, documented in the October 12, 1994 Routine Meeting Minutes, is based on routine cleanup consisting of spot cleanup of low-level contamination provided that, in each case, the source term potential would be below 0.1 millirem per year.

JOHNSON, R.E.

1999-09-01T23:59:59.000Z

108

NETL: Health Effects - Risk Assessment of Reduced Mercury Emissions From  

NLE Websites -- All DOE Office Websites (Extended Search)

Risk Assessment of Reduced Mercury Emissions From Coal-Fired Power Plants Risk Assessment of Reduced Mercury Emissions From Coal-Fired Power Plants Given that mercury emissions from coal power plants will almost certainly be limited by some form of national regulation or legislation, Brookhaven National Laboratory (BNL) is performing an assessment of the reduction in human health risk that may be achieved through reduction in coal plant emissions of mercury. The primary pathway for mercury exposure is through consumption of fish. The most susceptible population to mercury exposure is the fetus. Therefore, the risk assessment focuses on consumption of fish by women of child-bearing age. Preliminary Risk Assessment A preliminary risk assessment was conducted using a simplified approach based on three major topics: Hg emissions and deposition (emphasizing coal plants), Hg consumption through fish, and dose-response functions for Hg. Using information available from recent literature, dose response factors (DRFs) were generated from studies on loss of cognitive abilities (language skills, motor skills, etc.) by young children whose mothers consumed large amounts of fish with high Hg levels. Population risks were estimated for the general population in three regions of the country, (the Midwest, Northeast, and Southeast) that were identified by EPA as being heavily impacted by coal emissions.

109

New Generating Technology to Reduce Greenhouse Gas Emissions  

U.S. Energy Information Administration (EIA) Indexed Site

Generating Technology to Generating Technology to Reduce Greenhouse Gas Emissions ENERGY INFORMATION ADMINISTRATION 30 TH BIRTHDAY CONFERENCE April 7, 2008 Linda G. Stuntz Stuntz, Davis & Staffier, P.C. Stuntz, Davis & Staffier, P.C. 2 The Target * Energy related emissions of CO2 will increase by about 16% in AEO 2008 Reference Case between 2006 and 2030 (5,890 MM metric tons to 6,859 MM metric tons). (#s from Caruso Senate Energy testimony of 3/4/08). * Last year, emissions from electricity generation were 40% of total energy-related GHG emissions. * Based on projected annual electricity demand growth of 1.1%. Stuntz, Davis & Staffier, P.C. 3 The Target Cont'd * 16.4 GW of new nuclear + 2.7 GW Uprates of existing plants less 4.5 GW of retirements. * Coal responsible for 54% of generation in 2030.

110

Reduce Air Infiltration in Furnaces (English/Chinese) (Fact Sheet)  

Science Conference Proceedings (OSTI)

Chinese translation of the Reduce Air Infiltration in Furnaces fact sheet. Provides suggestions on how to improve furnace energy efficiency. Fuel-fired furnaces discharge combustion products through a stack or a chimney. Hot furnace gases are less dense and more buoyant than ambient air, so they rise, creating a differential pressure between the top and the bottom of the furnace. This differential, known as thermal head, is the source of a natural draft or negative pressure in furnaces and boilers. A well-designed furnace (or boiler) is built to avoid air leakage into the furnace or leakage of flue gases from the furnace to the ambient. However, with time, most furnaces develop cracks or openings around doors, joints, and hearth seals. These openings (leaks) usually appear small compared with the overall dimensions of the furnace, so they are often ignored. The negative pressure created by the natural draft (or use of an induced-draft fan) in a furnace draws cold air through the openings (leaks) and into the furnace. The cold air becomes heated to the furnace exhaust gas temperature and then exits through the flue system, wasting valuable fuel. It might also cause excessive oxidation of metals or other materials in the furnaces. The heat loss due to cold air leakage resulting from the natural draft can be estimated if you know four major parameters: (1) The furnace or flue gas temperature; (2) The vertical distance H between the opening (leak) and the point where the exhaust gases leave the furnace and its flue system (if the leak is along a vertical surface, H will be an average value); (3) The area of the leak, in square inches; and (4) The amount of operating time the furnace spends at negative pressure. Secondary parameters that affect the amount of air leakage include these: (1) The furnace firing rate; (2) The flue gas velocity through the stack or the stack cross-section area; (3) The burner operating conditions (e.g., excess air, combustion air temperature, and so on). For furnaces or boilers using an induced-draft (ID) fan, the furnace negative pressure depends on the fan performance and frictional losses between the fan inlet and the point of air leakage. In most cases, it would be necessary to measure or estimate negative pressure at the opening. The amount of air leakage, the heat lost in flue gases, and their effects on increased furnace or boiler fuel consumption can be calculated by using the equations and graphs given in Industrial Furnaces (see W. Trinks et al., below). Note that the actual heat input required to compensate for the heat loss in flue gases due to air leakage would be greater than the heat contained in the air leakage because of the effect of available heat in the furnace. For a high-temperature furnace that is not maintained properly, the fuel consumption increase due to air leakage can be as high as 10% of the fuel input.

Not Available

2011-10-01T23:59:59.000Z

111

Reducing greenhouse gas emissions for climate stabilization: framing regional options  

Science Conference Proceedings (OSTI)

The Intergovernmental Panel on Climate Change (IPCC) has stated that stabilizing atmospheric CO{sub 2} concentrations will require reduction of global greenhouse gas (GHG) emissions by as much as 80% by 2050. Subnational efforts to cut emissions will inform policy development nationally and globally. We projected GHG mitigation strategies for Minnesota, which has adopted a strategic goal of 80% emissions reduction by 2050. A portfolio of conservation strategies, including electricity conservation, increased vehicle fleet fuel efficiency, and reduced vehicle miles traveled, is likely the most cost-effective option for Minnesota and could reduce emissions by 18% below 2005 levels. An 80% GHG reduction would require complete decarbonization of the electricity and transportation sectors, combined with carbon capture and sequestration at power plants, or deep cuts in other relatively more intransigent GHG-emitting sectors. In order to achieve ambitious GHG reduction goals, policymakers should promote aggressive conservation efforts, which would probably have negative net costs, while phasing in alternative fuels to replace coal and motor gasoline over the long-term. 31 refs., 3 figs., 1 tab.

Laura Schmitt Olabisi; Peter B. Reich; Kris A. Johnson; Anne R. Kapuscinski; Sangwon Suh; Elizabeth J. Wilson [University of Minnesota, Saint Paul, MN (United States). Ecosystem Science and Sustainability Initiative

2009-03-15T23:59:59.000Z

112

Promoting Geothermal Energy: Air Emissions Comparison and Externality Analysis  

Science Conference Proceedings (OSTI)

When compared to fossil fuel energy sources such as coal and natural gas, geothermal emerges as one of the least polluting forms of energy, producing virtually zero air emissions. Geothermal offers a baseload source of reliable power that compares favorably with fossil fuel power sources. But unless legislative changes are enacted, geothermal energy will continue to be produced at only a fraction of its potential.

Kagel, Alyssa; Gawell, Karl

2005-09-01T23:59:59.000Z

113

Emissions of air toxics from coal-fired boilers: Arsenic  

Science Conference Proceedings (OSTI)

Concerns over emissions of hazardous air pollutants (air toxics) have emerged as a major environmental issue; the authority of the US Environmental Protection Agency to regulate such pollutants has been greatly expanded through passage of the Clean Air Act Amendments of 1990. Arsenic and arsenic compounds are of concern mainly because of their generally recognized toxicity. Arsenic is also regarded as one of the trace elements in coal subject to significant vaporization. This report summarizes and evaluates available published information on the arsenic content of coals mined in the United States, on arsenic emitted in coal combustion, and on the efficacy of various environmental control technologies for controlling airborne emissions. Bituminous and lignite coals have the highest mean arsenic concentrations, with subbituminous and anthracite coals having the lowest. However, all coal types show very significant variations in arsenic concentrations. Arsenic emissions from coal combustion are not well-characterized, particularly with regard to determination of specific arsenic compounds. Variations in emission, rates of more than an order of magnitude have been reported for some boiler types. Data on the capture of arsenic by environmental control technologies are available primarily for systems with cold electrostatic precipitators, where removals of approximately 50 to 98% have been reported. Limited data for wet flue-gas-desulfurization systems show widely varying removals of from 6 to 97%. On the other hand, waste incineration plants report removals in a narrow range of from 95 to 99%. This report briefly reviews several areas of research that may lead to improvements in arsenic control for existing flue-gas-cleanup technologies and summarizes the status of analytical techniques for measuring arsenic emissions from combustion sources.

Mendelsohn, M.H.; Huang, H.S.; Livengood, C.D.

1994-08-01T23:59:59.000Z

114

Method for reducing CO2, CO, NOX, and SOx emissions  

DOE Patents (OSTI)

Industrial combustion facilities are integrated with greenhouse gas-solidifying fertilizer production reactions so that CO.sub.2, CO, NO.sub.x, and SO.sub.x emissions can be converted prior to emission into carbonate-containing fertilizers, mainly NH.sub.4 HCO.sub.3 and/or (NH.sub.2).sub.2 CO, plus a small fraction of NH.sub.4 NO.sub.3 and (NH.sub.4).sub.2 SO.sub.4. The invention enhances sequestration of CO.sub.2 into soil and the earth subsurface, reduces N0.sub.3.sup.- contamination of surface and groundwater, and stimulates photosynthetic fixation of CO.sub.2 from the atmosphere. The method for converting CO.sub.2, CO, NO.sub.x, and SO.sub.x emissions into fertilizers includes the step of collecting these materials from the emissions of industrial combustion facilities such as fossil fuel-powered energy sources and transporting the emissions to a reactor. In the reactor, the CO.sub.2, CO, N.sub.2, SO.sub.x, and/or NO.sub.x are converted into carbonate-containing fertilizers using H.sub.2, CH.sub.4, or NH.sub.3. The carbonate-containing fertilizers are then applied to soil and green plants to (1) sequester inorganic carbon into soil and subsoil earth layers by enhanced carbonation of groundwater and the earth minerals, (2) reduce the environmental problem of NO.sub.3.sup.- runoff by substituting for ammonium nitrate fertilizer, and (3) stimulate photosynthetic fixation of CO.sub.2 from the atmosphere by the fertilization effect of the carbonate-containing fertilizers.

Lee, James Weifu (Oak Ridge, TN); Li, Rongfu (Zhejiang, CH)

2002-01-01T23:59:59.000Z

115

Air Emissions Operating Permit Regulations for the Purposes of Title V of the Federal Clean Air Act (Mississippi)  

Energy.gov (U.S. Department of Energy (DOE))

The Air Emissions Operating Permit Regulations for the Purpose of Title V of the Federal Clean Air Act make the state Title V permitting program (Permit Regulations for the Construction and/or...

116

The Use of Photochemical Air Quality Models for Evaluating Emission Control Strategies: A Synthesis Report  

Science Conference Proceedings (OSTI)

This report outlines conditions under which gridded photochemical air quality models are legitimate tools for determining the types of emission controls (VOC, NOx, or both) that would be most effective for reducing ozone concentration. In doing so, it emphasizes that models should not be used indiscriminately by pointing out their limitations and the resulting consequences. It also suggests ways to make models made more suitable for regulatory purposes by formulating results probabilistically.

1993-02-18T23:59:59.000Z

117

Air Monitoring of Emissions from the Fukushima Daiichi Reactor  

SciTech Connect

In response to the disasters in Japan on March 11, 2011, and the subsequent emissions from Fukushima-Daiichi, we monitored the air near Los Alamos using four air-monitoring systems: the standard AIRNET samplers, the standard rad-NESHAP samplers, the NEWNET system, and high-volume air samplers. Each of these systems has advantages and disadvantages. In combination, they provide a comprehensive set of measurements of airborne radionuclides near Los Alamos during the weeks following March 11. We report air-monitoring measurements of the fission products released from the Fukushima-Daiichi nuclear-power-plant accident in 2011. Clear gamma-spectrometry peaks were observed from Cs-134, Cs-136, Cs-137, I-131, I132, Te-132, and Te-129m. These data, together with measurements of other radionuclides, are adequate for an assessment and assure us that radionuclides from Fukushima Daiichi did not present a threat to human health at or near Los Alamos. The data demonstrate the capabilities of the Los Alamos air-monitoring systems.

McNaughton, Michael [Los Alamos National Laboratory; Allen, Shannon P. [Los Alamos National Laboratory; Archuleta, Debra C. [Los Alamos National Laboratory; Brock, Burgandy [Los Alamos National Laboratory; Coronado, Melissa A. [Los Alamos National Laboratory; Dewart, Jean M. [Los Alamos National Laboratory; Eisele, William F. Jr. [Los Alamos National Laboratory; Fuehne, David P. [Los Alamos National Laboratory; Gadd, Milan S. [Los Alamos National Laboratory; Green, Andrew A. [Los Alamos National Laboratory; Lujan, Joan J. [Los Alamos National Laboratory; MacDonell, Carolyn [Los Alamos National Laboratory; Whicker, Jeffrey J. [Los Alamos National Laboratory

2012-06-12T23:59:59.000Z

118

Biological Air Emissions Control for an Energy Efficient Forest Products Industry of the Future  

Science Conference Proceedings (OSTI)

The U.S. wood products industry is a leader in the production of innovative wood materials. New products are taking shape within a growth industry for fiberboard, plywood, particle board, and other natural material-based energy efficient building materials. However, at the same time, standards for clean air are becoming ever stricter. Emissions of volatile organic compounds (VOCs) and hazardous air pollutants (HAPs) during production of wood products (including methanol, formaldehyde, acetylaldehyde, and mercaptans) must be tightly controlled. Conventional VOC and HAP emission control techniques such as regenerative thermal oxidation (RTO) and regenerative catalytic oxidation (RCO) require significant amounts of energy and generate secondary pollutants such as nitrogen oxides and spent carbon. Biological treatment of air emissions offers a cost-effective and sustainable control technology for industrial facilities facing increasingly stringent air emission standards. A novel biological treatment system that integrates two types of biofilter systems, promises significant energy and cost savings. This novel system uses microorganisms to degrade air toxins without the use of natural gas as fuel or the creation of secondary pollutants. The replacement of conventional thermal oxidizers with biofilters will yield natural gas savings alone in the range of $82,500 to $231,000 per year per unit. Widespread use of biofilters across the entire forest products industry could yield fuel savings up to 5.6 trillion Btu (British thermal units) per year and electricity savings of 2.1 trillion Btu per year. Biological treatment systems can also eliminate the production of NOx, SO2, and CO, and greatly reduce CO2 emissions, when compared to conventional thermal oxidizers. Use of biofilters for VOC and HAP emission control will provide not only the wood products industry but also the pulp and paper industry with a means to cost-effectively control air emissions. The goal of this project was to demonstrate a novel sequential treatment technology that integrates two types of biofilter systems – biotrickling filtration and biofiltration – for controlling forest product facility air emissions with a water-recycling feature for water conservation. This coupling design maximizes the conditions for microbial degradation of odor causing compounds at specific locations. Water entering the biotrickling filter is collected in a sump, treated, and recycled back to the biotrickling filter. The biofilter serves as a polishing step to remove more complex organic compounds (i.e., terpenes). The gaseous emissions from the hardboard mill presses at lumber plants such as that of the Stimson Lumber Company contain both volatile and condensable organic compounds (VOC and COC, respectively), as well as fine wood and other very small particulate material. In applying bio-oxidation technology to these emissions Texas A&M University-Kingsville (TAMUK) and Bio•Reaction (BRI) evaluated the potential of this equipment to resolve two (2) control issues which are critical to the industry: • First, the hazardous air pollutant (HAP) emissions (primarily methanol and formaldehyde) and • Second, the fine particulate and COC from the press exhaust which contribute to visual emissions (opacity) from the stack. In a field test in 2006, the biological treatment technology met the HAP and COC control project objectives and demonstrated significantly lower energy use (than regenerative thermal oxidizers (RTOs) or regenerative catalytic oxidizers (RCOs), lower water use (than conventional scrubbers) all the while being less costly than either for maintenance. The project was successfully continued into 2007-2008 to assist the commercial partner in reducing unit size and footprint and cost, through added optimization of water recycle and improved biofilm activity, and demonstration of opacity removal capabilities.

Jones, K; Boswell, J.

2009-05-28T23:59:59.000Z

119

Economically consistent long-term scenarios for air pollutant emissions  

Science Conference Proceedings (OSTI)

Pollutant emissions such as aerosols and tropospheric ozone precursors substantially influence climate. While future century-scale scenarios for these emissions have become more realistic through the inclusion of emission controls, they still potentially lack consistency between surface pollutant concentrations and regional levels of affluence. We demonstrate a methodology combining use of an integrated assessment model and a three-dimensional atmospheric chemical transport model, whereby a reference scenario is constructed by requiring consistent surface pollutant levels as a function of regional income over the 21st century. By adjusting air pollutant emission control parameters, we improve agreement between modeled PM2.5 and economic income among world regions through time; agreement for ozone is also improved but is more difficult to achieve because of the strong influence of upwind world regions. The scenario examined here was used as the basis for one of the Representative Concentration Pathway (RCP) scenarios. This analysis methodology could also be used to examine the consistency of other pollutant emission scenarios.

Smith, Steven J.; West, Jason; Kyle, G. Page

2011-09-08T23:59:59.000Z

120

Regulations for Air Quality (Quebec, Canada)  

Energy.gov (U.S. Department of Energy (DOE))

This Regulation establishes emission standards for particulates and gases, emission opacity standards, standards of air quality and control measures to prevent, eliminate or reduce the emission of...

Note: This page contains sample records for the topic "reduce air emissions" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

Wind Energy and Air Emission Reduction Benefits: A Primer  

Science Conference Proceedings (OSTI)

This document provides a summary of the impact of wind energy development on various air pollutants for a general audience. The core document addresses the key facts relating to the analysis of emission reductions from wind energy development. It is intended for use by a wide variety of parties with an interest in this issue, ranging from state environmental officials to renewable energy stakeholders. The appendices provide basic background information for the general reader, as well as detailed information for those seeking a more in-depth discussion of various topics.

Jacobson, D.; High, C.

2008-02-01T23:59:59.000Z

122

Reducing GHG emissions in the United States' transportation sector  

SciTech Connect

Reducing GHG emissions in the U.S. transportation sector requires both the use of highly efficient propulsion systems and low carbon fuels. This study compares reduction potentials that might be achieved in 2060 for several advanced options including biofuels, hybrid electric vehicles (HEV), plug-in hybrid electric vehicles (PHEV), and fuel cell electric vehicles (FCEV), assuming that technical and cost reduction targets are met and necessary fueling infrastructures are built. The study quantifies the extent of the reductions that can be achieved through increasing engine efficiency and transitioning to low-carbon fuels separately. Decarbonizing the fuels is essential for achieving large reductions in GHG emissions, and the study quantifies the reductions that can be achieved over a range of fuel carbon intensities. Although renewables will play a vital role, some combination of coal gasification with carbon capture and sequestration, and/or nuclear energy will likely be needed to enable very large reductions in carbon intensities for hydrogen and electricity. Biomass supply constraints do not allow major carbon emission reductions from biofuels alone; the value of biomass is that it can be combined with other solutions to help achieve significant results. Compared with gasoline, natural gas provides 20% reduction in GHG emissions in internal combustion engines and up to 50% reduction when used as a feedstock for producing hydrogen or electricity, making it a good transition fuel for electric propulsion drive trains. The material in this paper can be useful information to many other countries, including developing countries because of a common factor: the difficulty of finding sustainable, low-carbon, cost-competitive substitutes for petroleum fuels.

Das, Sujit [ORNL; Andress, David A [ORNL; Nguyen, Tien [U.S. DOE

2011-01-01T23:59:59.000Z

123

1999 INEEL National Emission Standards for Hazardous Air Pollutants - Radionuclides  

Science Conference Proceedings (OSTI)

Under Section 61.94 of Title 40, Code of Federal Regulations (CFR), Part 61, Subpart H, ''National Emission Standards for Emission of Radionuclides Other Than Radon From Department of Energy Facilities,'' each Department of Energy (DOE) facility must submit an annual report documenting compliance. This report addresses the Section 61.94 reporting requirements for operations at the Idaho National Engineering and Environmental Laboratory (INEEL) for calendar year (CY) 1999. The Idaho Operations Office of the DOE is the primary contract concerning compliance with the National Emission Standards for Hazardous Air Pollutants (NESHAPs) at the INEEL. For CY 1999, airborne radionuclide emissions from the INEEL operations were calculated to result in a maximum individual dose to a member of the public of 7.92E-03 mrem (7.92E-08 Sievert). This effective dose equivalent (EDE) is well below the 40 CFR 61, Subpart H, regulatory standard of 10 mrem per year (1.0E-04 Sievert per year).

J. W. Tkachyk

2000-06-01T23:59:59.000Z

124

1998 INEEL National Emission Standard for Hazardous Air Pollutants - Radionuclides  

Science Conference Proceedings (OSTI)

Under Section 61.94 of Title 40, Code of Federal Regulations (CFR), Part 61, Subpart H, ''National Emission Standards for Emission of Radionuclides Other Than Radon From Department of Energy Facilities,'' each Department of Energy (DOE) facility must submit an annual report documenting compliance. This report addresses the Section 61.94 reporting requirements for operations at the Idaho National Engineering and Environmental Laboratory (INEEL) for calendar year (CY) 1998. The Idaho Operations Office of the DOE is the primary contract concerning compliance with the National Emission Standards for Hazardous Air Pollutants (NESHAPs) at the INEEL. For CY 1998, airborne radionuclide emissions from the INEEL operations were calculated to result in a maximum individual dose to a member of the public of 7.92E-03 mrem (7.92E-08 Sievert). This effective dose equivalent (EDE) is well below the 40 CFR 61, Subpart H, regulatory standard of 10 mrem per year (1.0E-04 Sievert per year).

J. W. Tkachyk

1999-06-01T23:59:59.000Z

125

Radioactive air emissions notice of construction portable/temporary radioactive air emission units  

SciTech Connect

This notice of construction (NOC) requests a categorical approval for construction and operation of three types of portable/temporary radionuclide airborne emission units (PTRAEUs). These three types are portable ventilation-filter systems (Type 1), mobile sample preparation facilities (Type II), and mobile sample screening and analysis facilities (Type III). Approval of the NOC application is intended to allow construction and operation of the three types of PTRAEUs without prior project-specific approval. Environmental cleanup efforts on the Hanford Site often require the use of PTRAEUS. The PTRAEUs support site characterization activities, expedited response actions (ERAs), sampling and monitoring activities, and other routine activities. The PTRAEUs operate at various locations around the Hanford Site.

Hays, C.B.

1996-10-22T23:59:59.000Z

126

Effects of engineering controls on radioactive air emissions from the Los Alamos Neutron Science Center  

E-Print Network (OSTI)

Under federal regulations set forth in 40 CFR 61, releases of radioactive airborne effluents from a Department of Energy facility must be limited so that no member of the public receives more than 0. IO miflisievert (IO milhrem) effective dose equivalent annually. At Los Alamos National Laboratory (LANL), the Los Alamos Neutron Science Center (LANSCE) has implemented engineering controls to ensure that emissions remain below this limit. At the accelerator beam stop, a delay line was constructed to delay exhaust air releases, and thereby allow for decay of any radioactivity prior to release. Also, an air scrubber was built at the beam stop to remove excess water, acids, triti@ and carbon dioxide from the air stream. This thesis describes the effectiveness of these emissions control efforts. Using a flow-through ionization chamber and high-purity germanium (HPGE) detector, the delay line was shown to reduce overall facility emissions by 29%. The scrubber effectiveness at removing tritium was found by collecting grab samples of the air stream on silica gel, both upstream and downstream of the scrubber. Results of liquid scintillation analysis show the tritium removal effectiveness to be greater than 95%. Removal of carbon-I I was determined by two methods. First, air samples upstream and downstream of the scrubber were collected on a carbon dioxide absorber and analyzed with a sodium iodide detector. The second method used a bench-top model scrubbing system to analyze scrubber performance with an BPGE detector. Different scenarios were examined with this model system, including varying the pH of the scrubber water and using catalytic conversion to convert all carbon in the air to carbon dioxide. The highest removal effectiveness of the model system was greater than 95%, under high pH and complete conversion of all carbon forms to C02-

Fuehne, David Patrick

1996-01-01T23:59:59.000Z

127

Glass science tutorial: Lecture No. 4, commercial glass melting and associated air emission issues  

SciTech Connect

This document serves as a manual for a workshop on commercial glass melting and associated air emission issues. Areas covered include: An overview of the glass industry; Furnace design and construction practices; Melting furnace operation; Energy input methods and controls; Air legislation and regulations; Soda lime emission mechanisms; and, Post furnace emission controls. Supporting papers are also included.

Kruger, A.A.

1995-01-01T23:59:59.000Z

128

NETL: News Release - DOE Selects Projects to Reduce Mercury Emissions from  

NLE Websites -- All DOE Office Websites (Extended Search)

Release Date: February 3, 2006 DOE Selects Projects to Reduce Mercury Emissions from Coal-Fired Power Plants Focus is on Cost-Effective Technology to Achieve 90 Percent Mercury Removal WASHINGTON, DC - In a continued effort to promote clean coal technologies, the U.S. Department of Energy has selected 12 projects aimed at reducing mercury emissions from coal-fired power plants. The projects' overall focus is on field-testing advanced post-combustion mercury control technologies that achieve at least 90 percent mercury removal with a cost reduction of 50 percent or more. Other objectives center on field-testing in specific areas of need, and bench-scale through pilot-scale testing of novel mercury control technologies. America's coal-fired power plants emit around 48 tons of mercury each year. In March 2005, the U.S. Environmental Protection Agency issued the Clean Air Mercury Rule to permanently cap and reduce these emissions, requiring an overall average reduction of nearly 70 percent by 2018.

129

STANDARDS CONTROLLING AIR EMISSIONS FOR THE SOIL DESICCATION PILOT TEST  

Science Conference Proceedings (OSTI)

This air emissions document supports implementation of the Treatability Test Plan for Soil Desiccation as outlined in the Deep Vadose Zone Treatability Test Plan for the Hanford Central Plateau (DOE/RL-2007-56). Treatability testing supports evaluation of remedial technologies for technetium-99 (Tc-99) contamination in the vadose zone at sites such as the BC Cribs and Trenches. Soil desiccation has been selected as the first technology for testing because it has been recommended as a promising technology in previous Hanford Site technology evaluations and because testing of soil desiccation will provide useful information to enhance evaluation of other technologies, in particular gas-phase remediation technologies. A soil desiccation pilot test (SDPT) will evaluate the desiccation process (e.g., how the targeted interval is dried) and the long-term performance for mitigation of contaminant transport. The SDPT will dry out a moist zone contaminated by Tc-99 and nitrate that has been detected at Well 299-E13-62 (Borehole C5923). This air emissions document applies to the activities to be completed to conduct the SDPT in the 200-BC-1 operable unit located in the 200 East Area of the Hanford Site. Well 299-E13-62 is planned to be used as an injection well. This well is located between and approximately equidistant from cribs 216-B-16, 216-B-17, 216-B-18. and 216-B-19. Nitrogen gas will be pumped at approximately 300 ft{sup 3}/min into the 299-EI3-62 injection well, located approximately 12 m (39 ft) away from extraction well 299-EI3-65. The soil gas extraction rate will be approximately 150 ft{sup 3}/min. The SDPT will be conducted continuously over a period of approximately six months. The purpose of the test is to evaluate soil desiccation as a potential remedy for protecting groundwater. A conceptual depiction is provided in Figure 1. The soil desiccation process will physically dry, or evaporate, some of the water from the moist zone of interest. As such, it is expected that Tc-99 and nitrate will remain with the water residual that is not removed, or remain as a salt bound to the soil particles. In addition, the SDPT will be conducted at lower extraction velocities to preclude pore water entrainment and thus, the extracted air effluent should be free of the contaminant residual present in the targeted moist zone. However, to conservatively bound the planned activity for potential radionuclide air emissions, it is assumed, hypothetically, that the Tc-99 does not remain in the zone of interest, but that it instead travels with the evaporated moisture to the extraction well and to the test equipment at the land surface. Thus, a release potential would exist from the planned point source (powered exhaust) for Tc-99 in the extracted moist air. In this hypothetical bounding case there would also be a potential for very minor fugitive emissions to occur due to nitrogen injection into the soil. The maximum value for Tc-99, measured in the contaminated moist zone, is used in calculating the release potential described in Section 2.3. The desiccation mechanism will be evaporation. Nitrate is neither a criteria pollutant nor a toxic air pollutant. It would remain nitrate as a salt adhered to sand and silt grains or as nitrate dissolved in the pore water. Nitrogen, an inert gas, will be injected into the ground during the test. Tracer gasses will also be injected near the beginning, middle, and the end of the test. The tracer gasses are sulfur hexafluoride, trichlorofluoromethane, and difluoromethane.

BENECKE MW

2010-09-08T23:59:59.000Z

130

Solid Fuel - Oxygen Fired Combustion for Production of Nodular Reduced Iron to Reduce CO2 Emissions and Improve Energy Efficiencies  

DOE Green Energy (OSTI)

The current trend in the steel industry is an increase in iron and steel produced in electric arc furnaces (EAF) and a gradual decline in conventional steelmaking from taconite pellets in blast furnaces. In order to expand the opportunities for the existing iron ore mines beyond their blast furnace customer base, a new material is needed to satisfy the market demands of the emerging steel industry while utilizing the existing infrastructure and materials handling capabilities. This demand creates opportunity to convert iron ore or other iron bearing materials to Nodular Reduced Iron (NRI) in a recently designed Linear Hearth Furnace (LHF). NRI is a metallized iron product containing 98.5 to 96.0% iron and 2.5 to 4% C. It is essentially a scrap substitute with little impurity that can be utilized in a variety of steelmaking processes, especially the electric arc furnace. The objective of this project was to focus on reducing the greenhouse gas emissions (GHG) through reducing the energy intensity using specialized combustion systems, increasing production and the use of biomass derived carbon sources in this process. This research examined the use of a solid fuel-oxygen fired combustion system and compared the results from this system with both oxygen-fuel and air-fuel combustion systems. The solid pulverized fuels tested included various coals and a bio-coal produced from woody biomass in a specially constructed pilot scale torrefaction reactor at the Coleraine Minerals Research Laboratory (CMRL). In addition to combustion, the application of bio-coal was also tested as a means to produce a reducing atmosphere during key points in the fusion process, and as a reducing agent for ore conversion to metallic iron to capture the advantage of its inherent reduced carbon footprint. The results from this study indicate that the approaches taken can reduce both greenhouse gas emissions and the associated energy intensity with the Linear Hearth Furnace process for converting iron ore to metallic iron nodules. Various types of coals including a bio-coal produced though torrefaction can result in production of NRI at reduced GHG levels. The process results coupled with earlier already reported developments indicate that this process technique should be evaluated at the next level in order to develop parameter information for full scale process design. Implementation of the process to full commercialization will require a full cost production analysis and comparison to other reduction technologies and iron production alternatives. The technical results verify that high quality NRI can be produced under various operating conditions at the pilot level.

Donald R. Fosnacht; Richard F. Kiesel; David W. Hendrickson; David J. Englund; Iwao Iwasaki; Rodney L. Bleifuss; Mathew A. Mlinar

2011-12-22T23:59:59.000Z

131

A zinc-air battery and flywheel zero emission vehicle  

DOE Green Energy (OSTI)

In response to the 1990 Clean Air Act, the California Air Resources Board (CARB) developed a compliance plan known as the Low Emission Vehicle Program. An integral part of that program was a sales mandate to the top seven automobile manufacturers requiring the percentage of Zero Emission Vehicles (ZEVs) sold in California to be 2% in 1998, 5% in 2001 and 10% by 2003. Currently available ZEV technology will probably not meet customer demand for range and moderate cost. A potential option to meet the CARB mandate is to use two Lawrence Livermore National Laboratory (LLNL) technologies, namely, zinc-air refuelable batteries (ZARBs) and electromechanical batteries (EMBs, i. e., flywheels) to develop a ZEV with a 384 kilometer (240 mile) urban range. This vehicle uses a 40 kW, 70 kWh ZARB for energy storage combined with a 102 kW, 0.5 kWh EMB for power peaking. These technologies are sufficiently near-term and cost-effective to plausibly be in production by the 1999-2001 time frame for stationary and initial vehicular applications. Unlike many other ZEVs currently being developed by industry, our proposed ZEV has range, acceleration, and size consistent with larger conventional passenger vehicles available today. Our life-cycle cost projections for this technology are lower than for Pb-acid battery ZEVs. We have used our Hybrid Vehicle Evaluation Code (HVEC) to simulate the performance of the vehicle and to size the various components. The use of conservative subsystem performance parameters and the resulting vehicle performance are discussed in detail.

Tokarz, F.; Smith, J.R.; Cooper, J.; Bender, D.; Aceves, S.

1995-10-03T23:59:59.000Z

132

National Emission Standards for Hazardous Air Pollutants Calendar Year 2006  

Science Conference Proceedings (OSTI)

The Nevada Test Site (NTS) is operated by the U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office (NNSA/NSO). From 1951 through 1992, the NTS was operated as the nation's site for nuclear weapons testing. The release of man-made radionuclides from the NTS as a result of testing activities has been monitored since the first decade of atmospheric testing. After 1962, when nuclear tests were conducted only underground, the radiation exposure to the public surrounding the NTS was greatly reduced. After the 1992 moratorium on nuclear testing, radiation monitoring on the NTS focused on detecting airborne radionuclides which come from historically-contaminated soils resuspended into the air (e.g., by winds) and tritium-contaminated soil moisture emitted to the air from soils through evapotranspiration.

NSTec Environmental Technical Services

2007-06-01T23:59:59.000Z

133

State Air Emission Regulations That Affect Electric Power Producers (Update) (released in AEO2006)  

Reports and Publications (EIA)

Several States have recently enacted air emission regulations that will affect the electricity generation sector. The regulations govern emissions of NOx, SO2, CO2, and mercury from power plants.

Information Center

2006-02-01T23:59:59.000Z

134

Impact of Ground-level Aviation Emissions on Air Quality in the Western United States.  

E-Print Network (OSTI)

??The aviation industry has experienced sustained growth since its inception result- ing in an increase in air pollutant emissions. Exposure to particulate matter less than… (more)

Clark, Eric Edward

2010-01-01T23:59:59.000Z

135

National Emission Standards for Hazardous Air Pollutants—Calendar Year 2010 INL Report for Radionuclides (2011)  

SciTech Connect

This report documents the calendar Year 2010 radionuclide air emissions and resulting effective dose equivalent to the maximally exposed individual member of the public from operations at the Department of Energy's Idaho National Laboratory Site. This report was prepared in accordance with the Code of Federal Regulations, Title 40, 'Protection of the Environment,' Part 61, 'National Emission Standards for Hazardous Air Pollutants,' Subpart H, 'National Emission Standards for Emissions of Radionuclides Other than Radon from Department of Energy Facilities.'

Mark Verdoorn; Tom Haney

2011-06-01T23:59:59.000Z

136

Radionuclide air emissions report for the Hanford Site, calendar year 1992  

SciTech Connect

This report documents radionuclide air emissions from the Hanford Site in 1992 and the resulting effective dose equivalent to an member of the public. The report has been prepared and will be submitted in accordance with reporting requirements in the Code of Federal Regulations, Title 40, Protection of the Environment, Part 61, ``National Emissions Standards for Hazardous Air Pollutants,`` Subpart H, ``National Emission Standards for Emissions of Radionuclides Other than Radon from Department of Energy Facilities.``

Diediker, L.P.; Johnson, A.R. [Westinghouse Hanford Co., Richland, WA (United States); Rhoads, K.; Klages, D.L.; Soldat, J.K. [Pacific Northwest Lab., Richland, WA (United States); Rokkan, D.J. [Science Applications International Corp., Richland, WA (United States)

1993-06-01T23:59:59.000Z

137

Radionuclide air emissions report for the Hanford site, Calendar year 1994  

Science Conference Proceedings (OSTI)

This report documents radionuclide air emissions from the Hanford Site in 1994, and the resulting effective dose equivalent to the maximally exposed member of the public, referred to as the ``MEI.`` The report has been prepared and will be submitted in accordance with reporting requirements in the Code of Federal Regulations, title 40, Protection of the Environment, Part 61, ``National Emissions Standards for Hazardous Air Pollutants,`` Subpart H, ``National Emission Standards for Emissions of Radionuclides Other than Radon from Department of Energy Facilities.``

Gleckler, B.P.; Diediker, L.P. [Westinghouse Hanford Co., Richland, WA (United States); Jette, S.J.; Rhoads, K.; Soldat, S.K. [Pacific Northwest Lab., Richland, WA (United States)

1995-06-01T23:59:59.000Z

138

The use of onboard diagnostics to reduce emissions in automobiles  

E-Print Network (OSTI)

The emissions from automobiles are very harmful and include gases such as Carbon Dioxide, Nitrous Oxide, and Sulfur Dioxide. One of the main reasons OBD was created was to control emissions however it currently only monitors ...

Perez, Alberto, Jr

2009-01-01T23:59:59.000Z

139

Reducing emissions from the electricity sector: the costs and benefits nationwide and for the Empire State  

Science Conference Proceedings (OSTI)

Using four models, this study looks at EPA's Clean Air Interstate Rule (CAIR) as originally proposed, which differs in only small ways from the final rule issued in March 2005, coupled with several approaches to reducing emissions of mercury including one that differs in only small ways from the final rule also issued in March 2005. This study analyzes what costs and benefits each would incur to New York State and to the nation at large. Benefits to the nation and to New York State significantly outweigh the costs associated with reductions in SO{sub 2}, NOx and mercury, and all policies show dramatic net benefits. The manner in which mercury emissions are regulated will have important implications for the cost of the regulation and for emission levels for SO{sub 2} and NOx and where those emissions are located. Contrary to EPA's findings, CAIR as originally proposed by itself would not keep summer emissions of NOx from electricity generators in the SIP region below the current SIP seasonal NOx cap. In the final CAIR, EPA added a seasonal NOx cap to address seasonal ozone problems. The CAIR with the seasonal NOx cap produces higher net benefits. The effect of the different policies on the mix of fuels used to supply electricity is fairly modest under scenarios similar to the EPA's final rules. A maximum achievable control technology (MACT) approach, compared to a trading approach as the way to achieve tighter mercury targets (beyond EPA's proposal), would preserve the role of coal in electricity generation. The evaluation of scenarios with tighter mercury emission controls shows that the net benefits of a maximum achievable control technology (MACT) approach exceed the net benefits of a cap and trade approach. 39 refs., 10 figs., 30 figs., 5 apps.

