Powered by Deep Web Technologies
Note: This page contains sample records for the topic "red wing creek" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

Williston basin. Milestone test renews interest in Red Wing Creek field's meteor crater  

SciTech Connect

New drilling in the vicinity of Red Wing Creek field in McKenzie County, North Dakota has renewed interest in an area that has intrigued geologists for a number of years. Red Wing Creek was discovered in 1972 by True Oil Co. and has demonstrated better per-acre oil recovery than any other oil field in the Williston Basin. Fully developed several years ago, the field produces from what has been described as the central peak of an astrobleme, within a meteor crater. The current test by Milestone Petroleum Inc. is permitted to 14,200 ft and is being drilled on the rim of the crater, in SW SW 35-148n-101w, approx. a mile south of Red Wing production. The primary objective is the Ordovician Red River; but plans call for drilling deeper, through the Winnipeg, to below the Mississippian sediments that produce at Red Wing Creek field. At least 3 unsuccessful Red River tests have been drilled in or near the field in earlier years, but not in the area where Milestone is drilling. Production at Red Wing has come from porosity zones in a Mississippian oil column that measured 2600 ft in the original well; the better wells are in the heart of the field, on a rebound cone in the center of the crater.

Rountree, R.

1983-04-01T23:59:59.000Z

2

Upper Middle Mainstem Columbia River Subbasin Focal Species Information, Red-winged Blackbird  

E-Print Network (OSTI)

Appendix C Upper Middle Mainstem Columbia River Subbasin Focal Species Information, Red-winged Blackbird Introduction The red-winged black bird is one of the most abundant birds in North America (Marshall et al. 2003). Red-winged Blackbirds are extremely adaptable; successfully colonizing many small

3

New Statistical Methods for Allometry with Application to Florida Red-Winged Blackbirds Author(s): James E. Mosimann and Frances C. James  

E-Print Network (OSTI)

New Statistical Methods for Allometry with Application to Florida Red-Winged Blackbirds Author FOR ALLOMETRY WITH APPLICATION TO FLORIDA RED-WINGED BLACKBIRDS JAMES E. MOSIMANN AND FRANCES C. JAMES1 Division- tistical methods for the study of size and shape, and use these methods to study the morphology of red-winged

Weston, Ken

4

MULTI-EPOCH OBSERVATIONS OF THE RED WING EXCESS IN THE SPECTRUM OF 3C 279  

SciTech Connect

It has been previously determined that there is a highly significant correlation between the spectral index from 10 GHz to 1350 A and the amount of excess luminosity in the red wing of quasar C IV {lambda}1549 broad emission lines (BELs). Ostensibly, the prominence of the red excess is associated with the radio jet emission mechanism and is most pronounced for lines of sight close to the jet axis. Studying the scant significant differences in the UV spectra of radio-loud and radio-quiet quasars might provide vital clues to the origin of the unknown process that creates powerful relativistic jets that appear in only about 10% of quasars. In this study, the phenomenon is explored with multi-epoch observations of the Mg II {lambda}2798 broad line in 3C 279 which has one of the largest known red wing excesses in a quasar spectrum. The amount of excess that is detected appears to be independent of all directly observed optical continuum, radio, or submillimeter properties (fluxes or polarizations). The only trend that occurs in this sparse data is: the stronger the BEL, the larger the fraction of flux that resides in the red wing. It is concluded that more monitoring is needed and spectropolarimetry with a large telescope is essential during low states to understand more.

Punsly, Brian, E-mail: brian.punsly@verizon.net, E-mail: brian.punsly@comdev-usa.com [1415 Granvia Altamira, Palos Verdes Estates, CA 90274 (United States); ICRANet, Piazza della Repubblica 10, I-65100 Pescara (Italy)

2013-01-10T23:59:59.000Z

5

Atomic gas temperature in a nonequilibrium high-intensity discharge lamp determined from the red wing of the resonance mercury line 254 nm  

Science Conference Proceedings (OSTI)

For developing low-wattage high intensity discharge (HID) lamps, a better understanding of the relatively unexplored nonequilibrium phenomena is essential. This needs interpretation of diagnostic results by methods free from equilibrium assumptions. In this paper, the atomic temperature is determined from the simulation of a quasistatic broadened resonance line by distinguishing between atomic temperature and excitation temperature in the equation of radiative transfer. The proposed method is applied to the red wing of the resonance mercury line 254 nm emitted from a HID lamp working on ac. The experimental results show severe deviation from local thermodynamic equilibrium. More than one thousand degrees difference was obtained between atomic and electron temperatures at the maximum current phase.

Drakakis, E. [Technological Educational Institute, Department of Electrical Engineering, 71004 Heraklion (Greece); Karabourniotis, D. [Institute of Plasma Physics, Department of Physics, University of Crete, 71003 Heraklion (Greece)

2012-09-01T23:59:59.000Z

6

Bioinspired Materials Derived from Butterfly Wing - Programmaster.org  

Science Conference Proceedings (OSTI)

Presentation Title, Bioinspired Materials Derived from Butterfly Wing ... Investigation of Material Property Variation in Red-Eared Slider Turtle Shell Bone Using...

7

Inflatable wing  

DOE Patents (OSTI)

An inflatable wing is formed from a pair of tapered, conical inflatable tubes in bonded tangential contact with each other. The tubes are further connected together by means of top and bottom reinforcement boards having corresponding longitudinal edges lying in the same central diametral plane passing through the associated tube. The reinforcement boards are made of a still reinforcement material, such as Kevlar, collapsible in a direction parallel to the spanwise wing axis upon deflation of the tubes. The stiff reinforcement material cooperates with the inflated tubes to impart structural I-beam characteristics to the composite structure for transferring inflation pressure-induced tensile stress from the tubes to the reinforcement boards. A plurality of rigid hoops shaped to provide airfoil definition are spaced from each other along the spanwise axis and are connected to the top and bottom reinforcement boards. Tension lines are employed for stabilizing the hoops along the trailing and leading edges thereof. 5 figs.

Priddy, T.G.

1986-10-17T23:59:59.000Z

8

Spotted Wing Drosophila Management in Maryland Small Fruit  

E-Print Network (OSTI)

Spotted Wing Drosophila Management in Maryland Small Fruit Gerald Brust IPM Vegetable Specialist Sept. 2011 Spotted wing drosophila (SWD), Drosophila suzukii, is an invasive, destructive pest due to human intervention. Identification SWD adults are small (2-3 mm) flies with red eyes and a pale

Mohaghegh, Shahab

9

Scarboro Creek Wetland  

NLE Websites -- All DOE Office Websites (Extended Search)

Plant Management: Scarboro Creek Wetland * Purple loosestrife was treated with foliar spray of Accord (glyphosphate) by ESD in 2007. Photos by Harry Quarles Invasive Non-native...

10

We encountered a particularly intriguing imita-tion bird-dropping on the dorsal wing surface  

E-Print Network (OSTI)

to have false images of flies on its wings. It may be our imagination, but don't those red compound eyesWe encountered a particularly intriguing imita- tion bird-dropping on the dorsal wing surface the imitation bird dropping and odor was accom- panied by a most extraordinary wing pattern. To our astonishment

Monteiro, Antónia

11

Robert Van Steenwyk Spotted Wing Drosophila (SWD) Recommendations for Sweet Cherry  

E-Print Network (OSTI)

Robert Van Steenwyk Spotted Wing Drosophila (SWD) Recommendations for Sweet of male and female SWD flies in each trap. Male SWD have spots on the tip of the wings and females have produced. The preferred ovipositional color was dark red for Bing fruit and red for Black Tartarian

Hammock, Bruce D.

12

September/October 1999 Operating in the Red Newton Apiaries  

E-Print Network (OSTI)

September/October 1999 Operating in the Red Newton Apiaries Varroa and Apimondia Sticky Boards Pollinators Booklet UCD Trailer Warning Operating in the Red As with any other business, you cannot operate paralysis virus (SPV), deformed wing virus (DWV), and cloudy wing virus (CWV) all were involved

Hammock, Bruce D.

13

Salt Creek Scenario  

NLE Websites -- All DOE Office Websites (Extended Search)

Scenario Scenario HELP Index Summary Scenario References Student Pages Two branches of Salt Creek run through the city of Rolling Meadows, Illinois, not far from our school. Five members of our team of eighth grade teachers from different subject areas (science, language arts, bilingual education and special education), decided to develop an interdisciplinary study of Salt Creek as a way of giving our students authentic experiences in environmental studies. The unit begins when students enter school in August, running through the third week of September, and resuming for three weeks in October. Extension activities based on using the data gathered at the creek continue throughout the school year, culminating in a presentation at a city council meeting in the spring.

14

Salt Creek Student Homepage  

NLE Websites -- All DOE Office Websites (Extended Search)

Salt Creek Investigation Salt Creek Investigation</2> "Whales Dying in the Pacific Ocean" "Fish Dying in Lake Michigan" Recent headlines remind us of environmental problems near and far away. Scientists have been wondering if these problems could be due to the warmer temperatures this past spring and summer or could there be other reasons? Lack of rain and near drought conditions have forced many areas to restrict water use. We know from past history that pollution affects our drinking water and marine life. Remember what we read about Lake Erie and from reading A River Ran Wild by Lynne Cherry. There are many factors affecting the environment around us . . . even in Salt Creek which runs through our area. We may not be able to investigate the Pacific Ocean and Lake Michigan

15

First Impressions Stafford Creek Correctional  

E-Print Network (OSTI)

First Impressions Stafford Creek Correctional Center in Washington state participates Project In July 2010, I found myself at the gates of Stafford Creek Corrections Center, turning over my. The program engages scientists in a medium and activity that may be unfamiliar--presenting Stafford Creek

LeRoy, Carri J.

16

SHASTA COUNTY The Shasta County Jail is a 115,035 square-foot facility located in Redding. Built in  

E-Print Network (OSTI)

SHASTA COUNTY The Shasta County Jail is a 115,035 square-foot facility located in Redding. Built in 1984, this facility has an 11-story jail wing attached to a two-story County administrative wing

17

On Eagle's Wings - CECM  

E-Print Network (OSTI)

The snare of the fowler will never capture you and famine will bring you no fear: under his wings your refuge, his faithfulness your shield. And he will raise you...

18

Broad-Winged hawks  

NLE Websites -- All DOE Office Websites (Extended Search)

rabbits, snakes and large insects such as grasshoppers, crickets and beetles. The Red-shouldered Hawk has similar habits of soaring, mating and nesting. They differ...

19

Panther Creek | Open Energy Information  

Open Energy Info (EERE)

Creek Creek Jump to: navigation, search Name Panther Creek Facility Panther Creek Sector Wind energy Facility Type Commercial Scale Wind Facility Status Under Construction Owner Affinity Wind/Suzlon Energy Limited Developer Surity Wind Location Pike County IL Coordinates 39.607275°, -90.85556° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":39.607275,"lon":-90.85556,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

20

Pigeon Creek | Open Energy Information  

Open Energy Info (EERE)

Pigeon Creek Pigeon Creek Jump to: navigation, search Name Pigeon Creek Facility Pigeon Creek Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner Adams Electric Cooperative Developer Adams Electric Cooperative Energy Purchaser Adams Electric Cooperative Location Near Payson IL Coordinates 39.83328984°, -91.19227409° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":39.83328984,"lon":-91.19227409,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

Note: This page contains sample records for the topic "red wing creek" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

Bennett Creek | Open Energy Information  

Open Energy Info (EERE)

Creek Creek Jump to: navigation, search Name Bennett Creek Facility Bennett Creek Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner Idaho Windfarms / John Deere Developer Idaho Windfarms Location Elmore County ID Coordinates 43.0466399°, -115.485481° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":43.0466399,"lon":-115.485481,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

22

Meadow Creek | Open Energy Information  

Open Energy Info (EERE)

Meadow Creek Meadow Creek Jump to: navigation, search Name Meadow Creek Facility Meadow Creek Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner Ridgeline Energy Developer Ridgeline Energy Energy Purchaser PacifiCorp (Rocky Mountain Power) Location Idaho Falls ID Coordinates 43.50492362°, -111.8366146° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":43.50492362,"lon":-111.8366146,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

23

The Telkwa, Red Rose, and Klappan Coal Measures  

E-Print Network (OSTI)

Potentially economic coal measures underlie the areas surrounding Telkwa River, Red Rose Creek, and Mount Klappan in northwestern British Columbia. In this report these are referred to as Telkwa, Red Rose, and Klappan coal measures. Recently. they have been attracting keen exploration interest.

Jahak Koo

1984-01-01T23:59:59.000Z

24

Red Mud  

Science Conference Proceedings (OSTI)

Mar 1, 2011... Cement(OPC) from NALCO Red Mud has been successfully developed from a raw mix containing limestone, red mud,shale and fine coal.

25

Big Bayou Creek and Little Bayou Creek Watershed Monitoring Program  

SciTech Connect

Biological monitoring of Little Bayou and Big Bayou creeks, which border the Paducah Site, has been conducted since 1987. Biological monitoring was conducted by University of Kentucky from 1987 to 1991 and by staff of the Environmental Sciences Division (ESD) at Oak Ridge National Laboratory (ORNL) from 1991 through March 1999. In March 1998, renewed Kentucky Pollutant Discharge Elimination System (KPDES) permits were issued to the US Department of Energy (DOE) and US Enrichment Corporation. The renewed DOE permit requires that a watershed monitoring program be developed for the Paducah Site within 90 days of the effective date of the renewed permit. This plan outlines the sampling and analysis that will be conducted for the watershed monitoring program. The objectives of the watershed monitoring are to (1) determine whether discharges from the Paducah Site and the Solid Waste Management Units (SWMUs) associated with the Paducah Site are adversely affecting instream fauna, (2) assess the ecological health of Little Bayou and Big Bayou creeks, (3) assess the degree to which abatement actions ecologically benefit Big Bayou Creek and Little Bayou Creek, (4) provide guidance for remediation, (5) provide an evaluation of changes in potential human health concerns, and (6) provide data which could be used to assess the impact of inadvertent spills or fish kill. According to the cleanup will result in these watersheds [Big Bayou and Little Bayou creeks] achieving compliance with the applicable water quality criteria.

Kszos, L.A.; Peterson, M.J.; Ryon; Smith, J.G.

1999-03-01T23:59:59.000Z

26

Freight Wing Trailer Aerodynamics  

SciTech Connect

Freight Wing Incorporated utilized the opportunity presented by this DOE category one Inventions and Innovations grant to successfully research, develop, test, patent, market, and sell innovative fuel and emissions saving aerodynamic attachments for the trucking industry. A great deal of past scientific research has demonstrated that streamlining box shaped semi-trailers can significantly reduce a truck's fuel consumption. However, significant design challenges have prevented past concepts from meeting industry needs. Market research early in this project revealed the demands of truck fleet operators regarding aerodynamic attachments. Products must not only save fuel, but cannot interfere with the operation of the truck, require significant maintenance, add significant weight, and must be extremely durable. Furthermore, SAE/TMC J1321 tests performed by a respected independent laboratory are necessary for large fleets to even consider purchase. Freight Wing used this information to create a system of three practical aerodynamic attachments for the front, rear and undercarriage of standard semi trailers. SAE/TMC J1321 Type II tests preformed by the Transportation Research Center (TRC) demonstrated a 7% improvement to fuel economy with all three products. If Freight Wing is successful in its continued efforts to gain market penetration, the energy and environmental savings would be considerable. Each truck outfitted saves approximately 1,100 gallons of fuel every 100,000 miles, which prevents over 12 tons of CO2 from entering the atmosphere. If all applicable trailers used the technology, the country could save approximately 1.8 billion gallons of diesel fuel, 18 million tons of emissions and 3.6 billion dollars annually.

Graham, Sean (Primary Investigator); Bigatel, Patrick

2004-10-17T23:59:59.000Z

27

Asotin Creek Model Watershed Plan  

DOE Green Energy (OSTI)

The Asotin Creek Model Watershed Plan is the first to be developed in Washington State which is specifically concerned with habitat protection and restoration for salmon and trout. The plan is consistent with the habitat element of the ``Strategy for Salmon``. Asotin Creek is similar in many ways to other salmon-bearing streams in the Snake River system. Its watershed has been significantly impacted by human activities and catastrophic natural events, such as floods and droughts. It supports only remnant salmon and trout populations compared to earlier years. It will require protection and restoration of its fish habitat and riparian corridor in order to increase its salmonid productivity. The watershed coordinator for the Asotin County Conservation District led a locally based process that combined local concerns and knowledge with technology from several agencies to produce the Asotin Creek Model Watershed Plan.

Browne, D.; Holzmiller, J.; Koch, F.; Polumsky, S.; Schlee, D.; Thiessen, G.; Johnson, C.

1995-04-01T23:59:59.000Z

28

Kansas Nuclear Profile - Wolf Creek Generating Station  

U.S. Energy Information Administration (EIA) Indexed Site

April 2012" "Next Release Date: February 2013" "Wolf Creek Generating Station" "Unit","Summer capacity (mw)","Net generation (thousand mwh)","Summer capacity factor...

29

New Jersey Nuclear Profile - Oyster Creek  

U.S. Energy Information Administration (EIA) Indexed Site

Oyster Creek" "Unit","Summer capacity (mw)","Net generation (thousand mwh)","Summer capacity factor (percent)","Type","Commercial operation date","License expiration date"...

30

Post-project appraisal of Martin Canyon Creek restoration  

E-Print Network (OSTI)

Haltiner, Jeffery. 1997. Martin Canyon Stream Stabilization:Williams & Associates, Ltd. 1999. Martin Canyon Creek StreamPost-Project Appraisal of Martin Canyon Creek Restoration

Wagner, Wayne; Roseman, Jesse

2006-01-01T23:59:59.000Z

31

EA-1219: Hoe Creek Underground Coal Gasification Test Site Remediation...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

9: Hoe Creek Underground Coal Gasification Test Site Remediation, Campbell County, Wyoming EA-1219: Hoe Creek Underground Coal Gasification Test Site Remediation, Campbell County,...

32

DOE - Office of Legacy Management -- Hoe Creek Underground Coal...  

Office of Legacy Management (LM)

Hoe Creek Underground Coal Gasification Site - 045 FUSRAP Considered Sites Site: Hoe Creek Underground Coal Gasification Site (045) Designated Name: Alternate Name: Location:...

33

Blizzard entertainment: Diablo 3 cinematics wing effects  

Science Conference Proceedings (OSTI)

For Blizzard Entertainment's Diablo 3 cinematics, the archangels Imperious and Tyreal possessed wings that were an extension of each character's actions and mood. The fire and celestial wing effect concepts augmented the animation ...

Christopher Yang; Hosuk Chang; Bill La Barge; Jeremy Pilgrim; Jason Burton

2013-07-01T23:59:59.000Z

34

AST Composite Wing Program---Executive Summary  

Science Conference Proceedings (OSTI)

The Boeing Company demonstrated the application of stitched/resin infused (S/RFI) composite materials on commercial transport aircraft primary wing structures under the Advanced Subsonic technology (AST) Composite Wing contract, NAS1-20546. This report ...

Karal Michael

2001-03-01T23:59:59.000Z

35

LOST CREEK ISR, LLC, LOST CREEK IN SITU RECOVERY FACILITY,  

E-Print Network (OSTI)

Commission (NRC) staff and representatives of Lost Creek ISR, LLC (LCI) was held to discuss LCIs application for a license to construct and operate a uranium in situ recovery facility (ISR) in Wyoming. The NRC staff had completed its review of LCIs application and prepared an internal draft of the Safety Evaluation Report (SER). The conference call was held as a follow-up to the conference call between the NRC and LCI on September 25, 2009 (ML093130083) to discuss open issues that NRC staff identified in preparing the draft SER. A summary of the meeting is enclosed. Within 30 days of receipt of this letter, please either provide the information identified in the meeting summary or inform us of the date you expect to provide the information. At this point in the review process, NRC staff has presented all open issues to LCI regarding the Lost Creek facility SER. The staff previously provided written discussions of incomplete responses and open issues on April 23, 2009 and November 9, 2009. The staff is therefore curtailing any further work until resolution of the open issues. Note that a delay in providing information may result in a delay in NRC staffs completion of the SER. If you have any questions regarding this letter or the enclosed meeting summary, please contact me at (301) 415-6142, or by email at

Mr. Wayne; W. Heili

2009-01-01T23:59:59.000Z

36

Preparing for Decommissioning: The Oyster Creek Experience  

Science Conference Proceedings (OSTI)

This report chronicles the process of preparing GPU Nuclear's Oyster Creek Nuclear Generating Station for early retirement and decommissioning. The Oyster Creek experience has great relevance to the nuclear industry, as future decommissioning projects will benefit from the comprehensive preplanning work performed there.

2000-06-06T23:59:59.000Z

37

Controlled Vortex Breakdown on Modified Delta Wings  

Science Conference Proceedings (OSTI)

This paper studies the effect of perturbation to the breakdown of the leading-edge vortices over delta wings. The passive perturbation in the normal direction is achieved by installing the hemisphere-like bulges on the delta wing along the projection ... Keywords: Bulge perturbation, Delta wing, Vortex breakdown

S. Srigrarom; N. Lewpiriyawong

2007-08-01T23:59:59.000Z

38

Cobb Creek Geothermal Facility | Open Energy Information  

Open Energy Info (EERE)

Cobb Creek Geothermal Facility Cobb Creek Geothermal Facility Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Cobb Creek Geothermal Facility General Information Name Cobb Creek Geothermal Facility Facility Cobb Creek Sector Geothermal energy Location Information Location The Geysers, Californi Coordinates 38.804734473609°, -122.78414726257° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":38.804734473609,"lon":-122.78414726257,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

39

Red Tide  

NLE Websites -- All DOE Office Websites (Extended Search)

tide harm humans if it is not stopped? Replies: Red tides are caused by a microscopic algae called a dinoflagellate. This plant is toxic to humans in large quantities, but may...

40

Salmon Creek Project Draft Environmental Impact Statement  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

AUGUST 2004 AUGUST 2004 SALMON CREEK PROJECT Draft Environmental Impact Statement DOE/EIS-0346 Lead Agency U.S. Dept of Energy, Bonneville Power Administration Cooperating Agencies U.S. Dept of Interior, Bureau of Reclamation Confederated Tribes of the Colville Reservation Okanogan Irrigation District Salmon Creek Project Draft Environmental Impact Statement (DOE/EIS-0346) Responsible Agency: Bonneville Power Administration (BPA), U.S. Department of Energy (DOE) Cooperating Agencies: U.S. Department of Interior, Bureau of Reclamation, Confederated Tribes of the Colville Reservation, Okanogan Irrigation District. County and State Involved: Okanogan County, Washington Abstract: BPA proposes to fund activities that would restore sufficient water flows to Salmon Creek and

Note: This page contains sample records for the topic "red wing creek" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

Panther Creek, Idaho, Habitat Rehabilitation, Final Report.  

SciTech Connect

The purpose of the project was to achieve full chinook salmon and steelhead trout production in the Panther Creek, Idaho, basin. Plans were developed to eliminate the sources of toxic effluent entering Panther Creek. Operation of a cobalt-copper mine since the 1930's has resulted in acid, metal-bearing drainage entering the watershed from underground workings and tailings piles. The report discusses plans for eliminating and/or treating the effluent to rehabilitate the water quality of Panther Creek and allow the reestablishment of salmon and trout spawning runs. (ACR)

Reiser, Dudley W.

1986-01-01T23:59:59.000Z

42

Toms Creek IGCC Demonstration Project  

SciTech Connect

The Toms Creek Integrated Gasification Combined Cycle (IGCC) Demonstration Project was selected by DOE in September 1991 to participate in Round Four of the Clean Coal Technology Demonstration Program. The project will demonstrate a simplified IGCC process consisting of an air-blown, fluidized-bed gasifier (Tampella U-Gas), a gas cooler/steam generator, and a hot gas cleanup system in combination with a gas turbine modified for use with a low-Btu content fuel and a conventional steam bottoming cycle. The demonstration plant will be located at the Toms Creek coal mine near Coeburn, Wise County, Virginia. Participants in the project are Tampella Power Corporation and Coastal Power Production Company. The plant will use 430 tons per day of locally mined bituminous coal to produce 55 MW of power from the gasification section of the project. A modern pulverized coal fired unit will be located adjacent to the Demonstration Project producing an additional 150 MW. A total 190 MW of power will be delivered to the electric grid at the completion of the project. In addition, 50,000 pounds per hour of steam will be exported to be used in the nearby coal preparation plant. Dolomite is used for in-bed gasifier sulfur capture and downs cleanup is accomplished in a fluidized-bed of regenerative zinc titanate. Particulate clean-up, before the gas turbine, will be performed by high temperature candle filters (1020{degree}F). The demonstration plant heat rate is estimated to be 8,700 Btu/kWh. The design of the project goes through mid 1995, with site construction activities commencing late in 1995 and leading to commissioning and start-up by the end of 1997. This is followed by a three year demonstration period.

Virr, M.J.

1992-11-01T23:59:59.000Z

43

Toms Creek IGCC Demonstration Project  

SciTech Connect

The Toms Creek Integrated Gasification Combined Cycle (IGCC) Demonstration Project was selected by DOE in September 1991 to participate in Round Four of the Clean Coal Technology Demonstration Program. The project will demonstrate a simplified IGCC process consisting of an air-blown, fluidized-bed gasifier (Tampella U-Gas), a gas cooler/steam generator, and a hot gas cleanup system in combination with a gas turbine modified for use with a low-Btu content fuel and a conventional steam bottoming cycle. The demonstration plant will be located at the Toms Creek coal mine near Coeburn, Wise County, Virginia. Participants in the project are Tampella Power Corporation and Coastal Power Production Company. The plant will use 430 tons per day of locally mined bituminous coal to produce 55 MW of power from the gasification section of the project. A modern pulverized coal fired unit will be located adjacent to the Demonstration Project producing an additional 150 MW. A total 190 MW of power will be delivered to the electric grid at the completion of the project. In addition, 50,000 pounds per hour of steam will be exported to be used in the nearby coal preparation plant. Dolomite is used for in-bed gasifier sulfur capture and downs cleanup is accomplished in a fluidized-bed of regenerative zinc titanate. Particulate clean-up, before the gas turbine, will be performed by high temperature candle filters (1020[degree]F). The demonstration plant heat rate is estimated to be 8,700 Btu/kWh. The design of the project goes through mid 1995, with site construction activities commencing late in 1995 and leading to commissioning and start-up by the end of 1997. This is followed by a three year demonstration period.

Virr, M.J.

1992-01-01T23:59:59.000Z

44

Reintroduction of Native FishReintroduction of Native Fish Species to Coal CreekSpecies to Coal Creek  

E-Print Network (OSTI)

1 Reintroduction of Native FishReintroduction of Native Fish Species to Coal CreekSpecies to Coal Control and Reclamation ActSurface Mining Control and Reclamation Act of 1977of 1977 Coal Creek Watershed Foundation (2000)Coal Creek Watershed Foundation (2000) BackgroundBackground Fish populations in Coal Creek

Gray, Matthew

45

Elbow Creek Wind Farm | Open Energy Information  

Open Energy Info (EERE)

Elbow Creek Wind Farm Elbow Creek Wind Farm Jump to: navigation, search Name Elbow Creek Wind Farm Facility Elbow Creek Wind Farm Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner Padoma Developer Padoma Location Howard County TX Coordinates 32.133515°, -101.415676° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":32.133515,"lon":-101.415676,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

46

Wolverine Creek Wind Farm | Open Energy Information  

Open Energy Info (EERE)

Wolverine Creek Wind Farm Wolverine Creek Wind Farm Jump to: navigation, search Name Wolverine Creek Wind Farm Facility Wolverine Creek Wind Energy Project Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner Invenergy Developer Invenergy Energy Purchaser PacifiCorp Location East of ID Falls ID Coordinates 43.422203°, -111.83439° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":43.422203,"lon":-111.83439,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

47

Elm Creek II | Open Energy Information  

Open Energy Info (EERE)

Elm Creek II Elm Creek II Jump to: navigation, search Name Elm Creek II Facility Elm Creek II Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner Iberdrola Renewables Developer Iberdrola Renewables Location Jackson and Martin County MN Coordinates 43.756372°, -94.956014° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":43.756372,"lon":-94.956014,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

48

Bear Creek Wind Farm | Open Energy Information  

Open Energy Info (EERE)

Bear Creek Wind Farm Bear Creek Wind Farm Facility Bear Creek Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner Babcock & Brown owns majority Developer CEI Iberdrola Energy Purchaser PPL Corp. Location Near Bear Creek Village PA Coordinates 41.1801°, -75.7216° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":41.1801,"lon":-75.7216,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

49

Elm Creek Wind Farm | Open Energy Information  

Open Energy Info (EERE)

Elm Creek Wind Farm Elm Creek Wind Farm Jump to: navigation, search Name Elm Creek Wind Farm Facility Elm Creek Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner Iberdrola Renewables Developer Iberdrola Renewables Energy Purchaser Great River Energy Location MN Coordinates 43.780285°, -94.845586° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":43.780285,"lon":-94.845586,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

50

Tributary Fluxes into Brush Creek Valley  

Science Conference Proceedings (OSTI)

Measurements in a tributary to Brush Creek Valley during the September and October 1984 ASCOT campaign with laser anemometers, tethersondes, a minisodar, and smoke release were used to calculate the contribution by tributaries to nocturnal ...

R. L. Coulter; Monte Orgill; William Porch

1989-07-01T23:59:59.000Z

51

Kansas Nuclear Profile - Wolf Creek Generating Station  

U.S. Energy Information Administration (EIA)

snpt3ks210 1,160 9,556 94.0 PWR Wolf Creek Generating Station Unit Type Data for 2010 PWR = Pressurized Light Water Reactor. Note: Totals may not ...

52

Twin Creeks Technologies | Open Energy Information  

Open Energy Info (EERE)

Technologies Place San Jose, California Zip 95134 Product California-based silicon-based thin-film PV startup in stealth mode. References Twin Creeks Technologies1 LinkedIn...

53

Bull Creek Wind Farm | Open Energy Information  

Open Energy Info (EERE)

Bull Creek Wind Farm Bull Creek Wind Farm Jump to: navigation, search Name Bull Creek Wind Farm Facility Bull Creek Wind Farm Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner Eurus Developer Eurus Energy Purchaser Market Location Near Gail TX Coordinates 32.933099°, -101.584425° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":32.933099,"lon":-101.584425,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

54

K-25 West Wing Demolition Completed  

Energy.gov (U.S. Department of Energy (DOE))

Thirteen months after demolition began, the final unit of K-25's 844,000 square foot west wing was taken down.

55

FIDDLER CREEK POLYMER AUGMENTATION PROJECT  

SciTech Connect

The Fiddler Creek field is in Weston County, Wyoming, and was discovered in 1948. Secondary waterflooding recovery was started in 1955 and terminated in the mid-1980s with a fieldwide recovery of approximately 40%. The West Fiddler Creek Unit, the focus of this project, had a lower recovery and therefore has the most remaining oil. Before the project this unit was producing approximately 85 bbl of oil per day from 20 pumping wells and 17 swab wells. The recovery process planned for this project involved adapting two independent processes, the injection of polymer as a channel blocker or as a deep-penetrating permeability modifier, and the stabilization of clays and reduction of the residual oil saturation in the near-wellbore area around the injection wells. Clay stabilization was not conducted because long-term fresh water injection had not severely reduced the injectivity. It was determined that future polymer injection would not be affected by the clay. For the project, two adjoining project patterns were selected on the basis of prior reservoir studies and current well availability and production. The primary injection well of Pattern 1 was treated with a small batch of MARCIT gel to create channel blocking. The long-term test was designed for three phases: (1) 77 days of injection of a 300-mg/l cationic polyacrylamide, (2) 15 days of injection of a 300-mg/l anionic polymer to ensure injectivity of the polymer, and (3) 369 days of injection of the 300-mg/l anionic polymer and a 30:1 mix of the crosslinker. Phases 1 and 2 were conducted as planned. Phase 3 was started in late March 1999 and terminated in May 2001. In this phase, a crosslinker was added with the anionic polymer. Total injection for Phase 3 was 709,064 bbl. To maintain the desired injection rate, the injection pressure was slowly increased from 1,400 psig to 2,100 psig. Early in the application of the polymer, it appeared that the sweep improvement program was having a positive effect on Pattern 1 with lesser effects in Pattern 2. These early observations did not continue to develop. The oil production for both patterns remained fairly constant to the rates established by the restart of waterflooding. The water production declined but stabilized in both patterns. The stabilization of the oil at prepolymer rates and water production at the lower rates can be attributed to the polymer injection, but the effect was not as great as originally predicted. The sweep improvement for the patterns appeared to be negatively impacted by extended shutdowns in the injection and production systems. Such problems as those experienced in this project can be expected when long-term polymer injection is started in old waterflood fields. To prevent these problems, new injection and production tubulars and pumps would be required at a cost prohibitive to the present, independent operators. Unless the future results from the continued waterflood show positive effects of the long-term polymer injection, it appears that the batch-type polymer treatment may have more promise than the long-term treatment and should be more cost effective.

Lyle A. Johnson, Jr.

2001-10-31T23:59:59.000Z

56

MHK Technologies/Water Wings | Open Energy Information  

Open Energy Info (EERE)

Water Wings < MHK Technologies Jump to: navigation, search << Return to the MHK database homepage Water Wings.jpg Technology Profile Primary Organization Langlee Wave Power AS...

57

Dow Chemical Company-Oyster Creek VIII | Open Energy Information  

Open Energy Info (EERE)

Company-Oyster Creek VIII Jump to: navigation, search Name Dow Chemical Company-Oyster Creek VIII Place Texas Utility Id 5374 References EIA Form EIA-861 Final Data File for 2010 -...

58

Crane Creek Wind Farm | Open Energy Information  

Open Energy Info (EERE)

Crane Creek Wind Farm Crane Creek Wind Farm Facility Crane Creek Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner EnXco Developer EnXco Energy Purchaser Wisconsin P ublic Service Group Location Northeast of Riceville IA Coordinates 43.410108°, -92.51652° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":43.410108,"lon":-92.51652,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

59

Crane Creek Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Crane Creek Geothermal Area Crane Creek Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Crane Creek Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (1) 9 Exploration Activities (0) 10 References Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"TERRAIN","zoom":6,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"300px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":44.3064,"lon":-116.7447,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

60

Edwards Creek Geothermal Project | Open Energy Information  

Open Energy Info (EERE)

Edwards Creek Geothermal Project Edwards Creek Geothermal Project Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Development Project: Edwards Creek Geothermal Project Project Location Information Coordinates 39.617222222222°, -117.67166666667° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":39.617222222222,"lon":-117.67166666667,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

Note: This page contains sample records for the topic "red wing creek" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

Reedy Creek Improvement Dist | Open Energy Information  

Open Energy Info (EERE)

Reedy Creek Improvement Dist Reedy Creek Improvement Dist Jump to: navigation, search Name Reedy Creek Improvement Dist Place Florida Utility Id 15776 Utility Location Yes Ownership M NERC Location FRCC NERC FRCC Yes Operates Generating Plant Yes Activity Generation Yes Activity Buying Transmission Yes Activity Distribution Yes Activity Wholesale Marketing Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png GS General Service GSD General Service Demand RS Residential Service Residential Average Rates Residential: $0.1240/kWh Commercial: $0.1130/kWh References ↑ "EIA Form EIA-861 Final Data File for 2010 - File1_a"

62

Separation Creek Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Separation Creek Geothermal Area Separation Creek Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Separation Creek Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (0) 9 Exploration Activities (1) 10 References Area Overview Geothermal Area Profile Location: Oregon Exploration Region: Cascades GEA Development Phase: 2008 USGS Resource Estimate Mean Reservoir Temp: Estimated Reservoir Volume: Mean Capacity: Click "Edit With Form" above to add content History and Infrastructure Operating Power Plants: 0 No geothermal plants listed. Add a new Operating Power Plant Developing Power Projects: 0

63

Cherry Creek Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Cherry Creek Geothermal Area Cherry Creek Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Cherry Creek Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (0) 9 Exploration Activities (0) 10 References Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"TERRAIN","zoom":6,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"300px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":39.85,"lon":-114.905,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

64

Willow Creek Wind Farm | Open Energy Information  

Open Energy Info (EERE)

Willow Creek Wind Farm Willow Creek Wind Farm Facility Willow Creek Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner Invenergy Developer Invenergy Location Morrow County OR Coordinates 45.828458°, -119.795537° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":45.828458,"lon":-119.795537,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

65

Lava Creek Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Lava Creek Geothermal Area Lava Creek Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Lava Creek Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (0) 9 Exploration Activities (0) 10 References Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"TERRAIN","zoom":6,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"300px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":65.2283,"lon":-162.894,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

66

Papalote Creek II | Open Energy Information  

Open Energy Info (EERE)

Papalote Creek II Papalote Creek II Jump to: navigation, search Name Papalote Creek II Facility Papalote Creek II Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner E.ON Climate & Renewables North America Developer E.ON Climate & Renewables North America Energy Purchaser Lower Colorado River Authority Location 30 miles north of Corpus Christi in San Patricio County TX Coordinates 28.254569°, -97.40015° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":28.254569,"lon":-97.40015,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

67

Stony Creek Wind Farm | Open Energy Information  

Open Energy Info (EERE)

Stony Creek Wind Farm Stony Creek Wind Farm Jump to: navigation, search Name Stony Creek Wind Farm Facility Stony Creek Wind Farm Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner E.ON Climate and Renewables Developer E.ON Climate and Renewables Location Somerset County PA Coordinates 40.039256°, -78.781979° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":40.039256,"lon":-78.781979,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

68

Eva Creek Wind Project | Open Energy Information  

Open Energy Info (EERE)

Eva Creek Wind Project Eva Creek Wind Project Jump to: navigation, search Name Eva Creek Wind Project Facility Eva Creek Wind Project Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner Golden Valley Electric Association Developer Golden Valley Electric Association Energy Purchaser Golden Valley Electric Association Location NE corner of Denali Natl Park AK Coordinates 64.0602°, -148.9054° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":64.0602,"lon":-148.9054,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

69

Lost Creek Wind Farm | Open Energy Information  

Open Energy Info (EERE)

Lost Creek Wind Farm Lost Creek Wind Farm Jump to: navigation, search Name Lost Creek Wind Farm Facility Lost Creek Wind Farm Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner Wind Capital Group Developer Wind Capital Group Energy Purchaser Associated Electric Cooperative Location DeKalb County MO Coordinates 39.98080324°, -94.55009937° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":39.98080324,"lon":-94.55009937,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

70

Papalote Creek Wind Farm | Open Energy Information  

Open Energy Info (EERE)

Papalote Creek Wind Farm Papalote Creek Wind Farm Jump to: navigation, search Name Papalote Creek Wind Farm Facility Papalote Creek Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner E.On Climate & Renewables Developer E.On Climate & Renewables Energy Purchaser CPS San Antonio Location San Patricio County TX Coordinates 27.925458°, -97.394686° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":27.925458,"lon":-97.394686,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

71

Forest Creek Wind Farm | Open Energy Information  

Open Energy Info (EERE)

Creek Wind Farm Creek Wind Farm Jump to: navigation, search Name Forest Creek Wind Farm Facility Forest Creek Wind Farm Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner E.On Climate & Renewables Developer E.On Climate & Renewables/RGI Energy Purchaser Luminant Location Glasscock and Sterling Counties TX Coordinates 31.937348°, -101.312513° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":31.937348,"lon":-101.312513,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

72

Prairie Creek Ethanol LLC | Open Energy Information  

Open Energy Info (EERE)

Creek Ethanol LLC Creek Ethanol LLC Jump to: navigation, search Name Prairie Creek Ethanol LLC Place Goldfield, Iowa Zip 50542 Product Prairie Creek Ethanol, LLC had planned to build a 55m gallon (208m litre) per year ethanol plant in Wesley, Iowa, but, as of 23 May 2008, the board of directors voted to recommend to the members of the company to dissolve the company as soon as possible. Coordinates 37.707559°, -117.233459° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":37.707559,"lon":-117.233459,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

73

Red River Compact (Texas)  

Energy.gov (U.S. Department of Energy (DOE))

The Red River Compact Commission administers the Red River Compact to ensure that Texas receives its equitable share of quality water from the Red River and its tributaries as apportioned by the...

74

Left-Wing Extremism: The Current Threat  

SciTech Connect

Left-wing extremism is ''alive and well'' both in the US and internationally. Although the current domestic terrorist threat within the U. S. is focused on right-wing extremists, left-wing extremists are also active and have several objectives. Leftist extremists also pose an espionage threat to U.S. interests. While the threat to the U.S. government from leftist extremists has decreased in the past decade, it has not disappeared. There are individuals and organizations within the U.S. who maintain the same ideology that resulted in the growth of left-wing terrorism in this country in the 1970s and 1980s. Some of the leaders from that era are still communicating from Cuba with their followers in the U.S., and new leaders and groups are emerging.

Karl A. Seger

2001-04-30T23:59:59.000Z

75

Wing River Wind Farm | Open Energy Information  

Open Energy Info (EERE)

River Wind Farm River Wind Farm Jump to: navigation, search Name Wing River Wind Farm Facility Wing River Wind Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner Wing River Wind Farm Developer Wing River Wind Farm Location Hewitt MN Coordinates 46.3254°, -95.0864° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":46.3254,"lon":-95.0864,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

76

Microsoft Word - Soos_Creek_CX.docx  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Timothy Wicks Timothy Wicks Realty Specialist - TERR-COVINGTON Proposed Action: Soos Creek Water & Sewer District Land Use Review Request Case No. 20120040 Budget Information: 184006 Categorical Exclusion Applied (from Subpart D, 10 C.F.R. Part 1021): B 4.9 - Multiple use of powerline rights-of-way Location: Covington, King County, Washington Proposed by: Bonneville Power Administration (BPA) Description of the Proposed Action: BPA proposes to approve a land use review request from Soos Creek Water & Sewer District (District) to construct a new sewer line that would cross under an existing road on BPA fee-owned property near structures 1/2 and 1/3 of the Covington-Maple Valley No. 2 230-kilovolt (kV) transmission line. The proposed sewer line

77

Microsoft Word - Coyote Creek CX.docx  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

3, 2013 3, 2013 REPLY TO ATTN OF: KEC-4 SUBJECT: Environmental Clearance Memorandum Dorie Welch Project Manager - KEWM-4 Proposed Action: Provision of funds to acquire a conservation easement over the 310-acre Coyote Creek property. Fish and Wildlife Project No.: 2011-003-00, Contract # BPA-006468 Categorical Exclusion Applied (from Subpart D, 10 C.F.R. Part 1021): B1.25 Real Property transfers for cultural protection, habitat preservation and wildlife management. Location: Veneta and West Eugene quadrangles, in Lane County, Oregon (near Eugene, Oregon). Proposed by: Bonneville Power Administration (BPA) Description of the Proposed Action: The BPA is proposing to fund The Nature Conservancy's (Conservancy) purchase of the Coyote Creek property, a 310-acre parcel of land located just west of the

78

Blue Creek Wind Farm | Open Energy Information  

Open Energy Info (EERE)

Farm Farm Jump to: navigation, search Name Blue Creek Wind Farm Facility Blue Creek Wind Farm Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner Iberdrola Renewables Developer Iberdrola Renewables Energy Purchaser First Energy Solutions Location Van Wert County OH Coordinates 41.018286°, -84.615355° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":41.018286,"lon":-84.615355,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

79

Steel Creek primary producers: Periphyton and seston, L-Lake/Steel Creek Biological Monitoring Program, January 1986--December 1991  

Science Conference Proceedings (OSTI)

The Savannah River Site (SRS) encompasses 300 sq mi of the Atlantic Coastal Plain in west-central South Carolina. Five major tributaries of the Savannah River -- Upper Three Runs Creek, Four Mile Creek, Pen Branch, Steel Creek, and Lower Three Runs Creek -- drain the site. In 1985, L Lake, a 400-hectare cooling reservoir, was built on the upper reaches of Steel Creek to receive effluent from the restart of L-Reactor and to protect the lower reaches from thermal impacts. The Steel Creek Biological Monitoring Program was designed to assess various components of the system and identify and changes due to the operation of L-Reactor or discharge from L Lake. An intensive ecological assessment program prior to the construction of the lake provided baseline data with which to compare data accumulated after the lake was filled and began discharging into the creek. The Department of Energy must demonstrate that the operation of L-Reactor will not significantly alter the established aquatic ecosystems. This report summarizes the results of six years` data from Steel Creek under the L-Lake/Steel Creek Monitoring Program. L Lake is discussed separately from Steel Creek in Volumes NAI-SR-138 through NAI-SR-143.

