National Library of Energy BETA

Sample records for redox flow cell

  1. Transitioning from Fuel Cells to Redox Flow Cells

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Transitioning From Fuel Cells to Redox Flow Cells T. Zawodzinski and Matt Mench University of Tennessee and ORNL Managed by UT-Battelle for the Department of Energy 2 Acknowledgments $$ DOE-OE EPRI GCEP NSF EPSCOR (TN SCORE) UTK Governor's Chair Fund Partner in Crime Matt Mench Managed by UT-Battelle for the Department of Energy Peeling the Onion' Personalized History of PEM Fuel Cells We May Recapitulate This for RFBs Catalysis Test System * Small Single Cell * Large Single Cell * Stack *

  2. Transitioning from Fuel Cells to Redox Flow Cells | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Transitioning from Fuel Cells to Redox Flow Cells Transitioning from Fuel Cells to Redox Flow Cells Presentation by Tom Zawodzinski, University of Tennessee and Oak Ridge National Laboratory, at the Flow Cells for Energy Storage Workshop held March 7-8, 2012, in Washington, DC. flowcells2012_zawodzinski.pdf (5.16 MB) More Documents & Publications Energy Storage Systems 2012 Peer Review Presentations - Day 2, Session 1 Energy Storage Systems 2014 Peer Review Presentations - Session 2 Energy

  3. Cascade redox flow battery systems

    DOE Patents [OSTI]

    Horne, Craig R.; Kinoshita, Kim; Hickey, Darren B.; Sha, Jay E.; Bose, Deepak

    2014-07-22

    A reduction/oxidation ("redox") flow battery system includes a series of electrochemical cells arranged in a cascade, whereby liquid electrolyte reacts in a first electrochemical cell (or group of cells) before being directed into a second cell (or group of cells) where it reacts before being directed to subsequent cells. The cascade includes 2 to n stages, each stage having one or more electrochemical cells. During a charge reaction, electrolyte entering a first stage will have a lower state-of-charge than electrolyte entering the nth stage. In some embodiments, cell components and/or characteristics may be configured based on a state-of-charge of electrolytes expected at each cascade stage. Such engineered cascades provide redox flow battery systems with higher energy efficiency over a broader range of current density than prior art arrangements.

  4. Redox Flow Batteries, a Review

    SciTech Connect (OSTI)

    U. Tennessee Knoxville; U. Texas Austin; McGill U; Weber, Adam Z.; Mench, Matthew M.; Meyers, Jeremy P.; Ross, Philip N.; Gostick, Jeffrey T.; Liu, Qinghua

    2011-07-15

    Redox flow batteries are enjoying a renaissance due to their ability to store large amounts of electrical energy relatively cheaply and efficiently. In this review, we examine the components of redox flow batteries with a focus on understanding the underlying physical processes. The various transport and kinetic phenomena are discussed along with the most common redox couples.

  5. A Symmetric Organic - Based Nonaqueous Redox Flow Battery and...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    A Symmetric Organic - Based Nonaqueous Redox Flow Battery and Its State of Charge Diagnostics by FTIR (1) Symmetric Nonaqueous flow battery based on ambipolar PTIO (cell voltage ...

  6. Optimization of electrode characteristics for the Br-2/H-2 redox flow cell

    SciTech Connect (OSTI)

    Tucker, MC; Cho, KT; Weber, AZ; Lin, GY; Nguyen, TV

    2014-10-17

    The Br-2/H-2 redox flow cell shows promise as a high-power, low-cost energy storage device. The effect of various aspects of material selection, processing, and assembly of electrodes on the operation, performance, and efficiency of the system is determined. In particular, (+) electrode thickness, cell compression, hydrogen pressure, and (-) electrode architecture are investigated. Increasing hydrogen pressure and depositing the (-) catalyst layer on the membrane instead of on the carbon paper backing layers have a large positive impact on performance, enabling a limiting current density above 2 A cm(-2) and a peak power density of 1.4 W cm(-2). Maximum energy efficiency of 79 % is achieved. In addition, the root cause of limiting-current behavior in this system is elucidated, where it is found that Br- reversibly adsorbs at the Pt (-) electrode for potentials exceeding a critical value, and the extent of Br- coverage is potential-dependent. This phenomenon limits maximum cell current density and must be addressed in system modeling and design. These findings are expected to lower system cost and enable higher efficiency.

  7. Optimization of electrode characteristics for the Br₂/H₂ redox flow cell

    SciTech Connect (OSTI)

    Tucker, Michael C.; Cho, Kyu Taek; Weber, Adam Z.; Lin, Guangyu; Van Nguyen, Trung

    2014-10-17

    The Br₂/H₂ redox flow cell shows promise as a high-power, low-cost energy storage device. The effect of various aspects of material selection, processing, and assembly of electrodes on the operation, performance, and efficiency of the system is determined. In particular, (+) electrode thickness, cell compression, hydrogen pressure, and (–) electrode architecture are investigated. Increasing hydrogen pressure and depositing the (–) catalyst layer on the membrane instead of on the carbon-paper backing layers have a large positive impact on performance, enabling a limiting current density above 2 A cm-2 and a peak power density of 1.4 W cm-2. Maximum energy efficiency of 79% is achieved. In addition, the root cause of limiting-current behavior in this system is elucidated, where it is found that Br- reversibly adsorbs at the Pt (–) electrode for potentials exceeding a critical value, and the extent of Br- coverage is potential-dependent. This phenomenon limits maximum cell current density and must be addressed in system modeling and design. These findings are expected to lower system cost and enable higher efficiency.

  8. Optimization of electrode characteristics for the Br?/H? redox flow cell

    SciTech Connect (OSTI)

    Tucker, Michael C.; Cho, Kyu Taek; Weber, Adam Z.; Lin, Guangyu; Van Nguyen, Trung

    2015-01-01

    The Br?/H? redox flow cell shows promise as a high-power, low-cost energy storage device. The effect of various aspects of material selection, processing, and assembly of electrodes on the operation, performance, and efficiency of the system is determined. In particular, (+) electrode thickness, cell compression, hydrogen pressure, and () electrode architecture are investigated. Increasing hydrogen pressure and depositing the () catalyst layer on the membrane instead of on the carbon-paper backing layers have a large positive impact on performance, enabling a limiting current density above 2 A cm-2 and a peak power density of 1.4 W cm-2. Maximum energy efficiency of 79% is achieved. In addition, the root cause of limiting-current behavior in this system is elucidated, where it is found that Br- reversibly adsorbs at the Pt () electrode for potentials exceeding a critical value, and the extent of Br- coverage is potential-dependent. This phenomenon limits maximum cell current density and must be addressed in system modeling and design. These findings are expected to lower system cost and enable higher efficiency.

  9. Optimization of electrode characteristics for the Br₂/H₂ redox flow cell

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Tucker, Michael C.; Cho, Kyu Taek; Weber, Adam Z.; Lin, Guangyu; Van Nguyen, Trung

    2014-10-17

    The Br₂/H₂ redox flow cell shows promise as a high-power, low-cost energy storage device. The effect of various aspects of material selection, processing, and assembly of electrodes on the operation, performance, and efficiency of the system is determined. In particular, (+) electrode thickness, cell compression, hydrogen pressure, and (–) electrode architecture are investigated. Increasing hydrogen pressure and depositing the (–) catalyst layer on the membrane instead of on the carbon-paper backing layers have a large positive impact on performance, enabling a limiting current density above 2 A cm-2 and a peak power density of 1.4 W cm-2. Maximum energy efficiencymore » of 79% is achieved. In addition, the root cause of limiting-current behavior in this system is elucidated, where it is found that Br- reversibly adsorbs at the Pt (–) electrode for potentials exceeding a critical value, and the extent of Br- coverage is potential-dependent. This phenomenon limits maximum cell current density and must be addressed in system modeling and design. These findings are expected to lower system cost and enable higher efficiency.« less

  10. Redox Flow - Joint Center for Energy Storage Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Redox Flow March 10, 2016, Research Highlights A Symmetric Organic - Based Nonaqueous Redox Flow Battery and Its State of Charge Diagnostics by FTIR A symmetric nonaqueous flow battery based on the highly soluble, ambipolar PTIO achieved a cell voltage of ~1.7V and decent cyclability. We demonstrated FTIR as an effective method to monitor the state of charge (SOC) of this flow battery. Read More Redox Flow December 10, 2015, Research Highlights In-Situ XANES and EXAFS Analysis of Redox Active Fe

  11. Impact of membrane characteristics on the performance and cycling of the Br-2-H-2 redox flow cell

    SciTech Connect (OSTI)

    Tucker, MC; Cho, KT; Spingler, FB; Weber, AZ; Lin, GY

    2015-06-15

    The Br-2/H-2 redox flow cell shows promise as a high-power, low-cost energy storage device. In this paper, the effect of various aspects of material selection and processing of proton exchange membranes on the operation of the Br-2/H-2 redox flow cell is determined. Membrane properties have a significant impact on the performance and efficiency of the system. In particular, there is a tradeoff between conductivity and crossover, where conductivity limits system efficiency at high current density and crossover limits efficiency at low current density. The impact of thickness, pretreatment procedure, swelling state during cell assembly, equivalent weight, membrane reinforcement, and addition of a microporous separator layer on this tradeoff is assessed. NR212 (50 mu m) pretreated by soaking in 70 degrees C water is found to be optimal for the studied operating conditions. For this case, an energy efficiency of greater than 75% is achieved for current density up to 400 mA cm(-2), with a maximum obtainable energy efficiency of 88%. A cell with this membrane was cycled continuously for 3164 h. Membrane transport properties, including conductivity and bromine and water crossover, were found to decrease moderately upon cycling but remained higher than those for the as-received membrane. (C) 2015 Elsevier B.V. All rights reserved.

  12. Impact of membrane characteristics on the performance and cycling of the Br₂–H₂ redox flow cell

    SciTech Connect (OSTI)

    Tucker, Michael C.; Cho, Kyu Taek; Spingler, Franz B.; Weber, Adam Z.; Lin, Guangyu

    2015-03-04

    The Br₂/H₂ redox flow cell shows promise as a high-power, low-cost energy storage device. In this paper, the effect of various aspects of material selection and processing of proton exchange membranes on the operation of the Br₂/H₂ redox flow cell is determined. Membrane properties have a significant impact on the performance and efficiency of the system. In particular, there is a tradeoff between conductivity and crossover, where conductivity limits system efficiency at high current density and crossover limits efficiency at low current density. The impact of thickness, pretreatment procedure, swelling state during cell assembly, equivalent weight, membrane reinforcement, and addition of a microporous separator layer on this tradeoff is assessed. NR212 (50 μm) pretreated by soaking in 70 °C water is found to be optimal for the studied operating conditions. For this case, an energy efficiency of greater than 75% is achieved for current density up to 400 mA cm⁻², with a maximum obtainable energy efficiency of 88%. A cell with this membrane was cycled continuously for 3164 h. Membrane transport properties, including conductivity and bromine and water crossover, were found to decrease moderately upon cycling but remained higher than those for the as-received membrane.

  13. Impact of membrane characteristics on the performance and cycling of the Br₂–H₂ redox flow cell

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Tucker, Michael C.; Cho, Kyu Taek; Spingler, Franz B.; Weber, Adam Z.; Lin, Guangyu

    2015-03-04

    The Br₂/H₂ redox flow cell shows promise as a high-power, low-cost energy storage device. In this paper, the effect of various aspects of material selection and processing of proton exchange membranes on the operation of the Br₂/H₂ redox flow cell is determined. Membrane properties have a significant impact on the performance and efficiency of the system. In particular, there is a tradeoff between conductivity and crossover, where conductivity limits system efficiency at high current density and crossover limits efficiency at low current density. The impact of thickness, pretreatment procedure, swelling state during cell assembly, equivalent weight, membrane reinforcement, and additionmore » of a microporous separator layer on this tradeoff is assessed. NR212 (50 μm) pretreated by soaking in 70 °C water is found to be optimal for the studied operating conditions. For this case, an energy efficiency of greater than 75% is achieved for current density up to 400 mA cm⁻², with a maximum obtainable energy efficiency of 88%. A cell with this membrane was cycled continuously for 3164 h. Membrane transport properties, including conductivity and bromine and water crossover, were found to decrease moderately upon cycling but remained higher than those for the as-received membrane.« less

  14. Rebalancing electrolytes in redox flow battery systems

    DOE Patents [OSTI]

    Chang, On Kok; Pham, Ai Quoc

    2014-12-23

    Embodiments of redox flow battery rebalancing systems include a system for reacting an unbalanced flow battery electrolyte with a rebalance electrolyte in a first reaction cell. In some embodiments, the rebalance electrolyte may contain ferrous iron (Fe.sup.2+) which may be oxidized to ferric iron (Fe.sup.3+) in the first reaction cell. The reducing ability of the rebalance reactant may be restored in a second rebalance cell that is configured to reduce the ferric iron in the rebalance electrolyte back into ferrous iron through a reaction with metallic iron.

  15. Hybrid anodes for redox flow batteries (Patent) | DOEPatents

    Office of Scientific and Technical Information (OSTI)

    a first half cell containing a first redox couple dissolved in a solution or contained in a suspension. The solution or suspension can flow from a reservoir to the first half cell. ...

  16. Estimating the system price of redox flow batteries for grid...

    Office of Scientific and Technical Information (OSTI)

    Estimating the system price of redox flow batteries for grid storage Citation Details ... Title: Estimating the system price of redox flow batteries for grid storage Authors: Ha, ...

  17. Estimating the System Price of Redox Flow Batteries for Grid...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Estimating the System Price of Redox Flow Batteries for Grid Storage VRFB system price ... Significance and Impact Redox flow batteries have potential advantages to meet the ...

  18. Redox Flow Batteries: An Engineering Perspective

    SciTech Connect (OSTI)

    Chalamala, Babu R.; Soundappan, Thiagarajan; Fisher, Graham R.; Anstey, Mitchell A.; Viswanathan, Vilayanur V.; Perry, Mike L.

    2014-10-01

    Redox flow batteries are well suited to provide modular and scalable energy storage systems for a wide range of energy storage applications. In this paper, we review the development of redox flow battery technology including recent advances in new redox active materials and systems. We discuss cost, performance, and reliability metrics that are critical for deployment of large flow battery systems. The technology, while relatively young, has the potential for significant improvement through reduced materials costs, improved energy and power efficiency, and significant reduction in the overall system cost.

  19. Hybrid anodes for redox flow batteries

    DOE Patents [OSTI]

    Wang, Wei; Xiao, Jie; Wei, Xiaoliang; Liu, Jun; Sprenkle, Vincent L.

    2015-12-22

    RFBs having solid hybrid electrodes can address at least the problems of active material consumption, electrode passivation, and metal electrode dendrite growth that can be characteristic of traditional batteries, especially those operating at high current densities. The RFBs each have a first half cell containing a first redox couple dissolved in a solution or contained in a suspension. The solution or suspension can flow from a reservoir to the first half cell. A second half cell contains the solid hybrid electrode, which has a first electrode connected to a second electrode, thereby resulting in an equipotential between the first and second electrodes. The first and second half cells are separated by a separator or membrane.

  20. Hybrid anodes for redox flow batteries

    DOE Patents [OSTI]

    Wang, Wei; Xiao, Jie; Wei, Xiaoliang; Liu, Jun; Sprenkle, Vincent L.

    2015-12-15

    RFBs having solid hybrid electrodes can address at least the problems of active material consumption, electrode passivation, and metal electrode dendrite growth that can be characteristic of traditional batteries, especially those operating at high current densities. The RFBs each have a first half cell containing a first redox couple dissolved in a solution or contained in a suspension. The solution or suspension can flow from a reservoir to the first half cell. A second half cell contains the solid hybrid electrode, which has a first electrode connected to a second electrode, thereby resulting in an equipotential between the first and second electrodes. The first and second half cells are separated by a separator or membrane.

  1. High energy density redox flow device

    DOE Patents [OSTI]

    Chiang, Yet-Ming; Carter, W. Craig; Ho, Bryan Y; Duduta, Mihai; Limthongkul, Pimpa

    2014-05-13

    Redox flow devices are described in which at least one of the positive electrode or negative electrode-active materials is a semi-solid or is a condensed ion-storing electroactive material, and in which at least one of the electrode-active materials is transported to and from an assembly at which the electrochemical reaction occurs, producing electrical energy. The electronic conductivity of the semi-solid is increased by the addition of conductive particles to suspensions and/or via the surface modification of the solid in semi-solids (e.g., by coating the solid with a more electron conductive coating material to increase the power of the device). High energy density and high power redox flow devices are disclosed. The redox flow devices described herein can also include one or more inventive design features. In addition, inventive chemistries for use in redox flow devices are also described.

  2. High energy density redox flow device

    DOE Patents [OSTI]

    Chiang, Yet -Ming; Carter, W. Craig; Duduta, Mihai; Limthongkul, Pimpa

    2015-10-06

    Redox flow devices are described including a positive electrode current collector, a negative electrode current collector, and an ion-permeable membrane separating said positive and negative current collectors, positioned and arranged to define a positive electroactive zone and a negative electroactive zone; wherein at least one of said positive and negative electroactive zone comprises a flowable semi-solid composition comprising ion storage compound particles capable of taking up or releasing said ions during operation of the cell, and wherein the ion storage compound particles have a polydisperse size distribution in which the finest particles present in at least 5 vol % of the total volume, is at least a factor of 5 smaller than the largest particles present in at least 5 vol % of the total volume.

  3. High energy density redox flow device

    DOE Patents [OSTI]

    Chiang, Yet-Ming; Carter, William Craig; Duduta, Mihai; Limthongkul, Pimpa

    2014-05-13

    Redox flow devices are described including a positive electrode current collector, a negative electrode current collector, and an ion-permeable membrane separating said positive and negative current collectors, positioned and arranged to define a positive electroactive zone and a negative electroactive zone; wherein at least one of said positive and negative electroactive zone comprises a flowable semi-solid composition comprising ion storage compound particles capable of taking up or releasing said ions during operation of the cell, and wherein the ion storage compound particles have a polydisperse size distribution in which the finest particles present in at least 5 vol % of the total volume, is at least a factor of 5 smaller than the largest particles present in at least 5 vol % of the total volume.

  4. Recent Developments and Trends in Redox Flow Batteries - Joint...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    January 1, 2015, Research Highlights Recent Developments and Trends in Redox Flow Batteries Different flow batteries schemes were investigated. The classic flow battery (top left, ...

  5. Redox Flow - Joint Center for Energy Storage Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Redox Flow JCESR investigates the replacement of solid electrodes with energy-dense liquids that charge and discharge as they flow through the battery and undergo reduction and oxidation ("redox") reactions. These redox flow batteries store large amounts of energy inexpensively and are well-suited to the grid. JCESR introduced a new direction in flow battery research: using inexpensive and versatile organic molecules as the energy storing redox materials. Organic molecules are highly

  6. Porous Polymeric Composite Separators for Redox Flow Batteries

    SciTech Connect (OSTI)

    Wei, Xiaoliang; Li, Bin; Wang, Wei

    2015-04-03

    This invited review paper describes the current status of the porous separator for redox flow battery application.

  7. Numerical modeling of an all vanadium redox flow battery.

    SciTech Connect (OSTI)

    Clausen, Jonathan R.; Brunini, Victor E.; Moffat, Harry K.; Martinez, Mario J.

    2014-01-01

    We develop a capability to simulate reduction-oxidation (redox) flow batteries in the Sierra Multi-Mechanics code base. Specifically, we focus on all-vanadium redox flow batteries; however, the capability is general in implementation and could be adopted to other chemistries. The electrochemical and porous flow models follow those developed in the recent publication by [28]. We review the model implemented in this work and its assumptions, and we show several verification cases including a binary electrolyte, and a battery half-cell. Then, we compare our model implementation with the experimental results shown in [28], with good agreement seen. Next, a sensitivity study is conducted for the major model parameters, which is beneficial in targeting specific features of the redox flow cell for improvement. Lastly, we simulate a three-dimensional version of the flow cell to determine the impact of plenum channels on the performance of the cell. Such channels are frequently seen in experimental designs where the current collector plates are borrowed from fuel cell designs. These designs use a serpentine channel etched into a solid collector plate.

  8. Full cell study of Diels Alder poly(phenylene) anion and cation exchange membranes in vanadium redox flow batteries

    SciTech Connect (OSTI)

    Pezeshki, Alan M.; Fujimoto, Cy; Sun, Che -Nan; Mench, Matthew M.; Zawodzinski, Thomas A.; Tang, Z. J.

    2015-11-14

    In this paper, we report on the performance of Diels Alder poly(phenylene) membranes in vanadium redox flow batteries. The membranes were functionalized with quaternary ammonium groups to form an anion exchange membrane (QDAPP) and with sulfonic acid groups to form a cation exchange membrane (SDAPP). Both membrane classes showed similar conductivities in the battery environment, suggesting that the ion conduction mechanism in the material is not strongly affected by the moieties along the polymer backbone. The resistance to vanadium permeation in QDAPP was not improved relative to SDAPP, further suggesting that the polarity of the functional groups do not play a significant role in the membrane materials tested. Both QDAPP and SDAPP outperformed Nafion membranes in cycling tests, with both achieving voltage efficiencies above 85% while maintaining 95% coulombic efficiency while at a current density of 200 mA/cm2.

  9. Full cell study of Diels Alder poly(phenylene) anion and cation exchange membranes in vanadium redox flow batteries

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Pezeshki, Alan M.; Fujimoto, Cy; Sun, Che -Nan; Mench, Matthew M.; Zawodzinski, Thomas A.; Tang, Z. J.

    2015-11-14

    In this paper, we report on the performance of Diels Alder poly(phenylene) membranes in vanadium redox flow batteries. The membranes were functionalized with quaternary ammonium groups to form an anion exchange membrane (QDAPP) and with sulfonic acid groups to form a cation exchange membrane (SDAPP). Both membrane classes showed similar conductivities in the battery environment, suggesting that the ion conduction mechanism in the material is not strongly affected by the moieties along the polymer backbone. The resistance to vanadium permeation in QDAPP was not improved relative to SDAPP, further suggesting that the polarity of the functional groups do not playmore » a significant role in the membrane materials tested. Both QDAPP and SDAPP outperformed Nafion membranes in cycling tests, with both achieving voltage efficiencies above 85% while maintaining 95% coulombic efficiency while at a current density of 200 mA/cm2.« less

  10. Estimating the system price of redox flow batteries for grid...

    Office of Scientific and Technical Information (OSTI)

    Estimating the system price of redox flow batteries for grid storage Citation Details ... Subject: energy storage; flow battery; grid storage; lithium-ion battery; manufacturing ...

  11. Monitoring electrolyte concentrations in redox flow battery systems

    SciTech Connect (OSTI)

    Chang, On Kok; Sopchak, David Andrew; Pham, Ai Quoc; Kinoshita, Kimio

    2015-03-17

    Methods, systems and structures for monitoring, managing electrolyte concentrations in redox flow batteries are provided by introducing a first quantity of a liquid electrolyte into a first chamber of a test cell and introducing a second quantity of the liquid electrolyte into a second chamber of the test cell. The method further provides for measuring a voltage of the test cell, measuring an elapsed time from the test cell reaching a first voltage until the test cell reaches a second voltage; and determining a degree of imbalance of the liquid electrolyte based on the elapsed time.

  12. Systems and methods for rebalancing redox flow battery electrolytes

    DOE Patents [OSTI]

    Pham, Ai Quoc; Chang, On Kok

    2015-03-17

    Various methods of rebalancing electrolytes in a redox flow battery system include various systems using a catalyzed hydrogen rebalance cell configured to minimize the risk of dissolved catalyst negatively affecting flow battery performance. Some systems described herein reduce the chance of catalyst contamination of RFB electrolytes by employing a mediator solution to eliminate direct contact between the catalyzed membrane and the RFB electrolyte. Other methods use a rebalance cell chemistry that maintains the catalyzed electrode at a potential low enough to prevent the catalyst from dissolving.

  13. An Aqueous Redox Flow Battery Based on Neutral Alkali Metal Ferri/ferrocyanide and Polysulfide Electrolytes

    SciTech Connect (OSTI)

    Wei, Xiaoliang; Xia, Gordon; Kirby, Brent W.; Thomsen, Edwin C.; Li, Bin; Nie, Zimin; Graff, Gordon L.; Liu, Jun; Sprenkle, Vincent L.; Wang, Wei

    2015-11-13

    Aiming to explore low-cost redox flow battery systems, a novel iron-polysulfide (Fe/S) flow battery has been demonstrated in a laboratory cell. This system employs alkali metal ferri/ferrocyanide and alkali metal polysulfides as the redox electrolytes. When proper electrodes, such as pretreated graphite felts, are used, 78% energy efficiency and 99% columbic efficiency are achieved. The remarkable advantages of this system over current state-of-the-art redox flow batteries include: 1) less corrosive and relatively environmentally benign redox solutions used; 2) excellent energy and utilization efficiencies; 3) low cost for redox electrolytes and cell components. These attributes can lead to significantly reduced capital cost and make the Fe/S flow battery system a promising low-cost energy storage technology. The major drawbacks of the present cell design are relatively low power density and possible sulfur species crossover. Further work is underway to address these concerns.

  14. Advanced Redox Flow Batteries for Stationary Electrical Energy Storage

    SciTech Connect (OSTI)

    Li, Liyu; Kim, Soowhan; Xia, Guanguang; Wang, Wei; Yang, Zhenguo

    2012-03-19

    This report describes the status of the advanced redox flow battery research being performed at Pacific Northwest National Laboratories for the U.S. Department of Energy’s Energy Storage Systems Program. The Quarter 1 of FY2012 Milestone was completed on time. The milestone entails completion of evaluation and optimization of single cell components for the two advanced redox flow battery electrolyte chemistries recently developed at the lab, the all vanadium (V) mixed acid and V-Fe mixed acid solutions. All the single cell components to be used in future kW-scale stacks have been identified and optimized in this quarter, which include solution electrolyte, membrane or separator; carbon felt electrode and bi-polar plate. Varied electrochemical, chemical and physical evaluations were carried out to assist the component screening and optimization. The mechanisms of the battery capacity fading behavior for the all vanadium redox flow and the Fe/V battery were discovered, which allowed us to optimize the related cell operation parameters and continuously operate the system for more than three months without any capacity decay.

  15. Fe-V redox flow batteries

    DOE Patents [OSTI]

    Li, Liyu; Kim, Soowhan; Yang, Zhenguo; Wang, Wei; Zhang, Jianlu; Chen, Baowei; Nie, Zimin; Xia, Guanguang

    2014-07-08

    A redox flow battery having a supporting solution that includes Cl.sup.- anions is characterized by an anolyte having V.sup.2+ and V.sup.3+ in the supporting solution, a catholyte having Fe.sup.2+ and Fe.sup.3+ in the supporting solution, and a membrane separating the anolyte and the catholyte. The anolyte and catholyte can have V cations and Fe cations, respectively, or the anolyte and catholyte can each contain both V and Fe cations in a mixture. Furthermore, the supporting solution can contain a mixture of SO.sub.4.sup.2- and Cl.sup.- anions.

  16. Microporous Separators for Fe/V Redox Flow Batteries

    SciTech Connect (OSTI)

    Wei, Xiaoliang; Li, Liyu; Luo, Qingtao; Nie, Zimin; Wang, Wei; Li, Bin; Xia, Guanguang; Miller, Eric; Chambers, Jeff; Yang, Zhenguo

    2012-06-28

    The Fe/V redox flow battery has demonstrated promising performance that is advantageous over other redox flow battery systems. The less oxidative nature of the Fe(III) species enables use of hydrocarbon - based ion exchange membranes or separators. Daramic(reg. sign) microporous polyethylene separators were tested on Fe/V flow cells using the sulphuric/chloric mixed acid - supporting electrolytes. Among them, Daramic(reg. sign) C exhibited good flow cell cycling performance with satisfactory repeatability over a broad temperature range of 5 - 50 degrees C. Energy efficiency (EE) of C remains above 67% at current densities of 50 - 80 cm{sup -2} in the temperature range from room temperature to 50 degrees C. The capacity decay problem could be circumvented through hydraulic pressure balancing by applying different pump rates to the positive and negative electrolytes. Stable capacity and energy were obtained over 40 cycles at room temperature and 40 degrees C. These results manifest that the extremely low-cost separators ($10/cm2) are applicable in the Fe/V flow battery system at an acceptable sacrifice of energy efficiency. This stands for a remarkable breakthrough in significant reduction of the capital cost of the Fe/V flow battery system, and is promising to promote its market penetration in grid stabilization and renewable integration.