Karen Palmer; Dallas Butraw; Jhih-Shyang Shih

2005-06-15T23:59:59.000Z

140

Developing Greenhouse Gas Emissions Offsets by Reducing Nitrous Oxide (N2O) Emissions in Agricultural Crop Production  

Science Conference Proceedings (OSTI)

This final project report describes a three-year long EPRI supplemental project entitled "Developing Greenhouse Gas Emissions Offsets by Reducing Nitrous Oxide (N2O) Emissions." This EPRI-sponsored project investigated an innovative approach to developing large-scale, cost-effective greenhouse gas (GHG) emissions offsets that potentially can be implemented across broad geographic areas of the United States and internationally.

2009-12-17T23:59:59.000Z

Note: This page contains sample records for the topic "reduce air emissions" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

Prospects of Oxy-Coal Steam-Electric Power Plants Achieving "Minor Source" Status for Air Emissions Permitting  

Science Conference Proceedings (OSTI)

Oxy-coal power plants have been proposed for capturing carbon dioxide (CO2) from coal combustion in a relatively concentrated form for storage in geological formations. The particular processes employed for oxy-combustion have the positive side effect of reducing emissions to very low levels. This report assesses the extent to which oxy-coal power plants might meet “near-zero” emissions proposed by several organizations and qualify as a “minor source” for the purposes of air emissions permitting. The rep...

2009-12-28T23:59:59.000Z

142

Developing Greenhouse Gas Emissions Offsets by Reducing Nitrous Oxide (N2O) Emissions in Agricultural Crop Production  

Science Conference Proceedings (OSTI)

This report covers the first two years of a three-year long project entitled "Developing Greenhouse Gas Emissions Offsets by Reducing Nitrous Oxide (N2O) Emissions." This EPRI-sponsored project is investigating an innovative approach to developing large-scale and potentially cost-effective greenhouse gas (GHG) emissions offsets that could be implemented across broad geographic areas of the U.S. and internationally. The tools and information developed in this project will broaden the GHG emissions offset ...

2008-11-11T23:59:59.000Z

143

Yale University committed to reducing its primary greenhouse gas emissions 43% below 2005 levels.  

E-Print Network (OSTI)

Yale University committed to reducing its primary greenhouse gas emissions 43% below 2005 levels. Beginning in 2013, emissions from the University fleet are included in the reduction target. Greenhouse Gas. 2005 2013 In 2005,Yale University pledged to reduce its primary greenhouse gas emissions forty

144

The Costs of Reducing Electricity Sector CO2 Emissions  

Science Conference Proceedings (OSTI)

This report presents a high-level analysis of some of the critical challenges associated with cutting United States electricity-sector CO2 emissions and an order of magnitude feeling for what it will cost to meet emission-reduction targets now under consideration. Three basic strategies to limit emissions are illustrated to give readers a basic understanding of the tradeoff between CO2 reductions and additional cost inherent in several generation choices. Regional power market system simulations are then...

2007-12-20T23:59:59.000Z

145

Decision-Making to Reduce Manufacturing Greenhouse Gas Emissions  

E-Print Network (OSTI)

installed to replace hydro power, in terms of GHG emissions.coal-fired power plant or a hydro-power facility. 4. The GHG

Reich-Weiser, Corinne

2010-01-01T23:59:59.000Z

146

Decision-Making to Reduce Manufacturing Greenhouse Gas Emissions  

E-Print Network (OSTI)

fact that there is electricity trade between regions, ownlevels of inter-state electricity trade. For all of thesegiven that regional electricity trade and upstream emissions

Reich-Weiser, Corinne

2010-01-01T23:59:59.000Z

147

Abatement of Air Pollution: Greenhouse Gas Emissions Offset Projects (Connecticut)  

Energy.gov (U.S. Department of Energy (DOE))

Projects that either capture and destroy landfill methane, avoid sulfur hexafluoride emissions, sequester carbon through afforestation, provide end-use energy efficiency, or avoid methane emissions...

148

Air Emission Regulations for the Prevention, Abatement, and Control...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

point source or emissions, which will obscure someone's view by 40%. For fossil fuel burning the maximum permissible emission of ash andor particulate matter shall be limited to...

149

Reduced energy and volume air pump for a seat cushion  

DOE Patents (OSTI)

An efficient pump system is described for transferring air between sets of bladders in a cushion. The pump system utilizes a reversible piston within a cylinder in conjunction with an equalizing valve in the piston which opens when the piston reaches the end of travel in one direction. The weight of a seated user then forces air back across the piston from an inflated bladder to the previously deflated bladder until the pressure is equalized. In this fashion the work done by the pump is cut in half. The inflation and deflation of the different bladders is controlled to vary the pressure on the several pressure points of a seated user. A principal application is for wheel chair use to prevent pressure ulcers. 12 figs.

Vaughn, M.R.; Constantineau, E.J.; Groves, G.E.

1997-08-19T23:59:59.000Z

150

Reducing air conditioning waste by signalling it is cool outside  

SciTech Connect

This experiment looked at the effects on residential energy consumption of providing homeowners with (1) a signalling device that indicated a conservation opportunity and (2) information feedback about their rate of energy use. The signalling device operated when the outside temperature was below 68F and the air conditioner was on. Homeowners were told that the signalling device indicated when they could cool their house effectively by opening the windows and turning off their air conditioner. Forty households were randomly assigned to one of four conditions: signalling device only, feedback only, both, neither. The results showed a significant 15.7% decrease in energy use for those households with the signalling devices. Neither the feedback nor interaction effect was significant. The advantages and disadvantages of having people in the control cycle were discussed. 4 references, 1 table.

Becker, L.J.; Seligman, C.

1978-07-01T23:59:59.000Z

151

Federal Air Emissions Regulations (released in AEO2006)  

Reports and Publications (EIA)

In 2005, the EPA finalized two regulations, CAIR and CAMR, that would reduce emissions from coal-fired power plants in the United States. Both CAIR and CAMR are included in the AEO2006 reference case. The EPA has received 11 petitions for reconsideration of CAIR and has provided an opportunity for public comment on reconsidering certain aspects of CAIR. Public comments were accepted until January 13, 2006. The EPA has also received 14 petitions for reconsideration of CAMR and is willing to reconsider certain aspects of the rule. Public comments were accepted for 45 days after publication of the reconsideration notice in the Federal Register. Several States and organizations have filed lawsuits against CAMR. The ultimate decision of the courts will have a significant impact on the implementation of CAMR.

Information Center

2006-02-01T23:59:59.000Z

152

Demonstration of oxygen-enriched combustion system on a light-duty vehicle to reduce cold-start emissions  

DOE Green Energy (OSTI)

The oxygen content in the ambient air drawn by combustion engines can be increased by polymer membranes. The authors have previously demonstrated that 23 to 25% (concentration by volume) oxygen-enriched intake air can reduce hydrocarbons (HC), carbon monoxide (CO), air toxics, and ozone-forming potential (OFP) from flexible-fueled vehicles (FFVs) that use gasoline or M85. When oxygen-enriched air was used only during the initial start-up and warm-up periods, the emission levels of all three regulated pollutants [CO, nonmethane hydrocarbons (NMHC), and NO{sub x}] were lower than the U.S. EPA Tier II (year 2004) standards (without adjusting for catalyst deterioration factors). In the present work, an air separation membrane module was installed on the intake of a 2.5-L FFV and tested at idle and free acceleration to demonstrate the oxygen-enrichment concept for initial start-up and warm-up periods. A bench-scale, test set-up was developed to evaluate the air separation membrane characteristics for engine applications. On the basis of prototype bench tests and from vehicle tests, the additional power requirements and module size for operation of the membrane during the initial period of the cold-phase, FTP-75 cycle were evaluated. A prototype membrane module (27 in. long, 3 in. in diameter) supplying about 23% oxygen-enriched air in the engine intake only during the initial start-up and warm-up periods of a 2.5-L FFV requires additional power (blower) of less than one horsepower. With advances in air separation membranes to develop compact modules, oxygen enrichment of combustion air has the potential of becoming a more practical technique for controlling exhaust emissions from light-duty vehicles.

Sekar, R.; Poola, R.B.

1997-08-01T23:59:59.000Z

153

DOE and NNSA labs work with CTBTO to reduce medical isotope emissions...  

NLE Websites -- All DOE Office Websites (Extended Search)

NNSA labs work with CTBTO to reduce medical isotope emissions, enhance the effectiveness of nuclear explosion monitoring | National Nuclear Security Administration Our Mission...

154

Reducing Air Compressor Work by Using Inlet Air Cooling and Dehumidification.  

E-Print Network (OSTI)

??Air compressor systems play a large role in modern industry. These compressors can account for a significant portion of a manufacturing facility’s electric consumption and… (more)

Hardy, Mark James

2011-01-01T23:59:59.000Z

155

"Blue Sky" Approaches to Reduce Greenhouse Gas Emissions: An Initial Assessment of Potential New Types of Greenhouse Gas Emissions Offsets  

Science Conference Proceedings (OSTI)

This report provides an initial assessment of potential new approaches to reducing greenhouse gas (GHG) emissions that might be capable of generating large-scale GHG emissions offsets at relatively low cost compared to other GHG mitigation options. The nine potential blue sky approaches assessed in this report include biochar, destruction of ozone depleting substances, control of natural fugitive methane seeps from coal seams, control of fugitive natural gas emissions associated with hydraulic fracturing...

2011-12-22T23:59:59.000Z

156

National Emission Standards for Hazardous Air Pollutants, June 2005  

DOE Green Energy (OSTI)

The sources of radionuclides include current and previous activities conducted on the NTS. The NTS was the primary location for testing of nuclear explosives in the Continental U.S. between 1951 and 1992. Historical testing has included (1) atmospheric testing in the 1950s and early 1960s, (2) underground testing between 1951 and 1992, and (3) open-air nuclear reactor and rocket engine testing (DOE, 1996a). No nuclear tests have been conducted since September 23,1992 (DOE, 2000), however; radionuclides remaining on the soil surface in many NTS areas after several decades of radioactive decay are re-suspended into the atmosphere at concentrations that can be detected by air sampling. Limited non-nuclear testing includes spills of hazardous materials at the Non-Proliferation Test and Evaluation Complex (formerly called the Hazardous Materials Spill Center), private technology development, aerospace and demilitarization activities, and site remediating activities. Processing of radioactive materials is limited to laboratory analyses; handling, transport, storage, and assembly of nuclear explosive devices or radioactive targets for the Joint Actinide Shock Physics Experimental Research (JASPER) gas gun; and operation of radioactive waste management sites (RWMSs) for low-level radioactive and mixed waste (DOE, 1996a). Monitoring and evaluation of the various activities conducted onsite indicate that the potential sources of offsite radiation exposure in calendar year (CY) 2004 were releases from (1) evaporation of tritiated water (HTO) from containment ponds that receive drainage water from E Tunnel in Area 12 and water pumped from wells used to characterize the aquifers at the sites of past underground nuclear tests, (2) onsite radioanalytical laboratories, (3) the Area 3 and Area 5 RWMS facilities, and (4) diffuse sources of tritium (H{sup 3}) and re-suspension of plutonium ({sup 239+240}Pu) and americium ({sup 241}Am) at the sites of past nuclear tests. The following sections present a general description of the present sources on the NTS and at the North Las Vegas Facility (NLVF). At the NLVF, parts of Building A-1 were contaminated with tritium by a previous contractor in 1995. The incident involved the release of tritium as HTO. This unusual occurrence led to a very small potential exposure to an offsite person. The HTO emission has continued at lower levels (probably re-emanation from building materials), even after cleanup activities in November and December 1997. A description of the incident and the potential effective dose equivalent (EDE) for offsite exposure are set forth in Appendix A.

Robert F. Grossman

2005-06-01T23:59:59.000Z

157

The cost effectiveness of reducing public exposure to carcinogens in Harris County by a abating chemical plant emissions  

SciTech Connect

The work examines the engineering reasonableness and the cost effectiveness of reducing public exposure to carcinogens n ambient air by abating emissions of organic chemicals in waste gas streams from chemical plants in Harris County, Texas, which contains the large chemical manufacturing complex in the Houston ship channel areas. The work also examined the cost effectiveness of reducing public exposure through changing the way vent streams are released to the atmosphere. The achievable exposure reductions are estimated by use of 1980 census data and of ambient concentration estimates. The ambient concentration estimates are calculated using the Texas Climatological Model Version 2 (TCM-2) and publicly available emissions inventory collected by the Texas Air Control Board. The TCM-2 is based on the steady state Gaussian plume hypothesis, Briggs plume rise formations, Pasquill-Gifford dispersion coefficient approximations, and first order pollutant decay. The cost estimates rely on published studies and on the waste gas stream parameters of the chemical plant vents. The cost effectiveness results are compared with the cost effectiveness of controls typically applied to new sources of volatile organic compounds (VOCs) that are controlled because of their contribution to ozone air pollution, not because of the carcinogenicity of their emissions.

Price, J.H. Jr.

1989-01-01T23:59:59.000Z

158

Developing Greenhouse Gas Emissions Offsets by Reducing Nitrous Oxide (N2O) Emissions in Agricultural Crop Production  

Science Conference Proceedings (OSTI)

This Technical Update covers the first year of a three-year-long EPRI research project entitled Developing Greenhouse Gas Emissions Offsets by Reducing Nitrous Oxide (N2O) Emissions in Agricultural Crop Production. The report provides a project overview and explains the preliminary results yielded from the first year of on-farm research.

2007-10-30T23:59:59.000Z

159

Energy - environmental methods to reduce CO2emissions in Romanian iron and steel industry  

Science Conference Proceedings (OSTI)

This paper presents some energy-environmental methods for reducing the CO2 emissions in Romanian iron and steel processes, both technological, as well as combustion processes, in case of integrated, technological and energetic approach, using ... Keywords: CO2 emissions, emissions reduction, energy-environmental methods, integrated system, mathematical model

Ion Melinte; Mihaela Balanescu

2009-02-01T23:59:59.000Z

160

Definition: Reduced Sox, Nox, And Pm-2.5 Emissions | Open Energy  

Open Energy Info (EERE)

Sox, Nox, And Pm-2.5 Emissions Sox, Nox, And Pm-2.5 Emissions Jump to: navigation, search Dictionary.png Reduced Sox, Nox, And Pm-2.5 Emissions Functions that provide this benefit can lead to avoided vehicle miles, decrease the amount of central generation needed to their serve load (through reduced electricity consumption, reduced electricity losses, more optimal generation dispatch), and or reduce peak generation. These impacts translate into a reduction in pollutant emissions produced by fossil-based electricity generators and vehicles.[1] Related Terms electricity generation, reduced electricity losses, smart grid References ā†‘ SmartGrid.gov 'Description of Benefits' An in LikeLike UnlikeLike You like this.Sign Up to see what your friends like. line Glossary Definition Retrieved from "http://en.openei.org/w/index.php?title=Definition:Reduced_Sox,_Nox,_And_Pm-2.5_Emissions&oldid=502508

Note: This page contains sample records for the topic "reduce air emissions" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

Air Emissions Operating Permit Regulations for the Purposes of...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

are at a stationary source emitting or potentially emitting 100,000 tons per year of co2 equivalent emissions (calculated by multiplying the mass amount of emissions, for each...

162

Cross State Air Pollution Rule requires emissions reductions from ...  

U.S. Energy Information Administration (EIA)

Environment. Greenhouse gas data, voluntary report- ing, electric power plant emissions. Highlights Short-Term Energy Outlook ...

163

Abatement of Air Pollution: Greenhouse Gas Emissions Offset Projects...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Type Environmental Regulations Projects that either capture and destroy landfill methane, avoid sulfur hexafluoride emissions, sequester carbon through afforestation, provide...

164

Apparatus for improving gasoline comsumption, power and reducing emission pollutants of internal combustion engines  

Science Conference Proceedings (OSTI)

This patent describes an apparatus for improving performance and reducing fuel comsumption and emission pollutants from an internal combustion gasoline engine. This apparatus consists of: 1.) an internal combustion gasoline engine having, in part, an intake manifold and an exhaust manifold where the exhaust manifold is modified to include a manifold exhaust port; 2.) a modified internal combustion engine carburetor connected to the intake manifold on the engine; 3.) a positive crankcase ventilation valve (PCV) which has an input port conventionally connected to the internal combustion engine and also has a PCV output port; 4.) an automobile fuel pump having an input connected to a conventional fuel tank and having a fuel pump output port; 5.) a thermic reactor; 6.) a thermic reactor air cleaner pneumatically connected to the clean air input port on the thermic reactor; 7.) a catalytic gas injector; 8.) a fuel regulator/restrictor consisting of a solid block having a fuel pump input port and a carburetor output port.

Piedrafita, R.

1986-02-18T23:59:59.000Z

165

National Emission Standards for Hazardous Air Pollutants—Calendar Year 2011 INL Report for Radionuclides (2012)  

SciTech Connect

This report documents the calendar year 2011 radionuclide air emissions and resulting effective dose equivalent to the maximally exposed individual member of the public from operations at the Department of Energy's Idaho National Laboratory Site. This report was prepared in accordance with the Code of Federal Regulations, Title 40, 'Protection of the Environment,' Part 61, 'National Emission Standards for Hazardous Air Pollutants,' Subpart H, 'National Emission Standards for Emissions of Radionuclides Other than Radon from Department of Energy Facilities.' The effective dose equivalent to the maximally exposed individual member of the public was 4.58E-02 mrem per year, 0.46 percent of the 10 mrem standard.

Mark Verdoorn; Tom Haney

2012-06-01T23:59:59.000Z

166

Radionuclide air emission report for the Hanford Site Calendar Year 1993  

SciTech Connect

This report documents radionuclide air emissions from the Hanford Site in 1993 and the resulting effective dose equivalent to any member of the public. The report has been prepared and will be submitted in accordance with reporting requirements in the Code of Federal Regulations, Title 40, Protection of the Environment, Part 61, {open_quotes}National Emissions Standards for Hazardous Air Pollutants,{close_quotes} Subpart H, {open_quotes}National Emission Standards for Emissions of Radionuclides Other than Radon from Department of Energy Facilities.{close_quotes}

Diediker, L.P.; Curn, B.L. [Westinghouse Hanford Co., Richland, WA (United States); Rhoads, K.; Damberg, E.G.; Soldat, J.K.; Jette, S.J. [Pacific Northwest Lab., Richland, WA (United States)

1994-08-01T23:59:59.000Z

167

Effect of outside air ventilation rate on VOC concentrations and emissions  

NLE Websites -- All DOE Office Websites (Extended Search)

Effect of outside air ventilation rate on VOC concentrations and emissions Effect of outside air ventilation rate on VOC concentrations and emissions in a call center Title Effect of outside air ventilation rate on VOC concentrations and emissions in a call center Publication Type Conference Proceedings Year of Publication 2002 Authors Hodgson, Alfred T., David Faulkner, Douglas P. Sullivan, Dennis L. DiBartolomeo, Marion L. Russell, and William J. Fisk Conference Name Proceedings of the Indoor Air 2002 Conference, Monterey, CA Volume 2 Pagination 168-173 Publisher Indoor Air 2002, Santa Cruz, CA Abstract A study of the relationship between outside air ventilation rate and concentrations of VOCs generated indoors was conducted in a call center. Ventilation rates were manipulated in the building's four air handling units (AHUs). Concentrations of VOCs in the AHU returns were measured on 7 days during a 13- week period. Indoor minus outdoor concentrations and emission factors were calculated. The emission factor data was subjected to principal component analysis to identify groups of co-varying compounds based on source type. One vector represented emissions of solvents from cleaning products. Another vector identified occupant sources. Direct relationships between ventilation rate and concentrations were not observed for most of the abundant VOCs. This result emphasizes the importance of source control measures for limiting VOC concentrations in buildings

168

Secretary Chu Announces Two New Projects to Reduce Emissions from Coal  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Two New Projects to Reduce Emissions from Two New Projects to Reduce Emissions from Coal Plants Secretary Chu Announces Two New Projects to Reduce Emissions from Coal Plants July 1, 2009 - 1:00pm Addthis Washington, DC - U.S. Department of Energy Secretary Steven Chu announced today that projects by Basin Electric Power Cooperative and Hydrogen Energy International LLC have been selected for up to $408 million in funding from the American Recovery and Reinvestment Act. The two projects selected -- an existing power plant in North Dakota and a new facility in California -- will incorporate advanced technologies to reduce carbon dioxide (CO2) emissions. "Today's announcement represents a major step forward in the fight to reduce CO2 emissions from coal-based power plants. These new technologies

169

Secretary Chu Announces Two New Projects to Reduce Emissions from Coal  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

New Projects to Reduce Emissions from New Projects to Reduce Emissions from Coal Plants Secretary Chu Announces Two New Projects to Reduce Emissions from Coal Plants July 1, 2009 - 12:00am Addthis Washington, DC - U.S. Department of Energy Secretary Steven Chu announced today that projects by Basin Electric Power Cooperative and Hydrogen Energy International LLC have been selected for up to $408 million in funding from the American Recovery and Reinvestment Act. The two projects selected -- an existing power plant in North Dakota and a new facility in California -- will incorporate advanced technologies to reduce carbon dioxide (CO2) emissions. "Today's announcement represents a major step forward in the fight to reduce CO2emissions from coal-based power plants. These new technologies will not only help fight climate change, they will also create new jobs and

170

Pacific Northwest National Laboratory Site Radionuclide Air Emissions Report for Calendar Year 2012  

SciTech Connect

This report documents radionuclide air emissions that result in the highest effective dose equivalent (EDE) to a member of the public, referred to as the maximally exposed individual (MEI). The report has been prepared in compliance with the Code of Federal Regulations (CFR), Title 40, Protection of the Environment, Part 61, National Emission Standards for Hazardous Air Pollutants (NESHAP), Subpart H, National Emission Standards for Emissions of Radionuclides Other than Radon from Department of Energy Facilities and Washington Administrative Code (WAC) Chapter 246-247, Radiation Protection Air Emissions. The dose to the PNNL Site MEI due to routine major and minor point source emissions in 2012 from PNNL Site sources is 9E-06 mrem (9E-08 mSv) EDE. The dose from fugitive emissions (i.e., unmonitored sources) is 1E-7 mrem (1E-9 mSv) EDE. The dose from radon emissions is 2E-6 mrem (2E-08 mSv) EDE. No nonroutine emissions occurred in 2012. The total radiological dose for 2012 to the MEI from all PNNL Site radionuclide emissions, including fugitive emissions and radon, is 1E-5 mrem (1E-7 mSv) EDE, or 100,000 times smaller than the federal and state standard of 10 mrem/yr, to which the PNNL Site is in compliance.

Snyder, Sandra F.; Barnett, J. M.; Bisping, Lynn E.

2013-06-06T23:59:59.000Z

171

Radionuclide air emissions report for the Hanford site calendar year 1995  

SciTech Connect

This report documents radionuclide air emissions from the Hanford Site in 1995, and the resulting effective dose equivalent (FDE) to the maximally exposed member of the public, referred to as the `MEI.` The report has been prepared and will be submitted in accordance with reporting requirements in the Code of Federal Regulations, Title 40, Protection of the Environment, Part 61, `National Emissions Standards for Hazardous Air Pollutants,` Subpart H, `National Emission Standards for Emissions of Radionuclides Other than Radon from Department of Energy Facilities.` This report has also been prepared for and will be submitted in accordance with the reporting requirements of the Washington Administrative Code Chapter 246-247, `Radiation Protection-Air Emissions.`

Gleckler, B.P., Westinghouse Hanford

1996-06-26T23:59:59.000Z

172

Technology Opportunities to Reduce U.S. Greenhouse Gas Emissions  

Science Conference Proceedings (OSTI)

This report serves as the technology basis of a needed national climate change technology strategy, with the confidence that a strong technology R&D program will deliver a portfolio of technologies with the potential to provide very substantial greenhouse gas emission reductions along with continued economic growth. Much more is needed to define such a strategy, including identification of complementary deployment policies and analysis to support the seeping and prioritization of R&D programs. A national strategy must be based upon governmental, industrial, and academic partnerships.

Not Available

1997-10-01T23:59:59.000Z

173

Effects of Coaxial Air on Nitrogen-Diluted Hydrogen Jet Diffusion Flame Length and NOx Emission  

DOE Green Energy (OSTI)

Turbulent nitrogen-diluted hydrogen jet diffusion flames with high velocity coaxial air flows are investigated for their NOx emission levels. This study is motivated by the DOE turbine program’s goal of achieving 2 ppm dry low NOx from turbine combustors running on nitrogen-diluted high-hydrogen fuels. In this study, effects of coaxial air velocity and momentum are varied while maintaining low overall equivalence ratios to eliminate the effects of recirculation of combustion products on flame lengths, flame temperatures, and resulting NOx emission levels. The nature of flame length and NOx emission scaling relationships are found to vary, depending on whether the combined fuel and coaxial air jet is fuel-rich or fuel-lean. In the absence of differential diffusion effects, flame lengths agree well with predicted trends, and NOx emissions levels are shown to decrease with increasing coaxial air velocity, as expected. Normalizing the NOx emission index with a flame residence time reveals some interesting trends, and indicates that a global flame strain based on the difference between the fuel and coaxial air velocities, as is traditionally used, is not a viable parameter for scaling the normalized NOx emissions of coaxial air jet diffusion flames.

Weiland, N.T.; Chen, R.-H.; Strakey, P.A.

2007-10-01T23:59:59.000Z

174

Reducing CO2 Emissions from Fossil Fuel Power Plants  

NLE Websites -- All DOE Office Websites (Extended Search)

CO CO 2 Emissions From Fossil Fuel Power Plants Scott M. Klara - National Energy Technology Laboratory EPGA's 3 rd Annual Power Generation Conference October 16-17, 2002 Hershey, Pennsylvania EPGA - SMK - 10/17/02 * One of DOE's 17 national labs * Government owned/operated * Sites in Pennsylvania, West Virginia, Oklahoma, Alaska * More than 1,100 federal and support contractor employees * FY 02 budget of $750 million National Energy Technology Laboratory EPGA - SMK - 10/17/02 * Diverse research portfolio - 60 external projects - Onsite focus area * Strong industry support - 40% cost share * Portfolio funding $100M 0 10 20 30 40 50 60 1997 1998 1999 2000 2001 2002 2003 2003 2003 Budget (Million $) Fiscal Year Senate House Administration Request Carbon Sequestration: A Dynamic Program Separation & Capture From Power Plants Plays Key Role

175

NETL: IEP - Air Quality Research: Health Effects of Coal Plant Emissions  

NLE Websites -- All DOE Office Websites (Extended Search)

Health Effects of Coal Plant Emissions Health Effects of Coal Plant Emissions Health Effects of Coal Plant Emissions Map Click on a Project Name to Get More Information Click to read a DOE TechLine [PDF-22KB] describing three new projects that will improve our current understanding of the link between power plant emissions, PM2.5, and human health. The Health Effects component of NETL's Air Quality Research Program is designed to enhance the body of scientific evidence relating stack emissions from coal plants to adverse health effects resulting from human exposures to air pollution. Despite the fact that coal plants emit significant amounts of PM2.5 and mercury to the atmosphere, there is currently a great deal of uncertainty regarding the actual amount of health damage resulting from these emissions. In order to devise cost-effective

176

Altitude dependence of fluorescence light emission by extensive air showers  

E-Print Network (OSTI)

Fluorescence light is induced by extensive air showers while developing in the Earth's atmosphere. The number of emitted fluorescence photons depends on the conditions of the air and on the energy deposited by the shower particles at every stage of the development. In a previous model calculation, the pressure and temperature dependences of the fluorescence yield have been studied on the basis of kinetic gas theory, assuming temperature-independent molecular collision cross-sections. In this work we investigate the importance of temperature-dependent collision cross-sections and of water vapour quenching on the expected fluorescence yield. The calculations will be applied to simulated air showers while using actual atmospheric profiles to estimate the influence on the reconstructed energy of extensive air showers.

B. Keilhauer; J. Bluemer; R. Engel; H. O. Klages

2008-01-28T23:59:59.000Z

177

Air Pollution Control Regulations: No. 1- Visible Emissions (Rhode Island)  

Energy.gov (U.S. Department of Energy (DOE))

The regulations state that no person shall emit into the atmosphere from any source any air contaminant for a period or periods aggregating more than three minutes in any one hour which is greater...

178

Permit Regulations for the Construction and, or Operation of Air Emissions  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Permit Regulations for the Construction and, or Operation of Air Permit Regulations for the Construction and, or Operation of Air Emissions Equipment (Mississippi) Permit Regulations for the Construction and, or Operation of Air Emissions Equipment (Mississippi) < Back Eligibility Agricultural Commercial Construction Developer Fed. Government Fuel Distributor General Public/Consumer Industrial Installer/Contractor Institutional Investor-Owned Utility Local Government Low-Income Residential Multi-Family Residential Municipal/Public Utility Nonprofit Residential Retail Supplier Rural Electric Cooperative Schools State/Provincial Govt Systems Integrator Transportation Tribal Government Utility Savings Category Alternative Fuel Vehicles Hydrogen & Fuel Cells Program Info State Mississippi Program Type Environmental Regulations Siting and Permitting

179

Update on State Air Emission Regulations That Affect Electric Power Producers (released in AEO2005)  

Reports and Publications (EIA)

Several States have recently enacted air emission regulations that will affect the electricity generation sector. The regulations are intended to improve air quality in the States and assist them in complying with the revised 1997 National Ambient Air Quality Standards (NAAQS) for ground-level ozone and fine particulates. The affected States include Connecticut, Massachusetts, Maine, Missouri, New Hampshire, New Jersey, New York, North Carolina, Oregon, Texas, and Washington. The regulations govern emissions of NOx, SO2, CO2, and mercury from power plants.

Information Center

2005-02-01T23:59:59.000Z

180

REACH: Reduced Emissions and Advanced Combustion Hardware: A Low-Cost, Retrofit Approach to Reducing Stack Emissions and Enhancing t he Performance of Oil-Fired Boilers  

Science Conference Proceedings (OSTI)

Improved oil combustion technology, based upon optimization of oil atomizer and flame stabilizer design, has been developed for retrofit to oil-fired utility boilers. This technology is referred to as Reduced Emissions and Advanced Combustion Hardware, or REACH. REACH is commercially available for retrofit to oil-fired boilers to simultaneously reduce NOx, PM, and opacity, as well as provide operational and performance benefits.

1995-12-09T23:59:59.000Z

Note: This page contains sample records for the topic "reduce air emissions" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

Fuel Savings and Emission Reductions from Next-Generation Mobile Air Conditioning Technology in India  

Science Conference Proceedings (OSTI)

Up to 19.4% of vehicle fuel consumption in India is devoted to air conditioning (A/C). Indian A/C fuel consumption is almost four times the fuel penalty in the United States and close to six times that in the European Union because India's temperature and humidity are higher and because road congestion forces vehicles to operate inefficiently. Car A/C efficiency in India is an issue worthy of national attention considering the rate of increase of A/C penetration into the new car market, India's hot climatic conditions and high fuel costs. Car A/C systems originally posed an ozone layer depletion concern. Now that industrialized and many developing countries have moved away from ozone-depleting substances per Montreal Protocol obligations, car A/C impact on climate has captured the attention of policy makers and corporate leaders. Car A/C systems have a climate impact from potent global warming potential gas emissions and from fuel used to power the car A/Cs. This paper focuses on car A/C fuel consumption in the context of the rapidly expanding Indian car market and how new technological improvements can result in significant fuel savings and consequently, emission reductions. A 19.4% fuel penalty is associated with A/C use in the typical Indian passenger car. Car A/C fuel use and associated tailpipe emissions are strong functions of vehicle design, vehicle use, and climate conditions. Several techniques: reducing thermal load, improving vehicle design, improving occupants thermal comfort design, improving equipment, educating consumers on impacts of driver behaviour on MAC fuel use, and others - can lead to reduced A/C fuel consumption.

Chaney, L.; Thundiyil, K.; Andersen, S.; Chidambaram, S.; Abbi, Y. P.

2007-01-01T23:59:59.000Z

182

Radionuclide air emissions report for the Hanford Site -- calendar year 1997  

SciTech Connect

This report documents radionuclide air emission from the Hanford Site in 1997, and the resulting effective dose equivalent to the maximally exposed member of the public, referred to as the MEI. The report has been prepared in accordance with reporting requirements in the Code of Federal Regulations, Title 40, Protection of the Environment, Part 61, National Emissions Standards for Hazardous Air Pollutants, Subpart H, National Emission Standards for Emissions of Radionuclides Other than Radon from Department of Energy Facilities. This report has also been prepared in accordance with the reporting requirements of the Washington Administrative Code Chapter 246-247, Radiation Protection-Air Emissions. The effective dose equivalent to the MEI from the Hanford Site`s 1997 point source emissions was 1.2 E-03 mrem (1.2 E-05 mSv), which is well below the 40 CFR 61 Subpart H regulatory limit of 10 mrem/yr. Radon and thoron emissions, exempted from 40 CFR 61 Subpart H, resulted in an effective dose equivalent to the MEI of 2.5 E-03 mrem (2.5 E-05 mSv). The effective dose equivalent to the MEI attributable to diffuse and fugitive emissions was 2.2 E-02 mrem (2.2 E-04 mSv). The total effective dose equivalent from all of the Hanford Site`s air emissions was 2.6 E-02 mrem (2.6 E-04 mSv). The effective dose equivalent from all of the Hanford Site`s air emissions is well below the Washington Administrative Code, Chapter 246-247, regulatory limit of 10 mrem/yr.

Gleckler, B.P.; Rhoads, K.

1998-06-17T23:59:59.000Z

183

Towards an Emissions Trading Scheme for Air Pollutants in India  

E-Print Network (OSTI)

Emissions trading schemes have great potential to lower pollution while minimizing compliance costs for firms in many areas now subject to traditional command-and-control regulation. This paper connects experience with ...

Duflo, Esther

184

The Potential to Reduce CO2 Emissions by Expanding End-Use Applications of Electricity  

Science Conference Proceedings (OSTI)

Depending on the sources of electricity production, the use of electricity can be a contributing factor to net CO2 emissions. What is less obvious is that using efficient end-use electric technologies has the potential save energy and decrease overall CO2 emissions substantially. The two main mechanisms for saving energy and reducing CO2 emissions with electric end-use technologies are (1) upgrading existing electric technologies, processes, and building energy systems; and (2) expanding end-use applica...

2009-03-30T23:59:59.000Z

185

Swozzle based burner tube premixer including inlet air conditioner for low emissions combustion  

DOE Patents (OSTI)

A burner for use in a combustion system of a heavy-duty industrial gas turbine includes a fuel/air premixer having an air inlet, a fuel inlet, and an annular mixing passage. The fuel/air premixer mixes fuel and air into a uniform mixture for injection into a combustor reaction zone. The burner also includes an inlet flow conditioner disposed at the air inlet of the fuel/air premixer for controlling a radial and circumferential distribution of incoming air. The pattern of perforations in the inlet flow conditioner is designed such that a uniform air flow distribution is produced at the swirler inlet annulus in both the radial and circumference directions. The premixer includes a swozzle assembly having a series of preferably air foil shaped turning vanes that impart swirl to the airflow entering via the inlet flow conditioner. Each air foil contains internal fuel flow passages that introduce natural gas fuel into the air stream via fuel metering holes that pass through the walls of the air foil shaped turning vanes. By injecting fuel in this manner, an aerodynamically clean flow field is maintained throughout the premixer. By injecting fuel via two separate passages, the fuel/air mixture strength distribution can be controlled in the radial direction to obtain optimum radial concentration profiles for control of emissions, lean blow outs, and combustion driven dynamic pressure activity as machine and combustor load are varied.

Tuthill, Richard Sterling (Bolton, CT); Bechtel, II, William Theodore (Scotia, NY); Benoit, Jeffrey Arthur (Scotia, NY); Black, Stephen Hugh (Duanesburg, NY); Bland, Robert James (Clifton Park, NY); DeLeonardo, Guy Wayne (Scotia, NY); Meyer, Stefan Martin (Troy, NY); Taura, Joseph Charles (Clifton Park, NY); Battaglioli, John Luigi (Glenville, NY)

2002-01-01T23:59:59.000Z

186

Strategies of developing road transport by controlling automotives' emissions to reduce local and global environment impacts  

Science Conference Proceedings (OSTI)

This research paper presents an overview of policies and methods of controlling the emissions caused by motor vehicles and road traffic to reduce local and global pollution. The main reason is the fact that individual mobility and modern freight transport ... Keywords: emission, engine, environment, modelling, noise, optimisation, pollution, traffic flows

Corneliu Cofaru

2011-02-01T23:59:59.000Z

187

Reduced Turbine Emissions Using Hydrogen-Enriched Fuels R.W. Schefer  

E-Print Network (OSTI)

as an effective approach to NOx emissions reduction. In addition to pure hydrogen and air, mixtures of hydrogen-blended capabilities for gaseous hydrogen and hydrogen- blended hydrocarbon fuels in gas turbine applications value fuels containing significant hydrogen are often produced as a by-product in Coal- Gasification

188

The cost of reducing utility S02 emissions : not as low as you might think  

E-Print Network (OSTI)

A common assertion in public policy discussions is that the cost of achieving the SO2 emissions reductions under the acid rain provisions of the Clean Air Act ("Title IV") has been only one-tenth or less of what Title IV ...

Smith, Anne E.

1998-01-01T23:59:59.000Z

189

Institute a modest carbon tax to reduce carbon emissions, finance clean energy technology development, cut taxes, and reduce the deficit  

Science Conference Proceedings (OSTI)

The nation should institute a modest carbon tax in order to help clean up the economy and stabilize the nation’s finances. Specifically, Congress and the president should implement a $20 per ton, steadily increasing carbon excise fee that would discourage carbon dioxide emissions while shifting taxation onto pollution, financing energy efficiency (EE) and clean technology development, and providing opportunities to cut taxes or reduce the deficit. The net effect of these policies would be to curb harmful carbon emissions, improve the nation’s balance sheet, and stimulate job-creation and economic renewal.