Bowers, J.A. [Westinghouse Savannah River Co., Aiken, SC (United States); Toole, M.A.; van Duyn, Y. [Normandeau Associates Inc., New Ellenton, SC (United States)

1992-02-01T23:59:59.000Z

80

Trout Creek Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Trout Creek Geothermal Area Trout Creek Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Trout Creek Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (0) 9 Exploration Activities (0) 10 References Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"TERRAIN","zoom":6,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"300px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":42.18822,"lon":-118.37756,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

Note: This page contains sample records for the topic "red wing creek" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

DOE - Office of Legacy Management -- Hoe Creek Underground Coal  

NLE Websites -- All DOE Office Websites (Extended Search)

Hoe Creek Underground Coal Hoe Creek Underground Coal Gasification Site - 045 FUSRAP Considered Sites Site: Hoe Creek Underground Coal Gasification Site (045) Designated Name: Alternate Name: Location: Evaluation Year: Site Operations: Site Disposition: Radioactive Materials Handled: Primary Radioactive Materials Handled: Radiological Survey(s): Site Status: The Hoe Creek Underground Gasification site occupies 80 acres of land located in Campbell County, Wyoming. The site was used to investigate the process and environmental parameters of underground coal gasification technologies in the 1970s. The Department of Energy¿s (DOE) current mission is limited to completing environmental remediation activities at the site. This property is owned by the Bureau of Land Management (BLM),

82

Post Project Appraisal of Cerrito Creek at El Cerrito Plaza  

E-Print Network (OSTI)

Works 5/15/03. (Sheets L1-L8) Friends of Five Creeks website: http://www.fivecreeks.org/ (November 10, 2005) Hanford

Berndt, Sarah; Smith, Fran

2005-01-01T23:59:59.000Z

83

Mercury distribution in Poplar Creek, Oak Ridge, Tennessee, USA  

SciTech Connect

As a result of the lithium-isotope separation process used in the production of thermonuclear fusion weapons during the mid-1950s and early 1960s. 150 t of mercury were released into Poplar Creek (via East Fork Poplar Creek) in Oak Ridge, Tennessee, USA. This project was performed as part of a Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) remedial investigation to define the nature and extent of mercury contamination in Poplar Creek. Ultraclean sampling techniques and ultrasensitive analytical methods were used to determine methylmercury and inorganic mercury concentrations in surface water, sediment, and pore water from Poplar Creek. Total methylmercury and inorganic mercury concentrations in surface water from reaches downstream from the East Fork Poplar Creek confluence were significantly higher (p < 0.05) than the upstream reference reach. Concentrations in surface water increased with distance downstream from the source (East Fork Poplar Creek), which was opposite of expected results. Sediment methylmercury and inorganic mercury concentrations also increased with the distance downstream from the source and were highest near the mouth of Poplar Creek (1.0--12 ng/g and 630--140,000 ng/g, respectively). High concentrations in surface water and sediment near the mouth of Poplar Creek appear to be a result of sediment deposition and resuspension, apparently caused by the stronger Clinch River current acting as a barrier and its backflow into Poplar Creek as a result of hydropower operations.

Campbell, K.R. [SENES Oak Ridge, Inc., TN (United States). Center for Risk Analysis; Ford, C.J. [Highlands Soil and Water Conservation District, Sebring, FL (United States); Levine, D.A. [Univ. of Tennessee, Knoxville, TN (United States)]|[Oak Ridge National Lab., TN (United States)

1998-07-01T23:59:59.000Z

84

Mantle Helium And Carbon Isotopes In Separation Creek Geothermal...  

Open Energy Info (EERE)

Mantle Helium And Carbon Isotopes In Separation Creek Geothermal Springs, Three Sisters Area, Central Oregon- Evidence For Renewed Volcanic Activity Or A Long Term Steady State...

85

Field Algae Measurements Using Empirical Correlations at Deer Creek Reservoir.  

E-Print Network (OSTI)

??Deer Creek Reservoir in Utah has a history of high algae concentrations. Despite recent nutrient reduction efforts, seasonal algae continue to present problems. Cost effective, (more)

Stephens, Ryan A

2011-01-01T23:59:59.000Z

86

Thermal Gradient Holes At Upper Hot Creek Ranch Area (Benoit...  

Open Energy Info (EERE)

Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Thermal Gradient Holes At Upper Hot Creek Ranch Area (Benoit & Blackwell, 2006) Exploration...

87

New Jersey Nuclear Profile - PSEG Hope Creek Generating Station  

U.S. Energy Information Administration (EIA) Indexed Site

PSEG Hope Creek Generating Station" "Unit","Summer capacity (mw)","Net generation (thousand mwh)","Summer capacity factor (percent)","Type","Commercial operation date","License...

88

Big Creek, Mississippi: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Congressional Districts by Places. Retrieved from "http:en.openei.orgwindex.php?titleBigCreek,Mississippi&oldid227750" Categories: Places Stubs Cities What links here...

89

Exploration Of The Upper Hot Creek Ranch Geothermal Resource...  

Open Energy Info (EERE)

Nye County, Nevada Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Report: Exploration Of The Upper Hot Creek Ranch Geothermal Resource, Nye County, Nevada...

90

DOE/EA-1967: Hills Creek-Lookout Point Transmission Line Rebuild...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

DOEEA-1967: Hills Creek-Lookout Point Transmission Line Rebuild, Lane County, Oregon DOEEA-1967: Hills Creek-Lookout Point Transmission Line Rebuild, Lane County, Oregon Summary...

91

Big Canyon Creek Ecological Restoration Strategy.  

DOE Green Energy (OSTI)

He-yey, Nez Perce for steelhead or rainbow trout (Oncorhynchus mykiss), are a culturally and ecologically significant resource within the Big Canyon Creek watershed; they are also part of the federally listed Snake River Basin Steelhead DPS. The majority of the Big Canyon Creek drainage is considered critical habitat for that DPS as well as for the federally listed Snake River fall chinook (Oncorhynchus tshawytscha) ESU. The Nez Perce Soil and Water Conservation District (District) and the Nez Perce Tribe Department of Fisheries Resources Management-Watershed (Tribe), in an effort to support the continued existence of these and other aquatic species, have developed this document to direct funding toward priority restoration projects in priority areas for the Big Canyon Creek watershed. In order to achieve this, the District and the Tribe: (1) Developed a working group and technical team composed of managers from a variety of stakeholders within the basin; (2) Established geographically distinct sub-watershed areas called Assessment Units (AUs); (3) Created a prioritization framework for the AUs and prioritized them; and (4) Developed treatment strategies to utilize within the prioritized AUs. Assessment Units were delineated by significant shifts in sampled juvenile O. mykiss (steelhead/rainbow trout) densities, which were found to fall at fish passage barriers. The prioritization framework considered four aspects critical to determining the relative importance of performing restoration in a certain area: density of critical fish species, physical condition of the AU, water quantity, and water quality. It was established, through vigorous data analysis within these four areas, that the geographic priority areas for restoration within the Big Canyon Creek watershed are Big Canyon Creek from stream km 45.5 to the headwaters, Little Canyon from km 15 to 30, the mainstem corridors of Big Canyon (mouth to 7km) and Little Canyon (mouth to 7km). The District and the Tribe then used data collected from the District's stream assessment and inventory, utilizing the Stream Visual Assessment Protocol (SVAP), to determine treatment necessary to bring 90% of reaches ranked Poor or Fair through the SVAP up to good or excellent. In 10 year's time, all reaches that were previously evaluated with SVAP will be reevaluated to determine progress and to adapt methods for continued success. Over 400 miles of stream need treatment in order to meet identified restoration goals. Treatments include practices which result in riparian habitat improvements, nutrient reductions, channel condition improvements, fish habitat improvements, invasive species control, water withdrawal reductions, improved hydrologic alterations, upland sediment reductions, and passage barrier removal. The Nez Perce Soil and Water Conservation District (District) and the Nez Perce Tribe Department of Fisheries Resource Management Watershed Division (Tribe) developed this document to guide restoration activities within the Big Canyon Creek watershed for the period of 2008-2018. This plan was created to demonstrate the ongoing need and potential for anadromous fish habitat restoration within the watershed and to ensure continued implementation of restoration actions and activities. It was developed not only to guide the District and the Tribe, but also to encourage cooperation among all stakeholders, including landowners, government agencies, private organizations, tribal governments, and elected officials. Through sharing information, skills, and resources in an active, cooperative relationships, all concerned parties will have the opportunity to join together to strengthen and maintain a sustainable natural resource base for present and future generations within the watershed. The primary goal of the strategy is to address aquatic habitat restoration needs on a watershed level for resident and anadromous fish species, promoting quality habitat within a self-sustaining watershed. Seven objectives have been developed to support this goal: (1) Identify factors limiting quality

Rasmussen, Lynn; Richardson, Shannon

2007-10-01T23:59:59.000Z

92

Big Canyon Creek Ecological Restoration Strategy.  

Science Conference Proceedings (OSTI)

He-yey, Nez Perce for steelhead or rainbow trout (Oncorhynchus mykiss), are a culturally and ecologically significant resource within the Big Canyon Creek watershed; they are also part of the federally listed Snake River Basin Steelhead DPS. The majority of the Big Canyon Creek drainage is considered critical habitat for that DPS as well as for the federally listed Snake River fall chinook (Oncorhynchus tshawytscha) ESU. The Nez Perce Soil and Water Conservation District (District) and the Nez Perce Tribe Department of Fisheries Resources Management-Watershed (Tribe), in an effort to support the continued existence of these and other aquatic species, have developed this document to direct funding toward priority restoration projects in priority areas for the Big Canyon Creek watershed. In order to achieve this, the District and the Tribe: (1) Developed a working group and technical team composed of managers from a variety of stakeholders within the basin; (2) Established geographically distinct sub-watershed areas called Assessment Units (AUs); (3) Created a prioritization framework for the AUs and prioritized them; and (4) Developed treatment strategies to utilize within the prioritized AUs. Assessment Units were delineated by significant shifts in sampled juvenile O. mykiss (steelhead/rainbow trout) densities, which were found to fall at fish passage barriers. The prioritization framework considered four aspects critical to determining the relative importance of performing restoration in a certain area: density of critical fish species, physical condition of the AU, water quantity, and water quality. It was established, through vigorous data analysis within these four areas, that the geographic priority areas for restoration within the Big Canyon Creek watershed are Big Canyon Creek from stream km 45.5 to the headwaters, Little Canyon from km 15 to 30, the mainstem corridors of Big Canyon (mouth to 7km) and Little Canyon (mouth to 7km). The District and the Tribe then used data collected from the District's stream assessment and inventory, utilizing the Stream Visual Assessment Protocol (SVAP), to determine treatment necessary to bring 90% of reaches ranked Poor or Fair through the SVAP up to good or excellent. In 10 year's time, all reaches that were previously evaluated with SVAP will be reevaluated to determine progress and to adapt methods for continued success. Over 400 miles of stream need treatment in order to meet identified restoration goals. Treatments include practices which result in riparian habitat improvements, nutrient reductions, channel condition improvements, fish habitat improvements, invasive species control, water withdrawal reductions, improved hydrologic alterations, upland sediment reductions, and passage barrier removal. The Nez Perce Soil and Water Conservation District (District) and the Nez Perce Tribe Department of Fisheries Resource Management Watershed Division (Tribe) developed this document to guide restoration activities within the Big Canyon Creek watershed for the period of 2008-2018. This plan was created to demonstrate the ongoing need and potential for anadromous fish habitat restoration within the watershed and to ensure continued implementation of restoration actions and activities. It was developed not only to guide the District and the Tribe, but also to encourage cooperation among all stakeholders, including landowners, government agencies, private organizations, tribal governments, and elected officials. Through sharing information, skills, and resources in an active, cooperative relationships, all concerned parties will have the opportunity to join together to strengthen and maintain a sustainable natural resource base for present and future generations within the watershed. The primary goal of the strategy is to address aquatic habitat restoration needs on a watershed level for resident and anadromous fish species, promoting quality habitat within a self-sustaining watershed. Seven objectives have been developed to support this goal: (1) Identify factors limiting quality

Rasmussen, Lynn; Richardson, Shannon

2007-10-01T23:59:59.000Z

93

Pataha Creek Model Watershed : 1998 Habitat Conservation Projects.  

Science Conference Proceedings (OSTI)

The projects outlined in detail on the attached project reports are a few of the many projects implemented in the Pataha Creek Model Watershed since it was selected as a model in 1993. 1998 was a year where a focused effort was made to work on the upland conservation practices to reduce the sedimentation into Pataha Creek.

Bartels, Duane G.

1999-12-01T23:59:59.000Z

94

Tons of Heavy Metals in Mill Creek Sediments Heather Freeman  

E-Print Network (OSTI)

with industries. Paper, woolen, flour, and cotton mills, starch factories, slaughterhouses, distilleriesTons of Heavy Metals in Mill Creek Sediments Heather Freeman 8/30/99 Geology Department Advisors: Dr. Kees DeJong Dr. Barry Manyard Dr. David Nash #12;Tons of heavy metals in Mill Creek sediments

Maynard, J. Barry

95

SEEs, and Red Locks  

Science Conference Proceedings (OSTI)

... and Red Locks Gared Chastain Jayme Jordan March 2013 ... Contact Information gared.chastain@raytheon.com Gared Chastain Program Manager ...

2013-03-28T23:59:59.000Z

96

Lyman-alpha wing absorption in cool white dwarf stars  

E-Print Network (OSTI)

Kowalski & Saumon (2006) identified the missing absorption mechanism in the observed spectra of cool white dwarf stars as the Ly-alpha red wing formed by the collisions between atomic and molecular hydrogen and successfully explained entire spectra of many cool DA-type white dwarfs. Owing to the important astrophysical implications of this issue, we present here an independent assessment of the process. For this purpose, we compute free-free quasi-molecular absorption in Lyman-alpha due to collisions with H and H2 within the one-perturber, quasi-static approximation. Line cross-sections are obtained using theoretical molecular potentials to describe the interaction between the radiating atom and the perturber. The variation of the electric-dipole transition moment with the interparticle distance is also considered. Six and two allowed electric dipole transitions due to H-H and H-H2 collisions, respectively, are taken into account. The new theoretical Lyman-alpha line profiles are then incorporated in our ...

Rohrmann, R D; Kepler, S O

2010-01-01T23:59:59.000Z

97

Granite Creek Geothermal Project | Open Energy Information  

Open Energy Info (EERE)

Geothermal Project Geothermal Project Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Development Project: Granite Creek Geothermal Project Project Location Information Coordinates 41.058611111111°, -117.22777777778° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":41.058611111111,"lon":-117.22777777778,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

98

Clear Creek Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Geothermal Area Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Clear Creek Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (0) 9 Exploration Activities (0) 10 References Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"TERRAIN","zoom":6,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"300px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":64.85,"lon":-162.3,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

99

Smith Creek Geothermal Project | Open Energy Information  

Open Energy Info (EERE)

Geothermal Project Geothermal Project Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Development Project: Smith Creek Geothermal Project Project Location Information Coordinates 39.311388888889°, -117.55083333333° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":39.311388888889,"lon":-117.55083333333,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

100

Wind power for the Creek Nation. Final report  

SciTech Connect

An Enertech 1800 horizontal-axis wind powered electric generator was purchased and interphased with the electric utility system provided to the Creek Nation by the Public Service Company of Oklahoma. Objectives of the work include: to determine the economic feasibility of wind power for the Creek Nation region; to educate the Creek Nation and other Indian tribes about the potential use of wind power; and to accumulate valuable climatic data through an on-site wind survey at a height of 60' over a long period of time. (LEW)

Not Available

1982-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "red wing creek" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

RFC Sand Creek Development LLC | Open Energy Information  

Open Energy Info (EERE)

RFC Sand Creek Development LLC RFC Sand Creek Development LLC Jump to: navigation, search Name RFC Sand Creek Development LLC Place Aurora, Colorado Zip 80014 Product Subsidiary of Republic Financial Corporation set up to invest in Sand Creek Energy LLC, a planned gas to liquid facility. Coordinates 39.325162°, -79.54975° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":39.325162,"lon":-79.54975,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

102

Birch Creek Village Elec Util | Open Energy Information  

Open Energy Info (EERE)

Birch Creek Village Elec Util Birch Creek Village Elec Util Jump to: navigation, search Name Birch Creek Village Elec Util Place Alaska Utility Id 1747 Utility Location Yes Ownership M NERC Location AK Operates Generating Plant Yes Activity Generation Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png No rate schedules available. Average Rates Residential: $0.6070/kWh Commercial: $0.6150/kWh References ↑ "EIA Form EIA-861 Final Data File for 2010 - File1_a" Retrieved from "http://en.openei.org/w/index.php?title=Birch_Creek_Village_Elec_Util&oldid=409048" Categories:

103

Panther Creek III Wind Farm | Open Energy Information  

Open Energy Info (EERE)

Panther Creek III Wind Farm Panther Creek III Wind Farm Jump to: navigation, search Name Panther Creek III Wind Farm Facility Panther Creek III Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner E.On Climate & Renewables Developer E.On Climate & Renewables Location TX Coordinates 31.9685988°, -99.9018131° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":31.9685988,"lon":-99.9018131,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

104

Upper Hot Creek Ranch Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Upper Hot Creek Ranch Geothermal Area Upper Hot Creek Ranch Geothermal Area (Redirected from Upper Hot Creek Ranch Area) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Upper Hot Creek Ranch Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (0) 9 Exploration Activities (2) 10 References Area Overview Geothermal Area Profile Location: Nevada Exploration Region: Northern Basin and Range Geothermal Region GEA Development Phase: 2008 USGS Resource Estimate Mean Reservoir Temp: Estimated Reservoir Volume: Mean Capacity: Click "Edit With Form" above to add content History and Infrastructure

105

Ophir Creek Space Heating Low Temperature Geothermal Facility | Open Energy  

Open Energy Info (EERE)

Ophir Creek Space Heating Low Temperature Geothermal Facility Ophir Creek Space Heating Low Temperature Geothermal Facility Jump to: navigation, search Name Ophir Creek Space Heating Low Temperature Geothermal Facility Facility Ophir Creek Sector Geothermal energy Type Space Heating Location SW, Alaska Coordinates Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[]}

106

Silver Creek Farms Aquaculture Low Temperature Geothermal Facility | Open  

Open Energy Info (EERE)

Creek Farms Aquaculture Low Temperature Geothermal Facility Creek Farms Aquaculture Low Temperature Geothermal Facility Jump to: navigation, search Name Silver Creek Farms Aquaculture Low Temperature Geothermal Facility Facility Silver Creek Farms Sector Geothermal energy Type Aquaculture Location Twin Falls, Idaho Coordinates 42.5629668°, -114.4608711° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[]}

107

Floodplain and wetlands assessment of the White Oak Creek Embayment  

SciTech Connect

This report describes the proposed methods for dealing with contaminants that have accumulated in White Oak Creek, White Oak Lake, and the White Oak Creek Embayment as a result of process releases and discharges from the Oak Ridge National Laboratory. Alternative methods of cleaning up the area which were considered in accordance with regulatory guidelines are listed, and information supporting the selected methods is provided. Also included are results of a site survey conducted at the White Oak Creek Embayment and the expected effects of the proposed control structures on the floodplain and wetlands. The appendix contains figures showing the nine cross-sections of the stream channel surveyed during studies of the White Oak Creek area.

1991-07-01T23:59:59.000Z

108

Hot Creek Hatchery Aquaculture Low Temperature Geothermal Facility | Open  

Open Energy Info (EERE)

Hot Creek Hatchery Aquaculture Low Temperature Geothermal Facility Hot Creek Hatchery Aquaculture Low Temperature Geothermal Facility Jump to: navigation, search Name Hot Creek Hatchery Aquaculture Low Temperature Geothermal Facility Facility Hot Creek Hatchery Sector Geothermal energy Type Aquaculture Location Mammoth Lakes, California Coordinates 37.648546°, -118.972079° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[]}

109

Mantle Helium And Carbon Isotopes In Separation Creek Geothermal Springs,  

Open Energy Info (EERE)

Mantle Helium And Carbon Isotopes In Separation Creek Geothermal Springs, Mantle Helium And Carbon Isotopes In Separation Creek Geothermal Springs, Three Sisters Area, Central Oregon- Evidence For Renewed Volcanic Activity Or A Long Term Steady State System(Question) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Conference Paper: Mantle Helium And Carbon Isotopes In Separation Creek Geothermal Springs, Three Sisters Area, Central Oregon- Evidence For Renewed Volcanic Activity Or A Long Term Steady State System(Question) Details Activities (1) Areas (1) Regions (0) Abstract: Here we present the helium and carbon isotope results from the initial study of a fluid chemistry-monitoring program started in the summer of 2001 near the South Sister volcano in central Oregon. The Separation Creek area which is several miles due west of the volcano is the locus of

110

Fourche Creek Wastewater Biomass Facility | Open Energy Information  

Open Energy Info (EERE)

Fourche Creek Wastewater Biomass Facility Fourche Creek Wastewater Biomass Facility Jump to: navigation, search Name Fourche Creek Wastewater Biomass Facility Facility Fourche Creek Wastewater Sector Biomass Facility Type Non-Fossil Waste Location Pulaski County, Arkansas Coordinates 34.7538615°, -92.2236667° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":34.7538615,"lon":-92.2236667,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

111

Panther Creek I Wind Farm | Open Energy Information  

Open Energy Info (EERE)

Panther Creek I Wind Farm Panther Creek I Wind Farm Jump to: navigation, search Name Panther Creek I Wind Farm Facility Panther Creek I Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner E.On Climate & Renewables Developer E.On Climate & Renewables Location TX Coordinates 32.201592°, -101.406391° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":32.201592,"lon":-101.406391,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

112

Influence of the Blue Mesa Reservoir on the Red Creek Landslide, Colorado  

E-Print Network (OSTI)

literature. 2. Methods A substantial amount of research has tested the effectiveness of typical erosion.R., 1996. Mulching treatment for postfire soil conservation in a semiarid ecosystem. Arid Soil Research Research Laboratory Office of Research and Development U.S. Environmental Protection Agency EPA- 600

113

Crow Wing Power- Residential Energy Efficiency Rebate Program  

Energy.gov (U.S. Department of Energy (DOE))

Crow Wing Power offers several different incentives for residential customers to increase the energy efficiency of homes. Rebates are available on air conditioners, air source heat pumps,...

114

Maria Teresa Gutierrez-Wing, Ph.D. OFFICE ADDRESS  

E-Print Network (OSTI)

uses (bioplastics applications and biodegradation, environmental impact of nanomaterials, phosphogypsum.K., Gutierrez-Wing, M. T. (2010). Preparation of an application for approval to use stabilized phosphogypsum

Cai, Steve C. S.

115

Tuttle Creek Hydroelectric Project feasibility assessment report  

DOE Green Energy (OSTI)

The results are presented of a feasibility assessment study to determine if hydroelectric generation could be developed economically at the Corps of Engineers' Tuttle Creek Dam, an existing flood control structure on the Big Blue River near Manhattan, Kansas. The studies and investigations included site reconnaissance, system load characteristics, site hydrology, conceptual project arrangements and layouts, power studies, estimates of construction costs, development of capital costs, economic feasibility, development of a design and construction schedule and preliminary environmental review of the proposed Project. The dependable capacity of the Project as delivered into the existing transmission and distribution network is 12,290 kW and the average annual energy is 56,690 MWh. For the scheduled on-line date of July 1984, the Project is estimated to have a Total Investment Cost of $19,662,000 (equal to $1333/kW installed at that time frame) with an estimated annual cost for the first year of operation of $2,696,000, assuming REA financing at 9.5% interest rate. The Project is considered technically feasible and without any major environmental issues. It shows economic feasibility providing satisfactory financing terms are available. (LCL)

None

1979-03-01T23:59:59.000Z

116

Method And Apparatus For Examining A Tissue Using The Spectral Wing Emission Therefrom Induced By Visible To Infrared Photoexcitation.  

SciTech Connect

Method and an apparatus for examining a tissue using the spectral wing emission therefrom induced by visible to infrared photoexcitation. In one aspect, the method is used to characterize the condition of a tissue sample and comprises the steps of (a) photoexciting the tissue sample with substantially monochromatic light having a wavelength of at least 600 nm; and (b) using the resultant far red and near infrared spectral wing emission (SW) emitted from the tissue sample to characterize the condition of the tissue sample. In one embodiment, the substantially monochromatic photoexciting light is a continuous beam of light, and the resultant steady-state far red and near infrared SW emission from the tissue sample is used to characterize the condition of the tissue sample. In another embodiment, the substantially monochromatic photoexciting light is a light pulse, and the resultant time-resolved far red and near infrared SW emission emitted from the tissue sample is used to characterize the condition of the tissue sample. In still another embodiment, the substantially monochromatic photoexciting light is a polarized light pulse, and the parallel and perpendicular components of the resultant polarized time-resolved SW emission emitted from the tissue sample are used to characterize the condition of the tissue sample.

Alfano, Robert R. (3777 Independence Ave., Bronx, NY 10463); Demos, Stavros G. (3550 Pacific Ave., Apt. 304, Livermore, CA 94550); Zhang, Gang (3 Rieder Rd., Edison, NJ 08817)

2003-12-16T23:59:59.000Z

117

Angel wing seals for blades of a gas turbine and methods for ...  

Wind Energy; Partners (27) Visual Patent Search; Success Stories; News; Events; Angel wing seals for blades of a gas turbine and methods for determining angel wing ...

118

Freight Wing Trailer Aerodynamics Final Technical Report  

Science Conference Proceedings (OSTI)

Freight Wing Incorporated utilized the opportunity presented by a DOE category two Inventions and Innovations grant to commercialize and improve upon aerodynamic technology for semi-tuck trailers, capable of decreasing heavy vehicle fuel consumption, related environmental damage, and U.S. consumption of foreign oil. Major project goals included the demonstration of aerodynamic trailer technology in trucking fleet operations, and the development and testing of second generation products. A great deal of past scientific research has demonstrated that streamlining box shaped semi-trailers can significantly reduce a trucks fuel consumption. However, significant design challenges have prevented past concepts from meeting industry needs. Freight Wing utilized a 2003 category one Inventions and Innovations grant to develop practical solutions to trailer aerodynamics. Fairings developed for the front, rear, and bottom of standard semi-trailers together demonstrated a 7% improvement to fuel economy in scientific tests conducted by the Transportation Research Center (TRC). Operational tests with major trucking fleets proved the functionality of the products, which were subsequently brought to market. This category two grant enabled Freight Wing to further develop, test and commercialize its products, resulting in greatly increased understanding and acceptance of aerodynamic trailer technology. Commercialization was stimulated by offering trucking fleets 50% cost sharing on trial implementations of Freight Wing products for testing and evaluation purposes. Over 230 fairings were implemented through the program with 35 trucking fleets including industry leaders such as Wal-Mart, Frito Lay and Whole Foods. The feedback from these testing partnerships was quite positive with product performance exceeding fleet expectations in many cases. Fleet feedback also was also valuable from a product development standpoint and assisted the design of several second generation products intended to further improve efficiency, lower costs, and enhance durability. Resulting products demonstrated a 30% efficiency improvement in full scale wind tunnel tests. The fuel savings of our most promising product, the Belly Fairing increased from 4% to 6% in scientific track and operational tests. The project successfully demonstrated the economic feasibility of trailer aerodynamics and positioned the technology to realize significant public benefits. Scientific testing conducted with partners such as the EPA Smartway program and Transport Canada clearly validated the fuel and emission saving potential of the technology. The Smartway program now recommends trailer aerodynamics as a certified fuel saving technology and is offering incentives such as low interest loans. Trailer aerodynamics can save average trucks over 1,100 gallons of fuel an 13 tons of emissions every 100,000 miles, a distance many trucks travel annually. These fuel savings produce a product return on investment period of one to two years in average fleet operations. The economic feasibility of the products was validated by participating fleets, several of which have since completed large implementations or demonstrated an interest in volume orders. The commercialization potential of the technology was also demonstrated, resulting in a national distribution and manufacturing partnership with a major industry supplier, Carrier Transicold. Consequently, Freight Wing is well positioned to continue marketing trailer aerodynamics to the trucking industry. The participation of leading fleets in this project served to break down the market skepticism that represents a primary barrier to widespread industry utilization. The benefits of widespread utilization of the technology could be quite significant for both the transportation industry and the public. Trailer aerodynamics could potentially save the U.S. trucking fleet over a billion gallons of fuel and 20 million tons of emissions annually.

Sean Graham

2007-10-31T23:59:59.000Z

119

The Little Red Schoolhouse  

NLE Websites -- All DOE Office Websites (Extended Search)

Little Red Schoolhouse Little Red Schoolhouse Nature Bulletin No. 424 September 10, 1971 Forest Preserve District of Cook County Daniel Ryan, President Roberts Mann, Conservation Editor David H. Thompson, Senior Naturalist THE LITTLE RED SCHOOLHOUSE We have opened the doors of The Little Red Schoolhouse, our new nature center in the Palos forest preserves. You are invited to visit it and urged to use it. Many youth organizations, summer day camps, and teachers with their classes have already done so. It is now open every day, including Saturdays and Sundays, from 8:30 a.m. to 4:00 p.m. From late October until April it probably will be closed. The entrance is on 104th Ave. (Willow Springs Road), one mile west of U.S. 45 and a half-mile south of 95th St. There is ample parking space for buses.

120

The Red Fox  

NLE Websites -- All DOE Office Websites (Extended Search)

50 feet of our back door. Few people ever see one. The red fox is a small member of the dog family, standing from 14 to 16 inches high at the shoulder and weighing from 7 to 12...

Note: This page contains sample records for the topic "red wing creek" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

Red Mud Bauxite Residue  

Science Conference Proceedings (OSTI)

Mar 13, 2012... the use of FLOMIN OL 99 polymer in lab tests as well as in the plant. ... recycle of waste water in red mud yard, and flood control & drainage...

122

Wolf Creek Nuclear Operating Corporation | Open Energy Information  

Open Energy Info (EERE)

Wolf Creek Nuclear Operating Corporation Wolf Creek Nuclear Operating Corporation Jump to: navigation, search Name Wolf Creek Nuclear Operating Corporation Place Burlington, Kansas Zip 66839-0411 Product Wolf Creek Nuclear Operating Corporation operates the Wolf Creek Generating Station, Kansas' first nuclear power generating station, for three utility owners in Kansas and Missouri. Coordinates 44.446275°, -108.431704° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":44.446275,"lon":-108.431704,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

123

Recurrent faulting and petroleum accumulation, Cat Creek Anticline, central Montana  

SciTech Connect

The Cat Creek anticline, scene of central Montana's first significant oil discovery, is underlain by a south-dipping high-angle fault (Cat Creek fault) that has undergone several episodes of movement with opposite sense of displacement. Borehole data suggest that the Cat Creek fault originated as a normal fault during Proterozoic rifting concurrent with deposition of the Belt Supergroup. Reverse faulting took place in Late Cambrian time, and again near the end of the Devonian Period. The Devonian episode, coeval with the Antler orogeny, raised the southern block several hundred feet. The southern block remained high through Meramecian time, then began to subside. Post-Atokan, pre-Middle Jurassic normal faulting lowered the southern block as much as 1,500 ft. During the Laramide orogeny (latest Cretaceous-Eocene) the Cat Creek fault underwent as much as 4,000 ft of reverse displacement and a comparable amount of left-lateral displacement. The Cat Creek anticline is a fault-propagation fold; en echelon domes and listric normal faults developed along its crest in response to wrenching. Oil was generated mainly in organic-rich shales of the Heath Formation (upper Chesterian Series) and migrated upward along tectonic fractures into Pennsylvanian, Jurassic, and Cretaceous reservoir rocks in structural traps in en echelon domes. Production has been achieved only from those domes where structural closure was retained from Jurassic through Holocene time.

Nelson, W.J. (Illinois State Geological Survey, Champaign (United States))

1991-06-01T23:59:59.000Z

124

Scotch Creek Wildlife Area 2007-2008 Annual Report.  

DOE Green Energy (OSTI)

The Scotch Creek Wildlife Area is a complex of 6 separate management units located in Okanogan County in North-central Washington State. The project is located within the Columbia Cascade Province (Okanogan sub-basin) and partially addresses adverse impacts caused by the construction of Chief Joseph and Grand Coulee hydroelectric dams. With the acquisition of the Eder unit in 2007, the total size of the wildlife area is now 19,860 acres. The Scotch Creek Wildlife Area was approved as a wildlife mitigation project in 1996 and habitat enhancement efforts to meet mitigation objectives have been underway since the spring of 1997 on Scotch Creek. Continuing efforts to monitor the threatened Sharp-tailed grouse population on the Scotch Creek unit are encouraging. The past two spring seasons were unseasonably cold and wet, a dangerous time for the young of the year. This past spring, Scotch Creek had a cold snap with snow on June 10th, a critical period for young chicks just hatched. Still, adult numbers on the leks have remained stable the past two years. Maintenance of BPA funded enhancements is necessary to protect and enhance shrub-steppe and to recover and sustain populations of Sharp-tailed grouse and other obligate species.

Olson, Jim [Washington Department of Fish and Wildlife

2008-11-03T23:59:59.000Z

125

Effects of red tide  

NLE Websites -- All DOE Office Websites (Extended Search)

Effects of red tide Effects of red tide Name: Mrs. Corwin's 5th grade class Location: N/A Country: N/A Date: N/A Question: My 5th grade class would like to know why is it that red tide only affects humans and not lobsters, fish, etc. Why is the micro-organism so toxic to humans? Waiting to learn.... Replies: Without going into too much detail, the microorganisms responsible for causing red tide can live within the shellfish without killing them because the chemicals they produce which imbue everything with the characteristic red color aren't toxic to the shellfish. It's just our bad luck that those very same chemicals happen to interact with our body chemistries in the ways that can't occur in shellfish. --Wordsworth As it turns out, red tides do affect other vertebrates (animals with backbones), in fact, they are responsible for huge, stinky die-offs of fish that wash up on shore during a "red tide". The microorganism responsible for the occurrence of a red tide is the "dinoflagellate", there are different types of dinoflagellates, and as I understand it, they produce different types of toxins, but usually the toxin responsible for the die-offs is what is called a "neurotoxin", which affects the heart , slowing it down. This reduces blood circulation, and the reduced blood circulation to the gills results in oxygen starvation, and the fish dies. As far as I know, however, this toxin only affects vertebrates, and not invertebrates (animals without backbones) like the clam and lobster.

126

Mass and Momentum Balance in the Brush Creek Drainage Flow Determined from Single-Profile Data  

Science Conference Proceedings (OSTI)

Fluxes and flux-divergences of mass and momentum in Brush Creek Valley, computed from measurements taken by Tethersondes and Doppler sodars in the 1984 ASCOT experiment, are presented. Estimates of mass influx from open sidewalls in Brush Creek, ...

Ronald J. Dobosy; K. Shankar Rao; John W. Przybylowicz; Richard M. Eckman; Rayford P. Hosker Jr.

1989-06-01T23:59:59.000Z

127

EA-1219: Hoe Creek Underground Coal Gasification Test Site Remediation, Campbell County, Wyoming  

Energy.gov (U.S. Department of Energy (DOE))

This EA evaluates the environmental impacts for the proposed Hoe Creek Underground Coal Gasification Test Site Remediation that would be performed at the Hoe Creek site in Campbell County, Wyoming.

128

Upper Hot Creek Ranch Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Upper Hot Creek Ranch Geothermal Area Upper Hot Creek Ranch Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Upper Hot Creek Ranch Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (0) 9 Exploration Activities (2) 10 References Area Overview Geothermal Area Profile Location: Nevada Exploration Region: Northern Basin and Range Geothermal Region GEA Development Phase: 2008 USGS Resource Estimate Mean Reservoir Temp: Estimated Reservoir Volume: Mean Capacity: Click "Edit With Form" above to add content History and Infrastructure Operating Power Plants: 0 No geothermal plants listed.

129

Microsoft Word - SilverCreek-Fiber-CX.doc  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

John Brank John Brank Customer Service Engineer - TPC-OLYMPIA Proposed Action: Silver Creek Substation fiber project Budget Information: Work Order 253198, Task 03 Categorical Exclusion Applied (from Subpart D, 10 C.F.R. Part 1021): B4.7 Adding fiber optic cable to transmission structures or burying fiber optic cable in existing transmission line rights of way. Locations: Silver Creek Substation, Lewis County, Washington (T12N R2E SEC17) Proposed by: Bonneville Power Administration (BPA) and Lewis County Public Utility District (PUD) Description of the Proposed Action: BPA proposes to connect a fiber optic cable from an existing Lewis County PUD transmission line into the BPA Silver Creek Substation in Lewis County, Washington. The fiber project is needed to increase transmission system

130

Town of Oak Creek, Colorado (Utility Company) | Open Energy Information  

Open Energy Info (EERE)

Creek Creek Place Colorado Utility Id 14054 Utility Location Yes Ownership M NERC Location WECC NERC SPP Yes NERC WECC Yes Operates Generating Plant Yes Activity Generation Yes Activity Buying Transmission Yes Activity Distribution Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png Rate 101: Residential Residential Rate 110: Commercial Commercial Rate 202: General Service Three Phase Commercial Average Rates Residential: $0.0965/kWh Commercial: $0.0842/kWh References ↑ "EIA Form EIA-861 Final Data File for 2010 - File1_a" Retrieved from "http://en.openei.org/w/index.php?title=Town_of_Oak_Creek,_Colorado_(Utility_Company)&oldid=411791

131

Oak Creek Energy Systems Wind Farm I | Open Energy Information  

Open Energy Info (EERE)

I I Facility Oak Creek Energy Systems Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner Oak Creek Energy Systems Developer Oak Creek Energy Systems Energy Purchaser Southern California Edison Co Location Tehachapi CA Coordinates 35.07665°, -118.25529° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":35.07665,"lon":-118.25529,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

132

DOE - Office of Legacy Management -- Lost Creek - WY 01  

Office of Legacy Management (LM)

Lost Creek - WY 01 Lost Creek - WY 01 FUSRAP Considered Sites Site: Lost Creek (WY.01 ) Designated Name: Alternate Name: Location: Evaluation Year: Site Operations: Site Disposition: Radioactive Materials Handled: Primary Radioactive Materials Handled: Radiological Survey(s): Site Status: This site is one of a group of 77 FUSRAP considered sites for which few, if any records are available in their respective site files to provide an historical account of past operations and their relationship, if any, with MED/AEC operations. Reviews of contact lists, accountable station lists, health and safety records and other documentation of the period do not provide sufficient information to warrant further search of historical records for information on these sites. These site files remain "open" to

133

Panther Creek II Wind Farm | Open Energy Information  

Open Energy Info (EERE)

Creek II Wind Farm Creek II Wind Farm Facility Panther Creek II Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner E.On Climate & Renewables Developer E.On Climate & Renewables Energy Purchaser N/a Location TX Coordinates 32.201592°, -101.406391° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":32.201592,"lon":-101.406391,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

134

Oak Creek Energy Systems Wind Farm III | Open Energy Information  

Open Energy Info (EERE)

III III Facility Oak Creek Energy Systems Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner Oak Creek Energy Systems Developer Oak Creek Energy Systems Energy Purchaser Southern California Edison Co Location Tehachapi CA Coordinates 35.07665°, -118.25529° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":35.07665,"lon":-118.25529,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

135

Oak Creek Energy Systems Wind Farm II | Open Energy Information  

Open Energy Info (EERE)

II II Facility Oak Creek Energy Systems Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner Oak Creek Energy Systems Developer Oak Creek Energy Systems Energy Purchaser Southern California Edison Co Location Tehachapi CA Coordinates 35.07665°, -118.25529° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":35.07665,"lon":-118.25529,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

136

Protect and Restore Lolo Creek Watershed : Annual Report CY 2005.  

DOE Green Energy (OSTI)

The Nez Perce Tribe Department of Fisheries Resource Management, Watershed Division approaches watershed restoration with a ridge-top to ridge-top approach. Watershed restoration projects within the Lolo Creek watershed are coordinated with the Clearwater National Forest and Potlatch Corporation. The Nez Perce Tribe began watershed restoration projects within the Lolo Creek watershed of the Clearwater River in 1996. Fencing to exclude cattle for stream banks, stream bank stabilization, decommissioning roads, and upgrading culverts are the primary focuses of this effort. The successful completion of the replacement and removal of several passage blocking culverts represent a major improvement to the watershed. These projects, coupled with other recently completed projects and those anticipated in the future, are a significant step in improving habitat conditions in Lolo Creek.

McRoberts, Heidi

2006-03-01T23:59:59.000Z

137

Fast-growing willow shrub named `Fish Creek`  

DOE Patents (OSTI)

A distinct male cultivar of Salix purpurea named `Fish Creek`, characterized by rapid stem growth producing greater than 30% more woody biomass than either of its parents (`94001` and `94006`) and 20% more biomass than a current production cultivar (`SV1`). `Fish Creek` can be planted from dormant stem cuttings, produces multiple stems after coppice, and the stem biomass can be harvested when the plant is dormant. In the spring following harvest, the plant will re-sprout very vigorously, producing new stems that can be harvested after two to four years of growth. This harvest cycle can be repeated several times. The stem biomass can be chipped and burned as a source of renewable energy, generating heat and/or electricity. `Fish Creek` displays a low incidence of rust disease or damage by beetles or sawflies.

Abrahamson, Lawrence P. (Marcellus, NY); Kopp, Richard F. (Marietta, NY); Smart, Lawrence B. (Geneva, NY); Volk, Timothy A. (Syracuse, NY)

2007-05-08T23:59:59.000Z

138

White Creek Wind Power Project | Open Energy Information  

Open Energy Info (EERE)

White Creek Wind Power Project White Creek Wind Power Project Facility White Creek Wind Power Project Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner Last Mile Electric Cooperative Developer Last Mile Electric Cooperative Energy Purchaser Last Mile Electric Cooperative Location Klickitat County Coordinates 45.853153°, -120.289578° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":45.853153,"lon":-120.289578,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

139

Proposed Flyers Creek Wind Farm, Blayney Local Government Area  

E-Print Network (OSTI)

Application reference: MP 08_0252 The Flyers Creek Wind Turbine Awareness Group Inc. (FCWTAG) is comprised of a large group of concerned residents of the Blayney Local Government Area. We object to the Proposed Flyers Creek Wind Farm (the proposal) in the strongest possible terms. We believe this development is totally inappropriate. This submission details our objections. The FCWTAG requests that representatives of the group be given the opportunity to speak at the Planning Assessment Commission hearing related to this proposal. Yours faithfully,

Major Development Assessment; Sydney Nsw; Dr. Colleen; J Watts Oam

2011-01-01T23:59:59.000Z

140

Oak Creek Phase I Wind Farm | Open Energy Information  

Open Energy Info (EERE)

Wind Farm Wind Farm Jump to: navigation, search Name Oak Creek Phase I Wind Farm Facility Oak Creek Phase I Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner Nichimen America/Oak Creek Energy Systems Developer M&N Wind Power/Oak Creek Energy Systems Energy Purchaser Southern California Edison Co Location Tehachapi CA Coordinates 35.07665°, -118.25529° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":35.07665,"lon":-118.25529,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

Note: This page contains sample records for the topic "red wing creek" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

Ventilation planning at Energy West's Deer Creek mine  

SciTech Connect

In 2004 ventilation planning was initiated to exploit a remote area of Deer Creek mine's reserve (near Huntington, Utah), the Mill Fork Area, located under a mountain. A push-pull ventilation system was selected. This article details the design process of the ventilation system upgrade, the procurement process for the new fans, and the new fan startup testing. 5 figs., 1 photo.

Tonc, L.; Prosser, B.; Gamble, G. [Pacific Corp., Huntington, UT (United States)

2009-08-15T23:59:59.000Z

142

Pataha Creek Model Watershed : 1999 Habitat Conservation Projects.  

Science Conference Proceedings (OSTI)

The projects outlined in detail on the attached project reports are a summary of the many projects implemented in the Pataha Creek Model Watershed since it was selected as a model in 1993. Up until last year, demonstration sites using riparian fencing, off site watering facilities, tree and shrub plantings and upland conservation practices were used for information and education and was the main focus of the implementation phase of the watershed plan. These practices are the main focus of the watershed plan to reduce the majority of the sediment entering the stream. However, the watershed stream evaluation team used in the watershed analysis determined that there were problems along the Pataha Creek that needed to be addressed that would add further protection to the banks and therefore a further reduction of sedimentation into the stream. 1999 was a year where a focused effort was made to work on the upland conservation practices to reduce the sedimentation into Pataha Creek. Over 95% of the sediment entering the stream can be tied directly to the upland and riparian areas of the watershed. In stream work was not addressed this year because of the costs associated with these projects and the low impact of the sediment issue concerning Pataha Creeks impact on Chinook Salmon in the Tucannon River.

Bartels, Duane G.

2000-10-01T23:59:59.000Z

143

Cedar Creek Wind Farm II (GE) | Open Energy Information  

Open Energy Info (EERE)

Cedar Creek Wind Farm II (GE) Cedar Creek Wind Farm II (GE) Jump to: navigation, search Name Cedar Creek Wind Farm II (GE) Facility Cedar Creek II (GE) Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner BP Wind Energy Developer BP Wind Energy Energy Purchaser Xcel Energy Location Weld County CO Coordinates 40.868652°, -104.092398° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":40.868652,"lon":-104.092398,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

144

Oak Creek - Phase 2A | Open Energy Information  

Open Energy Info (EERE)

Phase 2A Phase 2A Jump to: navigation, search Name Oak Creek - Phase 2A Facility Oak Creek - Phase 2A Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner Oak Creek Energy Systems Developer M&N Wind Power/Oak Creek Energy Systems Energy Purchaser Southern California Edison Co Location Tehachapi CA Coordinates 35.07665°, -118.25529° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":35.07665,"lon":-118.25529,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

145

Okanogan Focus Watershed Salmon Creek : Annual Report 1999.  

DOE Green Energy (OSTI)

During FY 1999 the Colville Tribes and the Okanogan Irrigation District (OID) agreed to study the feasibility of restoring and enhancing anadromous fish populations in Salmon Creek while maintaining the ability of the district to continue full water service delivery to it members.

Lyman, Hilary

1999-11-01T23:59:59.000Z

146

Tillman Creek Mitigation Site As-Build Report.  

DOE Green Energy (OSTI)

This as-built report describes site conditions at the Tillman Creek mitigation site in South Cle Elum, Washington. This mitigation site was constructed in 2006-2007 to compensate for wetland impacts from the Yakama Nation hatchery. This as-built report provides information on the construction sequence, as-built survey, and establishment of baseline monitoring stations.

Gresham, Doug [Otak, Inc.