  17. New concepts in Redox Flow: "Impact of Redox-Active Polymer Molecular

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Weight on the Electrochemical Properties and Transport Across Porous Separators in Nonaqueous Solvents" - Joint Center for Energy Storage Research October 17, 2014, Research Highlights New concepts in Redox Flow: "Impact of Redox-Active Polymer Molecular Weight on the Electrochemical Properties and Transport Across Porous Separators in Nonaqueous Solvents" Simple porous Celgard separators allow ionic transport while rejecting redox-active polymer (RAP), thus avoiding

  18. Iron-sulfide redox flow batteries

    DOE Patents [OSTI]

    Xia, Guan-Guang; Yang, Zhenguo; Li, Liyu; Kim, Soowhan; Liu, Jun; Graff, Gordon L

    2013-12-17

    Iron-sulfide redox flow battery (RFB) systems can be advantageous for energy storage, particularly when the electrolytes have pH values greater than 6. Such systems can exhibit excellent energy conversion efficiency and stability and can utilize low-cost materials that are relatively safer and more environmentally friendly. One example of an iron-sulfide RFB is characterized by a positive electrolyte that comprises Fe(III) and/or Fe(II) in a positive electrolyte supporting solution, a negative electrolyte that comprises S.sup.2- and/or S in a negative electrolyte supporting solution, and a membrane, or a separator, that separates the positive electrolyte and electrode from the negative electrolyte and electrode.

  19. Iron-sulfide redox flow batteries

    DOE Patents [OSTI]

    Xia, Guanguang; Yang, Zhenguo; Li, Liyu; Kim, Soowhan; Liu, Jun; Graff, Gordon L

    2016-06-14

    Iron-sulfide redox flow battery (RFB) systems can be advantageous for energy storage, particularly when the electrolytes have pH values greater than 6. Such systems can exhibit excellent energy conversion efficiency and stability and can utilize low-cost materials that are relatively safer and more environmentally friendly. One example of an iron-sulfide RFB is characterized by a positive electrolyte that comprises Fe(III) and/or Fe(II) in a positive electrolyte supporting solution, a negative electrolyte that comprises S.sup.2- and/or S in a negative electrolyte supporting solution, and a membrane, or a separator, that separates the positive electrolyte and electrode from the negative electrolyte and electrode.

  20. Fe/V Redox Flow Battery Electrolyte Investigation and Optimization

    SciTech Connect (OSTI)

    Li, Bin; Li, Liyu; Wang, Wei; Nie, Zimin; Chen, Baowei; Wei, Xiaoliang; Luo, Qingtao; Yang, Zhenguo; Sprenkle, Vincent L.

    2013-05-01

    Recently invented Fe/V redox flow battery (IVBs) system has attracted more and more attentions due to its long-term cycling stability. In this paper, the factors (such as compositions, state of charge (SOC) and temperatures) influencing the stability of electrolytes in both positive and negative half-cells were investigated by an extensive matrix study. Thus an optimized electrolyte, which can be operated in the temperature ranges from -5oC to 50oC without any precipitations, was identified. The Fe/V flow cells using the optimized electrolytes and low-cost membranes exhibited satisfactory cycling performances at different temperatures. The efficiencies, capacities and energy densities of flow batteries with varying temperatures were discussed in detail.

  1. Radical Compatibility with Nonaqueous Electrolytes and Its Impact on an All-Organic Redox Flow Battery

    SciTech Connect (OSTI)

    Wei, Xiaoliang; Xu, Wu; Huang, Jinhua; Zhang, Lu; Walter, Eric D.; Lawrence, Chad W.; Vijayakumar, M.; Henderson, Wesley A.; Liu, Tianbiao L.; Cosimbescu, Lelia; Li, Bin; Sprenkle, Vincent L.; Wang, Wei

    2015-07-20

    Nonaqueous redox flow batteries hold the promise to achieve higher energy density ascribed to the broader voltage window than their aqueous counterparts, but their current performance is limited by low redox material concentration, poor cell efficiency, and inferior cycling stability. We report a new nonaqueous total-organic flow battery based on high concentrations of 9-fluorenone as negative and 2,5-di-tert-butyl-1-methoxy-4-[2’-methoxyethoxy]benzene as positive redox materials. The supporting electrolytes are found to greatly affect the cycling stability of flow cells through varying chemical stabilities of the charged radical species, especially the 9-fluorenone radical anions, as confirmed by electron spin resonance. Such an electrolyte optimization sheds light on mechanistic understandings of capacity fading in flow batteries employing organic radical-based redox materials and demonstrates that rational design of supporting electrolyte is vital for stable cyclability.

  2. Electrochemical Model of the Fe/V Redox Flow Battery

    SciTech Connect (OSTI)

    Stephenson, David E.; Kim, Soowhan; Chen, Feng; Thomsen, Edwin C.; Viswanathan, Vilayanur V.; Wang, Wei; Sprenkle, Vincent L.

    2012-11-05

    This paper presents a mathematical model for the new Fe/V redox flow battery chemistry. The model is designed to be useful for stack development and cost analysis purposes.

  3. The Lightest Organic Radical Cation for Charge Storage in Redox Flow

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Batteries - Joint Center for Energy Storage Research August 25, 2016, Research Highlights The Lightest Organic Radical Cation for Charge Storage in Redox Flow Batteries A family of dimethoxybenzene derivatives have been designed and screened using a systematic pruning approach and a stepwise work flow. Compound 6 and 7 not only show promising results in the screening work flow, including cyclic voltammetry, bulk electrolysis cell tests, flow cell tests and EPR kinetic test, but also offer

  4. Materials for Use with Aqueous Redox Flow Batteries | Argonne National

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Laboratory Materials for Use with Aqueous Redox Flow Batteries The invention provides a non-aqueous redox flow battery comprising a negative electrode immersed in a non-aqueous liquid negative electrolyte, a positive electrode immersed in a non-aqueous liquid positive electrolyte, and a cation-permeable separator (e.g., a porous membrane, film, sheet, or panel) between the negative electrolyte from the positive electrolyte. During charging and discharging, the electrolytes are circulated

  5. Membranes Optimized for High Conductivity and Low Crossover of Redox Flow

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Cells 2015-033 - Energy Innovation Portal Energy Storage Energy Storage Find More Like This Return to Search Membranes Optimized for High Conductivity and Low Crossover of Redox Flow Cells 2015-033 Lawrence Berkeley National Laboratory Contact LBL About This Technology Publications: PDF Document Publication Tucker, M. C., Cho, K. T., Spingler, F. B., Weber, A. Z., Lin, G. "Impact of membrane characteristics on the performance and cycling of the Br2-H2 redox flow cell," Journal of

  6. Recent Progress in Redox Flow Battery Research and Development

    SciTech Connect (OSTI)

    Wang, Wei; Luo, Qingtao; Li, Bin; Wei, Xiaoliang; Li, Liyu; Yang, Zhenguo

    2013-02-20

    With the increase need to seamlessly integrate the renewable energy with the current grid which itself is evolving into a more intelligent, efficient, and capable electrical power system, it is envisioned that the energy storage system will play a more prominent role in bridging the gap between the current technology and a clean sustainable future in grid reliability and utilization. Redox flow battery technology is leading the way in this perspective in providing a well balanced approach for current challenges. Recent progress in the research and development of redox flow battery technology is reviewed here with a focus on new chemistries and systems.

  7. Some Lessons Learned from 20 Years in RedOx Flow Battery R&d | Department

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    of Energy Some Lessons Learned from 20 Years in RedOx Flow Battery R&d Some Lessons Learned from 20 Years in RedOx Flow Battery R&d Presentation by Steve Clarke, Applied Intellectual Capital, at the Flow Cells for Energy Storage Workshop held March 7-8, 2012, in Washington, DC. flowcells2012_clarke.pdf (1.38 MB) More Documents & Publications Flow Cells for Energy Storage Workshop Summary Report Flow Cells for Energy Storage Workshop Overview Energy Storage Systems 2014 Peer

  8. Redox Flow Batteries - Energy Innovation Portal

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    The major issue of this type of flow battery is the high capital cost, partially due to the high market prices of vanadium compounds. Another drawback of the vanadium system is the ...

  9. Redox flow batteries based on supporting solutions containing chloride

    DOE Patents [OSTI]

    Li, Liyu; Kim, Soowhan; Yang, Zhenguo; Wang, Wei; Zhang, Jianlu; Chen, Baowei; Nie, Zimin; Xia, Guanguang

    2014-01-14

    Redox flow battery systems having a supporting solution that contains Cl.sup.- ions can exhibit improved performance and characteristics. Furthermore, a supporting solution having mixed SO.sub.4.sup.2- and Cl.sup.- ions can provide increased energy density and improved stability and solubility of one or more of the ionic species in the catholyte and/or anolyte. According to one example, a vanadium-based redox flow battery system is characterized by an anolyte having V.sup.2+ and V.sup.3+ in a supporting solution and a catholyte having V.sup.4+ and V.sup.5+ in a supporting solution. The supporting solution can contain Cl.sup.- ions or a mixture of SO.sub.4.sup.2- and Cl.sup.- ions.

  10. Redox flow batteries based on supporting solutions containing chloride

    SciTech Connect (OSTI)

    Li, Liyu; Kim, Soowhan; Yang, Zhenguo; Wang, Wei; Nie, Zimin; Chen, Baowei; Zhang, Jianlu; Xia, Guanguang

    2015-07-07

    Redox flow battery systems having a supporting solution that contains Cl.sup.- ions can exhibit improved performance and characteristics. Furthermore, a supporting solution having mixed SO.sub.4.sup.2- and Cl.sup.- ions can provide increased energy density and improved stability and solubility of one or more of the ionic species in the catholyte and/or anolyte. According to one example, a vanadium-based redox flow battery system is characterized by an anolyte having V.sup.2+ and V.sup.3+ in a supporting solution and a catholyte having V.sup.4+ and V.sup.5+ in a supporting solution. The supporting solution can contain Cl.sup.- ions or a mixture of SO.sub.4.sup.2- and Cl.sup.- ions.

  11. Redox flow batteries based on supporting solutions containing chloride

    SciTech Connect (OSTI)

    Li, Liyu; Kim, Soowhan; Yang, Zhenguo; Wang, Wei; Nie, Zimin; Chen, Baowei; Zhang, Jianlu; Xia, Guanguang

    2015-09-01

    Redox flow battery systems having a supporting solution that contains Cl.sup.- ions can exhibit improved performance and characteristics. Furthermore, a supporting solution having mixed SO.sub.4.sup.2- and Cl.sup.- ions can provide increased energy density and improved stability and solubility of one or more of the ionic species in the catholyte and/or anolyte. According to one example, a vanadium-based redox flow battery system is characterized by an anolyte having V.sup.2+ and V.sup.3+ in a supporting solution and a catholyte having V.sup.4+ and V.sup.5+ in a supporting solution. The supporting solution can contain Cl.sup.- ions or a mixture of SO.sub.4.sup.2- and Cl.sup.- ions.

  12. A Symmetric Organic - Based Nonaqueous Redox Flow Battery and Its State

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    of Charge Diagnostics by FTIR - Joint Center for Energy Storage Research March 10, 2016, Research Highlights A Symmetric Organic - Based Nonaqueous Redox Flow Battery and Its State of Charge Diagnostics by FTIR (1) Symmetric Nonaqueous flow battery based on ambipolar PTIO (cell voltage 1.7V; solubility 2.6M in MeCN; good cyclability) (2) FTIR-based state of charge monitoring Scientific Achievement A symmetric nonaqueous flow battery based on the highly soluble, ambipolar PTIO achieved a cell

  13. Performance Evaluation of Microporous Separator in Fe/V Redox Flow Battery

    SciTech Connect (OSTI)

    Wei, Xiaoliang; Luo, Qingtao; Li, Bin; Nie, Zimin; Miller, Eric; Chambers, Jeff; Sprenkle, Vincent L.; Wang, Wei

    2013-04-08

    The newly developed Fe/V redox flow battery has demonstrated attractive cell performance. However, the deliverable energy density is relatively inferior due to the low cell voltage. To compensate this disadvantage and compete with other redox flow battery systems, cost reduction of the Fe/V system is necessary. This paper describes evaluation of hydrocarbon-based Daramic® microporous separators for use in the Fe/V system. The separator B having ion exchange capacity demonstrated excellent capacity retention capability. Separator B exhibited energy efficiency above 65% over a broad temperature range of 5-50oC and at current densities up to 80mA/cm2. Plus, separator B is very inexpensive and has exceptional mechanical properties. Therefore, this separator shows great potential to replace the expensive Nafion® membrane. This will drive down the capital cost and make the Fe/V system a promising low-cost energy storage technology.

  14. Cost and Performance Model for Redox Flow Batteries

    SciTech Connect (OSTI)

    Viswanathan, Vilayanur V.; Crawford, Aladsair J.; Stephenson, David E.; Kim, Soowhan; Wang, Wei; Li, Bin; Coffey, Greg W.; Thomsen, Edwin C.; Graff, Gordon L.; Balducci, Patrick J.; Kintner-Meyer, Michael CW; Sprenkle, Vincent L.

    2014-02-01

    A cost model was developed for all vanadium and iron-vanadium redox flow batteries. Electrochemical performance modeling was done to estimate stack performance at various power densities as a function of state of charge. This was supplemented with a shunt current model and a pumping loss model to estimate actual system efficiency. The operating parameters such as power density, flow rates and design parameters such as electrode aspect ratio, electrolyte flow channel dimensions were adjusted to maximize efficiency and minimize capital costs. Detailed cost estimates were obtained from various vendors to calculate cost estimates for present, realistic and optimistic scenarios. The main drivers for cost reduction for various chemistries were identified as a function of the energy to power ratio of the storage system. Levelized cost analysis further guided suitability of various chemistries for different applications.

  15. A symmetric organic-based nonaqueous redox flow battery and its state of charge diagnostics by FTIR

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Duan, Wentao; Vemuri, Rama Ses; Milshtein, Jarrod D.; Laramie, Sydney; Dmello, Rylan D.; Huang, Jinhua; Zhang, Lu; Hu, Dehong; Vijayakumar, M.; Wang, Wei; et al

    2016-03-10

    Redox flow batteries have shown outstanding promise for grid-scale energy storage to promote utilization of renewable energy and improve grid stability. Nonaqueous battery systems can potentially achieve high energy density because of their broad voltage window. In this paper, we report a new organic redox-active material for use in a nonaqueous redox flow battery, 2-phenyl-4,4,5,5-tetramethylimidazoline-1-oxyl-3-oxide (PTIO) that has high solubility (>2.6 M) in organic solvents. PTIO exhibits electrochemically reversible disproportionation reactions and thus can serve as both anolyte and catholyte redox materials in a symmetric flow cell. The PTIO flow battery has a moderate cell voltage of ~1.7 V andmore » shows good cyclability under both cyclic voltammetry and flow cell conditions. Moreover, we demonstrate that FTIR can offer accurate estimation of the PTIO concentration in electrolytes and determine the state of charge of the PTIO flow cell, which suggests FTIR potentially as a powerful online battery status sensor. In conclusion, this study is expected to inspire more insights in this under-addressed area of state of charge analysis aiming at operational safety and reliability of flow batteries.« less

  16. Composite separators and redox flow batteries based on porous separators

    DOE Patents [OSTI]

    Li, Bin; Wei, Xiaoliang; Luo, Qingtao; Nie, Zimin; Wang, Wei; Sprenkle, Vincent L.

    2016-01-12

    Composite separators having a porous structure and including acid-stable, hydrophilic, inorganic particles enmeshed in a substantially fully fluorinated polyolefin matrix can be utilized in a number of applications. The inorganic particles can provide hydrophilic characteristics. The pores of the separator result in good selectivity and electrical conductivity. The fluorinated polymeric backbone can result in high chemical stability. Accordingly, one application of the composite separators is in redox flow batteries as low cost membranes. In such applications, the composite separator can also enable additional property-enhancing features compared to ion-exchange membranes. For example, simple capacity control can be achieved through hydraulic pressure by balancing the volumes of electrolyte on each side of the separator. While a porous separator can also allow for volume and pressure regulation, in RFBs that utilize corrosive and/or oxidizing compounds, the composite separators described herein are preferable for their robustness in the presence of such compounds.

  17. Anthraquinone with Tailored Structure for Nonaqueous Metal-Organic Redox Flow Battery

    SciTech Connect (OSTI)

    Wang, Wei; Xu, Wu; Cosimbescu, Lelia; Choi, Daiwon; Li, Liyu; Yang, Zhenguo

    2012-06-08

    A nonaqueous, hybrid metal-organic redox flow battery based on tailored anthraquinone structure is demonstrated to have an energy efficiency of {approx}82% and a specific discharge energy density similar to aqueous redox flow batteries, which is due to the significantly improved solubility of anthraquinone in supporting electrolytes.

  18. Operating a redox flow battery with a negative electrolyte imbalance

    DOE Patents [OSTI]

    Pham, Quoc; Chang, On; Durairaj, Sumitha

    2015-03-31

    Loss of flow battery electrode catalyst layers during self-discharge or charge reversal may be prevented by establishing and maintaining a negative electrolyte imbalance during at least parts of a flow battery's operation. Negative imbalance may be established and/or maintained actively, passively or both. Actively establishing a negative imbalance may involve detecting an imbalance that is less negative than a desired threshold, and processing one or both electrolytes until the imbalance reaches a desired negative level. Negative imbalance may be effectively established and maintained passively within a cell by constructing a cell with a negative electrode chamber that is larger than the cell's positive electrode chamber, thereby providing a larger quantity of negative electrolyte for reaction with positive electrolyte.

  19. Towards High-Performance Nonaqueous Redox Flow Electrolyte through Ionic Modification of Active Species

    SciTech Connect (OSTI)

    Wei, Xiaoliang; Cosimbescu, Lelia; Xu, Wu; Hu, Jian Z.; Vijayakumar, M.; Feng, Ju; Hu, Mary Y.; Deng, Xuchu; Xiao, Jie; Liu, Jun; Sprenkle, Vincent L.; Wang, Wei

    2015-01-01

    We will present a novel design lithium-organic non-aqueous redox flow battery based on a modified ferrocene catholyte. This RFB produced desired electrochemical performance exceeding most of the currently reported nonaqueous RFB systems.

  20. TEMPO-based Catholyte for High Energy Density Nonaqueous Redox Flow Batteries

    SciTech Connect (OSTI)

    Wei, Xiaoliang; Xu, Wu; Vijayakumar, M.; Cosimbescu, Lelia; Liu, Tianbiao L.; Sprenkle, Vincent L.; Wang, Wei

    2014-12-03

    We will present a novel design lithium-organic non-aqueous redox flow battery based on a TEMPO catholyte. This RFB produced desired electrochemical performance exceeding most of the currently reported nonaqueous RFB systems.

  1. Nanorod Niobium Oxide as Powerful Catalysts for an All Vanadium Redox Flow Battery

    SciTech Connect (OSTI)

    Li, Bin; Gu, Meng; Nie, Zimin; Wei, Xiaoliang; Wang, Chong M.; Sprenkle, Vincent L.; Wang, Wei

    2014-01-01

    Graphite felts (GFs), as typical electrode materials for all vanadium redox flow batteries (VRBs), limit the cell operation to low current density because of their poor kinetic reversibility and electrochemical activity. Here, in order to address this issue we report an electrocatalyst, Nb2O5, decorating the surface of GFs to reduce the activation barrier for redox conversion. Nb2O5 nanofibers with monoclinic phases are synthesized by hydrothermal method and deposited on GFs, which is confirmed to have catalytic effects towards redox couples of V(II)/V(III) at the negative side and V(IV)/V(V) at the positive side, and thus applied in both electrodes of VRB cells. Due to the low conductivity of Nb2O5, the performance of electrodes heavily depends on the nano size and uniform distribution of catalysts on GFs surfaces. The addition of the water-soluble compounds containing W element into the precursor solutions facilitates the precipitation of nanofibers on the GFs. Accordingly, an optimal amount of W-doped Nb2O5 nanofibers with weaker agglomeration and better distribution on GFs surfaces are obtained, leading to significant improvement of the electrochemical performances of VRB cells particularly under the high power operation. The corresponding energy efficiency is enhanced by 10.7 % under the operation of high charge/discharge current density (150 mA•cm-2) owing to faster charge transfer as compared with that without catalysts. These results suggest that Nb2O5 based nanofibers-decorating GFs hold great promise as high-performance electrodes for VRB applications.

  2. Redox Flow Batteries for Grid-scale Energy Storage - Energy Innovation

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Portal Energy Storage Energy Storage Find More Like This Return to Search Redox Flow Batteries for Grid-scale Energy Storage Pacific Northwest National Laboratory Contact PNNL About This Technology A schematic of an upgraded vanadium redox batter shows how using both hydrochloric and sulfuric acids in the electrolyte significantly improves the battery's performance and could also improve the electric grid's reliability and help connect more wind turbines and solar panels to

  3. Recent Advances in Molecular Engineering of Redox Active Organic Molecules

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    for Nonaqueous Flow Batteries - Joint Center for Energy Storage Research August 20, 2016, Research Highlights Recent Advances in Molecular Engineering of Redox Active Organic Molecules for Nonaqueous Flow Batteries Summary of organic couples and the corresponding supporting salts demonstrated in either a coin cell, Swagelok cell, H-cell, or flow cell. Scientific Achievement This review article summarizes the recent work on organic molecules for redox flow batteries, both redox couples and

  4. An Inexpensive Aqueous Flow Battery for Large-Scale Electrical Energy Storage Based on Water-Soluble Organic Redox Couples

    SciTech Connect (OSTI)

    Yang, B; Hoober-Burkhardt, L; Wang, F; Prakash, GKS; Narayanan, SR

    2014-05-21

    We introduce a novel Organic Redox Flow Battery (ORBAT), for Meeting the demanding requirements of cost, eco-friendliness, and durability for large-scale energy storage. ORBAT employs two different water-soluble organic redox couples on the positive and negative side of a flow battery. Redox couples such as quinones are particularly attractive for this application. No precious metal catalyst is needed because of the fast proton-coupled electron transfer processes. Furthermore, in acid media, the quinones exhibit good chemical stability. These properties render quinone-based redox couples very attractive for high-efficiency metal-free rechargeable batteries. We demonstrate the rechargeability of ORBAT with anthraquinone-2-sulfonic acid or anthraquinone-2,6-disulfonic acid on the negative side, and 1,2-dihydrobenzoquinone- 3,5-disulfonic acid on the positive side. The ORBAT cell uses a membrane-electrode assembly configuration similar to that used in polymer electrolyte fuel cells. Such a battery can be charged and discharged multiple times at high faradaic efficiency without any noticeable degradation of performance. We show that solubility and mass transport properties of the reactants and products are paramount to achieving high current densities and high efficiency. The ORBAT configuration presents a unique opportunity for developing an inexpensive and sustainable metal-free rechargeable battery for large-scale electrical energy storage. (C) The Author(s) 2014. Published by ECS. This is an open access article distributed under the terms of the Creative Commons Attribution 4.0 License (CC BY, http://creativecommons.orgilicenses/by/4.0/), which permits unrestricted reuse of the work in any medium, provided the original work is properly cited. All rights reserved.

  5. Comparative analysis for various redox flow batteries chemistries using a cost performance model

    SciTech Connect (OSTI)

    Crawford, Aladsair J.; Viswanathan, Vilayanur V.; Stephenson, David E.; Wang, Wei; Thomsen, Edwin C.; Reed, David M.; Li, Bin; Balducci, Patrick J.; Kintner-Meyer, Michael CW; Sprenkle, Vincent L.

    2015-10-20

    A robust performance-based cost model is developed for all-vanadium, iron-vanadium and iron chromium redox flow batteries. Systems aspects such as shunt current losses, pumping losses and thermal management are accounted for. The objective function, set to minimize system cost, allows determination of stack design and operating parameters such as current density, flow rate and depth of discharge (DOD). Component costs obtained from vendors are used to calculate system costs for various time frames. A 2 kW stack data was used to estimate unit energy costs and compared with model estimates for the same size electrodes. The tool has been shared with the redox flow battery community to both validate their stack data and guide future direction.

  6. Bismuth Nanoparticle Decorating Graphite Felt as a High-Performance Electrode for an All-Vanadium Redox Flow Battery

    SciTech Connect (OSTI)

    Li, Bin; Gu, Meng; Nie, Zimin; Shao, Yuyan; Luo, Qingtao; Wei, Xiaoliang; Li, Xiaolin; Xiao, Jie; Wang, Chong M.; Sprenkle, Vincent L.; Wang, Wei

    2013-02-04

    The selection of electrode materials plays a great role in improving performances of all vanadium redox flow batteries (VRBs). Low-cost graphite felt (GF) as traditional electrode material has to be modified to address its issue of low electrocatalytic activity. In our paper, low-cost and highly conductive bismuth nanoparticles, as a powerful alternative electrocatalyst to noble metal, are proposed and synchronously electro-deposited onto the surface of GF while running flow cells employing the electrolytes containing suitable Bi3+. Although bismuth is proved to only take effect on the redox reaction of V(II)/V(III) and present at negative half-cell side, the whole cell electrochemical performances are significantly improved. In particular, the energy efficiency is increased by 11% owing to faster charge transfer as compared with one without Bi at high charge/discharge rate of 150 mA/cm2, which is prone to reduce stack size, thus dramatically reducing the cost. The excellent results show great promise of Bi nano-catalysts in the commercialization of VRBs in terms of product cost as well as electrochemical properties.

  7. Room temperature, hybrid sodium-based flow batteries with multi-electron transfer redox reactions

    SciTech Connect (OSTI)

    Shamie, Jack S.; Liu, Caihong; Shaw, Leon L.; Sprenkle, Vincent L.

    2015-06-11

    We introduce a new concept of hybrid Na-based flow batteries (HNFBs) with a molten Na alloy anode in conjunction with a flowing catholyte separated by a solid Na-ion exchange membrane for grid-scale energy storage. Such HNFBs can operate at ambient temperature, allow catholytes to have multiple electron transfer redox reactions per active ion, offer wide selection of catholyte chemistries with multiple active ions to couple with the highly negative Na alloy anode, and enable the use of both aqueous and non-aqueous catholytes. Further, the molten Na alloy anode permits the decoupled design of power and energy since a large volume of the molten Na alloy can be used with a limited ion-exchange membrane size. In this proof-of-concept study, the feasibility of multielectron transfer redox reactions per active ion and multiple active ions for catholytes has been demonstrated. Furthermore, the critical barriers to mature this new HNFBs have also been explored.

  8. Room Temperature, Hybrid Sodium-Based Flow Batteries with Multi-Electron Transfer Redox Reactions

    SciTech Connect (OSTI)

    Shamie, Jack S.; Liu, Caihong; Shaw, Leon L.; Sprenkle, Vincent L.

    2015-06-11

    We introduce a new concept of hybrid Na-based flow batteries (HNFBs) with a molten Na alloy anode in conjunction with a flowing catholyte separated by a solid Na-ion exchange membrane for grid-scale energy storage. Such HNFBs can operate at ambient temperature, allow catholytes to have multiple electron transfer redox reactions per active ion, offer wide selection of catholyte chemistries with multiple active ions to couple with the highly negative Na alloy anode, and enable the use of both aqueous and non-aqueous catholytes. Further, the molten Na alloy anode permits the decoupled design of power and energy since a large volume of the molten Na alloy can be used with a limited ion-exchange membrane size. In this proof-of-concept study, the feasibility of multielectron transfer redox reactions per active ion and multiple active ions for catholytes has been demonstrated. The critical barriers to mature this new HNFBs have also been explored.

  9. Membrane Separator for Redox Flow Batteries that Utilize Anion Radical Mediators.

    SciTech Connect (OSTI)

    Delnick, Frank M.

    2014-10-01

    A Na + ion conducting polyethylene oxide membrane is developed for an organic electrolyte redox flow battery that utilizes anion radical mediators. To achieve high specific ionic conductivity, tetraethyleneglycol dimethylether (TEGDME) is used as a plasticizer to reduce crystallinity and increase the free volume of the gel film. This membrane is physically and chemically stable in TEGDME electrolyte that contains highly reactive biphenyl anion radical mediators.