Muro, Mark; Rothwell, Jonathan

2012-11-15T23:59:59.000Z

190

Nevada Test Site National Emission Standards for Hazardous Air Pollutants Calendar Year 2007  

SciTech Connect

The Nevada Test Site (NTS) is operated by the U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office. From 1951 through 1992, the NTS was operated as the nation's site for nuclear weapons testing. The release of man-made radionuclides from the NTS as a result of testing activities has been monitored since the first decade of atmospheric testing. After 1962, when nuclear tests were conducted only underground, the radiation exposure to the public surrounding the NTS was greatly reduced. After the 1992 moratorium on nuclear testing, radiation monitoring on the NTS focused on detecting airborne radionuclides which come from historically contaminated soils resuspended into the air (e.g., by winds) and tritium-contaminated soil moisture emitted to the air from soils through evapotranspiration. To protect the public from harmful levels of man-made radiation, the Clean Air Act, National Emission Standards for Hazardous Air Pollutants (NESHAP) (Title 40 Code of Federal Regulations [CFR] Part 61 Subpart H) limits the release of radioactivity from a U.S. Department of Energy facility (e.g., the NTS) to 10 millirem per year (mrem/yr) effective dose equivalent to any member of the public. This is the dose limit established for someone living off of the NTS from radionuclides emitted to air from the NTS. This limit does not include the radiation doses that members of the public may receive through the intake of radioactive particles unrelated to NTS activities, such as those that come from naturally occurring elements in the environment (e.g., naturally occurring radionuclides in soil or radon gas from the earth or natural building materials), or from other man-made sources (e.g., medical treatments). The NTS demonstrates compliance using environmental measurements of radionuclide air concentrations at critical receptor locations. This method was approved by the U.S. Environmental Protection Agency for use on the NTS in 2001 and has been the sole method used since 2005. There are six critical receptor locations on the NTS that are actually pseudocritical receptor locations because they are hypothetical receptor locations; no person actually resides at these onsite locations. Annual average concentrations of detected radionuclides are compared with Concentration Levels (CL) for Environmental Compliance values listed in 40 CFR 61, Appendix E, Table 2. Compliance is demonstrated if the sum of fractions (CL/measured concentrations) of all detected radionuclides at each pseudo-critical receptor location is less than one. In 2007, as in all previous years for which this report has been produced, the NTS has demonstrated that the potential dose to the public from radiological emissions to air from current and past NTS activities is well below the 10 mrem/yr dose limit. Air sampling data collected onsite at each of the six pseudo-critical receptor stations on the NTS had average concentrations of nuclear test-related radioactivity that were a fraction of the limits listed in Table 2 in Appendix E of 40 CFR 61. They ranged from less than 1 percent to a maximum of 20 percent of the allowed NESHAP limit. Because the nearest member of the public resides approximately 20 kilometers (12 miles) from the NTS boundary, concentrations at this location would be only a small fraction of that measured on the NTS.

Robert Grossman; Ronald Warren

2008-06-01T23:59:59.000Z

191

A Prescribed Fire Emission Factors Database for Land Management and Air Quality Applications  

Science Conference Proceedings (OSTI)

The Clean Air Act, its amendments, and air quality regulations require that prescribed fire managers estimate the quantity of emissions that a prescribed fire will produce. Information on emissions is available for these calculations; however, it is often incomplete or difficult to find. Tables and computer models can also provide some of this information, but the quality and applicability of the data to a specific site are unknown. In conjunction with three research projects developing new emissions data and meteorological tools to assist prescribed fire managers, the Resource Conservation and Climate Change Program Area of the Department of Defense's Strategic Environmental Research and Development Program is supporting development of a database that contains emissions information related to prescribed burning. Ultimately the vetted database will be available on the Internet and will contain emissions information that has been developed from laboratory and field-scale measurements and has been published.

Lincoln, Emily; Hao, WeiMin; Baker, S.; Yokelson, Robert J.; Burling, Ian R.; Urbanski, Shawn; Miller, J. Wayne; Weise, David; Johnson, Timothy J.

2010-12-20T23:59:59.000Z

192

Pacific Northwest National Laboratory Site Radionuclide Air Emissions Report for Calendar Year 2011  

SciTech Connect

This report documents radionuclide air emissions that result in the highest effective dose equivalent (EDE) to a member of the public, referred to as the maximally exposed individual (MEI). The report has been prepared in compliance with the Code of Federal Regulations (CFR), Title 40, Protection of the Environment, Part 61, National Emission Standards for Hazardous Air Pollutants (NESHAP), Subpart H, National Emission Standards for Emissions of Radionuclides Other than Radon from Department of Energy Facilities and Washington Administrative Code (WAC) Chapter 246-247, Radiation Protection Air Emissions. The EDE to the PNNL Site MEI due to routine emissions in 2011 from PNNL Site sources was 1.7E 05 mrem (1.7E-7 mSv) EDE. No nonroutine emissions occurred in 2011. The total radiological dose for 2011 to the MEI from all PNNL Site radionuclide emissions was more than 10,000 times smaller than the federal and state standard of 10 mrem/yr, to which the PNNL Site is in compliance.

Snyder, Sandra F.; Barnett, J. M.; Bisping, Lynn E.

2012-06-12T23:59:59.000Z

193

The impact of natural gas imports on air pollutant emissions in Mexico  

SciTech Connect

This paper analyzes the impact that natural gas imports could have on fuel emissions in northern Mexico. The authors discuss the problem created in the 1980s when a shift from natural gas to residual oil in industrial processes increased emissions of air pollutants significantly. The benefits of substituting leaded for unleaded gasoline in the 1990s are discussed also. In July 1992 the Mexican government announced for the first time since oil nationalization that private companies in Mexico are allowed to directly import natural gas. The transportation of natural gas, however, remains reserved only for Pemex, the national oil company. This opens the possibility of reducing the burning of high-sulfur residual oil in both the industrial and the energy production sectors in Mexico, particularly in the northern region where only 6.7% of the of the country`s natural gas is produced. Natural gas imports have also opened the possibility of using compressed natural gas (CNG) in vehicles in northern Mexico. 15 refs., 13 figs., 3 tabs.

Bustani, A.; Cobas, E. [Center for Environmental Quality, Monterrey (Mexico)

1993-12-31T23:59:59.000Z

194

Radionuclide Air Emissions Report for the Hanford Site Calendar Year 1999  

SciTech Connect

This report documents radionuclide air emissions from the US. Department of Energy (DOE) Hanford Site in 1999 and the resulting effective dose equivalent to the maximally exposed individual (MEI) member of the public. The report has been prepared in accordance with the Code of Federal Regulations (CFR). Title 40, Protection of the Environment, Part 61. National Emission Standards for Hazardous Air Pollutants, Subpart H, ''National Emission Standards for Emissions of Radionuclides Other than Radon from Department of Energy Facilities'', and with the Washington Administrative Code (WAC) Chapter 246-247. Radiation Protection-Air Emissions. The federal regulations in Subpart H of 40 CFR 61 require the measurement and reporting of radionuclides emitted from US. Department of Energy (DOE) facilities and the resulting offsite dose from those emissions. A standard of 10 mrem/yr effective dose equivalent (EDE) is imposed on them. The EDE to the MEI due to routine emissions in 1999 from Hanford Site point sources was 0.029 mrem (2.9 E-04 mSv), which is less than 0.3 percent of the federal standard. WAC 246-247 requires the reporting of radionuclide emissions from all Hanford Site sources, during routine as well as nonroutine operations. The state has adopted the 40 CFR 61 standard of 10 mrem/yr EDE into their regulations. The state further requires that the EDE to the MEI be calculated not only from point source emissions but also from diffuse and fugitive sources of emissions. The EDE from diffuse and fugitive emissions at the Hanford Site in 1999 was 0.039 mrem (3.9 E-04 mSv) EDE. The total dose from point sources and from diffuse and fugitive sources of radionuclide emissions during all operating conditions in 1999 was 0.068 mrem (6.8 E-04 mSv) EDE, which is less than 0.7 percent of the state standard.

ROKKAN, D.J.

2000-06-01T23:59:59.000Z

195

Nevada Test Site National Emission Standards for Hazardous Air Pollutants Calendar Year 2008  

SciTech Connect

The Nevada Test Site (NTS) is operated by the U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office. From 1951 through 1992, the NTS was the continental testing location for U.S. nuclear weapons. The release of radionuclides from NTS activities has been monitored since the initiation of atmospheric testing. Limitation to under-ground detonations after 1962 greatly reduced radiation exposure to the public surrounding the NTS. After nuclear testing ended in 1992, NTS radiation monitoring focused on detecting airborne radionuclides from historically contaminated soils. These radionuclides are derived from re-suspension of soil (primarily by winds) and emission of tritium-contaminated soil moisture through evapotranspiration. Low amounts of tritium were also emitted to air at the North Las Vegas Facility (NLVF), an NTS support complex in the city of North Las Vegas. To protect the public from harmful levels of man-made radiation, the Clean Air Act, National Emission Standards for Hazardous Air Pollutants (NESHAP) (Title 40 Code of Federal Regulations [CFR] Part 61 Subpart H) (CFR, 2008a) limits the release of radioactivity from a U.S. Department of Energy facility (e.g., the NTS) to 10 millirem per year (mrem/yr) effective dose equivalent to any member of the public. This limit does not include radiation not related to NTS activities. Unrelated doses could come from naturally occurring radioactive elements or from other man-made sources such as medical treatments. The NTS demonstrates compliance with the NESHAP limit by using environmental measurements of radionuclide air concentrations at critical receptor locations. This method was approved by the U.S. Environmental Protection Agency for use on the NTS in 2001 and has been the sole method used since 2005. Six locations on the NTS have been established to act as critical receptor locations to demonstrate compliance with the NESHAP limit. These locations are actually pseudo-critical receptor stations, because no member of the public actually resides at these onsite locations. Compliance is demonstrated if the measured annual average concentration of each detected radionuclide at each of these locations is less than the NESHAP Concentration Levels (CLs) for Environmental Compliance listed in 40 CFR 61, Appendix E, Table 2 (CFR, 2008a). At any one location, if multiple radionuclides are detected then compliance with NESHAP is demonstrated when the sum of the fractions (determined by dividing each radionuclide's concentration by its CL and then adding the fractions together) is less than 1.0. In 2008, the potential dose from radiological emissions to air, from both current and past NTS activities, at onsite compliance monitoring stations was a maximum of 1.9 mrem/yr; well below the 10 mrem/yr dose limit. Air sampling data collected at all six pseudo-critical receptor stations had average concentrations of radioactivity that were a fraction of the CL values listed in Table 2 in Appendix E of 40 CFR 61 (CFR, 2008a). Concentrations ranged from less than 1 percent to a maximum of 19 percent of the allowed NESHAP limit. Because the nearest member of the public resides approximately 20 kilometers (12 miles) from the NTS boundary, concentrations at this location would be only a small fraction of that measured on the NTS. Potential dose to the public from NLVF was also very low at 0.00006 mrem/yr; more than 160,000 times lower than the 10 mrem/yr limit.

Ronald Warren and Robert F. Grossman

2009-06-30T23:59:59.000Z

196

Increasing Energy Efficiency and Reducing Emissions from China's Cement Kilns: Audit Report of Two Cement Plants in Shandong Province, China  

E-Print Network (OSTI)

further recover or reduce wasted energy. Exhaust air (gases)Energy use for the system can be reduced by analyzing how much heat is wasted

Price, Lynn

2013-01-01T23:59:59.000Z

197

Considerations Regarding High Draft Ventilation as an Air Emission ...  

Science Conference Proceedings (OSTI)

Retrofit of a Combined Breaker Feeder with a Chisel Bath Contact Detection System to Reduce Anode Effect Frequency in a Potroom · Simulating Traffic in a ...

198

Apparatus and method for burning a lean, premixed fuel/air mixture with low NOx emission  

DOE Patents (OSTI)

An apparatus for enabling a burner to stably burn a lean fuel/air mixture. The burner directs the lean fuel/air mixture in a stream. The apparatus comprises an annular flame stabilizer; and a device for mounting the flame stabilizer in the fuel/air mixture stream. The burner may include a body having an internal bore, in which case, the annular flame stabilizer is shaped to conform to the cross-sectional shape of the bore, is spaced from the bore by a distance greater than about 0.5 mm, and the mounting device mounts the flame stabilizer in the bore. An apparatus for burning a gaseous fuel with low NOx emissions comprises a device for premixing air with the fuel to provide a lean fuel/air mixture; a nozzle having an internal bore through which the lean fuel/air mixture passes in a stream; and a flame stabilizer mounted in the stream of the lean fuel/air mixture. The flame stabilizer may be mounted in the internal bore, in which case, it is shaped and is spaced from the bore as just described. In a method of burning a lean fuel/air mixture, a lean fuel/air mixture is provided, and is directed in a stream; an annular eddy is created in the stream of the lean fuel/air mixture; and the lean fuel/air mixture is ignited at the eddy.

Kostiuk, Larry W. (Edmonton, CA); Cheng, Robert K. (Kensington, CA)

1996-01-01T23:59:59.000Z

199

Modelling vehicle emissions from an urban air-quality perspective:testing vehicle emissions interdependencies.  

E-Print Network (OSTI)

??Abstract This thesis employs a statistical regression method to estimate models for testing the hypothesis of the thesis of vehicle emissions interdependencies. The thesis at… (more)

Dabbas, Wafa M

2010-01-01T23:59:59.000Z

200

Fluorescence emission induced by extensive air showers in dependence on atmospheric conditions  

E-Print Network (OSTI)

Charged particles of extensive air showers (EAS), mainly electrons and positrons, initiate the emission of fluorescence light in the Earth's atmosphere. This light provides a calorimetric measurement of the energy of cosmic rays. For reconstructing the primary energy from an observed light track of an EAS, the fluorescence yield in air has to be known in dependence on atmospheric conditions, like air temperature, pressure, and humidity. Several experiments on fluorescence emission have published various sets of data covering different parts of the dependence of the fluorescence yield on atmospheric conditions. Using a compilation of published measurements, a calculation of the fluorescence yield in dependence on altitude is presented. The fluorescence calculation is applied to simulated air showers and different atmospheric profiles to estimate the influence of the atmospheric conditions on the reconstructed shower parameters.

Keilhauer, Bianca

2009-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "reduce air emissions" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

Data Quality Objectives for Regulatory Requirements for Hazardous and Radioactive Air Emissions Sampling and Analysis  

SciTech Connect

This document describes the results of the data quality objective (DQO) process undertaken to define data needs for state and federal requirements associated with toxic, hazardous, and/or radiological air emissions under the jurisdiction of the River Protection Project (RPP). Hereafter, this document is referred to as the Air DQO. The primary drivers for characterization under this DQO are the regulatory requirements pursuant to Washington State regulations, that may require sampling and analysis. The federal regulations concerning air emissions are incorporated into the Washington State regulations. Data needs exist for nonradioactive and radioactive waste constituents and characteristics as identified through the DQO process described in this document. The purpose is to identify current data needs for complying with regulatory drivers for the measurement of air emissions from RPP facilities in support of air permitting. These drivers include best management practices; similar analyses may have more than one regulatory driver. This document should not be used for determining overall compliance with regulations because the regulations are in constant change, and this document may not reflect the latest regulatory requirements. Regulatory requirements are also expected to change as various permits are issued. Data needs require samples for both radionuclides and nonradionuclide analytes of air emissions from tanks and stored waste containers. The collection of data is to support environmental permitting and compliance, not for health and safety issues. This document does not address health or safety regulations or requirements (those of the Occupational Safety and Health Administration or the National Institute of Occupational Safety and Health) or continuous emission monitoring systems. This DQO is applicable to all equipment, facilities, and operations under the jurisdiction of RPP that emit or have the potential to emit regulated air pollutants.

MULKEY, C.H.

1999-07-06T23:59:59.000Z

202

U.S. Department of Energy Report, 2005 LANL Radionuclide Air Emissions  

SciTech Connect

Amendments to the Clean Air Act, which added radionuclides to the National Emissions Standards for Hazardous Air Pollutants (NESHAP), went into effect in 1990. Specifically, a subpart (H) of 40 CFR 61 established an annual limit on the impact to the public attributable to emissions of radionuclides from U.S. Department of Energy facilities, such as the Los Alamos National Laboratory (LANL). As part of the new NESHAP regulations, LANL must submit an annual report to the U.S. Environmental Protection Agency headquarters and the regional office in Dallas by June 30. This report includes results of monitoring at LANL and the dose calculations for the calendar year 2006.

Keith W. Jacobson, David P. Fuehne

2006-09-01T23:59:59.000Z

203

Assessing the potential visibility benefits of Clean Air Act Title IV emission reductions  

SciTech Connect

Assessments are made of the benefits of the 1990 Clean Air Act Title IV (COVE), Phase 2, SO2 and NOX reduction provisions, to the visibility in typical eastern and western Class 1 areas. Probable bands of visibility impairment distribution curves are developed for Shenandoah National Park, Smoky Mountain National Park and the Grand Canyon National Park, based on the existing emissions, ``Base Case``, and for the COVE emission reductions, ``CAAA Case``. Emission projections for 2010 are developed with improved versions of the National Acid Precipitation Assessment Program emission projection models. Source-receptor transfer matrices created with the Advanced Statistical Trajectory Regional Air Pollution (ASTRAP) model are used with existing emission inventories and with the emission projections to calculate atmospheric concentrations of sulfate and nitrate at the receptors of interest for existing and projected emission scenarios. The Visibility Assessment Scoping Model (VASM) is then used to develop distributions of visibility impairment. VASM combines statistics of observed concentrations of particulate species and relative humidity with ASTRAP calculations of the relative changes in atmospheric sulfate and nitrate particulate concentrations in a Monte Carlo approach to produce expected distributions of hourly particulate concentrations and RH. Light extinction relationships developed in theoretical and field studies are then used to calculate the resulting distribution of visibility impairment. Successive Monte Carlo studies are carried out to develop sets of visibility impairment distributions with and without the COVE emission reductions to gain insight into the detectability of expected visibility improvements.

Trexler, E.C. Jr. [USDOE, Washington, DC (United States); Shannon, J.D. [Argonne National Lab., IL (United States)

1995-06-01T23:59:59.000Z

204

QA procedures and emissions from nonstandard sources in AQUIS, a PC-based emission inventory and air permit manager  

Science Conference Proceedings (OSTI)

The Air Quality Utility Information System (AQUIS) is a database management system that operates under dBASE IV. It runs on an IBM-compatible personal computer (PC) with MS DOS 5.0 or later, 4 megabytes of memory, and 30 megabytes of disk space. AQUIS calculates emissions for both traditional and toxic pollutants and reports emissions in user-defined formats. The system was originally designed for use at 7 facilities of the Air Force Materiel Command, and now more than 50 facilities use it. Within the last two years, the system has been used in support of Title V permit applications at Department of Defense facilities. Growth in the user community, changes and additions to reference emission factor data, and changing regulatory requirements have demanded additions and enhancements to the system. These changes have ranged from adding or updating an emission factor to restructuring databases and adding new capabilities. Quality assurance (QA) procedures have been developed to ensure that emission calculations are correct even when databases are reconfigured and major changes in calculation procedures are implemented. This paper describes these QA and updating procedures. Some user facilities include light industrial operations associated with aircraft maintenance. These facilities have operations such as fiberglass and composite layup and plating operations for which standard emission factors are not available or are inadequate. In addition, generally applied procedures such as material balances may need special treatment to work in an automated environment, for example, in the use of oils and greases and when materials such as polyurethane paints react chemically during application. Some techniques used in these situations are highlighted here. To provide a framework for the main discussions, this paper begins with a description of AQUIS.

Smith, A.E.; Tschanz, J.; Monarch, M.

1996-05-01T23:59:59.000Z

205

Federal, state and utility roles in reducing new building greenhouse gas emissions  

SciTech Connect

This paper will explore the role of implementation of building energy codes and standards in reducing US greenhouse gas emissions. It will discuss the role of utilities in supporting the US Department of Energy (DOE) and the Environmental Protection Agency in improving the efficiency of new buildings. The paper will summarize Federal policies and programs that improve code compliance and increase overall greenhouse gas emission reductions. Finally, the paper will discuss the role of code compliance and the energy and greenhouse gas emission reductions that have been realized from various Federal, State and utility programs that enhance compliance.

Johnson, J.A.; Shankle, D. [Pacific Northwest Lab., Richland, WA (United States); Boulin, J. [USDOE, Washington, DC (United States)

1995-03-01T23:59:59.000Z

206

DOE and NNSA labs work with CTBTO to reduce medical isotope emissions,  

National Nuclear Security Administration (NNSA)

and NNSA labs work with CTBTO to reduce medical isotope emissions, and NNSA labs work with CTBTO to reduce medical isotope emissions, enhance the effectiveness of nuclear explosion monitoring | National Nuclear Security Administration Our Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure Continuing Management Reform Countering Nuclear Terrorism About Us Our Programs Our History Who We Are Our Leadership Our Locations Budget Our Operations Media Room Congressional Testimony Fact Sheets Newsletters Press Releases Speeches Events Social Media Video Gallery Photo Gallery NNSA Archive Federal Employment Apply for Our Jobs Our Jobs Working at NNSA Blog Home > NNSA Blog > DOE and NNSA labs work with CTBTO ... DOE and NNSA labs work with CTBTO to reduce medical isotope emissions,

207

Late - Cycle Injection of Air/Oxygen - Enriched Air for Diesel Exhaust Emissions Control  

DOE Green Energy (OSTI)

Reduce the ''Engine Out'' particulates using the ''In Cylinder'' technique of late cycle auxiliary gas injection (AGI). Reduce the ''Engine Out'' NOx by combining AGI with optimization of fuel injection parameters. Maintain or Improve the Fuel Efficiency.

Mather, Daniel

2000-08-20T23:59:59.000Z

208

Particulate emissions from combustion of biomass in conventional combustion (air) and oxy-combustion conditions.  

E-Print Network (OSTI)

??Oxy-fuel combustion is a viable technology for new and existing coal-fired power plants, as it facilitates carbon capture and thereby, can reduce carbon dioxide emissions.… (more)

Ruscio, Amanda

2013-01-01T23:59:59.000Z

209

Nitrogen enriched combustion of a natural gas internal combustion engine to reduce NO.sub.x emissions  

DOE Green Energy (OSTI)

A method and system for reducing nitrous oxide emissions from an internal combustion engine. An input gas stream of natural gas includes a nitrogen gas enrichment which reduces nitrous oxide emissions. In addition ignition timing for gas combustion is advanced to improve FCE while maintaining lower nitrous oxide emissions.

Biruduganti, Munidhar S. (Naperville, IL); Gupta, Sreenath Borra (Naperville, IL); Sekar, R. Raj (Naperville, IL); McConnell, Steven S. (Shorewood, IL)

2008-11-25T23:59:59.000Z

210

Climate Change Commitment Task Force Charter To advise the President on strategies to reduce greenhouse gas emissions generated  

E-Print Network (OSTI)

to reduce greenhouse gas emissions generated by the campus community, to engage the campus community in efforts to reduce greenhouse gas emissions, and to promote and support instruction and research on the impact of greenhouse gas emissions. Background: In August, President Hrabowski signed the American

Maryland, Baltimore County, University of

211

SUMMARY OF AIR TOXICS -. EMISSIONS TESTING AT SIXTEEN UTILITY POWER PLANTS  

NLE Websites -- All DOE Office Websites (Extended Search)

AIR TOXICS AIR TOXICS -. EMISSIONS TESTING AT SIXTEEN UTILITY POWER PLANTS Prepared for U.S. Department of Energy Pittsburgh Energy Technology Center Prepared Under Burns and Roe Services Corporation Contract No. DE-AC22-94PC92100 .Subtask 44.02 July 1996 SUMMARY OF AIR TOXICS EMISSIONS TESTING AT SIXTEEN . . UTILITY POWER PLANTS Prepared for U.S. Department of Energy Pittsburgh Energy Technology Center . Prepared by Adrian Radziwon and Edward Winter Burns and Roe Services Corporation Terence J. McManus, Oak Ridge Associated Universities July 1996 TABLE OF CONTERlW SECTION 1.0 INTRODUCTION ................... 1 Background . : .................. 1 Objectives .................... 1 Report Structure ................. 3 Uncertainties ................... 3 SECTION 2.0 EXECUTIVE SUMMARY ................. 7

212

National Emission Standards for Hazardous Air Pollutants Calendar Year 2001  

DOE Green Energy (OSTI)

The Nevada Test Site (NTS) is operated by the U.S. Department of Energy (DOE), National Nuclear Security Administration Nevada Operations Office (NNSA/NV) as the site for nuclear weapons testing, now limited to readiness activities, experiments in support of the national Stockpile Stewardship Program, and the activities listed below. Located in Nye County, Nevada, the site's southeast corner is about 88 km (55 mi) northwest of the major population center, Las Vegas, Nevada. The NTS covers about 3,561 km2 (1,375 mi2), an area larger than Rhode Island. Its size is 46 to 56 km (28 to 35 mi) east to west and from 64 to 88 km (40 to 55 mi) north to south. The NTS is surrounded, except on the south side, by public exclusion areas (Nellis Air Force Range [NAFR]) that provide another 24 to 104 km (15 to 65 mi) between the NTS and public lands (Figure 1.0). The NTS is characterized by desert valley and Great Basin mountain topography, with a climate, flora, and fauna typical of the southwest deserts. Population density within 150 km (93 mi) of the NTS is only about 0.2 persons per square kilometer, excluding the Las Vegas area. Restricted access, low population density in the surrounding area, and extended wind transport times are advantageous factors for the activities conducted at the NTS. Surface waters are scarce on the NTS, and slow-moving groundwater is present hundreds to thousands of feet below the land surface. The sources of radionuclides include current and previous activities conducted on the NTS (Figure 2.0). The NTS was the primary location for testing of nuclear explosives in the Continental U.S. between 1951 and 1992. Historical testing above or at ground surface has included (1) atmospheric testing in the 1950s and early 1960s, (2) earth-cratering experiments, and (3) open-air nuclear reactor and rocket engine testing. Since the mid-1950s, testing of nuclear explosive devices has occurred underground in drilled vertical holes or in mined tunnels (DOE 1996a). No such tests have been conducted since September 23, 1992 (DOE 2000). Limited non-nuclear testing includes spills of hazardous materials at the Hazardous Materials Spill Center, private technology development, aerospace and demilitarization activities, and site remediating activities. Processing of radioactive materials is limited to laboratory analyses, and handling is restricted to transport, storage, and assembly of nuclear explosive devices and operation of radioactive waste management sites (RWMSs) for low-level radioactive and mixed waste (DOE 1996a). Monitoring and evaluation of the various activities conducted onsite indicate that the potential sources of offsite radiation exposure in CY 2001 were releases from (1) evaporation of tritiated water (HTO) from containment ponds that receive drainage water from E Tunnel in Area 12 and from discharges of two wells (Well U-3cn PS No. 2 and Well ER-20-5 No.3) into lined ponds, (2) onsite radio analytical laboratories, (3) the Area 5 RWMS (RWMS-5) facility, and (4) diffuse sources of tritium and re- suspension of plutonium and americium. The following sections present a general description of the present sources on the NTS and at the North Las Vegas Facility.

Y. E. Townsend

2002-06-01T23:59:59.000Z

213

Increasing Energy Efficiency and Reducing Emissions from China's Cement Kilns: Audit Report of Two Cement Plants in Shandong Province, China  

E-Print Network (OSTI)

that could lead to reduction in coal use and reduction inreduce excess air use in coal burners, 2. reduce air leakageof power production) coal consumption from 119 kg/ton kg of

Price, Lynn

2013-01-01T23:59:59.000Z

214

Review of cost estimates for reducing CO2 emissions. Final report, Task 9  

Science Conference Proceedings (OSTI)

Since the ground breaking work of William Nordhaus in 1977, cost estimates for reducing CO{sub 2} emissions have been developed by numerous groups. The various studies have reported sometimes widely divergent cost estimates for reducing CO{sub 2} emissions. Some recent analyses have indicated that large reductions in CO{sub 2} emissions could be achieved at zero or negative costs (e.g. Rocky Mountain Institute 1989). In contrast, a recent study by Alan Manne of Stanford and Richard Richels of the Electric Power Research Institute (Manne-Richels 1989) concluded that in the US the total discounted costs of reducing CO{sub 2} emissions by 20 percent below the 1990 level could be as much as 3.6 trillion dollars over the period from 1990 to 2100. Costs of this order of magnitude would represent about 5 percent of US GNP. The purpose of this briefing paper is to summarize the different cost estimates for CO{sub 2} emission reduction and to identify the key issues and assumptions that underlie these cost estimates.

Not Available

1990-10-01T23:59:59.000Z

215

Using market-based dispatching with environmental price signals to reduce emissions  

E-Print Network (OSTI)

of global environment and energy challenges, thereby contributing to informed debate about climate changeUsing market-based dispatching with environmental price signals to reduce emissions and water use with independent policy analysis to provide a solid foundation for the public and private decisions needed

216

An evaluation of the ramp metering effectiveness in reducing carbon dioxide emissions  

Science Conference Proceedings (OSTI)

In this study, we develop a methodology to estimate the effectiveness of ramp metering in reducing CO2 emissions. Ramp metering is one of several Intelligent Transportation Systems (ITS) applications to control traffic flow. In this paper in order to ... Keywords: CO2 Reduction, Greenhouse Gas, Intelligent Transportation System, Ramp Metering, State Preference Analysis, TSIS Simulation

Sang-Hoon Bae; Tae-Young Heo; Byoung-Yong Ryu

2012-11-01T23:59:59.000Z

217

Clean Cities Tools: Tools to Help You Save Money, Use Less Petroleum, and Reduce Emissions (Brochure)  

Science Conference Proceedings (OSTI)

Clean Cities Alternative Fuels and Advanced Vehicles Data Center (AFDC) features a wide range of Web-based tools to help vehicle fleets and individual consumers reduce their petroleum use. This brochure lists and describes Clean Cities online tools related to vehicles, alternative fueling stations, electric vehicle charging stations, fuel conservation, emissions reduction, fuel economy, and more.

Not Available

2012-01-01T23:59:59.000Z

218

Clean Cities Tools: Tools to Help You Drive Smarter, Use Less Petroleum, and Reduce Emissions (Brochure)  

SciTech Connect

Clean Cities' Alternative Fuels and Advanced Vehicles Data Center (AFDC) features a wide range of Web-based tools to help vehicle fleets and individual consumers reduce their petroleum use. This brochure lists and describes Clean Cities online tools related to vehicles, alternative fueling stations, electric vehicle charging stations, fuel conservation, emissions reduction, fuel economy, and more.

Not Available

2011-06-01T23:59:59.000Z

219

MODERN TECHNOLOGIES TO REDUCE EMISSIONS OF DIOXINS AND FURANS FROM WASTE INCINERATION  

E-Print Network (OSTI)

of mercury from MWC flue gases. After MACT controls reduce total mercury emission rates by 90% or greater not address any chemical transformations affecting mercury in soil, water or sediments (oxidation, reduction Speciation in Flue Gases: Overcoming the Analytical Difficulties," Brooks Rand Ltd., Seattle, WA, Fall 1991

Columbia University

220

Sardinia 2007, Eleventh International Waste Management and Landfill Symposium Potential for Reducing Global Methane Emissions  

E-Print Network (OSTI)

landfills, we developed reference projections of waste generation, recycling and landfill-gas captureSardinia 2007, Eleventh International Waste Management and Landfill Symposium 1 Potential for Reducing Global Methane Emissions From Landfills, 2000-2030 E. MATTHEWS1 , N. J. THEMELIS2 1 NASA Goddard

Columbia University

Note: This page contains sample records for the topic "reduce air emissions" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

202-328-5000 www.rff.orgDesigning Renewable Electricity Policies to Reduce Emissions  

E-Print Network (OSTI)

A variety of renewable electricity policies to promote investment in wind, solar, and other types of renewable generators exist across the United States. The federal renewable energy investment tax credit, the federal renewable energy production tax credit, and state renewable portfolio standards are among the most notable. Whether the benefits of promoting new technology and reducing pollution emissions from the power sector justify these policies ’ costs has been the subject of considerable debate. We argue in this paper that the debate is misguided because it does not consider two important interactions between renewable electricity generators and the rest of the power system. First, the value of electricity from a renewable generators depends on the generation and investment it displaces. Second, a large increase in renewable generation can reduce electricity prices, increasing consumption and emissions from fossil generators, and offsetting some of the environmental benefits of the policies. Two policy conclusions follow. First, existing renewable electricity policies can be redesigned to promote investment in the highest-value generators, which can greatly reduce the cost of achieving a given emissions reduction. Second, subsidies financed out of general tax revenue reduce emissions less than subsidies financed by charges to electricity consumers.

Reduce Emissions; Harrison Fell; Joshua Linn; Clayton Munnings

2012-01-01T23:59:59.000Z

222

Radionuclide Air Emissions Report for the Hanford Site Calendar year 1998  

SciTech Connect

This report documents radionuclide air emissions from the Hanford Site in I998 and the resulting effective dose equivalent to the maximally exposed individual (MEI) member of the public. The report has been prepared in accordance with the Code of Federal Regulations, Title 40, Protection of the Environment, Part 61, National Emission Standards for Hazardous Air Pollutants (40 CFR SI), Subpart H, ''National Emission Standards for Emissions of Radionuclides Other than Radon from Department of Energy Facilities,'' and with the Washington Administrative Code Chapter 246-247, Radiation Protection--Air Emissions. The federal regulations in 40 CFR 61, Subpart H; require the measurement and reporting of radionuclides emitted from Department of Energy facilities and the resulting offsite dose from those emissions. A standard of 10 mrem/yr effective dose equivalent (EDE) is imposed on them. The EDE to the MEI due to routine emissions in 1998 from Hanford Site point sources was 1.3 E-02 mrem (1.3 E-04 mSv), which is 0.13 percent of the federal standard. Chapter 246-247 of the Washington Administrative Code (WAC) requires the reporting of radionuclide emissions from all Department of Energy Hanford Site sources. The state has adopted into these regulations the 40 CFR 61 standard of 10 mrem/yr EDE. The EDE to the MEI attributable to diffuse and fugitive radionuclide air emissions from the Hanford Site in 1998 was 2.5 E-02 mrem (2.5 E-04 mSv). This dose added to the dose from point sources gives a total for all sources of 3.8 E-02 mrem/yr (3.8 E-04 mSv) EDE, which is 0.38 percent of the 10 mrem/yr standard. An unplanned release on August 26, 1998, in the 300 Area of the Hanford Site resulted in a potential dose of 4.1 E-02 mrem to a hypothetical individual at the nearest point of public access to that area. This hypothetical individual was not the MEI since the wind direction on the day of the release was away from the MEI residence. The potential dose from the unplanned event was similar in magnitude to that from routine releases during 1998. Were the release from this unplanned event combined with routine releases, the total dose would be less than 1 percent ofthe 10 mrem/yr standard.

DIEDIKER, L.P.

1999-06-15T23:59:59.000Z

223

Penetration and air-emission-reduction benefits of solar technologies in the electric utilities  

DOE Green Energy (OSTI)

The results of a study of four solar energy technologies and the electric utility industry are reported. The purpose of the study was to estimate the penetration by federal region of four solar technologies - wind, biomass, phtovoltaics, and solar thermal - in terms of installed capacity and power generated. The penetration by these technologies occurs at the expense of coal and nuclear power. The displacement of coal plants implies a displacement of their air emissions, such as sulfur dioxide, oxides of nitrogen, and particulate matter. The main conclusion of this study is that solar thermal, photovoltaics, and biomass fail to penetrate significantly by the end of this century in any federal region. Wind energy penetrates the electric utility industry in several regions during the 1990s. Displaced coal and nuclear generation are also estimated by region, as are the corresponding reductions in air emissions. The small-scale penetration by the solar technologies necessarily limits the amount of conventional fuels displaced and the reduction in air emissions. A moderate displacement of sulfur dioxide and the oxides of nitrogen is estimated to occur by the end of this century, and significant lowering of these emissions should occur in the early part of the next century.

Sutherland, R.J.

1981-01-01T23:59:59.000Z

224

Assessment of Air Emissions at the U S Liquids Exploration and Production Land Treatment Facility  

SciTech Connect

This project was initiated to make the first set of measurements documenting the potential for emissions of pollutants from exploration and production (E&P) waste disposal facilities at Bourg, Louisiana and Bateman Island, Louisiana. The objective of the project was to quantify the emissions and to determine whether the measured emissions were potentially harmful to human health of workers and the adjacent community. The study, funded by the Department of Energy (DOE) is designed to complement additional studies funded by Louisiana Department of Natural Resources (LADNR) and the American Petroleum Institute. The distinguishing feature of this study is that actual, independent field measurements of emissions were used to assess the potential problems of this disposal technology. Initial measurements were made at the Bourg, LA facility, adjacent to the community of Grand Bois in late 1998-early 1999. Emission measurements were performed using aluminum chambers placed over the surface of the landfarm cells. Air was pulled through the chambers and the concentration of the contaminants in the air exiting the chambers was measured. The contaminants of interest were the ''BTEX'' compounds (benzene, toluene, ethylbenzene and xylene), commonly found in E&P wastes and hydrogen sulfide, a noxious gas present naturally in many E&P wastes and crude oils. Measurements indicated that emissions were measurable using the techniques developed for the study. However, when the air concentrations of these contaminants that developed above the landfarm cells were compared with standards for workers from the Occupational and Safety and Health Association (''OSHA'') and for communities (Louisiana's ambient air standards), levels were not of concern. Since amounts of wastes being processed by the Bourg facility were considerably lower than normal, a decision was made to continue the study at the Bateman Island facility near Morgan City, LA. This facility was receiving more normal loadings of E&P wastes. Additional emission measurements were made at the Bateman Island facility within cells over a range of ''ages'', from those most recently loaded with E&P wastes to cells that have not received wastes for 9 months or more. As expected the greatest chance for emissions when the cell is most recently loaded. Again, measured fluxes did not produce air concentrations that were of concern. As expected, the highest fluxes were observed in the cells that had recently received wastes and older cells had very low emissions. Measurements of emissions of hydrogen sulfide (H{sub 2}S) were also conducted at these two facilities. Levels of emissions were similar to the xange observed in the literature for natural salt marshes that surround these facilities. Production of sulfide within the cells was also measured by the most sensitive techniques available and measured sulfide production rates were low in the samples tested. The only potential concern at the facility with regards to sulfide was the levels of sulfide emitted from the sumps. The facility logbook at Bourg was analyzed to determine a time sequence of activities over 1998-1999. The Louisiana Department of Environmental Quality conducted a time-series of air concentrations for hazardous air pollutants during this period at the fenceline of the Bourg facility. These data were characterized by periods of static concentrations interspersed with peaks. A series of peaks were analyzed and compared with logbook records for the activities occurring at the time. In reverse fashion, a set of activities documented by the logbook was examined and the concentrations of benzene that developed from these activities were documented. No direct correlation could be made with the observed peaks and any activities suggesting that concentrations of benzene at the fenceline may be the result of a complex suite of activities including onsite activities not documented in the logbook (loading of the cells by truck haulers) and offsite activities (automobile traffic). Based on these results several recomme

John H. Pardue; K.T. Valsaraj

2000-12-01T23:59:59.000Z

225

Projections of air toxic emissions from coal-fired utility combustion: Input for hazardous air pollutant regulators  

Science Conference Proceedings (OSTI)

The US Environmental Protection Agency (EPA) is required by the 1990 CAAA to promulgate rules for all ``major`` sources of any of these HAPs. According to the HAPs section of the new Title III, any stationary source emitting 10 tons per year (TPY) of one HAP or 25 TPY of a combination of HAPs will be considered and designated a major source. In contrast to the original National Emission Standards for Hazardous Air Pollutants (NESHAP), which were designed to protect public health to ``an ample margin of safety,`` the new Title III, in its first phase, will regulate by industrial category those sources emitting HAPs in excess of the 10/25-TPY threshold levels, regardless of health risks. The trace elements normally associated with coal mineral matter and the various compounds formed during coal combustion have the potential to produce hazardous air toxic emissions from coal-fired electric utilities. Under Title III, the EPA is required to perform certain studies, prior to any regulation of electric utilities; these studies are currently underway. Also, the US Department of Energy (DOE) maintains a vested interest in addressing those energy policy questions affecting electric utility generation, coal mining, and steel producing critical to this country`s economic well-being, where balancing the costs to the producers and users of energy with the benefits of environmental protection to the workers and the general populace remains of significant concern.

