National Library of Energy BETA

Sample records for red liquor spent

  1. Gasification of black liquor

    DOE Patents [OSTI]

    Kohl, Arthur L. (Woodland Hills, CA)

    1987-07-28

    A concentrated aqueous black liquor containing carbonaceous material and alkali metal sulfur compounds is treated in a gasifier vessel containing a relatively shallow molten salt pool at its bottom to form a combustible gas and a sulfide-rich melt. The gasifier vessel, which is preferably pressurized, has a black liquor drying zone at its upper part, a black liquor solids gasification zone located below the drying zone, and a molten salt sulfur reduction zone which comprises the molten salt pool. A first portion of an oxygen-containing gas is introduced into the gas space in the gasification zone immediatley above the molten salt pool. The remainder of the oxygen-containing gas is introduced into the molten salt pool in an amount sufficient to cause gasification of carbonaceous material entering the pool from the gasification zone but not sufficient to create oxidizing conditions in the pool. The total amount of the oxygen-containing gas introduced both above the pool and into the pool constitutes between 25 and 55% of the amount required for complete combustion of the black liquor feed. A combustible gas is withdrawn from an upper portion of the drying zone, and a melt in which the sulfur content is predominantly in the form of alkali metal sulfide is withdrawn from the molten salt sulfur reduction zone.

  2. Gasification of black liquor

    DOE Patents [OSTI]

    Kohl, A.L.

    1987-07-28

    A concentrated aqueous black liquor containing carbonaceous material and alkali metal sulfur compounds is treated in a gasifier vessel containing a relatively shallow molten salt pool at its bottom to form a combustible gas and a sulfide-rich melt. The gasifier vessel, which is preferably pressurized, has a black liquor drying zone at its upper part, a black liquor solids gasification zone located below the drying zone, and a molten salt sulfur reduction zone which comprises the molten salt pool. A first portion of an oxygen-containing gas is introduced into the gas space in the gasification zone immediately above the molten salt pool. The remainder of the oxygen-containing gas is introduced into the molten salt pool in an amount sufficient to cause gasification of carbonaceous material entering the pool from the gasification zone but not sufficient to create oxidizing conditions in the pool. The total amount of the oxygen-containing gas introduced both above the pool and into the pool constitutes between 25 and 55% of the amount required for complete combustion of the black liquor feed. A combustible gas is withdrawn from an upper portion of the drying zone, and a melt in which the sulfur content is predominantly in the form of alkali metal sulfide is withdrawn from the molten salt sulfur reduction zone. 2 figs.

  3. Highly Energy Efficient Directed Green Liquor Utilization (D...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Highly Energy Efficient Directed Green Liquor Utilization (D-GLU) Pulping Highly Energy Efficient Directed Green Liquor Utilization (D-GLU) Pulping This factsheet describes a...

  4. Recovery of sugars from ionic liquid biomass liquor by solvent...

    Office of Scientific and Technical Information (OSTI)

    Patent: Recovery of sugars from ionic liquid biomass liquor by solvent extraction Citation Details In-Document Search Title: Recovery of sugars from ionic liquid biomass liquor by...

  5. LIQUOR POLICY University Policy No.: AD2400

    E-Print Network [OSTI]

    Victoria, University of

    Page 1 LIQUOR POLICY University Policy No.: AD2400 Classification: Administration Approving and Appendices: Procedures Associated with the University Liquor Policy Appendix ,,A - Licensed Establishments on University Property PURPOSE 1.00 The purpose of this policy is to: set out requirements regarding

  6. Report on the WORKSHOP ON COMMERCIALIZATION OF BLACK LIQUOR

    E-Print Network [OSTI]

    .3. Gasifier Supplier Perspectives 11 Black Liquor Gasifier Suppliers 12 Biomass Gasifier Suppliers 13 5

  7. Pulsed combustion process for black liquor gasification

    SciTech Connect (OSTI)

    Durai-Swamy, K.; Mansour, M.N.; Warren, D.W.

    1991-02-01

    The objective of this project is to test an energy efficient, innovative black liquor recovery system on an industrial scale. In the MTCI recovery process, black liquor is sprayed directly onto a bed of sodium carbonate solids which is fluidized by steam. Direct contact of the black liquor with hot bed solids promotes high rates of heating and pyrolysis. Residual carbon, which forms as a deposit on the particle surface, is then gasified by reaction with steam. Heat is supplied from pulse combustor resonance tubes which are immersed within the fluid bed. A portion of the gasifier product gas is returned to the pulse combustors to provide the energy requirements of the reactor. Oxidized sulfur species are partially reduced by reaction with the gasifier products, principally carbon monoxide and hydrogen. The reduced sulfur decomposed to solid sodium carbonate and gaseous hydrogen sulfide (H{sub 2}S). Sodium values are recovered by discharging a dry sodium carbonate product from the gasifier. MTCI's indirectly heated gasification technology for black liquor recovery also relies on the scrubbing of H{sub 2}S for product gases to regenerate green liquor for reuse in the mill circuit. Due to concerns relative to the efficiency of sulfur recovery in the MTCI integrated process, an experimental investigation was undertaken to establish performance and design data for this portion of the system.

  8. Value recovery from spent alumina-base catalyst

    DOE Patents [OSTI]

    Hyatt, David E. (Northglenn, CO)

    1987-01-01

    A process for the recovery of aluminum and at least one other metal selected from the group consisting of molybdenum, nickel and cobalt from a spent hydrogenation catalyst comprising (1) adding about 1 to 3 parts H.sub.2 SO.sub.4 to each part of spent catalyst in a reaction zone of about 20.degree. to 200.degree. C. under sulfide gas pressure between about 1 and about 35 atmospheres, (2) separating the resultant Al.sub.2 (SO.sub.4).sub.3 solution from the sulfide precipitate in the mixture, (3) oxidizing the remaining sulfide precipitate as an aqueous slurry at about 20.degree. to 200.degree. C. in an oxygen-containing atmosphere at a pressure between about 1 and about 35 atmospheres, (4) separating the slurry to obtain solid molybdic acid and a sulfate liquor containing said at least one metal, and (5) recovering said at least one metal from the sulfate liquor in marketable form.

  9. Definition:Black Liquor | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTIONRobertsdale, Alabama (UtilityInstruments IncMississippi: EnergyS A IndustriasNewDefianceBlack Liquor

  10. Proceedings of the black liquor research program review fourth meeting held July 28--30, 1987

    SciTech Connect (OSTI)

    Emerson, D. B.; Whitworth, B. A.

    1987-10-01

    Research programs, presented at the black liquor review meeting are described. Research topics include the following: Cooperative Program in Kraft Recovery; Black Liquor Physical Properties; Viscosity of Strong Black Liquor; Ultrafiltration of Kraft Black Liquor; Molecular Weight Distribution of Kraft Lignin; Black Liquor Droplet Formation Project; Fundamental Studies of Black Liquor Combustion; Black Liquor Combustion Sensors; Flash X-ray Imagining of Black Liquor Sprays; Laser Induced Fluorescence For Process Control In The Pulp and Paper Industry; Recovery Boiler Optimization; Black Liquor Gasification and Use of the Products in Combined-Cycle Cogeneration; Black Liquor Steam Plasma Automization; The B and W Pyrosonic 2000R System; Monsteras Boiler Control System; and Cooperative Program Project Reviews. Individual projects are processed separately for the data bases.

  11. Black Liquor Gasification Process Review and Status Update 

    E-Print Network [OSTI]

    Brown, C.

    1993-01-01

    After more than two decades of research and development, black liquor gasification is poised to become a commercial reality in the 90's. Several promising developments are underway in North America and Europe. In fact, all major recovery boiler...

  12. Drum drying of black liquor using superheated steam impinging jets

    SciTech Connect (OSTI)

    Shiravi, A.H.; Mujumdar, A.S.; Kubes, G.J. [McGill Univ., Montreal, Quebec (Canada)

    1997-05-01

    A novel drum dryer for black liquor utilizing multiple impinging jets of superheated steam was designed and built to evaluate the performance characteristics and effects of various operating parameters thereon. Appropriate ranges of parameters such as steam jet temperature and velocity were examined experimentally to quantify the optimal operating conditions for the formation of black liquor film on the drum surface as well as the drying kinetics.

  13. Black liquor gasification phase 2D final report

    SciTech Connect (OSTI)

    Kohl, A.L.; Stewart, A.E.

    1988-06-01

    This report covers work conducted by Rockwell International under Amendment 5 to Subcontract STR/DOE-12 of Cooperative Agreement DE-AC-05-80CS40341 between St. Regis Corporation (now Champion International) and the Department of Energy (DOE). The work has been designated Phase 2D of the overall program to differentiate it from prior work under the same subcontract. The overall program is aimed at demonstrating the feasibility of and providing design data for the Rockwell process for gasifying Kraft black liquor. In this process, concentrated black liquor is converted into low-Btu fuel gas and reduced melt by reaction with air in a specially designed gasification reactor.

  14. Advancement of High Temperature Black Liquor Gasification Technology

    SciTech Connect (OSTI)

    Craig Brown; Ingvar Landalv; Ragnar Stare; Jerry Yuan; Nikolai DeMartini; Nasser Ashgriz

    2008-03-31

    Weyerhaeuser operates the world's only commercial high-temperature black liquor gasifier at its pulp mill in New Bern, NC. The unit was started-up in December 1996 and currently processes about 15% of the mill's black liquor. Weyerhaeuser, Chemrec AB (the gasifier technology developer), and the U.S. Department of Energy recognized that the long-term, continuous operation of the New Bern gasifier offered a unique opportunity to advance the state of high temperature black liquor gasification toward the commercial-scale pressurized O2-blown gasification technology needed as a foundation for the Forest Products Bio-Refinery of the future. Weyerhaeuser along with its subcontracting partners submitted a proposal in response to the 2004 joint USDOE and USDA solicitation - 'Biomass Research and Development Initiative'. The Weyerhaeuser project 'Advancement of High Temperature Black Liquor Gasification' was awarded USDOE Cooperative Agreement DE-FC26-04NT42259 in November 2004. The overall goal of the DOE sponsored project was to utilize the Chemrec{trademark} black liquor gasification facility at New Bern as a test bed for advancing the development status of molten phase black liquor gasification. In particular, project tasks were directed at improvements to process performance and reliability. The effort featured the development and validation of advanced CFD modeling tools and the application of these tools to direct burner technology modifications. The project also focused on gaining a fundamental understanding and developing practical solutions to address condensate and green liquor scaling issues, and process integration issues related to gasifier dregs and product gas scrubbing. The Project was conducted in two phases with a review point between the phases. Weyerhaeuser pulled together a team of collaborators to undertake these tasks. Chemrec AB, the technology supplier, was intimately involved in most tasks, and focused primarily on the design, specification and procurement of facility upgrades. Chemrec AB is also operating a pressurized, O2-blown gasifier pilot facility in Piteaa, Sweden. There was an exchange of knowledge with the pressurized projects including utilization of the experimental results from facilities in Piteaa, Sweden. Resources at the Georgia Tech Research Corporation (GTRC, a.k.a., the Institute of Paper Science and Technology) were employed primarily to conduct the fundamental investigations on scaling and plugging mechanisms and characterization of green liquor dregs. The project also tapped GTRC expertise in the development of the critical underlying black liquor gasification rate subroutines employed in the CFD code. The actual CFD code development and application was undertaken by Process Simulation, Ltd (PSL) and Simulent, Ltd. PSL focused on the overall integrated gasifier CFD code, while Simulent focused on modeling the black liquor nozzle and description of the black liquor spray. For nozzle development and testing Chemrec collaborated with ETC (Energy Technology Centre) in Piteae utilizing their test facility for nozzle spray investigation. GTI (Gas Technology Institute), Des Plains, IL supported the team with advanced gas analysis equipment during the gasifier test period in June 2005.

  15. A comprehensive program to develop correlations for physical properties of kraft black liquor. Final report

    SciTech Connect (OSTI)

    Fricke, A.L.; Zaman, A.A.

    1998-05-01

    The overall objective of the program was to develop correlations to predict physical properties within requirements of engineering precision from a knowledge of pulping conditions and of kraft black liquor composition, if possible. These correlations were to include those relating thermodynamic properties to pulping conditions and liquor composition. The basic premise upon which the research was based is the premise that black liquor behaves as a polymer solution. This premise has proven to be true, and has been used successfully in developing data reduction methods and in interpreting results. A three phase effort involving pulping, analysis of liquor composition, and measurement of liquor properties was conducted.

  16. A comprehensive program to develop correlations for physical properties of kraft black liquor. Final report

    SciTech Connect (OSTI)

    Fricke, A.L.; Zaman, A.A.; Stoy, M.O.; Schmidl, G.W.; Dong, D.J.; Speck, B.

    1998-04-01

    A wide variety of experimental techniques have been used in this work, and many of these have been developed completely or improved significantly in the course of the research done during this program. Therefore, it is appropriate to describe these techniques in detail as a reference for future workers so that the techniques can be used in future work with little additional effort or so that the results reported from this program can be compared better with future results from other work. In many cases, the techniques described are for specific analytical instruments. It is recognized that these may be superseded by future developments and improvements in instrumentation if a complete description of techniques used successfully in the past on other instrumentation is available. The total pulping and liquor preparation research work performed included chip and white liquor preparation, digestion, pulp washing, liquor and wash recovery, liquor sampling, weak liquor concentration in two steps to about 45--50% solids with an intermediate soap skimming at about 140F and 27--30% solids, determination of pulp yield and Kappa number, determination of total liquor solids, and a check on the total material balance for pulping. All other research was performed either on a sample of the weak black liquor (the combined black liquor and washes from the digester) or on the skimmed liquor that had been concentrated.

  17. Spent Fuel Transportation Risk Assessment

    Office of Environmental Management (EM)

    Spent Fuel Transportation Risk Assessment (SFTRA) Draft NUREG-2125 Overview for National Transportation Stakeholders Forum John Cook Division of Spent Fuel Storage and...

  18. TEPP- Spent Nuclear Fuel

    Broader source: Energy.gov [DOE]

    This scenario provides the planning instructions, guidance, and evaluation forms necessary to conduct an exercise involving a highway shipment of spent nuclear fuel.  This exercise manual is one in...

  19. MOLTEN SALT CORROSION OF SUPERHEATERS IN BLACK LIQUOR RECOVERY BOILERS John Bohling, University of Tennessee Georgia Tech SURF 2010 Fellow

    E-Print Network [OSTI]

    Li, Mo

    MOLTEN SALT CORROSION OF SUPERHEATERS IN BLACK LIQUOR RECOVERY BOILERS John Bohling, University Goodman Introduction In the papermaking industry, black liquor recovery boilers burn black liquor into the superheater region of the boiler, where the salt-deposit, or smelt, forms a scale on the superheater tubes.1

  20. Use of sulfide-containing liquors for removing mercury from flue gases

    DOE Patents [OSTI]

    Nolan, Paul S. (North Canton, OH); Downs, William (Alliance, OH); Bailey, Ralph T. (Uniontown, OH); Vecci, Stanley J. (Alliance, OH)

    2003-01-01

    A method and apparatus for reducing and removing mercury in industrial gases, such as a flue gas, produced by the combustion of fossil fuels, such as coal, adds sulfide ions to the flue gas as it passes through a scrubber. Ideally, the source of these sulfide ions may include at least one of: sulfidic waste water, kraft caustic liquor, kraft carbonate liquor, potassium sulfide, sodium sulfide, and thioacetamide. The sulfide ion source is introduced into the scrubbing liquor as an aqueous sulfide species. The scrubber may be either a wet or dry scrubber for flue gas desulfurization systems.

  1. Use of sulfide-containing liquors for removing mercury from flue gases

    DOE Patents [OSTI]

    Nolan, Paul S.; Downs, William; Bailey, Ralph T.; Vecci, Stanley J.

    2006-05-02

    A method and apparatus for reducing and removing mercury in industrial gases, such as a flue gas, produced by the combustion of fossil fuels, such as coal, adds sulfide ions to the flue gas as it passes through a scrubber. Ideally, the source of these sulfide ions may include at least one of: sulfidic waste water, kraft caustic liquor, kraft carbonate liquor, potassium sulfide, sodium sulfide, and thioacetamide. The sulfide ion source is introduced into the scrubbing liquor as an aqueous sulfide species. The scrubber may be either a wet or dry scrubber for flue gas desulfurization systems.

  2. Investigation of Fuel Chemistry and Bed Performance in a Fluidized Bed Black Liquor Steam Reformer

    SciTech Connect (OSTI)

    Kevin Whitty

    2007-06-30

    University of Utah's project entitled 'Investigation of Fuel Chemistry and Bed Performance in a Fluidized Bed Black Liquor Steam Reformer' (DOE Cooperative Agreement DE-FC26-02NT41490) was developed in response to a solicitation released by the U.S. Department of Energy in December 2001, requesting proposals for projects targeted towards black liquor/biomass gasification technology support research and development. Specifically, the solicitation was seeking projects that would provide technical support for Department of Energy supported black liquor and biomass gasification demonstration projects under development at the time.

  3. Method for improving separation of carbohydrates from wood pulping and wood or biomass hydrolysis liquors

    DOE Patents [OSTI]

    Griffith, William Louis; Compere, Alicia Lucille; Leitten, Jr., Carl Frederick

    2010-04-20

    A method for separating carbohydrates from pulping liquors includes the steps of providing a wood pulping or wood or biomass hydrolysis pulping liquor having lignin therein, and mixing the liquor with an acid or a gas which forms an acid upon contact with water to initiate precipitation of carbohydrate to begin formation of a precipitate. During precipitation, at least one long chain carboxylated carbohydrate and at least one cationic polymer, such as a polyamine or polyimine are added, wherein the precipitate aggregates into larger precipitate structures. Carbohydrate gel precipitates are then selectively removed from the larger precipitate structures. The method process yields both a carbohydrate precipitate and a high purity lignin.

  4. Simultaneous and rapid determination of multiple component concentrations in a Kraft liquor process stream

    DOE Patents [OSTI]

    Li, Jian (Marietta, GA); Chai, Xin Sheng (Atlanta, GA); Zhu, Junyoung (Marietta, GA)

    2008-06-24

    The present invention is a rapid method of determining the concentration of the major components in a chemical stream. The present invention is also a simple, low cost, device of determining the in-situ concentration of the major components in a chemical stream. In particular, the present invention provides a useful method for simultaneously determining the concentrations of sodium hydroxide, sodium sulfide and sodium carbonate in aqueous kraft pulping liquors through use of an attenuated total reflectance (ATR) tunnel flow cell or optical probe capable of producing a ultraviolet absorbency spectrum over a wavelength of 190 to 300 nm. In addition, the present invention eliminates the need for manual sampling and dilution previously required to generate analyzable samples. The inventive method can be used in Kraft pulping operations to control white liquor causticizing efficiency, sulfate reduction efficiency in green liquor, oxidation efficiency for oxidized white liquor and the active and effective alkali charge to kraft pulping operations.

  5. Effect of pulsation on black liquor gasification. Final report

    SciTech Connect (OSTI)

    Zinn, B.T.; Jagoda, J.; Jeong, H.; Kushari, A.; Rosen, L.J.

    1998-12-01

    Pyrolysis is an endothermic process. The heat of reaction is provided either by partial combustion of the waste or by heat transfer from an external combustion process. In one proposed system black liquor is pyrolized in a fluidized bed to which heat is added through a series of pulse combustor tail pipes submerged in the bed material. This system appears promising because of the relatively high heat transfer in pulse combustors and in fluidized beds. Other advantages of pulse combustors are discussed elsewhere. The process is, however, only economically viable if a part of the pyrolysis products can be used to fire the pulse combustors. The overall goals of this study were to determine: (1) which is the limiting heat transfer rate in the process of transferring heat from the hot combustion products to the pipe, through the pipe, from the tail pipe to the bed and through the bed; i.e., whether increased heat transfer within the pulse combustor will significantly increase the overall heat transfer rate; (2) whether the heat transfer benefits of the pulse combustor can be utilized while maintaining the temperature in the bed within the narrow temperature range required by the process without generating hot spots in the bed; and (3) whether the fuel gas produced during the gasification process can be used to efficiently fire the pulse combustor.

  6. Red Sky with Red Mesa

    ScienceCinema (OSTI)

    None

    2014-06-23

    The Red Sky/Red Mesa supercomputing platform dramatically reduces the time required to simulate complex fuel models, from 4-6 months to just 4 weeks, allowing researchers to accelerate the pace at which they can address these complex problems. Its speed also reduces the need for laboratory and field testing, allowing for energy reduction far beyond data center walls.

  7. Investigation of Pressurized Entrained-Flow Kraft Black Liquor Gasification in an Industrially Relevant Environment

    SciTech Connect (OSTI)

    Kevin Whitty

    2008-06-30

    The University of Utah's project 'Investigation of Pressurized Entrained-Flow Kraft Black Liquor Gasification in an Industrially Relevant Environment' (U.S. DOE Cooperative Agreement DE-FC26-04NT42261) was a response to U.S. DOE/NETL solicitation DE-PS36-04GO94002, 'Biomass Research and Development Initiative' Topical Area 4-Kraft Black Liquor Gasification. The project began September 30, 2004. The objective of the project was to improve the understanding of black liquor conversion in high pressure, high temperature reactors that gasify liquor through partial oxidation with either air or oxygen. The physical and chemical characteristics of both the gas and condensed phase were to be studied over the entire range of liquor conversion, and the rates and mechanisms of processes responsible for converting the liquor to its final smelt and syngas products were to be investigated. This would be accomplished by combining fundamental, lab-scale experiments with measurements taken using a new semi-pilot scale pressurized entrained-flow gasifier. As a result of insufficient availability of funds and changes in priority within the Office of Biomass Programs of the U.S. Department of Energy, the research program was terminated in its second year. In total, only half of the budgeted funding was made available for the program, and most of this was used during the first year for construction of the experimental systems to be used in the program. This had a severe impact on the program. As a consequence, most of the planned research was unable to be performed. Only studies that relied on computational modeling or existing experimental facilities started early enough to deliver useful results by the time to program was terminated Over the course of the program, small scale (approx. 1 ton/day) entrained-flow gasifier was designed and installed at the University of Utah's off-campus Industrial Combustion and Gasification Research Facility. The system is designed to operate at pressures as high as 32 atmospheres, and at temperatures as high as 1500 C (2730 F). Total black liquor processing capacity under pressurized, oxygen-blown conditions should be in excess of 1 ton black liquor solids per day. Many sampling ports along the conversion section of the system will allow detailed analysis of the environment in the gasifier under industrially representative conditions. Construction was mostly completed before the program was terminated, but resources were insufficient to operate the system. A system for characterizing black liquor sprays in hot environments was designed and constructed. Silhouettes of black liquor sprays formed by injection of black liquor through a twin fluid (liquor and atomizing air) nozzle were videoed with a high-speed camera, and the resulting images were analyzed to identify overall characteristics of the spray and droplet formation mechanisms. The efficiency of liquor atomization was better when the liquor was injected through the center channel of the nozzle, with atomizing air being introduced in the annulus around the center channel, than when the liquor and air feed channels were reversed. Atomizing efficiency and spray angle increased with atomizing air pressure up to a point, beyond which additional atomizing air pressure had little effect. Analysis of the spray patterns indicates that two classifications of droplets are present, a finely dispersed 'mist' of very small droplets and much larger ligaments of liquor that form at the injector tip and form one or more relatively large droplets. This ligament and subsequent large droplet formation suggests that it will be challenging to obtain a narrow distribution of droplet sizes when using an injector of this design. A model for simulating liquor spray and droplet formation was developed by Simulent, Inc. of Toronto. The model was able to predict performance when spraying water that closely matched the vendor specifications. Simulation of liquor spray indicates that droplets on the order 200-300 microns can be expected, and that higher liquor flow will result in be

  8. Test plan for non-radioactive testing of vertical calciner for development of direct denitration conversion of Pu-bearing liquors to stable, storage solids

    SciTech Connect (OSTI)

    Fisher, F.D.

    1995-03-30

    Plutonium-bearing liquors, including ANL scrap liquors, will be used for development and demonstration of a vertical calciner direct denitration process for conversion of those liquors to stable, storable PuO{sub 2}-rich solids. This test plan is to test with non-radioactive stand-in materials to demonstrate adequate performance of the vertical calciner and ancillary equipment.

  9. BIOMASS AND BLACK LIQUOR GASIFIER/GAS TURBINE COGENERATION AT PULP AND PAPER MILLS

    E-Print Network [OSTI]

    /steamturbinetechnologies. Gasification technologies under development will allow biomass-derived fuels to be usedto fuel gasturbine gasification. The use of biomass fuels with gas turbines could transform a typical pulp mill from a netBIOMASS AND BLACK LIQUOR GASIFIER/GAS TURBINE COGENERATION AT PULP AND PAPER MILLS ERIC D. LARSON

  10. Oil palm vegetation liquor: a new source of phenolic bioactives Ravigadevi Sambanthamurthi1

    E-Print Network [OSTI]

    Sinskey, Anthony J.

    Oil palm vegetation liquor: a new source of phenolic bioactives Ravigadevi Sambanthamurthi1 *, Yew , Krishnan Subramaniam5 , Soon-Sen Leow1 , Kenneth C. Hayes6 and Mohd Basri Wahid1 1 Malaysian Palm Oil Board, 6, Persiaran Institusi, Bandar Baru Bangi, 43000 Kajang Selangor, Malaysia 2 Malaysian Palm Oil

  11. Generator-Absorber heat exchange transfer apparatus and method using an intermediate liquor

    DOE Patents [OSTI]

    Phillips, Benjamin A. (Benton Harbor, MI); Zawacki, Thomas S. (St. Joseph, MI)

    1996-11-05

    Numerous embodiments and related methods for generator-absorber heat exchange (GAX) are disclosed, particularly for absorption heat pump systems. Such embodiments and related methods use the working solution of the absorption system for the heat transfer medium where the working solution has an intermediate liquor concentration.

  12. Spent Nuclear Fuel project, project management plan

    SciTech Connect (OSTI)

    Fuquay, B.J.

    1995-10-25

    The Hanford Spent Nuclear Fuel Project has been established to safely store spent nuclear fuel at the Hanford Site. This Project Management Plan sets forth the management basis for the Spent Nuclear Fuel Project. The plan applies to all fabrication and construction projects, operation of the Spent Nuclear Fuel Project facilities, and necessary engineering and management functions within the scope of the project

  13. Novel Pulping Technology: Directed Green Liquor Utilization (D-GLU) Pulping

    SciTech Connect (OSTI)

    Lucian A. Lucia

    2005-11-15

    The general objectives of this new project are the same as those described in the original proposal. Conventional kraft pulping technologies will be modified for significant improvements in pulp production, such as strength, bleachability, and yield by using green liquor, a naturally high, kraft mill-derived sulfidity source. Although split white liquor sulfidity and other high sulfidity procedures have the promise of addressing several of the latter important economic needs of pulp mills, they require considerable engineering/capital retrofits, redesigned production methods, and thus add to overall mill expenditures. Green liquor use, however, possesses the required high sulfidity to obtain in general the benefits attributable to higher sulfidity cooking, without the required capital constraints for implementation. Before introduction of green liquor in our industrial operations, a stronger understanding of its fundamental chemical interaction with the lignin and carbohydrates in US hardwood and softwoods must be obtained. In addition, its effect on bleachability, enhancement of pulp properties, and influence on the overall energy and recovery of the mill requires further exploration before the process witnesses widespread mill use in North America. Thus, proof of principle will be accomplished in this work and the consequent effect of green liquor and other high sulfide sources on the pulping and bleaching operations will be explored for US kraft mills. The first year of this project will generate the pertinent information to validate its ability for implementation in US pulping operations, whereas year two will continue this work while proceeding to analyze pulp bleachability and final pulp/paper properties and develop a general economic and feasibility analysis for its eventual implementation in North America.

  14. Reprocessing option for spent fuel

    SciTech Connect (OSTI)

    Woolf, D.N. (British Nuclear Fuels PLC, Risley (United Kingdom))

    1991-11-01

    The options available to utilities for disposal of fuel discharged from their nuclear reactors is not limited to bury or burn. Many utilities in Europe and Japan have already opted to reprocess their spent fuel in the United Kingdom and/or France. This enables the utility to recycle the recovered uranium and plutonium and allows the utilities' countries to formulate a waste disposal policy without the time constraints that would otherwise be placed on them. This paper gives an insight into how and why British Nuclear Fuels plc (BNFL) is continuing to provide services to reprocess and recycle spent nuclear fuel. The closed fuel cycle represents the complete irradiated fuel management option and, with its use of well-established technologies, reprocessing of spent fuel is the only option that is available to utilities now.

  15. Determination of taurine concentration during cheddar cheese manufacture and examination of antioxidant properties of whey, permeate, mother liquor, and taurine 

    E-Print Network [OSTI]

    Li, Xin

    1999-01-01

    concentrated by evaporation to about 40% total solids. Lactose was crystallized and separated from the remaining liquid. An HPLC method was employed to determine the concentration of taurine in milk, whey, permeate and mother liquor. The concentration...

  16. PERFORMANCE OF BLACK LIQUOR GASIFIER/GAS TURBINE COMBINED CYCLE COGENERATION IN mE KRAFT PULP

    E-Print Network [OSTI]

    ,and otherregions with low wood production costs and relatively low per-capita levels of paper use. The majority,and capital cost benefits for kraft mills. Several companie.~arepursuingcon-urercializationof black liquor

  17. Spent-fuel-storage alternatives

    SciTech Connect (OSTI)

    Not Available

    1980-01-01

    The Spent Fuel Storage Alternatives meeting was a technical forum in which 37 experts from 12 states discussed storage alternatives that are available or are under development. The subject matter was divided into the following five areas: techniques for increasing fuel storage density; dry storage of spent fuel; fuel characterization and conditioning; fuel storage operating experience; and storage and transport economics. Nineteen of the 21 papers which were presented at this meeting are included in this Proceedings. These have been abstracted and indexed. (ATT)

  18. Spent graphite fuel element processing

    SciTech Connect (OSTI)

    Holder, N.D.; Olsen, C.W.

    1981-07-01

    The Department of Energy currently sponsors two programs to demonstrate the processing of spent graphite fuel elements. General Atomic in San Diego operates a cold pilot plant to demonstrate the processing of both US and German high-temperature reactor fuel. Exxon Nuclear Idaho Company is demonstrating the processing of spent graphite fuel elements from Rover reactors operated for the Nuclear Rocket Propulsion Program. This work is done at Idaho National Engineering Laboratory, where a hot facility is being constructed to complete processing of the Rover fuel. This paper focuses on the graphite combustion process common to both programs.

  19. Actinide removal from spent salts

    DOE Patents [OSTI]

    Hsu, Peter C. (Pleasanton, CA); von Holtz, Erica H. (Livermore, CA); Hipple, David L. (Livermore, CA); Summers, Leslie J. (Livermore, CA); Adamson, Martyn G. (Danville, CA)

    2002-01-01

    A method for removing actinide contaminants (uranium and thorium) from the spent salt of a molten salt oxidation (MSO) reactor is described. Spent salt is removed from the reactor and analyzed to determine the contaminants present and the carbonate concentration. The salt is dissolved in water, and one or more reagents are added to precipitate the thorium as thorium oxide and/or the uranium as either uranium oxide or as a diuranate salt. The precipitated materials are filtered, dried and packaged for disposal as radioactive waste. About 90% of the thorium and/or uranium present is removed by filtration. After filtration, salt solutions having a carbonate concentration >20% can be dried and returned to the reactor for re-use. Salt solutions containing a carbonate concentration <20% require further clean-up using an ion exchange column, which yields salt solutions that contain less than 0.1 ppm of thorium or uranium.

  20. Effect of pulsations on black liquor gasification. Progress report, July--September 1995

    SciTech Connect (OSTI)

    Kushari, A.; Jeong, H.; Jagoda, J.I.; Zinn, B.T.

    1995-12-31

    The objective of this study is to investigate the use of pulse combustion to provide the energy required for the endothermic gasification of black liquor in a fluidized bed. In this process it is critical that the temperature remain in the small window above the gasification temperature but below the smelting temperature of the inorganic salts in the black liquor. Pulse combustors have been shown to have high heat transfer rates between the hot combustion products and the combustor tailpipe. Similarly, fluidized beds have high heat transfer rates within the bed itself, promoting temperature uniformity throughout. Typical analysis of the gasified black liquor shows there is a large percentage of combustible gases in the products of the gasification process (approximately 70%). The potential exists, therefore, for using this fuel mixture to fire the pulse combustor. This makes the entire process more efficient and may be necessary to make it economically feasible. The overall goals of this study are to determine (1) which is the limiting heat transfer rate in the process of transferring the heat from the hot combustion products to the pipe, through the pipe, from the tailpipe to the bed and then throughout the bed; i.e., whether increased heat transfer within the pulse combustor will significantly increase the overall heat transfer rate; (2) whether the temperature distribution in the bed can be maintained within the narrow temperature range required by the process without generating hot spots in the bed even if the heat transfer from the pulse combustor is significantly increased; and (3) whether the fuel gas produced during the gasification process can be used to efficiently fire the pulse combustor.

  1. Electronic nose with a new feature reduction method and a multi-linear classifier for Chinese liquor classification

    SciTech Connect (OSTI)

    Jing, Yaqi; Meng, Qinghao, E-mail: qh-meng@tju.edu.cn; Qi, Peifeng; Zeng, Ming; Li, Wei; Ma, Shugen [Tianjin Key Laboratory of Process Measurement and Control, Institute of Robotics and Autonomous Systems, School of Electrical Engineering and Automation, Tianjin University, Tianjin 300072 (China)] [Tianjin Key Laboratory of Process Measurement and Control, Institute of Robotics and Autonomous Systems, School of Electrical Engineering and Automation, Tianjin University, Tianjin 300072 (China)

    2014-05-15

    An electronic nose (e-nose) was designed to classify Chinese liquors of the same aroma style. A new method of feature reduction which combined feature selection with feature extraction was proposed. Feature selection method used 8 feature-selection algorithms based on information theory and reduced the dimension of the feature space to 41. Kernel entropy component analysis was introduced into the e-nose system as a feature extraction method and the dimension of feature space was reduced to 12. Classification of Chinese liquors was performed by using back propagation artificial neural network (BP-ANN), linear discrimination analysis (LDA), and a multi-linear classifier. The classification rate of the multi-linear classifier was 97.22%, which was higher than LDA and BP-ANN. Finally the classification of Chinese liquors according to their raw materials and geographical origins was performed using the proposed multi-linear classifier and classification rate was 98.75% and 100%, respectively.

  2. HYDRAULIC CEMENT PREPARATION FROM LURGI SPENT SHALE

    E-Print Network [OSTI]

    Mehta, P.K.

    2013-01-01

    Investigations on hydraulic cement from spent oil shale,"April 16-18, 1980 HYDRAULIC CEMENT PREPARATION FROM LURGIpressi ve b strength, MPa this cement in moist environments.

  3. HYDRAULIC CEMENT PREPARATION FROM LURGI SPENT SHALE

    E-Print Network [OSTI]

    Mehta, P.K.

    2013-01-01

    P. , "Investigations on hydraulic cement from spent oilCO, April 16-18, 1980 HYDRAULIC CEMENT PREPARATION FROMUniversity of California. HYDRAULIC CEMENT PREPARATION FROM

  4. Nuclear Regulatory Commission's Integrated Strategy for Spent...

    Office of Environmental Management (EM)

    * DOE motion to withdraw in March 2010 2 * DOE motion to withdraw in March 2010 * Blue Ribbon Commission on America's Nuclear Future 2 Growing Spent Fuel Inventory Cumulative...

  5. Spent Nuclear Fuel (SNF) Project Execution Plan

    SciTech Connect (OSTI)

    LEROY, P.G.

    2000-11-03

    The Spent Nuclear Fuel (SNF) Project supports the Hanford Site Mission to cleanup the Site by providing safe, economic, environmentally sound management of Site spent nuclear fuel in a manner that reduces hazards by staging it to interim onsite storage and deactivates the 100 K Area facilities.

  6. Determination of Plutonium Content in Spent Fuel with Nondestructive Assay

    E-Print Network [OSTI]

    Tobin, S. J.

    2010-01-01

    LBNL- Determination of Plutonium Content in Spent Fuel withSwinhoe. “Determination of Plutonium Content in Spent FuelS. Tobin, “Measurement of Plutonium in Spent Nuclear Fuel by

  7. Cracking and Corrosion of Composite Tubes in Black Liquor Recovery Boiler Primary Air Ports

    SciTech Connect (OSTI)

    Keiser, James R.; Singbeil, Douglas L.; Sarma, Gorti B.; Kish, Joseph R.; Yuan, Jerry; Frederick, Laurie A.; Choudhury, Kimberly A.; Gorog, J. Peter; Jetté, Francois R.; Hubbard, Camden R.; Swindeman, Robert W.; Singh, Prett M.; Maziasz, Phillip J.

    2006-10-01

    Black liquor recovery boilers are an essential part of kraft mills. Their design and operating procedures have changed over time with the goal of providing improved boiler performance. These performance improvements are frequently associated with an increase in heat flux and/or operating temperature with a subsequent increase in the demand on structural materials associated with operation at higher temperatures and/or in more corrosive environments. Improvements in structural materials have therefore been required. In most cases the alternate materials have provided acceptable solutions. However, in some cases the alternate materials have solved the original problem but introduced new issues. This report addresses the performance of materials in the tubes forming primary air port openings and, particularly, the problems associated with use of stainless steel clad carbon steel tubes and the solutions that have been identified.

  8. HIGHLY ENERGY EFFICIENT D-GLU (DIRECTED-GREEN LIQ-UOR UTILIZATION) PULPING

    SciTech Connect (OSTI)

    Lucia, Lucian A

    2013-04-19

    Purpose: The purpose of the project was to retrofit the front end (pulp house) of a commercial kraft pulping mill to accommodate a mill green liquor (GL) impregna-tion/soak/exposure and accrue downstream physical and chemical benefits while prin-cipally reducing the energy footprint of the mill. A major player in the mill contrib-uting to excessive energy costs is the lime kiln. The project was intended to offload the energy (oil or natural gas) demands of the kiln by by-passing the causticization/slaking site in the recovery area and directly using green liquor as a pulping medium for wood. Scope: The project was run in two distinct, yet mutually compatible, phases: Phase 1 was the pre-commercial or laboratory phase in which NC State University and the Insti-tute of Paper Science and Technology (at the Georgia Institute of Technology) ran the pulping and associated experiments, while Phase 2 was the mill scale trial. The first tri-al was run at the now defunct Evergreen Pulp Mill in Samoa, CA and lead to a partial retrofit of the mill that was not completed because it went bankrupt and the work was no longer the low-hanging fruit on the tree for the new management. The second trial was run at the MeadWestvaco Pulp Mill in Evedale, TX which for all intents and pur-poses was a success. They were able to fully retrofit the mill, ran the trial, studied the pulp properties, and gave us conclusions.

  9. Deep Borehole Disposal of Spent Fuel. (Conference) | SciTech...

    Office of Scientific and Technical Information (OSTI)

    Deep Borehole Disposal of Spent Fuel. Citation Details In-Document Search Title: Deep Borehole Disposal of Spent Fuel. Abstract not provided. Authors: Brady, Patrick V. Publication...

  10. INVESTIGATIONS ON HYDRAULIC CEMENTS FROM SPENT OIL SHALE

    E-Print Network [OSTI]

    Mehta, P.K.

    2012-01-01

    Research INVESTIGATIONS ON HYDRAULIC CEMENTS FROM SPENT OILCalifornia. INVESTIGATIONS ON HYDRAULIC CEMENTS FROM SPENTA process for making hydraulic cements from spent oil shale

  11. Naval Spent Fuel Rail Shipment Accident Exercise Objectives

    Office of Environmental Management (EM)

    NAVAL SPENT FUEL RAIL SHIPMENT ACCIDENT EXERCISE OBJECTIVES * Familiarize stakeholders with the Naval spent fuel ACCIDENT EXERCISE OBJECTIVES Familiarize stakeholders with the...

  12. Activities Related to Storage of Spent Nuclear Fuel | Department...

    Office of Environmental Management (EM)

    Related to Storage of Spent Nuclear Fuel More Documents & Publications Nuclear Regulatory Commission Fifth National Report for the Joint Convention on the Safety of Spent...

  13. Idaho Spent Fuel Facility (ISFF) Project, Appropriate Acquisition...

    Energy Savers [EERE]

    Idaho Spent Fuel Facility (ISFF) Project, Appropriate Acquisition Strategy Lessons Learned Report, NNSA, Feb 2010 Idaho Spent Fuel Facility (ISFF) Project, Appropriate Acquisition...

  14. National Report Joint Convention on the Safety of Spent Fuel...

    Office of Environmental Management (EM)

    National Report Joint Convention on the Safety of Spent Fuel Management and on the Safety of Radioactive Waste Management National Report Joint Convention on the Safety of Spent...

  15. Current Status of the Spent Nuclear Fuel Management Program in...

    Office of Scientific and Technical Information (OSTI)

    Current Status of the Spent Nuclear Fuel Management Program in the United States. Citation Details In-Document Search Title: Current Status of the Spent Nuclear Fuel Management...

  16. Recovery of manganese oxides from spent alkaline and zinc–carbon batteries. An application as catalysts for VOCs elimination

    SciTech Connect (OSTI)

    Gallegos, María V.; Falco, Lorena R.; Peluso, Miguel A.; Sambeth, Jorge E.; Thomas, Horacio J.

    2013-06-15

    Highlights: • Manganese oxides were synthesized using spent batteries as raw materials. • Spent alkaline and zinc–carbon size AA batteries were used. • A biohydrometallurgical process was employed to bio-lixiviate batteries. • Manganese oxides were active in the oxidation of VOCs (ethanol and heptane). - Abstract: Manganese, in the form of oxide, was recovered from spent alkaline and zinc–carbon batteries employing a biohydrometallurgy process, using a pilot plant consisting in: an air-lift bioreactor (containing an acid-reducing medium produced by an Acidithiobacillus thiooxidans bacteria immobilized on elemental sulfur); a leaching reactor (were battery powder is mixed with the acid-reducing medium) and a recovery reactor. Two different manganese oxides were recovered from the leachate liquor: one of them by electrolysis (EMO) and the other by a chemical precipitation with KMnO{sub 4} solution (CMO). The non-leached solid residue was also studied (RMO). The solids were compared with a MnO{sub x} synthesized in our laboratory. The characterization by XRD, FTIR and XPS reveal the presence of Mn{sub 2}O{sub 3} in the EMO and the CMO samples, together with some Mn{sup 4+} cations. In the solid not extracted by acidic leaching (RMO) the main phase detected was Mn{sub 3}O{sub 4}. The catalytic performance of the oxides was studied in the complete oxidation of ethanol and heptane. Complete conversion of ethanol occurs at 200 °C, while heptane requires more than 400 °C. The CMO has the highest oxide selectivity to CO{sub 2}. The results show that manganese oxides obtained using spent alkaline and zinc–carbon batteries as raw materials, have an interesting performance as catalysts for elimination of VOCs.

  17. Spent Nuclear Fuel Project dose management plan

    SciTech Connect (OSTI)

    Bergsman, K.H.

    1996-03-01

    This dose management plan facilitates meeting the dose management and ALARA requirements applicable to the design activities of the Spent Nuclear Fuel Project, and establishes consistency of information used by multiple subprojects in ALARA evaluations. The method for meeting the ALARA requirements applicable to facility designs involves two components. The first is each Spent Nuclear Fuel Project subproject incorporating ALARA principles, ALARA design optimizations, and ALARA design reviews throughout the design of facilities and equipment. The second component is the Spent Nuclear Fuel Project management providing overall dose management guidance to the subprojects and oversight of the subproject dose management efforts.

  18. HYDRAULIC CEMENT PREPARATION FROM LURGI SPENT SHALE

    E-Print Network [OSTI]

    Mehta, P.K.

    2013-01-01

    cement from spent oil shale," Vol. 10, No. 4, p. 54S,Colorado's primary oil shale resource for vertical modifiedSimulated effects of oil-shale development on the hydrology

  19. HYDRAULIC CEMENT PREPARATION FROM LURGI SPENT SHALE

    E-Print Network [OSTI]

    Mehta, P.K.

    2013-01-01

    hydraulic cement from spent oil shale," Vol. 10, No. 4, p.J. W. , "Colorado's primary oil shale resource for verticalSimulated effects of oil-shale development on the hydrology

  20. Spent Nuclear Fuel Project Safety Management Plan

    SciTech Connect (OSTI)

    Garvin, L.J.

    1996-02-01

    The Spent Nuclear Fuel Project Safety Management Plan describes the new nuclear facility regulatory requirements basis for the Spemt Nuclear Fuel (SNF) Project and establishes the plan to achieve compliance with this basis at the new SNF Project facilities.

  1. Spent Fuel Reprocessing: More Value for Money Spent in a Geological Repository?

    SciTech Connect (OSTI)

    Kaplan, P.; Vinoche, R.; Devezeaux, J-G.; Bailly, F.

    2003-02-25

    Today, each utility or country operating nuclear power plants can select between two long-term spent fuel management policies: either, spent fuel is considered as waste to dispose of through direct disposal or, spent fuel is considered a resource of valuable material through reprocessing-recycling. Reading and listening to what is said in the nuclear community, we understand that most people consider that the choice of policy is, actually, a choice among two technical paths to handle spent fuel: direct disposal versus reprocessing. This very simple situation has been recently challenged by analysis coming from countries where both policies are on survey. For example, ONDRAF of Belgium published an interesting study showing that, economically speaking for final disposal, it is worth treating spent fuel rather than dispose of it as a whole, even if there is no possibility to recycle the valuable part of it. So, the question is raised: is there such a one-to-one link between long term spent fuel management political option and industrial option? The purpose of the presentation is to discuss the potential advantages and drawbacks of spent fuel treatment as an implementation of the policy that considers spent fuel as waste to dispose of. Based on technical considerations and industrial experience, we will study qualitatively, and quantitatively when possible, the different answers proposed by treatment to the main concerns of spent-fuel-as-a-whole geological disposal.

  2. Pyrochemical processing of DOE spent nuclear fuel

    SciTech Connect (OSTI)

    Laidler, J.J.

    1995-02-01

    A compact, efficient method for conditioning spent nuclear fuel is under development. This method, known as pyrochemical processing, or {open_quotes}pyroprocessing,{close_quotes} provides a separation of fission products from the actinide elements present in spent fuel and further separates pure uranium from the transuranic elements. The process can facilitate the timely and environmentally-sound treatment of the highly diverse collection of spent fuel currently in the inventory of the United States Department of Energy (DOE). The pyroprocess utilizes elevated-temperature processes to prepare spent fuel for fission product separation; that separation is accomplished by a molten salt electrorefining step that provides efficient (>99.9%) separation of transuranics. The resultant waste forms from the pyroprocess, are stable under envisioned repository environment conditions and highly leach-resistant. Treatment of any spent fuel type produces a set of common high-level waste forms, one a mineral and the other a metal alloy, that can be readily qualified for repository disposal and avoid the substantial costs that would be associated with the qualification of the numerous spent fuel types included in the DOE inventory.