2009-05-29T23:59:59.000Z

147

Hybrid wing-body aircraft noise and performance assessment  

E-Print Network (OSTI)

Hybrid wing-body aircraft noise generation and boundary layer ingestion (BLI) performance trends with increased fan face Mach number inlet designs are investigated. The presented topics are in support of the NASA subsonic ...

Weed, Philip Andrew

2010-01-01T23:59:59.000Z

148

Specialties [solar wings, oil spill avoidance, on-line patents  

Science Conference Proceedings (OSTI)

The author briefly describes the development of the solar wing, a solar powered prototype aircraft named Pathfinder. The author also describes a navigation system to help ships avoid oil-spills and other obstacles. The author also briefly describes access ...

J. A. Adam

1995-01-01T23:59:59.000Z

149

Red Paper Wasps  

NLE Websites -- All DOE Office Websites (Extended Search)

Red Paper Wasps Red Paper Wasps Name: Sheldon Location: N/A Country: N/A Date: N/A Question: There are a lot of red paper wasps in and around our house. Why are there so many, and why do they hand around our front door? Replies: I'm not sure what species of wasp you have so I can't give you a very detailed answer. Paper wasps overwinter as fertile queens, all the rest die in the winter. In the spring a queen starts a paper nest and lays a few eggs, which hatch into workers. Over the summer the nest expands, and there are more and more workers until they all die again when it freezes in winter. how many workers there will be depends on the species of wasp and food supply, etc. So you have many wasps at this time of year because there is a nest somewhere nearby and they are at the maximum number of individuals before frost. Why they are by your door is probably just a coincidence, an accident, but I can't be sure

150

Cantua Creek, California: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Cantua Creek, California: Energy Resources Cantua Creek, California: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 36.50134°, -120.3162666° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":36.50134,"lon":-120.3162666,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

151

MHK Projects/Coal Creek Project | Open Energy Information  

Open Energy Info (EERE)

Creek Project Creek Project < MHK Projects Jump to: navigation, search << Return to the MHK database homepage Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":5,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"350px","centre":false,"title":"","label":"","icon":"File:Aquamarine-marker.png","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":47.3617,"lon":-101.094,"alt":0,"address":"","icon":"http:\/\/prod-http-80-800498448.us-east-1.elb.amazonaws.com\/w\/images\/7\/74\/Aquamarine-marker.png","group":"","inlineLabel":"","visitedicon":""}]}

152

Two Creeks, Wisconsin: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Creeks, Wisconsin: Energy Resources Creeks, Wisconsin: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 44.3022186°, -87.5631378° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":44.3022186,"lon":-87.5631378,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

153

Microsoft Word - Delrio_ChiefJo_FosterCreek_CX.docx  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

6, 2012 6, 2012 REPLY TO ATTN OF: KEC-4 SUBJECT: Environmental Clearance Memorandum Ben Deschuytter Project Manager -TEP-CSB-1 Proposed Action: D Analog Communications Retirement at Del Rio, Chief Joseph, and Foster Creek Categorical Exclusion Applied (from Subpart D, 10 C.F.R. Part 1021): B1.19 Microwave, meteorological, and radio towers Location: Douglas County, Washington Proposed by: Bonneville Power Administration (BPA) Description of the Proposed Action: BPA proposes to upgrade communication equipment at three existing facilities in Douglas County, Washington. The work would occur at two of BPA's substations, Del Rio and Chief Joseph, and at BPA's Foster Creek radio site. Activities at these sites are in connection with the retirement of BPA's D analog communication system. At Del Rio, activities would

154

Willow Creek Wildlife Mitigation- Project Final Environmental Assessment  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Willow Creek Wildlife Mitigation- Project Willow Creek Wildlife Mitigation- Project Final Environmental Assessment DOE-EA-1 023 Bonneville POWER ADMINISTRATION April 1995 DISCLAIMER This report w a s prepared a s an account of work sponsored by an agency of t h e United States Government. Neither t h e United States Government nor any agency thereof, nor any of their employees, make any warranty, express or implied, or a s s u m e s any legal liability or responsibility for t h e accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents t h a t its use would not infringe privately owned rights. Reference herein to any specific commercial, product, process, or service by trade name, trademark, manufacturer, or otherwise d o e s not necessarily constitute or imply its

155

Francis Creek, Wisconsin: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Creek, Wisconsin: Energy Resources Creek, Wisconsin: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 44.199439°, -87.7214755° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":44.199439,"lon":-87.7214755,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

156

Mesquite Creek, Arizona: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Mesquite Creek, Arizona: Energy Resources Mesquite Creek, Arizona: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 34.9666691°, -114.568575° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":34.9666691,"lon":-114.568575,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

157

Microsoft Word - CX-Wautoma-Rock Creek_WEB.doc  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

3, 2010 3, 2010 REPLY TO ATTN OF: KEP-4 SUBJECT: Environmental Clearance Memorandum Corinn Castro Project Manager - TELM-TPP-3 Proposed Action: Replace spacer dampers along the Wautoma-Rock Creek No. 1 500-kV Transmission Line. Budget Information: Work Order # 00234527 PP&A Project No.: PP&A 1507 Categorical Exclusion Applied (from Subpart D, 10 C.F.R. Part 1021): B1.3, Routine maintenance activities...for structures, rights-of-way, infrastructures such as roads, equipment...routine maintenance activities, corrective....are required to maintain... infrastructures...in a condition suitable for a facility to be used for its designed purpose. Location: Wautoma-Rock Creek No. 1 500-kV Transmission Line. The proposed project is

158

Microsoft Word - CLT_Tide_Creek_Land_Acquisition_CX.docx  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Jason Karnezis Jason Karnezis Project Manager - KEWL-4 Proposed Action: Tide Creek Property Funding Fish and Wildlife Project No. & Contract No.: 2010-073-00, BPA-006247 Categorical Exclusion Applied (from Subpart D, 10 C.F.R. Part 1021): B1.25 Real property transfers for cultural resources protection, habitat preservation, and wildlife management Location: T6N, R2W, S25 in Columbia County, Oregon Proposed by: Bonneville Power Administration (BPA) Description of the Proposed Action: BPA proposes to fund Columbia Land Trust (CLT) for the purchase of approximately 41 acres of historic Columbia River floodplain in Columbia County, Oregon. The CLT will own and manage the Tide Creek property for fish and wildlife conservation purposes and BPA will receive a conservation easement to ensure that the habitat

159

Cave Creek, Arizona: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Cave Creek, Arizona: Energy Resources Cave Creek, Arizona: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 33.8333716°, -111.9507042° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":33.8333716,"lon":-111.9507042,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

160

Cedar Creek Wind Farm I (Mitsubishi) | Open Energy Information  

Open Energy Info (EERE)

Mitsubishi) Mitsubishi) Jump to: navigation, search Name Cedar Creek Wind Farm I (Mitsubishi) Facility Cedar Creek Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner Babcock & Brown/BP America Developer Babcock & Brown/BP America Energy Purchaser Xcel Energy Location Weld County east of Grover CO Coordinates 40.873578°, -104.07825° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":40.873578,"lon":-104.07825,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

Note: This page contains sample records for the topic "red wing creek" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

Swartz Creek, Michigan: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Swartz Creek, Michigan: Energy Resources Swartz Creek, Michigan: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 42.9572508°, -83.8305144° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":42.9572508,"lon":-83.8305144,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

162

Clear Creek County, Colorado: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Clear Creek County, Colorado: Energy Resources Clear Creek County, Colorado: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 39.6904464°, -105.6412527° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":39.6904464,"lon":-105.6412527,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

163

Cedar Creek Wind Farm I (GE) | Open Energy Information  

Open Energy Info (EERE)

GE) GE) Jump to: navigation, search Name Cedar Creek Wind Farm I (GE) Facility Cedar Creek Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner Babcock & Brown/BP America Developer Babcock & Brown/BP America Energy Purchaser Xcel Energy Location Weld County east of Grover CO Coordinates 40.873578°, -104.07825° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":40.873578,"lon":-104.07825,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

164

Cedar Creek Wind Farm II (Nordex) | Open Energy Information  

Open Energy Info (EERE)

Farm II (Nordex) Farm II (Nordex) Jump to: navigation, search Name Cedar Creek Wind Farm II (Nordex) Facility Cedar Creek II (Nordex) Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner BP Wind Energy Developer BP Wind Energy Energy Purchaser Xcel Energy Location Weld County CO Coordinates 40.874623°, -104.092569° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":40.874623,"lon":-104.092569,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

165

Coconut Creek, Florida: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Coconut Creek, Florida: Energy Resources Coconut Creek, Florida: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 26.2517482°, -80.1789351° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":26.2517482,"lon":-80.1789351,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

166

Blue Creek Winter Range: Wildlife Mitigation Project Final Environmental Assessment  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Creek Winter Range: Creek Winter Range: Wildlife Mitigation Project Final Environmental Assessment I F 8 - Spokane Tribe of Indians Bonneville POWER ADMINISTRATION B r n u r r o N aF THIS D O C ~ I H ~ E E 1% utifi_;'iUzi: w DOVEA-0939 November1 994 Bureay of Indian Affairs DISCLAIMER Portions of this document may be illegible in electronic image products. Images are produced from the best available original document. DISCLAIMER This report was .prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, make any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or

167

Ballenger Creek, Maryland: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Ballenger Creek, Maryland: Energy Resources Ballenger Creek, Maryland: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 39.3726022°, -77.4352636° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":39.3726022,"lon":-77.4352636,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

168

Grape Creek, Texas: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Grape Creek, Texas: Energy Resources Grape Creek, Texas: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 31.5793231°, -100.5475979° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":31.5793231,"lon":-100.5475979,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

169

Fritz Creek, Alaska: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Fritz Creek, Alaska: Energy Resources Fritz Creek, Alaska: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 59.7361111°, -151.2952778° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":59.7361111,"lon":-151.2952778,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

170

Burnt Creek-Riverview, North Dakota: Energy Resources | Open Energy  

Open Energy Info (EERE)

Burnt Creek-Riverview, North Dakota: Energy Resources Burnt Creek-Riverview, North Dakota: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 46.9583751°, -100.7982422° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":46.9583751,"lon":-100.7982422,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

171

White Oak Creek embayment sediment retention structure design and construction  

SciTech Connect

White Oak Creek is the major surface water drainage throughout the Department of Energy (DOE) Oak Ridge National Laboratory (ORNL). Samples taken from the lower portion of the creek revealed high levels of Cesium 137 and lower level of Cobalt 60 in near surface sediment. Other contaminants present in the sediment included: lead, mercury, chromium, and PCBs. In October 1990, DOE, US Environmental Protection Agency (EPA), and Tennessee Department of Environment and Conservation (TDEC) agreed to initiate a time critical removal action in accordance with the Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) to prevent the transport of the contaminated sediments into the Clinch River system. This paper discusses the environmental, regulatory, design, and construction issues that were encountered in conducting the remediation work.

Van Hoesen, S.D.; Kimmell, B.L. [Oak Ridge National Lab., TN (United States); Page, D.G.; Wilkerson, R.B. [MK-Ferguson of Oak Ridge Co., TN (United States); Hudson, G.R. [USDOE Oak Ridge Field Office, TN (United States); Kauschinger, J.L. [Ground Engineering Services, Alpharetta, GA (United States); Zocolla, M. [Nashville District, US Army Corps of Engineers, Nashville, TN (United States)

1994-12-31T23:59:59.000Z

172

City of Battle Creek, Nebraska (Utility Company) | Open Energy Information  

Open Energy Info (EERE)

City of Battle Creek City of Battle Creek Place Nebraska Utility Id 1346 Utility Location Yes Ownership M NERC Location MRO NERC MRO Yes Activity Distribution Yes Activity Bundled Services Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png City Accounts Commercial Commercial All Electric Commercial Commercial- Single Phase Commercial Commercial- Three Phase Commercial Commercial- Three Phase School Commercial Farm- Three Phase Commercial Large Commercial Electric Heating Commercial Large Power Industrial Residential Residential Residential All Electric Residential Rural Residential Residential

173

Process concept of retorting of Julia Creek oil shale  

SciTech Connect

A process is proposed for the above ground retorting of the Julia Creek oil shale in Queensland. The oil shale characteristics, process description, chemical reactions of the oil shale components, and the effects of variable and operating conditions on process performance are discussed. The process contains a fluidized bed combustor which performs both as a combustor of the spent shales and as a heat carrier generator for the pyrolysis step. 12 references, 5 figures, 5 tables.

Sitnai, O.

1984-06-01T23:59:59.000Z

174

Post Irradiation Evaluation of BWR Fuel From Hope Creek Reactor  

Science Conference Proceedings (OSTI)

Occasionally, in some BWRs, fuel pellet washout from a single degraded fuel rod has resulted in high offgas levels that were sufficient to impede the reactor operation. In addition, certain sound fuel rods have exhibited high eddy-current liftoff values during routine poolside measurements. Investigators pursued these two recent BWR fuel issues by performing detailed hotcell examinations on selected fuel rods from the Hope Creek reactor. The results provided insights into the mechanisms involved and poss...

1997-03-12T23:59:59.000Z

175

Slate Creek Hot Springs Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Slate Creek Hot Springs Geothermal Area Slate Creek Hot Springs Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Slate Creek Hot Springs Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (0) 9 Exploration Activities (0) 10 References Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"TERRAIN","zoom":6,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"300px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":44.171,"lon":-114.624,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

176

East Basin Creek Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

East Basin Creek Geothermal Area East Basin Creek Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: East Basin Creek Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (0) 9 Exploration Activities (0) 10 References Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"TERRAIN","zoom":6,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"300px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":44.2633,"lon":-114.811,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

177

Smith Creek Valley Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Smith Creek Valley Geothermal Area Smith Creek Valley Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Smith Creek Valley Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (0) 9 Exploration Activities (0) 10 References Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"TERRAIN","zoom":6,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"300px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":39.3128,"lon":-117.5493,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

178

Deer Creek Hot Spring Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Deer Creek Hot Spring Geothermal Area Deer Creek Hot Spring Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Deer Creek Hot Spring Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (0) 9 Exploration Activities (0) 10 References Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"TERRAIN","zoom":6,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"300px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":44.09167,"lon":-116.05,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

179

Foote Creek Rim I Wind Farm | Open Energy Information  

Open Energy Info (EERE)

Foote Creek Rim I Wind Farm Foote Creek Rim I Wind Farm Facility Foote Creek Rim I Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner PacifiCorp/Eugene Water & Electric Board Developer SeaWest/Tomen Energy Purchaser PacifiCorp/Eugene Water & Electric Board Location Carbon County WY Coordinates 41.652605°, -106.189914° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":41.652605,"lon":-106.189914,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

180

Big Creek Hot Springs Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Creek Hot Springs Geothermal Area Creek Hot Springs Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Big Creek Hot Springs Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (0) 9 Exploration Activities (0) 10 References Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"TERRAIN","zoom":6,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"300px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":45.3067,"lon":-114.3375,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

Note: This page contains sample records for the topic "red wing creek" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

Indian Creek Hot Springs Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Creek Hot Springs Geothermal Area Creek Hot Springs Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Indian Creek Hot Springs Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (0) 9 Exploration Activities (0) 10 References Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"TERRAIN","zoom":6,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"300px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":44.8129,"lon":-115.1229,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

182

Rehabilitate Newsome Creek Watershed, 2007-2008 Annual Report.  

DOE Green Energy (OSTI)

The Nez Perce Tribe Department of Fisheries Resource Management, Watershed Division approaches watershed restoration with a ridge-top to ridgetop approach. The Nez Perce Tribe (NPT) and the Nez Perce National Forest (NPNF) have formed a partnership in completing watershed restoration activities, and through this partnership more work is accomplished by sharing funding and resources in our effort. The Nez Perce Tribe began watershed restoration projects within the Newsome Creek watershed of the South Fork Clearwater River in 1997. Progress has been made in restoring the watershed through road decommissioning and culvert replacement. Starting in FY 2001 and continuing into the present, a major stream restoration effort on the mainstem of Newsome Creek has been pursued. From completing a watershed assessment to a feasibility study of 4 miles of mainstem rehabilitation to carrying that forward into NEPA and a final design, we will begin the effort of restoring the mainstem channel of Newsome Creek to provide spawning and rearing habitat for anadromous and resident fish species. Roads have been surveyed and prioritized for removal or improvement as well as culverts being prioritized for replacement to accommodate fish passage throughout the watershed.

Bransford, Stephanie [Nez Perce Tribe Fisheries/Watershed Program

2009-05-01T23:59:59.000Z

183

Alturas Lake Creek Flow Augmentation, 1986 Final Report.  

DOE Green Energy (OSTI)

Two alternatives were outlined in the first statement of work as possibilities for flow augmentation in Alturas Lake Creek. The alternatives were to raise the level of Alturas Lake and to acquire necessary water rights in Alturas Lake Creek. The first alternative considered in the study was raising the water level at Alturas Lake with a low head dam. Raising Alturas Lake, appeared feasible in that it provided the necessary fish flows in Alturas Lake Creek. However, raising the level of Alturas Lake has adverse effects to other resources and forced pursuing the second alternative as defined in this report. Some of these effects included: flooding Smokey Bear boat ramp, inundation of recreation beaches for extended periods, flooding of the campground and some of the road system, potentially contaminating the quality of lake water from flooded toilet vaults, and destroying the conifer canopy around the lake. Maintenance and operation costs of the dam, along with the need to have a watermaster to distribute flows over the course of the irrigation season, raised additional concerns that detracted from this alternative. The second alternative considered was the acquisition of water rights. This led to an appraisal of the water right values which was completed by BPA with a comparison appraisal done by the Forest Service.

Andrews, John; Lloyd, John; Webster, Bert (Sawtooth National Forest, Twin Falls, ID)

1987-04-01T23:59:59.000Z

184

[Wing 1 radiation survey and contamination report]. Final report  

SciTech Connect

We have completed the 5480.11 survey for Wing 1. All area(s)/item(s) requested by the 5480.11 committee have been thoroughly surveyed and documented. Decontamination/disposal of contaminated items has been accomplished. The wing 1 survey was started on 8/13/90 and completed 9/18/90. However, the follow-up surveys were not completed until 2/18/91. We received the final set of smear samples for wing 1 on 1/13/91. A total of 5,495 smears were taken from wing 1 and total of 465 smears were taken during the follow-up surveys. There were a total 122 items found to have fixed contamination and 4 items with smearable contamination in excess of the limits specified in DOE ORDER 5480.11 (AR 3-7). The following area(s)/item(s) were not included in the 5480.11 survey: Hallways, Access panels, Men`s and women`s change rooms, Janitor closets, Wall lockers and item(s) stored in wing 1 hallways and room 1116. If our contract is renewed, we will include those areas in our survey according to your request of April 15, 1991.

Olsen, K.

1991-05-13T23:59:59.000Z

185

Isotopic Analysis At Separation Creek Area (Van Soest, Et Al., 2002) | Open  

Open Energy Info (EERE)

Isotopic Analysis At Separation Creek Area (Van Soest, Et Al., 2002) Isotopic Analysis At Separation Creek Area (Van Soest, Et Al., 2002) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Isotopic Analysis- Fluid At Separation Creek Area (Van Soest, Et Al., 2002) Exploration Activity Details Location Separation Creek Area Exploration Technique Isotopic Analysis- Fluid Activity Date Usefulness useful DOE-funding Unknown References M. C. van Soest, B. M. Kennedy, W. C. Evans, R. H. Mariner (2002) Mantle Helium And Carbon Isotopes In Separation Creek Geothermal Springs, Three Sisters Area, Central Oregon- Evidence For Renewed Volcanic Activity Or A Long Term Steady State System(Question) Retrieved from "http://en.openei.org/w/index.php?title=Isotopic_Analysis_At_Separation_Creek_Area_(Van_Soest,_Et_Al.,_2002)&oldid=687475"

186

Red-black Tree Jingjing Xia  

E-Print Network (OSTI)

Advanced Algorithm Design Red-black Tree Jingjing Xia #12;Red-Black Tree A red-black tree is a binary search tree, and each node contains one extra field: its color, it can be either black or red of the binary search tree. If a binary search tree satisfies all the following red-black properties, it is a red-black

Chen, Yangjun

187

Microsoft Word - ProvisionsFundsColvilleConfederatedTribesPurchaseLoupLoupCreekAeneasCreekProperties_CX.doc  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

7, 2011 7, 2011 REPLY TO ATTN OF: KEC-4 SUBJECT: Environmental Clearance Memorandum Dave Roberts Project Manager - KEWU-4 Proposed Action: Provisions of funds to the Colville Confederated Tribes for purchase of the Loup Loup Creek and Aeneas Creek properties. Fish and Wildlife Project No.: 2008-104-00 Categorical Exclusion Applied (from Subpart D, 10 C.F.R. Part 1021): B1.25 Transfer, lease, disposition or acquisition of interests in uncontaminated land for habitat preservation or wildlife management, and only associated buildings that support these purposes. Uncontaminated means that there would be no potential for release of substances at a level, or in a form, that would pose a threat to public health or the environment.

188

Crow Wing Cooperative Power & Light Comp | Open Energy Information  

Open Energy Info (EERE)

Wing Cooperative Power & Light Comp Wing Cooperative Power & Light Comp Jump to: navigation, search Name Crow Wing Cooperative Power & Light Comp Place Minnesota Utility Id 4577 Utility Location Yes Ownership C NERC Location MAPP NERC MRO Yes ISO MISO Yes Activity Distribution Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png Commercial Commercial Dual Fuel Residential Freedom Heating Residential Industrial Industrial Irrigation Industrial Large Power Industrial Off Peak Residential Residential Whole House Heat Pump Residential Average Rates Residential: $0.1020/kWh Commercial: $0.0971/kWh

189

Baxter Creek Gateway Park: assessment of an urban stream restoration project  

E-Print Network (OSTI)

Restoration Project: Maintenance and Management Guide. Citythe Baxter Creek Maintenance and Management Guide and thatEOA, 2005), Maintenance & Management Guide (El Cerrito,

Goodman, Judd; Lunde, Kevin B; Zaro, Theresa

2006-01-01T23:59:59.000Z

190

Design of an instrumented workpart for robotic aircraft wing-box assembly  

E-Print Network (OSTI)

The idea of an underactuated robotic arm used in aircraft wing assembly and production was created to improve the wing-box assembly process. In order to display the robots capabilities and areas of improvement, a suitable ...

Kaina, Leighton

2006-01-01T23:59:59.000Z

191

First `Winged' and `X'-shaped Radio Source Candidates  

SciTech Connect

A small number of double-lobed radio galaxies (17 from our own census of the literature) show an additional pair of low surface brightness ''wings'', thus forming an overall ''X''-shaped appearance. The origin of the wings in these radio sources is unclear. They may be the result of back-flowing plasma from the currently active radio lobes into an asymmetric medium surrounding the active nucleus, which would make these ideal systems in which to study thermal/non-thermal plasma interactions in extragalactic radio sources. Another possibility is that the wings are the aging radio lobes left over after a (rapid) realignment of the central supermassive black-hole/accretion disk system due perhaps to a merger. Generally, these models are not well tested; with the small number of known examples, previous works focused on detailed case studies of selected sources with little attempt at a systematic study of a large sample. Using the VLA-FIRST survey database, we are compiling a large sample of winged and X-shaped radio sources for such studies. As a first step toward this goal, an initial sample of 100 new candidate objects of this type are presented in this paper. The search process is described, optical identifications from available literature data, and basic radio data are presented. From the limited resolution FIRST images ({approx} 5''), we can already confidently classify a sufficient number of these objects as having the characteristic wing lengths >80% of the active lobes to more than double the number of known X-shaped radio sources. We have also included as candidates, radio sources with shorter wings (<80% wing to lobe length ratios), or simply ''winged'' sources, as it is probable that projection effects are important. Finally, among the candidates are four quasars (z=0.37 to 0.84), and several have morphologies suggestive of Fanaroff-Riley type-I (low-power) radio galaxies. While followup observations are necessary to confirm these identifications, this stresses the importance of source orientation and imaging limitations in finding these enigmatic objects.

Cheung, C.C.

2007-01-22T23:59:59.000Z

192

K-25 East Wing Demolition Project Wraps Up, North End Work Next  

Energy.gov (U.S. Department of Energy (DOE))

Oak Ridge's EM program completes demolition on K-25's east wing and shifts attention to the north tower.

193

Habitat Evaluation Procedures (HEP) Report; Carey Creek, Technical Report 2005.  

DOE Green Energy (OSTI)

In August 2002, the Habitat Evaluation Procedure (HEP) was used to determine baseline habitat suitability on the Carey Creek property, an acquisition completed by the Kalispel Tribe of Indians in December 2001. Evaluation species and appropriate models include bald eagle, black-capped chickadee, Canada goose, mallard, yellow warbler, and white-tailed deer. Habitat Suitability Index (HSI) values were visually estimated and agreed upon by all HEP team members. The Carey Creek Project provides a total of 172.95 Habitat Units (HUs) for the species evaluated. Conifer forest habitat provides 4.91 HUs for bald eagle, black-capped chickadee, and white-tailed deer. Forested wetlands provide 52.68 HUs for bald eagle, black-capped chickadee, mallard, and white-tailed deer. Scrub-shrub wetlands provide 2.82 HUs for mallard, yellow warbler and white-tailed deer. Wet meadow and grassland meadow provide 98.13 HUs for mallard and Canada goose. Emergent wetlands provide 11.53 HUs for mallard, muskrat, and Canada goose. Open water provides 2.88 HUs for Canada goose, mallard, and muskrat. The objective of using HEP at the Carey Creek Project and other protected properties is to document the quality and quantity of available habitat for selected wildlife species. In this way, HEP provides information on the relative value of the same area at future points in time so that the effect of management activities on wildlife habitat can be quantified. When combined with other tools, the baseline HEP will be used to determine the most effective on-site management, restoration, and enhancement actions to increase habitat suitability for targeted species. The same process will be replicated every five years to quantitatively evaluate the effectiveness of management strategies in improving and maintaining habitat conditions while providing additional crediting to BPA for enhanced habitat values.

Entz, Ray

2005-05-01T23:59:59.000Z

194

DOE Begins Demoltion on K-25s East Wing  

Energy.gov (U.S. Department of Energy (DOE))

DOE begins demolition of Building K-25s east wing. The former uranium enrichment facility, located at ETTP, was once the worlds largest building under one roof, covering more than 44 acres. The project is one of DOEs highest EM priorities in Oak Ridge and an integral component to completing cleanup of ETTP.

195

Ice Climbing in Clear Creek Canyon A climbing trip report by Glenn Murray  

E-Print Network (OSTI)

Ice Climbing in Clear Creek Canyon A climbing trip report by Glenn Murray SUMMARY: I climb ice in to ask about local climbing. The guys there told me there was ice nearby, in Clear Creek Canyon. I. Four pitches? Five? It was time to find a partner. The only ice climber I knew in Denver was a friend

196

Life Cycle Management Plan for Main Generator and Exciter at Wolf Creek Generating Station: Generic Version  

Science Conference Proceedings (OSTI)

As the electric power industry becomes more competitive, life cycle management (LCM) of systems, structures, and components (SSCs) becomes more important to keep nuclear power plants economically viable throughout their remaining licensed operating terms, whether 40 or 60 years. This report provides Wolf Creek Nuclear Operating Corp. with an optimized LCM plan for the main generators and exciters at Wolf Creek Power Plant.

2003-09-30T23:59:59.000Z

197

Stratigraphy and depositional environment of upper Cambrian Red Lion Formation, southwestern Montana  

Science Conference Proceedings (OSTI)

The Red Lion Formation was examined along a northwest-southeast transect from Missoula to Bozeman, Montana. Lateral equivalents are the Snowy Range Formation east of Bozeman and the upper Fishtrap Dolomite in northwest Montana. The basal Dry Creek Member (0-5 m) consists of shale interbedded with quartz siltstones and sandstones. The overlying Sage Member, up to 115 meters in thickness, is characterized by ribbon carbonate beds containing lime mudstone and quartzose calcisiltite couplets arranged in fining-upward sequences 1-5 cm thick. Couplets are interlayered in places with thin (1-5 cm) to medium bedded (6-70 cm) units of laminated and non-laminated calcareous siltstones, flat-pebble conglomerates, trilobite packstones, cryptalgal boundstones, bioturbated lime mudstones and shales. In places, the upper Sage contains columnar and domal algal features. The Red Lion Formation is considered to be one Grand Cycle with the Dry Creek representing a lower inner detrital half-cycle and the Sage an upper carbonate half-cycle. The Dry Creek formed as the result of a westward clastic pulse from the inner detrital belt across an intrashelf basin onto outer middle carbonate peritidal complexes of the underlying Pilgrim Formation. Lower Sage ribbon rocks were deposited in storm-crossed, below wave-base areas. During deposition of the upper Sage, shallowing formed discontinuous algal-peritidal complexes over much of western and central Montana. These complexes were less extensive than earlier Cambrian buildups owing to slower rates of basin subsidence and clastic input suppressing carbonate production.

Hayden, L.L.; Bush, J.H.

1987-08-01T23:59:59.000Z

198

Exploration Of The Upper Hot Creek Ranch Geothermal Resource, Nye County,  

Open Energy Info (EERE)

Of The Upper Hot Creek Ranch Geothermal Resource, Nye County, Of The Upper Hot Creek Ranch Geothermal Resource, Nye County, Nevada Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Report: Exploration Of The Upper Hot Creek Ranch Geothermal Resource, Nye County, Nevada Details Activities (2) Areas (1) Regions (0) Abstract: The Upper Hot Creek Ranch (UHCR) geothermal system had seen no significant exploration activity prior to initiation of this GRED III project. Geochemical geothermometers calculated from previously available but questionable quality analyses of the UHCR hot spring waters indicated possible subsurface temperatures of +320 oF. A complex Quaternary and Holocene faulting pattern associated with a six mile step over of the Hot Creek Range near the UHCR also indicated that this area was worthy of some

199

Vegetation survey of Pen Branch and Four Mile Creek wetlands  

SciTech Connect

One hundred-fifty plots were recently sampled (vegetational sampling study) at the Savannah River Site (SRS). An extensive characterization of the vascular flora, in four predetermined strata (overstory, Understory, shrub layer, and ground cover), was undertaken to determine dominance, co-dominance, and the importance value (I.V.) of each species. These results will be used by the Savannah River Laboratory (SRL) to evaluate the environmental status of Four Mile Creek, Pen Branch, and two upland pine stands. Objectives of this study were to: Describe in detail the plant communities previously mapped with reference to the topography and drainage, including species of plants present: Examine the successional trends within each sampling area and describe the extent to which current vegetation communities have resulted from specific earlier vegetation disturbances (e.g., logging and grazing); describe in detail the botanical field techniques used to sample the flora; describe the habitat and location of protected and/or rare species of plants; and collect and prepare plant species as herbarium quality specimens. Sampling was conducted at Four Mile Creek and Pen Branch, and in two upland pine plantations of different age growth.

Not Available

1992-01-01T23:59:59.000Z

200

Vegetation survey of Pen Branch and Four Mile Creek wetlands  

Science Conference Proceedings (OSTI)

One hundred-fifty plots were recently sampled (vegetational sampling study) at the Savannah River Site (SRS). An extensive characterization of the vascular flora, in four predetermined strata (overstory, Understory, shrub layer, and ground cover), was undertaken to determine dominance, co-dominance, and the importance value (I.V.) of each species. These results will be used by the Savannah River Laboratory (SRL) to evaluate the environmental status of Four Mile Creek, Pen Branch, and two upland pine stands. Objectives of this study were to: Describe in detail the plant communities previously mapped with reference to the topography and drainage, including species of plants present: Examine the successional trends within each sampling area and describe the extent to which current vegetation communities have resulted from specific earlier vegetation disturbances (e.g., logging and grazing); describe in detail the botanical field techniques used to sample the flora; describe the habitat and location of protected and/or rare species of plants; and collect and prepare plant species as herbarium quality specimens. Sampling was conducted at Four Mile Creek and Pen Branch, and in two upland pine plantations of different age growth.

Not Available

1992-10-01T23:59:59.000Z

Note: This page contains sample records for the topic "red wing creek" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

Asotin Creek Model Watershed Plan: Asotin County, Washington, 1995.  

DOE Green Energy (OSTI)

The Northwest Power Planning Council completed its ``Strategy for Salmon'' in 1992. This is a plan, composed of four specific elements,designed to double the present production of 2.5 million salmon in the Columbia River watershed. These elements have been called the ``four H's'': (1) improve harvest management; (2) improve hatcheries and their production practices; (3) improve survival at hydroelectric dams; and (4) improve and protect fish habitat. The Asotin Creek Model Watershed Plan is the first to be developed in Washington State which is specifically concerned with habitat protection and restoration for salmon and trout. The plan is consistent with the habitat element of the ``Strategy for Salmon''. Asotin Creek is similar in many ways to other salmon-bearing streams in the Snake River system. Its watershed has been significantly impacted by human activities and catastrophic natural events, such as floods and droughts. It supports only remnant salmon and trout populations compared to earlier years. It will require protection and restoration of its fish habitat and riparian corridor in order to increase its salmonid productivity.

Browne, Dave

1995-04-01T23:59:59.000Z

202

Owl Creek Hot Springs Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

form form View source History View New Pages Recent Changes All Special Pages Semantic Search/Querying Get Involved Help Apps Datasets Community Login | Sign Up Search Page Edit with form History Facebook icon Twitter icon » Owl Creek Hot Springs Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Owl Creek Hot Springs Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (0) 9 Exploration Activities (0) 10 References Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"TERRAIN","zoom":6,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"300px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":45.3439,"lon":-114.4631,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

203

Kerr-McGee launches talent at House Creek flood  

Science Conference Proceedings (OSTI)

Kerr-McGee Corp. gets tertiary status on potassium hydroxide treatment augmenting the polymer flood of House Creek Sussex Unit. Kerr-McGee took over the House Creek flood project when it bought some $65.6 million in Powder River Basin properties from Sonat Exploration Co. of Birmingham, Alabama. Those Campbell and Converse county properties included some 75,000 net acres of leases and approximately 11 MMboe in developed and undeveloped reserves. At first, Kerr-McGee planned to go ahead with Sonat's 3-to-1 line drive pattern for its flood, but further study persuaded the company to go to a 1-to-1 pattern. The original 3-to-1 pattern had three rows of producers for one row of injectors. The 1-to-1 pattern has one row of producers for one row of injectors. Even though it's technically a polymer flood, the project qualifies for tertiary recovery status because of the potassium hydroxide (KOH) treatment used to stabilize clays in the touchy Sussex Formation.

Lyle, D.

1992-12-01T23:59:59.000Z

204

The battle of Sailor's Creek: a study in leadership  

E-Print Network (OSTI)

The Battle of Sailor's Creek, 6 April 1865, has been overshadowed by Lee's surrender at Appomattox Court House several days later, yet it is an example of the Union military war machine reaching its apex of war making ability during the Civil War. Through Ulysses S. Grant's leadership and that of his subordinates, the Union armies, specifically that of the Army of the Potomac, had been transformed into a highly motivated, organized and responsive tool of war, led by confident leaders who understood their commander's intent and were able to execute on that intent with audacious initiative in the absence of further orders. After Robert E. Lee's Army of Northern Virginia escaped from Petersburg and Richmond on 2 April 1865, Grant's forces chased after Lee's forces with the intent of destroying the mighty and once feared protector of the Confederate States in the hopes of bringing a swift end to the long war. At Sailor's Creek, Phil Sheridan, Grant's cavalry commander was able to put his forces south and west of Lee's Army trapping it between Sheridan's cavalry and George Meade's Army of the Potomac. After fighting a brutal, close quarters engagement, Union forces captured or killed the majority of two of Lee's corps, commanded by Richard H. Anderson and Richard S. Ewell, and severely attrited a third corps under John B. Gordon, leaving Lee only James Longstreet's corps intact to continue the struggle.

Smith, Cloyd Allen, Jr.

2005-12-01T23:59:59.000Z

205

Stream sediment detailed geochemical survey for Date Creek Basin, Arizona  

SciTech Connect

Results of the Date Creek Basin detailed geochemical survey are reported. Field and laboratory data are reported for 239 stream sediment samples. Statistical and areal distributions of uranium and possible uranium-related variables are displayed. A generalized geologic map of the area is provided, and pertinent geologic factors which may be of significance in evaluating the potential for uranium mineralization are briefly discussed. Based on stream sediment geochemical data, significant concentrations of uranium are restricted to the Anderson Mine area. The 84th percentile concentrations of U-FL, U-NT, and U-FL/U-NT combined with low thorium/U-NT values reflect increased mobility and enrichment of uranium in the carbonate host rocks of that area. Elements characteristically associated with the uranium mineralization include lithium and arsenic. No well defined diffusion halos suggesting outliers of similar uranium mineralization were observed from the stream sediment data in other areas of the Date Creek Basin. Significant concentrations of U-FL or U-NT found outside the mine area are generally coincident with low U-FL/U-NT values and high concentrations of zirconium, titanium, and phosphorus. This suggests that the uranium is related to a resistate mineral assemblage derived from surrounding crystalline igneous and metamorphic rocks.

Butz, T.R.; Tieman, D.J.; Grimes, J.G.; Bard, C.S.; Helgerson, R.N.; Pritz, P.M.

1980-06-30T23:59:59.000Z

206

Spatial autocorrelation and red herrings in geographical ecology  

E-Print Network (OSTI)

2000) Red-shifts and red herrings in geographical ecology.autocorrelation and red herrings in geographical ecologygenerates red herrings, such that virtually all past

Diniz, JAF; Bini, L M; Hawkins, Bradford A.

2003-01-01T23:59:59.000Z

207

Water Conservation Study for Manastash Creek Water Users, Kittias County, Washington, Final Report 2002.  

DOE Green Energy (OSTI)

Manastash Creek is tributary of the Yakima River and is located southwest and across the Yakima River from the City of Ellensburg. The creek drains mountainous terrain that ranges in elevation from 2,000 feet to over 5,500 feet and is primarily snowmelt fed, with largest flows occurring in spring and early summer. The creek flows through a narrow canyon until reaching a large, open plain that slopes gently toward the Yakima River and enters the main stem of the Yakima River at river mile 154.5. This area, formed by the alluvial fan of the Creek as it leaves the canyon, is the subject of this study. The area is presently dominated by irrigated agriculture, but development pressures are evident as Ellensburg grows and develops as an urban center. Since the mid to late nineteenth century when irrigated agriculture was established in a significant manner in the Yakima River Basin, Manastash Creek has been used to supply irrigation water for farming in the area. Adjudicated water rights dating back to 1871 for 4,465 acres adjacent to Manastash Creek allow appropriation of up to 26,273 acre-feet of creek water for agricultural irrigation and stock water. The diversion of water from Manastash Creek for irrigation has created two main problems for fisheries. They are low flows or dewatered reaches of Manastash Creek and fish passage barriers at the irrigation diversion dams. The primary goal of this study, as expressed by Yakama Nation and BPA, is to reestablish safe access in tributaries of the Yakima River by removing physical barriers and unscreened diversions and by adding instream flow where needed for fisheries. The goal expressed by irrigators who would be affected by these projects is to support sustainable and profitable agricultural use of land that currently uses Manastash Creek water for irrigation. This study provides preliminary costs and recommendations for a range of alternative projects that will partially or fully meet the goal of establishing safe access for fisheries in Manastash Creek by reducing or eliminating diversions and eliminating fish passage barriers. Further study and design will be necessary to more fully develop the alternatives, evaluate their environmental benefits and impacts and determine the effect on Manastash Creek water users. Those studies will be needed to determine which alternative has the best combination of benefits and costs, and meets the goal of the Manastash Creek water users.

Montgomery Watson Harza (Firm)

2002-12-31T23:59:59.000Z

208

Campbell Creek Research Homes FY 2012 Annual Performance Report  

Science Conference Proceedings (OSTI)

The Campbell Creek project is funded and managed by the Tennessee Valley Authority (TVA) Technology Innovation, Energy Efficiency, Power Delivery & and Utilization Office. Technical support is provided under contract by the Oak Ridge National Laboratory (ORNL) and the Electric Power Research Institute.The project was designed to determine the relative energy efficiency of typical new home construction, energy efficiency retrofitting of existing homes, and high -performance new homes built from the ground up for energy efficiency. This project will compare three houses that represented the current construction practice as a base case (Builder House CC1); a modified house that could represent a major energy- efficient retrofit (Retrofit House CC2); and a house constructed from the ground up to be a high- performance home (High Performance House CC3). In order tTo enablehave a valid comparison, it was necessary to simulate occupancy in all three houses and heavily monitor the structural components and the energy usage by component. All three houses are two story, slab on grade, framed construction. CC1 and CC2 are approximately 2,400 square feet2. CC3 has a pantry option, that is primarily used as a mechanical equipment room, that adds approximately 100 square feet2. All three houses are all-electric (with the exception of a gas log fireplace that is not used during the testing), and use air-source heat pumps for heating and cooling. The three homes are located in Knoxville in the Campbell Creek Subdivision. CC1 and CC2 are next door to each other and CC3 is across the street and a couple of houses down. The energy data collected will be used to determine the benefits of retrofit packages and high -performance new home packages. There are over 300 channels of continuous energy performance and thermal comfort data collection in the houses (100 for each house). The data will also be used to evaluate the impact of energy -efficient upgrades ton the envelope, mechanical equipment, or demand -response options. Each retrofit will be evaluated incrementally, by both short -term measurements and computer modeling, using a calibrated model. This report is intended to document the comprehensive testing, data analysis, research, and findings within the January 2011 through October 2012 timeframe at the Campbell Creek research houses. The following sections will provide an in-depth assessment of the technology progression in each of the three research houses. A detailed assessment and evaluation of the energy performance of technologies tested will also be provided. Finally, lessons learned and concluding remarks will be highlighted.

Gehl, Anthony C [ORNL; Munk, Jeffrey D [ORNL; Jackson, Roderick K [ORNL; Boudreaux, Philip R [ORNL; Khowailed, Gannate A [ORNL

2013-01-01T23:59:59.000Z

209

Fish Passage Assessment: Big Canyon Creek Watershed, Technical Report 2004.  

DOE Green Energy (OSTI)

This report presents the results of the fish passage assessment as outlined as part of the Protect and Restore the Big Canyon Creek Watershed project as detailed in the CY2003 Statement of Work (SOW). As part of the Northwest Power Planning Council's Columbia Basin Fish and Wildlife Program (FWP), this project is one of Bonneville Power Administration's (BPA) many efforts at off-site mitigation for damage to salmon and steelhead runs, their migration, and wildlife habitat caused by the construction and operation of federal hydroelectric dams on the Columbia River and its tributaries. The proposed restoration activities within the Big Canyon Creek watershed follow the watershed restoration approach mandated by the Fisheries and Watershed Program. Nez Perce Tribal Fisheries/Watershed Program vision focuses on protecting, restoring, and enhancing watersheds and treaty resources within the ceded territory of the Nez Perce Tribe under the Treaty of 1855 with the United States Federal Government. The program uses a holistic approach, which encompasses entire watersheds, ridge top to ridge top, emphasizing all cultural aspects. We strive toward maximizing historic ecosystem productive health, for the restoration of anadromous and resident fish populations. The Nez Perce Tribal Fisheries/Watershed Program (NPTFWP) sponsors the Protect and Restore the Big Canyon Creek Watershed project. The NPTFWP has the authority to allocate funds under the provisions set forth in their contract with BPA. In the state of Idaho vast numbers of relatively small obstructions, such as road culverts, block thousands of miles of habitat suitable for a variety of fish species. To date, most agencies and land managers have not had sufficient, quantifiable data to adequately address these barrier sites. The ultimate objective of this comprehensive inventory and assessment was to identify all barrier crossings within the watershed. The barriers were then prioritized according to the amount of habitat blocked at each site and the fish life history stages impacted. This assessment protocol will hopefully prove useful to other agencies and become a model for use in other watersheds.

Christian, Richard

2004-02-01T23:59:59.000Z

210

Crow Wing County, Minnesota: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Wing County, Minnesota: Energy Resources Wing County, Minnesota: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 46.5957987°, -94.1401699° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":46.5957987,"lon":-94.1401699,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

211

Wing, North Dakota: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Wing, North Dakota: Energy Resources Wing, North Dakota: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 47.1408239°, -100.2790017° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":47.1408239,"lon":-100.2790017,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

212

Johnson Creek Artificial Propagation and Enhancement Project Operations and Maintenance Program; Brood Year 1998: Johnson Creek Chinook Salmon Supplementation, Biennial Report 1998-2000.  

DOE Green Energy (OSTI)

The Nez Perce Tribe, through funding provided by the Bonneville Power Administration, has implemented a small scale chinook salmon supplementation program on Johnson Creek, a tributary in the South Fork of the Salmon River, Idaho. The Johnson Creek Artificial Propagation Enhancement project was established to enhance the number of threatened Snake River summer chinook salmon (Oncorhynchus tshawytscha) returning to Johnson Creek through artificial propagation. Adult chinook salmon collection and spawning began in 1998. A total of 114 fish were collected from Johnson Creek and 54 fish (20 males and 34 females) were retained for Broodstock. All broodstock were transported to Lower Snake River Compensation Plan's South Fork Salmon River adult holding and spawning facility, operated by the Idaho Department of Fish and Game. The remaining 60 fish were released to spawn naturally. An estimated 155,870 eggs from Johnson Creek chinook spawned at the South Fork Salmon River facility were transported to the McCall Fish Hatchery for rearing. Average fecundity for Johnson Creek females was 4,871. Approximately 20,500 eggs from females with high levels of Bacterial Kidney Disease were culled. This, combined with green-egg to eyed-egg survival of 62%, resulted in about 84,000 eyed eggs produced in 1998. Resulting juveniles were reared indoors at the McCall Fish Hatchery in 1999. All of these fish were marked with Coded Wire Tags and Visual Implant Elastomer tags and 8,043 were also PIT tagged. A total of 78,950 smolts were transported from the McCall Fish Hatchery and released directly into Johnson Creek on March 27, 28, 29, and 30, 2000.

