National Library of Energy BETA

Sample records for redox battery demonstration

  1. Redox Flow Batteries, a Review

    E-Print Network [OSTI]

    Weber, Adam Z.

    2013-01-01

    of a Vanadium Redox-Flow Battery to Maintain Power Quality,"Fuel System Using Redox Flow Battery," ed: WO Patentand D. B. Hickey, "Redox Flow Battery System for Distributed

  2. Redox Flow Batteries, a Review

    SciTech Connect (OSTI)

    U. Tennessee Knoxville; U. Texas Austin; McGill U; Weber, Adam Z.; Mench, Matthew M.; Meyers, Jeremy P.; Ross, Philip N.; Gostick, Jeffrey T.; Liu, Qinghua

    2011-07-15

    Redox flow batteries are enjoying a renaissance due to their ability to store large amounts of electrical energy relatively cheaply and efficiently. In this review, we examine the components of redox flow batteries with a focus on understanding the underlying physical processes. The various transport and kinetic phenomena are discussed along with the most common redox couples.

  3. A New Hybrid Redox Flow Battery with Multiple Redox Couples

    SciTech Connect (OSTI)

    Wang, Wei; Li, Liyu; Nie, Zimin; Chen, Baowei; Luo, Qingtao; Shao, Yuyan; Wei, Xiaoliang; Chen, Feng; Xia, Guanguang; Yang, Zhenguo

    2012-05-19

    A redox flow battery using V{sup 4+}/V{sup 5+} vs. V{sup 2+}/V{sup 3+} and Fe{sup 2+}/Fe{sup 3+} vs. V{sup 2+}/V{sup 3+} redox couples in chloric/sulphuric mixed acid supporting electrolyte was investigated for potential stationary energy storage applications. The Fe/V hybrid redox flow cell using mixed reactant solutions operated within a voltage window of 0.5-1.7 V demonstrated stable cycling over 100 cycles with energy efficiency {approx}80% and no capacity fading at room temperature. A 66% improvement in the energy density of the Fe/V hybrid cell was achieved compared with the previous reported Fe/V cell using only Fe{sup 2+}/Fe{sup 3+} vs. V{sup 2+}/V{sup 3+} redox couples.

  4. Cascade redox flow battery systems

    DOE Patents [OSTI]

    Horne, Craig R.; Kinoshita, Kim; Hickey, Darren B.; Sha, Jay E.; Bose, Deepak

    2014-07-22

    A reduction/oxidation ("redox") flow battery system includes a series of electrochemical cells arranged in a cascade, whereby liquid electrolyte reacts in a first electrochemical cell (or group of cells) before being directed into a second cell (or group of cells) where it reacts before being directed to subsequent cells. The cascade includes 2 to n stages, each stage having one or more electrochemical cells. During a charge reaction, electrolyte entering a first stage will have a lower state-of-charge than electrolyte entering the nth stage. In some embodiments, cell components and/or characteristics may be configured based on a state-of-charge of electrolytes expected at each cascade stage. Such engineered cascades provide redox flow battery systems with higher energy efficiency over a broader range of current density than prior art arrangements.

  5. Membrane Development for Vanadium Redox Flow Batteries

    SciTech Connect (OSTI)

    Schwenzer, Birgit; Zhang, Jianlu; Kim, Soowhan; Li, Liyu; Liu, Jun; Yang, Zhenguo

    2011-10-17

    Large-scale energy storage has become a main bottleneck for increasing the percentage of renewable energy in our electricity grids. Redox flow batteries are considered to be among the best options for electricity storage in the megawatt range, and large demonstration systems have already been installed. Although the full technological potential of these systems has not been reached yet, currently the main problem hindering more widespread commercialization is the high cost of redox flow batteries. Nafion{reg_sign} as the preferred membrane material is responsible for {approx}11% of the overall cost of a 1 MW/8 MWh system. Therefore in recent years two main membrane-related research threads have emerged: (a) chemical and physical modification of Nafion membranes to optimize their properties with regard to vanadium redox flow battery (VRFB) application; and (b) replacement of the Nafion membranes with different, less expensive materials. This review summarizes the underlying basic science issues associated with membrane use in VRFBs and presents an overview of membrane-related research approaches aimed at improving the efficiency of VRFBs and making the technology cost-competitive. Promising research strategies and materials are identified and suggestions are provided on how materials issues could be overcome.

  6. A New Redox Flow Battery Using Fe/V Redox Couples in Chloride Supporting Electrolyte

    SciTech Connect (OSTI)

    Wang, Wei; Kim, Soowhan; Chen, Baowei; Nie, Zimin; Zhang, Jianlu; Xia, Guanguang; Li, Liyu; Yang, Zhenguo

    2011-08-22

    A new redox flow battery using Fe2+/Fe3+ and V2+/V3+ redox couples in chloride supporting electrolyte was proposed and investigated for potential stationary energy storage applications. The Fe/V redox flow cell using mixed reactant solutions operated within a voltage window of 0.5-1.35 V with a nearly 100% utilization ratio and demonstrated stable cycling with energy efficiency around 80% at room temperature. Compared with Fe/Cr redox flow battery operating at an elevated temperature of 65 C, the necessity of external heat management is eliminated. Similar performance was also achieved using low-cost hydrocarbon-based ion exchange membranes, which allow for further cost reduction. The improved room temperature electrochemical performance makes the Fe/V redox flow battery a promising option as stationary energy storage device to enable renewable integration and stabilization of electrical grid.

  7. Redox Flow Batteries: An Engineering Perspective

    SciTech Connect (OSTI)

    Chalamala, Babu R.; Soundappan, Thiagarajan; Fisher, Graham R.; Anstey, Mitchell A.; Viswanathan, Vilayanur V.; Perry, Mike L.

    2014-10-01

    Redox flow batteries are well suited to provide modular and scalable energy storage systems for a wide range of energy storage applications. In this paper, we review the development of redox flow battery technology including recent advances in new redox active materials and systems. We discuss cost, performance, and reliability metrics that are critical for deployment of large flow battery systems. The technology, while relatively young, has the potential for significant improvement through reduced materials costs, improved energy and power efficiency, and significant reduction in the overall system cost.

  8. Redox polymer electrodes for advanced batteries

    DOE Patents [OSTI]

    Gregg, Brian A. (Golden, CO); Taylor, A. Michael (Golden, CO)

    1998-01-01

    Advanced batteries having a long cycle lifetime are provided. More specifically, the present invention relates to electrodes made from redox polymer films and batteries in which either the positive electrode, the negative electrode, or both, comprise redox polymers. Suitable redox polymers for this purpose include pyridyl or polypyridyl complexes of transition metals like iron, ruthenium, osmium, chromium, tungsten and nickel; porphyrins (either free base or metallo derivatives); phthalocyanines (either free base or metallo derivatives); metal complexes of cyclams, such as tetraazacyclotetradecane; metal complexes of crown ethers and metallocenes such as ferrocene, cobaltocene and ruthenocene.

  9. Redox Flow Batteries, a Review

    E-Print Network [OSTI]

    Weber, Adam Z.

    2013-01-01

    P. C. Butler, "Advanced Batteries for Electric Vehicles andIntroduction," in Hnadbook of Batteries, 3rd Edition, D.T. B. Reddy, Handbook of Batteries, 2002). [67] R. Zito, US

  10. Carbon fiber electrode for redox flow battery

    SciTech Connect (OSTI)

    Inoue, M.; Tsuzuki, Y.; Iizuka, Y.; Shimada, M.

    1987-03-01

    Advanced secondary batteries have been developed as electrical energy storage systems for use in electrical utility load-levelling and stand-alone photovoltaic installations. Among them, the redox flow system based on aqueous iron and chromium redox couple is one of the most advanced. An important key to its feasibility is electrode fabrication. Woven and non-woven fabrics of carbon fibers have been used as thin but three dimensional electrodes of the redox flow system in view of their electric conductivity, chemical stability, and economy. One of the electrochemical problems of iron-chromium redox battery related to the electrode is the slow reaction rate of reduction and oxidation of chromium complex ion. As the electron transfer rate of chromium complex ion is lower than that of iron ion, the voltaic efficiency of the battery tends to decrease.

  11. Redox Flow Batteries, a Review

    E-Print Network [OSTI]

    Weber, Adam Z.

    2013-01-01

    Ltd." . Http://Plurionsystems.Com/Tech_Flow_Advantages.Html.plurionsystems.com/tech_flow_advantages.html [71] P. Leung,High Energy Density Redox Flow Device," ed: WO Patent

  12. Anthraquinone with Tailored Structure for Nonaqueous Metal-Organic Redox Flow Battery

    SciTech Connect (OSTI)

    Wang, Wei; Xu, Wu; Cosimbescu, Lelia; Choi, Daiwon; Li, Liyu; Yang, Zhenguo

    2012-06-08

    A nonaqueous, hybrid metal-organic redox flow battery based on tailored anthraquinone structure is demonstrated to have an energy efficiency of {approx}82% and a specific discharge energy density similar to aqueous redox flow batteries, which is due to the significantly improved solubility of anthraquinone in supporting electrolytes.

  13. Rebalancing electrolytes in redox flow battery systems

    DOE Patents [OSTI]

    Chang, On Kok; Pham, Ai Quoc

    2014-12-23

    Embodiments of redox flow battery rebalancing systems include a system for reacting an unbalanced flow battery electrolyte with a rebalance electrolyte in a first reaction cell. In some embodiments, the rebalance electrolyte may contain ferrous iron (Fe.sup.2+) which may be oxidized to ferric iron (Fe.sup.3+) in the first reaction cell. The reducing ability of the rebalance reactant may be restored in a second rebalance cell that is configured to reduce the ferric iron in the rebalance electrolyte back into ferrous iron through a reaction with metallic iron.

  14. A Mathematical model for the iron/chromium redox battery

    SciTech Connect (OSTI)

    Fedkiw, P.S.; Watts, R.W.

    1984-04-01

    A mathematical model has been developed to describe the isothermal operation of a single anode-separator-cathode unit cell in a redox-flow battery and has been applied to the NASA iron/chromium system. The model, based on porous electrode theory, incorporates redox kinetics, mass transfer, and ohmic effects as well as the parasitic hydrogen reaction which occurs in the chromium electrode. A numerical parameter study was carried out to predict cel performance to aid in the rational design, scale-up, and operation of the flow battery. The calculations demonstrate: an optimum electrode thickness and electrolyte flow rate exist; the amount of hydrogen evolved and, hence, cycle faradaic efficiency, can be affected by cell geometry, flow rate, and charging procedure; countercurrent flow results in enhanced cell performance over cocurrent flow; and elevated temperature operation enhances cell performance.

  15. Fe-V redox flow batteries

    DOE Patents [OSTI]

    Li, Liyu; Kim, Soowhan; Yang, Zhenguo; Wang, Wei; Zhang, Jianlu; Chen, Baowei; Nie, Zimin; Xia, Guanguang

    2014-07-08

    A redox flow battery having a supporting solution that includes Cl.sup.- anions is characterized by an anolyte having V.sup.2+ and V.sup.3+ in the supporting solution, a catholyte having Fe.sup.2+ and Fe.sup.3+ in the supporting solution, and a membrane separating the anolyte and the catholyte. The anolyte and catholyte can have V cations and Fe cations, respectively, or the anolyte and catholyte can each contain both V and Fe cations in a mixture. Furthermore, the supporting solution can contain a mixture of SO.sub.4.sup.2- and Cl.sup.- anions.

  16. Redox shuttles for lithium ion batteries

    DOE Patents [OSTI]

    Weng, Wei; Zhang, Zhengcheng; Amine, Khalil

    2014-11-04

    Compounds may have general Formula IVA or IVB. ##STR00001## where, R.sup.8, R.sup.9, R.sup.10, and R.sup.11 are each independently selected from H, F, Cl, Br, CN, NO.sub.2, alkyl, haloalkyl, and alkoxy groups; X and Y are each independently O, S, N, or P; and Z' is a linkage between X and Y. Such compounds may be used as redox shuttles in electrolytes for use in electrochemical cells, batteries and electronic devices.

  17. Microporous Separators for Fe/V Redox Flow Batteries

    SciTech Connect (OSTI)

    Wei, Xiaoliang; Li, Liyu; Luo, Qingtao; Nie, Zimin; Wang, Wei; Li, Bin; Xia, Guanguang; Miller, Eric; Chambers, Jeff; Yang, Zhenguo

    2012-06-28

    The Fe/V redox flow battery has demonstrated promising performance that is advantageous over other redox flow battery systems. The less oxidative nature of the Fe(III) species enables use of hydrocarbon - based ion exchange membranes or separators. Daramic(reg. sign) microporous polyethylene separators were tested on Fe/V flow cells using the sulphuric/chloric mixed acid - supporting electrolytes. Among them, Daramic(reg. sign) C exhibited good flow cell cycling performance with satisfactory repeatability over a broad temperature range of 5 - 50 degrees C. Energy efficiency (EE) of C remains above 67% at current densities of 50 - 80 cm{sup -2} in the temperature range from room temperature to 50 degrees C. The capacity decay problem could be circumvented through hydraulic pressure balancing by applying different pump rates to the positive and negative electrolytes. Stable capacity and energy were obtained over 40 cycles at room temperature and 40 degrees C. These results manifest that the extremely low-cost separators ($10/cm2) are applicable in the Fe/V flow battery system at an acceptable sacrifice of energy efficiency. This stands for a remarkable breakthrough in significant reduction of the capital cost of the Fe/V flow battery system, and is promising to promote its market penetration in grid stabilization and renewable integration.

  18. Iron-sulfide redox flow batteries

    DOE Patents [OSTI]

    Xia, Guan-Guang; Yang, Zhenguo; Li, Liyu; Kim, Soowhan; Liu, Jun; Graff, Gordon L

    2013-12-17

    Iron-sulfide redox flow battery (RFB) systems can be advantageous for energy storage, particularly when the electrolytes have pH values greater than 6. Such systems can exhibit excellent energy conversion efficiency and stability and can utilize low-cost materials that are relatively safer and more environmentally friendly. One example of an iron-sulfide RFB is characterized by a positive electrolyte that comprises Fe(III) and/or Fe(II) in a positive electrolyte supporting solution, a negative electrolyte that comprises S.sup.2- and/or S in a negative electrolyte supporting solution, and a membrane, or a separator, that separates the positive electrolyte and electrode from the negative electrolyte and electrode.

  19. Hybrid anodes for redox flow batteries

    DOE Patents [OSTI]

    Wang, Wei; Xiao, Jie; Wei, Xiaoliang; Liu, Jun; Sprenkle, Vincent L.

    2015-12-15

    RFBs having solid hybrid electrodes can address at least the problems of active material consumption, electrode passivation, and metal electrode dendrite growth that can be characteristic of traditional batteries, especially those operating at high current densities. The RFBs each have a first half cell containing a first redox couple dissolved in a solution or contained in a suspension. The solution or suspension can flow from a reservoir to the first half cell. A second half cell contains the solid hybrid electrode, which has a first electrode connected to a second electrode, thereby resulting in an equipotential between the first and second electrodes. The first and second half cells are separated by a separator or membrane.

  20. Hybrid anodes for redox flow batteries

    DOE Patents [OSTI]

    Wang, Wei; Xiao, Jie; Wei, Xiaoliang; Liu, Jun; Sprenkle, Vincent L.

    2015-12-22

    RFBs having solid hybrid electrodes can address at least the problems of active material consumption, electrode passivation, and metal electrode dendrite growth that can be characteristic of traditional batteries, especially those operating at high current densities. The RFBs each have a first half cell containing a first redox couple dissolved in a solution or contained in a suspension. The solution or suspension can flow from a reservoir to the first half cell. A second half cell contains the solid hybrid electrode, which has a first electrode connected to a second electrode, thereby resulting in an equipotential between the first and second electrodes. The first and second half cells are separated by a separator or membrane.

  1. Electrochemical Model of the Fe/V Redox Flow Battery

    SciTech Connect (OSTI)

    Stephenson, David E.; Kim, Soowhan; Chen, Feng; Thomsen, Edwin C.; Viswanathan, Vilayanur V.; Wang, Wei; Sprenkle, Vincent L.

    2012-11-05

    This paper presents a mathematical model for the new Fe/V redox flow battery chemistry. The model is designed to be useful for stack development and cost analysis purposes.

  2. Nitrogen-doped mesoporous carbon for energy storage in vanadium redox flow batteries

    SciTech Connect (OSTI)

    Shao, Yuyan; Wang, Xiqing; Engelhard, Mark H.; Wang, Chong M.; Dai, Sheng; Liu, Jun; Yang, Zhenguo; Lin, Yuehe

    2010-03-22

    We demonstrate a novel electrode material?nitrogen-doped mesoporous carbon (NMC)?for vanadium redox flow batteries. Mesoporous carbon (MC) is prepared using a soft-template method and doped with nitrogen by heat-treating MC in NH3. NMC is characterized with X-ray photoelectron spectroscopy and transmission electron microscopy. The redox reaction of VO2+/VO2+ is characterized with cyclic voltammetry and electrochemical impedance spectroscopy. The electrocatalytic kinetics of the redox couple VO2+/VO2+ is significantly enhanced on NMC electrode compared with MC and graphite electrodes. The reversibility of the redox couple VO2+/VO2+ is greatly improved on NMC (0.61 for NMC vs. 0.34 for graphite). Nitrogen doping facilitates the electron transfer on the electrode/electrolyte interface for both oxidation and reduction processes. NMC is a promising electrode material for redox flow batteries.

  3. Development of vanadium redox flow battery for photovoltaic generation system

    SciTech Connect (OSTI)

    Shibata, Akira; Sato, Kanji; Nakajima, Masato

    1994-12-31

    Photovoltaic power generation system (PV) requires a battery for night and rainy day. A redox flow battery has advantage over a lead acid one on this application for the capability of deep discharge and needlessness of equalized charge. The authors have developed the high performance vanadium redox flow battery for this purpose and inexpensive production technology of electrolyte which occupies the majority in the battery cost by chemical reduction from boiler plant by-product. The 2 kW (10 kWh) battery, the minimum unit for practical size battery (50 kW x 50 h), achieved 1.2 kW/cm{sup 2}-electrode area at the 100 mA/cm{sup 2} current density.

  4. Development of intermittent redox flow battery for PV system

    SciTech Connect (OSTI)

    Tsuda, Izumi; Kurokawa, Kosuke; Nozaki, Ken [Electrotechnical Lab., Tsukuba, Ibaraki (Japan)

    1994-12-31

    Redox flow battery has been developed as a storage device for photovoltaic systems. The pump loss is the greatest problem for redox flow battery under the low current condition. An intermittent flow redox battery has been developed for the reduction of the pump loss. The experimental results of this battery show that the efficiency under the intermittent pump operation increases higher than the continuous pump operation. Moreover, inert gas bubble technology has been introduced to improve the performance under the high current condition. It is clear from the experiments that this technology increases the efficiencies. The simulation results of these technologies are coincident with experimental results. It is shown by the simulation that they can improve the Faradic and energy efficiencies of a number of stacks in series.

  5. Recent Progress in Redox Flow Battery Research and Development

    SciTech Connect (OSTI)

    Wang, Wei; Luo, Qingtao; Li, Bin; Wei, Xiaoliang; Li, Liyu; Yang, Zhenguo

    2013-02-20

    With the increase need to seamlessly integrate the renewable energy with the current grid which itself is evolving into a more intelligent, efficient, and capable electrical power system, it is envisioned that the energy storage system will play a more prominent role in bridging the gap between the current technology and a clean sustainable future in grid reliability and utilization. Redox flow battery technology is leading the way in this perspective in providing a well balanced approach for current challenges. Recent progress in the research and development of redox flow battery technology is reviewed here with a focus on new chemistries and systems.

  6. Redox shuttles for overcharge protection of lithium batteries

    DOE Patents [OSTI]

    Amine, Khalil (Downers Grove, IL); Chen, Zonghai (Downers Grove, IL); Wang, Qingzheng (San Jose, CA)

    2010-12-14

    The present invention is generally related to electrolytes containing novel redox shuttles for overcharge protection of lithium-ion batteries. The redox shuttles are capable of thousands hours of overcharge tolerance and have a redox potential at about 3-5.5 V vs. Li and particularly about 4.4-4.8 V vs. Li. Accordingly, in one aspect the invention provides electrolytes comprising an alkali metal salt; a polar aprotic solvent; and a redox shuttle additive that is an aromatic compound having at least one aromatic ring with four or more electronegative substituents, two or more oxygen atoms bonded to the aromatic ring, and no hydrogen atoms bonded to the aromatic ring; and wherein the electrolyte solution is substantially non-aqueous. Further there are provided electrochemical devices employing the electrolyte and methods of making the electrolyte.

  7. Advanced Redox Flow Batteries for Stationary Electrical Energy Storage

    SciTech Connect (OSTI)

    Li, Liyu; Kim, Soowhan; Xia, Guanguang; Wang, Wei; Yang, Zhenguo

    2012-03-19

    This report describes the status of the advanced redox flow battery research being performed at Pacific Northwest National Laboratories for the U.S. Department of Energy’s Energy Storage Systems Program. The Quarter 1 of FY2012 Milestone was completed on time. The milestone entails completion of evaluation and optimization of single cell components for the two advanced redox flow battery electrolyte chemistries recently developed at the lab, the all vanadium (V) mixed acid and V-Fe mixed acid solutions. All the single cell components to be used in future kW-scale stacks have been identified and optimized in this quarter, which include solution electrolyte, membrane or separator; carbon felt electrode and bi-polar plate. Varied electrochemical, chemical and physical evaluations were carried out to assist the component screening and optimization. The mechanisms of the battery capacity fading behavior for the all vanadium redox flow and the Fe/V battery were discovered, which allowed us to optimize the related cell operation parameters and continuously operate the system for more than three months without any capacity decay.

  8. Systems and methods for rebalancing redox flow battery electrolytes

    DOE Patents [OSTI]

    Pham, Ai Quoc; Chang, On Kok

    2015-03-17

    Various methods of rebalancing electrolytes in a redox flow battery system include various systems using a catalyzed hydrogen rebalance cell configured to minimize the risk of dissolved catalyst negatively affecting flow battery performance. Some systems described herein reduce the chance of catalyst contamination of RFB electrolytes by employing a mediator solution to eliminate direct contact between the catalyzed membrane and the RFB electrolyte. Other methods use a rebalance cell chemistry that maintains the catalyzed electrode at a potential low enough to prevent the catalyst from dissolving.

  9. Redox flow batteries based on supporting solutions containing chloride

    DOE Patents [OSTI]

    Li, Liyu; Kim, Soowhan; Yang, Zhenguo; Wang, Wei; Zhang, Jianlu; Chen, Baowei; Nie, Zimin; Xia, Guanguang

    2014-01-14

    Redox flow battery systems having a supporting solution that contains Cl.sup.- ions can exhibit improved performance and characteristics. Furthermore, a supporting solution having mixed SO.sub.4.sup.2- and Cl.sup.- ions can provide increased energy density and improved stability and solubility of one or more of the ionic species in the catholyte and/or anolyte. According to one example, a vanadium-based redox flow battery system is characterized by an anolyte having V.sup.2+ and V.sup.3+ in a supporting solution and a catholyte having V.sup.4+ and V.sup.5+ in a supporting solution. The supporting solution can contain Cl.sup.- ions or a mixture of SO.sub.4.sup.2- and Cl.sup.- ions.

  10. Numerical modeling of an all vanadium redox flow battery.

    SciTech Connect (OSTI)

    Clausen, Jonathan R.; Brunini, Victor E.; Moffat, Harry K.; Martinez, Mario J.

    2014-01-01

    We develop a capability to simulate reduction-oxidation (redox) flow batteries in the Sierra Multi-Mechanics code base. Specifically, we focus on all-vanadium redox flow batteries; however, the capability is general in implementation and could be adopted to other chemistries. The electrochemical and porous flow models follow those developed in the recent publication by [28]. We review the model implemented in this work and its assumptions, and we show several verification cases including a binary electrolyte, and a battery half-cell. Then, we compare our model implementation with the experimental results shown in [28], with good agreement seen. Next, a sensitivity study is conducted for the major model parameters, which is beneficial in targeting specific features of the redox flow cell for improvement. Lastly, we simulate a three-dimensional version of the flow cell to determine the impact of plenum channels on the performance of the cell. Such channels are frequently seen in experimental designs where the current collector plates are borrowed from fuel cell designs. These designs use a serpentine channel etched into a solid collector plate.

  11. Performance Evaluation of Microporous Separator in Fe/V Redox Flow Battery

    SciTech Connect (OSTI)

    Wei, Xiaoliang; Luo, Qingtao; Li, Bin; Nie, Zimin; Miller, Eric; Chambers, Jeff; Sprenkle, Vincent L.; Wang, Wei

    2013-04-08

    The newly developed Fe/V redox flow battery has demonstrated attractive cell performance. However, the deliverable energy density is relatively inferior due to the low cell voltage. To compensate this disadvantage and compete with other redox flow battery systems, cost reduction of the Fe/V system is necessary. This paper describes evaluation of hydrocarbon-based Daramic® microporous separators for use in the Fe/V system. The separator B having ion exchange capacity demonstrated excellent capacity retention capability. Separator B exhibited energy efficiency above 65% over a broad temperature range of 5-50oC and at current densities up to 80mA/cm2. Plus, separator B is very inexpensive and has exceptional mechanical properties. Therefore, this separator shows great potential to replace the expensive Nafion® membrane. This will drive down the capital cost and make the Fe/V system a promising low-cost energy storage technology.

  12. Vanadium redox-flow batteries Installation at Ris for characterisation measurements

    E-Print Network [OSTI]

    Vanadium redox-flow batteries ­ Installation at Risř for characterisation measurements Henrik-flow batteries hold a great promise for storing electric energy on a large scale. They have many attractive of the project is to characterise a vanadium battery as a system component. The vanadium battery

  13. Fe/V Redox Flow Battery Electrolyte Investigation and Optimization

    SciTech Connect (OSTI)

    Li, Bin; Li, Liyu; Wang, Wei; Nie, Zimin; Chen, Baowei; Wei, Xiaoliang; Luo, Qingtao; Yang, Zhenguo; Sprenkle, Vincent L.

    2013-05-01

    Recently invented Fe/V redox flow battery (IVBs) system has attracted more and more attentions due to its long-term cycling stability. In this paper, the factors (such as compositions, state of charge (SOC) and temperatures) influencing the stability of electrolytes in both positive and negative half-cells were investigated by an extensive matrix study. Thus an optimized electrolyte, which can be operated in the temperature ranges from -5oC to 50oC without any precipitations, was identified. The Fe/V flow cells using the optimized electrolytes and low-cost membranes exhibited satisfactory cycling performances at different temperatures. The efficiencies, capacities and energy densities of flow batteries with varying temperatures were discussed in detail.

  14. A New Fe/V Redox Flow Battery Using Sulfuric/Chloric Mixed Acid Supporting Electrolyte

    SciTech Connect (OSTI)

    Wang, Wei; Nie, Zimin; Chen, Baowei; Chen, Feng; Luo, Qingtao; Wei, Xiaoliang; Xia, Guanguang; Skyllas-Kazacos, Maria; Li, Liyu; Yang, Zhenguo

    2012-04-01

    A redox flow battery using Fe2+/Fe3+ and V2+/V3+ redox couples in chloric/sulphuric mixed acid supporting electrolyte was investigated for potential stationary energy storage applications. The Fe/V redox flow cell using mixed reactant solutions operated within a voltage window of 0.5-1.35 V with a nearly 100% utilization ratio and demonstrated stable cycling over 100 cycles with energy efficiency > 80% and no capacity fading at room temperature. A 25% improvement in the discharge energy density of the Fe/V cell was achieved compared with the previous reported Fe/V cell using pure chloride acid supporting electrolyte. Stable performance was also achieved in the temperature range between 0 C and 50 C as well as using microporous separator as the membrane. The improved electrochemical performance at room temperature makes the Fe/V redox flow battery a promising option as a stationary energy storage device to enable renewable integration and stabilization of the electrical grid.

  15. Lithium-Polysulfide Flow Battery Demonstration

    ScienceCinema (OSTI)

    Zheng, Wesley

    2014-07-16

    In this video, Stanford graduate student Wesley Zheng demonstrates the new low-cost, long-lived flow battery he helped create. The researchers created this miniature system using simple glassware. Adding a lithium polysulfide solution to the flask immediately produces electricity that lights an LED. A utility version of the new battery would be scaled up to store many megawatt-hours of energy.

  16. Lithium-Polysulfide Flow Battery Demonstration

    SciTech Connect (OSTI)

    Zheng, Wesley

    2014-06-30

    In this video, Stanford graduate student Wesley Zheng demonstrates the new low-cost, long-lived flow battery he helped create. The researchers created this miniature system using simple glassware. Adding a lithium polysulfide solution to the flask immediately produces electricity that lights an LED. A utility version of the new battery would be scaled up to store many megawatt-hours of energy.

  17. High performance electrodes in vanadium redox flow batteries through oxygen-enriched thermal activation

    E-Print Network [OSTI]

    Mench, Matthew M.

    National Laboratory, Oak Ridge, TN 37831, USA h i g h l i g h t s Thermal activation of carbon paper: Vanadium redox flow battery Carbon paper Kinetics Surface area Thermal activation Electrode a b s t r a cHigh performance electrodes in vanadium redox flow batteries through oxygen-enriched thermal

  18. Cost and Performance Model for Redox Flow Batteries

    SciTech Connect (OSTI)

    Viswanathan, Vilayanur V.; Crawford, Aladsair J.; Stephenson, David E.; Kim, Soowhan; Wang, Wei; Li, Bin; Coffey, Greg W.; Thomsen, Edwin C.; Graff, Gordon L.; Balducci, Patrick J.; Kintner-Meyer, Michael CW; Sprenkle, Vincent L.

    2014-02-01

    A cost model was developed for all vanadium and iron-vanadium redox flow batteries. Electrochemical performance modeling was done to estimate stack performance at various power densities as a function of state of charge. This was supplemented with a shunt current model and a pumping loss model to estimate actual system efficiency. The operating parameters such as power density, flow rates and design parameters such as electrode aspect ratio, electrolyte flow channel dimensions were adjusted to maximize efficiency and minimize capital costs. Detailed cost estimates were obtained from various vendors to calculate cost estimates for present, realistic and optimistic scenarios. The main drivers for cost reduction for various chemistries were identified as a function of the energy to power ratio of the storage system. Levelized cost analysis further guided suitability of various chemistries for different applications.

  19. Room Temperature, Hybrid Sodium-Based Flow Batteries with Multi-Electron Transfer Redox Reactions

    SciTech Connect (OSTI)

    Shamie, Jack S.; Liu, Caihong; Shaw, Leon L.; Sprenkle, Vincent L.

    2015-06-11

    We introduce a new concept of hybrid Na-based flow batteries (HNFBs) with a molten Na alloy anode in conjunction with a flowing catholyte separated by a solid Na-ion exchange membrane for grid-scale energy storage. Such HNFBs can operate at ambient temperature, allow catholytes to have multiple electron transfer redox reactions per active ion, offer wide selection of catholyte chemistries with multiple active ions to couple with the highly negative Na alloy anode, and enable the use of both aqueous and non-aqueous catholytes. Further, the molten Na alloy anode permits the decoupled design of power and energy since a large volume of the molten Na alloy can be used with a limited ion-exchange membrane size. In this proof-of-concept study, the feasibility of multielectron transfer redox reactions per active ion and multiple active ions for catholytes has been demonstrated. The critical barriers to mature this new HNFBs have also been explored.

  20. Nitrogen-doped mesoporous carbon for energy storage in vanadium redox flow batteries

    SciTech Connect (OSTI)

    Dai, Sheng [ORNL; Shao, Yuyan [Pacific Northwest National Laboratory (PNNL); Wang, Xiqing [ORNL; Engelhard, Mark H [Pacific Northwest National Laboratory (PNNL); Wang, Congmin [ORNL; Liu, Jun [Pacific Northwest National Laboratory (PNNL); YANG, ZHENGUO [Pacific Northwest National Laboratory (PNNL); Lin, Yuehe [ORNL

    2010-01-01

    We demonstrate an excellent performance of nitrogen-doped mesoporous carbon (N-MPC) for energy storage in vanadium redox flow batteries. Mesoporous carbon (MPC) is prepared using a soft-template method and doped with nitrogen by heat-treating MPC in NH{sub 3}. N-MPC is characterized with X-ray photoelectron spectroscopy and transmission electron microscopy. The redox reaction of [VO]{sup 2+}/[VO{sub 2}]{sup +} is characterized with cyclic voltammetry and electrochemical impedance spectroscopy. The electrocatalytic kinetics of the redox couple [VO]{sup 2+}/[VO{sub 2}]{sup +} is significantly enhanced on N-MPC electrode compared with MPC and graphite electrodes. The reversibility of the redox couple [VO]{sup 2+}/[VO{sub 2}]{sup +} is greatly improved on N-MPC (0.61 for N-MPC vs. 0.34 for graphite), which is expected to increase the energystorage efficiency of redoxflowbatteries. Nitrogen doping facilitates the electron transfer on electrode/electrolyte interface for both oxidation and reduction processes. N-MPC is a promising material for redoxflowbatteries. This also opens up new and wider applications of nitrogen-doped carbon.

  1. Redox battery including a bromine positive electrode and a chromium ion negative electrode and method

    SciTech Connect (OSTI)

    Giner, J.D.; Stark, H.H.

    1984-09-04

    A redox flow battery with a positive half-cell compartment containing bromide ion, bromine and a complexing organic liquid for bromine, and a negative electrode half-cell compartment containing chromium ion, and including electrolyte fluid communication therebetween.

  2. TEMPO-based Catholyte for High Energy Density Nonaqueous Redox Flow Batteries

    SciTech Connect (OSTI)

    Wei, Xiaoliang; Xu, Wu; Vijayakumar, M.; Cosimbescu, Lelia; Liu, Tianbiao L.; Sprenkle, Vincent L.; Wang, Wei

    2014-12-03

    We will present a novel design lithium-organic non-aqueous redox flow battery based on a TEMPO catholyte. This RFB produced desired electrochemical performance exceeding most of the currently reported nonaqueous RFB systems.

  3. Electrochemical investigation of polyhalide ion oxidation-reduction on carbon nanotube electrodes for redox flow batteries

    SciTech Connect (OSTI)

    Shao, Yuyan; Engelhard, Mark H.; Lin, Yuehe

    2009-10-01

    Polyhalide ions (Br-/BrCl2-) are an important redox couple for redox flow batteries. The oxidation-reduction behavior of polyhalide ions on a carbon nanotube (CNT) electrode has been investigated with cyclic voltammetry and electrochemical impedance spectroscopy. The onset oxidation potential of Br-/BrCl2- is negatively shifted by >100 mV, and the redox current peaks are greatly enhanced on a CNT electrode compared with that on the most widely-used graphite electrode. The reaction resistance of the redox couple (Br-/BrCl2-) is decreased on a CNT electrode. The redox reversibility is increased on a CNT electrode even though it still needs further improvement. CNT is a promising electrode material for redox flow batteries.

  4. Redox shuttle additives for overcharge protection in lithium batteries

    E-Print Network [OSTI]

    Richardson, Thomas J.; Ross Jr., P.N.

    1999-01-01

    Protection in Lithium Batteries”, T. J. Richardson* and P.PROTECTION IN LITHIUM BATTERIES T. J. Richardson* and P. N.in lithium and lithium ion batteries are now available. The

  5. Nanoporous Polytetrafluoroethylene/Silica Composite Separator as a High-Performance All-Vanadium Redox Flow Battery Membrane

    SciTech Connect (OSTI)

    Wei, Xiaoliang; Nie, Zimin; Luo, Qingtao; Li, Bin; Chen, Baowei; Simmons, Kevin L.; Sprenkle, Vincent L.; Wang, Wei

    2013-09-02

    Driven by the motivation of searching for low-cost membrane alternatives, a novel nanoporous polytetrafluoroethylene/silica composite separator has been prepared and evaluated for its use in all-vanadium mixed-acid redox flow battery. This separator consisting of silica particles enmeshed in a polytetrafluoroethylene fibril matrix has no ion exchange capacity and is featured with unique nanoporous structures, which function as the ion transport channels in redox flow battery operation, with an average pore size of 38nm and a porosity of 48%. This separator has produced excellent electrochemical performance in the all-vanadium mixed-acid system with energy efficiency delivery comparable to Nafion membrane and superior rate capability and temperature tolerance. The separator also demonstrates an exceptional capacity retention capability over extended cycling, offering additional operational latitude towards conveniently mitigating the capacity decay that is inevitable for Nafion. Because of the inexpensive raw materials and simple preparation protocol, the separator is particularly low-cost, estimated to be at least an order of magnitude more inexpensive than Nafion. Plus the proven chemical stability due to the same backbone material as Nafion, this separator possesses a good combination of critical membrane requirements and shows great potential to promote market penetration of the all-vanadium redox flow battery by enabling significant reduction of capital and cycle costs.

  6. Room Temperature, Hybrid Sodium-Based Flow Batteries with Multi-Electron Transfer Redox Reactions

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Shamie, Jack S.; Liu, Caihong; Shaw, Leon L.; Sprenkle, Vincent L.

    2015-06-11

    We introduce a new concept of hybrid Na-based flow batteries (HNFBs) with a molten Na alloy anode in conjunction with a flowing catholyte separated by a solid Na-ion exchange membrane for grid-scale energy storage. Such HNFBs can operate at ambient temperature, allow catholytes to have multiple electron transfer redox reactions per active ion, offer wide selection of catholyte chemistries with multiple active ions to couple with the highly negative Na alloy anode, and enable the use of both aqueous and non-aqueous catholytes. Further, the molten Na alloy anode permits the decoupled design of power and energy since a large volumemore »of the molten Na alloy can be used with a limited ion-exchange membrane size. In this proof-of-concept study, the feasibility of multielectron transfer redox reactions per active ion and multiple active ions for catholytes has been demonstrated. The critical barriers to mature this new HNFBs have also been explored.« less

  7. Preparation of redox polymer cathodes for thin film rechargeable batteries

    DOE Patents [OSTI]

    Skotheim, T.A.; Lee, H.S.; Okamoto, Yoshiyuki.

    1994-11-08

    The present invention relates to the manufacture of thin film solid state electrochemical devices using composite cathodes comprising a redox polymer capable of undergoing oxidation and reduction, a polymer solid electrolyte and conducting carbon. The polymeric cathode material is formed as a composite of radiation crosslinked polymer electrolytes and radiation crosslinked redox polymers based on polysiloxane backbones with attached organosulfur side groups capable of forming sulfur-sulfur bonds during electrochemical oxidation.