  3. Spent nuclear fuel reprocessing modeling

    SciTech Connect (OSTI)

    Tretyakova, S.; Shmidt, O.; Podymova, T.; Shadrin, A.; Tkachenko, V. [Bochvar Institute, 5 Rogova str., Moscow 123098 (Russian Federation); Makeyeva, I.; Tkachenko, V.; Verbitskaya, O.; Schultz, O.; Peshkichev, I. [Russian Federal Nuclear Center - VNIITF E.I. Zababakhin, p.o.box 245, Snezhinsk, 456770 (Russian Federation)

    2013-07-01

    The long-term wide development of nuclear power requires new approaches towards the realization of nuclear fuel cycle, namely, closed nuclear fuel cycle (CNFC) with respect to fission materials. Plant nuclear fuel cycle (PNFC), which is in fact the reprocessing of spent nuclear fuel unloaded from the reactor and the production of new nuclear fuel (NF) at the same place together with reactor plant, can be one variant of CNFC. Developing and projecting of PNFC is a complicated high-technology innovative process that requires modern information support. One of the components of this information support is developed by the authors. This component is the programme conducting calculations for various variants of process flow sheets for reprocessing SNF and production of NF. Central in this programme is the blocks library, where the blocks contain mathematical description of separate processes and operations. The calculating programme itself has such a structure that one can configure the complex of blocks and correlations between blocks, appropriate for any given flow sheet. For the ready sequence of operations balance calculations are made of all flows, i.e. expenses, element and substance makeup, heat emission and radiation rate are determined. The programme is open and the block library can be updated. This means that more complicated and detailed models of technological processes will be added to the library basing on the results of testing processes using real equipment, in test operating mode. The development of the model for the realization of technical-economic analysis of various variants of technologic PNFC schemes and the organization of 'operator's advisor' is expected. (authors)

  4. Thermal reclamation of spent blasting abrasive

    SciTech Connect (OSTI)

    Bryan, B.G. ); Thomas, W.; Adema, C. )

    1990-01-01

    Abrasive blasting media is used to remove anticorrosive and antifoulant coatings from the hulls and tanks of US Navy ships. The total production of paint-contaminated spent abrasives from the eight US. Navy shipyards ranges from 75,000 to 100,000 tons per year. Most of this spent abrasive is disposed in landfills. Organic paint binders and heavy metals are present in the spent abrasives in concentrations sufficient to classify them as hazardous wastes in some states. In an effort to avoid the rising costs an long-term environmental liability associated with landfilling this waste, the US Navy has investigated various methods of reclaiming spent abrasives for reuse in hull- and tank-blasting operations. This paper discusses the results of a research and development project conducted under the Navy's Hazardous Waste Minimization Program to test a fluidized-bed sloped-grid (FBSG) reclaimer to determine if it could be used to recycle spent abrasive. Thirty tons of abrasive were processed and a product meeting military specifications for new abrasives was reclaimed. Blasting performance was also comparable to new abrasives. 3 refs., 1 fig., 2 tabs.

  5. Spent Nuclear Fuel Alternative Technology Decision Analysis

    SciTech Connect (OSTI)

    Shedrow, C.B.

    1999-11-29

    The Westinghouse Savannah River Company (WSRC) made a FY98 commitment to the Department of Energy (DOE) to recommend a technology for the disposal of aluminum-based spent nuclear fuel (SNF) at the Savannah River Site (SRS). The two technologies being considered, direct co-disposal and melt and dilute, had been previously selected from a group of eleven potential SNF management technologies by the Research Reactor Spent Nuclear Fuel Task Team chartered by the DOE''s Office of Spent Fuel Management. To meet this commitment, WSRC organized the SNF Alternative Technology Program to further develop the direct co-disposal and melt and dilute technologies and ultimately provide a WSRC recommendation to DOE on a preferred SNF alternative management technology.

  6. Spent Fuel Background Report Volume I

    SciTech Connect (OSTI)

    Abbott, D.

    1994-03-01

    This report is an overview of current spent nuclear fuel management in the DOE complex. Sources of information include published literature, internal DOE documents, interviews with site personnel, and information provided by individual sites. Much of the specific information on facilities and fuels was provided by the DOE sites in response to the questionnaire for data for spent fuels and facilities data bases. This information is as accurate as is currently available, but is subject to revision pending results of further data calls. Spent fuel is broadly classified into three categories: (a) production fuels, (b) special fuels, and (c) naval fuels. Production fuels, comprising about 80% of the total inventory, are those used at Hanford and Savannah River to produce nuclear materials for defense. Special fuels are those used in a wide variety of research, development, and testing activities. Special fuels include fuel from DOE and commercial reactors used in research activities at DOE sites. Naval fuels are those developed and used for nuclear-powered naval vessels and for related research and development. Given the recent DOE decision to curtail reprocessing, the topic of main concern in the management of spent fuel is its storage. Of the DOE sites that have spent nuclear fuel, the vast majority is located at three sites-Hanford, INEL, and Savannah River. Other sites with spent fuel include Oak Ridge, West Valley, Brookhaven, Argonne, Los Alamos, and Sandia. B&W NESI Lynchburg Technology Center and General Atomics are commercial facilities with DOE fuel. DOE may also receive fuel from foreign research reactors, university reactors, and other commercial and government research reactors. Most DOE spent fuel is stored in water-filled pools at the reactor facilities. Currently an engineering study is being performed to determine the feasibility of using dry storage for DOE-owned spent fuel currently stored at various facilities. Delays in opening the deep geologic repository and the decision to phase out reprocessing of production fuels are extending the need for interim storage. The report describes the basic storage conditions and the general SNF inventory at individual DOE facilities.

  7. Bench-scale Kinetics Study of Mercury Reactions in FGD Liquors

    SciTech Connect (OSTI)

    Gary Blythe; John Currie; David DeBerry

    2008-03-31

    This document is the final report for Cooperative Agreement DE-FC26-04NT42314, 'Kinetics Study of Mercury Reactions in FGD Liquors'. The project was co-funded by the U.S. DOE National Energy Technology Laboratory and EPRI. The objective of the project has been to determine the mechanisms and kinetics of the aqueous reactions of mercury absorbed by wet flue gas desulfurization (FGD) systems, and develop a kinetics model to predict mercury reactions in wet FGD systems. The model may be used to determine optimum wet FGD design and operating conditions to maximize mercury capture in wet FGD systems. Initially, a series of bench-top, liquid-phase reactor tests were conducted and mercury species concentrations were measured by UV/visible light spectroscopy to determine reactant and byproduct concentrations over time. Other measurement methods, such as atomic absorption, were used to measure concentrations of vapor-phase elemental mercury, that cannot be measured by UV/visible light spectroscopy. Next, a series of bench-scale wet FGD simulation tests were conducted. Because of the significant effects of sulfite concentration on mercury re-emission rates, new methods were developed for operating and controlling the bench-scale FGD experiments. Approximately 140 bench-scale wet FGD tests were conducted and several unusual and pertinent effects of process chemistry on mercury re-emissions were identified and characterized. These data have been used to develop an empirically adjusted, theoretically based kinetics model to predict mercury species reactions in wet FGD systems. The model has been verified in tests conducted with the bench-scale wet FGD system, where both gas-phase and liquid-phase mercury concentrations were measured to determine if the model accurately predicts the tendency for mercury re-emissions. This report presents and discusses results from the initial laboratory kinetics measurements, the bench-scale wet FGD tests, and the kinetics modeling efforts.

  8. CONTAMINATION OF GROUNDWATER BY ORGANIC POLLUTANTS LEACHED FROM IN-SITU SPENT SHALE

    E-Print Network [OSTI]

    Amy, Gary L.

    2013-01-01

    from Characterization of Spent Shale s . , , . • • . . • ,4. Preparation of Spent Shale Samples and Procedure forof Particular Types of Spent Shale References • Appendix A.

  9. General Information 1. Indicate time spent

    E-Print Network [OSTI]

    Pittendrigh, Barry

    General Information 1. Indicate time spent: On a computer at work: ____ hours per day On a computer at home: ____ hours per day On a handheld computer (e.g., Blackberry): ____ hours per day 2. Desktop or laptop computer Use: (circle applicable) My work computer is a: desktop laptop My home computer is a

  10. INVESTIGATIONS ON HYDRAULIC CEMENTS FROM SPENT OIL SHALE

    E-Print Network [OSTI]

    Mehta, P.K.

    2012-01-01

    Cement Manufacture from Oil Shale, U.S. Patent 2,904,445,CEMENTS FROM SPENT OIL SHALE P.K. Mehta and P. Persoff Aprilhydraulic cements from spent oil shale is described in this

  11. INVESTIGATIONS ON HYDRAULIC CEMENTS FROM SPENT OIL SHALE

    E-Print Network [OSTI]

    Mehta, P.K.

    2012-01-01

    CEMENTS FROM SPENT OIL SHALE P.K. Mehta and P. Persoff AprilCement Manufacture from Oil Shale, U.S. Patent 2,904,445,CEMENTS FROM SPENT OIL SHALE P, K, Mehta Civil Engineering

  12. Fact #820: May 5, 2014 Dollars Spent on Imported Petroleum

    Broader source: Energy.gov [DOE]

    Over the last three decades, the amount of money the U.S. spent on imported petroleum varied widely. In 1988 and 1998, about $200 million per day was spent on imported petroleum, but in 2008 it was...

  13. Dependence of transuranic content in spent fuel on fuel burnup

    E-Print Network [OSTI]

    Reese, Drew A. (Drew Amelia)

    2007-01-01

    As the increasing demand for nuclear energy results in larger spent fuel volume, implementation of longer fuel cycles incorporating higher burnup are becoming common. Understanding the effect of higher burnup on the spent ...

  14. Report on interim storage of spent nuclear fuel

    SciTech Connect (OSTI)

    Not Available

    1993-04-01

    The report on interim storage of spent nuclear fuel discusses the technical, regulatory, and economic aspects of spent-fuel storage at nuclear reactors. The report is intended to provide legislators state officials and citizens in the Midwest with information on spent-fuel inventories, current and projected additional storage requirements, licensing, storage technologies, and actions taken by various utilities in the Midwest to augment their capacity to store spent nuclear fuel on site.

  15. Nondestructive Spent Fuel Assay Using Nuclear Resonance Fluorescence

    E-Print Network [OSTI]

    Quiter, Brian

    2010-01-01

    spent fuel is to quantify the concentrations of fissile isotopes before any materials handling activities, such as transporting fuel, reprocessing,

  16. EIS-0015: U.S. Spent Fuel Policy

    Broader source: Energy.gov [DOE]

    Subsumed DOE/EIS-0040 and DOE/EIS-0041. The Savannah River Laboratory prepared this EIS to analyze the impacts of implementing or not implementing the policy for interim storage of spent power reactor fuel. This Final EIS is a compilation of three Draft EISs and one Supplemental Draft EIS: DOE/EIS-0015-D, Storage of U.S. Spent Power Reactor Fuel; DOE/EIS-0015-DS, Storage of U.S. Spent Power Reactor Fuel - Supplement; DOE/EIS-0040-D, Storage of Foreign Spent Power Reactor Fuel; and DOE/EIS-0041-D, Charge for Spent Fuel Storage.

  17. Spent fuel container alignment device and method

    DOE Patents [OSTI]

    Jones, Stewart D. (Mechanicville, NY); Chapek, George V. (Scotia, NY)

    1996-01-01

    An alignment device is used with a spent fuel shipping container including a plurality of fuel pockets for spent fuel arranged in an annular array and having a rotatable cover including an access opening therein. The alignment device includes a lightweight plate which is installed over the access opening of the cover. A laser device is mounted on the plate so as to emit a laser beam through a laser admittance window in the cover into the container in the direction of a pre-established target associated with a particular fuel pocket. An indexing arrangement on the container provides an indication of the angular position of the rotatable cover when the laser beam produced by the laser is brought into alignment with the target of the associated fuel pocket.

  18. Spent Sealed Sources Management in Switzerland - 12011

    SciTech Connect (OSTI)

    Beer, H.F.

    2012-07-01

    Information is provided about the international recommendations for the safe management of disused and spent sealed radioactive sources wherein the return to the supplier or manufacturer is encouraged for large radioactive sources. The legal situation in Switzerland is described mentioning the demand of minimization of radioactive waste as well as the situation with respect to the interim storage facility at the Paul Scherrer Institute (PSI). Based on this information and on the market situation with a shortage of some medical radionuclides the management of spent sealed sources is provided. The sources are sorted according to their activity in relation to the nuclide-specific A2-value and either recycled as in the case of high active sources or conditioned as in the case for sources with lower activity. The results are presented as comparison between recycled and conditioned activity for three selected nuclides, i.e. Cs-137, Co-60 and Am-241. (author)

  19. Spent nuclear fuel project integrated schedule plan

    SciTech Connect (OSTI)

    Squires, K.G.

    1995-03-06

    The Spent Nuclear Fuel Integrated Schedule Plan establishes the organizational responsibilities, rules for developing, maintain and status of the SNF integrated schedule, and an implementation plan for the integrated schedule. The mission of the SNFP on the Hanford site is to provide safe, economic, environmentally sound management of Hanford SNF in a manner which stages it to final disposition. This particularly involves K Basin fuel.

  20. Spent fuel pool analysis using TRACE code

    SciTech Connect (OSTI)

    Sanchez-Saez, F.; Carlos, S.; Villanueva, J. F.; Martorell, S.

    2012-07-01

    The storage requirements of Spent Fuel Pools have been analyzed with the purpose to increase their rack capacities. In the past, the thermal limits have been mainly evaluated with conservative codes developed for this purpose, although some works can be found in which a best estimate code is used. The use of best estimate codes is interesting as they provide more realistic calculations and they have the capability of analyzing a wide range of transients that could affect the Spent Fuel Pool. Two of the most representative thermal-hydraulic codes are RELAP-5 and TRAC. Nowadays, TRACE code is being developed to make use of the more favorable characteristics of RELAP-5 and TRAC codes. Among the components coded in TRACE that can be used to construct the model, it is interesting to use the VESSEL component, which has the capacity of reproducing three dimensional phenomena. In this work, a thermal-hydraulic model of the Maine Yankee spent fuel pool using the TRACE code is developed. Such model has been used to perform a licensing calculation and the results obtained have been compared with experimental measurements made at the pool, showing a good agreement between the calculations predicted by TRACE and the experimental data. (authors)

  1. Spent Fuel Working Group Report. Volume 1

    SciTech Connect (OSTI)

    O`Toole, T.

    1993-11-01

    The Department of Energy is storing large amounts of spent nuclear fuel and other reactor irradiated nuclear materials (herein referred to as RINM). In the past, the Department reprocessed RINM to recover plutonium, tritium, and other isotopes. However, the Department has ceased or is phasing out reprocessing operations. As a consequence, Department facilities designed, constructed, and operated to store RINM for relatively short periods of time now store RINM, pending decisions on the disposition of these materials. The extended use of the facilities, combined with their known degradation and that of their stored materials, has led to uncertainties about safety. To ensure that extended storage is safe (i.e., that protection exists for workers, the public, and the environment), the conditions of these storage facilities had to be assessed. The compelling need for such an assessment led to the Secretary`s initiative on spent fuel, which is the subject of this report. This report comprises three volumes: Volume I; Summary Results of the Spent Fuel Working Group Evaluation; Volume II, Working Group Assessment Team Reports and Protocol; Volume III; Operating Contractor Site Team Reports. This volume presents the overall results of the Working Group`s Evaluation. The group assessed 66 facilities spread across 11 sites. It identified: (1) facilities that should be considered for priority attention. (2) programmatic issues to be considered in decision making about interim storage plans and (3) specific vulnerabilities for some of these facilities.

  2. Preliminary study of iron removal from hydrochloric pickling liquor by ion exchange

    SciTech Connect (OSTI)

    Maranon, E.; Suarez, F.; Alonso, F.; Fernandez, Y.; Sastre, H. [Univ. of Oviedo, Asturias (Spain). Dept. of Chemical and Environmental Engineering] [Univ. of Oviedo, Asturias (Spain). Dept. of Chemical and Environmental Engineering

    1999-07-01

    Hydrochloric acid from exhausted pickling baths is a residue that has to be managed adequately because of its high pollutant potential. In this work, an ion exchange treatment for removing iron from the spent acid was studied in an attempt to make the re-utilization of said acid viable for industry while reducing the amount of waste generated. Several cationic, anionic, and chelating resins were tested. Cationic and chelating resins are able to remove Fe(II) that is present as a cation in the acid, whereas anionic resins are able to remove Fe(III) that forms anionic complexes with the chloride anion. The capacity of the cationic and chelating resins, although not high, does improve as the iron concentration in the hydrochloric acid increases and when the acid concentration decreases, because there is less competition between the ferrous cation and the protons. The anionic resins showed higher capacity for removing iron, especially the Lewatit MP-500, and this capacity also increased with iron concentration.

  3. Pyrochemical Treatment of Spent Nuclear Fuel

    SciTech Connect (OSTI)

    K. M. Goff; K. L. Howden; G. M. Teske; T. A. Johnson

    2005-10-01

    Over the last 10 years, pyrochemical treatment of spent nuclear fuel has progressed from demonstration activities to engineering-scale production operations. As part of the Advanced Fuel Cycle Initiative within the U.S. Department of Energy’s Office of Nuclear Energy, Science and Technology, pyrochemical treatment operations are being performed as part of the treatment of fuel from the Experimental Breeder Reactor II at the Idaho National Laboratory. Integral to these treatment operations are research and development activities that are focused on scaling further the technology, developing and implementing process improvements, qualifying the resulting high-level waste forms, and demonstrating the overall pyrochemical fuel cycle.

  4. Surrogate Spent Nuclear Fuel Vibration Integrity Investigation

    SciTech Connect (OSTI)

    Wang, Jy-An John; Wang, Hong; Bevard, Bruce Balkcom; Howard, Rob L

    2014-01-01

    Transportation packages for spent nuclear fuel (SNF) must meet safety requirements under normal and accident conditions as specified by federal regulations. During transportation, SNF experiences unique conditions and challenges to cladding integrity due to the vibrational and impact loading encountered during road or rail shipment. ORNL has been developing testing capabilities that can be used to improve our understanding of the impacts of vibration loading on SNF integrity, especially for high burn-up SNF in normal transportation operation conditions. This information can be used to meet nuclear industry and U.S. Nuclear Regulatory Commission needs in the area of safety of SNF storage and transportation operations.

  5. Spent fuel management fee methodology and computer code user's manual.

    SciTech Connect (OSTI)

    Engel, R.L.; White, M.K.

    1982-01-01

    The methodology and computer model described here were developed to analyze the cash flows for the federal government taking title to and managing spent nuclear fuel. The methodology has been used by the US Department of Energy (DOE) to estimate the spent fuel disposal fee that will provide full cost recovery. Although the methodology was designed to analyze interim storage followed by spent fuel disposal, it could be used to calculate a fee for reprocessing spent fuel and disposing of the waste. The methodology consists of two phases. The first phase estimates government expenditures for spent fuel management. The second phase determines the fees that will result in revenues such that the government attains full cost recovery assuming various revenue collection philosophies. These two phases are discussed in detail in subsequent sections of this report. Each of the two phases constitute a computer module, called SPADE (SPent fuel Analysis and Disposal Economics) and FEAN (FEe ANalysis), respectively.

  6. Rejuvenation and reuse of spent fluid cracking catalysts

    SciTech Connect (OSTI)

    Elvin, F.J. (ChemCat Corp., New Orleans, LA (US))

    1988-01-01

    Refineries processing heavy, high metals feedstocks have reused other refineries' spent cracking catalyst for the past ten years without observing any yield debits. ChemCat has developed a process whereby a refinery can reuse its own spent catalyst without suffering any yield debits. The new DEMET process is being demonstrated in the world's first commercial fluid cracking catalyst rejuvenation and demetallization plant. The plant is located in Meraux, Louisiana and processes 20 tons/day of spent cracking catalyst for local refineries. The plant removes contaminant metals from zeolite catalysts, while simultaneously increasingly the zeolite and matrix surface areas. The demetallized catalyst has a higher activity and better selectivity than the undemetallized spent catalyst. The demetallized catalyst is also more hydrothermally stable than the spent catalyst. ChemCat's DEMET process enables refiners to eliminate the high cost of spent FCCU catalyst disposal and to significantly reduce their consumption and cost of fresh catalyst.

  7. Production of ammonium sulfate fertilizer from FGD waste liquors. Quarterly technical report, October 1, 1994--December 31, 1994

    SciTech Connect (OSTI)

    Randolph, A.D.; Mukhopadhyay, S.; Unrau, E.

    1994-12-31

    During this quarterly period, an experimental investigation was performed to study the precipitation kinetics and hydrolysis characteristics of calcium imido disulfonate crystals (CaADS). The CaADS crystals were precipitated by a metathetical reaction of lime, supplied by Dravo Lime Co., with flue gas desulfurization (FGD) scrubber waste liquor. Before approaching for the continuous Double Draw-Off (DDO) crystallization studies, the influence of a Dravo lime slurry on the precipitation characteristics of N-S compounds will be established. A series of N-S compound batch crystallization studies were completed in a wide range of pH (7.0--9.0), and the influence of pH on the amount of lime required, as well as the amount of precipitate obtained, was investigated. Although the amount of precipitate increased with increase in solution pH, the safe or optimum pH for the precipitation of CaADS lies in the vicinity of 8.2 to 8.3. For studying the crystallization characteristics of CaADS crystals, a bench scale 7.0 liter DDO crystallizer was built. DDO crystallizer is found to be superior compared to Mixed Suspension Mixed Product Removal (MSMPR) crystallizer. The precipitated crystals were analyzed for elemental composition by chemical analysis. The crystals were also examined under optical microscope for their morphological features. The present studies confirmed our prediction that N-S compounds in the waste liquor can be precipitated by a reaction with lime slurry. The precipitated crystals were mostly calcium imido disulfonate.

  8. Deep Borehole Disposal of Spent Fuel. Brady, Patrick V. Abstract...

    Office of Scientific and Technical Information (OSTI)

    Spent Fuel. Brady, Patrick V. Abstract not provided. Sandia National Laboratories (SNL-NM), Albuquerque, NM (United States) USDOE National Nuclear Security Administration (NNSA)...

  9. Spent Nuclear Fuel project integrated safety management plan

    SciTech Connect (OSTI)

    Daschke, K.D.

    1996-09-17

    This document is being revised in its entirety and the document title is being revised to ``Spent Nuclear Fuel Project Integrated Safety Management Plan.

  10. President Reagan Calls for a National Spent Fuel Storage Facility...

    National Nuclear Security Administration (NNSA)

    Reagan Calls for a National Spent Fuel Storage Facility | National Nuclear Security Administration Facebook Twitter Youtube Flickr RSS People Mission Managing the Stockpile...

  11. Huizenga leads safety of spent fuel management, radioactive waste...

    National Nuclear Security Administration (NNSA)

    Huizenga leads safety of spent fuel management, radioactive waste management meeting in Vienna | National Nuclear Security Administration Facebook Twitter Youtube Flickr RSS People...

  12. Systems impacts of spent fuel disassembly alternatives

    SciTech Connect (OSTI)

    Not Available

    1984-07-01

    Three studies were completed to evaluate four alternatives to the disposal of intact spent fuel assemblies in a geologic repository. A preferred spent fuel waste form for disposal was recommended on consideration of (1) package design and fuel/package interaction, (2) long-term, in-repository performance of the waste form, and (3) overall process performance and costs for packaging, handling, and emplacement. The four basic alternative waste forms considered were (1) end fitting removal, (2) fission gas venting, (3) disassembly and close packing, and (4) shearing/immobilization. None of the findings ruled out any alternative on the basis of waste package considerations or long-term performance of the waste form. The third alternative offers flexibility in loading that may prove attractive in the various geologic media under consideration, greatly reduces the number of packages, and has the lowest unit cost. These studies were completed in October, 1981. Since then Westinghouse Electric Corporation and the Office of Nuclear Waste Isolation have completed studies in related fields. This report is now being published to provide publicly the background material that is contained within. 47 references, 28 figures, 31 tables.

  13. Pyroprocess for processing spent nuclear fuel

    DOE Patents [OSTI]

    Miller, William E. (Naperville, IL); Tomczuk, Zygmunt (Lockport, IL)

    2002-01-01

    This is a pyroprocess for processing spent nuclear fuel. The spent nuclear fuel is chopped into pieces and placed in a basket which is lowered in to a liquid salt solution. The salt is rich in ZrF.sub.4 and containing alkali or alkaline earth fluorides, and in particular, the salt chosen was LiF-50 mol % ZrF.sub.4 with a eutectic melting point of 500.degree. C. Prior to lowering the basket, the salt is heated to a temperature of between 550.degree. C. and 700.degree. C. in order to obtain a molten solution. After dissolution the oxides of U, Th, rare earth and other like oxides, the salt bath solution is subject to hydro-fluorination to remove the oxygen and then to a fluorination step to remove U as gaseous UF.sub.6. In addition, after dissolution, the basket contains PuO.sub.2 and undissolved parts of the fuel rods, and the basket and its contents are processed to remove the Pu.

  14. Determining Plutonium Mass in Spent Fuel with Nondestructive Assay Techniques -- Preliminary Modeling Results Emphasizing Integration among Techniques

    E-Print Network [OSTI]

    Tobin, S. J.

    2010-01-01

    LBNL- Determining Plutonium Mass in Spent Fuel withSwinhoe. “Determination of Plutonium Content in Spent FuelS. Tobin, “Measurement of Plutonium in Spent Nuclear Fuel by

  15. Characterization plan for Hanford spent nuclear fuel

    SciTech Connect (OSTI)

    Abrefah, J.; Thornton, T.A.; Thomas, L.E.; Berting, F.M.; Marschman, S.C.

    1994-12-01

    Reprocessing of spent nuclear fuel (SNF) at the Hanford Site Plutonium-Uranium Extraction Plant (PUREX) was terminated in 1972. Since that time a significant quantity of N Reactor and Single-Pass Reactor SNF has been stored in the 100 Area K-East (KE) and K-West (KW) reactor basins. Approximately 80% of all US Department of Energy (DOE)-owned SNF resides at Hanford, the largest portion of which is in the water-filled KE and KW reactor basins. The basins were not designed for long-term storage of the SNF and it has become a priority to move the SNF to a more suitable location. As part of the project plan, SNF inventories will be chemically and physically characterized to provide information that will be used to resolve safety and technical issues for development of an environmentally benign and efficient extended interim storage and final disposition strategy for this defense production-reactor SNF.

  16. Arrival condition of spent fuel after storage, handling, and transportation

    SciTech Connect (OSTI)

    Bailey, W.J.; Pankaskie, P.J.; Langstaff, D.C.; Gilbert, E.R.; Rising, K.H.; Schreiber, R.E.

    1982-11-01

    This report presents the results of a study conducted to determine the probable arrival condition of spent light-water reactor (LWR) fuel after handling and interim storage in spent fuel storage pools and subsequent handling and accident-free transport operations under normal or slightly abnormal conditions. The objective of this study was to provide information on the expected condition of spent LWR fuel upon arrival at interim storage or fuel reprocessing facilities or at disposal facilities if the fuel is declared a waste. Results of a literature survey and data evaluation effort are discussed. Preliminary threshold limits for storing, handling, and transporting unconsolidated spent LWR fuel are presented. The difficulty in trying to anticipate the amount of corrosion products (crud) that may be on spent fuel in future shipments is also discussed, and potential areas for future work are listed. 95 references, 3 figures, 17 tables.

  17. Technical bases for interim storage of spent nuclear fuel

    SciTech Connect (OSTI)

    Johnson, A.B. Jr.

    1981-06-01

    The experience base for water storage of spent nuclear fuel has evolved since 1943. The technology base includes licensing documentation, standards, technology studies, pool operator experience, and documentation from public hearings. That base reflects a technology which is largely successful and mundane. It projects probable satisfactory water storage of spent water reactor fuel for several decades. Interim dry storage of spent water reactor fuel is not yet licensed in the US, but a data base and documentation have developed. There do not appear to be technological barriers to interim dry storage, based on demonstrations with irradiated fuel. Water storage will continue to be a part of spent fuel management at reactors. Whether dry storage becomes a prominent interim fuel management option depends on licensing and economic considerations. National policies will strongly influence how long the spent fuel remains in interim storage and what its final disposition will be.

  18. Red Rice Research and Control. 

    E-Print Network [OSTI]

    Baker, John B.; Baldwin, Ford L.; Bourgeois, W.J.; Cox, Clodis H.; Craigmiles, Julian P.; Dishman, William D.; Eastin, E. Ford; Helpert, Charles W.; Hill, Lewis C.; Huey, Bobby A.; Klosterboer, Arlen D.; Sonnier, Earl A.

    1980-01-01

    ...................................... 10 E. A. Sonnier RED RICE CONTROL IN ALTERNATE CROPS ................................ 16 F. L. Baldwin ..# RED RICE CONTROL ..................................................lg B. A. Huey and F. L. Baldwin RED RICE HERBICIDE SCREENING TESTS... - t o discuss the l a t e s t f indings and procedures f o r con t ro l l ing red r i c e . In accom- pl ishing t h i s we want two-way communication s o t h a t all present w i l l become current on t h i s most noxious weed of r i c e...

  19. Nuclear Resonance Fluorescence to Measure Plutonium Mass in Spent Nuclear Fuel

    E-Print Network [OSTI]

    Ludewigt, Bernhard A

    2011-01-01

    and S.J. Thompson,“Determining Plutonium in Spent Fuel withTobin, “Determination of Plutonium Content in Spent FuelFluorescence to Measure Plutonium Mass in Spent Nuclear Fuel

  20. EM Prepares Report for Convention on Safety of Spent Fuel and...

    Office of Environmental Management (EM)

    Prepares Report for Convention on Safety of Spent Fuel and Radioactive Waste Management EM Prepares Report for Convention on Safety of Spent Fuel and Radioactive Waste Management...

  1. DECONTAMINATION OF ZIRCALOY SPENT FUEL CLADDING HULLS

    SciTech Connect (OSTI)

    Rudisill, T; John Mickalonis, J

    2006-09-27

    The reprocessing of commercial spent nuclear fuel (SNF) generates a Zircaloy cladding hull waste which requires disposal as a high level waste in the geologic repository. The hulls are primarily contaminated with fission products and actinides from the fuel. During fuel irradiation, these contaminants are deposited in a thin layer of zirconium oxide (ZrO{sub 2}) which forms on the cladding surface at the elevated temperatures present in a nuclear reactor. Therefore, if the hulls are treated to remove the ZrO{sub 2} layer, a majority of the contamination will be removed and the hulls could potentially meet acceptance criteria for disposal as a low level waste (LLW). Discard of the hulls as a LLW would result in significant savings due to the high costs associated with geologic disposal. To assess the feasibility of decontaminating spent fuel cladding hulls, two treatment processes developed for dissolving fuels containing zirconium (Zr) metal or alloys were evaluated. Small-scale dissolution experiments were performed using the ZIRFLEX process which employs a boiling ammonium fluoride (NH{sub 4}F)/ammonium nitrate (NH{sub 4}NO{sub 3}) solution to dissolve Zr or Zircaloy cladding and a hydrofluoric acid (HF) process developed for complete dissolution of Zr-containing fuels. The feasibility experiments were performed using Zircaloy-4 metal coupons which were electrochemically oxidized to produce a thin ZrO{sub 2} layer on the surface. Once the oxide layer was in place, the ease of removing the layer using methods based on the two processes was evaluated. The ZIRFLEX and HF dissolution processes were both successful in removing a 0.2 mm (thick) oxide layer from Zircaloy-4 coupons. Although the ZIRFLEX process was effective in removing the oxide layer, two potential shortcomings were identified. The formation of ammonium hexafluorozirconate ((NH{sub 4}){sub 2}ZrF{sub 6}) on the metal surface prior to dissolution in the bulk solution could hinder the decontamination process by obstructing the removal of contamination. The thermal decomposition of this material is also undesirable if the cladding hulls are melted for volume reduction or to produce waste forms. Handling and disposal of the corrosive off-gas stream and ZrO{sub 2}-containing dross must be addressed. The stability of Zr{sup 4+} in the NHF{sub 4}/NH{sub 4}NO{sub 3} solution is also a concern. Precipitation of ammonium zirconium fluorides upon cooling of the dissolving solution was observed in the feasibility experiments. Precipitation of the solids was attributed to the high fluoride to Zr ratios used in the experiments. The solubility of Zr{sup 4+} in NH{sub 4}F solutions decreases as the free fluoride concentration increases. The removal of the ZrO{sub 2} layer from Zircaloy-4 coupons with HF showed a strong dependence on both the concentration and temperature. Very rapid dissolution of the oxide layer and significant amounts of metal was observed in experiments using HF concentrations {ge} 2.5 M. Treatment of the coupons using HF concentrations {le} 1.0 M was very effective in removing the oxide layer. The most effective conditions resulted in dissolution rates which were less than approximately 2 mg/cm{sup 2}-min. With dissolution rates in this range, uniform removal of the oxide layer was obtained and a minimal amount of Zircaloy metal was dissolved. Future HF dissolution studies should focus on the decontamination of actual spent fuel cladding hulls to determine if the treated hulls meet criteria for disposal as a LLW.

  2. Spent Fuel Transportation Package Performance Study - Experimental Design Challenges

    SciTech Connect (OSTI)

    Snyder, A. M.; Murphy, A. J.; Sprung, J. L.; Ammerman, D. J.; Lopez, C.

    2003-02-25

    Numerous studies of spent nuclear fuel transportation accident risks have been performed since the late seventies that considered shipping container design and performance. Based in part on these studies, NRC has concluded that the level of protection provided by spent nuclear fuel transportation package designs under accident conditions is adequate. [1] Furthermore, actual spent nuclear fuel transport experience showcase a safety record that is exceptional and unparalleled when compared to other hazardous materials transportation shipments. There has never been a known or suspected release of the radioactive contents from an NRC-certified spent nuclear fuel cask as a result of a transportation accident. In 1999 the United States Nuclear Regulatory Commission (NRC) initiated a study, the Package Performance Study, to demonstrate the performance of spent fuel and spent fuel packages during severe transportation accidents. NRC is not studying or testing its current regulations, a s the rigorous regulatory accident conditions specified in 10 CFR Part 71 are adequate to ensure safe packaging and use. As part of this study, NRC currently plans on using detailed modeling followed by experimental testing to increase public confidence in the safety of spent nuclear fuel shipments. One of the aspects of this confirmatory research study is the commitment to solicit and consider public comment during the scoping phase and experimental design planning phase of this research.

  3. Method of cleaning a spent fuel assembly

    SciTech Connect (OSTI)

    Chung, D.K.; Jones, C.E. Jr.

    1989-05-09

    A method is described of cleaning a fuel assembly including surfaces thereof prior to decladding, each assembly surface contaminated with a radioactive alkali metal and comprising a plurality of pressurized metallic fuel pins containing a spent fissible material, the method comprising the sequential steps of: (a) placing the fuel assembly in a sealed chamber; (b) passing a heated, inert gas through the chamber to heat the fuel assembly to a temperature sufficient to cause volatilization of the alkali metal but insufficient to rupture the pressurized metal pins; (c) evacuating the chamber to a pressure of less than 0.5 mm of Hg to further enhance volatilization and removal of the alkali metal and maintaining the chamber at that pressure until the decay heat of the fissile materials causes the temperature of the fuel assembly to increase to a level which would be detrimental to the integrity of the metal pins; (d) cooling the fuel assembly by passing a cool, inert gas through the chamber to reduce the temperature of the fuel assembly to a desired level; (e) repeating the evacuation and cooling steps as required to insure removal of substantially all of the radioactive alkali metal from the assembly surface; and (f) recovering the cleaned fuel assembly from the chamber.

  4. Spent fuel dry storage technology development: thermal evaluation of sealed storage cask containing spent fuel

    SciTech Connect (OSTI)

    Schmitten, P.F.; Wright, J.B.

    1980-08-01

    A PWR spent fuel assembly was encapsulated inside the E-MAD Hot Bay and placed in a instrumented above surface storage cell during December 1978 for thermal testing. Instrumentation provided to measure canister, liner and concrete temperatures consisted of thermocouples which were inserted into tubes on the outside of the canister and liner and in three radial positions in the concrete. Temperatures from the SSC test assembly have been recorded throughout the past 16 months. Canister and liner temperatures have reached their peak values of 200{sup 0}F and 140{sup 0}F, respectively. Computer predictions of the transient and steady-state temperatures show good agreement with the test data.

  5. Risk and Responsibility Sharing in Nuclear Spent Fuel Management

    E-Print Network [OSTI]

    De Roo, Guillaume

    With the Nuclear Waste Policy Act of 1982, the responsibility of American utilities in the long-term management of spent nuclear fuel was limited to the payment of a fee. This narrow involvement did not result in faster ...

  6. Development of Technical Nuclear Forensics for Spent Research Reactor Fuel 

    E-Print Network [OSTI]

    Sternat, Matthew Ryan 1982-

    2012-11-20

    Pre-detonation technical nuclear forensics techniques for research reactor spent fuel were developed in a collaborative project with Savannah River National Lab ratory. An inverse analysis method was employed to reconstruct ...

  7. INVESTIGATIONS ON HYDRAULIC CEMENTS FROM SPENT OIL SHALE

    E-Print Network [OSTI]

    Mehta, P.K.

    2012-01-01

    ON HYDRAULIC CEMENTS FROM SPENT OIL SHALE P.K. Mehta and P.Cement Manufacture from Oil Shale, U.S. Patent 2,904,445,203 (1974), E. D. York, Amoco Oil Co. , letter to J, P. Fox,

  8. Spent nuclear fuel discharges from U.S. reactors 1994

    SciTech Connect (OSTI)

    1996-02-01

    Spent Nuclear Fuel Discharges from US Reactors 1994 provides current statistical data on fuel assemblies irradiated at commercial nuclear reactors operating in the US. This year`s report provides data on the current inventories and storage capacities at these reactors. Detailed statistics on the data are presented in four chapters that highlight 1994 spent fuel discharges, storage capacities and inventories, canister and nonfuel component data, and assembly characteristics. Five appendices, a glossary, and bibliography are also included. 10 figs., 34 tabs.

  9. Thermal Cooling Limits of Sbotaged Spent Fuel Pools

    SciTech Connect (OSTI)

    Dr. Thomas G. Hughes; Dr. Thomas F. Lin

    2010-09-10

    To develop the understanding and predictive measures of the post “loss of water inventory” hazardous conditions as a result of the natural and/or terrorist acts to the spent fuel pool of a nuclear plant. This includes the thermal cooling limits to the spent fuel assembly (before the onset of the zircaloy ignition and combustion), and the ignition, combustion, and the subsequent propagation of zircaloy fire from one fuel assembly to others

  10. Spent nuclear fuel Canister Storage Building CDR Review Committee report

    SciTech Connect (OSTI)

    Dana, W.P.

    1995-12-01

    The Canister Storage Building (CSB) is a subproject under the Spent Nuclear Fuels Major System Acquisition. This subproject is necessary to design and construct a facility capable of providing dry storage of repackaged spent fuels received from K Basins. The CSB project completed a Conceptual Design Report (CDR) implementing current project requirements. A Design Review Committee was established to review the CDR. This document is the final report summarizing that review

  11. Conditioning of spent nuclear fuel for permanent disposal

    SciTech Connect (OSTI)

    Laidler, J.J.

    1994-10-01

    A compact, efficient method for conditioning spent nuclear fuel is under development This method, known as pyrochemical processing, or {open_quotes}pyroprocessing,{close_quotes} provides a separation of fission products from the actinide elements present in spent fuel and further separates pure uranium from the transuranic elements. The process can facilitate the timely and environmentally-sound treatment of the highly diverse collection of spent fuel currently in the inventory of the United States Department of Energy (DOE). The pyroprocess utilizes elevated-temperature processes to prepare spent fuel for fission product separation; that separation is accomplished by a molten salt electrorefining step that provides efficient (99.9%) separation of transuranics. The resultant waste forms from the pyroprocess are stable under envisioned repository environment conditions and highly leach-resistant. Treatment of any spent fuel type produces a set of common high-level waste forms, one a mineral and the other a metal alloy, that can be readily qualified for repository disposal and preclude the substantial costs that would be associated with the qualification of the numerous spent fuel types included in the DOE inventory.

  12. EDI as a Treatment Module in Recycling Spent Rinse Waters

    SciTech Connect (OSTI)

    Donovan, Robert P.; Morrison, Dennis J.

    1999-08-11

    Recycling of the spent rinse water discharged from the wet benches commonly used in semiconductor processing is one tactic for responding to the targets for water usage published in the 1997 National Technology Roadmap for Semiconductors (NTRS). Not only does the NTRS list a target that dramatically reduces total water usage/unit area of silicon manufactured by the industry in the future but for the years 2003 and beyond, the NTRS actually touts goals which would have semiconductor manufacturers drawing less water from a regional water supply per unit area of silicon manufactured than the quantity of ultrapure water (UPW) used in the production of that same silicon. Achieving this latter NTRS target strongly implies more widespread recycling of spent rinse waters at semiconductor manufacturing sites. In spite of the fact that, by most metrics, spent rinse waters are of much higher purity than incoming municipal waters, recycling of these spent rinse waters back into the UPW production plant is not a simple, straightforward task. The rub is that certain of the chemicals used in semiconductor manufacturing, and thus potentially present in trace concentrations (or more) in spent rinse waters, are not found in municipal water supplies and are not necessarily removed by the conventional UPW production sequence used by semiconductor manufacturers. Some of these contaminants, unique to spent rinse waters, may actually foul the resins and membranes of the UPW system, posing a threat to UPW production and potentially even causing a shutdown.

  13. The united kingdom's changing requirements for spent fuel storage

    SciTech Connect (OSTI)

    Hodgson, Z.; Hambley, D.I.; Gregg, R.; Ross, D.N.

    2013-07-01

    The UK is adopting an open fuel cycle, and is necessarily moving to a regime of long term storage of spent fuel, followed by geological disposal once a geological disposal facility (GDF) is available. The earliest GDF receipt date for legacy spent fuel is assumed to be 2075. The UK is set to embark on a programme of new nuclear build to maintain a nuclear energy contribution of 16 GW. Additionally, the UK are considering a significant expansion of nuclear energy in order to meet carbon reduction targets and it is plausible to foresee a scenario where up to 75 GW from nuclear power production could be deployed in the UK by the mid 21. century. Such an expansion, could lead to spent fuel storage and its disposal being a dominant issue for the UK Government, the utilities and the public. If the UK were to transition a closed fuel cycle, then spent fuel storage should become less onerous depending on the timescales. The UK has demonstrated a preference for wet storage of spent fuel on an interim basis. The UK has adopted an approach of centralised storage, but a 16 GW new build programme and any significant expansion of this may push the UK towards distributed spent fuel storage at a number of reactors station sites across the UK.

  14. Neutron Generators for Spent Fuel Assay

    SciTech Connect (OSTI)

    Ludewigt, Bernhard A

    2010-12-30

    The Next Generation Safeguards Initiative (NGSI) of the U.S. DOE has initiated a multi-lab/university collaboration to quantify the plutonium (Pu) mass in, and detect the diversion of pins from, spent nuclear fuel (SNF) assemblies with non-destructive assay (NDA). The 14 NDA techniques being studied include several that require an external neutron source: Delayed Neutrons (DN), Differential Die-Away (DDA), Delayed Gammas (DG), and Lead Slowing-Down Spectroscopy (LSDS). This report provides a survey of currently available neutron sources and their underlying technology that may be suitable for NDA of SNF assemblies. The neutron sources considered here fall into two broad categories. The term 'neutron generator' is commonly used for sealed devices that operate at relatively low acceleration voltages of less than 150 kV. Systems that employ an acceleration structure to produce ion beam energies from hundreds of keV to several MeV, and that are pumped down to vacuum during operation, rather than being sealed units, are usually referred to as 'accelerator-driven neutron sources.' Currently available neutron sources and future options are evaluated within the parameter space of the neutron generator/source requirements as currently understood and summarized in section 2. Applicable neutron source technologies are described in section 3. Commercially available neutron generators and other source options that could be made available in the near future with some further development and customization are discussed in sections 4 and 5, respectively. The pros and cons of the various options and possible ways forward are discussed in section 6. Selection of the best approach must take a number of parameters into account including cost, size, lifetime, and power consumption, as well as neutron flux, neutron energy spectrum, and pulse structure that satisfy the requirements of the NDA instrument to be built.

  15. Safety Aspects of Dry Spent Fuel Storage and Spent Fuel Management - 13559

    SciTech Connect (OSTI)

    Botsch, W.; Smalian, S.; Hinterding, P.

    2013-07-01

    Dry storage systems are characterized by passive and inherent safety systems ensuring safety even in case of severe incidents or accidents. After the events of Fukushima, the advantages of such passively and inherently safe dry storage systems have become more and more obvious. As with the storage of all radioactive materials, the storage of spent nuclear fuel (SF) and high-level radioactive waste (HLW) must conform to safety requirements. Following safety aspects must be achieved throughout the storage period: - safe enclosure of radioactive materials, - safe removal of decay heat, - securing nuclear criticality safety, - avoidance of unnecessary radiation exposure. The implementation of these safety requirements can be achieved by dry storage of SF and HLW in casks as well as in other systems such as dry vault storage systems or spent fuel pools, where the latter is neither a dry nor a passive system. Furthermore, transport capability must be guaranteed during and after storage as well as limitation and control of radiation exposure. The safe enclosure of radioactive materials in dry storage casks can be achieved by a double-lid sealing system with surveillance of the sealing system. The safe removal of decay heat must be ensured by the design of the storage containers and the storage facility. The safe confinement of radioactive inventory has to be ensured by mechanical integrity of fuel assembly structures. This is guaranteed, e.g. by maintaining the mechanical integrity of the fuel rods or by additional safety measures for defective fuel rods. In order to ensure nuclear critically safety, possible effects of accidents have also to be taken into consideration. In case of dry storage it might be necessary to exclude the re-positioning of fissile material inside the container and/or neutron moderator exclusion might be taken into account. Unnecessary radiation exposure can be avoided by the cask or canister vault system itself. In Germany dry storage of SF in casks fulfills both transport and storage requirements. Mostly, storage facilities are designed as concrete buildings above the ground, but due to regional constraints, one storage facility has also been built as a rock tunnel. The decay heat is always removed by natural air flow; further technical equipment is not needed. The removal of decay heat and shielding had been modeled and calculated by state-of-the-art computer codes before such a facility has been built. TueV and BAM present their long experience in the licensing process for sites and casks and inform about spent nuclear fuel management and issues concerning dry storage of spent nuclear fuel. Different storage systems and facilities in Germany, Europe and world-wide are compared with respect to the safety aspects mentioned above. Initial points are the safety issues of wet storage of SF, and it is shown how dry storage systems can ensure the compliance with the mentioned safety criteria over a long storage period. The German storage concept for dry storage of SF and HLW is presented and discussed. Exemplarily, the process of licensing, erection and operation of selected German dry storage facilities is presented. (authors)

  16. Role of vanadium(V) in the aging of the organic phase in the extraction of uranium(VI) by Alamine 336 from acidic sulfate leach liquors

    SciTech Connect (OSTI)

    Chagnes, A.; Cote, G.; Courtaud, B.; Thiry, J.

    2008-07-01

    The present work is focussed on the chemical degradation of Alamine 336-tridecanol-n-dodecane solvent which used in the recovery of uranium by solvent extraction. Degradation occurs due to the presence of vanadium(V), an oxidant, in the feed solution. After a brief overview of the chemistry of vanadium, the kinetics of degradation of the solvent when contacted with acidic sulfate leach liquor was investigated and interpreted by the Michelis-Menten mechanism. GCMS analyses evidenced the presence of tridecanoic acid and dioctylamine as degradation products. A mechanism of degradation is discussed. (authors)

  17. Mission Need Statement: Idaho Spent Fuel Facility Project

    SciTech Connect (OSTI)

    Barbara Beller

    2007-09-01

    Approval is requested based on the information in this Mission Need Statement for The Department of Energy, Idaho Operations Office (DOE-ID) to develop a project in support of the mission established by the Office of Environmental Management to "complete the safe cleanup of the environmental legacy brought about from five decades of nuclear weapons development and government-sponsored nuclear energy research". DOE-ID requests approval to develop the Idaho Spent Fuel Facility Project that is required to implement the Department of Energy's decision for final disposition of spent nuclear fuel in the Geologic Repository at Yucca Mountain. The capability that is required to prepare Spent Nuclear Fuel for transportation and disposal outside the State of Idaho includes characterization, conditioning, packaging, onsite interim storage, and shipping cask loading to complete shipments by January 1,2035. These capabilities do not currently exist in Idaho.