Daniel, Mitch; Gebhards, John

2003-05-01T23:59:59.000Z

213

Couse/Tenmile Creeks Watershed Project Implementation : 2007 Conservtion Projects. [2007 Habitat Projects Completed].  

DOE Green Energy (OSTI)

The Asotin County Conservation District (ACCD) is the primary entity coordinating habitat projects on private lands within Asotin County watersheds. The Tenmile Creek watershed is a 42 square mile tributary to the Snake River, located between Asotin Creek and the Grande Ronde River. Couse Creek watershed is a 24 square mile tributary to the Snake River, located between Tenmile Creek and the Grande Ronde River. Both watersheds are almost exclusively under private ownership. The Washington Department of Fish and Wildlife has documented wild steelhead and rainbow/redband trout spawning and rearing in Tenmile Creek and Couse Creek. The project also provides Best Management Practice (BMP) implementation throughout Asotin County, but the primary focus is for the Couse and Tenmile Creek watersheds. The ACCD has been working with landowners, Bonneville Power Administration (BPA), Washington State Conservation Commission (WCC), Natural Resource Conservation Service (NRCS), Farm Service Agency (FSA), Salmon Recovery Funding Board (SRFB), Washington Department of Fish and Wildlife (WDFW), U.S. Forest Service, Pomeroy Ranger District (USFS), Nez Perce Tribe (NPT), Washington Department of Ecology (DOE), National Marine Fisheries Service (NOAA Fisheries), and U.S. Fish and Wildlife Service (USFWS) to address habitat projects in Asotin County. The Asotin Subbasin Plan identified priority areas and actions for ESA listed streams within Asotin County. Couse Creek and Tenmile Creek are identified as protection areas in the plan. The Conservation Reserve Enhancement Program (CREP) has been successful in working with landowners to protect riparian areas throughout Asotin County. Funding from BPA and other agencies has also been instrumental in protecting streams throughout Asotin County by utilizing the ridge top to ridge top approach.

Asotin County Conservation District

2008-12-10T23:59:59.000Z

214

Microsoft Word - CX_ThorneCreek_Final.doc  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

1 1 REPLY TO ATTN OF: KEC-4 SUBJECT: Environmental Clearance Memorandum Cecilia Brown Project Manager - KEWM-4 Proposed Action: Provision of funds to the Confederated Salish and Kootenai Tribes for purchase of the Thorne Creek Property. Fish and Wildlife Project No.: 2002-003-00, Contract CR-201269 Categorical Exclusion Applied (from Subpart D, 10 C.F.R. Part 1021): B1.25 Transfer, lease, disposition or acquisition of interests in uncontaminated land for habitat preservation or wildlife management, and only associated buildings that support these purposes. Uncontaminated means that there would be no potential for release of substances at a level, or in a form, that would pose a threat to public health or the environment.

215

Microsoft Word - MissionCreek_Kingston_Acquisition_CX_final.doc  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

purchase purchase of the Mission Creek Property. Fish and Wildlife Project No.: 2002-003-00, Contract # BPA-44646 Categorical Exclusion Applied (from Subpart D, 10 C.F.R. Part 1021): B1.25 Transfer, lease, disposition or acquisition of interests in uncontaminated land for habitat preservation or wildlife management, and only associated buildings that support these purposes. Uncontaminated means that there would be no potential for release of substances at a level, or in a form, that would pose a threat to public health or the environment. Location: Township 19 North, Range 21 West, Section 33 of the Dixon Quad, in Lake County, Montana Proposed by: Bonneville Power Administration (BPA) and CSKT Description of the Proposed Action: BPA proposes to fund the acquisition of 12 acres of property

216

Foote Creek Rim II Wind Farm | Open Energy Information  

Open Energy Info (EERE)

II Wind Farm II Wind Farm Facility Foote Creek Rim II Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner Caithness Developer SeaWest Energy Purchaser Bonneville Power Admin Location Carbon County WY Coordinates 41.663881°, -106.186001° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":41.663881,"lon":-106.186001,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

217

Microsoft Word - CX_PistolCreek_Final.doc  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

25, 2011 25, 2011 REPLY TO ATTN OF: KEC-4 SUBJECT: Environmental Clearance Memorandum Cecilia Brown Project Manager - KEWM-4 Proposed Action: Provision of funds to the Confederated Salish and Kootenai Tribes for purchase of the Pistol Creek Property. Fish and Wildlife Project No.: 2002-003-00 Categorical Exclusion Applied (from Subpart D, 10 C.F.R. Part 1021): B1.25 Transfer, lease, disposition or acquisition of interests in uncontaminated land for habitat preservation or wildlife management, and only associated buildings that support these purposes. Uncontaminated means that there would be no potential for release of substances at a level, or in a form, that would pose a threat to public health or the environment. Location: Township 17 North, Range 18 West, Sections 30 and 31, Lake County, MT.

218

Foote Creek Rim IV Wind Farm | Open Energy Information  

Open Energy Info (EERE)

IV Wind Farm IV Wind Farm Facility Foote Creek Rim IV Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner Caithness Developer SeaWest Energy Purchaser Bonneville Power Admin Location Carbon County WY Coordinates 41.626456°, -106.202095° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":41.626456,"lon":-106.202095,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

219

Foote Creek Rim III Wind Farm | Open Energy Information  

Open Energy Info (EERE)

III Wind Farm III Wind Farm Facility Foote Creek Rim III Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner Caithness Developer SeaWestM&N Wind Power Energy Purchaser Xcel Energy Location Carbon County WY Coordinates 41.643488°, -106.198876° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":41.643488,"lon":-106.198876,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

220

Microsoft Word - CX_Beaver Creek.doc  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Clearance Memorandum Clearance Memorandum Jay Marcotte Project Manager - KEWU-4 Proposed Action: Bonneville Power Administration (BPA) funding to acquire the Beaver Creek property and to maintain this property for fish and wildlife habitat protection. Budget Information: Work Order # 00225478 Fish and Wildlife Project No.: 2009-003-00, 43451 Categorical Exclusion Applied (from Subpart D, 10 C.F.R. Part 1021): B1.25 Transfer, lease, disposition or acquisition of interests in uncontaminated land for habitat preservation or wildlife management, and only associated buildings that support these purposes. Uncontaminated means that there would be no potential for release of substances at a level, or in a form, that would pose a threat to public health or the environment.

Note: This page contains sample records for the topic "red wing creek" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

Town of Black Creek, North Carolina (Utility Company) | Open Energy  

Open Energy Info (EERE)

North Carolina (Utility Company) North Carolina (Utility Company) Jump to: navigation, search Name Town of Black Creek Place North Carolina Utility Id 202 Utility Location Yes Ownership M NERC Location SERC NERC SERC Yes Activity Buying Transmission Yes Activity Distribution Yes Activity Bundled Services Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png EP-I Renewable Energy Industrial Industrial GS3 Electric GS4 Gov Office GS5 Commercial/Demand Commercial GS5 Commercial/Demand(with Renewable Portfolio Standards) Commercial RS 1 Residential Residential RS 1 Residential(with Renewable Portfolio Standards) Residential

222

Crane Creek known geothermal resource area: an environmental analysis  

DOE Green Energy (OSTI)

The Crane Creek known geothermal resource area (KGRA) is located in Washington County, in southwestern Idaho. Estimated hydrothermal resource temperatures for the region are 166/sup 0/C (Na-K-Ca) and 176/sup 0/C (quartz). The KGRA is situated along the west side of the north-south trending western Idaho Fault Zone. Historic seismicity data for the region identify earthquake activity within 50 km. The hot springs surface along the margin of a siliceous sinter terrace or in adjacent sediments. Approximately 75% of the KGRA is underlain by shallow, stony soils on steep slopes indicating topographic and drainage limitations to geothermal development. Species of concern include sage grouse, antelope, and mule deer. There is a high probability of finding significant prehistoric cultural resources within the proposed area of development.

Spencer, S.G.; Russell, B.F. (eds.)

1979-09-01T23:59:59.000Z

223

Protect and Restore Mill Creek Watershed : Annual Report CY 2005.  

DOE Green Energy (OSTI)

The Nez Perce Tribe Department of Fisheries Resource Management, Watershed Division approaches watershed restoration with a ridge-top to ridge-top approach. The Nez Perce Tribe and the Nez Perce National Forest (NPNF) have formed a partnership in completing watershed restoration activities, and through this partnership, more work is accomplished by sharing funding and resources in our effort. The Nez Perce Tribe began watershed restoration projects within the Mill Creek watershed of the South Fork Clearwater River in 2000. Progress has been made in restoring the watershed through excluding cattle from critical riparian areas through fencing. Starting in FY 2002, continuing into 2004, trees were planted in riparian areas in the meadow of the upper watershed. In addition, a complete inventory of culverts at road-stream crossings was completed. Culverts have been prioritized for replacement to accommodate fish passage throughout the watershed, and one high priority culvert was replaced in 2004. Maintenance to the previously built fence was also completed.

McRoberts, Heidi

2006-03-01T23:59:59.000Z

224

Castle Creek known geothermal resource area: an environmental analysis  

DOE Green Energy (OSTI)

The Castle Creek known geothermal resource area (KGRA) is part of the large Bruneau-Grand View thermal anomaly in southwestern Idaho. The KGRA is located in the driest area of Idaho and annual precipitation averages 230 mm. The potential of subsidence and slope failure is high in sediments of the Glenns Ferry Formation and Idaho Group found in the KGRA. A major concern is the potential impact of geothermal development on the Snake River Birds of Prey Natural Area which overlaps the KGRA. Any significant economic growth in Owyhee County may strain the ability of the limited health facilities in the county. The Idaho Archaeological survey has located 46 archaeological sites within the KGRA.

Spencer, S.G.; Russell, B.F. (eds.)

1979-09-01T23:59:59.000Z

225

Brood Year 2004: Johnson Creek Chinook Salmon Supplementation Report, June 2004 through March 2006.  

DOE Green Energy (OSTI)

The Nez Perce Tribe, through funding provided by the Bonneville Power Administration, has implemented a small scale chinook salmon supplementation program on Johnson Creek, a tributary in the South Fork of the Salmon River, Idaho. The Johnson Creek Artificial Propagation Enhancement project was established to enhance the number of threatened Snake River spring/summer chinook salmon (Oncorhynchus tshawytscha) returning to Johnson Creek to spawn through artificial propagation. This was the sixth season of adult chinook broodstock collection in Johnson Creek following collections in 1998, 2000, 2001, 2002, and 2003. Weir installation was completed on June 21, 2004 with the first chinook captured on June 22, 2004 and the last fish captured on September 6, 2004. The weir was removed on September 18, 2004. A total of 338 adult chinook, including jacks, were captured during the season. Of these, 211 were of natural origin, 111 were hatchery origin Johnson Creek supplementation fish, and 16 were adipose fin clipped fish from other hatchery operations and therefore strays into Johnson Creek. Over the course of the run, 57 natural origin Johnson Creek adult chinook were retained for broodstock, transported to the South Fork Salmon River adult holding and spawning facility and held until spawned. The remaining natural origin Johnson Creek fish along with all the Johnson Creek supplementation fish were released upstream of the weir to spawn naturally. Twenty-seven Johnson Creek females were artificially spawned with 25 Johnson Creek males. Four females were diagnosed with high bacterial kidney disease levels resulting in their eggs being culled. The 27 females produced 116,598 green eggs, 16,531 green eggs were culled, with an average eye-up rate of 90.6% resulting in 90,647 eyed eggs. Juvenile fish were reared indoors at the McCall Fish Hatchery until November 2005 and then transferred to the outdoor rearing facilities during the Visual Implant Elastomer tagging operation. These fish continued rearing in the outdoor collection basin until release in March 2006. All of these fish were marked with Coded Wire Tags and Visual Implant Elastomer tags. In addition 12,056 of the smolts released were also tagged with Passive Integrated Transponder tags. Hand counts provided by marking crews were used to amend the number of juvenile salmon released from the original egg count. A total of 90,450 smolts were released directly into Johnson Creek on March 13 through 15, 2006.

Gebhards, John S.; Hill, Robert; Daniel, Mitch [Nez Perce Tribe

2009-02-19T23:59:59.000Z

226

Angel wing seals for blades of a gas turbine and methods for determining angel wing seal profiles  

DOE Patents (OSTI)

A gas turbine has buckets rotatable about an axis, the buckets having angel wing seals. The seals have outer and inner surfaces, at least one of which, and preferably both, extend non-linearly between root radii and the tip of the seal body. The profiles are determined in a manner to minimize the weight of the seal bodies, while maintaining the stresses below predetermined maximum or allowable stresses.

Wang, John Zhiqiang (Greenville, SC)

2003-01-01T23:59:59.000Z

227

Biomonitoring of fish communities, using the Index of Biotic Integrity (IBI) in Rabbit Creek-Cat Creek Watershed, Summer 1992  

SciTech Connect

The Index of Biotic Integrity (IBI) is a method for evaluating the health of water bodies and watersheds by analyzing sample catches of fishes. Sites are scored on a numerical scale of 12--60 and on that basis assigned to a ``bioclass`` ranging from ``very poor`` to ``excellent.`` Overall, the major causes of depressed IBI scores in the Rabbit Creek watershed would appear to be: Organic pollution, mostly from livestock, but also from agricultural runoff and possible septic tank failures; sedimentation, principally from stream bank damage by cattle, also possibly from agriculture and construction; toxic pollution from agrochemicals applied to Holly Springs Golf course and agricultural fields` and Warming of water and evaporation loss due to elimination of shade on stream banks and construction of ponds.

1993-08-01T23:59:59.000Z

228

A Configurable B-spline Parameterization Method for Structural Optimization of Wing Boxes.  

E-Print Network (OSTI)

??This dissertation presents a synthesis of methods for structural optimization of aircraft wing boxes. The optimization problem considered herein is the minimization of structural weight (more)

Yu, Alan Tao

2009-01-01T23:59:59.000Z

229

Department of Energy Begins Demolition on K-25's East Wing -...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

and is a credit to our project team." Today's demolition separates the east wing's technetium-99 contaminated area, which accounts for approximately 20 percent of the facility,...

230

Cement Creek Ranch Pool & Spa Low Temperature Geothermal Facility | Open  

Open Energy Info (EERE)

Cement Creek Ranch Pool & Spa Low Temperature Geothermal Facility Cement Creek Ranch Pool & Spa Low Temperature Geothermal Facility Jump to: navigation, search Name Cement Creek Ranch Pool & Spa Low Temperature Geothermal Facility Facility Cement Creek Ranch Sector Geothermal energy Type Pool and Spa Location Crested Butte, Colorado Coordinates 38.8697146°, -106.9878231° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[]}

231

Geothermometry At Upper Hot Creek Ranch Area (Benoit & Blackwell, 2006) |  

Open Energy Info (EERE)

Geothermometry At Upper Hot Creek Ranch Area (Benoit & Blackwell, 2006) Geothermometry At Upper Hot Creek Ranch Area (Benoit & Blackwell, 2006) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Geothermometry At Upper Hot Creek Ranch Area (Benoit & Blackwell, 2006) Exploration Activity Details Location Upper Hot Creek Ranch Area Exploration Technique Geothermometry Activity Date Usefulness useful DOE-funding Unknown Notes Ten water samples were collected for chemical analysis and interpretation. Analyses of three samples of the UHCR thermal give predicted subsurface temperatures ranging from 317 to 334 oF from the Na-K-Ca, silica (quartz), and Na-Li geothermometers. The fact that all three thermometers closely agree gives the predictions added credibility. References Dick Benoit, David Blackwell (2006) Exploration Of The Upper Hot

232

DOE - Office of Legacy Management -- Dow Chemical Co - Walnut Creek - CA 02  

Office of Legacy Management (LM)

Dow Chemical Co - Walnut Creek - CA Dow Chemical Co - Walnut Creek - CA 02 FUSRAP Considered Sites Site: Dow Chemical Co. - Walnut Creek (CA.02 ) Eliminated from consideration under FUSRAP Designated Name: Not Designated Alternate Name: None Location: 2800 Mitchell Drive , Walnut Creek , California CA.02-1 Evaluation Year: 1987 CA.02-2 CA.02-3 Site Operations: From 1947 to 1957, conducted process studies and experimental investigations on different uranium and thorium-bearing ores; pilot-scale solvent extraction of uranium from phosphoric acid; liquid waste disposal studies CA.02-1 CA.02-4 CA.02-5 Site Disposition: Eliminated - Radiation levels below criteria CA.02-6 CA.02-7 Radioactive Materials Handled: Yes Primary Radioactive Materials Handled: Uranium, Thorium CA.02-1 CA.02-4

233

Horse Creek Hot Spring Pool & Spa Low Temperature Geothermal Facility |  

Open Energy Info (EERE)

Horse Creek Hot Spring Pool & Spa Low Temperature Geothermal Facility Horse Creek Hot Spring Pool & Spa Low Temperature Geothermal Facility Jump to: navigation, search Name Horse Creek Hot Spring Pool & Spa Low Temperature Geothermal Facility Facility Horse Creek Hot Spring Sector Geothermal energy Type Pool and Spa Location North Fork, Idaho Coordinates Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[]}

234

Observations of Nighttime Winds Using Pilot Balloons in Anderson Creek Valley, Geysers, California  

Science Conference Proceedings (OSTI)

Nighttime drainage or downslope winds along the east-facing slope of Anderson Creek Valley located in the Geysers area of northern California are examined using pilot balloons as air parcel tracers. Observations made over four nights show a ...

Carmen J. Nappo; Howell F. Snodgrass

1981-06-01T23:59:59.000Z

235

Simulation of Tracer Concentration Data in the Brush Creek Drainage Flow Using an Integrated Puff Model  

Science Conference Proceedings (OSTI)

During the 1984 ASCOT field study in Brush Creek Valley, two perfluorocarbon tracers were released into the nocturnal drainage flow at two different heights. The resulting surface concentrations were sampled at 90 sites, and vertical ...

K. Shankar Rao; Richard M. Eckman; Rayford P. Hosker Jr.

1989-07-01T23:59:59.000Z

236

Thermal Gradient Holes At Upper Hot Creek Ranch Area (Benoit & Blackwell,  

Open Energy Info (EERE)

Hot Creek Ranch Area (Benoit & Blackwell, Hot Creek Ranch Area (Benoit & Blackwell, 2006) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Thermal Gradient Holes At Upper Hot Creek Ranch Area (Benoit & Blackwell, 2006) Exploration Activity Details Location Upper Hot Creek Ranch Area Exploration Technique Thermal Gradient Holes Activity Date Usefulness not useful DOE-funding Unknown Notes Ten temperature gradient holes up to 500' deep were initially planned but higher than anticipated drilling and permitting costs within a fixed budget reduced the number of holes to five. Four of the five holes drilled to depths of 300 to 400' encountered temperatures close to the expected regional thermal background conditions. These four holes failed to find any evidence of a large thermal anomaly surrounding the UHCR hot springs. The

237

EA-1895: Lolo Creek Permanent Weir Construction near town of Weippe,  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

5: Lolo Creek Permanent Weir Construction near town of 5: Lolo Creek Permanent Weir Construction near town of Weippe, Clearwater County, Idaho EA-1895: Lolo Creek Permanent Weir Construction near town of Weippe, Clearwater County, Idaho Summary DOE's Bonneville Power Administration is preparing this EA to evaluate the potential environmental impacts of replacing an existing seasonal fish weir with a permanent weir, which would be used to monitor federally-listed Snake River steelhead and collect spring Chinook salmon adults to support ongoing supplementation programs in the watershed. The Bureau of Land Management, a cooperating agency, preliminarily determined Lolo Creek to be suitable for Congressional designation into the Wild and Scenic River System. The EA includes a Wild and Scenic River Section 7 analysis.

238

Early experience with red storm.  

Science Conference Proceedings (OSTI)

Red Storm is a massively parallel processor. The Red Storm design goals are: (1) Balanced system performance - CPU, memory, interconnect, and I/O; (2) Usability - functionality of hardware and software meets needs of users for Massively Parallel Computing; (3)S calability - system hardware and software scale, single cabinet system to {approx} 30,000 processor system; (4) reliability - machines tays up long enough between interrupts to make real progress on completing application run (at least 50 hours MTBI), requires full system RAS capability; (5) Upgradability - system can be upgraded with a processor swap and additional cabinets to 100T or greater; (6) red/black switching - capability to switch major portions of the machine between classified and unclassified computing environments; (7) space, power, cooling - high density, low power system; and (8) price/performance - excellent performance per dollar, use high volume commodity parts where feasible.

Kelly, Suzanne Marie; Ballance, Robert A.

2005-04-01T23:59:59.000Z

239

A CFD/CSD interaction methodology for aircraft wings  

DOE Green Energy (OSTI)

With advanced subsonic transports and military aircraft operating in the transonic regime, it is becoming important to determine the effects of the coupling between aerodynamic loads and elastic forces. Since aeroelastic effects can significantly impact the design of these aircraft, there is a strong need in the aerospace industry to predict these interactions computationally. Such an analysis in the transonic regime requires high fidelity computational fluid dynamics (CFD) analysis tools, due to the nonlinear behavior of the aerodynamics in the transonic regime and also high fidelity computational structural dynamics (CSD) analysis tools. Also, there is a need to be able to use a wide variety of CFD and CSD methods to predict aeroelastic effects. Since source codes are not always available, it is necessary to couple the CFD and CSD codes without alteration of the source codes. In this study, an aeroelastic coupling procedure is developed to determine the static aeroelastic response of aircraft wings using any CFD and CSD code with little code integration. The aeroelastic coupling procedure is demonstrated on an F/A-18 Stabilator using NASTD (an in-house McDonnell Douglas CFD code) and NASTRAN. In addition, the Aeroelastic Research Wing (ARW-2) is used for demonstration of the aeroelastic coupling procedure by using ENSAERO (NASA Ames Research Center CFD code) and a finite element wing-box code. The results obtained from the present study are compared with those available from an experimental study conducted at NASA Langley Research Center and a study conducted at NASA Ames Research Center using ENSAERO and modal superposition. The results compare well with experimental data.

Bhardwaj, M.K.; Kapania, R.K. [Virginia Polytechnic Inst. and State Univ., Blacksburg, VA (United States); Reichenbach, E. [Boeing Co., St. Louis, MO (United States); Guruswamy, G.P. [NASA, Moffett Field, CA (United States). Ames Research Center

1998-01-01T23:59:59.000Z

240

Red-Black Trees 1 2004 Goodrich, Tamassia Red-Black Trees  

E-Print Network (OSTI)

Red-Black Trees 1© 2004 Goodrich, Tamassia Red-Black Trees 6 3 8 4 v z #12;Red-Black Trees 2© 2004 Goodrich, Tamassia From (2,4) to Red-Black Trees A red-black tree is a representation of a (2,4) tree by means of a binary tree whose nodes are colored red or black In comparison with its associated (2,4) tree

Alechina, Natasha

Note: This page contains sample records for the topic "red wing creek" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

West Foster Creek Expansion Project 2007 HEP Report.  

DOE Green Energy (OSTI)

During April and May 2007, the Columbia Basin Fish and Wildlife Authority's (CBFWA) Regional HEP Team (RHT) conducted baseline Habitat Evaluation Procedures (HEP) (USFWS 1980, 1980a) analyses on five parcels collectively designated the West Foster Creek Expansion Project (3,756.48 acres). The purpose of the HEP analyses was to document extant habitat conditions and to determine how many baseline/protection habitat units (HUs) to credit Bonneville Power Administration (BPA) for funding maintenance and enhancement activities on project lands as partial mitigation for habitat losses associated with construction of Grand Coulee and Chief Joseph Dams. HEP evaluation models included mule deer (Odocoileus hemionus), western meadowlark (Sturnella neglecta), sharp-tailed grouse, (Tympanuchus phasianellus), Bobcat (Lynx rufus), mink (Neovison vison), mallard (Anas platyrhynchos), and black-capped chickadee (Parus atricapillus). Combined 2007 baseline HEP results show that 4,946.44 habitat units were generated on 3,756.48 acres (1.32 HUs per acre). HEP results/habitat conditions were generally similar for like cover types at all sites. Unlike crediting of habitat units (HUs) on other WDFW owned lands, Bonneville Power Administration received full credit for HUs generated on these sites.

Ashley, Paul R.

2008-02-01T23:59:59.000Z

242

Blue Creek Winter Range : Wildlife Mitigation Project : Final Environmental Assessment.  

DOE Green Energy (OSTI)

Bonneville Power Administration (BPA) proposes to fund that portion of the Washington Wildlife Agreement pertaining to the Blue Creek Winter Range Wildlife Mitigation Project (Project) in a cooperative effort with the Spokane Tribe, Upper Columbia United Tribes, and the Bureau of Indian Affairs (BIA). If fully implemented, the proposed action would allow the sponsors to protect and enhance 2,631 habitat units of big game winter range and riparian shrub habitat on 2,185 hectares (5,400 acres) of Spokane Tribal trust lands, and to conduct long term wildlife management activities within the Spokane Indian Reservation project area. This Final Environmental Assessment (EA) examines the potential environmental effects of securing land and conducting wildlife habitat enhancement and long term management activities within the boundaries of the Spokane Indian Reservation. Four proposed activities (habitat protection, habitat enhancement, operation and maintenance, and monitoring and evaluation) are analyzed. The proposed action is intended to meet the need for mitigation of wildlife and wildlife habitat adversely affected by the construction of Grand Coulee Dam and its reservoir.

United States. Bonneville Power Administration; United States. Bureau of Indian Affairs; Spokane Tribe of the Spokane Reservation, Washington

1994-11-01T23:59:59.000Z

243

Willow Creek Wildlife Mitigation Project. Final Environmental Assessment.  

DOE Green Energy (OSTI)

Today`s notice announces BPA`s proposal to fund land acquisition or acquisition of a conservation easement and a wildlife management plan to protect and enhance wildlife habitat at the Willow Creek Natural Area in Eugene, Oregon. This action would provide partial mitigation for wildlife and wildlife habitat lost by the development of Federal hydroelectric projects in the Willamette River Basin. The project is consistent with BPA`s obligations under provisions of the Pacific Northwest Electric Power Planning and Conservation Act of 1980 as outlined by the Northwest Power Planning Council`s 1994 Columbia River Basin Fish and Wildlife Program. BPA has prepared an environmental assessment (DOE/EA-1023) evaluating the proposed project. Based on the analysis in the EA, BPA has determined that the proposed action is not a major Federal action significantly affecting the quality of the human environment, within the meaning of the National Environmental Policy Act (NEPA) of 1969. Therefore, the preparation of an environmental impact statement (EIS) is not required and BPA is issuing this FONSI.

NONE

1995-04-01T23:59:59.000Z

244

Vermont Marble Company, Proctor, Vermont: Otter Creek hydroelectric feasibility report  

DOE Green Energy (OSTI)

Vermont Marble Company (VMCO) owns and operates four hydroelectric projects in a 50-mile reach of Otter Creek in west central Vermont. This study concerns three of the installations - Center Rutland, Beldens, and Huntington Falls. The fourth site is known as Proctor and will be studied separately. All four plants operate as run-of-river stations, and the limited reservoir storage capacity places severe limitations on any other type of operation. The plants are presently operating at much lower outputs than can be obtained, because they do not use the available discharge and head. The results show that, under the assumptions made in this study, Beldens and Huntington Falls can be economically improved. The rehabilitation of the Center Rutland plant did not look economically attractive. However, the improvement of Center Rutland should not be eliminated from further consideration, because it could become economically attractive if the cost of energy starts escalating at a rate of around 10% per year. The study included a brief appraisal of the existing generating facilities and condition of existing concrete structures, a geological reconnaissance of the sites, analysis of the power potential, flood studies, technical and economic investigations and comparative evaluations of the alternatives for developing the streamflow for power generation, selection of the most suitable alternative, financial analysis, preparation of drawings, and preparation of detailed quantity and cost estimates.

None

1979-02-01T23:59:59.000Z

245

Stacking sequence design of a composite wing under a random gust using a genetic algorithm  

Science Conference Proceedings (OSTI)

The layup optimization by genetic algorithm (GA) for the composite wing subject to random gust is presented. The aim of optimization is to maximize the strength of wing and the failure index of Tsai-Hill criterion is used as the objective function. The ... Keywords: Genetic algorithm, Monte Carlo simulation, Probability of exceedance, Random gust, Stacking sequence

Tae-Uk Kim; Jeong Woo Shin; In Hee Hwang

2007-05-01T23:59:59.000Z

246

Development of a framework for truss-braced wing conceptual MDO  

Science Conference Proceedings (OSTI)

The paper describes the development of a multidisciplinary design optimization framework for conceptual design of truss-braced wing configurations. This unconventional configuration requires specialized analysis tools supported by a modular and flexible ... Keywords: Design environment, Framework, MDO, Truss-Braced Wing

Ohad Gur; Manav Bhatia; William H. Mason; Joseph A. Schetz; Rakesh K. Kapania; Taewoo Nam

2011-08-01T23:59:59.000Z

247

Mitigation of light rail transit construction on jurisdictional areas in the White Rock Creek floodplain, Dallas, Texas  

E-Print Network (OSTI)

and consulting in Dallas, Texas. In this capacity, Ms.WHITE ROCK CREEK FLOODPLAIN, DALLAS, TEXAS Emily Schieffer (Boulevard, Suite 510, Dallas, Texas 75207, Phone: 214-741-

Schieffer, Emily; Smiley, Jerry

2001-01-01T23:59:59.000Z

248

Conservation Plan for Red Squirrels in Wales  

E-Print Network (OSTI)

#12;Conservation Plan for Red Squirrels in Wales Meeting the challenge to keep reds in Wales to enable effective red squir- rel conservation and grey squirrel management in Wales. The Wales Squirrel squirrel conservation and grey squirrel management in Wales. The Forum and Partnership are currently

249

Discovery of a red and blue shifted iron disk line in the galactic jet source GRO J1655-40  

E-Print Network (OSTI)

We report the discovery of emission features in the X-ray spectrum of GRO J1655-40 obtained with RXTE during the observation of 1997, Feb 26. We have fitted the features firstly by two Gaussian lines which in four spectra analysed have average energies of 5.85 +/- 0.08 keV and 7.32 +/- 0.13 keV, strongly suggestive that these are the red and blue shifted wings of an iron disk line. These energies imply a velocity of ~0.33 c. The blue wing is less bright than in the calculated profiles of disk lines near a black hole subject to Doppler boosting, however known Fe absorption lines in GRO J1655-40 at energies between ~7 and 8 keV can reduce the apparent brightness of the blue wing. Secondly, we have fitted the spectra using the disk line model of Laor based on a full relativistic treatment plus an absorption line, and show that good fits are obtained. This gives a restframe energy of the disk line between 6.4 and 6.8 keV indicating that the line is iron K_alpha emission probably of significantly ionized material....

Balucinska-Church, M

1999-01-01T23:59:59.000Z

250

The Sugar Creek zinc deposit, Jackson Co. TN -- Exploration history, geology and mineralization  

SciTech Connect

During the 60's and 70's zinc exploration of central TN and KY was active. The Sugar Creek Project was one of several investigated by Exxon. The discovery hole, Cu 15, was drilled in early 1973. The Sugar Creek Zinc Deposit was acquired by Independence Mining Co. in 1986 and I.M.C. has subsequently completed additional drilling, both stepout and confirmation holes. A total of 137 holes for 300,833 ft have been drilled. The Sugar Creek deposit is a typical Tennessee zinc deposit (Mississippi Valley Type) which occurs in solution collapse breccias in the Lower Ordovician, Knox Dolomite. The Knox consists of fine grained dolomite with interlayered limestones and crystalline dolomite. Only scattered residual limestone is found in the Sugar Creek area. Collapse breccias have formed which control zinc deposition and are similar to other TN Zn. deposits. At Sugar Creek the types of breccias include: a vertically exaggerated glory hole breakthrough breccia which extends to within 137 ft. of the Knox unconformity, has 500 ft. of zinc mineralization with 8 significant zinc intervals; holes with stacked zinc intervals interpreted to be sides of breakthrough breccia; and single zinc intervals in laterally positioned bedded mineral zones. A total of 99 holes were drilled in the more intense mineralized areas. The ratio of ore to non ore holes is nearly 1 to 1. The mineralization is typical M.V.T. with predominantly sphalerite and only minor occurrences of galena, fluorite, pyrite, etc.

Reinbold, G.; Moran, A.V.; Stevens, D.L. (Independence Mining Co. Inc., Reno, NV (United States))

1993-03-01T23:59:59.000Z

251

Evaluation of the Bell Creek Field micellar-polymer pilot  

SciTech Connect

A review of the performance of the Gary Energy Corporation micellar-polymer pilot in the Bell Creek Field has been completed. The ultimate recovery beyond waterflooding is projected to be 27,000 barrels of oil, compared to an anticipated level of 90,000 barrels from simulation studies. The projected incremental recovery is subject to uncertainties since significant secondary oil was being produced at the initiation of chemical injection. The predicted recovery from simulation studies is considered to be optimistic, principally because the displaceable oil saturations were assumed too high. Although the anticipated recovery may have been optimistic, it is clear that the level of increased oil recovery has been disappointing and that the economics of a project if expanded would be unfavorable. Several possible explanations are cited for the less-than-expected oil recovery: (1) there is evidence that a permeability barrier exists in the southeast quadrant of the pilot, which would have caused injected fluids in that quadrant to have flowed out of the pattern area. A pressure pulse test appeared to confirm the existence of the flow barrier, but the available data from two tracer surveys were inconclusive; (2) the equivalent weight of the injected sulfonate may have been too low, based upon the appearance of sulfonate in produced waters before incremental oil was recovered. This could have occurred since the lower equivalent weight fractions are highly water soluble and have low adsorption rates; and (3) the salinity of water injected with the chemical slug may have been too low to achieve the low interfacial tensions needed for efficient oil displacement. 16 figures, 8 tables.

Fanchi, J.R.; Dauben, D.L.

1982-12-01T23:59:59.000Z

252

Red-black Trees To know what a red-black tree is (10.1).  

E-Print Network (OSTI)

809 CHAPTER 10 Red-black Trees Objectives · To know what a red-black tree is (§10.1). · To convert a red-black tree to a 2-4 tree and vice versa (§10.2). · To design the RBTree class that extends the BinaryTree class (§10.3). · To insert an element in a red-black tree and resolve the double red problem

Liang, Y. Daniel

253

Red-Black Trees Red-black trees are binary search trees that sat-  

E-Print Network (OSTI)

1 Red-Black Trees Red-black trees are binary search trees that sat- isfy: 1. Every node is either red or black. 2. If a node is red, then its parent is black. 3. For a given node, every path to a nil has the same number of black nodes, called black- height. A red-black tree with n nodes has h 2 lg

Bylander, Tom

254

Johnson Creek Artificial Propagation and Enhancement Project Operations and Maintenance Program; Brood Year 2000: Johnson Creek Chinook Salmon Supplementation, Biennial Report 2000-2002.  

DOE Green Energy (OSTI)

The Nez Perce Tribe, through funding provided by the Bonneville Power Administration, has implemented a small scale chinook salmon supplementation program on Johnson Creek, a tributary in the South Fork of the Salmon River, Idaho. The Johnson Creek Artificial Propagation Enhancement project was established to enhance the number of threatened Snake River summer chinook salmon (Oncorhynchus tshawytscha) returning to Johnson Creek through artificial propagation. Adult chinook salmon trapping, broodstock selection, and spawning was first implemented in 1998, did not occur in 1999, and was resumed in 2000. A total of 152 salmon were trapped in Johnson Creek in 2000, of which 73 (25 males, 16 females, and 32 jacks) fish were transported to Idaho Fish and Game=s South Fork Salmon River adult holding and spawning facility for artificial propagation purposes. The remaining 79 (29 males, 16 females, and 24 jacks) fish were released above the weir to spawn naturally. A total of 65,060 green eggs were taken from 16 female salmon and transported to the McCall Fish Hatchery for incubation and rearing. Egg counts indicated an average eye-up rate of 86.0% for 55,971 eyed eggs. Average fecundity for Johnson Creek females was 4,066 eggs per female. Juvenile fish were reared indoors at the McCall Fish Hatchery through November 2001. These fish were transferred to outdoor rearing facilities in December 2001 where they remained until release in March 2002. All of these fish were marked with Coded Wire Tags and Visual Implant Elastomer tags. In addition 9,987 were also PIT tagged. Hand counts provided by marking crews were used to amend the number of juvenile salmon released from the original egg count. A total of 57,392 smolts were released into a temporary acclimation channel in Johnson Creek on March 18, 19, 20, 2002. These fish were held in this facility until a fish screen was removed on March 22, 2002 and the fish were allowed to emigrate.

Daniel, Mitch; Gebhards, John; Hill, Robert

2003-05-01T23:59:59.000Z

255

Granite Creek Hot Spring Pool & Spa Low Temperature Geothermal Facility |  

Open Energy Info (EERE)

Granite Creek Hot Spring Pool & Spa Low Temperature Geothermal Facility Granite Creek Hot Spring Pool & Spa Low Temperature Geothermal Facility Facility Granite Creek Hot Spring Sector Geothermal energy Type Pool and Spa Location Teton County, Wyoming Coordinates 43.853632°, -110.6314491° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[]}

256

EA-1957: Cabin Creek Biomass Facility, Place County, CA | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

7: Cabin Creek Biomass Facility, Place County, CA 7: Cabin Creek Biomass Facility, Place County, CA EA-1957: Cabin Creek Biomass Facility, Place County, CA SUMMARY DOE is proposing to provide funding to Placer County, California to construct and operate a two-megawatt wood-to-energy biomass facility at the Eastern Regional Materials Recovery Facility (MRF) and Landfill in unincorporated Placer County. The wood-to-energy biomass facility would use a gasification technology. The fuel supply for the proposed project would be solely woody biomass, derived from a variety of sources including hazardous fuels residuals, forest thinning and harvest residuals, and Wildland Urban Interface sourced waste materials from residential and commercial property defensible space clearing and property management activities

257

Furnace Creek Ranch Pool & Spa Low Temperature Geothermal Facility | Open  

Open Energy Info (EERE)

Furnace Creek Ranch Pool & Spa Low Temperature Geothermal Facility Furnace Creek Ranch Pool & Spa Low Temperature Geothermal Facility Facility Furnace Creek Ranch Sector Geothermal energy Type Pool and Spa Location Death Valley, California Coordinates Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[]}

258

Asotin Creek ISCO Water Sample Data Summary: Water Year 2002, Annual Report 2001-2002.  

DOE Green Energy (OSTI)

The Pomeroy Ranger District operates 3 automated water samplers (ISCOs) in the Asotin Creek drainage in cooperation with the Asotin Model Watershed. The samplers are located on Asotin Creek: Asotin Creek at the mouth, Asotin Creek at Koch site, and South Fork Asotin Creek above the forks. At the end of Water Year (WY) 2001 we decided to sample from Oct. 1 through June 30 of each water year. This decision was based on the difficulty of obtaining good low flow samples, since the shallow depth of water often meant that instrument intakes were on the bed of the river and samples were contaminated with bed sediments. The greatest portion of suspended sediment is transported during the higher flows of fall and especially during the spring snow runoff period, and sampling the shorter season should allow characterization of the sediment load of the river. The ISCO water samplers collected a daily composite sample of 4 samples per day into one bottle at 6-hour intervals until late March when they were reprogrammed to collect 3 samples per day at 8-hour intervals. This was done to reduce battery use since battery failure had become an ongoing problem. The water is picked up on 24-day cycles and brought to the Forest Service Water Lab in Pendleton, OR. The samples are analyzed for total suspended solids (TSS), conductivity, and turbidity. A total dissolved solids value is estimated based on conductivity. The USGS gage, Asotin Creek at the mouth, No.13335050 has been discontinued and there are no discharge records available for this period.

Peterson, Stacia

2003-08-01T23:59:59.000Z

259

Discovery of a red and blue shifted iron disk line in the galactic jet source GRO J1655-40  

E-Print Network (OSTI)

We report the discovery of emission features in the X-ray spectrum of GRO J1655-40 obtained with RXTE during the observation of 1997, Feb 26. We have fitted the features firstly by two Gaussian lines which in four spectra analysed have average energies of 5.85 +/- 0.08 keV and 7.32 +/- 0.13 keV, strongly suggestive that these are the red and blue shifted wings of an iron disk line. These energies imply a velocity of ~0.33 c. The blue wing is less bright than in the calculated profiles of disk lines near a black hole subject to Doppler boosting, however known Fe absorption lines in GRO J1655-40 at energies between ~7 and 8 keV can reduce the apparent brightness of the blue wing. Secondly, we have fitted the spectra using the disk line model of Laor based on a full relativistic treatment plus an absorption line, and show that good fits are obtained. This gives a restframe energy of the disk line between 6.4 and 6.8 keV indicating that the line is iron K_alpha emission probably of significantly ionized material. The Laor model shows that the line originates in a region of the accretion disk extending from ~10 Schwarzschild radii from the black hole outwards. The line is direct evidence for the black hole nature of the compact object and is the first discovery of a highly red and blue shifted iron disk line in a Galactic source.

M. Balucinska-Church; M. J. Church

1999-12-17T23:59:59.000Z

260

Continuum absorption spectra in the far wings of the Hg {sup 1}{ital S}{sub 0}{r_arrow}{sup 3}{ital P}{sub 1} resonance line broadened by Ar  

SciTech Connect

Absolute reduced absorption coefficients for the Hg resonance line at 253.7 nm broadened by Ar were determined between 390 and 430 K in the spectral range from 20 to 1000 cm{sup {minus}1} on the red wing and from 20 to 400 cm{sup {minus}1} on the blue wing. The resultant reduced absorption coefficients are in fair agreement with those obtained by Petzold and Behmenburg [Z. Naturtorsch. Teil A {bold 33}, 1461 (1978)]. The observed {ital A}{sup 3}0{sup +}{l_arrow}{ital X}{sup 1}0{sup +} spectrum in the spectral range from 80 to 800 cm{sup {minus}1} on the red wing agrees remarkably well both in shape and magnitude with the quasistatic line shape calculated using the potential-energy curves of the HgAr van der Waals molecule given by Fuke, Saito, and Kaya [J. Chem. Phys. {bold 81}, 2591 (1984)], and Yamanouchi {ital et} {ital al}. [J. Chem. Phys. {bold 88}, 205 (1988)]. The blue-wing spectrum is interpreted as the {ital B}{sup 3}1{l_arrow}{ital X}{sup 1}0{sup +} free-free transition of HgAr by a simulation of the spectrum using uniform semiclassical treatment for the free-free Franck-Condon factor. The source of the satellites on the blue wing is attributed to the phase-interference effect arising from a stationary phase-shift difference between the {ital B}- and {ital X}-state translational wave functions. The stationary phase-shift difference arises owing to the existence of a maximum in the difference potential between the {ital B} and {ital X} states. The repulsive branches of the potential-energy curves of HgAr for the {ital X} and {ital B} states have been revised to give excellent agreement between the observed and calculated spectra, both in shape and magnitude. {copyright} {ital 1996 The American Physical Society.}

Sato, Y.; Nakamura, T.; Okunishi, M.; Ohmori, K.; Chiba, H.; Ueda, K. [Research Institute for Scientific Measurements, Tohoku University, Sendai 980-77 (Japan)] [Research Institute for Scientific Measurements, Tohoku University, Sendai 980-77 (Japan)

1996-02-01T23:59:59.000Z

Note: This page contains sample records for the topic "red wing creek" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

Red River Stream Improvement Final Design Nez Perce National Forest.  

DOE Green Energy (OSTI)

This report details the final stream improvement design along the reach of Red River between the bridge below Dawson Creek, upstream for approximately 2 miles, Idaho County, Idaho. Geomorphic mapping, hydrologic profiles and cross-sections were presented along with existing fish habitat maps in the conceptual design report. This information is used to develop a stream improvement design intended to improve aquatic habitat and restore riparian health in the reach. The area was placer mined using large bucket dredges between 1938 and 1957. This activity removed most of the riparian vegetation in the stream corridor and obliterated the channel bed and banks. The reach was also cut-off from most valley margin tributaries. In the 50 years since large-scale dredging ceased, the channel has been re-established and parts of the riparian zone have grown in. However, the recruitment of large woody debris to the stream has been extremely low and overhead cover is poor. Pool habitat makes up more than 37% of the reach, and habitat diversity is much better than the project reach on Crooked River. There is little large woody debris in the stream to provide cover for spawning and juvenile rearing, because the majority of the woody debris does not span a significant part of the channel, but is mainly on the side slopes of the stream. Most of the riparian zone has very little soil or subsoil left after the mining and so now consists primarily of unconsolidated cobble tailings or heavily compacted gravel tailings. Knapweed and lodgepole pine are the most successful colonizers of these post mining landforms. Tributary fans which add complexity to many other streams in the region, have been isolated from the main reach due to placer mining and road building.