  10. Resolving Losses at the Negative Electrode in All-Vanadium Redox Flow Batteries Using Electrochemical Impedance Spectroscopy

    SciTech Connect (OSTI)

    Sun, Che Nan; Delnick, Frank M; Aaron, D; Mench, Matthew M; Zawodzinski, Thomas A

    2014-01-01

    We present an in situ electrochemical technique for the quantitative measurement and resolution of the ohmic, charge transfer and diffusion overvoltages at the negative electrode of an all-vanadium redox flow battery (VRFB) using electrochemical impedance spectroscopy (EIS). The mathematics describing the complex impedance of the V+2/V+3 redox reaction is derived and matches the experimental data. The voltage losses contributed by each process have been resolved and quantified at various flow rates and electrode thicknesses as a function of current density during anodic and cathodic polarization. The diffusion overvoltage was affected strongly by flow rate while the charge transfer and ohmic losses were invariant. On the other hand, adopting a thicker electrode significantly changed both the charge transfer and diffusion losses due to increased surface area. Furthermore, the Tafel plot obtained from the impedance resolved charge transfer overvoltage yielded the geometric exchange current density, anodic and cathodic Tafel slopes (135 5 and 121 5 mV/decade respectively) and corresponding transfer coefficients = 0.45 0.02 and = 0.50 0.02 in an operating cell.

  11. Polyvinyl Chloride/Silica Nanoporous Composite Separator for All-Vanadium Redox Flow Battery Applications

    SciTech Connect (OSTI)

    Wei, Xiaoliang; Nie, Zimin; Luo, Qingtao; Li, Bin; Sprenkle, Vincent L.; Wang, Wei

    2013-04-22

    Redox flow batteries (RFBs) are capable of reversible conversion between electricity and chemical energy. Potential RFB applications resolve around mitigating the discrepancy between electricity production and consumption to improve the stability and utilization of the power infrastructure and tackling the intermittency of renewables such as photovoltaics or wind turbines to enable their reliable integration [1, 2]. Because the energy is stored in externally contained liquid electrolytes and the energy conversion reactions take place at the electrodes, RFBs hold a unique capability to separate energy and power and thus possess considerable design flexibility to meet either energy management driven or power rating oriented grid applications, which is considered to be a unparalleled advantage over conventional solid-state secondary batteries [3]. Other advantages of RFBs include fast response to load changes, high round-trip efficiency, long calender and cycle lives, safe operations, tolerance to deep discharge, etc. [4]. Among various flow battery chemistries, all-vanadium redox flow battery (VRB) was invented by Maria Skyllas-Kazacos at the University of New South Wales in the 1980s [5, 6] and have attracted substantial attention in both research and industrial communities today [7, 8]. A well-recognized advantage that makes VRB stands out among other redox chemistries is the reduced crossover contamination ascribed to employing four different oxidation states of the same vanadium element as the two redox couples. Recently, great progress has led to remarkably improved energy density of VRB by using sulfuric-chloric mixed acid supporting electrolytes that were stable at 2.5M vanadium and had wider operational temperature window of -5~50oC [9], compared with the traditional sulfuric acid VRB system [10].

  12. Nanoporous polysulfone membranes via a degradable block copolymer precursor for redox flow batteries

    SciTech Connect (OSTI)

    Gindt, Brandon P.; Abebe, Daniel G.; Tang, Zhijiang J.; Lindsey, Melanie B.; Chen, Jihua; Elgammal, Ramez A.; Zawodzinski, Thomas A.; Fujiwara, Tomoko

    2016-01-01

    In this study, nanoporous polysulfone (PSU) membranes were fabricated via post-hydrolysis of polylactide (PLA) from PLA–PSU–PLA triblock copolymer membranes. The PSU scaffold was thermally crosslinked before sacrificing PLA blocks. The resulting nanopore surface was chemically modified with sulfonic acid moieties. The membranes were analyzed and evaluated as separators for vanadium redox flow batteries. Nanoporous PSU membranes prepared by this new method and further chemically modified to a slight degree exhibited unique behavior with respect to their ionic conductivity when exposed to solutions of increasing acid concentration.

  13. Nanoporous polysulfone membranes via a degradable block copolymer precursor for redox flow batteries

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Gindt, Brandon P.; Abebe, Daniel G.; Tang, Zhijiang J.; Lindsey, Melanie B.; Chen, Jihua; Elgammal, Ramez A.; Zawodzinski, Thomas A.; Fujiwara, Tomoko

    2016-01-01

    In this study, nanoporous polysulfone (PSU) membranes were fabricated via post-hydrolysis of polylactide (PLA) from PLA–PSU–PLA triblock copolymer membranes. The PSU scaffold was thermally crosslinked before sacrificing PLA blocks. The resulting nanopore surface was chemically modified with sulfonic acid moieties. The membranes were analyzed and evaluated as separators for vanadium redox flow batteries. Nanoporous PSU membranes prepared by this new method and further chemically modified to a slight degree exhibited unique behavior with respect to their ionic conductivity when exposed to solutions of increasing acid concentration.

  14. Electrocapturing flow cell

    DOE Patents [OSTI]

    Morozov, Victor

    2011-04-05

    A flow cell for electrophoretically-assisted capturing analytes from a flow. The flow cell includes a specimen chamber, a first membrane, a second membrane, a first electrode chamber, and a second electrode chamber. The specimen chamber may have a sample inlet and a sample outlet. A first portion of the first membrane may be coupled to a first portion of the specimen chamber. A first portion of the second membrane may be coupled to a second portion of the specimen chamber. The first electrode chamber may be configured to accept a charge. A portion of the first electrode chamber may be coupled to a second portion of the first membrane. A second electrode chamber may be configured to accept an opposite charge. A portion of the second electrode chamber may be coupled to a second portion of the second membrane.

  15. Diels Alder polyphenylene anion exchange membrane for nonaqueous redox flow batteries

    SciTech Connect (OSTI)

    Small, Leo J.; Pratt, III, Harry D.; Fujimoto, Cy H.; Anderson, Travis M.

    2015-10-23

    Here highly conductive, solvent-resistant anionic Diels Alder polyphenylene (DAPP) membranes were synthesized with three different ionic contents and tested in an ionic liquid-based nonaqueous redox flow battery (RFB). These membranes display 3–10× increase in conductivity in propylene carbonate compared to some commercially available (aqueous) anion exchange membranes. The membrane with an ion content of 1.5 meq/g (DAPP1.5) proved too brittle for operation in a RFB, while the membrane with an ion content of 2.5 meq/g (DAPP2.5) allowed excessive movement of solvent and poor electrochemical yields (capacity fade). Despite having lower voltage efficiencies compared to DAPP2.5, the membrane with an intermediate ion content of 2.0 meq/g (DAPP2.0) exhibited higher coulombic efficiencies (96.4% vs. 89.1%) and electrochemical yields (21.6% vs. 10.9%) after 50 cycles. Crossover of the electroactive species was the primary reason for decreased electrochemical yields. Analysis of the anolyte and catholyte revealed degradation of the electroactive species and formation of a film at the membrane-solution interface. Increases in membrane resistance were attributed to mechanical and thermal aging of the membrane; no chemical change was observed. As a result, improvements in the ionic selectivity and ionic conductivity of the membrane will increase the electrochemical yield and voltage efficiency of future nonaqueous redox flow batteries.

  16. Diels Alder polyphenylene anion exchange membrane for nonaqueous redox flow batteries

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Small, Leo J.; Pratt, III, Harry D.; Fujimoto, Cy H.; Anderson, Travis M.

    2015-10-23

    Here highly conductive, solvent-resistant anionic Diels Alder polyphenylene (DAPP) membranes were synthesized with three different ionic contents and tested in an ionic liquid-based nonaqueous redox flow battery (RFB). These membranes display 3–10× increase in conductivity in propylene carbonate compared to some commercially available (aqueous) anion exchange membranes. The membrane with an ion content of 1.5 meq/g (DAPP1.5) proved too brittle for operation in a RFB, while the membrane with an ion content of 2.5 meq/g (DAPP2.5) allowed excessive movement of solvent and poor electrochemical yields (capacity fade). Despite having lower voltage efficiencies compared to DAPP2.5, the membrane with an intermediatemore » ion content of 2.0 meq/g (DAPP2.0) exhibited higher coulombic efficiencies (96.4% vs. 89.1%) and electrochemical yields (21.6% vs. 10.9%) after 50 cycles. Crossover of the electroactive species was the primary reason for decreased electrochemical yields. Analysis of the anolyte and catholyte revealed degradation of the electroactive species and formation of a film at the membrane-solution interface. Increases in membrane resistance were attributed to mechanical and thermal aging of the membrane; no chemical change was observed. As a result, improvements in the ionic selectivity and ionic conductivity of the membrane will increase the electrochemical yield and voltage efficiency of future nonaqueous redox flow batteries.« less

  17. Room temperature, hybrid sodium-based flow batteries with multi-electron transfer redox reactions

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Shamie, Jack S.; Liu, Caihong; Shaw, Leon L.; Sprenkle, Vincent L.

    2015-06-11

    We introduce a new concept of hybrid Na-based flow batteries (HNFBs) with a molten Na alloy anode in conjunction with a flowing catholyte separated by a solid Na-ion exchange membrane for grid-scale energy storage. Such HNFBs can operate at ambient temperature, allow catholytes to have multiple electron transfer redox reactions per active ion, offer wide selection of catholyte chemistries with multiple active ions to couple with the highly negative Na alloy anode, and enable the use of both aqueous and non-aqueous catholytes. Further, the molten Na alloy anode permits the decoupled design of power and energy since a large volumemore » of the molten Na alloy can be used with a limited ion-exchange membrane size. In this proof-of-concept study, the feasibility of multielectron transfer redox reactions per active ion and multiple active ions for catholytes has been demonstrated. Furthermore, the critical barriers to mature this new HNFBs have also been explored.« less

  18. Room Temperature, Hybrid Sodium-Based Flow Batteries with Multi-Electron Transfer Redox Reactions

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Shamie, Jack S.; Liu, Caihong; Shaw, Leon L.; Sprenkle, Vincent L.

    2015-06-11

    We introduce a new concept of hybrid Na-based flow batteries (HNFBs) with a molten Na alloy anode in conjunction with a flowing catholyte separated by a solid Na-ion exchange membrane for grid-scale energy storage. Such HNFBs can operate at ambient temperature, allow catholytes to have multiple electron transfer redox reactions per active ion, offer wide selection of catholyte chemistries with multiple active ions to couple with the highly negative Na alloy anode, and enable the use of both aqueous and non-aqueous catholytes. Further, the molten Na alloy anode permits the decoupled design of power and energy since a large volumemoreof the molten Na alloy can be used with a limited ion-exchange membrane size. In this proof-of-concept study, the feasibility of multielectron transfer redox reactions per active ion and multiple active ions for catholytes has been demonstrated. The critical barriers to mature this new HNFBs have also been explored.less

  19. Mixed-Metal, Structural, and Substitution Effects of Polyoxometalates on Electrochemical Behavior in a Redox Flow Battery

    SciTech Connect (OSTI)

    Pratt, Harry D; Pratt, William R; Fang, Xikui; Hudak, Nicholas S; Anderson, Travis M

    2014-08-01

    A pair of redox flow batteries containing polyoxometalates was tested as part of an ongoing program in stationary energy storage. The iron-containing dimer, (SiFe3W9(OH)3O34)2(OH)311−, cycled between (SiFe3W9(OH)3O34)2(OH)311−/(SiFe3W9(OH)3O34)2(OH)314−and (SiFe3W9(OH)3O34)2(OH)317−/(SiFe3W9(OH)3O34)2(OH)314− for the positive and negative electrode, respectively. This compound demonstrated a coulombic efficiency of 83% after 20 cycles with an electrochemical yield (measured discharge capacity as a percentage of theoretical capacity) of 55%. Cyclic voltammetry on the Lindqvist ion, cis-V2W4O194−, showed quasi-reversible vanadium electrochemistry, but tungsten reduction was mostly irreversible. In a flow cell configuration, cis-V2W4O194−had a coulombic efficiency of 45% (for a two-electron process) and an electrochemical yield of 16% after 20 cycles. The poor performance of cis-V2W4O194−was attributed primarily to its higher charge density. Collectively, the results showed that both polyoxometalate size and charge density are both important parameters to consider in battery material performance.

  20. Solid polymer electrolyte electrochemical storage cell containing a redox shuttle additive for overcharge protection

    DOE Patents [OSTI]

    Richardson, Thomas J.; Ross, Philip N.

    1999-01-01

    A class of organic redox shuttle additives is described, preferably comprising nitrogen-containing aromatics compounds, which can be used in a high temperature (85.degree. C. or higher) electrochemical storage cell comprising a positive electrode, a negative electrode, and a solid polymer electrolyte to provide overcharge protection to the cell. The organic redox additives or shuttles are characterized by a high diffusion coefficient of at least 2.1.times.10.sup.-8 cm.sup.2 /second and a high onset potential of 2.5 volts or higher. Examples of such organic redox shuttle additives include an alkali metal salt of 1,2,4-triazole, an alkali metal salt of imidazole, 2,3,5,6-tetramethylpyrazine, 1,3,5-tricyanobenzene, and a dialkali metal salt of 3-4-dihydroxy-3-cyclobutene-1,2-dione.

  1. Complexes Containing Redox Non-Innocent Ligands for Symmetric,

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Multi-Electron Transfer Non-Aqueous Redox Flow Batteries - Joint Center for Energy Storage Research May 28, 2015, Research Highlights Complexes Containing Redox Non-Innocent Ligands for Symmetric, Multi-Electron Transfer Non-Aqueous Redox Flow Batteries (Top) Functionalized chromium bipyridine complexes (left), and solubility data for the charged and neutral species (right). (Bottom) Charge-discharge curves for the Cr(L3)3 complex: A) Full H-cell potential, B) Positive electrode potential,

  2. Through-plane conductivities of membranes for nonaqueous redox flow batteries

    SciTech Connect (OSTI)

    Anderson, Travis Mark; Small, Leo J.; Pratt, III, Harry D.; Hudak, Nicholas S.

    2015-08-13

    In this study, nonaqueous redox flow batteries (RFB) leverage nonaqueous solvents to enable higher operating voltages compared to their aqueous counterparts. Most commercial components for flow batteries, however, are designed for aqueous use. One critical component, the ion-selective membrane, provides ionic conductance between electrodes while preventing crossover of electroactive species. Here we evaluate the area-specific conductances and through-plane conductivities of commercially available microporous separators (Celgard 2400, 2500) and anion exchange membranes (Neosepta AFX, Neosepta AHA, Fumasep FAP-450, Fumasep FAP-PK) soaked in acetonitrile, propylene carbonate, or two imidazolium-based ionic liquids. Fumasep membranes combined with acetonitrile-based electrolyte solutions provided the highest conductance values and conductivities by far. When tested in ionic liquids, all anion exchange membranes displayed conductivities greater than those of the Celgard microporous separators, though the separators’ decreased thickness-enabled conductances on par with the most conductive anion exchange membranes. Ionic conductivity is not the only consideration when choosing an anion exchange membrane; testing of FAP-450 and FAP-PK membranes in a nonaqueous RFB demonstrated that the increased mechanical stability of PEEK-supported FAP-PK minimized swelling, in turn decreasing solvent mediated crossover and enabling greater electrochemical yields (40% vs. 4%) and Coulombic efficiencies (94% vs. 90%) compared to the unsupported, higher conductance FAP-450.

  3. Through-plane conductivities of membranes for nonaqueous redox flow batteries

    SciTech Connect (OSTI)

    Anderson, Travis Mark; Small, Leo J.; Pratt, III, Harry D.; Hudak, Nicholas S.

    2015-08-13

    In this study, nonaqueous redox flow batteries (RFB) leverage nonaqueous solvents to enable higher operating voltages compared to their aqueous counterparts. Most commercial components for flow batteries, however, are designed for aqueous use. One critical component, the ion-selective membrane, provides ionic conductance between electrodes while preventing crossover of electroactive species. Here we evaluate the area-specific conductances and through-plane conductivities of commercially available microporous separators (Celgard 2400, 2500) and anion exchange membranes (Neosepta AFX, Neosepta AHA, Fumasep FAP-450, Fumasep FAP-PK) soaked in acetonitrile, propylene carbonate, or two imidazolium-based ionic liquids. Fumasep membranes combined with acetonitrile-based electrolyte solutions provided the highest conductance values and conductivities by far. When tested in ionic liquids, all anion exchange membranes displayed conductivities greater than those of the Celgard microporous separators, though the separators decreased thickness-enabled conductances on par with the most conductive anion exchange membranes. Ionic conductivity is not the only consideration when choosing an anion exchange membrane; testing of FAP-450 and FAP-PK membranes in a nonaqueous RFB demonstrated that the increased mechanical stability of PEEK-supported FAP-PK minimized swelling, in turn decreasing solvent mediated crossover and enabling greater electrochemical yields (40% vs. 4%) and Coulombic efficiencies (94% vs. 90%) compared to the unsupported, higher conductance FAP-450.

  4. Through-plane conductivities of membranes for nonaqueous redox flow batteries

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Anderson, Travis Mark; Small, Leo J.; Pratt, III, Harry D.; Hudak, Nicholas S.

    2015-08-13

    In this study, nonaqueous redox flow batteries (RFB) leverage nonaqueous solvents to enable higher operating voltages compared to their aqueous counterparts. Most commercial components for flow batteries, however, are designed for aqueous use. One critical component, the ion-selective membrane, provides ionic conductance between electrodes while preventing crossover of electroactive species. Here we evaluate the area-specific conductances and through-plane conductivities of commercially available microporous separators (Celgard 2400, 2500) and anion exchange membranes (Neosepta AFX, Neosepta AHA, Fumasep FAP-450, Fumasep FAP-PK) soaked in acetonitrile, propylene carbonate, or two imidazolium-based ionic liquids. Fumasep membranes combined with acetonitrile-based electrolyte solutions provided the highest conductancemore » values and conductivities by far. When tested in ionic liquids, all anion exchange membranes displayed conductivities greater than those of the Celgard microporous separators, though the separators’ decreased thickness-enabled conductances on par with the most conductive anion exchange membranes. Ionic conductivity is not the only consideration when choosing an anion exchange membrane; testing of FAP-450 and FAP-PK membranes in a nonaqueous RFB demonstrated that the increased mechanical stability of PEEK-supported FAP-PK minimized swelling, in turn decreasing solvent mediated crossover and enabling greater electrochemical yields (40% vs. 4%) and Coulombic efficiencies (94% vs. 90%) compared to the unsupported, higher conductance FAP-450.« less

  5. Ambipolar zinc-polyiodide electrolyte for a high-energy density aqueous redox flow battery

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Li, Bin; Nie, Zimin; Vijayakumar, M.; Li, Guosheng; Liu, Jun; Sprenkle, Vincent L.; Wang, Wei

    2015-02-24

    Large-scale energy storage systems are crucial for substantial deployment of renewable energy sources. Energy storage systems with high energy density, high safety, and low cost and environmental friendliness are desired. To overcome the major limitations of the current aqueous redox flow battery systems, namely lower energy density (~25 Wh L-1) and presence of strong acids and/or other hazardous, a high energy density aqueous zinc/polyiodide flow battery (ZIB) is designed with near neutral ZnI2 solutions as catholytes. The energy density of ZIB could reach 322 Wh L-1 at the solubility limit of ZnI2 in water (~7 M). We demonstrate charge andmore » discharge energy densities of 245.9 Wh/L and 166.7 Wh L-1 with ZnI2 electrolyte at 5.0 M, respectively. The addition of ethanol (EtOH) in ZnI2 electrolyte can effectively mitigate the growth of zinc dendrite at the anode and improve the stability of catholytes with wider temperature window (-20 to 50°C), which enable ZIB system to be a promising alternative as a high-energy and high- safety stationary energy storage system.« less

  6. Ambipolar zinc-polyiodide electrolyte for a high-energy density aqueous redox flow battery

    SciTech Connect (OSTI)

    Li, Bin; Nie, Zimin; Vijayakumar, M.; Li, Guosheng; Liu, Jun; Sprenkle, Vincent L.; Wang, Wei

    2015-02-24

    Large-scale energy storage systems are crucial for substantial deployment of renewable energy sources. Energy storage systems with high energy density, high safety, and low cost and environmental friendliness are desired. To overcome the major limitations of the current aqueous redox flow battery systems, namely lower energy density (~25 Wh L-1) and presence of strong acids and/or other hazardous, a high energy density aqueous zinc/polyiodide flow battery (ZIB) is designed with near neutral ZnI2 solutions as catholytes. The energy density of ZIB could reach 322 Wh L-1 at the solubility limit of ZnI2 in water (~7 M). We demonstrate charge and discharge energy densities of 245.9 Wh/L and 166.7 Wh L-1 with ZnI2 electrolyte at 5.0 M, respectively. The addition of ethanol (EtOH) in ZnI2 electrolyte can effectively mitigate the growth of zinc dendrite at the anode and improve the stability of catholytes with wider temperature window (-20 to 50°C), which enable ZIB system to be a promising alternative as a high-energy and high- safety stationary energy storage system.

  7. Ambipolar zinc-polyiodide electrolyte for a high-energy density aqueous redox flow battery

    SciTech Connect (OSTI)

    Li, Bin; Nie, Zimin; Vijayakumar, M.; Li, Guosheng; Liu, Jun; Sprenkle, Vincent L.; Wang, Wei

    2015-02-24

    Large-scale energy storage systems are crucial for substantial deployment of renewable energy sources. Energy storage systems with high energy density, high safety, and low cost and environmental friendliness are desired. To overcome the major limitations of the current aqueous redox flow battery systems, namely lower energy density (~25 Wh L-1) and presence of strong acids and/or other hazardous, a high energy density aqueous zinc/polyiodide flow battery (ZIB) is designed with near neutral ZnI2 solutions as catholytes. The energy density of ZIB could reach 322 Wh L-1 at the solubility limit of ZnI2 in water (~7 M). We demonstrate charge and discharge energy densities of 245.9 Wh/L and 166.7 Wh L-1 with ZnI2 electrolyte at 5.0 M, respectively. The addition of ethanol (EtOH) in ZnI2 electrolyte can effectively mitigate the growth of zinc dendrite at the anode and improve the stability of catholytes with wider temperature window (-20 to 50°C), which enable ZIB system to be a promising alternative as a high-energy and high- safety stationary energy storage system.

  8. Performance of Nafion® N115, Nafion® NR-212, and Nafion® NR-211 in a 1 kW Class All Vanadium Mixed Acid Redox Flow Battery

    SciTech Connect (OSTI)

    Reed, David M.; Thomsen, Edwin C.; Wang, Wei; Nie, Zimin; Li, Bin; Wei, Xiaoliang; Koeppel, Brian J.; Sprenkle, Vincent L.

    2015-07-01

    Three Nafion membranes of similar composition but different thicknesses were operated in a 3-cell 1kW class all vanadium mixed acid redox flow battery. The influence of current density on the charge/discharge characteristics, coulombic and energy efficiency, capacity fade, operating temperature and pressure drop in the flow circuit will be discussed and correlated to the Nafion membrane thickness. Material costs associated with the Nafion membranes, ease of handling the membranes, and performance impacts will also be discussed.

  9. Vanadium redox flow battery efficiency and durability studies of sulfonated Diels Alder poly(phenylene)s

    SciTech Connect (OSTI)

    Fujimoto, Cy H.; Kim, Soowhan; Stains, Ronald; Wei, Xiaoliang; Li, Liyu; Yang, Zhenguo

    2012-07-01

    Sulfonated Diels Alder poly(phenylene) (SDAPP) was examined for vanadium redox flow battery (VRFB) use. The ion exchange capacity (IEC) was varied from 1.4, 1.6 and 2.0 meq/g in order to tune the proton conductivity and vanadium permeability. Coulombic efficiencies between 92 to 99% were observed, depending on IEC (lower IEC, higher coulombic efficiencies). In all cases the SDAPP displayed comparable energy efficiencies (88 - 90%) to Nafion 117 (88%) at 50mA/cm2. Membrane durability also was dependent on IEC; SDAPP with the highest IEC lasted slightly over 50 cycles while SDAPP with the lowest IEC lasted over 400 cycles and testing was discontinued only due to time constraints. Accelerated vanadium lifetime studies were initialed with SDAPP, by soaking films in a 0.1 M V5+ and 5.0 M total SO4-2 solution. The rate of degradation was also proportional with IEC; the 2 meq/g sample dissolved within 376 hours, the 1.6 meq/g sample dissolved after 860 hours, while the 1.4 meq/g sample broke apart after 1527 hours.

  10. A Stable Vanadium Redox-Flow Battery with High Energy Density for Large-scale Energy Storage

    SciTech Connect (OSTI)

    Li, Liyu; Kim, Soowhan; Wang, Wei; Vijayakumar, M.; Nie, Zimin; Chen, Baowei; Zhang, Jianlu; Xia, Guanguang; Hu, Jian Z.; Graff, Gordon L.; Liu, Jun; Yang, Zhenguo

    2011-05-01

    Low cost, high performance redox flow batteries are highly demanded for up to multi-megawatt levels of renewable and grid energy storage. Here, we report a new vanadium redox flow battery with a significant improvement over the current technologies. This new battery utilizes a sulfate-chloride mixed solution, which is capable of dissolving more than 2.5 M vanadium or about a 70% increase in the energy storage capacity over the current vanadium sulfate system. More importantly, the new electrolyte remains stable over a wide temperature range of -5 to 60oC, potentially eliminating the need of active heat management. Its high energy density, broad operational temperature window, and excellent electrochemical performance would lead to a significant reduction in the cost of energy storage, thus accelerating its market penetration.

  11. Nanoporous Polytetrafluoroethylene/Silica Composite Separator as a High-Performance All-Vanadium Redox Flow Battery Membrane

    SciTech Connect (OSTI)

    Wei, Xiaoliang; Nie, Zimin; Luo, Qingtao; Li, Bin; Chen, Baowei; Simmons, Kevin L.; Sprenkle, Vincent L.; Wang, Wei

    2013-09-02

    Driven by the motivation of searching for low-cost membrane alternatives, a novel nanoporous polytetrafluoroethylene/silica composite separator has been prepared and evaluated for its use in all-vanadium mixed-acid redox flow battery. This separator consisting of silica particles enmeshed in a polytetrafluoroethylene fibril matrix has no ion exchange capacity and is featured with unique nanoporous structures, which function as the ion transport channels in redox flow battery operation, with an average pore size of 38nm and a porosity of 48%. This separator has produced excellent electrochemical performance in the all-vanadium mixed-acid system with energy efficiency delivery comparable to Nafion membrane and superior rate capability and temperature tolerance. The separator also demonstrates an exceptional capacity retention capability over extended cycling, offering additional operational latitude towards conveniently mitigating the capacity decay that is inevitable for Nafion. Because of the inexpensive raw materials and simple preparation protocol, the separator is particularly low-cost, estimated to be at least an order of magnitude more inexpensive than Nafion. Plus the proven chemical stability due to the same backbone material as Nafion, this separator possesses a good combination of critical membrane requirements and shows great potential to promote market penetration of the all-vanadium redox flow battery by enabling significant reduction of capital and cycle costs.

  12. Understanding Aqueous Electrolyte Stability through Combined Computational and Magnetic Resonance Spectroscopy: A Case Study on Vanadium Redox Flow Battery Electrolytes

    SciTech Connect (OSTI)

    Vijayakumar, M.; Nie, Zimin; Walter, Eric D.; Hu, Jian Z.; Liu, Jun; Sprenkle, Vincent L.; Wang, Wei

    2015-02-01

    Redox flow battery (RFB) is a promising candidate for energy storage component in designing resilient grid scale power supply due to the advantage of the separation of power and energy. However, poorly understood chemical and thermal stability issues of electrolytes currently limit the performance of RFB. Designing of high performance stable electrolytes requires comprehensive knowledge about the molecular level solvation structure and dynamics of their redox active species. The molecular level understanding of detrimental V2O5 precipitation process led to successful designing of mixed acid based electrolytes for vanadium redox flow batteries (VRFB). The higher stability of mixed acid based electrolytes is attributed to the choice of hydrochloric acid as optimal co-solvent, which provides chloride anions for ligand exchange process in vanadium solvation structure. The role of chloride counter anion on solvation structure and dynamics of vanadium species were studied using combined magnetic resonance spectroscopy and DFT based theoretical methods. Finally, the solvation phenomenon of multiple vanadium species and their impact on VRFB electrolyte chemical stability were discussed.