  18. Spent nuclear fuel discharges from US reactors 1993

    SciTech Connect (OSTI)

    Not Available

    1995-02-01

    The Energy Information Administration (EIA) of the U.S. Department of Energy (DOE) administers the Nuclear Fuel Data Survey, Form RW-859. This form is used to collect data on fuel assemblies irradiated at commercial nuclear reactors operating in the United States, and the current inventories and storage capacities of those reactors. These data are important to the design and operation of the equipment and facilities that DOE will use for the future acceptance, transportation, and disposal of spent fuels. The data collected and presented identifies trends in burnup, enrichment, and spent nuclear fuel discharged form commercial light-water reactor as of December 31, 1993. The document covers not only spent nuclear fuel discharges; but also site capacities and inventories; canisters and nonfuel components; and assembly type characteristics.

  19. Status of Proposed Repository for Latin-American Spent Fuel

    SciTech Connect (OSTI)

    Ferrada, J.J.

    2004-10-04

    This report compiles preliminary information that supports the premise that a repository is needed in Latin America and analyzes the nuclear situation (mainly in Argentina and Brazil) in terms of nuclear capabilities, inventories, and regional spent-fuel repositories. The report is based on several sources and summarizes (1) the nuclear capabilities in Latin America and establishes the framework for the need of a permanent repository, (2) the International Atomic Energy Agency (IAEA) approach for a regional spent-fuel repository and describes the support that international institutions are lending to this issue, (3) the current situation in Argentina in order to analyze the Argentinean willingness to find a location for a deep geological repository, and (4) the issues involved in selecting a location for the repository and identifies a potential location. This report then draws conclusions based on an analysis of this information. The focus of this report is mainly on spent fuel and does not elaborate on other radiological waste sources.

  20. Systems for the Intermodal Routing of Spent Nuclear Fuel

    SciTech Connect (OSTI)

    Peterson, Steven K; Liu, Cheng

    2015-01-01

    The safe and secure movement of spent nuclear fuel from shutdown and active reactor facilities to intermediate or long term storage sites may, in some instances, require the use of several modes of transportation to accomplish the move. To that end, a fully operable multi-modal routing system is being developed within Oak Ridge National Laboratory s (ORNL) WebTRAGIS (Transportation Routing Analysis Geographic Information System). This study aims to provide an overview of multi-modal routing, the existing state of the TRAGIS networks, the source data needs, and the requirements for developing structural relationships between various modes to create a suitable system for modeling the transport of spent nuclear fuel via a multimodal network. Modern transportation systems are comprised of interconnected, yet separate, modal networks. Efficient transportation networks rely upon the smooth transfer of cargoes at junction points that serve as connectors between modes. A key logistical impediment to the shipment of spent nuclear fuel is the absence of identified or designated transfer locations between transport modes. Understanding the potential network impacts on intermodal transportation of spent nuclear fuel is vital for planning transportation routes from origin to destination. By identifying key locations where modes intersect, routing decisions can be made to prioritize cost savings, optimize transport times and minimize potential risks to the population and environment. In order to facilitate such a process, ORNL began the development of a base intermodal network and associated routing code. The network was developed using previous intermodal networks and information from publicly available data sources to construct a database of potential intermodal transfer locations with likely capability to handle spent nuclear fuel casks. The coding development focused on modifying the existing WebTRAGIS routing code to accommodate intermodal transfers and the selection of prioritization constraints and modifiers to determine route selection. The limitations of the current model and future directions for development are discussed, including the current state of information on possible intermodal transfer locations for spent fuel.

  1. NUHOMS modular spent-fuel storage system: Performance testing

    SciTech Connect (OSTI)

    Strope, L.A.; McKinnon, M.A. ); Dyksterhouse, D.J.; McLean, J.C. )

    1990-09-01

    This report documents the results of a heat transfer and shielding performance evaluation of the NUTECH HOrizontal MOdular Storage (NUHOMS{reg sign}) System utilized by the Carolina Power and Light Co. (CP L) in an Independent Spent Fuel Storage Installation (ISFSI) licensed by the US Nuclear Regulatory Commission (NRC). The ISFSI is located at CP L's H. B. Robinson Nuclear Plant (HBR) near Hartsville, South Carolina. The demonstration included testing of three modules, first with electric heaters and then with spent fuel. The results indicated that the system was conservatively designed, with all heat transfer and shielding design criteria easily met. 5 refs., 45 figs., 9 tabs.

  2. Method for the regeneration of spent molten zinc chloride

    DOE Patents [OSTI]

    Zielke, Clyde W. (McMurray, PA); Rosenhoover, William A. (Pittsburgh, PA)

    1981-01-01

    In a process for regenerating spent molten zinc chloride which has been used in the hydrocracking of coal or ash-containing polynuclear aromatic hydrocarbonaceous materials derived therefrom and which contains zinc chloride, zinc oxide, zinc oxide complexes and ash-containing carbonaceous residue, by incinerating the spent molten zinc chloride to vaporize the zinc chloride for subsequent condensation to produce a purified molten zinc chloride: an improvement comprising the use of clay in the incineration zone to suppress the vaporization of metals other than zinc. Optionally water is used in conjunction with the clay to further suppress the vaporization of metals other than zinc.

  3. The burnup dependence of light water reactor spent fuel oxidation

    SciTech Connect (OSTI)

    Hanson, B.D.

    1998-07-01

    Over the temperature range of interest for dry storage or for placement of spent fuel in a permanent repository under the conditions now being considered, UO{sub 2} is thermodynamically unstable with respect to oxidation to higher oxides. The multiple valence states of uranium allow for the accommodation of interstitial oxygen atoms in the fuel matrix. A variety of stoichiometric and nonstoichiometric phases is therefore possible as the fuel oxidizers from UO{sub 2} to higher oxides. The oxidation of UO{sub 2} has been studied extensively for over 40 years. It has been shown that spent fuel and unirradiated UO{sub 2} oxidize via different mechanisms and at different rates. The oxidation of LWR spent fuel from UO{sub 2} to UO{sub 2.4} was studied previously and is reasonably well understood. The study presented here was initiated to determine the mechanism and rate of oxidation from UO{sub 2.4} to higher oxides. During the early stages of this work, a large variability in the oxidation behavior of samples oxidized under nearly identical conditions was found. Based on previous work on the effect of dopants on UO{sub 2} oxidation and this initial variability, it was hypothesized that the substitution of fission product and actinide impurities for uranium atoms in the spent fuel matrix was the cause of the variable oxidation behavior. Since the impurity concentration is roughly proportional to the burnup of a specimen, the oxidation behavior of spent fuel was expected to be a function of both temperature and burnup. This report (1) summarizes the previous oxidation work for both unirradiated UO{sub 2} and spent fuel (Section 2.2) and presents the theoretical basis for the burnup (i.e., impurity concentration) dependence of the rate of oxidation (Sections 2.3, 2.4, and 2.5), (2) describes the experimental approach (Section 3) and results (Section 4) for the current oxidation tests on spent fuel, and (3) establishes a simple model to determine the activation energies associated with spent fuel oxidation (Section 5).

  4. Spent fuel dissolution studies FY 1991 to 1994

    SciTech Connect (OSTI)

    Gray, W.J.; Wilson, C.N.

    1995-12-01

    Dissolution and transport as a result of groundwater flow are generally accepted as the primary mechanisms by which radionuclides from spent fuel placed in a geologic repository could be released to the biosphere. To help provide a source term for performance assessment calculations, dissolution studies on spent fuel and unirradiated uranium oxides have been conducted over the past few years at Pacific Northwest National Laboratory (PNNL) in support of the Yucca Mountain Site Characterization Project. This report describes work for fiscal years 1991 through 1994. The objectives of these studies and the associated conclusions, which were based on the limited number of tests conducted so far, are described in the following subsections.

  5. High-solids black liquor firing in pulp and paper industry kraft recovery boilers: Phase 1 -- Final report. Volume 2: Project technical results

    SciTech Connect (OSTI)

    Southards, W.T.; Clement, J.L.; McIlroy, R.A.; Tharp, M.R.; Verrill, C.L.; Wessell, R.A.

    1995-11-01

    This project is a multiple-phase effort to develop technologies to improve high-solids black liquor firing in pulp mill recovery boilers. The principal means to this end is to construct and operate a pilot-scale recovery furnace simulator (RFS) in which these technologies can be tested. The Phase 1 objectives are to prepare a preliminary design for the RFS, delineate a project concept for evaluating candidate technologies, establish industrial partners, and report the results. Phase 1 addressed the objectives with seven tasks: Develop a preliminary design of the RFS; estimate the detailed design and construction costs of the RFS and the balance of the project; identify interested parties in the paper industry and key suppliers; plan the Phase 2 and Phase 3 tests to characterize the RFS; evaluate the economic justification for high-solids firing deployment in the industry; evaluate high-solids black liquor property data to support the RFS design; manage the project and reporting results, which included planning the future program direction.

  6. Separator assembly for use in spent nuclear fuel shipping cask

    DOE Patents [OSTI]

    Bucholz, James A. (Oak Ridge, TN)

    1983-01-01

    A separator assembly for use in a spent nuclear fuel shipping cask has a honeycomb-type wall structure defining parallel cavities for holding nuclear fuel assemblies. Tubes formed of an effective neutron-absorbing material are embedded in the wall structure around each of the cavities and provide neutron flux traps when filled with water.

  7. Quality assurance implementation plan for spent nuclear fuel characterization

    SciTech Connect (OSTI)

    Horhota, M.J.; Lawrence, L.A.

    1997-07-10

    A plan was prepared to implement the Quality Assurance requirements of the Office of Civilian Radioactive Waste Management RW-0333P to the Spent Nuclear Fuel Characterization activities. The plan was based on an evaluation of the current characterization activities against the RW-0333P requirements.

  8. Shippingport Spent Fuel Canister (SSFC) Design Report Project W-518

    SciTech Connect (OSTI)

    JOHNSON, D.M.

    2000-01-27

    The SSFC Design Report Describes A spent fuel canister for Shippingport Core 2 blanket fuel assemblies. The design of the SSFC is a minor modification of the MCO. The modification is limited to the Shield Plug which remains unchanged with regard to interfaces with the canister shell. The performance characteristics remain those for the MCO, which bounds the payload of the SSFC.

  9. Pinhole Breaches in Spent Fuel Containers: Some Modeling Considerations

    SciTech Connect (OSTI)

    Casella, Andrew M.; Loyalka, Sudarsham K.; Hanson, Brady D.

    2006-06-04

    This paper replaces PNNL-SA-48024 and incorporates the ANS reviewer's comments, including the change in the title. Numerical methods to solve the equations for gas diffusion through very small breaches in spent fuel containers are presented and compared with previous literature results.

  10. Spent nuclear fuel project design basis capacity study

    SciTech Connect (OSTI)

    Cleveland, K.J.

    1996-09-09

    A parametric study of the Spent Nuclear Fuel Project system capacity is presented. The study was completed using a commercially available software package to develop a summary level model of the major project systems. Alternative configurations, sub-system cycle times, and operating scenarios were tested to identify their impact on total project duration and equipment requirements.

  11. A Monte Carlo based spent fuel analysis safeguards strategy assessment

    SciTech Connect (OSTI)

    Fensin, Michael L [Los Alamos National Laboratory; Tobin, Stephen J [Los Alamos National Laboratory; Swinhoe, Martyn T [Los Alamos National Laboratory; Menlove, Howard O [Los Alamos National Laboratory; Sandoval, Nathan P [Los Alamos National Laboratory

    2009-01-01

    Safeguarding nuclear material involves the detection of diversions of significant quantities of nuclear materials, and the deterrence of such diversions by the risk of early detection. There are a variety of motivations for quantifying plutonium in spent fuel assemblies by means of nondestructive assay (NDA) including the following: strengthening the capabilities of the International Atomic Energy Agencies ability to safeguards nuclear facilities, shipper/receiver difference, input accountability at reprocessing facilities and burnup credit at repositories. Many NDA techniques exist for measuring signatures from spent fuel; however, no single NDA technique can, in isolation, quantify elemental plutonium and other actinides of interest in spent fuel. A study has been undertaken to determine the best integrated combination of cost effective techniques for quantifying plutonium mass in spent fuel for nuclear safeguards. A standardized assessment process was developed to compare the effective merits and faults of 12 different detection techniques in order to integrate a few techniques and to down-select among the techniques in preparation for experiments. The process involves generating a basis burnup/enrichment/cooling time dependent spent fuel assembly library, creating diversion scenarios, developing detector models and quantifying the capability of each NDA technique. Because hundreds of input and output files must be managed in the couplings of data transitions for the different facets of the assessment process, a graphical user interface (GUI) was development that automates the process. This GUI allows users to visually create diversion scenarios with varied replacement materials, and generate a MCNPX fixed source detector assessment input file. The end result of the assembly library assessment is to select a set of common source terms and diversion scenarios for quantifying the capability of each of the 12 NDA techniques. We present here the generalized assessment process, the techniques employed to automate the coupled facets of the assessment process, and the standard burnup/enrichment/cooling time dependent spent fuel assembly library. We also clearly define the diversion scenarios that will be analyzed during the standardized assessments. Though this study is currently limited to generic PWR assemblies, it is expected that the results of the assessment will yield an adequate spent fuel analysis strategy knowledge that will help the down-select process for other reactor types.

  12. Determining Plutonium Mass in Spent Fuel with Nondestructive Assay Techniques NGSI Research Overview and Update on NDA Techniques

    E-Print Network [OSTI]

    A., V. Mozin, S.J. Tobin, L.W. Cambell, J.R. Cheatham, C.R. Freeman, C.J. Gesh,

    2012-01-01

    Determining Plutonium Mass in Spent Fuel with Non-CN-184/137 Determining Plutonium Mass in Spent Fuel withthe Direct Measurement of Plutonium in Spent LWR Fuels by

  13. EA-0912: Urgent-Relief Acceptance of Foreign Research Reactor Spent Nuclear Fuel

    Office of Energy Efficiency and Renewable Energy (EERE)

    This EA evaluates the environmental impacts of a proposal to accept 409 spent fuel elements from eight foreign research reactors in seven European countries.  The spent fuel would be shipped across...

  14. An experiment to simulate the heat transfer properties of a dry, horizontal spent nuclear fuel assembly

    E-Print Network [OSTI]

    Lovett, Phyllis Maria

    1991-01-01

    Nuclear power reactors generate highly radioactive spent fuel assemblies. Initially, the spent fuel assemblies are stored for a period of several years in an on-site storage facility to allow the radioactivity levels of ...

  15. What to Expect When Readying to Move Spent Nuclear Fuel from...

    Energy Savers [EERE]

    What to Expect When Readying to Move Spent Nuclear Fuel from Commercial Nuclear Power Plants What to Expect When Readying to Move Spent Nuclear Fuel from Commercial Nuclear Power...

  16. Lead Slowing-Down Spectrometry for Spent Fuel Assay: FY12 Status...

    Office of Scientific and Technical Information (OSTI)

    Lead Slowing-Down Spectrometry for Spent Fuel Assay: FY12 Status Report Citation Details In-Document Search Title: Lead Slowing-Down Spectrometry for Spent Fuel Assay: FY12 Status...

  17. EA-1692: Red River Environmental Products, LLC Activated Carbon...

    Office of Environmental Management (EM)

    2: Red River Environmental Products, LLC Activated Carbon Manufacturing Facility, Red River Parish, LA EA-1692: Red River Environmental Products, LLC Activated Carbon Manufacturing...

  18. Air Shipment of Spent Nuclear Fuel from Romania to Russia

    SciTech Connect (OSTI)

    Igor Bolshinsky; Ken Allen; Lucian Biro; Alexander Buchelnikov

    2010-10-01

    Romania successfully completed the world’s first air shipment of spent nuclear fuel transported in Type B(U) casks under existing international laws and without shipment license special exceptions when the last Romanian highly enriched uranium (HEU) spent nuclear fuel was transported to the Russian Federation in June 2009. This air shipment required the design, fabrication, and licensing of special 20 foot freight containers and cask tiedown supports to transport the eighteen TUK 19 shipping casks on a Russian commercial cargo aircraft. The new equipment was certified for transport by road, rail, water, and air to provide multi modal transport capabilities for shipping research reactor spent fuel. The equipment design, safety analyses, and fabrication were performed in the Russian Federation and transport licenses were issued by both the Russian and Romanian regulatory authorities. The spent fuel was transported by truck from the VVR S research reactor to the Bucharest airport, flown by commercial cargo aircraft to the airport at Yekaterinburg, Russia, and then transported by truck to the final destination in a secure nuclear facility at Chelyabinsk, Russia. This shipment of 23.7 kg of HEU was coordinated by the Russian Research Reactor Fuel Return Program (RRRFR), as part of the U.S. Department of Energy Global Threat Reduction Initiative (GTRI), in close cooperation with the Rosatom State Atomic Energy Corporation and the International Atomic Energy Agency, and was managed in Romania by the National Commission for Nuclear Activities Control (CNCAN). This paper describes the planning, shipment preparations, equipment design, and license approvals that resulted in the safe and secure air shipment of this spent nuclear fuel.

  19. Overview of the spent nuclear fuel project at Hanford

    SciTech Connect (OSTI)

    Daily, J.L. [Dept. of Energy, Richland, WA (United States). Richland Operations Office; Fulton, J.C.; Gerber, E.W.; Culley, G.E. [Westinghouse Hanford Co., Richland, WA (United States)

    1995-02-01

    The Spent Nuclear Fuel Project`s mission at Hanford is to {open_quotes}Provide safe, economic and environmentally sound management of Hanford spent nuclear fuel in a manner which stages it to final disposition.{close_quotes} The inventory of spent nuclear fuel (SNF) at the Hanford Site covers a wide variety of fuel types (production reactor to space reactor) in many facilities (reactor fuel basins to hot cells) at locations all over the Site. The 2,129 metric tons of Hanford SNF represents about 80% of the total US Department of Energy (DOE) inventory. About 98.5% of the Hanford SNF is 2,100 metric tons of metallic uranium production reactor fuel currently stored in the 1950s vintage K Basins in the 100 Area. This fuel has been slowly corroding, generating sludge and contaminating the basin water. This condition, coupled with aging facilities with seismic vulnerabilities, has been identified by several groups, including stakeholders, as being one of the most urgent safety and environmental concerns at the Hanford Site. As a direct result of these concerns, the Spent Nuclear Fuel Project was recently formed to address spent fuel issues at Hanford. The Project has developed the K Basins Path Forward to remove fuel from the basins and place it in dry interim storage. Alternatives that addressed the requirements were developed and analyzed. The result is a two-phased approach allowing the early removal of fuel from the K Basins followed by its stabilization and interim storage consistent with the national program.

  20. Oxidative alteration of spent fuel in a silica-rich environment...

    Office of Scientific and Technical Information (OSTI)

    NUCLEAR FACILITIES; DISSOLUTION; HYDRATES; PERFORMANCE; SILICATES; SPENT FUELS; THERMODYNAMICS; URANINITES; URANIUM CARBONATES; URANIUM DEPOSITS; URANIUM ORES; URANYL SILICATES;...

  1. Report on interim storage of spent nuclear fuel. Midwestern high-level radioactive waste transportation project

    SciTech Connect (OSTI)

    Not Available

    1993-04-01

    The report on interim storage of spent nuclear fuel discusses the technical, regulatory, and economic aspects of spent-fuel storage at nuclear reactors. The report is intended to provide legislators state officials and citizens in the Midwest with information on spent-fuel inventories, current and projected additional storage requirements, licensing, storage technologies, and actions taken by various utilities in the Midwest to augment their capacity to store spent nuclear fuel on site.

  2. Storage of LWR spent fuel in air. Volume 3, Results from exposure of spent fuel to fluorine-contaminated air

    SciTech Connect (OSTI)

    Cunningham, M.E.; Thomas, L.E.

    1995-06-01

    The Behavior of Spent Fuel in Storage (BSFS) Project has conducted research to develop data on spent nuclear fuel (irradiated U0{sub 2}) that could be used to support design, licensing, and operation of dry storage installations. Test Series B conducted by the BSFS Project was designed as a long-term study of the oxidation of spent fuel exposed to air. It was discovered after the exposures were completed in September 1990 that the test specimens had been exposed to an atmosphere of bottled air contaminated with an unknown quantity of fluorine. This exposure resulted in the test specimens reacting with both the oxygen and the fluorine in the oven atmospheres. The apparent source of the fluorine was gamma radiation-induced chemical decomposition of the fluoro-elastomer gaskets used to seal the oven doors. This chemical decomposition apparently released hydrofluoric acid (HF) vapor into the oven atmospheres. Because the Test Series B specimens were exposed to a fluorine-contaminated oven atmosphere and reacted with the fluorine, it is recommended that the Test Series B data not be used to develop time-temperature limits for exposure of spent nuclear fuel to air. This report has been prepared to document Test Series B and present the collected data and observations.

  3. Where is the energy spent inside my app? Fine Grained Energy Accounting on Smartphones with Eprof

    E-Print Network [OSTI]

    Zhang, Ming

    %-75% of energy in free apps is spent in third-party advertisement modules. Eprof also reveals sev- eral "wakelock in the source code. The case study highlights the fact that most of the energy in smartphone apps is spent in IWhere is the energy spent inside my app? Fine Grained Energy Accounting on Smartphones with Eprof

  4. Determination of Plutonium Content in Spent Fuel with Nondestructive Assay

    SciTech Connect (OSTI)

    Tobin, S. J.; Sandoval, N. P.; Fensin, M. L.; Lee, S. Y.; Ludewigt, Bernhard A.; Menlovea, H. O.; Quiter, B. J.; Rajasingume, A.; Schearf, M. A.; Smith, L. E.; Swinhoe, M. T.; Thompson, S. J.

    2009-06-30

    There are a variety of reasons for quantifying plutonium (Pu) in spent fuel such as independently verifying the Pu content declared by a regulated facility, making shipper/receiver mass declarations, and quantifying the input mass at a reprocessing facility. As part of the Next Generation Safeguards Initiative, NA-241 has recently funded a multilab/university collaboration to determine the elemental Pu mass in spent fuel assemblies. This research effort is anticipated to be a five year effort: the first part of which is a two years Monte Carlo modeling effort to integrate and down-select among 13 nondestructive assay (NDA) technologies, followed by one year for fabricating instruments and then two years for measuring spent fuel. This paper gives a brief overview of the approach being taken for the Monte Carlo research effort. In addition, preliminary results for the first NDA instrument studied in detail, delayed neutron detection, will be presented. In order to cost effectively and robustly model the performance of several NDA techniques, an"assembly library" was created that contains a diverse range of pressurized water reactor spent fuel assemblies (burnup, enrichment, cooling time) similar to that which exists in spent pools today and in the future, diversion scenarios that capture a range of possible rod removal options, spatial and isotopic detail needed to accurately quantify the capability of all the NDA techniques so as to enable integration. Integration is being designed into this study from the beginning since it is expected that the best performance will be obtained by combining a few NDA techniques. The performance of each instrument will be quantified for the full assembly library in three different media: air, water and borated water. In this paper the preliminary capability of delayed neutron detection will be quantified for the spent fuel library for all three media. The 13 NDA techniques being researched are the following: Delayed Gamma, Delayed Neutrons, Differential Die-Away, Differential Die-Away Self-Interrogation, Lead Slowing Down Spectrometer, Neutron Multiplicity, Nuclear Resonance Fluorescence, Passive Prompt Gamma, Passive Neutron Albedo Reactivity, Self-integration Neutron Resonance Densitometry, Total Neutron (Gross Neutron), X-Ray Fluorescence, 252Cf Interrogation with Prompt Neutron Detection.

  5. Proliferation Vulnerability Red Team report

    SciTech Connect (OSTI)

    Hinton, J.P.; Barnard, R.W.; Bennett, D.E. [and others

    1996-10-01

    This report is the product of a four-month independent technical assessment of potential proliferation vulnerabilities associated with the plutonium disposition alternatives currently under review by DOE/MD. The scope of this MD-chartered/Sandia-led study was limited to technical considerations that could reduce proliferation resistance during various stages of the disposition processes below the Stored Weapon/Spent Fuel standards. Both overt and covert threats from host nation and unauthorized parties were considered. The results of this study will be integrated with complementary work by others into an overall Nonproliferation and Arms Control Assessment in support of a Secretarial Record of Decision later this year for disposition of surplus U.S. weapons plutonium.

  6. COGEMA operating experience in the transportation of spent fuel, nuclear materials and radioactive waste

    SciTech Connect (OSTI)

    Bernard, H. [COGEMA, Velizy-Villacoublay (France)

    1993-12-31

    Were a spent fuel transportation accident to occur, no matter how insignificant, the public outcry could jeopardize both reprocessing operations and power plant operations for utilities that have elected to reprocess their spent fuel. Aware of this possibility, COGEMA has become deeply involved in spent fuel transportation to ensure that it is performed according to the highest standards of transportation safety. Spent fuel transportation is a vital link between the reactor site and the reprocessing plant. This paper gives an overview of COGEMA`s experience in the transportation of spent fuel.

  7. Removal of arsenic compounds from spent catecholated polymer

    DOE Patents [OSTI]

    Fish, Richard H. (Berkeley, CA)

    1985-01-01

    Described is a process for removing arsenic from petroliferous derived liquids by contacting said liquid at an elevated temperature with a divinylbenzene-crosslinked polystyrene having catechol ligands anchored thereon. Also, described is a process for regenerating spent catecholated polystyrene by removal of the arsenic bound to it from contacting petroliferous liquid as described above and involves: a. treating said spent catecholated polystyrene, at a temperature in the range of about 20.degree. to 100.degree. C. with an aqueous solution of at least one carbonate and/or bicarbonate of ammonium, alkali and alkaline earth metals, said solution having a pH between about 8 and 10 and, b. separating the solids and liquids from each other. Preferably the regeneration treatment is in two steps wherein step (a) is carried out with an aqueous alcoholic carbonate solution containing lower alkyl alcohol, and, steps (a) and (b) are repeated using a bicarbonate.

  8. Nuclear Waste Imaging and Spent Fuel Verification by Muon Tomography

    E-Print Network [OSTI]

    Jonkmans, G; Jewett, C; Thompson, M

    2012-01-01

    This paper explores the use of cosmic ray muons to image the contents of shielded containers and detect high-Z special nuclear materials inside them. Cosmic ray muons are a naturally occurring form of radiation, are highly penetrating and exhibit large scattering angles on high Z materials. Specifically, we investigated how radiographic and tomographic techniques can be effective for non-invasive nuclear waste characterization and for nuclear material accountancy of spent fuel inside dry storage containers. We show that the tracking of individual muons, as they enter and exit a structure, can potentially improve the accuracy and availability of data on nuclear waste and the contents of Dry Storage Containers (DSC) used for spent fuel storage at CANDU plants. This could be achieved in near real time, with the potential for unattended and remotely monitored operations. We show that the expected sensitivity, in the case of the DSC, exceeds the IAEA detection target for nuclear material accountancy.

  9. Molten tin reprocessing of spent nuclear fuel elements

    DOE Patents [OSTI]

    Heckman, Richard A. (Castro Valley, CA)

    1983-01-01

    A method and apparatus for reprocessing spent nuclear fuel is described. Within a containment vessel, a solid plug of tin and nitride precipitates supports a circulating bath of liquid tin therein. Spent nuclear fuel is immersed in the liquid tin under an atmosphere of nitrogen, resulting in the formation of nitride precipitates. The layer of liquid tin and nitride precipitates which interfaces the plug is solidified and integrated with the plug. Part of the plug is melted, removing nitride precipitates from the containment vessel, while a portion of the plug remains solidified to support the liquid tin and nitride precipitates remaining in the containment vessel. The process is practiced numerous times until substantially all of the precipitated nitrides are removed from the containment vessel.

  10. Recycling of nuclear spent fuel with AIROX processing

    SciTech Connect (OSTI)

    Majumdar, D.; Jahshan, S.N.; Allison, C.M.; Kuan, P.; Thomas, T.R.

    1992-12-01

    This report examines the concept of recycling light water reactor (LWR) fuel through use of a dry-processing technique known as the AIROX (Atomics International Reduction Oxidation) process. In this concept, the volatiles and the cladding from spent LWR fuel are separated from the fuel by the AIROX process. The fuel is then reenriched and made into new fuel pins with new cladding. The feasibility of the concept is studied from a technical and high level waste minimization perspective.

  11. Naval Spent Nuclear Fuel disposal Container System Description Document

    SciTech Connect (OSTI)

    N. E. Pettit

    2001-07-13

    The Naval Spent Nuclear Fuel Disposal Container System supports the confinement and isolation of waste within the Engineered Barrier System of the Monitored Geologic Repository (MGR). Disposal containers/waste packages are loaded and sealed in the surface waste handling facilities, transferred underground through the access drifts using a rail mounted transporter, and emplaced in emplacement drifts. The Naval Spent Nuclear Fuel Disposal Container System provides long term confinement of the naval spent nuclear fuel (SNF) placed within the disposal containers, and withstands the loading, transfer, emplacement, and retrieval operations. The Naval Spent Nuclear Fuel Disposal Container System provides containment of waste for a designated period of time and limits radionuclide release thereafter. The waste package maintains the waste in a designated configuration, withstands maximum credible handling and rockfall loads, limits the waste form temperature after emplacement, resists corrosion in the expected handling and repository environments, and provides containment of waste in the event of an accident. Each naval SNF disposal container will hold a single naval SNF canister. There will be approximately 300 naval SNF canisters, composed of long and short canisters. The disposal container will include outer and inner cylinder walls and lids. An exterior label will provide a means by which to identify a disposal container and its contents. Different materials will be selected for the waste package inner and outer cylinders. The two metal cylinders, in combination with the Emplacement Drift System, drip shield, and the natural barrier will support the design philosophy of defense-in-depth. The use of materials with different properties prevents a single mode failure from breaching the waste package. The inner cylinder and inner cylinder lids will be constructed of stainless steel while the outer cylinder and outer cylinder lids will be made of high-nickel alloy.

  12. Adsorption of phenol from aqueous systems onto spent oil shale

    SciTech Connect (OSTI)

    Darwish, N.A.; Halhouli, K.A.; Al-Dhoon, N.M. [Jordan Univ. of Science and Technology, Irbid (Jordan)

    1996-03-01

    To evaluate its ability to remove phenol from aqueous solution, Jordanian {open_quotes}spent{close_quotes} oil shale, an abundant natural resource, has been used in an experimental adsorption study. Equilibrium of the system has been determined at three temperatures: 30, 40, and 55{degrees}C. The resulting experimental equilibrium isotherms are well represented by Frendlich, Langmuir, and Redlich-Peterson isotherms. The relevant parameters for these isotherms, as regressed from the experimental equilibrium data, are presented. Effects of solution pH (in the range of 3-11), in addition to effects of three inorganic salts (Kl, KCl, and NaCl), on the equilibrium isotherms were also investigated. The effects of pH in the presence of KI and NaCl were also investigated for a possible interaction between salts and solution pH. The initial concentration of phenol in the aqueous system studied ranges from 10 to 200 ppm. Experimental results show that while an acidic solution has no effect on the adsorption capacity of spent oil shale to phenol, a highly basic solution reduces its adsorbability. No sound effect was observed for the inorganic salts studied on the adsorption of phenol on spent oil shale. The experimental results show that there is no interaction between the pH of solution and the presence of salts. In spite of its ability to remove phenol, spent oil shale showed a very low equilibrium capacity (of an order of magnitude of 1 mg/g). Should the adsorption capacity of the shale be improved (by different treatment processes, such as grafting, surface conditioning), results of this study will find a direct practical implication in serving as {open_quotes}raw{close_quotes} reference data for comparison purposes.

  13. Method For Processing Spent (Trn,Zr)N Fuel

    DOE Patents [OSTI]

    Miller, William E. (Naperville, IL); Richmann, Michael K. (Woodridge, IL)

    2004-07-27

    A new process for recycling spent nuclear fuels, in particular, mixed nitrides of transuranic elements and zirconium. The process consists of two electrorefiner cells in series configuration. A transuranic element such as plutonium is reduced at the cathode in the first cell, zirconium at the cathode in the second cell, and nitrogen-15 is released and captured for reuse to make transuranic and zirconium nitrides.

  14. Hanford`s spent nuclear fuel retrieval: an agressive agenda

    SciTech Connect (OSTI)

    Shen, E.J., Westinghouse Hanford

    1996-12-06

    Starting December 1997, spent nuclear fuel that has been stored in the K Reactor Fuel Storage Basins will be retrieved over a two year period and repackaged for long term dry storage. The aging and sometimes corroding fuel elements will be recovered and processed using log handled tools and teleoperated manipulator technology. The U.S. Department of Energy (DOE) is committed to this urgent schedule because of the environmental threats to the groundwater and nearby the Columbia River.

  15. Effects of Burnable Absorbers on PWR Spent Nuclear Fuel

    SciTech Connect (OSTI)

    P.M. O'Leary; Dr. M.L. Pitts

    2000-08-21

    Burnup credit is an ongoing issue in designing and licensing transportation and storage casks for spent nuclear fuel (SNF). To address this issue, in July 1999, the U.S. Nuclear Regulatory Commission (NRC), Spent Fuel Project Office, issued Interim Staff Guidance-8 (ISG-8), Revision 1 allowing limited burnup credit for pressurized water reactor (PWR) spent nuclear fuel (SNF) to be used in transport and storage casks. However, one of the key limitations for a licensing basis analysis as stipulated in ISG-8, Revision 1 is that ''burnup credit is restricted to intact fuel assemblies that have not used burnable absorbers''. Because many PWR fuel designs have incorporated burnable-absorber rods for more than twenty years, this restriction places an unnecessary burden on the commercial nuclear power industry. This paper summarizes the effects of in-reactor irradiation on the isotopic inventory of PWR fuels containing different types of integral burnable absorbers (BAs). The work presented is illustrative and intended to represent typical magnitudes of the reactivity effects from depleting PWR fuel with different types of burnable absorbers.

  16. Thermoelectric powered wireless sensors for spent fuel monitoring

    SciTech Connect (OSTI)

    Carstens, T.; Corradini, M.; Blanchard, J. [Dept. of Engineering Physics, Univ. of Wisconsin-Madison, Madison, WI 53706 (United States); Ma, Z. [Dept. of Electrical and Computer Engineering, Univ. of Wisconsin-Madison, Madison, WI 53706 (United States)

    2011-07-01

    This paper describes using thermoelectric generators to power wireless sensors to monitor spent nuclear fuel during dry-cask storage. OrigenArp was used to determine the decay heat of the spent fuel at different times during the service life of the dry-cask. The Engineering Equation Solver computer program modeled the temperatures inside the spent fuel storage facility during its service life. The temperature distribution in a thermoelectric generator and heat sink was calculated using the computer program Finite Element Heat Transfer. From these temperature distributions the power produced by the thermoelectric generator was determined as a function of the service life of the dry-cask. In addition, an estimation of the path loss experienced by the wireless signal can be made based on materials and thickness of the structure. Once the path loss is known, the transmission power and thermoelectric generator power requirements can be determined. This analysis estimates that a thermoelectric generator can produce enough power for a sensor to function and transmit data from inside the dry-cask throughout its service life. (authors)

  17. Comparative analysis of LWR and FBR spent fuels for nuclear forensics evaluation

    SciTech Connect (OSTI)

    Permana, Sidik; Suzuki, Mitsutoshi; Su'ud, Zaki

    2012-06-06

    Some interesting issues are attributed to nuclide compositions of spent fuels from thermal reactors as well as fast reactors such as a potential to reuse as recycled fuel, and a possible capability to be manage as a fuel for destructive devices. In addition, analysis on nuclear forensics which is related to spent fuel compositions becomes one of the interesting topics to evaluate the origin and the composition of spent fuels from the spent fuel foot-prints. Spent fuel compositions of different fuel types give some typical spent fuel foot prints and can be estimated the origin of source of those spent fuel compositions. Some technics or methods have been developing based on some science and technological capability including experimental and modeling or theoretical aspects of analyses. Some foot-print of nuclear forensics will identify the typical information of spent fuel compositions such as enrichment information, burnup or irradiation time, reactor types as well as the cooling time which is related to the age of spent fuels. This paper intends to evaluate the typical spent fuel compositions of light water (LWR) and fast breeder reactors (FBR) from the view point of some foot prints of nuclear forensics. An established depletion code of ORIGEN is adopted to analyze LWR spent fuel (SF) for several burnup constants and decay times. For analyzing some spent fuel compositions of FBR, some coupling codes such as SLAROM code, JOINT and CITATION codes including JFS-3-J-3.2R as nuclear data library have been adopted. Enriched U-235 fuel composition of oxide type is used for fresh fuel of LWR and a mixed oxide fuel (MOX) for FBR fresh fuel. Those MOX fuels of FBR come from the spent fuels of LWR. Some typical spent fuels from both LWR and FBR will be compared to distinguish some typical foot-prints of SF based on nuclear forensic analysis.

  18. An approach to determine a defensible spent fuel ratio.

    SciTech Connect (OSTI)

    Durbin, Samuel G.; Lindgren, Eric Richard

    2014-03-01

    Sabotage of spent nuclear fuel casks remains a concern nearly forty years after attacks against shipment casks were first analyzed and has a renewed relevance in the post-9/11 environment. A limited number of full-scale tests and supporting efforts using surrogate materials, typically depleted uranium dioxide (DUO2), have been conducted in the interim to more definitively determine the source term from these postulated events. In all the previous studies, the postulated attack of greatest interest was by a conical shape charge (CSC) that focuses the explosive energy much more efficiently than bulk explosives. However, the validity of these large-scale results remain in question due to the lack of a defensible Spent Fuel Ratio (SFR), defined as the amount of respirable aerosol generated by an attack on a mass of spent fuel compared to that of an otherwise identical DUO2 surrogate. Previous attempts to define the SFR have resulted in estimates ranging from 0.42 to 12 and include suboptimal experimental techniques and data comparisons. Different researchers have suggested using SFR values of 3 to 5.6. Sound technical arguments exist that the SFR does not exceed a value of unity. A defensible determination of the SFR in this lower range would greatly reduce the calculated risk associated with the transport and dry storage of spent nuclear fuel. Currently, Oak Ridge National Laboratory (ORNL) is in possession of several samples of spent nuclear fuel (SNF) that were used in the original SFR studies in the 1980's and were intended for use in a modern effort at Sandia National Laboratories (SNL) in the 2000's. A portion of these samples are being used for a variety of research efforts. However, the entirety of SNF samples at ORNL is scheduled for disposition at the Waste Isolation Pilot Plant (WIPP) by approximately the end of 2015. If a defensible SFR is to be determined for use in storage and transportation security analyses, the need to begin this effort is urgent in order to secure the only known available SNF samples with a clearly defined path to disposal.

  19. Integration of the Mini-Sulfide Sulfite Anthraquinone (MSS-AQ) Pulping Process and Black Liquor Gasification in a Pulp Mill

    SciTech Connect (OSTI)

    Hasan Jameel, North Carolina State University; Adrianna Kirkman, North Carolina State University; Ravi Chandran,Thermochem Recovery International Brian Turk Research Triangle Institute; Brian Green, Research Triangle Institute

    2010-01-27

    As many of the recovery boilers and other pieces of large capital equipment of U.S. pulp mills are nearing the end of their useful life, the pulp and paper industry will soon need to make long-term investments in new technologies. The ability to install integrated, complete systems that are highly efficient will impact the industry’s energy use for decades to come. Developing a process for these new systems is key to the adoption of state-of-the-art technologies in the Forest Products industry. This project defined an integrated process model that combines mini-sulfide sulfite anthraquinone (MSS-AQ) pulping and black liquor gasification with a proprietary desulfurization process developed by the Research Triangle Institute. Black liquor gasification is an emerging technology that enables the use of MSS-AQ pulping, which results in higher yield, lower bleaching cost, lower sulfur emissions, and the elimination of causticization requirements. The recently developed gas cleanup/absorber technology can clean the product gas to a state suitable for use in a gas turbine and also regenerate the pulping chemicals needed to for the MSS-AQ pulping process. The combination of three advanced technologies into an integrated design will enable the pulping industry to achieve a new level of efficiency, environmental performance, and cost savings. Because the three technologies are complimentary, their adoption as a streamlined package will ensure their ability to deliver maximum energy and cost savings benefits. The process models developed by this project will enable the successful integration of new technologies into the next generation of chemical pulping mills. When compared to the Kraft reference pulp, the MSS-AQ procedures produced pulps with a 10-15 % yield benefit and the ISO brightness was 1.5-2 times greater. The pulp refined little easier and had a slightly lower apparent sheet density (In both the cases). At similar levels of tear index the MSS-AQ pulps also produced a comparable tensile and burst index pulps. Product gas composition determined using computer simulations The results demonstrate that RVS-1 can effectively remove > 99.8% of the H2S present in simulated synthesis gas generated from the gasification of black liquor. This level of sulfur removal was consistent over simulated synthesis gas mixtures that contained from 6 to 9.5 vol % H2S.A significant amount of the sulfur in the simulated syngas was recovered as SO2 during regeneration. The average recovery of sulfur as SO2 was about 75%. Because these are first cycle results, this sulfur recovery is expected to improve. Developed WINGems model of the process.The total decrease in variable operating costs for the BLG process compared to the HERB was in excess of $6,200,000 per year for a mill producing 350,000 tons of pulp per year. This represents a decrease in operating cost of about $17.7/ton of oven dry pulp produced. There will be additional savings in labor and maintenance cost that has not been taken into account. The capital cost for the MSSAQ based gasifier system was estimated at $164,000,000, which is comparable to a High Efficiency Recovery Boiler. The return on investment was estimated at 4%. A gasifier replacement cannot be justified on its own, however if the recovery boiler needs to be replaced the MSSAQ gasifier system shows significantly higher savings. Before black liquor based gasifer technology can be commercialized more work is necessary. The recovery of the absorbed sulfur in the absorbent as sulfur dioxide is only 75%. This needs to be greater than 90% for economical operation. It has been suggested that as the number of cycles is increased the sulfur dioxide recovery might improve. Further research is necessary. Even though a significant amount of work has been done on a pilot scale gasifiers using liquors containing sulfur, both at low and high temperatures the lack of a commercial unit is an impediment to the implementation of the MSSAQ technology. The implementation of a commercial unit needs to be facilated before the benefits of

  20. Red McCombs Jamail Texas

    E-Print Network [OSTI]

    Pillow, Jonathan

    Cashier/ Public Parking Pay Station Do Not Enter/ Exit Only No Left Turn Note: Lot 115 not availableLeona Lot Red McCombs Red Zone Lot 117 Lot 109 Lot 114 Lot 113 Lot 110 Lot 112 Lot 115 Lot 103 Lot Red & Charline McCombs Field Lot 104 Lot 103 Lot 115 Lot 112 Lot 110 Lot 113 Lot 113 Lot 113 Lot 114

  1. Electrometallurgical treatment of oxide spent fuel - engineering-scale development.

    SciTech Connect (OSTI)

    Karell, E. J.

    1998-04-22

    Argonne National Laboratory (ANL) has developed the electrometallurgical treatment process for conditioning various Department of Energy (DOE) spent fuel types for long-term storage or disposal. This process uses electrorefining to separate the constituents of spent fuel into three product streams: metallic uranium, a metal waste form containing the cladding and noble metal fission products, and a ceramic waste form containing the transuranics, and rare earth, alkali, and alkaline earth fission products. While metallic fuels can be directly introduced into the electrorefiner, the actinide components of oxide fuels must first be reduced to the metallic form. The Chemical Technology Division of AFT has developed a process to reduce the actinide oxides that uses lithium at 650 C in the presence of molten LiCl, yielding the actinide metals and Li{sub 2}O. A significant amount of work has already been accomplished to investigate the basic chemistry of the lithium reduction process and to demonstrate its applicability to the treatment of light-water reactor- (LWR-) type spent fuel. The success of this work has led to conceptual plans to construct a pilot-scale oxide reduction facility at ANL's Idaho site. In support of the design effort, a series of laboratory- and engineering-scale experiments is being conducted using simulated fuel. These experiments have focused on the engineering issues associated with scaling-up the process and proving compatibility between the reduction and electrorefining steps. Specific areas of investigation included reduction reaction kinetics, evaluation of various fuel basket designs, and issues related to electrorefining the reduced product. This paper summarizes the results of these experiments and outlines plans for future work.

  2. Waste management plan for Hanford spent nuclear fuel characterization activities

    SciTech Connect (OSTI)

    Chastain, S.A. [Westinghouse Hanford Co., Richland, WA (United States); Spinks, R.L. [Pacific Northwest Lab., Richland, WA (United States)

    1994-10-17

    A joint project was initiated between Westinghouse Hanford Company (WHC) and Pacific Northwest Laboratory (PNL) to address critical issues associated with the Spent Nuclear Fuel (SNF) stored at the Hanford Site. Recently, particular attention has been given to remediation of the SNF stored in the K Basins. A waste management plan (WMP) acceptable to both parties is required prior to the movement of selected material to the PNL facilities for examination. N Reactor and Single Pass Reactor (SPR) fuel has been stored for an extended period of time in the N Reactor, PUREX, K-East, and K-West Basins. Characterization plans call for transport of fuel material form the K Basins to the 327 Building Postirradiation Testing Laboratory (PTL) in the 300 Area for examination. However, PNL received a directive stating that no examination work will be started in PNL hot cell laboratories without an approved disposal route for all waste generated related to the activity. Thus, as part of the Characterization Program Management Plan for Hanford Spent Nuclear Fuel, a waste management plan which will ensure that wastes generated as a result of characterization activities conducted at PNL will be accepted by WHC for disposition is required. This document contains the details of the waste handling plan that utilizes, to the greatest extent possible, established waste handling and disposal practices at Hanford between PNL and WHC. Standard practices are sufficient to provides for disposal of most of the waste materials, however, special consideration must be given to the remnants of spent nuclear fuel elements following examination. Fuel element remnants will be repackaged in an acceptable container such as the single element canister and returned to the K Basins for storage.

  3. Method for reprocessing and separating spent nuclear fuels

    DOE Patents [OSTI]

    Krikorian, Oscar H. (Danville, CA); Grens, John Z. (Livermore, CA); Parrish, Sr., William H. (Walnut Creek, CA)

    1983-01-01

    Spent nuclear fuels, including actinide fuels, volatile and non-volatile fission products, are reprocessed and separated in a molten metal solvent housed in a separation vessel made of a carbon-containing material. A first catalyst, which promotes the solubility and permeability of carbon in the metal solvent, is included. By increasing the solubility and permeability of the carbon in the solvent, the rate at which actinide oxides are reduced (carbothermic reduction) is greatly increased. A second catalyst, included to increase the affinity for nitrogen in the metal solvent, is added to increase the rate at which actinide nitrides form after carbothermic reduction is complete.

  4. Method for reprocessing and separating spent nuclear fuels. [Patent application

    DOE Patents [OSTI]

    Krikorian, O.H.; Grens, J.Z.; Parrish, W.H. Sr.

    1982-01-19

    Spent nuclear fuels, including actinide fuels, volatile and nonvolatile fission products, are reprocessed and separated in a molten metal solvent housed in a separation vessel made of a carbon-containing material. A first catalyst, which promotes the solubility and permeability of carbon in the metal solvent, is included. By increasing the solubility and permeability of the carbon in the solvent, the rate at which actinide oxides are reduced (carbothermic reduction) is greatly increased. A second catalyst, included to increase the affinity for nitrogen in the metal solvent, is added to increase the rate at which actinide nitrides form after carbothermic reduction is complete.

  5. APPLICATIONS OF CURRENT TECHNOLOGY FOR CONTINUOUS MONITORING OF SPENT FUEL

    SciTech Connect (OSTI)

    Drayer, R.