  8. Rechargeable alkaline zinc/ferricyanide hybrid redox battery

    SciTech Connect (OSTI)

    Adams, G.B.; Hollandsworth, R.P.; Littauer, E.L.

    1981-01-01

    The zinc/ferricyanide battery system is described for utility load leveling and solar photovoltaic/wind applications, with advantages of high cell voltage, near-ambient temperature operation, flowing alkaline electrolyte, low-cost reactant storage, low toxicity, potentially long cycle life and low projected capital costs. 13 refs.

  9. Fact Sheet: Vanadium Redox Battery Demonstration Program (August...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    facility to attain the same daily output requirement, more efficiently and with a lower carbon footprint. When the project is fully implemented, the plant will operate at a...

  10. Fact Sheet: Vanadium Redox Battery Demonstration Program (August 2013) |

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustmentsShirleyEnergy A plug-inPPLforLDRD Report to Congress MoreHyd rog enOffice|DOEof

  11. City of Painesville, Ohio Vanadium Redox Battery Demonstration Program

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustmentsShirleyEnergyTher i n c i p aDepartment of Energy < BackDepartment

  12. Polyvinyl Chloride/Silica Nanoporous Composite Separator for All-Vanadium Redox Flow Battery Applications

    SciTech Connect (OSTI)

    Wei, Xiaoliang; Nie, Zimin; Luo, Qingtao; Li, Bin; Sprenkle, Vincent L.; Wang, Wei

    2013-04-22

    Redox flow batteries (RFBs) are capable of reversible conversion between electricity and chemical energy. Potential RFB applications resolve around mitigating the discrepancy between electricity production and consumption to improve the stability and utilization of the power infrastructure and tackling the intermittency of renewables such as photovoltaics or wind turbines to enable their reliable integration [1, 2]. Because the energy is stored in externally contained liquid electrolytes and the energy conversion reactions take place at the electrodes, RFBs hold a unique capability to separate energy and power and thus possess considerable design flexibility to meet either energy management driven or power rating oriented grid applications, which is considered to be a unparalleled advantage over conventional solid-state secondary batteries [3]. Other advantages of RFBs include fast response to load changes, high round-trip efficiency, long calender and cycle lives, safe operations, tolerance to deep discharge, etc. [4]. Among various flow battery chemistries, all-vanadium redox flow battery (VRB) was invented by Maria Skyllas-Kazacos at the University of New South Wales in the 1980s [5, 6] and have attracted substantial attention in both research and industrial communities today [7, 8]. A well-recognized advantage that makes VRB stands out among other redox chemistries is the reduced crossover contamination ascribed to employing four different oxidation states of the same vanadium element as the two redox couples. Recently, great progress has led to remarkably improved energy density of VRB by using sulfuric-chloric mixed acid supporting electrolytes that were stable at 2.5M vanadium and had wider operational temperature window of -5~50oC [9], compared with the traditional sulfuric acid VRB system [10].

  13. Membrane Separator for Redox Flow Batteries that Utilize Anion Radical Mediators.

    SciTech Connect (OSTI)

    Delnick, Frank M.

    2014-10-01

    A Na + ion conducting polyethylene oxide membrane is developed for an organic electrolyte redox flow battery that utilizes anion radical mediators. To achieve high specific ionic conductivity, tetraethyleneglycol dimethylether (TEGDME) is used as a plasticizer to reduce crystallinity and increase the free volume of the gel film. This membrane is physically and chemically stable in TEGDME electrolyte that contains highly reactive biphenyl anion radical mediators.

  14. Fact Sheet: Grid-Scale Energy Storage Demonstration Using UltraBattery...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Grid-Scale Energy Storage Demonstration Using UltraBattery Technology (August 2013) Fact Sheet: Grid-Scale Energy Storage Demonstration Using UltraBattery Technology (August 2013)...

  15. Research and development of redox-flow battery in Electrotechnical Laboratory

    SciTech Connect (OSTI)

    Nozaki, K.; Ozawa, T.

    1982-08-01

    Redox-flow batteries for bulk energy storage are under development at Electrotechnical Laboratory. The following results of the research for component technologies related to redox solutions, electrodes and their materials, and cell structures, and testing and scale up of the systems are reported. The effects of hydrochloric acid concentrations to the electrode reaction rate of chromium chloride in catholyte are investigated. Over 40 types of carbon fiber were tested and screened for the cathode, and it has been shown that a type of carbon cloth made by thermal decomposition of polyacrylonitrile cloth gives excellent performance. Single cells with electrode area of 432 cm/sup 2/ (18 x 24 cm) were developed, and 10-cellstacks were constructed and one of those gave power of 119 W at current density of 30 mA/cm/sup 2/. Cation exchange membrane was used in the cells.

  16. In-situ Investigation of Vanadium Ion Transport in Redox Flow Battery

    SciTech Connect (OSTI)

    Luo, Qingtao; Li, Liyu; Nie, Zimin; Wang, Wei; Wei, Xiaoliang; Li, Bin; Chen, Baowei; Yang, Zhenguo

    2012-06-27

    We will show a new method to differentiate the vanadium transport from concentration gradient and that from electric field. Flow batteries with vanadium and iron redox couples as the electro-active species were employed to investigate the transport behavior of vanadium ions in the presence of electric field. It was shown that electric field accelerated the positive-to-negative and reduced the negative-to-positive vanadium ions transport in charge process and affected the vanadium ions transport in an opposite way in discharge process. In addition, a method was designed to differentiate the concentration gradient-driven vanadium ions diffusion and electric field-driven vanadium ions migration. Simplified mathematical model was established to simulate the vanadium ions transport in real charge-discharge operation of flow battery. The concentration gradient diffusion coefficients and electric-migration coefficients of V2+, V3+, VO2+, and VO2+ across Nafion membrane were obtained by fitting the experimental data.

  17. Effects of additives on the stability of electrolytes for all-vanadium redox flow batteries

    SciTech Connect (OSTI)

    Zhang, Jianlu; Li, Liyu; Nie, Zimin; Chen, Baowei; Vijayakumar, M.; Kim, Soowhan; Wang, Wei; Schwenzer, Birgit; Liu, Jun; Yang, Zhenguo

    2011-10-01

    The stability of the electrolytes for all-vanadium redox flow battery was investigated with ex-situ heating/cooling treatment and in-situ flow-battery testing methods. The effects of inorganic and organic additives have been studied. The additives containing the ions of potassium, phosphate, and polyphosphate are not suitable stabilizing agents because of their reactions with V(V) ions, forming precipitates of KVSO6 or VOPO4. Of the chemicals studied, polyacrylic acid and its mixture with CH3SO3H are the most promising stabilizing candidates which can stabilize all the four vanadium ions (V2+, V3+, VO2+, and VO2+) in electrolyte solutions up to 1.8 M. However, further effort is needed to obtain a stable electrolyte solution with >1.8 M V5+ at temperatures higher than 40 °C.

  18. Investigation of Local Environments in Nafion-SiO2 Composite Membranes used in Vanadium Redox Flow Batteries

    SciTech Connect (OSTI)

    Vijayakumar, M.; Schwenzer, Birgit; Kim, Soowhan; Yang, Zhenguo; Thevuthasan, Suntharampillai; Liu, Jun; Graff, Gordon L.; Hu, Jian Z.

    2012-04-01

    The proton conducting polymer composite membranes are of technological interest in many energy devices such as fuel cells and redox flow batteries. In particular, the polymer composite membranes such as SiO2 incorporated Nafion membranes are recently reported as highly promising for the redox flow batteries. However, there is conflicting reports regarding the performance of this Nafion-SiO2 composite membrane in the redox flow cell. This paper presents results of the analysis of the Nafion-SiO2 composite membrane used in a vanadium redox flow battery by nuclear magnetic resonance (NMR) spectroscopy, X-ray photoelectron spectroscopy (XPS), Fourier Transformed Infra Red (FTIR) spectroscopy, and ultraviolet visible spectroscopy. The XPS study reveals the chemical identity and environment of vanadium cations accumulated at the surface. On the other hand, the 19F and 29Si NMR measurement explores the nature of the interaction between the silica particles, Nafion side chains and diffused vanadium cations. The 29Si NMR shows that the silica particles interaction via hydrogen bonds to the sulfonic groups of Nafion and diffused vanadium cations. Based on these spectroscopic studies, the chemical environment of the silica particles inside the Nafion membrane and their interaction with diffusing vanadium cations during flow cell operations are discussed. This study discusses the origin of performance degradation of the Nafion-SiO2 composite membrane materials in vanadium redox flow batteries.

  19. Mixed-Metal, Structural, and Substitution Effects of Polyoxometalates on Electrochemical Behavior in a Redox Flow Battery

    SciTech Connect (OSTI)

    Pratt, Harry D [Sandia National Laboratories; Pratt, William R [Sandia National Laboratories; Fang, Xikui [Ames Laboratory; Hudak, Nicholas S [Sandia National Laboratories; Anderson, Travis M [Sandia National Laboratories

    2014-08-01

    A pair of redox flow batteries containing polyoxometalates was tested as part of an ongoing program in stationary energy storage. The iron-containing dimer, (SiFe3W9(OH)3O34)2(OH)311?, cycled between (SiFe3W9(OH)3O34)2(OH)311?/(SiFe3W9(OH)3O34)2(OH)314?and (SiFe3W9(OH)3O34)2(OH)317?/(SiFe3W9(OH)3O34)2(OH)314? for the positive and negative electrode, respectively. This compound demonstrated a coulombic efficiency of 83% after 20 cycles with an electrochemical yield (measured discharge capacity as a percentage of theoretical capacity) of 55%. Cyclic voltammetry on the Lindqvist ion, cis-V2W4O194?, showed quasi-reversible vanadium electrochemistry, but tungsten reduction was mostly irreversible. In a flow cell configuration, cis-V2W4O194?had a coulombic efficiency of 45% (for a two-electron process) and an electrochemical yield of 16% after 20 cycles. The poor performance of cis-V2W4O194?was attributed primarily to its higher charge density. Collectively, the results showed that both polyoxometalate size and charge density are both important parameters to consider in battery material performance.

  20. Thermal design requirements of a 50-kW zinc/redox flow battery for solar electrical energy storage

    SciTech Connect (OSTI)

    Selman, J.R.; Wu, H.; Hollandsworth, R.P.

    1985-01-01

    The conceptual engineering design of a large-scale zinc/redox battery for solar electrical energy storage involves the management of considerable heat flows. This is due to the large heat-of-crystallization of sodium ferrocyanide decahydrate produced during discharge, as well as the usual reversible and irreversible cell-reaction heat effects. A discussion of practical design implications is presented.

  1. Thermal design requirements of a 50-kW zinc/redox flow battery for solar electrical energy storage

    SciTech Connect (OSTI)

    Selman, J.R.; Wu, H.; Hollandsworth, R.P.

    1984-09-01

    The conceptual engineering design of a large-scale zinc/redox battery for solar electrical energy storage involves the management of considerable heat flows. This is due to the large heat-of-crystallization of sodium ferrocyanide decahydrate produced during discharge as well as the usual reversible and irreversible cell-reaction heat effects. A discussion of practical design implications is presented.

  2. A Stable Vanadium Redox-Flow Battery with High Energy Density for Large-scale Energy Storage

    SciTech Connect (OSTI)

    Li, Liyu; Kim, Soowhan; Wang, Wei; Vijayakumar, M.; Nie, Zimin; Chen, Baowei; Zhang, Jianlu; Xia, Guanguang; Hu, Jian Z.; Graff, Gordon L.; Liu, Jun; Yang, Zhenguo

    2011-05-01

    Low cost, high performance redox flow batteries are highly demanded for up to multi-megawatt levels of renewable and grid energy storage. Here, we report a new vanadium redox flow battery with a significant improvement over the current technologies. This new battery utilizes a sulfate-chloride mixed solution, which is capable of dissolving more than 2.5 M vanadium or about a 70% increase in the energy storage capacity over the current vanadium sulfate system. More importantly, the new electrolyte remains stable over a wide temperature range of -5 to 60oC, potentially eliminating the need of active heat management. Its high energy density, broad operational temperature window, and excellent electrochemical performance would lead to a significant reduction in the cost of energy storage, thus accelerating its market penetration.

  3. Cycling performance and efficiency of sulfonated poly(sulfone) membranes in vanadium redox flow batteries

    SciTech Connect (OSTI)

    Kim, Soowhan; Yan, Jingling; Schwenzer, Birgit; Zhang, Jianlu; Li, Liyu; Liu, Jun; Yang, Zhenguo; Hickner, Michael A.

    2010-11-30

    As an alternative to the expensive Nafion® ion exchange membrane, an inexpensive commercially-available Radel® polymer was sulfonated, fabricated into a thin membrane, and evaluated for its performance in a vanadium redox flow battery (VRFB). The sulfonated Radel (S-Radel) membrane showed almost an order of magnitude lower permeability of V (IV) ions (2.07×10-7 cm2/min), compared to Nafion 117 (1.29×10-6 cm2/min), resulting in better coulombic efficiency (~98% vs. 95% at 50 mA/cm2) and lower capacity loss per cycle. Even though the S-Radel membrane had slightly higher membrane resistance, the energy efficiency of the VRFB with the S-Radel membrane was comparable to that of Nafion due to its better coulombic efficiency. The S-Radel membrane exhibited good performance up to 40 cycles, but a decay in performance at later cycles was observed.

  4. Spectroscopic Investigations of the Fouling Process on Nafion Membranes in Vanadium Redox Flow Batteries

    SciTech Connect (OSTI)

    Vijayakumar, M.; Sivakumar, Bhuvaneswari M.; Nachimuthu, Ponnusamy; Schwenzer, Birgit; Kim, Soowhan; Yang, Zhenguo; Liu, Jun; Graff, Gordon L.; Thevuthasan, Suntharampillai; Hu, Jian Z.

    2011-01-01

    The Nafion-117 membrane used in vanadium redox flow battery (VRFB) is analyzed by X-ray photoelectron spectroscopy (XPS) and nuclear magnetic resonance (NMR) spectroscopy. The XPS study reveals the chemical identity and environment of vanadium cations accumulated at the surface due to their low diffusivity. On the other hand, the 17O NMR spectrum explores the diffused vanadium cation from the bulk part of Nafion and shows the chemical bonding of cation and the host membrane. The 19F NMR shows the basic Nafion structure is not altered due to the presence of diffused vanadium cation. Based on these spectroscopic studies, the chemical environment of diffused vanadium cation in the Nafion membrane is discussed. This study also shed light into the possible cause for the high diffusivity of certain vanadium cations inside the Nafion membranes.

  5. Nanorod Niobium Oxide as Powerful Catalysts for an All Vanadium Redox Flow Battery

    SciTech Connect (OSTI)

    Li, Bin; Gu, Meng; Nie, Zimin; Wei, Xiaoliang; Wang, Chong M.; Sprenkle, Vincent L.; Wang, Wei

    2014-01-01

    Graphite felts (GFs), as typical electrode materials for all vanadium redox flow batteries (VRBs), limit the cell operation to low current density because of their poor kinetic reversibility and electrochemical activity. Here, in order to address this issue we report an electrocatalyst, Nb2O5, decorating the surface of GFs to reduce the activation barrier for redox conversion. Nb2O5 nanofibers with monoclinic phases are synthesized by hydrothermal method and deposited on GFs, which is confirmed to have catalytic effects towards redox couples of V(II)/V(III) at the negative side and V(IV)/V(V) at the positive side, and thus applied in both electrodes of VRB cells. Due to the low conductivity of Nb2O5, the performance of electrodes heavily depends on the nano size and uniform distribution of catalysts on GFs surfaces. The addition of the water-soluble compounds containing W element into the precursor solutions facilitates the precipitation of nanofibers on the GFs. Accordingly, an optimal amount of W-doped Nb2O5 nanofibers with weaker agglomeration and better distribution on GFs surfaces are obtained, leading to significant improvement of the electrochemical performances of VRB cells particularly under the high power operation. The corresponding energy efficiency is enhanced by 10.7 % under the operation of high charge/discharge current density (150 mA•cm-2) owing to faster charge transfer as compared with that without catalysts. These results suggest that Nb2O5 based nanofibers-decorating GFs hold great promise as high-performance electrodes for VRB applications.

  6. Conceptual engineering design of a 50-kW rechargeable alkaline zinc/redox battery

    SciTech Connect (OSTI)

    Selman, J.R.; Hollansworth, R.P.

    1984-08-01

    The zinc/ferro-ferricyanide battery has been advanced over the past 6 years from a concept to a working unit of demonstrated high energy efficiency. A conceptual engineering design for a 50-kW solar storage battery system has been formulated, based upon performance data of 60, 200, and 1000 cm/sup 2/ cells and physical property data collected from the literature or determined earlier. Starting with a cell performance model and a crystallizer model, mass and energy balances are analyzed using a modular design. Isothermal and adiabatic operations are considered, and thermal storage requirements estimated

  7. Chemical and Mechanical Degradation of Sulfonated Poly(sulfone) Membranes in Vanadium Redox Flow Batteries

    SciTech Connect (OSTI)

    Kim, Soowhan; Tighe, Timothy B.; Schwenzer, Birgit; Yan, Jingling; Zhang, Jianlu; Liu, Jun; Yang, Zhenguo; Hickner, Michael A.

    2011-10-01

    A sulfonated poly(sulfone) (S-Radel{reg_sign}) membrane with high proton conductivity and low vanadium ion diffusion showed high initial performance in a vanadium redox flow battery (VRFB) but suffered damage during charge/discharge cycling. The S-Radel membrane had different degradation behaviors in flow cell cycling and ex-situ vanadium ion immersion tests. The S-Radel membrane immersed in V5+ solution cracked into small pieces, but in the VRFB cell, the membrane underwent internal delamination preferentially on the side of the membrane that faced the positive electrode. A vanadium-rich interface was observed near the membrane surface that experienced delamination and Raman spectroscopic analysis of the surfaces of the membrane indicated a slightly depressed 1026 cm-1 band corresponding to the sulfonate SO2 stretch for the degraded surface. Even though the S-Radel membrane underwent severe mechanical damage during the flow cell cycling, significant chemical degradation was not obvious from the spectroscopic analyses. For the VRFB containing an S-Radel membrane, an increase in membrane resistance caused an abnormal voltage depression during the discharge cycle. The reversible increase in membrane resistance and severe mechanical degradation of the membrane during cycling may be attributed repeated formation and dissolution of particles inside the membrane. The mechanical stresses imposed by the particles coupled with a small amount of chemical degradation of the polymer by V5+, are likely degradation mechanisms of the S-Radel membrane in VRFBs under high state-of-charge conditions.

  8. Vanadium redox flow battery efficiency and durability studies of sulfonated Diels Alder poly(phenylene)s

    SciTech Connect (OSTI)

    Fujimoto, Cy H.; Kim, Soowhan; Stains, Ronald; Wei, Xiaoliang; Li, Liyu; Yang, Zhenguo

    2012-07-01

    Sulfonated Diels Alder poly(phenylene) (SDAPP) was examined for vanadium redox flow battery (VRFB) use. The ion exchange capacity (IEC) was varied from 1.4, 1.6 and 2.0 meq/g in order to tune the proton conductivity and vanadium permeability. Coulombic efficiencies between 92 to 99% were observed, depending on IEC (lower IEC, higher coulombic efficiencies). In all cases the SDAPP displayed comparable energy efficiencies (88 - 90%) to Nafion 117 (88%) at 50mA/cm2. Membrane durability also was dependent on IEC; SDAPP with the highest IEC lasted slightly over 50 cycles while SDAPP with the lowest IEC lasted over 400 cycles and testing was discontinued only due to time constraints. Accelerated vanadium lifetime studies were initialed with SDAPP, by soaking films in a 0.1 M V5+ and 5.0 M total SO4-2 solution. The rate of degradation was also proportional with IEC; the 2 meq/g sample dissolved within 376 hours, the 1.6 meq/g sample dissolved after 860 hours, while the 1.4 meq/g sample broke apart after 1527 hours.

  9. Concentration Dependence of VO2+ Crossover of Nafion for Vanadium Redox Flow Batteries

    SciTech Connect (OSTI)

    Lawton, Jamie [University of Tennessee, Knoxville (UTK); Jones, Amanda [University of Tennessee, Knoxville (UTK); Zawodzinski, Thomas A [ORNL

    2013-01-01

    The VO2+ crossover, or permeability, through Nafion in a vanadium redox flow battery (VRFB) was monitored as a function of sulfuric acid concentration and VO2+ concentration. A vanadium rich solution was flowed on one side of the membrane through a flow field while symmetrically on the other side a blank or vanadium deficit solution was flowed. The blank solution was flowed through an electron paramagnetic resonance (EPR) cavity and the VO2+ concentration was determined from the intensity of the EPR signal. Concentration values were fit using a solution of Fick s law that allows for the effect of concentration change on the vanadium rich side. The fits resulted in permeability values of VO2+ ions across the membrane. Viscosity measurements of many VO2+ and H2SO4 solutions were made at 30 60 C. These viscosity values were then used to determine the effect of the viscosity of the flowing solution on the permeability of the ion. 2013 The Electrochemical Society. [DOI: 10.1149/2.004306jes] All rights reserved.

  10. Composite blend polymer membranes with increased proton selectivity and lifetime for vanadium redox flow batteries

    SciTech Connect (OSTI)

    Chen, Dongyang; Kim, Soowhan; Sprenkle, Vincent L.; Hickner, Michael A.

    2013-06-01

    Composite membranes based on sulfonated fluorinated poly(arylene ether) (SFPAE) and poly(vinylidene fluoride-co-hexafluoropropene) (P(VDF-co-HFP)) were prepared with various contents of P(VDF-co-HFP) for vanadium redox flow battery (VRFB) applications. The compatibility and interaction of SFPAE and P(VDF-co-HFP) were characterized by atomic force microscopy, differential scanning calorimetry, and Fourier transform infrared spectroscopy. The water uptake, mechanical properties, thermal property, proton conductivity, VO2+ permeability and cell performance of the composite membranes were investigated in detail and compared to the pristine SFPAE membrane. It was found that SFPAE had good compatibility with P(VDF-co-HFP) and the incorporation of P(VDF-co-HFP) increased the mechanical properties, thermal property, and proton selectivity of the materials effectively. An SFPAE composite membrane with 10 wt.% P(VDF-co-HFP) exhibited a 44% increase in VRFB cell lifetime as compared to a cell with a pure SFPAE membrane. Therefore, the P(VDF-co-HFP) blending approach is a facile method for producing low-cost, high-performance VRFB membranes.

  11. Electric Ground Support Equipment Advanced Battery Technology Demonstration Project at the Ontario Airport

    SciTech Connect (OSTI)

    Tyler Gray; Jeremy Diez; Jeffrey Wishart; James Francfort

    2013-07-01

    The intent of the electric Ground Support Equipment (eGSE) demonstration is to evaluate the day-to-day vehicle performance of electric baggage tractors using two advanced battery technologies to demonstrate possible replacements for the flooded lead-acid (FLA) batteries utilized throughout the industry. These advanced battery technologies have the potential to resolve barriers to the widespread adoption of eGSE deployment. Validation testing had not previously been performed within fleet operations to determine if the performance of current advanced batteries is sufficient to withstand the duty cycle of electric baggage tractors. This report summarizes the work performed and data accumulated during this demonstration in an effort to validate the capabilities of advanced battery technologies. This report summarizes the work performed and data accumulated during this demonstration in an effort to validate the capabilities of advanced battery technologies. The demonstration project also grew the relationship with Southwest Airlines (SWA), our demonstration partner at Ontario International Airport (ONT), located in Ontario, California. The results of this study have encouraged a proposal for a future demonstration project with SWA.

  12. Structure and Stability of Hexa-Aqua V(III) Cations in Vanadium Redox Flow Battery Electrolytes

    SciTech Connect (OSTI)

    Vijayakumar, M.; Li, Liyu; Nie, Zimin; Yang, Zhenguo; Hu, Jian Z.

    2012-05-09

    The Vanadium (III) cation structure in mixed acid based electrolyte solution from vanadium redox flow batteries were studied by 17O and 35/37Cl Nuclear Magnetic Resonance (NMR) spectroscopy, electronic spectroscopy and density functional theory (DFT) based computational modeling. Both computational and experimental results reveals that the V(III) species can complex with counter anions (sulfate/chlorine) 10 depend on the composition of its solvation sphere. By analyzing the powder precipitate it was found that the formation of sulfate complexed V(III) species is the crucial process in the precipitation reaction. The precipitation occurs through nucleation of neutral species formed through deprotonation and ion-pair formation process. However, the powder precipitate shows a multiphase nature which warrants multiple reaction pathways for precipitation reaction.

  13. Bismuth Nanoparticle Decorating Graphite Felt as a High-Performance Electrode for an All-Vanadium Redox Flow Battery

    SciTech Connect (OSTI)

    Li, Bin; Gu, Meng; Nie, Zimin; Shao, Yuyan; Luo, Qingtao; Wei, Xiaoliang; Li, Xiaolin; Xiao, Jie; Wang, Chong M.; Sprenkle, Vincent L.; Wang, Wei

    2013-02-04

    The selection of electrode materials plays a great role in improving performances of all vanadium redox flow batteries (VRBs). Low-cost graphite felt (GF) as traditional electrode material has to be modified to address its issue of low electrocatalytic activity. In our paper, low-cost and highly conductive bismuth nanoparticles, as a powerful alternative electrocatalyst to noble metal, are proposed and synchronously electro-deposited onto the surface of GF while running flow cells employing the electrolytes containing suitable Bi3+. Although bismuth is proved to only take effect on the redox reaction of V(II)/V(III) and present at negative half-cell side, the whole cell electrochemical performances are significantly improved. In particular, the energy efficiency is increased by 11% owing to faster charge transfer as compared with one without Bi at high charge/discharge rate of 150 mA/cm2, which is prone to reduce stack size, thus dramatically reducing the cost. The excellent results show great promise of Bi nano-catalysts in the commercialization of VRBs in terms of product cost as well as electrochemical properties.

  14. Resolving Losses at the Negative Electrode in All-Vanadium Redox Flow Batteries Using Electrochemical Impedance Spectroscopy

    SciTech Connect (OSTI)

    Sun, Che Nan [ORNL] [ORNL; Delnick, Frank M [ORNL] [ORNL; Aaron, D [University of Tennessee, Knoxville (UTK)] [University of Tennessee, Knoxville (UTK); Mench, Matthew M [ORNL] [ORNL; Zawodzinski, Thomas A [ORNL] [ORNL

    2014-01-01

    We present an in situ electrochemical technique for the quantitative measurement and resolution of the ohmic, charge transfer and diffusion overvoltages at the negative electrode of an all-vanadium redox flow battery (VRFB) using electrochemical impedance spectroscopy (EIS). The mathematics describing the complex impedance of the V+2/V+3 redox reaction is derived and matches the experimental data. The voltage losses contributed by each process have been resolved and quantified at various flow rates and electrode thicknesses as a function of current density during anodic and cathodic polarization. The diffusion overvoltage was affected strongly by flow rate while the charge transfer and ohmic losses were invariant. On the other hand, adopting a thicker electrode significantly changed both the charge transfer and diffusion losses due to increased surface area. Furthermore, the Tafel plot obtained from the impedance resolved charge transfer overvoltage yielded the geometric exchange current density, anodic and cathodic Tafel slopes (135 5 and 121 5 mV/decade respectively) and corresponding transfer coefficients = 0.45 0.02 and = 0.50 0.02 in an operating cell.

  15. Research, development, and demonstration of nickel-iron batteries for electric vehicle propulsion. Annual report, 1979

    SciTech Connect (OSTI)

    Not Available

    1980-06-01

    The program has progressed to the stage of evaluating full-sized (220 Ah) cells, multicell modules, and 22 kWh batteries. Nickel electrodes that display stable capacities of up to 24 Ah/plate (at C/3 drain rate) at design thickness (2.5 mm) in tests at 200/sup +/ test cycles. Iron electrodes of the composite-type are also delivering 24 Ah/plate (at C/3) at target thickness (1.0 mm). Iron plates are displaying capacity stability for 300/sup +/ test cycles in continuing 3 plate cell tests. Best finished cells are delivering 57 to 63 Wh/kg at C/3, based on cell weights of the finished cells, and in the actual designed cell volume. 6-cell module (6-1) performance has demonstrated 239 Ah, 1735 Wh, 53 WH/kg at the C/3 drain rate. This module is now being evaluated at the National Battery Test Laboratory. The 2 x 4 battery has been constructed, tested, and delivered for engineering test and evaluation. The battery delivered 22.5 kWh, as required (199 Ah discharge at 113 V-bar) at the C/3 drain rate. The battery has performed satisfactorily under dynamometer and constant current drain tests. Some cell problems, related to construction, necessitated changing 3 modules, but the battery is now ready for further testing. Reduction in nickel plate swelling (and concurrent stack electrolyte starvation), to improve cycling, is one area of major effort to reach the final battery objectives. Pasted nickel electrodes are showing promise in initial full-size cell tests and will continue to be evaluated in finished cells, along with other technology advancements. 30 figures, 14 tables.

  16. Research, development, and demonstration of nickel-iron batteries for electric vehicle propulsion. Annual report, 1980

    SciTech Connect (OSTI)

    Not Available

    1981-03-01

    The objective of the Eagle-Picher nickel-iron battery program is to develop a nickel-iron battery for use in the propulsion of electric and electric-hybrid vehicles. To date, the program has concentrated on the characterization, fabrication and testing of the required electrodes, the fabrication and testing of full-scale cells, and finally, the fabrication and testing of full-scale (270 AH) six (6) volt modules. Electrodes of the final configuration have now exceeded 1880 cycles and are showing minimal capacity decline. Full-scale cells have presently exceeded 600 cycles and are tracking the individual electrode tests almost identically. Six volt module tests have exceeded 500 cycles, with a specific energy of 48 Wh/kg. Results to date indicate the nickel-iron battery is beginning to demonstrate the performance required for electric vehicle propulsion.

  17. High Performance Vanadium Redox Flow Batteries with Optimized Electrode Configuration and Membrane Selection

    SciTech Connect (OSTI)

    Liu, Q. H. [University of Tennessee, Knoxville (UTK); Grim, G. M. [University of Tennessee, Knoxville (UTK); Papandrew, A [University of Tennessee, Knoxville (UTK); Turhan, A. [University of Tennessee, Knoxville (UTK); Zawodzinski, Thomas A [ORNL; Mench, Matthew M [ORNL

    2012-01-01

    The performance of a vanadium flow battery with no-gap architecture was significantly improved via several techniques. Specifically, gains arising from variation of the overall electrode thickness, membrane thickness, and electrode thermal treatment were studied. There is a trade-off between apparent kinetic losses, mass transfer losses, and ionic resistance as the electrode thickness is varied at the anode and cathode. Oxidative thermal pretreatment of the carbon paper electrode increased the peak power density by 16%. Results of the pretreatment in air showed greater improvement in peak power density compared to that obtained with pretreatment in an argon environment. The highest peak power density in a VRB yet published to the author s knowledge was achieved at a value of 767 mW cm 2 with optimized membrane and electrode engineering. 2012 The Electrochemical Society. [DOI: 10.1149/2.051208jes] All rights reserved.

  18. Novel Redox Shuttles for Overcharge Protection of Lithium-Ion...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Redox Shuttles for Overcharge Protection of Lithium-Ion Batteries Technology available for licensing: Electrolytes containing novel redox shuttles (electron transporters) for...

  19. Nanomaterials for Fuel cells, Batteries, and Supercapacitors Flow Batteries

    E-Print Network [OSTI]

    Dutta, Indranath

    Nanomaterials for Fuel cells, Batteries, and Supercapacitors Flow Batteries 1. Shao Y, X Wang, MH storage in vanadium redox flow batteries." Journal of Power Sources 195(13):4375-4379. 2. Shao Y, MH nanotube electrodes for redox flow batteries." Electrochemistry Communications 11(10):2064-2067. doi:10

  20. Recovery Act - Demonstration of Sodium Ion Battery for Grid Level Applications

    SciTech Connect (OSTI)

    Wiley, Ted; Whitacre, Jay; Eshoo, Michael; Noland, James; Campbell, Williams; Spears, Christopher

    2012-08-31

    Aquion Energy received a $5.179 million cooperative research agreement under the Department of Energyâ??s Smart Grid Demonstration Program â?? Demonstration of Promising Energy Storage Technologies (Program Area 2.5) of FOA DE-FOE-0000036. The main objective of this project was to demonstrate Aquionâ??s low cost, grid-scale, ambient temperature sodium ion energy storage device. The centerpiece of the technology is a novel hybrid energy storage chemistry that has been proven in a laboratory environment. The objective was to translate these groundbreaking results from the small-batch, small-cell test environment to the pilot scale to enable significant numbers of multiple ampere-hour cells to be manufactured and assembled into test batteries. Aquion developed a proof of concept demonstration unit that showed similar performance and major cost improvement over existing technologies. Beyond minimizing cell and system cost, Aquion built a technology that is safe, environmentally benign and durable over many thousands of cycles as used in a variety of grid support roles. As outlined in the Program documents, the original goals of the project were to demonstrate a unit that: 1. Has a projected capital cost of less than $250/kWh at the pack level 2. A deep discharge cycle life of > 10,000 cycles 3. A volumetric energy density of >20 kWh/m3 4. Projected calendar life of over 10 years 5. A device that contains no hazardous materials and retains best in class safety characteristics. Through the course of this project Aquion developed its aqueous electrolyte electrochemical energy storage device to the point where large demonstration units (> 10 kWh) were able to function in grid-supporting functions detailed by their collaborators. Aquionâ??s final deliverable was an ~15 kWh system that has the ability to perform medium to long duration (> 2 hours) charge and discharge functions approaching 95% DC-DC efficiency. The system has functioned, and continues to function as predicted with no indication that it will not tolerate well beyond 10 calendar years and 10,000 cycles. It has been in continuous operation for more than 1 year with 1,000 cycles (of varying depth of discharge, including 100% depth of discharge) and no identifiable degradation to the system. The final thick electrode cell structure has shown an energy density of 25 kWh/m3 at a five hour (or greater) discharge time. The primary chemistry has remained non-toxic, containing no acids or other corrosive chemicals, and the battery units have passed numerous safety tests, including flame resistance testing. These tests have verified the claim that the device is safe to use and contains no hazardous materials. Current projections show costs at the pack level to offer best in class value and are competitive with lead-acid batteries, factoring in LCOE.

  1. Research, development, and demonstration of lead-acid batteries for electric vehicle propulsion. Annual report, 1980

    SciTech Connect (OSTI)

    Not Available

    1981-03-01

    The progress and status of Eltra's Electric Vehicle Battery Program during FY-80 are presented under five divisional headings: Research on Components and Processes; Development of Cells and Modules for Electric Vehicle Propulsion; Sub-Systems; Pilot Line Production of Electric Vehicle Battery Prototypes; and Program Management.

  2. Research, development and demonstration of nickel-zinc batteries for electric vehicle propulsion. Annual report, 1979

    SciTech Connect (OSTI)

    Not Available

    1980-06-01

    Activities in a program to develop a Ni/Zn battery for electric vehicle propulsion are reported. Aspects discussed include battery design and development, nickel cathode study, and basic electrochemistry. A number of engineering drawings are supplied. 61 figures, 11 tables. (RWR)

  3. Research, development, and demonstration of lead-acid batteries for electric vehicle propulsion. Annual report, 1979

    SciTech Connect (OSTI)

    Not Available

    1980-06-01

    The initial phase of work comprises three factorial experiments to evaluate a variety of component combinations. Goals to be met by these batteries include the following: capacity at 3 h discharge, 20 to 30 kWh; specific energy, 40 Wh/kg; specific power, 1000 W/kg for 15 s; cycle life, 800 cycles to 80% depth; price, $50/kWh. The status of the factorial experiments is reviewed. The second phase of work, design of an advanced battery, has the following goals: 30 to 40 kWh; 60 Wh/kg; 150 W/kg for 15 s; 1000 cycles to 80% depth; $40/kWh. It is not yet possible to say whether these goals can be met. Numerous approaches are under study to increase the utilization of battery chemicals. A battery design with no live electrical connection above the battery is being developed. 52 figures, 52 tables. (RWR)

  4. Research, development and demonstration of lead-acid batteries for electric vehicle propulsion. Annual report, 1979

    SciTech Connect (OSTI)

    Not Available

    1980-06-01

    This report describes work performed from October 1, 1978 to September 30, 1979. The approach for development of both the Improved State-of-the-Art (ISOA) and Advanced lead-acid batteries is three pronged. This approach concentrates on simultaneous optimization of battery design, materials, and manufacturing processing. The 1979 fiscal year saw the achievement of significant progress in the program. Some of the major accomplishments of the year are outlined. 33 figures, 13 tables. (RWR)

  5. Evaluation of battery converters based on 4. 8-MW fuel cell demonstrator inverter. Final report. [Contains brief glossary

    SciTech Connect (OSTI)

    Not Available

    1980-10-01

    Electrical power conditioning is a critical element in the development of advanced electrochemical energy storage systems. This program evaluates the use of existing self-commutated converter technology (as developed by the Power Systems Division of United Technologies for the 4.8-MW Fuel Cell Demonstrator) with modification for use in battery energy storage systems. The program consists of three parts: evaluation of the cost and performance of a self-commutated converter modified to maintain production commonality between battery and fuel cell power conditioners, demonstration of the principal characteristics required for the battery application in MW-scale hardware, and investigation of the technical requirements of operation isolated from the utility system. A power-conditioning system consisting of a self-commutated converter augmented with a phase-controlled rectifier was selected and a preliminary design, prepared. A principal factor in this selection was production commonality with the fuel cell inverter system. Additional types of augmentation, and the use of a self-commutated converter system without augmentation, were also considered. A survey of advanced battery manufacturers was used to establish the dc interface characteristics. The principal characteristics of self-commutated converter operation required for battery application were demonstrated with the aid of an available 0.5-MW development system. A survey of five REA and municipal utilities and three A and E firms was conducted to determine technical requirements for operation in a mode isolated from the utility. Definitive requirements for this application were not established because of the limited scope of this study. 63 figures, 37 tables.