Watershed Consulting, LLC

2007-03-15T23:59:59.000Z

262

Direct potential and temperature effects on the MgHe line-core and far-wing photoabsorption profiles  

SciTech Connect

The present study deals with the collisional broadening of monatomic magnesium, evolving in a helium buffer gas, in the wavelength and temperature ranges 260-310 nm and 100-3000 K, respectively. The computed emission and absorption spectral profiles are based on the most recent potential-energy curves and transition dipole moments. The required interatomic Mg(3s{sup 2})+He(1s{sup 2}) and Mg(3s3p)+He(1s{sup 2}) potentials are constructed from two different sets. The purpose of this treatment is twofold. First, using the quantum-mechanical Baranger impact approximation, the width and shift of the line-core spectra are determined and their variation law with temperature is examined. Then, the satellite structures in the blue and red wings are analyzed quantum mechanically. The calculations show especially that the free-free transitions contribute most to the MgHe photoabsorption spectra and that a satellite structure is observable beyond the temperature 1800 K around the wavelengths 272 or 276 nm, depending on the used potential set. Weak satellites have also been investigated and, for all cases, the obtained results showed good agreement with those already published.

Reggami, L. [Physics Department, Badji Mokhtar University, B.P. 12, Annaba 23000 (Algeria); Bouledroua, M. [Laboratoire de Physique des Rayonnements, Badji Mokhtar University, B.P. 12, Annaba 23000 (Algeria)

2011-03-15T23:59:59.000Z

263

Department of Energy Begins Demolition on K-25's East Wing - Moves closer  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Department of Energy Begins Demolition on K-25's East Wing - Moves Department of Energy Begins Demolition on K-25's East Wing - Moves closer to completing Oak Ridge's largest cleanup project Department of Energy Begins Demolition on K-25's East Wing - Moves closer to completing Oak Ridge's largest cleanup project July 21, 2011 - 12:00pm Addthis Media Contact Ben Williams http://www.oakridge.doe.gov 865-576-0885 OAK RIDGE, Tenn. - Earlier today, the U.S. Department of Energy (DOE) began the demolition of Building K-25's east wing. The former uranium enrichment facility, located at the East Tennessee Technology Park (ETTP), was once the world's largest building under one roof, covering more than 44 acres. The project is one of DOE's highest Environmental Management (EM) priorities in Oak Ridge and an integral component to completing

264

Kinetic equations for a density matrix describing nonlinear effects in spectral line wings  

Science Conference Proceedings (OSTI)

Kinetic quantum equations are derived for a density matrix with collision integrals describing nonlinear effects in spectra line wings. These equations take into account the earlier established inequality of the spectral densities of Einstein coefficients for absorption and stimulated radiation emission by a two-level quantum system in the far wing of a spectral line in the case of frequent collisions. The relationship of the absorption and stimulated emission probabilities with the characteristics of radiation and an elementary scattering event is found.

Parkhomenko, A. I., E-mail: par@iae.nsk.su; Shalagin, A. M., E-mail: shalagin@iae.nsk.su [Russian Academy of Sciences, Institute of Automation and Electrometry, Siberian Branch (Russian Federation)

2011-11-15T23:59:59.000Z

265

Right Turn on Red! | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Right Turn on Red! Right Turn on Red! Right Turn on Red! August 25, 2011 - 12:05pm Addthis Right Turn on Red is a policy that was enacted in the 1970s to help save drivers fuel and money at the pump. | Energy Department Image | Photo by Hantz Leger Right Turn on Red is a policy that was enacted in the 1970s to help save drivers fuel and money at the pump. | Energy Department Image | Photo by Hantz Leger Dan Leistikow Dan Leistikow Former Director, Office of Public Affairs Last week, as part of our inaugural edition of Plugged In! -- an email newsletter for staff and contractors here at the Energy Department -- I asked readers for more information about the Right Turn on Red policy that was enacted in the 1970s to help save fuel. I'm happy to report that we received several responses from individuals across the Department with more

266

BPA Riparian Fencing and Alternative Water Development Projects Completed within Asotin Creek Watershed, 2000 and 2001 Asotin Creek Fencing Final Report of Accomplishments.  

DOE Green Energy (OSTI)

The Asotin County Conservation District (ACCD) is the primary entity coordinating habitat projects on both private and public lands within the Asotin Creek watershed. The watershed covers approximately 325 square miles in the Blue Mountains of southeastern Washington in Water Resource Inventory Area (WRIA) 35. According to Washington Department of Fish and Wildlife's (WDFW) Priority WRIA's by ''At-Risk Stock Significance Map'', it is the highest priority WRIA in southeastern Washington. Summer steelhead, bull trout, and Snake River spring chinook salmon which are listed under the Endangered Species Act (ESA), are present in the watershed. WDFW manages it as a Wild Steelhead Reserve; no hatchery fish have been released here since 1997. The ACCD has been working with landowners, Bonneville Power Administration (BPA), Washington State Conservation Commission (WCC), Natural Resource Conservation Service (NRCS), Washington Department of Fish and Wildlife (WDFW), U.S. Forest Service, Pomeroy Ranger District (USFS), Nez Perce Tribe, Washington Department of Ecology (DOE), National Marine Fisheries Service (NMFS), and U.S. Fish and Wildlife Service (USFWS) to address habitat projects in Asotin County. Local students, volunteers and Salmon Corps members from the Nez Perce Tribe have been instrumental in the success of the Model Watershed Program on Asotin Creek. ACCD began coordinating habitat projects in 1995 with the help of BPA funding. Approximately two hundred and seventy-six projects have been implemented as of 1999. The Washington State Legislature was successful in securing funding for endangered salmon and steelhead recovery throughout the State in 1998. While these issues were new to most of the State, the ACCD has been securing and administering funding for endangered salmonids since 1994. The ''Asotin Creek Riparian Planting 2000-053-00 and Asotin Creek Riparian Fencing 2000-054-00'' teamed BPA and the Governor's Salmon Recovery Funding to plant approximately 84,191 trees and shrubs in the Asotin Creek Watershed. In addition BPA and private cost-share dollars were utilized to drill 3 wells, provide 15 off-site alternative water developments (troughs), 5 spring developments, and 9,100 feet of riparian fencing. The trees will provide shade and long-term LWD recruitment to the stream. The wells, alternative water developments, springs and fencing will reduce direct animal impacts on the stream. In one area alone, a well, 3,000 ft of riparian fence with 5 alternative water developments will exclude 300 head of cattle from using the stream as a source of drinking water during the winter months.

Johnson, B.J. (Bradley J.)

2002-01-01T23:59:59.000Z

267

OAK GROVE C OAL D EGAS CEDAR COVE COAL D EGAS BLU E CREEK COAL...  

U.S. Energy Information Administration (EIA) Indexed Site

OAK GROVE C OAL D EGAS CEDAR COVE COAL D EGAS BLU E CREEK COAL DEGAS BR OOKWOOD C OAL D EGAS ST AR ROBIN SONS BEND COAL D EGAS BLU FF COR INNE MOU NDVILLE COAL D EGAS BLU EGU T CR...

268

Site-wide remedial alternative development in Bear Creek Valley, Oak Ridge Reservation  

SciTech Connect

This paper presents a case study of an environmental restoration project at a major mixed waste site that poses unique challenges to remediation efforts. Bear Creek Valley is located immediately west of the Y-12 Plant on the Oak Ridge Reservation (ORR) in Oak Ridge, Tennessee. The Y-12 Plant was built in 1943 as part of the Manhattan Project, with its original mission being electromagnetic separation of uranium. Since being completed, the Y-12 Plant has also been used for chemical processing of uranium and lithium compounds as well as precision fabrication of components containing these and other materials. Wastes containing radionuclides, metals, chlorinated solvents, oils, coolants, polychlorinated biphenyis (PCBs), and others were disposed of in large quantities at Bear Creek Valley as a result of manufacturing operations at the Y-12 Plant. The Bear Creek Valley feasibility study is using innovative strategies to efficiently and thoroughly consider the information available regarding Bear Creek Valley and process options that could be combined into its remedial alternatives.

Anderson, M. [Jacobs Engineering Group, Inc., Oak Ridge, TN (United States)

1995-07-01T23:59:59.000Z

269

Evaluation of additional data from Bell Creek micellar pilot indicates greater success  

SciTech Connect

In the Oil and Gas Journal, March 14, 1983, a summary was presented of a performance evaluation of the Bell Creek micellar-polymer pilot project. The project review had been funded and published by DOE, Keplinger, and Associates made the project review.

Holm, L.W.

1983-07-01T23:59:59.000Z

270

AN INVESTIGATION OF DEWATERING FOR THE MODIFIED IN-SITU RETORTING PROCESS, PICEANCE CREEK BASIN, COLORADO  

E-Print Network (OSTI)

c:es .B~l:JJ:. }eti. ',~, Colorado School of Mines, VoL 2'1,v Piceance Creek Basin v Colorado r and 9 p' 1974. Pc:u:~tBetween 'che White and Colorado Rivers, '! \\lo:ci:hwegt:ern

Mehran, M.

2013-01-01T23:59:59.000Z

271

DOE/EA-1967: Hills Creek-Lookout Point Transmission Line Rebuild, Lane County, Oregon  

Energy.gov (U.S. Department of Energy (DOE))

Bonneville Power Administration is preparing an EA to assess potential environmental impacts of the proposed rebuild of its 26-mile 115 kilovolt (kV) wood-pole Hills Creek-Lookout Point transmission line, which is generally located between Lowell and Oakridge, in Lane County, Oregon.

272

ENERGY STAR Success Story - Cincinnati Reds  

NLE Websites -- All DOE Office Websites (Extended Search)

winding banks of the Ohio River in downtown Cincinnati, the Great American Ball Park is home to the Cincinnati Reds, baseball's first professional franchise. The ballpark, built...

273

Pataha Creek Model Watershed : January 2000-December 2002 Habitat Conservation Projects.  

Science Conference Proceedings (OSTI)

The projects outlined in detail on the attached project reports were implemented from calendar year 2000 through 2002 in the Pataha Creek Watershed. The Pataha Creek Watershed was selected in 1993, along with the Tucannon and Asotin Creeks, as model watersheds by NPPC. In previous years, demonstration sites using riparian fencing, off site watering facilities, tree and shrub plantings and upland conservation practices were used for information and education and were the main focus of the implementation phase of the watershed plan. These practices were the main focus of the watershed plan to reduce the majority of the sediment entering the stream. Prior to 2000, several bank stabilization projects were installed but the installation costs became prohibitive and these types of projects were reduced in numbers over the following years. The years 2000 through 2002 were years where a focused effort was made to work on the upland conservation practices to reduce the sedimentation into Pataha Creek. Over 95% of the sediment entering the stream can be tied directly to the upland and riparian areas of the watershed. The Pataha Creek has steelhead in the upper reaches and native and planted rainbow trout in the mid to upper portion. Suckers, pikeminow and shiners inhabit the lower portion because of the higher water temperatures and lack of vegetation. The improvement of riparian habitat will improve habitat for the desired fish species. The lower portion of the Pataha Creek could eventually develop into spawning and rearing habitat for chinook salmon if some migration barriers are removed and habitat is restored. The upland projects completed during 2000 through 2002 were practices that reduce erosion from the cropland. Three-year continuous no-till projects were finishing up and the monitoring of this particular practice is ongoing. Its direct impact on soil erosion along with the economical aspects is being studied. Other practices such as terrace, waterway, sediment basin construction and the installation of strip systems are also taking place. The years 2000 through 2002 were productive years for the Pataha Creek Model Watershed but due to the fact that most of the cooperators in the watershed have reached their limitation allowed for no-till and direct seed/ two pass of 3 years with each practice, the cost share for these practices is lower than the years of the late 90's. All the upland practices that were implemented have helped to further reduce erosion from the cropland. This has resulted in a reduction of sedimentation into the spawning and rearing area of the fall chinook salmon located in the lower portion of the Tucannon River. The tree planting projects have helped in reducing sedimentation and have also improved the riparian zone of desired locations inside the Pataha Creek Watershed. The CREP (Conservation Reserve Enhancement Program) along with the CCRP (Continuous Conservation Reserve Program) are becoming more prevalent in the watershed and are protecting the riparian areas along the Pataha Creek at an increasing level every year. Currently roughly 197 acres of riparian has been enrolled along the Pataha Creek in the CREP program.

Bartels, Duane G.

2003-04-01T23:59:59.000Z

274

Resource appraisal of three rich oil-shale zones in the Green River Formation, Piceance Creek Basin, Colorado  

SciTech Connect

The main oil-shale-bearing member of the Eocene Green River Formation, the Parachute Creek Member, contains several distinct rich oil-shale zones that underlie large areas of Piceance Creek Basin in NW. Colorado. Three of these have been selected for an oil-shale resource-appraisal study. Two over-lie and one underlies the main saline zone in the Parachute Creek Member. The uppermost of these zones, the Mahogany Zone, is in the upper third of the Parachute Creek Member/ it ranges in thickness from less than 75 to more than 225 ft and is the most persistent oil- shale unit in the Green River Formation underlying an area of more than 1,200 sq miles in the Piceance Creek Basin. The second rich zone is separated from the Mahogany Zone by a variable thickness of sandstone, siltstone, or low- grade oil shale. This zone attains a maximum thickness of more than 250 ft and underlies an area of more than 700 sq miles. The third rich oil-shale zone is in the lower third of the Parachute Creek Member. It underlies an area of about 300 sq miles near the depositional center of the Piceance Creek Basin and attains a thickness of more than 150 ft. The 3 rich oil-shale zones have total resources of 317 billion bbl of oil in the areas appraised.

Donnell, J.R.; Blair, R.W. Jr.

1970-10-01T23:59:59.000Z

275

Salmon Supplementation Studies in Idaho Rivers; Field Activities Conducted on Clear and Pete King Creeks, 2001 Annual Report.  

DOE Green Energy (OSTI)

In 2001 the Idaho Fisheries Resource Office continued as a cooperator on the Salmon Supplementation Studies in Idaho Rivers (ISS) project on Pete King and Clear creeks. Data relating to supplementation treatment releases, juvenile sampling, juvenile PIT tagging, brood stock spawning and rearing, spawning ground surveys, and snorkel surveys were used to evaluate project data points and augment past data. Due to low adult spring Chinook returns to Kooskia National Fish Hatchery (KNFH) in brood year 1999 there was no smolt supplementation treatment release into Clear Creek in 2001. A 17,014 spring Chinook parr supplementation treatment (containing 1000 PIT tags) was released into Pete King Creek on July 24, 2001. On Clear Creek, there were 412 naturally produced spring Chinook parr PIT tagged and released. Using juvenile collection methods, Idaho Fisheries Resource Office staff PIT tagged and released 320 naturally produced spring Chinook pre-smolts on Clear Creek, and 16 natural pre-smolts on Pete King Creek, for minimum survival estimates to Lower Granite Dam. There were no PIT tag detections of brood year 1999 smolts from Clear or Pete King creeks. A total of 2261 adult spring Chinook were collected at KNFH. Forty-three females were used for supplementation brood stock, and 45 supplementation (ventral fin-clip), and 45 natural (unmarked) adults were released upstream of KNFH to spawn naturally. Spatial and temporal distribution of 37 adults released above the KNFH weir was determined through the use of radio telemetry. On Clear Creek, a total of 166 redds (8.2 redds/km) were observed and data was collected from 195 carcasses. Seventeen completed redds (2.1 redds/km) were found, and data was collected data from six carcasses on Pete King Creek.

Gass, Carrie; Olson, Jim M. (US Fish and Wildlife Service, idaho Fishery Resource Office, Ahsahka, ID)

2004-11-01T23:59:59.000Z

276

Red Mesa | Open Energy Information  

Open Energy Info (EERE)

Mesa Mesa Facility Red Mesa Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner NextEra Energy Resources Developer Wanzek Construction Location Cibola County near Seboyeta NM Coordinates 35.197003°, -107.372611° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":35.197003,"lon":-107.372611,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

277

DOE/EA-1544: Environmental Assessment for the Proposed Anadarko/Veritas Salt Creek 3D Vibroseis Project (June 2005)  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

___________________________ ___________________________ Salt Creek 3D Vibroseis Project Environmental Assessment BLM Casper Field Office June 2005 Page 1 ENVIRONMENTAL ASSESSMENT FOR THE PROPOSED ANADARKO / VERITAS SALT CREEK 3D VIBROSEIS PROJECT DOE EA No. EA-1544 BLM Case No. WYW-163071 BLM EA No. WY- 060-EA05-95 WOGCC Permit No. 025-05-015G _________________________________________________________________________________________________ Salt Creek 3D Vibroseis Project Environmental Assessment BLM Casper Field Office June 2005 Page 2 TABLE OF CONTENTS 1.0 PURPOSE AND NEED 1.1 Introduction 3 1.2 Purpose and need for action 3 1.3 Conformance with land use plan 3 1.4 Relationship to statutes, regulations, 4

278

Walmart Red Bluff | Open Energy Information  

Open Energy Info (EERE)

Walmart Red Bluff Walmart Red Bluff Jump to: navigation, search Name Walmart Red Bluff Facility Walmart Red Bluff Sector Wind energy Facility Type Community Wind Facility Status In Service Owner Foundation Windpower Developer Foundation Windpower Energy Purchaser Walmart Location Red Bluff CA Coordinates 40.11121276°, -122.1940291° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":40.11121276,"lon":-122.1940291,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

279

DISCOVERY OF RED-SKEWED K {sub {alpha}} IRON LINE IN Cyg X-2 WITH SUZAKU  

SciTech Connect

We report on the Suzaku observation of neutron star (NS) low-mass X-ray binary Cygnus X-2 which reveals a presence of the iron K {sub {alpha}} emission line. The line profile shows a significant red wing. This discovery increases the number of NS sources where red-skewed iron lines were observed and strongly suggests that this phenomenon is common not only in black holes but also in other types of accreting compact objects. We examine the line profile in terms of models which attribute its production to the relativistic effects due to reflection of X-ray radiation from a cold accretion disk and also as a result of the line formation in the extended wind/outflow configuration. Both models are able to adequately represent the observed line profile. We consider the results of line modeling in the context of subsecond variability. While we were unable to conclusively disqualify one of the models, we find that the wind paradigm has several advantages over the relativistic disk reflection model.

Shaposhnikov, Nikolai [CRESST/NASA GSFC, Astrophysics Science Division, Greenbelt MD 20771 (United States); Titarchuk, Lev [George Mason University/Center for Earth Observing and Space Research, Fairfax, VA 22030 (United States); Laurent, Philippe [CEA/DSM/DAPNIA/SAp, CEA Saclay, 91191 Gif sur Yvette (France)], E-mail: nikolai@milkyway.gsfc.nasa.gov, E-mail: Lev.Titarchuk@nrl.navy.mil, E-mail: lev@milkyway.gsfc.nasa.gov, E-mail: plaurent@cea.fr

2009-07-10T23:59:59.000Z

280

Sensitivity of Orographic Moist Convection to Landscape Variability: A Study of the Buffalo Creek, Colorado, Flash Flood Case of 1996  

Science Conference Proceedings (OSTI)

A number of numerical experiments with a high-resolution mesoscale model were conducted to study the convective rainfall event that caused the 1996 Buffalo Creek, Colorado, flash flood. Different surface conditions and treatments of land surface ...

Fei Chen; Thomas T. Warner; Kevin Manning

2001-11-01T23:59:59.000Z

Note: This page contains sample records for the topic "red wing creek" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

A protocol for evaluating thermal performance of 14 solar steam generators for the Kogan Creek solar boost project.  

E-Print Network (OSTI)

??The Kogan Creek Solar Boost is a world-first commercial project that sees AREVA Solar designing, supplying and constructing CLFR-based solar steam generators for CS Energy, (more)

Watson, Bond

2012-01-01T23:59:59.000Z

282

Categorization of Nocturnal Drainage Flows within the Brush Creek Valley and the Variability of Sigma Theta in Complex Terrain  

Science Conference Proceedings (OSTI)

The monthly frequencies of nocturnal drainage flows in the Brush Creek Valley were estimated over the period August 1982January 1985 for the purpose of evaluating the representativeness of the drainage flows observed during a few intensive study ...

Paul H. Gudiksen

1989-06-01T23:59:59.000Z

283

Development of a Nested Grid, Second Moment Turbulence Closure Model and Application to the 1982 ASCOT Brush Creek Data Simulation  

Science Conference Proceedings (OSTI)

An improved, second-moment turbulence-closure model and a random particle kernel diffusion model are described and tested with the 1982 ASCOT (Atmospheric Studies in Complex Terrain) data collected in Brush Creek, Colorado. Three improvements of ...

T. Yamada; S. Bunker

1988-05-01T23:59:59.000Z

284

Red herrings revisited: spatial autocorrelation and parameter estimation in geographical ecology  

E-Print Network (OSTI)

autocorrelation and red herrings in geographical ecology. 2000. Red-shifts and red herrings in geographical ecology. email:bhawkins@uci.edu Red herrings revisited: spatial

Hawkins, Bradford A.; Diniz-Filho, Jose Alexandre F.; Bini, Luis Mauricio; De Marco, Paulo; Blackburn, Tim M.

2007-01-01T23:59:59.000Z

285

Integrated Culture of Seaweeds and Red Abalone in Monterey Harbor  

E-Print Network (OSTI)

Project Hypotheses (1) Red algae and kelp can be effectivelyminimum quantity of red algae necessary to enhance abalonead libitum kelp plus 2.5% red algae per week; (3) ad libitum

Graham, Michael H.

2008-01-01T23:59:59.000Z

286

Categorical Exclusion (CX) Determination Proposed Action: Expansion of O'Fallon Creek Substation Yard  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Expansion of O'Fallon Creek Substation Yard Expansion of O'Fallon Creek Substation Yard Description of Proposed Action: The Western Area Power Administration (Western) is proposing to expand the current yard to accommodate an additional bay for a dedicated electrical feed to a future oil pumping station that will be part of the Keystone XL project. Number and Title of Categorical Exclusions Being Applied: 10 CFR 10210410 Subpmi D, Appendix B, B4.11: Construction of electric power substations ... or modification of existing substations and support facilities. Regulatory Requirements for CX Determination: The DOE Guidelines for Compliance with the Regulatory Requirements for the National Environmental Policy Act at 10 CFR 1021AI0(b), require the following determinations be made in order for a proposed action to be categorically

287

Microsoft Word - CX-SpringCreek-WineCountry-TowerRelocationFY13_WEB.doc  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

November 29, 2012 November 29, 2012 REPLY TO ATTN OF: KEPR-4 SUBJECT: Environmental Clearance Memorandum Justin Estes Project Manager - TELM-TPP-3 Proposed Action: Spring Creek - Wine County No. 1 Transmission Tower Relocation Categorical Exclusion Applied (from Subpart D, 10 C.F.R. Part 1021): B4.6 Additions and modifications to transmission facilities Location: Multnomah County, OR Proposed by: Bonneville Power Administration (BPA) Description of the Proposed Action: BPA is proposing to relocate one transmission tower, located on private agricultural land, which has been damaged by farm equipment. Currently, tower 29/3 on BPA's Spring Creek - Wine Country No. 1 transmission line, resides on an agricultural access road that is bordered on both sides by active agricultural fields. This

288

Microsoft Word - Spring Creek Final Draft CX 7-15-2013.docx  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

6, 2013 6, 2013 REPLY TO ATTN OF: KEC-4 SUBJECT: Environmental Clearance Memorandum Cecilia Brown Project Manager - KEWM-4 Proposed Action: Spring Creek Property funding Fish and Wildlife Project No. and Contract No.: 2002-003-00, BPA-007168 Categorical Exclusion Applied (from Subpart D, 10 C.F.R. Part 1021): B1.25 Real property transfers for cultural resources protection, habitat preservation, and wildlife management Location: Township 17 North, Range 20 West, Section 26, Lake County, MT Proposed by: Bonneville Power Administration (BPA) Description of the Proposed Action: BPA proposes to fund the Salish and Kootenai Tribes for the purchase of 10 acres of property, referred to as the Spring Creek Land Acqusition in Lake

289

Hot Creek Pool & Spa Low Temperature Geothermal Facility | Open Energy  

Open Energy Info (EERE)

Pool & Spa Low Temperature Geothermal Facility Pool & Spa Low Temperature Geothermal Facility Jump to: navigation, search Name Hot Creek Pool & Spa Low Temperature Geothermal Facility Facility Hot Creek Sector Geothermal energy Type Pool and Spa Location Mammoth Lakes Park Area, California Coordinates Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[]}

290

Microsoft Word - CX-SwanValley-Goshen_GraniteCreekBoxCulvert_WEB.doc  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

4 4 SUBJECT: Environmental Clearance Memorandum Joe Johnson Natural Resource Specialist - TFBV-Kalispell Proposed Action: Replace existing bridge with a concrete box culvert at Granite Creek along Bonneville Power Administration's (BPA) Swan Valley-Goshen 161-kV transmission line. Budget Information: Work Order # 189268-01 PP&A Project No.: PP&A 2047 Categorical Exclusion Applied (from Subpart D, 10 C.F.R. Part 1021): B1.3, Routine maintenance activities for structures, rights-of-way, and infrastructures, (such as roads), that are required to maintain infrastructures in a condition suitable for a facility to be used for its designated purpose. Location: The proposed project is located on Granite Creek along BPA's Swan Valley-Goshen

291

Protect and Restore Mill Creek Watershed; Annual Report 2002-2003.  

DOE Green Energy (OSTI)

The Nez Perce Tribe Department of Fisheries Resource Management, Watershed Division approaches watershed restoration with a ridge-top to ridge-top approach. Watershed restoration projects within the Mill Creek watershed are coordinated with the Nez Perce National Forest. The Nez Perce Tribe began watershed restoration projects within the Mill Creek watershed of the South Fork Clearwater River in 2000. Progress has been made in restoring the watershed through excluding cattle from critical riparian areas through fencing. During the FY 2002, trees were planted in riparian areas in the meadow of the upper watershed. In addition, a complete inventory of culverts at road-stream crossings was completed. Culverts have been prioritized for replacement to accommodate fish passage throughout the watershed. Maintenance to the previously built fence was also completed.

McRoberts, Heidi (Nez Perce Tribe, Department of Fisheries Resource Management, Lapwai, ID)

2004-01-01T23:59:59.000Z

292

Chinook Salmon Adult Abundance Monitoring in Lake Creek, Idaho, 2002 Annual Report.  

DOE Green Energy (OSTI)

Underwater time- lapse video technology has been used to monitor adult spring and summer chinook salmon (Oncorhynchus tshawytscha) escapement into the Secesh River and Lake Creek, Idaho, since 1998. Underwater time-lapse videography is a passive methodology that does not trap or handle this Endangered Species Act listed species. Secesh River chinook salmon represent a wild spawning aggregate that has not been directly supplemented with hatchery fish. The Secesh River is also a control stream under the Idaho Salmon Supplementation study. This project has successfully demonstrated the application of underwater video monitoring to accurately quantify chinook salmon abundance in Lake Creek in 1998, 1999, 2001 and 2002. The adult salmon spawner escapement into Lake Creek in 2002 was 410 fish. Jack salmon comprised 7.1 percent of the run. Estimated hatchery composition was 6.1 percent of the spawning run. The first fish passage on Lake Creek was recorded on June 26, 15 days after installation of the fish counting station. Peak net upstream movement of 41 adults occurred on July 8. Peak of total movement activity was August 18. The last fish passed through the Lake Creek fish counting station on September 2. Snow pack in the drainage was 91% of the average during the winter of 2001/2002. Video determined salmon spawner abundance was compared to redd count expansion method point estimates in Lake Creek in 2002. Expanded index area redd count and extensive area redd count point estimates in 2002, estimated from one percent fewer to 56 percent greater number of spawners than underwater video determined spawner abundance. Redd count expansion methods varied from two percent fewer to 55 percent greater in 2001, 11 to 46 percent fewer in 1999 and 104 to 214 percent greater in 1998. Redd count expansion values had unknown variation associated with the point estimates. Fish per redd numbers determined by video abundance and multiple pass redd counts of the larger extensive survey areas in Lake Creek have varied widely. In 2002 there were 2.05 fish per redd. There were 2.07 fish per redd in 2001, 3.58 in 1999 and in 1998, with no jacks returning to spawn, there were 1.02 fish per redd. Migrating salmon in Lake Creek exhibited two behaviorally distinct segments of fish movement in 2002. Mainly upstream only movement of both sexes characterized the first segment. The second segment consisted of upstream and downstream movement with less net upstream movement and appeared to correspond with the time of active spawning. The fish counting stations did not impede salmon movements, nor was spawning displaced downstream. Fish moved freely upstream and downstream through the fish counting structures. The downstream movement of salmon afforded by this fish counting station design may be an important factor in the reproductive success of listed salmon. This methodology provides more accurate salmon spawner abundance information than expansion of single-pass and multiple-pass redd counts. Accurate adult escapement information would allow managers to determine if recovery actions benefited listed chinook salmon in tributary streams.

Faurot, Dave; Kucera, Paul

2003-11-01T23:59:59.000Z

293

Furnace Creek Inn Pool & Spa Low Temperature Geothermal Facility | Open  

Open Energy Info (EERE)

Inn Pool & Spa Low Temperature Geothermal Facility Inn Pool & Spa Low Temperature Geothermal Facility Jump to: navigation, search Name Furnace Creek Inn Pool & Spa Low Temperature Geothermal Facility Facility Furnace Creek Inn Sector Geothermal energy Type Pool and Spa Location Death Valley, California Coordinates Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[]}

294

Reintroduction of Lower Columbia River Chum Salmon into Duncan Creek, 2007 Annual Report.  

DOE Green Energy (OSTI)

The National Marine Fisheries Service (NMFS) listed Lower Columbia River (LCR) chum salmon as threatened under the Endangered Species Act (ESA) in March, 1999 (64 FR 14508, March 25, 1999). The listing was in response to the reduction in abundance from historical levels of more than one-half million returning adults to fewer than 10,000 present-day spawners. Harvest, habitat degradation, changes in flow regimes, riverbed movement and heavy siltation have been largely responsible for this decline. The timing of seasonal changes in river flow and water temperatures is perhaps the most critical factor in structuring the freshwater life history of this species. This is especially true of the population located directly below Bonneville Dam, where hydropower operations can block access to spawning sites, dewater redds, strand fry, cause scour or fill of redds and increase sedimentation of spawning gravels. Prior to 1997, only two chum salmon populations were recognized as genetically distinct in the Columbia River, although spawning had been documented in many Lower Columbia River tributaries. The first population was in the Grays River (RKm 34), a tributary of the Columbia River, and the second was a group of spawners utilizing the mainstem Columbia River just below Bonneville Dam (RKm 235) adjacent to Ives Island and in Hardy and Hamilton creeks. Using additional DNA samples, Small et al. (2006) grouped chum salmon spawning in the mainstem Columbia River and the Washington State tributaries into three groups: the Coastal, the Cascade and the Gorge. The Coastal group comprises those spawning in the Grays River, Skamokawa Creek and the broodstock used at the Sea Resources facility on the Chinook River. The Cascade group comprises those spawning in the Cowlitz (both summer and fall stocks), Kalama, Lewis, and East Fork Lewis rivers, with most supporting unique populations. The Gorge group comprises those spawning in the mainstem Columbia River from the I-205 Bridge up to Bonneville Dam and those spawning in Hamilton and Hardy creeks. Response to the federal ESA listing has been primarily through direct-recovery actions: reducing harvest, hatchery supplementation using local broodstock for populations at catastrophic risk, habitat restoration (including construction of spawning channels) and flow agreements to protect spawning and rearing areas. Both state and federal agencies have built controlled spawning areas. In 1998, the Washington Department of Fish and Wildlife (WDFW) began a chum salmon supplementation program using native stock on the Grays River. This program was expanded during 1999 - 2001 to include reintroduction into the Chinook River using eggs from the Grays River Supplementation Program. These eggs are incubated at the Grays River Hatchery, reared to release size at the Sea Resources Hatchery on the Chinook River, and the fry are released at the mouth of the Chinook River. Native steelhead, chum, and coho salmon are present in Duncan Creek, and are recognized as subpopulations of the Lower Gorge population, and are focal species in the Lower Columbia Fish Recovery Board (LCFRB) plan. Steelhead, chum and coho salmon that spawn in Duncan Creek are listed as Threatened under the ESA. Duncan Creek is classified by the LCFRB plan as a watershed for intensive monitoring (LCFRB 2004). This project was identified in the 2004 Federal Columbia River Power System (FCRPS) revised Biological Opinion (revised BiOp) to increase survival of chum salmon, 'BPA will continue to fund the program to re-introduce Columbia River chum salmon into Duncan Creek as long as NOAA Fisheries determines it to be an essential and effective contribution to reducing the risk of extinction for this ESU'. (USACE et al. 2004, page 85-86). The Governors Forum on Monitoring and Salmon Recovery and Watershed Health recommends one major population from each ESU have adult and juvenile monitoring. Duncan Creek chum salmon are identified in this plan to be intensively monitored. Planners recommended that a combination of natural and hatchery production

Hillson, Todd D. [Washington Department of Fish and Wildlife

2009-06-12T23:59:59.000Z

295

Environmental assessment for the Hoe Creek underground, Coal Gasification Test Site Remediation, Campbell County, Wyoming  

SciTech Connect

The U.S. Department of Energy (DOE) has prepared this EA to assess environmental and human health Issues and to determine potential impacts associated with the proposed Hoe Creek Underground Coal Gasification Test Site Remediation that would be performed at the Hoe Creek site in Campbell County, Wyoming. The Hoe Creek site is located south-southwest of the town of Gillette, Wyoming, and encompasses 71 acres of public land under the stewardship of the Bureau of Land Management. The proposed action identified in the EA is for the DOE to perform air sparging with bioremediation at the Hoe Creek site to remove contaminants resulting from underground coal gasification (UCG) experiments performed there by the DOE in the late 1970s. The proposed action would involve drilling additional wells at two of the UCG test sites to apply oxygen or hydrogen peroxide to the subsurface to volatilize benzene dissolved in the groundwater and enhance bioremediation of non-aqueous phase liquids present in the subsurface. Other alternatives considered are site excavation to remove contaminants, continuation of the annual pump and treat actions that have been used at the site over the last ten years to limit contaminant migration, and the no action alternative. Issues examined in detail in the EA are air quality, geology, human health and safety, noise, soils, solid and hazardous waste, threatened and endangered species, vegetation, water resources, and wildlife. Details of mitigative measures that could be used to limit any detrimental effects resulting from the proposed action or any of the alternatives are discussed, and information on anticipated effects identified by other government agencies is provided.

1997-10-01T23:59:59.000Z

296

Oak Creek Wind Power Phase 2 Wind Farm | Open Energy Information  

Open Energy Info (EERE)

Phase 2 Wind Farm Phase 2 Wind Farm Jump to: navigation, search Name Oak Creek Wind Power Phase 2 Wind Farm Facility Oak Creek Wind Power Phase 2 Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner Caithness Developer M&N Wind Power/Oak Creek Energy Systems Energy Purchaser Southern California Edison Co Location Tehachapi CA Coordinates 35.07665°, -118.25529° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":35.07665,"lon":-118.25529,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

297

Habitat Projects Completed within the Asotin Creek Watershed, 1999 Completion Report.  

DOE Green Energy (OSTI)

The Asotin Creek Model Watershed Program (ACMWP) is the primary entity coordinating habitat projects on both private and public lands within the Asotin Creek watershed. The Asotin Creek watershed covers approximately 325 square miles in the Blue Mountains of southeastern Washington in WRIA 35. According to WDFW's Priority WRIA's by At-Risk Stock Significance Map, it is the highest priority in southeastern WA. Snake River spring chinook salmon, summer steelhead and bull trout, which are listed under the Endangered Species Act (ESA), are present in the watershed. The ACMWP began coordinating habitat projects in 1995. Approximately two hundred seventy-six projects have been implemented through the ACMWP as of 1999. Twenty of these projects were funded in part through Bonneville Power Administration's 1999 Columbia Basin Fish and Wildlife Program. These projects used a variety of methods to enhance and protect watershed conditions. In-stream work for fish habitat included construction of hard structures (e.g. vortex rock weirs), meander reconstruction, placement of large woody debris (LWD) and whole trees and improvements to off-channel rearing habitat; thirty-eight were created with these structures. Three miles of stream benefited from riparian improvements such as vegetative plantings (17,000 trees and shrubs) and noxious weed control. Two sediment basin constructions, 67 acres of grass seeding, and seven hundred forty-five acres of minimum till were implemented to reduce sediment production and delivery to streams in the watershed.

Johnson, Bradley J.

2000-01-01T23:59:59.000Z

298

Habitat Projects Completed within the Asotin Creek Watershed, 1998 Completion Report.  

DOE Green Energy (OSTI)

The Asotin Creek Model Watershed Program (ACMWP) is the primary entity coordinating habitat projects on both private and public lands within the Asotin Creek watershed. The Asotin Creek watershed covers approximately 325 square miles in the Blue Mountains of southeastern Washington. Snake River spring chinook salmon, summer steelhead and bull trout, which are listed under the Endangered Species Act (ESA), are present in the watershed. The ACMWP began coordinating habitat projects in 1995. Approximately two hundred forty-six projects have been implemented through the ACMWP as of 1998. Fifty-nine of these projects were funded in part through Bonneville Power Administration's 1998 Columbia Basin Fish and Wildlife Program. These projects used a variety of methods to enhance and protect watershed conditions. In-stream work for fish habitat included construction of hard structures (e.g. vortex rock weirs), meander reconstruction, placement of large woody debris (LWD) and whole trees and improvements to off-channel rearing habitat; one hundred thirty-nine pools were created with these structures. Three miles of stream benefited from riparian improvements such as fencing, vegetative plantings, and noxious weed control. Two alternative water developments were completed, providing off-stream-watering sources for livestock. 20,500 ft of upland terrace construction, seven sediment basin construction, one hundred eighty-seven acres of grass seeding, eight hundred fifty acres of direct seeding and eighteen sediment basin cleanouts were implemented to reduce sediment production and delivery to streams in the watershed.

Johnson, Bradley J.

1999-11-01T23:59:59.000Z

299

A fisheries evaluation of the Wapato, Sunnyside, and Toppenish Creek canal fish screening facilities, spring 1988  

DOE Green Energy (OSTI)

The Bonneville Power Administration, the United States Bureau of Reclamation, and the Washington State Department of Ecology are funding the construction and evaluation of fish passage and protection facilities at irrigation and hydroelectric diversions in the Yakima River Basin, Washington State. The programs provide offsite enhancement to compensate for fish and wildlife losses caused by hydroelectric development throughout the Columbia River Basin and address natural propagation of salmon to help mitigate the impact of irrigation in the Yakima River Basin. The Wapato, Sunnyside, and Toppenish Creek Screens are three of the facilities in the basin. This report evaluates the effectiveness of the screens in intercepting and returning juvenile salmonids unharmed to the river from which they were diverted. We evaluated the effectiveness of new screening facilities at the Toppenish Creek, Wapato, and Sunnyside canals in southcentral Washington State. Screen integrity tests indicated that fish released in front of the screens were prevented from entering the canal behind the screens. We conducted descaling tests at the Toppenish Creek Screens. We measured the time required for fish to move through the screen facilities. Methods used in 1988 were the same as those used at Sunnyside in 1985 and in subsequent years at Richland. Toppenish/Satus, and Wapato. 11 refs., 11 figs., 14 tabs.

Neitzel, D.A.; Abernethy, C.S.; Lusty, E.W.

1990-03-01T23:59:59.000Z

300

Habitat Evaluation Procedures (HEP) Report; Calispell Creek Project, Technical Report 2004-2005.  

DOE Green Energy (OSTI)

On July 13, 2004, the Habitat Evaluation Procedure (HEP) was used to determine baseline habitat suitability on the Calispell Creek property, an acquisition completed by the Kalispel Tribe of Indians in February 2004. Evaluation species and appropriate models include Canada goose, mallard, muskrat, yellow warbler, and white-tailed deer. Habitat Suitability Index (HSI) values were visually estimated and agreed upon by all HEP team members. The Calispell Creek Project provides a total of 138.17 Habitat Units (HUs) for the species evaluated. Emergent wetland habitat provides 5.16 HUs for mallard and muskrat. Grassland provides 132.02 HUs for mallard and Canada goose. Scrub-shrub vegetation provides 0.99 HUs for yellow warbler and white-tailed deer. The objective of using HEP at the Calispell Creek Project and other protected properties is to document the quality and quantity of available habitat for selected wildlife species. In this way, HEP provides information on the relative value of the same area at future points in time so that the effect of management activities on wildlife habitat can be quantified. When combined with other tools, the baseline HEP will be used to determine the most effective on-site management, restoration, and enhancement actions to increase habitat suitability for targeted species. The same process will be replicated every five years to quantitatively evaluate the effectiveness of management strategies in improving and maintaining habitat conditions while providing additional crediting to BPA for enhanced habitat values.

Entz, Ray

2005-02-01T23:59:59.000Z

Note: This page contains sample records for the topic "red wing creek" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

Manta Wings: Wave Energy Testing Floats to Puget Sound | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Manta Wings: Wave Energy Testing Floats to Puget Sound Manta Wings: Wave Energy Testing Floats to Puget Sound Manta Wings: Wave Energy Testing Floats to Puget Sound August 6, 2010 - 11:27am Addthis The 1:15 scale prototype being lowered into the wave flume at Oregon State University's O.H. Hinsdale Wave Research Laboratory | Photo courtesy of Columbia Power The 1:15 scale prototype being lowered into the wave flume at Oregon State University's O.H. Hinsdale Wave Research Laboratory | Photo courtesy of Columbia Power Lindsay Gsell Columbia Power Technologies plans to test an intermediate-scale version of its wave energy converter device in Puget Sound later this year. After the successful control tests, the company will move testing to open water in Puget Sound this fall. Columbia will test the intermediate 1:7

302

The Flicker and the Red Headed Woodpecker  

NLE Websites -- All DOE Office Websites (Extended Search)

Smaller than the flicker, it is the only woodpecker with the entire head and neck red -- a bright scarlet. The breast is white; the back bluish- black with a big square...

303

ORISE Faculty Research Experiences: Dr. Eddie Red  

NLE Websites -- All DOE Office Websites (Extended Search)

nanotube characteristics-technology that could impact future solar cells, as well as battery and fuel cells. Eddie C. Red, Ph.D., has longed to set up a functional research...

304

Red Teaming of Advanced Information Assurance Concepts  

SciTech Connect

Red Teaming is an advanced form of assessment that can be used to identify weaknesses in a variety of cyber systems. it is especially beneficial when the target system is still in development when designers can readily affect improvements. This paper discusses the red team analysis process and the author's experiences applying this process to five selected Information Technology Office (ITO) projects. Some detail of the overall methodology, summary results from the five projects, and lessons learned are contained within this paper.

DUGGAN,RUTH A.; WOOD,BRADLEY

1999-10-07T23:59:59.000Z

305

Impact of Liquefied Natural Gas usage and payload size on Hybrid Wing Body aircraft fuel efficiency  

E-Print Network (OSTI)

This work assessed Hybrid Wing Body (HWB) aircraft in the context of Liquefied Natural Gas (LNG) fuel usage and payload/range scalability at three scales: H1 (B737), H2 (B787) and H3 (B777). The aircraft were optimized for ...

Mody, Pritesh (Pritesh Chetan)

2010-01-01T23:59:59.000Z

306

Applying least squares support vector machines to the airframe wing-box structural design cost estimation  

Science Conference Proceedings (OSTI)

This research used the least squares support vector machines (LS-SVM) method to estimate the project design cost of an airframe wing-box structure. We also compared the estimation performance using back-propagation neural networks (BPN) and statistical ... Keywords: Airframe structure, Back-propagation neural networks, Cost estimation, Least squares support vector machines, Response surface methodology

S. Deng; Tsung-Han Yeh

2010-12-01T23:59:59.000Z

307

Lake Roosevelt Fisheries Evaluation Program; Meadow Creek vs. Lake Whatcom Stock Kokanee Salmon Investigations in Lake Roosevelt, 2001 Annual Report.  

DOE Green Energy (OSTI)

Lake Roosevelt has been stocked with Lake Whatcom stock kokanee since 1989 with the primary objective of creating a self-sustaining recreational fishery. Due to low return numbers, it was hypothesized a stock of kokanee, native to the upper Columbia River, might perform better than the coastal Lake Whatcom strain. Kokanee from Meadow Creek, a tributary of Kootenay Lake, British Columbia were selected as an alternative stock. Matched pair releases of Lake Whatcom and Meadow Creek kokanee were made from Sherman Creek Hatchery in late June 2000 and repeated in 2001. Stock performance between Lake Whatcom and Meadow Creek kokanee was evaluated using three performance measures; (1) the number of returns to Sherman Creek, the primary egg collection facility, (2) the number of returns to other tributaries and (3) the number of returns to the creel. Kokanee were collected during five passes through the reservoir via electrofishing, which included 87 tributary mouths during the fall of 2000 and 2001. Chi-square analysis indicated age two Meadow Creek kokanee returned to Sherman Creek in significantly higher numbers when compared to the Whatcom stock in 2000 ({chi}{sup 2} = 736.6; d.f. = 1; P < 0.01) and 2001 ({chi}{sup 2} = 156.2; d.f. = 1; P < 0.01). Reservoir wide recoveries of age two kokanee had similar results in 2000 ({chi}{sup 2} = 735.3; d.f. = 1; P < 0.01) and 2001 ({chi}{sup 2} = 150.1; d.f. = 1; P < 0.01). Six Lake Whatcom and seven Meadow Creek three year olds were collected in 2001. The sample size of three year olds was too small for statistical analysis. No kokanee were collected during creel surveys in 2000, and two (age three kokanee) were collected in 2001. Neither of the hatchery kokanee collected were coded wire tagged, therefore stock could not be distinguished. After two years of monitoring, neither Meadow Creek or Lake Whatcom kokanee appear to be capable of providing a run of three-year-old spawners to sustain stocking efforts. The small number of hatchery three-year-olds collected indicated that the current stocking methods will continue to produce a limited jacking run largely composed of precocious males and a small number of three-year-olds. However, supplemental creel data indicated anglers harvested two-year-old hatchery kokanee 30-45 days after release. Supplemental creel data should continue to be collected to accurately evaluate hatchery contributions to the creel.