    2013-06-09

    Advancements in technology have opened many opportunities to improve upon the current infrastructure surrounding the nuclear fuel cycle. Embedded devices, very small sensors, and wireless technology can be applied to Security, Safety, and Nonproliferation of Spent Nuclear Fuel. Security, separate of current video monitoring systems, can be improved by integrating current wireless technology with a variety of sensors including motion detection, altimeter, accelerometer, and a tagging system. By continually monitoring these sensors, thresholds can be set to sense deviations from nominal values. Then alarms or notifications can be activated as needed. Safety can be improved in several ways. First, human exposure to ionizing radiation can be reduced by using a wireless sensor package on each spent fuel cask to monitor radiation, temperature, humidity, etc. Since the sensor data is monitored remotely operator stay-time is decreased and distance from the spent fuel increased, so the overall radiation exposure is reduced as compared to visual inspections. The second improvement is the ability to monitor continuously rather than periodically. If changes occur to the material, alarm thresholds could be set and notifications made to provide advanced notice of negative data trends. These sensor packages could also record data to be used for scientific evaluation and studies to improve transportation and storage safety. Nonproliferation can be improved for spent fuel transportation and storage by designing an integrated tag that uses current infrastructure for reporting and in an event; tracking can be accomplished using the Iridium satellite system. This technology is similar to GPS but with higher signal strength and penetration power, but lower accuracy. A sensor package can integrate all or some of the above depending on the transportation and storage requirements and regulations. A sensor package can be developed using off the shelf technology and applying it to each specific need. There are products on the market for smart meters, industrial lighting control and home automation that can be applied to the Back End Fuel Cycle. With a little integration and innovation a cost effective solution is achievable.

  6. Interface agreement for the management of FFTF Spent Nuclear Fuel

    SciTech Connect (OSTI)

    McCormack, R.L.

    1995-02-02

    The Hanford Site Spent Nuclear Fuel (SNF) Project was formed to manage the SNF at Hanford. The mission of the Fast Flux Test Facility (FFTF) Transition Project is to place the facility in a radiologically and industrially safe shutdown condition for turnover to the Environmental Restoration Contractor (ERC) for subsequent D&D. To satisfy both project missions, FFTF SNF must be removed from the FFTF and subsequently dispositioned. This documented provides the interface agreement between FFTF Transition Project and SNF Project for management of the FFTF SNF.

  7. Closure mechanism and method for spent nuclear fuel canisters

    DOE Patents [OSTI]

    Doman, Marvin J. (Monroeville, PA)

    2004-11-23

    A canister is provided for storing, transporting, and/or disposing of spent nuclear fuel. The canister includes a canister shell, a top shield plug disposed within the canister, and a leak-tight closure arrangement. The closure arrangement includes a shear ring which forms a containment boundary of the canister, and which is welded to the canister shell and top shield plug. An outer seal plate, forming an outer seal, is disposed above the shear ring and is welded to the shield plug and the canister.

  8. Spent Fuel Transportation Risk Assessment | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankADVANCED MANUFACTURINGEnergy BillsNo.Hydrogen4EnergySolidof2 SpecialSpent Fuel Transportation Risk

  9. MyRED Mobiles Student Views

    E-Print Network [OSTI]

    Farritor, Shane

    tap on Shopping Cart, then select term. Tap on Class Search to find courses to place in your shoppingMyRED Mobiles Student Views Mar 2014 Page 1 Login/Sign-in Enter your MyRED /TrueYou credentials. Tap on any Term bar to view a schedule for the selected term. Home Screen/Main Menu Class Schedule

  10. MyRED Mobile Student Views

    E-Print Network [OSTI]

    Tsymbal, Evgeny Y.

    tap on Shopping Cart, then select term. Tap on Class Search to find courses to place in your shoppingMyRED Mobile Student Views Mar 2014 Page 1 Login/Sign-in Enter your MyRED /TrueYou credentials. Tap on any Term bar to view a schedule for the selected term. Home Screen/Main Menu Class Schedule Screen Tap

  11. POTENTIAL USES OF SPENT SHALE IN THE TREATMENT OF OIL SHALE RETORT WATERS

    E-Print Network [OSTI]

    Fox, J.P.

    2013-01-01

    study of retorted oil shale," Lawrence Livermore Laboratoryb) using columns of spent shale. REFERENCES Burnham, Alankinetics between and oil-shale residual carbon. 1. co Effect

  12. Supplement Analysis ? Spent Nuclear Fuel and SRS H-Canyon Operations

    Energy Savers [EERE]

    DOEEIS-0218-SA-07 SUPPLEMENT ANALYSIS FOR THE FOREIGN RESEARCH REACTOR SPENT NUCLEAR FUEL ACCEPTANCE PROGRAM Highly Enriched Uranium Target Residue Material Transportation U.S....

  13. EIS-0306: Treatment and Management of Sodium-Bonded Spent Nuclear Fuel

    Broader source: Energy.gov [DOE]

    DOE prepared a EIS that evaluated the potential environmental impacts of treatment and management of DOE-owned sodium bonded spent nuclear fuel.

  14. POTENTIAL USES OF SPENT SHALE IN THE TREATMENT OF OIL SHALE RETORT WATERS

    E-Print Network [OSTI]

    Fox, J.P.

    2013-01-01

    situ oil shale combustion experiment con- A gas chro- Thisspent shales were waters were studied, retort water and gasof retort waters and gas condensate. Spent shale reduces the

  15. Instrumented, Shielded Test Canister System for Evaluation of Spent Nuclear Fuel in Dry Storage

    SciTech Connect (OSTI)

    Sindelar, R.L.

    1999-10-21

    This document describes the development of an instrumented, shielded test canister system to store and monitor aluminum-based spent nuclear duel under dry storage conditions.

  16. Spent Fuel and High-Level Radioactive Waste Transportation Report

    SciTech Connect (OSTI)

    Not Available

    1992-03-01

    This publication is intended to provide its readers with an introduction to the issues surrounding the subject of transportation of spent nuclear fuel and high-level radioactive waste, especially as those issues impact the southern region of the United States. It was originally issued by SSEB in July 1987 as the Spent Nuclear Fuel and High-Level Radioactive Waste Transportation Primer, a document patterned on work performed by the Western Interstate Energy Board and designed as a ``comprehensive overview of the issues.`` This work differs from that earlier effort in that it is designed for the educated layman with little or no background in nuclear waste Issues. In addition. this document is not a comprehensive examination of nuclear waste issues but should instead serve as a general introduction to the subject. Owing to changes in the nuclear waste management system, program activities by the US Department of Energy and other federal agencies and developing technologies, much of this information is dated quickly. While this report uses the most recent data available, readers should keep in mind that some of the material is subject to rapid change. SSEB plans periodic updates in the future to account for changes in the program. Replacement pages will be supplied to all parties in receipt of this publication provided they remain on the SSEB mailing list.

  17. Spent fuel and high-level radioactive waste transportation report

    SciTech Connect (OSTI)

    Not Available

    1989-11-01

    This publication is intended to provide its readers with an introduction to the issues surrounding the subject of transportation of spent nuclear fuel and high-level radioactive waste, especially as those issues impact the southern region of the United States. It was originally issued by the Southern States Energy Board (SSEB) in July 1987 as the Spent Nuclear Fuel and High-Level Radioactive Waste Transportation Primer, a document patterned on work performed by the Western Interstate Energy Board and designed as a ``comprehensive overview of the issues.`` This work differs from that earlier effort in that it is designed for the educated layman with little or no background in nuclear waste issues. In addition, this document is not a comprehensive examination of nuclear waste issues but should instead serve as a general introduction to the subject. Owing to changes in the nuclear waste management system, program activities by the US Department of Energy and other federal agencies and developing technologies, much of this information is dated quickly. While this report uses the most recent data available, readers should keep in mind that some of the material is subject to rapid change. SSEB plans periodic updates in the future to account for changes in the program. Replacement pages sew be supplied to all parties in receipt of this publication provided they remain on the SSEB mailing list.

  18. Spent fuel and high-level radioactive waste transportation report

    SciTech Connect (OSTI)

    Not Available

    1990-11-01

    This publication is intended to provide its readers with an introduction to the issues surrounding the subject of transportation of spent nuclear fuel and high-level radioactive waste, especially as those issues impact the southern region of the United States. It was originally issued by the Southern States Energy Board (SSEB) in July 1987 as the Spent Nuclear Fuel and High-Level Radioactive Waste Transportation Primer, a document patterned on work performed by the Western Interstate Energy Board and designed as a ``comprehensive overview of the issues.`` This work differs from that earlier effort in that it is designed for the educated layman with little or no background in nuclear waste issues. In addition, this document is not a comprehensive examination of nuclear waste issues but should instead serve as a general introduction to the subject. Owing to changes in the nuclear waste management system, program activities by the US Department of Energy and other federal agencies and developing technologies, much of this information is dated quickly. While this report uses the most recent data available, readers should keep in mind that some of the material is subject to rapid change. SSEB plans periodic updates in the future to account for changes in the program. Replacement pages will be supplied to all parties in receipt of this publication provided they remain on the SSEB mailing list.

  19. Natural convection heat transfer within horizontal spent nuclear fuel assemblies

    SciTech Connect (OSTI)

    Canaan, R.E.

    1995-12-01

    Natural convection heat transfer is experimentally investigated in an enclosed horizontal rod bundle, which characterizes a spent nuclear fuel assembly during dry storage and/or transport conditions. The basic test section consists of a square array of sixty-four stainless steel tubular heaters enclosed within a water-cooled rectangular copper heat exchanger. The heaters are supplied with a uniform power generation per unit length while the surrounding enclosure is maintained at a uniform temperature. The test section resides within a vacuum/pressure chamber in order to subject the assembly to a range of pressure statepoints and various backfill gases. The objective of this experimental study is to obtain convection correlations which can be used in order to easily incorporate convective effects into analytical models of horizontal spent fuel systems, and also to investigate the physical nature of natural convection in enclosed horizontal rod bundles in general. The resulting data consist of: (1) measured temperatures within the assembly as a function of power, pressure, and backfill gas; (2) the relative radiative contribution for the range of observed temperatures; (3) correlations of convective Nusselt number and Rayleigh number for the rod bundle as a whole; and (4) correlations of convective Nusselt number as a function of Rayleigh number for individual rods within the array.

  20. Spent sealed radium sources conditioning in Latin America

    SciTech Connect (OSTI)

    Mourao, R.P. [Centro de Desenvolvimento da Tecnologia Nuclear, Belo Horizonte, Minas Gerais (Brazil)] [Centro de Desenvolvimento da Tecnologia Nuclear, Belo Horizonte, Minas Gerais (Brazil)

    1999-06-01

    The management of spent sealed sources is considered by the International Atomic Energy Agency (IAEA) one of the greatest challenges faced by nuclear authorities today, especially in developing countries. One of the Agency`s initiatives to tackle this problem is the Spent Radium Sources Conditioning Project, a worldwide project relying on the regional co-operation between countries. A team from the Brazilian nuclear research institute Centro de Desenvolvimento da Tecnologia Nuclear (CDTN) was chosen as the expert team to carry out the operations in Latin America; since December 1996 radium sources have been safely conditioned in Uruguay, Nicaragua, Guatemala, Ecuador and Paraguay. A Quality Assurance Program was established, encompassing the qualification of the capsule welding process, written operational procedures referring to all major steps of the operation, calibration of monitors and information retrievability. A 200L carbon steel drum-based packaging concept was used to condition the sources, its cavity being designed to receive the lead shield device containing stainless steel capsules with the radium sources. As a result of these operations, a total amount of 2,897 mg of needles, tubes, medical applicators, standard sources for calibration, lightning rods, secondary wastes and contaminated objects were stored in proper conditions and are now under control of the nuclear authorities of the visited countries.

  1. Spent nuclear fuel recycling with plasma reduction and etching

    DOE Patents [OSTI]

    Kim, Yong Ho

    2012-06-05

    A method of extracting uranium from spent nuclear fuel (SNF) particles is disclosed. Spent nuclear fuel (SNF) (containing oxides of uranium, oxides of fission products (FP) and oxides of transuranic (TRU) elements (including plutonium)) are subjected to a hydrogen plasma and a fluorine plasma. The hydrogen plasma reduces the uranium and plutonium oxides from their oxide state. The fluorine plasma etches the SNF metals to form UF6 and PuF4. During subjection of the SNF particles to the fluorine plasma, the temperature is maintained in the range of 1200-2000 deg K to: a) allow any PuF6 (gas) that is formed to decompose back to PuF4 (solid), and b) to maintain stability of the UF6. Uranium (in the form of gaseous UF6) is easily extracted and separated from the plutonium (in the form of solid PuF4). The use of plasmas instead of high temperature reactors or flames mitigates the high temperature corrosive atmosphere and the production of PuF6 (as a final product). Use of plasmas provide faster reaction rates, greater control over the individual electron and ion temperatures, and allow the use of CF4 or NF3 as the fluorine sources instead of F2 or HF.

  2. Development of a thermal reclamation system for spent blasting abrasive

    SciTech Connect (OSTI)

    Bryan, B.B.; Mensinger, M.C.; Rehmat, A.G.

    1991-01-01

    Abrasive blasting is the most economical method for paint removal from large surface areas such as the hulls and tanks of oceangoing vessels. Tens of thousands of tons of spent abrasive are generated annually by blasting operations in private and US Navy shipyards. Some of this material is classified as hazardous waste, and nearly all of it is currently being either stockpiled or disposed in landfills. The rapid decline in available landfill space and corresponding rise in landfill tipping fees pose a severe problem for shipyard operators throughout the US. This paper discusses the results of a research and development program initiated by the Institute of Gas Technology and supported by the US Navy to develop and test a fluidized-bed thermal reclamation system for spent abrasive waste minimization. Bench- and pilot-scale reclaimer tests and reclaimed abrasive performance tests are described along with the current status of a program to build and test a 5-ton/hour prototype reclaimer at a US Navy shipyard.

  3. Studies on reaction runaways for Urex/Purex solvent-nitric acid and red-oil synthesis

    SciTech Connect (OSTI)

    Kumar, Shekhar; Kumar, Rajnish; Koganti, S.B.

    2008-07-01

    In PUREX/UREX processes for recycling of spent nuclear fuels, 30% TBP solvent is used, This solvent has a small solubility in the aqueous phase. During concentration of the process solutions by an evaporation route, a runaway reaction between TBP and nitric acid is initiated at above 130 deg. C, leading to rapid pressurization and finally containment failure if proper venting is not provided. Red oil was synthesized for the first time in India, and its physical properties as well as thermodynamic parameters for the reaction were determined. It was experimentally established that the presence of metallic nitrates was not essential for red-oil formation as thought earlier. Various experiments have been completed for single-phase as well as two-phase runs. The most important finding of this work was lowering of the limiting acid concentration from the conventional values. In fact, in these experiments, red oil could be formed even at 2 N aqueous acidity. Thus, safety guidelines based on the classical literature are obsolete. New guidelines for the red-oil-safety are required. (authors)

  4. U-200: Red Hat Directory Server Information Disclosure Security...

    Broader source: Energy.gov (indexed) [DOE]

    A security issue and a vulnerability have been reported in Red Hat Directory Server, which can be exploited by malicious users to disclose sensitive information. PLATFORM: Red Hat...

  5. RedLeaf Resources Ecoshale Project | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    RedLeaf Resources Ecoshale Project RedLeaf Resources Ecoshale Project Overview of oil shale reserves, unique oil extraction issues, novel approach for cost-effective extraction...

  6. Spent fuel dry storage technology development: fuel temperature measurements under imposed dry storage conditions (I kW PWR spent fuel assembly)

    SciTech Connect (OSTI)

    Unterzuber, R.; Wright, J.B.

    1980-09-01

    A spent fuel assembly temperature test under imposed dry storage conditions was conducted at the Engine Maintenance Assembly and Disassembly (E-MAD) facility on the Nevada Test Site in support of spent fuel dry storage technology development. This document presents the test data and results obtained from an approximately 1.0 kW decay heat level PWR spent fuel assembly. A spent fuel test apparatus was designed to utilize a representative stainless steel spent fuel canister, a canister lid containing internal temperature instrumentation to measure fuel cladding temperatures, and a carbon steel liner that encloses the canister and lid. Electrical heaters along the liner length, on the lid, and below the canister are used to impose dry storage canister temperature profiles. Temperature instrumentation is provided on the liner and canister. The liner and canister are supported by a test stand in one of the large hot cells (West Process Cell) inside E-MAD. Fuel temperature measurements have been performed using imposed canister temperature profiles from the electrically heated and spent fuel drywell tests being conducted at E-MAD as well as for four constant canister temperature profiles, each with a vacuum, helium and air backfill. Computer models have been utilized in conjunction with the test to predict the thermal response of the fuel cladding. Computer predictions are presented, and they show good agreement with the test data.

  7. Spent fuel dry storage technology development: fuel temperature measurements under imposed dry storage conditions (1.4 kW PWR spent fuel assembly)

    SciTech Connect (OSTI)

    Unterzuber, R.

    1981-09-01

    A spent fuel assembly temperature test under imposed dry storage conditions was conducted at the Engine Maintenance Assembly and Disassembly (E-MAD) facility on the Nevada Test Site in support of spent fuel dry storage technology development. This document presents the test data and results obtained from an approximately 1.4 kW decay heat level PWR spent fuel assembly. A spent fuel test apparatus was designed to utilize a stainless steel canister representative of actual fuel canisters, a canister lid containing internal temperature instrumentation to measure fuel cladding temperatures, and a carbon steel liner that encloses the canister and lid. Electrical heaters along the liner length, on the lid, and below the canister are used to impose dry storage canister temperature profiles. Temperature instrumentation is provided on the liner and canister. The liner and canister are supported by a test stand in one of the large hot cells (West Process Cell) inside E-MAD. Fuel temperature measurements have been performed using imposed canister temperature profiles from the electrically heated and spent fuel near-surface drywell tests being conducted at E-MAD, the spent fuel deep geologic storage test being conducted in Climax granite on the Nevada Test Site, and for five constant canister temperature profiles, each with a vacuum, helium and air backfill. Computer models have been utilized in conjunction with the test to predict the thermal response of the fuel cladding. Computer predictions are presented, and they show good agreement with the test data.

  8. Development of Gd-Enriched Alloys for Spent Nuclear Fuel Applications--Part 1: Preliminary Characterization

    E-Print Network [OSTI]

    DuPont, John N.

    composition for any Gd level. Keywords gadolinium, neutron absorbing material, nuclear criticality safety support, (2) spent nuclear fuel geometry control, and (3) nuclear criticality safety. In additionDevelopment of Gd-Enriched Alloys for Spent Nuclear Fuel Applications--Part 1: Preliminary

  9. Eddy Current Examination of Spent Nuclear Fuel Canister Closure Welds

    SciTech Connect (OSTI)

    Arthur D. Watkins; Dennis C. Kunerth; Timothy R. McJunkin

    2006-04-01

    The National Spent Nuclear Fuel Program (NSNFP) has developed standardized DOE SNF canisters for handling and interim storage of SNF at various DOE sites as well as SNF transport to and SNF handling and disposal at the repository. The final closure weld of the canister will be produced remotely in a hot cell after loading and must meet American Society of Mechanical Engineers (ASME) Section III, Division 3 code requirements thereby requiring volumetric and surface nondestructive evaluation to verify integrity. This paper discusses the use of eddy current testing (ET) to perform surface examination of the completed welds and repair cavities. Descriptions of integrated remote welding/inspection system and how the equipment is intended function will also be discussed.

  10. Training implementation matrix, Spent Nuclear Fuel Project (SNFP)

    SciTech Connect (OSTI)

    EATON, G.L.

    2000-06-08

    This Training Implementation Matrix (TIM) describes how the Spent Nuclear Fuel Project (SNFP) implements the requirements of DOE Order 5480.20A, Personnel Selection, Qualification, and Training Requirements for Reactor and Non-Reactor Nuclear Facilities. The TIM defines the application of the selection, qualification, and training requirements in DOE Order 5480.20A at the SNFP. The TIM also describes the organization, planning, and administration of the SNFP training and qualification program(s) for which DOE Order 5480.20A applies. Also included is suitable justification for exceptions taken to any requirements contained in DOE Order 5480.20A. The goal of the SNFP training and qualification program is to ensure employees are capable of performing their jobs safely and efficiently.

  11. Utilizing Divers in Support of Spent Fuel Basin Closure Subproject

    SciTech Connect (OSTI)

    Allen Nellesen

    2005-01-01

    A number of nuclear facilities in the world are aging and with this comes the fact that we have to either keep repairing them or decommission them. At the Department of Energy Idaho Site (DOEID) there are a number of facilities that are being decommissioned, but the facilities that pose the highest risk to the large aquifer that flows under the site are given highest priorities. Aging spent nuclear fuel pools at DOE-ID are among the facilities that pose the highest risk, therefore four pools were targeted for decommissioning in Fiscal Year 2004. To accomplish this task the Idaho Completion Project (ICP) of Bechtel BWXT Idaho, LLC, put together an integrated Basin Closure Subproject team. The team was assigned a goal to look beyond traditional practices at the Idaho National Engineering and Environmental Laboratory (INEEL) to find ways to get the basin closure work done safer and more efficiently. The Idaho Completion Project (ICP) was faced with a major challenge – cleaning and preparing aging spent nuclear fuel basins for closure by removing sludge and debris, as necessary, and removing water to eliminate a potential risk to the Snake River Plain Aquifer. The project included cleaning and removing water from four basins. Two of the main challenges to a project like this is the risk of contamination from the basin walls and floors becoming airborne as the water is removed and keeping personnel exposures ALARA. ICP’s baseline plan had workers standing at the edges of the basins and on rafts or bridge cranes and then using long-handled tools to manually scrub the walls of basin surfaces. This plan had significant risk of skin contamination events, workers falling into the water, or workers sustaining injuries from the awkward working position. Analysis of the safety and radiation dose risks presented by this approach drove the team to look for smarter ways to get the work done.

  12. Direct Investigations of the Immobilization of Radionuclides in the Alteration Products of Spent Nuclear Fuel

    SciTech Connect (OSTI)

    Peter C. Burns; Robert J. Finch; David J. Wronkiewicz

    2004-12-27

    Safe disposal of the nation's nuclear waste in a geological repository involves unique scientific and engineering challenges owing to the very long-lived radioactivity of the waste. The repository must retain a variety of radionuclides that have vastly different chemical characters for several thousand years. Most of the radioactivity that will be housed in the proposed repository at Yucca Mountain will be associated with spent nuclear fuel, much of which is derived from commercial reactors. DOE is custodian of approximately 8000 tons of spent nuclear fuel that is also intended for eventual disposal in a geological repository. Unlike the spent fuel from commercial reactors, the DOE fuel is diverse in composition with more than 250 varieties. Safe disposal of spent fuel requires a detailed knowledge of its long-term behavior under repository conditions, as well as the fate of radionuclides released from the spent fuel as waste containers are breached.

  13. Viscoelastic transient of confined Red Blood Cells

    E-Print Network [OSTI]

    Gaël Prado; Alexander Farutin; Chaouqi Misbah; Lionel Bureau

    2014-09-17

    The unique ability of a red blood cell to flow through extremely small microcapillaries depends on the viscoelastic properties of its membrane. Here, we study in vitro the response time upon flow startup exhibited by red blood cells confined into microchannels. We show that the characteristic transient time depends on the imposed flow strength, and that such a dependence gives access to both the effective viscosity and the elastic modulus controlling the temporal response of red cells. A simple theoretical analysis of our experimental data, validated by numerical simulations, further allows us to compute an estimate for the two-dimensional membrane viscosity of red blood cells, $\\eta_{mem}^{2D}\\sim 10^{-7}$ N$\\cdot$s$\\cdot$m$^{-1}$. By comparing our results with those from previous studies, we discuss and clarify the origin of the discrepancies found in the literature regarding the determination of $\\eta_{mem}^{2D}$, and reconcile seemingly conflicting conclusions from previous works.

  14. Redding Electric- Renewable Energy Rebate Program

    Broader source: Energy.gov [DOE]

    The Earth Advantage Rebate Program was designed to offer rebates to residential and business customers of Redding Electric Utility (REU) for solar PV, solar thermal, and geothermal heat pump...

  15. Red squirrel habitat mapping using remote sensing 

    E-Print Network [OSTI]

    Flaherty, Silvia Susana

    2013-07-01

    The native Eurasian red squirrel is considered endangered in the UK and is under strict legal protection. Long-term management of its habitat is a key goal of the UK conservation strategy. Current selection criteria of ...

  16. Determining Plutonium Mass in Spent Fuel with Nondestructive Assay Techniques NGSI Research Overview and Update on NDA Techniques

    E-Print Network [OSTI]

    A., V. Mozin, S.J. Tobin, L.W. Cambell, J.R. Cheatham, C.R. Freeman, C.J. Gesh,

    2012-01-01

    considered one of the 17x17 PWR assemblies from the NGSIplutonium signal because in a PWR spent fuel its content isspectra for a single PWR fuel pin with fresh and spent UO 2

  17. Improved ``Optical Highlighter'' Probes Derived from Discosoma Red Fluorescent Protein

    E-Print Network [OSTI]

    Marchant, Jonathan

    , Minneapolis, Minnesota ABSTRACT The tetrameric red fluorescent protein, DsRed, undergoes a rapid red to green-emitting species of DsRed and an enhancement of emission from the ``immature'' green species, likely caused by dequenching of fluorescence resonance energy transfer occurring within the protein tetramer. Here, we have

  18. Department of Energy Programmatic Spent Nuclear Fuel Management and Idaho National Engineering Laboratory Environmental Restoration and Waste Management Programs Draft Environmental Impact Statement. Volume 1, Appendix D, Part B: Naval spent nuclear fuel management

    SciTech Connect (OSTI)

    Not Available

    1994-06-01

    This volume contains the following attachments: transportation of Naval spent nuclear fuel; description of Naval spent nuclear receipt and handling at the Expended Core Facility at the Idaho National Engineering Laboratory; comparison of storage in new water pools versus dry container storage; description of storage of Naval spent nuclear fuel at servicing locations; description of receipt, handling, and examination of Naval spent nuclear fuel at alternate DOE facilities; analysis of normal operations and accident conditions; and comparison of the Naval spent nuclear fuel storage environmental assessment and this environmental impact statement.

  19. Spent-fuel dry-storage testing at E-MAD (March 1978-March 1982)

    SciTech Connect (OSTI)

    Unterzuber, R.; Milnes, R.D.; Marinkovich, B.A.; Kubancsek, G.M.

    1982-09-01

    From March 1978 through March 1982, spent fuel dry storage tests were conducted at the Engine Maintenance, Assembly and Disassembly (E-MAD) facility on the Nevada Test Site to confirm that commercial reactor spent fuel could be encapsulated and passively stored in one or more interim dry storage cell concepts. These tests were: electrically heated drywell, isolated and adjacent drywell, concrete silo, fuel assembly internal temperature measurement, and air-cooled vault. This document presents the test data and results as well as results from supporting test operations (spent fuel calorimetry and canister gas sampling).

  20. Shipper/receiver difference verification of spent fuel by use of PDET

    SciTech Connect (OSTI)

    Ham, Y. S.; Sitaraman, S.

    2011-07-01

    Spent fuel storage pools in most countries are rapidly approaching their design limits with the discharge of over 10,000 metric tons of heavy metal from global reactors. Countries like UK, France or Japan have adopted a closed fuel cycle by reprocessing spent fuel and recycling MOX fuel while many other countries opted for above ground interim dry storage for their spent fuel management strategy. Some countries like Finland and Sweden are already well on the way to setting up a conditioning plant and a deep geological repository for spent fuel. For all these situations, shipments of spent fuel are needed and the number of these shipments is expected to increase significantly. Although shipper/receiver difference (SRD) verification measurements are needed by IAEA when the recipient facility receives spent fuel, these are not being practiced to the level that IAEA has desired due to lack of a credible measurement methodology and instrument that can reliably perform these measurements to verify non-diversion of spent fuel during shipment and confirm facility operator declarations on the spent fuel. In this paper, we describe a new safeguards method and an associated instrument, Partial Defect Tester (PDET), which can detect pin diversion from Pressurized Water Reactor (PWR) Spent Fuel Assemblies in an in-situ condition. The PDET uses multiple tiny neutron and gamma detectors in the form of a cluster and a simple, yet highly precise, gravity-driven system to obtain underwater radiation measurements inside a Pressurized Water Reactor (PWR) spent fuel assembly. The method takes advantage of the PWR fuel design which contains multiple guide tubes which can be accessed from the top. The data obtained in such a manner can provide spatial distribution of neutron and gamma flux within a spent fuel assembly. Our simulation study as well as validation measurements indicated that the ratio of the gamma signal to the thermal neutron signal at each detector location normalized to the peak ratio of all the detector locations gives a unique signature that is sensitive to missing pins. The signature is principally dependent on the geometry of the detector locations, and little sensitive to enrichment or burn-up variations. A small variation in the fuel bundle, such as a few missing pins, changes the shape of the signature to enable detection. After verification of the non-diversion of spent fuel pins, the neutron signal and gamma signal are subsequently used to verify the consistency of the operator declaration on the fuel burn-up and cooling time. (authors)

  1. CUTTING SOLAR RED TAPECUTTING SOLAR RED TAPE Evergreen State Solar PartnershipEvergreen State Solar Partnership

    E-Print Network [OSTI]

    READY BUILDINGS Solar access, easements, rights now and future Technical design ­ rCUTTING SOLAR RED TAPECUTTING SOLAR RED TAPE Evergreen State Solar PartnershipEvergreen State Solar Partnership Rooftop Solar Challenge 1 Sunshot #12;WASHINGTON PV CONTEXTWASHINGTON PV CONTEXT 285 cities, 39

  2. Red mud characterization using nuclear analytical techniques

    SciTech Connect (OSTI)

    Obhodas, J.; Sudac, D.; Matjacic, L.; Valkovic, V.

    2011-07-01

    Red mud is a toxic waste left as a byproduct in aluminum production Bayer process. Since it contains significant concentrations of other chemical elements interesting for industry, including REE, it is also potential secondary ore source. Recent events in some countries have shown that red mud presents a serious environmental hazard if not properly stored. The subject of our study is the red mud from an ex-aluminum plant in Obrovac, Croatia, left from processing of bauxite mined during late 70's and early 80's at the eastern Adriatic coast and since than stored in open concrete basins for more than 30 years. We have used energy dispersive x-ray fluorescence analysis (both tube and radioactive source excitation), fast neutron activation analysis and passive gamma spectrometry to identify a number of elements present in the red mud, their concentration levels and radioactivity in the red mud. The high concentrations of Al, Si, Ca, Ti and Fe have been measured. Chemical elements Sc, Cr, Mn, Co, Ni, Cu, Zn, Ga, As, Se, Br, Y, La, Ce, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Pb, Th and U were found in lower concentrations. No significant levels of radioactivity have been measured. (authors)

  3. Uncanistered Spent Nuclear fuel Disposal Container System Description Document

    SciTech Connect (OSTI)

    N. E. Pettit

    2001-07-13

    The Uncanistered Spent Nuclear Fuel (SNF) Disposal Container System supports the confinement and isolation of waste within the Engineered Barrier System of the Monitored Geologic Repository (MGR). Disposal containers are loaded with intact uncanistered assemblies and/or individually canistered SNF assemblies and sealed in the surface waste handling facilities, transferred to the underground through the access drifts, and emplaced in emplacement drifts. The Uncanistered SNF Disposal Container provides long-term confinement of the commercial SNF placed inside, and withstands the loading, transfer, emplacement, and retrieval loads and environments. The Uncanistered SNF Disposal Container System provides containment of waste for a designated period of time, and limits radionuclide release. The disposal container maintains the waste in a designated configuration, withstands maximum handling and rockfall loads, limits the individual SNF assembly temperatures after emplacement, limits the introduction of moderator into the disposal container during the criticality control period, resists corrosion in the expected handling and repository environments, and provides containment of waste in the event of an accident.

  4. Safe Advantage on Dry Interim Spent Nuclear Fuel Storage

    SciTech Connect (OSTI)

    Romanato, L.S. [Centro Tecnologico da Marinha em S.Paulo, Brazilian Navy Technological Center, Sao Paulo (Brazil)

    2008-07-01

    This paper aims to present the advantages of dry cask storage in comparison with the wet storage (cooling water pools) for SNF. When the nuclear fuel is removed from the core reactor, it is moved to a storage unit and it wait for a final destination. Generally, the spent nuclear fuel (SNF) remains inside water pools within the reactors facility for the radioactive activity decay. After some period of time in pools, SNF can be sent to a definitive deposition in a geological repository and handled as radioactive waste or to reprocessing facilities, or still, wait for a future solution. Meanwhile, SNF remains stored for a period of time in dry or wet facilities, depending on the method adopted by the nuclear power plant or other plans of the country. Interim storage, up to 20 years ago, was exclusively wet and if the nuclear facility had to be decommissioned another storage solution had to be found. At the present time, after a preliminary cooling of the SNF elements inside the water pool, the elements can be stored in dry facilities. This kind of storage does not need complex radiation monitoring and it is safer then wet one. Casks, either concrete or metallic, are safer, especially on occurrence of earthquakes, like that occurred at Kashiwazaki-Kariwa nuclear power plant, in Japan on July 16, 2007. (authors)

  5. Irradiation of Microbes from Spent Nuclear Fuel Storage Pool Environments

    SciTech Connect (OSTI)

    Breckenridge, C.R.; Watkins, C.S.; Bruhn, D.F.; Roberto, F.F.; Tsang, M.N.; Pinhero, P.J.; Brey, R.F.; Wright, R.N.; Windes, W.F.

    1999-09-03

    Microbes have been isolated and identified from spent nuclear fuel storage pools at the Idaho National Engineering and Environmental Laboratory (INEEL). Included among these are Corynebacterium aquaticum, Pseudomonas putida, Comamonas acidovorans, Gluconobacter cerinus, Micrococcus diversus, Rhodococcus rhodochrous, and two strains of sulfate-reducing bacteria (SRB). We examined the sensitivity of these microbes to a variety of total exposures of radiation generated by a 6-MeV linear accelerator (LINAC). The advantage of using a LINAC is that it provides a relatively quick screen of radiation tolerance. In the first set of experiments, we exposed each of the aforementioned microbes along with four additional microbes, pseudomonas aeruginosa, Micrococcus luteus, Escherchia coli, and Deinococcus radiodurans to exposures of 5 x 10{sup 3} and 6 x 10{sup 4} rad. All microbial specimens withstood the lower exposure with little or no reduction in cell population. Upon exposing the microbes to the larger dose of 6 x 10{sup 4} rad, we observed two distinct groupings: microbes that demonstrate resistance to radiation, and microbes that display intolerance through a dramatic reduction from their initial population. Microbes in the radiation tolerant grouping were exposed to 1.1 x 10{sup 5} rad to examine the extent of their resistance. We observe a correlation between radiation resistance and gram stain. The gram-positive species we examined seem to demonstrate a greater radiation resistance.

  6. Accelerator-driven transmutation of spent fuel elements

    DOE Patents [OSTI]

    Venneri, Francesco (Los Alamos, NM); Williamson, Mark A. (Los Alamos, NM); Li, Ning (Los Alamos, NM)

    2002-01-01

    An apparatus and method is described for transmuting higher actinides, plutonium and selected fission products in a liquid-fuel subcritical assembly. Uranium may also be enriched, thereby providing new fuel for use in conventional nuclear power plants. An accelerator provides the additional neutrons required to perform the processes. The size of the accelerator needed to complete fuel cycle closure depends on the neutron efficiency of the supported reactors and on the neutron spectrum of the actinide transmutation apparatus. Treatment of spent fuel from light water reactors (LWRs) using uranium-based fuel will require the largest accelerator power, whereas neutron-efficient high temperature gas reactors (HTGRs) or CANDU reactors will require the smallest accelerator power, especially if thorium is introduced into the newly generated fuel according to the teachings of the present invention. Fast spectrum actinide transmutation apparatus (based on liquid-metal fuel) will take full advantage of the accelerator-produced source neutrons and provide maximum utilization of the actinide-generated fission neutrons. However, near-thermal transmutation apparatus will require lower standing

  7. A NOVEL APPROACH TO SPENT FUEL POOL DECOMMISSIONING

    SciTech Connect (OSTI)

    R. L. Demmer

    2011-04-01

    The Idaho National Laboratory (INL) has been at the forefront of developing methods to reduce the cost and schedule of deactivating spent fuel pools (SFP). Several pools have been deactivated at the INL using an underwater approach with divers. These projects provided a basis for the INL cooperation with the Dresden Nuclear Power Station Unit 1 SFP (Exelon Generation Company) deactivation. It represents the first time that a commercial nuclear power plant (NPP) SFP was decommissioned using this underwater coating process. This approach has advantages in many aspects, particularly in reducing airborne contamination and allowing safer, more cost effective deactivation. The INL pioneered underwater coating process was used to decommission three SFPs with a total combined pool volume of over 900,000 gallons. INL provided engineering support and shared project plans to successfully initiate the Dresden project. This report outlines the steps taken by INL and Exelon to decommission SFPs using the underwater coating process. The rationale used to select the underwater coating process and the advantages and disadvantages are described. Special circumstances are also discussed, such as the use of a remotely-operated underwater vehicle to visually and radiologically map the pool areas that were not readily accessible. A larger project, the INTEC-603 SFP in-situ (grouting) deactivation, is reviewed. Several specific areas where special equipment was employed are discussed and a Lessons Learned evaluation is included.

  8. Spent-Fuel Test - Climax: An evaluation of the technical feasibility of geologic storage of spent nuclear fuel in granite: Executive summary of final results

    SciTech Connect (OSTI)

    Patrick, W.C.

    1986-09-02

    This summary volume outlines results that are covered in more detail in the final report of the Spent-Fuel Test - Climate project. The project was conducted between 1978 and 1983 in the granitic Climax stock at the Nevada Test Site. Results indicate that spent fuel can be safely stored for periods of years in this host medium and that nuclear waste so emplaced can be safely retrieved. We also evaluated the effects of heat and radiation (alone and in combination) on emplacement canisters and the surrounding rock mass. Storage of the spent-fuel affected the surrounding rock mass in measurable ways, but did not threaten the stability or safety of the facility at any time.

  9. EM Prepares Report for Convention on Safety of Spent Fuel and Radioactive Waste Management

    Broader source: Energy.gov [DOE]

    WASHINGTON, D.C. – EM supported DOE in its role as the lead technical agency to produce a report recently for the Joint Convention on the Safety of Spent Fuel Management and on the Safety of Radioactive Waste Management.

  10. EA-1117: Management of Spent Nuclear Fuel on the Oak Ridge Reservation, Oak Ridge, Tennessee

    Broader source: Energy.gov [DOE]

    This EA evaluates the environmental impacts of the proposal for the management of spent nuclear fuel on the U.S. Department of Energy's Oak Ridge Reservation to implement the preferred alternative...

  11. Design criteria for an independent spent fuel storage installation (water pool type)

    SciTech Connect (OSTI)

    Not Available

    1981-01-01

    This standard is intended to be used by those involved in the ownership and operation of an Independent Spent Fuel Storage Installation (ISFSI) in specifying the design requirements and by the designer in meeting the minimum design requirements of such installations. This standard continues the set of American National Standards on spent fuel storage design. Similar standards are: Design Objectives for Light Water Reactor Spent Fuel Storage Facilities at Nuclear Power Stations, N210-1976 (ANS-57.2); Design Objectives for Highly Radioactive Solid Material Handling and Storage Facilities in a Reprocessing Plant, ANSI N305-1975; and Guidelines for Evaluating Site-Related Parameters for an Independent Spent Fuel Storage Installation, ANSI/ANS-2.19-1981.

  12. Advanced dry head-end reprocessing of light water reactor spent nuclear fuel

    SciTech Connect (OSTI)

    Collins, Emory D.; Delcul, Guillermo D.; Hunt, Rodney D.; Johnson, Jared A.; Spencer, Barry B.

    2014-06-10

    A method for reprocessing spent nuclear fuel from a light water reactor includes the step of reacting spent nuclear fuel in a voloxidation vessel with an oxidizing gas having nitrogen dioxide and oxygen for a period sufficient to generate a solid oxidation product of the spent nuclear fuel. The reacting step includes the step of reacting, in a first zone of the voloxidation vessel, spent nuclear fuel with the oxidizing gas at a temperature ranging from 200-450.degree. C. to form an oxidized reaction product, and regenerating nitrogen dioxide, in a second zone of the voloxidation vessel, by reacting oxidizing gas comprising nitrogen monoxide and oxygen at a temperature ranging from 0-80.degree. C. The first zone and the second zone can be separate. A voloxidation system is also disclosed.

  13. Advanced dry head-end reprocessing of light water reactor spent nuclear fuel

    DOE Patents [OSTI]

    Collins, Emory D; Delcul, Guillermo D; Hunt, Rodney D; Johnson, Jared A; Spencer, Barry B

    2013-11-05

    A method for reprocessing spent nuclear fuel from a light water reactor includes the step of reacting spent nuclear fuel in a voloxidation vessel with an oxidizing gas having nitrogen dioxide and oxygen for a period sufficient to generate a solid oxidation product of the spent nuclear fuel. The reacting step includes the step of reacting, in a first zone of the voloxidation vessel, spent nuclear fuel with the oxidizing gas at a temperature ranging from 200-450.degree. C. to form an oxidized reaction product, and regenerating nitrogen dioxide, in a second zone of the voloxidation vessel, by reacting oxidizing gas comprising nitrogen monoxide and oxygen at a temperature ranging from 0-80.degree. C. The first zone and the second zone can be separate. A voloxidation system is also disclosed.

  14. Effective thermal conductivity method for predicting spent nuclear fuel cladding temperatures in a dry fill gas

    SciTech Connect (OSTI)

    Bahney, Robert

    1997-12-19

    This paper summarizes the development of a reliable methodology for the prediction of peak spent nuclear fuel cladding temperature within the waste disposal package. The effective thermal conductivity method replaces other older methodologies.

  15. Effects of Acid Additives on Spent Acid Flowback through Carbonate Cores 

    E-Print Network [OSTI]

    Nasir, Ehsaan Ahmad

    2012-07-16

    these challenges, different chemicals, or additives, are added to the acid solution such as corrosion inhibitors and iron control agents. These additives may change the relative permeability of the spent acid, and formation wettability, and may either hinder...

  16. International management of spent fuel storage : technical alternatives and constraints, topical report

    E-Print Network [OSTI]

    Miller, Marvin M.

    1978-01-01

    Some of the important technical issues involved in the implementation of a spent fuel storage regime under international auspices are discussed. In particular, we consider: the state of the art as far as the different ...

  17. Re-evaluation of Spent Nuclear Fuel Assay Data for the Three...

    Office of Scientific and Technical Information (OSTI)

    Re-evaluation of Spent Nuclear Fuel Assay Data for the Three Mile Island Unit 1 Reactor and Application to Code Validation Gauld, Ian C. Oak Ridge National Lab. (ORNL), Oak Ridge,...

  18. CONTAMINATION OF GROUNDWATER BY ORGANIC POLLUTANTS LEACHED FROM IN-SITU SPENT SHALE

    E-Print Network [OSTI]

    Amy, Gary L.

    2013-01-01

    Variables , , , , , , Groundwater Pollution Potential of In-temperature of 80°C. Groundwater batch experiments exam:tn:1 spent shale at 20°C Groundwater batch experiments exam:tn:

  19. Standard guide for characterization of spent nuclear fuel in support of geologic repository disposal

    E-Print Network [OSTI]

    American Society for Testing and Materials. Philadelphia

    2009-01-01

    1.1 This guide provides guidance for the types and extent of testing that would be involved in characterizing the physical and chemical nature of spent nuclear fuel (SNF) in support of its interim storage, transport, and disposal in a geologic repository. This guide applies primarily to commercial light water reactor (LWR) spent fuel and spent fuel from weapons production, although the individual tests/analyses may be used as applicable to other spent fuels such as those from research and test reactors. The testing is designed to provide information that supports the design, safety analysis, and performance assessment of a geologic repository for the ultimate disposal of the SNF. 1.2 The testing described includes characterization of such physical attributes as physical appearance, weight, density, shape/geometry, degree, and type of SNF cladding damage. The testing described also includes the measurement/examination of such chemical attributes as radionuclide content, microstructure, and corrosion product c...

  20. Re-evaluation of Spent Nuclear Fuel Assay Data for the Three...

    Office of Scientific and Technical Information (OSTI)

    DOE PAGES Search Results Accepted Manuscript: Re-evaluation of Spent Nuclear Fuel Assay Data for the Three Mile Island Unit 1 Reactor and Application to Code Validation This...

  1. The Impacts of Dry-Storage Canister Designs on Spent Nuclear...

    Office of Environmental Management (EM)

    and Disposal in the U.S. The Impacts of Dry-Storage Canister Designs on Spent Nuclear Fuel Handling, Storage, Transportation, and Disposal in the U.S. More Documents &...

  2. RedFlow | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX ECoop Inc Jump to:Newberg,Energy LLCALLETEREFURecent content in EnergyRed RiverRedFlow

  3. Licensing of spent fuel dry storage and consolidated rod storage: A Review of Issues and Experiences

    SciTech Connect (OSTI)

    Bailey, W.J.

    1990-02-01

    The results of this study, performed by Pacific Northwest Laboratory (PNL) and sponsored by the US Department of Energy (DOE), respond to the nuclear industry's recommendation that a report be prepared that collects and describes the licensing issues (and their resolutions) that confront a new applicant requesting approval from the US Nuclear Regulatory Commission (NRC) for dry storage of spent fuel or for large-scale storage of consolidated spent fuel rods in pools. The issues are identified in comments, questions, and requests from the NRC during its review of applicants' submittals. Included in the report are discussions of (1) the 18 topical reports on cask and module designs for dry storage fuel that have been submitted to the NRC, (2) the three license applications for dry storage of spent fuel at independent spent fuel storage installations (ISFSIs) that have been submitted to the NRC, and (3) the three applications (one of which was later withdrawn) for large-scale storage of consolidated fuel rods in existing spent fuel storage pools at reactors that were submitted tot he NRC. For each of the applications submitted, examples of some of the issues (and suggestions for their resolutions) are described. The issues and their resolutions are also covered in detail in an example in each of the three subject areas: (1) the application for the CASTOR V/21 dry spent fuel storage cask, (2) the application for the ISFSI for dry storage of spent fuel at Surry, and (3) the application for full-scale wet storage of consolidated spent fuel at Millstone-2. The conclusions in the report include examples of major issues that applicants have encountered. Recommendations for future applicants to follow are listed. 401 refs., 26 tabs.

  4. EIS-0453: Recapitalization of Infrastructure Supporting Naval Spent Nuclear Fuel Handling at the Idaho National Laboratory

    Broader source: Energy.gov [DOE]

    The Draft EIS evaluates the potential environmental impacts associated with recapitalizing the infrastructure needed to ensure the long-term capability of the Naval Nuclear Propulsion Program (NNPP) to support naval spent nuclear fuel handling capabilities provided by the Expended Core Facility (ECF). Significant upgrades are necessary to ECF infrastructure and water pools to continue safe and environmentally responsible naval spent nuclear fuel handling until at least 2060.