  13. Fuel cell system with coolant flow reversal

    DOE Patents [OSTI]

    Kothmann, Richard E. (Pittsburgh, PA)

    1986-01-01

    Method and apparatus for cooling electrochemical fuel cell system components. Periodic reversal of the direction of flow of cooling fluid through a fuel cell stack provides greater uniformity and cell operational temperatures. Flow direction through a recirculating coolant fluid circuit is reversed through a two position valve, without requiring modulation of the pumping component.

  14. Mirrored serpentine flow channels for fuel cell

    DOE Patents [OSTI]

    Rock, Jeffrey Allan

    2000-08-08

    A PEM fuel cell having serpentine flow field channels wherein the input/inlet legs of each channel border the input/inlet legs of the next adjacent channels in the same flow field, and the output/exit legs of each channel border the output/exit legs of the next adjacent channels in the same flow field. The serpentine fuel flow channels may be longer, and may contain more medial legs, than the serpentine oxidant flow channels.

  15. Fuel cell with internal flow control

    DOE Patents [OSTI]

    Haltiner, Jr., Karl J.; Venkiteswaran, Arun

    2012-06-12

    A fuel cell stack is provided with a plurality of fuel cell cassettes where each fuel cell cassette has a fuel cell with an anode and cathode. The fuel cell stack includes an anode supply chimney for supplying fuel to the anode of each fuel cell cassette, an anode return chimney for removing anode exhaust from the anode of each fuel cell cassette, a cathode supply chimney for supplying oxidant to the cathode of each fuel cell cassette, and a cathode return chimney for removing cathode exhaust from the cathode of each fuel cell cassette. A first fuel cell cassette includes a flow control member disposed between the anode supply chimney and the anode return chimney or between the cathode supply chimney and the cathode return chimney such that the flow control member provides a flow restriction different from at least one other fuel cell cassettes.

  16. Fuel Cell Technologies Overview: 2012 Flow Cells for Energy Storage...

    Broader source: Energy.gov (indexed) [DOE]

    and Dimitrios Papageorgopoulos, U.S. Department of Energy Fuel Cell Technologies Program, at the Flow Cells for Energy Storage Workshop held March 7-8, 2012, in Washington, DC. ...

  17. Flow cytometry aids basic cell biology research and drug discovery

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Flow cytometry aids basic cell biology research and drug discovery Flow cytometry aids basic cell biology research and drug discovery Life Technologies Corporation and LANL have ...

  18. Determination of redox reaction rates and orders by in situ liquid cell electron microscopy of Pd and Au solution growth

    SciTech Connect (OSTI)

    Sutter, Eli A.; Sutter, Peter W.

    2014-11-19

    In-situ liquid cell transmission and scanning transmission electron microscopy (TEM/STEM) experiments are important as they provide direct insight into processes in liquids, such as solution growth of nanoparticles among others. In liquid cell TEM/STEM redox reaction experiments the hydrated electrons e?aq created by the electron beam are responsible for the reduction of metal-ion complexes. Here we investigate the rate equation of redox reactions involving reduction by e?aq generated by the electron beam during in-situ liquid TEM/STEM. Specifically we consider the growth of Pd on Au seeds in aqueous solutions containing Pd-chloro complexes. From the quantification of the rate of Pd deposition at different electron beam currents and as a function of distance from a stationary, nanometer-sized exciting beam, we determine that the reaction is first order with respect to the concentration of hydrated electrons, [e?aq]. In addition, by comparing Pd- and Au-deposition, we further demonstrate that measurements of the local deposition rate on nanoparticles in the solution via real-time imaging can be used to measure not only [e?aq] but also the rate of reduction of a metal-ion complex to zero-valent metal atoms in solution.

  19. Determination of redox reaction rates and orders by in situ liquid cell electron microscopy of Pd and Au solution growth

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Sutter, Eli A.; Sutter, Peter W.

    2014-11-19

    In-situ liquid cell transmission and scanning transmission electron microscopy (TEM/STEM) experiments are important as they provide direct insight into processes in liquids, such as solution growth of nanoparticles among others. In liquid cell TEM/STEM redox reaction experiments the hydrated electrons e⁻aq created by the electron beam are responsible for the reduction of metal-ion complexes. Here we investigate the rate equation of redox reactions involving reduction by e⁻aq generated by the electron beam during in-situ liquid TEM/STEM. Specifically we consider the growth of Pd on Au seeds in aqueous solutions containing Pd-chloro complexes. From the quantification of the rate of Pdmore » deposition at different electron beam currents and as a function of distance from a stationary, nanometer-sized exciting beam, we determine that the reaction is first order with respect to the concentration of hydrated electrons, [e⁻aq]. In addition, by comparing Pd- and Au-deposition, we further demonstrate that measurements of the local deposition rate on nanoparticles in the solution via real-time imaging can be used to measure not only [e⁻aq] but also the rate of reduction of a metal-ion complex to zero-valent metal atoms in solution.« less

  20. Flow Cells for Energy Storage Workshop Overview | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Overview Flow Cells for Energy Storage Workshop Overview Overview presentation by Adam Weber, Lawrence Berkeley National Laboratory, at the Flow Cells for Energy Storage Workshop held March 7-8, 2012, in Washington, DC. flowcells2012_overview.pdf (236.9 KB) More Documents & Publications Meeting Agenda Flow Cells for Energy Storage Workshop Summary Report Flow Batteries: A Historical Perspective

  1. Doped Yttrium Chromite-Ceria Composite as a Redox-Stable and Sulfur-Tolerant Anode for Solid Oxide Fuel Cells

    SciTech Connect (OSTI)

    Yoon, Kyung J.; Coyle, Christopher A.; Marina, Olga A.

    2011-12-11

    A Ca- and Co-doped yttrium chromite (YCCC) - samaria-doped ceria (SDC) composite was studied in relation to a potential use as a solid oxide fuel cell (SOFC) anode material. Tests performed using the yttria-stabilized zirconia (YSZ) electrolyte-supported cells revealed that the electrocatalytic activity of the YCCC-SDC anode towards hydrogen oxidation at 800 C was comparable to that of the Ni-YSZ anode. In addition, the YCCC-SDC anode exhibited superior sulfur tolerant characteristics showing less than 10% increase in a polarization resistance, fully reversible, upon exposure to 20 ppm H2S at 800 C. No performance degradation was observed during multiple reduction-oxidation (redox) cycles when the anode was intentionally exposed to the air environment followed by the reduction in hydrogen. The redox tolerance of the YCCC-SDC anode was attributed to the dimensional and chemical stability of the YCCC exhibiting minimal isothermal chemical expansion upon redox cycling.

  2. High speed flow cytometric separation of viable cells

    DOE Patents [OSTI]

    Sasaki, Dennis T. (Mountain View, CA); Van den Engh, Gerrit J. (Seattle, WA); Buckie, Anne-Marie (Margate, GB)

    1995-01-01

    Hematopoietic cell populations are separated to provide cell sets and subsets as viable cells with high purity and high yields, based on the number of original cells present in the mixture. High-speed flow cytometry is employed using light characteristics of the cells to separate the cells, where high flow speeds are used to reduce the sorting time.

  3. High speed flow cytometric separation of viable cells

    DOE Patents [OSTI]

    Sasaki, D.T.; Van den Engh, G.J.; Buckie, A.M.

    1995-11-14

    Hematopoietic cell populations are separated to provide cell sets and subsets as viable cells with high purity and high yields, based on the number of original cells present in the mixture. High-speed flow cytometry is employed using light characteristics of the cells to separate the cells, where high flow speeds are used to reduce the sorting time.

  4. Lithium/organosulfur redox cell having protective solid electrolyte barrier formed on anode and method of making same

    DOE Patents [OSTI]

    De Jonghe, Lutgard C.; Visco, Steven J.; Liu, Meilin; Mailhe, Catherine C.

    1990-01-01

    A lithium/organosulfur redox cell is disclosed which comprises a solid lium anode, a liquid organosulfur cathode, and a barrier layer formed adjacent a surface of the solid lithium anode facing the liquid organosulfur cathode consisting of a reaction product of the lithium anode with the organosulfur cathode. The organosulfur cathode comprises a material having the formula (R(S).sub.y).sub.N where y=1 to 6, n=2 to 20 and R is one or more different aliphatic or aromatic organic moieties having 1 to 20 carbon atoms, which may include one or more oxygen, sulfur, nitrogen, or fluorine atoms associated with the chain when R comprises an aliphatic chain, wherein the linear chain may be linear or branched, saturated or unsaturated, and wherein either the aliphatic chain or the aromatic ring may have substituted groups thereon.

  5. Renaissance in Flow-Cell Technologies: Recent Advancements and Future

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Opportunities | Department of Energy Renaissance in Flow-Cell Technologies: Recent Advancements and Future Opportunities Renaissance in Flow-Cell Technologies: Recent Advancements and Future Opportunities Presentation by Mike Perry, United Technologies Research Center, at the Flow Cells for Energy Storage Workshop held March 7-8, 2012, in Washington, DC. flowcells2012_perry.pdf (2.33 MB) More Documents & Publications Flow Cells for Energy Storage Workshop Summary Report Energy Storage

  6. The level of menadione redox-cycling in pancreatic β-cells is proportional to the glucose concentration: Role of NADH and consequences for insulin secretion

    SciTech Connect (OSTI)

    Heart, Emma; Palo, Meridith; Womack, Trayce; Smith, Peter J.S.; Gray, Joshua P.

    2012-01-15

    Pancreatic β-cells release insulin in response to elevation of glucose from basal (4–7 mM) to stimulatory (8–16 mM) levels. Metabolism of glucose by the β-cell results in the production of low levels of reactive oxygen intermediates (ROI), such as hydrogen peroxide (H{sub 2}O{sub 2}), a newly recognized coupling factor linking glucose metabolism to insulin secretion. However, high and toxic levels of H{sub 2}O{sub 2} inhibit insulin secretion. Menadione, which produces H{sub 2}O{sub 2} via redox cycling mechanism in a dose-dependent manner, was investigated for its effect on β-cell metabolism and insulin secretion in INS-1 832/13, a rat β-cell insulinoma cell line, and primary rodent islets. Menadione-dependent redox cycling and resulting H{sub 2}O{sub 2} production under stimulatory glucose exceeded several-fold those reached at basal glucose. This was paralleled by a differential effect of menadione (0.1–10 μM) on insulin secretion, which was enhanced at basal, but inhibited at stimulatory glucose. Redox cycling of menadione and H{sub 2}O{sub 2} formation was dependent on glycolytically-derived NADH, as inhibition of glycolysis and application of non-glycogenic insulin secretagogues did not support redox cycling. In addition, activity of plasma membrane electron transport, a system dependent in part on glycolytically-derived NADH, was also inhibited by menadione. Menadione-dependent redox cycling was sensitive to the NQO1 inhibitor dicoumarol and the flavoprotein inhibitor diphenylene iodonium, suggesting a role for NQO1 and other oxidoreductases in this process. These data may explain the apparent dichotomy between the stimulatory and inhibitory effects of H{sub 2}O{sub 2} and menadione on insulin secretion. -- Highlights: ► Menadione stimulation or inhibition of insulin secretion is dependent upon applied glucose levels. ► Menadione-dependent H{sub 2}O{sub 2} production is proportional to applied glucose levels. ► Quinone-mediated redox cycling

  7. Co-flow planar SOFC fuel cell stack

    DOE Patents [OSTI]

    Chung, Brandon W.; Pham, Ai Quoc; Glass, Robert S.

    2004-11-30

    A co-flow planar solid oxide fuel cell stack with an integral, internal manifold and a casing/holder to separately seal the cell. This construction improves sealing and gas flow, and provides for easy manifolding of cell stacks. In addition, the stack construction has the potential for an improved durability and operation with an additional increase in cell efficiency. The co-flow arrangement can be effectively utilized in other electrochemical systems requiring gas-proof separation of gases.

  8. Flow Cells for Energy Storage Workshop | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Flow Cells for Energy Storage Workshop Flow Cells for Energy Storage Workshop The U.S. Department of Energy's (DOE) Lawrence Berkeley National Laboratory (LBNL) held a Flow Cells for Energy Storage Workshop on March 7-8, 2012, at the Renaissance Hotel in Washington, D.C. Flow cells combine the unique advantages of batteries and fuel cells and can offer benefits for multiple energy storage applications. The purpose of the workshop was to understand the applied research and development (R&D)

  9. Breakthrough Flow Battery Cell Stack: Transformative Electrochemical Flow Storage System (TEFSS)

    SciTech Connect (OSTI)

    2010-09-09

    GRIDS Project: UTRC is developing a flow battery with a unique design that provides significantly more power than today's flow battery systems. A flow battery is a cross between a traditional battery and a fuel cell. Flow batteries store their energy in external tanks instead of inside the cell itself. Flow batteries have traditionally been expensive because the battery cell stack, where the chemical reaction takes place, is costly. In this project, UTRC is developing a new stack design that achieves 10 times higher power than today’s flow batteries. This high power output means the size of the cell stack can be smaller, reducing the amount of expensive materials that are needed. UTRC’s flow battery will reduce the cost of storing electricity for the electric grid, making widespread use feasible.

  10. Single-cell sequencing of Thiomargarita reveals genomic flexibility for adaptation to dynamic redox conditions

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Winkel, Matthias; Salman-Carvalho, Verena; Woyke, Tanja; Richter, Michael; Schulz-Vogt, Heide N.; Flood, Beverly E.; Bailey, Jake V.; Mußmann, Marc

    2016-06-21

    Large, colorless sulfur-oxidizing bacteria (LSB) of the family Beggiatoaceae form thick mats at sulfidic sediment surfaces, where they efficiently detoxify sulfide before it enters the water column. The genus Thiomargarita harbors the largest known free-living bacteria with cell sizes of up to 750 μm in diameter. In addition to their ability to oxidize reduced sulfur compounds, some Thiornargarita spp. are known to store large amounts of nitrate, phosphate and elemental sulfur internally. To date little is known about their energy yielding metabolic pathways, and how these pathways compare to other Beggiatoaceae. Here, we present a draft single-cell genome of amore » chain-forming "Candidatus Thiomargarita nelsonii Thio36", and conduct a comparative analysis to five draft and one full genome of other members of the Beggiatoaceae. "Ca. T. nelsonii Thio36" is able to respire nitrate to both ammonium and dinitrogen, which allows them to flexibly respond to environmental changes. Genes for sulfur oxidation and inorganic carbon fixation confirmed that "Ca. T. nelsonii Thio36" can function as a chemolithoautotroph. Carbon can be fixed via the Calvin-Benson-Bassham cycle, which is common among the Beggiatoaceae. In addition we found key genes of the reductive tricarboxylic acid cycle that point toward an alternative CO2 fixation pathway. Surprisingly, "Ca. T. nelsonii Thio36" also encodes key genes of the C2-cycle that convert 2-phosphoglycolate to 3-phosphoglycerate during photorespiration in higher plants and cyanobacteria. Moreover, we identified a novel trait of a flavin-based energy bifurcation pathway coupled to a Na+-translocating membrane complex (Rnf). The coupling of these pathways may be key to surviving long periods of anoxia. As other Beggiatoaceae "Ca. T. nelsonii Thio36" encodes many genes similar to those of (filamentous) cyanobacteria. In conclusion, the genome of "Ca. T. nelsonii Thio36" provides additional insight into the ecology of giant sulfur

  11. Electrochemical storage cell containing a substituted anisole or di-anisole redox shuttle additive for overcharge protection and suitable for use in liquid organic and solid polymer electrolytes

    DOE Patents [OSTI]

    Kerr, John B.; Tian, Minmin

    2000-01-01

    A electrochemical cell is described comprising an anode, a cathode, a solid polymer electrolyte, and a redox shuttle additive to protect the cell against overcharging and a redox shuttle additive to protect the cell against overcharging selected from the group consisting of: (a) a substituted anisole having the general formula (in an uncharged state): ##STR1## where R.sub.1 is selected from the group consisting of H, OCH.sub.3, OCH.sub.2 CH.sub.3, and OCH.sub.2 phenyl, and R.sub.2 is selected from the group consisting of OCH.sub.3, OCH.sub.2 CH.sub.3, OCH.sub.2 phenyl, and O.sup.- Li.sup.+ ; and (b) a di-anisole compound having the general formula (in an uncharged state): ##STR2## where R is selected from the group consisting of -OCH.sub.3 and -CH.sub.3, m is either 1 or 0, n is either 1 or 0, and X is selected from the group consisting of -OCH.sub.3 (methoxy) or its lithium salt --O.sup.- Li.sup.+. The lithium salt of the di-anisole is the preferred form of the redox shuttle additive because the shuttle anion will then initially have a single negative charge, it loses two electrons when it is oxidized at the cathode, and then moves toward the anode as a single positively charged species where it is then reduced to a single negatively charged species by gaining back two electrons.

  12. Flow Cells for Energy Storage Workshop Summary Report | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Summary Report Flow Cells for Energy Storage Workshop Summary Report Workshop summary report from the Flow Cell Workshop held March 7-8, 2012, in Washington, D.C., to investigate how a redow flow cell (RFC) can be a grid-scale electricalenergy-storage system and the associated technological needs. The specific objectives of the workshop were to understand the needs for applied research in RFCs; identify the grand challenges and prioritize R&D needs; and gather input for future

  13. Flow Cells for Energy Storage Workshop Overview

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    CWRU Revisiting flow-battery R&D 11:00-11:25 Stephen Clarke, Applied Intellectual Capital Lessons learned and yet to be learned from 20 years in RFB R&D 11:25-11:45 Imre ...

  14. Renaissance in Flow-Cell Technologies: Recent Advancements and...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Presentation by Mike Perry, United Technologies Research Center, at the Flow Cells for Energy Storage Workshop held March 7-8, 2012, in Washington, DC. PDF icon flowcells2012perry...

  15. Determination of redox reaction rates and orders by in-situ liquid cell electron microscopy of Pd and Au solution growth

    SciTech Connect (OSTI)

    Sutter, Eli A.; Sutter, Peter W.

    2014-11-19

    In-situ liquid cell transmission and scanning transmission electron microscopy (TEM/STEM) experiments are important as they provide direct insight into processes in liquids, such as solution growth of nanoparticles among others. In liquid cell TEM/STEM redox reaction experiments the hydrated electrons e?aq created by the electron beam are responsible for the reduction of metal-ion complexes. Here we investigate the rate equation of redox reactions involving reduction by e?aq generated by the electron beam during in-situ liquid TEM/STEM. Specifically we consider the growth of Pd on Au seeds in aqueous solutions containing Pd-chloro complexes. From the quantification of the rate of Pd deposition at different electron beam currents and as a function of distance from a stationary, nanometer-sized exciting beam, we determine that the reaction is first order with respect to the concentration of hydrated electrons, [e?aq]. By comparing Pd- and Au-deposition, we further demonstrate that measurements of the local deposition rate on nanoparticles in the solution via real-time imaging can be used to measure not only [e?aq] but also the rate of reduction of a metal-ion complex to zero-valent metal atoms in solution.

  16. Flow cytometry aids basic cell biology research and drug discovery

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Flow cytometry aids basic cell biology research and drug discovery Flow cytometry aids basic cell biology research and drug discovery Life Technologies Corporation and LANL have released the Attune® Acoustic Focusing Cytometer, featuring a reduced footprint, reduced consumables, and an affordable price. April 3, 2012 Attune® Acoustic Focusing Cytometer The Attune® Acoustic Focusing Cytometer achieves sample throughput at rates over 10 times faster than other cytometers-up to 1,000 μL per

  17. Fluid flow plate for decreased density of fuel cell assembly

    SciTech Connect (OSTI)

    Vitale, N.G.

    1999-11-09

    A fluid flow plate includes first and second outward faces. Each of the outward faces has a flow channel thereon for carrying respective fluid. At least one of the fluids serves as reactant fluid for a fuel cell of a fuel cell assembly. One or more pockets are formed between the first and second outward faces for decreasing density of the fluid flow plate. A given flow channel can include one or more end sections and an intermediate section. An interposed member can be positioned between the outward faces at an interface between an intermediate section, of one of the outward faces, and an end section, of that outward face. The interposed member can serve to isolate the reactant fluid from the opposing outward face. The intermediate section(s) of flow channel(s) on an outward face are preferably formed as a folded expanse.

  18. Fluid flow plate for decreased density of fuel cell assembly

    DOE Patents [OSTI]

    Vitale, Nicholas G.

    1999-01-01

    A fluid flow plate includes first and second outward faces. Each of the outward faces has a flow channel thereon for carrying respective fluid. At least one of the fluids serves as reactant fluid for a fuel cell of a fuel cell assembly. One or more pockets are formed between the first and second outward faces for decreasing density of the fluid flow plate. A given flow channel can include one or more end sections and an intermediate section. An interposed member can be positioned between the outward faces at an interface between an intermediate section, of one of the outward faces, and an end section, of that outward face. The interposed member can serve to isolate the reactant fluid from the opposing outward face. The intermediate section(s) of flow channel(s) on an outward face are preferably formed as a folded expanse.

  19. Combustor air flow control method for fuel cell apparatus

    DOE Patents [OSTI]

    Clingerman, Bruce J.; Mowery, Kenneth D.; Ripley, Eugene V.

    2001-01-01

    A method for controlling the heat output of a combustor in a fuel cell apparatus to a fuel processor where the combustor has dual air inlet streams including atmospheric air and fuel cell cathode effluent containing oxygen depleted air. In all operating modes, an enthalpy balance is provided by regulating the quantity of the air flow stream to the combustor to support fuel cell processor heat requirements. A control provides a quick fast forward change in an air valve orifice cross section in response to a calculated predetermined air flow, the molar constituents of the air stream to the combustor, the pressure drop across the air valve, and a look up table of the orifice cross sectional area and valve steps. A feedback loop fine tunes any error between the measured air flow to the combustor and the predetermined air flow.

  20. Fuel cell with metal screen flow-field

    DOE Patents [OSTI]

    Wilson, Mahlon S.; Zawodzinski, Christine

    2001-01-01

    A polymer electrolyte membrane (PEM) fuel cell is provided with electrodes supplied with a reactant on each side of a catalyzed membrane assembly (CMA). The fuel cell includes a metal mesh defining a rectangular flow-field pattern having an inlet at a first corner and an outlet at a second corner located on a diagonal from the first corner, wherein all flow paths from the inlet to the outlet through the square flow field pattern are equivalent to uniformly distribute the reactant over the CMA. In a preferred form of metal mesh, a square weave screen forms the flow-field pattern. In a particular characterization of the present invention, a bipolar plate electrically connects adjacent fuel cells, where the bipolar plate includes a thin metal foil having an anode side and a cathode side; a first metal mesh on the anode side of the thin metal foil; and a second metal mesh on the cathode side of the thin metal foil. In another characterization of the present invention, a cooling plate assembly cools adjacent fuel cells, where the cooling plate assembly includes an anode electrode and a cathode electrode formed of thin conducting foils; and a metal mesh flow field therebetween for distributing cooling water flow over the electrodes to remove heat generated by the fuel cells.

  1. Fuel cell with metal screen flow-field

    DOE Patents [OSTI]

    Wilson, Mahlon S.; Zawodzinski, Christine

    1998-01-01

    A polymer electrolyte membrane (PEM) fuel cell is provided with electrodes supplied with a reactant on each side of a catalyzed membrane assembly (CMA). The fuel cell includes a metal mesh defining a rectangular flow-field pattern having an inlet at a first corner and an outlet at a second corner located on a diagonal from the first corner, wherein all flow paths from the inlet to the outlet through the square flow field pattern are equivalent to uniformly distribute the reactant over the CMA. In a preferred form of metal mesh, a square weave screen forms the flow-field pattern. In a particular characterization of the present invention, a bipolar plate electrically connects adjacent fuel cells, where the bipolar plate includes a thin metal foil having an anode side and a cathode side; a first metal mesh on the anode side of the thin metal foil; and a second metal mesh on the cathode side of the thin metal foil. In another characterization of the present invention, a cooling plate assembly cools adjacent fuel cells, where the cooling plate assembly includes an anode electrode and a cathode electrode formed of thin conducting foils; and a metal mesh flow field therebetween for distributing cooling water flow over the electrodes to remove heat generated by the fuel cells.

  2. Fuel cell with metal screen flow-field

    DOE Patents [OSTI]

    Wilson, M.S.; Zawodzinski, C.

    1998-08-25

    A polymer electrolyte membrane (PEM) fuel cell is provided with electrodes supplied with a reactant on each side of a catalyzed membrane assembly (CMA). The fuel cell includes a metal mesh defining a rectangular flow-field pattern having an inlet at a first corner and an outlet at a second corner located on a diagonal from the first corner, wherein all flow paths from the inlet to the outlet through the square flow field pattern are equivalent to uniformly distribute the reactant over the CMA. In a preferred form of metal mesh, a square weave screen forms the flow-field pattern. In a particular characterization of the present invention, a bipolar plate electrically connects adjacent fuel cells, where the bipolar plate includes a thin metal foil having an anode side and a cathode side; a first metal mesh on the anode side of the thin metal foil; and a second metal mesh on the cathode side of the thin metal foil. In another characterization of the present invention, a cooling plate assembly cools adjacent fuel cells, where the cooling plate assembly includes an anode electrode and a cathode electrode formed of thin conducting foils; and a metal mesh flow field there between for distributing cooling water flow over the electrodes to remove heat generated by the fuel cells. 11 figs.

  3. Liquid chromatography/Fourier transform IR spectrometry interface flow cell

    DOE Patents [OSTI]

    Johnson, C.C.; Taylor, L.T.

    1985-01-04

    A zero dead volume (ZDV) microbore high performance liquid chromatography (..mu.. HPLC)/Fourier transform infrared (FTIR) interface flow cell includes an IR transparent crystal having a small diameter bore therein through which a sample liquid is passed. The interface flow cell further includes a metal holder in combination with a pair of inner, compressible seals for directly coupling the thus configured spectrometric flow cell to the outlet of a ..mu.. HPLC column end fitting to minimize the transfer volume of the effluents exiting the ..mu.. HPLC column which exhibit excellent flow characteristics due to the essentially unencumbered, open-flow design. The IR beam passes transverse to the sample flow through the circular bore within the IR transparent crystal, which is preferably comprised of potassium bromide (KBr) or calcium fluoride (CaF/sub 2/), so as to minimize interference patterns and vignetting encountered in conventional parallel-plate IR cells. The long IR beam pathlength and lensing effect of the circular cross-section of the sample volume in combination with the refractive index differences between the solvent and the transparent crystal serve to focus the IR beam in enhancing sample detection sensitivity by an order of magnitude.

  4. Liquid chromatography/Fourier transform IR spectrometry interface flow cell

    DOE Patents [OSTI]

    Johnson, Charles C.; Taylor, Larry T.

    1986-01-01

    A zero dead volume (ZDV) microbore high performance liquid chromatography (.mu.HPLC)/Fourier transform infrared (FTIR) interface flow cell includes an IR transparent crystal having a small diameter bore therein through which a sample liquid is passed. The interface flow cell further includes a metal holder in combination with a pair of inner, compressible seals for directly coupling the thus configured spectrometric flow cell to the outlet of a .mu.HPLC column end fitting to minimize the transfer volume of the effluents exiting the .mu.HPLC column which exhibit excellent flow characteristics due to the essentially unencumbered, open-flow design. The IR beam passes transverse to the sample flow through the circular bore within the IR transparent crystal, which is preferably comprised of potassium bromide (KBr) or calcium fluoride (CaF.sub.2), so as to minimize interference patterns and vignetting encountered in conventional parallel-plate IR cells. The long IR beam pathlength and lensing effect of the circular cross-section of the sample volume in combination with the refractive index differences between the solvent and the transparent crystal serve to focus the IR beam in enhancing sample detection sensitivity by an order of magnitude.

  5. Gradient isolator for flow field of fuel cell assembly

    DOE Patents [OSTI]

    Ernst, William D.

    1999-01-01

    Isolator(s) include isolating material and optionally gasketing material strategically positioned within a fuel cell assembly. The isolating material is disposed between a solid electrolyte and a metal flow field plate. Reactant fluid carried by flow field plate channel(s) forms a generally transverse electrochemical gradient. The isolator(s) serve to isolate electrochemically a portion of the flow field plate, for example, transversely outward from the channel(s), from the electrochemical gradient. Further, the isolator(s) serve to protect a portion of the solid electrolyte from metallic ions.