Szpunar, C.B.

1993-08-01T23:59:59.000Z

226

Estimating the marginal cost of reducing global fossil fuel CO[sub 2] emissions  

Science Conference Proceedings (OSTI)

This paper estimates the marginal, total, and average cost and effectiveness of carbon taxes applied either by the Organization for Economic Cooperation and Development (OECD) members alone, or as part of a global cooperative strategy, to reduce potential future emissions and their direct implications for employment in the US coal industry. Two sets of cases are examined, one set in which OECD members acts alone, and another set in which the world acts in concert. In each case set taxes are examined which achieve four alternative levels of emissions reduction: halve the rate of emissions growth, no emissions growth, 20[percent] reduction from 1988 levels, and 50[percent] reduction from 1988 levels. For the global cooperation case, carbon tax rates of [dollar sign]32, [dollar sign]113, [dollar sign]161, and [dollar sign]517 per metric ton of carbon (mtC) were needed in the year 2025 to achieve the objectives. Total costs were respectively [dollar sign]40, [dollar sign]178, [dollar sign]253, and [dollar sign]848 billions of 1990 US dollars per year in the year 2025. Average costs were [dollar sign]32, [dollar sign]55, [dollar sign]59, and [dollar sign]135 per mtC. Costs were significantly higher in the cases in which the OECD members states acted alone. OECD member states, acting alone, could not reduce global emissions by 50[percent] or 20[percent] relative to 1988, given reference case assumptions regarding developing and recently planned nations economic growth.

Edmonds, J.; Barns, D.W.; McDonald, S. (Pacific Northwest Lab., Washington, DC (United States))

1992-01-01T23:59:59.000Z

227

Abatement of Air Pollution: Control of Carbon Dioxide Emissions/Carbon  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Carbon Dioxide Carbon Dioxide Emissions/Carbon Dioxide Budget Trading Program (Connecticut) Abatement of Air Pollution: Control of Carbon Dioxide Emissions/Carbon Dioxide Budget Trading Program (Connecticut) < Back Eligibility Agricultural Commercial Construction Fed. Government Fuel Distributor General Public/Consumer Industrial Installer/Contractor Institutional Investor-Owned Utility Local Government Low-Income Residential Multi-Family Residential Municipal/Public Utility Nonprofit Residential Retail Supplier Rural Electric Cooperative Schools State/Provincial Govt Systems Integrator Transportation Tribal Government Utility Savings Category Alternative Fuel Vehicles Hydrogen & Fuel Cells Buying & Making Electricity Water Home Weatherization Solar Wind Program Info State Connecticut

228

Flue Gas Conditioning to Reduce Particulate Emissions in Industrial Coal-Fired Boilers  

E-Print Network (OSTI)

Chemical technology has been used successfully to solve many of the operational and emissions problems that result from burning coal. This paper describes the use of blended chemical flue gas conditioners to significantly reduce particulate emissions in coal-fired industrial boilers. In many cases, these chemical conditioning agents have increased the efficiency of electrostatic precipitators and mechanical collectors by more than fifty percent. The effectiveness of this technology has been demonstrated on units generating 50,000 to 200,000 lbs./hr. steam. Results achieved at various industrial plants under actual operating conditions are presented.

Miller, B.; Keon, E.

1980-01-01T23:59:59.000Z

229

Effect on air and water emissions of energy conservation in industry  

DOE Green Energy (OSTI)

Environmental emissions for five large energy-consuming industries plus others are estimated for four US energy system scenarios for 1985 and 2000. Emissions are estimated by specifying fuel mixes to steam boilers and direct heat, combustion efficiencies, shifts in the relative shares of alternative industrial processes use of industrial cogenerators, and penetration of pollution-control technologies. Analyses show that emissions do not vary significantly among scenarios principally because of increased coal use and the reduced penetration rate of advanced pollution-control technologies in the low-energy-demand scenarios. Within scenarios, emissions from the chemical and iron and steel subsectors dominate all aggregate estimates. Hydrocarbon and carbon monoxide process emission coefficients for the chemical subsector must be improved.

Raskin, P D; Rosen, R A

1977-07-01T23:59:59.000Z

230

Effects of Air Emissions Controls on Coal Combustion Products: Interim Data Report  

Science Conference Proceedings (OSTI)

The Electric Power Research Institute (EPRI) is collecting information describing the effects of air emissions controls on coal combustion products (CCPs) as they pertain to disposal and use. Specifically, data are being collected to assess the impacts of calcium bromide (CaBr2) addition to coal, refined coal, halogen injection in the boiler, brominated activated carbon injection (BrACI) in the flue gas, dry sorbent injection (DSI) in the flue gas, and flue gas desulfurization (FGD) ...

2013-12-18T23:59:59.000Z

231

Optimizing Technology to Reduce Mercury and Acid Gas Emissions from Electric Power Plants  

Science Conference Proceedings (OSTI)

Revised maps and associated data show potential mercury, sulfur, and chlorine emissions for U.S. coal by county of origin. Existing coal mining and coal washing practices result in a 25% reduction of mercury in U.S. coal before it is delivered to the power plant. Selection of low-mercury coal is a good mercury control option for plants having hot-side ESP, cold-side ESP, or hot-side ESP/FGD emission controls. Chlorine content is more important for plants having cold-side ESP/FGD or SDA/FF controls; optimum net mercury capture is indicated where chlorine is between 500 and 1000 ppm. Selection of low-sulfur coal should improve mercury capture where carbon in fly ash is used to reduce mercury emissions.

Jeffrey C. Quick; David E. Tabet; Sharon Wakefield; Roger L. Bon

2005-01-31T23:59:59.000Z

232

Data Quality Objectives Supporting Radiological Air Emissions Monitoring for the PNNL Site  

Science Conference Proceedings (OSTI)

Pacific Northwest National Laboratory (PNNL) is in the process of developing a radiological air monitoring program for the PNNL Site that is distinct from that of the nearby Hanford Site. The original DQO (PNNL-19427) considered radiological emissions at the PNNL Site from Physical Sciences Facility (PSF) major emissions units. This first revision considers PNNL Site changes subsequent to the implementation of the original DQO. A team was established to determine how the PNNL Site changes would continue to meet federal regulations and address guidelines developed to monitor air emissions and estimate offsite impacts of radioactive material operations. The result is an updated program to monitor the impact to the public from the PNNL Site. The team used the emission unit operation parameters and local meteorological data as well as information from the PSF Potential-to-Emit documentation and Notices of Construction submitted to the Washington State Department of Health (WDOH). The locations where environmental monitoring stations would most successfully characterize the maximum offsite impacts of PNNL Site emissions from the three PSF buildings with major emission units were determined from these data. Three monitoring station locations were determined during the original revision of this document. This first revision considers expanded Department of Energy operations south of the PNNL Site and relocation of the two offsite, northern monitoring stations to sites near the PNNL Site fenceline. Inclusion of the southern facilities resulted in the proposal for a fourth monitoring station in the southern region. The southern expansion added two minor emission unit facilities and one diffuse emission unit facility. Relocation of the two northern stations was possible due to the use of solar power, rather than the previous limitation of the need for access to AC power, at these more remote locations. Addendum A contains all the changes brought about by the revision 1 considerations. This DQO report also updates the discussion of the Environmental Monitoring Plan for the PNNL Site air samples and how existing Hanford Site monitoring program results could be used. This document of Data Quality Objectives (DQOs) was prepared based on the U.S. Environmental Protection Agency (EPA) Guidance on Systematic Planning Using the Data Quality Objectives Process, EPA, QA/G4, 2/2006 (EPA 2006) as well as several other published DQOs.

Barnett, J. M.; Meier, Kirsten M.; Snyder, Sandra F.; Fritz, Brad G.; Poston, Theodore M.; Antonio, Ernest J.

2012-11-12T23:59:59.000Z

233

A comparison of estimates of cost-effectiveness of alternative fuels and vehicles for reducing emissions  

DOE Green Energy (OSTI)

The cost-effectiveness ratio (CER) is a measure of the monetary value of resources expended to obtain reductions in emissions of air pollutants. The CER can lead to selection of the most effective sequence of pollution reduction options. Derived with different methodologies and technical assumptions, CER estimates for alternative fuel vehicles (AFVs) have varied widely among pervious studies. In one of several explanations of LCER differences, this report uses a consistent basis for fuel price to re-estimate CERs for AFVs in reduction of emissions of criteria pollutants, toxics, and greenhouse gases. The re-estimated CERs for a given fuel type have considerable differences due to non-fuel costs and emissions reductions, but the CERs do provide an ordinal sense of cost-effectiveness. The category with CER less than $5,000 per ton includes compressed natural gas and ed Petroleum gas vehicles; and E85 flexible-fueled vehicles (with fuel mixture of 85 percent cellulose-derived ethanol in gasoline). The E85 system would be much less attractive if corn-derived ethanol were used. The CER for E85 (corn-derived) is higher with higher values placed on the reduction of gas emissions. CER estimates are relative to conventional vehicles fueled with Phase 1 California reformulated gasoline (RFG). The California Phase 2 RFG program will be implemented before significant market penetration by AFVs. CERs could be substantially greater if they are calculated incremental to the Phase 2 RFG program. Regression analysis suggests that different assumptions across studies can sometimes have predictable effects on the CER estimate of a particular AFV type. The relative differences in cost and emissions reduction assumptions can be large, and the effect of these differences on the CER estimate is often not predictable. Decomposition of CERs suggests that methodological differences can make large contributions to CER differences among studies.

Hadder, G.R.

1995-11-01T23:59:59.000Z

234

File:Air Pollututant Emission Notice (APEN) Form.pdf | Open Energy  

Open Energy Info (EERE)

Pollututant Emission Notice (APEN) Form.pdf Pollututant Emission Notice (APEN) Form.pdf Jump to: navigation, search File File history File usage Metadata File:Air Pollututant Emission Notice (APEN) Form.pdf Size of this preview: 463 Ć— 599 pixels. Other resolution: 464 Ć— 600 pixels. Go to page 1 2 Go! next page ā†’ next page ā†’ Full resolution ā€ˇ(1,275 Ć— 1,650 pixels, file size: 36 KB, MIME type: application/pdf, 2 pages) File history Click on a date/time to view the file as it appeared at that time. Date/Time Thumbnail Dimensions User Comment current 12:26, 14 March 2013 Thumbnail for version as of 12:26, 14 March 2013 1,275 Ć— 1,650, 2 pages (36 KB) Alevine (Talk | contribs) You cannot overwrite this file. Edit this file using an external application (See the setup instructions for more information)

235

Refinery Waste Heat Ammonia Absorption Refrigeration Plant (WHAARP) Recovers LPG's and Gasoline, Saves Energy, and Reduces Air Pollution  

E-Print Network (OSTI)

A first-of-its-kind Waste Heat Ammonia Absorption Refrigeration Plant (WHAARP™) was installed by Planetec Utility Services Co., Inc. in partnership with Energy Concepts Co. at Ultramar Diamond Shamrock's 30,000 barrel per day refinery in Denver, Colorado. The refrigeration unit is designed to provide refrigeration for two process units at the refinery while utilizing waste heat as the energy source. The added refrigeration capacity benefits the refinery by recovering salable products, debottlenecking process units, avoiding additional electrical demand, and reducing the refinery Energy Intensity Index. In addition, the WHAARP unit lowers air pollutant emissions by reducing excess fuel gas that is combusted in the refinery flare. A comprehensive utility and process efficiency Master Plan developed for the Denver refinery by Planetec provided the necessary platform for implementing this distinctive project. The $2.3 million WHAARP system was paid for in part by a $760,000 grant from the U.S. Department of Energy, as part of their "Industry of the Future Program". Total combined benefits are projected to be approximately $1 million/year with a 1.6 year simple payback including the grant funding.

Brant, B.; Brueske, S.; Erickson, D.; Papar, R.

1998-04-01T23:59:59.000Z

236

The Air Microwave Yield (AMY) experiment - A laboratory measurement of the microwave emission from extensive air showers  

E-Print Network (OSTI)

The AMY experiment aims to measure the microwave bremsstrahlung radiation (MBR) emitted by air-showers secondary electrons accelerating in collisions with neutral molecules of the atmosphere. The measurements are performed using a beam of 510 MeV electrons at the Beam Test Facility (BTF) of Frascati INFN National Laboratories. The goal of the AMY experiment is to measure in laboratory conditions the yield and the spectrum of the GHz emission in the frequency range between 1 and 20 GHz. The final purpose is to characterise the process to be used in a next generation detectors of ultra-high energy cosmic rays. A description of the experimental setup and the first results are presented.

K. Louedec; J. Alvarez-Muńiz; M. Blanco; M. Bohįcovį; B. Buonomo; G. Cataldi; M. R. Coluccia; P. Creti; I. De Mitri; C. Di Giulio; P. Facal San Luis; L. Foggetta; R. Gaļor; D. Garcia-Fernandez; M. Iarlori; S. Le Coz; A. Letessier-Selvon; I. C. Mari?; D. Martello; G. Mazzitelli; M. Monasor; L. Perrone; R. Pesce; S. Petrera; P. Privitera; V. Rizi; G. Rodriguez Fernandez; F. Salamida; G. Salina; M. Settimo; P. Valente; J. R. Vazquez; V. Verzi; C. Williams

2013-10-17T23:59:59.000Z

237

POTENTIAL HEALTH RISK REDUCTION ARISING FROM REDUCED MERCURY EMISSIONS FROM COAL FIRED POWER PLANTS.  

Science Conference Proceedings (OSTI)

The U.S. Environmental Protection Agency (EPA) has announced plans to regulate mercury (Hg) emissions from coal-fired power plants. EPA has not prepared a quantitative assessment of the reduction in risk that could be achieved through reduction in coal plant emissions of Hg. To address this issue, Brookhaven National Laboratory (BNL) with support from the U.S. Department of Energy Office of Fossil Energy (DOE FE) prepared a quantitative assessment of the reduction in human health risk that could be achieved through reduction in coal plant emissions of Hg. The primary pathway for Hg exposure is through consumption of fish. The most susceptible population to Hg exposure is the fetus. Therefore the risk assessment focused on consumption of fish by women of child-bearing age. Dose response factors were generated from studies on loss of cognitive abilities (language skills, motor skills, etc.) by young children whose mothers consumed large amounts of fish with high Hg levels. Population risks were estimated for the general population in three regions of the country, (the Midwest, Northeast, and Southeast) that were identified by EPA as being heavily impacted by coal emissions. Three scenarios for reducing Hg emissions from coal plants were considered: (1) A base case using current conditions; (2) A 50% reduction; and, (3) A 90% reduction. These reductions in emissions were assumed to translate linearly into a reduction in fish Hg levels of 8.6% and 15.5%, respectively. Population risk estimates were also calculated for two subsistence fisher populations. These groups of people consume substantially more fish than the general public and, depending on location, the fish may contain higher Hg levels than average. Risk estimates for these groups were calculated for the three Hg levels used for the general population analyses. Analysis shows that the general population risks for exposure of the fetus to Hg are small. Estimated risks under current conditions (i.e., no specific Hg controls) ranged from 5.7 x 10{sup -6} in the Midwest to 2 x 10{sup -5} in the Southeast. Reducing emissions from coal plants by 90% reduced the estimated range in risk to 5 x 10{sup -6} in the Midwest and 1.5 x 10{sup -5} in Southeast, respectively. The population risk for the subsistence fisher using the Southeast regional fish Hg levels was 3.8 x 10{sup -3}, a factor of 200 greater than the general population risk. For the subsistence fishers and the Savannah River Hg levels, the population risk was 4.3 x 10{sup -5}, a factor of 2 greater than for the general population. The estimated risk reductions from a 90% reduction in coal plant Hg emissions ranged from 25%-68%, which is greater than the assumed reduction in Hg levels in fish, (15.5%). To place this risk in perspective, there are approximately 4 x 10{sup 6} births/year in the U.S (National Vital Statistics Report, 2000). Assuming that the Southeast risk level (the highest of the regions) is appropriate for the entire U.S., an estimate of 80 newborn children per year have a 5% chance of realizing any of the 16 adverse effects used to generate the DRF. If Hg emissions from power plants are reduced 90%, the number of children at risk is reduced to 60.

SULLIVAN,T.M.LIPFERT,F.W.MORRIS,S.C.MOSKOWITZ,P.D.

2001-09-01T23:59:59.000Z

238

Deducing Ground-to-Air Emissions from Observed Trace Gas Concentrations: A Field Trial with Wind Disturbance  

Science Conference Proceedings (OSTI)

Inverse-dispersion techniques allow inference of a gas emission rate Q from measured air concentration. In “ideal surface layer problems,” where Monin–Obukhov similarity theory (MOST) describes the winds transporting the gas, the application of ...

T. K. Flesch; J. D. Wilson; L. A. Harper

2005-04-01T23:59:59.000Z

239

Developing Greenhouse Gas Emissions Offsets by Reducing Nitrous Oxide (N2O) Emissions in Agricultural Crop Production: Experience Validating a New GHG Offset Protocol  

Science Conference Proceedings (OSTI)

This project report describes in part the second phase (years four through six, 2010–2012) of a two-phase, six-year long EPRI-sponsored research project entitled “Developing Greenhouse Gas Emissions Offsets by Reducing Nitrous Oxide (N2O) Emissions.” This project investigated an innovative approach to developing large-scale, cost-effective greenhouse gas (GHG) emissions offsets that potentially can be implemented across broad geographic areas of the ...

2013-05-28T23:59:59.000Z

240

Emissions allowance prices for SO 2 and NO X remained low in ...  

U.S. Energy Information Administration (EIA)

Emissions allowances are a component of policy tools used to reduce emissions of air pollutants such as SO 2 or NO X. Such programs cap the total ...

Note: This page contains sample records for the topic "reduce air emissions" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

Reducing Greenhouse Gas Emissions with Carbon Dioxide Capture and Sequestration in Deep Geological Formations  

SciTech Connect

Carbon dioxide capture and sequestration (CCS) in deep geological formations has quickly emerged as an important option for reducing greenhouse emissions. If CCS is implemented on the scale needed for large reductions in CO2 emissions, a billion of tonnes or more of CO2 will be sequestered annually a 250 fold increase over the amount sequestered annually today. Sequestering these large volumes will require a strong scientific foundation of the coupled hydrological-geochemical-geomechanical processes that govern the long term fate of CO2 in the subsurface. Methods to characterize and select sequestration sites, subsurface engineering to optimize performance and cost, safe operations, monitoring technology, remediation methods, regulatory oversight, and an institutional approach for managing long term liability are also needed.

Benson, Dr. Sally [Stanford University; Cole, David R [ORNL

2008-01-01T23:59:59.000Z

242

Incorporation of catalytic dehydrogenation into fischer-tropsch synthesis to significantly reduce carbon dioxide emissions  

SciTech Connect

A new method of producing liquid transportation fuels from coal and other hydrocarbons that significantly reduces carbon dioxide emissions by combining Fischer-Tropsch synthesis with catalytic dehydrogenation is claimed. Catalytic dehydrogenation (CDH) of the gaseous products (C1-C4) of Fischer-Tropsch synthesis (FTS) can produce large quantities of hydrogen while converting the carbon to multi-walled carbon nanotubes (MWCNT). Incorporation of CDH into a FTS-CDH plant converting coal to liquid fuels can eliminate all or most of the CO.sub.2 emissions from the water-gas shift (WGS) reaction that is currently used to elevate the H.sub.2 level of coal-derived syngas for FTS. Additionally, the FTS-CDH process saves large amounts of water used by the WGS reaction and produces a valuable by-product, MWCNT.

Huffman, Gerald P.

2012-11-13T23:59:59.000Z

243

Impact of Vehicle Air-Conditioning on Fuel Economy, Tailpipe Emissions, and Electric Vehicle Range: Preprint  

NLE Websites -- All DOE Office Websites (Extended Search)

Vehicle Air- Vehicle Air- Conditioning on Fuel Economy, Tailpipe Emissions, and Electric Vehicle Range Preprint September 2000 * NREL/CP-540-28960 R. Farrington and J. Rugh To Be Presented at the Earth Technologies Forum Washington, D.C. October 31, 2000 National Renewable Energy Laboratory 1617 Cole Boulevard Golden, Colorado 80401-3393 NREL is a U.S. Department of Energy Laboratory Operated by Midwest Research Institute * * * * Battelle * * * * Bechtel Contract No. DE-AC36-99-GO10337 NOTICE The submitted manuscript has been offered by an employee of the Midwest Research Institute (MRI), a contractor of the US Government under Contract No. DE-AC36-99GO10337. Accordingly, the US Government and MRI retain a nonexclusive royalty-free license to publish or reproduce the published

244

Characterization of dielectric barrier discharge in air applying current measurement, numerical simulation and emission spectroscopy  

E-Print Network (OSTI)

Dielectric barrier discharge (DBD) in air is characterized applying current measurement, numerical simulation and optical emission spectroscopy (OES). For OES, a non-calibrated spectrometer is used. This diagnostic method is applicable when cross-sectional area of the active plasma volume and current density can be determined. The nitrogen emission in the spectral range of 380 nm- 406 nm is used for OES diagnostics. Electric field in the active plasma volume is determined applying the measured spectrum, well-known Frank-Condon factors for nitrogen transitions and numerically- simulated electron distribution functions. The measured electric current density is used for determination of electron density in plasma. Using the determined plasma parameters, the dissociation rate of nitrogen and oxygen in active plasma volume are calculated, which can be used by simulation of the chemical kinetics.

Rajasekaran, Priyadarshini; Awakowicz, Peter

2012-01-01T23:59:59.000Z

245

Air pollution from a large steel factory: polycyclic aromatic hydrocarbon emissions from coke-oven batteries  

SciTech Connect

A systematic investigation of solid and gaseous atmospheric emissions from some coke-oven batteries of one of Europe's largest integrated steel factory (Taranto, Italy) has been carried out. These emissions, predominantly diffuse, originate from oven leakages, as well as from cyclic operations of coal loading and coke unloading. In air monitoring samples, polycyclic aromatic hydrocarbons (PAHs) were consistently detected at concentrations largely exceeding threshold limit values. By means of PAHs speciation profile and benzo-(a)pyrene (BaP) equivalent dispersion modeling from diffuse sources, the study indicated that serious health risks exist not only in working areas, but also in a densely populated residential district near the factory. 30 refs., 5 figs., 3 tabs.

Lorenzo Liberti; Michele Notarnicola; Roberto Primerano; Paolo Zannetti [Technical University of Bari, Bari (Italy). Department of Environmental Engineering and Sustainable Development

2006-03-15T23:59:59.000Z

246

OPTIMIZING TECHNOLOGY TO REDUCE MERCURY AND ACID GAS EMISSIONS FROM ELECTRIC POWER PLANTS  

DOE Green Energy (OSTI)

Maps showing potential mercury, sulfur, chlorine, and moisture emissions for U.S. coal by county of origin were made from publicly available data (plates 1, 2, 3, and 4). Published equations that predict mercury capture by emission control technologies used at U.S. coal-fired utilities were applied to average coal quality values for 169 U.S. counties. The results were used to create five maps that show the influence of coal origin on mercury emissions from utility units with: (1) hot-side electrostatic precipitator (hESP), (2) cold-side electrostatic precipitator (cESP), (3) hot-side electrostatic precipitator with wet flue gas desulfurization (hESP/FGD), (4) cold-side electrostatic precipitator with wet flue gas desulfurization (cESP/FGD), and (5) spray-dry adsorption with fabric filter (SDA/FF) emission controls (plates 5, 6, 7, 8, and 9). Net (lower) coal heating values were calculated from measured coal Btu values, and estimated coal moisture and hydrogen values; the net heating values were used to derive mercury emission rates on an electric output basis (plate 10). Results indicate that selection of low-mercury coal is a good mercury control option for plants having hESP, cESP, or hESP/FGD emission controls. Chlorine content is more important for plants having cESP/FGD or SDA/FF controls; optimum mercury capture is indicated where chlorine is between 500 and 1000 ppm. Selection of low-sulfur coal should improve mercury capture where carbon in fly ash is used to reduce mercury emissions. Comparison of in-ground coal quality with the quality of commercially mined coal indicates that existing coal mining and coal washing practice results in a 25% reduction of mercury in U.S. coal before it is delivered to the power plant. Further pre-combustion mercury reductions may be possible, especially for coal from Texas, Ohio, parts of Pennsylvania and much of the western U.S.

Jeffrey C. Quick; David E. Tabet; Sharon Wakefield; Roger L. Bon

2005-10-01T23:59:59.000Z

247

One-step reduced kinetics for lean hydrogen-air deflagration  

Science Conference Proceedings (OSTI)

A short mechanism consisting of seven elementary reactions, of which only three are reversible, is shown to provide good predictions of hydrogen-air lean-flame burning velocities. This mechanism is further simplified by noting that over a range of conditions of practical interest, near the lean flammability limit all reaction intermediaries have small concentrations in the important thin reaction zone that controls the hydrogen-air laminar burning velocity and therefore follow a steady state approximation, while the main species react according to the global irreversible reaction 2H{sub 2} + O{sub 2} {yields} 2H{sub 2}O. An explicit expression for the non-Arrhenius rate of this one-step overall reaction for hydrogen oxidation is derived from the seven-step detailed mechanism, for application near the flammability limit. The one-step results are used to calculate flammability limits and burning velocities of planar deflagrations. Furthermore, implications concerning radical profiles in the deflagration and reasons for the success of the approximations are clarified. It is also demonstrated that adding only two irreversible direct recombination steps to the seven-step mechanism accurately reproduces burning velocities of the full detailed mechanism for all equivalence ratios at normal atmospheric conditions and that an eight-step detailed mechanism, constructed from the seven-step mechanism by adding to it the fourth reversible shuffle reaction, improves predictions of O and OH profiles. The new reduced-chemistry descriptions can be useful for both analytical and computational studies of lean hydrogen-air flames, decreasing required computation times. (author)

Fernandez-Galisteo, D.; Sanchez, A.L. [Area de Mecanica de Fluidos, Univ. Carlos III de Madrid, Leganes 28911 (Spain); Linan, A. [ETSI Aeronauticos, Pl. Cardenal Cisneros 3, Madrid 28040 (Spain); Williams, F.A. [Dept. of Mechanical and Aerospace Engineering, University of California San Diego, La Jolla, CA 92093-0411 (United States)

2009-05-15T23:59:59.000Z

248

The Importance of the Entropy Inequality on Numerical Simulations Using Reduced Methane-air Reaction Mechanisms  

E-Print Network (OSTI)

Many reaction mechanisms have been developed over the past few decades to predict flame characteristics. A detailed reaction mechanism can predict flame characteristics well, but at a high computational cost. The reason for reducing reaction mechanisms is to reduce the computational time needed to simulate a problem. The focus of this work is on the validity of reduced methane-air combustion mechanisms, particularly pertaining to satisfying the entropy inequality. While much of this work involves a two-step reaction mechanism developed by Dr. Charles Westbrook and Dr. Frederick Dryer, some consideration is given to the four-step and three-step mechanisms of Dr. Norbert Peters. These mechanisms are used to simulate the Flame A experiment from Sandia National Laboratories. The two-step mechanism of Westbrook and Dryer is found to generate results that violate the entropy inequality. Modifications are made to the two-step mechanism simulation in an effort to reduce these violations. Two new mechanisms, Mech 1 and Mech 2, are developed from the original two-step reaction mechanism by modifying the empirical data constants in the Arrhenius reaction form. The reaction exponents are set to the stoichiometric coefficients of the reaction, and the concentrations computed from a one-dimensional flame simulation are matched by changing the Arrhenius parameters. The new mechanisms match experimental data more closely than the original two-step mechanism and result in a significant reduction in entropy inequality violations. The solution from Mech 1 had only 9 cells that violated the entropy inequality, while the original two-step mechanism of Westbrook and Dryer had 22,016 cells that violated the entropy inequality. The solution from Mech 2 did not have entropy inequality violations. The method used herein for developing the new mechanisms can be applied to more complex reaction mechanisms.

Jones, Nathan

2012-08-01T23:59:59.000Z

249

An analysis of SO{sub 2} emission compliance under the 1990 Clean Air Act Amendments  

SciTech Connect

The effectiveness of SO{sub 2} emission allowance trading under Title 4 of the 1990 Amendments to the Clean Air Act (CAA) is of great interest due to the innovative nature of this market incentive approach. However, it may be a mistake to frame the compliance problem for a utility as a decision to trade or not. Trading of allowances should be the consequence, not the decision. The two meaningful decision variables for a utility are the control approaches chosen for its units and the amount of allowances to hold in its portfolio of assets for the future. The number allowances to be bought or sold (i.e. traded) is determined by the emission reduction and banking decisions. Our preferred approach is to think of the problem in terms of ABC`s of the 1990 CAA Amendments: abatement strategy, banking, and cost competitiveness. The implications of the general principles presented in this paper on least cost emission reductions and emissions banking to hedge against risk are being simulated with version 2 of the ARGUS model representing the electric utility sector and regional coal supplies and transportation rates. A rational expectations forecast for allowances prices is being computed. The computed allowance price path has the property that demand for allowances by electric utilities for current use or for banking must equal the supply of allowances issued by the federal government or provided as forward market contracts in private market transactions involving non-utility speculators. From this rational expectations equilibrium forecast, uncertainties are being explored using sensitivity tests. Some of the key issues are the amount of scrubbing and when it is economical to install it, the amount of coal switching and how much low sulfur coal premiums will be bid up; and the amount of emission trading within utilities and among different utilities.

Hanson, D.A.; Cilek, C.M.; Pandola, G.; Taxon, T.

1992-07-01T23:59:59.000Z

250

An analysis of SO sub 2 emission compliance under the 1990 Clean Air Act Amendments  

SciTech Connect

The effectiveness of SO{sub 2} emission allowance trading under Title 4 of the 1990 Amendments to the Clean Air Act (CAA) is of great interest due to the innovative nature of this market incentive approach. However, it may be a mistake to frame the compliance problem for a utility as a decision to trade or not. Trading of allowances should be the consequence, not the decision. The two meaningful decision variables for a utility are the control approaches chosen for its units and the amount of allowances to hold in its portfolio of assets for the future. The number allowances to be bought or sold (i.e. traded) is determined by the emission reduction and banking decisions. Our preferred approach is to think of the problem in terms of ABC's of the 1990 CAA Amendments: abatement strategy, banking, and cost competitiveness. The implications of the general principles presented in this paper on least cost emission reductions and emissions banking to hedge against risk are being simulated with version 2 of the ARGUS model representing the electric utility sector and regional coal supplies and transportation rates. A rational expectations forecast for allowances prices is being computed. The computed allowance price path has the property that demand for allowances by electric utilities for current use or for banking must equal the supply of allowances issued by the federal government or provided as forward market contracts in private market transactions involving non-utility speculators. From this rational expectations equilibrium forecast, uncertainties are being explored using sensitivity tests. Some of the key issues are the amount of scrubbing and when it is economical to install it, the amount of coal switching and how much low sulfur coal premiums will be bid up; and the amount of emission trading within utilities and among different utilities.

Hanson, D.A.; Cilek, C.M.; Pandola, G.; Taxon, T.

1992-01-01T23:59:59.000Z

251

Statewide Air Emissions Calculations from Wind and Other Renewables, Summary Report  

E-Print Network (OSTI)

The 79th Legislature, through Senate Bill 20, House Bill 2481 and House Bill 2129, amended Senate Bill 5 to enhance its effectiveness by adding 5,880 MW of generating capacity from renewable energy technologies by 2015, and 500 MW from non-wind renewables. This legislation also requires PUC to establish a target of 10,000 megawatts of installed renewable capacity by 2025, and requires TCEQ to develop methodology for computing emissions reductions from renewable energy initiatives and the associated credits. In this Legislation the Laboratory is to assist TCEQ in quantifying emissions reductions credits from energy efficiency and renewable energy programs, through a contract with the Texas Environmental Research Consortium (TERC) to develop and annually calculate creditable emissions reductions from wind and other renewable energy resources for the state’s SIP. The Energy Systems Laboratory, in fulfillment of its responsibilities under this Legislation, submits its second annual report, “Statewide Air Emissions Calculations from Wind and Other Renewables,” to the Texas Commission on Environmental Quality. The report is organized in several deliverables: • A Summary Report, which details the key areas of work; • Supporting Documentation; • Supporting data files, including weather data, and wind production data, which have been assembled as part of the first year’s effort. This executive summary provides summaries of the key areas of accomplishment this year, including: • continuation of stakeholder’s meetings; • review of electricity savings reported by ERCOT; • analysis of wind farms using 2005 data; • preliminary reporting of NOx emissions savings in the 2006 Integrated Savings report to TCEQ; • prediction of on-site wind speeds using Artificial Neural Networks (ANN); • improvements to the daily modeling using ANN-derived wind speeds; • development of a degradation analysis; • development of a curtailment analysis; • analysis of other renewables, including: PV, solar thermal, hydroelectric, geothermal and landfill gas; • estimation of hourly solar radiation from limited data sets;

Turner, W. D.; Haberl, J. S.; Yazdani, B.; Gilman, D.; Subbarao, K.; Baltazar-Cervantes, J. C.; Liu, Z.; Culp, C.

2007-10-30T23:59:59.000Z

252

An assessment of a partial pit ventilation system to reduce emission under slatted floor - Part 1: Scale model study  

Science Conference Proceedings (OSTI)

Emissions of ammonia and greenhouse gases from naturally ventilated livestock houses cause contamination of the surrounding atmospheric environment. Requests to reduce ammonia emissions from livestock farms are growing in Denmark. It is assumed that ... Keywords: Livestock, Pit ventilation, Scale model, Slatted floor, Tracer gas, Wind tunnel

Wentao Wu; Peter Kai; Guoqiang Zhang

2012-04-01T23:59:59.000Z

253

Plenary lecture 1: strategies of developing road transport by controlling automotives' emissions to reduce local and global environment impacts  

Science Conference Proceedings (OSTI)

This research paper presents an overview of policies and methods of controlling the emissions caused by motor vehicles and road traffic to reduce local and global pollution. The main premise is the fact that individual mobility and modern freight transport ...

Corneliu Cofaru

2011-02-01T23:59:59.000Z

254

Reducing cold start hydrocarbon emissions from port fuel injected spark ignition engines with improved management of hardware & controls  

E-Print Network (OSTI)

An experimental study was performed to investigate strategies for reducing cold start hydrocarbon (HC) emissions from port fuel injected (PFI) spark ignition (SI) engines with better use of existing hardware and control ...

Lang, Kevin R., 1980-

2006-01-01T23:59:59.000Z

255

Aspects on Bioenergy as a Technical Measure to Reduce Energy Related Greenhouse Gas Emissions.  

E-Print Network (OSTI)

??Greenhouse gas emission assessments of energy supply systems have traditionally included the CO2 emissions produced as the fuel is burned. A lot of models and… (more)

Wihersaari, Margareta

2005-01-01T23:59:59.000Z

256

Aspects on bioenergy as a technical measure to reduce energy related greenhouse gas emissions.  

E-Print Network (OSTI)

??Greenhouse gas emission assessments of energy supply systems have traditionally included the CO2 emissions produced as the fuel is burned. A lot of models and… (more)

Wihersaari, Margareta

2005-01-01T23:59:59.000Z

257

Modeling the Capacity and Emissions Impacts of Reduced Electricity Demand. Part 1. Methodology and Preliminary Results.  

E-Print Network (OSTI)

Modeling the Capacity and Emissions Impacts of Reducedpurposes. Modeling the Capacity and Emissions Impacts ofFigure 2: Comparison of capacity projections from AEO2011

Coughlin, Katie

2013-01-01T23:59:59.000Z

258

Emissions & Emission Controls - FEERC  

NLE Websites -- All DOE Office Websites (Extended Search)

Emissions and Emission Controls In conjunction with the research efforts at FEERC to improve fuel efficiency and reduce petroleum use, research on emissions is conducted with two...

259

Air Quality Responses to Changes in Black Carbon and Nitrogen Oxide Emissions  

E-Print Network (OSTI)

Air Resource Board, Sacramento, CA, April 2006. CARB (Air Resources Board, Sacramento, CA. CARB (2009a).Air Resources Board, Sacramento, CA. http://www.arb.ca.gov/

Millstein, Dev

2009-01-01T23:59:59.000Z

260

1 Bayesian Analysis of a Reduced-Form Air Quality Model 2 Kristen M Foley,*,  

E-Print Network (OSTI)

the societal benefits/disbenefits of four 14 hypothetical emission reduction scenarios in which domain-wide NOx then used to compare the probability of success of different 100 NOx emission reduction scenarios standard under four 414different types of hypothetical NOx reductions. 415Evaluating Emission Reduction

Reich, Brian J.