  5. Uncanistered Spent Nuclear fuel Disposal Container System Description Document

    SciTech Connect (OSTI)

    2000-10-12

    The Uncanistered Spent Nuclear Fuel (SNF) Disposal Container System supports the confinement and isolation of waste within the Engineered Barrier System of the Monitored Geologic Repository (MGR). Disposal containers are loaded with intact uncanistered assemblies and/or individually canistered SNF assemblies and sealed in the surface waste handling facilities, transferred to the underground through the access drifts, and emplaced in the emplacement drifts. The Uncanistered SNF Disposal Container provides long-term confinement of the commercial SNF placed inside, and withstands the loading, transfer, emplacement, and retrieval loads and environments. The Uncanistered SNF Disposal Container System provides containment of waste for a designated period of time, and limits radionuclide release. The disposal container maintains the waste in a designated configuration, withstands maximum handling and rockfall loads, limits the individual SNF assembly temperatures after emplacement, limits the introduction of moderator into the disposal container during the criticality control period, resists corrosion in the expected handling and repository environments, and provides containment of waste in the event of an accident. Multiple boiling water reactor (BWR) and pressurized water reactor (PWR) disposal container designs are needed to accommodate the expected range of spent fuel assemblies and provide long-term confinement of the commercial SNF. The disposal container will include outer and inner cylinder walls, outer cylinder lids (two on the top, one on the bottom), inner cylinder lids (one on the top, one on the bottom), and an internal metallic basket structure. Exterior labels will provide a means by which to identify the disposal container and its contents. The two metal cylinders, in combination with the cladding, Emplacement Drift System, drip shield, and natural barrier, will support the design philosophy of defense-in-depth. The use of materials with different properties prevents a single mode failure from breaching the waste package. The inner cylinder and inner cylinder lids will be constructed of stainless steel and the outer cylinder and outer cylinder lid will be made of high-nickel alloy. The basket will assist criticality control, provide structural support, and improve heat transfer. The Uncanistered SNF Disposal Container System interfaces with the emplacement drift environment and internal waste by transferring heat from the SNF to the external environment and by protecting the SFN assemblies and their contents from damage/degradation by the external environment. The system also interfaces with the SFN by limiting access of moderator and oxidizing agents of the SFN. The waste package interfaces with the Emplacement Drift System's emplacement drift pallets upon which the wasted packages are placed. The disposal container interfaces with the Assembly Transfer System, Waste Emplacement/Retrieval System, Disposal Container Handling System, and Waste Package Remediation System during loading, handling, transfer, emplacement and retrieval of the disposal container/waste package.

  6. Annual report, FY 1979 Spent fuel and fuel pool component integrity.

    SciTech Connect (OSTI)

    Johnson, A.B. Jr.; Bailey, W.J.; Schreiber, R.E.; Kustas, F.M.

    1980-05-01

    International meetings under the BEFAST program and under INFCE Working Group No. 6 during 1978 and 1979 continue to indicate that no cases of fuel cladding degradation have developed on pool-stored fuel from water reactors. A section from a spent fuel rack stand, exposed for 1.5 y in the Yankee Rowe (PWR) pool had 0.001- to 0.003-in.-deep (25- to 75-..mu..m) intergranular corrosion in weld heat-affected zones but no evidence of stress corrosion cracking. A section of a 304 stainless steel spent fuel storage rack exposed 6.67 y in the Point Beach reactor (PWR) spent fuel pool showed no significant corrosion. A section of 304 stainless steel 8-in.-dia pipe from the Three Mile Island No. 1 (PWR) spent fuel pool heat exchanger plumbing developed a through-wall crack. The crack was intergranular, initiating from the inside surface in a weld heat-affected zone. The zone where the crack occurred was severely sensitized during field welding. The Kraftwerk Union (Erlangen, GFR) disassembled a stainless-steel fuel-handling machine that operated for 12 y in a PWR (boric acid) spent fuel pool. There was no evidence of deterioration, and the fuel-handling machine was reassembled for further use. A spent fuel pool at a Swedish PWR was decontaminated. The procedure is outlined in this report.

  7. Impacts of a high-burnup spent fuel on a geological disposal system design

    SciTech Connect (OSTI)

    Cho, D.K.; Lee, Y.; Lee, J.Y.; Choi, H.J.; Choi, J.W. [Korea Atomic Energy Research Institute, Yuseong-gu, Daejeon-city (Korea, Republic of)

    2007-07-01

    The influence of a burnup increase of a spent nuclear fuel on a deep geological disposal system was evaluated in this study. First, the impact of a burnup increase on each aspect related to thermal and nuclear safety concerns was quantified. And then, the tunnel length, excavation volume, and the raw materials for a cast insert, copper, bentonite, and backfill needed to constitute a disposal system were comprehensively analyzed based on the spent fuel inventory to generate 1 Terawatt-year (TWa), to establish the overall effects and consequences on a geological disposal. As a result, impact of a burnup increase on the criticality safety and radiation shielding was shown to be negligible. The disposal area, however, is considerably affected because of a higher thermal load. And, it is reasonable to use a canister such as the Korean Reference Disposal Canister (KDC-1) containing 4 spent fuels up to 50 GWD/MtU, and to use a canister containing 3 spent fuels beyond 50 GWD/MtU. Although a considerable increased, 33 % in the tunnel length and 30 % in the excavation volume, was observed as the burnup increases from 50 to 60 GWD/MtU, because a decrease in the canister needs can offset an increase in the excavation volume, it can be concluded that a burnup increase of a spent fuel is not a critical concern for a geological disposal of a spent fuel. (authors)

  8. The FIRST-2MASS Red Quasar Survey

    SciTech Connect (OSTI)

    Glikman, E; Helfand, D J; White, R L; Becker, R H; Gregg, M D; Lacy, M

    2007-06-28

    Combining radio observations with optical and infrared color selection--demonstrated in our pilot study to be an efficient selection algorithm for finding red quasars--we have obtained optical and infrared spectroscopy for 120 objects in a complete sample of 156 candidates from a sky area of 2716 square degrees. Consistent with our initial results, we find our selection criteria--J-K > 1.7,R-K > 4.0--yield a {approx} 50% success rate for discovering quasars substantially redder than those found in optical surveys. Comparison with UVX- and optical color-selected samples shows that {approx}> 10% of the quasars are missed in a magnitude-limited survey. Simultaneous two-frequency radio observations for part of the sample indicate that a synchrotron continuum component is ruled out as a significant contributor to reddening the quasars spectra. We go on to estimate extinctions for our objects assuming their red colors are caused by dust. Continuum fits and Balmer decrements suggest E(B-V) values ranging from near zero to 2.5 magnitudes. Correcting the K-band magnitudes for these extinctions, we find that for K {le} 14.0, red quasars make up between 25% and 60% of the underlying quasar population; owing to the incompleteness of the 2MASS survey at fainter K-band magnitudes, we can only set a lower limit to the radio-detected red quasar population of > 20-30%.

  9. Optical Design of a Red Sensitive Spectrograph 

    E-Print Network [OSTI]

    Martin, Emily 1988-

    2012-04-22

    We present a preliminary design for a red-sensitive spectrograph. The spectrograph is optimized to operate over the 600-1000nm spectral range at a resolution of ~2000 and is designed specifically for the 2.7-m Harlan J. Smith Telescope at Mc...

  10. North American montane red foxes: expansion, fragmentation, and the origin of the Sacramento Valley red fox

    E-Print Network [OSTI]

    Sacks, Benjamin N.; Statham, Mark J.; Perrine, John D.; Wisely, Samantha M.; Aubry, Keith B.

    2010-01-01

    and the origin of the Sacramento Valley red fox Benjamin N.in arid habitats in the Sacramento Valley of California wellState University Sacramento, Sacramento, CA 95819, USA M. J.

  11. ASCI Red for dummies : a recipe book for easy use of the ASCI Red platform.

    SciTech Connect (OSTI)

    Kelly, Suzanne Marie; Quinlan, Gerald F.; Miller, Joel D.; Sault, Allen G.; McAllister, Paula L.

    2003-11-01

    It has been recognized that documentation for new customers of ASCI Red, aka janus or the Intel Teraflops at Sandia National Laboratories, has been sadly lacking. This document has been prepared by a team of subject matter experts to fill that void and to provide a starting point for providing a similar document for ASCI Red Storm in the future. This document is intended for SNL users who need to jumpstart their use of Janus and Janus-s.

  12. WHEN THE BLUE-GREEN WATERS TURN RED

    E-Print Network [OSTI]

    WHEN THE BLUE-GREEN WATERS TURN RED Historical Flooding in Havasu Creek, Arizona U.S. GEOLOGICAL OF RECLAMATION #12;WHEN THE BLUE-GREEN WATERS TURN RED Historical Flooding in Havasu Creek, Arizona By THEODORE S

  13. Thyroid Hormone Regulation of Deiodinase in Red Drum (Sciaenops ocellatus) 

    E-Print Network [OSTI]

    Ron, Laura

    2011-05-04

    thyroxine (T4) in the red drum (Sciaenops ocellatus), a commercially important fish species. Immersion experiments were performed, where red drum were kept in 20-gallon glass tanks – with either T4-treated or control solution-treated tank water...

  14. Sun-Sentinel Red hot email heats up Wasserman Schultz,

    E-Print Network [OSTI]

    Fernandez, Eduardo

    Sun-Sentinel Red hot email heats up Wasserman Schultz, West rift South Florida members of Congress take feud public July 20, 2011|By Anthony Man, Sun Sentinel Congressman Allen West's red hot response

  15. AIR SHIPMENT OF HIGHLY ENRICHED URANIUM SPENT NUCLEAR FUEL FROM ROMANIA AND LIBYA

    SciTech Connect (OSTI)

    Christopher Landers; Igor Bolshinsky; Ken Allen; Stanley Moses

    2010-07-01

    In June 2009 Romania successfully completed the world’s first air shipment of highly enriched uranium (HEU) spent nuclear fuel transported in Type B(U) casks under existing international laws and without special exceptions for the air transport licenses. Special 20-foot ISO shipping containers and cask tiedown supports were designed to transport Russian TUK 19 shipping casks for the Romanian air shipment and the equipment was certified for all modes of transport, including road, rail, water, and air. In December 2009 Libya successfully used this same equipment for a second air shipment of HEU spent nuclear fuel. Both spent fuel shipments were transported by truck from the originating nuclear facilities to nearby commercial airports, were flown by commercial cargo aircraft to a commercial airport in Yekaterinburg, Russia, and then transported by truck to their final destinations at the Production Association Mayak facility in Chelyabinsk, Russia. Both air shipments were performed under the Russian Research Reactor Fuel Return Program (RRRFR) as part of the U.S. National Nuclear Security Administration (NNSA) Global Threat Reduction Initiative (GTRI). The Romania air shipment of 23.7 kg of HEU spent fuel from the VVR S research reactor was the last of three HEU fresh and spent fuel shipments under RRRFR that resulted in Romania becoming the 3rd RRRFR participating country to remove all HEU. Libya had previously completed two RRRFR shipments of HEU fresh fuel so the 5.2 kg of HEU spent fuel air shipped from the IRT 1 research reactor in December made Libya the 4th RRRFR participating country to remove all HEU. This paper describes the equipment, preparations, and license approvals required to safely and securely complete these two air shipments of spent nuclear fuel.

  16. Seeing red in cyclic stratigraphy: Spectral noise estimation for astrochronology

    E-Print Network [OSTI]

    Meyers, Stephen R.

    Seeing red in cyclic stratigraphy: Spectral noise estimation for astrochronology Stephen R. Meyers1.8% confidence level). Citation: Meyers, S. R. (2012), Seeing red in cyclic stratigraphy: Spectral noise is the time increment, rn is the red noise sequence, 0 r

  17. WATER REQUIREMENTSWATER REQUIREMENTSWATER REQUIREMENTSWATER REQUIREMENTS of Hard Red Spring Wheat

    E-Print Network [OSTI]

    O'Laughlin, Jay

    WATER REQUIREMENTSWATER REQUIREMENTSWATER REQUIREMENTSWATER REQUIREMENTS of Hard Red Spring Wheat C. Hopkins #12;Estimating Water Requirements of Hard Red Spring Wheat for Final Irrigations 2 Introductiond water use Producers of hard red spring wheat know that inadequate water reduces yield and quality

  18. Red Leaf Resources and the Commercialization of Oil Shale

    E-Print Network [OSTI]

    Utah, University of

    Red Leaf Resources and the Commercialization of Oil Shale #12;About Red Leaf Resources 2006 Company commercial development field activities #12;Highlights Proven, Revolutionary Oil Shale Extraction Process Technology Significant Owned Oil Shale Resource #12;· The executive management team of Red Leaf Resources

  19. The EU Approach for Responsible and Safe Management of Spent Fuel and Radioactive Waste - 12118

    SciTech Connect (OSTI)

    Blohm-Hieber, Ute; Necheva, Christina [European Commission, Directorate-General for Energy, Luxembourg L-2920 (Luxembourg)

    2012-07-01

    In July 2011 legislation on responsible and safe management of spent fuel and radioactive waste was adopted in the European Union (EU). It aims at ensuring a high level of safety, avoiding undue burdens on future generations and enhancing transparency. EU Member States are responsible for the management of their spent fuel and/or radioactive waste. Each Member State remains free to define its fuel cycle policy. The spent fuel can be regarded either as a valuable resource that may be reprocessed or as radioactive waste that is destined for direct disposal. Whatever option is chosen, the disposal of high level waste, separated at reprocessing, or of spent fuel regarded as waste should be considered. The storage of radioactive waste, including long-term storage, is an interim solution, but not an alternative to disposal. To this end, each Member State has to establish, maintain and implement national policy, framework and programme for management of spent fuel and/or radioactive waste in the long term. Member States will invite international peer reviews to ensure that high safety standards are achieved. The EU approach is anchored in internationally endorsed principles and requirements of the IAEA safety standards and the Joint Convention and in this context makes them legally binding and enforceable in the EU. The EU approach of regulating the management of spent fuel and radioactive waste is anchored in the competence of the national regulatory authorities and in the internationally endorsed principles and requirements of the IAEA Safety Standards and the Joint Convention. Member States have to report to the Commission on the implementation of Directive 2011/70/Euratom for the first time by 23 August 2015, and every 3 years thereafter, taking advantage of the review and reporting under the Joint Convention. On the basis of the Member States' reports, the Commission will submit to the European Parliament and the Council a report on progress made and an inventory of radioactive waste and spent fuel present in the EU territory and the future prospects. Directive 2011/70/Euratom is a logical next step after the Council Directive 2009/71/Euratom on the nuclear safety of nuclear installations. The EU is the first major regional actor providing a binding legal framework on nuclear safety and on responsible and safe management of spent fuel and radioactive waste, and thus is a real model to progress spent fuel and waste management in a safe and responsible manner. (authors)

  20. Carbon-14 in waste packages for spent fuel in a tuff repository

    SciTech Connect (OSTI)

    Van Konynenburg, R.A.; Smith, C.F.; Culham, H.W.; Smith, H.D.

    1986-10-14

    Carbon-14 is produced naturally by cosmic ray neutrons in the upper atmosphere. It is also produced in nuclear reactors, in amounts much smaller than the global inventory. About one-third of this is released directly to the atmosphere, and the other two-thirds remains in the spent fuel. Both the Environmental Protection Agency and the Nuclear Regulatory Commission have established limits on release of the {sup 14}C in spent fuel. This is of particular concern for the proposed repository in tuff, because of the unsaturated conditions and the consequent possibility of gaseous transport of {sup 14}C as CO{sub 2}. Existing measurements and calculations of the {sup 14}C inventory in spent fuel are reviewed. The physical distribution and chemical forms of the {sup 14}C are discussed. Available data on the release of {sup 14}C from spent fuel in aqueous solutions and in gaseous environments of air, nitrogen, and helium are reviewed. Projected {sup 14}C behavior in a tuff repository is described. It is concluded that {sup 14}C release measurements from spent fuel into moist air at temperatures both above and below the in situ boiling point of water as well as detailed transport calculations for the tuff geological environment will be needed to determine whether the 10CFR60 and 40CFR191 requirements can be met. 56 refs., 1 tab.

  1. MANAGEMENT OF RESEARCH AND TEST REACTOR ALUMINUM SPENT NUCLEAR FUEL - A TECHNOLOGY ASSESSMENT

    SciTech Connect (OSTI)

    Vinson, D.

    2010-07-11

    The Department of Energy's Environmental Management (DOE-EM) Program is responsible for the receipt and storage of aluminum research reactor spent nuclear fuel or used fuel until ultimate disposition. Aluminum research reactor used fuel is currently being stored or is anticipated to be returned to the U.S. and stored at DOE-EM storage facilities at the Savannah River Site and the Idaho Nuclear Technology and Engineering Center. This paper assesses the technologies and the options for safe transportation/receipt and interim storage of aluminum research reactor spent fuel and reviews the comprehensive strategy for its management. The U.S. Department of Energy uses the Appendix A, Spent Nuclear Fuel Acceptance Criteria, to identify the physical, chemical, and isotopic characteristics of spent nuclear fuel to be returned to the United States under the Foreign Research Reactor Spent Nuclear Fuel Acceptance Program. The fuel is further evaluated for acceptance through assessments of the fuel at the foreign sites that include corrosion damage and handleability. Transport involves use of commercial shipping casks with defined leakage rates that can provide containment of the fuel, some of which are breached. Options for safe storage include wet storage and dry storage. Both options must fully address potential degradation of the aluminum during the storage period. This paper focuses on the various options for safe transport and storage with respect to technology maturity and application.

  2. Savannah River Site Spent Nuclear Fuel Management Final Environmental Impact Statement

    SciTech Connect (OSTI)

    N /A

    2000-04-14

    The proposed DOE action considered in this environmental impact statement (EIS) is to implement appropriate processes for the safe and efficient management of spent nuclear fuel and targets at the Savannah River Site (SRS) in Aiken County, South Carolina, including placing these materials in forms suitable for ultimate disposition. Options to treat, package, and store this material are discussed. The material included in this EIS consists of approximately 68 metric tons heavy metal (MTHM) of spent nuclear fuel 20 MTHM of aluminum-based spent nuclear fuel at SRS, as much as 28 MTHM of aluminum-clad spent nuclear fuel from foreign and domestic research reactors to be shipped to SRS through 2035, and 20 MTHM of stainless-steel or zirconium-clad spent nuclear fuel and some Americium/Curium Targets stored at SRS. Alternatives considered in this EIS encompass a range of new packaging, new processing, and conventional processing technologies, as well as the No Action Alternative. A preferred alternative is identified in which DOE would prepare about 97% by volume (about 60% by mass) of the aluminum-based fuel for disposition using a melt and dilute treatment process. The remaining 3% by volume (about 40% by mass) would be managed using chemical separation. Impacts are assessed primarily in the areas of water resources, air resources, public and worker health, waste management, socioeconomic, and cumulative impacts.

  3. Environmental Assessment of Urgent-Relief Acceptance of Foreign Research Reactor Spent Nuclear Fuel

    SciTech Connect (OSTI)

    Not Available

    1994-04-01

    The Department of Energy has completed the Environmental Assessment (EA) of Urgent-Relief Acceptance of Foreign Research Reactor Spent Nuclear Fuel and issued a Finding of No Significant Impact (FONSI) for the proposed action. The EA and FONSI are enclosed for your information. The Department has decided to accept a limited number of spent nuclear fuel elements (409 elements) containing uranium that was enriched in the United States from eight research reactors in Austria, Denmark, Germany, Greece, the Netherlands, Sweden, and Switzerland. This action is necessary to maintain the viability of a major US nuclear weapons nonproliferation program to limit or eliminate the use of highly enriched uranium in civil programs. The purpose of the EA is to maintain the cooperation of the foreign research reactor operators with the nonproliferation program while a more extensive Environmental Impact Statement (EIS) is prepared on a proposed broader policy involving the acceptance of up to 15,000 foreign research reactor spent fuel elements over a 10 to 15 year period. Based on an evaluation of transport by commercial container liner or chartered vessel, five eastern seaboard ports, and truck and train modes of transporting the spent fuel overland to the Savannah River Sits, the Department has concluded that no significant impact would result from any combination of port and made of transport. In addition, no significant impacts were found from interim storage of spent fuel at the Savannah River Site.

  4. Comparison of selected foreign plans and practices for spent fuel and high-level waste management

    SciTech Connect (OSTI)

    Schneider, K.J.; Mitchell, S.J.; Lakey, L.T.; Johnson, A.B. Jr.; Hazelton, R.F.; Bradley, D.J.

    1990-04-01

    This report describes the major parameters for management of spent nuclear fuel and high-level radioactive wastes in selected foreign countries as of December 1989 and compares them with those in the United States. The foreign countries included in this study are Belgium, Canada, France, the Federal Republic of Germany, Japan, Sweden, Switzerland, and the United Kingdom. All the countries are planning for disposal of spent fuel and/or high-level wastes in deep geologic repositories. Most countries (except Canada and Sweden) plan to reprocess their spent fuel and vitrify the resultant high-level liquid wastes; in comparison, the US plans direct disposal of spent fuel. The US is planning to use a container for spent fuel as the primary engineered barrier. The US has the most developed repository concept and has one of the earliest scheduled repository startup dates. The repository environment presently being considered in the US is unique, being located in tuff above the water table. The US also has the most prescriptive regulations and performance requirements for the repository system and its components. 135 refs., 8 tabs.

  5. Implementation of the Joint Convention on the Safety of Spent Fuel Management and on the Safety of Radioactive Waste Management

    SciTech Connect (OSTI)

    Stewart, L.; Tonkay, D.

    2004-10-03

    This paper discusses the implementation of the Joint Convention on the Safety of Spent Fuel Management and on the Safety of Radioactive Waste Management. The Joint Convention: establishes a commitment with respect to safe management of spent nuclear fuel and radioactive waste; requires the Parties to ''take appropriate steps'' to ensure the safety of their spent fuel and waste management activities, but does not delineate standards the Parties must meet; and seeks to attain, through its Contracting Parties, a higher level of safety with respect to management of their spent nuclear fuel, disused sealed sources, and radioactive waste.

  6. Determining Plutonium Mass in Spent Fuel with Nondestructive Assay Techniques NGSI Research Overview and Update on NDA Techniques

    E-Print Network [OSTI]

    A., V. Mozin, S.J. Tobin, L.W. Cambell, J.R. Cheatham, C.R. Freeman, C.J. Gesh,

    2012-01-01

    spent fuel safeguards applications, contribute to the establishment of Pu inventories and determine fissile material diversions at fuel storage, handling and reprocessing

  7. A COMPARISON OF CHALLENGES ASSOCIATED WITH SLUDGE REMOVAL & TREATMENT & DISPOSAL AT SEVERAL SPENT FUEL STORAGE LOCATIONS

    SciTech Connect (OSTI)

    PERES, M.W.

    2007-01-09

    Challenges associated with the materials that remain in spent fuel storage pools are emerging as countries deal with issues related to storing and cleaning up nuclear fuel left over from weapons production. The K Basins at the Department of Energy's site at Hanford in southeastern Washington State are an example. Years of corrosion products and piles of discarded debris are intermingled in the bottom of these two pools that stored more 2,100 metric tons (2,300 tons) of spent fuel. Difficult, costly projects are underway to remove radioactive material from the K Basins. Similar challenges exist at other locations around the globe. This paper compares the challenges of handling and treating radioactive sludge at several locations storing spent nuclear fuel.

  8. Determining Reactor Flux from Xenon-136 and Cesium-135 in Spent Fuel

    E-Print Network [OSTI]

    A. C. Hayes; Gerard Jungman

    2012-05-30

    The ability to infer the reactor flux from spent fuel or seized fissile material would enhance the tools of nuclear forensics and nuclear nonproliferation significantly. We show that reactor flux can be inferred from the ratios of xenon-136 to xenon-134 and cesium-135 to cesium-137. If the average flux of a reactor is known, the flux inferred from measurements of spent fuel could help determine whether that spent fuel was loaded as a blanket or close to the mid-plane of the reactor. The cesium ratio also provides information on reactor shutdowns during the irradiation of fuel, which could prove valuable for identifying the reactor in question through comparisons with satellite reactor heat monitoring data. We derive analytic expressions for these correlations and compare them to experimental data and to detailed reactor burn simulations. The enrichment of the original uranium fuel affects the correlations by up to 3 percent, but only at high flux.

  9. redMaGiC: Selecting Luminous Red Galaxies from the DES Science Verification Data

    E-Print Network [OSTI]

    Rozo, E; Abate, A; Bonnett, C; Crocce, M; Davis, C; Hoyle, B; Leistedt, B; Peiris, H V; Wechsler, R H; Abbott, T; Abdalla, F B; Banerji, M; Bauer, A H; Benoit-Lévy, A; Bernstein, G M; Bertin, E; Brooks, D; Buckley-Geer, E; Burke, D L; Capozzi, D; Rosell, A Carnero; Carollo, D; Kind, M Carrasco; Carretero, J; Castander, F J; Childress, M J; Cunha, C E; D'Andrea, C B; Davis, T; DePoy, D L; Desai, S; Diehl, H T; Dietrich, J P; Doel, P; Eifler, T F; Evrard, A E; Neto, A Fausti; Flaugher, B; Fosalba, P; Frieman, J; Gaztanaga, E; Gerdes, D W; Glazebrook, K; Gruen, D; Gruendl, R A; Honscheid, K; James, D J; Jarvis, M; Kim, A G; Kuehn, K; Kuropatkin, N; Lahav, O; Lidman, C; Lima, M; Maia, M A G; March, M; Martini, P; Melchior, P; Miller, C J; Miquel, R; Mohr, J J; Nichol, R C; Nord, B; O'Neill, C R; Ogando, R; Plazas, A A; Romer, A K; Roodman, A; Sako, M; Sanchez, E; Santiago, B; Schubnell, M; Sevilla-Noarbe, I; Smith, R C; Soares-Santos, M; Sobreira, F; Suchyta, E; Swanson, M E C; Thaler, J; Thomas, D; Uddin, S; Vikram, V; Walker, A R; Wester, W; Zhang, Y; da Costa, L N

    2015-01-01

    We introduce redMaGiC, an automated algorithm for selecting Luminous Red Galaxies (LRGs). The algorithm was specifically developed to minimize photometric redshift uncertainties in photometric large-scale structure studies. redMaGiC achieves this by self-training the color-cuts necessary to produce a luminosity-thresholded LRG sample of constant comoving density. We demonstrate that redMaGiC photozs are very nearly as accurate as the best machine-learning based methods, yet they require minimal spectroscopic training, do not suffer from extrapolation biases, and are very nearly Gaussian. We apply our algorithm to Dark Energy Survey (DES) Science Verification (SV) data to produce a redMaGiC catalog sampling the redshift range $z\\in[0.2,0.8]$. Our fiducial sample has a comoving space density of $10^{-3}\\ (h^{-1} Mpc)^{-3}$, and a median photoz bias ($z_{spec}-z_{photo}$) and scatter $(\\sigma_z/(1+z))$ of 0.005 and 0.017 respectively. The corresponding $5\\sigma$ outlier fraction is 1.4%. We also test our algorit...

  10. Evaluation of measured LWR spent fuel composition data for use in code validation

    SciTech Connect (OSTI)

    Hermann, O.W.; DeHart, M.D.; Murphy, B.D.

    1998-02-01

    Burnup credit (BUC) is a concept applied in the criticality safety analysis of spent nuclear fuel in which credit or partial credit is taken for the reduced reactivity worth of the fuel due to both fissile depletion and the buildup of actinides and fission products that act as net neutron absorbers. Typically, a two-step process is applied in BUC analysis: first, depletion calculations are performed to estimate the isotopic content of spent fuel based on its burnup history; second, three-dimensional (3-D) criticality calculations are performed based on specific spent fuel packaging configurations. In seeking licensing approval of any BUC approach (e.g., disposal, transportation, or storage) both of these two computational procedures must be validated. This report was prepared in support of the validation process for depletion methods applied in the analysis of spent fuel from commercial light-water-reactor (LWR) designs. Such validation requires the comparison of computed isotopic compositions with those measured via radiochemical assay to assess the ability of a computer code to predict the contents of spent fuel samples. The purpose of this report is to address the availability and appropriateness of measured data for use in the validation of isotopic depletion methods. Although validation efforts to date at ORNL have been based on calculations using the SAS2H depletion sequence of the SCALE code system, this report has been prepared as an overview of potential sources of validation data independent of the code system used. However, data that are identified as in use in this report refer to earlier validation work performed using SAS2H in support of BUC. This report is the result of a study of available assay data, using the experience gained in spent fuel isotopic validation and with a consideration of the validation issues described earlier. This report recommends the suitability of each set of data for validation work similar in scope to the earlier work.

  11. Validation of SCALE (SAS2H) isotopic predictions for BWR spent fuel

    SciTech Connect (OSTI)

    Hermann, O.W.; DeHart, M.D.

    1998-09-01

    Thirty spent fuel samples obtained from boiling-water-reactor (BWR) fuel pins have been modeled at Oak Ridge National Laboratory using the SAS2H sequence of the SCALE code system. The SAS2H sequence uses transport methods combined with the depletion and decay capabilities of the ORIGEN-S code to estimate the isotopic composition of fuel as a function of its burnup history. Results of these calculations are compared with chemical assay measurements of spent fuel inventories for each sample. Results show reasonable agreement between measured and predicted isotopic concentrations for important actinides; however, little data are available for most fission products considered to be important for spent fuel concerns (e.g., burnup credit, shielding, source-term calculations, etc.). This work is a follow-up to earlier works that studied the ability to predict spent fuel compositions in pressurized-water-reactor (PWR) fuel pins. Biases and uncertainties associated with BWR isotopic predictions are found to be larger than those of PWR calculations. Such behavior is expected, as the operation of a BWR is significantly more complex than that of a PWR plant, and in general the design of a BWR has a more heterogeneous configuration than that of a PWR. Nevertheless, this work shows that the simple models employed using SAS2H to represent such complexities result in agreement to within 5% (and often less than 1%) or less for most nuclides important for spent fuel applications. On the other hand, however, the set of fuel samples analyzed represent a small subset of the BWR fuel population, and results reported herein may not be representative of the full population of BWR spent fuel.

  12. Extended Storage for Research and Test Reactor Spent Fuel for 2006 and Beyond

    SciTech Connect (OSTI)

    Hurt, William Lon; Moore, K.M.; Shaber, Eric Lee; Mizia, Ronald Eugene

    1999-10-01

    This paper will examine issues associated with extended storage of a variety of spent nuclear fuels. Recent experiences at the Idaho National Engineering and Environmental Laboratory and Hanford sites will be described. Particular attention will be given to storage of damaged or degraded fuel. The first section will address a survey of corrosion experience regarding wet storage of spent nuclear fuel. The second section will examine issues associated with movement from wet to dry storage. This paper also examines technology development needs to support storage and ultimate disposition.

  13. Literature review of intrinsic actinide colloids related to spent fuel waste package release rates

    SciTech Connect (OSTI)

    Zhao, P.; Steward, S.A.

    1997-01-01

    Existence of actinide colloids provides an important mechanism in the migration of radionuclides and will be important in performance of a geologic repository for high-level nuclear waste. Actinide colloids have been formed during long-term unsaturated dissolution of spent fuel by groundwater. This article summarizes a literature search of actinide colloids. This report emphasizes the formation of intrinsic actinide colloids, because they would have the opportunity to form soon after groundwater contact with the spent fuel and before actinide-bearing groundwater reaches the surrounding geologic formations.

  14. Spent fuel performance data: An analysis of data relevant to the NNWSI Project

    SciTech Connect (OSTI)

    Oversby, V.M.; Shaw, H.F.

    1987-08-01

    This paper summarizes the physical and chemical properties of spent light water reactor fuel that might influence its performance as a waste form under geologic disposal conditions at Yucca Mountain, Nevada. Results obtained on the dissolution testing of spent fuel conducted by the NNWSI Project are presented and discussed. Work published by other programs, in particular those of Canada and Sweden, are reviewed and compared with the NNWSI testing results. An attempt is made to relate all of the results to a common basis of presentation and to rationalize apparent conflicts between sets of results obtained under different experimental conditions.

  15. Spent fuel sabotage aerosol test program :FY 2005-06 testing and aerosol data summary.

    SciTech Connect (OSTI)

    Gregson, Michael Warren; Brockmann, John E.; Nolte, O. (Fraunhofer institut fur toxikologie und experimentelle Medizin, Germany); Loiseau, O. (Institut de radioprotection et de Surete Nucleaire, France); Koch, W. (Fraunhofer institut fur toxikologie und experimentelle Medizin, Germany); Molecke, Martin Alan; Autrusson, Bruno (Institut de radioprotection et de Surete Nucleaire, France); Pretzsch, Gunter Guido (Gesellschaft fur anlagen- und Reaktorsicherheit, Germany); Billone, M. C. (Argonne National Laboratory, USA); Lucero, Daniel A.; Burtseva, T. (Argonne National Laboratory, USA); Brucher, W (Gesellschaft fur anlagen- und Reaktorsicherheit, Germany); Steyskal, Michele D.

    2006-10-01

    This multinational, multi-phase spent fuel sabotage test program is quantifying the aerosol particles produced when the products of a high energy density device (HEDD) interact with and explosively particulate test rodlets that contain pellets of either surrogate materials or actual spent fuel. This program has been underway for several years. This program provides source-term data that are relevant to some sabotage scenarios in relation to spent fuel transport and storage casks, and associated risk assessments. This document focuses on an updated description of the test program and test components for all work and plans made, or revised, primarily during FY 2005 and about the first two-thirds of FY 2006. It also serves as a program status report as of the end of May 2006. We provide details on the significant findings on aerosol results and observations from the recently completed Phase 2 surrogate material tests using cerium oxide ceramic pellets in test rodlets plus non-radioactive fission product dopants. Results include: respirable fractions produced; amounts, nuclide content, and produced particle size distributions and morphology; status on determination of the spent fuel ratio, SFR (the ratio of respirable particles from real spent fuel/respirables from surrogate spent fuel, measured under closely matched test conditions, in a contained test chamber); and, measurements of enhanced volatile fission product species sorption onto respirable particles. We discuss progress and results for the first three, recently performed Phase 3 tests using depleted uranium oxide, DUO{sub 2}, test rodlets. We will also review the status of preparations and the final Phase 4 tests in this program, using short rodlets containing actual spent fuel from U.S. PWR reactors, with both high- and lower-burnup fuel. These data plus testing results and design are tailored to support and guide, follow-on computer modeling of aerosol dispersal hazards and radiological consequence assessments. This spent fuel sabotage--aerosol test program, performed primarily at Sandia National Laboratories, with support provided by both the U.S. Department of Energy and the Nuclear Regulatory Commission, had significant inputs from, and is strongly supported and coordinated by both the U.S. and international program participants in Germany, France, and the U.K., as part of the international Working Group for Sabotage Concerns of Transport and Storage Casks, WGSTSC.

  16. Assessment of the safety of spent fuel transportation in urban environs

    SciTech Connect (OSTI)

    Sandoval, R.P.; Weber, J.P.; Levine, H.S.; Romig, A.D.; Johnson, J.D.; Luna, R.E.; Newton, G.J.; Wong, B.A.; Marshall, R.W. Jr.; Alvarez, J.L.

    1983-06-01

    The results of a program to provide an experimental data base for estimating the radiological consequences from a hypothetical sabotage attack on a light-water-reactor spent fuel shipping cask in a densely populated area are presented. The results of subscale and full-scale experiments in conjunction with an analytical modeling study are described. The experimental data were used as input to a reactor-safety consequence model to predict radiological health consequences resulting from a hypothetical sabotage attack on a spent-fuel shipping cask in the Manhattan borough of New York City. The results of these calculations are presented.

  17. Chemical Reactivity Testing for the National Spent Nuclear Fuel Program. Quality Assurance Project Plan

    SciTech Connect (OSTI)

    Newsom, H.C.

    1999-01-24

    This quality assurance project plan (QAPjP) summarizes requirements used by Lockheed Martin Energy Systems, Incorporated (LMES) Development Division at Y-12 for conducting chemical reactivity testing of Department of Energy (DOE) owned spent nuclear fuel, sponsored by the National Spent Nuclear Fuel Program (NSNFP). The requirements are based on the NSNFP Statement of Work PRO-007 (Statement of Work for Laboratory Determination of Uranium Hydride Oxidation Reaction Kinetics.) This QAPjP will utilize the quality assurance program at Y-12, QA-101PD, revision 1, and existing implementing procedures for the most part in meeting the NSNFP Statement of Work PRO-007 requirements, exceptions will be noted.

  18. Spent Fuel Test-Climax: An evaluation of the technical feasibility of geologic storage of spent nuclear fuel in granite: Final report

    SciTech Connect (OSTI)

    Patrick, W.C.

    1986-03-30

    In the Climax stock granite on the Nevada Test Site, eleven canisters of spent nuclear reactor fuel were emplaced, and six electrical simulators were energized. When test data indicated that the test objectives were met during the 3-year storage phase, the spent-fuel canisters were retrieved and the thermal sources were de-energized. The project demonstrated the feasibility of packaging, transporting, storing, and retrieving highly radioactive fuel assemblies in a safe and reliable manner. In addition to emplacement and retrieval operations, three exchanges of spent-fuel assemblies between the SFT-C and a surface storage facility, conducted during the storage phase, furthered this demonstration. The test led to development of a technical measurements program. To meet these objectives, nearly 1000 instruments and a computer-based data acquisition system were deployed. Geotechnical, seismological, and test status data were recorded on a continuing basis for the three-year storage phase and six-month monitored cool-down of the test. This report summarizes the engineering and scientific endeavors which led to successful design and execution of the test. The design, fabrication, and construction of all facilities and handling systems are discussed, in the context of test objectives and a safety assessment. The discussion progresses from site characterization and experiment design through data acquisition and analysis of test data in the context of design calculations. 117 refs., 52 figs., 81 tabs.

  19. Assessment of the impacts of spent fuel disassembly alternatives on the Nuclear Waste Isolation System. [Preparing and packaging spent fuel assemblies for geologic disposal

    SciTech Connect (OSTI)

    Not Available

    1984-07-01

    The objective of this report was to evaluate four possible alternative methods of preparing and packaging spent fuel assemblies for geologic disposal against the Reference Process of unmodified spent fuel. The four alternative processes were: (1) End fitting removal, (2) Fission gas venting and resealing, (3) Fuel bundle disassembly and close packing of fuel pins, and (4) Fuel shearing and immobilization. Systems analysis was used to develop a basis of comparison of the alternatives. Conceptual processes and facility layouts were devised for each of the alternatives, based on technology deemed feasible for the purpose. Assessments were made of 15 principal attributes from the technical, operational, safety/risk, and economic considerations related to each of the alternatives, including both the surface packaging and underground repository operations. Specific attributes of the alternative processes were evaluated by assigning a number for each that expressed its merit relative to the corresponding attribute of the Reference Process. Each alternative process was then ranked by summing the numbers for attributes in each of the four assessment areas and collectively. Fuel bundle disassembly and close packing of fuel pins was ranked the preferred method of disposal of spent fuel. 63 references, 46 figures, 46 tables.

  20. Department of Energy Programmatic Spent Nuclear Fuel Management and Idaho National Engineering Laboratory Environmental Restoration and Waste Management Programs Draft Environmental Impact Statement. Volume 1, Appendix C, Savannah River Site Spent Nuclear Fuel Mangement Program

    SciTech Connect (OSTI)

    Not Available

    1994-06-01

    The US Department of Energy (DOE) is engaged in two related decision making processes concerning: (1) the transportation, receipt, processing, and storage of spent nuclear fuel (SNF) at the DOE Idaho National Engineering Laboratory (INEL) which will focus on the next 10 years; and (2) programmatic decisions on future spent nuclear fuel management which will emphasize the next 40 years. DOE is analyzing the environmental consequences of these spent nuclear fuel management actions in this two-volume Environmental Impact Statement (EIS). Volume 1 supports broad programmatic decisions that will have applicability across the DOE complex and describes in detail the purpose and need for this DOE action. Volume 2 is specific to actions at the INEL. This document, which limits its discussion to the Savannah River Site (SRS) spent nuclear fuel management program, supports Volume 1 of the EIS. Following the introduction, Chapter 2 contains background information related to the SRS and the framework of environmental regulations pertinent to spent nuclear fuel management. Chapter 3 identifies spent nuclear fuel management alternatives that DOE could implement at the SRS, and summarizes their potential environmental consequences. Chapter 4 describes the existing environmental resources of the SRS that spent nuclear fuel activities could affect. Chapter 5 analyzes in detail the environmental consequences of each spent nuclear fuel management alternative and describes cumulative impacts. The chapter also contains information on unavoidable adverse impacts, commitment of resources, short-term use of the environment and mitigation measures.

  1. [Peer-Reviewed Paper] Microbiological and Chemical Parameters for Evaluating the Maturity of Spent Pig-Litter/

    E-Print Network [OSTI]

    Tiquia-Arashiro, Sonia M.

    for Evaluating the Maturity of Spent Pig-Litter/ Compost / S.M. Tiquial* and N.F.Y. Tam2 IDepartment of Food,Tat CheeAvenue, Kowloon, Hong Kong. Abstract Windrow composting of spent pig litter (partially decomposed composting strategies to determine potential microbiological and chemicalparameters that indicate compost

  2. Osmotic water permeability of human red cells

    SciTech Connect (OSTI)

    Terwilliger, T.C.; Solomon, A.K.

    1981-05-01

    The osmotic water permeability of human red cells has been reexamined with a stopped-flow device and a new perturbation technique. Small osmotic gradients are used to minimize the systematic error caused by nonlinearities in the relationship between cell volume and light scattering. Corrections are then made for residual systematic error. Our results show that the hydraulic conductivity, Lp, is essentially independent of the direction of water flow and of osmolality in the range 184-365 mosM. the mean value of Lp obtained obtained was 1.8 +/- 0.1 (SEM) X 10-11 cm3 dyne -1 s-1.

  3. Blue, green, orange, and red upconversion laser

    DOE Patents [OSTI]

    Xie, P.; Gosnell, T.R.

    1998-09-08

    A laser is disclosed for outputting visible light at the wavelengths of blue, green, orange and red light. This is accomplished through the doping of a substrate, such as an optical fiber or waveguide, with Pr{sup 3+} ions and Yb{sup 3+} ions. A light pump such as a diode laser is used to excite these ions into energy states which will produce lasing at the desired wavelengths. Tuning elements such as prisms and gratings can be employed to select desired wavelengths for output. 11 figs.

  4. Blue, green, orange, and red upconversion laser

    DOE Patents [OSTI]

    Xie, Ping (San Jose, CA); Gosnell, Timothy R. (Sante Fe, NM)

    1998-01-01

    A laser for outputting visible light at the wavelengths of blue, green, orange and red light. This is accomplished through the doping of a substrate, such as an optical fiber or waveguide, with Pr.sup.3+ ions and Yb.sup.3+ ions. A light pump such as a diode laser is used to excite these ions into energy states which will produce lasing at the desired wavelengths. Tuning elements such as prisms and gratings can be employed to select desired wavelengths for output.

  5. Red Sun Energy | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX ECoop Inc Jump to:Newberg,Energy LLCALLETEREFURecent content in EnergyRed River

  6. Walmart Red Bluff | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION JEnvironmental Jump to:EA EISTJThin FilmUnitedVairexVertVillageVitexWaco,Wales WindWalmart Red

  7. FIELD-DEPLOYABLE SAMPLING TOOLS FOR SPENT NUCLEAR FUEL INTERROGATION IN LIQUID STORAGE

    SciTech Connect (OSTI)

    Berry, T.; Milliken, C.; Martinez-Rodriguez, M.; Hathcock, D.; Heitkamp, M.

    2012-09-12

    Methodology and field deployable tools (test kits) to analyze the chemical and microbiological condition of aqueous spent fuel storage basins and determine the oxide thickness on the spent fuel basin materials were developed to assess the corrosion potential of a basin. this assessment can then be used to determine the amount of time fuel has spent in a storage basin to ascertain if the operation of the reactor and storage basin is consistent with safeguard declarations or expectations and assist in evaluating general storage basin operations. The test kit was developed based on the identification of key physical, chemical and microbiological parameters identified using a review of the scientific and basin operations literature. The parameters were used to design bench scale test cells for additional corrosion analyses, and then tools were purchased to analyze the key parameters. The tools were used to characterize an active spent fuel basin, the Savannah River Site (SRS) L-Area basin. The sampling kit consisted of a total organic carbon analyzer, an YSI multiprobe, and a thickness probe. The tools were field tested to determine their ease of use, reliability, and determine the quality of data that each tool could provide. Characterization confirmed that the L Area basin is a well operated facility with low corrosion potential.

  8. Evaluation of Radiation Impacts of Spent Nuclear Fuel Storage (SNFS-2) of Chernobyl NPP - 13495

    SciTech Connect (OSTI)

    Paskevych, Sergiy; Batiy, Valiriy; Sizov, Andriy; Schmieman, Eric

    2013-07-01

    Radiation effects are estimated for the operation of a new dry storage facility for spent nuclear fuel (SNFS-2) of Chernobyl NPP RBMK reactors. It is shown that radiation exposure during normal operation, design and beyond design basis accidents are minor and meet the criteria for safe use of radiation and nuclear facilities in Ukraine. (authors)

  9. Nuclear forensics: attributing the source of spent fuel used in an RDD event 

    E-Print Network [OSTI]

    Scott, Mark Robert

    2005-08-29

    . Project Overview ...................................... 6 C. The Theory Behind the Inverse Problem................... 11 II MONITOR DEVELOPMENT.................................... 15 A. Burnup ............................................. 15 B... for PWR spent fuel and a large 60Co source. ................................................... 5 Overview of RDD material attribution project .................... 7 235U fission yield curve versus isotope mass for a U.S. PWR ........ 11 Comparison...

  10. Assessment of the Fingerprinting Method for Spent Fuel Verification in MACSTOR KN-400 CANDU Dry Storage 

    E-Print Network [OSTI]

    Gowthahalli Chandregowda, Nandan

    2012-10-19

    The Korea Hydro and Nuclear Power has built a new modular type of dry storage facility, known as MACSTOR KN-400 at Wolsong reactor site. The building has the capacity to store up to 24000 CANDU spent fuel bundles in a 4 rows by 10 columns...

  11. Radionuclide release from PWR spent fuel specimens with induced cladding defects

    SciTech Connect (OSTI)

    Wilson, C.N.; Oversby, V.M.

    1984-03-01

    Radionuclide releases from pressurized water reactor (PWR) spent fuel rod specimens containing various artificially induced cladding defects were compared by leach testing. The study was conducted in support of the Nevada Nuclear Waste Storage Investigations (NNWSI) Waste Package Task to evaluate the effectiveness of failed cladding as a barrier to radionuclide release. Test description and results are presented. 6 references, 4 figures.

  12. Radionuclide release from PWR spent fuel specimens with induced cladding defects

    SciTech Connect (OSTI)

    Wilson, C.N.; Oversby, V.M.

    1984-03-01

    Radionuclide releases from pressurized water reactor (PWR) spent fuel rod specimens containing various artificially induced cladding defects were compared by leach testing. The study was conducted in support of the Nevada Nuclear Waste Storage Investigations (NNWSI) Waste Package Task to evaluate the effectiveness of failed cladding as a barrier to radionuclide release. Test description and results are presented.

  13. An overview of spent-fuel processing in the global nuclear-energy partnership

    SciTech Connect (OSTI)

    Laidler, James J.

    2008-07-01

    Spent nuclear fuel is being generated at a prodigious rate in the U.S. and in other countries with robust nuclear-power-generation infrastructures, and the annual rate of production is likely to triple by 2050. The U.S. is engaged in the development of commercial light-water-reactor spent- fuel-treatment processes that are intended to meet certain rigorous criteria for separations efficiency, waste management benefits, and economy of industrial-scale operations. Aqueous solvent-extraction processes are the technology of choice, and a variety of process options have been designed and tested for technical feasibility. In general, the processes involve substantial partitioning of the constituents of spent nuclear fuel, so that effective use can be made of the recovered unburned uranium and other fissile isotopes that can be recycled as fuel for contemporary or advanced reactors. Those constituents that are destined for disposal as waste are also separated in order that they can be placed into durable waste forms that are expressly tailored for a particular disposition pathway. The U.S. is also working with international partners as part of the Global Nuclear Energy Partnership (GNEP) to develop a consistent worldwide approach to the treatment of spent fuel and the disposition of wastes arising from such processing. (authors)

  14. Foreign experience on effects of extended dry storage on the integrity of spent nuclear fuel

    SciTech Connect (OSTI)

    Schneider, K.J.; Mitchell, S.J.