  6. Gradient isolator for flow field of fuel cell assembly

    DOE Patents [OSTI]

    Ernst, W.D.

    1999-06-15

    Isolator(s) include isolating material and optionally gasketing material strategically positioned within a fuel cell assembly. The isolating material is disposed between a solid electrolyte and a metal flow field plate. Reactant fluid carried by flow field plate channel(s) forms a generally transverse electrochemical gradient. The isolator(s) serve to isolate electrochemically a portion of the flow field plate, for example, transversely outward from the channel(s), from the electrochemical gradient. Further, the isolator(s) serve to protect a portion of the solid electrolyte from metallic ions. 4 figs.

  7. Cross-flow electrochemical reactor cells, cross-flow reactors, and use of cross-flow reactors for oxidation reactions

    DOE Patents [OSTI]

    Balachandran, Uthamalingam; Poeppel, Roger B.; Kleefisch, Mark S.; Kobylinski, Thaddeus P.; Udovich, Carl A.

    1994-01-01

    This invention discloses cross-flow electrochemical reactor cells containing oxygen permeable materials which have both electron conductivity and oxygen ion conductivity, cross-flow reactors, and electrochemical processes using cross-flow reactor cells having oxygen permeable monolithic cores to control and facilitate transport of oxygen from an oxygen-containing gas stream to oxidation reactions of organic compounds in another gas stream. These cross-flow electrochemical reactors comprise a hollow ceramic blade positioned across a gas stream flow or a stack of crossed hollow ceramic blades containing a channel or channels for flow of gas streams. Each channel has at least one channel wall disposed between a channel and a portion of an outer surface of the ceramic blade, or a common wall with adjacent blades in a stack comprising a gas-impervious mixed metal oxide material of a perovskite structure having electron conductivity and oxygen ion conductivity. The invention includes reactors comprising first and second zones seprated by gas-impervious mixed metal oxide material material having electron conductivity and oxygen ion conductivity. Prefered gas-impervious materials comprise at least one mixed metal oxide having a perovskite structure or perovskite-like structure. The invention includes, also, oxidation processes controlled by using these electrochemical reactors, and these reactions do not require an external source of electrical potential or any external electric circuit for oxidation to proceed.

  8. Fuel cell with interdigitated porous flow-field

    DOE Patents [OSTI]

    Wilson, M.S.

    1997-06-24

    A polymer electrolyte membrane (PEM) fuel cell is formed with an improved system for distributing gaseous reactants to the membrane surface. A PEM fuel cell has an ionic transport membrane with opposed catalytic surfaces formed thereon and separates gaseous reactants that undergo reactions at the catalytic surfaces of the membrane. The fuel cell may also include a thin gas diffusion layer having first and second sides with a first side contacting at least one of the catalytic surfaces. A macroporous flow-field with interdigitated inlet and outlet reactant channels contacts the second side of the thin gas diffusion layer for distributing one of the gaseous reactants over the thin gas diffusion layer for transport to an adjacent one of the catalytic surfaces of the membrane. The porous flow field may be formed from a hydrophilic material and provides uniform support across the backside of the electrode assembly to facilitate the use of thin backing layers. 9 figs.

  9. Fuel cell with interdigitated porous flow-field

    DOE Patents [OSTI]

    Wilson, Mahlon S.

    1997-01-01

    A polymer electrolyte membrane (PEM) fuel cell is formed with an improved system for distributing gaseous reactants to the membrane surface. A PEM fuel cell has an ionic transport membrane with opposed catalytic surfaces formed thereon and separates gaseous reactants that undergo reactions at the catalytic surfaces of the membrane. The fuel cell may also include a thin gas diffusion layer having first and second sides with a first side contacting at least one of the catalytic surfaces. A macroporous flow-field with interdigitated inlet and outlet reactant channels contacts the second side of the thin gas diffusion layer for distributing one of the gaseous reactants over the thin gas diffusion layer for transport to an adjacent one of the catalytic surfaces of the membrane. The porous flow field may be formed from a hydrophilic material and provides uniform support across the backside of the electrode assembly to facilitate the use of thin backing layers.

  10. Improved Flow-Field Structures for Direct Methanol Fuel Cells

    SciTech Connect (OSTI)

    Gurau, Bogdan

    2013-05-31

    The direct methanol fuel cell (DMFC) is ideal if high energy-density liquid fuels are required. Liquid fuels have advantages over compressed hydrogen including higher energy density and ease of handling. Although state-of-the-art DMFCs exhibit manageable degradation rates, excessive fuel crossover diminishes system energy and power density. Although use of dilute methanol mitigates crossover, the concomitant lowering of the gross fuel energy density (GFED) demands a complex balance-of-plant (BOP) that includes higher flow rates, external exhaust recirculation, etc. An alternative approach is redesign of the fuel delivery system to accommodate concentrated methanol. NuVant Systems Inc. (NuVant) will maximize the GFED by design and assembly of a DMFC that uses near neat methanol. The approach is to tune the diffusion of highly concentrated methanol (to the anode catalytic layer) to the back-diffusion of water formed at the cathode (i.e. in situ generation of dilute methanol at the anode layer). Crossover will be minimized without compromising the GFED by innovative integration of the anode flow-field and the diffusion layer. The integrated flow-field-diffusion-layers (IFDLs) will widen the current and potential DMFC operating ranges and enable the use of cathodes optimized for hydrogen-air fuel cells.

  11. An algebraic model for a zinc/bromine flow cell

    SciTech Connect (OSTI)

    Simpson, G.D.; White, R.E. . Dept. of Chemical Engineering)

    1989-08-01

    An algebraic model for a parallel plate, zinc/bromine flow cell is presented and used to predict various performance quantities, which are compared to those predicted by using previously published differential equation models. The results presented compare well with previous work. The model is based on the concept of using well-mixed zones and linear concentration and potential profiles for the diffusion layers and the separator. The Butler-Volmer equation is used for the electro chemical reactions, and the homogeneous reaction between bromine and bromide is included.

  12. Solid oxide fuel cell having compound cross flow gas patterns

    DOE Patents [OSTI]

    Fraioli, Anthony V.

    1985-01-01

    A core construction for a fuel cell is disclosed having both parallel and cross flow passageways for the fuel and the oxidant gases. Each core passageway is defined by electrolyte and interconnect walls. Each electrolyte wall consists of cathode and anode materials sandwiching an electrolyte material. Each interconnect wall is formed as a sheet of inert support material having therein spaced small plugs of interconnect material, where cathode and anode materials are formed as layers on opposite sides of each sheet and are electrically connected together by the interconnect material plugs. Each interconnect wall in a wavy shape is connected along spaced generally parallel line-like contact areas between corresponding spaced pairs of generally parallel electrolyte walls, operable to define one tier of generally parallel flow passageways for the fuel and oxidant gases. Alternate tiers are arranged to have the passageways disposed normal to one another. Solid mechanical connection of the interconnect walls of adjacent tiers to the opposite sides of the common electrolyte wall therebetween is only at spaced point-like contact areas, 90 where the previously mentioned line-like contact areas cross one another.

  13. Solid oxide fuel cell having compound cross flow gas patterns

    DOE Patents [OSTI]

    Fraioli, A.V.

    1983-10-12

    A core construction for a fuel cell is disclosed having both parallel and cross flow passageways for the fuel and the oxidant gases. Each core passageway is defined by electrolyte and interconnect walls. Each electrolyte wall consists of cathode and anode materials sandwiching an electrolyte material. Each interconnect wall is formed as a sheet of inert support material having therein spaced small plugs of interconnect material, where cathode and anode materials are formed as layers on opposite sides of each sheet and are electrically connected together by the interconnect material plugs. Each interconnect wall in a wavy shape is connected along spaced generally parallel line-like contact areas between corresponding spaced pairs of generally parallel electrolyte walls, operable to define one tier of generally parallel flow passageways for the fuel and oxidant gases. Alternate tiers are arranged to have the passageways disposed normal to one another. Solid mechanical connection of the interconnect walls of adjacent tiers to the opposite sides of the common electrolyte wall therebetween is only at spaced point-like contact areas, 90 where the previously mentioned line-like contact areas cross one another.

  14. Redox Biochemistry | Bioenergy | NREL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Redox Biochemistry We study biomolecular reactions that convert electrochemical energy into chemical bonds of reduced products. This research advances the development of enzyme-based and microbial-based systems for the production of energy compounds and carriers. Illustration of an H-cluster and the conserved proton-transfer pathway (labeled with an arrow as PT) in [FeFe]-hydrogenase. A cartoon of a grey blob represents the structure with surface representations of blue spirals and helixes. An

  15. NADPH oxidase and lipid raft-associated redox signaling are required for PCB153-induced upregulation of cell adhesion molecules in human brain endothelial cells

    SciTech Connect (OSTI)

    Eum, Sung Yong Andras, Ibolya; Hennig, Bernhard; Toborek, Michal

    2009-10-15

    Exposure to persistent organic pollutants, such as polychlorinated biphenyls (PCBs), can lead to chronic inflammation and the development of vascular diseases. Because cell adhesion molecules (CAMs) of the cerebrovascular endothelium regulate infiltration of inflammatory cells into the brain, we have explored the molecular mechanisms by which ortho-substituted polychlorinated biphenyls (PCBs), such as PCB153, can upregulate CAMs in brain endothelial cells. Exposure to PCB153 increased expression of intercellular adhesion molecule-1 (ICAM-1) and vascular cell adhesion molecule-1 (VCAM-1), as well as elevated adhesion of leukocytes to brain endothelial cells. These effects were impeded by inhibitors of EGFR, JAKs, or Src activity. In addition, pharmacological inhibition of NADPH oxidase or disruption of lipid rafts by cholesterol depleting agents blocked PCB153-induced phosphorylation of JAK and Src kinases and upregulation of CAMs. In contrast, silencing of caveolin-1 by siRNA interference did not affect upregulation of ICAM-1 and VCAM-1 in brain endothelial cells stimulated by PCB153. Results of the present study indicate that lipid raft-dependent NADPH oxidase/JAK/EGFR signaling mechanisms regulate the expression of CAMs in brain endothelial cells and adhesion of leukocytes to endothelial monolayers. Due to its role in leukocyte infiltration, induction of CAMs may contribute to PCB-induced cerebrovascular disorders and neurotoxic effects in the CNS.

  16. Redox Chemistry of Anthraquinone Derivatives Via Simulations...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    August 27, 2014, Research Highlights Redox Chemistry of Anthraquinone Derivatives Via ... S. Assary, Investigation of the Redox Chemistry of Anthraquinone Derivatives Using ...

  17. Hybrid energy storage systems utilizing redox active organic compounds

    DOE Patents [OSTI]

    Wang, Wei; Xu, Wu; Li, Liyu; Yang, Zhenguo

    2015-09-08

    Redox flow batteries (RFB) have attracted considerable interest due to their ability to store large amounts of power and energy. Non-aqueous energy storage systems that utilize at least some aspects of RFB systems are attractive because they can offer an expansion of the operating potential window, which can improve on the system energy and power densities. One example of such systems has a separator separating first and second electrodes. The first electrode includes a first current collector and volume containing a first active material. The second electrode includes a second current collector and volume containing a second active material. During operation, the first source provides a flow of first active material to the first volume. The first active material includes a redox active organic compound dissolved in a non-aqueous, liquid electrolyte and the second active material includes a redox active metal.

  18. Voltage clustering in redox-active ligand complexes: mitigating electronic communication through choice of metal ion

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Zarkesh, Ryan A.; Ichimura, Andrew S.; Monson, Todd C.; Tomson, Neil C.; Anstey, Mitchell R.

    2016-02-01

    We used the redox-active bis(imino)acenapthene (BIAN) ligand to synthesize homoleptic aluminum, chromium, and gallium complexes of the general formula (BIAN)3M. The resulting compounds were characterized using X-ray crystallography, NMR, EPR, magnetic susceptibility and cyclic voltammetry measurements and modeled using both DFT and ab initio wavefunction calculations to compare the orbital contributions of main group elements and transition metals in ligand-based redox events. Ultimately, complexes of this type have the potential to improve the energy density and electrolyte stability of grid-scale energy storage technologies, such as redox flow batteries, through thermodynamically-clustered redox events.

  19. A Lattice Boltzmann Fictitious Domain Method for Modeling Red Blood Cell Deformation and Multiple-Cell Hydrodynamic Interactions in Flow

    SciTech Connect (OSTI)

    Shi, Xing; Lin, Guang; Zou, Jianfeng; Fedosov, Dmitry A.

    2013-07-20

    To model red blood cell (RBC) deformation in flow, the recently developed LBM-DLM/FD method ([Shi and Lim, 2007)29], derived from the lattice Boltzmann method and the distributed Lagrange multiplier/fictitious domain methodthe fictitious domain method, is extended to employ the mesoscopic network model for simulations of red blood cell deformation. The flow is simulated by the lattice Boltzmann method with an external force, while the network model is used for modeling red blood cell deformation and the fluid-RBC interaction is enforced by the Lagrange multiplier. To validate parameters of the RBC network model, sThe stretching numerical tests on both coarse and fine meshes are performed and compared with the corresponding experimental data to validate the parameters of the RBC network model. In addition, RBC deformation in pipe flow and in shear flow is simulated, revealing the capacity of the current method for modeling RBC deformation in various flows.

  20. Redox Mediators that Promote Three-Dimensional Growth of Li2S on Carbon

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Current Collectors in Lithium-Sulfur Batteries - Joint Center for Energy Storage Research 21, 2015, Research Highlights Redox Mediators that Promote Three-Dimensional Growth of Li2S on Carbon Current Collectors in Lithium-Sulfur Batteries Controlling the electrodeposition of Li2S onto C using a redox mediator, BPI. With BPI, sulfur utilization improves in Li-S cells due to remote reduction of polysulfides to Li2S. Scientific Achievement Developed, from computation and experiment, redox

  1. Biphasic Electrode Suspensions for Li-Ion Semi-Solid Flow Cells with High

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Energy Density, Fast Charge Transport, and Low-Dissipation Flow - Joint Center for Energy Storage Research June 5, 2015, Research Highlights Biphasic Electrode Suspensions for Li-Ion Semi-Solid Flow Cells with High Energy Density, Fast Charge Transport, and Low-Dissipation Flow Images for Biphasic Electrode Suspensions Scientific Achievement We created biphasic electrode suspensions composed of dispersed active particles and uniformly percolated conductive particles, different from the

  2. Flowable conducting particle networks in redox-active electrolytes for grid energy storage

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Hatzell, K. B.; Boota, M.; Kumbur, E. C.; Gogotsi, Yury G.

    2015-01-09

    This paper reports a new hybrid approach toward achieving high volumetric energy and power densities in an electrochemical flow capacitor for grid energy storage. The electrochemical flow capacitor suffers from high self-discharge and low energy density because charge storage is limited to the available surface area (electric double layer charge storage). Here, we examine two carbon materials as conducting particles in a flow battery electrolyte containing the VO2+/VO2+ redox couple. Highly porous activated carbon spheres (CSs) and multi-walled carbon nanotubes (MWCNTs) are investigated as conducting particle networks that facilitate both faradaic and electric double layer charge storage. Charge storage contributionsmore » (electric double layer and faradaic) are distinguished for flow-electrodes composed of MWCNTs and activated CSs. A MWCNT flow-electrode based in a redox-active electrolyte containing the VO2+/VO2+ redox couple demonstrates 18% less self-discharge, 10 X more energy density, and 20 X greater power densities (at 20 mV s-1) than one based on a non-redox active electrolyte. Additionally, a MWCNT redox-active flow electrode demonstrates 80% capacitance retention, and >95% coulombic efficiency over 100 cycles, indicating the feasibility of utilizing conducting networks with redox chemistries for grid energy storage.« less

  3. DETECTION OF EQUATORWARD MERIDIONAL FLOW AND EVIDENCE OF DOUBLE-CELL MERIDIONAL CIRCULATION INSIDE THE SUN

    SciTech Connect (OSTI)

    Zhao Junwei; Bogart, R. S.; Kosovichev, A. G.; Hartlep, Thomas; Duvall, T. L. Jr.

    2013-09-10

    Meridional flow in the solar interior plays an important role in redistributing angular momentum and transporting magnetic flux inside the Sun. Although it has long been recognized that the meridional flow is predominantly poleward at the Sun's surface and in its shallow interior, the location of the equatorward return flow and the meridional flow profile in the deeper interior remain unclear. Using the first 2 yr of continuous helioseismology observations from the Solar Dynamics Observatory/Helioseismic Magnetic Imager, we analyze travel times of acoustic waves that propagate through different depths of the solar interior carrying information about the solar interior dynamics. After removing a systematic center-to-limb effect in the helioseismic measurements and performing inversions for flow speed, we find that the poleward meridional flow of a speed of 15 m s{sup -1} extends in depth from the photosphere to about 0.91 R{sub Sun }. An equatorward flow of a speed of 10 m s{sup -1} is found between 0.82 and 0.91 R{sub Sun} in the middle of the convection zone. Our analysis also shows evidence of that the meridional flow turns poleward again below 0.82 R{sub Sun }, indicating an existence of a second meridional circulation cell below the shallower one. This double-cell meridional circulation profile with an equatorward flow shallower than previously thought suggests a rethinking of how magnetic field is generated and redistributed inside the Sun.

  4. Redox shuttles for lithium ion batteries

    DOE Patents [OSTI]

    Weng, Wei; Zhang, Zhengcheng; Amine, Khalil

    2014-11-04

    Compounds may have general Formula IVA or IVB. ##STR00001## where, R.sup.8, R.sup.9, R.sup.10, and R.sup.11 are each independently selected from H, F, Cl, Br, CN, NO.sub.2, alkyl, haloalkyl, and alkoxy groups; X and Y are each independently O, S, N, or P; and Z' is a linkage between X and Y. Such compounds may be used as redox shuttles in electrolytes for use in electrochemical cells, batteries and electronic devices.

  5. Flow Cells for Energy Storage Workshop Summary Report

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    improvements in fuel cells. To investigate how a RFC can be a grid-scale electrical- energy-storage (EES) system and the associated technological needs, this workshop was held. ...

  6. Development of a micro flow-through cell for high field NMR spectroscopy.

    SciTech Connect (OSTI)

    Alam, Todd Michael; McIntyre, Sarah K.

    2011-05-01

    A highly transportable micro flow-through detection cell for nuclear magnetic resonance (NMR) spectroscopy has been designed, fabricated and tested. This flow-through cell allows for the direct coupling between liquid chromatography (LC) and gel permeation chromatography (GPC) resulting in the possibility of hyphenated LC-NMR and GPC-NMR. The advantage of the present flow cell design is that it is independent and unconnected to the detection probe electronics, is compatible with existing commercial high resolution NMR probes, and as such can be easily implemented at any NMR facility. Two different volumes were fabricated corresponding to between {approx}3.8 and 10 {micro}L detection volume. Examples of the performance of the cell on different NMR instruments, and using different NMR detection probes were demonstrated.

  7. Flow-enhanced solution printing of all-polymer solar cells

    SciTech Connect (OSTI)

    Diao, Ying; Zhou, Yan; Kurosawa, Tadanori; Shaw, Leo; Wang, Cheng; Park, Steve; Guo, Yikun; Reinspach, Julia A.; Gu, Kevin; Gu, Xiaodan; Tee, Benjamin C. K.; Pang, Changhyun; Yan, Hongping; Zhao, Dahui; Toney, Michael F.; Mannsfeld, Stefan C. B.; Bao, Zhenan

    2015-08-12

    Morphology control of solution coated solar cell materials presents a key challenge limiting their device performance and commercial viability. Here we present a new concept for controlling phase separation during solution printing using an all-polymer bulk heterojunction solar cell as a model system. The key aspect of our method lies in the design of fluid flow using a microstructured printing blade, on the basis of the hypothesis of flow-induced polymer crystallization. Our flow design resulted in a similar to 90% increase in the donor thin film crystallinity and reduced microphase separated donor and acceptor domain sizes. The improved morphology enhanced all metrics of solar cell device performance across various printing conditions, specifically leading to higher short-circuit current, fill factor, open circuit voltage and significantly reduced device-to-device variation. However, we expect our design concept to have broad applications beyond all-polymer solar cells because of its simplicity and versatility.

  8. Influence of radionuclide absorption on detection efficiency and energy resolution for flow-cell radiation detectors

    SciTech Connect (OSTI)

    DeVol, T.A.; Keillor, M.E.; Burggraf, L.W.

    1996-06-01

    Flow-cell and batch test experiments were performed to determine the uranyl ion adsorption onto and/or complexation with CaF{sub 2}:Eu scintillator as a function of pH. The flow-cell experiments were modeled with an energy dispersive Monte Carlo algorithm. At pH 2, the flow-cell and batch tests gave consistent results, detection efficiency {approximately}60% and distribution coefficient K{sub d} {approximately}0.3--0.7 mL/g, with the model. At pH 8, the comparison was not as good and assumed to be due to a variation in scintillator particle size realized in the experiment. From the flow-cell experiments performed at pH 8, the detection efficiency was determined to be 68% which correlated reasonably well with the model (60%). Where the experiments and model differed greatly was with K{sub d} which was determined to be 102 and 60 for the flow-cell and batch experiments, respectively, and 0.43 from the model.

  9. Bedrock refractive-flow cells: A passive treatment analog to funnel-and-gate

    SciTech Connect (OSTI)

    Dick, V.; Edwards, D.

    1997-12-31

    Funnel-and-gate technology provides a mechanism to passively treat groundwater contaminant plumes, but depends on placement of a sufficient barrier ({open_quotes}funnel{close_quotes}) in the plume flow path to channel the plume to a pass-through treatment zone ({open_quotes}gate{close_quotes}). Conventional barrier technologies limit funnel-and-gate deployment to unconsolidated overburden applications. A method has been developed which allows similar passive treatment to be applied to bedrock plumes. Rather than use barriers as the funnel, the method uses engineered bedrock zones, installed via precision blasting or other means, to refract groundwater flow along a preferred path to treatment (gate). The method requires orienting the refractive cell based on the Tangent Law and extending refractive cell limbs down gradient of the gate to disperse head and control flow. A typical Refractive-Flow cell may be{open_quotes}Y{close_quotes}shaped, with each limb 3-10 ft [1-3 m] wide and several tens to a few hundred feet [10 - 100 m] in length. Treatment takes place at the center of the X. MODFLOW modeling has been used to successfully simulate desired flow. Engineered blasting has been used at full scale application to create bedrock rubble zones for active collection/flow control for several years. The method provides a previously unavailable method to passively treat contaminated groundwater in bedrock at low cost.

  10. Redox Shuttle Additives | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Redox Shuttle Additives Technology available for licensing: A series of novel redox shuttle additives for lithium-ion batteries Seven-technology suite helps reduce battery costs Provides overcharge protection and increased battery safety and reliability PDF icon redox_shuttles

  11. Double-band Electrode Channel Flow DEMS Cell > Research Highlights >

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Research > The Energy Materials Center at Cornell Research Highlights In This Section The Structural Evolution and Diffusion During the Chemical Transformation from Cobalt to Cobalt Phosphide Nanoparticles Joint Density-Functional Theory of Electrochemistry Double-band Electrode Channel Flow DEMS Cell Sulfur@Carbon Cathodes for Lithium Sulfur Batteries Better Ham & Cheese: Enhanced Anodes and Cathodes for Fuel Cells Epitaxial Single Crystal Nanostructures for Batteries & PVs High

  12. Highly conductive composites for fuel cell flow field plates and bipolar plates

    SciTech Connect (OSTI)

    Jang, Bor Z; Zhamu, Aruna; Song, Lulu

    2014-10-21

    This invention provides a fuel cell flow field plate or bipolar plate having flow channels on faces of the plate, comprising an electrically conductive polymer composite. The composite is composed of (A) at least 50% by weight of a conductive filler, comprising at least 5% by weight reinforcement fibers, expanded graphite platelets, graphitic nano-fibers, and/or carbon nano-tubes; (B) polymer matrix material at 1 to 49.9% by weight; and (C) a polymer binder at 0.1 to 10% by weight; wherein the sum of the conductive filler weight %, polymer matrix weight % and polymer binder weight % equals 100% and the bulk electrical conductivity of the flow field or bipolar plate is at least 100 S/cm. The invention also provides a continuous process for cost-effective mass production of the conductive composite-based flow field or bipolar plate.

  13. Flow-enhanced solution printing of all-polymer solar cells

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Diao, Ying; Zhou, Yan; Kurosawa, Tadanori; Shaw, Leo; Wang, Cheng; Park, Steve; Guo, Yikun; Reinspach, Julia A.; Gu, Kevin; Gu, Xiaodan; et al

    2015-08-12

    Morphology control of solution coated solar cell materials presents a key challenge limiting their device performance and commercial viability. Here we present a new concept for controlling phase separation during solution printing using an all-polymer bulk heterojunction solar cell as a model system. The key aspect of our method lies in the design of fluid flow using a microstructured printing blade, on the basis of the hypothesis of flow-induced polymer crystallization. Our flow design resulted in a similar to 90% increase in the donor thin film crystallinity and reduced microphase separated donor and acceptor domain sizes. The improved morphology enhancedmore » all metrics of solar cell device performance across various printing conditions, specifically leading to higher short-circuit current, fill factor, open circuit voltage and significantly reduced device-to-device variation. However, we expect our design concept to have broad applications beyond all-polymer solar cells because of its simplicity and versatility.« less

  14. Reduction-Oxidation Plant (REDOX) - Hanford Site

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Facilities Reduction-Oxidation Plant (REDOX) About Us About Hanford Cleanup Hanford ... and 618-11 Burial Grounds 700 Area B Plant B Reactor C Reactor Canister Storage ...

  15. Characterization of protein redox dynamics induced during light-to-dark transitions and nutrient limitation in cyanobacteria

    SciTech Connect (OSTI)

    Ansong, Charles; Sadler, Natalie C.; Hill, Eric A.; Lewis, Michael P.; Zink, Erika M.; Smith, Richard D.; Beliaev, Alex S.; Konopka, Allan; Wright, Aaron T.

    2014-07-03

    Protein redox chemistry constitutes a major void in knowledge pertaining to photoautotrophic system regulation and signaling processes. We have employed a chemical biology approach to analyze redox sensitive proteins in live Synechococcus sp. PCC 7002 cells in both light and dark periods, and to understand how cellular redox balance is disrupted during nutrient perturbation. The present work identified several novel putative redox-sensitive proteins that are involved in the generation of reductant, macromolecule synthesis, and carbon flux through central metabolic pathways, and may be involved in cell signaling and response mechanisms. Furthermore, our research suggests that dynamic redox changes in response to specific nutrient limitations contribute to the regulatory changes driven by a shift from light to dark. Taken together, these results contribute to the high-level understanding of post-translational mechanisms regulating flux distributions and therefore present potential metabolic engineering targets for redirecting carbon towards biofuel precursors.

  16. Method for characterization of the redox condition of cementitious materials

    SciTech Connect (OSTI)

    Almond, Philip M.; Langton, Christine A.; Stefanko, David B.

    2015-12-22

    Disclosed are methods for determining the redox condition of cementitious materials. The methods are leaching methods that utilize an in situ redox indicator that is present in the cementitious materials as formed. The in situ redox indicator leaches from cementitious material and, when the leaching process is carried out under anaerobic conditions can be utilized to determine the redox condition of the material. The in situ redox indicator can exhibit distinct characteristics in the leachate depending upon the redox condition of the indicator.