Note: This page contains sample records for the topic "reduce air emissions" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

Emissions trading to reduce greenhouse gas emissions in the United States : the McCain-Lieberman Proposal  

E-Print Network (OSTI)

The Climate Stewardship Act of 2003 (S. 139) is the most detailed effort to date to design an economy-wide cap-and-trade system for US greenhouse gas emissions reductions. The Act caps sectors at their 2000 emissions in ...

Paltsev, Sergey.

262

New Air Cleaning Strategies for Reduced Commercial Building Ventilation Energy ? FY11 Final Report  

Science Conference Proceedings (OSTI)

The research carried out in this project focuses on developing novel volatile organic compounds (VOCs) air cleaning technologies needed to enable energy-saving reductions in ventilation rates. we targeted a VOC air cleaning system that could enable a 50% reduction in ventilation rates. In a typical commercial HVAC system that provides a mixture of recirculated and outdoor air, a VOC air cleaner in the supply airstream must have a 15% to 20% VOC removal efficiency to counteract a 50% reduction in outdoor air supply.

Sidheswaran, Meera; Destaillats, Hugo; Cohn, Sebastian; Sullivan, Douglas P.; Fisk, William J.

2011-10-31T23:59:59.000Z

263

Microsoft PowerPoint - ECUST Centered Cooperative research efforts to reduce CO2 emission.pptx  

NLE Websites -- All DOE Office Websites (Extended Search)

research efforts research efforts d CO i i to reduce CO 2 emission Shan Shan- -Tung Tung Tu Tu East China University of Science and Technology East China University of Science and Technology sttu@ecust.edu.cn 30 30 th th of May, 2008 of May, 2008 P f Y Ji KTH d MdU (CCS) Prof. Yan Jinyue, KTH and MdU (CCS) Prof. Dahlquist Erik, MdU (BL Gasification) Prof Jin Hongguan CAS (Energy systems) Prof. Jin Hongguan, CAS (Energy systems) Prof. Liu Honglai, ECUST (Physic chemistry) Prof. Wang Fucheng, ECUST (Coal Gasification) g g, ( ) Prof. Ling Licheng, ECUST (Carbon materials) Profs. Yan Yongjie and Bao Jie, ECUST (Biomass) A/Prof. Yu Xinhai, ECUST (Biodiesel) China China- -Sweden Program Sweden Program Fundamental studies of thermophysical sciences

264

Optimizing Techology to Reduce Mercury and Acid Gas Emissions from Electric Power Plants  

SciTech Connect

More than 56,000 coal quality data records from five public data sets have been selected for use in this project. These data will be used to create maps showing where coals with low mercury and acid-gas emissions might be found for power plants classified by air-pollution controls. Average coal quality values, calculated for 51,156 commercial coals by U.S. county-of-origin, are listed in the appendix. Coal moisture values are calculated for commercially shipped coal from 163 U.S. counties, where the raw assay data (including mercury and chlorine values) are reported on a dry basis. The calculated moisture values are verified by comparison with observed moisture values in commercial coal. Moisture in commercial U.S. coal shows provincial variation. For example, high volatile C bituminous rank coal from the Interior province has 3% to 4% more moisture than equivalent Rocky Mountain province coal. Mott-Spooner difference values are calculated for 4,957 data records for coals collected from coal mines and exploration drill holes. About 90% of the records have Mott-Spooner difference values within {+-}250 Btu/lb.

Jeffrey C. Quick; David E. Tabet; Sharon Wakefield; Roger L. Bon

2004-01-31T23:59:59.000Z

265

Air Quality Responses to Changes in Black Carbon and Nitrogen Oxide Emissions  

E-Print Network (OSTI)

2005). Particulate emissions from construction activities.M. S. , (2000b). In-use emissions from heavy- duty dieseland nitrogen dioxide emissions from gasoline- and diesel-

Millstein, Dev

2009-01-01T23:59:59.000Z

266

Urban scale integrated assessment for London: Which emission reduction strategies are more effective in attaining prescribed PM10 air quality standards by 2005?  

Science Conference Proceedings (OSTI)

Tightening of air quality standards for populated urban areas has led to increasing attention to assessment of air quality management areas (AQMAs) where exceedance occurs, and development of control strategies to eliminate such exceedance. Software ... Keywords: Air quality management, Dispersion modelling, Emission reduction strategies, Integrated assessment, Particulate matter, Urban air pollution

A. Mediavilla-Sahagśn; H. M. ApSimon

2006-04-01T23:59:59.000Z

267

Renewable Energy Certificates and Air Emissions Benefits: Developing an Appropriate Definition for a REC  

NLE Websites -- All DOE Office Websites (Extended Search)

ENVIRONMENTAL RESOURCES TRUST ENVIRONMENTAL RESOURCES TRUST Pioneering Markets to Improve the Environment Renewable Energy Certificates and Air Emissions Benefits Developing an Appropriate Definition for a REC Patrick Leahy and Alden Hathaway April 2004 The Renewable Energy Certificate Market The past few years have witnessed the emergence of the Renewable Energy Certificate (REC) market as a viable model for the U.S. renewable energy industry. Once considered an esoteric topic for even the most ardent renewable energy expert, RECs have grown in popularity and exposure thanks to efforts of the renewable energy industry as well as several large purchases by high profile corporations and governmental organizations. Although still in its infancy, the Renewable Energy

268

Data Quality Objectives Supporting Radiological Air Emissions Monitoring for the Marine Sciences Laboratory, Sequim Site  

Science Conference Proceedings (OSTI)

This document of Data Quality Objectives (DQOs) was prepared based on the U.S. Environmental Protection Agency (EPA) Guidance on Systematic Planning Using the Data Quality Objectives Process, EPA, QA/G4, 2/2006 (EPA 2006), as well as several other published DQOs. The intent of this report is to determine the necessary steps required to ensure that radioactive emissions to the air from the Marine Sciences Laboratory (MSL) headquartered at the Pacific Northwest National Laboratory’s Sequim Marine Research Operations (Sequim Site) on Washington State’s Olympic Peninsula are managed in accordance with regulatory requirements and best practices. The Sequim Site was transitioned in October 2012 from private operation under Battelle Memorial Institute to an exclusive use contract with the U.S. Department of Energy, Office of Science, Pacific Northwest Site Office.

Barnett, J. M.; Meier, Kirsten M.; Snyder, Sandra F.; Antonio, Ernest J.; Fritz, Brad G.; Poston, Theodore M.

2012-12-27T23:59:59.000Z

269

Air Resources Board  

E-Print Network (OSTI)

The Air Resources Board (ARB or Board) will conduct a public hearing at the time and place noted below to consider adoption of the Proposed Airborne Toxic Control Measure (ATCM) to Reduce Formaldehyde Emissions from Composite Wood Products. The proposed ATCM would reduce the public’s current exposure to formaldehyde by reducing emissions from hardwood plywood (HWPW), particleboard (PB) and medium density fiberboard (MDF) panels. The ATCM would also apply to finished goods made with these materials.

unknown authors

2007-01-01T23:59:59.000Z

270

Reducing Open Cell Landfill Methane Emissions with a Bioactive Alternative Daily  

Science Conference Proceedings (OSTI)

Methane and carbon dioxide are formed in landfills as wastes degrade. Molecule-for-molecule, methane is about 20 times more potent than carbon dioxide at trapping heat in the earth's atmosphere, and thus, it is the methane emissions from landfills that are scrutinized. For example, if emissions composed of 60% methane and 40% carbon dioxide were changed to a mix that was 40% methane and 60% carbon dioxide, a 30% reduction in the landfill's global warming potential would result. A 10% methane, 90% carbon dioxide ratio will result in a 75% reduction in global warming potential compared to the baseline. Gas collection from a closed landfill can reduce emissions, and it is sometimes combined with a biocover, an engineered system where methane oxidizing bacteria living in a medium such as compost, convert landfill methane to carbon dioxide and water. Although methane oxidizing bacteria merely convert one greenhouse gas (methane) to another (carbon dioxide), this conversion can offer significant reductions in the overall greenhouse gas contribution, or global warming potential, associated with the landfill. What has not been addressed to date is the fact that methane can also escape from a landfill when the active cell is being filled with waste. Federal regulations require that newly deposited solid waste to be covered daily with a 6 in layer of soil or an alternative daily cover (ADC), such as a canvas tarp. The aim of this study was to assess the feasibility of immobilizing methane oxidizing bacteria into a tarp-like matrix that could be used for alternative daily cover at open landfill cells to prevent methane emissions. A unique method of isolating methanotrophs from landfill cover soil was used to create a liquid culture of mixed methanotrophs. A variety of prospective immobilization techniques were used to affix the bacteria in a tarp-like matrix. Both gel encapsulation of methanotrophs and gels with liquid cores containing methanotrophs were readily made but prone to rapid desiccation. Bacterial adsorption onto foam padding, natural sponge, and geotextile was successful. The most important factor for success appeared to be water holding capacity. Prototype biotarps made with geotextiles plus adsorbed methane oxidizing bacteria were tested for their responses to temperature, intermittent starvation, and washing (to simulate rainfall). The prototypes were mesophilic, and methane oxidation activity remained strong after one cycle of starvation but then declined with repeated cycles. Many of the cells detached with vigorous washing, but at least 30% appeared resistant to sloughing. While laboratory landfill simulations showed that four-layer composite biotarps made with two different types of geotextile could remove up to 50% of influent methane introduced at a flux rate of 22 g m{sup -2} d{sup -1}, field experiments did not yield high activity levels. Tests revealed that there were high hour-to-hour flux variations in the field, which, together with frequent rainfall events, confounded the field testing. Overall, the findings suggest that a methanotroph embedded biotarp appears to be a feasible strategy to mitigate methane emission from landfill cells, although the performance of field-tested biotarps was not robust here. Tarps will likely be best suited for spring and summer use, although the methane oxidizer population may be able to shift and adapt to lower temperatures. The starvation cycling of the tarp may require the capacity for intermittent reinoculation of the cells, although it is also possible that a subpopulation will adapt to the cycling and become dominant. Rainfall is not expected to be a major factor, because a baseline biofilm will be present to repopulate the tarp. If strong performance can be achieved and documented, the biotarp concept could be extended to include interception of other compounds beyond methane, such as volatile aromatic hydrocarbons and chlorinated solvents.

Helene Hilger; James Oliver; Jean Bogner; David Jones

2009-03-31T23:59:59.000Z

271

Air emissions from residential heating: The wood heating option put into environmental perspective. Report for June 1997--July 1998  

SciTech Connect

The paper compares the national scale (rather than local) air quality impacts of the various residential space heating options. Specifically, it compares the relative contributions of the space heating options to fine particulate emissions, greenhouse gas emissions, and acid precipitation impacts. The major space heating energy options are natural gas, fuel oil, kerosene, liquefied petroleum gas (LPG), electricity, coal, and wood. Residential wood combustion (RWC) meets 9% of the Nation`s space heating energy needs and utilizes a renewable resource. Wood is burned regularly in about 30 million homes. Residential wood combustion is often perceived as environmentally dirty due to emissions from older wood burners.

Houck, J.E.; Tiegs, P.E.; McCrillis, R.C.; Keithley, C.; Crouch, J.

1998-12-31T23:59:59.000Z

272

Supplement D to compilation of air pollutant emission factors. Volume 1: Stationary point and area sources (fifth edition)  

SciTech Connect

This document contains emission factors and process information for more than 200 air pollution source categories. These emission factors have been compiled from source test data, material balance studies, and they can be used judiciously in making emission estimations for various purposes. This supplement to AP-42 addresses pollutant-generating activity from natural gas combustion, wood waste combustion in boilers; municipal solid waste landfills; waste water collection, treatment and storage; organic liquid storage tanks; nitric acid; grain elevators and processes; plywood manufacturing; lime manufacturing; primary aluminum production; paved roads; abrasive blasting; enteric fermentation -- greenhouse gases.

NONE

1998-08-31T23:59:59.000Z

273

Basis to demonstrate compliance with the National Emission Standards for Hazardous Air Pollutants for the Stand-off Experiments Range  

SciTech Connect

The purpose of this report is to provide the basis and the documentation to demonstrate general compliance with the National Emission Standard for Hazardous Air Pollutants (NESHAPS) 40 CFR 61 Subpart H, “National Emission Standards for Emissions of Radionuclides Other Than Radon from Department of Energy Facilities,” (the Standard) for outdoor linear accelerator operations at the Idaho National Laboratory (INL) Stand-off Experiments Range (SOX). The intent of this report is to inform and gain acceptance of this methodology from the governmental bodies regulating the INL.

Michael Sandvig

2011-01-01T23:59:59.000Z

274

Technology demonstration for reducing mercury emissions from small-scale gold refining facilities.  

SciTech Connect

Gold that is brought from artisanal and small-scale gold mining areas to gold shops for processing and sale typically contains 5-40% mercury. The uncontrolled removal of the residual mercury in gold shops by using high-temperature evaporation can be a significant source of mercury emissions in urban areas where the shops are located. Emissions from gold shop hoods during a burn can exceed 1,000 mg/m{sup 3}. Because the saturation concentration of mercury vapor at operating temperatures at the hood exhaust is less than 100 mg/m{sup 3}, the dominant component of the exhaust is in the form of aerosol or liquid particles. The U.S. Environmental Protection Agency (EPA), with technical support from Argonne National Laboratory (Argonne), has completed a project to design and test a technology to remove the dominant aerosol component in the emissions from gold shops. The objective was to demonstrate a technology that could be manufactured at low cost and by using locally available materials and manufacturing capabilities. Six prototypes designed by Argonne were locally manufactured, installed, and tested in gold shops in Itaituba and Creporizao, Brazil. The initial prototype design incorporated a pebble bed as the media for collecting the mercury aerosols, and a mercury collection efficiency of over 90% was demonstrated. Though achieving high efficiencies, the initial prototype was determined to have practical disadvantages such as excessive weight, a somewhat complex construction, and high costs (>US$1,000). To further simplify the construction, operation, and associated costs, a second prototype design was developed in which the pebble bed was replaced with slotted steel baffle plates. The system was designed to have flexibility for installation in various hood configurations. The second prototype with the baffle plate design was installed and tested in several different hood/exhaust systems to determine the optimal installation configuration. The significance of coagulation and collection of the mercury aerosols in exhaust ducts, which is dependent on the hood and collector configuration, was also evaluated. Prototype demonstration tests verified the theoretical basis for mercury aerosol capture that can be used to optimize the baffle plate design, flow rates, and hood exhaust ducts and plenum to achieve 80% or higher removal efficiencies. Results indicated that installation configuration significantly influences a system's capture efficiency. Configurations that retained existing inlet ducts resulted in system efficiencies of more than 80%, whereas installation configurations without inlet ducts significantly reduced capture efficiency. As an alternative to increasing the volume of inlet ducts, the number of baffle plates in the system baffle assembly could be doubled to increase efficiency. Recommended installation and operation procedures were developed on the basis of these results. A water-based mercury capture system developed in Indonesia for installation in smaller shops was also tested and shown to be effective for certain applications. The cost of construction and installation of the baffle plate prototype was approximately US$400. These costs were reported as acceptable by local gold shop owners and government regulators, and were significantly lower than the cost of an alternate charcoal/copper mesh mercury filter available in the region, which costs about US$10,000. A sampling procedure that consists of a particle filter combined with a vapor analyzer was demonstrated as an effective procedure for analyzing both the aerosol and vapor components of the mercury concentrations. Two key findings for enhancing higher mercury collection were identified. First, the aerosol/vapor mercury emissions must be given sufficient time for the mercury particles to coagulate to a size that can be readily captured by the baffle plates. An interval of at least 6 seconds of transit time between the point of evaporation and contact with the slotted baffle plates is recommended. Some particles will also deposit in the exhaust ducts

Habegger, L. J.; Fernandez, L. E.; Engle, M.; Bailey, J. L.; Peterson, D. P.; MacDonell, M. M.; U.S. Environmental Protection Agency

2008-06-30T23:59:59.000Z

275

Technology demonstration for reducing mercury emissions from small-scale gold refining facilities.  

Science Conference Proceedings (OSTI)

Gold that is brought from artisanal and small-scale gold mining areas to gold shops for processing and sale typically contains 5-40% mercury. The uncontrolled removal of the residual mercury in gold shops by using high-temperature evaporation can be a significant source of mercury emissions in urban areas where the shops are located. Emissions from gold shop hoods during a burn can exceed 1,000 mg/m{sup 3}. Because the saturation concentration of mercury vapor at operating temperatures at the hood exhaust is less than 100 mg/m{sup 3}, the dominant component of the exhaust is in the form of aerosol or liquid particles. The U.S. Environmental Protection Agency (EPA), with technical support from Argonne National Laboratory (Argonne), has completed a project to design and test a technology to remove the dominant aerosol component in the emissions from gold shops. The objective was to demonstrate a technology that could be manufactured at low cost and by using locally available materials and manufacturing capabilities. Six prototypes designed by Argonne were locally manufactured, installed, and tested in gold shops in Itaituba and Creporizao, Brazil. The initial prototype design incorporated a pebble bed as the media for collecting the mercury aerosols, and a mercury collection efficiency of over 90% was demonstrated. Though achieving high efficiencies, the initial prototype was determined to have practical disadvantages such as excessive weight, a somewhat complex construction, and high costs (>US$1,000). To further simplify the construction, operation, and associated costs, a second prototype design was developed in which the pebble bed was replaced with slotted steel baffle plates. The system was designed to have flexibility for installation in various hood configurations. The second prototype with the baffle plate design was installed and tested in several different hood/exhaust systems to determine the optimal installation configuration. The significance of coagulation and collection of the mercury aerosols in exhaust ducts, which is dependent on the hood and collector configuration, was also evaluated. Prototype demonstration tests verified the theoretical basis for mercury aerosol capture that can be used to optimize the baffle plate design, flow rates, and hood exhaust ducts and plenum to achieve 80% or higher removal efficiencies. Results indicated that installation configuration significantly influences a system's capture efficiency. Configurations that retained existing inlet ducts resulted in system efficiencies of more than 80%, whereas installation configurations without inlet ducts significantly reduced capture efficiency. As an alternative to increasing the volume of inlet ducts, the number of baffle plates in the system baffle assembly could be doubled to increase efficiency. Recommended installation and operation procedures were developed on the basis of these results. A water-based mercury capture system developed in Indonesia for installation in smaller shops was also tested and shown to be effective for certain applications. The cost of construction and installation of the baffle plate prototype was approximately US$400. These costs were reported as acceptable by local gold shop owners and government regulators, and were significantly lower than the cost of an alternate charcoal/copper mesh mercury filter available in the region, which costs about US$10,000. A sampling procedure that consists of a particle filter combined with a vapor analyzer was demonstrated as an effective procedure for analyzing both the aerosol and vapor components of the mercury concentrations. Two key findings for enhancing higher mercury collection were identified. First, the aerosol/vapor mercury emissions must be given sufficient time for the mercury particles to coagulate to a size that can be readily captured by the baffle plates. An interval of at least 6 seconds of transit time between the point of evaporation and contact with the slotted baffle plates is recommended. Some particles will also deposit in the exhaust ducts

Habegger, L. J.; Fernandez, L. E.; Engle, M.; Bailey, J. L.; Peterson, D. P.; MacDonell, M. M.; U.S. Environmental Protection Agency

2008-06-30T23:59:59.000Z

276

Battery-Powered Electric and Hybrid Electric Vehicle Projects to Reduce Greenhouse Gas Emissions: A Resource for Project Development  

SciTech Connect

The transportation sector accounts for a large and growing share of global greenhouse gas (GHG) emissions. Worldwide, motor vehicles emit well over 900 million metric tons of carbon dioxide (CO2) each year, accounting for more than 15 percent of global fossil fuel-derived CO2 emissions.1 In the industrialized world alone, 20-25 percent of GHG emissions come from the transportation sector. The share of transport-related emissions is growing rapidly due to the continued increase in transportation activity.2 In 1950, there were only 70 million cars, trucks, and buses on the world’s roads. By 1994, there were about nine times that number, or 630 million vehicles. Since the early 1970s, the global fleet has been growing at a rate of 16 million vehicles per year. This expansion has been accompanied by a similar growth in fuel consumption.3 If this kind of linear growth continues, by the year 2025 there will be well over one billion vehicles on the world’s roads.4 In a response to the significant growth in transportation-related GHG emissions, governments and policy makers worldwide are considering methods to reverse this trend. However, due to the particular make-up of the transportation sector, regulating and reducing emissions from this sector poses a significant challenge. Unlike stationary fuel combustion, transportation-related emissions come from dispersed sources. Only a few point-source emitters, such as oil/natural gas wells, refineries, or compressor stations, contribute to emissions from the transportation sector. The majority of transport-related emissions come from the millions of vehicles traveling the world’s roads. As a result, successful GHG mitigation policies must find ways to target all of these small, non-point source emitters, either through regulatory means or through various incentive programs. To increase their effectiveness, policies to control emissions from the transportation sector often utilize indirect means to reduce emissions, such as requiring specific technology improvements or an increase in fuel efficiency. Site-specific project activities can also be undertaken to help decrease GHG emissions, although the use of such measures is less common. Sample activities include switching to less GHG-intensive vehicle options, such as electric vehicles (EVs) or hybrid electric vehicles (HEVs). As emissions from transportation activities continue to rise, it will be necessary to promote both types of abatement activities in order to reverse the current emissions path. This Resource Guide focuses on site- and project-specific transportation activities. .

National Energy Technology Laboratory

2002-07-31T23:59:59.000Z

277

Technology and policy options for reducing industrial air pollutants in the Mexico City Metropolitan Area  

E-Print Network (OSTI)

Technology plays an important role in dealing with air pollution and other environmental problems faced by developing and developed societies. This research examines if technological solutions alone, such as end-of-pipe ...

Vijay, Samudra, 1968-

2005-01-01T23:59:59.000Z

278

New Air Cleaning Strategies for Reduced Commercial Building Ventilation Energy ? FY11 Final Report  

E-Print Network (OSTI)

activated carbon fiber (ACF) cloths, which can be deployedair during the day. The ACF media can be v regeneratedof VOC-free air with the ACF system is only 2-15% of the

Sidheswaran, Meera

2013-01-01T23:59:59.000Z

279

Multi-Pollutant Emissions Control: Pilot Plant Study of Technologies for Reducing Hg, SO3, NOx and CO2 Emissions  

SciTech Connect

A slipstream pilot plant was built and operated to investigate technology to adsorb mercury (Hg) onto the existing particulate (i.e., fly ash) by cooling flue gas to 200-240 F with a Ljungstrom-type air heater or with water spray. The mercury on the fly ash was then captured in an electrostatic precipitator (ESP). An alkaline material, magnesium hydroxide (Mg(OH){sub 2}), is injected into flue gas upstream of the air heater to control sulfur trioxide (SO{sub 3}), which prevents acid condensation and corrosion of the air heater and ductwork. The slipstream was taken from a bituminous coal-fired power plant. During this contract, Plant Design and Construction (Task 1), Start Up and Maintenance (Task 2), Baseline Testing (Task 3), Sorbent Testing (Task 4), Parametric Testing (Task 5), Humidification Tests (Task 6), Long-Term Testing (Task 7), and a Corrosion Study (Task 8) were completed. The Mercury Stability Study (Task 9), ESP Report (Task 11), Air Heater Report (Task 12) and Final Report (Task 14) were completed. These aspects of the project, as well as progress on Public Outreach (Task 15), are discussed in detail in this final report. Over 90% mercury removal was demonstrated by cooling the flue gas to 200-210 F at the ESP inlet; baseline conditions with 290 F flue gas gave about 26% removal. Mercury removal is sensitive to flue gas temperature and carbon content of fly ash. At 200-210 F, both elemental and oxidized mercury were effectively captured at the ESP. Mg(OH){sub 2} injection proved effective for removal of SO{sub 3} and eliminated rapid fouling of the air heater. The pilot ESP performed satisfactorily at low temperature conditions. Mercury volatility and leaching tests did not show any stability problems. No significant corrosion was detected at the air heater or on corrosion coupons at the ESP. The results justify larger-scale testing/demonstration of the technology. These conclusions are presented and discussed in two presentations given in July and September of 2005 and are included in Appendices E and F.

Michael L. Fenger; Richard A. Winschel

2005-08-31T23:59:59.000Z

280

Using Cool Roofs to Reduce Energy Use, Greenhouse Gas Emissions, and Urban Heat-island Effects: Findings from an India Experiment  

Science Conference Proceedings (OSTI)

Cool roofs, cool pavements, and urban vegetation reduce energy use in buildings, lower local air pollutant concentrations, and decrease greenhouse gas emissions from urban areas. This report summarizes the results of a detailed monitoring project in India and related simulations of meteorology and air quality in three developing countries. The field results quantified direct energy savings from installation of cool roofs on individual commercial buildings. The measured annual energy savings potential from roof-whitening of previously black roofs ranged from 20-22 kWh/m2 of roof area, corresponding to an air-conditioning energy use reduction of 14-26% in commercial buildings. The study estimated that typical annual savings of 13-14 kWh/m2 of roof area could be achieved by applying white coating to uncoated concrete roofs on commercial buildings in the Metropolitan Hyderabad region, corresponding to cooling energy savings of 10-19%. With the assumption of an annual increase of 100,000 square meters of new roof construction for the next 10 years in the Metropolitan Hyderabad region, the annual cooling energy savings due to whitening concrete roof would be 13-14 GWh of electricity in year ten alone, with cumulative 10-year cooling energy savings of 73-79 GWh for the region. The estimated savings for the entire country would be at least 10 times the savings in Hyderabad, i.e., more than 730-790 GWh. We estimated that annual direct CO2 reduction associated with reduced energy use would be 11-12 kg CO2/m2 of flat concrete roof area whitened, and the cumulative 10-year CO2 reduction would be approximately 0.60-0.65 million tons in India. With the price of electricity estimated at seven Rupees per kWh, the annual electricity savings on air-conditioning would be approximately 93-101 Rupees per m2 of roof. This would translate into annual national savings of approximately one billion Rupees in year ten, and cumulative 10-year savings of over five billion Rupees for cooling energy in India. Meteorological simulations in this study indicated that a reduction of 2C in air temperature in the Hyderabad area would be likely if a combination of increased surface albedo and vegetative cover are used as urban heat-island control strategies. In addition, air-temperature reductions on the order of 2.5-3.5C could be achieved if moderate and aggressive heat-island mitigation measures are adopted, respectively. A large-scale deployment of mitigation measures can bring additional indirect benefit to the urban area. For example, cooling outside air can improve the efficiency of cooling systems, reduce smog and greenhouse gas (GHG) emissions, and indirectly reduce pollution from power plants - all improving environmental health quality. This study has demonstrated the effectiveness of cool-roof technology as one of the urban heat-island control strategies for the Indian industrial and scientific communities and has provided an estimate of the national energy savings potential of cool roofs in India. These outcomes can be used for developing cool-roof building standards and related policies in India. Additional field studies, built upon the successes and lessons learned from this project, may be helpful to further confirm the scale of potential energy savings from the application of cooler roofs in various regions of India. In the future, a more rigorous meteorological simulation using urbanized (meso-urban) meteorological models should be conducted, which may produce a more accurate estimate of the air-temperature reductions for the entire urban area.

Akbari, Hashem; Xu, Tengfang; Taha, Haider; Wray, Craig; Sathaye, Jayant; Garg, Vishal; Tetali, Surekha; Babu, M. Hari; Reddy, K. Niranjan

2011-05-25T23:59:59.000Z

Note: This page contains sample records for the topic "reduce air emissions" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

Abatement of Air Pollution: Control of Particulate Matter and Visible Emissions (Connecticut)  

Energy.gov (U.S. Department of Energy (DOE))

These regulations set emissions opacity standards for stationary sources with opacity continuous emissions monitoring equipment, stationary sources without such equipment, and mobile sources. The...

282

Air Pollution Control Regulations: No. 7- Emission of Air Contaminants Detrimental to Person or Property (Rhode Island)  

Energy.gov (U.S. Department of Energy (DOE))

No person shall emit any contaminant which either alone or in connection with other emissions, by reason of their concentration or duration, may be injurious to human, plant or animal life, or...

283

Non-Incineration Treatment to Reduce Benzene and VOC Emissions from Green Sand Molding Systems  

SciTech Connect

Final report describing laboratory, pilot scale and production scale evaluation of advanced oxidation systems for emissions and cost reduction in metal casting green sand systems.

Fred S. Cannon; Robert C. Voigt

2002-06-28T23:59:59.000Z

284

Reducing Emissions of Sulfur Dioxide, Nitrogen Oxides, and Mercury from Electric Power Plants  

Reports and Publications (EIA)

This analysis responds to a request from Senators Bob Smith, George Voinovich, and Sam Brownback to examine the costs of specific multi-emission reduction strategies

J. Alan Beamon

2001-10-01T23:59:59.000Z

285

Effectiveness of Diesel Oxidation Catalyst in Reducing HC and CO Emissions from Reactivity Controlled Compression Ignition  

SciTech Connect

Reactivity Controlled Compression Ignition (RCCI) has been shown to allow for diesel-like or better brake thermal efficiency with significant reductions in nitrogen oxide (NOX) particulate matter (PM) emissions. Hydrocarbon (HC) and carbon monoxide (CO) emission levels, on the other hand, are similar to those of port fuel injected gasoline engines. The higher HC and CO emissions combined with the lower exhaust temperatures with RCCI operation present a challenge for current exhaust aftertreatments. The reduction of HC and CO emissions in a lean environment is typically achieved with an oxidation catalyst. In this work, several diesel oxidation catalysts (DOC) with different precious metal loadings were evaluated for effectiveness to control HC and CO emissions from RCCI combustion in a light-duty multi-cylinder engine operating on gasoline and diesel fuels. Each catalyst was evaluated in a steady-state engine operation with temperatures ranging from 160 to 260 C. A shift to a higher light-off temperature was observed during the RCCI operation. In addition to the steady-state experiments, the performances of the DOCs were evaluated during multi-mode engine operation by switching from diesel-like combustion at higher exhaust temperature and low HC/CO emissions to RCCI combustion at lower temperature and higher HC/CO emissions. High CO and HC emissions from RCCI generated an exotherm keeping the catalyst above the light-off temperature.

Prikhodko, Vitaly Y [ORNL; Curran, Scott [ORNL; Parks, II, James E [ORNL; Wagner, Robert M [ORNL

2013-01-01T23:59:59.000Z

286

Opportunities for reducing volatile organic compound emissions in manufacturing office furniture partitions: a feasibility analysis  

Science Conference Proceedings (OSTI)

A feasibility analysis is reported of reduction opportunities for volatile organic compound (VOC) emissions in manufacturing office furniture partitions. The pollution prevention (P2) methodology as defined by the Ontario Ministry of the Environment ... Keywords: emissions, manufacturing, office furniture, pollution prevention, volatile organic compound

Frank S. Luisser; Marc A. Rosen

2009-02-01T23:59:59.000Z

287

Key Issues in the Design of NOx Emission Trading Programs to Reduce Ground-Level Ozone  

Science Conference Proceedings (OSTI)

As NOx control requirements grow more stringent and expensive, interest in emission trading as a means of controlling costs and increasing flexibility has risen. This report provides background information for and analysis of the design of emission trading programs for control of nitrogen oxides (NOx) from stationary sources, including fossil fuel electric generating plants.

1994-10-07T23:59:59.000Z

288

Air pollutant emissions prediction by process modelling - Application in the iron and steel industry in the case of a re-heating furnace  

Science Conference Proceedings (OSTI)

Monitoring air pollutant emissions of large industrial installations is necessary to ensure compliance with environmental legislation. Most of the available measurement techniques are expensive, and measurement conditions such as high-temperature emissions, ... Keywords: Artificial neural networks, CO2, Correlation method, Fume emissions, Multiple linear regression, NO2, Steelworks process modelling

Anda Ionescu; Yves Candau

2007-09-01T23:59:59.000Z

289

Comment on"Air Emissions Due to Wind and Solar Power" and Supporting Information  

SciTech Connect

Katzenstein and Apt investigate the important question of pollution emission reduction benefits from variable generation resources such as wind and solar. Their methodology, which couples an individual variable generator to a dedicated gas plant to produce a flat block of power is, however, inappropriate. For CO{sub 2}, the authors conclude that variable generators 'achieve {approx} 80% of the emission reductions expected if the power fluctuations caused no additional emissions.' They find even lower NO{sub x} emission reduction benefits with steam-injected gas turbines and a 2-4 times net increase in NO{sub x} emissions for systems with dry NO{sub x} control unless the ratio of energy from natural gas to variable plants is greater than 2:1. A more appropriate methodology, however, would find a significantly lower degradation of the emissions benefit than suggested by Katzenstein and Apt. As has been known for many years, models of large power system operations must take into account variable demand and the unit commitment and economic dispatch functions that are practiced every day by system operators. It is also well-known that every change in wind or solar power output does not need to be countered by an equal and opposite change in a dispatchable resource. The authors recognize that several of their assumptions to the contrary are incorrect and that their estimates therefore provide at best an upper bound to the emissions degradation caused by fluctuating output. Yet they still present the strong conclusion: 'Carbon dioxide emissions reductions are likely to be 75-80% of those presently assumed by policy makers. We have shown that the conventional method used to calculate emissions is inaccurate, particularly for NO{sub x} emissions.' The inherently problematic methodology used by the authors makes such strong conclusions suspect. Specifically, assuming that each variable plant requires a dedicated natural gas backup plant to create a flat block of power ignores the benefits of diversity. In real power systems, operators are required to balance only the net variations of all loads and all generators, not the output of individual loads or generators; doing otherwise would ensure an enormous amount of unnecessary investment and operating costs. As a result, detailed studies that aggregate the variability of all loads and generators to the system level find that the amount of operating reserves required to reliably integrate variable resources into the grid are on the order of 10% of the nameplate capacity of the variable generators, even when upto25%of gross demand is being met by variable generation. The authors implicit assumption that incremental operating reserves must be 100% of the nameplate capacity of the variable generation, and be available at all times to directly counter that variability, excludes the option of decommitting conventional units when the load net of variable generation is low. In real power systems, generation response to wind variation can typically be met by a combination of committed units, each operating at a relatively efficient point of their fuel curves. In the Supporting Information, we conceptually demonstrate that the CO{sub 2} and NO{sub x} efficiency penalty found by the authors can be significantly reduced by considering the unit commitment decision with just five plants. Real systems often have tens to hundreds of plants that can be committed and decommitted over various time frames. Ignoring the flexibility of the unit commitment decision therefore leads to unsupportable results. Anumber of analyses of the fuel savings and CO{sub 2} emission benefits of variable generation have considered realistic operating reserve requirements and unit commitment decisions in models that include the reduction in part load efficiency of conventional plants. The efficiency penalty due to the variability of wind in four studies considered by Gross et al. is negligible to 7%, for up to a 20% wind penetration level. In short, for moderate wind penetration levels, 'there is no evidence available to

Mills, Andrew D.; Wiser, Ryan H.; Milligan, Michael; O'Malley, Mark

2009-03-18T23:59:59.000Z

290

Comment on"Air Emissions Due to Wind and Solar Power" and Supporting Information  

Science Conference Proceedings (OSTI)

Katzenstein and Apt investigate the important question of pollution emission reduction benefits from variable generation resources such as wind and solar. Their methodology, which couples an individual variable generator to a dedicated gas plant to produce a flat block of power is, however, inappropriate. For CO{sub 2}, the authors conclude that variable generators 'achieve {approx} 80% of the emission reductions expected if the power fluctuations caused no additional emissions.' They find even lower NO{sub x} emission reduction benefits with steam-injected gas turbines and a 2-4 times net increase in NO{sub x} emissions for systems with dry NO{sub x} control unless the ratio of energy from natural gas to variable plants is greater than 2:1. A more appropriate methodology, however, would find a significantly lower degradation of the emissions benefit than suggested by Katzenstein and Apt. As has been known for many years, models of large power system operations must take into account variable demand and the unit commitment and economic dispatch functions that are practiced every day by system operators. It is also well-known that every change in wind or solar power output does not need to be countered by an equal and opposite change in a dispatchable resource. The authors recognize that several of their assumptions to the contrary are incorrect and that their estimates therefore provide at best an upper bound to the emissions degradation caused by fluctuating output. Yet they still present the strong conclusion: 'Carbon dioxide emissions reductions are likely to be 75-80% of those presently assumed by policy makers. We have shown that the conventional method used to calculate emissions is inaccurate, particularly for NO{sub x} emissions.' The inherently problematic methodology used by the authors makes such strong conclusions suspect. Specifically, assuming that each variable plant requires a dedicated natural gas backup plant to create a flat block of power ignores the benefits of diversity. In real power systems, operators are required to balance only the net variations of all loads and all generators, not the output of individual loads or generators; doing otherwise would ensure an enormous amount of unnecessary investment and operating costs. As a result, detailed studies that aggregate the variability of all loads and generators to the system level find that the amount of operating reserves required to reliably integrate variable resources into the grid are on the order of 10% of the nameplate capacity of the variable generators, even when upto25%of gross demand is being met by variable generation. The authors implicit assumption that incremental operating reserves must be 100% of the nameplate capacity of the variable generation, and be available at all times to directly counter that variability, excludes the option of decommitting conventional units when the load net of variable generation is low. In real power systems, generation response to wind variation can typically be met by a combination of committed units, each operating at a relatively efficient point of their fuel curves. In the Supporting Information, we conceptually demonstrate that the CO{sub 2} and NO{sub x} efficiency penalty found by the authors can be significantly reduced by considering the unit commitment decision with just five plants. Real systems often have tens to hundreds of plants that can be committed and decommitted over various time frames. Ignoring the flexibility of the unit commitment decision therefore leads to unsupportable results. Anumber of analyses of the fuel savings and CO{sub 2} emission benefits of variable generation have considered realistic operating reserve requirements and unit commitment decisions in models that include the reduction in part load efficiency of conventional plants. The efficiency penalty due to the variability of wind in four studies considered by Gross et al. is negligible to 7%, for up to a 20% wind penetration level. In short, for moderate wind penetration levels, 'there is no evidence available to

Mills, Andrew D.; Wiser, Ryan H.; Milligan, Michael; O'Malley, Mark

2009-03-18T23:59:59.000Z

291

Using Compressed Air Efficiency Projects to Reduce Peak Industrial Electric Demands: Lessons Learned  

E-Print Network (OSTI)

"To help customers respond to the wildly fluctuating energy markets in California, Pacific Gas & Electric (PG&E) initiated an emergency electric demand reduction program in October 2000 to cut electric use during peak periods. One component of that wide-ranging program focused on industrial compressed air systems as the target for such electric use reductions. What stands out about the compressed air effort is that customer acceptance of the program was very high (8 out of 10 customer sites implemented at least some of the efficiency projects recommended in the program's air system audits) and overall savings levels were more than 3X the original program goal (550 kW vs. 1730 kW). XENERGY, Inc. designed and carried out the program on behalf of PG&E. Key features of the program included working with compressed air system distributors to identify and qualify good customer leads and post-audit technical assistance to help customer implement recommended projects. This paper reviews the project and outlines some of the lessons learned in completing the project."