    1992-04-01

    This report summarizes the results of a survey of foreign experience in dry storage of spent fuel from nuclear power reactors that was carried out for the US Department of Energy`s (DOE) Office of Civilian Radioactive Waste Management (OCRWM). The report reviews the mechanisms for degradation of spent fuel cladding and fuel materials in dry storage, identifies the status and plans of world-wide experience and applications, and documents the available information on the expected long-term integrity of the dry-stored spent fuel from actual foreign experience. Countries covered in this survey are: Argentina, Canada, Federal Republic of Germany (before reunification with the former East Germany), former German Democratic Republic (former East Germany), France, India, Italy, Japan, South Korea, Spain, Switzerland, United Kingdom, and the former USSR (most of these former Republics are now in the Commonwealth of Independent States [CIS]). Industrial dry storage of Magnox fuels started in 1972 in the United Kingdom; Canada began industrial dry storage of CANDU fuels in 1980. The technology for safe storage is generally considered to be developed for time periods of 30 to 100 years for LWR fuel in inert gas and for some fuels in oxidizing gases at low temperatures. Because it will probably be decades before countries will have a repository for spent fuels and high-level wastes, the plans for expanded use of dry storage have increased significantly in recent years and are expected to continue to increase in the near future.

  15. Foreign experience on effects of extended dry storage on the integrity of spent nuclear fuel

    SciTech Connect (OSTI)

    Schneider, K.J.; Mitchell, S.J.

    1992-04-01

    This report summarizes the results of a survey of foreign experience in dry storage of spent fuel from nuclear power reactors that was carried out for the US Department of Energy's (DOE) Office of Civilian Radioactive Waste Management (OCRWM). The report reviews the mechanisms for degradation of spent fuel cladding and fuel materials in dry storage, identifies the status and plans of world-wide experience and applications, and documents the available information on the expected long-term integrity of the dry-stored spent fuel from actual foreign experience. Countries covered in this survey are: Argentina, Canada, Federal Republic of Germany (before reunification with the former East Germany), former German Democratic Republic (former East Germany), France, India, Italy, Japan, South Korea, Spain, Switzerland, United Kingdom, and the former USSR (most of these former Republics are now in the Commonwealth of Independent States (CIS)). Industrial dry storage of Magnox fuels started in 1972 in the United Kingdom; Canada began industrial dry storage of CANDU fuels in 1980. The technology for safe storage is generally considered to be developed for time periods of 30 to 100 years for LWR fuel in inert gas and for some fuels in oxidizing gases at low temperatures. Because it will probably be decades before countries will have a repository for spent fuels and high-level wastes, the plans for expanded use of dry storage have increased significantly in recent years and are expected to continue to increase in the near future.

  16. Preliminary waste acceptance criteria for the ICPP spent fuel and waste management technology development program

    SciTech Connect (OSTI)

    Taylor, L.L.; Shikashio, R.

    1993-09-01

    The purpose of this document is to identify requirements to be met by the Producer/Shipper of Spent Nuclear Fuel/High-LeveL Waste SNF/HLW in order for DOE to be able to accept the packaged materials. This includes defining both standard and nonstandard waste forms.

  17. Characterization program management plan for Hanford K basin spent nuclear fuel

    SciTech Connect (OSTI)

    TRIMBLE, D.J.

    1999-07-19

    The program management plan for characterization of the K Basin spent nuclear fuel was revised to incorporate corrective actions in response to SNF Project QA surveillance 1K-FY-99-060. This revision of the SNF Characterization PMP replaces Duke Eng.

  18. Characterization program management plan for Hanford K Basin spent nuclear fuel

    SciTech Connect (OSTI)

    Lawrence, L.A.

    1998-05-14

    The management plan developed to characterize the K Basin Spent Nuclear Fuel was revised to incorporate actions necessary to comply with the Office of Civilian Radioactive Waste Management Quality Assurance Requirements Document 0333P. This plan was originally developed for Westinghouse Hanford Company and Pacific Northwest National Laboratory to work together on a program to provide characterization data to support removal, conditioning, and subsequent dry storage of the spent nuclear fuels stored at the Hanford K Basins. This revision to the Program Management Plan replaces Westinghouse Hanford Company with Duke Engineering and Services Hanford, Inc., updates the various activities where necessary, and expands the Quality Assurance requirements to meet the applicable requirements document. Characterization will continue to utilize the expertise and capabilities of both organizations to support the Spent Nuclear Fuels Project goals and objectives. This Management Plan defines the structure and establishes the roles for the participants providing the framework for Duke Engineering and Services Hanford, Inc. and Pacific Northwest National Laboratory to support the Spent Nuclear Fuels Project at Hanford.

  19. OECD NEA Benchmark Database of Spent Nuclear Fuel Isotopic Compositions for World Reactor Designs

    SciTech Connect (OSTI)

    Gauld, Ian C; Sly, Nicholas C; Michel-Sendis, Franco

    2014-01-01

    Experimental data on the isotopic concentrations in irradiated nuclear fuel represent one of the primary methods for validating computational methods and nuclear data used for reactor and spent fuel depletion simulations that support nuclear fuel cycle safety and safeguards programs. Measurement data have previously not been available to users in a centralized or searchable format, and the majority of accessible information has been, for the most part, limited to light-water-reactor designs. This paper describes a recent initiative to compile spent fuel benchmark data for additional reactor designs used throughout the world that can be used to validate computer model simulations that support nuclear energy and nuclear safeguards missions. Experimental benchmark data have been expanded to include VVER-440, VVER-1000, RBMK, graphite moderated MAGNOX, gas cooled AGR, and several heavy-water moderated CANDU reactor designs. Additional experimental data for pressurized light water and boiling water reactor fuels has also been compiled for modern assembly designs and more extensive isotopic measurements. These data are being compiled and uploaded to a recently revised structured and searchable database, SFCOMPO, to provide the nuclear analysis community with a centrally-accessible resource of spent fuel compositions that can be used to benchmark computer codes, models, and nuclear data. The current version of SFCOMPO contains data for eight reactor designs, 20 fuel assembly designs, more than 550 spent fuel samples, and measured isotopic data for about 80 nuclides.

  20. Method of separating and recovering uranium and related cations from spent Purex-type systems

    DOE Patents [OSTI]

    Mailen, J.C.; Tallent, O.K.

    1987-02-25

    A process for separating uranium and related cations from a spent Purex-type solvent extraction system which contains degradation complexes of tributylphosphate wherein the system is subjected to an ion-exchange process prior to a sodium carbonate scrubbing step. A further embodiment comprises recovery of the separated uranium and related cations. 5 figs.

  1. A Second Look at Neutron Resonance Transmission Analysis as a Spent Fuel NDA Technique

    SciTech Connect (OSTI)

    James W .Sterbentz; David L. Chichester

    2011-07-01

    Many different nondestructive analysis techniques are currently being investigated as a part of the United States Department of Energy's Next Generation Safeguards Initiative (NGSI) seeking methods to quantify plutonium in spent fuel. Neutron Resonance Transmission Analysis (NRTA) is one of these techniques. Having first been explored in the mid-1970s for the analysis of individual spent-fuel pins a second look, using advanced simulation and modeling methods, is now underway to investigate the suitability of the NRTA technique for assaying complete spent nuclear fuel assemblies. The technique is similar to neutron time-of-flight methods used for cross-section determinations but operates over only the narrow 0.1-20 eV range where strong, distinguishable resonances exist for both the plutonium (239, 240, 241,242Pu) and uranium (235,236,238U) isotopes of interest in spent fuel. Additionally, in this energy range resonances exists for six important fission products (99Tc, 103Rh, 131Xe, 133Cs, 145Nd, and 152Sm) which provide additional information to support spent fuel plutonium assay determinations. Initial modeling shows excellent agreement with previously published experimental data for measurements of individual spent-fuel pins where plutonium assays were demonstrated to have a precision of 2-4%. Within the simulation and modeling analyses of this project scoping studies have explored fourteen different aspects of the technique including the neutron source, drift tube configurations, and gross neutron transmission as well as the impacts of fuel burn up, cooling time, and fission-product interferences. These results show that NRTA may be a very capable experimental technique for spent-fuel assay measurements. The results suggest sufficient transmission strength and signal differentiability is possible for assays through up to 8 pins. For an 8-pin assay (looking at an assembly diagonally), 64% of the pins in a typical 17 ? 17 array of a pressurized water reactor fuel assembly can be part of a complete transmission assay measurement with high precision. Analysis of rows with up to 12 pins may also be feasible but with diminished precision. Preliminary data analysis of an NRTA simulation has demonstrated the simplicity of the technique.

  2. A Non-Proliferating Fuel Cycle: No Enrichment, Reprocessing or Accessible Spent Fuel - 12375

    SciTech Connect (OSTI)

    Parker, Frank L. [Vanderbilt University (United States)

    2012-07-01

    Current fuel cycles offer a number of opportunities for access to plutonium, opportunities to create highly enriched uranium and access highly radioactive wastes to create nuclear weapons and 'dirty' bombs. The non-proliferating fuel cycle however eliminates or reduces such opportunities and access by eliminating the mining, milling and enrichment of uranium. The non-proliferating fuel cycle also reduces the production of plutonium per unit of energy created, eliminates reprocessing and the separation of plutonium from the spent fuel and the creation of a stream of high-level waste. It further simplifies the search for land based deep geologic repositories and interim storage sites for spent fuel in the USA by disposing of the spent fuel in deep sub-seabed sediments after storing the spent fuel at U.S. Navy Nuclear Shipyards that have the space and all of the necessary equipment and security already in place. The non-proliferating fuel cycle also reduces transportation risks by utilizing barges for the collection of spent fuel and transport to the Navy shipyards and specially designed ships to take the spent fuel to designated disposal sites at sea and to dispose of them there in deep sub-seabed sediments. Disposal in the sub-seabed sediments practically eliminates human intrusion. Potential disposal sites include Great Meteor East and Southern Nares Abyssal Plain. Such sites then could easily become international disposal sites since they occur in the open ocean. It also reduces the level of human exposure in case of failure because of the large physical and chemical dilution and the elimination of a major pathway to man-seawater is not potable. Of course, the recovery of uranium from sea water and the disposal of spent fuel in sub-seabed sediments must be proven on an industrial scale. All other technologies are already operating on an industrial scale. If externalities, such as reduced terrorist threats, environmental damage (including embedded emissions), long term care, reduced access to 'dirty' bomb materials, the social and political costs of siting new facilities and the psychological impact of no solution to the nuclear waste problem, were taken into account, the costs would be far lower than those of the present fuel cycle. (authors)

  3. Spent fuel sabotage test program, characterization of aerosol dispersal : interim final report.

    SciTech Connect (OSTI)

    Gregson, Michael Warren; Brockmann, John E.; Loiseau, Olivier (Institut de Radioprotection et de Surete Nucleaire, France); Klennert, Lindsay A.; Nolte, Oliver (Fraunhofer Institut fur Toxikologie und Experimentelle Medizin, Germany); Molecke, Martin Alan; Autrusson, Bruno A. (Institut de Radioprotection et de Surete Nucleaire, France); Koch, Wolfgang (Fraunhofer Institut fur Toxikologie und Experimentelle Medizin, Germany); Pretzsch, Gunter Guido (Gesellschaft fur Anlagen- und Reaktorsicherheit, Germany); Brucher, Wenzel (Gesellschaft fur Anlagen- und Reaktorsicherheit, Germany); Steyskal, Michele D.

    2008-03-01

    This multinational, multi-phase spent fuel sabotage test program is quantifying the aerosol particles produced when the products of a high energy density device (HEDD) interact with and explosively particulate test rodlets that contain pellets of either surrogate materials or actual spent fuel. This program provides source-term data that are relevant to plausible sabotage scenarios in relation to spent fuel transport and storage casks and associated risk assessments. We present details and significant results obtained from this program from 2001 through 2007. Measured aerosol results include: respirable fractions produced; amounts, nuclide content, and produced particle size distributions and morphology; measurements of volatile fission product species enhanced sorption--enrichment factors onto respirable particles; and, status on determination of the spent fuel ratio, SFR, needed for scaling studies. Emphasis is provided on recent Phase 3 tests using depleted uranium oxide pellets plus non-radioactive fission product dopants in surrogate spent fuel test rodlets, plus the latest surrogate cerium oxide results and aerosol laboratory supporting calibration work. The DUO{sub 2}, CeO{sub 2}, plus fission product dopant aerosol particle results are compared with available historical data. We also provide a status review on continuing preparations for the final Phase 4 in this program, tests using individual short rodlets containing actual spent fuel from U.S. PWR reactors, with both high- and lower-burnup fuel. The source-term data, aerosol results, and program design have been tailored to support and guide follow-on computer modeling of aerosol dispersal hazards and radiological consequence assessments. This spent fuel sabotage, aerosol test program was performed primarily at Sandia National Laboratories, with support provided by both the U.S. Department of Energy and the Nuclear Regulatory Commission. This program has significant input from, and is cooperatively supported and coordinated by both the U.S. and international program participants in Germany, France, and others, as part of the International Working Group for Sabotage Concerns of Transport and Storage Casks (WGSTSC).

  4. AP1000{sup R} nuclear power plant safety overview for spent fuel cooling

    SciTech Connect (OSTI)

    Gorgemans, J.; Mulhollem, L.; Glavin, J.; Pfister, A.; Conway, L.; Schulz, T.; Oriani, L.; Cummins, E.; Winters, J. [Westinghouse Electric Company LLC, 1000 Westinghouse Drive, Cranberry Township, PA 16066 (United States)

    2012-07-01

    The AP1000{sup R} plant is an 1100-MWe class pressurized water reactor with passive safety features and extensive plant simplifications that enhance construction, operation, maintenance, safety and costs. The AP1000 design uses passive features to mitigate design basis accidents. The passive safety systems are designed to function without safety-grade support systems such as AC power, component cooling water, service water or HVAC. Furthermore, these passive features 'fail safe' during a non-LOCA event such that DC power and instrumentation are not required. The AP1000 also has simple, active, defense-in-depth systems to support normal plant operations. These active systems provide the first level of defense against more probable events and they provide investment protection, reduce the demands on the passive features and support the probabilistic risk assessment. The AP1000 passive safety approach allows the plant to achieve and maintain safe shutdown in case of an accident for 72 hours without operator action, meeting the expectations provided in the U.S. Utility Requirement Document and the European Utility Requirements for passive plants. Limited operator actions are required to maintain safe conditions in the spent fuel pool via passive means. In line with the AP1000 approach to safety described above, the AP1000 plant design features multiple, diverse lines of defense to ensure spent fuel cooling can be maintained for design-basis events and beyond design-basis accidents. During normal and abnormal conditions, defense-in-depth and other systems provide highly reliable spent fuel pool cooling. They rely on off-site AC power or the on-site standby diesel generators. For unlikely design basis events with an extended loss of AC power (i.e., station blackout) or loss of heat sink or both, spent fuel cooling can still be provided indefinitely: - Passive systems, requiring minimal or no operator actions, are sufficient for at least 72 hours under all possible pool heat load conditions. - After 3 days, several different means are provided to continue spent fuel cooling using installed plant equipment as well as off-site equipment with built-in connections. Even for beyond design basis accidents with postulated pool damage and multiple failures in the passive safety-related systems and in the defense-in-depth active systems, the AP1000 multiple spent fuel pool spray and fill systems provide additional lines of defense to prevent spent fuel damage. (authors)

  5. Further Evaluation of the Neutron Resonance Transmission Analysis (NRTA) Technique for Assaying Plutonium in Spent Fuel

    SciTech Connect (OSTI)

    J. W. Sterbentz; D. L. Chichester

    2011-09-01

    This is an end-of-year report (Fiscal Year (FY) 2011) for the second year of effort on a project funded by the National Nuclear Security Administration's Office of Nuclear Safeguards (NA-241). The goal of this project is to investigate the feasibility of using Neutron Resonance Transmission Analysis (NRTA) to assay plutonium in commercial light-water-reactor spent fuel. This project is part of a larger research effort within the Next-Generation Safeguards Initiative (NGSI) to evaluate methods for assaying plutonium in spent fuel, the Plutonium Assay Challenge. The second-year goals for this project included: (1) assessing the neutron source strength needed for the NRTA technique, (2) estimating count times, (3) assessing the effect of temperature on the transmitted signal, (4) estimating plutonium content in a spent fuel assembly, (5) providing a preliminary assessment of the neutron detectors, and (6) documenting this work in an end of the year report (this report). Research teams at Los Alamos National Laboratory (LANL), Lawrence Berkeley National Laboratory (LBNL), Pacific Northwest National Laboratory (PNNL), and at several universities are also working to investigate plutonium assay methods for spent-fuel safeguards. While the NRTA technique is well proven in the scientific literature for assaying individual spent fuel pins, it is a newcomer to the current NGSI efforts studying Pu assay method techniques having just started in March 2010; several analytical techniques have been under investigation within this program for two to three years or more. This report summarizes work performed over a nine month period from January-September 2011 and is to be considered a follow-on or add-on report to our previous published summary report from December 2010 (INL/EXT-10-20620).

  6. Spent fuel dissolution rates as a function of burnup and water chemistry

    SciTech Connect (OSTI)

    Gray, W.J.

    1998-06-01

    To help provide a source term for performance-assessment calculations, dissolution studies on light-water-reactor (LWR) spent fuel have been conducted over the past few years at Pacific Northwest National Laboratory in support of the Yucca Mountain Site Characterization Project. This report describes that work for fiscal years 1996 through mid-1998 and includes summaries of some results from previous years for completeness. The following conclusions were based on the results of various flowthrough dissolution rate tests and on tests designed to measure the inventories of {sup 129}I located within the fuel/cladding gap region of different spent fuels: (1) Spent fuels with burnups in the range 30 to 50 MWd/kgM all dissolved at about the same rate over the conditions tested. To help determine whether the lack of burnup dependence extends to higher and lower values, tests are in progress or planned for spent fuels with burnups of 13 and {approximately} 65 MWd/kgM. (2) Oxidation of spent fuel up to the U{sub 4}O{sub 9+x} stage does not have a large effect on intrinsic dissolution rates. However, this degree of oxidation could increase the dissolution rates of relatively intact fuel by opening the grain boundaries, thereby increasing the effective surface area that is available for contact by water. From a disposal viewpoint, this is a potentially more important consideration than the effect on intrinsic rates. (3) The gap inventories of {sup 129}I were found to be smaller than the fission gas release (FGR) for the same fuel rod with the exception of the rod with the highest FGR. Several additional fuels would have to be tested to determine whether a generalized relationship exists between FGR and {sup 129}I gap inventory for US LWR fuels.

  7. Assessment of spent-fuel waste-form/stabilizer alternatives for geologic disposal

    SciTech Connect (OSTI)

    Einziger, R.E.; Himes, D.A.

    1982-06-01

    The Office of Nuclear Waste Isolation (ONWI) is studying the possibility of burying canisterized unreprocessed spent fuel in a deep geologic repository. One aspect of this study is an assessment of the possible spent fuel waste forms. The fuel performance portion of the Waste Form Assessment was to evaluate five candidate spent fuel waste forms for postemplacement performance with emphasis on their ability to retard the release of radionuclides to the repository geology. Spent fuel waste forms under general consideration were: (1) unaltered fuel assembly; (2) fuel assembly with end fittings removed to shorten the length; (3 rods vented to remove gases and resealed; (4) disassembled fuel bundles to close-pack the rods; and (5) rods chopped and fragments immobilized in a matrix material. Thirteen spent fuel waste forms, classified by generic stabilizer type, were analyzed for relative in-repository performance based on: (1) waste form/stabilizer support against lithostatic pressure; (2) long-term stability for radionuclide retention; (3) minimization of cladding degradation; (4) prevention of canister/repository breach due to pressurization; (5) stabilizer heat transfer; (6) the stabilizer as an independent barrier to radionuclide migration; and (7) prevention of criticality. The waste form candidates were ranked as follows: (1) the best waste form/stabilizer combination is the intact assembly, with or without end bells, vented (and resealed) or unvented, with a solid stabilizer; (2) a suitable alternative is the combination of bundled close-packed rods with a solid stabilizer around the outside of the bundle to resist lithostatic pressure; and (3) the other possible waste forms are of lower ranking with the worst waste form/stabilizer combination being the intact assembly with a gas stabilizer or the chopped fuel.

  8. Red Galaxies from Hot Halos in Cosmological Hydro Simulations

    E-Print Network [OSTI]

    Gabor, Jared

    2012-01-01

    I highlight three results from cosmological hydrodynamic simulations that yield a realistic red sequence of galaxies: 1) Major galaxy mergers are not responsible for shutting off star-formation and forming the red sequence. Starvation in hot halos is. 2) Massive galaxies grow substantially (about a factor of 2 in mass) after being quenched, primarily via minor (1:5) mergers. 3) Hot halo quenching naturally explains why galaxies are red when they either (a) are massive or (b) live in dense environments.

  9. Summer Enrollment Blue=Old Program, Red=New Program

    E-Print Network [OSTI]

    Gering, Jon C.

    Summer Enrollment Blue=Old Program, Red=New Program 1559 14181358 1304 1166 1245 0 200 400 600 800;Summer Sections Offered Blue=Old Program, Red=New Program 142 135 160158 180 200 0 50 100 150 200 250 Generated Blue=Old Program, Red=New Program 5643 5983.5 5463 4953 5985.5 6961 0 1000 2000 3000 4000 5000

  10. The Red-Cockaded Woodpecker: A Selectively Annotated Bibliography

    E-Print Network [OSTI]

    Wishard, Lisa

    1998-01-01

    the impacts of Hurricane Hugo on lost habitat (87 percent)of Hurricane Hugo in 1989, the red-cockaded woodpecker lost

  11. Department of Energy Programmatic Spent Nuclear Fuel Management and Idaho National Engineering Laboratory Environmental Restoration and Waste Management Programs draft environmental impact statement. Volume 1, Appendix B: Idaho National Engineering Laboratory Spent Nuclear Fuel Management Program

    SciTech Connect (OSTI)

    Not Available

    1994-06-01

    The US Department of Energy (DOE) has prepared this report to assist its management in making two decisions. The first decision, which is programmatic, is to determine the management program for DOE spent nuclear fuel. The second decision is on the future direction of environmental restoration, waste management, and spent nuclear fuel management activities at the Idaho National Engineering Laboratory. Volume 1 of the EIS, which supports the programmatic decision, considers the effects of spent nuclear fuel management on the quality of the human and natural environment for planning years 1995 through 2035. DOE has derived the information and analysis results in Volume 1 from several site-specific appendixes. Volume 2 of the EIS, which supports the INEL-specific decision, describes environmental impacts for various environmental restoration, waste management, and spent nuclear fuel management alternatives for planning years 1995 through 2005. This Appendix B to Volume 1 considers the impacts on the INEL environment of the implementation of various DOE-wide spent nuclear fuel management alternatives. The Naval Nuclear Propulsion Program, which is a joint Navy/DOE program, is responsible for spent naval nuclear fuel examination at the INEL. For this appendix, naval fuel that has been examined at the Naval Reactors Facility and turned over to DOE for storage is termed naval-type fuel. This appendix evaluates the management of DOE spent nuclear fuel including naval-type fuel.

  12. Department of Energy Programmatic Spent Nuclear Fuel Management and Idaho National Engineering Laboratory Environmental Restoration and Waste Management Programs, Draft Environmental Impact Statement. Volume 1, Appendix D: Part A, Naval Spent Nuclear Fuel Management

    SciTech Connect (OSTI)

    Not Available

    1994-06-01

    Volume 1 to the Department of Energy`s Programmatic Spent Nuclear Fuel Management and Idaho National Engineering Laboratory Environmental Management Programs Environmental Impact Statement evaluates a range of alternatives for managing naval spent nuclear fuel expected to be removed from US Navy nuclear-powered vessels and prototype reactors through the year 2035. The Environmental Impact Statement (EIS) considers a range of alternatives for examining and storing naval spent nuclear fuel, including alternatives that terminate examination and involve storage close to the refueling or defueling site. The EIS covers the potential environmental impacts of each alternative, as well as cost impacts and impacts to the Naval Nuclear Propulsion Program mission. This Appendix covers aspects of the alternatives that involve managing naval spent nuclear fuel at four naval shipyards and the Naval Nuclear Propulsion Program Kesselring Site in West Milton, New York. This Appendix also covers the impacts of alternatives that involve examining naval spent nuclear fuel at the Expended Core Facility in Idaho and the potential impacts of constructing and operating an inspection facility at any of the Department of Energy (DOE) facilities considered in the EIS. This Appendix also considers the impacts of the alternative involving limited spent nuclear fuel examinations at Puget Sound Naval Shipyard. This Appendix does not address the impacts associated with storing naval spent nuclear fuel after it has been inspected and transferred to DOE facilities. These impacts are addressed in separate appendices for each DOE site.

  13. Full-Scale Cask Testing and Public Acceptance of Spent Nuclear Fuel Shipments - 12254

    SciTech Connect (OSTI)

    Dilger, Fred; Halstead, Robert J.; Ballard, James D.

    2012-07-01

    Full-scale physical testing of spent fuel shipping casks has been proposed by the National Academy of Sciences (NAS) 2006 report on spent nuclear fuel transportation, and by the Presidential Blue Ribbon Commission (BRC) on America's Nuclear Future 2011 draft report. The U.S. Nuclear Regulatory Commission (NRC) in 2005 proposed full-scale testing of a rail cask, and considered 'regulatory limits' testing of both rail and truck casks (SRM SECY-05-0051). The recent U.S. Department of Energy (DOE) cancellation of the Yucca Mountain project, NRC evaluation of extended spent fuel storage (possibly beyond 60-120 years) before transportation, nuclear industry adoption of very large dual-purpose canisters for spent fuel storage and transport, and the deliberations of the BRC, will fundamentally change assumptions about the future spent fuel transportation system, and reopen the debate over shipping cask performance in severe accidents and acts of sabotage. This paper examines possible approaches to full-scale testing for enhancing public confidence in risk analyses, perception of risk, and acceptance of spent fuel shipments. The paper reviews the literature on public perception of spent nuclear fuel and nuclear waste transportation risks. We review and summarize opinion surveys sponsored by the State of Nevada over the past two decades, which show consistent patterns of concern among Nevada residents about health and safety impacts, and socioeconomic impacts such as reduced property values along likely transportation routes. We also review and summarize the large body of public opinion survey research on transportation concerns at regional and national levels. The paper reviews three past cask testing programs, the way in which these cask testing program results were portrayed in films and videos, and examines public and official responses to these three programs: the 1970's impact and fire testing of spent fuel truck casks at Sandia National Laboratories, the 1980's regulatory and demonstration testing of MAGNOX fuel flasks in the United Kingdom (the CEGB 'Operation Smash Hit' tests), and the 1980's regulatory drop and fire tests conducted on the TRUPACT II containers used for transuranic waste shipments to the Waste Isolation Pilot Plant in New Mexico. The primary focus of the paper is a detailed evaluation of the cask testing programs proposed by the NRC in its decision implementing staff recommendations based on the Package Performance Study, and by the State of Nevada recommendations based on previous work by Audin, Resnikoff, Dilger, Halstead, and Greiner. The NRC approach is based on demonstration impact testing (locomotive strike) of a large rail cask, either the TAD cask proposed by DOE for spent fuel shipments to Yucca Mountain, or a similar currently licensed dual-purpose cask. The NRC program might also be expanded to include fire testing of a legal-weight truck cask. The Nevada approach calls for a minimum of two tests: regulatory testing (impact, fire, puncture, immersion) of a rail cask, and extra-regulatory fire testing of a legal-weight truck cask, based on the cask performance modeling work by Greiner. The paper concludes with a discussion of key procedural elements - test costs and funding sources, development of testing protocols, selection of testing facilities, and test peer review - and various methods of communicating the test results to a broad range of stakeholder audiences. (authors)

  14. An integrated approach for determining plutonium mass in spent fuel assemblies with nondestructive assay

    SciTech Connect (OSTI)

    Swinhoe, Martyn T [Los Alamos National Laboratory; Tobin, Stephen J [Los Alamos National Laboratory; Fensin, Mike L [Los Alamos National Laboratory; Menlove, Howard O [Los Alamos National Laboratory

    2009-01-01

    There are a variety of reasons for quantifying plutonium (Pu) in spent fuel. Below, five motivations are listed: (1) To verify the Pu content of spent fuel without depending on unverified information from the facility, as requested by the IAEA ('independent verification'). New spent fuel measurement techniques have the potential to allow the IAEA to recover continuity of knowledge and to better detect diversion. (2) To assure regulators that all of the nuclear material of interest leaving a nuclear facility actually arrives at another nuclear facility ('shipper/receiver'). Given the large stockpile of nuclear fuel at reactor sites around the world, it is clear that in the coming decades, spent fuel will need to be moved to either reprocessing facilities or storage sites. Safeguarding this transportation is of significant interest. (3) To quantify the Pu in spent fuel that is not considered 'self-protecting.' Fuel is considered self-protecting by some regulatory bodies when the dose that the fuel emits is above a given level. If the fuel is not self-protecting, then the Pu content of the fuel needs to be determined and the Pu mass recorded in the facility's accounting system. This subject area is of particular interest to facilities that have research-reactor spent fuel or old light-water reactor (LWR) fuel. It is also of interest to regulators considering changing the level at which fuel is considered self-protecting. (4) To determine the input accountability value at an electrochemical processing facility. It is not expected that an electrochemical reprocessing facility will have an input accountability tank, as is typical in an aqueous reprocessing facility. As such, one possible means of determining the input accountability value is to measure the Pu content in the spent fuel that arrives at the facility. (5) To fully understand the composition of the fuel in order to efficiently and safely pack spent fuel into a long-term repository. The NDA of spent fuel can be part of a system that cost-effectively meets the burnup credit needs of a repository. Behind each of these reasons is a regulatory structure with MC&A requirements. In the case of the IAEA, the accountable quantity is elemental plutonium. The material in spent fuel (fissile isotopes, fission products, etc.) emits signatures that provide information about the content and history of the fuel. A variety of nondestructive assay (NDA) techniques are available to quantify these signatures. The effort presented in this paper is investigation of the capabilities of 12 NDA techniques. For these 12, none is conceptually capable of independently determining the Pu content in a spent fuel assembly while at the same time being able to detect the diversion of a significant quantity of rods. For this reason the authors are investigating the capability of 12 NDA techniques with the end goal of integrating a few techniques together into a system that is capable of measuring Pu mass in an assembly. The work described here is the beginning of what is anticipated to be a five year effort: (1) two years of modeling to select the best technologies, (2) one year fabricating instruments and (3) two years measuring spent fuel. This paper describes the first two years of this work. In order to cost effectively and robustly model the performance of the 12 NDA techniques, an 'assembly library' was created. The library contains the following: (a) A diverse range of PWR spent fuel assemblies (burnup, enrichment, cooling time) similar to that which exists in spent pools today and in the future. (b) Diversion scenarios that capture a range of possible rod removal options. (c) The spatial and isotopic detail needed to accurately quantify the capability of all the NDA techniques so as to enable integration. It is our intention to make this library available to other researchers in the field for inter-comparison purposes. The performance of each instrument will be quantified for the full assembly library for measurements in three different media: air, water and borated water. The 12 NDA te

  15. Radionuclide release from spent fuel under geologic disposal conditions: An overview of experimental and theoretical work through 1985

    SciTech Connect (OSTI)

    Reimus, P.W.; Simonson, S.A.

    1988-04-01

    This report presents an overview of experimental and theoretical work on radionuclide release from spent fuel and uranium dioxide (UO/sub 2/) under geologic disposal conditions. The purpose of the report is to provide a source book of information that can be used to develop models that describe radionuclide release from spent fuel waste packages. Modeling activities of this nature will be conducted within the Waste Package Program (WPP) of the Department of Energy's Salt Repository Project (SRP). The topics discussed include experimental methods for investigating radionuclide release, how results have been reported from radionuclide release experiments, theoretical studies of UO/sub 2/ and actinide solubility, results of experimental studies of radionuclide release from spent fuel and UO/sub 2/ (i.e., the effects of different variables on radionuclide release), characteristics of spent fuel pertinent to radionuclide release, and status of modeling of radionuclide release from spent fuel. Appendix A presents tables of data from spent fuel radionuclide release experiments. These data have been digitized from graphs that appear in the literature. An annotated bibliography of literature on spent fuel characterization is provided in Appendix B.

  16. Spent Nuclear Fuel Project FY 1996 Multi-Year Program Plan WBS No. 1.4.1, Revision 1

    SciTech Connect (OSTI)

    NONE

    1995-09-01

    This document describes the Spent Nuclear Fuel (SNF) Project portion of the Hanford Strategic Plan for the Hanford Reservation in Richland, Washington. The SNF Project was established to evaluate and integrate the urgent risks associated with N-reactor fuel currently stored at the Hanford site in the K Basins, and to manage the transfer and disposition of other spent nuclear fuels currently stored on the Hanford site. An evaluation of alternatives for the expedited removal of spent fuels from the K Basin area was performed. Based on this study, a Recommended Path Forward for the K Basins was developed and proposed to the U.S. DOE.

  17. INHIBITION OF PHOTOSYNTHESIS IN CERTAIN ALGAE BY EXTREME RED LIGHT

    E-Print Network [OSTI]

    Govindjee

    INHIBITION OF PHOTOSYNTHESIS IN CERTAIN ALGAE BY EXTREME RED LIGHT GOVINDJEE, EUGENE RABINOWITCH. INTRODUCTION It was shown in preceding papers (9, 10) that when the unicellular red alga Por- phyridium), these algae, when exposed to monochromatic light (bands isolated by a grating monochromator, band half

  18. MFR PAPER 1229 Red Snappers of the Carolina Coast

    E-Print Network [OSTI]

    Carolina and South Carolina ports takes large quantities of fishes typical of Caribbean reefs and banks valuable of the snappers in commerce and rec- reation. It is known off North Carolina and South Carolina on the red snapper. The red snapper is found from North Carolina south to Key West, around the entire Gulf

  19. PROVENCHER BRIDGE OVER THE RED RIVER WINNIpEG, MANITOBA

    E-Print Network [OSTI]

    ABSTRACT PROVENCHER BRIDGE OVER THE RED RIVER WINNIpEG, MANITOBA C.D. Stewart and B.D. Thompson of Manitoba Winnipeg, Manitoba Alternative design schemes to replace the 76-year-old Provencher Bridge over for construction of the bridge is discussed. I Stewart, Thompson and Rizkalla. Provencher Bridge over the Red River

  20. RED Bridge Funding Program Principles Applicable to the Plan

    E-Print Network [OSTI]

    Barge, Marcy

    RED Bridge Funding Program Principles Applicable to the Plan: The purpose of bridge funding in order to give the investigator an opportunity to regain extramural funding. RED will consider bridge is needed to retain key personnel and to maintain project momentum. Bridge funds are not intended to support

  1. ACARYOCHLORIS EXPLAINING THE RIDDLE OF CHLOROPHYLL D IN RED ALGAE AND EXPANDING PAR FOR OXYGENIC PHOTOSYNTHESIS

    E-Print Network [OSTI]

    Oregon, University of

    ACARYOCHLORIS ­ EXPLAINING THE RIDDLE OF CHLOROPHYLL D IN RED ALGAE AND EXPANDING PAR FOR OXYGENIC strain is shown to live epi- phytically on the red alga Gelidium caulacantheum, which itself is harvested by the red alga. Availability of far red light, however, is relatively unaffected by DOM or red

  2. Cometary panspermia explains the red rain of Kerala

    E-Print Network [OSTI]

    Godfrey Louis; A. Santhosh Kumar

    2003-10-05

    Red coloured rain occurred in many places of Kerala in India during July to September 2001 due to the mixing of huge quantity of microscopic red cells in the rainwater. Considering its correlation with a meteor airbust event, this phenomenon raised an extraordinary question whether the cells are extraterrestrial. Here we show how the observed features of the red rain phenomenon can be explained by considering the fragmentation and atmospheric disintegration of a fragile cometary body that presumably contains a dense collection of red cells. Slow settling of cells in the stratosphere explains the continuation of the phenomenon for two months. The red cells under study appear to be the resting spores of an extremophilic microorganism. Possible presence of these cells in the interstellar clouds is speculated from its similarity in UV absorption with the 217.5 nm UV extinction feature of interstellar clouds.

  3. Plutonium Discharge Rates and Spent Nuclear Fuel Inventory Estimates for Nuclear Reactors Worldwide

    SciTech Connect (OSTI)

    Brian K. Castle; Shauna A. Hoiland; Richard A. Rankin; James W. Sterbentz

    2012-09-01

    This report presents a preliminary survey and analysis of the five primary types of commercial nuclear power reactors currently in use around the world. Plutonium mass discharge rates from the reactors’ spent fuel at reload are estimated based on a simple methodology that is able to use limited reactor burnup and operational characteristics collected from a variety of public domain sources. Selected commercial reactor operating and nuclear core characteristics are also given for each reactor type. In addition to the worldwide commercial reactors survey, a materials test reactor survey was conducted to identify reactors of this type with a significant core power rating. Over 100 material or research reactors with a core power rating >1 MW fall into this category. Fuel characteristics and spent fuel inventories for these material test reactors are also provided herein.

  4. Method for processing aluminum spent potliner in a graphite electrode ARC furnace

    DOE Patents [OSTI]

    O'Connor, William K. (Lebanon, OR); Turner, Paul C. (Independence, OR); Addison, Gerald W. (St. Stephen, SC)

    2002-12-24

    A method of processing spent aluminum pot liner containing carbon, cyanide compositions, fluorides and inorganic oxides. The spent aluminum pot liner is crushed iron oxide is added to form an agglomerated material. The agglomerated material is melted in an electric arc furnace having the electrodes submerged in the molten material to provide a reducing environment during the furnace operation. In the reducing environment, pot liner is oxidized while the iron oxides are reduced to produce iron and a slag substantially free of cyanide compositions and fluorides. An off-gas including carbon oxides and fluorine is treated in an air pollution control system with an afterburner and a scrubber to produce NaF, water and a gas vented to the atmosphere free of cyanide compositions, fluorine and CO.

  5. Apparatus and method for reprocessing and separating spent nuclear fuels. [Patent application

    DOE Patents [OSTI]

    Krikorian, O.H.; Grens, J.Z.; Parrish, W.H. Sr.; Coops, M.S.

    1982-01-19

    A method and apparatus for separating and reprocessing spent nuclear fuels includes a separation vessel housing a molten metal solvent in a reaction region, a reflux region positioned above and adjacent to the reaction region, and a porous filter member defining the bottom of the separation vessel in a supporting relationship with the metal solvent. Spent fuels are added to the metal solvent. A nonoxidizing nitrogen-containing gas is introduced into the separation vessel, forming solid actinide nitrides in the metal solvent from actinide fuels, while leaving other fission products in solution. A pressure of about 1.1 to 1.2 atm is applied in the reflux region, forcing the molten metal solvent and soluble fission products out of the vessel, while leaving the solid actinide nitrides in the separation vessel.

  6. Non-Destructive Spent Fuel Characterization with Semi-Conducting Gallium Arsinde Neutron Imaging Arrays

    SciTech Connect (OSTI)

    Douglas S. McGregor; Holly K. Gersch; Jeffrey D. Sanders; John C. Lee; Mark D. Hammig; Michael R. Hartman; Yong Hong Yang; Raymond T. Klann; Brian Van Der Elzen; John T. Lindsay; Philip A. Simpson

    2002-01-30

    High resistivity bulk grown GaAs has been used to produce thermal neutron imaging devices for use in neutron radiography and characterizing burnup in spent fuel. The basic scheme utilizes a portable Sb/Be source for monoenergetic (24 keV) neutron radiation source coupled to an Fe filter with a radiation hard B-coated pixellated GaAs detector array as the primary neutron detector. The coated neutron detectors have been tested for efficiency and radiation hardness in order to determine their fitness for the harsh environments imposed by spent fuel. Theoretical and experimental results are presented, showing detector radiation hardness, expected detection efficiency and the spatial resolution from such a scheme. A variety of advanced neutron detector designs have been explored, with experimental results achieving 13% thermal neutron detection efficiency while projecting the possibility of over 30% thermal neutron detection efficiency.

  7. Microstructural characteristics of PWR spent fuel relative to its leaching behavior

    SciTech Connect (OSTI)

    Wilson, C.N.

    1985-11-01

    Microstructural, compositional and thermochemical properties of spent nuclear fuel are discussed relative to its potential performance as a high-level waste form under proposed Nevada Nuclear Waste Storage Investigations Project tuff repository conditions. Pressurized water reactor spent fuel specimens with various artificially induced cladding defects were leach tested in deionized water and in a reference tuff groundwater under ambient hot cell air and temperature conditions. Greater fractional actinide release was observed with bare fuel than with clad fuel leached through a cladding defect. Congruent actinide release and preferential release of cesium and technetium were observed in both water types. Selected summary radionuclide release data are presented and correlated to pre- and post-test microstructural characterization data.

  8. Microstructural characteristics of PWR [pressurized water reactor] spent fuel relative to its leaching behavior

    SciTech Connect (OSTI)

    Wilson, C.N.

    1986-01-01

    Microstructural, compositional and thermochemical properties of spent nuclear fuel are discussed relative to its potential performance as a high-level waste form under proposed Nevada Nuclear Waste Storage Investigations Project tuff repository conditions. Pressurized water reactor spent fuel specimens with various artificially induced cladding defects were leach tested in deionized water and in a reference tuff groundwater under ambient hot cell air and temperature conditions. Greater fractional actinide release was observed with bare fuel than with clad fuel leached through a cladding defect. Congruent actinide release and preferential release of cesium and technetium were observed in both water types. Selected summary radionuclide release data are presented and correlated to pre- and post-test microstructural characterization data.

  9. Retorting of oil shale followed by solvent extraction of spent shale: Experiment and kinetic analysis

    SciTech Connect (OSTI)

    Khraisha, Y.H.

    2000-05-01

    Samples of El-Lajjun oil shale were thermally decomposed in a laboratory retort system under a slow heating rate (0.07 K/s) up to a maximum temperature of 698--773 K. After decomposition, 0.02 kg of spent shale was extracted by chloroform in a Soxhlet extraction unit for 2 h to investigate the ultimate amount of shale oil that could be produced. The retorting results indicate an increase in the oil yields from 3.24% to 9.77% of oil shale feed with retorting temperature, while the extraction results show a decrease in oil yields from 8.10% to 3.32% of spent shale. The analysis of the data according to the global first-order model for isothermal and nonisothermal conditions shows kinetic parameters close to those reported in literature.

  10. Determining plutonium mass in spent fuel using Cf-252 interrogation with prompt neutron detection

    SciTech Connect (OSTI)

    Hu, Jianwei; Tobin, Stephen J; Menlove, Howard O; Croft, Stephen

    2010-01-01

    {sup 252}Cf Interrogation with Prompt Neutron (CIPN) detection is proposed as one of 14 NDA techniques to determine Pu mass in spent fuel assemblies (FAs). CIPN is a low-cost and portable instrument, and it looks like a modified fork detector combined with an active interrogation source. Fission chamber (FC) is chosen as neutron detector because of its insensitivity to {gamma} radiation. The CIPN assay is comprised of two measurements, a background count and an active count, without and with the {sup 252}Cf source next to the fuel respectively. The net signal above background is primarily due to the multiplication of Cf source neutrons caused by the fissile content. The capability of CIPN to detect diversion and to determine fissile content was quantified using MCNPX simulations. New schemes were proposed (such as burnup and cooling time correction, etc.) and the results show that the fissile content of a target spent fuel assembly can be determined using CIPN signal.

  11. Recovery and regeneration of spent MHD seed material by the formate process

    DOE Patents [OSTI]

    Sheth, Atul C. (Tullahoma, TN); Holt, Jeffrey K. (Manchester, TN); Rasnake, Darryll G. (Manchester, TN); Solomon, Robert L. (Seattle, WA); Wilson, Gregory L. (Redmond, WA); Herrigel, Howard R. (Seattle, WA)

    1991-01-01

    The specification discloses a spent seed recovery and regeneration process for an MHM power plant employing an alkali metal salt seed material such as potassium salt wherein the spent potassium seed in the form of potassium sulfate is collected from the flue gas and reacted with calcium hydroxide and carbon monoxide in an aqueous solution to cause the formation of calcium sulfate and potassium formate. The pH of the solution is adjusted to supress formation of formic acid and to promote precipitation of any dissolved calcium salts. The solution containing potassium formate is then employed to provide the potassium salt in the form of potassium formate or, optionally, by heating the potassium formate under oxidizing conditions to convert the potassium formate to potassium carbonate.

  12. Recovery and regeneration of spent MHD seed material by the formate process

    DOE Patents [OSTI]

    Sheth, A.C.; Holt, J.K.; Rasnake, D.G.; Solomon, R.L.; Wilson, G.L.; Herrigel, H.R.

    1991-10-15

    The specification discloses a spent seed recovery and regeneration process for an MHD power plant employing an alkali metal salt seed material such as potassium salt wherein the spent potassium seed in the form of potassium sulfate is collected from the flue gas and reacted with calcium hydroxide and carbon monoxide in an aqueous solution to cause the formation of calcium sulfate and potassium formate. The pH of the solution is adjusted to suppress formation of formic acid and to promote precipitation of any dissolved calcium salts. The solution containing potassium formate is then employed to provide the potassium salt in the form of potassium formate or, optionally, by heating the potassium formate under oxidizing conditions to convert the potassium formate to potassium carbonate. 5 figures.

  13. Long-term kinetic effects and colloid formations in dissolution of LWR spent fuels

    SciTech Connect (OSTI)

    Ahn, T.M.

    1996-11-01

    This report evaluates continuous dissolution and colloid formation during spent-fuel performance under repository conditions in high-level waste disposal. Various observations suggest that reprecipitated layers formed on spent-fuel surfaces may not be protective. This situation may lead to continuous dissolution of highly soluble radionuclides such as C-14, Cl-36, Tc-99, I-129, and Cs-135. However, the diffusion limits of various species involved may retard dissolution significantly. For low-solubility actinides such as Pu-(239+240) or Am-(241+243), various processes regarding colloid formation have been analyzed. The processes analyzed are condensation, dispersion, and sorption. Colloid formation may lead to significant releases of low-solubility actinides. However, because there are only limited data available on matrix dissolution, colloid formation, and solubility limits, many uncertainties still exist. These uncertainties must be addressed before the significance of radionuclide releases can be determined. 118 refs.

  14. A method for determining the spent-fuel contribution to transport cask containment requirements

    SciTech Connect (OSTI)

    Sanders, T.L.; Seager, K.D.; Rashid, Y.R.; Barrett, P.R.; Malinauskas, A.P.; Einziger, R.E.; Jordan, H.; Duffey, T.A.; Sutherland, S.H.; Reardon, P.C.

    1992-11-01

    This report examines containment requirements for spent-fuel transport containers that are transported under normal and hypothetical accident conditions. A methodology is described that estimates the probability of rod failure and the quantity of radioactive material released from breached rods. This methodology characterizes the dynamic environment of the cask and its contents and deterministically models the peak stresses that are induced in spent-fuel cladding by the mechanical and thermal dynamic environments. The peak stresses are evaluated in relation to probabilistic failure criteria for generated or preexisting ductile tearing and material fractures at cracks partially through the wall in fuel rods. Activity concentrations in the cask cavity are predicted from estimates of the fraction of gases, volatiles, and fuel fines that are released when the rod cladding is breached. Containment requirements based on the source term are calculated in terms of maximum permissible volumetric leak rates from the cask. Calculations are included for representative cask designs.

  15. Chemical reactivity testing for the National Spent Nuclear Fuel Program. Revision 2

    SciTech Connect (OSTI)

    Koester, L.W.

    2000-02-08

    This quality assurance project plan (QAPjP) summarizes requirements used by Lockheed Martin Energy Systems, Incorporated (LMES) Development Division at Y-12 for conducting chemical reactivity testing of Department of Energy (DOE) owned spent nuclear fuel, sponsored by the National Spent Nuclear Fuel Program (NSNFP). The requirements are based on the NSNFP Statement of work PRO-007 (Statement of Work for Laboratory Determination of Uranium Hydride Oxidation Reaction Kinetics.) This QAPjP will utilize the quality assurance program at Y-12, Y60-101PD, Quality Program Description, and existing implementing procedures for the most part in meeting the NSNFP Statement of Work PRO-007 requirements, exceptions will be noted. The project consists of conducting three separate series of related experiments, ''Passivation of Uranium Hydride Powder With Oxygen and Water'', '''Passivation of Uranium Hydride Powder with Surface Characterization'', and ''Electrochemical Measure of Uranium Hydride Corrosion Rate''.