  6. Research, development and demonstration of nickel-zinc batteries for electric vehicle propulsion. Annual report, 1979. [70 W/lb

    SciTech Connect (OSTI)

    Not Available

    1980-06-01

    This second annual report under Contract No. 31-109-39-4200 covers the period July 1, 1978 through August 31, 1979. The program demonstrates the feasibility of the nickel-zinc battery for electric vehicle propulsion. The program is divided into seven distinct but highly interactive tasks collectively aimed at the development and commercialization of nickel-zinc technology. These basic technical tasks are separator development, electrode development, product design and analysis, cell/module battery testing, process development, pilot manufacturing, and thermal management. A Quality Assurance Program has also been established. Significant progress has been made in the understanding of separator failure mechanisms, and a generic category of materials has been specified for the 300+ deep discharge (100% DOD) applications. Shape change has been reduced significantly. A methodology has been generated with the resulting hierarchy: cycle life cost, volumetric energy density, peak power at 80% DOD, gravimetric energy density, and sustained power. Generation I design full-sized 400-Ah cells have yielded in excess of 70 W/lb at 80% DOD. Extensive testing of cells, modules, and batteries is done in a minicomputer-based testing facility. The best life attained with electric vehicle-size cell components is 315 cycles at 100% DOD (1.0V cutoff voltage), while four-cell (approx. 6V) module performance has been limited to about 145 deep discharge cycles. The scale-up of processes for production of components and cells has progressed to facilitate component production rates of thousands per month. Progress in the area of thermal management has been significant, with the development of a model that accurately represents heat generation and rejection rates during battery operation. For the balance of the program, cycle life of > 500 has to be demonstrated in modules and full-sized batteries. 40 figures, 19 tables. (RWR)

  7. Research, development and demonstration of nickel-iron batteries for electric vehicle propulsion. Annual report for 1979

    SciTech Connect (OSTI)

    Not Available

    1980-06-01

    Research progress in the development of Ni/Fe batteries (electrodes in particular) for the period is described. The negative plate demonstrated a reliable lifetime of almost 1000 cycles; 20 mm positive plates were proved feasible; prototype cells yielded output at about 50 Wh/kg and 100 Wh/liter; program goals of 20% greater than these figures appear feasible. 27 figures, 20 tables. (RWR)

  8. Research, development, and demonstration of nickel-iron batteries for electric vehicle propulsion. Annual report for 1980

    SciTech Connect (OSTI)

    Not Available

    1981-03-01

    The FY 1980 program continued to involve full-size, prototype cell, module and battery fabrication and evaluation, aimed at advancing the technical capabilities of the nickel-iron battery, while simultaneously reducing its potential cost in materials and process areas. Improved Electroprecipitation Process (EPP) nickel electrodes of design thickness (2.5 mm) are now being prepared that display stable capacities of 23 to 25 Ah for the C/3 drain rate at 200+ test cycles. Iron electrodes of the composite-type are delivering 24 Ah at the target thickness (1.0 mm). Iron electrodes are displaying capacity stability for > 1000 test cycles in continuing 3 plate cell tests. Finished cells have delivered 57 to 61 Wh/kg at C/3, and have demonstrated cyclic stability to 500+ cycles at 80% depth of discharge profiles at Westinghouse. A 6-cell module that demonstrated 239 Ah, 1735 Wh, 48 Wh/kg at the C/3 drain rate has also been evaluated at the National Battery Test Laboratory, ANL. It operated for 327 test cycles, to a level of 161 Ah at the C/3 rate, before being removed from test. Reduction in nickel electrode swelling (and concurrent stack starvation), to improve cycling, continues to be an area of major effort to reach the final battery cycle life objectives. Pasted nickel electrodes continue to show promise for meeting the life objectives while, simultaneously, providing a low manufacturing cost. Refinements have occurred in the areas of cell hardware, module manifolding and cell interconnections. These improvements have been incorporated into the construction and testing of the cells and modules for this program. Temperature tests at 0/sup 0/C were performed on a 6-cell module and showed a decrease in capacity of only 25% in Ah and .29% in Wh as compared to 25/sup 0/C performance. Additional tests are planned to demonstrate performance at -15/sup 0/C and 40/sup 0/C.

  9. Redox Flow Batteries, a Review

    E-Print Network [OSTI]

    Weber, Adam Z.

    2013-01-01

    streams of aqueous zinc bromide and bromine circulate inzinc reaction does not only involve dissolved species in the aqueous phase. At the positive electrode, bromidebromide and sulphide are 4 ? 10 –5 and 3 ? 10 –6 cm/s, respectively. 5.2.4 Zinc/

  10. Redox Flow Batteries, a Review

    E-Print Network [OSTI]

    Weber, Adam Z.

    2013-01-01

    A. Basha, Industrial & Engineering Chemistry Research, 47,N. Bennion, Industrial & Engineering Chemistry Fundamentals,

  11. Redox Flow Batteries, a Review

    E-Print Network [OSTI]

    Weber, Adam Z.

    2013-01-01

    latter issues and energy storage for the grid in general canelectric grid. To date, however, energy storage comprisesgrid- storage technologies and does not require specific geographical siting, as pumped hydroelectric and compressed-air energy storage (

  12. Redox Flow Batteries, a Review

    E-Print Network [OSTI]

    Weber, Adam Z.

    2013-01-01

    Li, and L. T. Thompson, Electrochemistry Communications, 11,A. E. S. Sleightholme, Electrochemistry Communications, 12,Journal of Applied Electrochemistry, 22, 927 (1992). [25] M.

  13. Redox Flow Batteries, a Review

    E-Print Network [OSTI]

    Weber, Adam Z.

    2013-01-01

    is the intimacy of the solid/electrolyte contact [18, 36].a gas phase at the solid/electrolyte interface could be duethrough the electrolyte phase (2) and the solid phase (1) at

  14. Flow Battery Solution for Smart Grid Applications

    SciTech Connect (OSTI)

    none,

    2014-11-30

    To address future grid requirements, a U.S. Department of Energy ARRA Storage Demonstration program was launched in 2009 to commercialize promising technologies needed for stronger and more renewables-intensive grids. Raytheon Ktech and EnerVault received a cost-share grant award from the U.S. Department of Energy to develop a grid-scale storage system based on EnerVault’s iron-chromium redox flow battery technology.

  15. Eco-friendly Battery and Solar Cell All-in-One | U.S. DOE Office...

    Office of Science (SC) Website

    are in contact with the "catholyte." The Science More efficient, eco-friendly electricity generation with a "solar flow battery" combines a redox flow battery and a...

  16. Research, development, and demonstration of nickel-zinc batteries for electric vehicle propulsion. Annual report for 1980

    SciTech Connect (OSTI)

    Not Available

    1981-03-01

    Progress in developing nickel-zinc batteries for propelling electric vehicles is reported. Information is included on component design, battery fabrication, and module performance testing. Although full scale hardware performance has fallen short of the contract cycle life goals, significant progress has been made to warrant further development. (LCL)

  17. Review of flow battery testing at Sandia

    SciTech Connect (OSTI)

    Butler, P.C.; Miller, D.W.; Robinson, C.E.; Rodriguez, G.P.

    1984-01-01

    Sandia National Laboratories is evaluating prototype zinc/bromine, Redox, and zinc/ferricyanide flowing electrolyte batteries and cells. This paper will update previous reports of test results of two Exxon zinc/bromine batteries and one NASA Redox iron/chromium battery. Two 60-sq. cm. zinc/ferricyanide cells from Lockheed Missiles and Space Co. are also being evaluated. Performance, life, and operating data will be described for these batteries and cells.

  18. Research, development, and demonstration of lead-acid batteries for electric-vehicle propulsion. Annual report, 1980

    SciTech Connect (OSTI)

    Not Available

    1981-03-01

    The first development effort in improving lead-acid batteries fore electric vehicles was the improvement of electric vehicle batteries using flat pasted positive plates and the second was for a tubular long life positive plate. The investigation of 32 component variables based on a flat pasted positive plate configuration is described. The experiment tested 96 - six volt batteries for characterization at 0, 25, and 40/sup 0/C and for cycle life capability at the 3 hour discharge rate with a one cycle, to 80% DOD, per day regime. Four positive paste formulations were selected. Two commercially available microporous separators were used in conjunction with a layer of 0.076 mm thick glass mat. Two concentrations of battery grade sulfuric acid were included in the test to determine if an increase in concentration would improve the battery capacity sufficient to offset the added weight of the more concentrated solution. Two construction variations, 23 plate elements with outside negative plates and 23 plate elements with outside positive plates, were included. The second development effort was an experiment designed to study the relationship of 32 component variables based on a tubular positive plate configuration. 96-six volt batteries were tested at various discharge rates at 0, 25, and 40/sup 0/C along with cycle life testing at 80% DOD of the 3 hour rate. 75 batteries remain on cycle life testing with 17 batteries having in excess of 365 life cycles. Preliminary conclusions indicate: the tubular positive plate is far more capable of withstanding deep cycles than is the flat pasted plate; as presently designed 40 Whr/kg can not be achieved, since 37.7 Whr/kg was the best tubular data obtained; electrolyte circulation is impaired due to the tight element fit in the container; and a redesign is required to reduce the battery weight which will improve the Whr/kg value. This redesign is complete and new molds have been ordered.

  19. Research, development, and demonstration of lead-acid batteries for electric vehicle propulsion. Annual report for 1980

    SciTech Connect (OSTI)

    Not Available

    1981-03-01

    Work performed during Oct. 1, 1979 to Sept. 30, 1980 for the development of lead-acid batteries for electric vehicle propulsion is described. During this report period many of the results frpm Globe Battery's design, materials and process development programs became evident in the achievement of the ISOA (Improved State of Art) specific energy, specific power, and energy efficiency goals while testing in progress also indicates that the cycle life goal can be met. These programs led to the establishment of a working pilot assembly line which produced the first twelve volt ISOA modules. Five of these modules were delivered to the National Battery Test Laboratory during the year for capacity, power and life testing, and assembly is in progress of three full battery systems for installation in vehicles. In the battery subsystem area, design of the acid circulation system for a ninety-six volt ISOA battery pack was completed and assembly of the first such system was initiated. Charger development has been slowed by problems encountered with reliability of some circuits but a prototype unit is being prepared which will meet the charging requirements of our ninety-six volt pack. This charger will be available during the 1981 fiscal year.

  20. Demonstration of an Electrochemical Liquid Cell for Operando Transmission Electron Microscopy Observation of the Lithiation/Delithiation Behavior of Si Nanowire Battery Anodes

    SciTech Connect (OSTI)

    Gu, Meng; Parent, Lucas R.; Mehdi, Beata L.; Unocic, Raymond R.; Mcdowell, Matthew T.; Sacci, Robert L.; Xu, Wu; Connell, Justin G.; Xu, Pinghong; Abellan Baeza, Patricia; Chen, Xilin; Zhang, Yaohui; Perea, Daniel E.; Evans, James E.; Lauhon, Lincoln; Zhang, Jiguang; Liu, Jun; Browning, Nigel D.; Cui, Yi; Arslan, Ilke; Wang, Chong M.

    2013-12-11

    Over the last few years, in-situ transmission electron microscopy (TEM) studies of lithium ion batteries using an open-cell configuration have helped us to gain fundamental insights into the structural and chemical evolution of the electrode materials in real time. In the standard open-cell configuration, the electrolyte is either solid lithium oxide or an ionic liquid, which is point-contacted with the electrode. This cell design is inherently different from a real battery, where liquid electrolyte forms conformal contact with electrode materials. The knowledge learnt from open cells can deviate significantly from the real battery, calling for operando TEM technique with conformal liquid electrolyte contact. In this paper, we developed an operando TEM electrochemical liquid cell to meet this need, providing the configuration of a real battery and in a relevant liquid electrolyte. To demonstrate this novel technique, we studied the lithiation/delithiation behavior of single Si nanowires. Some of lithiation/delithation behaviors of Si obtained using the liquid-cell are consistent with the results from the open-cell studies. However, we also discovered new insights different from the open cell configuration - the dynamics of the electrolyte and, potentially, a future quantitative characterization of the SEI layer formation and structural and chemical evolution.

  1. Research, development, and demonstration of nickel-zinc batteries for electric vehicle propulsion. Annual report for 1980

    SciTech Connect (OSTI)

    Not Available

    1981-03-01

    Progress in the development of nickel-zinc batteries for electric vehicles is reported. Information is presented on nickel electrode preparation and testing; zinc electrode preparation with additives and test results; separator development and the evaluation of polymer-blend separator films; sealed Ni-Zn cells; and the optimization of electric vehicle-type Ni-Zn cells. (LCL)

  2. Progress in Grid Scale Flow Batteries

    E-Print Network [OSTI]

    Progress in Grid Scale Flow Batteries IMRE GYUK, PROGRAM MANAGER ENERGY STORAGE RESEARCH, DOE Flow 2011Year #12;Flow Battery Research at PNNL and Sandia #12; Iron-containing "MetIL" Redox Couples for Flow Batteries, Sandia Sandia has developed

  3. A review of flow battery testing at Sandia

    SciTech Connect (OSTI)

    Butler, P.C.; Miller, D.W.; Robinson, C.E.; Rodriguez, G.P.

    1984-08-01

    Sandia National Laboratories is evaluating prototype zinc/bromine, Redox, and zinc/ferricyanide flowing electrolyte batteries and cells. This paper updates previous reports of test results of two Exxon zinc/bromine batteries and one NASA Redox iron/chromium battery. Two 60sq. cm. zinc/ferricyanide cells from Lockheed Missiles and Space Co. are also being evaluated. Performance, life, and operating data are described for these batteries and cells.

  4. Research, development, and demonstration of nickel-zinc batteries for electric-vehicle propulsion. Annual report for 1980

    SciTech Connect (OSTI)

    Not Available

    1981-03-01

    Progress in work at Exide in three main development areas, i.e., battery design and development, nickel cathode study, and electrochemical studies is reported. Battery design and development concentrated on the optimization of design parameters, including electrode spacing, charging methods, electrolyte concentration, the design and fabrication of prototype cells and modules, and testing to verify these parameters. Initial experiments indicated that an interelectrode spacing of 2.5 mm was optimum when normal (D.C.) charging is used. It was during these experiments that a high rate charging technique was developed to deposit a dense active zinc which did not shed during vibration. A 4 cell - 300 Ah experimental module was built and sent to NBTL for testing. Initial testing on this module and a 300 Ah cell are reported. Experiments on electrolyte concentration indicate that higher concentrations of KOH (8M, 9M or 10M) are beneficial to capacity maintenance. Available nickel cathodes were evaluated for possible use in the VIBROCEL. These included pocket, sintered plaque impregnated, nickel plated steel wool impregnated, plastic bonded and CMG (multifoil) electrodes. These electrodes have Coulombic densities ranging from 70 Ah/Kg for pocket plates to 190 Ah/Kg for CMG electrodes. Detailed test data are presented for each type including rate capability, effect of zincate on performance, and capacity maintenance with cycling. Work on zinc deposition emphasized the special charging technique. This is a deposition using special waveforms of charging current, to deposit dense crystalline zinc on the anode substrate.

  5. Block copolymer with simultaneous electric and ionic conduction for use in lithium ion batteries

    DOE Patents [OSTI]

    2013-10-08

    Redox reactions that occur at the electrodes of batteries require transport of both ions and electrons to the active centers. Reported is the synthesis of a block copolymer that exhibits simultaneous electronic and ionic conduction. A combination of Grignard metathesis polymerization and click reaction was used successively to synthesize the block copolymer containing regioregular poly(3-hexylthiophene) (P3HT) and poly(ethylene oxide) (PEO) segments. The P3HT-PEO/LiTFSI mixture was then used to make a lithium battery cathode with LiFePO.sub.4 as the only other component. All-solid lithium batteries of the cathode described above, a solid electrolyte and a lithium foil as the anode showed capacities within experimental error of the theoretical capacity of the battery. The ability of P3HT-PEO to serve all of the transport and binding functions required in a lithium battery electrode is thus demonstrated.

  6. A class of polysulfide catholytes for lithium-sulfur batteries: energy density, cyclability, and voltage enhancement

    SciTech Connect (OSTI)

    Yu, XW; Manthiram, A

    2015-01-01

    Liquid-phase polysulfide catholytes are attracting much attention in lithium-sulfur (Li-S) batteries as they provide a facile dispersion and homogeneous distribution of the sulfur active material in the conductive matrix. However, the organic solvents used in lithium-polysulfide (Li-PS) batteries play an important role and have an impact on the physico-chemical characteristics of polysulfides. For instance, significantly higher voltages (similar to 2.7 V) of the S/S-n(2-) (4 <= n <= 8) redox couple are observed in Li-PS batteries with dimethyl sulfoxide (DMSO) and N-methyl-2-pyrrolidone (NMP) solvents. Accordingly, high power Li-PS batteries are presented here with the catholyte prepared with NMP solvent and operated with the highly reversible sulfur/long-chain polysulfide redox couple. On the other hand, a remarkable cyclability enhancement of the Li-PS battery is observed with the long-chain, ether-based tetraglyme (TEGDME) solvent. The voltage enhancement and the cyclability enhancement of the Li-PS batteries are attributed to the solvation effect, viscosity, and volatility of the solvents. Finally, highly concentrated polysulfide catholytes are successfully synthesized, with which high energy density Li-PS batteries are demonstrated by employing a multi-walled carbon nanotube (MWCNT) fabric electrode.

  7. Lithium-ion batteries with intrinsic pulse overcharge protection

    DOE Patents [OSTI]

    Chen, Zonghai; Amine, Khalil

    2013-02-05

    The present invention relates in general to the field of lithium rechargeable batteries, and more particularly relates to the positive electrode design of lithium-ion batteries with improved high-rate pulse overcharge protection. Thus the present invention provides electrochemical devices containing a cathode comprising at least one primary positive material and at least one secondary positive material; an anode; and a non-aqueous electrolyte comprising a redox shuttle additive; wherein the redox potential of the redox shuttle additive is greater than the redox potential of the primary positive material; the redox potential of the redox shuttle additive is lower than the redox potential of the secondary positive material; and the redox shuttle additive is stable at least up to the redox potential of the secondary positive material.

  8. Utilities and offsites design baseline. Outside Battery Limits Facility 6000 tpd SRC-I Demonstration Plant. Volume 1

    SciTech Connect (OSTI)

    None

    1984-05-25

    As part of the overall Solvent Refined Coal (SRC-1) project baseline being prepared by International Coal Refining Company (ICRC), the RUST Engineering Company is providing necessary input for the Outside Battery Limits (OSBL) Facilities. The project baseline is comprised of: design baseline - technical definition of work; schedule baseline - detailed and management level 1 schedules; and cost baseline - estimates and cost/manpower plan. The design baseline (technical definition) for the OSBL Facilities has been completed and is presented in Volumes I, II, III, IV, V and VI. The OSBL technical definition is based on, and compatible with, the ICRC defined statement of work, design basis memorandum, master project procedures, process and mechanical design criteria, and baseline guidance documents. The design basis memorandum is included in Paragraph 1.3 of Volume I. The baseline design data is presented in 6 volumes. Volume I contains the introduction section and utility systems data through steam and feedwater. Volume II continues with utility systems data through fuel system, and contains the interconnecting systems and utility system integration information. Volume III contains the offsites data through water and waste treatment. Volume IV continues with offsites data, including site development and buildings, and contains raw materials and product handling and storage information. Volume V contains wastewater treatment and solid wastes landfill systems developed by Catalytic, Inc. to supplement the information contained in Volume III. Volume VI contains proprietary information of Resources Conservation Company related to the evaporator/crystallizer system of the wastewater treatment area.

  9. Development of Production-Intent Plug-In Hybrid Vehicle Using Advanced Lithium-Ion Battery Packs with Deployment to a Demonstration Fleet

    SciTech Connect (OSTI)

    No, author

    2013-09-29

    The primary goal of this project was to speed the development of one of the first commercially available, OEM-produced plug-in hybrid electric vehicles (PHEV). The performance of the PHEV was expected to double the fuel economy of the conventional hybrid version. This vehicle program incorporated a number of advanced technologies, including advanced lithium-ion battery packs and an E85-capable flex-fuel engine. The project developed, fully integrated, and validated plug-in specific systems and controls by using GM’s Global Vehicle Development Process (GVDP) for production vehicles. Engineering Development related activities included the build of mule vehicles and integration vehicles for Phases I & II of the project. Performance data for these vehicles was shared with the U.S. Department of Energy (DOE). The deployment of many of these vehicles was restricted to internal use at GM sites or restricted to assigned GM drivers. Phase III of the project captured the first half or Alpha phase of the Engineering tasks for the development of a new thermal management design for a second generation battery module. The project spanned five years. It included six on-site technical reviews with representatives from the DOE. One unique aspect of the GM/DOE collaborative project was the involvement of the DOE throughout the OEM vehicle development process. The DOE gained an understanding of how an OEM develops vehicle efficiency and FE performance, while balancing many other vehicle performance attributes to provide customers well balanced and fuel efficient vehicles that are exciting to drive. Many vehicle content and performance trade-offs were encountered throughout the vehicle development process to achieve product cost and performance targets for both the OEM and end customer. The project team completed two sets of PHEV development vehicles with fully integrated PHEV systems. Over 50 development vehicles were built and operated for over 180,000 development miles. The team also completed four GM engineering development Buy-Off rides/milestones. The project included numerous engineering vehicle and systems development trips including extreme hot, cold and altitude exposure. The final fuel economy performance demonstrated met the objectives of the PHEV collaborative GM/DOE project. Charge depletion fuel economy of twice that of the non-PHEV model was demonstrated. The project team also designed, developed and tested a high voltage battery module concept that appears to be feasible from a manufacturability, cost and performance standpoint. The project provided important product development and knowledge as well as technological learnings and advancements that include multiple U.S. patent applications.

  10. ORIGINAL PAPER Redox flow batteries: a review

    E-Print Network [OSTI]

    Mench, Matthew M.

    in a mixture (cm2 /s) E0 Standard cell potential (V) Eeq Equilibrium cell potential (V) F Faraday's constant)chemical potential of species i (J/mol) Uk Potential in phase k (V) wi Permeation coefficient of species i (mol/s cm conducting phase O Oxidant R Reductant 1 Introduction Renewable-energy sources, such as solar and wind

  11. Redox Flow Batteries - Energy Innovation Portal

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration wouldMassR&D100 Winners * Impactsand engineersAcquisition and ContractOfficeofHead

  12. Redox Active Layer-by-Layer Structures containing MnO2 Nanoparticles

    SciTech Connect (OSTI)

    Bazito, Fernanda; O'Brien, Robert; Buttry, Daniel A.

    2005-02-01

    Nanoscale materials provide unique properties that will enable new technologies and enhance older ones. One area of intense activity in which nanoscale materials are being used is in the development of new functional materials for battery applications. This effort promises superior materials with properties that circumvent many of the problems associated with traditional battery materials. Previously we have worked on several approaches for using nanoscale materials for application as cathode materials in rechargeable Li batteries. Our recent work has focused on synthesizing MnO2 nanoparticles and using these in layer-by-layer (LbL) structures to probe the redox properties of the nanoparticles. We show that the aqueous colloidal nanoparticles produced by butanol reduction of tetramethylammonium permanganate can be trapped in thin films using a layer-by-layer deposition approach, and that these films are both redox active and exhibit kinetically facile electrochemical responses. We show cyclic voltammetry of MnO2 colloidal nanoparticles entrapped in a LbL thin film at an ITO electrode surface using poly(diallyldimethylammonium chloride) (PDDA). CV experiments demonstrate that Li+ insertion accompanies Mn(IV) reduction in LiClO4 supporting electrolytes, and that reduction is hindered in supporting electrolytes containing only tetrabutylammonium cations. We also show that electron propagation through multilayer films is facile, suggesting that electrons percolate through the films via electron exchange between nanoparticles.

  13. Towards High-Performance Nonaqueous Redox Flow Electrolyte through Ionic Modification of Active Species

    SciTech Connect (OSTI)

    Wei, Xiaoliang; Cosimbescu, Lelia; Xu, Wu; Hu, Jian Z.; Vijayakumar, M.; Feng, Ju; Hu, Mary Y.; Deng, Xuchu; Xiao, Jie; Liu, Jun; Sprenkle, Vincent L.; Wang, Wei

    2015-01-01

    We will present a novel design lithium-organic non-aqueous redox flow battery based on a modified ferrocene catholyte. This RFB produced desired electrochemical performance exceeding most of the currently reported nonaqueous RFB systems.

  14. Batteries: Overview of Battery Cathodes

    E-Print Network [OSTI]

    Doeff, Marca M

    2011-01-01

    M=Mn, Ni, Co) in Lithium Batteries at 50°C. Electrochem.Electrodes for Lithium Batteries. J. Am. Ceram. Soc. 82:S CIENCE AND T ECHNOLOGY Batteries: Overview of Battery

  15. Batteries: Overview of Battery Cathodes

    E-Print Network [OSTI]

    Doeff, Marca M

    2011-01-01

    Challenges in Future Li-Battery Research. Phil Trans. RoyalBatteries: Overview of Battery Cathodes Marca M. Doeffduring cell discharge. Battery-a device consisting of one or

  16. Research, development and demonstration of lead-acid batteries for electric vehicle propulsion. Annual report, 1979. [165 Ah, 36. 5 Wh/kg

    SciTech Connect (OSTI)

    Bodamer, G.W.; Branca, G.C.; Cash, H.R.; Chrastina, J.R.; Yurick, E.M.

    1980-06-01

    Progress during the 1979 fiscal year is reported. All the tooling and capital equipment required for the pilot line production has been installed. A limited amount of plate production has been realized. A highly automated and versatile testing facility was established. The fabrication and testing of the initial calculated design is discussed. Cell component adjustments and the trade-offs associated with those changes are presented. Cells are being evaluated at the 3-hour rate. They have a capacity of 165 Ah and an energy density of 36.5 Wh/kg, and have completed 105 cycles to date. Experimental results being pursued under the advanced battery development program to enhance energy density and cycle life are presented. Data on the effects of different electrolyte specific gravity, separators, retainers, paste densities, battery additives and grid alloy composition on battery performance are presented and evaluated. Advanced battery prototype cells are under construction. Quality Assurance activities are summarized. They include monitoring the cell and battery fabrication and testing operations as well as all relevant documentation procedures. 12 figures, 28 tables.

  17. Molten Air -- A new, highest energy class of rechargeable batteries

    E-Print Network [OSTI]

    Licht, Stuart

    2013-01-01

    This study introduces the principles of a new class of batteries, rechargeable molten air batteries, and several battery chemistry examples are demonstrated. The new battery class uses a molten electrolyte, are quasi reversible, and have amongst the highest intrinsic battery electric energy storage capacities. Three examples of the new batteries are demonstrated. These are the iron, carbon and VB2 molten air batteries with respective intrinsic volumetric energy capacities of 10,000, 19,000 and 27,000 Wh per liter.

  18. Battery system

    DOE Patents [OSTI]

    Dougherty, Thomas J; Wood, Steven J; Trester, Dale B; Andrew, Michael G

    2013-08-27

    A battery module includes a plurality of battery cells and a system configured for passing a fluid past at least a portion of the plurality of battery cells in a parallel manner.

  19. Lithium Batteries

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Thin-Film Battery with Lithium Anode Courtesy of Oak Ridge National Laboratory, Materials Science and Technology Division Lithium Batteries Resources with Additional Information...

  20. Batteries: Overview of Battery Cathodes

    E-Print Network [OSTI]

    Doeff, Marca M

    2011-01-01

    2000) Costs of Lithium-Ion Batteries for Vehicles. Report,for High-Power Lithium-Ion Batteries. J. Power Sources 128:in High-Power Lithium-Ion Batteries. J. Electrochem. Soc.

  1. Batteries: Overview of Battery Cathodes

    E-Print Network [OSTI]

    Doeff, Marca M

    2011-01-01

    used graphite anode. After charging, the batteries are readylithium ion batteries (i.e. , to lithiate graphite anodes soGraphite Electrodes Due to the Deposition of Manganese Ions on Them in Li-Ion Batteries.

  2. High Energy Density Na-S/NiCl2 Hybrid Battery

    SciTech Connect (OSTI)

    Lu, Xiaochuan; Lemmon, John P.; Kim, Jin Yong; Sprenkle, Vincent L.; Yang, Zhenguo

    2013-02-15

    High temperature (250-350°C) sodium-beta alumina batteries (NBBs) are attractive energy storage devices for renewable energy integration and other grid related applications. Currently, two technologies are commercially available in NBBs, e.g., sodium-sulfur (Na-S) battery and sodium-metal halide (ZEBRA) batteries. In this study, we investigated the combination of these two chemistries with a mixed cathode. In particular, the cathode of the cell consisted of molten NaAlCl4 as a catholyte and a mixture of Ni, NaCl and Na2S as active materials. During cycling, two reversible plateaus were observed in cell voltage profiles, which matched electrochemical reactions for Na-S and Na-NiCl2 redox couples. An irreversible reaction between sulfur species and Ni was identified during initial charge at 280°C, which caused a decrease in cell capacity. The final products on discharge included Na2Sn with 1< n < 3, which differed from Na2S3 found in traditional Na-S battery. Reduction of sulfur in the mixed cathode led to an increase in overall energy density over ZEBRA batteries. Despite of the initial drop in cell capacity, the mixed cathode demonstrated relatively stable cycling with more than 95% of capacity retained over 60 cycles under 10mA/cm2. Optimization of the cathode may lead to further improvements in battery performance.

  3. Performance mapping studies in Redox flow cells

    SciTech Connect (OSTI)

    Hoberecht, M.A.; Thaller, L.H.

    1981-09-01

    Pumping power requirements in any flow battery system constitute a direct parasitic energy loss. It is therefore useful to determine the practical lower limit for reactant flow rates. Through the use of a theoretical framework based on electrochemical first principles, two different experimental flow mapping techniques are developed to evaluate and compare electrodes as a function of flow rate. For the carbon felt electrodes presently used in NASA-Lewis Redox cells, a flow rate 1.5 times greater than the stoichiometric rate seems to be the required minimum.

  4. The Science of Battery Degradation. Sullivan, John P; Fenton...

    Office of Scientific and Technical Information (OSTI)

    to cross-section commercial scale battery electrodes, the demonstration of scanning transmission x-ray microscopy (STXM) to probe lithium transport mechanisms within Li-ion battery...

  5. Batteries for Large Scale Energy Storage

    SciTech Connect (OSTI)

    Soloveichik, Grigorii L.

    2011-07-15

    In recent years, with the deployment of renewable energy sources, advances in electrified transportation, and development in smart grids, the markets for large-scale stationary energy storage have grown rapidly. Electrochemical energy storage methods are strong candidate solutions due to their high energy density, flexibility, and scalability. This review provides an overview of mature and emerging technologies for secondary and redox flow batteries. New developments in the chemistry of secondary and flow batteries as well as regenerative fuel cells are also considered. Advantages and disadvantages of current and prospective electrochemical energy storage options are discussed. The most promising technologies in the short term are high-temperature sodium batteries with ?”-alumina electrolyte, lithium-ion batteries, and flow batteries. Regenerative fuel cells and lithium metal batteries with high energy density require further research to become practical.

  6. Application of Flow Battery in Marine Current Turbine System for Daily Power Management

    E-Print Network [OSTI]

    Brest, Université de

    Application of Flow Battery in Marine Current Turbine System for Daily Power Management Zhibin Zhou focuses on a grid-connected MCT system and proposes using vanadium redox flow battery (VRB) energy storage and to guarantee the expected power injection to the local grid. Keywords--Marine current turbine, flow battery

  7. Hybrid energy storage systems utilizing redox active organic compounds

    DOE Patents [OSTI]

    Wang, Wei; Xu, Wu; Li, Liyu; Yang, Zhenguo

    2015-09-08

    Redox flow batteries (RFB) have attracted considerable interest due to their ability to store large amounts of power and energy. Non-aqueous energy storage systems that utilize at least some aspects of RFB systems are attractive because they can offer an expansion of the operating potential window, which can improve on the system energy and power densities. One example of such systems has a separator separating first and second electrodes. The first electrode includes a first current collector and volume containing a first active material. The second electrode includes a second current collector and volume containing a second active material. During operation, the first source provides a flow of first active material to the first volume. The first active material includes a redox active organic compound dissolved in a non-aqueous, liquid electrolyte and the second active material includes a redox active metal.

  8. Solution redox couples for electrochemical energy storage and photoelectrochemical cells

    SciTech Connect (OSTI)

    Chen, Y.W.

    1982-01-01

    Some of the properties of solution redox couples in aqueous solution were investigated to obtain guidelines for designing and selecting redox couples for electrochemical energy storage (redox flow battery) or photoelectrochemical cells. Several first row transition metal ions (Fe, Co, Cu, V, Cr) and their complexes were probed. O-phenanthroline and related ligands were employed to complex iron, cobalt, and copper ions. Macrocyclic and noncyclic pentadentate complexes of iron and copper ions were also studied. Some aspects of solution chemistry, such as dissociation rate, complexation rate, air sensitivity, and the stoichiometry of the complex ions were investigated. Measurements of heterogeneous electron transfer rates, mass transfer rates, stability, standard potential and solubility of the complex ions were carried out.

  9. Development and demonstration of process and components for the control of aluminum-air-battery electrolyte composition through the precipitation of aluminum trihydroxide. Final report

    SciTech Connect (OSTI)

    Swansiger, T. G.; Misra, C.

    1982-05-11

    Physical property data on density, viscosity, and electrical conductivity were developed and reduced to correlation form for synthetic electrolytes containing nominally 7 g/L Sn and 0.20 g/L Ga in 3,4,5,6 M NaOH. Concentrations of Al(OH)/sub 4/ were selected at six levels for each NaOH concentration and ranged from 0 to as high as 4 M Al(OH)/sub 4/ at 6 M NaOH. Measurements of each property were made at 25, 40, 60, and 80 C. The effect of the Sn and Ga impurities was to increase density by a relatively small percentage, increase viscosity by a significant percentage, and decrease electrical conductance by a significant percentage. Isothermal, batch precipitation experiments at 40, 60, and 80 C were utilized to develop data from which kinetic and solubility correlations were derived as functions of electrolyte and system parameters. Precipitation rate was negatively affected by tin in solution, with a 40% reduction in the rate constant being attributed to 0.06 M Sn. Both Sn and Ga co-precipitated with the Al(OH)/sub 3/ to an extent strongly dependent on temperature. Very high precipitation rates resulted in Na levels in product exceeding the target level of 0.24% Na on the hydrate basis. The incorporation of Na in product was also a strong function of temperature. A total of 108 computer simulations were performed and documented to delineate the region of feasible operation with respect to meeting the aluminate production specification. A full-scale precipitator was operated in a continuous mode to assess production rate, population changes with time, and hardware aspects. A digester was used to perform the function of an Al-Air battery, that is to drive Al(OH)/sub 4//sup -/ into solution. Results are presented in detail. (WHK)

  10. NASA Redox Storage System Development Project. Final report

    SciTech Connect (OSTI)

    Hagedorn, N.H.

    1984-10-01

    The Redox Storage System Technology Project was jointly supported by the US Department of Energy and NASA. The objectives of the project were to develop the Redox flow battery concept and to prove its technical and economic viability. The iron and chromium redox couples were selected as the reactants. Membranes and electrodes were developed for the original mode of operating at 25/sup 0/C with the reactants separated by an ion-exchange membrane. Analytical capabilities and system-level operating concepts were developed and verified in a 1-kW, 13-kWh pre-prototype system. A subsequent change was made in operating mode, going to 65/sup 0/C and using mixed reactants. New membranes and a new electrode catalyst were developed, resulting in single cell operation as high as 80 mA/cm/sup 2/ with energy efficiencies greater than 80%. Studies indicate a likely system cost of about $75/kWh. Standard Oil of Ohio (Sohio) has undertaken further development of the Redox system. An exclusive patent license was obtained from NASA by Sohio. Transfer of Redox technology to Sohio is supported by the NASA Technology Utilization Office. This report covers the full duration of the project.

  11. A Desalination Battery Mauro Pasta,

    E-Print Network [OSTI]

    Cui, Yi

    A Desalination Battery Mauro Pasta, Colin D. Wessells, Yi Cui,,§ and Fabio La Mantia Information ABSTRACT: Water desalination is an important approach to provide fresh water around the world demonstrate the novel concept of a "desalination battery", which operates by performing cycles in reverse

  12. 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim (1 of 8) 1500271wileyonlinelibrary.com Ionic Liquid Redox Catholyte for High Energy Efficiency,

    E-Print Network [OSTI]

    Angell, C. Austen

    .com Ionic Liquid Redox Catholyte for High Energy Efficiency, Low-Cost Energy Storage Leigang Xue, Telpriore. Although their cell cycled well, the quite high (91%)[3] energy efficiency of the normal ZEBRA battery redox catholyte by combining it with a liquid sodium anode to achieve >96% overall energy efficiency

  13. Computation of the Redox and Protonation Properties of Quinones: Towards the Prediction of Redox Cycling Natural Products.

    SciTech Connect (OSTI)

    Cape, Jonathan L.; Bowman, Michael K.; Kramer, David M.

    2006-08-01

    Quinone metabolites perform a variety of key functions in plants, including pathogen protection, oxidative phosphorylation, and redox signaling. Many of these structurally diverse compounds have been shown to exhibit potent antimicrobial, anticancer, and anti-inflammatory properties, although the exact mechanisms of action are far from understood. Redox cycling has been proposed as a possible mechanism of action for many quinine species. Experimental determination of the essential thermodynamic data (i.e. electrochemical and pKa values) required to predict the propensity towards redox cycling is often difficult or impossible to obtain due to the experimental limitations. We demonstrate a practical computational approach to obtain reasonable estimates of these parameters.

  14. Batteries: Overview of Battery Cathodes

    E-Print Network [OSTI]

    Doeff, Marca M

    2011-01-01

    for Li-ion batteries. Solid Electrolyte Interface (SEI)-athe formation of a solid electrolyte interface (SEI) onElectrolyte Solutions, Temperatures). Electrochem. and Solid-

  15. KAir Battery

    Broader source: Energy.gov [DOE]

    KAir Battery, from Ohio State University, is commercializing highly energy efficient cost-effective potassium air batteries for use in the electrical stationary storage systems market (ESSS). Beyond, the ESSS market potential applications range from temporary power stations and electric vehicle.

  16. Battery resource assessment. Subtask II. 5. Battery manufacturing capability recycling of battery materials. Draft final report

    SciTech Connect (OSTI)

    Pemsler, P.

    1981-02-01

    Studies were conducted on the recycling of advanced battery system components for six different battery systems. These include: Nickel/Zinc, Nickel/Iron, Zinc/Chlorine, Zinc/Bromine, Sodium/Sulfur, and Lithium-Aluminum/Iron Sulfide. For each battery system, one or more processes has been developed which would permit recycling of the major or active materials. Each recycle process has been designed to produce a product material which can be used directly as a raw material by the battery manufacturer. Metal recoverabilities are in the range of 93 to 95% for all processes. In each case, capital and operating costs have been developed for a recycling plant which processes 100,000 electric vehicle batteries per year. These costs have been developed based on material and energy balances, equipment lists, factored installation costs, and manpower estimates. In general, there are no technological barriers for recycling in the Nickel/Zinc, Nickel/Iron, Zinc/Chlorine and Zinc/Bromine battery systems. The recycling processes are based on essentially conventional, demonstrate technology. The lead times required to build battery recycling plants based on these processes is comparable to that of any other new plant. The total elapsed time required from inception to plant operation is approximately 3 to 5 y. The recycling process for the sodium/sulfur and lithium-aluminum/sulfide battery systems are not based on conventional technology. In particular, mechanical systems for dismantling these batteries must be developed.