Skelton, J.

2003-04-01T23:59:59.000Z

292

Modeling the Capacity and Emissions Impacts of Reduced Electricity Demand. Part 1. Methodology and Preliminary Results.  

E-Print Network (OSTI)

Impacts of Reduced Electricity Demand. Part 1. MethodologyImpacts of Reduced Electricity Demand. Part 1. MethodologyFigure 3: Commercial electricity demand with and without the

Coughlin, Katie

2013-01-01T23:59:59.000Z

293

Updated greenhouse gas and criteria air pollutant emission factors and their probability distribution functions for electricity generating units  

Science Conference Proceedings (OSTI)

Greenhouse gas (CO{sub 2}, CH{sub 4} and N{sub 2}O, hereinafter GHG) and criteria air pollutant (CO, NO{sub x}, VOC, PM{sub 10}, PM{sub 2.5} and SO{sub x}, hereinafter CAP) emission factors for various types of power plants burning various fuels with different technologies are important upstream parameters for estimating life-cycle emissions associated with alternative vehicle/fuel systems in the transportation sector, especially electric vehicles. The emission factors are typically expressed in grams of GHG or CAP per kWh of electricity generated by a specific power generation technology. This document describes our approach for updating and expanding GHG and CAP emission factors in the GREET (Greenhouse Gases, Regulated Emissions, and Energy Use in Transportation) model developed at Argonne National Laboratory (see Wang 1999 and the GREET website at http://greet.es.anl.gov/main) for various power generation technologies. These GHG and CAP emissions are used to estimate the impact of electricity use by stationary and transportation applications on their fuel-cycle emissions. The electricity generation mixes and the fuel shares attributable to various combustion technologies at the national, regional and state levels are also updated in this document. The energy conversion efficiencies of electric generating units (EGUs) by fuel type and combustion technology are calculated on the basis of the lower heating values of each fuel, to be consistent with the basis used in GREET for transportation fuels. On the basis of the updated GHG and CAP emission factors and energy efficiencies of EGUs, the probability distribution functions (PDFs), which are functions that describe the relative likelihood for the emission factors and energy efficiencies as random variables to take on a given value by the integral of their own probability distributions, are updated using best-fit statistical curves to characterize the uncertainties associated with GHG and CAP emissions in life-cycle modeling with GREET.

Cai, H.; Wang, M.; Elgowainy, A.; Han, J. (Energy Systems)

2012-07-06T23:59:59.000Z

294

Magnitude and value of electric vehicle emissions reductions for six driving cycles in four US cities with varying air quality problems  

DOE Green Energy (OSTI)

The emissions of logically competing mid-1990 gasoline vehicles (GVs) and electric vehicles (EVs) are estimated as if the vehicles were driven in the same pattern of driving. Six different driving cycles are evaluated, ranging in speed from 7 to 49 miles per hour (mph). These steps are repeated using specifics of fuel composition, electric power mix, and environmental conditions applicable to Chicago, Denver, Los Angeles, and New York in the month of July. The year 2000 emissions differences for each of four regulated pollutants - HC, CO, NO{sub x,} SO{sub x} - are estimated. CO{sub 2} emissions are also estimated. With use of EVs, HC and CO emissions are consistently lowered by 98% or more. CO{sub 2} emissions reductions are uniformly large at low speed, but variable at high speed. It is found that initially introduced EVs could achieve 100% emission reductions in Chicago by using off-peak power from nuclear power plants for EV electricity generation. Emissions reductions occur for all combinations in Los Angeles, and for most combinations in New York, excepting SO{sub x}. NO{sub x} emissions are reduced in all four cities. An ``avoided cost`` value for each regulated pollutant is estimated for each of the cities. The values for each city depend on severity of air quality violations. It is estimated that the emissions reduction value of EVs driven an average of one and one half hours per day in Los Angeles ranges from $1050 to $3,900; $590 to $2100 in New York; $270 to $1200 in Chicago, and $330 to $1250 in Denver (1989$). Assuming a range of about 100 miles in congested conditions with speeds of 10 mph or less, the estimates range from $3600 to $13300 for Los Angeles; $2004 to $7200 for New York; $930 to $2930 for Chicago; and $1120 to $4290 for Denver. Low estimates are obtained using EPA`s draft Mobile5 model for GV emissions, high values by using California`s EMFAC7EP-SCF1 model. The dollar value benefit estimates include no economic value.

Wang, Q. [California Univ., Davis, CA (United States); Santini, D.L. [Argonne National Lab., IL (United States)

1992-12-31T23:59:59.000Z

295

Magnitude and value of electric vehicle emissions reductions for six driving cycles in four US cities with varying air quality problems  

DOE Green Energy (OSTI)

The emissions of logically competing mid-1990 gasoline vehicles (GVs) and electric vehicles (EVs) are estimated as if the vehicles were driven in the same pattern of driving. Six different driving cycles are evaluated, ranging in speed from 7 to 49 miles per hour (mph). These steps are repeated using specifics of fuel composition, electric power mix, and environmental conditions applicable to Chicago, Denver, Los Angeles, and New York in the month of July. The year 2000 emissions differences for each of four regulated pollutants - HC, CO, NO[sub x,] SO[sub x] - are estimated. CO[sub 2] emissions are also estimated. With use of EVs, HC and CO emissions are consistently lowered by 98% or more. CO[sub 2] emissions reductions are uniformly large at low speed, but variable at high speed. It is found that initially introduced EVs could achieve 100% emission reductions in Chicago by using off-peak power from nuclear power plants for EV electricity generation. Emissions reductions occur for all combinations in Los Angeles, and for most combinations in New York, excepting SO[sub x]. NO[sub x] emissions are reduced in all four cities. An avoided cost'' value for each regulated pollutant is estimated for each of the cities. The values for each city depend on severity of air quality violations. It is estimated that the emissions reduction value of EVs driven an average of one and one half hours per day in Los Angeles ranges from $1050 to $3,900; $590 to $2100 in New York; $270 to $1200 in Chicago, and $330 to $1250 in Denver (1989$). Assuming a range of about 100 miles in congested conditions with speeds of 10 mph or less, the estimates range from $3600 to $13300 for Los Angeles; $2004 to $7200 for New York; $930 to $2930 for Chicago; and $1120 to $4290 for Denver. Low estimates are obtained using EPA's draft Mobile5 model for GV emissions, high values by using California's EMFAC7EP-SCF1 model. The dollar value benefit estimates include no economic value.

Wang, Q. (California Univ., Davis, CA (United States)); Santini, D.L. (Argonne National Lab., IL (United States))

1992-01-01T23:59:59.000Z

296

Optimizing Technology to Reduce Mercury and Acid Gas Emissions from Electric Power Plants  

DOE Green Energy (OSTI)

County-average hydrogen values are calculated for the part 2, 1999 Information Collection Request (ICR) coal-quality data, published by the U.S. Environmental Protection Agency. These data are used together with estimated, county-average moisture values to calculate average net heating values for coal produced in U.S. counties. Finally, 10 draft maps of the contiguous U.S. showing the potential uncontrolled sulfur, chlorine and mercury emissions of coal by U.S. county-of-origin, as well as expected mercury emissions calculated for existing emission control technologies, are presented and discussed.

Jeffrey C. Quick; David E. Tabet; Sharon Wakefield; Roger L. Bon

2004-07-31T23:59:59.000Z

297

Overview of Subnational Programs to Reduce Emissions from Deforestation and Forest Degradation: (REDD) as Part of the Governors' Climate and Forests Task Force  

Science Conference Proceedings (OSTI)

Rapid reductions in global greenhouse gas (GHG) emissions will be needed if the nations of the world are to succeed in reducing the risks of climate change. Globally, tropical deforestation and land-use change causes approximately 15% of annual GHG emissions. Many scientists, economists, and policymakers agree that reducing tropical deforestation can significantly reduce GHG emissions in a cost-effective manner. Because the development of a new international climate treaty that could take effect when the...

2012-07-23T23:59:59.000Z

298

The impacts of aviation emissions on human health through changes in air quality and UV irradiance  

E-Print Network (OSTI)

World-wide demand for air transportation is rising steadily. The air transportation network may be limited by aviation's growing environmental impacts. These impacts take the form of climate impacts, noise impacts, and ...

Brunelle-Yeung, Elza

2009-01-01T23:59:59.000Z

299

Reducing Energy-Related CO2 Emissions Using Accelerated Limestone Weathering  

DOE Green Energy (OSTI)

Following earlier descriptions, the use and impacts of accelerated weathering of limestone AWL; reaction: CO{sub 2} + H{sub 2}O + CaCO{sub 3} {yields} Ca{sup 2+} + 2(HCO{sub 3}{sup -}) as a CO{sub 2} capture and sequestration method is further explored. Since ready access to the ocean is likely an essential requirement for AWL, it is shown that significant limestone resources are relatively close to a majority of CO{sub 2}-emitting power plants along the coastal US. Furthermore, waste fines, representing more than 20% of current US crushed limestone production (>10{sup 9} tonnes/yr), could be used in many instances as an inexpensive or free source of AWL carbonate. With limestone transportation to coastal sites then as the dominant cost variable, CO{sub 2} sequestration (plus capture) costs of $3-$4/tonne are achievable in certain locations. While there is vastly more limestone and water on earth than that required for AWL to capture and sequester all fossil fuel CO{sub 2} production, the transportation cost of bringing limestone, seawater, and waste CO{sub 2} into contact likely limits the method's applicability to perhaps 10-20% of US point-source emissions. Using a bench-scale laboratory reactor, it is shown that CO{sub 2} sequestration rates of 10{sup -6} to 10{sup -5} moles/sec per m{sup 2} of limestone surface area are readily achievable using seawater. This translates into reaction densities as high as 2 x 10{sup -2} tonnes CO{sub 2} m{sup -3}day{sup -1}, highly dependent on limestone particle size, solution turbulence and flow, and CO{sub 2} concentration. Modeling of AWL end-solution disposal in the ocean shows significantly reduced effects on ocean pH and carbonate chemistry relative to those caused by direct CO{sub 2} disposal into the atmosphere or ocean. In fact the increase in ocean Ca{sup 2+} and bicarbonate offered by AWL should significantly enhance the growth of corals and other marine calcifiers whose health is currently being threatened by anthropogenic CO{sub 2} invasion and pH reduction in the ocean.

Rau, G H; Knauss, K G; Langer, W H; Caldeira, K

2004-04-27T23:59:59.000Z

300

Research and design work on heat emission and aerodynamic resistance of tube bundles in air cooling equipment  

SciTech Connect

Results of studies of heat emission using methods of local and global thermal simulation of crossflow small-array bundles of tubes finned with wound aluminum strip, and flared into the load-bearing wall, are reported. Correction factors applicable to the method of simulating convective heat transfer over the range Re = (2.5-25).10/sup 3/ are given, with variation in the number of rows over the air course from one to four.

Kuntysh, V.B.; Fedotova, L.M.

1983-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "reduce air emissions" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

Radioactive air emissions program notice of construction, rotary mode core-sampling truck and exhauster  

SciTech Connect

Efforts have been ongoing to obtain core samples from the contents of each of the Hanford Site`s 149 single-shell tanks (SSTs). The SSTs contain various amounts and combinations of liquid, sludge, and saltcake. Existing sampling equipment is unable to retrieve samples of hardened waste within established tank safety restrictions (particularly limits on temperature). A new rotary mode core-sampling system has been designed to sample tanks containing hardened wastes. The prominent feature of this new system is the use of a nitrogen gas purge. The nitrogen gas purge will cool the drill bit and prevent cross contamination of different waste layers in the tank. The nitrogen gas purge will also allow more complete sample recovery, by clearing cuttings that might otherwise obstruct the sampler or drill bit. Nitrogen was chosen over other compressed gases for its inherent safety. Many of the tanks to be sampled with the rotary mode core-sampling system are not actively ventilated, these tanks are operated at atmospheric pressure with passive (breather) high-efficiency particulate air (HEPA) filters. Unless a ventilation system of the proper capacity is used, addition of the nitrogen purge gas to SSTs will cause the tanks to pressurize. Additionally, the use of the rotary mode core-sampling system will generate aerosols and dusts potentially containing radioactive particles in the tank vapor space. Consequently, an exhauster will be required during operation of the rotary mode core-sampling system on SSTs to prevent tank pressurization and to control emissions. This exhauster will be required to be moved from tank farm to tank farm with the rotary mode core-sampling system.

Not Available

1993-05-01T23:59:59.000Z

302

Quantifying emissions reductions from New England offshore wind energy resources  

E-Print Network (OSTI)

Access to straightforward yet robust tools to quantify the impact of renewable energy resources on air emissions from fossil fuel power plants is important to governments aiming to improve air quality and reduce greenhouse ...

Berlinski, Michael Peter

2006-01-01T23:59:59.000Z

303

Adjoint sensitivity analysis of the intercontinental impacts of aviation emissions on air quality and health  

E-Print Network (OSTI)

Over 10,000 premature mortalities per year globally are attributed to the exposure to particulate matter caused by aircraft emissions. Unlike previous studies that focus on the regional impacts from the aircraft emissions ...

Koo, Jamin

2011-01-01T23:59:59.000Z

304

Assessing Natural Isothiocyanate Air Emissions after Field Incorporation of Mustard Cover Crop  

Science Conference Proceedings (OSTI)

A regional air assessment was performed to characterize volatile natural isothiocyanate (NITC) compounds in air during soil incorporation of mustard cover crops in Washington State. Field air sampling and analytical methods were developed specific to three NITCs known to be present in air at appreciable concentrations during/after field incorporation. The maximum observed concentrations in air for the allyl, benzyl, and phenethyl isothiocyanates were respectively 188, 6.1, and 0.7 lg m-3 during mustard incorporation. Based on limited inhalation toxicity information, airborne NITC concentrations did not appear to pose an acute human inhalation exposure concern to field operators and bystanders.

Trott, Donna M.; LePage, Jane; Hebert, Vincent

2012-01-01T23:59:59.000Z

305

Life-cycle CO{sub 2} emissions for air-blown gasification combined-cycle using selexol  

SciTech Connect

Initiatives to limit carbon dioxide (CO{sub 2}) emissions have drawn considerable interest to integrated gasification combined-cycle (IGCC) power generation. With its higher efficiency, this process can reduce CO{sub 2} production. It is also amenable to CO{sub 2} capture, because CO{sub 2} Can be removed before combustion and the associated dilution with atmospheric nitrogen. This paper presents a process-design baseline that encompasses the IGCC system, CO{sub 2} transport -by pipeline, and land-based sequestering of CO{sub 2} in geological reservoirs. The intent of this study is to provide the CO{sub 2} budget, or an ``equivalent CO{sub 2}`` budget, associated with each of the individual energy-cycle steps. Design capital and operating costs for the process are included in the fill study but are not reported in the present paper. The value used for the equivalent CO{sub 2} budget will be 1 kg CO{sub 2}/kWh{sub e}. The base case is a 470-MW (at the busbar) IGCC system using an air-blown Kellogg Rust Westinghouse (KRW) agglomerating fluidized-bed gasifier, US Illinois {number_sign}6 bituminous coal feed, and in-bed sulfur removal. Mining, feed preparation, and conversion result in a net electric power production of 461 MW, with a CO{sub 2} release rate of 0.830 kg/kWh{sub e}. In the CO{sub 2} recovery case, the gasifier output is taken through water-gas shift and then to Selexol, a glycol-based absorber-stripper process that recovers CO{sub 2} before it enters the combustion turbine. This process results in 350 MW at the busbar.

Doctor, R.D.; Molburg, J.C.; Thimmapuram, P.; Berry, G.F.; Livengood, C.D.

1993-06-01T23:59:59.000Z

306

Methodology for the evaluation of natural ventilation in buildings using a reduced-scale air model  

E-Print Network (OSTI)

Commercial office buildings predominantly are designed to be ventilated and cooled using mechanical systems. In temperate climates, passive ventilation and cooling techniques can be utilized to reduce energy consumption ...

Walker, Christine E. (Christine Elaine)

2006-01-01T23:59:59.000Z

307

Air Pollution (Illinois)  

Energy.gov (U.S. Department of Energy (DOE))

This article states regulations for monitoring air pollution, methods for permit applications, emission limitations for pollutants and air quality standards.

308

Comparative life-cycle air emissions of coal, domestic natural gas, LNG, and SNG for electricity generation  

SciTech Connect

The U.S. Department of Energy (DOE) estimates that in the coming decades the United States' natural gas (NG) demand for electricity generation will increase. Estimates also suggest that NG supply will increasingly come from imported liquefied natural gas (LNG). Additional supplies of NG could come domestically from the production of synthetic natural gas (SNG) via coal gasification-methanation. The objective of this study is to compare greenhouse gas (GHG), SOx, and NOx life-cycle emissions of electricity generated with NG/LNG/SNG and coal. This life-cycle comparison of air emissions from different fuels can help us better understand the advantages and disadvantages of using coal versus globally sourced NG for electricity generation. Our estimates suggest that with the current fleet of power plants, a mix of domestic NG, LNG, and SNG would have lower GHG emissions than coal. If advanced technologies with carbon capture and sequestration (CCS) are used, however, coal and a mix of domestic NG, LNG, and SNG would have very similar life-cycle GHG emissions. For SOx and NOx we find there are significant emissions in the upstream stages of the NG/LNG life-cycles, which contribute to a larger range in SOx and NOx emissions for NG/LNG than for coal and SNG. 38 refs., 3 figs., 2 tabs.

Paulina Jaramillo; W. Michael Griffin; H. Scott Matthews [Carnegie Mellon University, Pittsburgh, PA (United States). Civil and Environmental Engineering Department

2007-09-15T23:59:59.000Z

309

The Potential for Energy-Efficient Technologies to Reduce Carbon Emissions in the United States: Transport Sector  

SciTech Connect

The world is searching for a meaningful answer to the likelihood that the continued build-up of greenhouse gases in the atmosphere will cause significant changes in the earth`s climate. If there is to be a solution, technology must play a central role. This paper presents the results of an assessment of the potential for cost-effective technological changes to reduce greenhouse gas emissions from the U.S. transportation sector by the year 2010. Other papers in this session address the same topic for buildings and industry. U.S.transportation energy use stood at 24.4 quadrillion Btu (Quads) in 1996, up 2 percent over 1995 (U.S. DOE/EIA, 1997, table 2.5). Transportation sector carbon dioxide emissions amounted to 457.2 million metric tons of carbon (MmtC) in 1995, almost one third of total U.S. greenhouse gas emissions (U.S. DOE/EIA,1996a, p. 12). Transport`s energy use and CO{sub 2} emissions are growing, apparently at accelerating rates as energy efficiency improvements appear to be slowing to a halt. Cost-effective and nearly cost-effective technologies have enormous potential to slow and even reverse the growth of transport`s CO{sub 2} emissions, but technological changes will take time and are not likely to occur without significant, new public policy initiatives. Absent new initiatives, we project that CO{sub 2} emissions from transport are likely to grow to 616 MmtC by 2010, and 646 MmtC by 2015. An aggressive effort to develop and implement cost-effective technologies that are more efficient and fuels that are lower in carbon could reduce emissions by about 12% in 2010 and 18% in 2015, versus the business-as- usual projection. With substantial luck, leading to breakthroughs in key areas, reductions over the BAU case of 17% in 2010 and 25% in 2015,might be possible. In none of these case are CO{sub 2} emissions reduced to 1990 levels by 2015.

Greene, D.L.

1997-07-01T23:59:59.000Z

310

1997 Idaho National Engineering and Environmental Laboratory (INEEL) National Emission Standards for Hazardous Air Pollutants (NESHAPs) -- Radionuclides annual report  

Science Conference Proceedings (OSTI)

Under Section 61.94 of Title 40, Code of Federal Regulations (CFR), Part 61, Subpart H, National Emission Standards for Emissions of Radionuclides Other Than Radon From Department of Energy Facilities, each Department of Energy (DOE) facility must submit an annual report documenting compliance. This report addresses the Section 61.94 reporting requirements for operations at the Idaho National Engineering and Environmental Laboratory (INEEL) for calendar year (CY) 1997. Section 1 of this report provides an overview of the INEEL facilities and a brief description of the radioactive materials and processes at the facilities. Section 2 identifies radioactive air effluent release points and diffuse sources at the INEEL and actual releases during 1997. Section 2 also describes the effluent control systems for each potential release point. Section 3 provides the methodology and EDE calculations for 1997 INEEL radioactive emissions.

NONE

1998-06-01T23:59:59.000Z

311

Air permitting of IGCC plants  

SciTech Connect

The IGCC process is, currently, the preferred choice over conventional thermal power production in regard to cleanup of fuel and significantly reduced contaminant emissions. The air permitting requirements include the review of: feed preparation and PM emissions; feed gasification and contaminant emissions; elemental sulfur recovery and SO{sub 2} emissions; options for carbon-dioxide recovery; syngas characteristics for combustion; CT design and combustion mechanisms; air contaminant emissions of CT; controlled CT emissions of nitrogen-oxides and carbon-monoxide gases using the SCR and oxidation catalysts, respectively; and, emission of volatile organic compounds (VOCs), and hazardous air pollutants (HAPs). However, the IGCC processes are being rigorously reviewed for the system integration and reliability, and significant reduction of air contaminant emissions (including the greenhouse gases). This paper included a review of IGCC air contaminant emission rates, and various applicable regulatory requirements, such as NSR (New Source Review), NSPS (New Source Performance Standards), and MACT (Maximum Achievable Control Technology). The IGCC facility's NOX, CO, SO{sub 2}, PM, VOCs, and HAPs emission rates would be significantly low. Thus, effective, construction and installation, and operation air permits would be necessary for IGCC facilities.

Chitikela, S.R.

2007-07-01T23:59:59.000Z

312

Nonlinear propagation of a high-power focused femtosecond laser pulse in air under atmospheric and reduced pressure  

Science Conference Proceedings (OSTI)

This paper examines the propagation of focused femtosecond gigawatt laser pulses in air under normal and reduced pressure in the case of Kerr self-focusing and photoionisation of the medium. The influence of gas density on the beam dimensions and power and the electron density in the plasma column in the nonlinear focus zone of the laser beam has been studied experimentally and by numerical simulation. It has been shown that, in rarefied air, the radiation-induced reduction in the rate of plasma formation diminishes the blocking effect of the plasma on the growth of the beam intensity in the case of tight focusing. This allows higher power densities of ultrashort laser pulses to be reached in the focal waist region in comparison with beam self-focusing under atmospheric pressure.

Geints, Yu E; Zemlyanov, A A; Ionin, Andrei A; Kudryashov, Sergei I; Seleznev, L V; Sinitsyn, D V; Sunchugasheva, E S

2012-04-30T23:59:59.000Z

313

Key Issues in Designing Mechanisms to Reduce Greenhouse Gas Emissions from Deforestation and Degradation (REDD)  

Science Conference Proceedings (OSTI)

In 2008, EPRI launched the EPRI Greenhouse Gas (GHG) Emissions Offset Policy Dialogue project. The goals of this project are 1) to inform key constituencies involved in the development of U.S. climate mitigation strategies and policies about GHG emissions offset–related policies and design issues and 2) to provide a forum in which representatives of key sectors of the U.S. economy and communities involved in the ongoing development and debate on climate change policies can discuss these issues. On May 13...

2009-07-13T23:59:59.000Z

314

Will Economic Restructuring in China Reduce Trade-Embodied CO2 Emissions?  

E-Print Network (OSTI)

We calculate CO2 emissions embodied in China’s net exports using a multi-regional input-output database. We find that the majority of China’s export-embodied CO2 is associated with production of machinery and equipment ...

Qi, Tianyu

315

Water efficiency in buildings: assessment of its impact on energy efficiency and reducing GHG emissions  

Science Conference Proceedings (OSTI)

Nowadays humanity uses about 50% of existing drinking-water, but in the next 15 years this percentage will reach 75%. Consequently, hydric stress risk will rise significantly across the entire planet. Accordingly, several countries will have to apply ... Keywords: GHG emissions, efficient water devices, energy efficiency, hydric efficiency

A. Silva-Afonso; F. Rodrigues; C. Pimentel-Rodrigues

2011-02-01T23:59:59.000Z

316

Hydration of Gases to Reduce Major Greenhouse Gases Emission into the Atmosphere  

Science Conference Proceedings (OSTI)

A technology on replacement methane (CH4) from natural gas hydrate (NGH) with carbon dioxide (CO2) is described. And the technology is demonstrated in theoretics and experiment, respectively. Moreover, combined with the main emission channel of CH4 in ... Keywords: greenhouse effect, hydrate, CO2, CH4

Feng Xu; Lihua Zhu; Qiang Wu

2009-10-01T23:59:59.000Z

317

A conceptual framework for the evaluation of cost-effectiveness of projects to reduce GHG emissions and sequester carbon  

SciTech Connect

This paper proposes a conceptual framework for evaluating the cost of projects to reduce atmospheric greenhouse gases (GHGs). The evaluation of cost-effectiveness should account for both the timing of carbon emissions and the damage caused by the atmospheric stock of carbon. We develop a conceptual basis to estimate the cost-effectiveness of projects in terms of the cost of reducing atmospheric carbon (CRAC) and other GHGs. CRAC accounts for the economic discount rate, alternative functional forms of the shadow price, the residence period of carbon in the atmosphere, and the multiple monetary benefits of projects. The last item is of particular importance to the developing countries.

Sathaye, J.; Norgaard, R.; Makundi, W.

1993-07-01T23:59:59.000Z

318

Building Commissioning: A Golden Opportunity for Reducing Energy Costs and Greenhouse-gas Emissions  

E-Print Network (OSTI)

net median commissioning project cost was reduced by 49% oncommissioning project costs and savings. Commissioning isproportional to total project cost. The nature of activities

Mills, Evan

2010-01-01T23:59:59.000Z

319

Clean Cities Tools: Tools to Help You Drive Smarter, Use Less Petroleum, and Reduce Emissions (Brochure)  

DOE Green Energy (OSTI)

Clean Cities hosts a collection of calculators, interactive maps, and informational tools to assist fleets, fuel providers, and others looking to reduce petroleum consumption in the transportation sector.

Not Available

2010-03-01T23:59:59.000Z

320

Simulation of radio emission from air showers in atmospheric electric fields  

E-Print Network (OSTI)

emission is driven by the geomagnetic ?eld. When the showerand driven by the geomagnetic ?eld. The good angularmagnetic ?eld, causing the geomagnetic radiation to almost

Buitink, S.

2010-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "reduce air emissions" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

Comment on "Air Emissions Due to Wind and Solar Power" and Supporting Information  

E-Print Network (OSTI)

the NO x emission reduction of wind energy from a number ofand Renewable Energy (Wind & Hy- dropower Technologiesand Renewable Energy (Wind & Hy- dropower Technologies

Mills, Andrew D.

2011-01-01T23:59:59.000Z

322

The Clean Air Mercury Rule  

SciTech Connect

Coming into force on July 15, 2005, the US Clean Air Mercury Rule will use a market-based cap-and-trade approach under Section 111 of the Clean Air Act to reduce mercury emissions from the electric power sector. This article provides a comprehensive summary of the new rule. 14 refs., 2 tabs.

Michael Rossler [Edison Electric Institute, Washington, DC (US)

2005-07-01T23:59:59.000Z

323

THE IMPACT OF SHRINKING HANFORD BOUNDARIES ON PERMITS FOR TOXIC AIR POLLUTANT EMISSIONS FROM THE HANFORD 200 WEST AREA  

DOE Green Energy (OSTI)

This presentation (CE-580. Graduate Seminar) presents a brief description of an approach to use a simpler dispersion modeling method (SCREEN3) in conjunction with joint frequency tables for Hanford wind conditions to evaluate the impacts of shrinking the Hanford boundaries on the current permits for facilities in the 200 West Area. To fulfill requirements for the graduate student project (CE-702. Master's Special Problems), this evaluation will be completed and published over the next two years. Air toxic emissions play an important role in environmental quality and require a state approved permit. One example relates to containers or waste that are designated as Transuranic Waste (TRU), which are required to have venting devices due to hydrogen generation. The Washington State Department of Ecology (Ecology) determined that the filters used did not meet the definition of a ''pressure relief device'' and that a permit application would have to be submitted by the Central Waste Complex (CWC) for criteria pollutant and toxic air pollutant (TAP) emissions in accordance with Washington Administrative Code (WAC) 173-400 and 173-460. The permit application submitted in 2000 to Ecology used Industrial Source Code III (ISCIII) dispersion modeling to demonstrate that it was not possible for CWC to release a sufficient quantity of fugitive Toxic Air Pollutant emissions that could exceed the Acceptable Source Impact Levels (ASILs) at the Hanford Site Boundary. The modeled emission rates were based on the diurnal breathing in and out through the vented drums (approximately 20% of the drums), using published vapor pressure, molecular weight, and specific gravity data for all 600+ compounds, with a conservative estimate of one exchange volume per day (208 liters per drum). Two permit applications were submitted also to Ecology for the Waste Receiving and Processing Facility and the T Plant Complex. Both permit applications were based on the Central Waste Complex approach, and relied on similar tracking requirements as at CWC. All three applications used ISCIII modeling, where unit release factors (lb/yr converted to g/s) were determined for estimating the highest 24-hr or annual average concentrations (in {micro}g/m{sup 3}), where the nearest public receptor was roughly 20 miles away. Plans to clean up and release portions of the Hanford Site over the next several decades would allow public access closer to these facilities in the 200 West Area. Before release of these areas, effectively shrinking the boundaries, the three permits would have to be re-evaluated to determine if toxic air pollutant emissions would remain below the ASILs if the restricted boundaries are moved closer than the current locations.

JOHNSON, R.E.

2005-11-09T23:59:59.000Z

324

Building Commissioning: A Golden Opportunity for Reducing Energy Costs and Greenhouse-gas Emissions  

SciTech Connect

The aim of commissioning new buildings is to ensure that they deliver, if not exceed, the performance and energy savings promised by their design. When applied to existing buildings, commissioning identifies the almost inevitable 'drift' from where things should be and puts the building back on course. In both contexts, commissioning is a systematic, forensic approach to quality assurance, rather than a technology per se. Although commissioning has earned increased recognition in recent years - even a toehold in Wikipedia - it remains an enigmatic practice whose visibility severely lags its potential. Over the past decade, Lawrence Berkeley National Laboratory has built the world's largest compilation and meta-analysis of commissioning experience in commercial buildings. Since our last report (Mills et al. 2004) the database has grown from 224 to 643 buildings (all located in the United States, and spanning 26 states), from 30 to 100 million square feet of floorspace, and from $17 million to $43 million in commissioning expenditures. The recorded cases of new-construction commissioning took place in buildings representing $2.2 billion in total construction costs (up from 1.5 billion). The work of many more commissioning providers (18 versus 37) is represented in this study, as is more evidence of energy and peak-power savings as well as cost-effectiveness. We now translate these impacts into avoided greenhouse gases and provide new indicators of cost-effectiveness. We also draw attention to the specific challenges and opportunities for high-tech facilities such as labs, cleanrooms, data centers, and healthcare facilities. The results are compelling. We developed an array of benchmarks for characterizing project performance and cost-effectiveness. The median normalized cost to deliver commissioning was $0.30/ft2 for existing buildings and $1.16/ft2 for new construction (or 0.4% of the overall construction cost). The commissioning projects for which data are available revealed over 10,000 energy-related problems, resulting in 16% median whole-building energy savings in existing buildings and 13% in new construction, with payback time of 1.1 years and 4.2 years, respectively. In terms of other cost-benefit indicators, median benefit-cost ratios of 4.5 and 1.1, and cash-on-cash returns of 91% and 23% were attained for existing and new buildings, respectively. High-tech buildings were particularly cost-effective, and saved higher amounts of energy due to their energy-intensiveness. Projects with a comprehensive approach to commissioning attained nearly twice the overall median level of savings and five-times the savings of the least-thorough projects. It is noteworthy that virtually all existing building projects were cost-effective by each metric (0.4 years for the upper quartile and 2.4 years for the lower quartile), as were the majority of new-construction projects (1.5 years and 10.8 years, respectively). We also found high cost-effectiveness for each specific measure for which we have data. Contrary to a common perception, cost-effectiveness is often achieved even in smaller buildings. Thanks to energy savings valued more than the cost of the commissioning process, associated reductions in greenhouse gas emissions come at 'negative' cost. In fact, the median cost of conserved carbon is negative - -$110 per tonne for existing buildings and -$25/tonne for new construction - as compared with market prices for carbon trading and offsets in the +$10 to +$30/tonne range. Further enhancing the value of commissioning, its non-energy benefits surpass those of most other energy-management practices. Significant first-cost savings (e.g., through right-sizing of heating and cooling equipment) routinely offset at least a portion of commissioning costs - fully in some cases. When accounting for these benefits, the net median commissioning project cost was reduced by 49% on average, while in many cases they exceeded the direct value of the energy savings. Commissioning also improves worker comfort, mitigates in

Mills, Evan

2009-07-16T23:59:59.000Z

325

Improvement to Air2Air Technology to Reduce Fresh-Water Evaporative Cooling Loss at Coal-Based Thermoelectric Power Plants  

Science Conference Proceedings (OSTI)

This program was undertaken to enhance the manufacturability, constructability, and cost of the Air2Air{TM} Water Conservation and Plume Abatement Cooling Tower, giving a validated cost basis and capability. Air2Air{TM} water conservation technology recovers a portion of the traditional cooling tower evaporate. The Condensing Module provides an air-to-air heat exchanger above the wet fill media, extracting the heat from the hot saturated moist air leaving in the cooling tower and condensing water. The rate of evaporate water recovery is typically 10% - 25% annually, depending on the cooling tower location (climate). This program improved the efficiency and cost of the Air2Air{TM} Water Conservation Cooling Tower capability, and led to the first commercial sale of the product, as described.

Ken Mortensen

2011-12-31T23:59:59.000Z

326

Ozone Modeling for Compliance Planning: A Synopsis of "The Use of Photochemical Air Quality Models for Evaluating Emission Control Strategies--A Synthesis Report"  

Science Conference Proceedings (OSTI)

The 1990 Clean Air Act Amendments require that many nonattainment areas use gridded, photochemical air quality models to develop compliance plans for meeting the ambient ozone standard. This report reviews the status of photochemical air models--the computer simulation programs that will be used to set emission control programs to meet ground level (tropospheric) ozone standards currently in use for regulatory planning. Regulatory application guidelines are discussed, as are the limitations and reliabili...

1993-02-01T23:59:59.000Z

327

Improving Energy Efficiency and Reducing Greenhouse Gas Emissions in BPs PTA Manufacturing Plants  

E-Print Network (OSTI)

BP is the world’s leading producer of purified terephthalic acid, or PTA, a commodity chemical used in the production of polyester. Through both self-help initiatives and innovations in our state-of-art process technology, the energy efficiency of our PTA manufacturing process has significantly improved over the past several years, which has translated into substantial decreases in greenhouse gas emissions across our global sites. The talk will provide a general overview of the PTA business and manufacturing process, as well as the enabling technology evolutions leading to this improved performance.

Clark, F.

2008-01-01T23:59:59.000Z

328

Beyond the Inventory: An Interagency Collaboration to Reduce Greenhouse Gas Emissions in the Greater Yellowstone Area  

Science Conference Proceedings (OSTI)

As one of the largest, intact ecosystems in the continental United States, land managers within the Greater Yellowstone Area (GYA) have recognized the importance of compiling and understanding agency greenhouse gas (GHG) emissions. The 10 Federal units within the GYA have taken an active role in compiling GHG inventories on a unit- and ecosystem-wide level, setting goals for GHG mitigation, and identifying mitigation strategies for achieving those goals. This paper details the processes, methodologies, challenges, solutions, and lessons learned by the 10 Federal units within the GYA throughout this ongoing effort.

Kandt, A.; Hotchkiss, E.; Fiebig, M.

2010-10-01T23:59:59.000Z

329

Upgrade of Compressed Air Control System Reduces Energy Costs at Michelin Tire Plant. Office of Industrial Technologies (OIT) BestPractices Project Case Study  

Science Conference Proceedings (OSTI)

This case study highlights the upgraded compressed air system at a Michelin tire manufacturing plant in Spartanburg, South Carolina. The controls upgrade project enabled multiple compressor operation without blow-off, and significantly reduced energy costs.

Not Available

2002-01-01T23:59:59.000Z

330

A study of the role of end-of-pipe technologies in reducing CO{sub 2} emissions  

SciTech Connect

Reducing CO{sub 2} emissions to cope with global warming is one of the most challenging issues for the global energy system in the 21st century. To deal with the tremendous challenge, long range global efforts should be promoted, keeping in mind the wide scope of technological possibilities. The main focus of the paper is placed on the role of CO{sub 2} removal and disposal technologies, which are typical end-of-pipe technologies in pollution control, in the global efforts to control emissions. The role of CO{sub 2} removal and disposal technologies should be, however, analyzed in a comprehensive framework for evaluating various technological options for CO{sub 2} abatement. New Earth 21 (NE21) model, a global energy model developed for CO{sub 2} technology assessment, is applied to the analysis with long range energy scenarios taken into account.