  17. Disruption of TGF-? signaling in smooth muscle cell prevents flow-induced vascular remodeling

    SciTech Connect (OSTI)

    Gao, Fu; Chambon, Pierre; Tellides, George; Kong, Wei; Zhang, Xiaoming; Li, Wei

    2014-11-07

    Highlights: TGF-? signaling in SMC contributes to the flow-induced vascular remodeling. Disruption of TGF-? signaling in SMC can prevent this process. Targeting SM-specific Tgfbr2 could be a novel therapeutic strategy for vascular remodeling. - Abstract: Transforming growth factor-? (TGF-?) signaling has been prominently implicated in the pathogenesis of vascular remodeling, especially the initiation and progression of flow-induced vascular remodeling. Smooth muscle cells (SMCs) are the principal resident cells in arterial wall and are critical for arterial remodeling. However, the role of TGF-? signaling in SMC for flow-induced vascular remodeling remains unknown. Therefore, the goal of our study was to determine the effect of TGF-? pathway in SMC for vascular remodeling, by using a genetical smooth muscle-specific (SM-specific) TGF-? type II receptor (Tgfbr2) deletion mice model. Mice deficient in the expression of Tgfbr2 (MyhCre.Tgfbr2{sup f/f}) and their corresponding wild-type background mice (MyhCre.Tgfbr2{sup WT/WT}) underwent partial ligation of left common carotid artery for 1, 2, or 4 weeks. Then the carotid arteries were harvested and indicated that the disruption of Tgfbr2 in SMC provided prominent inhibition of vascular remodeling. And the thickening of carotid media, proliferation of SMC, infiltration of macrophage, and expression of matrix metalloproteinase (MMP) were all significantly attenuated in Tgfbr2 disruption mice. Our study demonstrated, for the first time, that the TGF-? signaling in SMC plays an essential role in flow-induced vascular remodeling and disruption can prevent this process.

  18. Renaissance in Flow-Cell Technologies: Recent Advancements and Future Opportunities

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Renaissance in Flow-Cell Technologies Recent Advancements and Future Opportunities Mike Perry Project Leader, Electrochemical Systems United Technologies Research Center ec c es UTC Proprietary Grand Challenges in Electrical Energy Storage (EES) SCALE & COST: Want to go from Wh to kWh to MWh...  El tri Vehicl  Grid-Scale $100/kWh GRIDS Program Target  Portable Devices > $500/kWh  Electric Vehicles $250/kWh BEEST Program Target Wh UTC Proprietary Batteries are currently < 1%

  19. Automatic analysis of flow cytometric DNA histograms from irradiated mouse male germ cells

    SciTech Connect (OSTI)

    Lampariello, F.; Mauro, F.; Uccelli, R.; Spano, M.

    1989-01-01

    An automatic procedure for recovering the DNA content distribution of mouse irradiated testis cells from flow cytometric histograms is presented. First, a suitable mathematical model is developed, to represent the pattern of DNA content and fluorescence distribution in the sample. Then a parameter estimation procedure, based on the maximum likelihood approach, is constructed by means of an optimization technique. This procedure has been applied to a set of DNA histograms relative to different doses of 0.4-MeV neutrons and to different time intervals after irradiation. In each case, a good agreement between the measured histograms and the corresponding fits has been obtained. The results indicate that the proposed method for the quantitative analysis of germ cell DNA histograms can be usefully applied to the study of the cytotoxic and mutagenic action of agents of toxicological interest such as ionizing radiations.18 references.

  20. A simple model for a zinc/bromine flow cell and associated storage tanks

    SciTech Connect (OSTI)

    Simpson, G.D.; White, R.E. . Dept. of Chemical Engineering)

    1990-06-01

    A simple model for a parallel plate, zinc/bromine flow cell and associated storage tanks is presented and used to make time-dependent predictions for various quantities in the system. The model is based on a previously published algebraic model of the cell at steady-state and time-dependent, first-order differential equations for the storage tanks. The Butler--Volmer equation is used for the electrochemical reactions, and the homogeneous reaction between bromine and bromide is included. The model predictions indicate that the charging operation of a zinc/bromine battery can be significantly improved by using a storage tank with a larger residence time for the bromine side of the system.

  1. A metal-free organic-inorganic aqueous flow battery

    SciTech Connect (OSTI)

    Huskinson, B; Marshak, MP; Suh, C; Er, S; Gerhardt, MR; Galvin, CJ; Chen, XD; Aspuru-Guzik, A; Gordon, RG; Aziz, MJ

    2014-01-08

    As the fraction of electricity generation from intermittent renewable sources-such as solar or wind-grows, the ability to store large amounts of electrical energy is of increasing importance. Solid-electrode batteries maintain discharge at peak power for far too short a time to fully regulate wind or solar power output(1,2). In contrast, flow batteries can independently scale the power (electrode area) and energy (arbitrarily large storage volume) components of the system by maintaining all of the electro-active species in fluid form(3-5). Wide-scale utilization of flow batteries is, however, limited by the abundance and cost of these materials, particularly those using redox-active metals and precious-metal electrocatalysts(6,7). Here we describe a class of energy storage materials that exploits the favourable chemical and electro-chemical properties of a family of molecules known as quinones. The example we demonstrate is ametal-free flow battery based on the redox chemistry of 9,10-anthraquinone-2,7-disulphonic acid (AQDS). AQDS undergoes extremely rapid and reversible two-electron two-proton reduction on a glassy carbon electrode in sulphuric acid. An aqueous flow battery with inexpensive carbon electrodes, combining the quinone/hydroquinone couple with the Br-2/Br- redox couple, yields a peak galvanic power density exceeding 0.6 W cm(-2) at 1.3 A cm(-2). Cycling of this quinone-bromide flow battery showed >99 per cent storage capacity retention per cycle. The organic anthraquinone species can be synthesized from inexpensive commodity chemicals(8). This organic approach permits tuning of important properties such as the reduction potential and solubility by adding functional groups: for example, we demonstrate that the addition of two hydroxy groups to AQDS increases the open circuit potential of the cell by 11% and we describe a pathway for further increases in cell voltage. The use of p-aromatic redox-active organic molecules instead of redox-active metals

  2. Redox polymer electrodes for advanced batteries

    DOE Patents [OSTI]

    Gregg, B.A.; Taylor, A.M.

    1998-11-24

    Advanced batteries having a long cycle lifetime are provided. More specifically, the present invention relates to electrodes made from redox polymer films and batteries in which either the positive electrode, the negative electrode, or both, comprise redox polymers. Suitable redox polymers for this purpose include pyridyl or polypyridyl complexes of transition metals like iron, ruthenium, osmium, chromium, tungsten and nickel; porphyrins (either free base or metallo derivatives); phthalocyanines (either free base or metallo derivatives); metal complexes of cyclams, such as tetraazacyclotetradecane; metal complexes of crown ethers and metallocenes such as ferrocene, cobaltocene and ruthenocene. 2 figs.

  3. Redox polymer electrodes for advanced batteries

    DOE Patents [OSTI]

    Gregg, Brian A.; Taylor, A. Michael

    1998-01-01

    Advanced batteries having a long cycle lifetime are provided. More specifically, the present invention relates to electrodes made from redox polymer films and batteries in which either the positive electrode, the negative electrode, or both, comprise redox polymers. Suitable redox polymers for this purpose include pyridyl or polypyridyl complexes of transition metals like iron, ruthenium, osmium, chromium, tungsten and nickel; porphyrins (either free base or metallo derivatives); phthalocyanines (either free base or metallo derivatives); metal complexes of cyclams, such as tetraazacyclotetradecane; metal complexes of crown ethers and metallocenes such as ferrocene, cobaltocene and ruthenocene.

  4. Understanding the impact of flow rate and recycle on the conversion of a complex biorefinery stream using a flow-through microbial electrolysis cell

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Lewis, Alex J.; Borole, Abhijeet P.

    2016-06-16

    We investigated the effect of flow rate and recycle on the conversion of a biomass-derived pyrolysis aqueous phase in amicrobial electrolysis cell (MEC) to demonstrate production of renewable hydrogen in biorefinery. A continuous MEC operation was investigated under one-pass and recycle conditions usingthe complex, biomass-derived, fermentable, mixed substrate feed at a constant concentration of 0.026 g/L,while testing flow rates ranging from 0.19 to 3.6 mL/min. This corresponds to an organic loading rate (OLR) of 0.54₋10 g/L-day. Mass transfer issues observed at low flow rates were alleviated using high flow rates.Increasing the flow rate to 3.6 mL/min (3.7 min HRT) duringmore » one-pass operation increased the hydrogen productivity 3-fold, but anode conversion efficiency (ACE) decreased from 57.9% to 9.9%. Recycle of the anode liquid helped to alleviate kinetic limitations and the ACE increased by 1.8-fold and the hydrogen productivity by 1.2-fold compared to the one-pass condition at the flow rate of 3.6 mL/min (10 g/L-d OLR). High COD removal was also achieved under recycle conditions, reaching 74.2 1.1%, with hydrogen production rate of 2.92 ± 0.51 L/L-day. This study demonstrates the advantages of combining faster flow rates with a recycle process to improve rate of hydrogen production from a switchgrass-derived stream in the biorefinery.« less

  5. Prolonged effect of fluid flow stress on the proliferative activity of mesothelial cells after abrupt discontinuation of fluid streaming

    SciTech Connect (OSTI)

    Aoki, Shigehisa; Ikeda, Satoshi; Takezawa, Toshiaki; Kishi, Tomoya; Makino, Junichi; Uchihashi, Kazuyoshi; Matsunobu, Aki; Noguchi, Mitsuru; Sugihara, Hajime; Toda, Shuji

    2011-12-16

    Highlights: Black-Right-Pointing-Pointer Late-onset peritoneal fibrosis leading to EPS remains to be elucidated. Black-Right-Pointing-Pointer Fluid streaming is a potent factor for peritoneal fibrosis in PD. Black-Right-Pointing-Pointer We focused on the prolonged effect of fluid streaming on mesothelial cell kinetics. Black-Right-Pointing-Pointer A history of fluid streaming exposure promoted mesothelial proliferative activity. Black-Right-Pointing-Pointer We have thus identified a potent new factor for late-onset peritoneal fibrosis. -- Abstract: Encapsulating peritoneal sclerosis (EPS) often develops after transfer to hemodialysis and transplantation. Both termination of peritoneal dialysis (PD) and transplantation-related factors are risks implicated in post-PD development of EPS, but the precise mechanism of this late-onset peritoneal fibrosis remains to be elucidated. We previously demonstrated that fluid flow stress induced mesothelial proliferation and epithelial-mesenchymal transition via mitogen-activated protein kinase (MAPK) signaling. Therefore, we speculated that the prolonged bioactive effect of fluid flow stress may affect mesothelial cell kinetics after cessation of fluid streaming. To investigate how long mesothelial cells stay under the bioactive effect brought on by fluid flow stress after removal of the stress, we initially cultured mesothelial cells under fluid flow stress and then cultured the cells under static conditions. Mesothelial cells exposed to fluid flow stress for a certain time showed significantly high proliferative activity compared with static conditions after stoppage of fluid streaming. The expression levels of protein phosphatase 2A, which dephosphorylates MAPK, in mesothelial cells changed with time and showed a biphasic pattern that was dependent on the duration of exposure to fluid flow stress. There were no differences in the fluid flow stress-related bioactive effects on mesothelial cells once a certain time had passed

  6. Co-flow anode/cathode supply heat exchanger for a solid-oxide fuel cell assembly

    SciTech Connect (OSTI)

    Haltiner, Jr., Karl J.; Kelly, Sean M.

    2005-11-22

    In a solid-oxide fuel cell assembly, a co-flow heat exchanger is provided in the flow paths of the reformate gas and the cathode air ahead of the fuel cell stack, the reformate gas being on one side of the exchanger and the cathode air being on the other. The reformate gas is at a substantially higher temperature than is desired in the stack, and the cathode gas is substantially cooler than desired. In the co-flow heat exchanger, the temperatures of the reformate and cathode streams converge to nearly the same temperature at the outlet of the exchanger. Preferably, the heat exchanger is formed within an integrated component manifold (ICM) for a solid-oxide fuel cell assembly.

  7. Measurement of radionuclides using ion chromatography and flow-cell scintillation counting with pulse shape discrimination

    SciTech Connect (OSTI)

    DeVol, T.A.; Fjeld, R.A.

    1995-10-01

    The use of ion chromatography (IC) for radiochemical separations is a well established technique. IC is commonly used in routine environmental monitoring applications as well as in specialized research applications. Typical usage involves the separation of a single radionuclide from the non-radioactive constituents. During the past decade, a limited amount of research has been conducted using automated IC systems in actinide separation applications (e.g.). More recently, separation procedures for common non-gamma emitting activation and fission products were developed utilizing a high performance liquid chromatography (HPLC) system. In addition, a separation procedure for six common actinides has been developed using a HPLC system. These latter systems used on-line flow-cell detectors for quantification of the radioactive constituents of the effluent stream.

  8. Integral manifolding structure for fuel cell core having parallel gas flow

    DOE Patents [OSTI]

    Herceg, Joseph E.

    1984-01-01

    Disclosed herein are manifolding means for directing the fuel and oxidant gases to parallel flow passageways in a fuel cell core. Each core passageway is defined by electrolyte and interconnect walls. Each electrolyte and interconnect wall consists respectively of anode and cathode materials layered on the opposite sides of electrolyte material, or on the opposite sides of interconnect material. A core wall projects beyond the open ends of the defined core passageways and is disposed approximately midway between and parallel to the adjacent overlaying and underlying interconnect walls to define manifold chambers therebetween on opposite sides of the wall. Each electrolyte wall defining the flow passageways is shaped to blend into and be connected to this wall in order to redirect the corresponding fuel and oxidant passageways to the respective manifold chambers either above or below this intermediate wall. Inlet and outlet connections are made to these separate manifold chambers respectively, for carrying the fuel and oxidant gases to the core, and for carrying their reaction products away from the core.

  9. Integral manifolding structure for fuel cell core having parallel gas flow

    DOE Patents [OSTI]

    Herceg, J.E.

    1983-10-12

    Disclosed herein are manifolding means for directing the fuel and oxidant gases to parallel flow passageways in a fuel cell core. Each core passageway is defined by electrolyte and interconnect walls. Each electrolyte and interconnect wall consists respectively of anode and cathode materials layered on the opposite sides of electrolyte material, or on the opposite sides of interconnect material. A core wall projects beyond the open ends of the defined core passageways and is disposed approximately midway between and parallel to the adjacent overlaying and underlying interconnect walls to define manifold chambers therebetween on opposite sides of the wall. Each electrolyte wall defining the flow passageways is shaped to blend into and be connected to this wall in order to redirect the corresponding fuel and oxidant passageways to the respective manifold chambers either above or below this intermediate wall. Inlet and outlet connections are made to these separate manifold chambers respectively, for carrying the fuel and oxidant gases to the core, and for carrying their reaction products away from the core.

  10. MICROSCALE METABOLIC, REDOX AND ABIOTIC REACTIONS IN HANFORD 300 AREA SUBSURFACE SEDIMENTS

    SciTech Connect (OSTI)

    Beyenal, Haluk; McLEan, Jeff; Majors, Paul; Fredrickson, Jim

    2013-11-14

    The Hanford 300 Area is a unique site due to periodic hydrologic influence of river water resulting in changes in groundwater elevation and flow direction. This area is also highly subject to uranium remobilization, the source of which is currently believed to be the region at the base of the vadose zone that is subject to period saturation due to the changes in the water levels in the Columbia River. We found that microbial processes and redox and abiotic reactions which operate at the microscale were critical to understanding factors controlling the macroscopic fate and transport of contaminants in the subsurface. The combined laboratory and field research showed how microscale conditions control uranium mobility and how biotic, abiotic and redox reactions relate to each other. Our findings extended the current knowledge to examine U(VI) reduction and immobilization using natural 300 Area communities as well as selected model organisms on redox-sensitive and redox-insensitive minerals. Using innovative techniques developed specifically to probe biogeochemical processes at the microscale, our research expanded our current understanding of the roles played by mineral surfaces, bacterial competition, and local biotic, abiotic and redox reaction rates on the reduction and immobilization of uranium.

  11. Multicolor flow cytometry analysis of blood cell subsets in patients given total body irradiation before bone marrow transplantation

    SciTech Connect (OSTI)

    Clave, E.; Socie, G.; Carosella, E.

    1995-11-01

    Bone marrow transplantation has often been closely linked with accidental or intentional therapeutical irradiation. In both situations, study of the radiosensitivity of human blood cell subsets is of interest. Using one-color flow cytometry analysis of B lymphocytes, T cell subsets, and natural killer cells, we previously reported that lymphocyte subsets exhibit equal radiosensitivity. Taking advantage of recent developments in the knowledge of leukocyte differentiation antigens and flow cytometry technology we undertook a study of blood cell subsets to search for rare populations exhibiting different radiosensitivity. Thirty patients, who were delivered a 12 Gy fractionated total body irradiation as part of their conditioning regimen before transplantation for malignant disorders, were studied using multicolor flow cytometry. T and B lymphocytes showed a sharp, radiation-induced decrease, with the B lymphocytes (cluster of differentiation (CD) 19+) being the most sensitive. When analyzed by multicolor flow cytometry all major lymphocyte subsets appeared equally sensitive to the in vivo irradiation. Therefore, all major lymphocyte subsets sharing the helper phenotype (naive or memory) and the cytotoxic phenotype appeared equally sensitive to in vivo whole body irradiation. In parallel, the CD34+ cell subset remained basically unchanged after whole body irradiation. Finally, the CD3{minus}, 56+, 16+ natural killer cell subset was relatively radioresistant (91 and 74% of its initial value, after 2 and 4 Gy, respectively) as compared to other lymphocyte subsets. Our study provides evidence that T and B cell subsets seem to be highly radiosensitive in vivo. The CD34+ progenitor/stem cells and NK cells seem to be more radioresistant. This latter result might provide clues to the understanding of the pathophysiogeny of radiation-induced aplasia and of the engrafment/rejection process following bone marrow transplantation. 20 refs., 3 figs., 1 tab.

  12. Practical thermodynamic quantities for aqueous vanadium- and iron-based flow batteries

    SciTech Connect (OSTI)

    Hudak, Nicholas S.

    2013-12-31

    A simple method for experimentally determining thermodynamic quantities for flow battery cell reactions is presented. Equilibrium cell potentials, temperature derivatives of cell potential (dE/dT), Gibbs free energies, and entropies are reported here for all-vanadium, iron–vanadium, and iron–chromium flow cells with state-of-the-art solution compositions. Proof is given that formal potentials and formal temperature coefficients can be used with modified forms of the Nernst Equation to quantify the thermodynamics of flow cell reactions as a function of state-of-charge. Such empirical quantities can be used in thermo-electrochemical models of flow batteries at the cell or system level. In most cases, the thermodynamic quantities measured here are significantly different from standard values reported and used previously in the literature. The data reported here are also useful in the selection of operating temperatures for flow battery systems. Because higher temperatures correspond to lower equilibrium cell potentials for the battery chemistries studied here, it can be beneficial to charge a cell at higher temperature and discharge at lower temperature. As a result, proof-of-concept of improved voltage efficiency with the use of such non-isothermal cycling is given for the all-vanadium redox flow battery, and the effect is shown to be more pronounced at lower current densities.

  13. Practical thermodynamic quantities for aqueous vanadium- and iron-based flow batteries

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Hudak, Nicholas S.

    2013-12-31

    A simple method for experimentally determining thermodynamic quantities for flow battery cell reactions is presented. Equilibrium cell potentials, temperature derivatives of cell potential (dE/dT), Gibbs free energies, and entropies are reported here for all-vanadium, iron–vanadium, and iron–chromium flow cells with state-of-the-art solution compositions. Proof is given that formal potentials and formal temperature coefficients can be used with modified forms of the Nernst Equation to quantify the thermodynamics of flow cell reactions as a function of state-of-charge. Such empirical quantities can be used in thermo-electrochemical models of flow batteries at the cell or system level. In most cases, the thermodynamic quantitiesmore » measured here are significantly different from standard values reported and used previously in the literature. The data reported here are also useful in the selection of operating temperatures for flow battery systems. Because higher temperatures correspond to lower equilibrium cell potentials for the battery chemistries studied here, it can be beneficial to charge a cell at higher temperature and discharge at lower temperature. As a result, proof-of-concept of improved voltage efficiency with the use of such non-isothermal cycling is given for the all-vanadium redox flow battery, and the effect is shown to be more pronounced at lower current densities.« less

  14. Hybrid anodes for redox flow batteries (Patent) | DOEPatents

    Office of Scientific and Technical Information (OSTI)

    RFBs having solid hybrid electrodes can address at least the problems of active material consumption, electrode passivation, and metal electrode dendrite growth that can be ...

  15. Fact Sheet: Vanadium Redox Flow Batteries (October 2012)

    Office of Environmental Management (EM)

    temperature window by 83%, so the battery can operate between -5 and 50C. Other ... Old Battery Technology New Battery Technology The benefits of the new electrolyte include: ...

  16. In-Situ XANES and EXAFS Analysis of Redox Active Fe Center Ionic Liquids -

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Joint Center for Energy Storage Research December 10, 2015, Research Highlights In-Situ XANES and EXAFS Analysis of Redox Active Fe Center Ionic Liquids (Top Left) Cyclic Voltammagram of Fe((OHCH2CH2)2NH)6-(CF3SO3)3 in disk electrode (solid) and in in-situ redox XANES cell (dashed). (Top Right) XANES spectra showing IL in fully oxidized and fully reduced states, showing change in Fe Kα edge on oxidation state change (Bottom) EXAFS data showing position of fully oxidized (Fe+3) state of IL,

  17. Thin graphite bipolar plate with associated gaskets and carbon cloth flow-field for use in an ionomer membrane fuel cell

    DOE Patents [OSTI]

    Marchetti, George A.

    2003-01-03

    The present invention comprises a thin graphite plate with associated gaskets and pieces of carbon cloth that comprise a flow-field. The plate, gaskets and flow-field comprise a "plate and gasket assembly" for use in an ionomer membrane fuel cell, fuel cell stack or battery.

  18. Flow cytometric analysis of expression of interleukin-2 receptor beta chain (p70-75) on various leukemic cells

    SciTech Connect (OSTI)

    Hoshino, S.; Oshimi, K.; Tsudo, M.; Miyasaka, M.; Teramura, M.; Masuda, M.; Motoji, T.; Mizoguchi, H. )

    1990-08-15

    We analyzed the expression of the interleukin-2 receptor (IL-2R) beta chain (p70-75) on various leukemic cells from 44 patients by flow cytometric analysis using the IL-2R beta chain-specific monoclonal antibody, designated Mik-beta 1. Flow cytometric analysis demonstrated the expression of the IL-2R beta chain on granular lymphocytes (GLs) from all eight patients with granular lymphocyte proliferative disorders (GLPDs), on adult T-cell leukemia (ATL) cells from all three patients with ATL, and on T-cell acute lymphoblastic leukemia (T-ALL) cells from one of three patients with T-ALL. Although GLs from all the GLPD patients expressed the IL-2R beta chain alone and not the IL-2R alpha chain (Tac-antigen: p55), ATL and T-ALL cells expressing the beta chain coexpressed the alpha chain. In two of seven patients with common ALL (cALL) and in both patients with B-cell chronic lymphocytic leukemia, the leukemic cells expressed the alpha chain alone. Neither the alpha chain nor the beta chain was expressed on leukemic cells from the remaining 28 patients, including all 18 patients with acute nonlymphocytic leukemia, five of seven patients with cALL, all three patients with multiple myeloma, and two of three patients with T-ALL. These results indicate that three different forms of IL-2R chain expression exist on leukemic cells: the alpha chain alone; the beta chain alone; and both the alpha and beta chains. To examine whether the results obtained by flow cytometric analysis actually reflect functional aspects of the expressed IL-2Rs, we studied the specific binding of 125I-labeled IL-2 (125I-IL-2) to leukemic cells in 18 of the 44 patients. In addition, we performed 125I-IL-2 crosslinking studies in seven patients. The results of IL-2R expression of both 125I-IL-2 binding assay and crosslinking studies were in agreement with those obtained by flow cytometric analysis.

  19. Methods for using redox liposome biosensors

    DOE Patents [OSTI]

    Cheng, Quan; Stevens, Raymond C.

    2002-01-01

    The present invention provides methods and compositions for detecting the presence of biologically-important analytes by using redox liposome biosensors. In particular, the present invention provides liposome/sol-gel electrodes suitable for the detection of a wide variety of organic molecules, including but not limited to bacterial toxins.

  20. An ultra-high vacuum electrochemical flow cell for in situ/operando soft X-ray spectroscopy study

    SciTech Connect (OSTI)

    Bora, Debajeet K. E-mail: jguo@lbl.gov; Glans, Per-Anders; Pepper, John; Liu, Yi-Sheng; Guo, J.-H. E-mail: jguo@lbl.gov; Du, Chun; Wang, Dunwei

    2014-04-15

    An in situ flow electrochemical cell has been designed and fabricated to allow better seal under UHV chamber thus to achieve a good signal to noise ratio in fluorescence yield detection of X-ray absorption spectra for spectroelectrochemical study. The cell also stabilizes the thin silicon nitride membrane window in an effective manner so that the liquid cell remains intact during X-ray absorption experiments. With the improved design of the liquid cell, electrochemical experiments such as cyclic voltammetry have been performed for 10 cycles with a good stability of sample window. Also an operando electrochemical experiment during photoelectrochemistry has been performed on n-type hematite electrode deposited on silicon nitride window. The experiment allows us to observe the formation of two extra electronic transitions before pre edge of O K-edge spectra.

  1. MEASUREMENT OF RADIONUCLIDES USING ION CHROMATOGRAPHY AND FLOW-CELL SCINTILLATION COUNTING WITH PULSE SHAPE DISCRIMINATION

    SciTech Connect (OSTI)

    R. A. Fjeld; T.A. DeVol; J.D. Leyba

    2000-03-30

    sample preparation and processing. The general goal of this project was to address the issues mentioned above, and in so doing transform an interesting laboratory technique of limited applicability into a robust field instrument suitable for environmental restoration and waste management applications. The project consisted of the following tasks: (1) development of a low background, flow-cell detector, (2) identification of sample chemical and radiological interferences, (3) development of protocols for processing waste and/or environmental samples, and (4) integration and testing of the prototype system. The scope of work associated with these tasks has been completed and the report for Tasks 1-3 was submitted previously. Presented here are the results for Task 4.

  2. Biphasic Electrode Suspensions for Li-Ion Semi-solid Flow Cells...

    Office of Scientific and Technical Information (OSTI)

    and Low-Dissipation Flow Authors: Wei, Teng-Sing ; Fan, Frank Y. ; Helal, Ahmed ; Smith, Kyle C. ; McKinley, Gareth H. ; Chiang, Yet-Ming ; Lewis, Jennifer A. 1 ; MIT) 2...

  3. Fuel Cell with Metal Screen Flow-Field - Energy Innovation Portal

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    plate fuel cells.DescriptionA polymer electrolyte membrane (PEM) fuel cell is provided with electrodes supplied with a reactant on each side of a catalyzed membrane assembly (CMA). ...

  4. Novel, low-cost separator plates and flow-field elements for use in PEM fuel cells

    SciTech Connect (OSTI)

    Edlund, D.J.

    1996-12-31

    PEM fuel cells offer promise for a wide range of applications including vehicular (e.g., automotive) and stationary power generation. The performance and cost targets that must be met for PEM technology to be commercially successful varies to some degree with the application. However, in general the cost of PEM fuel cell stacks must be reduced substantially if they are to see widespread use for electrical power generation. A significant contribution to the manufactured cost of PEM fuel cells is the machined carbon plates that traditionally serve as bipolar separator plates and flow-field elements. In addition, carbon separator plates are inherently brittle and suffer from breakage due to shock, vibration, and improper handling. This report describes a bifurcated separator device with low resistivity, low manufacturing cost, compact size and durability.

  5. Improving Power Production in Acetate-Fed Microbial Fuel Cells via Enrichment of Exoelectrogenic Organisms in Flow-Through Systems

    SciTech Connect (OSTI)

    Borole, Abhijeet P; Hamilton, Choo Yieng; Vishnivetskaya, Tatiana A; Leak, David; Andras, Calin

    2009-01-01

    An exoelectrogenic, biofilm-forming microbial consortium was enriched in an acetate-fed microbial fuel cell (MFC) using a flow-through anode coupled to an air-cathode. Multiple parameters known to improve MFC performance were integrated in one design including electrode spacing, specific electrode surface area, flow-through design, minimization of dead volume within anode chamber, and control of external resistance. In addition, continuous feeding of carbon source was employed and the MFC was operated at intermittent high flows to enable removal of non-biofilm forming organisms over a period of six months. The consortium enriched using the modified design and operating conditions resulted in a power density of 345 W m-3 of net anode volume (3650 mW m-2), when coupled to a ferricyanide cathode. The enriched consortium included -, -, -Proteobacteria, Bacteroidetes and Firmicutes. Members of the order Rhodocyclaceae and Burkholderiaceae (Azospira spp. (49%), Acidovorax spp. (11%) and Comamonas spp. (7%)), dominated the microbial consortium. Denaturing gradient gel electrophoresis (DGGE) analysis based on primers selective for Archaea suggested a very low abundance of methanogens. Limiting the delivery of the carbon source via continuous feeding corresponding to the maximum cathodic oxidation rates permitted in the flow-through, air-cathode MFC resulted in coulombic efficiencies reaching 88 5.7%.