  17. Battery Charger Efficiency

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Battery Charger Efficiency Issues with Marine and Recreational Vehicle Battery Chargers Marine and RV battery chargers differ from power tool and small appliance chargers CEC...

  18. Zinc-bromine battery technology

    SciTech Connect (OSTI)

    Bellows, R.; Grimes, P.; Malachesky, P.

    1983-01-01

    Some progress in the field of zinc-bromine batteries is reviewed, and a number of successes and some difficulties are related. The direction of work includes, among other areas, testing of parametric and large batteries. The program includes the control of electrode planarity through electrode thickness and electrode support, improved cathode activation coatings to increase and maintain performance near the end of battery capacity, reduced retention of bromine in the battery cell stock at shutdown to lower capacity loss and improve sealing techniques. Projected factory cost should be competitive with lead-acid batteries. Progress has been demonstrated in scale-up and performance, as well as improving the life of the system. (LEW)

  19. Cell for making secondary batteries

    DOE Patents [OSTI]

    Visco, S.J.; Liu, M.; DeJonghe, L.C.

    1992-11-10

    The present invention provides all solid-state lithium and sodium batteries operating in the approximate temperature range of ambient to 145 C (limited by melting points of electrodes/electrolyte), with demonstrated energy and power densities far in excess of state-of-the-art high-temperature battery systems. The preferred battery comprises a solid lithium or sodium electrode, a polymeric electrolyte such as polyethylene oxide doped with lithium trifluorate (PEO[sub 8]LiCF[sub 3]SO[sub 3]), and a solid-state composite positive electrode containing a polymeric organosulfur electrode, (SRS)[sub n], and carbon black, dispersed in a polymeric electrolyte. 2 figs.

  20. Cell for making secondary batteries

    DOE Patents [OSTI]

    Visco, Steven J. (2336 California St., Berkeley, CA 94703); Liu, Meilin (1121C Ninth St., #29, Albany, CA 94710); DeJonghe, Lutgard C. (910 Acalanes Rd., Lafayette, CA 94549)

    1992-01-01

    The present invention provides all solid-state lithium and sodium batteries operating in the approximate temperature range of ambient to 145.degree. C. (limited by melting points of electrodes/electrolyte), with demonstrated energy and power densities far in excess of state-of-the-art high-temperature battery systems. The preferred battery comprises a solid lithium or sodium electrode, a polymeric electrolyte such as polyethylene oxide doped with lithium triflate (PEO.sub.8 LiCF.sub.3 SO.sub.3), and a solid-state composite positive electrode containing a polymeric organosulfur electrode, (SRS).sub.n, and carbon black, dispersed in a polymeric electrolyte.

  1. Fact Sheet: Vanadium Redox Flow Batteries (October 2012)

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:FinancingPetroleum12, 2015Executive Order14, 20111,FYDepartment of Energy United

  2. Materials for Use with Aqueous Redox Flow Batteries | Argonne National

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration wouldMass map shines light on dark matter By Sarah Schlieder *8 Materials Science in11

  3. AVTA: Battery Testing - DC Fast Charging's Effects on PEV Batteries...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Battery Testing - DC Fast Charging's Effects on PEV Batteries AVTA: Battery Testing - DC Fast Charging's Effects on PEV Batteries The Vehicle Technologies Office's Advanced Vehicle...

  4. Applying the Battery Ownership Model in Pursuit of Optimal Battery...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Applying the Battery Ownership Model in Pursuit of Optimal Battery Use Strategies Applying the Battery Ownership Model in Pursuit of Optimal Battery Use Strategies 2012 DOE...

  5. Batteries: Overview of Battery Cathodes

    SciTech Connect (OSTI)

    Doeff, Marca M

    2010-07-12

    The very high theoretical capacity of lithium (3829 mAh/g) provided a compelling rationale from the 1970's onward for development of rechargeable batteries employing the elemental metal as an anode. The realization that some transition metal compounds undergo reductive lithium intercalation reactions reversibly allowed use of these materials as cathodes in these devices, most notably, TiS{sub 2}. Another intercalation compound, LiCoO{sub 2}, was described shortly thereafter but, because it was produced in the discharged state, was not considered to be of interest by battery companies at the time. Due to difficulties with the rechargeability of lithium and related safety concerns, however, alternative anodes were sought. The graphite intercalation compound (GIC) LiC{sub 6} was considered an attractive candidate but the high reactivity with commonly used electrolytic solutions containing organic solvents was recognized as a significant impediment to its use. The development of electrolytes that allowed the formation of a solid electrolyte interface (SEI) on surfaces of the carbon particles was a breakthrough that enabled commercialization of Li-ion batteries. In 1990, Sony announced the first commercial batteries based on a dual Li ion intercalation system. These devices are assembled in the discharged state, so that it is convenient to employ a prelithiated cathode such as LiCoO{sub 2} with the commonly used graphite anode. After charging, the batteries are ready to power devices. The practical realization of high energy density Li-ion batteries revolutionized the portable electronics industry, as evidenced by the widespread market penetration of mobile phones, laptop computers, digital music players, and other lightweight devices since the early 1990s. In 2009, worldwide sales of Li-ion batteries for these applications alone were US$ 7 billion. Furthermore, their performance characteristics (Figure 1) make them attractive for traction applications such as hybrid electric vehicles (HEVs), plug-in hybrid electric vehicles (PHEVs), and electric vehicles (EVs); a market predicted to be potentially ten times greater than that of consumer electronics. In fact, only Liion batteries can meet the requirements for PHEVs as set by the U.S. Advanced Battery Consortium (USABC), although they still fall slightly short of EV goals. In the case of Li-ion batteries, the trade-off between power and energy shown in Figure 1 is a function both of device design and the electrode materials that are used. Thus, a high power battery (e.g., one intended for an HEV) will not necessarily contain the same electrode materials as one designed for high energy (i.e., for an EV). As is shown in Figure 1, power translates into acceleration, and energy into range, or miles traveled, for vehicular uses. Furthermore, performance, cost, and abuse-tolerance requirements for traction batteries differ considerably from those for consumer electronics batteries. Vehicular applications are particularly sensitive to cost; currently, Li-ion batteries are priced at about $1000/kWh, whereas the USABC goal is $150/kWh. The three most expensive components of a Li-ion battery, no matter what the configuration, are the cathode, the separator, and the electrolyte. Reduction of cost has been one of the primary driving forces for the investigation of new cathode materials to replace expensive LiCoO{sub 2}, particularly for vehicular applications. Another extremely important factor is safety under abuse conditions such as overcharge. This is particularly relevant for the large battery packs intended for vehicular uses, which are designed with multiple cells wired in series arrays. Premature failure of one cell in a string may cause others to go into overcharge during passage of current. These considerations have led to the development of several different types of cathode materials, as will be covered in the next section. Because there is not yet one ideal material that can meet requirements for all applications, research into cathodes for Li-ion batteries is, as of this writ

  6. Rechargeable Aluminum-Ion Batteries

    SciTech Connect (OSTI)

    Paranthaman, Mariappan Parans [ORNL; Liu, Hansan [ORNL; Sun, Xiao-Guang [ORNL; Dai, Sheng [ORNL; Brown, Gilbert M [ORNL

    2015-01-01

    This chapter reports on the development of rechargeable aluminum-ion batteries. A possible concept of rechargeable aluminum/aluminum-ion battery based on low-cost, earth-abundant Al anode, ionic liquid EMImCl:AlCl3 (1-ethyl-3-methyl imidazolium chloroaluminate) electrolytes and MnO2 cathode has been proposed. Al anode has been reported to show good reversibility in acid melts. However, due to the problems in demonstrating the reversibility in cathodes, alternate battery cathodes and battery concepts have also been presented. New ionic liquid electrolytes for reversible Al dissolution and deposition are needed in the future for replacing corrosive EMImCl:AlCl3 electrolytes.

  7. Metal-Air Batteries

    SciTech Connect (OSTI)

    Zhang, Jiguang; Bruce, Peter G.; Zhang, Gregory

    2011-08-01

    Metal-air batteries have much higher specific energies than most currently available primary and rechargeable batteries. Recent advances in electrode materials and electrolytes, as well as new designs on metal-air batteries, have attracted intensive effort in recent years, especially in the development of lithium-air batteries. The general principle in metal-air batteries will be reviewed in this chapter. The materials, preparation methods, and performances of metal-air batteries will be discussed. Two main metal-air batteries, Zn-air and Li-air batteries will be discussed in detail. Other type of metal-air batteries will also be described.

  8. Investigation of the electrocatalytic oxygen reduction and evolution reactions in lithium–oxygen batteries

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Zheng, Dong; Zhang, Xuran; Qu, Deyu; Yang, Xiao -Qing; Lee, Hung -Sui; Qu, Deyang

    2015-04-21

    Oxygen reduction and oxygen evolution reactions were examined on graphite electrodes with different crystal orientations. The kinetics for the redox couple O2/O2•- are very fast, therefore no catalyst seems necessary to assist the charge transfer process. Apparently, the main source of the overpotential for the O2 reduction reaction is from mass diffusion. Li2O2 becomes soluble in non-aqueous electrolytes in the presence of the tetraethylammonium tetrafluoroborate additive. The soluble B-O22- ions can be oxidized electro-catalytically. The edge orientation of graphite demonstrates superior catalytic activity for the oxidation over basal orientation. The findings reveal an opportunity for recharging Li-air batteries efficiently andmore »a new strategy of developing the catalyst for oxygen evolution reaction.« less

  9. Investigation of the electrocatalytic oxygen reduction and evolution reactions in lithium–oxygen batteries

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Zheng, Dong [Univ. of Wisconsin, Milwaukee, WI (United States). Collece of Engineering and Applied Science; Zhang, Xuran [Wuhan Univ. of Technology, Wuhan (China). School of Science; Qu, Deyu [Wuhan Univ. of Technology, Wuhan (China). School of Science; Yang, Xiao-Qing [Brookhaven National Lab. (BNL), Upton, NY (United States). Chemistry Dept.; Lee, Hung-Sui [Brookhaven National Lab. (BNL), Upton, NY (United States). Chemistry Dept.; Qu, Deyang [Univ. of Wisconsin, Milwaukee, WI (United States). Collece of Engineering and Applied Science

    2015-08-01

    Oxygen reduction and oxygen evolution reactions were studied on graphite electrodes with different crystal orientations. The kinetics for the redox couple O2/O2•- are very fast, therefore no catalyst seems necessary to assist the charge transfer process. Apparently, the main source of the overpotential for the O2 reduction reaction is from mass diffusion. Li2O2 becomes soluble in non-aqueous electrolytes in the presence of the tetraethylammonium tetrafluoroborate additive. The soluble B-O22- ions can be oxidized electro-catalytically. The edge orientation of graphite demonstrates superior catalytic activity for the oxidation over basal orientation. The findings reveal an opportunity for recharging Li-air batteries efficiently and a new strategy of developing the catalyst for oxygen evolution reaction.

  10. Pollution of Natural Waters 1. Redox chemistry

    E-Print Network [OSTI]

    Schofield, Jeremy

    Pollution of Natural Waters Outline: 1. Redox chemistry 2. Redox potential in aquatic systems 3; Photosynthetic algae limited to euphotic zone where light can penetrate #15; Below euphotic zone, O 2

  11. Toward a Lithium-"Air" Battery: The Effect of CO2 on the Chemistry of a Lithium-Oxygen Cell

    E-Print Network [OSTI]

    Goddard III, William A.

    Toward a Lithium-"Air" Battery: The Effect of CO2 on the Chemistry of a Lithium-Oxygen Cell Hyung as a "lithium-air battery". Most studies of lithium-air batteries have focused on demonstrating battery operations in pure oxygen conditions; such a battery should technically be described as a "lithium- dioxygen

  12. Holme et al. Soil Redox Sensor Networks RADIO FREQUENCY ENABLED SOIL REDOX POTENTIAL

    E-Print Network [OSTI]

    Rubinstein, Benjamin

    Holme et al. Soil Redox Sensor Networks RADIO FREQUENCY ENABLED SOIL REDOX POTENTIAL SENSOR technologies that may be combined into a cost effective soil redox sensor network, discuss the merits of each as a component of said network, describe a prototype soil redox sensor network and perform basic laboratory

  13. Thermal Batteries for Electric Vehicles

    SciTech Connect (OSTI)

    2011-11-21

    HEATS Project: UT Austin will demonstrate a high-energy density and low-cost thermal storage system that will provide efficient cabin heating and cooling for EVs. Compared to existing HVAC systems powered by electric batteries in EVs, the innovative hot-and-cold thermal batteries-based technology is expected to decrease the manufacturing cost and increase the driving range of next-generation EVs. These thermal batteries can be charged with off-peak electric power together with the electric batteries. Based on innovations in composite materials offering twice the energy density of ice and 10 times the thermal conductivity of water, these thermal batteries are expected to achieve a comparable energy density at 25% of the cost of electric batteries. Moreover, because UT Austin’s thermal energy storage systems are modular, they may be incorporated into the heating and cooling systems in buildings, providing further energy efficiencies and positively impacting the emissions of current building heating/cooling systems.

  14. Automating Personalized Battery Management on Smartphones

    E-Print Network [OSTI]

    Falaki, Mohamamd Hossein

    2012-01-01

    3 Automating Battery Management . . . . . . .122 Battery Goal Setting UI . . . . . . . . . . . . . . .Power and Battery Management . . . . . . . . . . . . . . .

  15. Battery cell feedthrough apparatus

    DOE Patents [OSTI]

    Kaun, Thomas D. (New Lenox, IL)

    1995-01-01

    A compact, hermetic feedthrough apparatus comprising interfitting sleeve portions constructed of chemically-stable materials to permit unique battery designs and increase battery life and performance.

  16. Piezonuclear battery

    DOE Patents [OSTI]

    Bongianni, Wayne L. (Los Alamos, NM)

    1992-01-01

    A piezonuclear battery generates output power arising from the piezoelectric voltage produced from radioactive decay particles interacting with a piezoelectric medium. Radioactive particle energy may directly create an acoustic wave in the piezoelectric medium or a moderator may be used to generate collision particles for interacting with the medium. In one embodiment a radioactive material (.sup.252 Cf) with an output of about 1 microwatt produced a 12 nanowatt output (1.2% conversion efficiency) from a piezoelectric copolymer of vinylidene fluoride/trifluorethylene.

  17. Zinc-bromine batteries for bulk energy storage

    SciTech Connect (OSTI)

    Bellows, R.J.; Einstein, H.; Elspass, C.; Grimes, P.; Katner, E.; Malachesky, P.; Newby, K.

    1983-08-01

    The development of a utility bulk energy market has been severely limited by the lack of better energy storage batteries. Lead acid batteries presently dominate the market. However, lead acid batteries suffer various limitations in the area of cost, maintenance, etc. Design projections for zinc-bromine batteries are attractive for bulk energy storage (BES) and electric vehicle (EV) applications in terms of low manufacturing costs and good performance characteristics. Zinc-bromine battery projections compare favorably with both current lead acid batteries and other advanced battery candidates. In recent years, Exxon's zinc-bromine battery program has shown rapid progress in terms of solving system problems and demonstrating both rapid scale-up of the system and competitively low cost manufacturing techniques.

  18. Redox probing study of the potential dependence of charge transport through Li2O2

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Knudsen, Kristian B.; Luntz, Alan C.; Jensen, Sřren H.; Vegge, Tejs; Hjelm, Johan

    2015-11-20

    In the field of energy storage devices the pursuit for cheap, high energy density, reliable secondary batteries is at the top of the agenda. The Li–O2 battery is one of the possible technologies that, in theory, should be able to close the gap, which exists between the present state-of-the-art Li-ion technologies and the demand placed on batteries by technologies such as electrical vehicles. Here we present a redox probing study of the charge transfer across the main deposition product lithium peroxide, Li2O2, in the Li–O2 battery using outer-sphere redox shuttles. The change in heterogeneous electron transfer exchange rate as amore »function of the potential and the Li2O2 layer thickness (~depth-of-discharge) was determined using electrochemical impedance spectroscopy. In addition, the attenuation of the electron transfer exchange rate with film thickness is dependent on the probing potential, providing evidence that hole transport is the dominant process for charge transfer through Li2O2 and showing that the origin of the sudden death observed upon discharge is due to charge transport limitations.« less

  19. RECHARGEABLE HIGH-TEMPERATURE BATTERIES

    E-Print Network [OSTI]

    Cairns, Elton J.

    2014-01-01

    F. Eshman, High-Performance Batteries for Electric-VehicleS. Sudar, High Performance Batteries for Electric-VehicleHIGH-TEMPERATURE BATTERIES Elton J. Cairns January 1981 TWO-

  20. Mesoporous Block Copolymer Battery Separators

    E-Print Network [OSTI]

    Wong, David Tunmin

    2012-01-01

    Xiangyun Song helped me with battery experiments. I want toMesoporous Block Copolymer Battery Separators by DavidMesoporous Block Copolymer Battery Separators by David

  1. California Lithium Battery, Inc.

    Broader source: Energy.gov [DOE]

    California Lithium Battery (CaLBattery), based in Los Angeles, California, is developing a low-cost, advanced lithium-ion battery that employs a novel silicon graphene composite material that will substantially improve battery cycle life. When combined with other advanced battery materials, it could effectively lower battery life cycle cost by up to 70 percent. Over the next year, CALBattery will be working with Argonne National Laboratory to combine their patented silicon-graphene anode material process together with other advanced ANL cathode and electrolyte battery materials.

  2. Secondary calcium solid electrolyte high temperature battery

    SciTech Connect (OSTI)

    Sammells, A.F.; Schumacher, B.

    1986-01-01

    The authors report on recent work directed towards determining the viability of polycrystalline Ca/sup 2 +/ conducting ..beta..''-alumina solid electrolytes as the basis for a new type of high temperature battery. In this battery system the negative electrode consisted of a calcium-silicon alloy whose redox electro-chemistry was mediated to the calcium conducting solid electrolyte via the use of the molten salt eutectic CaCl/sub 2/ (51.4/sup M//0), CaI/sub 2/ (mp 550/sup 0/C). Both the molten salt and the calcium-alloy negative active material were separated from the positive active material via the Ca/sup 2 +/ conducting polycrystalline solid electrolyte. The positive electrode consisted of a solid-state matrix having a somewhat related crystallographic structure to Ca/sup 2 +/ ..beta..''-alumina, but where a significant fraction of the A1/sup 3 +/ sites located within this solid electrolyte's spinel block were replaced by immobile transition metal species. These species were available for participating in solid-state redox electrochemistry upon electrochemical cell cycling.

  3. Battery cell feedthrough apparatus

    DOE Patents [OSTI]

    Kaun, T.D.

    1995-03-14

    A compact, hermetic feedthrough apparatus is described comprising interfitting sleeve portions constructed of chemically-stable materials to permit unique battery designs and increase battery life and performance. 8 figs.

  4. Method for characterization of the redox condition of cementitious materials

    DOE Patents [OSTI]

    Almond, Philip M.; Langton, Christine A.; Stefanko, David B.

    2015-12-22

    Disclosed are methods for determining the redox condition of cementitious materials. The methods are leaching methods that utilize an in situ redox indicator that is present in the cementitious materials as formed. The in situ redox indicator leaches from cementitious material and, when the leaching process is carried out under anaerobic conditions can be utilized to determine the redox condition of the material. The in situ redox indicator can exhibit distinct characteristics in the leachate depending upon the redox condition of the indicator.

  5. Metalloprotein and redox protein design are rapidly advancing toward the chemical synthesis of novel proteins that have

    E-Print Network [OSTI]

    Gibney, Brian R.

    485 Metalloprotein and redox protein design are rapidly advancing toward the chemical synthesis of novel proteins that have predictable structures and functions. Current data demonstrate a breadth and combinatorial strategies. These sophisticated synthetic analogs of natural proteins constructively test our

  6. C Battery Corral 

    E-Print Network [OSTI]

    Unknown

    2011-09-05

    reliability. The total consumption of lead-acid batteries in the United States reported in 2008 is $2.9 billion per year and is growing at an annual rate of 8%. The utilization of Lithium-ion battery is growing rapidly. The possibility of lithium-ion... Energy Storage Parameters ............................................................................ 25 Table 2 Case I Cost Comparison ................................................................................ 27 Table 3 PHEV Battery...

  7. battery, map parcel, med

    E-Print Network [OSTI]

    Rosenthal, Jeffrey S.

    Attic *** book teachest Servant dictionary scarf [11] Winery demijohn battery, map AuntLair X] EastAnnex battery[4] Cupboard2 [2] mask DeadEnd rucksack AlisonWriting [16] TinyBalcony [17] gold key. [2] Need new torch battery (see [4]) to enter. Then get painting. [3] To please aunt, must move

  8. Servant dictionary battery, map

    E-Print Network [OSTI]

    Rosenthal, Jeffrey S.

    Attic *** book teachest Servant dictionary scarf [11] Winery demijohn battery, map AuntLair X] EastAnnex battery[4] Cupboard2 [2] mask DeadEnd rucksack AlisonWriting [16] TinyBalcony [17] gold key. [2] Need new torch battery (see [4]) to enter. Then get painting. [3] To please aunt, must move

  9. Negative Electrodes for Li-Ion Batteries

    E-Print Network [OSTI]

    Kinoshita, Kim; Zaghib, Karim

    2001-01-01

    on New Sealed Rechargeable Batteries and Supercapacitors, B.10. S. Hossain, in Handbook of Batteries, Second Edition, D.Workshop on Advanced Batteries (Lithium Batteries), February

  10. Design and Simulation of Lithium Rechargeable Batteries

    E-Print Network [OSTI]

    Doyle, C.M.

    2010-01-01

    of a Rechargeable Lithium Battery," J. Power Sources, 24,Wada, "Rechargeable Lithium Battery Based on Pyrolytic Car-Li-Ion Battery," Lithium Battery Symposium, Electrochemical

  11. Collecting battery data with Open Battery Gareth L. Jones1

    E-Print Network [OSTI]

    Imperial College, London

    Collecting battery data with Open Battery Gareth L. Jones1 and Peter G. Harrison2 1,2 Imperial present Open Battery, a tool for collecting data on mobile phone battery usage, describe the data we have a useful tool in future work to describe mobile phone battery traces. 1998 ACM Subject Classification D.4

  12. Lithium ion batteries based on nanoporous silicon

    DOE Patents [OSTI]

    Tolbert, Sarah H.; Nemanick, Eric J.; Kang, Chris Byung-Hwa

    2015-09-22

    A lithium ion battery that incorporates an anode formed from a Group IV semiconductor material such as porous silicon is disclosed. The battery includes a cathode, and an anode comprising porous silicon. In some embodiments, the anode is present in the form of a nanowire, a film, or a powder, the porous silicon having a pore diameters within the range between 2 nm and 100 nm and an average wall thickness of within the range between 1 nm and 100 nm. The lithium ion battery further includes, in some embodiments, a non-aqueous lithium containing electrolyte. Lithium ion batteries incorporating a porous silicon anode demonstrate have high, stable lithium alloying capacity over many cycles.

  13. Remote Control Inserting the batteries

    E-Print Network [OSTI]

    Kostic, Milivoje M.

    Top View Rear View Inserting the batteries 1 3Press in on the arrow mark and slide in the direction of the arrow to remove the battery cover. 2 Insert two AA size batteries, making sure their polarities match the and marks inside the battery compartment. Insert the side tabs of the battery cover into their slots

  14. Rechargeable Magnesium Batteries: Low-Cost Rechargeable Magnesium Batteries with High Energy Density

    SciTech Connect (OSTI)

    2010-10-01

    BEEST Project: Pellion Technologies is developing rechargeable magnesium batteries that would enable an EV to travel 3 times farther than it could using Li-ion batteries. Prototype magnesium batteries demonstrate excellent electrochemical behavior; delivering thousands of charge cycles with very little fade. Nevertheless, these prototypes have always stored too little energy to be commercially viable. Pellion Technologies is working to overcome this challenge by rapidly screening potential storage materials using proprietary, high-throughput computer models. To date, 12,000 materials have been identified and analyzed. The resulting best materials have been electrochemically tested, yielding several very promising candidates.

  15. High energy density redox flow device

    DOE Patents [OSTI]

    Chiang, Yet-Ming; Carter, W. Craig; Ho, Bryan Y; Duduta, Mihai; Limthongkul, Pimpa

    2014-05-13

    Redox flow devices are described in which at least one of the positive electrode or negative electrode-active materials is a semi-solid or is a condensed ion-storing electroactive material, and in which at least one of the electrode-active materials is transported to and from an assembly at which the electrochemical reaction occurs, producing electrical energy. The electronic conductivity of the semi-solid is increased by the addition of conductive particles to suspensions and/or via the surface modification of the solid in semi-solids (e.g., by coating the solid with a more electron conductive coating material to increase the power of the device). High energy density and high power redox flow devices are disclosed. The redox flow devices described herein can also include one or more inventive design features. In addition, inventive chemistries for use in redox flow devices are also described.

  16. A Hybrid Redox-Supercapacitor System with Anionic Catholyte and Cationic Anolyte

    SciTech Connect (OSTI)

    Wang, B; Macia-Agullo, JA; Prendiville, DG; Zheng, X; Liu, D; Zhang, Y; Boettcher, SW; Ji, X; Stucky, GD

    2014-04-11

    A significant challenge for energy storage technologies is to realize battery-level energy density and capacitor-level durability and power density in one device. By introducing an electrolyte composed of an anionic catholyte and a cationic anolyte into a symmetric carbon-based supercapacitor configuration, a hybrid electrochemical battery-supercapacitor system using soluble redox species delivers significantly improved energy density from 20 to 42 W.h/kg (based on the electrode mass) and stable capacities for > 10(4) cycles. The ionic species formed in the electrolyte are studied by UV-Vis, Raman and mass spectroscopy to probe the energy storage mechanism. The strategy is general and may provide a route to critically-needed fast-charging devices with both high energy density and power. (C) 2014 The Electrochemical Society. All rights reserved.

  17. Battery utilizing ceramic membranes

    DOE Patents [OSTI]

    Yahnke, Mark S. (Berkeley, CA); Shlomo, Golan (Haifa, IL); Anderson, Marc A. (Madison, WI)

    1994-01-01

    A thin film battery is disclosed based on the use of ceramic membrane technology. The battery includes a pair of conductive collectors on which the materials for the anode and the cathode may be spin coated. The separator is formed of a porous metal oxide ceramic membrane impregnated with electrolyte so that electrical separation is maintained while ion mobility is also maintained. The entire battery can be made less than 10 microns thick while generating a potential in the 1 volt range.

  18. Lithium battery management system

    DOE Patents [OSTI]

    Dougherty, Thomas J. (Waukesha, WI)

    2012-05-08

    Provided is a system for managing a lithium battery system having a plurality of cells. The battery system comprises a variable-resistance element electrically connected to a cell and located proximate a portion of the cell; and a device for determining, utilizing the variable-resistance element, whether the temperature of the cell has exceeded a predetermined threshold. A method of managing the temperature of a lithium battery system is also included.

  19. Electrochemical Lithium Harvesting from Waste Li-ion Batteries Byron M. Wolfe III1

    E-Print Network [OSTI]

    Zhou, Yaoqi

    Electrochemical Lithium Harvesting from Waste Li-ion Batteries Byron M. Wolfe III1 , Wen Chao Lee1 This study demonstrates the feasibility of using water and the contents of waste Li-ion batteries for the electrodes in a Li-liquid battery system. Li metal was collected electrochemically from a waste Li

  20. Graphene-enhanced hybrid phase change materials for thermal management of Li-ion batteries

    E-Print Network [OSTI]

    Graphene-enhanced hybrid phase change materials for thermal management of Li-ion batteries g h l i g h t s We demonstrated that thermal management of Li-ion batteries improves dramatically incorporation leads to significant decrease in the temperature rise in Li-ion batteries. Graphene leads

  1. Fuzzy Logic-Based State-of-Health Determination of Lead Acid Batteries Pritpal Singh

    E-Print Network [OSTI]

    Singh, Pritpal

    Fuzzy Logic-Based State-of-Health Determination of Lead Acid Batteries Pritpal Singh Villanova) of uninterruptible power supply (UPS) batteries using impedance measurements has been demonstrated by several extracted equivalent circuit parameters to correlate with battery SOH. This is a computationally extensive

  2. Better than crystalline: amorphous vanadium oxide for sodium-ion batteries

    E-Print Network [OSTI]

    Cao, Guozhong

    Better than crystalline: amorphous vanadium oxide for sodium-ion batteries E. Uchaker, Y. Z. Zheng and investigated as cathodes for sodium- ion batteries. Amorphous V2O5 demonstrated superior electro- chemical development.1,2 Among commercially available energy storage media, lithium-ion (Li-ion) batteries constitute

  3. Development and Testing of an UltraBattery-Equipped Honda Civic

    SciTech Connect (OSTI)

    Donald Karner

    2012-04-01

    The UltraBattery retrofit project DP1.8 and Carbon Enriched project C3, performed by ECOtality North America (ECOtality) and funded by the U.S. Department of Energy (DOE) and the Advanced Lead Acid Battery Consortium (ALABC), are to demonstrate the suitability of advanced lead battery technology in Hybrid Electrical Vehicles (HEVs).

  4. Mesoporous Block Copolymer Battery Separators

    E-Print Network [OSTI]

    Wong, David Tunmin

    2012-01-01

    L. C. , R. , Costs of Lithium-Ion Batteries for Vehicles. Inpast two decades, lithium-ion batteries have emerged as anMore recently, lithium-ion batteries have been employed in

  5. Status of flow-battery research in the United States

    SciTech Connect (OSTI)

    Clark, R.P.; Chamberlin, J.L.; Saxton, H.J.; Symons, P.C.

    1982-01-01

    Flow batteries are defined as electrochemical energy storage devices in which at least one of the active materials is stored external to the power converting cell-stack, and in which this soluble active material is circulated via the electrolyte, through the cell-stack during system charge or discharge. Although intensive development of some of these systems has been underway for some time, they were only classified as a distinct category in the United States recently. Of the projects on flow batteries which are still being conducted, the work on the zinc/chlorine system (EDA) has been in progress since 1968; programs on zinc/bromine (Exxon, Gould), on iron/chromium Redox (NASA-Lewis Research Center), and on the iron/ferric-ferrous chloride system (NRG/GEL) have all been underway about seven years; research on the zinc/ferro-ferricyanide battery (Lockheed) has been conducted since 1978. The present paper, which reviews the 1982 status of these battery programs, appears timely since, except for the Lockheed system, the developments have all reached the stage where multi-kilowatt-hour batteries are under test.

  6. Chemical overcharge protection of lithium and lithium-ion secondary batteries

    DOE Patents [OSTI]

    Abraham, Kuzhikalail M. (Needham, MA); Rohan, James F. (Cork City, IE); Foo, Conrad C. (Dedham, MA); Pasquariello, David M. (Pawtucket, RI)

    1999-01-01

    This invention features the use of redox reagents, dissolved in non-aqueous electrolytes, to provide overcharge protection for cells having lithium metal or lithium-ion negative electrodes (anodes). In particular, the invention features the use of a class of compounds consisting of thianthrene and its derivatives as redox shuttle reagents to provide overcharge protection. Specific examples of this invention are thianthrene and 2,7-diacetyl thianthrene. One example of a rechargeable battery in which 2,7-diacetyl thianthrene is used has carbon negative electrode (anode) and spinet LiMn.sub.2 O.sub.4 positive electrode (cathode).

  7. Chemical overcharge protection of lithium and lithium-ion secondary batteries

    DOE Patents [OSTI]

    Abraham, K.M.; Rohan, J.F.; Foo, C.C.; Pasquariello, D.M.

    1999-01-12

    This invention features the use of redox reagents, dissolved in non-aqueous electrolytes, to provide overcharge protection for cells having lithium metal or lithium-ion negative electrodes (anodes). In particular, the invention features the use of a class of compounds consisting of thianthrene and its derivatives as redox shuttle reagents to provide overcharge protection. Specific examples of this invention are thianthrene and 2,7-diacetyl thianthrene. One example of a rechargeable battery in which 2,7-diacetyl thianthrene is used has carbon negative electrode (anode) and spinet LiMn{sub 2}O{sub 4} positive electrode (cathode). 8 figs.

  8. Friction welded battery component

    SciTech Connect (OSTI)

    Bowen, G.K.; Zagrodnik, J.P.

    1990-07-31

    This patent describes a battery component for use in a flow battery containing fluid electrolyte. It comprises: first and second bond ribs disposed on opposite sides of and defining a channel and respective primary flash traps disposed adjacent the bond ribs opposite the channel.

  9. Storage battery systems analysis

    SciTech Connect (OSTI)

    Murphy, K.D.

    1982-01-01

    Storage Battery Systems Analysis supports the battery Exploratory Technology Development and Testing Project with technical and economic analysis of battery systems in various end-use applications. Computer modeling and simulation techniques are used in the analyses. Analysis objectives are achieved through both in-house efforts and outside contracts. In-house studies during FY82 included a study of the relationship between storage battery system reliability and cost, through cost-of-investment and cost-of-service interruption inputs; revision and update of the SOLSTOR computer code in standard FORTRAN 77 form; parametric studies of residential stand-alone photovoltaic systems using the SOLSTOR code; simulation of wind turbine collector/storage battery systems for the community of Kalaupapa, Molokai, Hawaii.

  10. Flexographically Printed Rechargeable Zinc-based Battery for Grid Energy Storage

    E-Print Network [OSTI]

    Wang, Zuoqian

    2013-01-01

    energy storage application demonstration, an integration of the printed battery with a small photovoltaic device (preferable also printable solar cell based on silicon

  11. Rubber meets the road with new ORNL carbon, battery technologies...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    goal is to scale up the recovery process and demonstrate applications as anodes for lithium-ion batteries in large-format pouch cells. ORNL researchers' goal is to scale up...

  12. Energy extraction from the biologic battery in the inner ear

    E-Print Network [OSTI]

    Bandyopadhyay, Saurav

    Endocochlear potential (EP) is a battery-like electrochemical gradient found in and actively maintained by the inner ear [superscript 1, 2]. Here we demonstrate that the mammalian EP can be used as a power source for ...

  13. Zinc bromide battery development. Final report

    SciTech Connect (OSTI)

    Leo, A.

    1986-01-01

    Earlier EPRI work demonstrated the potential of zinc bromide batteries to provide long-life, low-cost energy storage for utilities. The latest developments, summarized in this report, include improvements in electrode, separator, and other components, as well as successful testing of cell stacks.

  14. Mesoporous Block Copolymer Battery Separators

    E-Print Network [OSTI]

    Wong, David Tunmin

    2012-01-01

    image. Chapter 2 – Relationship Between Morphology and Conductivity of Block- Copolymer Based Battery

  15. Redox Shuttle Additives | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration wouldMassR&D100 Winners * Impactsand engineersAcquisition andRedox ShuttleRedox Shuttle

  16. BEEST: Electric Vehicle Batteries

    SciTech Connect (OSTI)

    2010-07-01

    BEEST Project: The U.S. spends nearly a $1 billion per day to import petroleum, but we need dramatically better batteries for electric and plug-in hybrid vehicles (EV/PHEV) to truly compete with gasoline-powered cars. The 10 projects in ARPA-E’s BEEST Project, short for “Batteries for Electrical Energy Storage in Transportation,” could make that happen by developing a variety of rechargeable battery technologies that would enable EV/PHEVs to meet or beat the price and performance of gasoline-powered cars, and enable mass production of electric vehicles that people will be excited to drive.

  17. Battery utilizing ceramic membranes

    DOE Patents [OSTI]

    Yahnke, M.S.; Shlomo, G.; Anderson, M.A.

    1994-08-30

    A thin film battery is disclosed based on the use of ceramic membrane technology. The battery includes a pair of conductive collectors on which the materials for the anode and the cathode may be spin coated. The separator is formed of a porous metal oxide ceramic membrane impregnated with electrolyte so that electrical separation is maintained while ion mobility is also maintained. The entire battery can be made less than 10 microns thick while generating a potential in the 1 volt range. 2 figs.

  18. Polymeric battery separators

    SciTech Connect (OSTI)

    Minchak, R. J.; Schenk, W. N.

    1985-06-11

    Configurations of cross-linked or vulcanized amphophilic or quaternized block copolymer of haloalkyl epoxides and hydroxyl terminated alkadiene polymers are useful as battery separators in both primary and secondary batteries, particularly nickel-zinc batteries. The quaternized block copolymers are prepared by polymerizing a haloalkyl epoxide in the presence of a hydroxyl terminated 1,3-alkadiene to form a block copolymer that is then reacted with an amine to form the quaternized or amphophilic block copolymer that is then cured or cross-linked with sulfur, polyamines, metal oxides, organic peroxides and the like.

  19. SOLAR BATTERY CHARGERS FOR NIMH BATTERIES1 Abstract -This paper proposes new solar battery

    E-Print Network [OSTI]

    Lehman, Brad

    SOLAR BATTERY CHARGERS FOR NIMH BATTERIES1 Abstract - This paper proposes new solar battery chargers for NiMH batteries. Used with portable solar panels, existing charge control methods are shown of consumer portable solar arrays. These new arrays are lightweight, durable, and flexible and have been

  20. Recycle Batteries CSM recycles a variety of battery types including automotive, sealed lead acid, nickel

    E-Print Network [OSTI]

    Recycle Batteries CSM recycles a variety of battery types including automotive, sealed lead acid, and alkaline batteries. All batteries need to be sorted by battery type. Each battery type must be accumulated in a clearly labeled receptacle to identify the acceptable battery type. Batteries can be dropped off

  1. Sodium Titanate Anodes for Sodium Ion Batteries

    E-Print Network [OSTI]

    Doeff, Marca M.

    2014-01-01

    for  Sodium  Ion  Batteries   One   of   the   challenges  of   sodium   ion   batteries   is   identification   of  for   use   in   batteries.   Our   recent   work   has  

  2. Side Reactions in Lithium-Ion Batteries

    E-Print Network [OSTI]

    Tang, Maureen Han-Mei

    2012-01-01

    Secondary Lithium Batteries. Journal of the Electrochemicalin Rechargeable Lithium Batteries for Overcharge Protection.G. M. in Handbook of Batteries (eds Linden, D. & Reddy, T.