Yamaji, Kenji [Univ. of Tokyo (Japan). School of Engineering

1998-07-01T23:59:59.000Z

331

Energy conservation: The main factor for reducing greenhouse gas emissions in the former Soviet Union  

SciTech Connect

The energy intensity of the former Soviet Union is more than twice that of other market economics in similar stages of economic development. Low energy efficiency in the Soviet Union has contributed significantly to global carbon and other greenhouse gas emissions. The technological potential for energy conservation in the former Soviet Union is the largest in the world. The inefficiencies of the previously command-system economy, however, have provided little incentive for conserving energy. The present transition to a market-based economy should encourage the incorporation of energy-efficiency improvements in order for the former Soviet Union to successfully lower its energy intensity. There are several obstacles that limit implementing energy conservation: for example, energy prices and discount rates influence the volume of investment in energy efficiency. Nevertheless, cost-effective measures for energy conservative do exist even in the most energy-intensive sectors of the Soviet economy and should form the core of any energy conservation program. The overall cost-effective potential for carbon savings in the former Soviet Union is estimated to be 280 to 367 million tons of carbon per year by the year 2005, or 23 to 29 percent of 1988 energy-related emissions.

Bashmakov, I.A.; Chupyatov, V.P.

1991-12-01T23:59:59.000Z

332

The air quality impact of aviation in future-year emissions scenarios  

E-Print Network (OSTI)

The rapid growth of aviation is critical to the world and US economy, and it faces several important challenges among which lie the environmental impacts of aviation on noise, climate and air quality. The first objective ...

Ashok, Akshay

2011-01-01T23:59:59.000Z

333

Improving Air Quality with Solar Energy  

DOE Green Energy (OSTI)

This fact sheet series highlights how renewable energy and energy efficiency technologies can and are being used to reduce air emissions and meet environmental goals, showcasing case studies and technology-specific topics. This one focus on solar energy technologies.

Not Available

2008-04-01T23:59:59.000Z

334

Improving Air Quality with Solar Energy  

DOE R&D Accomplishments (OSTI)

This fact sheet series highlights how renewable energy and energy efficiency technologies can and are being used to reduce air emissions and meet environmental goals, showcasing case studies and technology-specific topics. This one focus on solar energy technologies.

2008-04-00T23:59:59.000Z

335

Greenhouse gas and air pollutant emission reduction potentials of renewable energy - case studies on photovoltaic and wind power introduction considering interactions among technologies in Taiwan  

SciTech Connect

To achieve higher energy security and lower emission of greenhouse gases (GHGs) and pollutants, the development of renewable energy has attracted much attention in Taiwan. In addition to its contribution to the enhancement of reliable indigenous resources, the introduction of renewable energy such as photovoltaic (PV) and wind power systems reduces the emission of GHGs and air pollutants by substituting a part of the carbon- and pollutant-intensive power with power generated by methods that are cleaner and less carbon-intensive. To evaluate the reduction potentials, consequential changes in the operation of different types of existing power plants have to be taken into account. In this study, a linear mathematical programming model is constructed to simulate a power mix for a given power demand in a power market sharing a cost-minimization objective. By applying the model, the emission reduction potentials of capacity extension case studies, including the enhancement of PV and wind power introduction at different scales, were assessed. In particular, the consequences of power mix changes in carbon dioxide, nitrogen oxides, sulfur oxides, and particulates were discussed. Seasonally varying power demand levels, solar irradiation, and wind strength were taken into account. In this study, we have found that the synergetic reduction of carbon dioxide emission induced by PV and wind power introduction occurs under a certain level of additional installed capacity. Investigation of a greater variety of case studies on scenario development with emerging power sources becomes possible by applying the model developed in this study. 15 refs., 8 figs., 11 tabs.

Yu-Ming Kuo; Yasuhiro Fukushima [National Cheng Kung University, Tainan City (Taiwan). Department of Environmental Engineering

2009-03-15T23:59:59.000Z

336

1996 Idaho National Engineering and Environmental Laboratory (INEEL) National Emissions Standards for Hazardous Air Pollutants (NESHAPs) -- Radionuclides. Annual report  

Science Conference Proceedings (OSTI)

Under Section 61.94 of Title 40, Code of Federal Regulations (CFR), Part 61, Subpart H, ``National Emission Standards for Emissions of Radionuclides Other Than Radon From Department of Energy Facilities,`` each Department of Energy (DOE) facility must submit an annual report documenting compliance. This report addresses the Section 61.94 reporting requirements for operations at the Idaho National Engineering and Environmental Laboratory (INEEL) for calendar year (CY) 1996. The Idaho Operations Office of the DOE is the primary contact concerning compliance with the National Emission Standards for Hazardous Air Pollutants (NESHAPs) at the INEEL. For calendar year 1996, airborne radionuclide emissions from the INEEL operations were calculated to result in a maximum individual dose to a member of the public of 3.14E-02 mrem (3.14E-07 Sievert). This effective dose equivalent (EDE) is well below the 40 CFR 61, Subpart H, regulatory standard of 10 mrem per year (1.0E-04 Sievert per year).

NONE

1997-06-01T23:59:59.000Z

337

Air Pollution Control Regulations: No. 6- Continuous Emissions Monitors and Opacity Monitors (Rhode Island)  

Energy.gov (U.S. Department of Energy (DOE))

Stationary sources, including fossil fuel fired steam or hot water generating units, may be required to install and operate a continuous emissions monitoring system equipped with an opacity monitor...

338

An Integrated Assessment of the Impacts of Hydrogen Economy on Transportation, Energy Use, and Air Emissions  

E-Print Network (OSTI)

demands for the years 2000–2030, utilizing 5-year timeby H 2 demand level in 2030. (b) Change of CO 2 emissions (H 2 -FCV penetration in 2030. The regression coefficients

Yeh, Sonia; Loughlin, Daniel H.; Shay, Carol; Gage, Cynthia

2007-01-01T23:59:59.000Z

339

Air Pollution Control Regulations: No. 3- Particulate Emissions from Industrial Processes (Rhode Island)  

Energy.gov (U.S. Department of Energy (DOE))

These regulations limit particulate emissions into the atmosphere by process weight per hour, where process weight is the total weight of all materials introduced into any specific process which...

340

Comment on "Air Emissions Due to Wind and Solar Power" and Supporting Information  

E-Print Network (OSTI)

due to wind and solar power. Environ. Sci. Technol. (2)Emissions Due to Wind and Solar Power” Andrew Mills, ? , †due to wind and solar power. Environ. Sci. Technol. (2)

Mills, Andrew D.

2011-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "reduce air emissions" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

Study of volatile organic compound emissions from consumer and commercial products. Economic incentives to reduce VOC emissions from consumer and commercial products  

Science Conference Proceedings (OSTI)

The report presents a preliminary assessment of the feasibility and desirability of employing Federal economic incentive programs to reduce volatile organic compound (VOC) emissions from the use of consumer and commercial products. The principal tasks of the study are to examine alternative economic incentives and to compare them to a hypothetical command-and-control program, VOC content standards, which would consist of product-specific limitations on maximum VOC content (grams of VOC per unit of product). It is the basis of comparison because the ultimate purpose of this investigation is to search for the most desirable instrument in the set of potential instruments, which obviously would include instruments based on command-and-control. The purposes of comparison are to determine how well the instruments accomplish certain policy objectives and to appraise their ability to cope with the complexities inherent in the task of environmental regulation.

NONE

1995-03-01T23:59:59.000Z

342

NATIONAL EMISSION STANDARDS FOR HAZARDOUS AIR POLLUTANTS (NESHAP) SUBPART H RADIONUCLIDES POTENTIAL TO EMIT CALCULATIONS  

Science Conference Proceedings (OSTI)

This document provides an update of the status of stacks on the Hanford Site and the potential radionuclide emissions, i.e., emissions that could occur with no control devices in place. This review shows the calculations that determined whether the total effective dose equivalent (TEDE) received by the maximum public receptor as a result of potential emissions from any one of these stacks would exceed 0.1 millirem/year. Such stacks require continuous monitoring of the effluent, or other monitoring, to meet the requirements of Washington Administrative code (WAC) 246-247-035(1)(a)(ii) and WAC 246-247-075(1), -(2), and -(6). This revised update reviews the potential-to-emit (PTE) calculations of 31 stacks for Fluor Hanford, Inc. Of those 31 stacks, 11 have the potential to cause a TEDE greater than 0.1 mrem/year.

EARLEY JN

2008-07-23T23:59:59.000Z

343

Opportunities to improve energy efficiency and reduce greenhouse gas emissions in the US pulp and paper industry  

SciTech Connect

The pulp and paper industry accounts for over 12% of total manufacturing energy use in the US (US EIA 1997a), contributing 9% to total manufacturing carbon dioxide emissions. In the last twenty-five years primary energy intensity in the pulp and paper industry has declined by an average of 1% per year. However, opportunities still exist to reduce energy use and greenhouse gas emissions in the manufacture of paper in the US This report analyzes the pulp and paper industry (Standard Industrial Code (SIC) 26) and includes a detailed description of the processes involved in the production of paper, providing typical energy use in each process step. We identify over 45 commercially available state-of-the-art technologies and measures to reduce energy use and calculate potential energy savings and carbon dioxide emissions reductions. Given the importance of paper recycling, our analysis examines two cases. Case A identifies potential primary energy savings without accounting for an increase in recycling, while Case B includes increasing paper recycling. In Case B the production volume of pulp is reduced to account for additional pulp recovered from recycling. We use a discount rate of 30% throughout our analysis to reflect the investment decisions taken in a business context. Our Case A results indicate that a total technical potential primary energy savings of 31% (1013 PJ) exists. For case A we identified a cost-effective savings potential of 16% (533 PJ). Carbon dioxide emission reductions from the energy savings in Case A are 25% (7.6 MtC) and 14% (4.4 MtC) for technical and cost-effective potential, respectively. When recycling is included in Case B, overall technical potential energy savings increase to 37% (1215 PJ) while cost-effective energy savings potential is 16%. Increasing paper recycling to high levels (Case B) is nearly cost-effective assuming a cut-off for cost-effectiveness of a simple payback period of 3 years. If this measure is included, then the cost-effective energy savings potential in case B increases to 22%.

Martin, Nathan; Anglani, N.; Einstein, D.; Khrushch, M.; Worrell, E.; Price, L.K.

2000-07-01T23:59:59.000Z

344

Opportunities to improve energy efficiency and reduce greenhouse gas emissions in the U.S. pulp and paper industry  

Science Conference Proceedings (OSTI)

The pulp and paper industry accounts for over 12% of total manufacturing energy use in the U.S. (U.S. EIA 1997a), contributing 9% to total manufacturing carbon dioxide emissions. In the last twenty-five years primary energy intensity in the pulp and paper industry has declined by an average of 1% per year. However, opportunities still exist to reduce energy use and greenhouse gas emissions in the manufacture of paper in the U.S. This report analyzes the pulp and paper industry (Standard Industrial Code (SIC) 26) and includes a detailed description of the processes involved in the production of paper, providing typical energy use in each process step. We identify over 45 commercially available state-of-the-art technologies and measures to reduce energy use and calculate potential energy savings and carbon dioxide emissions reductions. Given the importance of paper recycling, our analysis examines two cases. Case A identifies potential primary energy savings without accounting for an increase in recycling, while Case B includes increasing paper recycling. In Case B the production volume of pulp is reduced to account for additional pulp recovered from recycling. We use a discount rate of 30% throughout our analysis to reflect the investment decisions taken in a business context. Our Case A results indicate that a total technical potential primary energy savings of 31% (1013 PJ) exists. For case A we identified a cost-effective savings potential of 16% (533 PJ). Carbon dioxide emission reductions from the energy savings in Case A are 25% (7.6 MtC) and 14% (4.4 MtC) for technical and cost-effective potential, respectively. When recycling is included in Case B, overall technical potential energy savings increase to 37% (1215 PJ) while cost-effective energy savings potential is 16%. Increasing paper recycling to high levels (Case B) is nearly cost-effective assuming a cut-off for cost-effectiveness of a simple payback period of 3 years. If this measure is included, then the cost-effective energy savings potential in case B increases to 22%.

Martin, Nathan; Anglani, N.; Einstein, D.; Khrushch, M.; Worrell, E.; Price, L.K.

2000-07-01T23:59:59.000Z

345

Technical Potential of Solar Water Heating to Reduce Fossil Fuel Use and Greenhouse Gas Emissions in the United States  

DOE Green Energy (OSTI)

Use of solar water heating (SWH) in the United States grew significantly in the late 1970s and early 1980s, as a result of increasing energy prices and generous tax credits. Since 1985, however, expiration of federal tax credits and decreased energy prices have virtually eliminated the U.S. market for SWH. More recently, increases in energy prices, concerns regarding emissions of greenhouse gases, and improvements in SWH systems have created new interest in the potential of this technology. SWH, which uses the sun to heat water directly or via a heat-transfer fluid in a collector, may be particularly important in its ability to reduce natural gas use. Dependence on natural gas as an energy resource in the United States has significantly increased in the past decade, along with increased prices, price volatility, and concerns about sustainability and security of supply. One of the readily deployable technologies available to decrease use of natural gas is solar water heating. This report provides an overview of the technical potential of solar water heating to reduce fossil fuel consumption and associated greenhouse gas emissions in U.S. residential and commercial buildings.

Denholm, P.

2007-03-01T23:59:59.000Z

346

Speaker to Address Impact of Natural Gas Production on Greenhouse Gas Emissions When used for power generation, Marcellus Shale natural gas can significantly reduce carbon  

E-Print Network (OSTI)

generation, Marcellus Shale natural gas can significantly reduce carbon dioxide emissions, but questions have been raised whether development of shale gas resources results in an overall lower greenhouse gas, "Life Cycle Greenhouse Gas Emissions of Marcellus Shale Gas," appeared in Environmental Research Letters

Boyer, Elizabeth W.

347

A sensor management architecture concept for monitoring emissions from open-air demil operations.  

Science Conference Proceedings (OSTI)

Sandia National Laboratories, CA proposed a sensor concept to detect emissions from open-burning/open-detonation (OB/OD) events. The system would serve two purposes: (1) Provide data to demilitarization operations about process efficiency, allowing process optimization for cleaner emissions and higher efficiency. (2) Provide data to regulators and neighboring communities about materials dispersing into the environment by OB/OD operations. The proposed sensor system uses instrument control hardware and data visualization software developed at Sandia National Laboratories to link together an array of sensors to monitor emissions from OB/OD events. The suite of sensors would consist of various physical and chemical detectors mounted on stationary or mobile platforms. The individual sensors would be wirelessly linked to one another and controlled through a central command center. Real-time data collection from the sensors, combined with integrated visualization of the data at the command center, would allow for feedback to the sensors to alter operational conditions to adjust for changing needs (i.e., moving plume position, increased spatial resolution, increased sensitivity). This report presents a systems study of the problem of implementing a sensor system for monitoring OB/OD emissions. The goal of this study was to gain a fuller understanding of the political, economic, and technical issues for developing and fielding this technology.

Johnson, Michael M.; Robinson, Jerry D.; Stoddard, Mary Clare; Horn, Brent A.; Lipkin, Joel; Foltz, Greg W.

2005-09-01T23:59:59.000Z

348

Deducing Ground-to-Air Emissions from Observed Trace Gas Concentrations: A Field Trial  

Science Conference Proceedings (OSTI)

The gas emission rate Q from an artificial 36-m2 surface area source was inferred from line-average concentration CL measured by an open-path laser situated up to 100 m downwind. Using a backward Lagrangian stochastic (bLS) model, a theoretical C...

T. K. Flesch; J. D. Wilson; L. A. Harper; B. P. Crenna; R. R. Sharpe

2004-04-01T23:59:59.000Z

349

Putting policy in drive : coordinating measures to reduce fuel use and greenhouse gas emissions from U.S. light-duty vehicles  

E-Print Network (OSTI)

The challenges of energy security and climate change have prompted efforts to reduce fuel use and greenhouse gas emissions in light-duty vehicles within the United States. Failures in the market for lower rates of fuel ...

Evans, Christopher W. (Christopher William)

2008-01-01T23:59:59.000Z

350

Application of an Adaptive Nudging Scheme in Air Quality Forecasting in China  

Science Conference Proceedings (OSTI)

A major challenge for air quality forecasters is to reduce the uncertainty of air pollution emission inventory. Error in the emission data is a primary source of error in air quality forecasts, much like the effect of error in the initial ...

Xiangde Xu; Lian Xie; Xinghong Cheng; Jianming Xu; Xiuji Zhou; Guoan Ding

2008-08-01T23:59:59.000Z

351

New Process for Producing Styrene Cuts Costs, Saves Energy, and Reduces Greenhouse Gas Emissions  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Styrofoam cups are one of many Styrofoam cups are one of many products made from styrene monomer. Exelus Inc. (Livingston, NJ), established in 2000, develops and licenses "Cleaner-by- Design" chemical technologies to produce a vast array of products and materials used in consumer goods, transportation, and food processing. Currently, the company's principal process technologies are: ExSact - a refining technology that overcomes the environmental concerns, safety hazards and rising costs associated with conventional liquid acid technologies ExSyM - energy efficient, low cost SM production technology BTG - efficient, cost-effective conversion of biomass to clean, high-octane, gasoline-compatible fuel http://www.exelusinc.com/ New Process for Producing Styrene Cuts Costs, Saves Energy, and Reduces

352

Program on Technology Innovation: Near Zero Emissions: Precombustion Cleaning Technologies Review  

Science Conference Proceedings (OSTI)

Precombustion treatment options can be part of a suite of choices to meet anticipated future regulations for the existing coal fleet, as well as for new advanced coal plants with a goal of zero emissions. In addition to reducing air emissions, precombustion treatment can improve boiler performance, reduce ash emissions, and reduce boiler chemical requirements.

2010-12-10T23:59:59.000Z

353

Modeling the Transport and Chemical Evolution of Onshore and Offshore Emissions and their Impact on Local and Regional Air Quality Using a Variable-Grid-Resolution Air Quality Model  

SciTech Connect

This research project has two primary objectives: (1) to further develop and refine the Multiscale Air Quality Simulation Platform-Variable Grid Resolution (MAQSIP-VGR) model, an advanced variable-grid-resolution air quality model, to provide detailed, accurate representation of the dynamical and chemical processes governing the fate of anthropogenic emissions in coastal environments; and (2) to improve current understanding of the potential impact of onshore and offshore oil and gas exploration and production (E&P) emissions on O{sub 3} and particulate matter nonattainment in the Gulf of Mexico and surrounding states.

Kiran Alapaty; Adel Hanna

2006-10-16T23:59:59.000Z

354

Hot Air? When Government Support for Intermittent Renewable Technologies can Increase Emissions  

E-Print Network (OSTI)

This paper analyzes the e¤ects of an intermittent technology on long-run incentives for investment in non-renewable electricity generation technologies. I …nd conditions under which supporting an intermittent technology may in fact increase carbon emissions. The variability of load usually determines the long run mix of generating technologies in a competitive electricity market. When there is a signi…cant amount of intermittent production the mix of other generating technologies is determined by the variability of net load (load net of intermittent output). Net load may be more variable than load itself if the intermittent output is not too positively correlated with load. This increase in variability results in a substitution away from baseload generating technologies towards peaking and intermediate technologies. If peaking and intermediate technologies are more carbon intensive than non-renewable "baseload " technologies, this substitution can more than o¤set the emission bene…ts derived from the output of the renewable technology. 1

Arthur Campbell

2008-01-01T23:59:59.000Z

355

Re-evaluating California’s greenhouse gas emission law: Is it rational under the current economic situation?.  

E-Print Network (OSTI)

??This research evaluates the impact of the economic recession on the California Air Resource Board (CARB) strategy for reducing current greenhouse gas (GHG) emissions from… (more)

Algadi, Hassan

2010-01-01T23:59:59.000Z

356

Sub-millimeter nuclear medical imaging with reduced dose application in positron emission tomography using beta-gamma coincidences  

E-Print Network (OSTI)

Positron emission tomography (PET) permits a functional understanding of the underlying causes of many diseases. Modern whole-body PET systems reach a spatial resolution of 2-6 mm (FWHM). A limitation of this technique occurs from the thermalization and diffusion of the positron before its annihilation, typically within the mm range. We present a nuclear medical imaging technique, able to reach sub-millimeter spatial resolution in 3 dimensions with a reduced effective dose application compared to conventional PET. This 'gamma-PET' technique draws on specific medical isotopes, simultaneously emitting an additional photon accompanying the beta^+ decay. Exploiting the triple coincidence between the positron annihilation and the third photon, it is possible to separate the reconstructed 'true' events from background. In order to characterize the potential of this technique, MC simulations and image reconstructions have been performed. The achievable spatial resolution has been found to reach ca. 0.4 mm (FWHM) in each direction for the visualization of a 22Na point source. Starting with a source activity of only 1.48 MBq for 89Zr, corresponding to ca. 130 - 270 times less compared to a conventional PET examination using 18F-FDG, about 40 intersections (sufficient for a reliable image reconstruction of a point source) can be identified after a typical examination time of 900 seconds. This results in a strongly reduced effective dose of, e.g., 0.785 mSv for 89Zr-cmAb-U36, compared to the applied effective dose in a typical human PET examination with 18F-FDG of about 7.5 mSv. Increasing the applied effective dose to 7.5 mSv, the examination time will be reduced to 94 s for only 14.2 MBq of 89Zr-cmAb-U36. The reduced effective dose, or, the reduced examination time, surpass the performance of a conventional PET device by more than one order of magnitude.

C. Lang; D. Habs; K. Parodi; P. G. Thirolf

2013-05-18T23:59:59.000Z

357

Examining the Effects of Variability in Average Link Speeds on Estimated Mobile Source Emissions and Air Quality  

E-Print Network (OSTI)

Fine-Grained Regional Emissions Estimation." TransportationA New Mobile Source Emission Inventory Model." AtmosphericData for Mobile Source Emissions Estimates. Transportation

Sogutlugil, Mihriban

2005-01-01T23:59:59.000Z

358

ENERGY STAR Using On-site Renewable Energy as the Next Step to Improving Energy Performance and Reducing Emissions  

NLE Websites -- All DOE Office Websites (Extended Search)

ON-SITE RENEWABLE ENERGY AS THE NEXT STEP ON-SITE RENEWABLE ENERGY AS THE NEXT STEP TO IMPROVING ENERGY PERFORMANCE AND REDUCING EMISSIONS jcpenney has a corporate energy management strategy that includes using energy efficient technologies in its stores and encouraging energy conservation. As part of this strategy, the company also investigated generating electricity through on-site renewable energy. jcpenney is a partner in the U.S. Environmental Protection Agency (EPA) ENERGY STAR Commercial Buildings Program, and has been tracking building energy use since 2006 using EPA's free benchmarking tool, Portfolio Manager. Portfolio Manager provides a 1-100 energy performance score similar to a "miles-per-gallon" metric for vehicle fuel efficiency. Those buildings that achieve an ENERGY STAR score

359

Sub-millimeter nuclear medical imaging with reduced dose application in positron emission tomography using beta-gamma coincidences  

E-Print Network (OSTI)

Positron emission tomography (PET) permits a functional understanding of the underlying causes of many diseases. Modern whole-body PET systems reach a spatial resolution of 2-6 mm (FWHM). A limitation of this technique occurs from the thermalization and diffusion of the positron before its annihilation, typically within the mm range. We present a nuclear medical imaging technique, able to reach sub-millimeter spatial resolution in 3 dimensions with a reduced effective dose application compared to conventional PET. This 'gamma-PET' technique draws on specific medical isotopes, simultaneously emitting an additional photon accompanying the beta^+ decay. Exploiting the triple coincidence between the positron annihilation and the third photon, it is possible to separate the reconstructed 'true' events from background. In order to characterize the potential of this technique, MC simulations and image reconstructions have been performed. The achievable spatial resolution has been found to reach ca. 0.4 mm (FWHM) in ...

Lang, C; Parodi, K; Thirolf, P G

2013-01-01T23:59:59.000Z

360

Clean Cities Tools: Tools to help you save money, use less petroleum, and reduce emissions (Brochure), Energy Efficiency & Renewable Energy (EERE)  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Tools Tools Tools to help you save money, use less petroleum, and reduce emissions afdc.energy.gov/tools GREET Fleet Footprint Calculator: Calculate your fleet's petroleum use and greenhouse gas emissions footprint, and estimate the impacts of future vehicle purchases. Petroleum Reduction Planning Tool: Evaluate options and develop a strategy to reduce conventional fuel use and emissions in fleet and personal vehicles. Find a Car: Search for a vehicle by comparing fuel efficiency, annual fuel costs, greenhouse gas emissions, and more for vehicle models dating back to 1984. Truck Stop Electrification Locator: Obtain addresses, maps, and driving directions for truck stops offering electrification sites, which reduce the need for idling. Clean Cities offers a large collection of helpful Web-based tools on the

Note: This page contains sample records for the topic "reduce air emissions" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

Integrated Analysis of Fuel, Technology and Emission Allowance Markets: Electric Utility Responses to the Clean Air Act Amendments o f 1990  

Science Conference Proceedings (OSTI)

This report provides a detailed analysis of the strategic responses of the electric utility industry to the Clean Air Act Amendments of 1990. The study analyzes the competitive interactions between fuel switching, scrubbing, and emission trading options and provides information on future regional coal demands and prices, the adoption of SO2 control technologies, compliance costs, and the character of SO2 emission allowance markets.

1993-08-30T23:59:59.000Z

362

Compilation of air pollutant emission factors. Volume 1. Stationary point and area sources. Supplement E  

Science Conference Proceedings (OSTI)

In the Supplement to the Fourth Edition of AP-42 Volume I, new or revised emissions data are presented for Anthracite Coal Combustion; Natural Gas Combustion; Liquified Petroleum Gas Combustion; Wood Waste Combustion In Boilers; Bagasse Combustion In Sugar Mills; Residential Fireplaces; Residential Wood Stoves; Waste Oil Combustion; Automobile Body Incineration; Conical Burners; Open Burning; Stationary Gas Turbines for Electricity Generation; Heavy Duty Natural Gas Fired Pipeline Compressor Engines; Gasoline and Diesel Industrial Engines; Large Stationary Diesel and All Stationary Dual Fuel Engines; Soap and Detergents; and Storage of Organic Liquids.

Not Available

1992-10-01T23:59:59.000Z

363

Policy Choice:Forest or Fuel? The demand for biofuels, driven by the desire to reduce fossil fuel use and CO2 emissions, has resulted in  

E-Print Network (OSTI)

Policy Choice:Forest or Fuel? The demand for biofuels, driven by the desire to reduce fossil fuel, combined with the expanded demand for biofuels, will result in higher food prices, since less land by using biofuels (vegetable oils). But the use of biofuels may not reduce CO2 emissions, even when

364

Updated Hazardous Air Pollutants (HAPs) Emissions Estimates and Inhalation Human Health Risk Assessment for U.S. Coal-Fired Electric Generating Units  

Science Conference Proceedings (OSTI)

Since the mid-1990s, there has been no comprehensive evaluation of hazardous air pollutants (HAPs) emissions from U.S. coal-fired electric power plants and the risks associated with those emissions. With the exception of mercury, none of the HAPs-classified chemicals has been fundamentally reassessed for more than 15 years. The set of EPRI studies reported on here provides a fundamental reevaluation of potential HAPs emissions from coal-fired power plants based on current data concerning coals burned, co...

2009-12-28T23:59:59.000Z

365

Saving Fuel, Reducing Emissions  

E-Print Network (OSTI)

cost and the marginal fuel savings (assuming a base case of ten cents per kWhper kWh, which would bring it in line with the break-even costcost per mile: electricity vs. gasoline PRICE OF ELECTRICITY ($/kWh)

Kammen, Daniel M.; Arons, Samuel M.; Lemoine, Derek M.; Hummel, Holmes

2009-01-01T23:59:59.000Z

366

Saving Fuel, Reducing Emissions  

E-Print Network (OSTI)

Figure 1 shows electricity rates that provide the same costgasoline prices. Lower electricity rates than the ones shown2006 US residential electricity rates averaged about $0.083

Kammen, Daniel M.; Arons, Samuel M.; Lemoine, Derek M.; Hummel, Holmes

2009-01-01T23:59:59.000Z

367

Saving Fuel, Reducing Emissions  

E-Print Network (OSTI)

replacing conventional cars with hybrids is the least costlyhybrid or PHEV SUVs than to replace conventional compact cars.

Kammen, Daniel M.; Arons, Samuel M.; Lemoine, Derek M.; Hummel, Holmes

2009-01-01T23:59:59.000Z

368

Saving Fuel, Reducing Emissions  

E-Print Network (OSTI)

and Impacts of Hybrid Electric Vehicle Options for Compactand Impacts of Hybrid Electric Vehicle Options. (EPRI: PaloEvaluation of Hybrid Electric Vehicles: Toyota’s Prius vs.

Kammen, Daniel M.; Arons, Samuel M.; Lemoine, Derek M.; Hummel, Holmes

2009-01-01T23:59:59.000Z

369

Reducing Greenhouse Gas Emissions  

NLE Websites -- All DOE Office Websites (Extended Search)

fail to meet this demand, the most likely alternatives will be heavy oil, oil sands, oil shale, and liquids from natural gas and coal. These are carbon-intensive fuels that would...

370

Saving Fuel, Reducing Emissions  

E-Print Network (OSTI)

unless gas prices rise or battery costs drop faster thanPolicies to improve battery costs and lifetimes, to decreaseeven costs are far lower than hybrid or PHEV battery prices,

Kammen, Daniel M.; Arons, Samuel M.; Lemoine, Derek M.; Hummel, Holmes

2009-01-01T23:59:59.000Z

371

Increasing Energy Efficiency and Reducing Emissions from China's Cement Kilns: Audit Report of Two Cement Plants in Shandong Province, China  

E-Print Network (OSTI)

Cooling water to cooling towers Steam Turbine GeneratorPrecalciner Condensate – cooling tower etc. Hot air to waterCooling water from cooling towers Exhaust gases/air Rotary

Price, Lynn

2013-01-01T23:59:59.000Z

372

Hynol -- An economic process for methanol production from biomass and natural gas with reduced CO{sub 2} emission  

DOE Green Energy (OSTI)

The Hynol process is proposed to meet the demand for an economical process for methanol production with reduced CO{sub 2} emission. This new process consists of three reaction steps: (a) hydrogasification of biomass, (b) steam reforming of the produced gas with additional natural gas feedstock, and (c) methanol synthesis of the hydrogen and carbon monoxide produced during the previous two steps. The H{sub 2}-rich gas remaining after methanol synthesis is recycled to gasify the biomass in an energy neutral reactor so that there is no need for an expensive oxygen plant as required by commercial steam gasifiers. Recycling gas allows the methanol synthesis reactor to perform at a relatively lower pressure than conventional while the plant still maintains high methanol yield. Energy recovery designed into the process minimizes heat loss and increases the process thermal efficiency. If the Hynol methanol is used as an alternative and more efficient automotive fuel, an overall 41% reduction in CO{sub 2} emission can be achieved compared to the use of conventional gasoline fuel. A preliminary economic estimate shows that the total capital investment for a Hynol plant is 40% lower than that for a conventional biomass gasification plant. The methanol production cost is $0.43/gal for a 1085 million gal/yr Hynol plant which is competitive with current U.S. methanol and equivalent gasoline prices. Process flowsheet and simulation data using biomass and natural gas as cofeedstocks are presented. The Hynol process can convert any condensed carbonaceous material, especially municipal solid waste (MSW), to produce methanol.

Steinberg, M. [Brookhaven National Lab., Upton, NY (United States); Dong, Yuanji [Hynol Corp., New York, NY (United States)

1993-10-01T23:59:59.000Z

373

Improvement to Air2Air Technology to Reduce Fresh-Water Evaporative Cooling Loss at Coal-Based Thermoelectric Power Plants ProMIS/Project No.:DE-NT0005647  

NLE Websites -- All DOE Office Websites (Extended Search)

Improvement to AIr2AIrĀ® technology Improvement to AIr2AIrĀ® technology to reduce Fresh-WAter evAporAtIve coolIng loss At coAl-BAsed thermoelectrIc poWer plAnts promIs/project no. :de-nt0005647 Background The production of electricity requires a reliable, abundant, and predictable source of freshwater - a resource that is limited in many parts of the United States and throughout the world. The process of thermoelectric generation from fossil fuels such as coal, oil, and natural gas is water intensive. According to the 2000 U.S. Geological Survey, thermoelectric-power withdrawals accounted for 48 percent of total water use, 39 percent of total freshwater withdrawals (136 billion gallons per day) for all categories, and 52 percent of fresh surface water withdrawals. As a growing economy drives the need for more electricity, demands on freshwater

374

Carbon offsets as a cost containment instrument : a case study of reducing emissions from deforestation and forest degradation  

E-Print Network (OSTI)

Carbon offset is one type of flexibility mechanism in greenhouse gas emission trading schemes that helps nations meet their emission commitments at lower costs. Carbon offsets take advantage of lower abatement cost ...

Kim, Jieun, S.M. Massachusetts Institute of Technology

2010-01-01T23:59:59.000Z

375

Development of Low Temperature Combustion Modes to Reduce Overall Emissions from a Medium-Duty, Four Cylinder Diesel Engine  

E-Print Network (OSTI)

Low temperature combustion (LTC) is an appealing new method of combustion that promises low nitric oxides and soot emissions while maintaining or improving on engine performance. The three main points of this study were to develop and validate an engine model in GT-Power capable of implementing LTC, to study parametrically exhaust gas recirculation (EGR) and injection timing effects on performance and emissions, and to investigate methods to decrease pressure rise rates during LTC operation. The model was validated at nine different operating points, 3 speeds and 3 loads, while the parametric studies were conducted on 6 of the 9 operating points, 3 speeds and 2 loads. The model consists of sections that include: cylinders, ports, intake and exhaust manifolds, EGR system, and turbocharger. For this model, GT-Power calculates the combustion using a multi-zone, quasi-dimensional model and a knock-induced combustion model. The main difference between them is that the multi-zone model is directly injected while the knock model is port injected. A variety of sub models calculate the fluid flow and heat transfer. A parametric study varying the EGR and the injection timing to determine the optimal combination was conducted using the multi-zone model while a parametric study that just varies EGR is carried out using the knock model. The first parametric study showed that the optimal EGR and injection timing combination for the low loads occurred at high levels of EGR (60 percent) and advanced injection timings (30 to 40 crank angle degrees before top dead center). The optimal EGR and injection timing combination for the high loads occurred at low levels of EGR (30 percent to 40 percent) and retarded injection timings (7.5 to 5 crank angle degrees before top dead center). The knock model determined that the ideal EGR ratio for homogeneous charge compression ignition (HCCI) operation varied from 30 percent to 45 percent, depending on the operating condition. Three methods were investigated as possible ways to reduce pressure rise rates during LTC operation. The only feasible method was the multiple injection strategy which provided dramatically reduced pressure rise rates across all EGR levels and injection timings.

Breen, Jonathan Robert

2010-08-01T23:59:59.000Z

376

Brazil's Emerging Sectoral Framework for Reducing Emissions from Deforestation and Degradation and the Potential to Deliver Greenhou se Gas Emissions Reductions from Avoided Deforestation in the Amazon's Xingu River Basin  

Science Conference Proceedings (OSTI)

Tropical deforestation and forest degradation contribute approximately 17% of global greenhouse gas (GHG) emissions to the atmosphere. Because of the comparatively large role of these emissions globally, the issue of how to address them has become prominent in international negotiations to develop a post-2012 global climate treaty under the auspices of the United Nations Framework Convention on Climate Change (UNFCCC). A mechanism designed to compensate developing nations that succeed in reducing emissio...

2010-10-27T23:59:59.000Z

377

Illinois - High-Level Commitment Key to Air Quality Success  

SciTech Connect

This fact sheet highlights how renewable energy and energy efficiency technologies can and are being used to reduce air emissions and meet environmental goals, showcasing case studies and technology-specific topics.

2007-12-01T23:59:59.000Z

378

Guidelines for Induced Flue Gas Recirculation: Volume 1: Reducing Air/Gas System Resistance and Enhancing Fan Capacity  

Science Conference Proceedings (OSTI)

This document guides users through a logical sequence, or "road map," of activities and decisions for optimizing solutions for fans, ducts, and related equipment in fossil plant combustion air and gas systems.

1999-12-13T23:59:59.000Z

379

Frey, H.C., and P.Y. Kuo, "Potential Best Practices for Reducing Greenhouse Gas (GHG) Emissions in Freight Transportation," Paper No. 2007-AWMA-443, Proceedings, 100th  

E-Print Network (OSTI)

Frey, H.C., and P.Y. Kuo, "Potential Best Practices for Reducing Greenhouse Gas (GHG) Emissions for approximately 9% of total greenhouse gas (GHG) emissions in the United States.1-2 The individual contributions or developing potential best practices and their effectiveness at reducing greenhouse gas emissions

Frey, H. Christopher

380

Comparing LOPES measurements of air-shower radio emission with REAS 3.11 and CoREAS simulations  

E-Print Network (OSTI)

Cosmic ray air showers emit radio pulses at MHz frequencies, which can be measured with radio antenna arrays - like LOPES at the Karlsruhe Institute of Technology in Germany. To improve the understanding of the radio emission, we test theoretical descriptions with measured data. The observables used for these tests are the absolute amplitude of the radio signal, and the shape of the radio lateral distribution. We compare lateral distributions of more than 500 LOPES events with two recent and public Monte Carlo simulation codes, REAS 3.11 and CoREAS (v 1.0). The absolute radio amplitudes predicted by REAS 3.11 are in good agreement with the LOPES measurements. The amplitudes predicted by CoREAS are lower by a factor of two, and marginally compatible with the LOPES measurements within the systematic scale uncertainties. In contrast to any previous versions of REAS, REAS 3.11 and CoREAS now reproduce the shape of the measured lateral distributions correctly. This reflects a remarkable progress compared to the si...