McLellan, Holly; Scholz, Allan

2002-03-01T23:59:59.000Z

308

7X performance results - final report : ASCI Red vs Red Storm.  

Science Conference Proceedings (OSTI)

The goal of the 7X performance testing was to assure Sandia National Laboratories, Cray Inc., and the Department of Energy that Red Storm would achieve its performance requirements which were defined as a comparison between ASCI Red and Red Storm. Our approach was to identify one or more problems for each application in the 7X suite, run those problems at multiple processor sizes in the capability computing range, and compare the results between ASCI Red and Red Storm. The first part of this report describes the two computer systems, the applications in the 7X suite, the test problems, and the results of the performance tests on ASCI Red and Red Storm. During the course of the testing on Red Storm, we had the opportunity to run the test problems in both single-core mode and dual-core mode and the second part of this report describes those results. Finally, we reflect on lessons learned in undertaking a major head-to-head benchmark comparison.

Dinge, Dennis C. (Cray Inc., Albuquerque, NM); Davis, Michael E. (Cray Inc., Albuquerque, NM); Haskell, Karen H.; Ballance, Robert A.; Gardiner, Thomas Anthony; Stevenson, Joel O.; Noe, John P.

2011-04-01T23:59:59.000Z

309

CUTTING SOLAR RED TAPECUTTING SOLAR RED TAPE Evergreen State Solar PartnershipEvergreen State Solar Partnership  

E-Print Network (OSTI)

CUTTING SOLAR RED TAPECUTTING SOLAR RED TAPE Evergreen State Solar PartnershipEvergreen State Solar Partnership Rooftop Solar Challenge 1 Sunshot #12;WASHINGTON PV CONTEXTWASHINGTON PV CONTEXT 285 cities, 39 Installations happen where process is easier #12;EVERGREEN STATE SOLAR PARTNERSHIP Commerce NWSEEDEdmonds

310

DOE/EIS-0265-SA-168: Supplement Analysis for the Watershed Management Program EIS - Protect and Restore Lolo Creek Watershed - Jim Brown Creek Streambank Stabilization (08/10/04)  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Supplement Analysis for the Watershed Management Program EIS (DOE/EIS-0265/SA-168) Sabrina Keen Fish and Wildlife Project Manager, KEWU-4 Proposed Action: Protect and Restore Lolo Creek Watershed - Jim Brown Creek Streambank Stabilization Project No: 1996-077-02 Wildlife Management Techniques or Actions Addressed Under This Supplement Analysis (See App. A of the Wildlife Mitigation Program EIS): 1.8 Bank Protection through Vegetation Management, 1.9 Structural Bank Protection using Bioengineering Methods Location: Clearwater County, Idaho Proposed by: Bonneville Power Administration (BPA) and the Nez Perce Tribe Description of the Proposed Action: The Bonneville Power Administration, Nez Perce Tribe, and Potlatch Corporation are proposing to stabilize streambanks along Jim Brown Creek near

311

Sediment and radionuclide transport in rivers: radionuclide transport modeling for Cattaraugus and Buttermilk Creeks, New York  

Science Conference Proceedings (OSTI)

SERATRA, a transient, two-dimensional (laterally-averaged) computer model of sediment-contaminant transport in rivers, satisfactorily resolved the distribution of sediment and radionuclide concentrations in the Cattaraugus Creek stream system in New York. By modeling the physical processes of advection, diffusion, erosion, deposition, and bed armoring, SERATRA routed three sediment size fractions, including cohesive soils, to simulate three dynamic flow events. In conjunction with the sediment transport, SERATRA computed radionuclide levels in dissolved, suspended sediment, and bed sediment forms for four radionuclides (/sup 137/Cs, /sup 90/Sr, /sup 239/ /sup 240/Pu, and /sup 3/H). By accounting for time-dependent sediment-radionuclide interaction in the water column and bed, SERATA is a physically explicit model of radionuclide fate and migration. Sediment and radionuclide concentrations calculated by SERATA in the Cattaraugus Creek stream system are in reasonable agreement with measured values. SERATRA is in the field performance phase of an extensive testing program designed to establish the utility of the model as a site assessment tool. The model handles not only radionuclides but other contaminants such as pesticides, heavy metals and other toxic chemicals. Now that the model has been applied to four field sites, including the latest study of the Cattaraugus Creek stream system, it is recommended that a final model be validated through comparison of predicted results with field data from a carefully controlled tracer test at a field site. It is also recommended that a detailed laboratory flume be tested to study cohesive sediment transport, deposition, and erosion characteristics. The lack of current understanding of these characteristics is one of the weakest areas hindering the accurate assessment of the migration of radionuclides sorbed by fine sediments of silt and clay.

Onishi, Y.; Yabusaki, S.B.; Kincaid, C.T.; Skaggs, R.L.; Walters, W.H.

1982-12-01T23:59:59.000Z

312

Habitat Evaluation Procedures (HEP) Report; Tacoma Creek South Project, Technical Report 2003-2005.  

DOE Green Energy (OSTI)

On July 6, 2004, the Habitat Evaluation Procedure (HEP) was used to determine baseline habitat suitability on the Tacoma Creek South property, an acquisition completed by the Kalispel Tribe of Indians in June 2004. Evaluation species and appropriate models include bald eagle, black-capped chickadee, Canada goose, mallard, muskrat, yellow warbler, and white-tailed deer. Habitat Suitability Index (HSI) values were visually estimated and agreed upon by all HEP team members. The Tacoma Creek South Project provides a total of 190.79 Habitat Units (HUs) for the species evaluated. Emergent wetlands provide 20.51 HUs for Canada goose, mallard, and muskrat. Grassland provides 1.65 HUs for Canada goose and mallard. Scrub-shrub vegetation provides 11.76 HUs for mallard, yellow warbler, and white-tailed deer. Conifer forest habitat provides 139.92 HUs for bald eagle, black-capped chickadee, and white-tailed deer. Deciduous forest also provides 19.15 HUs for bald eagle, black-capped chickadee, mallard, and white-tailed deer. The objective of using HEP at the Tacoma Creek South Project and other protected properties is to document the quality and quantity of available habitat for selected wildlife species. In this way, HEP provides information on the relative value of the same area at future points in time so that the effect of management activities on wildlife habitat can be quantified. When combined with other tools, the baseline HEP will be used to determine the most effective on-site management, restoration, and enhancement actions to increase habitat suitability for targeted species. The same process will be replicated every five years to quantitatively evaluate the effectiveness of management strategies in improving and maintaining habitat conditions while providing additional crediting to BPA for enhanced habitat values.

Entz, Ray

2005-02-01T23:59:59.000Z

313

Red Canyon Wind Farm | Open Energy Information  

Open Energy Info (EERE)

Red Canyon Wind Farm Red Canyon Wind Farm Facility Red Canyon Wind Farm Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner NextEra Energy Resources Developer Florida Power & Light Co. Location Borden TX Coordinates 32.95326011°, -101.215539° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":32.95326011,"lon":-101.215539,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

314

Red Hills Wind Farm | Open Energy Information  

Open Energy Info (EERE)

Red Hills Wind Farm Red Hills Wind Farm Facility Red Hills Wind Farm Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner Acciona Developer Acciona Energy Purchaser N/A Location North of Elk City OK Coordinates 35.531944°, -99.403889° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":35.531944,"lon":-99.403889,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

315

Exploration of the Upper Hot Creek Ranch Geothermal Resource, Nye County, Nevada  

DOE Green Energy (OSTI)

The Upper Hot Creek Ranch (UHCR) geothermal system had seen no significant exploration activity prior to initiation of this GRED III project. Geochemical geothermometers calculated from previously available but questionable quality analyses of the UHCR hot spring waters indicated possible subsurface temperatures of +320 oF. A complex Quaternary and Holocene faulting pattern associated with a six mile step over of the Hot Creek Range near the UHCR also indicated that this area was worthy of some exploration activity. Permitting activities began in Dec. 2004 for the temperature-gradient holes but took much longer than expected with all drilling permits finally being received in early August 2005. The drilling and geochemical sampling occurred in August 2005. Ten temperature gradient holes up to 500 deep were initially planned but higher than anticipated drilling and permitting costs within a fixed budget reduced the number of holes to five. Four of the five holes drilled to depths of 300 to 400 encountered temperatures close to the expected regional thermal background conditions. These four holes failed to find any evidence of a large thermal anomaly surrounding the UHCR hot springs. The fifth hole, located within a narrow part of Hot Creek Canyon, encountered a maximum temperature of 81 oF at a depth of 105 but had cooler temperatures at greater depth. Temperature data from this hole can not be extrapolated to greater depths. Any thermal anomaly associated with the UHCR geothermal system is apparently confined to the immediate vicinity of Hot Creek Canyon where challenges such as topography, a wilderness study area, and wetlands issues will make further exploration time consuming and costly. Ten water samples were collected for chemical analysis and interpretation. Analyses of three samples of the UHCR thermal give predicted subsurface temperatures ranging from 317 to 334 oF from the Na-K-Ca, silica (quartz), and Na-Li geothermometers. The fact that all three thermometers closely agree gives the predictions added credibility. Unfortunately, the final result of this exploration is that a moderate temperature geothermal resource has been clearly identified but it appears to be restricted to a relatively small area that would be difficult to develop.

Dick Benoit; David Blackwell

2005-10-31T23:59:59.000Z

316

Exploration of the Upper Hot Creek Ranch Geothermal Resource, Nye County, Nevada  

DOE Green Energy (OSTI)

The Upper Hot Creek Ranch (UHCR) geothermal system had seen no significant exploration activity prior to initiation of this GRED III project. Geochemical geothermometers calculated from previously available but questionable quality analyses of the UHCR hot spring waters indicated possible subsurface temperatures of +320 oF. A complex Quaternary and Holocene faulting pattern associated with a six mile step over of the Hot Creek Range near the UHCR also indicated that this area was worthy of some exploration activity. Permitting activities began in Dec. 2004 for the temperature-gradient holes but took much longer than expected with all drilling permits finally being received in early August 2005. The drilling and geochemical sampling occurred in August 2005. Ten temperature gradient holes up to 500 deep were initially planned but higher than anticipated drilling and permitting costs within a fixed budget reduced the number of holes to five. Four of the five holes drilled to depths of 300 to 400 encountered temperatures close to the expected regional thermal background conditions. These four holes failed to find any evidence of a large thermal anomaly surrounding the UHCR hot springs. The fifth hole, located within a narrow part of Hot Creek Canyon, encountered a maximum temperature of 81 oF at a depth of 105 but had cooler temperatures at greater depth. Temperature data from this hole can not be extrapolated to greater depths. Any thermal anomaly associated with the UHCR geothermal system is apparently confined to the immediate vicinity of Hot Creek Canyon where challenges such as topography, a wilderness study area, and wetlands issues will make further exploration time consuming and costly. Ten water samples were collected for chemical analysis and interpretation. Analyses of three samples of the UHCR thermal give predicted subsurface temperatures ranging from 317 to 334 oF from the Na-K-Ca, silica (quartz), and Na-Li geothermometers. The fact that all three thermometers closely agree gives the predictions added credibility. Unfortunately, the final result of this exploration is that a moderate temperature geothermal resource has been clearly identified but it appears to be restricted to a relatively small area that would be difficult to develop.

Dick Benoit; David Blackwell

2006-01-01T23:59:59.000Z

317

EA-1895: Lolo Creek Permanent Weir Construction near town of Weippe, Clearwater County, Idaho  

Energy.gov (U.S. Department of Energy (DOE))

DOEs Bonneville Power Administration is preparing this EA to evaluate the potential environmental impacts of replacing an existing seasonal fish weir with a permanent weir, which would be used to monitor federally-listed Snake River steelhead and collect spring Chinook salmon adults to support ongoing supplementation programs in the watershed. The Bureau of Land Management, a cooperating agency, preliminarily determined Lolo Creek to be suitable for Congressional designation into the Wild and Scenic River System. The EA includes a Wild and Scenic River Section 7 analysis.

318

Improvement of Anadromous Fish Habitat and Passage in Omak Creek, 2008 Annual Report : February 1, 2008 to January 31, 2009.  

DOE Green Energy (OSTI)

During the 2008 season, projects completed under BPA project 2000-100-00 included installation of riparian fencing, maintenance of existing riparian fencing, monitoring of at-risk culverts and installation of riparian vegetation along impacted sections of Omak Creek. Redd and snorkel surveys were conducted in Omak Creek to determine steelhead production. Canopy closure surveys were conducted to monitor riparian vegetation recovery after exclusion of cattle since 2000 from a study area commonly known as the Moomaw property. Additional redd and fry surveys were conducted above Mission Falls and in the lower portion of Stapaloop Creek to try and determine whether there has been successful passage at Mission Falls. Monitoring adult steelhead trying to navigate the falls resulted in the discovery of shallow pool depth at an upper pool that is preventing many fish from successfully navigating the entire falls. The Omak Creek Habitat and Passage Project has worked with NRCS to obtain additional funds to implement projects in 2009 that will address passage at Mission Falls, culvert replacement, as well as additional riparian planting. The Omak Creek Technical Advisory Group (TAG) is currently revising the Omak Creek Watershed Assessment. In addition, the group is revising strategy to focus efforts in targeted areas to provide a greater positive impact within the watershed. In 2008 the NRCS Riparian Technical Team was supposed to assess areas within the watershed that have unique problems and require special treatments to successfully resolve the issues involved. The technical team will be scheduled for 2009 to assist the TAG in developing strategies for these special areas.

Dasher, Rhonda; Fisher, Christopher [Colville Confederated Tribes

2009-06-09T23:59:59.000Z

319

B I OENV I RONMENTAL FEATURES OF THE OGOTORUK CREEK AREA, CAPE THOMPSON, ALASKA  

Office of Legacy Management (LM)

B I OENV I RONMENTAL FEATURES B I OENV I RONMENTAL FEATURES OF THE OGOTORUK CREEK AREA, CAPE THOMPSON, ALASKA A First Summary by The Committee on Environmental Studies for Project Chariot . . December 1960 r Division of Biology and Medicine, AEC Washington, D. C. IT U S WEGWS LIBIA3"b This page intentionally left blank NUCLEAR EXPLOSIONS -PEACE UL APPLICATIONS . . BIOLOGY AND MEDICINE BIOENVIRONMENTAL FEATURES OF THE OGOTORUK CREEK AREA . . CAPE THOMPSON, ALASKA A F i r s t Sumnary The C o d t t e e on E n v i r o n m e n t a l S t u d i e s for P r o j e c t C h a r i o t PLllWSHARE PROGRAM THE UNITED STATES ATOMIC ENERGY COMMISSION December, 1 9 6 0 MAP OF ALASKA - CHARIOT LOCATION SCALE IN MILES . 111*1.1) , FOREWORD . . This summary is based on the reports on more than 30 bioenvironmental investigations carried out' in the Cape Thompson area in Alaska since

320

West Foster Creek 2007 Follow-up Habitat Evaluation Procedures (HEP) Report.  

DOE Green Energy (OSTI)

A follow-up habitat evaluation procedures (HEP) analysis was conducted on the West Foster Creek (Smith acquisition) wildlife mitigation site in May 2007 to determine the number of additional habitat units to credit Bonneville Power Administration (BPA) for providing funds to enhance and maintain the project site as partial mitigation for habitat losses associated with construction of Grand Coulee Dam. The West Foster Creek 2007 follow-up HEP survey generated 2,981.96 habitat units (HU) or 1.51 HUs per acre for a 34% increase (+751.34 HUs) above baseline HU credit (the 1999 baseline HEP survey generated 2,230.62 habitat units or 1.13 HUs per acre). The 2007 follow-up HEP analysis yielded 1,380.26 sharp-tailed grouse (Tympanuchus phasianellus) habitat units, 879.40 mule deer (Odocoileus hemionus) HUs, and 722.29 western meadowlark (Sturnella neglecta) habitat units. Mule deer and sharp-tailed grouse habitat units increased by 346.42 HUs and 470.62 HUs respectively over baseline (1999) survey results due largely to cessation of livestock grazing and subsequent passive restoration. In contrast, the western meadowlark generated slightly fewer habitat units in 2007 (-67.31) than in 1999, because of increased shrub cover, which lowers habitat suitability for that species.

Ashley, Paul R.

2008-02-01T23:59:59.000Z

Note: This page contains sample records for the topic "red wing creek" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

Structural integrity analysis of the degraded drywell containment at the Oyster Creek Nuclear generating station.  

SciTech Connect

This study examines the effects of the degradation experienced in the steel drywell containment at the Oyster Creek Nuclear Generating Station. Specifically, the structural integrity of the containment shell is examined in terms of the stress limits using the ASME Boiler and Pressure Vessel (B&PV) Code, Section III, Division I, Subsection NE, and examined in terms of buckling (stability) using the ASME B&PV Code Case N-284. Degradation of the steel containment shell (drywell) at Oyster Creek was first observed during an outage in the mid-1980s. Subsequent inspections discovered reductions in the shell thickness due to corrosion throughout the containment. Specifically, significant corrosion occurred in the sandbed region of the lower sphere. Since the presence of the wet sand provided an environment which supported corrosion, a series of analyses were conducted by GE Nuclear Energy in the early 1990s. These analyses examined the effects of the degradation on the structural integrity. The current study adopts many of the same assumptions and data used in the previous GE study. However, the additional computational recourses available today enable the construction of a larger and more sophisticated structural model.

Petti, Jason P.

2007-01-01T23:59:59.000Z

322

Toms Creek integrated gasification combined cycle demonstration project. Quarterly report, July 1--September 30, 1993  

SciTech Connect

The use of an upgraded version of General Electric`s Frame 6 gas turbine, which has been designated as Frame 6 (FA) will make a significant improvement to the thermal efficiency and overall economics of the Toms Creek Project. Replacing the smaller, less efficient Frame 6 (B) gas turbine with the new Frame 6 (FA) will increase the net power production from a nominal 55 MW to 105 MW. The coal feed rate will correspondingly increase from 430 tpd to 740 tpd. All process flows and equipment sizes will be increased accordingly. Selected process parameters for the original and revised Toms Creek IGCC plant configurations are compared in Table 2. There is an approximately 10% increase in net plant efficiency for the revised configuration. Using this increased plant size, the pressure vessels become larger due to an increased through-put, but are still dimensioned for shop fabrication and over-the-road shipment. The preliminary cost estimate for the enlarged demonstration plant was prepared by factoring the estimates for the original plant. Revised quotes for the larger equipment will be solicited and used to generate more accurate cost information for the revised plant.

Feher, G.

1993-11-30T23:59:59.000Z

323

Reedy Creek Utilities, Lake Buena Vista, Florida, solar energy system performance evaluation, December 1979-March 1980  

DOE Green Energy (OSTI)

The Reedy Creek solar system operated moderately well during the December 1979 through March 1980 heating season. The overall performance of the system was below estimated design performance but the solar system still supplied 47% of the building conditioning loads. The thermal performance is summarized. The system failed to reach design performance levels in the cooling subsystem. Since the cooling load of 40.24 million Btu was nearly three times larger than the space heating and domestic hot water loads of 14.44 million Btu, the overall system performance was significantly reduced. Although collected solar energy exceeds the system load in most months, the solar fraction is necessarily less than 100% due to the normal operating inefficiencies of pumps, heat exchanger, and particularly the absorption chiller. At Reedy Creek, excessive storage losses, presumably due to high storage temperatures, further degrade system performance. Collector array efficiency based on the total incident solar radiation was 11%. This was significantly lower than the 14% collector array efficiency for the 1979 heating season.

Logee, T.

1980-01-01T23:59:59.000Z

324

Restoring Anadromous Fish Habitat in the Lapwai Creek Watershed, Technical Report 2003-2006.  

DOE Green Energy (OSTI)

The Restoring Anadromous Fish Habitat in the Lapwai Creek Watershed is a multi-phase project to enhance steelhead trout in the Lapwai Creek watershed by improving salmonid spawning and rearing habitat. Habitat is limited by extreme high runoff events, low summer flows, high water temperatures, poor instream cover, spawning gravel siltation, and sediment, nutrient and bacteria loading. Funded by the Bonneville Power Administration (BPA) as part of the Northwest Power Planning Council's Fish and Wildlife Program, the project assists in mitigating damage to steelhead runs caused by the Columbia River hydroelectric dams. The project is sponsored by the Nez Perce Soil and Water Conservation District (District). Target fish species include steelhead trout (Oncorhynchus mykiss). Steelhead trout within the Snake River Basin were listed in 1997 as threatened under the Endangered Species Act. Accomplishments for the contract period December 1, 2003 through February 28, 2004 include; seven grade stabilization structures, 0.67 acres of wetland plantings, ten acres tree planting, 500 linear feet streambank erosion control, two acres grass seeding, and 120 acres weed control.

Rasmussen, Lynn

2007-02-01T23:59:59.000Z

325

Regulatory compliance issues related to the White Oak Creek Embayment time-critical removal action  

SciTech Connect

In September 1990, Martin Marietta Energy Systems (Energy Systems) discovered high levels of Cesium-137 ({sup 137}Cs) in surface sedimenus near the mouth of White Oak Creek Embayment (WOCE). White Oak Creek (WOC) receives surface water drainage from Oak Ridge National Laboratory. Since this discovery, the Department of Energy (DOE) and Energy Systems have pursued actions designed to stabilize the contaminated WOCE sediments under provisions of the Comprehensive Environmental Response, Compensation and Liability Act (CERCLA), and the implementing regulations in the National Contingency Plan (NCP) (40 CFR Part 300), as a time-critical removal action. By definition, a time-critical removal is an action where onsite activities are initiated within six months of the determination that a removal action is appropriate. Time-critical removal actions allow comparatively rapid mobilization to protect human health and the environment without going through the lengthy and extensive CERCLA Remedial Investigation/Feasibility Study/Record of Decision process. Many aspects of the project, in terms of compliance with the substantive requirements of the NCP and ARARs, have exceeded the regulatory requirements, despite the fact that there is no apparent authority on conducting removal actions at Federal facilities. Much of the interpretation of the NCP was groundbreaking in nature for both EPA and DOE. 4 refs., 2 figs.

Leslie, M. (CDM Federal Programs Corp., Oak Ridge, TN (United States)); Kimmel, B.L. (Oak Ridge National Lab., TN (United States))

1991-01-01T23:59:59.000Z

326

Restoring Anadromous Fish Habitat in Big Canyon Creek Watershed, 2004-2005 Annual Report.  

DOE Green Energy (OSTI)

The ''Restoring Anadromous Fish Habitat in the Big Canyon Creek Watershed'' is a multi-phase project to enhance steelhead trout in the Big Canyon Creek watershed by improving salmonid spawning and rearing habitat. Habitat is limited by extreme high runoff events, low summer flows, high water temperatures, poor instream cover, spawning gravel siltation, and sediment, nutrient and bacteria loading. Funded by the Bonneville Power Administration (BPA) as part of the Northwest Power Planning Council's Fish and Wildlife Program, the project assists in mitigating damage to steelhead runs caused by the Columbia River hydroelectric dams. The project is sponsored by the Nez Perce Soil and Water Conservation District. Target fish species include steelhead trout (Oncorhynchus mykiss). Steelhead trout within the Snake River Basin were listed in 1997 as threatened under the Endangered Species Act. Accomplishments for the contract period September 1, 2004 through October 31, 2005 include; 2.7 riparian miles treated, 3.0 wetland acres treated, 5,263.3 upland acres treated, 106.5 riparian acres treated, 76,285 general public reached, 3,000 students reached, 40 teachers reached, 18 maintenance plans completed, temperature data collected at 6 sites, 8 landowner applications received and processed, 14 land inventories completed, 58 habitat improvement project designs completed, 5 newsletters published, 6 habitat plans completed, 34 projects installed, 2 educational workshops, 6 displays, 1 television segment, 2 public service announcements, a noxious weed GIS coverage, and completion of NEPA, ESA, and cultural resources requirements.

Rasmussen, Lynn (Nez Perce Soil and Conservation District, Lewiston, ID)

2006-07-01T23:59:59.000Z

327

The Oak Ridge Y-12 Plant biological monitoring and abatement program for East Fork Poplar Creek  

SciTech Connect

In May 1985, a National Pollutant Discharge Elimination System permit was issued for the Oak Ridge Y-12 Plant, a nuclear weapons components production facility located in Oak Ridge, Tennessee, and operated by Martin Marietta Energy Systems, Inc., for the US Department of Energy. As a condition of the permit, a Biological Monitoring and Abatement Program (BMAP) was developed to demonstrate that the effluent limitations established for the Oak Ridge Y-12 Plant protect the classified uses of the receiving stream (East Fork Poplar Creek), in particular, the growth and propagation of fish and aquatic life, as designated by the Tennessee Department of Health and Environment. A second purpose for the BMAP is to document the ecological effects resulting from implementation of a water pollution control program that will include construction of nine new wastewater treatment facilities over the next 4 years. Because of the complex nature of the effluent discharged to East Fork Poplar Creek and the temporal and spatial variability in the composition of the effluent (i.e., temporal variability related to various pollution abatement measures that will be implemented over the next several years and spatial variability caused by pollutant inputs downstream of the Oak Ridge Y-12 Plant), a comprehensive, integrated approach to biological monitoring was developed for the BMAP. 39 refs., 5 figs., 8 tabs.

Loar, J.M.; Adams, S.M.; Allison, L.J.; Giddings, J.M.; McCarthy, J.F.; Southworth, G.R.; Smith, J.G.; Stewart, A.J. (Oak Ridge National Lab., TN (USA); Springborn Bionomics, Inc., Wareham, MA (USA); Oak Ridge National Lab., TN (USA))

1989-10-01T23:59:59.000Z

328

Passive gust load alleviation through bend-twist coupling of composite beams on typical commercial airplane wings  

E-Print Network (OSTI)

The effects of bend-twist coupling on typical commercial airplane wings are evaluated. An analytical formulation of the orthotropic box beam bending stiffness matrix is derived by combining Euler-Bernoulli beam theory and ...

Gauthier Perron, Sbastien

2012-01-01T23:59:59.000Z

329

An Improved Red Spectrum of the Methane or T-dwarf SDSS 1624+0029 Role of the Alkali Metals  

E-Print Network (OSTI)

A Keck II low resolution spectrum shortward of ome-micron is presented forSDSS 1624+0029, the first field methane or T dwarf discovered in the SloanDigital Sky Survey. Significant flux is detected down to the spectrum's shortwavelength limit of 6200 AA. The spectrum exhibits a broad absorption featurecentered at 7700 AA, which we interpret as the K I 7665/7699 resonance doublet.The observed flux declines shortward of 7000 AA, due most likely to the redwing of the Na I doublet. Both Cs I doublet lines are detected more stronglythan in an earlier red spectrum. Neither Li I absorption nor H$\\alpha$ emissionare detected. An exploratory model fit to the spectrum suggests that the shapeof the red spectrum can be primarily accounted for by the broad wings of the KI and Na I doublets. This behavior is consistent with the argument proffered byBurrows, Marley and Sharp that strong alkali absorption is principallyresponsible for depressing T dwarf spectra shortward of 1$\\mu$m. In particular,there seems no compelling rea...

Liebert, J; Burrows, A; Burgasser, A J; Kirkpatrick, J D; Gizis, J E; Liebert, James; Burrows, Adam; Burgasser, Adam J.; Gizis, John E.

2000-01-01T23:59:59.000Z

330

Rooftop Solar Challenge to Cut Solar's Red Tape | Department...  

NLE Websites -- All DOE Office Websites (Extended Search)

Challenge to Cut Solar's Red Tape Rooftop Solar Challenge to Cut Solar's Red Tape December 1, 2011 - 4:35pm Addthis Ginny Simmons Ginny Simmons Former Managing Editor for...

331

T-649: Red Hat Network Satellite Server Request Validation Flaw...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

of Red Hat Network Satellite 5.4.1 are advised to upgrade to these updated spacewalk-java packages, which resolve this issue. For this update to take effect, Red Hat Network...

332

Rooftop Solar Challenge to Cut Solar's Red Tape | Department...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Rooftop Solar Challenge to Cut Solar's Red Tape Rooftop Solar Challenge to Cut Solar's Red Tape December 1, 2011 - 4:35pm Addthis Ginny Simmons Ginny Simmons Former Managing Editor...

333

Redding Regional Science Bowl | U.S. DOE Office of Science (SC...  

Office of Science (SC) Website

Cypress Avenue Redding, CA Regional Event information: Competition Location: Redding Electric Utility Address: Simpson University; 2211 College View Drive; Redding, CA 96003...

334

Re-Introduction of Lower Columbia River Chum Salmon into Duncan Creek, 2003-2004 Annual Report.  

Science Conference Proceedings (OSTI)

Currently, two methods of reintroduction are being simultaneously evaluated at Duncan Creek. Recolonization is occurring by introducing adult chum salmon from the Lower Gorge (LG) population into Duncan Creek and allowing them to naturally reproduce. The supplementation strategy required adults to be collected and artificially spawned, incubated, reared, and released at the mouth of Duncan Creek. All eggs from the artificial crossings at Washougal Hatchery were incubated and the fry reared to release size at the hatchery. The Duncan Creek chum salmon project was very successful in 2003-04, providing knowledge and experience that will improve program execution in future years. The gear used to collect adult brood stock was changed from tangle nets to beach seines. This increased efficiency and the speed at which adults could be processed in the field, and most likely reduced stress on the adults handled. Certain weaknesses exposed in past seasons still exist and new ones were exposed (e.g. inadequate incubation and rearing space at Washougal Hatchery for any large salvage operation and having to move the rearing troughs outside the raceway in 2004). Egg-to-fry survival rates of 64% and 58% showed that the channels are functioning at the upper end of what can be expected from them. Possibly the most important event this season was the ability to strontium mark and release all naturally-produced fry from the spawning channels. Channel and floodplain modifications reduced the likelihood that floods will damage the channels and negatively impact survival rates.

Hillson, Todd D. (Washington Department of Fish and Wildlife, Olympia, WA)

2004-09-01T23:59:59.000Z

335

Analysis of soil and water at the Four Mile Creek seepline near the F- and H-Areas of SRS  

Science Conference Proceedings (OSTI)

Several soil and water samples were collected along the Four Mile Creek (FMC) seepline at the F and H Areas of the Savannah River Site. The samples were analyzed for concentrations of metals, radionuclides, and inorganic constituents. The results of the analyses are summarized for the soil and water samples.

Haselow, J.S.

2000-05-24T23:59:59.000Z

336

Superfund Record of Decision (EPA Region 8): Anaconda Smelter Site, Mill Creek, Montana (first remedial action), October 1988  

Science Conference Proceedings (OSTI)

The 160-acre community of Mill Creek is located in Deerlodge County, Montana, immediately adjacent to the Anaconda Smelter NPL site. The community of Mill Creek has been contaminated for over 100 years with smelter emissions, fugitive emissions of flu dust at the smelter, and continued fugitive emissions emanating from adjacent highly contaminated soils. Settled flue emissions in the community of Mill Creek, from the now-defunct copper-smelting operation, contain arsenic, cadmium, and lead. Environmental siting of the community and biological testing of pre-school children, led EPA to conclude that contamination in the Mill Creek area poses an imminent and substantial endangerment to the health of individuals residing there. The primary contaminant of concern at this site is arsenic. Cadmium and lead are secondary contaminants of concern. The selected remedial action for the site includes: permanent relocation of all residents (8 homes) with temporary erosional stabilization of disturbed areas by establishing and maintaining a vegetative cover; demolition, consolidation, and storage.

Not Available

1988-10-02T23:59:59.000Z

337

Performance and operation of a crosslinked polymer flood at Sage Spring Creek Unit A, Natrona County, Wyoming  

Science Conference Proceedings (OSTI)

This paper reviews field geology and development, characterizes the reservoir, evaluates secondary performance, and describes the design and benefits of a polymer program. Performance of the Sage Spring Creek Unit A confirms a high flood efficiency and superior oil recovery. The sweep improvement program is a technical and economic success.

Mack, J.C.; Warren, J.

1984-07-01T23:59:59.000Z

338

Lake Roosevelt Fisheries Evaluation Program; Meadow Creek vs. Lake Whatcom Stock Kokanee Salmon Investigations in Lake Roosevelt, Annual Report 2002.  

DOE Green Energy (OSTI)

Lake Whatcom, Washington kokanee have been stocked in Lake Roosevelt since 1987 with the primary objective of creating a self-sustaining fishery. Success has been limited by low recruitment to the fishery, low adult returns to hatcheries, and a skewed sex ratio. It was hypothesized that a stock native to the upper Columbia River might perform better than the coastal Lake Whatcom stock. Kokanee from Meadow Creek, a tributary of Kootenay Lake, British Columbia were selected as an alternative stock. Post smolts from each stock were released from Sherman Creek Hatchery in late June 2000 and repeated in 2001. Stock performance was evaluated using three measures; (1) number of returns to Sherman Creek, the primary egg collection facility, (2) the number of returns to 86 tributaries sampled and, (3) the number of returns to the creel. In two repeated experiments, neither Meadow Creek or Lake Whatcom kokanee appeared to be capable of providing a run of three-year old spawners to sustain stocking efforts. Less than 10 three-years olds from either stock were collected during the study period. Chi-square analysis indicated age two Meadow Creek kokanee returned to Sherman Creek and to other tributaries in significantly higher numbers when compared to the Lake Whatcom stock in both 2000 and 2001. However, preliminary data from the Spokane Tribe of Indians indicated that a large number of both stocks were precocial before they were stocked. The small number of hatchery three-year olds collected indicated that the current hatchery rearing and stocking methods will continue to produce a limited jacking run largely composed of precocious males and a small number of three-year olds. No kokanee from the study were collected during standard lake wide creel surveys. Supplemental creel data, including fishing derbies, test fisheries, and angler diaries, indicated anglers harvested two-year-old hatchery kokanee a month after release. The majority of the two-year old kokanee harvested were from a direct stock at the Fort Spokane boat launch. Only Lake Whatcom kokanee were stocked from the boat launch, therefore stock performance was not evaluated, however the high success of the stocking location will likely increase harvest of hatchery kokanee in the future. Despite low numbers of the targeted three-year olds, Meadow Creek kokanee should be stocked when possible to promote fish native to the upper Columbia River.

McLellan, Holly

2003-03-01T23:59:59.000Z

339

Sherman Creek Hatchery; Washington Department of Fish and Wildlife Fish Program, 2003 Annual Report.  

DOE Green Energy (OSTI)

Sherman Creek Hatchery's primary objective is the restoration and enhancement of the recreational and subsistence fishery in Lake Roosevelt and Banks Lake. The Sherman Creek Hatchery (SCH) was designed to rear 1.7 million kokanee fry for acclimation and imprinting during the spring and early summer. Additionally, it was designed to trap all available returning adult kokanee during the fall for broodstock operation and evaluation. Since the start of this program, the operations on Lake Roosevelt have been modified to better achieve program goals. The Washington Department of Fish and Wildlife, Spokane Tribe of Indians and the Colville Confederated Tribes form the interagency Lake Roosevelt Hatcheries Coordination Team (LRHCT) which sets goals and objectives for both Sherman Creek and the Spokane Tribal Hatchery. The LRHCT also serves to coordinate enhancement efforts on Lake Roosevelt and Banks Lake. Since 1994 the kokanee fingerling program has changed to yearling releases. By utilizing both the hatcheries and additional net pens, up to 1,000,000 kokanee yearlings can be reared and released. The construction and operation of twenty net pens in 2001 enabled the increased production. Another significant change has been to rear up to 300,000 rainbow trout fingerling at SCH from July through October, for stocking into the volunteer net pens. This enables the Spokane Tribal Hatchery (STH) to rear additional kokanee to further the enhancement efforts on Lake Roosevelt. Current objectives include increased use of native tributary stocks where available for propagation into Upper Columbia River Basin waters. The Lake Roosevelt Fisheries Evaluation Program (LRFEP) is responsible for monitoring and evaluation on the Lake Roosevelt Projects. From 1988 to 1998, the principal sport fishery on Lake Roosevelt has shifted from walleye to include rainbow trout and kokanee salmon (Underwood et al. 1997, Tilson and Scholz 1997). The angler use, harvest rates for rainbow and kokanee and the economic value of the fishery has increased substantially during this 10-year period. The investigations on the lake also suggest that the hatchery and net pen programs have enhanced the Lake Roosevelt fishery while not negatively impacting wild and native stocks within the lake. The 2003 Fourth Annual Two Rivers Trout Derby was again a great success. The harvest and data collection were the highest level to date with 1,668 rainbow trout and 416 kokanee salmon caught. The fishermen continue to praise the volunteer net pen program and the hatchery efforts as 90% of the rainbows and 93% of the kokanee caught were of hatchery origin (Lee, 2003).

Lovrak, Jon (Washington Department of Fish and Wildlife, Fish Management Program, Hatcheries Division, Ford, WA); Combs, Mitch (Washington Department of Fish and Wildlife, Fish Management Program, Hatcheries Division, Kettle Falls, WA)

2004-01-01T23:59:59.000Z

340

Sherman Creek Hatchery; Washington Department of Fish and Wildlife Fish Program, 2001 Annual Report.  

DOE Green Energy (OSTI)

Sherman Creek Hatchery's primary objective is the restoration and enhancement of the recreational and subsistence fishery in Lake Roosevelt and Banks Lake. The Sherman Creek Hatchery (SCH) was designed to rear 1.7 million kokanee fry for acclimation and imprinting during the spring and early summer. Additionally, it was designed to trap all available returning adult kokanee during the fall for broodstock operations and evaluations. Since the start of this program, the operations on Lake Roosevelt have been modified to better achieve program goals. The Washington Department of Fish and Wildlife, Spokane Tribe of Indians and the Colville Confederated Tribe form the interagency Lake Roosevelt Hatcheries Coordination Team (LRHCT) which sets goals and objectives for both Sherman Creek and the Spokane Tribal Hatchery and serves to coordinate enhancement efforts on Lake Roosevelt and Banks Lake. The primary changes have been to replace the kokanee fingerling program with a yearling (post smolt) program of up to 1,000,000 fish. To construct and operate twenty net pens to handle the increased production. The second significant change was to rear up to 300,000 rainbow trout fingerling at SCH from July through October, for stocking into the volunteer net pens. This enables the Spokane Tribal Hatchery (STH) to rear additional kokanee to further the enhancement efforts on Lake Roosevelt. Current objectives include increased use of native/indigenous stocks where available for propagation into Upper Columbia River Basin Waters. Monitoring and evaluation is preformed by the Lake Roosevelt Fisheries Monitoring Program. From 1988 to 1998, the principle sport fishery on Lake Roosevelt has shifted from walleye to include rainbow trout and kokanee salmon (Underwood et al. 1997, Tilson and Scholz 1997). The angler use, harvest rates for rainbow and kokanee and the economic value of the fishery has increased substantially during this 10-year period. The most recent information from the monitoring program also suggests that the hatchery and net pen rearing programs have been beneficial to enhancing the Lake Roosevelt fishery while not negatively impacting wild and native stocks within the lake. The 2001 fishing season has been especially successful with great fishing for both rainbow and kokanee throughout Lake Roosevelt. The results of the Two Rivers Fishing Derby identified 100 percent of the rainbow and 47 percent of the kokanee caught were of hatchery origin.

Combs, Mitch (Washington Department of Fish and Wildlife, Kettle Falls, WA)

2002-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "red wing creek" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

Is the Missing Ultra-Red Material Colorless Ice?  

E-Print Network (OSTI)

The extremely red colors of some transneptunian objects and Centaurs are not seen among the Jupiter family comets which supposedly derive from them. Could this mismatch result from sublimation loss of colorless ice? Radiative transfer models show that mixtures of volatile ice and nonvolatile organics could be extremely red, but become progressively darker and less red as the ice sublimates away.

Grundy, W M

2008-01-01T23:59:59.000Z

342

Is the Missing Ultra-Red Material Colorless Ice?  

E-Print Network (OSTI)

The extremely red colors of some transneptunian objects and Centaurs are not seen among the Jupiter family comets which supposedly derive from them. Could this mismatch result from sublimation loss of colorless ice? Radiative transfer models show that mixtures of volatile ice and nonvolatile organics could be extremely red, but become progressively darker and less red as the ice sublimates away.

W. M. Grundy

2008-11-14T23:59:59.000Z

343

Red Leaf Resources and the Commercialization of Oil Shale  

E-Print Network (OSTI)

Red Leaf Resources and the Commercialization of Oil Shale #12;About Red Leaf Resources 2006 Company commercial development field activities #12;Highlights Proven, Revolutionary Oil Shale Extraction Process Technology Significant Owned Oil Shale Resource #12;· The executive management team of Red Leaf Resources

Utah, University of

344

Automatic red tide detection from MODIS satellite images  

Science Conference Proceedings (OSTI)

Red tides pose a significant environmental and economic threat in the Gulf of Mexico. Timely detection of red tides is important for understanding this phenomenon. In this paper, learning approaches based on k-nearest neighbors, random forests and support ... Keywords: florida's red tides, k-nearest neighbors, random forests, remote sensing, support vector machines

Weijian Cheng; Lawrence O. Hall; Dmitry B. Goldgof; Inia M. Soto; Chuanmin Hu

2009-10-01T23:59:59.000Z

345

A Fisheries Evaluation of the Wapato, Sunnyside and Toppenish Creek Canal Fish Screening Facilities, Spring 1988 : Annual Report.  

DOE Green Energy (OSTI)

We evaluated the effectiveness of new screening facilities at the Toppenish Creek, Wapato, and Sunnyside canals in southcentral Washington State. Screen integrity tests indicated that fish released in front of the screens were prevented from entering the canal behind the screens. Screen efficiency estimates are 99% ({+-}0.6%) for Toppenish Creek, 99% ({+-}0.3%) for Wapato, and 98% ({+-}0.5%) for Sunnyside. During 1987 at the Wapato Canal, we estimated screen efficiency was 97% ({+-}l%). We conducted descaling tests at the Toppenish Creek Screens. We estimated that 0.2% of steelhead Qncorhynchus mykiss smelts released during tests were descaled. None of the fish released through the fish return pipe were descaled. We measured the time required for fish to move through the screen facilities. The time required for 50% of the test fish to exit the Toppenish Creek Screen forebay was 4 to 9 h for rainbow trout fry and up to 39 h for steelhead smelts. The time for 50% of the test fish to exit the Wapato and Sunnyside screen forebays was less than 8 h. As with past studies, exit times varied with canal flow and species. After 39 h at Toppenish Creek, half the steelhead smelts were still in the forebay when canal flows were 20 cfs. At Sunnyside, half the chinook salmon fry exited the forebay in 1 h or less. Methods used in 1988 were the same as those used at Sunnyside in 1985 and in subsequent years at Richland, Toppenish/Satus, and Wapato. The methods and previous results have been reviewed by the Washington State Department of Fisheries, U.S. Fish and Wildlife Service, National Marine Fisheries Service, Northwest Power Planning Council, and Yakima Indian Nation.

Neitzel, Duane A.; Abernethy, C. Scott; Lusty, E. William (Pacific Northwest Laboratory)

1990-03-01T23:59:59.000Z

346

Constructive hierarchy through entitlement: inequality in lithic resource access among the ancient Maya of Blue Creek, Belize  

E-Print Network (OSTI)

This dissertation tests the theory that lithic raw materials were a strategic resource among the ancient Maya of Blue Creek, Belize that markedly influenced the development of socio-economic hierarchies at the site. Recent research has brought attention to the role of critical resource control as a mechanism contributing to the development of political economies among the ancient Maya. Such research has been primarily focused on the control of access to water and agricultural land. The examination of lithic raw materials as a critical economic resource is warranted as stone tools constituted a fundamental component of the ancient Maya economy. My research objectives include measuring raw material variability in the Blue Creek settlement zone and its immediate environs, assessing the amount of spatial and temporal variability present in the distribution of various raw materials, determining the degree to which proximity to a given resource influenced the relative level of its use, and testing whether differential resource access relates to variability in aggregate expressions of wealth. To meet these objectives, I examined 2136 formal stone tools and 24,944 pieces of debitage from excavations across the Blue Creek settlement zone, and I developed a lithic raw material type collection using natural outcrops. Significant spatial and temporal differences were observed in the use of various raw materials. Control of critical resources under conditions of scarcity is shown to have caused social stratification among the ancient Maya of Blue Creek. Initial disparities in use-right arrangements based on first occupancy rights produced substantial, accumulative inequality in economic capability and subsequent achievements. During the Early Classic period, these disproportionate allowances ultimately undermined the more egalitarian structure observed during the Preclassic. The Early Classic period at Blue Creek is characterized by increasing extravagance among the elites and increasing disenfranchisement throughout the hinterlands when compared to earlier periods. This suggests that elites at the site only became fully able to convert their resource monopolies into substantial gains in power, prestige, and wealth during the Classic period.

Barrett, Jason Wallace

2004-12-01T23:59:59.000Z

347

Optical Design of a Red Sensitive Spectrograph  

E-Print Network (OSTI)

We present a preliminary design for a red-sensitive spectrograph. The spectrograph is optimized to operate over the 600-1000nm spectral range at a resolution of ~2000 and is designed specifically for the 2.7-m Harlan J. Smith Telescope at McDonald Observatory. The design is compact and cost effective and should have very high throughput. The principles of the design can be extended to other purposes, such as a unit spectrograph for the DESpec project or other projects that require good performance in the red. In this paper, we will discuss the selection of components as well as the choice of optical layouts and the theoretical throughput of the instrument.