  3. Design and Simulation of Lithium Rechargeable Batteries

    E-Print Network [OSTI]

    Doyle, C.M.

    2010-01-01

    Gabano, Ed. , Lithium Batteries, Academic Press, New York,K. V. Kordesch, "Primary Batteries 1951-1976," J. Elec- n ~.Rechargeable Lithium Batteries," J. Electrochem. Soc. , [20

  4. Block copolymer electrolytes for lithium batteries

    E-Print Network [OSTI]

    Hudson, William Rodgers

    2011-01-01

    facing rechargeable lithium batteries. Nature 414, 359-367 (lithium and lithium-ion batteries. Solid State Ionics 135,electrolytes for lithium-ion batteries. Advanced Materials

  5. Titanate Anodes for Sodium Ion Batteries

    E-Print Network [OSTI]

    Doeff, Marca

    2014-01-01

    Company-v3832/Lithium-Ion-Batteries- Outlook-Alternative-Anodes for Sodium Ion Batteries Marca M. Doeff * , Jordirechargeable sodium ion batteries, particularly for large-

  6. Aluminum ion batteries: electrolytes and cathodes

    E-Print Network [OSTI]

    Reed, Luke

    2015-01-01

    Anodes for Aluminum-Air Batteries. J. Electrochem. Soc.Anodes for Aluminum-Air Batteries. J. Electrochem. Soc.ALLOYS FOR ALUMINUM AIR BATTERIES. J. Electrochem. Soc.

  7. Ionic liquids for rechargeable lithium batteries

    E-Print Network [OSTI]

    Salminen, Justin; Papaiconomou, Nicolas; Kerr, John; Prausnitz, John; Newman, John

    2008-01-01

    their use in lithium-ion batteries. However, applications atresponse of lithium rechargeable batteries,” Journal of therechargeable lithium batteries (Preliminary report, Sept.

  8. Titanate Anodes for Sodium Ion Batteries

    E-Print Network [OSTI]

    Doeff, Marca M.

    2014-01-01

    Anodes for Sodium Ion Batteries Identification of a suitabledevelopment of sodium ion batteries, because graphite, theanode for lithium ion batteries, does not undergo sodium

  9. Sodium Titanate Anodes for Dual Intercalation Batteries

    E-Print Network [OSTI]

    Doeff, Marca M.

    2014-01-01

    for Dual Intercalation Batteries Lithium supply securityinterest in sodium-ion batteries. These devices operate muchsodium-ion or lithium-ion batteries that utilize them as

  10. Vehicle Battery Basics | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Vehicle Battery Basics November 22, 2013 - 1:58pm Addthis Vehicle Battery Basics Batteries are essential for electric drive technologies such as hybrid electric vehicles...

  11. Mapping Particle Charges in Battery Electrodes

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    battery charging and discharging. Researchers first charged commercial-grade battery cells to 50% full in 30 minutes, mimicking real world conditions. Then, the battery cell...

  12. Advances in lithium-ion batteries

    E-Print Network [OSTI]

    Kerr, John B.

    2003-01-01

    Advances in Lithium-Ion Batteries Edited by Walter A. vanpuzzling mysteries of lithium ion batteries. The book beginssuch importance to lithium ion batteries one is amazed that

  13. Block copolymer electrolytes for lithium batteries

    E-Print Network [OSTI]

    Hudson, William Rodgers

    2011-01-01

    film lithium and lithium-ion batteries. Solid State Ionicselectrolytes for lithium-ion batteries. Advanced Materialsand side reactions in lithium-ion batteries. Journal of the

  14. Side Reactions in Lithium-Ion Batteries

    E-Print Network [OSTI]

    Tang, Maureen Han-Mei

    2012-01-01

    additive for lithium-ion batteries. Elec- trochemistryOptimization of Lithium-Ion Batteries PhD thesis (Universityfor Rechargeable Lithium-Ion Batteries. Journal of The

  15. Block copolymer electrolytes for lithium batteries

    E-Print Network [OSTI]

    Hudson, William Rodgers

    2011-01-01

    K. M. Directions in secondary lithium battery research-and-runaway inhibitors for lithium battery electrolytes. Journalrunaway inhibitors for lithium battery electrolytes. Journal

  16. Block copolymer electrolytes for lithium batteries

    E-Print Network [OSTI]

    Hudson, William Rodgers

    2011-01-01

    Ethylene Carbonate for Lithium Ion Battery Use. Journal oflithium atoms in lithium-ion battery electrolyte. Chemicalcapacity fading of a lithium-ion battery cycled at elevated

  17. Mapping Particle Charges in Battery Electrodes

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Mapping Particle Charges in Battery Electrodes Print The deceivingly simple appearance of batteries masks their chemical complexity. A typical lithium-ion battery in a cell phone...

  18. Mapping Particle Charges in Battery Electrodes

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Mapping Particle Charges in Battery Electrodes Mapping Particle Charges in Battery Electrodes Print Friday, 26 July 2013 14:18 The deceivingly simple appearance of batteries masks...

  19. Parallel flow diffusion battery

    DOE Patents [OSTI]

    Yeh, H.C.; Cheng, Y.S.

    1984-01-01

    A parallel flow diffusion battery for determining the mass distribution of an aerosol has a plurality of diffusion cells mounted in parallel to an aerosol stream, each diffusion cell including a stack of mesh wire screens of different density.

  20. Parallel flow diffusion battery

    DOE Patents [OSTI]

    Yeh, Hsu-Chi (Albuquerque, NM); Cheng, Yung-Sung (Albuquerque, NM)

    1984-08-07

    A parallel flow diffusion battery for determining the mass distribution of an aerosol has a plurality of diffusion cells mounted in parallel to an aerosol stream, each diffusion cell including a stack of mesh wire screens of different density.

  1. Battery packaging - Technology review

    SciTech Connect (OSTI)

    Maiser, Eric [The German Engineering Federation (VDMA), Battery Production Industry Group, Lyoner Str. 18, 60528 Frankfurt am Main (Germany)

    2014-06-16

    This paper gives a brief overview of battery packaging concepts, their specific advantages and drawbacks, as well as the importance of packaging for performance and cost. Production processes, scaling and automation are discussed in detail to reveal opportunities for cost reduction. Module standardization as an additional path to drive down cost is introduced. A comparison to electronics and photovoltaics production shows 'lessons learned' in those related industries and how they can accelerate learning curves in battery production.

  2. FORUM REVIEW ARTICLE Redox Eustress: Roles for Redox-Active Metabolites

    E-Print Network [OSTI]

    Dietrich, Lars

    and Behavior Chinweike Okegbe,1,* Hassan Sakhtah,1,* Matthew D. Sekedat,1,* Alexa Price-Whelan,2 and Lars E and the evolution of complex life forms, respectively (Fig. 1). While the energy provided by redox chemistry

  3. Methods for using redox liposome biosensors

    DOE Patents [OSTI]

    Cheng, Quan (SF, CA); Stevens, Raymond C. (La Jolla, CA)

    2002-01-01

    The present invention provides methods and compositions for detecting the presence of biologically-important analytes by using redox liposome biosensors. In particular, the present invention provides liposome/sol-gel electrodes suitable for the detection of a wide variety of organic molecules, including but not limited to bacterial toxins.

  4. Transitions from near-surface to interior redox upon lithiation in conversion electrode materials

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    He, Kai [Brookhaven National Lab. (BNL), Upton, NY (United States); Xin, Huolin L. [Brookhaven National Lab. (BNL), Upton, NY (United States); Zhao, Kejie [MIT (Massachusetts Inst. of Technology), Cambridge, MA (United States); Yu, Xiqian [Brookhaven National Lab. (BNL), Upton, NY (United States); Norlund, Dennis [SLAC National Accelerator Lab., Menlo Park, CA (United States); Weng, Tsu-Chien [SLAC National Accelerator Lab., Menlo Park, CA (United States); Li, Jing [Brookhaven National Lab. (BNL), Upton, NY (United States); Stony Brook Univ., Stony Brook, NY (United States); Jiang, Yi [Cornell Univ., Ithaca, NY (United States); Cadigan, Christopher A. [Colorado School of Mines, Golden, CO (United States); Richards, Ryan M. [Colorado School of Mines, Golden, CO (United States); Doeff, Marca M. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Yang, Xiao-Qing [Brookhaven National Lab. (BNL), Upton, NY (United States); Stach, Eric A. [Brookhaven National Lab. (BNL), Upton, NY (United States); Li, Ju [MIT (Massachusetts Inst. of Technology), Cambridge, MA (United States); Lin, Feng [Colorado School of Mines, Golden, CO (United States); Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Su, Dong [Brookhaven National Lab. (BNL), Upton, NY (United States); Stony Brook Univ., Stony Brook, NY (United States)

    2015-02-11

    Nanoparticle electrodes in lithium-ion batteries have both near-surface and interior contributions to their redox capacity, each with distinct rate capabilities. Using combined electron microscopy, synchrotron X-ray methods and ab initio calculations, we have investigated the lithiation pathways that occur in NiO electrodes. We find that the near-surface electroactive (Ni˛??Ni?) sites saturated very quickly, and then encounter unexpected difficulty in propagating the phase transition into the electrode (referred to as a “shrinking-core” mode). However, the interior capacity for Ni˛??Ni? can be accessed efficiently following the nucleation of lithiation “fingers” which propagate into the sample bulk, but only after a certain incubation time. Our microstructural observations of the transition from a slow shrinking-core mode to a faster lithiation finger mode corroborate with synchrotron characterization of large-format batteries, and can be rationalized by stress effects on transport at high-rate discharge. The finite incubation time of the lithiation fingers sets the intrinsic limitation for the rate capability (and thus the power) of NiO for electrochemical energy storage devices. The present work unravels the link between the nanoscale reaction pathways and the C-rate-dependent capacity loss, and provides guidance for the further design of battery materials that favors high C-rate charging.

  5. Transitions from near-surface to interior redox upon lithiation in conversion electrode materials

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    He, Kai; Xin, Huolin L.; Zhao, Kejie; Yu, Xiqian; Norlund, Dennis; Weng, Tsu-Chien; Li, Jing; Jiang, Yi; Cadigan, Christopher A.; Richards, Ryan M.; et al

    2015-01-29

    Nanoparticle electrodes in lithium-ion batteries have both near-surface and interior contributions to their redox capacity, each with distinct rate capabilities. Using combined electron microscopy, synchrotron X-ray methods and ab initio calculations, we have investigated the lithiation pathways that occur in NiO electrodes. We find that the near-surface electroactive (Ni˛??Ni?) sites saturated very quickly, and then encounter unexpected difficulty in propagating the phase transition into the electrode (referred to as a “shrinking-core” mode). However, the interior capacity for Ni˛??Ni? can be accessed efficiently following the nucleation of lithiation “fingers” which propagate into the sample bulk, but only after a certain incubationmore »time. Our microstructural observations of the transition from a slow shrinking-core mode to a faster lithiation finger mode corroborate with synchrotron characterization of large-format batteries, and can be rationalized by stress effects on transport at high-rate discharge. The finite incubation time of the lithiation fingers sets the intrinsic limitation for the rate capability (and thus the power) of NiO for electrochemical energy storage devices. The present work unravels the link between the nanoscale reaction pathways and the C-rate-dependent capacity loss, and provides guidance for the further design of battery materials that favors high C-rate charging.« less

  6. Advances in lithium-ion batteries

    E-Print Network [OSTI]

    Kerr, John B.

    2003-01-01

    current reviews of the lithium ion battery literature byof view of the lithium ion battery scientist and engineer,lithium ion batteries. The chapter on aging summarizes the effects of the chemistry on the battery

  7. Side Reactions in Lithium-Ion Batteries

    E-Print Network [OSTI]

    Tang, Maureen Han-Mei

    2012-01-01

    Model for Aging of Lithium-Ion Battery Cells. Journal of TheSalts Formed on the Lithium-Ion Battery Negative Electrodeion batteries In a lithium ion battery, positively charged

  8. Design and Simulation of Lithium Rechargeable Batteries

    E-Print Network [OSTI]

    Doyle, C.M.

    2010-01-01

    polymer battery, lithium-ion batteries, and lithium-basedElectrolyte For Lithium-Ion Rechargeable Batteries," LithiumK. Ozawa, "Lithium-ion Rechargeable Batteries with LiCo0 and

  9. Nickel coated aluminum battery cell tabs

    DOE Patents [OSTI]

    Bucchi, Robert S.; Casoli, Daniel J.; Campbell, Kathleen M.; Nicotina, Joseph

    2014-07-29

    A battery cell tab is described. The battery cell tab is anodized on one end and has a metal coating on the other end. Battery cells and methods of making battery cell tabs are also described.

  10. New sealed rechargeable batteries and supercapacitors

    SciTech Connect (OSTI)

    Barnett, B.M. ); Dowgiallo, E. ); Halpert, G. ); Matsuda, Y. ); Takehara, Z.I. )

    1993-01-01

    This conference was divided into the following sections: supercapacitors; nickel-metal hydride batteries; lithium polymer batteries; lithium/carbon batteries; cathode materials; and lithium batteries. Separate abstracts were prepared for the 46 papers of this conference.

  11. Testimonials- Partnerships in Battery Technologies- CalBattery

    Broader source: Energy.gov [DOE]

    Phil Roberts, CEO and Founder of California Lithium Battery (CalBattery), describes the new growth and development that was possible through partnering with the U.S. Department of Energy.

  12. Advances in lithium-ion batteries

    E-Print Network [OSTI]

    Kerr, John B.

    2003-01-01

    current reviews of the lithium ion battery literature byof view of the lithium ion battery scientist and engineer,

  13. Battery venting system and method

    DOE Patents [OSTI]

    Casale, T.J.; Ching, L.K.W.; Baer, J.T.; Swan, D.H.

    1999-01-05

    Disclosed herein is a venting mechanism for a battery. The venting mechanism includes a battery vent structure which is located on the battery cover and may be integrally formed therewith. The venting mechanism includes an opening extending through the battery cover such that the opening communicates with a plurality of battery cells located within the battery case. The venting mechanism also includes a vent manifold which attaches to the battery vent structure. The vent manifold includes a first opening which communicates with the battery vent structure opening and second and third openings which allow the vent manifold to be connected to two separate conduits. In this manner, a plurality of batteries may be interconnected for venting purposes, thus eliminating the need to provide separate vent lines for each battery. The vent manifold may be attached to the battery vent structure by a spin-welding technique. To facilitate this technique, the vent manifold may be provided with a flange portion which fits into a corresponding groove portion on the battery vent structure. The vent manifold includes an internal chamber which is large enough to completely house a conventional battery flame arrester and overpressure safety valve. In this manner, the vent manifold, when installed, lessens the likelihood of tampering with the flame arrester and safety valve. 8 figs.

  14. Battery venting system and method

    DOE Patents [OSTI]

    Casale, Thomas J. (Aurora, CO); Ching, Larry K. W. (Littleton, CO); Baer, Jose T. (Gaviota, CA); Swan, David H. (Monrovia, CA)

    1999-01-05

    Disclosed herein is a venting mechanism for a battery. The venting mechanism includes a battery vent structure which is located on the battery cover and may be integrally formed therewith. The venting mechanism includes an opening extending through the battery cover such that the opening communicates with a plurality of battery cells located within the battery case. The venting mechanism also includes a vent manifold which attaches to the battery vent structure. The vent manifold includes a first opening which communicates with the battery vent structure opening and second and third openings which allow the vent manifold to be connected to two separate conduits. In this manner, a plurality of batteries may be interconnected for venting purposes, thus eliminating the need to provide separate vent lines for each battery. The vent manifold may be attached to the battery vent structure by a spin-welding technique. To facilitate this technique, the vent manifold may be provided with a flange portion which fits into a corresponding groove portion on the battery vent structure. The vent manifold includes an internal chamber which is large enough to completely house a conventional battery flame arrester and overpressure safety valve. In this manner, the vent manifold, when installed, lessens the likelihood of tampering with the flame arrester and safety valve.

  15. Battery Vent Mechanism And Method

    DOE Patents [OSTI]

    Ching, Larry K. W. (Littleton, CO)

    2000-02-15

    Disclosed herein is a venting mechanism for a battery. The venting mechanism includes a battery vent structure which is located on the battery cover and may be integrally formed therewith. The venting mechanism includes an opening extending through the battery cover such that the opening communicates with a plurality of battery cells located within the battery case. The venting mechanism also includes a vent manifold which attaches to the battery vent structure. The vent manifold includes a first opening which communicates with the battery vent structure opening and second and third openings which allow the vent manifold to be connected to two separate conduits. In this manner, a plurality of batteries may be interconnected for venting purposes, thus eliminating the need to provide separate vent lines for each battery. The vent manifold may be attached to the battery vent structure by a spin-welding technique. To facilitate this technique, the vent manifold may be provided with a flange portion which fits into a corresponding groove portion on the battery vent structure. The vent manifold includes an internal chamber which is large enough to completely house a conventional battery flame arrester and overpressure safety valve. In this manner, the vent manifold, when installed, lessens the likelihood of tampering with the flame arrester and safety valve.

  16. A miniature shock-activated thermal battery for munitions applications

    SciTech Connect (OSTI)

    Guidotti, R.A.; Kirby, D.L.; Reinhardt, F.W.

    1998-04-01

    The feasibility of a small, fast-rise thermal battery for non-spinning munitions applications was examined by studying the response of conventional thermal cells to impact (mechanical) energy to simulate a setback environment. This is an extension of earlier work that demonstrated that shock activation could be used to produce power from a conventional thermal-battery cell. The results of tests with both single and multiple cells are presented, along with data for a 5-cell miniature (5-mm diameter) thermal battery. The issues needing to be resolved before such a device can become a commercial reality are also discussed.

  17. Battery charging control methods, electric vehicle charging methods, battery charging apparatuses and rechargeable battery systems

    DOE Patents [OSTI]

    Tuffner, Francis K. (Richland, WA); Kintner-Meyer, Michael C. W. (Richland, WA); Hammerstrom, Donald J. (West Richland, WA); Pratt, Richard M. (Richland, WA)

    2012-05-22

    Battery charging control methods, electric vehicle charging methods, battery charging apparatuses and rechargeable battery systems. According to one aspect, a battery charging control method includes accessing information regarding a presence of at least one of a surplus and a deficiency of electrical energy upon an electrical power distribution system at a plurality of different moments in time, and using the information, controlling an adjustment of an amount of the electrical energy provided from the electrical power distribution system to a rechargeable battery to charge the rechargeable battery.

  18. Circulating current battery heater

    DOE Patents [OSTI]

    Ashtiani, Cyrus N. (West Bloomfield, MI); Stuart, Thomas A. (Toledo, OH)

    2001-01-01

    A circuit for heating energy storage devices such as batteries is provided. The circuit includes a pair of switches connected in a half-bridge configuration. Unidirectional current conduction devices are connected in parallel with each switch. A series resonant element for storing energy is connected from the energy storage device to the pair of switches. An energy storage device for intermediate storage of energy is connected in a loop with the series resonant element and one of the switches. The energy storage device which is being heated is connected in a loop with the series resonant element and the other switch. Energy from the heated energy storage device is transferred to the switched network and then recirculated back to the battery. The flow of energy through the battery causes internal power dissipation due to electrical to chemical conversion inefficiencies. The dissipated power causes the internal temperature of the battery to increase. Higher internal temperatures expand the cold temperature operating range and energy capacity utilization of the battery. As disclosed, either fixed frequency or variable frequency modulation schemes may be used to control the network.

  19. Optimization and Analysis of High-Power Hydrogen/Bromine-Flow Batteries for Grid-Scale Energy Storage

    SciTech Connect (OSTI)

    Cho, KT; Albertus, P; Battaglia, V; Kojic, A; Srinivasan, V; Weber, AZ

    2013-10-07

    For storage of grid-scale electrical energy, redox-flow batteries (RFBs) are considered promising technologies. This paper explores the influence of electrolyte composition and ion transport on cell performance by using an integrated approach of experiments and cost modeling. In particular, the impact of the area-specific resistance on system capability is elucidated for the hydrogen/bromine RFB. The experimental data demonstrate very good performance with 1.46 W cm(-2) peak power and 4 A cm(-2) limiting current density at ambient conditions for an optimal cell design and reactant concentrations. The data and cost model results show that higher concentrations of RFB reactants do not necessarily result in lower capital cost as there is a tradeoff between cell performance and storage (tank) requirements. In addition, the discharge time and overall efficiency demonstrate nonlinear effects on system cost, with a 3 to 4 hour minimum discharge time showing a key transition to a plateau in terms of cost for typical RFB systems. The presented results are applicable to many different RFB chemistries and technologies and highlight the importance of ohmic effects and associated area-specific resistance on RFB viability.

  20. Mechanical design of flow batteries

    E-Print Network [OSTI]

    Hopkins, Brandon J. (Brandon James)

    2013-01-01

    The purpose of this research is to investigate the design of low-cost, high-efficiency flow batteries. Researchers are searching for next-generation battery materials, and this thesis presents a systems analysis encompassing ...

  1. Quantacell: Powerful charging of quantum batteries

    E-Print Network [OSTI]

    Felix C. Binder; Sai Vinjanampathy; Kavan Modi; John Goold

    2015-03-24

    We study the problem of charging a quantum battery in finite time. We demonstrate an analytical optimal protocol for the case of a single qubit. Extending this analysis to an array of N qubits, we demonstrate that an N-fold advantage in power per qubit can be achieved when global operations are permitted. The exemplary analytic argument for this quantum advantage in the charging power is backed up by numerical analysis using optimal control techniques. It is demonstrated that the quantum advantage for power holds when, with cyclic operation in mind, initial and final states are required to be separable.

  2. Quantacell: Powerful charging of quantum batteries

    E-Print Network [OSTI]

    Felix C. Binder; Sai Vinjanampathy; Kavan Modi; John Goold

    2015-07-27

    We study the problem of charging a quantum battery in finite time. We demonstrate an analytical optimal protocol for the case of a single qubit. Extending this analysis to an array of N qubits, we demonstrate that an N-fold advantage in power per qubit can be achieved when global operations are permitted. The exemplary analytic argument for this quantum advantage in the charging power is backed up by numerical analysis using optimal control techniques. It is demonstrated that the quantum advantage for power holds when, with cyclic operation in mind, initial and final states are required to be separable.

  3. Safe battery solvents

    DOE Patents [OSTI]

    Harrup, Mason K. (Idaho Falls, ID); Delmastro, Joseph R. (Idaho Falls, ID); Stewart, Frederick F. (Idaho Falls, ID); Luther, Thomas A. (Idaho Falls, ID)

    2007-10-23

    An ion transporting solvent maintains very low vapor pressure, contains flame retarding elements, and is nontoxic. The solvent in combination with common battery electrolyte salts can be used to replace the current carbonate electrolyte solution, creating a safer battery. It can also be used in combination with polymer gels or solid polymer electrolytes to produce polymer batteries with enhanced conductivity characteristics. The solvents may comprise a class of cyclic and acyclic low molecular weight phosphazenes compounds, comprising repeating phosphorus and nitrogen units forming a core backbone and ion-carrying pendent groups bound to the phosphorus. In preferred embodiments, the cyclic phosphazene comprises at least 3 phosphorus and nitrogen units, and the pendent groups are polyethers, polythioethers, polyether/polythioethers or any combination thereof, and/or other groups preferably comprising other atoms from Group 6B of the periodic table of elements.

  4. Battery switch for downhole tools

    DOE Patents [OSTI]

    Boling, Brian E. (Sugar Land, TX)

    2010-02-23

    An electrical circuit for a downhole tool may include a battery, a load electrically connected to the battery, and at least one switch electrically connected in series with the battery and to the load. The at least one switch may be configured to close when a tool temperature exceeds a selected temperature.

  5. Flow Batteries A Historical Perspective

    E-Print Network [OSTI]

    Flow Batteries A Historical Perspective Robert F. Savinell Case Western Reserve University Department of Chemical Engineering DOE Flow Battery Workshop March 2012 #12;2 OUTLINE ·The first flow cell? ·Review articles- documented progress ·Early NASA Work- some learning ·Fuel Cell and Flow Battery

  6. Soluble Lead Flow Battery: Soluble Lead Flow Battery Technology

    SciTech Connect (OSTI)

    2010-09-01

    GRIDS Project: General Atomics is developing a flow battery technology based on chemistry similar to that used in the traditional lead-acid battery found in nearly every car on the road today. Flow batteries store energy in chemicals that are held in tanks outside the battery. When the energy is needed, the chemicals are pumped through the battery. Using the same basic chemistry as a traditional battery but storing its energy outside of the cell allows for the use of very low cost materials. The goal is to develop a system that is far more durable than today’s lead-acid batteries, can be scaled to deliver megawatts of power, and which lowers the cost of energy storage below $100 per kilowatt hour.

  7. EV Everywhere Batteries Workshop - Materials Processing and Manufactur...

    Broader source: Energy.gov (indexed) [DOE]

    More Documents & Publications EV Everywhere Batteries Workshop - Next Generation Lithium Ion Batteries Breakout Session Report EV Everywhere Batteries Workshop - Beyond...

  8. High Energy Batteries for Hybrid Buses

    SciTech Connect (OSTI)

    Bruce Lu

    2010-12-31

    EnerDel batteries have already been employed successfully for electric vehicle (EV) applications. Compared to EV applications, hybrid electric vehicle (HEV) bus applications may be less stressful, but are still quite demanding, especially compared to battery applications for consumer products. This program evaluated EnerDel cell and pack system technologies with three different chemistries using real world HEV-Bus drive cycles recorded in three markets covering cold, hot, and mild climates. Cells were designed, developed, and fabricated using each of the following three chemistries: (1) Lithium nickel manganese cobalt oxide (NMC) - hard carbon (HC); (2) Lithium manganese oxide (LMO) - HC; and (3) LMO - lithium titanium oxide (LTO) cells. For each cell chemistry, battery pack systems integrated with an EnerDel battery management system (BMS) were successfully constructed with the following features: real time current monitoring, cell and pack voltage monitoring, cell and pack temperature monitoring, pack state of charge (SOC) reporting, cell balancing, and over voltage protection. These features are all necessary functions for real-world HEV-Bus applications. Drive cycle test data was collected for each of the three cell chemistries using real world drive profiles under hot, mild, and cold climate conditions representing cities like Houston, Seattle, and Minneapolis, respectively. We successfully tested the battery packs using real-world HEV-Bus drive profiles under these various climate conditions. The NMC-HC and LMO-HC based packs successfully completed the drive cycles, while the LMO-LTO based pack did not finish the preliminary testing for the drive cycles. It was concluded that the LMO-HC chemistry is optimal for the hot or mild climates, while the NMC-HC chemistry is optimal for the cold climate. In summary, the objectives were successfully accomplished at the conclusion of the project. This program provided technical data to DOE and the public for assessing EnerDel technology, and helps DOE to evaluate the merits of underlying technology. The successful completion of this program demonstrated the capability of EnerDel battery packs to satisfactorily supply all power and energy requirements of a real-world HEV-Bus drive profile. This program supports green solutions to metropolitan public transportation problems by demonstrating the effectiveness of EnerDel lithium ion batteries for HEV-Bus applications.

  9. Current balancing for battery strings

    DOE Patents [OSTI]

    Galloway, James H. (New Baltimore, MI)

    1985-01-01

    A battery plant is described which features magnetic circuit means for balancing the electrical current flow through a pluraliircuitbattery strings which are connected electrically in parallel. The magnetic circuit means is associated with the battery strings such that the conductors carrying the electrical current flow through each of the battery strings pass through the magnetic circuit means in directions which cause the electromagnetic fields of at least one predetermined pair of the conductors to oppose each other. In an alternative embodiment, a low voltage converter is associated with each of the battery strings for balancing the electrical current flow through the battery strings.

  10. Redox Potentials and Acidity Constants from Density Functional Theory Based Molecular Dynamics

    E-Print Network [OSTI]

    Cheng, Jun; Liu, Xiandong; VandeVondele, Joost; Sulpizi, Marialore; Sprik, Michiel

    2014-11-03

    . Critical error anal- ysis will be carried out to demonstrate how the delocalization error in GGAs affects redox potentials. The improvement by hybrid functionals reinforces this claim. We will end this Account with some conclusions and an outlook. Method... and theoretical (photo-)electrochemistry and catalysis. Xiandong Liu is an associate professor at Nanjing University. He joined the Sprik group at Cambridge in 2012 to work on computational geochemistry of mineral interfaces and transition metal complexes. Joost...

  11. Factors Controlling Redox Speciation of Plutonium and Neptunium in Extraction Separation Processes

    SciTech Connect (OSTI)

    Paulenova, Alena; Vandegrift, III, George F.

    2013-09-24

    The objective of the project was to examine the factors controlling redox speciation of plutonium and neptunium in UREX+ extraction in terms of redox potentials, redox mechanism, kinetics and thermodynamics. Researchers employed redox-speciation extractions schemes in parallel to the spectroscopic experiments. The resulting distribution of redox species w studied uring spectroscopic, electrochemical, and spectro-electrochemical methods. This work reulted in collection of data on redox stability and distribution of redox couples in the nitric acid/nitrate electrolyte and the development of redox buffers to stabilize the desired oxidation state of separated radionuclides. The effects of temperature and concentrations on the redox behavior of neptunium were evaluated.

  12. Battery electrode growth accommodation

    DOE Patents [OSTI]

    Bowen, Gerald K. (Cedarburg, WI); Andrew, Michael G. (Wauwatosa, WI); Eskra, Michael D. (Fredonia, WI)

    1992-01-01

    An electrode for a lead acid flow through battery, the grids including a plastic frame, a plate suspended from the top of the frame to hang freely in the plastic frame and a paste applied to the plate, the paste being free to allow for expansion in the planar direction of the grid.

  13. High Performance Cathodes for Li-Air Batteries

    SciTech Connect (OSTI)

    Xing, Yangchuan

    2013-08-22

    The overall objective of this project was to develop and fabricate a multifunctional cathode with high activities in acidic electrolytes for the oxygen reduction and evolution reactions for Li-air batteries. It should enable the development of Li-air batteries that operate on hybrid electrolytes, with acidic catholytes in particular. The use of hybrid electrolytes eliminates the problems of lithium reaction with water and of lithium oxide deposition in the cathode with sole organic electrolytes. The use of acid electrolytes can eliminate carbonate formation inside the cathode, making air breathing Li-air batteries viable. The tasks of the project were focused on developing hierarchical cathode structures and bifunctional catalysts. Development and testing of a prototype hybrid Li-air battery were also conducted. We succeeded in developing a hierarchical cathode structure and an effective bifunctional catalyst. We accomplished integrating the cathode with existing anode technologies and made a pouch prototype Li-air battery using sulfuric acid as catholyte. The battery cathodes contain a nanoscale multilayer structure made with carbon nanotubes and nanofibers. The structure was demonstrated to improve battery performance substantially. The bifunctional catalyst developed contains a conductive oxide support with ultra-low loading of platinum and iridium oxides. The work performed in this project has been documented in seven peer reviewed journal publications, five conference presentations, and filing of two U.S. patents. Technical details have been documented in the quarterly reports to DOE during the course of the project.

  14. Johnson Controls Develops an Improved Vehicle Battery, Works...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Johnson Controls Develops an Improved Vehicle Battery, Works to Cut Battery Costs in Half Johnson Controls Develops an Improved Vehicle Battery, Works to Cut Battery Costs in Half...

  15. An Improved Equilibrium-Kinetics Speciation Algorithm For Redox...

    Open Energy Info (EERE)

    Speciation Algorithm For Redox Reactions In Variably Saturated Subsurface Flow Systems Jump to: navigation, search OpenEI Reference LibraryAdd to library Journal...

  16. Reinforced Electrode Architecture for a Flexible Battery with Paperlike Characteristics

    SciTech Connect (OSTI)

    Gaikwad, AM; Chu, HN; Qeraj, R; Zamarayeva, AM; Steingart, DA

    2013-02-10

    Compliant energy storage has not kept pace with flexible electronics. Herein we demonstrate a technique to reinforce arbitrary battery electrodes by supporting them with mechanically tough, low-cost fibrous membranes, which also serve as the separator. The membranes were laminated to form a full cell, and this stacked membrane reinforcement bears the loads during flexing. This technique was used to make a high energy density, nontoxic Zn-MnO2 battery with printed current collectors. The Zn and MnO2 electrodes were prepared by using a solution-based embedding process. The cell had a nominal potential of 1.5 V and an effective capacity of approximately 3 mA h cm(-2). We investigated the effect of bending and fatigue on the electrochemical performance and mechanical integrity of the battery. The battery was able to maintain its capacity even after 1000 flex cycles to a bend radius of 2.54 cm. The battery showed an improvement in discharge capacity (ca. 10%) if the MnO2 electrode was flexed to tension as a result of the improvement of particle-to-particle contact. In a demonstration, the flexible battery was used to power a light-emitting diode display integrated with a strain sensor and microcontroller.

  17. Nanostructured material for advanced energy storage : magnesium battery cathode development.

    SciTech Connect (OSTI)

    Sigmund, Wolfgang M.; Woan, Karran V.; Bell, Nelson Simmons

    2010-11-01

    Magnesium batteries are alternatives to the use of lithium ion and nickel metal hydride secondary batteries due to magnesium's abundance, safety of operation, and lower toxicity of disposal. The divalency of the magnesium ion and its chemistry poses some difficulties for its general and industrial use. This work developed a continuous and fibrous nanoscale network of the cathode material through the use of electrospinning with the goal of enhancing performance and reactivity of the battery. The system was characterized and preliminary tests were performed on the constructed battery cells. We were successful in building and testing a series of electrochemical systems that demonstrated good cyclability maintaining 60-70% of discharge capacity after more than 50 charge-discharge cycles.

  18. Redox Shuttle Additives - Energy Innovation Portal

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration wouldMassR&D100 Winners * Impactsand engineersAcquisition andRedox Shuttle

  19. Advanced Battery Manufacturing (VA)

    SciTech Connect (OSTI)

    Stratton, Jeremy

    2012-09-30

    LiFeBATT has concentrated its recent testing and evaluation on the safety of its batteries. There appears to be a good margin of safety with respect to overheating of the cells and the cases being utilized for the batteries are specifically designed to dissipate any heat built up during charging. This aspect of LiFeBATT’s products will be even more fully investigated, and assuming ongoing positive results, it will become a major component of marketing efforts for the batteries. LiFeBATT has continued to receive prismatic 20 Amp hour cells from Taiwan. Further testing continues to indicate significant advantages over the previously available 15 Ah cells. Battery packs are being assembled with battery management systems in the Danville facility. Comprehensive tests are underway at Sandia National Laboratory to provide further documentation of the advantages of these 20 Ah cells. The company is pursuing its work with Hybrid Vehicles of Danville to critically evaluate the 20 Ah cells in a hybrid, armored vehicle being developed for military and security applications. Results have been even more encouraging than they were initially. LiFeBATT is expanding its work with several OEM customers to build a worldwide distribution network. These customers include a major automotive consulting group in the U.K., an Australian maker of luxury off-road campers, and a number of makers of E-bikes and scooters. LiFeBATT continues to explore the possibility of working with nations that are woefully short of infrastructure. Negotiations are underway with Siemens to jointly develop a system for using photovoltaic generation and battery storage to supply electricity to communities that are not currently served adequately. The IDA has continued to monitor the progress of LiFeBATT’s work to ensure that all funds are being expended wisely and that matching funds will be generated as promised. The company has also remained current on all obligations for repayment of an IDA loan and lease payments for space to the IDA. A commercial venture is being formed to utilize the LiFeBATT product for consumer use in enabling photovoltaic powered boat lifts. Field tests of the system have proven to be very effective and commercially promising. This venture is expected to result in significant sales within the next six months.

  20. A Lighting Solution using Discarded Laptop Batteries

    E-Print Network [OSTI]

    Toronto, University of

    UrJar A Lighting Solution using Discarded Laptop Batteries Vikas Chandan vchanda4@in.ibm.com IBM year 3 #12;Li-Ion Batteries Li-Ion batteries power laptops, tablets and phones, form a key constituent of e-waste IBM India produced ~10 tons of discarded laptop batteries (2013) Recycling Li-Ion batteries

  1. High power rechargeable batteries Paul V. Braun

    E-Print Network [OSTI]

    Braun, Paul

    High power rechargeable batteries Paul V. Braun , Jiung Cho, James H. Pikul, William P. King storage Secondary batteries High energy density High power density Lithium ion battery 3D battery of rechargeable (second- ary) batteries, as this is critical for most applications. As the penetration

  2. A Combinatorial Approach to Biochemical Space: Description and Application to the Redox Distribution of Metabolism

    E-Print Network [OSTI]

    Bains, William

    Redox chemistry is central to life on Earth. It is well known that life uses redox chemistry to capture energy from environmental chemical energy gradients. Here, we propose that a second use of redox chemistry, related ...

  3. Nuclear Magnetic Resonance Studies on Vanadium(IV) Electrolyte Solutions for Vanadium Redox Flow Battery

    SciTech Connect (OSTI)

    Vijayakumar, M.; Burton, Sarah D.; Huang, Cheng; Li, Liyu; Yang, Zhenguo; Graff, Gordon L.; Liu, Jun; Hu, Jian Z.; Skyllas-Kazacos, Maria

    2010-11-15

    The vanadium (IV) electrolyte solutions with various vanadium concentrations are studied by variable temperature 1H and 17O Nuclear Magnetic Resonance (NMR) spectroscopy. The structure and kinetics of vanadium (IV) species in the electrolyte solutions are explored with respect to vanadium concentration and temperature. It was found that the vanadium (IV) species exist as hydrated vanadyl ion, i.e. [VO(H2O)5]2+ forming an octahedral coordination with vanadyl oxygen in the axial position and the remaining positions occupied by water molecules. This hydrated vanadyl ion structure is stable in vanadium concentrations up to 3M and in the temperature range of 240 to 340 K. The sulfate anions in the electrolyte solutions are found to be weekly bound to this hydrated vanadyl ion and occupies its second coordination sphere. The possible effects of these sulfate anions in proton and water exchange between vanadyl ion and solvent molecules are discussed based on 1H and 17O NMR results.

  4. Elucidating the Higher Stability of Vanadium (V) Cations in Mixed Acid Based Redox Flow Battery Electrolytes

    SciTech Connect (OSTI)

    Vijayakumar, M.; Wang, Wei; Nie, Zimin; Sprenkle, Vincent L.; Hu, Jian Z.