  16. Plan for characterization of K Basin spent nuclear fuel and sludge

    SciTech Connect (OSTI)

    Lawrence, L.A.; Marschman, S.C.

    1995-06-01

    This plan outlines a characterization program that supports the accelerated Path Forward scope and schedules for the Spent Nuclear Fuel stored in the Hanford K Basins. This plan is driven by the schedule to begin fuel transfer by December 1997. The program is structured for 4 years and is limited to in-situ and laboratory examinations of the spent nuclear fuel and sludge in the K East and K West Basins. The program provides bounding behavior of the fuel, and verification and acceptability for three different sludge disposal pathways. Fuel examinations are based on two shipping campaigns for the K West Basin and one from the K East Basin. Laboratory examinations include physical condition, hydride and oxide content, conditioning testing, and dry storage behavior.

  17. Molten tin reprocessing of spent nuclear fuel elements. [Patent application; continuous process

    DOE Patents [OSTI]

    Heckman, R.A.

    1980-12-19

    A method and apparatus for reprocessing spent nuclear fuel is described. Within a containment vessel, a solid plug of tin and nitride precipitates supports a circulating bath of liquid tin therein. Spent nuclear fuel is immersed in the liquid tin under an atmosphere of nitrogen, resulting in the formation of nitride precipitates. The layer of liquid tin and nitride precipitates which interfaces the plug is solidified and integrated with the plug. Part of the plug is melted, removing nitride precipitates from the containment vessel, while a portion of the plug remains solidified to support te liquid tin and nitride precipitates remaining in the containment vessel. The process is practiced numerous times until substantially all of the precipitated nitrides are removed from the containment vessel.

  18. Annual Radiological Environmental Monitoring Program Report for the Fort St. Vrain Independent Spent Fuel Storage Installation

    SciTech Connect (OSTI)

    Hall, Gregory Graham; Newkirk, Jay Ronald; Borst, Frederick Jon

    2002-02-01

    This report presents the results of the 2001 Radiological Environmental Monitoring Program conducted in accordance with 10 CFR 72.44 for the Fort St. Vrain Independent Spent Fuel Storage Installation. A description of the facility and the monitoring program is provided. The results of monitoring the predominant radiation exposure pathway, direct and scattered radiation exposure, indicate the facility operation has not contributed to any increase in the estimated maximum potential dose commitment to the general public.

  19. Spent Nuclear Fuel Self-Induced XRF to Predict Pu to U Content 

    E-Print Network [OSTI]

    Stafford, Alissa Sarah

    2010-10-12

    Los Alamos National Laboratory LEGe Low Energy Germanium Detector LWR Light Water Reactor MC&A Material Control and Accountability MCNP Monte Carlo N?Particle NDA Nondestructive Assay NRC Nuclear Regulatory Committee NRF... measurements would not reflect the Pu to U ratio measured results. Also, for LWR fuel the Pu content is ~1% whereas for fast reactor fuel the Pu content may be 40%. Bushuev?s work showed that distinguishing Pu x-rays in the spent fuel gamma spectrum...

  20. The CASTOR-V/21 PWR spent-fuel storage cask: Testing and analyses: Interim report

    SciTech Connect (OSTI)

    Dziadosz, D.; Moore, E.V.; Creer, J.M.; McCann, R.A.; McKinnon, M.A.; Tanner, J.E.; Gilbert, E.R.; Goodman, R.L.; Schoonen, D.H.; Jensen, M.

    1986-11-01

    A performance test of a Gesellschaft fuer Nuklear Service CASTOR-V/21 pressurized water reactor (PWR) spent fuel storage cask was performed. The test was the first of a series of cask performance tests planned under a cooperative agreement between Virginia Power and the US Department of Energy. The performance test consisted of loading the CASTOR-V/21 cask with 21 PWR spent fuel assemblies from Virginia Power's Surry reactor. Cask surface and fuel assembly guide tube temperatures, and cask surface gamma and neutron dose rates were measured. Testing was performed with vacuum, nitrogen, and helium backfill environments in both vertical and horizontal cask orientations. Limited spent fuel integrity data were also obtained. Results of the performance test indicate the CASTOR-V/21 cask exhibited exceptionally good heat transfer performance which exceeded design expectations. Peak cladding temperatures with helium and nitrogen backfills in a vertical cast orientation and with helium in a horizontal orientation were less than the allowable of 380/sup 0/C with a total cask heat load of 28 kW. Significant convection heat transfer was present in vertical nitrogen and helium test runs as indicated by peak temperatures occurring in the upper regions of the fuel assemblies. Pretest temperature predictions of the HYDRA heat transfer computer program were in good agreement with test data, and post-test predictions agreed exceptionally well (25/sup 0/C) with data. Cask surface gamma and neutron dose rates were measured to be less than the design goal of 200 mrem/h. Localized peaks as high as 163 mrem/h were measured on the side of the cask, but peak dose rates of <75 mrem/h can easily be achieved with minor refinements to the gamma shielding design. From both heat transfer and shielding perspectives, the CASTOR-V/21 cask can, with minor refinements, be effectively implemented at reactor sites and central storage facilities for safe storage of spent fuel.

  1. MELCOR model for an experimental 17x17 spent fuel PWR assembly.

    SciTech Connect (OSTI)

    Cardoni, Jeffrey

    2010-11-01

    A MELCOR model has been developed to simulate a pressurized water reactor (PWR) 17 x 17 assembly in a spent fuel pool rack cell undergoing severe accident conditions. To the extent possible, the MELCOR model reflects the actual geometry, materials, and masses present in the experimental arrangement for the Sandia Fuel Project (SFP). The report presents an overview of the SFP experimental arrangement, the MELCOR model specifications, demonstration calculation results, and the input model listing.

  2. Conceptual design of the Clinch River Breeder Reactor spent-fuel shipping cask

    SciTech Connect (OSTI)

    Pope, R B; Diggs, J M [eds.

    1982-04-01

    Details of a baseline conceptual design of a spent fuel shipping cask for the Clinch River Breeder Reactor (CRBR) are presented including an assessment of shielding, structural, thermal, fabrication and cask/plant interfacing problems. A basis for continued cask development and for new technological development is established. Alternates to the baseline design are briefly presented. Estimates of development schedules, cask utilization and cost schedules, and of personnel dose commitments during CRBR in-plant handling of the cask are also presented.

  3. Interface agreement for the management of 308 Building Spent Nuclear Fuel. Revision 1

    SciTech Connect (OSTI)

    Danko, A.D.

    1995-12-22

    The Hanford Site Spent Nuclear Fuel (SNF) Project was formed to manage the SNF at Hanford. Specifically, the mission of the SNF Project on the Hanford Site is to ``provide safe, economic, environmentally sound management of Hanford SNF in a manner which stages it for final disposition.`` The current mission of the Fuel Fabrication Facilities Transition Project (FFFTP) is to transition the 308 Building for turn over to the Environmental Restoration Contractor for decontamination and decommissioning.

  4. A GAMMA RAY SCANNING APPROACH TO QUANTIFY SPENT FUEL CASK RADIONUCLIDE CONTENTS

    SciTech Connect (OSTI)

    Branney, S.

    2011-07-01

    The International Atomic Energy Agency (IAEA) has outlined a need to develop methods of allowing re-verification of LWR spent fuel stored in dry storage casks without the need of a reference baseline measurement. Some scanning methods have been developed, but improvements can be made to readily provide required data for spent fuel cask verification. The scanning process should be conditioned to both confirm the contents and detect any changes due to container/contents degradation or unauthorized removal or tampering. Savannah River National Laboratory and The University of Tennessee are exploring a new method of engineering a high efficiency, cost effective detection system, capable of meeting the above defined requirements in a variety of environmental situations. An array of NaI(Tl) detectors, arranged to form a 'line scan' along with a matching array of 'honeycomb' collimators provide a precisely defined field of view with minimal degradation of intrinsic detection efficiency and with significant scatter rejection. Scanning methods are adapted to net optimum detection efficiency of the combined system. In this work, and with differing detectors, a series of experimental demonstrations are performed that map system spatial performance and counting capability before actual spent fuel cask scans are performed. The data are evaluated to demonstrate the prompt ability to identify missing fuel rods or other content abnormalities. To also record and assess cask tampering, the cask is externally examined utilizing FTIR hyper spectral and other imaging/sensing approaches. This provides dated records and indications of external abnormalities (surface deposits, smears, contaminants, corrosion) attributable to normal degradation or to tampering. This paper will describe the actual gathering of data in both an experimental climate and from an actual spent fuel dry storage cask, and how an evaluation may be performed by an IAEA facility inspector attempting to draw an independent safeguards conclusion concerning the status of the special nuclear material.

  5. Disposal options for burner ash from spent graphite fuel. Final study report November 1993

    SciTech Connect (OSTI)

    Pinto, A.P.

    1994-08-01

    Three major disposal alternatives are being considered for Fort St. Vrain Reactor (FSVR) and Peach Bottom Reactor (PBR) spent fuels: direct disposal of packaged, intact spent fuel elements; (2) removal of compacts to separate fuel into high-level waste (HLW) and low-level waste (LLW); and (3) physical/chemical processing to reduce waste volumes and produce stable waste forms. For the third alternative, combustion of fuel matrix graphite and fuel particle carbon coatings is a preferred technique for head-end processing as well as for volume reduction and chemical pretreatment prior to final fixation, packaging, and disposal of radioactive residuals (fissile and fertile materials together with fission and activation products) in a final repository. This report presents the results of a scoping study of alternate means for processing and/or disposal of fissile-bearing particles and ash remaining after combustion of FSVR and PBR spent graphite fuels. Candidate spent fuel ash (SFA) waste forms in decreasing order of estimated technical feasibility include glass-ceramics (GCs), polycrystalline ceramic assemblages (PCAs), and homogeneous amorphous glass. Candidate SFA waste form production processes in increasing order of estimated effort and cost for implementation are: low-density GCs via fuel grinding and simultaneous combustion and waste form production in a slagging cyclone combustor (SCC); glass or low-density GCs via fluidized bed SFA production followed by conventional melting of SFA and frit; PCAs via fluidized bed SFA production followed by hot isostatic pressing (HIPing) of SFA/frit mixtures; and high-density GCs via fluidized bed SFA production followed by HIPing of Calcine/Frit/SFA mixtures.

  6. Process and apparatus for recovery of fissionable materials from spent reactor fuel by anodic dissolution

    DOE Patents [OSTI]

    Tomczuk, Zygmunt (Orland Park, IL); Miller, William E. (Naperville, IL); Wolson, Raymond D. (Lockport, IL); Gay, Eddie C. (Park Forest, IL)

    1991-01-01

    An electrochemical process and apparatus for the recovery of uranium and plutonium from spent metal clad fuel pins is disclosed. The process uses secondary reactions between U.sup.+4 cations and elemental uranium at the anode to increase reaction rates and improve anodic efficiency compared to prior art processes. In another embodiment of the process, secondary reactions between Cd.sup.+2 cations and elemental uranium to form uranium cations and elemental cadmium also assists in oxidizing the uranium at the anode.

  7. Separation of uranium from technetium in recovery of spent nuclear fuel

    DOE Patents [OSTI]

    Pruett, D.J.; McTaggart, D.R.

    1983-08-31

    Uranium and technetium in the product stream of the Purex process for recovery of uranium in spent nuclear fuel are separated by (1) contacting the aqueous Purex product stream with hydrazine to reduce Tc/sup +7/ therein to a reduced species, and (2) contacting said aqueous stream with an organic phase containing tributyl phosphate and an organic diluent to extract uranium from said aqueous stream into said organic phase.

  8. Removal of arsenic, vanadium and/or nickel compounds from spent catecholated polymer

    DOE Patents [OSTI]

    Fish, Richard H. (Berkeley, CA)

    1987-01-01

    Described is a process for removing arsenic, vanadium, and/or nickel from petroliferous derived liquids by contacting said liquid at an elevated temperature with a divinylbenzene-crosslinked polystyrene having catechol ligands anchored thereon. For vanadium and nickel removal an amine, preferably a diamine is included. Also, described is a process for regenerating spent catecholated polystyrene by removal of the arsenic, vanadium, and/or nickel bound to it from contacting petroliferous liquid as described above and involves: treating the spent polymer containing any vanadium and/or nickel with an aqueous acid to achieve an acid pH; and, separating the solids from the liquid; and then treating said spent catecholated polystyrene, at a temperature in the range of about 20.degree. to 100.degree. C. with an aqueous solution of at least one carbonate and/or bicarbonate of ammonium, alkali and alkaline earth metals, said solution having a pH between about 8 and 10; and, separating the solids and liquids from each other. Preferably the regeneration treatment of arsenic containing catecholated polymer is in two steps wherein the first step is carried out with an aqueous alcoholic carbonate solution containing lower alkyl alcohol, and, the steps are repeated using a bicarbonate.

  9. Removal of arsenic, vanadium and/or nickel compounds from spent catecholated polymer

    DOE Patents [OSTI]

    Fish, R.H.

    1987-04-21

    Described is a process for removing arsenic, vanadium, and/or nickel from petroliferous derived liquids by contacting said liquid at an elevated temperature with a divinylbenzene-crosslinked polystyrene having catechol ligands anchored thereon. For vanadium and nickel removal an amine, preferably a diamine is included. Also, described is a process for regenerating spent catecholated polystyrene by removal of the arsenic, vanadium, and/or nickel bound to it from contacting petroliferous liquid as described above and involves: treating the spent polymer containing any vanadium and/or nickel with an aqueous acid to achieve an acid pH; and, separating the solids from the liquid; and then treating said spent catecholated polystyrene, at a temperature in the range of about 20 to 100 C with an aqueous solution of at least one carbonate and/or bicarbonate of ammonium, alkali and alkaline earth metals, said solution having a pH between about 8 and 10; and, separating the solids and liquids from each other. Preferably the regeneration treatment of arsenic containing catecholated polymer is in two steps wherein the first step is carried out with an aqueous alcoholic carbonate solution containing lower alkyl alcohol, and, the steps are repeated using a bicarbonate.

  10. Spent Fuel Test - Climax: technical measurements. Interim report, fiscal year 1982

    SciTech Connect (OSTI)

    Patrick, W.C.; Ballou, L.B.; Butkovich, T.R.; Carlson, R.C.; Durham, W.B.; Hage, G.L.; Majer, E.L.; Montan, D.N.; Nyholm, R.A.; Rector, N.L.

    1983-02-01

    The Spent Fuel Test - Climax (SFT-C) is located 420 m below surface in the Climax stock granite on the Nevada Test Site. The test is being conducted for the US Department of Energy (DOE) under the technical direction of the Lawrence Livermore National Laboratory (LLNL). Eleven canisters of spent nuclear reactor fuel were emplaced, and six electrical simulators were energized April to May 1980, thus initiating a test with a planned 3- to 5-year fuel storage phase. The SFT-C operational objective of demonstrating the feasibility of packaging, transporting, storing, and retrieving highly radioactive fuel assemblies in a safe and reliable manner has been met. Three exchanges of spent fuel between the SFT-C and a surface storage facility furthered this demonstration. Technical objectives of the test led to development of a technical measurements program, which is the subject of this and two previous interim reports. Geotechnical, seismological, and test status data have been recorded on a continuing basis for the first 2-1/2 years of the test on more than 900 channels. Data continue to be acquired from the test. Some data are now available for analysis and are presented here. Highlights of activities this year include analysis of fracture data obtained during site characterization, laboratory studies of radiation effects and drilling damage in Climax granite, improved calculations of near-field heat transfer and thermomechanical response, a ventilation effects study, and further development of the data acquisition and management systems.

  11. Air Shipment of Highly Enriched Uranium Spent Nuclear Fuel from Romania

    SciTech Connect (OSTI)

    K. J. Allen; I. Bolshinsky; L. L. Biro; M. E. Budu; N. V. Zamfir; M. Dragusin

    2010-07-01

    Romania safely air shipped 23.7 kilograms of Russian origin highly enriched uranium (HEU) spent nuclear fuel from the VVR S research reactor at Magurele, Romania, to the Russian Federation in June 2009. This was the world’s first air shipment of spent nuclear fuel transported in a Type B(U) cask under existing international laws without special exceptions for the air transport licenses. This shipment was coordinated by the Russian Research Reactor Fuel Return Program (RRRFR), part of the U.S. Department of Energy Global Threat Reduction Initiative (GTRI), in cooperation with the Romania National Commission for Nuclear Activities Control (CNCAN), the Horia Hulubei National Institute of Physics and Nuclear Engineering (IFIN-HH), and the Russian Federation State Corporation Rosatom. The shipment was transported by truck to and from the respective commercial airports in Romania and the Russian Federation and stored at a secure nuclear facility in Russia where it will be converted into low enriched uranium. With this shipment, Romania became the 3rd country under the RRRFR program and the 14th country under the GTRI program to remove all HEU. This paper describes the work, equipment, and approvals that were required to complete this spent fuel air shipment.

  12. Analysis of Experimental Data for High Burnup PWR Spent Fuel Isotopic Validation - Vandellos II Reactor

    SciTech Connect (OSTI)

    Ilas, Germina; Gauld, Ian C

    2011-01-01

    This report is one of the several recent NUREG/CR reports documenting benchmark-quality radiochemical assay data and the use of the data to validate computer code predictions of isotopic composition for spent nuclear fuel, to establish the uncertainty and bias associated with code predictions. The experimental data analyzed in the current report were acquired from a high-burnup fuel program coordinated by Spanish organizations. The measurements included extensive actinide and fission product data of importance to spent fuel safety applications, including burnup credit, decay heat, and radiation source terms. Six unique spent fuel samples from three uranium oxide fuel rods were analyzed. The fuel rods had a 4.5 wt % {sup 235}U initial enrichment and were irradiated in the Vandellos II pressurized water reactor operated in Spain. The burnups of the fuel samples range from 42 to 78 GWd/MTU. The measurements were used to validate the two-dimensional depletion sequence TRITON in the SCALE computer code system.

  13. Calculated and measured drift closure during the spent-fuel test in Climax granite

    SciTech Connect (OSTI)

    Yow, J.L. Jr.; Butkovich, T.R.

    1982-04-01

    Horizontal and vertical measurements of drift closures have been made with a manually operated tape extensometer since about 6 weeks after the emplacement of the spent fuel at various locations along the length of the drifts. The averaged closures are less than 0.6 mm from the onset of measurements through about two years after the spent fuel emplacement. These results have been compared with thermo-elastic finite element calculations using measured medium properties. The comparisons show that most of the closure of the drifts occurred between the time the spent fuel was emplaced and the time of first measurement. The comparisons show that the results track each other, in that where closure followed by dilation is measured, the calculations also show this effect. The agreement is excellent, although where closures of less than 0.2 mm are measured the comparison with calculations is limited by measurement reproducability. Once measurements commenced the averaged measured closures remain to within 30% of the calculated total closure in each drift. 9 figures, 1 table.

  14. Acceptance of spent nuclear fuel in multiple element sealed canisters by the Federal Waste Management System

    SciTech Connect (OSTI)

    Not Available

    1990-03-01

    This report is one of a series of eight prepared by E.R. Johnson Associates, Inc. (JAI) under ORNL's contract with DOE's OCRWM Systems Integration Program and in support of the Annual Capacity Report (ACR) Issue Resolution Process. The report topics relate specifically to the list of high priority technical waste acceptance issues developed jointly by DOE and a utility-working group. JAI performed various analyses and studies on each topic to serve as starting points for further discussion and analysis leading eventually to finalizing the process by which DOE will accept spent fuel and waste into its waste management system. The eight reports are concerned with the conditions under which spent fuel and high level waste will be accepted in the following categories: (1) failed fuel; (2) consolidated fuel and associated structural parts; (3) non-fuel-assembly hardware; (4) fuel in metal storage casks; (5) fuel in multi-element sealed canisters; (6) inspection and testing requirements for wastes; (7) canister criteria; (8) spent fuel selection for delivery; and (9) defense and commercial high-level waste packages. 14 refs., 27 figs.

  15. Measurement of plutonium in spent nuclear fuel by self-induced x-ray fluorescence

    SciTech Connect (OSTI)

    Hoover, Andrew S; Rudy, Cliff R; Tobin, Steve J; Charlton, William S; Stafford, A; Strohmeyer, D; Saavadra, S

    2009-01-01

    Direct measurement of the plutonium content in spent nuclear fuel is a challenging problem in non-destructive assay. The very high gamma-ray flux from fission product isotopes overwhelms the weaker gamma-ray emissions from plutonium and uranium, making passive gamma-ray measurements impossible. However, the intense fission product radiation is effective at exciting plutonium and uranium atoms, resulting in subsequent fluorescence X-ray emission. K-shell X-rays in the 100 keV energy range can escape the fuel and cladding, providing a direct signal from uranium and plutonium that can be measured with a standard germanium detector. The measured plutonium to uranium elemental ratio can be used to compute the plutonium content of the fuel. The technique can potentially provide a passive, non-destructive assay tool for determining plutonium content in spent fuel. In this paper, we discuss recent non-destructive measurements of plutonium X-ray fluorescence (XRF) signatures from pressurized water reactor spent fuel rods. We also discuss how emerging new technologies, like very high energy resolution microcalorimeter detectors, might be applied to XRF measurements.

  16. Precisely determined the spent nuclear fuel antineutrino flux and spectrum for Daya Bay antineutrino experiment

    E-Print Network [OSTI]

    Ma, X B; Chen, Y X; Zhong, W L; An, F P

    2015-01-01

    Spent nuclear fuel (SNF) antineutrino flux is an important source of uncertainties for a reactor neutrino flux prediction. However, if one want to determine the contribution of spent fuel, many data are needed, such as the amount of spent fuel in the pool, the time after discharged from the reactor core, the burnup of each assembly, and the antineutrino spectrum of the isotopes in the spend fuel. A method to calculate the contribution of SNF is proposed in this study. In this method, reactor simulation code verified by experiment have been used to simulate the fuel depletion by taking into account more than 2000 isotopes and fission products, the quantity of SNF in each six spend fuel pool, and the antineutrino spectrum of SNF varying with time after SNF discharged from core. Results show that the contribution of SNF to the total antineutrino flux is about 0.26%~0.34%, and the shutdown impact is about 20%. The SNF spectrum would distort the softer part of antineutrino spectra, and the maximum contribution fro...

  17. Integrated data base report - 1994: US spent nuclear fuel and radioactive waste inventories, projections, and characteristics

    SciTech Connect (OSTI)

    1995-09-01

    The Integrated Data Base Program has compiled historic data on inventories and characteristics of both commercial and U.S. Department of Energy (DOE) spent nuclear fuel and commercial and U.S. government-owned radioactive wastes. Except for transuranic wastes, inventories of these materials are reported as of December 31, 1994. Transuranic waste inventories are reported as of December 31, 1993. All spent nuclear fuel and radioactive waste data reported are based on the most reliable information available from government sources, the open literature, technical reports, and direct contacts. The information forecasted is consistent with the latest DOE/Energy Information Administration (EIA) projections of U.S. commercial nuclear power growth and the expected DOE-related and private industrial and institutional activities. The radioactive materials considered, on a chapter-by-chapter basis, are spent nuclear fuel, high-level waste, transuranic waste, low-level waste, commercial uranium mill tailings, DOE Environmental Restoration Program contaminated environmental media, commercial reactor and fuel-cycle facility decommissioning wastes, and mixed (hazardous and radioactive) low-level waste. For most of these categories, current and projected inventories are given through the calendar-year 2030, and the radioactivity and thermal power are calculated based on reported or estimated isotopic compositions.

  18. Characterization program management plan for Hanford K Basin Spent Nuclear Fuel

    SciTech Connect (OSTI)

    Lawrence, L.A.

    1995-10-18

    A management plan was developed for Westinghouse Hanford Company (WHC) and Pacific Northwest Laboratories (PNL) to work together on a program to provide characterization data to support removal, conditioning and subsequent dry storage of the spent nuclear fuels stored at the Hanford K Basins. The Program initially supports gathering data to establish the current state of the fuel in the two basins. Data Collected during this initial effort will apply to all SNF Project objectives. N Reactor fuel has been degrading with extended storage resulting in release of material to the basin water in K East and to the closed conisters in K West. Characterization of the condition of these materials and their responses to various conditioning processes and dry storage environments are necessary to support disposition decisions. Characterization will utilize the expertise and capabilities of WHC and PNL organizations to support the Spent Nuclear Fuels Project goals and objectives. This Management Plan defines the structure and establishes the roles for the participants providing the framework for WHC and PNL to support the Spent Nuclear Fuels Project at Hanford

  19. Development of INSPCT-S for inspection of spent fuel pool

    SciTech Connect (OSTI)

    Walters, W.; Haghighat, A. [Nuclear Engineering Program, Mechanical Engineering Dept., Virginia Tech., Blacksburg, VA 24061 (United States); Sitaraman, S.; Ham, Y. [Lawrence Livermore National Laboratory, 7000 East Ave., Livermore, CA 94550 (United States)

    2011-07-01

    In this paper, we discuss an accurate and fast software tool (INSPCT-S, Inspection of Nuclear Spent fuel-Pool Calculation Tool, version Spreadsheet) developed for calculation of the response of fission chambers placed in a spent fuel pool, such as Atucha-I. INSPCT-S is developed for identification of suspicious regions of the pool that may have missing or substitute assemblies. INSPCT-S uses a hybrid algorithm based on the adjoint function methodology. The neutron source is comprised of spontaneous fission, ({alpha}, n) interactions, and subcritical multiplication. The former is evaluated using the ORIGEN-ARP code, and the latter is obtained with the fission matrix (FM) formulation. The FM coefficients are determined using the MCNP Monte Carlo code, and the importance function is determined using the PENTRAN 3-D parallel Sn code. Three databases for the neutron source, FM elements, and adjoint flux are prepared as functions of different parameters including burnup, cooling time, enrichment, and pool lattice size. INSPCT-S uses the aforementioned databases and systems of equations to calculate detector responses, which are subsequently compared with normalized experimental data. If this comparison is not satisfied, INSPCT-S utilizes color coding to identify the suspicious regions of a spent fuel pool. (authors)

  20. Dry halide method for separating the components of spent nuclear fuels

    DOE Patents [OSTI]

    Christian, J.D.; Thomas, T.R.; Kessinger, G.F.

    1998-06-30

    The invention is a nonaqueous, single method for processing multiple spent nuclear fuel types by separating the fission and transuranic products from the nonradioactive and fissile uranium product. The invention has four major operations: exposing the spent fuels to chlorine gas at temperatures preferably greater than 1200 C to form volatile metal chlorides; removal of the fission product chlorides, transuranic product chlorides, and any nickel chloride and chromium chloride in a molten salt scrubber at approximately 400 C; fractional condensation of the remaining volatile chlorides at temperatures ranging from 164 to 2 C; and regeneration and recovery of the transferred spent molten salt by vacuum distillation. The residual fission products, transuranic products, and nickel- and chromium chlorides are converted to fluorides or oxides for vitrification. The method offers the significant advantages of a single, compact process that is applicable to most of the diverse nuclear fuels, minimizes secondary wastes, segregates fissile uranium from the high level wastes to resolve potential criticality concerns, segregates nonradioactive wastes from the high level wastes for volume reduction, and produces a common waste form glass or glass-ceramic. 3 figs.

  1. Dry halide method for separating the components of spent nuclear fuels

    DOE Patents [OSTI]

    Christian, Jerry Dale (Idaho Falls, ID); Thomas, Thomas Russell (Rigby, ID); Kessinger, Glen F. (Idaho Falls, ID)

    1998-01-01

    The invention is a nonaqueous, single method for processing multiple spent nuclear fuel types by separating the fission- and transuranic products from the nonradioactive and fissile uranium product. The invention has four major operations: exposing the spent fuels to chlorine gas at temperatures preferably greater than 1200.degree. C. to form volatile metal chlorides; removal of the fission product chlorides, transuranic product chlorides, and any nickel chloride and chromium chloride in a molten salt scrubber at approximately 400.degree. C.; fractional condensation of the remaining volatile chlorides at temperatures ranging from 164.degree. C. to 2.degree. C.; and regeneration and recovery of the transferred spent molten salt by vacuum distillation. The residual fission products, transuranic products, and nickel- and chromium chlorides are converted to fluorides or oxides for vitrification. The method offers the significant advantages of a single, compact process that is applicable to most of the diverse nuclear fuels, minimizes secondary wastes, segregates fissile uranium from the high level wastes to resolve potential criticality concerns, segregates nonradioactive wastes from the high level wastes for volume reduction, and produces a common waste form glass or glass-ceramic.

  2. Precisely determined the spent nuclear fuel antineutrino flux and spectrum for Daya Bay antineutrino experiment

    E-Print Network [OSTI]

    X. B. Ma; Y. F. Zhao; Y. X. Chen; W. L. Zhong; F. P. An

    2015-12-23

    Spent nuclear fuel (SNF) antineutrino flux is an important source of uncertainties for a reactor neutrino flux prediction. However, if one want to determine the contribution of spent fuel, many data are needed, such as the amount of spent fuel in the pool, the time after discharged from the reactor core, the burnup of each assembly, and the antineutrino spectrum of the isotopes in the spend fuel. A method to calculate the contribution of SNF is proposed in this study. In this method, reactor simulation code verified by experiment have been used to simulate the fuel depletion by taking into account more than 2000 isotopes and fission products, the quantity of SNF in each six spend fuel pool, and the antineutrino spectrum of SNF varying with time after SNF discharged from core. Results show that the contribution of SNF to the total antineutrino flux is about 0.26%~0.34%, and the shutdown impact is about 20%. The SNF spectrum would distort the softer part of antineutrino spectra, and the maximum contribution from SNF is about 3.0%, but there is 18\\% difference between line evaluate method and under evaluate method. In addition, non-equilibrium effects are also discussed, and the results are compatible with theirs considering the uncertainties.

  3. The Effect of Acid Additives on Carbonate Rock Wettability and Spent Acid Recovery in Low Permeability Gas Carbonates 

    E-Print Network [OSTI]

    Saneifar, Mehrnoosh

    2012-10-19

    Spent acid retention in the near-wellbore region causes reduction of relative permeability to gas and eventually curtailed gas production. In low-permeability gas carbonate reservoirs, capillary forces are the key parameters that affect the trapping...

  4. Foreign travel report: Visits to UK, Belgium, Germany, and France to benchmark European spent fuel and waste management technology

    SciTech Connect (OSTI)

    Ermold, L.F.; Knecht, D.A.

    1993-08-01

    The ICPP WINCO Spent Fuel and Waste Management Development Program recently was funded by DOE-EM to develop new technologies for immobilizing ICPP spent fuels, sodium-bearing liquid waste, and calcine to a form suitable for disposal. European organizations are heavily involved, in some cases on an industrial scale in areas of waste management, including spent fuel disposal and HLW vitrification. The purpose of this trip was to acquire first-hand European efforts in handling of spent reactor fuel and nuclear waste management, including their processing and technical capabilities as well as their future planning. Even though some differences exist in European and U.S. DOE waste compositions and regulations, many aspects of the European technologies may be applicable to the U.S. efforts, and several areas offer potential for technical collaboration.

  5. RedSeal Comments on "Smart Grid RFI: Addressing Policy and Logistical...

    Energy Savers [EERE]

    RedSeal Comments on "Smart Grid RFI: Addressing Policy and Logistical Challenges. RedSeal Comments on "Smart Grid RFI: Addressing Policy and Logistical Challenges. RedSeal Comments...

  6. DEVELOPMENT OF METHODOLOGY AND FIELD DEPLOYABLE SAMPLING TOOLS FOR SPENT NUCLEAR FUEL INTERROGATION IN LIQUID STORAGE

    SciTech Connect (OSTI)

    Berry, T.; Milliken, C.; Martinez-Rodriguez, M.; Hathcock, D.; Heitkamp, M.

    2012-06-04

    This project developed methodology and field deployable tools (test kits) to analyze the chemical and microbiological condition of the fuel storage medium and determine the oxide thickness on the spent fuel basin materials. The overall objective of this project was to determine the amount of time fuel has spent in a storage basin to determine if the operation of the reactor and storage basin is consistent with safeguard declarations or expectations. This project developed and validated forensic tools that can be used to predict the age and condition of spent nuclear fuels stored in liquid basins based on key physical, chemical and microbiological basin characteristics. Key parameters were identified based on a literature review, the parameters were used to design test cells for corrosion analyses, tools were purchased to analyze the key parameters, and these were used to characterize an active spent fuel basin, the Savannah River Site (SRS) L-Area basin. The key parameters identified in the literature review included chloride concentration, conductivity, and total organic carbon level. Focus was also placed on aluminum based cladding because of their application to weapons production. The literature review was helpful in identifying important parameters, but relationships between these parameters and corrosion rates were not available. Bench scale test systems were designed, operated, harvested, and analyzed to determine corrosion relationships between water parameters and water conditions, chemistry and microbiological conditions. The data from the bench scale system indicated that corrosion rates were dependent on total organic carbon levels and chloride concentrations. The highest corrosion rates were observed in test cells amended with sediment, a large microbial inoculum and an organic carbon source. A complete characterization test kit was field tested to characterize the SRS L-Area spent fuel basin. The sampling kit consisted of a TOC analyzer, a YSI multiprobe, and a thickness probe. The tools were field tested to determine their ease of use, reliability, and determine the quality of data that each tool could provide. Characterization was done over a two day period in June 2011, and confirmed that the L Area basin is a well operated facility with low corrosion potential.

  7. Gastropods and their habitats from the northern Red Sea (Egypt: Safaga)

    E-Print Network [OSTI]

    Zuschin, Martin

    Gastropods and their habitats from the northern Red Sea (Egypt: Safaga) Part 1: Patellogastropoda. Keywords: Mollusca, biodiversity, Red Sea, Indian Ocean, Egypt, assemblages Zusammenfassung Mehr als 2100

  8. Extremely red stellar objects revealed by IPHAS

    E-Print Network [OSTI]

    N. J. Wright; R. Greimel; M. J. Barlow; J. E. Drew; M. -R. L. Cioni; A. A. Zijlstra; R. L. M. Corradi; E. A. González-Solares; P. Groot; J. Irwin; M. J. Irwin; A. Mampaso; R. A. H. Morris; D. Steeghs; Y. C. Unruh; N. Walton

    2008-11-04

    We present photometric analysis and follow-up spectroscopy for a population of extremely red stellar objects extracted from the point-source catalogue of the INT Photometric H-Alpha Survey (IPHAS) of the northern galactic plane. The vast majority of these objects have no previous identification. Analysis of optical, near- and mid-infrared photometry reveals that they are mostly highly-reddened asymptotic giant branch stars, with significant levels of circumstellar material. We show that the distribution of these objects traces galactic extinction, their highly reddened colours being a product of both interstellar and circumstellar reddening. This is the first time that such a large sample of evolved low-mass stars has been detected in the visual and allows optical counterparts to be associated with sources from recent infrared surveys. Follow-up spectroscopy on some of the most interesting objects in the sample has found significant numbers of S-type stars which can be clearly separated from oxygen-rich objects in the IPHAS colour-colour diagram. We show that this is due to the positions of different molecular bands relative to the narrow-band H-alpha filter used for IPHAS observations. The IPHAS (r' - H-alpha) colour offers a valuable diagnostic for identifying S-type stars. A selection method for identifying S-type stars in the galactic plane is briefly discussed and we estimate that over a thousand new objects of this type may be discovered, potentially doubling the number of known objects in this short but important evolutionary phase.

  9. Deformability of Plasmodium falciparum parasitized red blood cells

    E-Print Network [OSTI]

    Mills, John Philip, Ph. D. Massachusetts Institute of Technology

    2007-01-01

    The biophysical properties of the human red blood cell (RBC) permit large deformations required for passage through narrow capillaries and spleen sinusoids. Several pathologic conditions alter RBC deformability that can ...

  10. Western Red-tailed Skink Distribution in Southern Nevada

    SciTech Connect (OSTI)

    Hall, D. B. and Gergor, P. D.

    2011-11-01

    This slide show reports a study to: determine Western Red-tailed Skink (WRTS) distribution on Nevada National Security Site (NNSS); identify habitat where WRTS occur; learn more about WRTS natural history; and document distribution of other species.

  11. Infra-Red Process for Colour Fixation on Fabrics 

    E-Print Network [OSTI]

    Biau, D.; Raymond, D. J.

    1983-01-01

    Infra-red radiations find wide application in industrial processes as heating, drying, stoving and forming. The results are often far better than those from the other techniques: convection oven, gas IR etc . They come from the electric IR specific...

  12. Red River Valley REA- Heat Pump Loan Program

    Office of Energy Efficiency and Renewable Energy (EERE)

    The Red River Valley Rural Electric Association (RRVREA) offers a loan program to its members for air-source and geothermal heat pumps. Loans are available for geothermal heat pumps at a 5% fixed...

  13. Effects of red imported fire ants on songbird nest survival 

    E-Print Network [OSTI]

    Campomizzi, Andrew J.

    2009-05-15

    Invasive species are often implicated in population declines of native species through competition and predation. Red imported fire ant (Solenopsis invicta) predation of songbird nestlings and eggs has been documented. I conducted a replicated...

  14. Regulation of Pituitary Thyrotropin Production in Red Drum 

    E-Print Network [OSTI]

    Drone, Elizabeth

    2011-01-11

    of pituitary hormone production and secretion is accomplished by a portal system which delivers thyrotropin-releasing hormone to positively stimulate the pituitary to release more TSH. However, in teleost fish such as the red drum (Sciaenops ocellatus), TSH...

  15. Anisotropic light scattering of individual sickle red blood cells

    E-Print Network [OSTI]

    Kim, Youngchan

    We present the anisotropic light scattering of individual red blood cells (RBCs) from a patient with sickle cell disease (SCD). To measure light scattering spectra along two independent axes of elongated-shaped sickle RBCs ...

  16. Spent fuel disassembly hardware and other non-fuel bearing components: characterization, disposal cost estimates, and proposed repository acceptance requirements

    SciTech Connect (OSTI)

    Luksic, A.T.; McKee, R.W.; Daling, P.M.; Konzek, G.J.; Ludwick, J.D.; Purcell, W.L.

    1986-10-01

    There are two categories of waste considered in this report. The first is the spent fuel disassembly (SFD) hardware. This consists of the hardware remaining after the fuel pins have been removed from the fuel assembly. This includes end fittings, spacer grids, water rods (BWR) or guide tubes (PWR) as appropriate, and assorted springs, fasteners, etc. The second category is other non-fuel-bearing (NFB) components the DOE has agreed to accept for disposal, such as control rods, fuel channels, etc., under Appendix E of the standard utiltiy contract (10 CFR 961). It is estimated that there will be approximately 150 kg of SFD and NFB waste per average metric ton of uranium (MTU) of spent uranium. PWR fuel accounts for approximately two-thirds of the average spent-fuel mass but only 50 kg of the SFD and NFB waste, with most of that being spent fuel disassembly hardware. BWR fuel accounts for one-third of the average spent-fuel mass and the remaining 100 kg of the waste. The relatively large contribution of waste hardware in BWR fuel, will be non-fuel-bearing components, primarily consisting of the fuel channels. Chapters are devoted to a description of spent fuel disassembly hardware and non-fuel assembly components, characterization of activated components, disposal considerations (regulatory requirements, economic analysis, and projected annual waste quantities), and proposed acceptance requirements for spent fuel disassembly hardware and other non-fuel assembly components at a geologic repository. The economic analysis indicates that there is a large incentive for volume reduction.

  17. Nonproliferation impacts assessment for the management of the Savannah River Site aluminum-based spent nuclear fuel

    SciTech Connect (OSTI)

    NONE

    1998-12-01

    On May 13, 1996, the US established a new, 10-year policy to accept and manage foreign research reactor spent nuclear fuel containing uranium enriched in the US. The goal of this policy is to reduce civilian commerce in weapons-usable highly enriched uranium (HEU), thereby reducing the risk of nuclear weapons proliferation. Two key disposition options under consideration for managing this fuel include conventional reprocessing and new treatment and packaging technologies. The Record of Decision specified that, while evaluating the reprocessing option, ``DOE will commission or conduct an independent study of the nonproliferation and other (e.g., cost and timing) implications of chemical separation of spent nuclear fuel from foreign research reactors.`` DOE`s Office of Arms Control and Nonproliferation conducted this study consistent with the aforementioned Record of Decision. This report addresses the nonproliferation implications of the technologies under consideration for managing aluminum-based spent nuclear fuel at the Savannah River Site. Because the same technology options are being considered for the foreign research reactor and the other aluminum-based spent nuclear fuels discussed in Section ES.1, this report addresses the nonproliferation implications of managing all the Savannah River Site aluminum-based spent nuclear fuel, not just the foreign research reactor spent nuclear fuel. The combination of the environmental impact information contained in the draft EIS, public comment in response to the draft EIS, and the nonproliferation information contained in this report will enable the Department to make a sound decision regarding how to manage all aluminum-based spent nuclear fuel at the Savannah River Site.

  18. COBRA-SFS (Spent Fuel Storage): A thermal-hydraulic analysis computer code: Volume 3, Validation assessments

    SciTech Connect (OSTI)

    Lombardo, N.J.; Cuta, J.M.; Michener, T.E.; Rector, D.R.; Wheeler, C.L.

    1986-12-01

    This report presents the results of the COBRA-SFS (Spent Fuel Storage) computer code validation effort. COBRA-SFS, while refined and specialized for spent fuel storage system analyses, is a lumped-volume thermal-hydraulic analysis computer code that predicts temperature and velocity distributions in a wide variety of systems. Through comparisons of code predictions with spent fuel storage system test data, the code's mathematical, physical, and mechanistic models are assessed, and empirical relations defined. The six test cases used to validate the code and code models include single-assembly and multiassembly storage systems under a variety of fill media and system orientations and include unconsolidated and consolidated spent fuel. In its entirety, the test matrix investigates the contributions of convection, conduction, and radiation heat transfer in spent fuel storage systems. To demonstrate the code's performance for a wide variety of storage systems and conditions, comparisons of code predictions with data are made for 14 runs from the experimental data base. The cases selected exercise the important code models and code logic pathways and are representative of the types of simulations required for spent fuel storage system design and licensing safety analyses. For each test, a test description, a summary of the COBRA-SFS computational model, assumptions, and correlations employed are presented. For the cases selected, axial and radial temperature profile comparisons of code predictions with test data are provided, and conclusions drawn concerning the code models and the ability to predict the data and data trends. Comparisons of code predictions with test data demonstrate the ability of COBRA-SFS to successfully predict temperature distributions in unconsolidated or consolidated single and multiassembly spent fuel storage systems.

  19. Red Storm usage model :Version 1.12.

    SciTech Connect (OSTI)

    Jefferson, Karen L.; Sturtevant, Judith E.

    2005-12-01

    Red Storm is an Advanced Simulation and Computing (ASC) funded massively parallel supercomputer located at Sandia National Laboratories (SNL). The Red Storm Usage Model (RSUM) documents the capabilities and the environment provided for the FY05 Tri-Lab Level II Limited Availability Red Storm User Environment Milestone and the FY05 SNL Level II Limited Availability Red Storm Platform Milestone. This document describes specific capabilities, tools, and procedures to support both local and remote users. The model is focused on the needs of the ASC user working in the secure computing environments at Los Alamos National Laboratory (LANL), Lawrence Livermore National Laboratory (LLNL), and SNL. Additionally, the Red Storm Usage Model maps the provided capabilities to the Tri-Lab ASC Computing Environment (ACE) requirements. The ACE requirements reflect the high performance computing requirements for the ASC community and have been updated in FY05 to reflect the community's needs. For each section of the RSUM, Appendix I maps the ACE requirements to the Limited Availability User Environment capabilities and includes a description of ACE requirements met and those requirements that are not met in that particular section. The Red Storm Usage Model, along with the ACE mappings, has been issued and vetted throughout the Tri-Lab community.

  20. Spent Fuel Test-Climax: technical measurements data management system description and data presentation

    SciTech Connect (OSTI)

    Carlson, R.C.

    1985-08-01

    The Spent Fuel Test-Climax (SFT-C) was located 420 m below surface in the Climax Stock granite on the Nevada Test Site. The test was conducted under the technical direction of the Lawrence Livermore National Laboratory (LLNL) as part of the Nevada Nuclear Waste Storage Investigations (NNWSI) for the US Department of Energy. Eleven canisters of spent nuclear reactor fuel were emplaced, along with six electrical simulators, in April-May 1980. The spent fuel canisters were retrieved and the electrical simulators de-energized in March-April 1983. During the test, just over 1000 MW-hr of thermal energy was deposited in the site, causing temperature changes 100{sup 0}C near the canisters, and about 5{sup 0} in the tunnels. More than 900 channels of geotechnical, seismological, and test status data were recorded on nearly continuous basis for about 3-1/2 years, ending in September 1983. Most geotechnical instrumentation was known to be temperature sensitive, and thus would require temperature compensation before interpretation. Accordingly, a 10-in. reel of digital tape was off-loaded and shipped to Livermore every 4 to 8 weeks, where the data were verified, organized into 45 one-million-word files, and temperature corrected. The purpose of this report is to document the receipt and processing of the data by LLNL Livermore personnel, present facts about the history of the instruments which may be important to the interpretation of the data, present the data themselves in graphical form for each instrument over its operating lifetime, document the forms and locations in which the data will be archived, and offer the data to the geotechnical community for future use in understanding and predicting the effects of the storage of heat-generating waste in hard rocks such as granite.

  1. Fate of Noble Metals during the Pyroprocessing of Spent Nuclear Fuel

    SciTech Connect (OSTI)

    B.R. Westphal; D. Vaden; S.X. Li; G.L. Fredrickson; R.D. Mariani

    2009-09-01

    During the pyroprocessing of spent nuclear fuel by electrochemical techniques, fission products are separated as the fuel is oxidized at the anode and refined uranium is deposited at the cathode. Those fission products that are oxidized into the molten salt electrolyte are considered active metals while those that do not react are considered noble metals. The primary noble metals encountered during pyroprocessing are molybdenum, zirconium, ruthenium, rhodium, palladium, and technetium. Pyroprocessing of spent fuel to date has involved two distinctly different electrorefiner designs, in particular the anode to cathode configuration. For one electrorefiner, the anode and cathode collector are horizontally displaced such that uranium is transported across the electrolyte medium. As expected, the noble metal removal from the uranium during refining is very high, typically in excess of 99%. For the other electrorefiner, the anode and cathode collector are vertically collocated to maximize uranium throughput. This arrangement results in significantly less noble metals removal from the uranium during refining, typically no better than 20%. In addition to electrorefiner design, operating parameters can also influence the retention of noble metals, albeit at the cost of uranium recovery. Experiments performed to date have shown that as much as 100% of the noble metals can be retained by the cladding hulls while affecting the uranium recovery by only 6%. However, it is likely that commercial pyroprocessing of spent fuel will require the uranium recovery to be much closer to 100%. The above mentioned design and operational issues will likely be driven by the effects of noble metal contamination on fuel fabrication and performance. These effects will be presented in terms of thermal properties (expansion, conductivity, and fusion) and radioactivity considerations. Ultimately, the incorporation of minor amounts of noble metals from pyroprocessing into fast reactor metallic fuel will be shown to be of no consequence to reactor performance.

  2. ON-LINE MONITORING FOR CONTROL AND SAFEGUARDING OF RADIOCHEMICAL STREAMS AT SPENT FUEL REPROCESSING PLANT

    SciTech Connect (OSTI)

    Bryan, Samuel A.; Levitskaia, Tatiana G.; Lines, Amanda M.; Billing, Justin M.; Casella, Amanda J.; Johnsen, Amanda M.; Peterson, James M.; Thomas, Elizabeth M.