  6. Current flow and efficiencies of concentrator InGaP/GaAs/Ge solar cells at temperatures below 300K

    SciTech Connect (OSTI)

    Kalinovsky, Vitaly S. Kontrosh, Evgeny V. Dmitriev, Pavel A. Pokrovsky, Pavel V. Chekalin, Alexander V. Andreev, Viacheslav M.

    2014-09-26

    The forward dark current density voltage (J-V) characteristic is one of the most important characteristics of multi-junction solar cells. It indicates that the mechanisms of current flow in the space charge region of photoactive p-n junctions. If one is to idealize the optical and electrical (coupling) elements of the solar cells, it is the J-V characteristic that determines the theoretically possible efficiency of the solar cell. In this paper, using the connection between the dark J-V and photovoltaic (?-J{sub g}) efficiency generated current density characteristics, the effect of current transport mechanisms in the space charge on the efficiency of multi-junction solar cells was investigated in the temperature range of 300 80 K. In the experimental J-V and ?-J{sub g} curves of the multi-junction solar cells, segments corresponding to the dominant current transport mechanisms were identified. The developed method, based on the analysis of forward dark J-V characteristics, makes it possible to identify the parameters affecting the efficiency of the multi-junction solar cells in a wide range of temperatures and solar radiation concentration.

  7. Semi-Solid Flowable Battery Electrodes: Semi-Solid Flow Cells for Automotive and Grid-Level Energy Storage

    SciTech Connect (OSTI)

    2010-09-01

    BEEST Project: Scientists at 24M are crossing a Li-Ion battery with a fuel cell to develop a semi-solid flow battery. This system relies on some of the same basic chemistry as a standard Li-Ion battery, but in a flow battery the energy storage material is held in external tanks, so storage capacity is not limited by the size of the battery itself. The design makes it easier to add storage capacity by simply increasing the size of the tanks and adding more paste. In addition, 24M's design also is able to extract more energy from the semi-solid paste than conventional Li-Ion batteries. This creates a cost-effective, energy-dense battery that can improve the driving range of EVs or be used to store energy on the electric grid.

  8. Factors Controlling Redox Speciation of Plutonium and Neptunium in Extraction Separation Processes

    SciTech Connect (OSTI)

    Paulenova, Alena; Vandegrift, III, George F.

    2013-09-24

    The objective of the project was to examine the factors controlling redox speciation of plutonium and neptunium in UREX+ extraction in terms of redox potentials, redox mechanism, kinetics and thermodynamics. Researchers employed redox-speciation extractions schemes in parallel to the spectroscopic experiments. The resulting distribution of redox species w studied uring spectroscopic, electrochemical, and spectro-electrochemical methods. This work reulted in collection of data on redox stability and distribution of redox couples in the nitric acid/nitrate electrolyte and the development of redox buffers to stabilize the desired oxidation state of separated radionuclides. The effects of temperature and concentrations on the redox behavior of neptunium were evaluated.

  9. Final Report: Manganese Redox Mediation of UO2 Stability and...

    Office of Scientific and Technical Information (OSTI)

    Meter Scale Dynamics Citation Details In-Document Search Title: Final Report: Manganese Redox Mediation of UO2 Stability and Uranium Fate in the Subsurface: Molecular and Meter ...

  10. Redox systematics of martian magmas with implications for magnetite...

    Office of Scientific and Technical Information (OSTI)

    with implications for magnetite stability Citation Details In-Document Search Title: Redox systematics of martian magmas with implications for magnetite stability Authors: ...

  11. Novel Redox Shuttles for Overcharge Protection of Lithium-Ion...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Protection of Lithium-Ion Batteries Technology available for licensing: Electrolytes containing novel redox shuttles (electron transporters) for lithium-ion batteries ...

  12. Fast, Efficient Isothermal Redox to Split Water or Carbon Dioxide...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Fast, Efficient Isothermal Redox to Split Water or Carbon Dioxide using Solar Energy ... the hercynite cycle allows faster, more efficient cycling and less wear on the equipment ...

  13. Fact Sheet: Vanadium Redox Battery Demonstration Program (August...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    The City of Painesville, OH, and its partners will demonstrate vanadium redox battery storage capacity at the 32 megawatt (MW), coal-fired Painesville Municipal Electric Plant ...

  14. City of Painesville, Ohio Vanadium Redox Battery Demonstration...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    City of Painesville, Ohio and its partners will demonstrate vanadium redox battery storage capacity at the 32 megawatt (MW), coal-fired Painesville Municipal Electric Plant (PMEP). ...

  15. Redox Shuttle Additives - Energy Innovation Portal

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Energy Storage Energy Storage Advanced Materials Advanced Materials Find More Like This Return to Search Redox Shuttle Additives Argonne National Laboratory Contact ANL About This Technology <p align="LEFT"> <i><font color="#808285" size="1"><font color="#808285" size="1">Charge Transfer Mechanism for Li-ion Battery Overcharge Protection &mdash; The boron and fluorine additive is in the electrolyte. When the battery is

  16. Assessment of the Effects of Flow Rate and Ionic Strength on Microbial Fuel Cell Performance Using Electrochemical Impedance Spectroscopy

    SciTech Connect (OSTI)

    Aaron, D; Tsouris, Costas; Hamilton, Choo Yieng; Borole, Abhijeet P

    2010-01-01

    Impedance changes of the anode, cathode and solution were examined for a microbial fuel cell (MFC) under varying conditions in order to improve its performance. An MFC inoculated with a pre-enriched microbial culture resulted in a startup time of ten days. Over this period, the anode impedance decreased below the cathode impedance, suggesting a cathode limited power output. Decreasing the anode flow rate did not impact the anode impedance significantly, while it increased the cathode impedance by 65% . Reducing the anode-medium ionic strength from 100% to 10% increased the cathode impedance by 48%.

  17. Solid oxide fuel cell having monolithic cross flow core and manifolding

    DOE Patents [OSTI]

    Poeppel, R.B.; Dusek, J.T.

    1983-10-12

    This invention discloses a monolithic core construction having the flow passageways for the fuel and for the oxidant gases extended transverse to one another, whereby full face core manifolding can be achieved for these gases and their reaction products. The core construction provides that only anode material surround each fuel passageway and only cathode material surround each oxidant passageway, each anode and each cathode further sandwiching at spaced opposing sides electrolyte and interconnect materials to define electrolyte and interconnect walls. Webs of the cathode and anode material hold the electrolyte and interconnect walls spaced apart to define the flow passages. The composite anode and cathode wall structures are further alternately stacked on one another (with the separating electrolyte or interconnect material typically being a single common layer) whereby the fuel passageways and the oxidant passageways are disposed transverse to one another.

  18. Solid oxide fuel cell having monolithic cross flow core and manifolding

    DOE Patents [OSTI]

    Poeppel, Roger B.; Dusek, Joseph T.

    1984-01-01

    This invention discloses a monolithic core construction having the flow passageways for the fuel and for the oxidant gases extended transverse to one another, whereby full face core manifolding can be achieved for these gases and their reaction products. The core construction provides that only anode material surround each fuel passageway and only cathode material surround each oxidant passageway, each anode and each cathode further sandwiching at spaced opposing sides electrolyte and interconnect materials to define electrolyte and interconnect walls. Webs of the cathode and anode material hold the electrolyte and interconnect walls spaced apart to define the flow passages. The composite anode and cathode wall structures are further alternately stacked on one another (with the separating electrolyte or interconnect material typically being a single common layer) whereby the fuel passageway and the oxidant passageways are disposed transverse to one another.

  19. Fuel cell assembly fluid flow plate having conductive fibers and rigidizing material therein

    DOE Patents [OSTI]

    Walsh, Michael M.

    2000-01-01

    A fluid flow plate is preferably formed with three initial sections, for instance, two layers of conductive (e.g., metal) fibers and a barrier material (e.g., metal foil) which is interposed between the two layers. For example, sintering of these three sections can provide electrical path(s) between outer faces of the two layers. Then, the sintered sections can be, for instance, placed in a mold for forming of flow channel(s) into one or more of the outer faces. Next, rigidizing material (e.g., resin) can be injected into the mold, for example, to fill and/or seal space(s) about a conductive matrix of the electrical path(s). Preferably, abrading of surface(s) of the outer face(s) serves to expose electrical contact(s) to the electrical path(s).

  20. Laminated exfoliated graphite composite-metal compositions for fuel cell flow field plate or bipolar plate applications

    DOE Patents [OSTI]

    Zhamu, Aruna; Shi, Jinjun; Guo, Jiusheng; Jang, Bor Z

    2014-05-20

    An electrically conductive laminate composition for fuel cell flow field plate or bipolar plate applications. The laminate composition comprises at least a thin metal sheet having two opposed exterior surfaces and a first exfoliated graphite composite sheet bonded to the first of the two exterior surfaces of the metal sheet wherein the exfoliated graphite composite sheet comprises: (a) expanded or exfoliated graphite and (b) a binder or matrix material to bond the expanded graphite for forming a cohered sheet, wherein the binder or matrix material is between 3% and 60% by weight based on the total weight of the first exfoliated graphite composite sheet. Preferably, the first exfoliated graphite composite sheet further comprises particles of non-expandable graphite or carbon in the amount of between 3% and 60% by weight based on the total weight of the non-expandable particles and the expanded graphite. Further preferably, the laminate comprises a second exfoliated graphite composite sheet bonded to the second surface of the metal sheet to form a three-layer laminate. Surface flow channels and other desired geometric features can be built onto the exterior surfaces of the laminate to form a flow field plate or bipolar plate. The resulting laminate has an exceptionally high thickness-direction conductivity and excellent resistance to gas permeation.

  1. Evaluation of polymer-coated CsI:Tl as an alpha/beta pulse shape discriminating flow cell

    SciTech Connect (OSTI)

    Chotoo, S.D.; DeVol, T.A.; Fjeld, R.A.

    1997-08-01

    A pulse shape discriminating flow-cell radiation detection system constructed with polymer-coated CsI:Tl was evaluated for simultaneous gross alpha/gross beta quantification. The CsI:Tl scintillator was crushed and sieved to 63--90-{micro}m particle size and encapsulated with Parylene C to slow its dissolution rate. Averaged over the first hour of use, the pulse shape discrimination figure of merit was 1.4, and the detection efficiencies ({+-}1{sigma}) were 64.9 {+-} 5.7%, 52.5 {+-} 4.5%, and 4.5 {+-} 0.2% for {sup 233}U, {sup 90}Sr/{sup 90}Y, and {sup 14}C, respectively. The typical background count rates in the alpha and beta pulse shape window were 0.004 and 0.17 cps, respectively. The resultant minimum detectable activities ({+-}1{sigma}) for a 30-s count time were calculated to be 0.19 {+-} 0.01 Bq, 0.9 {+-} 0.1 Bq, and 11.4 {+-} 0.6 Bq for {sup 233}U, {sup 90}Sr/{sup 90}Y, and {sup 14}C, respectively. Although the 3-{micro}m-thick encapsulation slowed CsI:Tl dissolution, the detection efficiency declined by a factor of two after 4.8 h, while the pulse shape resolution degraded slightly. With an appropriate coating, CsI:Tl is a good candidate for a heterogeneous pulse shape discriminating flow-cell.

  2. Microfabricated Renewable Beads-Trapping/Releasing Flow Cell for Rapid Antigen-Antibody Reaction in Chemiluminescent Immunoassay

    SciTech Connect (OSTI)

    Fu, Zhifeng; Shao, Guocheng; Wang, Jun; Lu, Donglai; Wang, Wanjun; Lin, Yuehe

    2011-04-01

    A filter pillar-array microstructure was coupled with a pneumatic micro-valve to fabricate a reusable miniaturized beads-trapping/releasing flow cell, in which trapping and releasing beads can be conveniently realized by switching the micro-valve. This miniaturized device was suitable to construct automatic fluidic system for renewable surface analysis. The renewable surface strategy based on pneumatic micro-valve enabled capture of beads in beads chamber prior to each assay, and release of the used beads after the assay. Chemiluminescent competitive immunoassay of 3,5,6-trichloropyridinol (TCP) was performed as a model to demonstrate the application potential of this reusable miniaturized flow cell. The whole fluidic assay process including beads trapping, immuno-binding, beads washing, beads releasing and signal collection could be completed in 10 min. Immunoassay of TCP using this miniaturized device showed a linear range of 0.20-70 ng/mL with a limit of detection of 0.080 ng/mL. The device had been successfully used for detection of TCP spiked in rat serum with average recovery of 97%. This investigation provides a rapid, sensitive, reusable, low-cost and automatic miniaturized device for solid-phase biochemical analysis for various purposes.

  3. First-Principles Study of Redox End-Members in Li-Sulfur Batteries...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    First-Principles Study of Redox End-Members in Li-Sulfur Batteries Images for Redox ... and surface characteristics of solid-phase redox end-members in Li-S batteries. ...

  4. Pore and Continuum Scale Study of the Effect of Subgrid Transport Heterogeneity on Redox Reaction Rates

    SciTech Connect (OSTI)

    Liu, Yuanyuan; Liu, Chongxuan; Zhang, Changyong; Yang, Xiaofan; Zachara, John M.

    2015-08-01

    A micromodel system with a pore structure for heterogeneous flow and transport was used to investigate the effect of subgrid transport heterogeneity on redox reaction rates. Hematite reductive dissolution by injecting a reduced form of flavin mononucleotide (FMNH2) at variable flow rates was used as an example to probe the variations of redox reaction rates in different subgrid transport domains. Experiments, pore-scale simulations, and macroscopic modeling were performed to measure and simulate in-situ hematite reduction and to evaluate the scaling behavior of the redox reaction rates from the pore to macroscopic scales. The results indicated that the measured pore-scale rates of hematite reduction were consistent with the predictions from a pore scale reactive transport model. A general trend is that hematite reduction followed reductant transport pathways, starting from the advection-dominated pores toward the interior of diffusion-dominated domains. Two types of diffusion domains were considered in the micromodel: a micropore diffusion domain, which locates inside solid grains or aggregates where reactant transport is limited by diffusion; and a macropore diffusion domain, which locates at wedged, dead-end pore spaces created by the grain-grain contacts. The rate of hematite reduction in the advection-dominated domain was faster than those in the diffusion-controlled domains, and the rate in the macropore diffusion domain was faster than that in the micropore domain. The reduction rates in the advection and macropore diffusion domains increased with increasing flow rate, but were affected by different mechanisms. The rate increase in the advection domain was controlled by the mass action effect as a faster flow supplied more reactants, and the rate increase in the macropore domain was more affected by the rate of mass exchange with the advection domain, which increased with increasing flow rate. The hematite reduction rate in the micropore domain was, however

  5. 99Tc(VII) Retardation, Reduction, and Redox Rate Scaling in Naturally...

    Office of Scientific and Technical Information (OSTI)

    Reduction, and Redox Rate Scaling in Naturally Reduced Sediments Citation Details In-Document Search Title: 99Tc(VII) Retardation, Reduction, and Redox Rate Scaling in ...

  6. Redox states of Desulfovibrio vulgaris DsrC, a key protein in dissimilatory sulfite reduction

    SciTech Connect (OSTI)

    Venceslau, Sofia S.; Cort, John R.; Baker, Erin Shammel; Chu, Rosalie K.; Robinson, Errol W.; Dahl, Christiane; Saraiva, Ligia M.; Pereira, Ines Ac

    2013-11-29

    Dissimilatory reduction of sulfite is carried out by the siroheme enzyme DsrAB, with the involvement of the protein DsrC having two conserved cysteine residues. Here, we report a study of the distribution of DsrC in cell extracts, a cysteine-labelling gel-shift assay to monitor its redox state and behaviour, and procedures to produce the different redox forms. We show that, in the model sulfate reducer Desulfovibrio vulgaris, the majority of DsrC is not associated with DsrAB and is thus free to interact with other proteins. In addition, we successfully produced DsrC with an intramolecular disulfide bond (oxidized state) by treatment with arginine.

  7. Clostridium thermocellum DSM 1313 transcriptional responses to redox perturbation

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Sander, Kyle B.; Wilson, Charlotte M.; M. Rodriquez, Jr.; Klingeman, Dawn Marie; Davison, Brian H.; Brown, Steven D.; Rydzak, T.

    2015-12-12

    Clostridium thermocellum is a promising consolidated bioprocessing candidate organism capable of directly converting lignocellulosic biomass to ethanol. Current ethanol yields, productivities, and growth inhibitions are industrial deployment impediments for commodity fuel production by this bacterium. Redox imbalance under certain conditions and in engineered strains may contribute to incomplete substrate utilization and may direct fermentation products to undesirable overflow metabolites. As a result, towards a better understanding of redox metabolism in C. thermocellum, we established continuous growth conditions and analyzed global gene expression during addition of two stress chemicals (methyl viologen and hydrogen peroxide) which changed the fermentation redox potential.

  8. Design and implementation of a rapid-mixer flow cell for time-resolved infrared microspectroscopy

    SciTech Connect (OSTI)

    Marinkovic, Nebojsa S.; Adzic, Aleksandar R.; Sullivan, Michael; Kovacs, Kevin; Miller, Lisa M.; Rousseau, Denis L.; Yeh, Syun-Ru; Chance, Mark R.

    2000-11-01

    A rapid mixer for the analysis of reactions in the millisecond and submillisecond time domains by Fourier-transform infrared microspectroscopy has been constructed. The cell was tested by examination of cytochrome-c folding kinetics. The device allows collection of full infrared spectral data on millisecond and faster time scales subsequent to chemical jump reaction initiation. The data quality is sufficiently good such that spectral fitting techniques could be applied to analysis of the data. Thus, this method provides an advantage over kinetic measurements at single wavelengths using infrared laser or diode sources, particularly where band overlap exists.

  9. Influence of the parallel nonlinearity on zonal flows and heat transport in global gyrokinetic particle-in-cell simulations

    SciTech Connect (OSTI)

    Jolliet, S.; McMillan, B. F.; Vernay, T.; Villard, L.; Hatzky, R.; Bottino, A.; Angelino, P.

    2009-07-15

    In this paper, the influence of the parallel nonlinearity on zonal flows and heat transport in global particle-in-cell ion-temperature-gradient simulations is studied. Although this term is in theory orders of magnitude smaller than the others, several authors [L. Villard, P. Angelino, A. Bottino et al., Plasma Phys. Contr. Fusion 46, B51 (2004); L. Villard, S. J. Allfrey, A. Bottino et al., Nucl. Fusion 44, 172 (2004); J. C. Kniep, J. N. G. Leboeuf, and V. C. Decyck, Comput. Phys. Commun. 164, 98 (2004); J. Candy, R. E. Waltz, S. E. Parker et al., Phys. Plasmas 13, 074501 (2006)] found different results on its role. The study is performed using the global gyrokinetic particle-in-cell codes TORB (theta-pinch) [R. Hatzky, T. M. Tran, A. Koenies et al., Phys. Plasmas 9, 898 (2002)] and ORB5 (tokamak geometry) [S. Jolliet, A. Bottino, P. Angelino et al., Comput. Phys. Commun. 177, 409 (2007)]. In particular, it is demonstrated that the parallel nonlinearity, while important for energy conservation, affects the zonal electric field only if the simulation is noise dominated. When a proper convergence is reached, the influence of parallel nonlinearity on the zonal electric field, if any, is shown to be small for both the cases of decaying and driven turbulence.

  10. Computation of the Redox and Protonation Properties of Quinones: Towards the Prediction of Redox Cycling Natural Products.

    SciTech Connect (OSTI)

    Cape, Jonathan L.; Bowman, Michael K.; Kramer, David M.

    2006-08-01

    Quinone metabolites perform a variety of key functions in plants, including pathogen protection, oxidative phosphorylation, and redox signaling. Many of these structurally diverse compounds have been shown to exhibit potent antimicrobial, anticancer, and anti-inflammatory properties, although the exact mechanisms of action are far from understood. Redox cycling has been proposed as a possible mechanism of action for many quinine species. Experimental determination of the essential thermodynamic data (i.e. electrochemical and pKa values) required to predict the propensity towards redox cycling is often difficult or impossible to obtain due to the experimental limitations. We demonstrate a practical computational approach to obtain reasonable estimates of these parameters.

  11. Gene expression responses of HeLa cells to chemical species generated by an atmospheric plasma flow

    SciTech Connect (OSTI)

    Yokoyama, Mayo; Johkura, Kohei; Sato, Takehiko

    2014-08-08

    Highlights: • Response of HeLa cells to a plasma-irradiated medium was revealed by DNA microarray. • Gene expression pattern was basically different from that in a H{sub 2}O{sub 2}-added medium. • Prominently up-/down-regulated genes were partly shared by the two media. • Gene ontology analysis showed both similar and different responses in the two media. • Candidate genes involved in response to ROS were detected in each medium. - Abstract: Plasma irradiation generates many factors able to affect the cellular condition, and this feature has been studied for its application in the field of medicine. We previously reported that hydrogen peroxide (H{sub 2}O{sub 2}) was the major cause of HeLa cell death among the chemical species generated by high level irradiation of a culture medium by atmospheric plasma. To assess the effect of plasma-induced factors on the response of live cells, HeLa cells were exposed to a medium irradiated by a non-lethal plasma flow level, and their gene expression was broadly analyzed by DNA microarray in comparison with that in a corresponding concentration of 51 μM H{sub 2}O{sub 2}. As a result, though the cell viability was sufficiently maintained at more than 90% in both cases, the plasma-medium had a greater impact on it than the H{sub 2}O{sub 2}-medium. Hierarchical clustering analysis revealed fundamentally different cellular responses between these two media. A larger population of genes was upregulated in the plasma-medium, whereas genes were downregulated in the H{sub 2}O{sub 2}-medium. However, a part of the genes that showed prominent differential expression was shared by them, including an immediate early gene ID2. In gene ontology analysis of upregulated genes, the plasma-medium showed more diverse ontologies than the H{sub 2}O{sub 2}-medium, whereas ontologies such as “response to stimulus” were common, and several genes corresponded to “response to reactive oxygen species.” Genes of AP-1 proteins, e.g., JUN

  12. Redox Active Catalysts Utilizing Earth Abundant Metals | Center...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Redox Active Catalysts Utilizing Earth Abundant Metals 14 Mar 2014 Ryan Trovitch has recently joined the team of the BISfuel PIs. He is an Assistant Professor at the Department of...

  13. A bioinspired redox relay that mimics radical interactions of...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    M.J., Kodis, G., Poluektov, O.G., Rajh, T., Mujica, V., Groy, T. L., Gust, D., Moore, T.A., Moore, A.L. Title: A bioinspired redox relay that mimics radical interactions...

  14. Redox shuttles for overcharge protection of lithium batteries

    DOE Patents [OSTI]

    Amine, Khalil; Chen, Zonghai; Wang, Qingzheng

    2010-12-14

    The present invention is generally related to electrolytes containing novel redox shuttles for overcharge protection of lithium-ion batteries. The redox shuttles are capable of thousands hours of overcharge tolerance and have a redox potential at about 3-5.5 V vs. Li and particularly about 4.4-4.8 V vs. Li. Accordingly, in one aspect the invention provides electrolytes comprising an alkali metal salt; a polar aprotic solvent; and a redox shuttle additive that is an aromatic compound having at least one aromatic ring with four or more electronegative substituents, two or more oxygen atoms bonded to the aromatic ring, and no hydrogen atoms bonded to the aromatic ring; and wherein the electrolyte solution is substantially non-aqueous. Further there are provided electrochemical devices employing the electrolyte and methods of making the electrolyte.

  15. Structural effect on the redox thermodynamics of poly(thiophenes)

    SciTech Connect (OSTI)

    Marque, P. ); Roncali, J. )

    1990-11-15

    The redox thermodynamics of poly(thiophene) (PT), poly(3-methylthiophene) (MeT), and poly(3-nonylthiophene) (PNT) have been analyzed by using the Nernst plots E vs log (O)/(R) constructed from the in situ absorbance measurements performed at various doping levels. The apparent standard potential E{degree}{prime} and the initial slope of the Nernst plots of the oxidation process decrease in the order PT > PMeT > PNT. Concurrently, the redox process becomes progressively more complex with an increasing deviation from linearity above E{degree}{prime} and the appearance of two distinct oxidation stages for PMeT and PNT. Whereas hysteresis is evident for PT and PMeT, the redox process appears fully reversible in the case of PNT. Although the slope corresponding to initial step of the charging process decreases from PT to PNT, it remains of much larger magnitude than expected for a simple one-electron redox couple.

  16. Redox Protein Expression Predicts Radiotherapeutic Response in Early-Stage Invasive Breast Cancer Patients

    SciTech Connect (OSTI)

    Woolston, Caroline M.; Al-Attar, Ahmad; Storr, Sarah J.; Ellis, Ian O.; Morgan, David A.L.; Martin, Stewart G.

    2011-04-01

    Purpose: Early-stage invasive breast cancer patients have commonly undergone breast-conserving surgery and radiotherapy. In a large majority of these patients, the treatment is effective; however, a proportion will develop local recurrence. Deregulated redox systems provide cancer cells protection from increased oxidative stress, such as that induced by ionizing radiation. Therefore, the expression of redox proteins was examined in tumor specimens from this defined cohort to determine whether such expression could predict response. Methods and Materials: The nuclear and cytoplasmic expression of nine redox proteins (glutathione, glutathione reductase, glutaredoxin, glutathione peroxidase 1, 3, and 4, and glutathione S-transferase-{theta}, -{pi}, and -{alpha}) was assessed using conventional immunohistochemistry on a tissue microarray of 224 tumors. Results: A high cytoplasmic expression of glutathione S-transferase-{theta} significantly correlated with a greater risk of local recurrence (p = .008) and, when combined with a low nuclear expression (p = .009), became an independent predictive factor (p = .002) for local recurrence. High cytoplasmic expression of glutathione S-transferase-{theta} also correlated with a worse overall survival (p = .009). Low nuclear and cytoplasmic expression of glutathione peroxidase 3 (p = .002) correlated with a greater risk of local recurrence and was an independent predictive factor (p = .005). These proteins did not correlate with tumor grade, suggesting their function might be specific to the regulation of oxidative stress rather than alterations of tumor phenotype. Only nuclear (p = .005) and cytoplasmic (p = .001) expression of glutathione peroxidase 4 correlated with the tumor grade. Conclusions: Our results support the use of redox protein expression, namely glutathione S-transferase-{theta} and glutathione peroxidase 3, to predict the response to radiotherapy in early-stage breast cancer patients. If incorporated into

  17. Preparation of redox polymer cathodes for thin film rechargeable batteries

    DOE Patents [OSTI]

    Skotheim, T.A.; Lee, H.S.; Okamoto, Yoshiyuki.

    1994-11-08

    The present invention relates to the manufacture of thin film solid state electrochemical devices using composite cathodes comprising a redox polymer capable of undergoing oxidation and reduction, a polymer solid electrolyte and conducting carbon. The polymeric cathode material is formed as a composite of radiation crosslinked polymer electrolytes and radiation crosslinked redox polymers based on polysiloxane backbones with attached organosulfur side groups capable of forming sulfur-sulfur bonds during electrochemical oxidation.

  18. Method of producing exfoliated graphite composite compositions for fuel cell flow field plates

    DOE Patents [OSTI]

    Zhamu, Aruna; Shi, Jinjun; Guo, Jiusheng; Jang, Bor Z

    2014-04-08

    A method of producing an electrically conductive composite composition, which is particularly useful for fuel cell bipolar plate applications. The method comprises: (a) providing a supply of expandable graphite powder; (b) providing a supply of a non-expandable powder component comprising a binder or matrix material; (c) blending the expandable graphite with the non-expandable powder component to form a powder mixture wherein the non-expandable powder component is in the amount of between 3% and 60% by weight based on the total weight of the powder mixture; (d) exposing the powder mixture to a temperature sufficient for exfoliating the expandable graphite to obtain a compressible mixture comprising expanded graphite worms and the non-expandable component; (e) compressing the compressible mixture at a pressure within the range of from about 5 psi to about 50,000 psi in predetermined directions into predetermined forms of cohered graphite composite compact; and (f) treating the so-formed cohered graphite composite to activate the binder or matrix material thereby promoting adhesion within the compact to produce the desired composite composition. Preferably, the non-expandable powder component further comprises an isotropy-promoting agent such as non-expandable graphite particles. Further preferably, step (e) comprises compressing the mixture in at least two directions. The method leads to composite plates with exceptionally high thickness-direction electrical conductivity.