    2013-11-01

    The Vanadium (V) cation structures in mixed acid based electrolyte solution were analysed by density functional theory (DFT) based computational modelling and 51V and 35Cl Nuclear Magnetic Resonance (NMR) spectroscopy. The Vanadium (V) cation exists as di-nuclear [V2O3Cl2.6H2O]2+ compound at higher vanadium concentrations (?1.75M). In particular, at high temperatures (>295K) this di-nuclear compound undergoes ligand exchange process with nearby solvent chlorine molecule and forms chlorine bonded [V2O3Cl2.6H2O]2+ compound. This chlorine bonded [V2O3Cl2.6H2O]2+ compound might be resistant to the de-protonation reaction which is the initial step in the precipitation reaction in Vanadium based electrolyte solutions. The combined theoretical and experimental approach reveals that formation of chlorine bonded [V2O3Cl2.6H2O]2+ compound might be central to the observed higher thermal stability of mixed acid based Vanadium (V) electrolyte solutions.

  5. Some lessons learned from 20 years in RedOx Flow Battery R&D

    E-Print Network [OSTI]

    industrials, VCs, DOE, DOD and EPA 33,000 ft. facility for laboratory, engineering, rapid prototyping Engineering Chemical Engineering, CFD, Stress, Heat, Current flow Rapid prototyping Pilot plant design membranes and membrane supports Materials testing and establishing QAS's Electrolytes Pumps, pipes

  6. Novel Redox Shuttles for Overcharge Protection of Lithium-Ion Batteries |

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration wouldMass map shinesSolarNew scholarshipThreeFebruaryMuseumEffect901Portal FindArgonne

  7. Redox Flow Batteries for Grid-scale Energy Storage - Energy Innovation

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration wouldMassR&D100 Winners * Impactsand engineersAcquisition and

  8. Preliminary Design of a Smart Battery Controller for SLI Batteries Xiquan Wang and Pritpal Singh

    E-Print Network [OSTI]

    Singh, Pritpal

    Preliminary Design of a Smart Battery Controller for SLI Batteries Xiquan Wang and Pritpal Singh Automotive start, light, ignition (SLI) lead acid batteries are prone to capacity loss due to low of these batteries can be improved by using the concept of a smart battery system (SBS). In a SBS, battery data from

  9. An Interleaved Dual-Battery Power Supply for Battery-Operated Electronics

    E-Print Network [OSTI]

    Pedram, Massoud

    An Interleaved Dual-Battery Power Supply for Battery-Operated Electronics QingQing Wu,Wu, Qinru VoltageAnalysis of Optimal Supply Voltage Design of Interleaved DualDesign of Interleaved Dual--Battery PowerBattery Power SupplySupply ConclusionsConclusions #12;Batteries in Mobile/Portable ElectronicsBatteries

  10. Recent progress on Exxon's circulating zinc bromine battery system

    SciTech Connect (OSTI)

    Bellows, R.J.

    1981-01-01

    The design, performance, and factory cost of Exxon's circulating zinc bromine batteries are described. The Exxon system has demonstrated stable performance in scale-ups to 3- and 10-kWh sub-modules. Cost studies based on recently demonstrated extrusion and injection molding techniques, have shown that this battery, with plastic electrodes, bipolar stacks, Br/sub 2/ complexation, and circulating electrolytes, could be produced (20 kWh units, 100,000 units/year) at a factory cost of $28/kWh (excluding R.O.I., and various indirect overheads).

  11. Aalborg Universitet Multi-Objective Control of Balancing Systems for Li-Ion Battery Packs

    E-Print Network [OSTI]

    Andreasen, Sřren Juhl

    in a e-mobility application. Simulation results demonstrate the technical feasibility of this newlyAalborg Universitet Multi-Objective Control of Balancing Systems for Li-Ion Battery Packs Barreras, R. E. (2014). Multi-Objective Control of Balancing Systems for Li-Ion Battery Packs: A paradigm

  12. Real-Time Redox Measurements during Endoplasmic Reticulum Stress Reveal

    E-Print Network [OSTI]

    Mullins, Dyche

    Real-Time Redox Measurements during Endoplasmic Reticulum Stress Reveal Interlinked Protein Folding.10.011 SUMMARY Disruption of protein folding in the endoplasmic reticulum (ER) causes unfolded proteins to accumu is active. Because ER redox po- tential is optimized for oxidative protein folding, we reasoned

  13. Self-charging solar battery

    SciTech Connect (OSTI)

    Curiel, R.F.

    1986-01-07

    This self-charging solar battery consists of: a flashlight housing formed at least partially of a transparent material, an open-ended cylindrical battery housing formed at least partially of a transparent material, a rechargeable battery cell means mounted in the battery housing (with its transparent material positioned adjacent the transparent material of the flashlight housing and comprising positive and negative terminals, one at each end thereof), a solar electric panel comprising photo-voltaic cell means having positive and negative terminals, and a diode means mounted in the battery housing and comprising an anode and a cathode. The solar battery also has: a first means for connecting the positive terminal of the photo-voltaic cell means to the anode and for connecting the cathode to the positive terminal of the battery cell means, a second means for connecting the negative terminal of the battery cell means to the negative terminal of the photo-voltaic cell means, and cap means for closing each end of the battery housing.

  14. Self-charging solar battery

    SciTech Connect (OSTI)

    Curiel, R.F.

    1987-03-03

    This patent describes a flashlight employing a self-charging solar battery assembly comprising: a flashlight housing formed at least partially of a transparent material, an open-ended cylindrical battery housing formed at least partially of a transparent material, a rechargeable battery cell means mounted in the battery housing with its transparent material positioned adjacent the transparent material of the flashlight housing and comprising positive and negative terminals, one at each end thereof, a solar electric panel comprising photo-voltaic cell means having positive and negative terminals, the panel being mounted within the battery housing with the photo-voltaic cell means juxtapositioned to the transparent material of the battery housing such that solar rays may pass through the transparent material of the flashlight housing and the battery housing and excite the photo-voltaic cell means, a first means for connecting the positive terminal of the photo-voltaic cell means to the positive terminal of the battery cell means, and a second means for connecting the negative terminal of the battery cell means to the negative terminal of the photo-voltaic cell means.

  15. Advances in lithium-ion batteries

    E-Print Network [OSTI]

    Kerr, John B.

    2003-01-01

    Advances in Lithium-Ion Batteries Edited by Walter A. vantolerance of these batteries this is a curious omission andmysteries of lithium ion batteries. The book begins with an

  16. Mapping Particle Charges in Battery Electrodes

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    simple appearance of batteries masks their chemical complexity. A typical lithium-ion battery in a cell phone consists of trillions of particles. When a lithium-ion battery...

  17. Ionic liquids for rechargeable lithium batteries

    E-Print Network [OSTI]

    Salminen, Justin; Papaiconomou, Nicolas; Kerr, John; Prausnitz, John; Newman, John

    2008-01-01

    their use in lithium-ion batteries. However, applications atfor use in lithium-ion batteries. Thermal stabilities andFor rechargeable lithium-ion batteries, we require that any

  18. Aluminum ion batteries: electrolytes and cathodes

    E-Print Network [OSTI]

    Reed, Luke

    2015-01-01

    in High-Power Lithium-Ion Batteries for Use in Hybridas Cathodes for Lithium-Ion Batteries. Chem. Mater. 2011,seen in magnesium or lithium ion batteries would operate at

  19. Advanced battery modeling using neural networks 

    E-Print Network [OSTI]

    Arikara, Muralidharan Pushpakam

    1993-01-01

    battery models are available today that can accurately predict the performance of the battery system. This thesis presents a modeling technique for batteries employing neural networks. The advantage of using neural networks is that the effect of any...

  20. Side Reactions in Lithium-Ion Batteries

    E-Print Network [OSTI]

    Tang, Maureen Han-Mei

    2012-01-01

    simulate those in a lithium battery. Chapter 3 TransientModel for Aging of Lithium-Ion Battery Cells. Journal of TheRole in Nonaqueous Lithium-Oxygen Battery Electrochemistry.

  1. Use of Conducting Polymers for Electronic Communication with Redox Active Nanoparticles

    SciTech Connect (OSTI)

    Bazito, Fernanda; O'Brien, Robert; Buttry, Daniel A.

    2004-08-08

    Nanoscale materials provide unique properties that will enable new technologies and enhance older ones. One area of intense activity in which nanoscale materials are being used is in the development of new functional materials for battery applications.1-4 This effort promises superior materials with properties that circumvent many of the problems associated with traditional battery materials. Previously we have worked on several approaches for using nanoscale materials for application as cathode materials in rechargeable Li batteries.5-11 Our recent work has focused on synthesizing MnO2 nanoparticles and using conducting polymers to electronically address these particles in nanoparticle assemblies. This presentation will focus on those efforts. MnO2 nanoparticles that are encapsulated with poly(3,4-ethylenedioxythiophene) (PEDOT) are prepared using 3,4-ethylenedioxythiophene (EDOT) as a chemical reductant for permanganate anion. This non-aqueous preparation is based on a recent report of a similar method for preparation of PEDOT-encapsulated Au nanoparticles.12 We also describe the synthesis of MnO2 colloidal nanoparticles prepared using an aqueous route involving reduction of permanganate anion with butanol using a previously described route.13 We report the synthesis and characterization of the PEDOT material, and the aqueous colloidal material. We show that the aqueous colloidal nanoparticles can be trapped in thin films using a layer-by-layer deposition approach, and that these films are both redox active and exhibit kinetically facile electrochemical responses. This is illustrated in Figure 1 below, which shows cyclic voltammetry of MnO2 colloidal nanoparticles entrapped in a thin film at an ITO electrode surface using poly(diallyldimethylammonium chloride (PDDA). Finally, we report on the use of X-ray absorption near edge structure (XANES) and extended X-ray absorption fine structure (EXAFS) to characterize the oxidation state and coordination environment around Mn in these materials.

  2. Practical thermodynamic quantities for aqueous vanadium- and iron-based flow batteries

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Hudak, Nicholas S.

    2013-12-31

    A simple method for experimentally determining thermodynamic quantities for flow battery cell reactions is presented. Equilibrium cell potentials, temperature derivatives of cell potential (dE/dT), Gibbs free energies, and entropies are reported here for all-vanadium, iron–vanadium, and iron–chromium flow cells with state-of-the-art solution compositions. Proof is given that formal potentials and formal temperature coefficients can be used with modified forms of the Nernst Equation to quantify the thermodynamics of flow cell reactions as a function of state-of-charge. Such empirical quantities can be used in thermo-electrochemical models of flow batteries at the cell or system level. In most cases, the thermodynamic quantitiesmore »measured here are significantly different from standard values reported and used previously in the literature. The data reported here are also useful in the selection of operating temperatures for flow battery systems. Because higher temperatures correspond to lower equilibrium cell potentials for the battery chemistries studied here, it can be beneficial to charge a cell at higher temperature and discharge at lower temperature. As a result, proof-of-concept of improved voltage efficiency with the use of such non-isothermal cycling is given for the all-vanadium redox flow battery, and the effect is shown to be more pronounced at lower current densities.« less

  3. Practical thermodynamic quantities for aqueous vanadium- and iron-based flow batteries

    SciTech Connect (OSTI)

    Hudak, Nicholas S.

    2013-12-31

    A simple method for experimentally determining thermodynamic quantities for flow battery cell reactions is presented. Equilibrium cell potentials, temperature derivatives of cell potential (dE/dT), Gibbs free energies, and entropies are reported here for all-vanadium, iron–vanadium, and iron–chromium flow cells with state-of-the-art solution compositions. Proof is given that formal potentials and formal temperature coefficients can be used with modified forms of the Nernst Equation to quantify the thermodynamics of flow cell reactions as a function of state-of-charge. Such empirical quantities can be used in thermo-electrochemical models of flow batteries at the cell or system level. In most cases, the thermodynamic quantities measured here are significantly different from standard values reported and used previously in the literature. The data reported here are also useful in the selection of operating temperatures for flow battery systems. Because higher temperatures correspond to lower equilibrium cell potentials for the battery chemistries studied here, it can be beneficial to charge a cell at higher temperature and discharge at lower temperature. As a result, proof-of-concept of improved voltage efficiency with the use of such non-isothermal cycling is given for the all-vanadium redox flow battery, and the effect is shown to be more pronounced at lower current densities.

  4. Battery-Aware Power Management Based on Markovian Decision

    E-Print Network [OSTI]

    Pedram, Massoud

    Dynamic Power Management 101 ! Motivation and principle of operation " Rationale: Power and Smart BatteriesBattery Characteristics and Smart Batteries ! Nonlinear characteristics of batteries " Rate capacity effect # The total energy capacity that a battery can deliver during its lifetime depends

  5. Response of Lithium Polymer Batteries to Mechanical Loading

    E-Print Network [OSTI]

    Petta, Jason

    Response of Lithium Polymer Batteries to Mechanical Loading Karl Suabedissen1, Christina Peabody2 #12;Outline · Motivation · Battery Structure · Testing and Results · Conclusions #12;Motivation · Lithium polymer batteries are everywhere. · Efforts to create flexible batteries. · Restrictive battery

  6. Battery Manufacturing Processes Improved by Johnson Controls...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Technologies Office. The project focused on three major aspects of the lithium ion (Li-ion) battery manufacturing process: reducing process time for battery formation and...

  7. Development of Industrially Viable Battery Electrode Coatings...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Industrially Viable Battery Electrode Coatings Development of Industrially Viable Battery Electrode Coatings 2012 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies...

  8. Ionic liquids for rechargeable lithium batteries

    E-Print Network [OSTI]

    Salminen, Justin; Papaiconomou, Nicolas; Kerr, John; Prausnitz, John; Newman, John

    2008-01-01

    molten salts as lithium battery electrolyte,” ElectrochimicaFigure 15. Rechargeable lithium-ion battery. Figure 16 showsbattery. It is essential that an ionic liquid – lithium salt

  9. Washington: Graphene Nanostructures for Lithium Batteries Recieves...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Washington: Graphene Nanostructures for Lithium Batteries Recieves 2012 R&D 100 Award Washington: Graphene Nanostructures for Lithium Batteries Recieves 2012 R&D 100 Award February...

  10. Vehicle Technologies Office: Advanced Battery Development, System...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Research (USCAR). It also works directly with industry battery and material suppliers through competitive research and development awards. To learn how batteries are used...

  11. High energy density redox flow device

    DOE Patents [OSTI]

    Chiang, Yet-Ming; Carter, William Craig; Duduta, Mihai; Limthongkul, Pimpa

    2014-05-13

    Redox flow devices are described including a positive electrode current collector, a negative electrode current collector, and an ion-permeable membrane separating said positive and negative current collectors, positioned and arranged to define a positive electroactive zone and a negative electroactive zone; wherein at least one of said positive and negative electroactive zone comprises a flowable semi-solid composition comprising ion storage compound particles capable of taking up or releasing said ions during operation of the cell, and wherein the ion storage compound particles have a polydisperse size distribution in which the finest particles present in at least 5 vol % of the total volume, is at least a factor of 5 smaller than the largest particles present in at least 5 vol % of the total volume.

  12. Grid-tied PV battery systems.

    SciTech Connect (OSTI)

    Barrett, Keith Phillip; Gonzalez, Sigifredo; Hund, Thomas D.

    2010-09-01

    Grid tied PV energy smoothing was implemented by using a valve regulated lead-acid (VRLA) battery as a temporary energy storage device to both charge and discharge as required to smooth the inverter energy output from the PV array. Inverter output was controlled by the average solar irradiance over the previous 1h time interval. On a clear day the solar irradiance power curve is offset by about 1h, while on a variable cloudy day the inverter output power curve will be smoothed based on the average solar irradiance. Test results demonstrate that this smoothing algorithm works very well. Battery state of charge was more difficult to manage because of the variable system inefficiencies. Testing continued for 30-days and established consistent operational performance for extended periods of time under a wide variety of resource conditions. Both battery technologies from Exide (Absolyte) and East Penn (ALABC Advanced) proved to cycle well at a Partial state of charge over the time interval tested.

  13. Flow Battery Technology

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach Home Room NewsInformation Current HABFES OctoberEvanServices »First ObservationFast(ER1)Flow Battery

  14. Battery system with temperature sensors

    DOE Patents [OSTI]

    Wood, Steven J.; Trester, Dale B.

    2012-11-13

    A battery system to monitor temperature includes at least one cell with a temperature sensing device proximate the at least one cell. The battery system also includes a flexible member that holds the temperature sensor proximate to the at least one cell.

  15. Principles of an Atomtronic Battery

    E-Print Network [OSTI]

    Alex A. Zozulya; Dana Z. Anderson

    2013-08-06

    An asymmetric atom trap is investigated as a means to implement a "battery" that supplies ultracold atoms to an atomtronic circuit. The battery model is derived from a scheme for continuous loading of a non-dissipative atom trap proposed by Roos et al.(Europhysics Letters V61, 187 (2003)). The trap is defined by longitudinal and transverse trap frequencies and corresponding trap energy heights. The battery's ability to supply power to a load is evaluated as a function of an input atom flux and power. For given trap parameters and input flux the battery is shown to have a resonantly optimum value of input power. The battery behavior can be cast in terms of an equivalent circuit model; specifically, for fixed input flux and power the battery is modeled in terms of a Th\\'{e}venin equivalent chemical potential and internal resistance. The internal resistance establishes the maximum power that can be supplied to a circuit, the heat that will be generated by the battery, and that noise will be imposed on the circuit. We argue that any means of implementing a battery for atomtronics can be represented by a Th\\'{e}venin equivalent and that its performance will likewise be determined by an internal resistance.

  16. NREL Enhances the Performance of a Lithium-Ion Battery Cathode (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2012-10-01

    Scientists from NREL and the University of Toledo have combined theoretical and experimental studies to demonstrate a promising approach to significantly enhance the performance of lithium iron phosphate (LiFePO4) cathodes for lithium-ion batteries.

  17. Lithium-Assisted Electrochemical Welding in Silicon Nanowire Battery Electrodes

    E-Print Network [OSTI]

    Li, Teng

    Lithium-Assisted Electrochemical Welding in Silicon Nanowire Battery Electrodes Khim Karki, Eric of lithium- assisted welding between physically contacted silicon nano- wires (SiNWs) induced by electrochemical lithiation and delithiation. This electrochemical weld between two SiNWs demonstrates facile

  18. Battery Model for Embedded Systems , Gaurav Singhal

    E-Print Network [OSTI]

    Navet, Nicolas

    in design of mobile embedded sys- tems today is the battery lifetime for a given size and weight in the energy densities of the battery technologies, estimating the lifetime and energy delivered by the battery applications. Stochastic battery models [6, 8] have also been proposed which are faster than to the PDE model

  19. Battery Thermal Management System Design Modeling (Presentation)

    SciTech Connect (OSTI)

    Kim, G-H.; Pesaran, A.

    2006-10-01

    Presents the objectives and motivations for a battery thermal management vehicle system design study.

  20. Battery-Powered Digital CMOS Massoud Pedram

    E-Print Network [OSTI]

    Pedram, Massoud

    1 Page 1 USC Low Power CAD Massoud Pedram Battery-Powered Digital CMOS Design Massoud Pedram Power CAD Massoud Pedram Motivation Extending the battery service life of battery-powered micro in the VLSI circuit Y The battery system is assumed to be an ideal source that delivers a fixed amount

  1. Principles of an Atomtronic Battery

    E-Print Network [OSTI]

    Zozulya, Alex A

    2013-01-01

    An asymmetric atom trap is investigated as a means to implement a "battery" that supplies ultracold atoms to an atomtronic circuit. The battery model is derived from a scheme for continuous loading of a non-dissipative atom trap proposed by Roos et al.(Europhysics Letters V61, 187 (2003)). The trap is defined by longitudinal and transverse trap frequencies and corresponding trap energy heights. The battery's ability to supply power to a load is evaluated as a function of an input atom flux and power. For given trap parameters and input flux the battery is shown to have a resonantly optimum value of input power. The battery behavior can be cast in terms of an equivalent circuit model; specifically, for fixed input flux and power the battery is modeled in terms of a Th\\'{e}venin equivalent chemical potential and internal resistance. The internal resistance establishes the maximum power that can be supplied to a circuit, the heat that will be generated by the battery, and that noise will be imposed on the circui...

  2. Solid polymer battery electrolyte and reactive metal-water battery

    DOE Patents [OSTI]

    Harrup, Mason K. (Idaho Falls, ID); Peterson, Eric S. (Idaho Falls, ID); Stewart, Frederick F. (Idaho Falls, ID)

    2000-01-01

    In one implementation, a reactive metal-water battery includes an anode comprising a metal in atomic or alloy form selected from the group consisting of periodic table Group 1A metals, periodic table Group 2A metals and mixtures thereof. The battery includes a cathode comprising water. Such also includes a solid polymer electrolyte comprising a polyphosphazene comprising ligands bonded with a phosphazene polymer backbone. The ligands comprise an aromatic ring containing hydrophobic portion and a metal ion carrier portion. The metal ion carrier portion is bonded at one location with the polymer backbone and at another location with the aromatic ring containing hydrophobic portion. The invention also contemplates such solid polymer electrolytes use in reactive metal/water batteries, and in any other battery.

  3. Conductance with stochastic resonance in Mn{sub 12} redox network without tuning

    SciTech Connect (OSTI)

    Hirano, Yoshiaki [Department of Chemistry, Graduate School of Science, Osaka University, 1-1 Machikaneyama-cho, Toyonaka, Osaka 560-0043 (Japan); Graduate School of Engineering, University of Fukui, 3-9-1 Bunkyo, Fukui 910-8507 (Japan); Segawa, Yuji; Kawai, Tomoji [Institute of Scientific and Industrial Research (ISIR), Osaka University, 8-1 Mihogaoka, Ibaraki, Osaka 567-0047 (Japan); Kuroda-Sowa, Takayoshi [Department of Chemistry, Faculty of Science and Engineering, Kinki University, 3-4-1 Kowakae, Higashi-Osaka, Osaka 577-8502 (Japan); Matsumoto, Takuya, E-mail: matsumoto-t@chem.sci.osaka-u.ac.jp [Department of Chemistry, Graduate School of Science, Osaka University, 1-1 Machikaneyama-cho, Toyonaka, Osaka 560-0043 (Japan)

    2014-06-09

    Artificial neuron-based information processing is one of the attractive approaches of molecular-scale electronics, which can exploit the ability of molecular system for self-assembling or self-organization. The self-organized Mn{sub 12}/DNA redox network shows nonlinear current-voltage characteristics that can be described by the Coulomb blockade network model. As a demonstration of the nonlinear network system, we have observed stochastic resonance without tuning for weak periodic input signals and thermal noise, which suggests a route to neural network composed of molecular materials.

  4. Development and Testing of an UltraBattery-Equipped Honda Civic Hybrid

    SciTech Connect (OSTI)

    Sally Sun; Tyler Gray; Pattie Hovorka; Jeffrey Wishart; Donald Karner; James Francfort

    2012-08-01

    The UltraBattery Retrofit Project DP1.8 and Carbon Enriched Project C3, performed by ECOtality North America (ECOtality) and funded by the U.S. Department of Energy and the Advanced Lead Acid Battery Consortium (ALABC), are established to demonstrate the suitability of advanced lead battery technology in hybrid electrical vehicles (HEVs). A profile, termed the “Simulated Honda Civic HEV Profile” (SHCHEVP) has been developed in Project DP1.8 in order to provide reproducible laboratory evaluations of different battery types under real-world HEV conditions. The cycle is based on the Urban Dynamometer Driving Schedule and Highway Fuel Economy Test cycles and simulates operation of a battery pack in a Honda Civic HEV. One pass through the SHCHEVP takes 2,140 seconds and simulates 17.7 miles of driving. A complete nickel metal hydride (NiMH) battery pack was removed from a Honda Civic HEV and operated under SHCHEVP to validate the profile. The voltage behavior and energy balance of the battery during this operation was virtually the same as that displayed by the battery when in the Honda Civic operating on the dynamometer under the Urban Dynamometer Driving Schedule and Highway Fuel Economy Test cycles, thus confirming the efficacy of the simulated profile. An important objective of the project has been to benchmark the performance of the UltraBatteries manufactured by both Furukawa Battery Co., Ltd., Japan (Furakawa) and East Penn Manufacturing Co., Inc. (East Penn). Accordingly, UltraBattery packs from both Furakawa and East Penn have been characterized under a range of conditions. Resistance measurements and capacity tests at various rates show that both battery types are very similar in performance. Both technologies, as well as a standard lead-acid module (included for baseline data), were evaluated under a simple HEV screening test. Both Furakawa and East Penn UltraBattery packs operated for over 32,000 HEV cycles, with minimal loss in performance; whereas the standard lead-acid unit experienced significant degradation after only 6,273 cycles. The high-carbon, ALABC battery manufactured in Project C3 also was tested under the advanced HEV schedule. Its performance was significantly better than the standard lead-acid unit, but was still inferior compared with the UltraBattery. The batteries supplied by Exide as part of the C3 Project performed well under the HEV screening test, especially at high temperatures. The results suggest that higher operating temperatures may improve the performance of lead-acid-based technologies operated under HEV conditions—it is recommended that life studies be conducted on these technologies under such conditions.

  5. Synthesis, Characterization and Performance of Cathodes for Lithium Ion Batteries

    E-Print Network [OSTI]

    Zhu, Jianxin

    2014-01-01

    electrode in lithium-ion batteries: AFM study in an ethylenelithium-ion rechargeable batteries. Carbon 1999, 37, 165-batteries. J. Electrochem. Soc. 2001,

  6. Sodium Titanates as Anodes for Sodium Ion Batteries

    E-Print Network [OSTI]

    Doeff, Marca M.

    2014-01-01

    Anodes  for  Sodium  Ion  Batteries   Marca  M.  Doeff,  dual   intercalation   batteries   based   on   sodium  future   of   sodium  ion  batteries  will  be  discussed  

  7. EV Everywhere Batteries Workshop - Beyond Lithium Ion Breakout...

    Broader source: Energy.gov (indexed) [DOE]

    beyondlithiumionb.pdf More Documents & Publications EV Everywhere Batteries Workshop - Next Generation Lithium Ion Batteries Breakout Session Report EV Everywhere Batteries...

  8. Synthesis, Characterization and Performance of Cathodes for Lithium Ion Batteries

    E-Print Network [OSTI]

    Zhu, Jianxin

    2014-01-01

    Alloy design for lithium-ion battery anodes. J. Electrochem.advances in lithium ion battery materials. Electrochim. Actamaterials for lithium ion battery. Journal of Nanoparticle

  9. A Better Anode Design to Improve Lithium-Ion Batteries

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    electronics, and the newest electric cars. Good as these batteries are, the need for energy storage in batteries is surpassing current technologies. In a lithium-ion battery,...

  10. Visualization of Charge Distribution in a Lithium Battery Electrode

    E-Print Network [OSTI]

    Liu, Jun

    2010-01-01

    microdiffraction. Lithium ion batteries have made a greatthose used in lithium-ion batteries. Dynamic potentiometricrechargeable lithium ion batteries consist of many layers of

  11. The UC Davis Emerging Lithium Battery Test Project

    E-Print Network [OSTI]

    Burke, Andy; Miller, Marshall

    2009-01-01

    Characteristics of Lithium-ion Batteries of Variouselectrodes for lithium-ion batteries, Journal of MaterialsAdvances in Lithium-Ion Batteries (Chapter 4), Kluwer

  12. Three-dimensional batteries using a liquid cathode

    E-Print Network [OSTI]

    Malati, Peter Moneir

    2013-01-01

    2000). Costs of Lithium-Ion Batteries for Vehicles, (ANL/Lithium ion Batteries 2.1.1 Lithium versus Lithium ion Batteries Lithium systems

  13. Developing Next-Gen Batteries With Help From NERSC

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    NERSC Helps Develop Next-Gen Batteries NERSC Helps Develop Next-Gen Batteries A genomics approach to materials research could speed up advancements in battery performance December...

  14. The UC Davis Emerging Lithium Battery Test Project

    E-Print Network [OSTI]

    Burke, Andy; Miller, Marshall

    2009-01-01

    The UC Davis Emerging Lithium Battery Test Project Andrewto evaluate emerging lithium battery technologies for plug-vehicles. By emerging lithium battery chemistries were meant

  15. Three-dimensional batteries using a liquid cathode

    E-Print Network [OSTI]

    Malati, Peter Moneir

    2013-01-01

    3 2.1.2 Lithium ion Battery2.2 Schematic of lithium ion battery operating principles (be rechargeable. The lithium ion battery is often referred

  16. New imaging capability reveals possible key to extending battery...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    developed for studying battery failures points to a potential next step in extending lithium ion battery lifetime and capacity, opening a path to wider use of these batteries...

  17. Final Progress Report for Linking Ion Solvation and Lithium Battery

    Office of Scientific and Technical Information (OSTI)

    for Linking Ion Solvation and Lithium Battery Electrolyte Properties Henderson, Wesley 25 ENERGY STORAGE battery, electrolyte, solvation, ionic association battery, electrolyte,...

  18. Battery Lifetime Analysis and Simulation Tool (BLAST) Documentation

    Office of Scientific and Technical Information (OSTI)

    Battery Lifetime Analysis and Simulation Tool (BLAST) Documentation Neubauer, J. 25 ENERGY STORAGE BATTERY; LITHIUM-ION; STATIONARY ENERGY STORAGE; BLAST; BATTERY DEGRADATION;...

  19. Manufacturing of Protected Lithium Electrodes for Advanced Batteries...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Manufacturing of Protected Lithium Electrodes for Advanced Batteries Manufacturing of Protected Lithium Electrodes for Advanced Batteries PolyPlus Battery Company - Berkeley, CA A...

  20. MATHEMATICAL MODELING OF THE LITHIUM-ALUMINUM, IRON SULFIDE BATTERY

    E-Print Network [OSTI]

    Pollard, Richard

    2012-01-01

    and J. Newman, Proc. Syrup. Battery Design and Optimization,123, 1364 (1976). Symp, Battery Design and Optimization, S.~ALUMINUM, IRON SULFIDE BATTERY Contents ACKNOWLEDGEMENTS

  1. Psychometric properties of the penn computerized neurocognitive battery

    E-Print Network [OSTI]

    Moore, TM; Reise, SP; Gur, RE; Hakonarson, H; Gur, RC; Gur, RC

    2015-01-01

    a computerized neurocognitive battery in children age 8 –21.based neurocog- nitive battery. Therapeutic Hypothermia anda standardized neurocognitive battery. Neuropsychology, 28,

  2. Electroactive materials for rechargeable batteries

    SciTech Connect (OSTI)

    Wu, Huiming; Amine, Khalil; Abouimrane, Ali

    2015-04-21

    An as-prepared cathode for a secondary battery, the cathode including an alkaline source material including an alkali metal oxide, an alkali metal sulfide, an alkali metal salt, or a combination of any two or more thereof.

  3. Optimization of blended battery packs

    E-Print Network [OSTI]

    Erb, Dylan C. (Dylan Charles)

    2013-01-01

    This thesis reviews the traditional battery pack design process for hybrid and electric vehicles, and presents a dynamic programming (DP) based algorithm that eases the process of cell selection and pack design, especially ...

  4. Reinventing Batteries for Grid Storage

    SciTech Connect (OSTI)

    Banerjee, Sanjoy

    2012-01-01

    The City University of New York's Energy Institute, with the help of ARPA-E funding, is creating safe, low cost, rechargeable, long lifecycle batteries that could be used as modular distributed storage for the electrical grid. The batteries could be used at the building level or the utility level to offer benefits such as capture of renewable energy, peak shaving and microgridding, for a safer, cheaper, and more secure electrical grid.

  5. Solid polymer electrolyte lithium batteries

    DOE Patents [OSTI]

    Alamgir, M.; Abraham, K.M.

    1993-10-12

    This invention pertains to Lithium batteries using Li ion (Li[sup +]) conductive solid polymer electrolytes composed of solvates of Li salts immobilized in a solid organic polymer matrix. In particular, this invention relates to Li batteries using solid polymer electrolytes derived by immobilizing solvates formed between a Li salt and an aprotic organic solvent (or mixture of such solvents) in poly(vinyl chloride). 3 figures.

  6. Batteries using molten salt electrolyte

    DOE Patents [OSTI]

    Guidotti, Ronald A. (Albuquerque, NM)

    2003-04-08

    An electrolyte system suitable for a molten salt electrolyte battery is described where the electrolyte system is a molten nitrate compound, an organic compound containing dissolved lithium salts, or a 1-ethyl-3-methlyimidazolium salt with a melting temperature between approximately room temperature and approximately 250.degree. C. With a compatible anode and cathode, the electrolyte system is utilized in a battery as a power source suitable for oil/gas borehole applications and in heat sensors.

  7. Solid polymer electrolyte lithium batteries

    DOE Patents [OSTI]

    Alamgir, Mohamed (Dedham, MA); Abraham, Kuzhikalail M. (Needham, MA)

    1993-01-01

    This invention pertains to Lithium batteries using Li ion (Li.sup.+) conductive solid polymer electrolytes composed of solvates of Li salts immobilized in a solid organic polymer matrix. In particular, this invention relates to Li batteries using solid polymer electrolytes derived by immobilizing solvates formed between a Li salt and an aprotic organic solvent (or mixture of such solvents) in poly(vinyl chloride).

  8. Reinventing Batteries for Grid Storage

    ScienceCinema (OSTI)

    Banerjee, Sanjoy

    2013-05-29

    The City University of New York's Energy Institute, with the help of ARPA-E funding, is creating safe, low cost, rechargeable, long lifecycle batteries that could be used as modular distributed storage for the electrical grid. The batteries could be used at the building level or the utility level to offer benefits such as capture of renewable energy, peak shaving and microgridding, for a safer, cheaper, and more secure electrical grid.

  9. Applying the Battery Ownership Model in Pursuit of Optimal Battery Use Strategies (Presentation)

    SciTech Connect (OSTI)

    Neubauer, J.; Ahmad, P.; Brooker, A.; Wood, E.; Smith, K.; Johnson, C.; Mendelsohn, M.

    2012-05-01

    This Annual Merit Review presentation describes the application of the Battery Ownership Model for strategies for optimal battery use in electric drive vehicles (PEVs, PHEVs, and BEVs).

  10. Model based control of a coke battery

    SciTech Connect (OSTI)

    Stone, P.M.; Srour, J.M.; Zulli, P. [BHP Research, Mulgrave (Australia). Melbourne Labs.; Cunningham, R.; Hockings, K. [BHP Steel, Pt Kembla, New South Wales (Australia). Coal and Coke Technical Development Group

    1997-12-31

    This paper describes a model-based strategy for coke battery control at BHP Steel`s operations in Pt Kembla, Australia. The strategy uses several models describing the battery thermal and coking behavior. A prototype controller has been installed on the Pt Kembla No. 6 Battery (PK6CO). In trials, the new controller has been well accepted by operators and has resulted in a clear improvement in battery thermal stability, with a halving of the standard deviation of average battery temperature. Along with other improvements to that battery`s operations, this implementation has contributed to a 10% decrease in specific battery energy consumption. A number of enhancements to the low level control systems on that battery are currently being undertaken in order to realize further benefits.

  11. Context-aware Battery Management for Mobile Phones Nishkam Ravi, James Scott**, Lu Han* and Liviu Iftode*

    E-Print Network [OSTI]

    Iftode, Liviu

    Context-aware Battery Management for Mobile Phones Nishkam Ravi, James Scott**, Lu Han* and Liviu to predict battery consumption of applications. We present the design of the system and demonstrate its computing applications have provided reasons for mobile devices to be executing always-on back- ground

  12. 1262 IEEE TRANSACTIONS ON POWER ELECTRONICS, VOL. 18, NO. 6, NOVEMBER 2003 A Constant-Power Battery Charger With Inherent

    E-Print Network [OSTI]

    Tse, Chi K. "Michael"

    Charger With Inherent Soft Switching and Power Factor Correction N. K. Poon, Member, IEEE, Bryan M. H prototype was built to demonstrate the merits of this circuit. Index Terms--Battery charger, power factor correction, switching converters, zero-voltage-switching. I. INTRODUCTION BATTERY chargers are designed

  13. Understanding and managing the effects of battery charger and inverter aging

    SciTech Connect (OSTI)

    Gunther, W. ); Aggarwal, S. )

    1992-01-01

    An aging assessment of battery chargers and inverters was conducted under the auspices of the NRC's Nuclear Plant Aging Research (NPAR) Program. The intentions of this program are to resolve issues related to the aging and service wear of equipment and systems at operating reactor facilities and to assess their impact on safety. Inverters and battery chargers are used in nuclear power plants to perform significant functions related to plant safety and availability. The specific impact of a battery charger or inverter failure varies with plant configuration. Operating experience data have demonstrated that reactor trips, safety injection system actuations, and inoperable emergency core cooling systems have resulted from inverter failures; and dc bus degradation leading to diesel generator inoperability or loss of control room annunication and indication have resulted from battery and battery charger failures. For the battery charger and inverter, the aging and service wear of subcomponents have contributed significantly to equipment failures. This paper summarizes the data and then describes methods that can be used to detect battery charger and inverter degradation prior to failure, as well as methods to minimize the failure effects. In both cases, the managing of battery charger and inverter aging is emphasized. 5 refs.

  14. Understanding and managing the effects of battery charger and inverter aging

    SciTech Connect (OSTI)

    Gunther, W.; Aggarwal, S.

    1992-06-01

    An aging assessment of battery chargers and inverters was conducted under the auspices of the NRC`s Nuclear Plant Aging Research (NPAR) Program. The intentions of this program are to resolve issues related to the aging and service wear of equipment and systems at operating reactor facilities and to assess their impact on safety. Inverters and battery chargers are used in nuclear power plants to perform significant functions related to plant safety and availability. The specific impact of a battery charger or inverter failure varies with plant configuration. Operating experience data have demonstrated that reactor trips, safety injection system actuations, and inoperable emergency core cooling systems have resulted from inverter failures; and dc bus degradation leading to diesel generator inoperability or loss of control room annunication and indication have resulted from battery and battery charger failures. For the battery charger and inverter, the aging and service wear of subcomponents have contributed significantly to equipment failures. This paper summarizes the data and then describes methods that can be used to detect battery charger and inverter degradation prior to failure, as well as methods to minimize the failure effects. In both cases, the managing of battery charger and inverter aging is emphasized. 5 refs.

  15. Optimal management of batteries in electric systems

    DOE Patents [OSTI]

    Atcitty, Stanley (Albuquerque, NM); Butler, Paul C. (Albuquerque, NM); Corey, Garth P. (Albuquerque, NM); Symons, Philip C. (Morgan Hill, CA)

    2002-01-01

    An electric system including at least a pair of battery strings and an AC source minimizes the use and maximizes the efficiency of the AC source by using the AC source only to charge all battery strings at the same time. Then one or more battery strings is used to power the load while management, such as application of a finish charge, is provided to one battery string. After another charge cycle, the roles of the battery strings are reversed so that each battery string receives regular management.