Martin, Emily 1988-

2012-05-01T23:59:59.000Z

348

Application of a damage model for rock fragmentation to the Straight Creek Mine blast experiments  

SciTech Connect

Early attempts at estimation of stress wave damage due to blasting by use of finite element calculations met with limited success due to numerical instabilities that prevented calculations from being carried past the fragmentation limit. More recently, the improved damage model PRONTO has allowed finite element calculations which remain stable and yield good agreement between calculated fragmented regions and excavated crater profiles for blasting experiments in granite. Application of this damage model to blast experiments at the Straight Creek Mine in Bell County, Kentucky were complicated by anisotropic conditions and uncertainties in material properties. It appears that significant modifications to the damage model and extensive material testing may be necessary in order to estimate damage in these anisotropic materials. 18 refs., 18 figs.

Thorne, B.J.

1991-09-01T23:59:59.000Z

349

Evaluate Habitat Use and Population Dynamics of Lampreys in Cedar Creek, 2001 Annual Report.  

DOE Green Energy (OSTI)

Pacific lamprey (Lampetra tridentata) in the Columbia River Basin have declined to a remnant of their pre-1940s populations and the status of the western brook lamprey (L. richardsoni) is unknown. Identifying the biological and ecological factors limiting lamprey populations is critical to their recovery, but little research has been conducted on these species within the Columbia River Basin. This ongoing, multi-year study examines lamprey populations in Cedar Creek, Washington, a third-order tributary to the Lewis River. This annual report describes the activities and results of the second year of this project. Adult (n = 24), metamorphosed (n = 247), transforming (n = 4), and ammocoete (n = 387) stages from both species were examined in 2001. Lamprey were captured using adult fish ladders, lamprey pots, rotary screw traps, and lamprey electrofishers. Twenty-nine spawning ground surveys were conducted. Nine strategic point-specific habitat surveys were performed to assess habitat requirements of juvenile lamprey.

Stone, Jennifer; Pirtle, Jody; Barndt, Scott A.

2002-03-31T23:59:59.000Z

350

DOEIJEA-1219 ENVIRONMENTAL ASSESSMENT HOE CREEK UNDERGROUND COAL GASIFICATION TEST SITE REMEDIATION  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

DOEIJEA-1219 DOEIJEA-1219 ENVIRONMENTAL ASSESSMENT HOE CREEK UNDERGROUND COAL GASIFICATION TEST SITE REMEDIATION CAMPBELL COUNTY, WYOMING October 1997 U.S. DEPARTMENT OF ENERGY FEDERAL ENERGY TECHNOLOGY CENTER This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or use- fulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any spe- cific commercial product, process. or service by trade name, trademark, manufac-

351

Microsoft Word - CX_PerryCreek_4.29.11.doc  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

, 2011 , 2011 REPLY TO ATTN OF: KEC-4 SUBJECT: Environmental Clearance Memorandum Cecilia Brown Project Manager - KEWM-4 Proposed Action: Provision of funds to Montana Fish, Wildlife and Parks for purchase of the Perry Creek Property. Fish and Wildlife Project No.: 2008-800-00, Contract 45235 Categorical Exclusion Applied (from Subpart D, 10 C.F.R. Part 1021): B1.25 Transfer, lease, disposition or acquisition of interests in uncontaminated land for habitat preservation or wildlife management, and only associated buildings that support these purposes. Uncontaminated means that there would be no potential for release of substances at a level, or in a form, that would pose a threat to public health or the environment. Location: Township 24 North, Range 17 West, Section 31, Lake County, Montana

352

Microsoft Word - 2012_Rapid_Lightening_Creek_Easement_CX_Rev2.doc  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

24, 2012 24, 2012 REPLY TO ATTN OF: KEC-4 SUBJECT: Environmental Clearance Memorandum Virgil Lee Watts Project Manager - KEWM-4 Proposed Action: AMENDED Provision of funds to the Idaho Department of Fish and Game (IDFG) to purchase the Rapid Lightning Creek Property. Fish and Wildlife Project No.: 1992-061-00 Categorical Exclusion Applied (from Subpart D, 10 C.F.R. Part 1021): B 1.25 Real property transfers for cultural resources protection, habitat preservation, and wildlife management. Location: Township 58 North, Range 1 West, Section 24 of Bonner County, Idaho Proposed by: Bonneville Power Administration (BPA) and IDFG Description of the Proposed Action: BPA proposes to provide funds to IDFG for a fee-simple title acquisition of an approximately 27-acre parcel of land adjacent to the Rapid Lightning and

353

Microsoft Word - CX-HillsCreek-LookoutPointWoodPolesFY12_WEB.docx  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

REPLY TO ATTN OF: KEP-Alvey SUBJECT: Environmental Clearance Memorandum Chad Hamel Project Manager - TEP-TPP-1 Proposed Action: Hills Creek-Lookout Point No. 1 wood pole replacements PP&A Project No.: 2315 (WO# 297311) Categorical Exclusion Applied (from Subpart D, 10 C.F.R. Part 1021): B1.3 Routine maintenance Location: Lane County, Oregon Proposed by: Bonneville Power Administration (BPA), Alvey District Description of the Proposed Action: BPA proposes to replace four deteriorating wood pole structures and associated structural/electrical components (e.g. cross arms, insulators, guy anchors) along the subject transmission line. The poles are located on private residential and US Forest Service land. Landowners will be notified prior to replacement activities. Replacement will be in-

354

Waste management plan for the Lower East Fork Poplar Creek Operable Unit, Oak Ridge, Tennessee  

SciTech Connect

The Lower East Fork Poplar Creek (LEFPC) Remedial Action project will remove mercury-contaminated soils from the floodplain of LEFPC, dispose of these soils at the Y-12 Plant Landfill V, and restore the affected floodplain. The waste management plan addresses management and disposition of all wastes generated during the LEFPC remedial action. Most of the solid wastes will be sanitary or construction/demolition wastes and will be disposed of at existing Y- 12 facilities. Some small amounts of hazardous waste are anticipated, along with possible low-level or mixed wastes (> 35 pCi/g). Liquid wastes will be generated which will be sanitary and capable of being disposed of at the Oak Ridge Sewage Treatment Plant, except sanitary sewage.

1996-04-01T23:59:59.000Z

355

Examination of eastern oil shale disposal problems - the Hope Creek field study  

SciTech Connect

A field-based study of problems associated with the disposal of processed Eastern oil shale was initiated in mid-1983 at a private research site in Montgomery County, Kentucky. The study (known as the Hope Creek Spent Oil Shale Disposal Project) is designed to provide information on the geotechnical, revegetation/reclamation, and leachate generation and composition characteristics of processed Kentucky oil shales. The study utilizes processed oil shale materials (retorted oil shale and reject raw oil shale fines) obtained from a pilot plant run of Kentucky oil shale using the travelling grate retort technology. Approximately 1000 tons of processed oil shale were returned to Kentucky for the purpose of the study. The study, composed of three components, is described. The effort to date has concentrated on site preparation and the construction and implementation of the field study research facilities. These endeavors are described and the project direction in the future years is defined.

Koppenaal, D.W.; Kruspe, R.R.; Robl, T.L.; Cisler, K.; Allen, D.L.

1985-02-01T23:59:59.000Z

356

An aerial radiological survey of Project Rulison and surrounding area, Battlement Creek Valley, Colorado  

SciTech Connect

An aerial radiological survey was conducted over the Project Rulison site, 40 miles (64 kilometers) northeast of Grand Junction, Colorado, from July 6 through July 12, 1993. Parallel lines were flown at intervals of 250 feet (76 meters) over a 6.5-square-mile (17-square-kilometer) area at a 200-foot (61-meter) altitude surrounding Battlement Creek Valley. The gamma energy spectra obtained were reduced to an exposure rate contour map overlaid on a high altitude aerial photograph of the area. The terrestrial exposure rate varied from 3.5 to 12.5 {mu}R/h (excluding cosmic) at 1 meter above ground level. No anomalous or man-made isotopes were found.

NONE

1995-08-01T23:59:59.000Z

357

Natural Propagation and Habitat Improvement Idaho: Lolo Creek and Upper Lochsa, Clearwater National Forest.  

DOE Green Energy (OSTI)

In 1983, the Clearwater National Forest and the Bonneville Power Administration (BPA) entered into a contractual agreement to improve anadromous fish habitat in selected tributaries of the Clearwater River Basin. This agreement was drawn under the auspices of the Northwest Power Act of 1980 and the Columbia River basin Fish and Wildlife Program (section 700). The Program was completed in 1990 and this document constitutes the Final Report'' that details all project activities, costs, accomplishments, and responses. The overall goal of the Program was to enhance spawning, rearing, and riparian habitats of Lolo Creek and major tributaries of the Lochsa River so that their production systems could reach full capability and help speed the recovery of salmon and steelhead within the basin.

Espinosa, F.A. Jr.; Lee, Kristine M.

1991-01-01T23:59:59.000Z

358

Protect and Restore Mill Creek Watershed; Annual Report 2004-2005.  

DOE Green Energy (OSTI)

The Nez Perce Tribe Department of Fisheries Resource Management, Watershed Division approaches watershed restoration with a ridge-top to ridge-top approach. The Nez Perce Tribe and the Nez Perce National Forest (NPNF) have formed a partnership in completing watershed restoration activities, and through this partnership, more work is accomplished by sharing funding and resources in our effort. The Nez Perce Tribe began watershed restoration projects within the Mill Creek watershed of the South Fork Clearwater River in 2000. Progress has been made in restoring the watershed through excluding cattle from critical riparian areas through fencing. Starting in FY 2002, continuing into 2004, trees were planted in riparian areas in the meadow of the upper watershed. In addition, a complete inventory of culverts at road-stream crossings was completed. Culverts have been prioritized for replacement to accommodate fish passage throughout the watershed, and one high priority culvert was replaced in 2004. Maintenance to the previously built fence was also completed.

McRoberts, Heidi (Nez Perce Tribe, Department of Fisheries Resource Management, Lapwai, ID)

2005-12-01T23:59:59.000Z

359

Protect and Restore Mill Creek Watershed; Annual Report 2003-2004.  

DOE Green Energy (OSTI)

The Nez Perce Tribe Department of Fisheries Resource Management, Watershed Division approaches watershed restoration with a ridge-top to ridge-top approach. The Nez Perce Tribe and the Nez Perce National Forest have formed a partnership in completing watershed restoration activities, and through this partnership, more work is accomplished by sharing funding and resources in our effort. The Nez Perce Tribe began watershed restoration projects within the Mill Creek watershed of the South Fork Clearwater River in 2000. Progress has been made in restoring the watershed through excluding cattle from critical riparian areas through fencing. Starting in FY 2002, continuing into 2004, trees were planted in riparian areas in the meadow of the upper watershed. In addition, a complete inventory of culverts at road-stream crossings was completed. Culverts have been prioritized for replacement to accommodate fish passage throughout the watershed, and designs completed on two of the high priority culverts. Maintenance to the previously built fence was also completed.

McRoberts, Heidi (Nez Perce Tribe, Department of Fisheries Resource Management, Lapwai, ID)

2004-06-01T23:59:59.000Z

360

Solar heating and cooling system for an office building at Reedy Creek Utilities  

DOE Green Energy (OSTI)

This final report describes in detail the solar energy system installed in a new two-story office building at the Reedy Creek Utilities Company, which provides utility service to Walt Disney World at Lake Buena Vista, Florida. The solar components were partly funded by the Department of Energy under Contract EX-76-C-01-2401, and the technical management was by NASA/George C. Marshall Space Flight Center. The solar energy system application is 100 percent heating, 80 percent cooling, and 100 percent hot water. The collector is a modular cylindrical concentrator type with an area of 3.840 square feet. The storage medium is water with a capacity of 10,000 gallons hot and 10,000 gallons chilled. Design, construction, operation, cost, maintenance, and performance are described in depth. Detailed drawings are included.

Not Available

1978-08-01T23:59:59.000Z

Note: This page contains sample records for the topic "red wing creek" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

Microsoft Word - JockoSpringCreek_Scott_Acquisition_CX_Final.doc  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

purchase of Jocko Spring Creek Property. Fish and Wildlife Project No.: 2002-003-00, Contract # BPA-44646 Categorical Exclusion Applied (from Subpart D, 10 C.F.R. Part 1021): B1.25 Transfer, lease, disposition or acquisition of interests in uncontaminated land for habitat preservation or wildlife management, and only associated buildings that support these purposes. Uncontaminated means that there would be no potential for release of substances at a level, or in a form, that would pose a threat to public health or the environment. Location: Township 17 North, Range 20 West, Section 26 of the Arlee Quad, in Lake County, Montana Proposed by: Bonneville Power Administration (BPA) and CSKT Description of the Proposed Action: BPA proposes to fund the acquisition of 126 acres of

362

Microsoft Word - CX-Rock_Creek-John_Day_No1_Spacer_WEB.doc  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

9, 2010 9, 2010 REPLY TO ATTN OF: KEP-4 SUBJECT: Environmental Clearance Memorandum Corinn Castro Project Manager - TELM-TPP-3 Proposed Action: Replace spacer dampers along the Rock Creek-John Day No. 1 500-kV transmission line; structures 1/1 to 4/2 and 6/4 to 11/2 Budget Information: Work Order #00234528 PP&A Project No.: PP&A 1167 Categorical Exclusion Applied (from Subpart D, 10 C.F.R. Part 1021): B1.3, Routine maintenance activities...for structures, rights-of-way, infrastructures such as roads, equipment...routine maintenance activities, corrective....are required to maintain... infrastructures...in a condition suitable for a facility to be used for its designed purpose. Proposed by: Bonneville Power Administration (BPA)

363

Microsoft Word - CX-BB3-Dragoon-Creek_WEB.doc  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

1, 2010 1, 2010 REPLY TO ATTN OF: KEPR-Bell-1 SUBJECT: Environmental Cleareance Memorandum Jason Moon - TELF-TPP-3 Project Manager Proposed Action: Provide heavy vehicular access across Dragoon Creek to maintain and service Bonneville Power Administration's (BPA) Bell-Boundary No.3 transmission line by replacing the existing wood stringer bridge with a precast or modular steel bridge. PP&A Project No.: PP&A 1574 Budget Information: 247745 Categorical Exclusion Applied (from Subpart D, 10 C.F.R. Part 1021): B1.3 Routine maintenance/custodial services for buildings, structures, infrastructures (e.g., pathways, roads, and railroads), equipment. B1.13 Construction, acquisition, and relocation of onsite pathways and short onsite access roads

364

Assess Current and Potential Salmonid Production in Rattlesnake Creek Associated with Restoration Efforts; Yakama Indian Nation, Annual Report 2002-2003.  

DOE Green Energy (OSTI)

This document represents the FY2002 BPA contract Statement of Work for the Yakama Nation (YN) portion of the project entitled 'Assessment of current and potential salmonid production in Rattlesnake Creek associated with restoration efforts'. The purpose of the project is to complete detailed surveys of water quality, fish populations, habitat conditions and riparian health in the Rattlesnake Creek sub-basin of the White Salmon River in south central Washington. Results of the surveys will be used to establish Rattlesnake Creek sub-basin baseline environmental factors prior to anticipated removal of Condit Dam in 2006 and enable cost-effective formulation of future watershed restoration strategies.

Morris, Gregory

2003-05-01T23:59:59.000Z

365

Characterization and Isolation of Constituents Causing Red Coloration in  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Characterization and Isolation of Constituents Causing Red Characterization and Isolation of Constituents Causing Red Coloration in Desert Arroyo Seepage Water Characterization and Isolation of Constituents Causing Red Coloration in Desert Arroyo Seepage Water Characterization and Isolation of Constituents Causing Red Coloration in Desert Arroyo Seepage Water Characterization and Isolation of Constituents Causing Red Coloration in Desert Arroyo Seepage Water More Documents & Publications Application of Environmental Isotopes to the Evaluation of the Origin of Contamination in a Desert Arroyo: Many Devils Wash, Shiprock, New Mexico Multivariate Statistical Analysis of Water Chemistry in Evaluating the Origin of Contamination in Many Devils Wash, Shiprock, New Mexico Natural Contamination from the Mancos Shale

366

Characterization and Isolation of Constituents Causing Red Coloration in  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Characterization and Isolation of Constituents Causing Red Characterization and Isolation of Constituents Causing Red Coloration in Desert Arroyo Seepage Water Characterization and Isolation of Constituents Causing Red Coloration in Desert Arroyo Seepage Water Characterization and Isolation of Constituents Causing Red Coloration in Desert Arroyo Seepage Water Characterization and Isolation of Constituents Causing Red Coloration in Desert Arroyo Seepage Water More Documents & Publications Natural Contamination from the Mancos Shale Application of Environmental Isotopes to the Evaluation of the Origin of Contamination in a Desert Arroyo: Many Devils Wash, Shiprock, New Mexico Multivariate Statistical Analysis of Water Chemistry in Evaluating the Origin of Contamination in Many Devils Wash, Shiprock, New Mexico

367

Department of Energy Begins Demolition on K-25's East Wing- Moves closer to completing Oak Ridges largest cleanup project  

Energy.gov (U.S. Department of Energy (DOE))

OAK RIDGE, Tenn. - Earlier today, the U.S. Department of Energy (DOE) began the demolition of Building K-25s east wing.

368

Renewable Energy Development Group Ltd RED | Open Energy Information  

Open Energy Info (EERE)

RED RED Jump to: navigation, search Name Renewable Energy Development Group Ltd (RED) Place Edinburgh, United Kingdom Zip EH1 2DP Sector Biomass, Hydro, Wind energy Product Developer of wind farms. It is also active in the development of other types of renewably powered electricity generation including hydro-electric and biomass power projects. References Renewable Energy Development Group Ltd (RED)[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Renewable Energy Development Group Ltd (RED) is a company located in Edinburgh, United Kingdom . References ↑ "Renewable Energy Development Group Ltd (RED)" Retrieved from "http://en.openei.org/w/index.php?title=Renewable_Energy_Development_Group_Ltd_RED&oldid=350319

369

DOE/EA-1371; Integrated Natural Resources Management Plan, Environmental Assessment, and Finding of No Significant Impacts for Rock Creek Reserve (5/2001)  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Finding of No Significant Impact Finding of No Significant Impact Integrated Natural Resources Management Plan and Environmental Assessment for Rock Creek Reserve Summary: The Department of Energy (DOE) with the assistance and cooperation of the US. Fish and Wildlife Service, prepared an Integrated Natural Resources Management Plan and Environmental Assessment (Plan)(DOE/EA-1371) for the Rock Creek Reserve at the Rocky Flats Environmental Technology Site (Site) located north of Golden, Colorado. The Rock Creek Reserve was established in May 1999 in recognition of the area's biological significance. Although still under the ownership of the DOE, the Rock Creek Reserve will be co- managed with the U. S. Fish and Wildlife Service as part of an interagency agreement signed by these two

370

Notice of Availability of the Record of Decision for the Goodnoe Hills and White Creek Wind Energy Projects, Business Plan EIS (DOE/EIS-0183) (October 2005)  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

13 Federal Register 13 Federal Register / Vol. 70, No. 226 / Friday, November 25, 2005 / Notices DEPARTMENT OF ENERGY Bonneville Power Administration Goodnoe Hills and White Creek Wind Energy Projects, October 2005 AGENCY: Bonneville Power Administration (BPA), Department of Energy (DOE). ACTION: Notice of availability of Record of Decision (ROD). SUMMARY: BPA has decided to offer contract terms for interconnection of the Goodnoe Hills and White Creek Wind Energy Projects into the Federal Columbia River Transmission System (FCRTS) at the Rock Creek substation in Klickitat County, Washington. The Large Generation Interconnection Agreement (LGIA) provides for interconnection of the Wind Projects with the FCRTS, the operation of Goodnoe Hills and White Creek Wind Energy Projects in the BPA Control Area

371

Final report from VFL Technologies for the pilot-scale thermal treatment of lower East Fork Poplar Creek floodplain soils. LEFPC appendices, Volume 4, Appendix V-C  

Science Conference Proceedings (OSTI)

This is the the final verification run data package for pilot scale thermal treatment of lower East Fork Poplar Creek floodplain soils. Included are data on volatiles, semivolatiles, and TCLP volatiles.

NONE

1994-09-01T23:59:59.000Z

372

Transport and Diffusion in the Transition Layer and Planetary Boundary Layer for Drainage Flows in Anderson and Putah Creeks, California, during ASCOT 1980  

Science Conference Proceedings (OSTI)

Approximately 100 constant-volume, superpressured balloons (tetroons) were tracked in the Anderson and Putah Creek drainages of the Geysers geothermal area of northern California as part of the ASCOT (Atmospheric Studies in Complex Terrain) ...

Michael A. Fosberg

1984-05-01T23:59:59.000Z

373

Blue, green, orange, and red upconversion laser  

DOE Patents (OSTI)

A laser for outputting visible light at the wavelengths of blue, green, orange and red light. This is accomplished through the doping of a substrate, such as an optical fiber or waveguide, with Pr.sup.3+ ions and Yb.sup.3+ ions. A light pump such as a diode laser is used to excite these ions into energy states which will produce lasing at the desired wavelengths. Tuning elements such as prisms and gratings can be employed to select desired wavelengths for output.

Xie, Ping (San Jose, CA); Gosnell, Timothy R. (Sante Fe, NM)

1998-01-01T23:59:59.000Z

374

Blue, green, orange, and red upconversion laser  

DOE Patents (OSTI)

A laser is disclosed for outputting visible light at the wavelengths of blue, green, orange and red light. This is accomplished through the doping of a substrate, such as an optical fiber or waveguide, with Pr{sup 3+} ions and Yb{sup 3+} ions. A light pump such as a diode laser is used to excite these ions into energy states which will produce lasing at the desired wavelengths. Tuning elements such as prisms and gratings can be employed to select desired wavelengths for output. 11 figs.

Xie, P.; Gosnell, T.R.

1998-09-08T23:59:59.000Z

375

Status and Monitoring of Natural and Supplemented Chinook Salmon in Johnson Creek, Idaho, 2006-2007 Annual Report.  

DOE Green Energy (OSTI)

The Nez Perce Tribe Johnson Creek Artificial Propagation Enhancement Project (JCAPE) has conducted juvenile and adult monitoring and evaluation studies for its 10th consecutive year. Completion of adult and juvenile Chinook salmon studies were conducted for the purpose of evaluating a small-scale production initiative designed to increase the survival of a weak but recoverable spawning aggregate of summer Chinook salmon Oncorhynchus tshawytscha. The JCAPE program evaluates the life cycle of natural origin (NOR) and hatchery origin (HOR) supplementation fish to quantify the key performance measures: abundance, survival-productivity, distribution, genetics, life history, habitat, and in-hatchery metrics. Operation of a picket style weir and intensive multiple spawning ground surveys were completed to monitor adult Chinook salmon and a rotary screw trap was used to monitor migrating juvenile Chinook salmon in Johnson Creek. In 2007, spawning ground surveys were conducted on all available spawning habitat in Johnson Creek and one of its tributaries. A total of 63 redds were observed in the index reach and 11 redds for all other reaches for a combined count of 74 redds. Utilization of carcass recovery surveys and adult captures at an adult picket weir yielded a total estimated adult escapement to Johnson Creek of 438 Chinook salmon. Upon deducting fish removed for broodstock (n=52), weir mortality/ known strays (n=12), and prespawning mortality (n=15), an estimated 359 summer Chinook salmon were available to spawn. Estimated total migration of brood year 2005 NOR juvenile Chinook salmon at the rotary screw trap was calculated for three seasons (summer, fall, and spring). The total estimated migration was 34,194 fish; 26,671 of the NOR migrants left in the summer (July 1 to August 31, 2005) as fry/parr, 5,852 left in the fall (September 1 to November 21, 2005) as presmolt, and only 1,671 NOR fish left in the spring (March 1 to June 30, 2006) as smolt. In addition, there were 120,415 HOR supplementation smolts released into Johnson Creek during the week of March 12, 2007. Life stage-specific juvenile survival from Johnson Creek to Lower Granite and McNary dams was calculated for brood year 2005 NOR and HOR supplementation juvenile Chinook salmon. Survival of NOR parr Chinook salmon migrating from Johnson Creek to Lower Granite and McNary dams was 28.2% and 16.2%. Survival of NOR presmolt Chinook salmon migrating from Johnson Creek to Lower Granite and McNary dams was 28.2% and 22.3%. Survival of NOR smolt Chinook salmon migrating from Johnson Creek to Lower Granite and McNary dams was 44.7% and 32.9%. Survival of HOR smolt Chinook salmon migrating from Johnson Creek to Lower Granite and McNary dams was 31.9% and 26.2%. Multi-year analysis on smolt to adult return rate's (SAR's) and progeny to parent ratio's (P:P's) were calculated for NOR and HOR supplementation Brood Year 2002 Chinook salmon. SAR's were calculated from Johnson Creek to Johnson Creek (JC to JC), Lower Granite Dam to Lower Granite (LGD to LGD), and Lower Granite Dam to Johnson Creek (LGD to JC); for NOR fish SAR's were 0.16%, 1.16% and 1.12%, while HOR supplementation SAR's from JC to JC, LGD to LGD and LGD to JC were 0.04%, 0.19% and 0.13%. P:P's for all returning NOR and HOR supplemented adults were under replacement levels at 0.13 and 0.65, respectively. Recruit per spawner estimates (R/S) for Brood Year 2005 adult Chinook salmon were also calculated for NOR and HOR supplemented Chinook salmon at JC and LGD. R/S estimates for NOR and HOR supplemented fish at JC were 231 and 1,745, while R/S estimates at LGD were 67 and 557. Management recommendations address (1) effectiveness of data collection methods, (2) sufficiency of data quality (statistical power) to enable management recommendations, (3) removal of uncertainty and subsequent cessation of M&E activities, and (4) sufficiency of findings for program modifications prior to five-year review.

Rabe, Craig D.; Nelson, Douglas D. [Nez Perce Tribe

2008-11-17T23:59:59.000Z

376

The excess wing in the dielectric loss of glass-forming ethanol: A relaxation process  

E-Print Network (OSTI)

A detailed dielectric investigation of liquid, supercooled liquid, and glassy ethanol reveals a third relaxation process, in addition to the two processes already known. The relaxation time of the newly detected process exhibits strong deviations from thermally activated behavior. Most important, this process is the cause of the apparent excess wing, which was claimed to be present in the dielectric loss spectra of glass-forming ethanol. In addition, marked deviations of the spectra of ethanol from the scaling proposed by Dixon and Nagel have been detected.

R. Brand; P. Lunkenheimer; U. Schneider; A. Loidl

2000-02-29T23:59:59.000Z

377

Microsoft Word - CX-Alvey-FairviewAlvey-MartinCreek-DrainWoodPolesFY12_WEB.doc  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Wood pole replacements on the Alvey-Fairview No. 1 230-kV, Alvey- Wood pole replacements on the Alvey-Fairview No. 1 230-kV, Alvey- Martin Creek 115-kV, and Martin Creek-Drain #1 115-kV transmission line rights-of-way (ROW) PP&A Project No.: 2308 (WO# 297303), 2310 (WO# 297305), 2319 (WO# 297996) Categorical Exclusion Applied (from Subpart D, 10 C.F.R. Part 1021): B1.3 Routine maintenance Location: Alvey and Douglas counties, Oregon Proposed by: Bonneville Power Administration (BPA) Description of the Proposed Action: BPA proposes to replace 18 deteriorating wood poles and associated structural/electrical components (e.g. cross arms, insulators, guy anchors, etc.) as well as cross arms on three other structures along the subject transmission lines. Replacement will be in-kind and will utilize the existing holes to minimize ground disturbance. If necessary, an auger

378

DOE/EIS-0415: Final Environmental Impact Statement Deer Creek Station Energy Facility Project Brookings County, South Dakota (April 2010)  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

ENVIRONMENTAL IMPACT STATEMENT Deer Creek Station Energy Facility Project Brookings County, South Dakota U.S. Department of Energy Western Area Power Administration Upper Great Plains Region Billings, Montana DOE/EIS-0415 April 2010 Final Environmental Impact Statement Cover Sheet i COVER SHEET Lead Federal Agency: U.S. Department of Energy, Western Area Power Administration Cooperating Agency: U.S. Department of Agriculture, Rural Utilities Service

379

Solar-energy-system performance evaluation. Reedy Creek Utility District office building, Lake Buena Vista, Florida, September 1978-February, 1979  

DOE Green Energy (OSTI)

The Reedy Creek site is a two-story office building in Florida whose solar heating system provides space heating and domestic hot water and space cooling. The system consists of an array of parabolic trough collectors, an absorption chiller, a 10,000-gallon hot water tank and a 10,000-gallon cold water tank. The system and its operation are briefly described, and its performance is analyzed using a system energy balance technique. (LEW)

Smith, H.T.

1979-01-01T23:59:59.000Z

380

Phase 2 confirmatory sampling data report, Lower East Fork Poplar Creek, Oak Ridge Y-12 Plant, Oak Ridge, Tennessee  

Science Conference Proceedings (OSTI)

A Remedial Investigation of East Fork Poplar Creek (EFPC) concluded that mercury is the principal contaminant of concern in the EFPC floodplain. The highest concentrations of mercury were found to be in a visually distinct black layer of soil that typically lies 15 to 30 cm (6 to 12 in.) below the surface. Mercury contamination was found to be situated in distinct areas along the floodplain, and generally at depths > 20 cm (8 in.) below the surface. In accordance with Comprehensive, Environmental Response, Compensation, and Liability Act (CERCLA), a feasibility study was prepared to assess alternatives for remediation, and a proposed plan was issued to the public in which a preferred alternative was identified. In response to public input, the plan was modified and US Department of Energy (DOE) issued a Record of Decision in 1995 committing to excavating all soil in the EFPC floodplain exceeding a concentration of 400 parts per million (ppm) of mercury. The Lower East Fork Poplar Creek (LEFPC) remedial action (RA) focuses on the stretch of EFPC flowing from Lake Reality at the Y-12 Plant, through the city of Oak Ridge, to Poplar Creek on the Oak Ridge Reservation (ORR) and its associated floodplain. Specific areas were identified that required remediation at the National Oceanographic and Atmospheric Administration (NOAA) Site along Illinois Avenue and at the Bruner Site along the Oak Ridge Turnpike. The RA was conducted in two separate phases. Phase 2, conducted from February to October 1997, completed the remediation efforts at the NOAA facility and fully remediated the Bruner Site. During both phases, data were collected to show that the remedial efforts performed at the NOAA and Bruner sites were successful in implementing the Record of Decision and had no adverse impact on the creek water quality or the city of Oak Ridge publicly owned treatment works.

NONE

1998-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "red wing creek" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

Stratigraphy, petrology, and depositional environments of upper Cretaceous and Lower Tertiary Sabbath Creek section, Arctic National Wildlife Refuge (ANWR), Alaska  

Science Conference Proceedings (OSTI)

A 9387-ft (2816-m) section of Upper Cretaceous-Lower Tertiary strata is exposed along Sabbath Creek in the northern ANWR of north-eastern Alaska and represents a regressive depositional sequence. The entire section is divided into four lithologic units (A-D), each characterized by distinct depositional assemblages. Unit A, at the base of the section, consists of several coarsening-upward sequences of alternating thick organic-rich siltstones an fine-grained litharenites, representing deposition in subaqueous to lower delta-plain environments. Unit B stratigraphically overlies Unit A and is characterized by multiple, mutually erosive, fining-upward sequences of fine to coarse pebble litharenites typical of point-bar sequences in a meandering stream environment (lower to upper delta plain). Unit C consists of multiple, poorly developed fining-upward sequences of dominantly clast- and matrix-supported pebble conglomerate interpreted as braided stream deposits. At the top of the section, Unit D is characterized by multiple fining- and a few coarsening-upward sequences of organic-rich shale with minor amounts of medium to coarse litharenite and pebble conglomerate representing meandering stream deposition. The Sabbath Creek section is lithologically dissimilar to coeval units to the west. The Sagavanirktok Formation and Colville Group contain pyroclastic material and thick coal beds not seen in the Sabbath Creek section. Instead, this section is lithologically similar to the Moose Channel formation - a regressive, fluvial, deltaic sequence exposed in the MacKenzie delta area of northwestern Canada. Consequently , detailed interpretation of the sabbath Creek section has important implications concerning the petroleum potential of the Arctic National Wildlife Refuge and offshore beaufort Sea.

Buckingham, M.L.

1985-04-01T23:59:59.000Z

382

Confirmatory Sampling and Analysis Plan for the Lower East Fork Poplar Creek Operable Unit, Oak Ridge, Tennessee  

SciTech Connect

This document describes the organization, strategy, and procedures to be used to confirm that mercury concentrations in soils in the remediated areas are statistically less than, or equal to, the cleanup standard of 400 ppm. It focuses on confirming the cleanup of the stretch of the Lower East Fork Popular Creed flowing from Lake Reality at the Y-12 Plant, through the City of Oak Ridge, to Poplar Creek on the Oak Ridge Reservation and its associated flood plain.

1996-12-01T23:59:59.000Z

383

T-610: Red Hat kdenetwork security update | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

0: Red Hat kdenetwork security update 0: Red Hat kdenetwork security update T-610: Red Hat kdenetwork security update April 26, 2011 - 7:11am Addthis PROBLEM: A directory traversal flaw was found in the way KGet, a download manager, handled the "file" element in Metalink files. An attacker could use this flaw to create a specially-crafted Metalink file that, when opened, would cause KGet to overwrite arbitrary files accessible to the user running KGet. PLATFORM: Red Hat Enterprise Linux Desktop (v. 6) Red Hat Enterprise Linux Server (v. 6) Red Hat Enterprise Linux Workstation (v. 6) ABSTRACT: A directory traversal flaw was found in the way KGet, a download manager, handled the "file" element in Metalink files. reference LINKS: RHSA-2011:0465-1 CVE-2011-1586 RH Classification RH Updates Support

384

T-678: Red Hat Enterprise Virtualization Hypervisor VLAN Packet Processing  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

8: Red Hat Enterprise Virtualization Hypervisor VLAN Packet 8: Red Hat Enterprise Virtualization Hypervisor VLAN Packet Processing Flaw Lets Remote Users Deny Service T-678: Red Hat Enterprise Virtualization Hypervisor VLAN Packet Processing Flaw Lets Remote Users Deny Service July 28, 2011 - 3:47pm Addthis PROBLEM: A vulnerability was reported in Red Hat Enterprise Virtualization Hypervisor. A remote user can cause denial of service conditions. PLATFORM: Red Hat Enterprise Virtualization-hypervisor package. ABSTRACT: Red Hat Enterprise Virtualization Hypervisor VLAN Packet Processing Flaw Lets Remote Users Deny Service. reference LINKS: RHSA-2011:1090-1 SecurityTracker Alert ID: 1025853 CVE-2011-1576 RHBA-2011:1068-1,Hypervisor is based on KVM - Bug Fix Advisory IMPACT ASSESSMENT: Medium Discussion: A flaw was found that allowed napi_reuse_skb() to be called on VLAN

385

Habitat Evaluation Procedures (HEP) Report; Willow Creek, Technical Report 1993-1994.  

DOE Green Energy (OSTI)

The Willow Creek site is one of the most significant remaining areas of typical native Willamette Valley habitats, with a variety of wetlands, grasslands, and woodlands. A diverse array of native flora and fauna, with significant wildlife habitats, is present on the site. Wildlife diversity is high, and includes species of mammals, songbirds, raptors, reptiles, amphibians, and one rare invertebrate. Over 200 species of native plants have been identified (including populations of six rare, threatened, or endangered species), along with significant remnants of native plant communities. Willow Creek is located in Lane County, Oregon, on the western edge of the City of Eugene (see Figure 1). The city limit of Eugene passes through the site, and the site is entirely within the Eugene Urban Growth Boundary (UGB). At present, only lands to the east and northeast of the site are developed to full urban densities. Low density rural residential and agricultural land uses predominate on lands to the northwest and south. A partially completed light industrial/research office park is located to the northwest. Several informal trails lead south from West 18th at various points into the site. The area encompasses a total of approximately 349 acres under several ownerships, in sections 3 and 4 of Township 18 South, Range 4 West. wildlife habitat values resulting from the purchase of this site will contribute toward the goal of mitigating for habitat lost as outlined in the Bonneville Power Administration's (BPA) Mitigation and Enhancement Plan for the Willamette River Basin. Under this Plan, mitigation goals were developed as a result of the loss of wildlife habitat due to the development and operation of Federal hydro-electric facilities in the Willamette River Basin. Results of the HEP will be used to: (1) determine the current status and habitat enhancement potential of the site consistent with wildlife mitigation goals and objectives; and (2) develop a management plan for the area. The BPA is considering exercising their option to purchase the Bailey Hill property, acquiring additional properties now owned by The Nature Conservancy, and/or funding enhancement activities for the entire site in order to receive credit under the Mitigation and Enhancement Plan for the Willamette River Basin.

Beilke, Susan

1994-09-01T23:59:59.000Z

386

Investigation of increased mercury levels in the fisheries of Lower East Fork Poplar Creek (Lefpc), Oak Ridge Reservation, Tennessee  

SciTech Connect

The DOE Western Environmental Technology Office (WETO) is supporting remediation efforts on the U.S. Department of Energy Oak Ridge Reservation in Oak Ridge, Tennessee by performing this study. MSE Technology Applications, Inc. (MSE) has performed a series of literature reviews and bench-scale testing to further evaluate the mercury problem in the Lower East Fork Poplar Creek (LEFPC) at Oak Ridge. The primary problem is that total mercury (HgT) levels in LEFPC water decrease, while HgT levels in sunfish muscle tissue increase, with distance away from the National Security Complex (NSC), despite extensive source control efforts at the facility and within downstream riparian zones. Furthermore, dissolved methylmercury (d-MeHg) levels increase downstream from the NSC, especially during warm weather and/or high flow events. MSE performed four test series that focused on conversion of aqueous phase elemental mercury (Hg deg. A) to methyl mercury (MeHg) by algal-bacterial bio-films (periphyton) present in the stream-bed of LEFPC. Small (mg/L) quantities of un-sulphured molasses and peptone were added to some of the Hinds Creek samples to stimulate initial bacterial growth. Other Hinds Creek samples either were dosed with glutaraldehyde to preclude microbial growth, or were wrapped in aluminum foil to preclude Hg photochemical redox effects. The bench-scale testing for Phase II was completed August 2006. The final reporting and the planning for Phase III testing are in progress. (authors)

Byrne-Kelly, D.; Cornish, J.; Hart, A. [MSE Technology Applications, Inc., 200 Technology Way, Butte, MT (United States); Southworth, G. [Oak Ridge National Laboratory, Oak Ridge, TN (United States); Sims, L. [Bechtel Jacobs Company, Oak Ridge, TN (United States)

2007-07-01T23:59:59.000Z

387

Best management practices plan for the Lower East Fork Poplar Creek remedial action project, Oak Ridge, Tennessee  

SciTech Connect

The U.S. Department of Energy (DOE) has three major operating facilities on the DOE Oak Ridge Reservation (ORR) in Oak Ridge, Tennessee: the Oak Ridge Y-12 Plant, the K-25 Site, and the Oak Ridge National Laboratory (ORNL) managed by Lockheed Martin Environmental Research Corporation. All facilities are managed by Lockheed Martin Energy Systems, Incorporated (Energy Systems) for the DOE. The Y-12 Plant is adjacent to the city of Oak Ridge and is also upstream from Oak Ridge along East Fork Poplar Creek. The portion of the creek downstream from the Y-12 Plant is Lower East Fork Poplar Creek (LEFPC). This project will remove mercury-contaminated soils from the LEFPC floodplain, transport the soils to Industrial Landfill V (ILF-V), and restore any affected areas. This project contains areas that were designated in 1989 as a Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) site. The site includes DOE property and portions of commercial, residential, agricultural, and miscellaneous areas within the city of Oak Ridge.

1996-08-01T23:59:59.000Z

388

Red Galaxies from Hot Halos in Cosmological Hydro Simulations  

E-Print Network (OSTI)

I highlight three results from cosmological hydrodynamic simulations that yield a realistic red sequence of galaxies: 1) Major galaxy mergers are not responsible for shutting off star-formation and forming the red sequence. Starvation in hot halos is. 2) Massive galaxies grow substantially (about a factor of 2 in mass) after being quenched, primarily via minor (1:5) mergers. 3) Hot halo quenching naturally explains why galaxies are red when they either (a) are massive or (b) live in dense environments.

Gabor, Jared

2012-01-01T23:59:59.000Z

389

Collision frequencies in density-matrix kinetic equations describing nonlinear effects in the wings of spectral lines  

SciTech Connect

Using the eikonal approximation, we have calculated effective collision frequencies in density-matrix kinetic equations describing nonlinear effects in the wings of spectral lines. We have established the relation between the probabilities of absorption and stimulated emission and the characteristics of the radiation and elementary scattering event. The example of the power interaction potential shows that quantum mechanical calculation of the collision frequencies in the eikonal approximation and previously known spectral line wing theory give similar results for the probability of radiation absorption.

Parkhomenko, A I; Shalagin, Anatolii M [Institute of Automation and Electrometry, Siberian Branch, Russian Academy of Sciences, Novosibirsk (Russian Federation)

2011-11-30T23:59:59.000Z

390

Characterization of Heavy Clay Ceramic Mixed with Red Mud Waste  

Science Conference Proceedings (OSTI)

Presentation Title, Characterization of Heavy Clay Ceramic Mixed with Red Mud Waste. Author(s), Carlos Maurcio Fontes Vieira, Michelle Pereira Babisk,...

391

RSE Pulp & Chemical, LLC (Subsidiary of Red Shield Environmental...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

facility in an existing pulp mill to demonstrate the production of cellulosic ethanol from lignocellulosic (wood) extract. RSE Pulp & Chemical, LLC (Subsidiary of Red...

392

Lake Roosevelt Fisheries Evaluation Program : Meadow Creek vs. Lake Whatcom Stock Kokanee Salmon Investigations in Lake Roosevelt Annual Report 2000-2001.  

DOE Green Energy (OSTI)

Lake Roosevelt has been stocked with Whatcom stock kokanee since 1989 to mitigate for anadromous salmon losses caused by the construction of Grand Coulee Dam. The primary objective of the hatchery plantings was to create a self-sustaining recreational fishery. Due to low return numbers, it was hypothesized a native stock of kokanee might perform better than the coastal Whatcom strain. Therefore, kokanee from Meadow Creek, a tributary of Kootenay Lake, British Columbia were selected as an alternative stock. Matched pair releases of Whatcom stock and Meadow Creek kokanee were made from Sherman Creek in late June 2000. Stock performance between Lake Whatcom and Meadow Creek kokanee was evaluated through three performance measures (1) returns to Sherman Creek, the primary egg collection facility, (2) returns to other tributaries, indicating availability for angler harvest, and (3) returns to the creel. A secondary objective was to evaluate the numbers collected at downstream fish passage facilities. Age 2 kokanee were collected during five passes through the reservoir, which included 89 tributaries between August 17th and November 7th, 2000. Sherman Creek was sampled once a week because it was the primary egg collection location. A total of 2,789 age 2 kokanee were collected, in which 2,658 (95%) were collected at Sherman Creek. Chi-square analysis indicated the Meadow Creek kokanee returned to Sherman Creek in significantly higher numbers compared to the Whatcom stock ({chi}{sup 2} = 734.4; P < 0.01). Reservoir wide recoveries indicated similar results ({chi}{sup 2} = 733.1; P < 0.01). No age 2 kokanee were collected during creel surveys. Age 3 kokanee are expected to recruit to the creel in 2001. No age 2 kokanee were collected at the fish passage facilities due to a 170 mm size restriction at the fish passage centers. Age 3 kokanee are expected to be collected at the fish passage centers during 2001. Stock performance cannot be properly evaluated until 2001, when age 3 kokanee are expected to return to Sherman Creek.

McLellan, Holly J.; Scholz, Allan T.

2001-07-01T23:59:59.000Z

393

EM SSAB NATIONAL CHAIRS MEETING Deer Creek State Park, Mt. Sterling, Ohio  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

EM SSAB NATIONAL CHAIRS MEETING EM SSAB NATIONAL CHAIRS MEETING Deer Creek State Park, Mt. Sterling, Ohio November 5-7, 2013 DAY 1 - Tuesday, November 5, 2013 8:00 a.m. - 8:20 a.m. Welcome and Opening Remarks Cate Alexander, EM SSAB Designated Federal Officer Will Henderson, Chair, Portsmouth Site Specific Advisory Board William Murphie, Manager, Portsmouth Paducah Project Office, DOE-EM 8:20 a.m. - 8:30 a.m. Overview of Meeting Eric Roberts, Facilitator 8:30 a.m. - 9:30 a.m. EM Program Update Alice Williams, Associate Principal Deputy Assistant Secretary for Environmental Management 9:30 a.m. - 10:20 a.m. Round Robin (Chairs' Site Reports) 5 minutes each 10:20 a.m. - 10:30 a.m. Recognition of Departing Chairs 10:30 a.m. - 10:45 a.m. Break 10:45 a.m. - 12:00

394

Waste Management Plan for the Lower East Fork Poplar Creek Remedial Action Project Oak Ridge, Tennessee  

SciTech Connect

The Lower East Fork Poplar Creek (LEFPC) Remedial Action project will remove mercury-contaminated soils from the floodplain of LEFPC, dispose of these soils at the Y-12 Landfill V, and restore the affected floodplain upon completion of remediation activities. This effort will be conducted in accordance with the Record of Decision (ROD) for LEFPC as a Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) action. The Waste Management Plan addresses management and disposition of all wastes generated during the remedial action for the LEFPC Project Most of the solid wastes will be considered to be sanitary or construction/demolition wastes and will be disposed of at existing Y-12 facilities for those types of waste. Some small amounts of hazardous waste are anticipated, and the possibility of low- level or mixed waste exists (greater than 35 pCi/g), although these are not expected. Liquid wastes will be generated which will be sanitary in nature and which will be capable of being disposed 0214 of at the Oak Ridge Sewage Treatment Plant.