Apel, W D; Bähren, L; Bekk, K; Bertaina, M; Biermann, P L; Blümer, J; Bozdog, H; Brancus, I M; Chiavassa, A; Daumiller, K; de Souza, V; Di Pierro, F; Doll, P; Engel, R; Falcke, H; Fuchs, B; Fuhrmann, D; Gemmeke, H; Grupen, C; Haungs, A; Heck, D; Hörandel, J R; Horneffer, A; Huber, D; Huege, T; Isar, P G; Kampert, K -H; Kang, D; Krömer, O; Kuijpers, J; Link, K; Luczak, P; Ludwig, M; Mathes, H J; Melissas, M; Morello, C; Oehlschläger, J; Palmieri, N; Pierog, T; Rautenberg, J; Rebel, H; Roth, M; Rühle, C; Saftoiu, A; Schieler, H; Schmidt, A; Schröder, F G; Sima, O; Toma, G; Trinchero, G C; Weindl, A; Wochele, J; Zabierowski, J; Zensus, J A

2013-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "reduce air emissions" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

Tank exhaust comparison with 40 CFR 61.93, Subpart H, and other referenced guidelines for Tank Farms National Emission Standards for Hazardous Air Pollutant (NESHAP) designated stacks  

Science Conference Proceedings (OSTI)

The US Environmental Protection Agency (EPA) promulgated National Emission Standards other than Radon from US Department of Energy (DOE) Facilities (40 CFR 61, Subpart H) on December 15, 1989. The regulations specify procedures, equipment, and test methods that.are to be used to measure radionuclide emissions from exhaust stacks that are designated as National Emission Standards for Hazardous Air Pollutant (NESHAP) stacks. Designated NESHAP stacks are those that have the potential to cause any member of the public to receive an effective dose equivalent (EDE) greater than or equal to 0.1 mrem/year, assuming all emission controls were removed. Tank Farms currently has 33 exhaust stacks, 15 of which are designated NESHAP stacks. This document assesses the compliance status of the monitoring and sampling systems for the designated NESHAP stacks.

Bachand, D.D.; Crummel, G.M.

1994-07-01T23:59:59.000Z

382

Measurement of air toxic emissions from a coal-fired boiler equipped with a tangentially-fired low NOx combustion system  

Science Conference Proceedings (OSTI)

This paper presents the results of measurements of chemical emissions from a coal-burning, tangentially-fired, utility boiler equipped with a hot-side electrostatic precipitator and a low NOx firing system. The tests were conducted in response to Title III of the 1990 Amendments to the Clean Air Act which lists 189 chemicals to be evaluated as {open_quotes}Air Toxics.{close_quotes} The project was jointly funded by the Electric Power Research Institute and the US Department of Energy under an existing Innovative Clean Coal Technology Cooperative Agreement managed by Southern Company Services. Field chemical emissions monitoring was conducted in two phases: a baseline {open_quotes}pre-low NOx burner{close_quotes} condition in September 1991 and in the LNCFS Level III low NOx firing condition in January 1992. In addition to stack emissions measurements of both organic and inorganic chemicals, plant material balance evaluations were performed to determine the efficiency of the hot-side ESP at controlling emissions of air toxics and to determine the fate of the target chemicals in various plant process streams.

Dismukes, E.B. [Southern Research Inst., Birmingham, AL (United States); Clarkson, R.J.; Hardman, R.R. [Southern Company Services, Birmingham, AL (United States); Elia, G.G. [Pittsburgh Energy Technology Center, PA (United States)

1993-11-01T23:59:59.000Z

383

Ontario feedlot operators' willingness to accept carbon credit revenue for adopting management practices that reduce greenhouse gas emissions.  

E-Print Network (OSTI)

??The Canadian agricultural sector was recognised as a potential seller of carbon offset credits in the domestic emission trading system. A number of beneficial management… (more)

Hristeva, Polina.

2007-01-01T23:59:59.000Z

384

Reducing greenhouse gas emissions from deforestation : the United Nations Framework Convention on Climate Change and policy-making in Panama.  

E-Print Network (OSTI)

??The Framework Convention on Climate Change has yet to deal with tropical deforestation although it represents an important source of greenhouse gas emissions. In December… (more)

Guay, Bruno.

2007-01-01T23:59:59.000Z

385

Large-scale Manufacturing of Nanoparticulate-based Lubrication Additives for Improved Energy Efficiency and Reduced Emissions  

SciTech Connect

This project was funded under the Department of Energy (DOE) Lab Call on Nanomanufacturing for Energy Efficiency and was directed toward the development of novel boron-based nanocolloidal lubrication additives for improving the friction and wear performance of machine components in a wide range of industrial and transportation applications. Argonne?s research team concentrated on the scientific and technical aspects of the project, using a range of state-of-the art analytical and tribological test facilities. Argonne has extensive past experience and expertise in working with boron-based solid and liquid lubrication additives, and has intellectual property ownership of several. There were two industrial collaborators in this project: Ashland Oil (represented by its Valvoline subsidiary) and Primet Precision Materials, Inc. (a leading nanomaterials company). There was also a sub-contract with the University of Arkansas. The major objectives of the project were to develop novel boron-based nanocolloidal lubrication additives and to optimize and verify their performance under boundary-lubricated sliding conditions. The project also tackled problems related to colloidal dispersion, larger-scale manufacturing and blending of nano-additives with base carrier oils. Other important issues dealt with in the project were determination of the optimum size and concentration of the particles and compatibility with various base fluids and/or additives. Boron-based particulate additives considered in this project included boric acid (H{sub 3}BO{sub 3}), hexagonal boron nitride (h-BN), boron oxide, and borax. As part of this project, we also explored a hybrid MoS{sub 2} + boric acid formulation approach for more effective lubrication and reported the results. The major motivation behind this work was to reduce energy losses related to friction and wear in a wide spectrum of mechanical systems and thereby reduce our dependence on imported oil. Growing concern over greenhouse gas emissions was also a major reason. The transportation sector alone consumes about 13 million barrels of crude oil per day (nearly 60% of which is imported) and is responsible for about 30% of the CO{sub 2} emission. When we consider manufacturing and other energy-intensive industrial processes, the amount of petroleum being consumed due to friction and wear reaches more than 20 million barrels per day (from official energy statistics, U.S. Energy Information Administration). Frequent remanufacturing and/or replacement of worn parts due to friction-, wear-, and scuffing-related degradations also consume significant amounts of energy and give rise to additional CO{sub 2} emission. Overall, the total annual cost of friction- and wear-related energy and material losses is estimated to be rather significant (i.e., as much as 5% of the gross national products of highly industrialized nations). It is projected that more than half of the total friction- and wear-related energy losses can be recovered by developing and implementing advanced friction and wear control technologies. In transportation vehicles alone, 10% to 15% of the fuel energy is spent to overcome friction. If we can cut down the friction- and wear-related energy losses by half, then we can potentially save up to 1.5 million barrels of petroleum per day. Also, less friction and wear would mean less energy consumption as well as less carbon emissions and hazardous byproducts being generated and released to the environment. New and more robust anti-friction and -wear control technologies may thus have a significant positive impact on improving the efficiency and environmental cleanliness of the current legacy fleet and future transportation systems. Effective control of friction in other industrial sectors such as manufacturing, power generation, mining and oil exploration, and agricultural and earthmoving machinery may bring more energy savings. Therefore, this project was timely and responsive to the energy and environmental objectives of DOE and our nation. In this project, most of the boron-based mater

Erdemir, Ali [Argonne National Laboratory] [Argonne National Laboratory

2013-09-26T23:59:59.000Z

386

CAirTOX: A compartment model for assessing the fate of and human exposure to toxic-chemical emissions to air  

Science Conference Proceedings (OSTI)

CAirTOX has been developed as a spreadsheet model to assist in making a risk assessment of toxic air emissions. With CAirTOX, one can address how contaminants released to an air basin can lead to contamination of soil, food, surface water, and sediments. The modeling effort includes a multimedia transport and transformation model, exposure scenario models, and efforts to quantify uncertainty in multimedia, multiple-pathway exposure assessments. The multimedia transport and transformation model is a steady-state, but non-equilibrium model that can be used to assess concentrations of contaminants released continuously to air. In Part 1, the authors describe the multimedia transport and transformation model used to determine the fate of air emissions. In Part 2, they describe inputs and data needs for CAirTOX and the development of a set of landscape factors, which can be used to represent regional air basin/water-shed systems in California. In Part 3, they describe the multiple-pathway exposure scenarios and exposure algorithms. In Part 4, they compare the HRA approach and results and the CAirTOX exposure equations. In Part 5, they consider model sensitivity and uncertainty to determine how variability and uncertainty in model inputs affects the precision, accuracy, and credibility of the model output.

McKone, T.E.

1993-10-01T23:59:59.000Z

387

Emissions Scenarios, Costs, and Implementation Considerations of REDD Programs  

E-Print Network (OSTI)

Institute (2009), Reducing Emissions from Deforestation andbenefits of reducing carbon emissions from deforestation andreference levels for reducing emissions from deforestation’,

Sathaye, Jayant

2011-01-01T23:59:59.000Z

388

Strategies to Reduce Water Consumption in SO2 Controls  

Science Conference Proceedings (OSTI)

As the need for more stringent controls for power plant emissions increases, so does the need for more cost-effective approaches to reducing these pollutants. Current methods employ technologies designed to reduce specific pollutants, which require combinations of different emission control systems to remove multiple pollutants and require significant process water. Some air pollution control suppliers and utilities are developing technologies that have potential to reduce multiple pollutants simultaneou...

2008-12-17T23:59:59.000Z

389

Comparison of Control System Performance for Fossil-Fuel Fired Power Plants Using Emission Measurement Data from the Utility Industr y Information Collection Request for Hazardous Air Pollutants  

Science Conference Proceedings (OSTI)

On On May 3, 2011, the U.S. Environmental Protection Agency (EPA) published a notice of proposed rulemaking (40 Code of Federal Regulations Parts 60 and 63: National Emission Standards for Hazardous Air Pollutants from Coal- and Oil-Fired Electric Utility Steam Generating Units and Standards of Performance for Fossil-FuelFired Electric Utility, Industrial-Commercial-Institutional, and Small Industrial-Commercial-Institutional Steam-Generating Units). The intent of this rulemaking is to set Maximum Achiev...

2011-12-23T23:59:59.000Z

390

Using Vehicle Taxes to Reduce Carbon Dioxide Emissions Rates of New Passenger Vehicles: Evidence from France, Germany, and Sweden  

E-Print Network (OSTI)

France, Germany, and Sweden link vehicle taxes to the carbon dioxide (CO2) emissions rates of passenger vehicles. Based on new vehicle registration data from 2005–2010, a vehicle’s tax is negatively correlated with its ...

Klier, Thomas

391

An Analysis of Measures to Reduce the Life-Cycle Energy Consumption and Greenhouse Gas Emissions of California's Personal Computers  

E-Print Network (OSTI)

2002). Estimating Carbon Dioxide Emissions Factors for thefactors for California of 9.2 megajoules per kilowatt-hour (MJ/kWh) and 0.4 kilograms of carbon dioxide

Horvath, A; Masanet, Eric

2007-01-01T23:59:59.000Z

392

Closing the Gap: Using the Clean Air Act to Control Lifecycle Greenhouse Gas Emissions from Energy Facilities  

E-Print Network (OSTI)

Greenhouse Gas Emissions of Shale Gas, Nuraral Gas, Coal,Emissions of Marcellus Shale Gas, ENvr_. Ries. LTRs. , Aug.acknowledge, "Marcellus shale gas production is still in its

Hagan, Colin R.

2012-01-01T23:59:59.000Z

393

Closing the Gap: Using the Clean Air Act to Control Lifecycle Greenhouse Gas Emissions from Energy Facilities  

E-Print Network (OSTI)

to close the gap on unregulated greenhouse gas emissions.a higher lifecycle greenhouse gas content than conventionalIN- FORMATION ON GREENHOUSE GAS EMISSIONs AssocIATEIDn wrri

Hagan, Colin R.

2012-01-01T23:59:59.000Z

394

Emissions of Criteria Pollutants, Toxic Air Pollutants, and Greenhouse Gases, From the Use of Alternative Transportation Modes and Fuels  

E-Print Network (OSTI)

Environmental Information Handbook, DOE/EH-0077, Washington,s emission-factor handbook does not give emission factorsHandbook, Environmental Pollution and Control Factors, Third Edition, DOE/

Delucchi, Mark

1996-01-01T23:59:59.000Z

395

Advanced Emissions Control Development Program  

Science Conference Proceedings (OSTI)

McDermott Technology, Inc. (MTI) is conducting a five-year project aimed at the development of practical, cost-effective strategies for reducing the emissions of hazardous air pollutants (commonly called air toxics) from coal-fired electric utility plants. The need for air toxic emissions controls may arise as the U. S. Environmental Protection Agency proceeds with implementation of Title III of the Clean Air Act Amendment (CAAA) of 1990. Data generated during the program will provide utilities with the technical and economic information necessary to reliably evaluate various air toxics emissions compliance options such as fuel switching, coal cleaning, and flue gas treatment. The development work is being carried out using the Clean Environment Development Facility (CEDF) wherein air toxics emissions control strategies can be developed under controlled conditions, and with proven predictability to commercial systems. Tests conducted in the CEDF provide high quality, repeatable, comparable data over a wide range of coal properties, operating conditions, and emissions control systems. Development work to date has concentrated on the capture of mercury, other trace metals, fine particulate, and hydrogen chloride and hydrogen fluoride.

M. J. Holmes

1998-12-03T23:59:59.000Z

396

Advanced Emissions Control Development Program  

Science Conference Proceedings (OSTI)

McDermott Technology, Inc. (MTI) is conducting a five-year project aimed at the development of practical, cost-effective strategies for reducing the emissions of hazardous air pollutants (commonly called air toxics) from coal-fired electric utility plants. The need for air toxic emissions controls may arise as the U. S. Environmental Protection Agency proceeds with implementation of Title III of the Clean Air Act Amendment (CAAA) of 1990. Data generated during the program will provide utilities with the technical and economic information necessary to reliably evaluate various air toxics emissions compliance options such as fuel switching, coal cleaning, and flue gas treatment. The development work is being carried out using the Clean Environment Development Facility (CEDF) wherein air toxics emissions control strategies can be developed under controlled conditions, and with proven predictability to commercial systems. Tests conducted in the CEDF provide high quality, repeatable, comparable data over a wide range of coal properties, operating conditions, and emissions control systems. Development work to date has concentrated on the capture of mercury, other trace metals, fine particulate, and the inorganic species, hydrogen chloride and hydrogen fluoride.

A. P. Evans

1998-12-03T23:59:59.000Z

397

Advanced Emissions Control Development Program  

Science Conference Proceedings (OSTI)

Babcock & Wilcox (B&W) is conducting a five-year project aimed at the development of practical, cost-effective strategies for reducing the emissions of hazardous air pollutants (commonly called air toxics) from coal-fired electric utility plants. The need for air toxic emissions controls may arise as the U. S. Environmental Protection Agency proceeds with implementation of Title III of the Clean Air Act Amendment (CAAA) of 1990. Data generated during the program will provide utilities with the technical and economic information necessary to reliably evaluate various air toxics emissions compliance options such as fuel switching, coal cleaning, and flue gas treatment. The development work is being carried out using B&W?s new Clean Environment Development Facility (CEDF) wherein air toxics emissions control strategies can be developed under controlled conditions, and with proven predictability to commercial systems. Tests conducted in the CEDF provide high quality, repeatable, comparable data over a wide range of coal properties, operating conditions, and emissions control systems. Development work to date has concentrated on the capture of mercury, other trace metals, fine particulate, and the inorganic species hydrogen chloride and hydrogen fluoride.

A. P. Evans

1998-12-03T23:59:59.000Z

398

Advanced Emission Control Development Program.  

SciTech Connect

Babcock & Wilcox (B&W) is conducting a five-year project aimed at the development of practical, cost-effective strategies for reducing the emissions of hazardous air pollutants (commonly called air toxics) from coal-fired electric utility plants. The need for air toxic emissions controls may arise as the U. S. Environmental Protection Agency proceeds with implementation of Title III of the Clean Air Act Amendment (CAAA) of 1990. Data generated during the program will provide utilities with the technical and economic information necessary to reliably evaluate various air toxics emissions compliance options such as fuel switching, coal cleaning, and flue gas treatment. The development work is being carried out using B&W`s new Clean Environment Development Facility (CEDF) wherein air toxics emissions control strategies can be developed under controlled conditions, and with proven predictability to commercial systems. Tests conducted in the CEDF provide high quality, repeatable, comparable data over a wide range of coal properties, operating conditions, and emissions control systems. Development work to date has concentrated on the capture of mercury, other trace metals, fine particulate, and the inorganic species hydrogen chloride and hydrogen fluoride.

Evans, A.P.

1997-12-31T23:59:59.000Z

399

Human Health Risk Assessment for Petroleum Refining Industry of the Remaining Air Toxics after MACT I Emissions Reductions.  

E-Print Network (OSTI)

??Inhalation risks on human health for hazardous air pollutants emitted from MACT I petroleum refining industry were determined using EPA HEM-3 Program. Methodology included compiling… (more)

Roa, Nadia C.

2008-01-01T23:59:59.000Z

400

Examining the Effects of Variability in Average Link Speeds on Estimated Mobile Source Emissions and Air Quality  

E-Print Network (OSTI)

Protection Agency. Sacramento, CA. CARB (2003).Air Resources Board. Sacramento, CA. Cardelino, C. (1998). "of Transportation. Sacramento, CA. Girden, E. (1992). ANOVA

Sogutlugil, Mihriban

2005-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "reduce air emissions" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

Reducing carbon emissions? The relative effectiveness of different types of environmental tax: the case of New Zealand  

Science Conference Proceedings (OSTI)

Concerns about the impact of human activities on the environment have encouraged policy makers in New Zealand, and other nations, to reassess the relative effectiveness and efficiency of environmental taxes. Countries' experience with environmental taxation ... Keywords: CGE model, Carbon tax, Greenhouse gas emissions, Q3 Non-renewable resources and conservation, Q4 Energy

Frank Scrimgeour; Les Oxley; Koli Fatai

2005-11-01T23:59:59.000Z

402

Present Status and Marketing Prospects of the Emerging Hybrid-Electric and Diesel Technologies to Reduce CO2 Emissions of New Light-Duty Vehicles in California  

E-Print Network (OSTI)

the engine and emission aftertreatment technologies toengine technology and the utilization of complex emissions aftertreatment

Burke, Andy

2004-01-01T23:59:59.000Z

403

Emissions of Criteria Pollutants, Toxic Air Pollutants, and Greenhouse Gases, From the Use of Alternative Transportation Modes and Fuels  

E-Print Network (OSTI)

plants, petroleum refineries, and other sources. • We useLPG from petroleum Wood for power production Source: updatedfrom petroleum refining, and emissions from other sources

Delucchi, Mark

1996-01-01T23:59:59.000Z

404

Air Pollution Control Regulations: No. 13- Particulate Emissions from Fossil Fuel Fired Steam or Hot Water Generating Units (Rhode Island)  

Energy.gov (U.S. Department of Energy (DOE))

The purpose of this regulation is to limit emissions of particulate matter from fossil fuel fired and wood-fired steam or hot water generating units.

405

Atmospheric emissions of one pulp and paper mill. contribution to the air quality of Viana do Castelo  

Science Conference Proceedings (OSTI)

One of the most sensitive environmental impact of the pulp and paper mills is associated with the atmospheric pollution namely with sulphur compounds, particulate matter and nitrogen oxides. The study undertaken aimed to evaluate the influence of one ... Keywords: air pollution modelling, kraft pulp and paper mill, urban air pollution

Lķgia T. Silva; José F. G. Mendes

2009-10-01T23:59:59.000Z

406

Fabrication and testing of an enhanced ignition system to reduce cold-start emissions in an ethanol (E85) light-duty truck engine  

DOE Green Energy (OSTI)

This report describes an experimental investigation of the potential for an enhanced ignition system to lower the cold-start emissions of a light-duty vehicle engine using fuel ethanol (commonly referred to as E85). Plasma jet ignition and conventional inductive ignition were compared for a General Motors 4-cylinder, alcohol-compatible engine. Emission and combustion stability measurements were made over a range of air/fuel ratios and spark timing settings using a steady-state, cold-idle experimental technique in which the engine coolant was maintained at 25 C to simulate cold-running conditions. These tests were aimed at identifying the degree to which calibration strategies such as mixture enleanment and retarded spark timing could lower engine-out hydrocarbon emissions and raise exhaust temperatures, as well as determining how such calibration changes would affect the combustion stability of the engine (as quantified by the coefficient of variation, or COV, of indicated mean effective pressure calculated from successive cylinder pressure measurements). 44 refs., 39 figs.

Gardiner, D.; Mallory, R.; Todesco, M. [Nexum Research Corp., Kingston, Ontario (Canada). Thermotech Engineering Div.

1997-09-01T23:59:59.000Z

407

Abatement of Air Pollution: Prohibition of Air Pollution (Connecticut)  

Energy.gov (U.S. Department of Energy (DOE))

All air pollution not otherwise covered by these regulations is prohibited. Stationary sources which cause air pollution must be operated in accordance with all applicable emissions standards and...

408

Air Resources: Prevention and Control of Air Contamination and Air  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Air Resources: Prevention and Control of Air Contamination and Air Air Resources: Prevention and Control of Air Contamination and Air Pollution, Air Quality Classifications and Standards, and Air Quality Area Classifications (New York) Air Resources: Prevention and Control of Air Contamination and Air Pollution, Air Quality Classifications and Standards, and Air Quality Area Classifications (New York) < Back Eligibility Agricultural Fuel Distributor Industrial Institutional Investor-Owned Utility Local Government Multi-Family Residential Municipal/Public Utility Nonprofit Rural Electric Cooperative Schools State/Provincial Govt Transportation Tribal Government Utility Program Info State New York Program Type Environmental Regulations Provider NY Department of Environmental Conservation These regulations establish emissions limits and permitting and operational

409

Using Cool Roofs to Reduce Energy Use, Greenhouse Gas Emissions, and Urban Heat-island Effects: Findings from an India Experiment  

E-Print Network (OSTI)

coating comparison of air-conditioning energy usage for bothtemperature, heat flux, and air conditioning electricity useHourly time series of air conditioning and non-conditioning

Akbari, Hashem

2011-01-01T23:59:59.000Z

410

Increasing Energy Efficiency and Reducing Emissions from China's Cement Kilns: Audit Report of Two Cement Plants in Shandong Province, China  

E-Print Network (OSTI)

dryer that uses heat from boiler exhaust gases to reduce thedrying coal in heat recovery boilers to raise steam, and forup to 6 MW power. The boilers use the heat of exhaust gases

Price, Lynn

2013-01-01T23:59:59.000Z

411

Opportunities to improve energy efficiency and reduce greenhouse gas emissions in the U.S. pulp and paper industry  

E-Print Network (OSTI)

in the Pulp and Paper Industry,” Energy Policy 25 (7-9):on reducing energy use” Pulp and Paper Magazine. Milleron the US pulp and paper industry,” Energy Policy, Volume

Martin, Nathan; Anglani, N.; Einstein, D.; Khrushch, M.; Worrell, E.; Price, L.K.

2000-01-01T23:59:59.000Z

412

"Penn State will take every step possible to reduce emissions without unduly increasing our costs. In light  

E-Print Network (OSTI)

petroleum consumption by reducing our overall service fleet, converting our diesel vehicles to use bio-diesel Development Ā· New Wind Energy Leader Award Community Energy Ā· EPA, DOE and Center for Resource Solutions 2002

Lee, Dongwon

413

Statewide Air Emissions Calculations from Wind and Other Renewables, Summary Report: A Report to the Texas Commission on Environmental Quality for the Period September 2007 - August 2008  

E-Print Network (OSTI)

The 79th Legislature, through Senate Bill 20, House Bill 2481 and House Bill 2129, amended Senate Bill 5 to enhance its effectiveness by adding 5,880 MW of generating capacity from renewable energy technologies by 2015 and 500 MW from non-wind renewables. This legislation also requires the Public Utilities Commission of Texas (PUCT) to establish a target of 10,000 megawatts of installed renewable capacity by 2025, and requires the Texas Commission on Environmental Quality (TCEQ) to develop methodology for computing emissions reductions from renewable energy initiatives and the associated credits. In this Legislation the Energy Systems Laboratory (ESL or Laboratory) is to assist the TCEQ in quantifying emissions reductions credits from energy efficiency and renewable energy programs, through a contract with the Texas Environmental Research Consortium (TERC) to develop and annually calculate creditable emissions reductions from wind and other renewable energy resources for the State Implementation Plan (SIP). The Energy Systems Laboratory, in fulfillment of its responsibilities under this Legislation, submits its third annual report, “Statewide Air Emissions Calculations from Wind and Other Renewables,” to the Texas Commission on Environmental Quality. The report is organized in several deliverables: • A Summary Report, which details the key areas of work; • Supporting Documentation; and • Supporting data files, including weather data, and wind production data, which have been assembled as part of the third year’s effort. This executive summary provides summaries of the key areas of accomplishment this year, including: • Continuation of stakeholder’s meetings; • Analysis of power generation from wind farms using improved method and 2006 data; • Analysis of emissions reduction from wind farms; • Updates on degradation analysis; • Analysis of other renewables, including: PV, solar thermal, hydroelectric, geothermal and landfill gas; • Review of electricity generation by renewable sources and transmission planning study reported by ERCOT; • Review of combined heat and power projects in Texas; and • Preliminary reporting of NOx emissions savings in the 2007 Integrated Savings report to the TCEQ.

Gilman, D.; Yazdani, B.; Haberl, J. S.; Baltazar-Cervantes, J. C.; Subbarao, K.; Culp, C.; Liu, Z.

2008-08-01T23:59:59.000Z

414

Ground-to-Air Gas Emission Rate Inferred from Measured Concentration Rise within a Disturbed Atmospheric Surface Layer  

Science Conference Proceedings (OSTI)

In reference to previously observed concentrations of methane released from a source enclosed by a windbreak, this paper examines a refined “inverse dispersion” approach for estimating the rate of emission Q from a small ground-level source, when ...

J. D. Wilson; T. K. Flesch; P. Bourdin

2010-09-01T23:59:59.000Z

415

Closing the Gap: Using the Clean Air Act to Control Lifecycle Greenhouse Gas Emissions from Energy Facilities  

E-Print Network (OSTI)

from coal- or natural gas-fired power plants occur "up-of natural gas is lost before reaching the power plant." 30power plant. Yet, when it comes to upstream emissions, the lifecycle for natural gas

Hagan, Colin R.

2012-01-01T23:59:59.000Z

416

An integrated assessment of air pollutant abatement opportunities in a computable general equilibrium framework  

E-Print Network (OSTI)

Air pollution and anthropogenic greenhouse gas emission reduction policies are desirable to reduce smog, tropospheric concentrations of ozone precursors, acid rain, and other adverse effects on human health, the environment, ...

Waugh, C. (Caleb Joseph)

2012-01-01T23:59:59.000Z

417

ALTERNATE POWER AND ENERGY STORAGE/REUSE FOR DRILLING RIGS: REDUCED COST AND LOWER EMISSIONS PROVIDE LOWER FOOTPRINT FOR DRILLING OPERATIONS  

E-Print Network (OSTI)

Diesel engines operating the rig pose the problems of low efficiency and large amount of emissions. In addition the rig power requirements vary a lot with time and ongoing operation. Therefore it is in the best interest of operators to research on alternate drilling energy sources which can make entire drilling process economic and environmentally friendly. One of the major ways to reduce the footprint of drilling operations is to provide more efficient power sources for drilling operations. There are various sources of alternate energy storage/reuse. A quantitative comparison of physical size and economics shows that rigs powered by the electrical grid can provide lower cost operations, emit fewer emissions, are quieter, and have a smaller surface footprint than conventional diesel powered drilling. This thesis describes a study to evaluate the feasibility of adopting technology to reduce the size of the power generating equipment on drilling rigs and to provide ?peak shaving? energy through the new energy generating and energy storage devices such as flywheels. An energy audit was conducted on a new generation light weight Huisman LOC 250 rig drilling in South Texas to gather comprehensive time stamped drilling data. A study of emissions while drilling operation was also conducted during the audit. The data was analyzed using MATLAB and compared to a theoretical energy audit. The study showed that it is possible to remove peaks of rig power requirement by a flywheel kinetic energy recovery and storage (KERS) system and that linking to the electrical grid would supply sufficient power to operate the rig normally. Both the link to the grid and the KERS system would fit within a standard ISO container. A cost benefit analysis of the containerized system to transfer grid power to a rig, coupled with the KERS indicated that such a design had the potential to save more than $10,000 per week of drilling operations with significantly lower emissions, quieter operation, and smaller size well pad.

Verma, Ankit

2009-05-01T23:59:59.000Z

418

Integrated Emissions Control - Process Review: Multi-Pollutant Process Cost Comparisons  

Science Conference Proceedings (OSTI)

As the need for more stringent controls for power plant emissions increases, so does the need for more cost effective approaches to reducing these pollutants. Current methods employ technologies designed to reduce specific pollutants, which require combinations of different emission control systems. Some air pollution control suppliers and utilities are developing technologies that have the potential to reduce the emission rates for multiple pollutants simultaneously with the goal of identifying integrat...

2002-12-17T23:59:59.000Z

419

Regulating Greenhouse Gas Emissions Date: March 7, 2011  

E-Print Network (OSTI)

Regulating Greenhouse Gas Emissions Date: March 7, 2011 To: Michigan's Congressional Delegation From: Michigan College, University, Agency and NGO Researchers RE: Clean Air Act and Greenhouse Gas note that the EPA's rules to reduce greenhouse gas emissions from new vehicles were welcomed

Shyy, Wei

420

National Emission Standards for Hazardous Air Pollutants for Major Sources: Industrial, Commercial, and Institutional Boilers; Guidance for Calculating Emission Credits Resulting from Implementation of Energy Conservation Measures  

Science Conference Proceedings (OSTI)

The purpose of this document is to provide guidance for developing a consistent approach to documenting efficiency credits generated from energy conservation measures in the Implementation Plan for boilers covered by the Boiler MACT rule (i.e., subpart DDDDD of CFR part 63). This document divides Boiler System conservation opportunities into four functional areas: 1) the boiler itself, 2) the condensate recovery system, 3) the distribution system, and 4) the end uses of the steam. This document provides technical information for documenting emissions credits proposed in the Implementation Plan for functional areas 2) though 4). This document does not include efficiency improvements related to the Boiler tune-ups.

Cox, Daryl [ORNL; Papar, Riyaz [Hudson Technologies; Wright, Dr. Anthony [ALW Consulting

2012-07-01T23:59:59.000Z

Note: This page contains sample records for the topic "reduce air emissions" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

BEETIT: Building Cooling and Air Conditioning  

Science Conference Proceedings (OSTI)

BEETIT Project: The 14 projects that comprise ARPA-E’s BEETIT Project, short for “Building Energy Efficiency Through Innovative Thermodevices,” are developing new approaches and technologies for building cooling equipment and air conditioners. These projects aim to drastically improve building energy efficiency and reduce greenhouse gas emissions such as carbon dioxide (CO2) at a cost comparable to current technologies.

None

2010-09-01T23:59:59.000Z

422

State of Washington Department of Health Radioactive air emissions notice of construction phase 1 for spent nuclear fuel project - cold vacuum drying facility, project W-441  

SciTech Connect

This notice of construction (NOC) provides information regarding the source and the estimated annual possession quantity resulting from operation of the Cold Vacuum Drying Facility (CVDF). Additional details on emissions generated by the operation of the CVDF will be discussed again in the Phase 11 NOC. This document serves as a NOC pursuant to the requirements of WAC 246-247-060 for the completion of Phase I NOC, defined as the pouring of concrete for the foundation flooring, construction of external walls, and construction of the building excluding the installation of CVDF process equipment. A Phase 11 NOC will be submitted for approval prior to installing and is defined as the completion of the CVDF, which consisted installation of process equipment, air emissions control, and emission monitoring equipment. About 80 percent of the U.S. Department of Energy`s spent nuclear fuel (SNF) inventory is stored under water in the Hanford Site K Basins. Spent nuclear fuel in the K West Basin is contained in closed canisters while the SNF in the K East Basin is in open canisters, which allow free release of corrosion products to the K East Basin water.

Turnbaugh, J.E.

1996-08-15T23:59:59.000Z

423

Applications of carbon dioxide capture and storage technologies in reducing emissions from fossil-fired power plants  

Science Conference Proceedings (OSTI)

The aim of this paper is to investigate the global contribution of carbon capture and storage technologies to mitigating climate change. Carbon capture and storage is a technology that comprises the separation of from carbon dioxide industrial- and energy-related sources, transport to a storage location (e.g., saline aquifers and depleted hydrocarbon fields), and long-term isolation from the atmosphere. The carbon dioxides emitted directly at the power stations are reduced by 80 to 90%. In contrast, the life cycle assessment shows substantially lower reductions of greenhouse gases in total (minus 65 to 79%).

Balat, M.; Balat, H.; Oz, C. [University of Mahallesi, Trabzon (Turkey)

2009-07-01T23:59:59.000Z

424

Summary of the presentations at the international workshop on reducing carbon dioxide emissions from the developing world: Assessment of benefits, costs and barriers  

SciTech Connect

The ``International Workshop on Reducing Carbon Dioxide Emissions from the Developing World: Assessment of Benefits, Costs and Barriers`` was the second workshop held as part of a project being conducted by the International Energy Studies Group of Lawrence Berkeley Laboratory, in collaboration with experts from leading institutions across the developing world. The goal of the project is to analyze long-range energy consumption in developing countries and its potential contribution to global climate change. The US Environmental Protection Agency (EPA) is supporting this work, the results of which already have made a key contribution to the technical analysis being used as the basis for discussion by the Energy and Industry Sub-group of the Intergovernmental Panel on Climate Change (IPCC). The main purpose of this workshop was two-fold: (1) to discuss the feasibility of implementing the efficiency improvements and fuel switching measures incorporated into the long-term energy scenarios created for 17 developing countries and (2) to examine the costs and benefits of reducing energy-related carbon dioxide emissions generated by developing countries.

Sathaye, J.; Goldman, N. [eds.

1991-06-01T23:59:59.000Z

425

Summary of the presentations at the international workshop on reducing carbon dioxide emissions from the developing world: Assessment of benefits, costs and barriers  

SciTech Connect

The International Workshop on Reducing Carbon Dioxide Emissions from the Developing World: Assessment of Benefits, Costs and Barriers'' was the second workshop held as part of a project being conducted by the International Energy Studies Group of Lawrence Berkeley Laboratory, in collaboration with experts from leading institutions across the developing world. The goal of the project is to analyze long-range energy consumption in developing countries and its potential contribution to global climate change. The US Environmental Protection Agency (EPA) is supporting this work, the results of which already have made a key contribution to the technical analysis being used as the basis for discussion by the Energy and Industry Sub-group of the Intergovernmental Panel on Climate Change (IPCC). The main purpose of this workshop was two-fold: (1) to discuss the feasibility of implementing the efficiency improvements and fuel switching measures incorporated into the long-term energy scenarios created for 17 developing countries and (2) to examine the costs and benefits of reducing energy-related carbon dioxide emissions generated by developing countries.

Sathaye, J.; Goldman, N. (eds.)

1991-06-01T23:59:59.000Z

426

Air Pollution Controls  

Energy.gov (U.S. Department of Energy (DOE))

Various statutes within the Wisconsin Legislative Documents relate to air pollution control. These statutes describe zoning, permitting, and emissions regulations for hazardous and non-hazardous...

427

Feasibility of air capture  

E-Print Network (OSTI)

Capturing CO2 from air, referred to as Air Capture, is being proposed as a viable climate change mitigation technology. The two major benefits of air capture, reported in literature, are that it allows us to reduce the ...

Ranjan, Manya

2010-01-01T23:59:59.000Z

428

Kansas Air Quality Regulations (Kansas)  

Energy.gov (U.S. Department of Energy (DOE))

All new air contaminant emission sources or alterations to emission sources that are required to be reported shall be in compliance with all applicable emission control regulations at the time that...

429

Modelin the Transport and Chemical Evolution of Onshore and Offshore Emissions and Their Impact on Local and Regional Air Quality Using a Variable-Grid-Resolution Air Quality Model  

SciTech Connect

The overall objective of this research project was to develop an innovative modeling technique to adequately model the offshore/onshore transport of pollutants. The variable-grid modeling approach that was developed alleviates many of the shortcomings of the traditionally used nested regular-grid modeling approach, in particular related to biases near boundaries and the excessive computational requirements when using nested grids. The Gulf of Mexico region contiguous to the Houston-Galveston area and southern Louisiana was chosen as a test bed for the variable-grid modeling approach. In addition to the onshore high pollution emissions from various sources in those areas, emissions from on-shore and off-shore oil and gas exploration and production are additional sources of air pollution. We identified case studies for which to perform meteorological and air quality model simulations. Our approach included developing and evaluating the meteorological, emissions, and chemistry-transport modeling components for the variable-grid applications, with special focus on the geographic areas where the finest grid resolution was used. We evaluated the performance of two atmospheric boundary layer (ABL) schemes, and identified the best-performing scheme for simulating mesoscale circulations for different grid resolutions. Use of a newly developed surface data assimilation scheme resulted in improved meteorological model simulations. We also successfully ingested satellite-derived sea surface temperatures (SSTs) into the meteorological model simulations, leading to further improvements in simulated wind, temperature, and moisture fields. These improved meteorological fields were important for variable-grid simulations, especially related to capturing the land-sea breeze circulations that are critical for modeling offshore/onshore transport of pollutants in the Gulf region. We developed SMOKE-VGR, the variable-grid version of the SMOKE emissions processing model, and tested and evaluated this new system. We completed the development of our variable-grid-resolution air quality model (MAQSIP-VGR) and performed various diagnostic tests related to an enhanced cloud parameterization scheme. We also developed an important tool for variable-grid graphics using Google Earth. We ran the MAQSIP-VGR for the Houston-Galveston and southern Louisiana domains for an August 23 to September 2, 2002, episode. Results of the modeling simulations highlighted the usefulness of the variable-grid modeling approach when simulating complex terrain processes related to land and sea close to an urban area. Our results showed that realistic SST patterns based on remote sensing are critical to capturing the land-sea breeze, in particular the inland intrusion of the reversed mesoscale circulation that is critical for simulating air pollution over urban areas near coastal regions. Besides capturing the correct horizontal gradient between land and sea surface temperatures, it is important to use an adequate ABL scheme in order to quantify correctly the vertical profiles of various parameters. The ABL scheme should capture the dynamics of the marine boundary layer, which is not often considered in a typical simulation over land. Our results further showed the effect of using satellite-derived SSTs on the horizontal and vertical extent of the modeled pollution pattern, and the increase in hourly ozone concentrations associated with changes in ABL characteristics resulting from the enhanced mesoscale circulation in the lower troposphere.

Adel Hanna

2008-10-16T23:59:59.000Z