  16. Two Studies Reveal Details of Lithium-Battery Function

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    optimizing better battery materials. A Battery of Tests for Better Batteries The prosaic battery has often been overlooked as little more than an afterthought in a consumer-driven...

  17. Developing Information on Energy Savings and Associated Costs and Benefits of Energy Efficient Emerging Technologies Applicable in California

    E-Print Network [OSTI]

    Xu, Tengfang

    2011-01-01

    of a Vanadium Redox Flow Battery Electricity Storage System.Vanadium Redox Flow Batteries wastewater-8 Using new batterypromising novel battery designs like the vanadium redox flow

  18. Ionic Liquid-Enhanced Solid State Electrolyte Interface (SEI) for Lithium Sulfur Batteries

    SciTech Connect (OSTI)

    Zheng, Jianming; Gu, Meng; Chen, Honghao; Meduri, Praveen; Engelhard, Mark H.; Zhang, Jiguang; Liu, Jun; Xiao, Jie

    2013-05-16

    Li-S battery is a complicated system with many challenges existing before its final market penetration. While most of the reported work for Li-S batteries is focused on the cathode design, we demonstrate in this work that the anode consumption accelerated by corrosive polysulfide solution also critically determines the Li-S cell performance. To validate this hypothesis, ionic liquid (IL) N-methyl-N-butylpyrrolidinium bis(trifluoromethylsulfonyl)imide (Py14TFSI) has been employed to modify the properties of SEI layer formed on Li metal surface in Li-S batteries. It is found that the IL-enhanced passivation film on the lithium anode surface exhibits much different morphology and chemical compositions, effectively protecting lithium metal from continuous attack by soluble polysulfides. Therefore, both cell impedance and the irreversible consumption of polysulfides on lithium metal are reduced. As a result, the Coulombic efficiency and the cycling stability of Li-S batteries have been greatly improved. After 120 cycles, Li-S battery cycled in the electrolyte containing IL demonstrates a high capacity retention of 94.3% at 0.1 C rate. These results unveil another important failure mechanism for Li-S batteries and shin the light on the new approaches to improve Li-S battery performances.

  19. EV Everywhere Batteries Workshop - Next Generation Lithium Ion...

    Broader source: Energy.gov (indexed) [DOE]

    More Documents & Publications EV Everywhere Batteries Workshop - Beyond Lithium Ion Breakout Session Report EV Everywhere Batteries Workshop - Materials...

  20. Improved Positive Electrode Materials for Li-ion Batteries

    E-Print Network [OSTI]

    Conry, Thomas Edward

    2012-01-01

    commercial Li-ion batteries today use graphite or a mixturein certain primary batteries). Graphite has a potential of

  1. EV Everywhere Batteries Workshop - Next Generation Lithium Ion...

    Broader source: Energy.gov (indexed) [DOE]

    More Documents & Publications EV Everywhere Batteries Workshop - Beyond Lithium Ion Breakout Session Report EV Everywhere Batteries Workshop - Materials Processing...

  2. Three-dimensional batteries using a liquid cathode

    E-Print Network [OSTI]

    Malati, Peter Moneir

    2013-01-01

    for powering microelectromechanical systems and otherSurvey of battery powered microelectromechanical systems.with battery powered microelectromechanical systems (MEMS),

  3. Improved Positive Electrode Materials for Li-ion Batteries

    E-Print Network [OSTI]

    Conry, Thomas Edward

    2012-01-01

    battery cathodes for portable electronics (and is even the material used in batteries for the original Tesla

  4. Extended abstracts: seventh battery and electrochemical contractors' conference

    SciTech Connect (OSTI)

    Sheppard, D.; Hurwitch, J. (comps.)

    1985-11-01

    Seventy-two papers are arranged under the following session headings: EPRI storage program, review of key program activities, sodium/sulfur battery development, advanced battery research (two sessions), flow battery development, sodium/sulfur battery research, systems analysis and technology transfer, performance and testing (two sessions), flow battery research, metal/air batteries, and fuel cells. (DLC)

  5. An Analytical Model for Predicting the Remaining Battery Capacity of Lithium-Ion Batteries

    E-Print Network [OSTI]

    Pedram, Massoud

    An Analytical Model for Predicting the Remaining Battery Capacity of Lithium-Ion Batteries Peng cycle-life tends to shrink significantly. The capacities of commercial lithium-ion batteries fade by 10 prediction model to estimate the remaining capacity of a Lithium-Ion battery. The proposed analytical model

  6. Energy Storage & Battery | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    and additive components for lithium-ion, llithium-air, lithium-sulfur, sodium-ion, and flow batteries. Employing some of the most respected and cited battery researchers in the...

  7. Electrolyte Model Helps Researchers Develop Better Batteries...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Electrolyte Model Helps Researchers Develop Better Batteries, Wins R&D 100 Award Electrolyte Model Helps Researchers Develop Better Batteries, Wins R&D 100 Award October 15, 2014 -...

  8. Block copolymer electrolytes for lithium batteries

    E-Print Network [OSTI]

    Hudson, William Rodgers

    2011-01-01

    batteries are leading candidates to play an important role in the transition to a renewableBatteries by William Rodgers Hudson Doctor of Philosophy in Chemistry University of California, Berkeley Professor Jeffrey Long, Chair Increasing interest in renewable

  9. Michael Thackery on Lithium-air Batteries

    SciTech Connect (OSTI)

    Michael Thackery

    2009-09-14

    Michael Thackery, Distinguished Fellow at Argonne National Laboratory, speaks on the new technology Lithium-air batteries, which could potentially increase energy density by 5-10 times over lithium-ion batteries.

  10. A User Programmable Battery Charging System 

    E-Print Network [OSTI]

    Amanor-Boadu, Judy M

    2013-05-07

    , have to be replenished or recharged once their energy is depleted. Battery charging systems must perform this replenishment by using very fast and efficient methods to extend battery life and to increase periods between charges. In this regard...

  11. Michael Thackeray on Lithium-air Batteries

    ScienceCinema (OSTI)

    Thackeray, Michael

    2013-04-19

    Michael Thackeray, Distinguished Fellow at Argonne National Laboratory, speaks on the new technology Lithium-air batteries, which could potentially increase energy density by 5-10 times over lithium-ion batteries.

  12. Side Reactions in Lithium-Ion Batteries

    E-Print Network [OSTI]

    Tang, Maureen Han-Mei

    2012-01-01

    Model for the Graphite Anode in Li-Ion Batteries. Journal ofgraphite Chapters 2-3 have developed a method using ferrocene to characterize the SEI in lithium- ion batteries.

  13. Khalil Amine on Lithium-air Batteries

    ScienceCinema (OSTI)

    Khalil Amine

    2010-01-08

    Khalil Amine, materials scientist at Argonne National Laboratory, speaks on the new technology Lithium-air batteries, which could potentially increase energy density by 5-10 times over lithium-ion batteries.

  14. Michael Thackery on Lithium-air Batteries

    ScienceCinema (OSTI)

    Michael Thackery

    2010-01-08

    Michael Thackery, Distinguished Fellow at Argonne National Laboratory, speaks on the new technology Lithium-air batteries, which could potentially increase energy density by 5-10 times over lithium-ion batteries.

  15. Mapping Particle Charges in Battery Electrodes

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    The deceivingly simple appearance of batteries masks their chemical complexity. A typical lithium-ion battery in a cell phone consists of trillions of particles. When a lithium-ion...

  16. Side Reactions in Lithium-Ion Batteries

    E-Print Network [OSTI]

    Tang, Maureen Han-Mei

    2012-01-01

    experimental data from plastic lithium ion cells. Journal ofelectrolyte additive for lithium-ion batteries. Elec-Model for Aging of Lithium-Ion Battery Cells. Journal of The

  17. Khalil Amine on Lithium-air Batteries

    SciTech Connect (OSTI)

    Khalil Amine

    2009-09-14

    Khalil Amine, materials scientist at Argonne National Laboratory, speaks on the new technology Lithium-air batteries, which could potentially increase energy density by 5-10 times over lithium-ion batteries.

  18. LIMB Demonstration Project Extension and Coolside Demonstration

    SciTech Connect (OSTI)

    Goots, T.R.; DePero, M.J.; Nolan, P.S.

    1992-11-10

    This report presents results from the limestone Injection Multistage Burner (LIMB) Demonstration Project Extension. LIMB is a furnace sorbent injection technology designed for the reduction of sulfur dioxide (SO[sub 2]) and nitrogen oxides (NO[sub x]) emissions from coal-fired utility boilers. The testing was conducted on the 105 Mwe, coal-fired, Unit 4 boiler at Ohio Edison's Edgewater Station in Lorain, Ohio. In addition to the LIMB Extension activities, the overall project included demonstration of the Coolside process for S0[sub 2] removal for which a separate report has been issued. The primary purpose of the DOE LIMB Extension testing, was to demonstrate the generic applicability of LIMB technology. The program sought to characterize the S0[sub 2] emissions that result when various calcium-based sorbents are injected into the furnace, while burning coals having sulfur content ranging from 1.6 to 3.8 weight percent. The four sorbents used included calcitic limestone, dolomitic hydrated lime, calcitic hydrated lime, and calcitic hydrated lime with a small amount of added calcium lignosulfonate. The results include those obtained for the various coal/sorbent combinations and the effects of the LIMB process on boiler and plant operations.

  19. Alternator control for battery charging

    DOE Patents [OSTI]

    Brunstetter, Craig A.; Jaye, John R.; Tallarek, Glen E.; Adams, Joseph B.

    2015-07-14

    In accordance with an aspect of the present disclosure, an electrical system for an automotive vehicle has an electrical generating machine and a battery. A set point voltage, which sets an output voltage of the electrical generating machine, is set by an electronic control unit (ECU). The ECU selects one of a plurality of control modes for controlling the alternator based on an operating state of the vehicle as determined from vehicle operating parameters. The ECU selects a range for the set point voltage based on the selected control mode and then sets the set point voltage within the range based on feedback parameters for that control mode. In an aspect, the control modes include a trickle charge mode and battery charge current is the feedback parameter and the ECU controls the set point voltage within the range to maintain a predetermined battery charge current.

  20. Vehicle Battery Safety Roadmap Guidance

    SciTech Connect (OSTI)

    Doughty, D. H.

    2012-10-01

    The safety of electrified vehicles with high capacity energy storage devices creates challenges that must be met to assure commercial acceptance of EVs and HEVs. High performance vehicular traction energy storage systems must be intrinsically tolerant of abusive conditions: overcharge, short circuit, crush, fire exposure, overdischarge, and mechanical shock and vibration. Fail-safe responses to these conditions must be designed into the system, at the materials and the system level, through selection of materials and safety devices that will further reduce the probability of single cell failure and preclude propagation of failure to adjacent cells. One of the most important objectives of DOE's Office of Vehicle Technologies is to support the development of lithium ion batteries that are safe and abuse tolerant in electric drive vehicles. This Roadmap analyzes battery safety and failure modes of state-of-the-art cells and batteries and makes recommendations on future investments that would further DOE's mission.

  1. Nanocomposite Materials for Lithium Ion Batteries

    SciTech Connect (OSTI)

    2011-05-31

    Fact sheet describing development and application of processing and process control for nanocomposite materials for lithium ion batteries

  2. Battery Thermal Modeling and Testing (Presentation)

    SciTech Connect (OSTI)

    Smith, K.

    2011-05-01

    This presentation summarizes NREL battery thermal modeling and testing work for the DOE Annual Merit Review, May 9, 2011.

  3. Battery Thermal Management System Design Modeling

    SciTech Connect (OSTI)

    Pesaran, A.; Kim, G. H.

    2006-11-01

    Looks at the impact of cooling strategies with air and both direct and indirect liquid cooling for battery thermal management.

  4. Electrochemically controlled charging circuit for storage batteries

    DOE Patents [OSTI]

    Onstott, E.I.

    1980-06-24

    An electrochemically controlled charging circuit for charging storage batteries is disclosed. The embodiments disclosed utilize dc amplification of battery control current to minimize total energy expended for charging storage batteries to a preset voltage level. The circuits allow for selection of Zener diodes having a wide range of reference voltage levels. Also, the preset voltage level to which the storage batteries are charged can be varied over a wide range.

  5. Battery control system for hybrid vehicle and method for controlling a hybrid vehicle battery

    DOE Patents [OSTI]

    Bockelmann, Thomas R. (Battle Creek, MI); Hope, Mark E. (Marshall, MI); Zou, Zhanjiang (Battle Creek, MI); Kang, Xiaosong (Battle Creek, MI)

    2009-02-10

    A battery control system for hybrid vehicle includes a hybrid powertrain battery, a vehicle accessory battery, and a prime mover driven generator adapted to charge the vehicle accessory battery. A detecting arrangement is configured to monitor the vehicle accessory battery's state of charge. A controller is configured to activate the prime mover to drive the generator and recharge the vehicle accessory battery in response to the vehicle accessory battery's state of charge falling below a first predetermined level, or transfer electrical power from the hybrid powertrain battery to the vehicle accessory battery in response to the vehicle accessory battery's state of charge falling below a second predetermined level. The invention further includes a method for controlling a hybrid vehicle powertrain system.

  6. Testing the ancient marine redox record from oxygenic photosynthesis to photic zone euxina

    E-Print Network [OSTI]

    French, Katherine L. (Katherine Louise)

    2015-01-01

    Tracing the evolution of Earth's redox history is one of the great challenges of geobiology and geochemistry. The accumulation of photosynthetically derived oxygen transformed the redox state of Earth's surface environments, ...

  7. A basin redox transect at the dawn of animal life Erik A. Sperling a

    E-Print Network [OSTI]

    that captures the inferred origin and early evolution of animals. Iron-based redox proxies, redox-sensitive trace elements, organic carbon percentages and pyrite sulfur isotopes were analyzed in seven

  8. An inner membrane cytochrome required only for reduction of high redox potential extracellular electron acceptors

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Levar, Caleb E.; Chan, Chi Ho; Mehta-Kolte, Misha G.; Bond, Daniel R.

    2014-10-28

    Dissimilatory metal-reducing bacteria, such as Geobacter sulfurreducens, transfer electrons beyond their outer membranes to Fe(III) and Mn(IV) oxides, heavy metals, and electrodes in electrochemical devices. In the environment, metal acceptors exist in multiple chelated and insoluble forms that span a range of redox potentials and offer different amounts of available energy. Despite this, metal-reducing bacteria have not been shown to alter their electron transfer strategies to take advantage of these energy differences. Disruption of imcH, encoding an inner membrane c-type cytochrome, eliminated the ability of G. sulfurreducens to reduce Fe(III) citrate, Fe(III)-EDTA, and insoluble Mn(IV) oxides, electron acceptors with potentialsmore »greater than 0.1 V versus the standard hydrogen electrode (SHE), but the imcH mutant retained the ability to reduce Fe(III) oxides with potentials of ?–0.1 V versus SHE. The imcH mutant failed to grow on electrodes poised at +0.24 V versus SHE, but switching electrodes to –0.1 V versus SHE triggered exponential growth. At potentials of ?–0.1 V versus SHE, both the wild type and the imcH mutant doubled 60% slower than at higher potentials. Electrodes poised even 100 mV higher (0.0 V versus SHE) could not trigger imcH mutant growth. These results demonstrate that G. sulfurreducens possesses multiple respiratory pathways, that some of these pathways are in operation only after exposure to low redox potentials, and that electron flow can be coupled to generation of different amounts of energy for growth. Redox potentials that trigger these behaviors mirror those of metal acceptors common in subsurface environments where Geobacter is found.« less

  9. Review of storage battery system cost estimates

    SciTech Connect (OSTI)

    Brown, D.R.; Russell, J.A.

    1986-04-01

    Cost analyses for zinc bromine, sodium sulfur, and lead acid batteries were reviewed. Zinc bromine and sodium sulfur batteries were selected because of their advanced design nature and the high level of interest in these two technologies. Lead acid batteries were included to establish a baseline representative of a more mature technology.

  10. Propagation testing multi-cell batteries.

    SciTech Connect (OSTI)

    Orendorff, Christopher J.; Lamb, Joshua; Steele, Leigh Anna Marie; Spangler, Scott Wilmer

    2014-10-01

    Propagation of single point or single cell failures in multi-cell batteries is a significant concern as batteries increase in scale for a variety of civilian and military applications. This report describes the procedure for testing failure propagation along with some representative test results to highlight the potential outcomes for different battery types and designs.

  11. Batteries for Vehicular Applications Venkat Srinivasan

    E-Print Network [OSTI]

    Knowles, David William

    Batteries for Vehicular Applications Venkat Srinivasan Lawrence Berkeley National Lab 1 Cyclotron Road, MS 70R 0108B Berkeley, CA 94720 Abstract. This paper will describe battery technology), and plug-in- hybrid-electric vehicles (PHEV). The present status of rechargeable batteries

  12. Bimetallic Cathode Materials for Lithium Based Batteries

    E-Print Network [OSTI]

    Bimetallic Cathode Materials for Lithium Based Batteries Frontiers in Materials Science Seminar / Chemistryg g g g g y University at Buffalo ­ The State University of New York (SUNY) Abstract Batteries/SVO batteries. A case study highlighting the rich chemistry and electrochemistry of the Li/SVO system providing

  13. Overview of the Batteries for Advanced Transportation

    E-Print Network [OSTI]

    Knowles, David William

    Overview of the Batteries for Advanced Transportation Technologies (BATT) Program Venkat Srinivasan of the DOE/EERE FreedomCAR and Vehicle Technologies Program to develop batteries for vehicular applications double the energy density of presently available Li batteries · HEV: low-T operation, cost, and abuse

  14. 0 INFORMATION BATTERIES-FOR BIOTELEMETRY

    E-Print Network [OSTI]

    Thomas, David D.

    A -BIAC 0 INFORMATION MODULE MIO BATTERIES-FOR BIOTELEMETRY AND OTHER APPLICATIONS Prepared by go to the Applications Engineering Department of P. R. Mallory Battery Company for supplying. High vacuum or pressures of 5C00 psi have no detectable effect on mercury batteries. Momentary short

  15. Transparent lithium-ion batteries , Sangmoo Jeongb

    E-Print Network [OSTI]

    Cui, Yi

    Transparent lithium-ion batteries Yuan Yanga , Sangmoo Jeongb , Liangbing Hua , Hui Wua , Seok Woo, and solar cells; however, transparent batteries, a key component in fully integrated transparent devices, have not yet been reported. As battery electrode materials are not transpar- ent and have to be thick

  16. Electrothermal Analysis of Lithium Ion Batteries

    SciTech Connect (OSTI)

    Pesaran, A.; Vlahinos, A.; Bharathan, D.; Duong, T.

    2006-03-01

    This report presents the electrothermal analysis and testing of lithium ion battery performance. The objectives of this report are to: (1) develop an electrothermal process/model for predicting thermal performance of real battery cells and modules; and (2) use the electrothermal model to evaluate various designs to improve battery thermal performance.

  17. Battery charging in float vs. cycling environments

    SciTech Connect (OSTI)

    COREY,GARTH P.

    2000-04-20

    In lead-acid battery systems, cycling systems are often managed using float management strategies. There are many differences in battery management strategies for a float environment and battery management strategies for a cycling environment. To complicate matters further, in many cycling environments, such as off-grid domestic power systems, there is usually not an available charging source capable of efficiently equalizing a lead-acid battery let alone bring it to a full state of charge. Typically, rules for battery management which have worked quite well in a floating environment have been routinely applied to cycling batteries without full appreciation of what the cycling battery really needs to reach a full state of charge and to maintain a high state of health. For example, charge target voltages for batteries that are regularly deep cycled in off-grid power sources are the same as voltages applied to stand-by systems following a discharge event. In other charging operations equalization charge requirements are frequently ignored or incorrectly applied in cycled systems which frequently leads to premature capacity loss. The cause of this serious problem: the application of float battery management strategies to cycling battery systems. This paper describes the outcomes to be expected when managing cycling batteries with float strategies and discusses the techniques and benefits for the use of cycling battery management strategies.

  18. Jeff Chamberlain on Lithium-air batteries

    SciTech Connect (OSTI)

    Chamberlain, Jeff

    2009-01-01

    Jeff Chamberlain, technology transfer expert at Argonne National Laboratory, speaks on the new technology Lithium-air batteries, which could potentially increase energy density by 5-10 times over lithium-ion batteries. More information at http://www.anl.gov/Media_Center/News/2009/batteries090915.html

  19. Jeff Chamberlain on Lithium-air batteries

    ScienceCinema (OSTI)

    Chamberlain, Jeff

    2013-04-19

    Jeff Chamberlain, technology transfer expert at Argonne National Laboratory, speaks on the new technology Lithium-air batteries, which could potentially increase energy density by 5-10 times over lithium-ion batteries. More information at http://www.anl.gov/Media_Center/News/2009/batteries090915.html

  20. Adaptive Battery Charge Scheduling with Bursty Workloads

    E-Print Network [OSTI]

    Wu, Jie

    1 Adaptive Battery Charge Scheduling with Bursty Workloads Dylan Lexie , Shan Lin, and Jie Wu.wu@temple.edu Abstract--Battery-powered wireless sensor devices need to be charged to provide the desired functionality after deployment. Task or even device failures can occur if the voltage of the battery is low

  1. Solid-state lithium battery

    DOE Patents [OSTI]

    Ihlefeld, Jon; Clem, Paul G; Edney, Cynthia; Ingersoll, David; Nagasubramanian, Ganesan; Fenton, Kyle Ross

    2014-11-04

    The present invention is directed to a higher power, thin film lithium-ion electrolyte on a metallic substrate, enabling mass-produced solid-state lithium batteries. High-temperature thermodynamic equilibrium processing enables co-firing of oxides and base metals, providing a means to integrate the crystalline, lithium-stable, fast lithium-ion conductor lanthanum lithium tantalate (La.sub.1/3-xLi.sub.3xTaO.sub.3) directly with a thin metal foil current collector appropriate for a lithium-free solid-state battery.

  2. Strategy Guideline. Demonstration Home

    SciTech Connect (OSTI)

    Hunt, A.; Savage, C.

    2012-12-01

    This guideline will provide a general overview of the different kinds of demonstration home projects, a basic understanding of the different roles and responsibilities involved in the successful completion of a demonstration home, and an introduction into some of the lessons learned from actual demonstration home projects. Also, this guideline will specifically look at the communication methods employed during demonstration home projects. And lastly, we will focus on how to best create a communication plan for including an energy efficient message in a demonstration home project and carry that message to successful completion.

  3. Strategy Guideline: Demonstration Home

    SciTech Connect (OSTI)

    Savage, C.; Hunt, A.

    2012-12-01

    This guideline will provide a general overview of the different kinds of demonstration home projects, a basic understanding of the different roles and responsibilities involved in the successful completion of a demonstration home, and an introduction into some of the lessons learned from actual demonstration home projects. Also, this guideline will specifically look at the communication methods employed during demonstration home projects. And lastly, we will focus on how to best create a communication plan for including an energy efficient message in a demonstration home project and carry that message to successful completion.

  4. Tubular precipitation and redox gradients on a bubbling template

    E-Print Network [OSTI]

    Goldstein, Raymond E.

    Tubular precipitation and redox gradients on a bubbling template David A. Stone* and Raymond E) Tubular structures created by precipitation abound in nature, from chimneys at hydrothermal vents to soda oxides precipitate on the surface of bubbles that linger at the tube rim and then detach, leaving behind

  5. Models for Battery Reliability and Lifetime

    SciTech Connect (OSTI)

    Smith, K.; Wood, E.; Santhanagopalan, S.; Kim, G. H.; Neubauer, J.; Pesaran, A.

    2014-03-01

    Models describing battery degradation physics are needed to more accurately understand how battery usage and next-generation battery designs can be optimized for performance and lifetime. Such lifetime models may also reduce the cost of battery aging experiments and shorten the time required to validate battery lifetime. Models for chemical degradation and mechanical stress are reviewed. Experimental analysis of aging data from a commercial iron-phosphate lithium-ion (Li-ion) cell elucidates the relative importance of several mechanical stress-induced degradation mechanisms.

  6. Advanced batteries for electric vehicle applications

    SciTech Connect (OSTI)

    Henriksen, G.L.

    1993-08-01

    A technology assessment is given for electric batteries with potential for use in electric powered vehicles. Parameters considered include: specific energy, specific power, energy density, power density, cycle life, service life, recharge time, and selling price. Near term batteries include: nickel/cadmium and lead-acid batteries. Mid term batteries include: sodium/sulfur, sodium/nickel chloride, nickel/metal hydride, zinc/air, zinc/bromine, and nickel/iron systems. Long term batteries include: lithium/iron disulfide and lithium- polymer systems. Performance and life testing data for these systems are discussed. (GHH)

  7. Cathode material for lithium batteries

    DOE Patents [OSTI]

    Park, Sang-Ho; Amine, Khalil

    2013-07-23

    A method of manufacture an article of a cathode (positive electrode) material for lithium batteries. The cathode material is a lithium molybdenum composite transition metal oxide material and is prepared by mixing in a solid state an intermediate molybdenum composite transition metal oxide and a lithium source. The mixture is thermally treated to obtain the lithium molybdenum composite transition metal oxide cathode material.

  8. LIMB demonstration project extension

    SciTech Connect (OSTI)

    Not Available

    1990-09-21

    The purpose of the DOE limestone injection multistage burner (LIMB) Demonstration Project Extension is to extend the data base on LIMB technology and to expand DOE's list of Clean Coal Technologies by demonstrating the Coolside process as part of the project. The main objectives of this project are: to demonstrate the general applicability of LIMB technology by testing 3 coals and 4 sorbents (total of 12 coal/sorbent combinations) at the Ohio Edison Edgewater plant; and to demonstrate that Coolside is a viable technology for improving precipitator performance and reducing sulfur dioxide emissions while acceptable operability is maintained. Progress is reported. 3 figs.

  9. STUDIES ON TWO CLASSES OF POSITIVE ELECTRODE MATERIALS FOR LITHIUM-ION BATTERIES

    E-Print Network [OSTI]

    Wilcox, James D.

    2010-01-01

    as cathode materials for lithium ion battery. ElectrochimicaCapacity, High Rate Lithium-Ion Battery Electrodes Utilizinghours. 1.4 Lithium Ion Batteries Lithium battery technology

  10. Lithium-Air Battery: High Performance Cathodes for Lithium-Air Batteries

    SciTech Connect (OSTI)

    2010-08-01

    BEEST Project: Researchers at Missouri S&T are developing an affordable lithium-air (Li-Air) battery that could enable an EV to travel up to 350 miles on a single charge. Today’s EVs run on Li-Ion batteries, which are expensive and suffer from low energy density compared with gasoline. This new Li-Air battery could perform as well as gasoline and store 3 times more energy than current Li-Ion batteries. A Li-Air battery uses an air cathode to breathe oxygen into the battery from the surrounding air, like a human lung. The oxygen and lithium react in the battery to produce electricity. Current Li-Air batteries are limited by the rate at which they can draw oxygen from the air. The team is designing a battery using hierarchical electrode structures to enhance air breathing and effective catalysts to accelerate electricity production.

  11. Chemical Shuttle Additives in Lithium Ion Batteries

    SciTech Connect (OSTI)

    Patterson, Mary

    2013-03-31

    The goals of this program were to discover and implement a redox shuttle that is compatible with large format lithium ion cells utilizing LiNi{sub 1/3}Mn{sub 1/3}Co{sub 1/3}O{sub 2} (NMC) cathode material and to understand the mechanism of redox shuttle action. Many redox shuttles, both commercially available and experimental, were tested and much fundamental information regarding the mechanism of redox shuttle action was discovered. In particular, studies surrounding the mechanism of the reduction of the oxidized redox shuttle at the carbon anode surface were particularly revealing. The initial redox shuttle candidate, namely 2-(pentafluorophenyl)-tetrafluoro-1,3,2-benzodioxaborole (BDB) supplied by Argonne National Laboratory (ANL, Lemont, Illinois), did not effectively protect cells containing NMC cathodes from overcharge. The ANL-RS2 redox shuttle molecule, namely 1,4-bis(2-methoxyethoxy)-2,5-di-tert-butyl-benzene, which is a derivative of the commercially successful redox shuttle 2,5-di-tert-butyl-1,4-dimethoxybenzene (DDB, 3M, St. Paul, Minnesota), is an effective redox shuttle for cells employing LiFePO{sub 4} (LFP) cathode material. The main advantage of ANL-RS2 over DDB is its larger solubility in electrolyte; however, ANL-RS2 is not as stable as DDB. This shuttle also may be effectively used to rebalance cells in strings that utilize LFP cathodes. The shuttle is compatible with both LTO and graphite anode materials although the cell with graphite degrades faster than the cell with LTO, possibly because of a reaction with the SEI layer. The degradation products of redox shuttle ANL-RS2 were positively identified. Commercially available redox shuttles Li{sub 2}B{sub 12}F{sub 12} (Air Products, Allentown, Pennsylvania and Showa Denko, Japan) and DDB were evaluated and were found to be stable and effective redox shuttles at low C-rates. The Li{sub 2}B{sub 12}F{sub 12} is suitable for lithium ion cells utilizing a high voltage cathode (potential that is higher than NMC) and the DDB is useful for lithium ion cells with LFP cathodes (potential that is lower than NMC). A 4.5 V class redox shuttle provided by Argonne National Laboratory was evaluated which provides a few cycles of overcharge protection for lithium ion cells containing NMC cathodes but it is not stable enough for consideration. Thus, a redox shuttle with an appropriate redox potential and sufficient chemical and electrochemical stability for commercial use in larger format lithium ion cells with NMC cathodes was not found. Molecular imprinting of the redox shuttle molecule during solid electrolyte interphase (SEI) layer formation likely contributes to the successful reduction of oxidized redox shuttle species at carbon anodes. This helps to understand how a carbon anode covered with an SEI layer, that is supposed to be electrically insulating, can reduce the oxidized form of a redox shuttle.

  12. Development of Zinc/Bromine Batteries for Load-Leveling Applications: Phase 1 Final Report

    SciTech Connect (OSTI)

    Eidler, Phillip

    1999-07-01

    The Zinc/Bromine Load-Leveling Battery Development contract (No. 40-8965) was partitioned at the outset into two phases of equal length. Phase 1 started in September 1990 and continued through December 1991. In Phase 1, zinc/bromine battery technology was to be advanced to the point that it would be clear that the technology was viable and would be an appropriate choice for electric utilities wishing to establish stationary energy-storage facilities. Criteria were established that addressed most of the concerns that had been observed in the previous development efforts. The performances of 8-cell and 100-cell laboratory batteries demonstrated that the criteria were met or exceeded. In Phase 2, 100-kWh batteries will be built and demonstrated, and a conceptual design for a load-leveling plant will be presented. At the same time, work will continue to identify improved assembly techniques and operating conditions. This report details the results of the efforts carried out in Phase 1. The highlights are: (1) Four 1-kWh stacks achieved over 100 cycles, One l-kWh stack achieved over 200 cycles, One 1-kWh stack achieved over 300 cycles; (2) Less than 10% degradation in performance occurred in the four stacks that achieved over 100 cycles; (3) The battery used for the zinc loading investigation exhibited virtually no loss in performance for loadings up to 130 mAh/cm{sup 2}; (4) Charge-current densities of 50 ma/cm{sup 2} have been achieved in minicells; (5) Fourteen consecutive no-strip cycles have been conducted on the stack with 300+ cycles; (6) A mass and energy balance spreadsheet that describes battery operation was completed; (7) Materials research has continued to provide improvements in the electrode, activation layer, and separator; and (8) A battery made of two 50-cell stacks (15 kWh) was produced and delivered to Sandia National Laboratories (SNL) for testing. The most critical development was the ability to assemble a battery stack that remained leak free. The task of sealing the battery stack using vibration welding has undergone significant improvement resulting in a viable production process. Through several design iterations, a solid technology base for larger battery stack designs was established. Internal stack stresses can now be modeled, in addition to fluid velocity and fluid pressure distribution, through the use of a finite element analysis computer program. Additionally, the Johnson Controls Battery Group, Inc. (JCBGI) proprietary FORTRAN model has been improved significantly, enabling accurate performance predictions. This modeling was used to improve the integrity and performance of the battery stacks, and should be instrumental in reducing the turnaround time from concept to assembly.

  13. Development of alkaline zinc/ferricyanide battery

    SciTech Connect (OSTI)

    Hollandsworth, R.P.; Adams, G.B.; Webber

    1983-08-01

    The zinc/ferro-ferricyanide battery system is intended for utility load leveling and solar photovoltaic/wind applications with advantages of high cyclic efficiency, high cell voltage, random cycling without zinc strip cycles and with switching times of less than 5 ms from load to insolation or vice versa. Self-discharge has been measured at 1.6%/day. The system demonstrates excellent electrochemical performance. Cell voltages are 1.88 V OCV and 1.61 V discharge at 35 mA/cm/sup 2/ or 57 mW/cm/sup 2/ in 2N NaOH at 40/sup 0/C (Nafion N-125 separator). Cell polarization losses are almost entirely resistive and within the separator. Over 800 4-hr cycles have been demonstrated in cell of 60-cm/sup 2/ nominal area (70 mA.h/cm/sup 2/ capacity) with mean energy efficiency of 76.6 + or - 2.1 percent). Similarly, a 60-cm/sup 2/ cell has demonstrated over 220, 11 to 17 hour cycles (255 + or - 48 mA.h/cm/sup 2/ capacity) with a mean energy efficiency of 75.3 + or - 5.1 percent.

  14. Near-term feasibility demonstration of laser power beaming

    SciTech Connect (OSTI)

    Friedman, H.W.

    1994-01-01

    A mission to recharge batteries of satellites in geostationary orbits (geosats) may be a commercially viable application which could be achieved with laser systems somewhat larger than present state-of-the-art. The lifetime of batteries on geosats is limited by repetitive discharge cycles which occur when the satellites are eclipsed by the earth during the spring and fall equinoxes. By coupling high power lasers with modern, large aperture telescopes and laser guide star adaptive optics systems, present day communications satellites could be targeted. It is important that a near term demonstration of laser power beaming be accomplished using lasers in the kilowatt range so that issues associated with high average power be addressed. The Laser Guide Star Facility at LLNL has all the necessary subsystems needed for such a near term demonstration, including high power lasers for both the power beam and guide star, beam directors and satellite tracking system.

  15. PV output smoothing using a battery and natural gas engine-generator.

    SciTech Connect (OSTI)

    Johnson, Jay; Ellis, Abraham; Denda, Atsushi; Morino, Kimio; Shinji, Takao; Ogata, Takao; Tadokoro, Masayuki

    2013-02-01

    In some situations involving weak grids or high penetration scenarios, the variability of photovoltaic systems can affect the local electrical grid. In order to mitigate destabilizing effects of power fluctuations, an energy storage device or other controllable generation or load can be used. This paper describes the development of a controller for coordinated operation of a small gas engine-generator set (genset) and a battery for smoothing PV plant output. There are a number of benefits derived from using a traditional generation resource in combination with the battery; the variability of the photovoltaic system can be reduced to a specific level with a smaller battery and Power Conditioning System (PCS) and the lifetime of the battery can be extended. The controller was designed specifically for a PV/energy storage project (Prosperity) and a gas engine-generator (Mesa Del Sol) currently operating on the same feeder in Albuquerque, New Mexico. A number of smoothing simulations of the Prosperity PV were conducted using power data collected from the site. By adjusting the control parameters, tradeoffs between battery use and ramp rates could be tuned. A cost function was created to optimize the control in order to balance, in this example, the need to have low ramp rates with reducing battery size and operation. Simulations were performed for cases with only a genset or battery, and with and without coordinated control between the genset and battery, e.g., without the communication link between sites or during a communication failure. The degree of smoothing without coordinated control did not change significantly because the battery dominated the smoothing response. It is anticipated that this work will be followed by a field demonstration in the near future.

  16. Lithium sulfide compositions for battery electrolyte and battery electrode coatings

    DOE Patents [OSTI]

    Liang, Chengdu; Liu, Zengcai; Fu, Wunjun; Lin, Zhan; Dudney, Nancy J; Howe, Jane Y; Rondinone, Adam J

    2013-12-03

    Methods of forming lithium-containing electrolytes are provided using wet chemical synthesis. In some examples, the lithium containing electroytes are composed of .beta.-Li.sub.3PS.sub.4 or Li.sub.4P.sub.2S.sub.7. The solid electrolyte may be a core shell material. In one embodiment, the core shell material includes a core of lithium sulfide (Li.sub.2S), a first shell of .beta.-Li.sub.3PS.sub.4 or Li.sub.4P.sub.2S.sub.7, and a second shell including one or .beta.-Li.sub.3PS.sub.4 or Li.sub.4P.sub.2S.sub.7 and carbon. The lithium containing electrolytes may be incorporated into wet cell batteries or solid state batteries.

  17. Lithium sulfide compositions for battery electrolyte and battery electrode coatings

    DOE Patents [OSTI]

    Liang, Chengdu; Liu, Zengcai; Fu, Wujun; Lin, Zhan; Dudney, Nancy J; Howe, Jane Y; Rondinone, Adam J

    2014-10-28

    Method of forming lithium-containing electrolytes are provided using wet chemical synthesis. In some examples, the lithium containing electrolytes are composed of .beta.-Li.sub.3PS.sub.4 or Li.sub.4P.sub.2S.sub.7. The solid electrolyte may be a core shell material. In one embodiment, the core shell material includes a core of lithium sulfide (Li.sub.2S), a first shell of .beta.-Li.sub.3PS.sub.4 or Li.sub.4P.sub.2S.sub.7, and a second shell including one of .beta.-Li.sub.3PS.sub.4 or Li.sub.4P.sub.2S.sub.7 and carbon. The lithium containing electrolytes may be incorporated into wet cell batteries or solid state batteries.

  18. AVTA: Battery Testing- DC Fast Charging's Effects on PEV Batteries

    Broader source: Energy.gov [DOE]

    The Vehicle Technologies Office's Advanced Vehicle Testing Activity carries out testing on a wide range of advanced vehicles and technologies on dynamometers, closed test tracks, and on-the-road. These results provide benchmark data that researchers can use to develop technology models and guide future research and development. The following report describes DC fast charging's effects on plug-in electric vehicle batteries. This research was conducted by Idaho National Laboratory.