1996-08-01T23:59:59.000Z

395

Results of the PDF{trademark} test burn at Clifty Creek Station  

Science Conference Proceedings (OSTI)

Process Derived Fuel (PDF{sup TM}) from the ENCOAL process is different from other coals used to generate steam for the power industry. Although PDF{sup TM} is currently produced from Powder River Basin (PRB) subbituminous coal, the coal structure changes during processing. Compared to the parent coal, PDF{sup TM} contains much less moisture and slightly lower volatile matter resulting in a higher heating value and higher ash per million Btu. These coal properties can potentially benefit utility boiler performance. Combining the high combustion reactivity typical of PRB coals with significantly reduced moisture should produce higher flame zone temperatures and shorter flames. As a result, some boilers may experience increased steam production, better burnout, or lower excess air. The objective of the work contracted to Quinapoxet Engineering was to quantify the impacts of burning PDF{sup TM} on boiler performance at Clifty Creek Unit 3. A unique optical temperature monitor called SpectraTemp was used to measure changes in furnace exit gas temperature (FEGT) with time and boiler operating parameters for both PDF{sup TM} blends as well as a baseline coal blend consisting of 60% PRB coal, 20% Ohio coal, and 20% low-volatile eastern bituminous coal from Virginia. FEGT was then related to net plant heat rate, NO{sub x} emissions, and electrostatic precipitator performance.

Johnson, S.A.; Knottnerus, B.

1996-10-01T23:59:59.000Z

396

Red River Biodiesel Ltd | Open Energy Information  

Open Energy Info (EERE)

River Biodiesel, Ltd. River Biodiesel, Ltd. Place Houston, Texas Zip 77006 Product Red River operates a biodiesel plant in Houstion, Texas with a capacity of 56.85mLpa (15m gallons per year). Coordinates 29.76045°, -95.369784° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":29.76045,"lon":-95.369784,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

397

Red Shift in a Laboraory Environment  

E-Print Network (OSTI)

A hypotheses of energy loss for polarization of e-e+ vacuum by a photon passing interstellar space is considered. An excitation and relaxation of vacuum can't run with speed of light due to very small but finite fraction of e-e+ pair mass that creates a retardment in recuperation of deposited energy back to photon. This "forgotten" by many photons energy is finally splashed out in real space as a Relic Radiation. An assumption that such energy loss is proportional to a photon energy conforms to Hubble low of Red Shift and experimental data treated as accelerated expansion of Universe. A possibility of an observation of this type energy loss is considered at high-energy accelerators where energy deposition may reach up hundreds MeV in second.

Yuriy A. Yatsunenko; Julian A. Budagov

2011-03-04T23:59:59.000Z

398

Subsonic Tests of a Flush Air Data Sensing System Applied to a Fixed-Wing Micro Air Vehicle  

Science Conference Proceedings (OSTI)

Flush air data sensing (FADS) systems have been successfully tested on the nose tip of large manned/unmanned air vehicles. In this paper we investigate the application of a FADS system on the wing leading edge of a micro (unmanned) air vehicle (MAV) ... Keywords: Extended minimum resource allocating neural networks, Fault accommodation, Flush air data sensing systems, Micro (unmanned) air vehicle

Ihab Samy; Ian Postlethwaite; Dawei Gu

2009-03-01T23:59:59.000Z

399

Mesh-free simulations of shear banding in large deformation Shaofan Li, Wei Hao, Wing Kam Liu *  

E-Print Network (OSTI)

Mesh-free simulations of shear banding in large deformation Shaofan Li, Wei Hao, Wing Kam Liu Mesh-free approximation is used in numerical simulations of strain localization under large deformation. An explicit displacement based mesh-free formulation is used in both two-dimensional and three

Li, Shaofan

400

Developments for a Swept Wing Airfoil to Study the Effects of Step and Gap Excrescences on Boundary Layer Transition  

E-Print Network (OSTI)

Skin friction drag reduction is one of the most promising paths in the investigation of the reduction of aircraft fuel burn. 40 50% of overall drag comes from the surfaces of the wings and stabilizers. Natural laminar flow airfoils can extend the region of laminar flow and reduce skin friction drag. However, real-world aircraft wings do not have perfectly smooth surfaces, and therefore the tolerances for step and gap excrescences on these airfoils must be investigated. Previous work has focused on excrescences on flat plates, and only recently included pressure gradient effects. A new three-dimensional swept wing airfoil with an actuated leading edge (SWIFTER) has been constructed, and will extend the body of knowledge of step and gap excrescences to a more real-world configuration and higher Reynolds numbers. An integrated control system for the leading edge actuation system is proposed, including both interface hardware and control code. A heating system for the test surface is also discussed, and the controller hardware, sensors, and code specified. For wind tunnel testing, a proposed set of wall liners are developed from zero-lift condition streamlines and divided into parts suitable for manufacturing, assembly, and installation. Finally, preliminary wind tunnel step excrescence tests using an existing swept-wing model and applique step material were conducted, and the results are discussed with relevance to testing on the new model.

Hedderman, Simon Peter

2013-05-01T23:59:59.000Z

Note: This page contains sample records for the topic "red wing creek" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

Ocean Red Tide Recognizing Method Based Neural Network Ensembles  

Science Conference Proceedings (OSTI)

There are almost more than 4,000 sorts of algae which could result in the red tide in the world, but only two or three, named the dominant species, place a premium on red tide at a time. This paper presents a method which uses the hyper-spectral images ...

Wencang Zhao; Wei Wang; Jin Li

2006-08-01T23:59:59.000Z

402

New biology of red rain extremophiles prove cometary panspermia  

E-Print Network (OSTI)

This paper reports the extraordinary biology of the microorganisms from the mysterious red rain of Kerala, India. These chemosynthetic organisms grow optimally at an extreme high temperature of 300 degrees C in hydrothermal conditions and can metabolize inorganic and organic compounds including hydrocarbons. Stages found in their life cycle show reproduction by a special multiple fission process and the red cells found in the red rain are identified as the resting spores of these microbes. While these extreme hyperthermophiles contain proteins, our study shows the absence of DNA in these organisms, indicating a new primitive domain of life with alternate thermostable genetics. This new biology proves our earlier hypothesis that these microbes are of extraterrestrial origin and also supports our earlier argument that the mysterious red rain of Kerala is due to the cometary delivery of the red spores into the stratosphere above Kerala.

Godfrey Louis; A. Santhosh Kumar

2003-12-29T23:59:59.000Z

403

Adaptive Detached Eddy Simulation of a High-Lift Wing with Active Flow  

NLE Websites -- All DOE Office Websites (Extended Search)

Full span view of the flow past a vertical tail assembly of a commercial aircraft with active flow control at Re=360,000. Full span view of the flow past a vertical tail assembly of a commercial aircraft with active flow control at Re=360,000. Full span view of the flow past a vertical tail assembly of a commercial aircraft with active flow control at Re=360,000. This picture highlights the root and tip vortex along with the turbulent structures in the wake of a deflected rudder through isosurface of instantaneous Q criterion colored by speed on a locally adapted unstructured finite element mesh with 1.2 billion elements. Michel Rasquin, Argonne National Laboratory Adaptive Detached Eddy Simulation of a High-Lift Wing with Active Flow Control PI Name: Kenneth Jansen PI Email: jansenke@colorado.edu Institution: University of Colorado Allocation Program: INCITE Allocation Hours at ALCF:

404

The behavior and origin of the excess wing in DEET (N,N-diethyl-3-methylbenzamide)  

Science Conference Proceedings (OSTI)

Broadband dielectric spectroscopy along with a high pressure technique and quantum-mechanical calculations are employed to study in detail the behavior and to reveal the origin of the excess wing (EW) in neat N,N-diethyl-3-methylbenzamide (DEET). Our analysis of dielectric spectra again corroborates the idea that the EW is a hidden b-relaxation peak. Moreover, we found that the position frequency of the b peak corresponds to the position of the primitive relaxation of the Coupling Model. We also studied the possible intramolecular rotations in DEET by means of DFT calculation. On that basis we were able to describe the EW as the JG b-relaxation and find the possible origin of the g-relaxation visible in DEET dielectric spectra at very low temperatures.

Hensel-Bielowka, S [University of Silesia, Katowice, Poland; Sangoro, Joshua R [ORNL; Wojnarowska, S [Institute of Physics, University of Silesia, Uniwersytecka 4, 40-007 Katowice, Poland; Hawelek, L [Institute of Physics, University of Silesia, Uniwersytecka 4, 40-007 Katowice, Poland; Paluch, Marian [University of Silesia, Uniwersytecka, Katowice, Poland

2013-01-01T23:59:59.000Z

405

Assess Current and Potential Salmonid Production in Rattlesnake Creek Associated with Restoration Efforts; Underwood Conservation District, Annual Report 2002-2003.  

DOE Green Energy (OSTI)

This project addresses existing habitat conditions, fish population status, and restoration priority sites within the Rattlesnake Creek watershed, a sub-basin of the White Salmon River. Our partners in this project are the United States Geological Service (USGS), and the Yakama Indian Nation (YIN). Underwood Conservation District (UCD) is involved in the project via accomplishment of water quality monitoring, sampling for stable isotopes, and characterization of the watershed geomorphology. These work items are part of an effort to characterize the stream and riparian habitat conditions in Rattlesnake Creek, to help guide habitat and fish restoration work. Water chemistry and temperature information is being collected both on Rattlesnake Creek, and on other tributaries and the main stem of the White Salmon River. Information on the entire system enables us to compare results obtained from Rattlesnake Creek with the rest of the White Salmon system. Water chemistry and temperature data have been collected in a manner that is comparable with data gathered in previous years. The results from data gathered in the 2001-2002 performance period are reported in appendix A at the end of this 2002-2003 report. Additional work being conducted as part of this study includes; an estimate of salmonid population abundance (YIN and USGS); a determination of fish species composition, distribution, and life history (YIN and USGS), and a determination of existing kinds, distribution, and severity of fish diseases (YIN and USGS). The overall objective is to utilize the above information to prioritize restoration efforts in Rattlesnake Creek.

White, Jim

2004-02-01T23:59:59.000Z

406

The Red-Headed Woodpecker and Brown-Headed Nuthatch on the Oak...  

NLE Websites -- All DOE Office Websites (Extended Search)

was listed as one of the species utilizing the White Oak Creek watershed (Krumholz 1954) on the ORR. We could find nothing in the literature regarding these woodpeckers on the...

407

Technical and economic feasibility of salt-gradient solar ponds at the Truscott Brine Lake of the Red River Chloride Control Project. A report to the House-Senate Committee on Appropriations of the Ninety-Seventh Congress  

DOE Green Energy (OSTI)

The Truscott Brine Lake is being constructed to impound highly brackish water from a number of sources which would normally flow into the Wichita River, a tributary of the Red River in Knox County, Texas. A 35.4-km (22-mile) pipeline is being constructed to carry the brines from their primary source to the Truscott Brine Lake site. The reservoir is designed to contain 100 years of brine emissions from three chloride emission areas in the Wichita River Basin. The solar ponds and power generating facilities would be located in the Bluff Creek Arm of Truscott Brine Lake. The Truscott Brine Lake study includes: survey of suitability of Truscott Lake site, review of solar pond technology, preconceptual design of solar salt pond power plant, and economic evaluation.

Not Available

1982-09-01T23:59:59.000Z

408

A RARE EARLY-TYPE STAR REVEALED IN THE WING OF THE SMALL MAGELLANIC CLOUD  

SciTech Connect

Sk 183 is the visually brightest star in the N90 nebula, a young star-forming region in the Wing of the Small Magellanic Cloud (SMC). We present new optical spectroscopy from the Very Large Telescope which reveals Sk 183 to be one of the most massive O-type stars in the SMC. Classified as an O3-type dwarf on the basis of its nitrogen spectrum, the star also displays broadened He I absorption, which suggests a later type. We propose that Sk 183 has a composite spectrum and that it is similar to another star in the SMC, MPG 324. This brings the number of rare O2- and O3-type stars known in the whole of the SMC to a mere four. We estimate physical parameters for Sk 183 from analysis of its spectrum. For a single-star model, we estimate an effective temperature of 46 {+-} 2 kK, a low mass-loss rate of {approx}10{sup -7} M{sub Sun} yr{sup -1}, and a spectroscopic mass of 46{sup +9}{sub -8} M{sub Sun} (for an adopted distance modulus of 18.7 mag to the young population in the SMC Wing). An illustrative binary model requires a slightly hotter temperature ({approx}47.5 kK) for the primary component. In either scenario, Sk 183 is the earliest-type star known in N90 and will therefore be the dominant source of hydrogen-ionizing photons. This suggests Sk 183 is the primary influence on the star formation along the inner edge of the nebula.

Evans, C. J. [UK Astronomy Technology Centre, Royal Observatory Edinburgh, Blackford Hill, Edinburgh EH9 3HJ (United Kingdom); Hainich, R.; Oskinova, L. M.; Hamann, W.-R.; Todt, H. [Institute for Physics and Astronomy, University of Potsdam, 14476 Potsdam (Germany); Gallagher III, J. S. [Department of Astronomy, University of Wisconsin-Madison, 5534 Sterling, 475 North Charter St., Madison, WI 53706 (United States); Chu, Y.-H.; Gruendl, R. A. [Astronomy Department, University of Illinois, 1002 W. Green Street, Urbana, IL 61801 (United States); Henault-Brunet, V. [Scottish Universities Physics Alliance (SUPA), Institute for Astronomy, University of Edinburgh, Royal Observatory Edinburgh, Blackford Hill, Edinburgh EH9 3HJ (United Kingdom)

2012-07-10T23:59:59.000Z

409

Realistic Probability Estimates For Destructive Overpressure Events In Heated Center Wing Tanks Of Commercial Jet Aircraft  

SciTech Connect

The Federal Aviation Administration (FAA) identified 17 accidents that may have resulted from fuel tank explosions on commercial aircraft from 1959 to 2001. Seven events involved JP 4 or JP 4/Jet A mixtures that are no longer used for commercial aircraft fuel. The remaining 10 events involved Jet A or Jet A1 fuels that are in current use by the commercial aircraft industry. Four fuel tank explosions occurred in center wing tanks (CWTs) where on-board appliances can potentially transfer heat to the tank. These tanks are designated as ''Heated Center Wing Tanks'' (HCWT). Since 1996, the FAA has significantly increased the rate at which it has mandated airworthiness directives (ADs) directed at elimination of ignition sources. This effort includes the adoption, in 2001, of Special Federal Aviation Regulation 88 of 14 CFR part 21 (SFAR 88 ''Fuel Tank System Fault Tolerance Evaluation Requirements''). This paper addresses SFAR 88 effectiveness in reducing HCWT ignition source probability. Our statistical analysis, relating the occurrence of both on-ground and in-flight HCWT explosions to the cumulative flight hours of commercial passenger aircraft containing HCWT's reveals that the best estimate of HCWT explosion rate is 1 explosion in 1.4 x 10{sup 8} flight hours. Based on an analysis of SFAR 88 by Sandia National Laboratories and our independent analysis, SFAR 88 reduces current risk of historical HCWT explosion by at least a factor of 10, thus meeting an FAA risk criteria of 1 accident in billion flight hours. This paper also surveys and analyzes parameters for Jet A fuel ignition in HCWT's. Because of the paucity of in-flight HCWT explosions, we conclude that the intersection of the parameters necessary and sufficient to result in an HCWT explosion with sufficient overpressure to rupture the HCWT is extremely rare.

Alvares, N; Lambert, H

2007-02-07T23:59:59.000Z

410

Flow Characteristics Analysis of Widows' Creek Type Control Valve for Steam Turbine Control  

Science Conference Proceedings (OSTI)

The steam turbine converts the kinetic energy of steam to mechanical energy of rotor blades in the power conversion system of fossil and nuclear power plants. The electric output from the generator of which the rotor is coupled with that of the steam turbine depends on the rotation velocity of the steam turbine bucket. The rotation velocity is proportional to the mass flow rate of steam entering the steam turbine through valves and nozzles. Thus, it is very important to control the steam mass flow rate for the load following operation of power plants. Among various valves that control the steam turbine, the control valve is most significant. The steam flow rate is determined by the area formed by the stem disk and the seat of the control valve. While the ideal control valve linearly controls the steam mass flow rate with its stem lift, the real control valve has various flow characteristic curves pursuant to the stem lift type. Thus, flow characteristic curves are needed to precisely design the control valves manufactured for the operating conditions of nuclear power plants. OMEGA (Optimized Multidimensional Experiment Geometric Apparatus) was built to experimentally study the flow characteristics of steam flowing inside the control valve. The Widows' Creek type control valve was selected for reference. Air was selected as the working fluid in the OMEGA loop to exclude the condensation effect in this simplified approach. Flow characteristic curves were plotted by calculating the ratio of the measured mass flow rate versus the theoretical mass flow rate of the air. The flow characteristic curves are expected to be utilized to accurately design and operate the control valve for fossil as well as nuclear plants. (authors)

Yoo, Yong H.; Sohn, Myoung S.; Suh, Kune Y. [PHILOSOPHIA, Inc., Seoul National University, San 56-1 Sillim-dong, Gwanak-gu, Seoul, 151-742 (Korea, Republic of)

2006-07-01T23:59:59.000Z

411

Sherman Creek Hatchery; Washington Department of Fish and Wildlife Fish Program, 2000 Annual Report.  

DOE Green Energy (OSTI)

The Sherman Creek Hatchery (SCH) was designed to rear 1.7 million kokanee fry for acclimation and imprinting during the spring and early summer. Additionally, it was designed to trap all available returning adult kokanee during the fall for broodstock operations and evaluations. Since the start of this program, the operations on Lake Roosevelt have been modified to better achieve program goals. These strategic changes have been the result of recommendations through the Lake Roosevelt Hatcheries Coordination Team (LRHCT) and were done to enhance imprinting, improve survival and operate the two kokanee facilities more effectively. The primary changes have been to replace the kokanee fingerling program with a yearling (post smolt) program of up to 1,000,000 fish. To construct and operate twenty net pens to handle the increased production. The second significant change was to rear 200,000 rainbow trout fingerling at SCH from July through October, for stocking into the volunteer net pens. This enables the Spokane Tribal Hatchery (STH) to rear additional kokanee to further the enhancement efforts on Lake Roosevelt. Monitoring and evaluation is preformed by the Lake Roosevelt Fisheries Monitoring Program. From 1988 to 1998, the principle sport fishery on Lake Roosevelt has shifted from walleye to include rainbow trout and kokanee salmon (Underwood et al. 1997, Tilson and Scholz 1997). The angler use, harvest rates for rainbow and kokanee and the economic value of the fishery has increased substantially during this 10-year period. The most recent information from the monitoring program also suggests that the hatchery and net pen rearing programs have been beneficial to enhancing the Lake Roosevelt fishery while not negatively impacting wild and native stocks within the lake.

Combs, Mitch (Washington Department of Fish and Wildlife, Kettle Falls, WA)

2001-03-01T23:59:59.000Z

412

Development of Rope-Culture Methods for Red Seaweed Aquaculture in California  

E-Print Network (OSTI)

that are fed red and green algae in addition to kelp haverates. Pig- ments in red algae are also the source of colorof vegetatively propagating red algae for the Monterey Aba-

Graham, Michael H.

2005-01-01T23:59:59.000Z

413

V-072: Red Hat update for java-1.7.0-openjdk | Department of...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

72: Red Hat update for java-1.7.0-openjdk V-072: Red Hat update for java-1.7.0-openjdk January 18, 2013 - 6:00am Addthis PROBLEM: Red Hat has issued an update for...

414

Potential for CO2 Sequestration and Enhanced Coalbed Methane Production, Blue Creek Field, NW Black Warrior Basin, Alabama  

E-Print Network (OSTI)

Carbon dioxide (CO2) is a primary source of greenhouse gases. Injection of CO2 from power plants near coalbed reservoirs is a win-win method to reducing emissions of CO2 to the atmosphere. Limited studies have investigated CO2 sequestration and enhanced coalbed methane production in San Juan and Alberta basins, but reservoir modeling is needed to assess the potential of the Black Warrior basin. Alabama ranks 9th nationally in CO2 emissions from power plants; two electricity generation plants are adjacent to the Black Warrior coalbed methane fairway. This research project was a reservoir simulation study designed to evaluate the potential for CO2 sequestration and enhanced coalbed methane (ECBM) recovery in the Blue Creek Field of Black Warrior basin, Alabama. It considered the injection and production rate, the components of injected gas, coal dewatering, permeability anisotropy, various CO2 soak times, completion of multiple reservoir layers and pressure constraints at the injector and producer. The simulation study was based on a 5-spot well pattern 40-ac well spacing. Injection of 100 percent CO2 in coal seams resulted in average volumes of 0.57 Bcf of sequestered CO2 and average volumes of 0.2 Bcf of enhance methane production for the Mary Lee coal zone only, from an 80-acre 5-spot well pattern. For the entire Blue Creek field of the Black Warrior basin, if 100 percent CO2 is injected in the Pratt, Mary Lee and Black Creek coal zones, enhance methane resources recovered are estimated to be 0.3 Tcf, with a potential CO2sequestration capacity of 0.88 Tcf. The methane recovery factor is estimated to be 68.8 percent, if the three coal zones are completed but produced one by one. Approximately 700 wells may be needed in the field. For multi-layers completed wells, the permeability and pressure are important in determining the breakthrough time, methane produced and CO2 injected. Dewatering and soaking do not benefit the CO2 sequestration process but allow higher injection rates. Permeability anisotropy affects CO2 injection and enhanced methane recovery volumes of the field. I recommend a 5-spot pilot project with the maximum well BHP of 1,000 psi at the injector, minimum well BHP of 500 psi at the producer, maximum injection rate of 70 Mscf/D, and production rate of 35 Mscf/D. These technical results, with further economic evaluation, could generate significant projects for CO2 sequestration and enhance coalbed methane production in Blue Creek field, Black Warrior Basin, Alabama.

He, Ting

2009-12-01T23:59:59.000Z

415

DOE/EA-1371; Integrated Natural Resources Management Plan, Environmental Assessment, and Finding of No Significant Impacts for Rock Creek Reserve (5/2001)  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

INTEGRATED NATURAL RESOURCES MANAGEMENT PLAN, ENVIRONMENTAL ASSESSMENT and Finding Of No Significant Impacts for ROCK CREEK RESERVE 2001-Closure DOE/EA - 1371 Department of Energy Rocky Flats Environmental Technology Site and The U.S. Fish & Wildlife Service May, 2001 Dear Stakeholder: Enclosed is the Final Rock Creek Reserve Integrated Natural Resources Management Plan (Plan), Environmental Assessment (EA), and Finding Of No Significant Impacts (FONSI). The Rock Creek Reserve was dedicated on May 17, 1999, to be jointly managed by the US Fish and Wildlife Service and US Department of Energy. This Plan/EA was developed in accordance with the National Environmental Policy Act (NEPA) process. Through cooperation with the U.S. Fish and Wildlife Service for joint

416

Production of Ordinary Portland Cement(OPC) from NALCO Red Mud  

Science Conference Proceedings (OSTI)

... of Ordinary Portland Cement(OPC) from NALCO Red Mud has been successfully developed from a raw mix containing limestone, red mud,shale and fine coal.

417

Interpreting the Clustering of Distant Red Galaxies  

SciTech Connect

We analyze the angular clustering of z {approx} 2.3 distant red galaxies (DRGs) measured by Quadri et al. (2008). We find that, with robust estimates of the measurement errors and realistic halo occupation distribution modeling, the measured clustering can be well fit within standard halo occupation models, in contrast to previous results. However, in order to fit the strong break in w({theta}) at {theta} = 10{double_prime}, nearly all satellite galaxies in the DRG luminosity range are required to be DRGs. Within this luminosity-threshold sample, the fraction of galaxies that are DRGs is {approx} 44%, implying that the formation of DRGs is more efficient for satellite galaxies than for central galaxies. Despite the evolved stellar populations contained within DRGs at z = 2.3, 90% of satellite galaxies in the DRG luminosity range have been accreted within 500 Myr. Thus, satellite DRGs must have known they would become satellites well before the time of their accretion. This implies that the formation of DRGs correlates with large-scale environment at fixed halo mass, although the large-scale bias of DRGs can be well fit without such assumptions. Further data are required to resolve this issue. Using the observational estimate that {approx} 30% of DRGs have no ongoing star formation, we infer a timescale for star formation quenching for satellite galaxies of 450 Myr, although the uncertainty on this number is large. However, unless all non-star forming satellite DRGs were quenched before accretion, the quenching timescale is significantly shorter than z {approx} 0 estimates. Down to the completeness limit of the Quadri et al sample, we find that the halo masses of central DRGs are {approx} 50% higher than non-DRGs in the same luminosity range, but at the highest halo masses the central galaxies are DRGs only {approx} 2/3 of the time.

Tinker, Jeremy L.; /BCCP, Berkeley; Wechsler, Risa H.; /KIPAC, Menlo Park /SLAC; Zheng, Zheng; /Princeton, Inst. Advanced Study

2009-08-03T23:59:59.000Z

418

Superfund Record of Decision (EPA Region 8): Silver Bow Creek/Butte Area, MT. (Second remedial action), June 1992. Interim report  

Science Conference Proceedings (OSTI)

The Silver Bow Creek/Butte Area site is a mining and processing area located 7 miles east of Anaconda in the Upper Clark Fork River Basin, Deer Lodge County, Montana. Site contamination is the result of over 100 years of mining and process operations in the area. Until the early 1970's, mining, milling, and smelting wastes were dumped directly into Silver Bow Creek and transported downstream. The ROD addresses an interim remedy for all media at OU12. The primary contaminants of concern affecting the soil, sediment, ground water, and surface water in the Inactive area are metals, including arsenic, chromium, and lead; and inorganics.

Not Available

1992-06-30T23:59:59.000Z

419

Massive, red galaxies in a hierarchical universe I. Counts of Extremely Red Objects and basic properties  

E-Print Network (OSTI)

We present predictions for the abundance and nature of Extremely Red Objects (EROs) in the Lambda cold dark matter model. EROs are red, massive galaxies observed at z>= 1 and their numbers and properties pose a challenge to hierarchical galaxy formation models. We compare the predictions from two published models, one of which invokes a "superwind" to regulate star formation in massive haloes and the other which suppresses gas cooling in haloes through "radio-mode" AGN feedback. The superwind model underestimates the number counts of EROs by an order of magnitude, whereas the radio-mode AGN feedback model gives excellent agreement with the number counts and redshift distribution of EROs. In the AGN feedback model the ERO population is dominated by old, passively evolving galaxies, whereas observations favour an equal split between old galaxies and dusty starbursts. Also, the model predicts a more extended redshift distribution of passive galaxies than is observed. These comparisons suggest that star formation may be quenched too efficiently in this model.

V. Gonzalez-Perez; C. M. Baugh; C. G. Lacey; C. Almeida

2008-11-13T23:59:59.000Z

420

Red River Valley REA- Heat Pump Loan Program  

Energy.gov (U.S. Department of Energy (DOE))

The Red River Valley Rural Electric Association (RRVREA) offers a loan program to its members for air-source and geothermal heat pumps. Loans are available for geothermal heat pumps at a 5% fixed...

Note: This page contains sample records for the topic "red wing creek" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

Microfluidic devices for analysis of red blood cell mechanical properties  

E-Print Network (OSTI)

Decreased deformability of human red blood cells (RBCs) is both a cause of disease and biomarker for disease (1). To traverse blood capillaries, the biconcave disk-shaped RBC must deform dramatically, since the diameter ...

Bow, Hansen Chang

2010-01-01T23:59:59.000Z

422

`Save Our Squirrels' (SOS) A Red Alert North England Project  

E-Print Network (OSTI)

red squirrel range in northern England. · Construction of new viewing facilities at Sefton, Whinlatter, involved and supportive. · It is essential to start by preparing a clear strategy that all the key

423

Red Ink : open source financial analytics for people & communities  

E-Print Network (OSTI)

Red Ink is an open source social-financial web-service that enables people to share, aggregate, analyze, visualize and publish their financial transactions as individuals and ad-hoc groups, through data sharing campaigns. ...

O'Toole, Ryan (Ryan Michael)

2010-01-01T23:59:59.000Z

424

Columbia River Wildlife Mitigation Habitat Evaluation Procedures Report / Scotch Creek Wildlife Area, Berg Brothers, and Douglas County Pygmy Rabbit Projects.  

DOE Green Energy (OSTI)

This Habitat Evaluation Procedure study was conducted to determine baseline habitat units (HUs) on the Scotch Creek, Mineral Hill, Pogue Mountain, Chesaw and Tunk Valley Habitat Areas (collectively known as the Scotch Creek Wildlife Area) in Okanogan County, Sagebrush Flat and the Dormaler property in Douglas County, and the Berg Brothers ranch located in Okanogan County within the Colville Reservation. A HEP team comprised of individuals from the Washington Department of Fish and Wildlife, the Confederated Tribes of the Colville Reservation, and the Natural Resources Conservation Service (Appendix A) conducted baseline habitat surveys using the following HEP evaluation species: mule deer (Odocoileus hemionus), sharp-tailed grouse (Tympanuchus phasianellus), pygmy rabbit (Brachylagus idahoensis), white-tailed deer (Odocoileus virginiana), mink (Mustela vison), Canada goose (Branta canadensis), downy woodpecker (Picoides pubescens), Lewis woodpecker (Melanerpes lewis), and Yellow warbler (Dendroica petechia). Results of the HEP analysis are listed below. General ratings (poor, marginal, fair, etc.,) are described in Appendix B. Mule deer habitat was marginal lacking diversity and quantify of suitable browse species. Sharp-tailed grouse habitat was marginal lacking residual nesting cover and suitable winter habitat Pygmy rabbit habitat was in fair condition except for the Dormaier property which was rated marginal due to excessive shrub canopy closure at some sites. This report is an analysis of baseline habitat conditions on mitigation project lands and provides estimated habitat units for mitigation crediting purposes. In addition, information from this document could be used by wildlife habitat managers to develop management strategies for specific project sites.

Ashley, Paul R.

1997-01-01T23:59:59.000Z

425

Integrated Status and Effectiveness Monitoring Program Population Estimates for Juvenile Salmonids in Nason Creek, WA ; 2008 Annual Report.  

DOE Green Energy (OSTI)

This report summarizes juvenile coho, spring Chinook, and steelhead salmon migration data collected at a 1.5m diameter cone rotary fish trap on Nason Creek during 2008; providing abundance and freshwater productivity estimates. We used species enumeration at the trap and efficiency trials to describe emigration timing and to estimate the number of emigrants. Trapping began on March 2, 2008 and was suspended on December 11, 2008 when snow and ice accumulation prevented operation. During 2008, 0 brood year (BY) 2006 coho, 1 BY2007 coho, 906 BY2006 spring Chinook, 323 BY2007 fry Chinook, 2,077 BY2007 subyearling Chinook, 169 steelhead smolts, 414 steelhead fry and 2,390 steelhead parr were trapped. Mark-recapture trap efficiency trials were performed over a range of stream discharge stages. A total of 2,639 spring Chinook, 2,154 steelhead and 12 bull trout were implanted with Passive Integrated Transponder (PIT) tags. Most PIT tagged fish were used for trap efficiency trials. We were unable to identify a statistically significant relationship between stream discharge and trap efficiency, thus, pooled efficiency estimates specific to species and trap size/position were used to estimate the number of fish emigrating past the trap. We estimate that 5,259 ({+-} 359; 95% CI) BY2006 Chinook, 16,816 ({+-} 731; 95% CI) BY2007 Chinook, and 47,868 ({+-} 3,780; 95% CI) steelhead parr and smolts emigrated from Nason Creek in 2008.

Collins, Matthew; Murdoch, Keely [Yakama Nation Fisheries Resource Management

2009-07-20T23:59:59.000Z

426

Fisheries Enhancement on the Coeur d'Alene Indian Reservation; Hangman Creek, Annual Report 2001-2002.  

DOE Green Energy (OSTI)

Historically, Hangman Creek produced Chinook salmon (Oncorhynchus tshawytscha) and Steelhead trout (Oncorhynchus mykiss) for the Upper Columbia Basin Tribes. One weir, located at the mouth of Hangman Creek was reported to catch 1,000 salmon a day for a period of 30 days a year (Scholz et al. 1985). The current town of Tekoa, Washington, near the state border with Idaho, was the location of one of the principle anadromous fisheries for the Coeur d'Alene Tribe (Scholz et al. 1985). The construction, in 1909, of Little Falls Dam, which was not equipped with a fish passage system, blocked anadromous fish access to the Hangman Watershed. The fisheries were further removed with the construction of Chief Joseph and Grand Coulee Dams. As a result, the Coeur d'Alene Indian Tribe was forced to rely more heavily on native fish stocks such as Redband trout (Oncorhynchus mykiss gairdneri), Westslope Cutthroat trout (O. clarki lewisii), Bull trout (Salvelinus confluentus) and other terrestrial wildlife. Historically, Redband and Cutthroat trout comprised a great deal of the Coeur d'Alene Tribe's diet (Power 1997).

Peters, Ronald; Kinkead, Bruce; Stanger, Mark

2003-07-01T23:59:59.000Z

427

Remedial investigation/feasibility study of the Clinch River/Poplar Creek operable unit. Volume 1: Main text  

Science Conference Proceedings (OSTI)

This report presents the findings of an investigation into contamination of the Clinch River and Poplar Creek near the US Department of Energy`s (DOE`s) Oak Ridge Reservation (ORR) in eastern Tennessee. For more than 50 years, various hazardous and radioactive substances have been released to the environment as a result of operations and waste management activities at the ORR. In 1989, the ORR was placed on the National Priorities List (NPL), established and maintained under the federal Comprehensive environmental Response, Compensation, and Liability Act of 1980 (CERCLA). Under CERCLA, NPL sites must be investigated to determine the nature and extent of contamination at the site, assess the risk to human health and the environment posed by the site, and, if necessary, identify feasible remedial alternatives that could be used to clean the site and reduce risk. To facilitate the overall environmental restoration effort at the ORR, CERCLA activities are being implemented individually as distinct operable units (OUs). This document is the combined Remedial Investigation and Feasibility Study Report for the Clinch River/Poplar Creek OU.

NONE

1996-06-01T23:59:59.000Z

428

T-700:Red Hat: kernel security, bug fix, and enhancement update |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

700:Red Hat: kernel security, bug fix, and enhancement update 700:Red Hat: kernel security, bug fix, and enhancement update T-700:Red Hat: kernel security, bug fix, and enhancement update August 24, 2011 - 3:45pm Addthis PROBLEM: Updated kernel packages that fix several security issues, various bugs, and add two enhancements are now available for Red Hat Enterprise Linux 6. PLATFORM: Red Hat Enterprise Linux Desktop (v. 6) Red Hat Enterprise Linux HPC Node (v. 6) Red Hat Enterprise Linux Server (v. 6) Red Hat Enterprise Linux Server EUS (v. 6.1.z) Red Hat Enterprise Linux Workstation (v. 6) ABSTRACT: Red Hat: kernel security, bug fix, and enhancement update. reference LINKS: RHSA-2011: 1189-1 Secunia Advisory: SA45746 Red Hat Download CVE-2011-1182 , CVE-2011-1576 CVE-2011-1593 , CVE-2011-1776 CVE-2011-1898 , CVE-2011-2183

429

T-671: Red Hat system-config-firewall Lets Local Users Gain Root Privileges  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

1: Red Hat system-config-firewall Lets Local Users Gain Root 1: Red Hat system-config-firewall Lets Local Users Gain Root Privileges T-671: Red Hat system-config-firewall Lets Local Users Gain Root Privileges July 19, 2011 - 2:42pm Addthis PROBLEM: A vulnerability was reported in Red Hat system-config-firewall. A local user can obtain root privileges on the target system. PLATFORM Red Hat Enterprise Linux Desktop (v. 6) Red Hat Enterprise Linux HPC Node (v. 6) Red Hat Enterprise Linux Server (v. 6) Red Hat Enterprise Linux Server EUS (v. 6.1.z) Red Hat Enterprise Linux Workstation (v. 6) ABSTRACT: Red Hat system-config-firewall Lets Local Users Gain Root Privileges reference LINKS: RHSA-2011:0953-1 SecurityTracker Alert ID: 1025793 CVE-2011-2520 Red hat Article ID: 11259 IMPACT ASSESSMENT: Medium Discussion: The system-config-firewall utility uses the Python pickle module in an

430

Red Storm usage model :Version 1.12.  

Science Conference Proceedings (OSTI)

Red Storm is an Advanced Simulation and Computing (ASC) funded massively parallel supercomputer located at Sandia National Laboratories (SNL). The Red Storm Usage Model (RSUM) documents the capabilities and the environment provided for the FY05 Tri-Lab Level II Limited Availability Red Storm User Environment Milestone and the FY05 SNL Level II Limited Availability Red Storm Platform Milestone. This document describes specific capabilities, tools, and procedures to support both local and remote users. The model is focused on the needs of the ASC user working in the secure computing environments at Los Alamos National Laboratory (LANL), Lawrence Livermore National Laboratory (LLNL), and SNL. Additionally, the Red Storm Usage Model maps the provided capabilities to the Tri-Lab ASC Computing Environment (ACE) requirements. The ACE requirements reflect the high performance computing requirements for the ASC community and have been updated in FY05 to reflect the community's needs. For each section of the RSUM, Appendix I maps the ACE requirements to the Limited Availability User Environment capabilities and includes a description of ACE requirements met and those requirements that are not met in that particular section. The Red Storm Usage Model, along with the ACE mappings, has been issued and vetted throughout the Tri-Lab community.

Jefferson, Karen L.; Sturtevant, Judith E.

2005-12-01T23:59:59.000Z

431

LIGHT-INDUCED EFFICIENCY AND PIGMENT ALTERATIONS IN RED ALGAE*  

E-Print Network (OSTI)

The low photosynthetic efficiency of chlorophyll in freshly collected red algae, can, in the case of Porphyra perforata, P. nereocystis, and Porpkyridium cruentum, be inercased by growing the algae for 10 days in red or blue light. Exposure to darkness or to green light maintains the algae in their originally low efficiency with respect to chlorophyll, while retaining the high efficiency of phycobilins. Red- or blue-adapted algae are rapidly reversed by exposure to green light, the chlorophyll efficiency dropping to low values again in a few hours. This is assumed to account for the action spectrum of freshly gathered plants. Some pigment changes were observed, but not in the direction of "chromatic adaptation; " and the carotenoid pigments were not activated, even by blue light, but remained as photosynthetically inactive shading filters. The higher red algae (Florideae) did not show activation of chlorophyll by red or blue light. Chlorophyll a of freshly collected marine red algae sensitizes photosynthesis with an efficiency of about 0.04 molecule oxygen liberated per absorbed quantum.

C. S. Yocum; L. R. Blinks

1957-01-01T23:59:59.000Z

432

Surface debris inventory at White Wing Scrap Yard, Oak Ridge Reservation, Oak Ridge, Tennessee  

SciTech Connect

An inventory of surface debris in designated grid blocks at the White Wing Scrap Yard [Waste Area Grouping 11 (WAG 11)] was conducted intermittently from February through June 1992 by members of the Measurement Applications and Development Group, Health and Safety Research Division, Oak Ridge National Laboratory (ORNL) at the request of ORNL Environmental Restoration (ER) Program personnel. The objectives of this project are outlined in the following four phases: (1) estimate the amount (volume) and type (e.g., glass, metal and plastics) of surface waste material in 30 designated grid blocks (100- by 100-ft grids); (2) conduct limited air sampling for organic chemical pollutants at selected locations (e.g., near drums, in holes, or other potentially contaminated areas); (3) conduct a walkover gamma radiation scan extending outward (approximately 50 ft) beyond the proposed location of the WAG 11 perimeter fence; and (4) recommend one grid block as a waste staging area. This recommendation is based on location and accessibility for debris staging/transport activities and on low levels of gamma radiation in the grid block.

Rodriguez, R.E.; Tiner, P.F.; Williams, J.K.

1992-08-01T23:59:59.000Z

433

A Combustion Model for the TWA 800 Center-Wing Fuel Tank Explosion  

Science Conference Proceedings (OSTI)

In support of the National Transportation Safety Board investigation of the TWA Flight 800 accident, a combined experimental/computational effort was conducted that focused on quarter-scale testing and simulation of the fuel-air explosion in the Boeing 747 center wing fuel tank. This report summarizes the modeling approach used at Sandia National Laboratories. In this approach approximations are introduced that capture the essential physics associated with turbulent flame propagation in multiple compartment fuel tanks. This model efficiently defines the pressure loading conditions during a jet-fuel air explosion in a fuel tank confinement. Modeling calculations compare favorably with a variety of experimental quarter-scale tests conducted in rigid confinement. The modeling describes well the overpressure history in several geometry configurations. Upon demonstrating a reasonable comparison to experimental observations, a parametric study of eight possible ignition sources is then discussed. Model calculations demonstrate that different loading conditions arise as the location of the ignition event is varied. By comparing the inferred damage and calculated impulses to that seen in the recovered tank, it maybe possible to reduce the number of likely sources. A possible extension of this work to better define tank damage includes coupling the combustion model as a pressure loading routine for structural failure analysis.

Baer, M.R.; Gross, R.J.

1998-10-02T23:59:59.000Z

434

Assessment of Biomass Energy Opportunities for the Red Lake Band of Chippewa Indians  

Science Conference Proceedings (OSTI)

Assessment of biomass energy and biobased product manufacturing opportunities for the Red Lake Tribe.

Scott Haase (McNeil Technologies, Inc)

2005-09-30T23:59:59.000Z

435

Assess Current and Potential Salmonid Production in Rattlesnake Creek in Association with Restoration Efforts, US Geological Survey Report, 2004-2005 Annual Report.  

SciTech Connect

This project was designed to document existing habitat conditions and fish populations within the Rattlesnake Creek watershed (White Salmon River subbasin, Washington) before major habitat restoration activities are implemented and prior to the reintroduction of salmon and steelhead above Condit Dam. Returning adult salmon Oncorhynchus spp. and steelhead O. mykiss have not had access to Rattlesnake Creek since 1913. An assessment of resident trout populations should serve as a good surrogate for evaluation of factors that would limit salmon and steelhead production in the watershed. Personnel from United States Geological Survey's Columbia River Research Laboratory (USGS-CRRL) attended to three main objectives of the Rattlesnake Creek project. The first objective was to characterize stream and riparian habitat conditions. This effort included measures of water quality, water quantity, stream habitat, and riparian conditions. The second objective was to determine the status of fish populations in the Rattlesnake Creek drainage. To accomplish this, we derived estimates of salmonid population abundance, determined fish species composition, assessed distribution and life history attributes, obtained tissue samples for genetic analysis, and assessed fish diseases in the watershed. The third objective was to use the collected habitat and fisheries information to help identify and prioritize areas in need of restoration. As this report covers the fourth year of a five-year study, it is largely restricted to describing our efforts and findings for the first two objectives.

Allen, M. Brady; Connolly, Patrick J.; Jezorek, Ian G. (US Geological Survey, Western Fisheries Research Center, Columbia River Research Laboratory, Cook, WA)

2006-06-01T23:59:59.000Z

436

Life Cycle Management Planning at Wolf Creek Generating Station: EDG, Main Steam, and Feedwater Isolation Valves, and Reactor Protec tion System  

Science Conference Proceedings (OSTI)

As the electric power industry becomes more competitive, life cycle management (LCM) of systems, structures, and components (SSCs) becomes very important to keep plants economically viable throughout their remaining licensed operating terms (either 40-year or 60-year terms). This report provides the industry with lessons learned from applying EPRI's LCM planning process to three SSCs at Wolf Creek Generating Station.

2001-12-19T23:59:59.000Z

437

Final report from VFL technologies for the pilot-scale thermal treatment of Lower East Fork Poplar Creek floodplain soils. LEFPC Appendices, Volume 2, Appendix V-A  

Science Conference Proceedings (OSTI)

This document contains information concerning validation of analytical data for the pilot-scale thermal treatment of Lower East Fork Poplar Creek Floodplain soils located at the Y-12 Plant site. This volume is an appendix of compiled data from this validation process.

NONE

1994-09-01T23:59:59.000Z

438

V-163: Red Hat Network Satellite Server Inter-Satellite Sync Remote  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

3: Red Hat Network Satellite Server Inter-Satellite Sync Remote 3: Red Hat Network Satellite Server Inter-Satellite Sync Remote Authentication Bypass V-163: Red Hat Network Satellite Server Inter-Satellite Sync Remote Authentication Bypass May 24, 2013 - 6:00am Addthis PROBLEM: A vulnerability was reported in Red Hat Network Satellite Server PLATFORM: Red Hat Network Satellite (v. 5.3 for RHEL 5) Red Hat Network Satellite (v. 5.4 for RHEL 5) Red Hat Network Satellite (v. 5.4 for RHEL 6) Red Hat Network Satellite (v. 5.5 for RHEL 5) Red Hat Network Satellite (v. 5.5 for RHEL 6) ABSTRACT: The system does not properly validate all Inter-Satellite Sync operations REFERENCE LINKS: SecurityTracker Alert ID: 1028587 RHSA-2013:0848-1 CVE-2013-2056 IMPACT ASSESSMENT: Medium DISCUSSION: It was discovered that Red Hat Network Satellite did not fully check the