  19. Performance evaluation of a continuous-flow bioanode microbial electrolysis cell fed with furanic and phenolic compounds

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Zeng, Xiaofei; Borole, Abhijeet P.; Pavlostathis, Spyros G.

    2016-07-04

    Furanic and phenolic compounds, formed during the pretreatment of lignocellulosic biomass, are problematic byproducts in down-stream biofuel processes. A microbial electrolysis cell (MEC) is an alternative technology to handle furanic and phenolic compounds and produce renewable hydrogen (H2). In this study, we evaluated the performance of a continuous-flow bioanode MEC fed with furanic and phenolic compounds at different operating conditions. All hydraulic retention times (HRTs) tested (6-24 h) resulted in complete transformation of the parent compounds at an organic loading rate (OLR) of 0.2g L-1 per d and applied voltage of 0.6 V. Increasing the OLR to 0.8 g L-1more » per d at an HRT of 6h resulted in an increased H2 production rate from 0.07 to 0.14 L Lanode 1 per d, but an OLR of 3.2 g L-1 per d did not lead to a higher H2 production rate. Significant methane production was observed at an OLR of 3.2 g L-1 per d. The lack of increased H2 production at the highest OLR tested was due to a limited rate of exoelectrogenesis but not fermentation, evidenced by the accumulation of high acetate levels and higher growth of fermenters and methanogens over exoelectrogens. Increasing applied voltage from 0.6 to 1.0V at an OLR of 3.2 g L-1 per d and HRT of 6h enhanced exoelectrogenesis and resulted in a 1.7-fold increase of H2 production. Under all operating conditions, more than 90% of the biomass was biofilm-associated. Lastly, the present study provides new insights into the performance of continuous-flow bioelectrochemical systems fed with complex waste streams resulting from the pretreatment of lignocellulosic biomass.« less

  20. Evaluation of polymer-coated CsI:Tl as an alpha/beta pulse shape discriminating flow-cell

    SciTech Connect (OSTI)

    Branton, S.D.; Fjeld, R.A.; DeVol, T.A.

    1996-12-31

    A pulse shape discriminating flow-cell radiation detection system constructed with polymer coated CsI:Tl was evaluated for simultaneous gross alpha/gross beta quantification. The CsI:TI scintillator was crushed and sieved to 63-90 {mu}m particle size and microencapsulated with Parylene C to reduce its rate of dissolution. Averaged over the first hour of use, the pulse shape discrimination figure-of-merit was 1.4 and the detection efficiencies were 64.9 {+-} 5.7 %, 52.5 {+-} 4.5 % and 4.5 {+-} 0.2 % for {sup 233}U, {sup 90}Sr/{sup 90}Y and {sup 14}C , respectively. The typical background count rate in the alpha and beta pulse shape window was 0.17 and 0.004 cps, respectively. The resultant minimum detectable activity for a 30 second count time was calculated to be 0.19 {+-} 0.01 Bq, 0.9 {+-} 0.1 Bq and 11.4 {+-} 0.6 Bq for {sup 233}U, {sup 90}Sr/{sup 90}Y and {sup 14}C, respectively. Although the 3 {mu}m thick microencapsulation reduced CsI:Tl dissolution, the detection efficiency declined by a factor of two after 4.8 hours while the pulse shape resolution degraded slightly.

  1. Study of self-consistent particle flows in a plasma blob with particle-in-cell simulations

    SciTech Connect (OSTI)

    Hasegawa, Hiroki Ishiguro, Seiji

    2015-10-15

    The self-consistent particle flows in a filamentary coherent structure along the magnetic field line in scrape-off layer (SOL) plasma (plasma blob) have been investigated by means of a three-dimensional electrostatic particle-in-cell simulation code. The presence of the spiral current system composed of the diamagnetic and parallel currents in a blob is confirmed by the particle simulation without any assumed sheath boundary models. Furthermore, the observation of the electron and ion parallel velocity distributions in a blob shows that those distributions are far from Maxwellian due to modification with the sheath formation and that the electron temperature on the higher potential side in a blob is higher than that on the lower potential side. Also, it is found that the ions on the higher potential side are accelerated more intensively along the magnetic field line than those on the lower potential side near the edge. This study indicates that particle simulations are able to provide an exact current closure to analysis of blob dynamics and will bring more accurate prediction of plasma transport in the SOL without any empirical assumptions.

  2. Measuring Spatial Variability of Vapor Flux to Characterize Vadose-zone VOC Sources: Flow-cell Experiments

    SciTech Connect (OSTI)

    Mainhagu, Jon; Morrison, C.; Truex, Michael J.; Oostrom, Martinus; Brusseau, Mark

    2014-10-20

    A method termed vapor-phase tomography has recently been proposed to characterize the distribution of volatile organic contaminant mass in vadose-zone source areas, and to measure associated three-dimensional distributions of local contaminant mass discharge. The method is based on measuring the spatial variability of vapor flux, and thus inherent to its effectiveness is the premise that the magnitudes and temporal variability of vapor concentrations measured at different monitoring points within the interrogated area will be a function of the geospatial positions of the points relative to the source location. A series of flow-cell experiments was conducted to evaluate this premise. A well-defined source zone was created by injection and extraction of a non-reactive gas (SF6). Spatial and temporal concentration distributions obtained from the tests were compared to simulations produced with a mathematical model describing advective and diffusive transport. Tests were conducted to characterize both areal and vertical components of the application. Decreases in concentration over time were observed for monitoring points located on the opposite side of the source zone from the local–extraction point, whereas increases were observed for monitoring points located between the local–extraction point and the source zone. The results illustrate that comparison of temporal concentration profiles obtained at various monitoring points gives a general indication of the source location with respect to the extraction and monitoring points.

  3. Parallel flow diffusion battery

    DOE Patents [OSTI]

    Yeh, H.C.; Cheng, Y.S.

    1984-01-01

    A parallel flow diffusion battery for determining the mass distribution of an aerosol has a plurality of diffusion cells mounted in parallel to an aerosol stream, each diffusion cell including a stack of mesh wire screens of different density.

  4. Parallel flow diffusion battery

    DOE Patents [OSTI]

    Yeh, Hsu-Chi; Cheng, Yung-Sung

    1984-08-07

    A parallel flow diffusion battery for determining the mass distribution of an aerosol has a plurality of diffusion cells mounted in parallel to an aerosol stream, each diffusion cell including a stack of mesh wire screens of different density.

  5. CRADA final report: Technical assessment of roll-to-roll operation of lamination process, thermal treatment, and alternative carbon fiber precursors for low-cost, high-efficiency manufacturing of flow battery stacks and other energy devices

    SciTech Connect (OSTI)

    Daniel, Claus; Madden, Thomas; Wood, III, David L; Muth, Thomas R.; Warrington, Curtis; Ozcan, Soydan; Manson, Hunter; Tekinalp, Halil L.; Smith, Mark A.; Lu, Yuan; Loretz, Jeremy

    2015-09-23

    Among the various stationary-storage technologies under development, redox flow batteries (RFBs) offer the greatest potential to deliver inexpensive, scalable, and efficient grid-scale electrical-energy storage. Unlike traditional sealed batteries, in a flow battery power and energy are decoupled. Cell area and cell count in the stack determine the device power, and the chemical storage volume determines the total energy. Grid-scale energy-storage applications require megawatt-scale devices, which require the assembly of hundreds of large-area, bipolar cells per power plant. The cell-stack is the single system component with the largest impact on capital cost (due to the large number of highly engineered components) and operating costs (determined by overall round-trip efficiency).

  6. An inner membrane cytochrome required only for reduction of high redox potential extracellular electron acceptors

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Levar, Caleb E.; Chan, Chi Ho; Mehta-Kolte, Misha G.; Bond, Daniel R.

    2014-10-28

    Dissimilatory metal-reducing bacteria, such as Geobacter sulfurreducens, transfer electrons beyond their outer membranes to Fe(III) and Mn(IV) oxides, heavy metals, and electrodes in electrochemical devices. In the environment, metal acceptors exist in multiple chelated and insoluble forms that span a range of redox potentials and offer different amounts of available energy. Despite this, metal-reducing bacteria have not been shown to alter their electron transfer strategies to take advantage of these energy differences. Disruption of imcH, encoding an inner membrane c-type cytochrome, eliminated the ability of G. sulfurreducens to reduce Fe(III) citrate, Fe(III)-EDTA, and insoluble Mn(IV) oxides, electron acceptors with potentialsmore » greater than 0.1 V versus the standard hydrogen electrode (SHE), but the imcH mutant retained the ability to reduce Fe(III) oxides with potentials of ≤–0.1 V versus SHE. The imcH mutant failed to grow on electrodes poised at +0.24 V versus SHE, but switching electrodes to –0.1 V versus SHE triggered exponential growth. At potentials of ≤–0.1 V versus SHE, both the wild type and the imcH mutant doubled 60% slower than at higher potentials. Electrodes poised even 100 mV higher (0.0 V versus SHE) could not trigger imcH mutant growth. These results demonstrate that G. sulfurreducens possesses multiple respiratory pathways, that some of these pathways are in operation only after exposure to low redox potentials, and that electron flow can be coupled to generation of different amounts of energy for growth. Redox potentials that trigger these behaviors mirror those of metal acceptors common in subsurface environments where Geobacter is found.« less

  7. An inner membrane cytochrome required only for reduction of high redox potential extracellular electron acceptors

    SciTech Connect (OSTI)

    Levar, Caleb E.; Chan, Chi Ho; Mehta-Kolte, Misha G.; Bond, Daniel R.

    2014-10-28

    Dissimilatory metal-reducing bacteria, such as Geobacter sulfurreducens, transfer electrons beyond their outer membranes to Fe(III) and Mn(IV) oxides, heavy metals, and electrodes in electrochemical devices. In the environment, metal acceptors exist in multiple chelated and insoluble forms that span a range of redox potentials and offer different amounts of available energy. Despite this, metal-reducing bacteria have not been shown to alter their electron transfer strategies to take advantage of these energy differences. Disruption of imcH, encoding an inner membrane c-type cytochrome, eliminated the ability of G. sulfurreducens to reduce Fe(III) citrate, Fe(III)-EDTA, and insoluble Mn(IV) oxides, electron acceptors with potentials greater than 0.1 V versus the standard hydrogen electrode (SHE), but the imcH mutant retained the ability to reduce Fe(III) oxides with potentials of ≤–0.1 V versus SHE. The imcH mutant failed to grow on electrodes poised at +0.24 V versus SHE, but switching electrodes to –0.1 V versus SHE triggered exponential growth. At potentials of ≤–0.1 V versus SHE, both the wild type and the imcH mutant doubled 60% slower than at higher potentials. Electrodes poised even 100 mV higher (0.0 V versus SHE) could not trigger imcH mutant growth. These results demonstrate that G. sulfurreducens possesses multiple respiratory pathways, that some of these pathways are in operation only after exposure to low redox potentials, and that electron flow can be coupled to generation of different amounts of energy for growth. Redox potentials that trigger these behaviors mirror those of metal acceptors common in subsurface environments where Geobacter is found.

  8. In situ characterization of nanoscale catalysts during anodic redox processes

    SciTech Connect (OSTI)

    Sharma, Renu; Crozier, Peter; Adams, James

    2013-09-19

    Controlling the structure and composition of the anode is critical to achieving high efficiency and good long-term performance. In addition to being a mixed electronic and ionic conductor, the ideal anode material should act as an efficient catalyst for oxidizing hydrogen, carbon monoxide and dry hydrocarbons without de-activating through either sintering or coking. It is also important to develop novel anode materials that can operate at lower temperatures to reduce costs and minimized materials failure associated with high temperature cycling. We proposed to synthesize and characterize novel anode cermets materials based on ceria doped with Pr and/or Gd together with either a Ni or Cu metallic components. Ceria is a good oxidation catalyst and is an ionic conductor at room temperature. Doping it with trivalent rare earths such as Pr or Gd retards sintering and makes it a mixed ion conductor (ionic and electronic). We have developed a fundamental scientific understanding of the behavior of the cermet material under reaction conditions by following the catalytic oxidation process at the atomic scale using a powerful Environmental Scanning Transmission Electron Microscope (ESTEM). The ESTEM allowed in situ monitoring of structural, chemical and morphological changes occurring at the cermet under conditions approximating that of typical fuel-cell operation. Density functional calculations were employed to determine the underlying mechanisms and reaction pathways during anode oxidation reactions. The dynamic behavior of nanoscale catalytic oxidation of hydrogen and methane were used to determine: ? Fundamental processes during anodic reactions in hydrogen and carbonaceous atmospheres ? Interfacial effects between metal particles and doped ceria ? Kinetics of redox reaction in the anode material

  9. Redox mediation and hydrogen-generation with bipyridinium reagents

    DOE Patents [OSTI]

    Wrighton, Mark S.; Bookbinder, Dana C.; Bruce, James A.; Dominey, Raymond N.; Lewis, Nathan S.

    1984-03-27

    A variety of redox mediating agents employing bipyridinium reagents and such reagents in conjunction with dispersed noble metals, such as platinium, are disclosed as coatings for substrates and electrodes. The agents may be charged by an applied voltage or by photoelectric effects or may be equilibrated with hydrogen. The agents are useful in reducing biological materials and electrolytic hydrogen production.

  10. Electrochemical biosensor based on immobilized enzymes and redox polymers

    DOE Patents [OSTI]

    Skotheim, Terje A.; Okamoto, Yoshiyuki; Hale, Paul D.

    1992-01-01

    The present invention relates to an electrochemical enzyme biosensor for use in liquid mixtures of components for detecting the presence of, or measuring the amount of, one or more select components. The enzyme electrode of the present invention is comprised of an enzyme, an artificial redox compound covalently bound to a flexible polymer backbone and an electron collector.

  11. Novel Redox Shuttles for Overcharge Protection of Lithium-Ion Batteries |

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Argonne National Laboratory Redox Shuttles for Overcharge Protection of Lithium-Ion Batteries Technology available for licensing: Electrolytes containing novel redox shuttles (electron transporters) for lithium-ion batteries Compatible with current battery technologies Provides overcharge protection, increased safety and long-term stability PDF icon redox_shuttles_overcharge

  12. Lateral flow strip assay

    DOE Patents [OSTI]

    Miles, Robin R.; Benett, William J.; Coleman, Matthew A.; Pearson, Francesca S.; Nasarabadi, Shanavaz L.

    2011-03-08

    A lateral flow strip assay apparatus comprising a housing; a lateral flow strip in the housing, the lateral flow strip having a receiving portion; a sample collection unit; and a reagent reservoir. Saliva and/or buccal cells are collected from an individual using the sample collection unit. The sample collection unit is immersed in the reagent reservoir. The tip of the lateral flow strip is immersed in the reservoir and the reagent/sample mixture wicks up into the lateral flow strip to perform the assay.

  13. Energy Storage Systems 2014 Peer Review Presentations - Session...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    PNNL (1.83 MB) Redox Flow Battery Optimization - Tom Zawodzinski, ORNL (930.87 KB) ... - Day 3, Session 2 Transitioning from Fuel Cells to Redox Flow Cells Flow Batteries: A ...

  14. Flow Battery Solution for Smart Grid Applications

    SciTech Connect (OSTI)

    none,

    2014-11-30

    To address future grid requirements, a U.S. Department of Energy ARRA Storage Demonstration program was launched in 2009 to commercialize promising technologies needed for stronger and more renewables-intensive grids. Raytheon Ktech and EnerVault received a cost-share grant award from the U.S. Department of Energy to develop a grid-scale storage system based on EnerVault’s iron-chromium redox flow battery technology.

  15. PEGylated Nanoceria as Radical Scavenger with Tunable Redox Chemistry

    SciTech Connect (OSTI)

    Karakoti, Ajay S.; Singh, Sanjay; Kumar, Amit; Malinska, M.; Kuchibhatla, Satyanarayana V N T; Wozniak, K.; Self, William; Seal, Sudipta

    2009-10-14

    Cerium oxide nanoparticles (CNPs) have shown tremendous potential in various applications such as water gas shift catalysis, chemical mechanical planarization (CMP), solid oxide fuel cells (SOFC), solar cells4 and high temperature oxidation protection coatings1. Recently, CNPs have been demonstrated to protect biological tissues against radiation induced damage, scavenging of superoxide anions, prevention of laser induced retinal damage, reduction of spinal injury in a tissue culture model, prevention of cardiovascular myopathy, pH dependent antioxidant properties, as a tool for immunoassays as well as other inflammatory diseases2. In most biomedical applications it is speculated that nanoceria is a regenerative radical scavenger with the ability to regenerate its active 3+ oxidation state for radical scavenging. Thus far there are no reports to control the regeneration of Ce3+ oxidation state which is the most important parameter in the application of CNPs as a reliable and regenerative radical scavenger. Thus, there is an imminent need to increase the potency of CNPs to achieve higher degree of protection against reactive oxygen species (ROS), to increase the residence time of CNPs in body and to control the regeneration of 3+ oxidation state. PEG has been reported to increase the residence time of nanoparticles and proteins inside cells and provide biocompatibility3. PEGylated counterparts of the SOD enzymes have shown improved performance over non-PEGylated enzymes. Herein, we report our efforts to synthesize CNPs directly in polyethylene glycol (mol wt 600) solution and determine the effect of increasing concentration of PEG (PEG vol % as 5, 10, 20, 40, 60 and 80) on the SOD mimetic properties exhibited by nanoceria. We also report how the active Ce3+ oxidation state can be regenerated or further tuned to regenerate at faster rate. We further demonstrate the role of PEG on the redox chemistry of CNPs catalyzed by hydrogen peroxide. Several complexes of PEGs

  16. Polyoxometalate flow battery

    DOE Patents [OSTI]

    Anderson, Travis M.; Pratt, Harry D.

    2016-03-15

    Flow batteries including an electrolyte of a polyoxometalate material are disclosed herein. In a general embodiment, the flow battery includes an electrochemical cell including an anode portion, a cathode portion and a separator disposed between the anode portion and the cathode portion. Each of the anode portion and the cathode portion comprises a polyoxometalate material. The flow battery further includes an anode electrode disposed in the anode portion and a cathode electrode disposed in the cathode portion.

  17. Investigation of Charge Transfer Mechanisms on Redox Active Polymers Using

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    RDE and SECM - Joint Center for Energy Storage Research November 9, 2015, Research Highlights Investigation of Charge Transfer Mechanisms on Redox Active Polymers Using RDE and SECM Generalized schematic explaining three potential chemical steps that precede electron transfer for a RAP. RDE and SECM experiments were used to elucidate an electrochemical mechanism and the kinetics of electron transfer for RAPs. Scientific Achievement This study is a first step to evaluate rate determining

  18. Highly conductive, multi-layer composite precursor composition to fuel cell flow field plate or bipolar plate

    DOE Patents [OSTI]

    Jang, Bor Z.; Zhamu, Aruna; Guo, Jiusheng

    2011-02-15

    This invention provides a moldable, multiple-layer composite composition, which is a precursor to an electrically conductive composite flow field plate or bipolar plate. In one preferred embodiment, the composition comprises a plurality of conductive sheets and a plurality of mixture layers of a curable resin and conductive fillers, wherein (A) each conductive sheet is attached to at least one resin-filler mixture layer; (B) at least one of the conductive sheets comprises flexible graphite; and (C) at least one resin-filler mixture layer comprises a thermosetting resin and conductive fillers with the fillers being present in a sufficient quantity to render the resulting flow field plate or bipolar plate electrically conductive with a conductivity no less than 100 S/cm and thickness-direction areal conductivity no less than 200 S/cm.sup.2.

  19. Modeling the Sedimentation of Red Blood Cells in Flow under Strong External Magnetic Body Force using a Lattice Boltzmann Fictitious Domain Method

    SciTech Connect (OSTI)

    Shi, Xing; Lin, Guang

    2014-11-01

    To model the sedimentation of the red blood cell (RBC) in a square duct and a circular pipe, the recently developed technique derived from the lattice Boltzmann method and the distributed Lagrange multiplier/fictitious domain method (LBM-DLM/FD) is extended to employ the mesoscopic network model for simulations of the sedimentation of the RBC in flow. The flow is simulated by the lattice Boltzmann method with a strong magnetic body force, while the network model is used for modeling RBC deformation. The fluid-RBC interactions are enforced by the Lagrange multiplier. The sedimentation of the RBC in a square duct and a circular pipe is simulated, revealing the capacity of the current method for modeling the sedimentation of RBC in various flows. Numerical results illustrate that that the terminal setting velocity increases with the increment of the exerted body force. The deformation of the RBC has significant effect on the terminal setting velocity due to the change of the frontal area. The larger the exerted force is, the smaller the frontal area and the larger deformation of the RBC are.

  20. Flow Batteries: A Historical Perspective

    Office of Energy Efficiency and Renewable Energy (EERE)

    Presentation by Robert Savinell, Case Western Reserve University, at the Flow Cells for Energy Storage Workshop held March 7-8, 2012, in Washington, DC.

  1. Multiple sort flow cytometer

    DOE Patents [OSTI]

    Engh, G. van den; Esposito, R.J.

    1996-01-09

    A flow cytometer utilizes multiple lasers for excitation and respective fluorescence of identified dyes bonded to specific cells or events to identify and verify multiple events to be sorted from a sheath flow and droplet stream. Once identified, verified and timed in the sheath flow, each event is independently tagged upon separation from the flow by an electrical charge of +60, +120, or +180 volts and passed through oppositely charged deflection plates with ground planes to yield a focused six way deflection of at least six events in a narrow plane. 8 figs.

  2. Multiple sort flow cytometer

    DOE Patents [OSTI]

    Van den Engh, Ger (Seattle, WA); Esposito, Richard J. (Seattle, WA)

    1996-01-01

    A flow cytometer utilizes multiple lasers for excitation and respective fluorescence of identified dyes bonded to specific cells or events to identify and verify multiple events to be sorted from a sheath flow and droplet stream. Once identified, verified and timed in the sheath flow, each event is independently tagged upon separation from the flow by an electrical charge of +60, +120, or +180 volts and passed through oppositely charged deflection plates with ground planes to yield a focused six way deflection of at least six events in a narrow plane.

  3. Current flow and potential efficiency of solar cells based on GaAs and GaSb p-n junctions

    SciTech Connect (OSTI)

    Andreev, V. M.; Evstropov, V. V.; Kalinovsky, V. S. Lantratov, V. M.; Khvostikov, V. P.

    2009-05-15

    Dependence of the efficiency of single-junction and multijunction solar cells on the mechanisms of current flow in photoactive p-n junctions, specifically on the form of the dark current-voltage characteristic J-V, has been studied. The resistanceless J-V{sub j} characteristic (with the series resistance disregarded) of a multijunction solar cell has the same shape as the characteristic of a single-junction cell: both feature a set of exponential portions. This made it possible to develop a unified analytical method for calculating the efficiency of singlejunction and multijunction solar cells. The equation relating the efficiency to the photogenerated current at each portion of the J-V{sub j} characteristic is derived. For p-n junctions in GaAs and GaSb, the following characteristics were measured: the dark J-V characteristic, the dependence of the open-circuit voltage on the illumination intensity P-V{sub OC}, and the dependence of the luminescence intensity on the forward current L-J. Calculated dependences of potential efficiency (under idealized condition for equality to unity of external quantum yield) on the photogenerated current for single-junction GaAs and GaSb solar cells and a GaAs/GaSb tandem are plotted. The form of these dependences corresponds to the shape of J-V{sub j} characteristics: there are the diffusion- and recombination-related portions; in some cases, the tunneling-trapping portion is also observed. At low degrees of concentration of solar radiation (C < 10), an appreciable contribution to photogenerated current is made by recombination component. It is an increase in this component in the case of irradiation with 6.78-MeV protons or 1-MeV electrons that brings about a decrease in the efficiency of conversion of unconcentrated solar radiation.

  4. Flow cytometry apparatus

    DOE Patents [OSTI]

    Pinkel, Daniel

    1991-01-01

    An obstruction across the flow chamber creates a one dimensional convergence of a sheath fluid. A passageway in the construction directs flat cells near to the area of one dimensional convergence in the sheath fluid to provide proper orientation of flat cells at fast rates.

  5. Flow cytometry apparatus

    DOE Patents [OSTI]

    Pinkel, D.

    1987-11-30

    An obstruction across the flow chamber creates a one-dimensional convergence of a sheath fluid. A passageway in the obstruction directs flat cells near to the area of one-dimensional convergence in the sheath fluid to provide proper orientation of flat cells at fast rates. 6 figs.

  6. Enhanced Charge Transport in Dissolved Polysulfide Li-S Cells with

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Supramolecular Redox Mediators - Joint Center for Energy Storage Research September 15, 2015, Research Highlights Enhanced Charge Transport in Dissolved Polysulfide Li-S Cells with Supramolecular Redox Mediators Schematic of nanostructured PBI 1 redox mediators in a Li-S battery, SEM image of the nanofiber morphology, reduced overpotential and 31 percent increase in S utilization at C/8, and cycling at C/4. Scientific Achievement A highly collaborative team of theorists and experimentalists

  7. Some Lessons Learned from 20 Years in RedOx Flow Battery R&d

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    metals recovery Advanced materials and nano-structures Novel catalysts High ... (low p) Materials Novel nano-structured non- carbon electrodes ...

  8. Elucidating the Higher Stability of Vanadium (V) Cations in Mixed Acid Based Redox Flow Battery Electrolytes

    SciTech Connect (OSTI)

    Vijayakumar, M.; Wang, Wei; Nie, Zimin; Sprenkle, Vincent L.; Hu, Jian Z.

    2013-11-01

    The Vanadium (V) cation structures in mixed acid based electrolyte solution were analysed by density functional theory (DFT) based computational modelling and 51V and 35Cl Nuclear Magnetic Resonance (NMR) spectroscopy. The Vanadium (V) cation exists as di-nuclear [V2O3Cl2.6H2O]2+ compound at higher vanadium concentrations (≥1.75M). In particular, at high temperatures (>295K) this di-nuclear compound undergoes ligand exchange process with nearby solvent chlorine molecule and forms chlorine bonded [V2O3Cl2.6H2O]2+ compound. This chlorine bonded [V2O3Cl2.6H2O]2+ compound might be resistant to the de-protonation reaction which is the initial step in the precipitation reaction in Vanadium based electrolyte solutions. The combined theoretical and experimental approach reveals that formation of chlorine bonded [V2O3Cl2.6H2O]2+ compound might be central to the observed higher thermal stability of mixed acid based Vanadium (V) electrolyte solutions.

  9. Liquid Catholyte Molecules for Non-aqueous Redox Flow Batteries - Joint

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Liquefied Natural Gas Liquefied Natural Gas Liquefied Natural Gas Natural gas plays a vital role in the U.S. energy supply and in achieving the nation's economic and environmental goals. One of several supply options involves increasing imports of liquefied natural gas (LNG) to ensure that American consumers have adequate supplies of natural gas for the future. Natural gas consumption in the United States is expected to increase slightly from about 24.3 trillion cubic feet (Tcf) in 2011 to 26.6

  10. Preliminary studies of the use of an automated flow-cell electrodeposition system for the formation of CdTe thin films by electrochemical atomic layer epitaxy

    SciTech Connect (OSTI)

    Huang, B.M.; Colletti, L.P.; Gregory, B.W.; Anderson, J.L.; Stickney, J.L.

    1995-09-01

    This paper is the first report of the formation of thin films, thicker than ten monolayers, using electrochemical atomic layer epitaxy (ECALE). Thin films of CdTe have been electrodeposited on polycrystalline gold substrates in an electrochemical thin-layer flow-cell deposition system using the ECALE methodology. Studies of the deposit morphology have been performed using scanning electron microscopy and atomic force microscope Significant improvements in deposit morphology are reported as a result of changes to the ECALE cycle program and deposition hardware. Deposit components analyzed using electron probe microanalysis and inductively coupled plasma atomic emission spectrometry, were found to be stoichiometric and nearly independent of the number of cycles and the Cd deposition potential. In addition, the deposition rate was shown to be one CdTe monolayer per cycle (half monolayer of Cd and half monolayer of Te per ECALE cycle).