  19. Membraneless Vanadium Redox Fuel Cell Using Laminar Flow Rosaria Ferrigno, Abraham D. Stroock, Thomas D. Clark, Michael Mayer, and

    E-Print Network [OSTI]

    Mayer, Michael

    Membraneless Vanadium Redox Fuel Cell Using Laminar Flow Rosaria Ferrigno, Abraham D. Stroock This communication describes a small redox fuel cell fabricated using a design that omits the membrane normally used this concept by operating a millimeter-scale redox fuel cell that uses the redox couples V(V)/V(IV) (cathodic

  20. The Smart Grid, A Scale Demonstration Model Incorporating Electrified Vehicles

    E-Print Network [OSTI]

    Clemon, Lee; Mattson, Jon; Moore, Andrew; Necefer, Len; Heilman, Shelton

    2011-04-01

    of the energy flow line. This allows for testing and sizing of the battery systems in order to ensure sufficient capacity for storage of renewable sources. Moreover, smart appliances in the future will be able to interact with the grid demonstrating a..., with the advent and commercialization of electrified vehicles, energy demand has the capability to increase dramatically. A sustainable solution via renewable energy technologies can act to offset this increased demand; however, transformers and meters...

  1. Core Drilling Demonstration

    Broader source: Energy.gov [DOE]

    Tank Farms workers demonstrate core drilling capabilities for Hanford single-shell tanks. Core drilling is used to determine the current condition of each tank to assist in the overall assessment...

  2. Online Prediction of Battery Lifetime for Embedded and Mobile Devices

    E-Print Network [OSTI]

    Krintz, Chandra

    Online Prediction of Battery Lifetime for Embedded and Mobile Devices Ye Wen, Rich Wolski, and compare it to two similar battery prediction technologies: ACPI and Smart Battery. We employ twenty is a critical resource for battery-powered embedded systems and mobile devices. As such, battery life must

  3. LITHIUM-ION BATTERY CHARGING REPORT G. MICHAEL BARRAMEDA

    E-Print Network [OSTI]

    Ruina, Andy L.

    LITHIUM-ION BATTERY CHARGING REPORT G. MICHAEL BARRAMEDA 1. Abstract This report introduces how. Battery Pack 1 · Cycle 1 : 2334 mAh · Cycle 2: 2312 mAh #12;LITHIUM-ION BATTERY CHARGING REPORT 3 · Cycle to handle the Powerizer Li-Ion rechargeable Battery Packs. It will bring reveal battery specifications

  4. A Battery Health Monitoring Framework for Planetary Rovers

    E-Print Network [OSTI]

    Daigle, Matthew

    A Battery Health Monitoring Framework for Planetary Rovers Matthew Daigle NASA Ames Research Center Moffett Field, CA 94035 chetan.s.kulkarni@nasa.gov Abstract--Batteries have seen an increased use source. An important aspect of using batteries in such contexts is battery health monitoring. Batteries

  5. Recombination device for storage batteries

    DOE Patents [OSTI]

    Kraft, H.; Ledjeff, K.

    1984-01-01

    A recombination device including a gas-tight enclosure connected to receive the discharge gases from a rechargeable storage battery. Catalytic material for the recombination of hydrogen and oxygen to form water is supported within the enclosure. The enclosure is sealed from the atmosphere by a liquid seal including two vertical chambers interconnected with an inverted U-shaped overflow tube. The first chamber is connected at its upper portion to the enclosure and the second chamber communicates at its upper portion with the atmosphere. If the pressure within the enclosure differs as overpressure or vacuum by more than the liquid level, the liquid is forced into one of the two chambers and the overpressure is vented or the vacuum is relieved. The recombination device also includes means for returning recombined liquid to the battery and for absorbing metal hydrides.

  6. Recombination device for storage batteries

    DOE Patents [OSTI]

    Kraft, Helmut (Liederbach, DE); Ledjeff, Konstantin (Bad Krozingen, DE)

    1985-01-01

    A recombination device including a gas-tight enclosure connected to receive he discharge gases from a rechargeable storage battery. Catalytic material for the recombination of hydrogen and oxygen to form water is supported within the enclosure. The enclosure is sealed from the atmosphere by a liquid seal including two vertical chambers interconnected with an inverted U-shaped overflow tube. The first chamber is connected at its upper portion to the enclosure and the second chamber communicates at its upper portion with the atmosphere. If the pressure within the enclosure differs as overpressure or vacuum by more than the liquid level, the liquid is forced into one of the two chambers and the overpressure is vented or the vacuum is relieved. The recombination device also includes means for returning recombined liquid to the battery and for absorbing metal hydrides.

  7. High Performance Anode for Advanced Li Batteries

    SciTech Connect (OSTI)

    Lake, Carla

    2015-11-02

    The overall objective of this Phase I SBIR effort was to advance the manufacturing technology for ASI’s Si-CNF high-performance anode by creating a framework for large volume production and utilization of low-cost Si-coated carbon nanofibers (Si-CNF) for the battery industry. This project explores the use of nano-structured silicon which is deposited on a nano-scale carbon filament to achieve the benefits of high cycle life and high charge capacity without the consequent fading of, or failure in the capacity resulting from stress-induced fracturing of the Si particles and de-coupling from the electrode. ASI’s patented coating process distinguishes itself from others, in that it is highly reproducible, readily scalable and results in a Si-CNF composite structure containing 25-30% silicon, with a compositionally graded interface at the Si-CNF interface that significantly improve cycling stability and enhances adhesion of silicon to the carbon fiber support. In Phase I, the team demonstrated the production of the Si-CNF anode material can successfully be transitioned from a static bench-scale reactor into a fluidized bed reactor. In addition, ASI made significant progress in the development of low cost, quick testing methods which can be performed on silicon coated CNFs as a means of quality control. To date, weight change, density, and cycling performance were the key metrics used to validate the high performance anode material. Under this effort, ASI made strides to establish a quality control protocol for the large volume production of Si-CNFs and has identified several key technical thrusts for future work. Using the results of this Phase I effort as a foundation, ASI has defined a path forward to commercialize and deliver high volume and low-cost production of SI-CNF material for anodes in Li-ion batteries.

  8. Solar Thermochemical Fuels Production: Solar Fuels via Partial Redox Cycles with Heat Recovery

    SciTech Connect (OSTI)

    2011-12-19

    HEATS Project: The University of Minnesota is developing a solar thermochemical reactor that will efficiently produce fuel from sunlight, using solar energy to produce heat to break chemical bonds. The University of Minnesota is envisioning producing the fuel by using partial redox cycles and ceria-based reactive materials. The team will achieve unprecedented solar-to-fuel conversion efficiencies of more than 10% (where current state-of-the-art efficiency is 1%) by combined efforts and innovations in material development, and reactor design with effective heat recovery mechanisms and demonstration. This new technology will allow for the effective use of vast domestic solar resources to produce precursors to synthetic fuels that could replace gasoline.

  9. Battery system with temperature sensors

    DOE Patents [OSTI]

    Wood, Steven J; Trester, Dale B

    2014-02-04

    A battery system includes a platform having an aperture formed therethrough, a flexible member having a generally planar configuration and extending across the aperture, wherein a portion of the flexible member is coextensive with the aperture, a cell provided adjacent the platform, and a sensor coupled to the flexible member and positioned proximate the cell. The sensor is configured to detect a temperature of the cell.

  10. A lithium oxygen secondary battery

    SciTech Connect (OSTI)

    Semkow, K.W.; Sammells, A.F.

    1987-08-01

    In principle the lithium-oxygen couple should provide one of the highest energy densities yet investigated for advanced battery systems. The problem to this time has been one of identifying strategies for achieving high electrochemical reversibilities at each electrode under conditions where one might anticipate to also achieve long materials lifetimes. This has been addressed in recent work by us via the application of stabilized zirconia oxygen vacancy conducting solid electrolytes, for the effective separation of respective half-cell reactions.

  11. Electrolytes for lithium ion batteries

    DOE Patents [OSTI]

    Vaughey, John; Jansen, Andrew N.; Dees, Dennis W.

    2014-08-05

    A family of electrolytes for use in a lithium ion battery. The genus of electrolytes includes ketone-based solvents, such as, 2,4-dimethyl-3-pentanone; 3,3-dimethyl 2-butanone(pinacolone) and 2-butanone. These solvents can be used in combination with non-Lewis Acid salts, such as Li.sub.2[B.sub.12F.sub.12] and LiBOB.

  12. Hydrogen-Bromine Flow Battery: Hydrogen Bromine Flow Batteries for Grid Scale Energy Storage

    SciTech Connect (OSTI)

    2010-10-01

    GRIDS Project: LBNL is designing a flow battery for grid storage that relies on a hydrogen-bromine chemistry which could be more efficient, last longer and cost less than today’s lead-acid batteries. Flow batteries are fundamentally different from traditional lead-acid batteries because the chemical reactants that provide their energy are stored in external tanks instead of inside the battery. A flow battery can provide more energy because all that is required to increase its storage capacity is to increase the size of the external tanks. The hydrogen-bromine reactants used by LBNL in its flow battery are inexpensive, long lasting, and provide power quickly. The cost of the design could be well below $100 per kilowatt hour, which would rival conventional grid-scale battery technologies.

  13. Capacity fade analysis of a battery/super capacitor hybrid and a battery under pulse loads full cell studies

    E-Print Network [OSTI]

    Popov, Branko N.

    Capacity fade analysis of a battery/super capacitor hybrid and a battery under pulse loads ­ full ion battery-super capacitor hybrid system is preferred over a lithium ion battery for higher rates ion battery ($100 W/kg). Also, since the inter- nal resistance of the super capacitor is smaller than

  14. Fuzzy Logic-Based Smart Battery State-of-Charge (SOC) Monitor for SLI Batteries Pritpal Singh

    E-Print Network [OSTI]

    Singh, Pritpal

    1 Fuzzy Logic-Based Smart Battery State-of-Charge (SOC) Monitor for SLI Batteries Pritpal Singh. Monitoring and charge control of these batteries can be improved by using the concept of a smart battery system (SBS). In the present work, a smart battery monitor has been designed and manufactured

  15. Primer on lead-acid storage batteries

    SciTech Connect (OSTI)

    1995-09-01

    This handbook was developed to help DOE facility contractors prevent accidents caused during operation and maintenance of lead-acid storage batteries. Major types of lead-acid storage batteries are discussed as well as their operation, application, selection, maintenance, and disposal (storage, transportation, as well). Safety hazards and precautions are discussed in the section on battery maintenance. References to industry standards are included for selection, maintenance, and disposal.

  16. NO. REV. NO. LSPE THERMAL BATTERY TEST

    E-Print Network [OSTI]

    Rathbun, Julie A.

    NO. REV. NO. ATM 1086 LSPE THERMAL BATTERY TEST PAGE 1 OF DATE 2/25/72 Prepared by @c!_.e,~.~ ~P. Weir Approved by ~~---:J L. Lewis 5 #12;KC::Y, NO. LSPE THERMAL BATTERY TEST ATM 1086 2 PAGE OF DATE 2-52-72 Introduction The purpose of this ATM is to document the results of a Thermal Battery test for the Lunar Seismic

  17. 'Thirsty' Metals Key to Longer Battery Lifetimes

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Replacing lithium with other metals with multiple charges could greatly increase battery capacity. But first researchers need to understand how to keep multiply charged...

  18. Side Reactions in Lithium-Ion Batteries

    E-Print Network [OSTI]

    Tang, Maureen Han-Mei

    2012-01-01

    to 1) - a New Cathode Material for Batteries of High- Energyefforts to develop new high-energy materials such as silicon

  19. Washington: Battery Manufacturer Brings Material Production Home...

    Office of Environmental Management (EM)

    batteries enable electric drive vehicles to consume less petroleum and produce less pollution than conventional vehicles. At full capacity, the EnerG2 plant will produce enough...

  20. Mapping Particle Charges in Battery Electrodes

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    of the porous electrode. Using the STXM lithium maps and the high-resolution TEM images, researchers found that LFP battery particles do not charge simultaneously....

  1. Ultracapacitors and Batteries in Hybrid Vehicles

    SciTech Connect (OSTI)

    Pesaran, A.; Markel, T.; Zolot, M.; Sprik, S.

    2005-08-01

    Using an ultracapacitor in conjunction with a battery in a hybrid vehicle combines the power performance of the former with the greater energy storage capability of the latter.

  2. Nanocomposite Materials for Lithium-Ion Batteries

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    abuse tolerant lithium-ion (Li-ion) batteries is an important step in electrifying the drive train and facilitating widespread adoption of HEVs and PHEVs. Nanocomposite...

  3. Advanced Battery Materials Characterization: Success stories...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    stories from the High Temperature Materials Laboratory (HTML) User Program Advanced Battery Materials Characterization: Success stories from the High Temperature Materials...

  4. Development of alkaline zinc/ferricyanide battery

    SciTech Connect (OSTI)

    Hollandsworth, R.P.; Adams, G.B.; Webber, B.D.

    1983-01-01

    The zinc/ferro-ferricyanide battery system is intended for utility load leveling and solar photovoltaic/wind applications with advantages of high cyclic efficiency, high cell voltage, near-ambient temperature operation, flowing alkaline electrolyte, low toxicity, potentially long cycle life and low projected capital costs. The system demonstrates excellent electrochemical performance. Cell voltages are 1.88 V OCV and 1.61 V discharge at 35 mA/cm/sup 2/ or 57 mW/cm/sup 2/ in 2N NaOH at 40/sup 0/C (Nafion N-125 separator). Cell polarization losses are almost entirely resistive, and, within the separator. Over 800 4-h cycles have been demonstrated in cell of 60-cm/sup 2/ nominal area (70 ma.h/cm/sup 2/ capacity) with mean energy efficiency of 76.6 +- 2.1%. Similarly, a 60-cm/sup 2/ cell has demonstrated over 220, 11 to 17 hour cycles (255 +- 48 mA.h/cm/sup 2/ capacity) with a mean energy efficiency of 75.3+-5.1%. Solar acceptability has been demonstrated with random cycling without zinc strip cycles and with typical switching times of less than 5 ms for switching from load to insolation or vice versa. The self-discharge rate has been measured at 1.6%/day. Criteria for separator selection have been established and compatibility with alkaline ferricyanide has been found to be the factor determining membrane life with resistance and electrolyte transference rate, as secondary factors.

  5. Are Batteries Ready for Plug-in Hybrid Buyers?

    E-Print Network [OSTI]

    Axsen, Jonn; Kurani, Kenneth S; Burke, Andy

    2009-01-01

    higher power density batteries have reduced energy density,2008 UCD-ITS-WP-09-02 Are batteries ready for plug-in hybridprograms mischaracterize the batteries needed to start

  6. Improved Positive Electrode Materials for Li-ion Batteries

    E-Print Network [OSTI]

    Conry, Thomas Edward

    2012-01-01

    T. , Tozawa, K. Prog. Batteries Solar Cells 1990, 9, 209. E.Costs of Lithium-Ion Batteries for Vechicles. ” Center forin Solids: Solid State Batteries and Devices, Ed. by W. vn

  7. Are Batteries Ready for Plug-in Hybrid Buyers?

    E-Print Network [OSTI]

    Axsen, Jonn; Burke, Andy; Kurani, Kenneth S

    2010-01-01

    237–253. Burke, A. , 2007. Batteries and ultracapacitors forresults with lithium-ion batteries. In: Proceedings (CD)locate/tranpol Are batteries ready for plug-in hybrid

  8. Coated Silicon Nanowires as Anodes in Lithium Ion Batteries

    E-Print Network [OSTI]

    Watts, David James

    2014-01-01

    for advanced lithium-ion batteries. J. Power Sources 174,for lithium rechargeable batteries. Angew. Chem. Int. Ed.anodes for lithium-ion batteries. J. Mater. Chem. A 1,

  9. Are batteries ready for plug-in hybrid buyers?

    E-Print Network [OSTI]

    Axsen, Jonn; Kurani, Kenneth S.; Burke, Andrew

    2008-01-01

    higher power density batteries have reduced energy density,2008 UCD-ITS-WP-09-02 Are batteries ready for plug-in hybridprograms mischaracterize the batteries needed to start

  10. Three-dimensional batteries using a liquid cathode

    E-Print Network [OSTI]

    Malati, Peter Moneir

    2013-01-01

    Costs of Lithium-Ion Batteries for Vehicles, (ANL/ESD- 42) .Linden, D. , Handbook of Batteries, McGraw-Hill Companies,2012). Lithium Use in Batteries, U.S. Geological Survey (

  11. Automated Battery Swap and Recharge to Enable Persistent UAV Missions

    E-Print Network [OSTI]

    Toksoz, Tuna

    This paper introduces a hardware platform for automated battery changing and charging for multiple UAV agents. The automated station holds a bu er of 8 batteries in a novel dual-drum structure that enables a "hot" battery ...

  12. Model Reformulation and Design of Lithium-ion Batteries

    E-Print Network [OSTI]

    Subramanian, Venkat

    987 94 Model Reformulation and Design of Lithium-ion Batteries V.R. Subramanian1,*, V. Boovaragavan Prediction......................................997 Optimal Design of Lithium-ion Batteries Lithium-ion batteries, product design, Bayesian estimation, Markov Chain Monte Carlo simulation

  13. Nonlinear Predictive Energy Management of Residential Buildings with Photovoltaics & Batteries

    E-Print Network [OSTI]

    Sun, Chao; Sun, Fengchun; Moura, Scott J

    2015-01-01

    system and second-life lithium-ion battery energy storage. Atrade-off between lithium-ion battery aging and economicIncorporating an empirical lithium-ion battery capacity loss

  14. Coated Silicon Nanowires as Anodes in Lithium Ion Batteries

    E-Print Network [OSTI]

    Watts, David James

    2014-01-01

    silicon nanowires for lithium ion battery anode with longfor high-performance lithium-ion battery anodes. Appl. Phys.as the anode for a lithium-ion battery with high coulombic

  15. A Better Anode Design to Improve Lithium-Ion Batteries

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    A Better Anode Design to Improve Lithium-Ion Batteries A Better Anode Design to Improve Lithium-Ion Batteries Print Friday, 23 March 2012 13:53 Lithium-ion batteries are in smart...

  16. Team Led by Argonne National Lab Selected as DOE's Batteries...

    Office of Environmental Management (EM)

    Building a Better Battery for Vehicles and the Grid New Battery Design Could Help Solar and Wind Power the Grid New Battery Design Could Help Solar and Wind Power the Grid...

  17. Synthesis, Characterization and Performance of Cathodes for Lithium Ion Batteries

    E-Print Network [OSTI]

    Zhu, Jianxin

    2014-01-01

    1/3 O 2 for advanced lithium-ion batteries. J. Power Sourcesof LiFePO4 based lithium ion batteries. Mater. Lett. 2007,negative electrode in lithium-ion batteries: AFM study in an

  18. Coated Silicon Nanowires as Anodes in Lithium Ion Batteries

    E-Print Network [OSTI]

    Watts, David James

    2014-01-01

    for advanced lithium-ion batteries. J. Power Sources 174,composite anodes for lithium-ion batteries. J. Mater. Chem.cathode materials for lithium-ion batteries. J. Mater. Chem.

  19. Visualization of Charge Distribution in a Lithium Battery Electrode

    E-Print Network [OSTI]

    Liu, Jun

    2010-01-01

    Charge Distribution in a Lithium Battery Electrode Jun Liu,Modeling of a Lithium-Polymer Battery. J. Power SourcesBehavior of a Lithium-Polymer Battery. J. Power Sources

  20. Synthesis, Characterization and Performance of Cathodes for Lithium Ion Batteries

    E-Print Network [OSTI]

    Zhu, Jianxin

    2014-01-01

    Alloy design for lithium-ion battery anodes. J. Electrochem.advances in lithium ion battery materials. Electrochim. ActaO 2 cathode material for lithium ion battery: Dependence of

  1. Synthesis, Characterization and Performance of Cathodes for Lithium Ion Batteries

    E-Print Network [OSTI]

    Zhu, Jianxin

    2014-01-01

    negative electrode in lithium-ion batteries: AFM study in anJ. R. , Alloy design for lithium-ion battery anodes. J.Carbon materials for lithium-ion rechargeable batteries.

  2. Benefits of battery-uItracapacitor hybrid energy storage systems

    E-Print Network [OSTI]

    Smith, Ian C., S.M. (Ian Charles). Massachusetts Institute of Technology

    2012-01-01

    This thesis explores the benefits of battery and battery-ultracapacitor hybrid energy storage systems (ESSs) in pulsed-load applications. It investigates and quantifies the benefits of the hybrid ESS over its battery-only ...

  3. A Bayesian nonparametric approach to modeling battery health

    E-Print Network [OSTI]

    Doshi-Velez, Finale P.

    The batteries of many consumer products are both a substantial portion of the product's cost and commonly a first point of failure. Accurately predicting remaining battery life can lower costs by reducing unnecessary battery ...

  4. Battery Lifetime-Aware Automotive Climate Control for Electric Vehicles

    E-Print Network [OSTI]

    Al Faruque, Mohammad Abdullah

    Battery Lifetime-Aware Automotive Climate Control for Electric Vehicles Korosh Vatanparvar) optimization involves stringent con- straints on driving range and battery lifetime. Sophisticated embedded systems and huge number of computing resources have enabled re- searchers to implement advanced Battery

  5. Visualization of Charge Distribution in a Lithium Battery Electrode

    E-Print Network [OSTI]

    Liu, Jun

    2010-01-01

    of a Lithium-Polymer Battery. J. Power Sources 2006, 163,of a Lithium-Polymer Battery. J. Power Sources 2008, 180,Up of a Lithium-Ion Polymer Battery. J. Power Sources 2009,

  6. Models for Battery Reliability and Lifetime: Applications in Design and Health Management (Presentation)

    SciTech Connect (OSTI)

    Smith, K.; Neubauer, J.; Wood, E.; Jun, M.; Pesaran, A.

    2013-06-01

    This presentation discusses models for battery reliability and lifetime and the Battery Ownership Model.

  7. Savings Potential of ENERGY STAR(R) External Power Adapters and Battery Chargers

    E-Print Network [OSTI]

    Webber, Carrie; Korn, David; Sanchez, Marla

    2007-01-01

    than converted into useful energy. Battery charging systemscharging – directly useful energy or “battery energy”) –

  8. STUDIES ON TWO CLASSES OF POSITIVE ELECTRODE MATERIALS FOR LITHIUM-ION BATTERIES

    E-Print Network [OSTI]

    Wilcox, James D.

    2010-01-01

    Capacity, High Rate Lithium-Ion Battery Electrodes Utilizingas cathode materials for lithium ion battery. Electrochimica

  9. Manufacturing Demonstration Facility

    E-Print Network [OSTI]

    life-cycle energy and greenhouse gas emissions, lower production cost, and create new products Demonstration Facility (865) 574-4351 blueca@ornl.gov INNOVATIONS IN MANUFACTURING www to reduce risk and accelerate the development and deployment of innovative energy-efficient manufacturing

  10. MAJORANA Demonstrator Motivation

    E-Print Network [OSTI]

    Washington at Seattle, University of - Department of Physics, Electroweak Interaction Research Group

    1 #12;OVERVIEW MAJORANA Demonstrator Motivation Neutrinoless double beta decay Search for axions: MAJORANA Collaboration #12;NEUTRINOLESS DOUBLE BETA DECAY Emission of 2 electrons from Ge-76 and application to neutrinoless double beta decay search in Ge- 76." Journal of Instrumentation 6 (2011).13 #12

  11. January 2008 AND DEMONSTRATION

    E-Print Network [OSTI]

    January 2008 AND DEMONSTRATION Partnership of: Sugar Beet Growers Michigan Sugar Company Michigan, disability, political beliefs, sexual orientation, marital status, family status or veteran status. #12;The involving Michigan State University, Michigan Sugar Company, producers and agri-business. The Sugarbeet

  12. Lithium Polymer (LiPo) Battery Usage Lithium polymer batteries are now being widely used in hobby and UAV applications. They work

    E-Print Network [OSTI]

    Langendoen, Koen

    Lithium Polymer (LiPo) Battery Usage 1 Lithium polymer batteries are now being widely used in hobby nickel metal and ni-cad batteries. But with this increase in battery life come potential hazards. Use batteries with a battery charger specifically designed for lithium polymer batteries. As an example, you

  13. Pushing the Theoretical Limit of Li-CFx Batteries: A Tale of Bi-functional Electrolyte

    SciTech Connect (OSTI)

    Rangasamy, Ezhiylmurugan; Li, Juchuan; Sahu, Gayatri; Dudney, Nancy J; Liang, Chengdu

    2014-01-01

    In a typical battery, electrodes deliver capacities less or equal the theoretical maxima of the electrode materials.1 The inert electrolyte functions solely as the ionic conductor without contribution to the cell capacity because of its distinct mono-function in the concept of conventional batteries. Here we demonstrate that the most energy-dense Li-CFx battery2 delivers a capacity exceeding the theoretical maximum of CFx with a solid electrolyte of Li3PS4 (LPS) that has dual functions: as the inert electrolyte at the anode and the active component at the cathode. Such a bi-functional electrolyte reconciles both inert and active characteristics through a synergistic discharge mechanism of CFx and LPS. Li3PS4 is known as an inactive solid electrolyte with a broad electrochemical window over 5 V.3 The synergy at the cathode is through LiF, the discharge product of CFx, which activates the electrochemical discharge of LPS at a close electrochemical potential of CFx. Therefore, the solid-state Li-CFx batteries output 126.6% energy beyond their theoretic limits without compromising the stability of the cell voltage. The extra energy comes from the electrochemical discharge of LPS, the inert electrolyte. This bi-functional electrolyte revolutionizes the concept of conventional batteries and opens a new avenue for the design of batteries with an unprecedentedly high energy density.

  14. New composite separator pellet to increase power density and reduce size of thermal batteries.

    SciTech Connect (OSTI)

    Mondy, Lisa Ann; Roberts, Christine Cardinal; Grillet, Anne Mary; Soehnel, Melissa Marie; Barringer, David Alan; DiAntonio, Christopher Brian; Chavez, Thomas P.; Ingersoll, David T.; Hughes, Lindsey Gloe; Evans, Lindsey R.; Fitchett, Stephanie

    2013-11-01

    We show that it is possible to manufacture strong macroporous ceramic films that can be backfilled with electrolyte to form rigid separator pellets suitable for use in thermal batteries. Several new ceramic manufacturing processes are developed to produce sintered magnesium oxide foams with connected porosities of over 80% by volume and with sufficient strength to withstand the battery manufacturing steps. The effects of processing parameters are quantified, and methods to imbibe electrolyte into the ceramic scaffold demonstrated. Preliminary single cell battery testing show that some of our first generation pellets exhibit longer voltage life with comparable resistance at the critical early times to that exhibited by a traditional pressed pellets. Although more development work is needed to optimize the processes to create these rigid separator pellets, the results indicate the potential of such ceramic separator pellets to be equal, if not superior to, current pressed pellets. Furthermore, they could be a replacement for critical material that is no longer available, as well as improving battery separator strength, decreasing production costs, and leading to shorter battery stacks for long-life batteries.

  15. Graphene-based battery electrodes having continuous flow paths...

    Office of Scientific and Technical Information (OSTI)

    Graphene-based battery electrodes having continuous flow paths Citation Details In-Document Search Title: Graphene-based battery electrodes having continuous flow paths Some...

  16. Rechargeable Heat Battery's Secret Revealed: Solar Energy Capture...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Rechargeable Heat Battery Rechargeable Heat Battery's Secret Revealed Solar energy capture in chemical form makes it storable and transportable January 11, 2011 | Tags: Chemistry,...

  17. Two Studies Reveal Details of Lithium-Battery Function

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Two Studies Reveal Details of Lithium-Battery Function Print Our way of life is deeply intertwined with battery technologies that have enabled a mobile revolution powering cell...

  18. X-Ray Microscopy Reveals How Crystal Mechanics Drive Battery...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Microscopy Reveals How Crystal Mechanics Drive Battery Performance Print Rechargeable lithium-ion batteries power most portable electronics and are becoming more widely used in...

  19. Preparation of lithium-ion battery anodes using lignin (Journal...

    Office of Scientific and Technical Information (OSTI)

    Journal Article: Preparation of lithium-ion battery anodes using lignin Citation Details In-Document Search Title: Preparation of lithium-ion battery anodes using lignin Authors:...

  20. Diagnostic Studies on Lithium Battery Cells and Cell Components...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Studies on Lithium Battery Cells and Cell Components Diagnostic Studies on Lithium Battery Cells and Cell Components 2012 DOE Hydrogen and Fuel Cells Program and Vehicle...

  1. Nanocomposite Materials for Lithium-Ion Batteries | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Nanocomposite Materials for Lithium-Ion Batteries Nanocomposite Materials for Lithium-Ion Batteries nanocompositematerialsliion.pdf More Documents & Publications Progress of DOE...

  2. A Better Anode Design to Improve Lithium-Ion Batteries

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    are in smart phones, laptops, most other consumer electronics, and the newest electric cars. Good as these batteries are, the need for energy storage in batteries is surpassing...

  3. GE Uses DOE Advanced Light Sources to Develop Revolutionary Battery...

    Office of Science (SC) Website

    chemistry of an actual commercial battery while charging and discharging in real time. Additional studies of battery cross-sections at APS helped engineers further...

  4. Fact Sheet: Sodium-Beta Batteries (October 2012) | Department...

    Office of Environmental Management (EM)

    Batteries (October 2012) Fact Sheet: Sodium-Beta Batteries (October 2012) DOE's Energy Storage Program is funding research to further develop a novel planar design for...

  5. Computer-Aided Engineering for Electric Drive Vehicle Batteries...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Computer-Aided Engineering for Electric Drive Vehicle Batteries (CAEBAT) Computer-Aided Engineering for Electric Drive Vehicle Batteries (CAEBAT) 2011 DOE Hydrogen and Fuel Cells...

  6. Fact Sheet: Lithium-Ion Batteries for Stationary Energy Storage...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Fact Sheet: Lithium-Ion Batteries for Stationary Energy Storage (October 2012) Fact Sheet: Lithium-Ion Batteries for Stationary Energy Storage (October 2012) DOE's Energy Storage...

  7. Electrolyte Genome Could Be Battery Game-Changer

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Be Battery Game-Changer Electrolyte Genome Could Be Battery Game-Changer The Materials Project screens molecules to accelerate electrolyte discovery April 15, 2015 Julie Chao,...

  8. KAir Battery Wins Southwest Regional Clean Energy Business Plan...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    KAir Battery Wins Southwest Regional Clean Energy Business Plan Competition KAir Battery Wins Southwest Regional Clean Energy Business Plan Competition April 18, 2014 - 12:05pm...

  9. Development of Polymer Electrolytes for Advanced Lithium Batteries...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Polymer Electrolytes for Advanced Lithium Batteries Development of Polymer Electrolytes for Advanced Lithium Batteries 2013 DOE Hydrogen and Fuel Cells Program and Vehicle...

  10. Rechargeable Aluminum Batteries with Conducting Polymers as Active...

    Office of Scientific and Technical Information (OSTI)

    Rechargeable Aluminum Batteries with Conducting Polymers as Active Cathode Materials. Citation Details In-Document Search Title: Rechargeable Aluminum Batteries with Conducting...

  11. Coated Silicon Nanowires as Anodes in Lithium Ion Batteries

    E-Print Network [OSTI]

    Watts, David James

    2014-01-01

    materials for advanced lithium-ion batteries. J. Powersilicon nanowires for lithium ion battery anode with longal. High-performance lithium-ion anodes using a hierarchical

  12. ORNL, Industry to Collaborate in Advanced Battery Research |...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    in Advanced Battery Research December 30, 2010 ORNL's Jagjit Nanda assembles a lithium ion battery for performance testing within a controlled environment Through new...

  13. Special Feature: Reducing Energy Costs with Better Batteries

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Reducing Energy Costs with Better Batteries Special Feature: Reducing Energy Costs with Better Batteries September 9, 2013 Contact: Linda Vu, +1 510 495 2402, lvu@lbl.gov...

  14. How Can We Enable EV Battery Recycling? | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    How Can We Enable EV Battery Recycling? Title How Can We Enable EV Battery Recycling? Publication Type Presentation Year of Publication 2015 Authors Gaines, LL Abstract...

  15. Can Automotive Battery Recycling Help Meet Lithium Demand? |...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Can Automotive Battery Recycling Help Meet Lithium Demand? Title Can Automotive Battery Recycling Help Meet Lithium Demand? Publication Type Presentation Year of Publication 2013...

  16. The Future of Automobile Battery Recycling | Argonne National...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    The Future of Automobile Battery Recycling Title The Future of Automobile Battery Recycling Publication Type Presentation Year of Publication 2014 Authors Gaines, LL Abstract...

  17. Enabling Future Li-Ion Battery Recycling | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Future Li-Ion Battery Recycling Title Enabling Future Li-Ion Battery Recycling Publication Type Presentation Year of Publication 2014 Authors Gaines, LL Abstract Presentation made...

  18. Battery Cathode Developed by Argonne Powers Plug-in Electric...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    capacities than conventional cathode materials, resulting in batteries with higher energy density. Because the batteries can store more energy, manufacturers can either use...

  19. Three-dimensional batteries using a liquid cathode

    E-Print Network [OSTI]

    Malati, Peter Moneir

    2013-01-01

    for powering microelectromechanical systems and otherSurvey of battery powered microelectromechanical systems.battery powered microelectromechanical systems (MEMS), it is

  20. High power bipolar battery/cells with enhanced overcharge tolerance

    DOE Patents [OSTI]

    Kaun, Thomas D. (New Lenox, IL)

    1998-01-01

    A cell or battery of cells having improved overcharge tolerance and increased power capability, and methods for the construction of such cells or batteries, via electrolyte modification.

  1. Novel Electrolytes for Lithium Ion Batteries Lucht, Brett L 25...

    Office of Scientific and Technical Information (OSTI)

    Electrolytes for Lithium Ion Batteries Lucht, Brett L 25 ENERGY STORAGE We have been investigating three primary areas related to lithium ion battery electrolytes. First, we have...

  2. Energy Storage - Summary of the FY 2005 Batteries for Advanced...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Batteries for Advanced Transportation Technologies (BATT) Research Program Annual Review Energy Storage - Summary of the FY 2005 Batteries for Advanced Transportation Technologies...

  3. Wireless Battery Management System for Safe High-Capacity Energy...

    Office of Scientific and Technical Information (OSTI)

    Wireless Battery Management System for Safe High-Capacity Energy Storage Citation Details In-Document Search Title: Wireless Battery Management System for Safe High-Capacity Energy...

  4. High-Voltage Solid Polymer Batteries for Electric Drive Vehicles...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Solid Polymer Batteries for Electric Drive Vehicles High-Voltage Solid Polymer Batteries for Electric Drive Vehicles 2012 DOE Hydrogen and Fuel Cells Program and Vehicle...

  5. Development of Computer-Aided Design Tools for Automotive Batteries...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    More Documents & Publications Progress of Computer-Aided Engineering of Batteries (CAEBAT) Computer-Aided Engineering for Electric Drive Vehicle Batteries (CAEBAT)...

  6. Development of High Energy Lithium Batteries for Electric Vehicles...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Lithium Batteries for Electric Vehicles Development of High Energy Lithium Batteries for Electric Vehicles 2012 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program...

  7. USABC Development of Advanced High-Performance Batteries for...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Batteries for EV Applications USABC Development of Advanced High-Performance Batteries for EV Applications 2012 DOE Hydrogen and Fuel Cells Program and Vehicle...

  8. Overview and Progress of the Batteries for Advanced Transportation...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Batteries for Advanced Transportation Technologies (BATT) Activity Overview and Progress of the Batteries for Advanced Transportation Technologies (BATT) Activity 2012 DOE Hydrogen...

  9. In situ Characterizations of New Battery Materials and the Studies...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Characterizations of New Battery Materials and the Studies of High Energy Density Li-Air Batteries 2011 DOE Hydrogen and Fuel Cells Program, and Vehicle Technologies Program...

  10. In Situ Characterizations of New Battery Materials and the Studies...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Characterizations of New Battery Materials and the Studies of High Energy Density Li-Air Batteries 2010 DOE Vehicle Technologies and Hydrogen Programs Annual Merit Review and Peer...

  11. Characterization of Li-ion Batteries using Neutron Diffraction...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Li-ion Batteries using Neutron Diffraction and Infrared Imaging Techniques Characterization of Li-ion Batteries using Neutron Diffraction and Infrared Imaging Techniques 2011 DOE...

  12. Secretary Chu Celebrates Expansion of Lithium-Ion Battery Production...

    Office of Environmental Management (EM)

    Celebrates Expansion of Lithium-Ion Battery Production in North Carolina Secretary Chu Celebrates Expansion of Lithium-Ion Battery Production in North Carolina July 26, 2011 -...

  13. Diagnostic and Prognostic Analysis of Battery Performance & Aging...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    and Prognostic Analysis of Battery Performance & Aging based on Kinetic and Thermodynamic Principles Diagnostic and Prognostic Analysis of Battery Performance & Aging based on...

  14. Advanced Battery Materials Synthesis and Manufacturing R&D Program...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Advanced Battery Materials Synthesis and Manufacturing R&D Program Argonne's Materials Engineering Research Facility (MERF) supports the laboratory's Advanced Battery Materials...

  15. 2008 Annual Merit Review Results Summary - 2. Applied Battery...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    2. Applied Battery Research 2008 Annual Merit Review Results Summary - 2. Applied Battery Research DOE Vehicle Technologies Annual Merit Review 2008meritreview2.pdf More...

  16. HP Ex Parte Memo on Proposed Rulemaking for Battery Chargers...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    HP Ex Parte Memo on Proposed Rulemaking for Battery Chargers and External Power Supplies HP Ex Parte Memo on Proposed Rulemaking for Battery Chargers and External Power Supplies...

  17. International Battery Presentation - Keeping The Lights On: Smart...

    Office of Environmental Management (EM)

    International Battery Presentation - Keeping The Lights On: Smart Storage for a Smart Grid (July 12, 2011) International Battery Presentation - Keeping The Lights On: Smart Storage...

  18. Closing the Lithium-ion Battery Life Cycle: Poster handout |...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Closing the Lithium-ion Battery Life Cycle: Poster handout Title Closing the Lithium-ion Battery Life Cycle: Poster handout Publication Type Miscellaneous Year of Publication 2014...

  19. Overview and Progress of the Battery Testing, Analysis, and Design...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Battery Testing, Analysis, and Design Activity Overview and Progress of the Battery Testing, Analysis, and Design Activity 2012 DOE Hydrogen and Fuel Cells Program and Vehicle...

  20. 2008 Annual Merit Review Results Summary - 3. Battery Development...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    3. Battery Development, Testing, Simulation, Analysis 2008 Annual Merit Review Results Summary - 3. Battery Development, Testing, Simulation, Analysis DOE Vehicle Technologies...