    2009-11-10

    Advanced techniques that enhance safeguarding of spent fuel reprocessing plants are urgently needed. Our approach is based on the prerequisite that real-time monitoring of solvent extraction flowsheets at a spent fuel reprocessing plant provides the unique capability to quickly detect unwanted manipulations with fissile isotopes present in the radiochemical streams during reprocessing activities. The methods used to monitor these processes must be robust and capable of withstanding harsh radiation and chemical environments. A new on-line monitoring system satisfying these requirements and featuring Raman spectroscopy combined with a Coriolis and conductivity probes recently has been developed by our research team for tank waste retrieval. It provides immediate chemical data and flow parameters of high-level radioactive waste streams with high brine content generated during retrieval activities from nuclear waste storage tanks at the Hanford Site. The nature of the radiochemical streams at the spent fuel reprocessing plant calls for additional spectroscopic information that can be gained by using Vis-NIR capabilities augmenting Raman spectroscopy. A fiber optic Raman probe allows monitoring of high concentration species encountered in both aqueous and organic phases within the UREX suite of flowsheets, including metal oxide ions, such as uranyl, components of the organic solvent, inorganic oxo-anions, and water. Actinides and lanthanides are monitored remotely by Vis-NIR spectroscopy in aqueous and organic phases. In this report, we present our results on spectroscopic measurements of simulant flowsheet solutions and commercial fuels designed to demonstrate the applicability of Raman and Vis-NIR spectroscopic analysis for actual dissolver feed solutions.

  3. THE ECONOMICS OF REPROCESSING vs DIRECT DISPOSAL OF SPENT NUCLEAR FUEL

    SciTech Connect (OSTI)

    Matthew Bunn; Steve Fetter; John P. Holdren; Bob van der Zwaan

    2003-07-01

    This report assesses the economics of reprocessing versus direct disposal of spent nuclear fuel. The breakeven uranium price at which reprocessing spent nuclear fuel from existing light-water reactors (LWRs) and recycling the resulting plutonium and uranium in LWRs would become economic is assessed, using central estimates of the costs of different elements of the nuclear fuel cycle (and other fuel cycle input parameters), for a wide range of range of potential reprocessing prices. Sensitivity analysis is performed, showing that the conclusions reached are robust across a wide range of input parameters. The contribution of direct disposal or reprocessing and recycling to electricity cost is also assessed. The choice of particular central estimates and ranges for the input parameters of the fuel cycle model is justified through a review of the relevant literature. The impact of different fuel cycle approaches on the volume needed for geologic repositories is briefly discussed, as are the issues surrounding the possibility of performing separations and transmutation on spent nuclear fuel to reduce the need for additional repositories. A similar analysis is then performed of the breakeven uranium price at which deploying fast neutron breeder reactors would become competitive compared with a once-through fuel cycle in LWRs, for a range of possible differences in capital cost between LWRs and fast neutron reactors. Sensitivity analysis is again provided, as are an analysis of the contribution to electricity cost, and a justification of the choices of central estimates and ranges for the input parameters. The equations used in the economic model are derived and explained in an appendix. Another appendix assesses the quantities of uranium likely to be recoverable worldwide in the future at a range of different possible future prices.

  4. Technical data summary supporting the spent nuclear fuel environment impact statement, March 1994

    SciTech Connect (OSTI)

    Geddes, R.L.; Claxton, R.E.; Lengel, J.D. [and others

    1994-03-01

    This report has been compiled by the WSRC Nuclear Materials Processing Division`s Planning Section at the request of the Office of Spent Fuel Management and Special Projects (EM-37) to support issuance of the Spent Nuclear Fuel Environmental Impact Statement. Savannah River Site input data evaluates five programmatic options (including {open_quotes}No Action{close_quotes}) ranging up to transfer of all DOE responsibility spent fuel to the SRS. For each option, a range of management/disposition scenarios has been examined. Each case summary provides information relative to the technical proposal, technical issues, environmental impacts, and projected costs for a forty year period (FY-35) when it is assumed that the material will be dispositioned from the SRS. The original issue of the report which was prepared under severe time constraints contained many simplifications and assumptions. Although the revisions have corrected some of the shortcomings of the original report, it is still highly recommended that significant additional study be performed before basing key decisions upon the data contained in this report. The data represents the best effort by a significant group of technical personnel familiar with nuclear materials processing, handling, and storage; but it is likely that careful scrutiny will reveal numerous discrepancies, inconsistencies and omissions. Nor does this report attempt to analyze every potential disposal pathway, but probably establishes the bounds for the most of the viable pathways. The bulk of the effort went into defining the engineering approaches necessary to execute the various mission scenarios which were changed since the last revision. The decision to limit reprocessing to only SRS aluminum clad required a major alteration of the TDS. Collection and/or calculation of much of the various waste, emission, and utility consumption data, so important to an EIS, has been updated since the last revision, but not thoroughly completed.

  5. Truck and rail charges for shipping spent fuel and nuclear waste

    SciTech Connect (OSTI)

    McNair, G.W.; Cole, B.M.; Cross, R.E.; Votaw, E.F.

    1986-06-01

    The Pacific Northwest Laboratory developed techniques for calculating estimates of nuclear-waste shipping costs and compiled a listing of representative data that facilitate incorporation of reference shipping costs into varius logistics analyses. The formulas that were developed can be used to estimate costs that will be incurred for shipping spent fuel or nuclear waste by either legal-weight truck or general-freight rail. The basic data for this study were obtained from tariffs of a truck carrier licensed to serve the 48 contiguous states and from various rail freight tariff guides. Also, current transportation regulations as issued by the US Department of Transportation and the Nuclear Regulatory Commission were investigated. The costs that will be incurred for shipping spent fuel and/or nuclear waste, as addressed by the tariff guides, are based on a complex set of conditions involving the shipment origin, route, destination, weight, size, and volume and the frequency of shipments, existing competition, and the length of contracts. While the complexity of these conditions is an important factor in arriving at a ''correct'' cost, deregulation of the transportation industry means that costs are much more subject to negotiation and, thus, the actual fee that will be charged will not be determined until a shipping contract is actually signed. This study is designed to provide the baseline data necessary for making comparisons of the estimated costs of shipping spent fuel and/or nuclear wastes by truck and rail transportation modes. The scope of the work presented in this document is limited to the costs incurred for shipping, and does not include packaging, cask purchase/lease costs, or local fees placed on shipments of radioactive materials.

  6. Integrated data base report--1995: US spent nuclear fuel and radioactive waste inventories, projections, and characteristics

    SciTech Connect (OSTI)

    1996-12-01

    The information in this report summarizes the U.S. Department of Energy (DOE) data base for inventories, projections, and characteristics of domestic spent nuclear fuel and radioactive waste. This report is updated annually to keep abreast of continual waste inventory and projection changes in both the government and commercial sectors. Baseline information is provided for DOE program planning purposes and to support DOE program decisions. Although the primary purpose of this document is to provide background information for program planning within the DOE community, it has also been found useful by state and local governments, the academic community, and some private citizens.

  7. Apparatus and method for reprocessing and separating spent nuclear fuels. [Patent application

    DOE Patents [OSTI]

    Krikorian, O.H.; Grens, J.Z.; Parrish, W.H. Sr.

    1982-01-19

    Spent nuclear fuels, including actinide fuels, volatile and non-volatile fission products, are reprocessed and separated in a molten metal solvent housed in the reaction region of a separation vessel which includes a reflux region positioned above the molten tin solvent. The reflux region minimizes loss of evaporated solvent during the separation of the actinide fuels from the volatile fission products. Additionally, inclusion of the reflux region permits the separation of the more volatile fission products (noncondensable) from the less volatile ones (condensable).

  8. Bread: CDC 7600 program that processes Spent Fuel Test Climax data

    SciTech Connect (OSTI)

    Hage, G.L.

    1983-04-01

    BREAD will process a family of files copied from a data tape made by Hewlett-Packard equipment employed for data acquisition on the Spent Fuel Test-Climax at NTS. Tapes are delivered to Livermore approximately monthly. The process at this stage consists of four steps: read the binary files and convert from H-P 16-bit words to CDC 7600 60-bit words; check identification and data ranges; write the data in 6-bit ASCII (BCD) format, one data point per line; then sort the file by identifier and time.

  9. Spent Nuclear Fuel Project technical baseline document. Fiscal year 1995: Volume 1, Baseline description

    SciTech Connect (OSTI)

    Womack, J.C. [Westinghouse Hanford Co., Richland, WA (United States); Cramond, R. [TRW (United States); Paedon, R.J. [SAIC (United States)] [and others

    1995-03-13

    This document is a revision to WHC-SD-SNF-SD-002, and is issued to support the individual projects that make up the Spent Nuclear Fuel Project in the lower-tier functions, requirements, interfaces, and technical baseline items. It presents results of engineering analyses since Sept. 1994. The mission of the SNFP on the Hanford site is to provide safety, economic, environmentally sound management of Hanford SNF in a manner that stages it to final disposition. This particularly involves K Basin fuel, although other SNF is involved also.

  10. Development of a Reliable Fuel Depletion Methodology for the HTR-10 Spent Fuel Analysis

    SciTech Connect (OSTI)

    Chung, Kiwhan [Los Alamos National Laboratory; Beddingfield, David H. [Los Alamos National Laboratory; Geist, William H. [Los Alamos National Laboratory; Lee, Sang-Yoon [unaffiliated

    2012-07-03

    A technical working group formed in 2007 between NNSA and CAEA to develop a reliable fuel depletion method for HTR-10 based on MCNPX and to analyze the isotopic inventory and radiation source terms of the HTR-10 spent fuel. Conclusions of this presentation are: (1) Established a fuel depletion methodology and demonstrated its safeguards application; (2) Proliferation resistant at high discharge burnup ({approx}80 GWD/MtHM) - Unfavorable isotopics, high number of pebbles needed, harder to reprocess pebbles; (3) SF should remain under safeguards comparable to that of LWR; and (4) Diversion scenarios not considered, but can be performed.

  11. What are Spent Nuclear Fuel and High-Level Radioactive Waste ?

    SciTech Connect (OSTI)

    DOE

    2002-12-01

    Spent nuclear fuel and high-level radioactive waste are materials from nuclear power plants and government defense programs. These materials contain highly radioactive elements, such as cesium, strontium, technetium, and neptunium. Some of these elements will remain radioactive for a few years, while others will be radioactive for millions of years. Exposure to such radioactive materials can cause human health problems. Scientists worldwide agree that the safest way to manage these materials is to dispose of them deep underground in what is called a geologic repository.

  12. Container for reprocessing and permanent storage of spent nuclear fuel assemblies

    DOE Patents [OSTI]

    Forsberg, Charles W. (Oak Ridge, TN)

    1992-01-01

    A single canister process container for reprocessing and permanent storage of spent nuclear fuel assemblies comprising zirconium-based cladding and fuel, which process container comprises a collapsible container, having side walls that are made of a high temperature alloy and an array of collapsible support means wherein the container is capable of withstanding temperature necessary to oxidize the zirconium-based cladding and having sufficient ductility to maintain integrity when collapsed under pressure. The support means is also capable of maintaining their integrity at temperature necessary to oxide the zirconium-based cladding. The process container also has means to introduce and remove fluids to and from the container.

  13. Thermal performance of a buried nuclear waste storage container storing a hybrid mix of PWR and BWR spent fuel rods

    SciTech Connect (OSTI)

    Johnson, G.L.

    1988-09-01

    Lawrence Livermore National Laboratory will design, model, and test nuclear waste packages for use at the Nevada Nuclear Waste Storage Repository at Yucca Mountain, Nevada. One such package would store lightly packed spent fuel rods from both pressurized and boiling water reactors. The storage container provides the primary containment of the nuclear waste and the spent fuel rod cladding provides secondary containment. A series of transient conduction and radiation heat transfer analyses was run to determine for the first 1000 yr of storage if the temperature of the tuff at the borehole wall ever falls below 97{degree}C and whether the cladding of the stored spent fuel ever exceeds 350{degree}C. Limiting the borehole to temperatures of 97{degree}C or greater helps minimize corrosion by assuring that no condensed water collects on the container. The 350{degree}C cladding limit minimizes the possibility of creep-related failure in the spent fuel rod cladding. For a series of packages stored in a 8 x 30 m borehole grid where each package contains 10-yr-old spent fuel rods generating 4.74 kW or more, the borehole wall stays above 97{degree}C for the full 1000-yr analysis period.

  14. Initial evaluation of dry storage issues for spent nuclear fuels in wet storage at the Idaho Chemical Processing Plant

    SciTech Connect (OSTI)

    Guenther, R.J.; Johnson, A.B. Jr.; Lund, A.L.; Gilbert, E.R. [and others

    1996-07-01

    The Pacific Northwest Laboratory has evaluated the basis for moving selected spent nuclear fuels in the CPP-603 and CPP-666 storage pools at the Idaho Chemical Processing Plant from wet to dry interim storage. This work is being conducted for the Lockheed Idaho Technologies Company as part of the effort to determine appropriate conditioning and dry storage requirements for these fuels. These spent fuels are from 22 test reactors and include elements clad with aluminum or stainless steel and a wide variety of fuel materials: UAl{sub x}, UAl{sub x}-Al and U{sub 3}O{sub 8}-Al cermets, U-5% fissium, UMo, UZrH{sub x}, UErZrH, UO{sub 2}-stainless steel cermet, and U{sub 3}O{sub 8}-stainless steel cermet. The study also included declad uranium-zirconium hydride spent fuel stored in the CPP-603 storage pools. The current condition and potential failure mechanisms for these spent fuels were evaluated to determine the impact on conditioning and dry storage requirements. Initial recommendations for conditioning and dry storage requirements are made based on the potential degradation mechanisms and their impacts on moving the spent fuel from wet to dry storage. Areas needing further evaluation are identified.

  15. A Technical Review of Non-Destructive Assay Research for the Characterization of Spent Nuclear Fuel Assemblies Being Conducted Under the US DOE NGSI - 11544

    E-Print Network [OSTI]

    Croft, S.

    2012-01-01

    Determining Fissile Content in PWR Spent Fuel Assembliesalong the length of several PWR fuel rods (including somebeen studied for a wide range of PWR assembly cases and two

  16. EIS-0251: Department of the Navy Final Environmental Impact Statement for a Container System for the Management of Naval Spent Nuclear Fuel (November 1996)

    Broader source: Energy.gov [DOE]

    This Final Environmental Impact Statement addresses six general alternative systems for the loading, storage, transport, and possible disposal of naval spent nuclear fuel following examination.

  17. Occupational radiation dose assessment for the DOE spent-fuel storage facility

    SciTech Connect (OSTI)

    Hadley, J. [Duke Engineering and Services, Charlotte, NC (United States); Eble, R.G. Jr. [Duke Engineering & Services, Vienna, VA (United States)

    1997-12-01

    To expedite the licensing process of the centralized interim storage facility (CISF), the U.S. Department of Energy has completed a CISF topical safety analysis report (TSAR). The TSAR will be used in licensing the CISF when a site is designated. An occupational radiation dose assessment of the facility operations is performed as part of the CISF design. The first phase of the CISF has the capability to receive, transfer, and store spent nuclear fuel (SNF) in dual-purpose casks. Currently, there are five vendor technologies under consideration. The preliminary dose assessment is based on estimated occupational exposures using traditional power plant independent spent-fuel storage installation (ISFSI) and transport cask-handling processes. The second step in the process is to recommend as-low-as-reasonably-achievable (ALARA) techniques to reduce potential exposures. A final dose assessment is completed implementing the ALARA techniques, and a review is performed to ensure that the design is in compliance with regulatory criteria. The dose assessment and ALARA evaluation are determined using the following input information: dose estimates from vendor safety analysis reports, ISFSI experience with similar systems, traditional methods of operations, expected CISF cask receipt rates, and feasible ALARA techniques.

  18. Dry-vault storage of spent fuel at the CASCAD facility

    SciTech Connect (OSTI)

    Baillif, L.; Guay, M.

    1989-01-01

    A new modular dry storage vault concept using vertical metallic wells cooled by natural convection has been developed by the Commissariat a l'Energie Atomique and Societe Generale pour les Techniques Nouvelles to accommodate special fuels for high-level wastes. Basic specifications and design criteria have been followed to guarantee a double containment system and cooling to maintain the fuel below an acceptable temperature. The double containment is provided by two static barriers: At the reactor, fuels are placed in containers playing the role of the first barrier; the storage wells constitute the second barrier. Spent fuel placed in wells is cooled by natural convection: a boundary layer is created along the outer side of the well. The heated air rises along the well leading to a thermosiphon flow that extracts the heat released. For heat transfer, studies, computations, and experimental tests have been carried out to calculate and determine the temperature of the containers and the fuel rod temperatures in various situations. The CASCAD vault storage can be applied to light water reactor (LWR) fuels without any difficulties if two requirements are satisfied: (1) Spend fuels have to be inserted in tight canisters. (2) Spent fuels have to be received only after a minimum decay time of 5 yr.

  19. Automated Characterization of Spent Fuel through the Multi-Isotope Process (MIP) Monitor

    SciTech Connect (OSTI)

    Coble, Jamie B.; Orton, Christopher R.; Schwantes, Jon M.

    2012-07-31

    This research developed an algorithm for characterizing spent nuclear fuel (SNF) samples based on simulated gamma spectra. The gamma spectra for a variety of light water reactor fuels typical of those found in the United States were simulated. Fuel nuclide concentrations were simulated in ORIGEN-ARP for 1296 fuel samples with a variety of reactor designs, initial enrichments, burn ups, and cooling times. The results of the ORIGEN-ARP simulation were then input to SYNTH to simulate the gamma spectrum for each sample. These spectra were evaluated with partial least squares (PLS)-based multivariate analysis methods to characterize the fuel according to reactor type (pressurized or boiling water reactor), enrichment, burn up, and cooling time. Characterizing some of the features in series by using previously estimated features in the prediction greatly improves the performance. By first classifying the spent fuel reactor type and then using type-specific models, the prediction error for enrichment, burn up, and cooling time improved by a factor of two to four. For some features, the prediction was further improved by including additional information, such as including the predicted burn up in the estimation of cooling time. The optimal prediction flow was determined based on the simulated data. A PLS discriminate analysis model was developed which perfectly classified SNF reactor type. Burn up was predicted within 0.1% root mean squared percent error (RMSPE) and both cooling time and initial enrichment within approximately 2% RMSPE.

  20. Spent fuel test - Climax: technical measurements. Interim report, fiscal year 1981

    SciTech Connect (OSTI)

    Patrick, W.C.; Ballou, L.B.; Butkovich, T.R.

    1982-04-30

    The Spent Fuel Test-Climax (SFT-C) is located 420 m below surface in the Climax granite stock on the Nevada Test Site. Eleven canisters of spent nuclear reactor fuel were emplaced, and six electrical simulators were energized from April to May 1980, initiating the 3- to 5-year-duration test. The SFT-C operational objective of demonstrating the feasibility of packaging, transporting, storing, and retrieving highly radioactive fuel assemblies in a safe and reliable manner has been met. Technical objectives of the test led to development of a technical measurements program, which is the subject of this report. Geotechnical, seismological, and test status data have been recorded on a continuing basis for the first 1-1/2 years of the test on more than 900 channels. Much of the acquired data are now available for analysis and are presented here. Highlights of activities this year include completion of site characterization field work, major modifications to the data acquisition and the management systems, and the addition of instrument evaluation as an explicit objective of the test.

  1. Analysis of dose consequences arising from the release of spent nuclear fuel from dry storage casks.

    SciTech Connect (OSTI)

    Durbin, Samuel G.; Morrow, Charles W.

    2013-01-01

    The resulting dose consequences from releases of spent nuclear fuel (SNF) residing in a dry storage casks are examined parametrically. The dose consequences are characterized by developing dose versus distance curves using simplified bounding assumptions. The dispersion calculations are performed using the MELCOR Accident Consequence Code System (MACCS2) code. Constant weather and generic system parameters were chosen to ensure that the results in this report are comparable with each other and to determine the relative impact on dose of each variable. Actual analyses of site releases would need to accommodate local weather and geographic data. These calculations assume a range of fuel burnups, release fractions (RFs), three exposure scenarios (2 hrs and evacuate, 2 hrs and shelter, and 24 hrs exposure), two meteorological conditions (D-4 and F-2), and three release heights (ground level - 1 meter (m), 10 m, and 100 m). This information was developed to support a policy paper being developed by U.S. Nuclear Regulatory Commission (NRC) staff on an independent spent fuel storage installation (ISFSI) and monitored retrievable storage installation (MRS) security rulemaking.

  2. Geant4 Model Validation of Compton Suppressed System for Process monitoring of Spent Fuel

    SciTech Connect (OSTI)

    Bender, Sarah; Unlu, Kenan; Orton, Christopher R.; Schwantes, Jon M.

    2013-05-01

    Nuclear material accountancy is of continuous concern for the regulatory, safeguards, and verification communities. In particular, spent nuclear fuel reprocessing facilities pose one of the most difficult accountancy challenges: monitoring highly radioactive, fluid sample streams in near real-time. The Multi-Isotope Process monitor will allow for near-real-time indication of process alterations using passive gamma-ray detection coupled with multivariate analysis techniques to guard against potential material diversion or to enhance domestic process monitoring. The Compton continuum from the dominant 661.7 keV 137Cs fission product peak obscures lower energy lines which could be used for spectral and multivariate analysis. Compton suppression may be able to mitigate the challenges posed by the high continuum caused by scattering. A Monte Carlo simulation using the Geant4 toolkit is being developed to predict the expected suppressed spectrum from spent fuel samples to estimate the reduction in the Compton continuum. Despite the lack of timing information between decay events in the particle management of Geant4, encouraging results were recorded utilizing only the information within individual decays without accounting for accidental coincidences. The model has been validated with single and cascade decay emitters in two steps: as an unsuppressed system and with suppression activated. Results of the Geant4 model validation will be presented.

  3. Dose Rate Analysis Capability for Actual Spent Fuel Transportation Cask Contents

    SciTech Connect (OSTI)

    Radulescu, Georgeta; Lefebvre, Robert A; Peplow, Douglas E.; Williams, Mark L; Scaglione, John M

    2014-01-01

    The approved contents for a U.S. Nuclear Regulatory Commission (NRC) licensed spent nuclear fuel casks are typically based on bounding used nuclear fuel (UNF) characteristics. However, the contents of the UNF canisters currently in storage at independent spent fuel storage installations are considerably heterogeneous in terms of fuel assembly burnup, initial enrichment, decay time, cladding integrity, etc. Used Nuclear Fuel Storage, Transportation & Disposal Analysis Resource and Data System (UNF ST&DARDS) is an integrated data and analysis system that facilitates automated cask-specific safety analyses based on actual characteristics of the as-loaded UNF. The UNF-ST&DARDS analysis capabilities have been recently expanded to include dose rate analysis of as-loaded transportation packages. Realistic dose rate values based on actual canister contents may be used in place of bounding dose rate values to support development of repackaging operations procedures, evaluation of radiation-related transportation risks, and communication with stakeholders. This paper describes the UNF-ST&DARDS dose rate analysis methodology based on actual UNF canister contents and presents sample dose rate calculation results.

  4. Final Report - Spent Nuclear Fuel Retrieval System Manipulator System Cold Validation Testing

    SciTech Connect (OSTI)

    D.R. Jackson; G.R. Kiebel

    1999-08-24

    Manipulator system cold validation testing (CVT) was performed in support of the Fuel Retrieval System (FRS) Sub-Project, a subtask of the Spent Nuclear Fuel Project at the Hanford Site in Richland, Washington. The FRS will be used to retrieve and repackage K-Basin Spent Nuclear Fuel (SNF) currently stored in old K-Plant storage basins. The FRS is required to retrieve full fuel canisters from the basin; clean the fuel elements inside the canister to remove excessive uranium corrosion products (or sludge); remove the contents from the canisters; and sort the resulting debris, scrap, and fuel for repackaging. The fuel elements and scrap will be collected in fuel storage and scrap baskets in preparation for loading into a multi canister overpack (MCO), while the debris is loaded into a debris bin and disposed of as solid waste. The FRS is composed of three major subsystems. The Manipulator Subsystem provides remote handling of fuel, scrap, and debris; the In-Pool Equipment subsystem performs cleaning of fuel and provides a work surface for handling materials; and the Remote Viewing Subsystem provides for remote viewing of the work area by operators. There are two complete and identical FRS systems, one to be installed in the K-West basin and one to be installed in the K-East basin. Another partial system will be installed in a cold test facility to provide for operator training.

  5. Effects of Gossypol Consumption on the Growth Traits of Red Deer Stags and Supplemental Melatonin for Advancement of Estrous Cycles in Red Deer Hinds. 

    E-Print Network [OSTI]

    Morgan, Shane

    2011-08-08

    Experiment I studied the effect of dietary gossypol (G) on antler and body growth traits of red deer stags, whereas Experiment II studied the effect of exogenous melatonin on female red deer reproductive traits. Specifically ...

  6. Electrorefining process and apparatus for recovery of uranium and a mixture of uranium and plutonium from spent fuels

    DOE Patents [OSTI]

    Ackerman, John P. (Downers Grove, IL); Miller, William E. (Naperville, IL)

    1989-01-01

    An electrorefining process and apparatus for the recovery of uranium and a mixture of uranium and plutonium from spent fuel using an electrolytic cell having a lower molten cadmium pool containing spent nuclear fuel, an intermediate electrolyte pool, an anode basket containing spent fuel, and two cathodes, the first cathode composed of either a solid alloy or molten cadmium and the second cathode composed of molten cadmium. Using this cell, additional amounts of uranium and plutonium from the anode basket are dissolved in the lower molten cadmium pool, and then substantially pure uranium is electrolytically transported and deposited on the first alloy or molten cadmium cathode. Subsequently, a mixture of uranium and plutonium is electrotransported and deposited on the second molten cadmium cathode.

  7. Electrorefining process and apparatus for recovery of uranium and a mixture of uranium and plutonium from spent fuels

    DOE Patents [OSTI]

    Ackerman, J.P.; Miller, W.E.

    1987-11-05

    An electrorefining process and apparatus for the recovery of uranium and a mixture of uranium and plutonium from spent fuels is disclosed using an electrolytic cell having a lower molten cadmium pool containing spent nuclear fuel, an intermediate electrolyte pool, an anode basket containing spent fuels, two cathodes and electrical power means connected to the anode basket, cathodes and lower molten cadmium pool for providing electrical power to the cell. Using this cell, additional amounts of uranium and plutonium from the anode basket are dissolved in the lower molten cadmium pool, and then purified uranium is electrolytically transported and deposited on a first molten cadmium cathode. Subsequently, a mixture of uranium and plutonium is electrotransported and deposited on a second cathode. 3 figs.

  8. National spent fuel program preliminary report RCRA characteristics of DOE-owned spent nuclear fuel DOE-SNF-REP-002. Revision 3

    SciTech Connect (OSTI)

    NONE

    1995-07-01

    This report presents information on the preliminary process knowledge to be used in characterizing all Department of Energy (DOE)-owned Spent Nuclear Fuel (SNF) types that potentially exhibit a Resource Conservation and Recovery Act (RCRA) characteristic. This report also includes the process knowledge, analyses, and rationale used to preliminarily exclude certain SNF types from RCRA regulation under 40 CFR {section}261.4(a)(4), ``Identification and Listing of Hazardous Waste,`` as special nuclear and byproduct material. The evaluations and analyses detailed herein have been undertaken as a proactive approach. In the event that DOE-owned SNF is determined to be a RCRA solid waste, this report provides general direction for each site regarding further characterization efforts. The intent of this report is also to define the path forward to be taken for further evaluation of specific SNF types and a recommended position to be negotiated and established with regional and state regulators throughout the DOE Complex regarding the RCRA-related policy issues.

  9. Red phosphors for use in high CRI fluorescent lamps

    DOE Patents [OSTI]

    Srivastava, Alok; Comanzo, Holly; Manivannan, Vankatesan; Setlur, Anant Achyut

    2005-11-15

    Novel red emitting phosphors for use in fluorescent lamps resulting in superior color rendering index values compared to conventional red phosphors. Also disclosed is a fluorescent lamp including a phosphor layer comprising blends of one or more of a blue phosphor, a blue-green phosphor, a green phosphor and a red a phosphor selected from the group consisting of SrY.sub.2 O.sub.4 :Eu.sup.3+, (Y,Gd)Al.sub.3 B.sub.4 O.sub.12 :Eu.sup.3+, and [(Y.sub.1-x-y-m La.sub.y)Gd.sub.x ]BO.sub.3 :Eu.sub.m wherein y<0.50 and m=0.001-0.3. The phosphor layer can optionally include an additional deep red phosphor and a yellow emitting phosphor. The resulting lamp will exhibit a white light having a color rendering index of 90 or higher with a correlated color temperature of from 2500 to 10000 Kelvin. The use of the disclosed red phosphors in phosphor blends of lamps results in high CRI light sources with increased stability and acceptable lumen maintenance over the course of the lamp life.

  10. Ages of White Dwarf-Red Subdwarf Systems

    E-Print Network [OSTI]

    Hektor Monteiro; Wei-Chun Jao; Todd Henry; John Subasavage; Thom Beaulieu

    2005-10-12

    We provide the first age estimates for two recently discovered white dwarf-red subdwarf systems, LHS 193AB and LHS 300AB. These unusual systems provide a new opportunity for linking the reliable age estimates for the white dwarfs to the (measurable) metallicities of the red subdwarfs. We have obtained precise photometry in the $V_{J}R_{KC}I_{KC}JH$ bands and spectroscopy covering from 6000\\AA to 9000\\AA for the two new systems, as well as for a comparison white dwarf-main sequence red dwarf system, GJ 283 AB. Using model grids available in the literature, we estimate the cooling age as well as temperature, surface gravity, mass, progenitor mass and {\\it total} lifetimes of the white dwarfs. The results indicate that the two new systems are probably ancient thick disk objects with ages of at least 6-9 Gyr. We also conduct searches of red dwarf and white dwarf compendia from SDSS data and the L{\\'e}pine Shara Proper Motion (LSPM) catalog for additional common proper motion white dwarf-red subdwarf systems. Only seven new candidate systems are found, which indicates the rarity of these systems.

  11. Combined cooling and purification system for nuclear reactor spent fuel pit, refueling cavity, and refueling water storage tank

    DOE Patents [OSTI]

    Corletti, Michael M. (New Kensington, PA); Lau, Louis K. (Monroeville, PA); Schulz, Terry L. (Murrysville Boro, PA)

    1993-01-01

    The spent fuel pit of a pressured water reactor (PWR) nuclear power plant has sufficient coolant capacity that a safety rated cooling system is not required. A non-safety rated combined cooling and purification system with redundant branches selectively provides simultaneously cooling and purification for the spent fuel pit, the refueling cavity, and the refueling water storage tank, and transfers coolant from the refueling water storage tank to the refueling cavity without it passing through the reactor core. Skimmers on the suction piping of the combined cooling and purification system eliminate the need for separate skimmer circuits with dedicated pumps.

  12. Electrochemical cell apparatus having axially distributed entry of a fuel-spent fuel mixture transverse to the cell lengths

    DOE Patents [OSTI]

    Reichner, P.; Dollard, W.J.

    1991-01-08

    An electrochemical apparatus is made having a generator section containing axially elongated electrochemical cells, a fresh gaseous feed fuel inlet, a gaseous feed oxidant inlet, and at least one gaseous spent fuel exit channel, where the spent fuel exit channel passes from the generator chamber to combine with the fresh feed fuel inlet at a mixing apparatus, reformable fuel mixture channel passes through the length of the generator chamber and connects with the mixing apparatus, that channel containing entry ports within the generator chamber, where the axis of the ports is transverse to the fuel electrode surfaces, where a catalytic reforming material is distributed near the reformable fuel mixture entry ports. 2 figures.

  13. Combined cooling and purification system for nuclear reactor spent fuel pit, refueling cavity, and refueling water storage tank

    DOE Patents [OSTI]

    Corletti, M.M.; Lau, L.K.; Schulz, T.L.

    1993-12-14

    The spent fuel pit of a pressured water reactor (PWR) nuclear power plant has sufficient coolant capacity that a safety rated cooling system is not required. A non-safety rated combined cooling and purification system with redundant branches selectively provides simultaneously cooling and purification for the spent fuel pit, the refueling cavity, and the refueling water storage tank, and transfers coolant from the refueling water storage tank to the refueling cavity without it passing through the reactor core. Skimmers on the suction piping of the combined cooling and purification system eliminate the need for separate skimmer circuits with dedicated pumps. 1 figures.

  14. Spent Fuel Transportation Cask Response to the Caldecott Tunnel Fire Scenario

    SciTech Connect (OSTI)

    Adkins, Harold E.; Koeppel, Brian J.; Cuta, Judith M.

    2007-01-01

    On April 7, 1982, a tank truck and trailer carrying 8,800 gallons of gasoline was involved in an accident in the Caldecott tunnel on State Route 24 near Oakland, California. The tank trailer overturned and subsequently caught fire. The United States Nuclear Regulatory Commission (USNRC), one of the agencies responsible for ensuring the safe transportation of radioactive materials in the United States, undertook analyses to determine the possible regulatory implications of this particular event for the transportation of spent nuclear fuel by truck. The Fire Dynamics Simulator (FDS) code developed by National Institute of Standards and Technology (NIST) was used to determine the thermal environment in the Caldecott tunnel during the fire. The FDS results were used to define boundary conditions for a thermal transient model of a truck transport cask containing spent nuclear fuel. The Nuclear Assurance Corporation (NAC) Legal Weight Truck (LWT) transportation cask was selected for this evaluation, as it represents a typical truck (over-the-road) cask, and can be used to transport a wide variety of spent nuclear fuels. Detailed analysis of the cask response to the fire was performed using the ANSYS® computer code to evaluate the thermal performance of the cask design in this fire scenario. This report describes the methods and approach used to assess the thermal response of the selected cask design to the conditions predicted in the Caldecott tunnel fire. The results of the analysis are presented in detail, with an evaluation of the cask response to the fire. The staff concluded that some components of smaller transportation casks resembling the NAC LWT, despite placement within an ISO container, could degrade significantly. Small transportation casks similar to the NAC LWT would probably experience failure of seals in this severe accident scenario. USNRC staff evaluated the radiological consequences of the cask response to the Caldecott tunnel fire. Although some components heated up beyond their service temperatures, the staff determined that there would be no significant release as a result of the fire for the NAC LWT and similar casks.

  15. MODELING HEAT TRANSFER IN SPENT FUEL TRANSFER CASK NEUTRON SHIELDS – A CHALLENGING PROBLEM IN NATURAL CONVECTION

    SciTech Connect (OSTI)

    Fort, James A.; Cuta, Judith M.; Bajwa, C.; Baglietto, E.

    2010-07-18

    In the United States, commercial spent nuclear fuel is typically moved from spent fuel pools to outdoor dry storage pads within a transfer cask system that provides radiation shielding to protect personnel and the surrounding environment. The transfer casks are cylindrical steel enclosures with integral gamma and neutron radiation shields. Since the transfer cask system must be passively cooled, decay heat removal from spent nuclear fuel canister is limited by the rate of heat transfer through the cask components, and natural convection from the transfer cask surface. The primary mode of heat transfer within the transfer cask system is conduction, but some cask designs incorporate a liquid neutron shield tank surrounding the transfer cask structural shell. In these systems, accurate prediction of natural convection within the neutron shield tank is an important part of assessing the overall thermal performance of the transfer cask system. The large-scale geometry of the neutron shield tank, which is typically an annulus approximately 2 meters in diameter but only 10-15 cm in thickness, and the relatively small scale velocities (typically less than 5 cm/s) represent a wide range of spatial and temporal scales that contribute to making this a challenging problem for computational fluid dynamics (CFD) modeling. Relevant experimental data at these scales are not available in the literature, but some recent modeling studies offer insights into numerical issues and solutions; however, the geometries in these studies, and for the experimental data in the literature at smaller scales, all have large annular gaps that are not prototypic of the transfer cask neutron shield. This paper proposes that there may be reliable CFD approaches to the transfer cask problem, specifically coupled steady-state solvers or unsteady simulations; however, both of these solutions take significant computational effort. Segregated (uncoupled) steady state solvers that were tested did not accurately capture the flow field and heat transfer distribution in this application. Mesh resolution, turbulence modeling, and the tradeoff between steady state and transient solutions are addressed. Because of the critical nature of this application, the need for new experiments at representative scales is clearly demonstrated.

  16. Improving the Infra-red of Holographic Descriptions of QCD

    E-Print Network [OSTI]

    Nick Evans; Andrew Tedder; Tom Waterson

    2007-01-03

    A surprisingly good holographic description of QCD can be obtained from naive five dimensional gauge theory on a truncated AdS space. We seek to improve the infra-red description of QCD in such models by using a more sophisticated metric and an action derived from string theory duals of chiral symmetry breaking. Our metric is smooth into the infra-red and the chiral condensate is a prediction of the dynamics. The theory reproduces QCD meson data at the 10% level.

  17. Comparison and Analysis of Regulatory and Derived Requirements for Certain DOE Spent Nuclear Fuel Shipments; Lessons Learned for Future Spent Fuel Transportation Campaigns

    SciTech Connect (OSTI)

    Kramer, George L., Ph.D.; Fawcett, Rick L.; Rieke, Philip C.

    2003-02-27

    Radioactive materials transportation is stringently regulated by the Department of Transportation and the Nuclear Regulatory Commission to protect the public and the environment. As a Federal agency, however, the U.S. Department of Energy (DOE) must seek State, Tribal and local input on safety issues for certain transportation activities. This interaction has invariably resulted in the imposition of extra-regulatory requirements, greatly increasing transportation costs and delaying schedules while not significantly enhancing the level of safety. This paper discusses the results an analysis of the regulatory and negotiated requirements established for a July 1998 shipment of spent nuclear fuel from foreign countries through the west coast to the Idaho National Engineering and Environmental Laboratory (INEEL). Staff from the INEEL Nuclear Materials Engineering and Disposition Department undertook the analysis in partnership with HMTC, to discover if there were instances where requirements derived from stakeholder interactions duplicate, contradict, or otherwise overlap with regulatory requirements. The study exhaustively lists and classifies applicable Department of Transportation (DOT) and Nuclear Regulatory Commission (NRC) regulations. These are then compared with a similarly classified list of requirements from the Environmental Impact Statements (EIS) and those developed during stakeholder negotiations. Comparison and analysis reveals numerous attempts to reduce transportation risk by imposing more stringent safety measures than those required by DOT and NRC. These usually took the form of additional inspection, notification and planning requirements. There are also many instances of overlap with, and duplication of regulations. Participants will gain a greater appreciation for the need to understand the risk-oriented basis of the radioactive materials regulations and their effectiveness in ensuring safety when negotiating extra-regulatory requirements.

  18. DOCUMENTATION OF NATIONAL WEATHER CONDITIONS AFFECTING LONG-TERM DEGRADATION OF COMMERCIAL SPENT NUCLEAR FUEL AND DOE SPENT NUCLEAR FUEL AND HIGH-LEVEL WASTE

    SciTech Connect (OSTI)

    W. L. Poe, Jr.; P.F. Wise

    1998-11-01

    The U.S. Department of Energy (DOE) is preparing a proposal to construct, operate 2nd monitor, and eventually close a repository at Yucca Mountain in Nye County, Nevada, for the geologic disposal of spent nuclear fuel (SNF) and high-level radioactive waste (HLW). As part of this effort, DOE has prepared a viability assessment and an assessment of potential consequences that may exist if the repository is not constructed. The assessment of potential consequences if the repository is not constructed assumes that all SNF and HLW would be left at the generator sites. These include 72 commercial generator sites (three commercial facility pairs--Salem and Hope Creek, Fitzpatrick and Nine Mile Point, and Dresden and Morris--would share common storage due to their close proximity to each other) and five DOE sites across the country. DOE analyzed the environmental consequences of the effects of the continued storage of these materials at these sites in a report titled Continued Storage Analysis Report (CSAR; Reference 1 ) . The CSAR analysis includes a discussion of the degradation of these materials when exposed to the environment. This document describes the environmental parameters that influence the degradation analyzed in the CSAR. These include temperature, relative humidity, precipitation chemistry (pH and chemical composition), annual precipitation rates, annual number of rain-days, and annual freeze/thaw cycles. The document also tabulates weather conditions for each storage site, evaluates the degradation of concrete storage modules and vaults in different regions of the country, and provides a thermal analysis of commercial SNF in storage.

  19. Container for reprocessing and permanent storage of spent nuclear fuel assemblies

    DOE Patents [OSTI]

    Forsberg, C.W.

    1992-03-24

    A single canister process container is described for reprocessing and permanent storage of spent nuclear fuel assemblies comprising zirconium-based cladding and fuel, which process container comprises a collapsible container, having side walls that are made of a high temperature alloy and an array of collapsible support means wherein the container is capable of withstanding temperature necessary to oxidize the zirconium-based cladding and having sufficient ductility to maintain integrity when collapsed under pressure. The support means is also capable of maintaining its integrity at a temperature necessary to oxidize the zirconium-based cladding. The process container also has means to introduce and remove fluids to and from the container. 10 figs.

  20. 105-K Basin material design basis feed description for spent nuclear fuel project facilities

    SciTech Connect (OSTI)

    Praga, A.N.

    1998-01-08

    Revisions 0 and 0A of this document provided estimated chemical and radionuclide inventories of spent nuclear fuel and sludge currently stored within the Hanford Site`s 105-K Basins. This Revision (Rev. 1) incorporates the following changes into Revision 0A: (1) updates the tables to reflect: improved cross section data, a decision to use accountability data as the basis for total Pu, a corrected methodology for selection of the heat generation basis fee, and a revised decay date; (2) adds section 3.3.3.1 to expand the description of the approach used to calculate the inventory values and explain why that approach yields conservative results; (3) changes the pre-irradiation braze beryllium value.

  1. AIR SHIPMENT OF SPENT NUCLEAR FUEL FROM THE BUDAPEST RESEARCH REACTOR

    SciTech Connect (OSTI)

    Dewes, J.

    2014-02-24

    The shipment of spent nuclear fuel is usually done by a combination of rail, road or sea, as the high activity of the SNF needs heavy shielding. Air shipment has advantages, e.g. it is much faster than any other shipment and therefore minimizes the transit time as well as attention of the public. Up to now only very few and very special SNF shipments were done by air, as the available container (TUK6) had a very limited capacity. Recently Sosny developed a Type C overpack, the TUK-145/C, compliant with IAEA Standard TS-R-1 for the VPVR/M type Skoda container. The TUK-145/C was first used in Vietnam in July 2013 for a single cask. In October and November 2013 a total of six casks were successfully shipped from Hungary in three air shipments using the TUK-145/C. The present paper describes the details of these shipments and formulates the lessons learned.

  2. Down Select Report of Chemical Hydrogen Storage Materials, Catalysts, and Spent Fuel Regeneration Processes

    SciTech Connect (OSTI)

    Ott, Kevin; Linehan, Sue; Lipiecki, Frank; Aardahl, Christopher L.

    2008-08-24

    The DOE Hydrogen Storage Program is focused on identifying and developing viable hydrogen storage systems for onboard vehicular applications. The program funds exploratory research directed at identifying new materials and concepts for storage of hydrogen having high gravimetric and volumetric capacities that have the potential to meet long term technical targets for onboard storage. Approaches currently being examined are reversible metal hydride storage materials, reversible hydrogen sorption systems, and chemical hydrogen storage systems. The latter approach concerns materials that release hydrogen in endothermic or exothermic chemical bond-breaking processes. To regenerate the spent fuels arising from hydrogen release from such materials, chemical processes must be employed. These chemical regeneration processes are envisioned to occur offboard the vehicle.

  3. Method for processing aluminum spent potliner in a graphite electrode arc furnace

    DOE Patents [OSTI]

    O'Connor, William K.; Turner, Paul C.; Addison, G.W. (AJT Enterprises, Inc.)

    2002-12-24

    A method of processing spent aluminum pot liner containing carbon, cyanide compositions, fluorides and inorganic oxides. The spend aluminum pot liner is crushed, iron oxide is added to form an agglomerated material. The agglomerated material is melted in an electric arc furnace having the electrodes submerged in the molten material to provide a reducing environment during the furnace operation. In the reducing environment, pot liner is oxidized while the iron oxides are reduced to produce iron and a slag substantially free of cyanide compositions and fluorides. An off-gas including carbon oxides and fluorine is treated in an air pollution control system with an afterburner and a scrubber to produce NaF, water and a gas vented to the atmosphere free of cyanide compositions, fluorine, and CO.

  4. United States Program on Spent Nuclear Fuel and High-Level Radioactive Waste Management

    SciTech Connect (OSTI)

    Stewart, L.

    2004-10-03

    The President signed the Congressional Joint Resolution on July 23, 2002, that designated the Yucca Mountain site for a proposed geologic repository to dispose of the nation's spent nuclear fuel (SNF) and high-level radioactive waste (HLW). The United States (U.S.) Department of Energy's (DOE) Office of Civilian Radioactive Waste Management (OCRWM) is currently focusing its efforts on submitting a license application to the U.S. Nuclear Regulatory Commission (NRC) in December 2004 for construction of the proposed repository. The legislative framework underpinning the U.S. repository program is the basis for its continuity and success. The repository development program has significantly benefited from international collaborations with other nations in the Americas.

  5. Spent Nuclear Fuel Transportation: An Examination of Potential Lessons Learned From Prior Shipping Campaigns

    SciTech Connect (OSTI)

    Marsha Keister; Kathryn McBride

    2006-08-01

    The Nuclear Waste Policy Act of 1982 (NWPA), as amended, assigned the Department of Energy (DOE) responsibility for developing and managing a Federal system for the disposal of spent nuclear fuel (SNF) and high-level radioactive waste (HLW). The Office of Civilian Radioactive Waste Management (OCRWM) is responsible for accepting, transporting, and disposing of SNF and HLW at the Yucca Mountain repository in a manner that protects public health, safety, and the environment; enhances national and energy security; and merits public confidence. OCRWM faces a near-term challenge—to develop and demonstrate a transportation system that will sustain safe and efficient shipments of SNF and HLW to a repository. To better inform and improve its current planning, OCRWM has extensively reviewed plans and other documents related to past high-visibility shipping campaigns of SNF and other radioactive materials within the United States. This report summarizes the results of this review and, where appropriate, lessons learned.

  6. An Empirical Approach to Bounding the Axial Reactivity Effects of PWR Spent Nuclear Fuel

    SciTech Connect (OSTI)

    P. M. O'Leary; J. M. Scaglione

    2001-04-04

    One of the significant issues yet to be resolved for using burnup credit (BUC) for spent nuclear fuel (SNF) is establishing a set of depletion parameters that produce an adequately conservative representation of the fuel's isotopic inventory. Depletion parameters (such as local power, fuel temperature, moderator temperature, burnable poison rod history, and soluble boron concentration) affect the isotopic inventory of fuel that is depleted in a pressurized water reactor (PWR). However, obtaining the detailed operating histories needed to model all PWR fuel assemblies to which BUC would be applied is an onerous and costly task. Simplifications therefore have been suggested that could lead to using ''bounding'' depletion parameters that could be broadly applied to different fuel assemblies. This paper presents a method for determining a set of bounding depletion parameters for use in criticality analyses for SNF.

  7. Characterization and use of the spent beam for serial operation of LCLS

    SciTech Connect (OSTI)

    Boutet, Sébastien; Foucar, Lutz; Barends, Thomas R. M.; Botha, Sabine; Doak, R. Bruce; Koglin, Jason E.; Messerschmidt, Marc; Nass, Karol; Schlichting, Ilme; Seibert, M. Marvin; Shoeman, Robert L.; Williams, Garth J.

    2015-04-11

    X-ray free-electron laser sources such as the Linac Coherent Light Source offer very exciting possibilities for unique research. However, beam time at such facilities is very limited and in high demand. This has led to significant efforts towards beam multiplexing of various forms. One such effort involves re-using the so-called spent beam that passes through the hole in an area detector after a weak interaction with a primary sample. This beam can be refocused into a secondary interaction region and used for a second, independent experiment operating in series. The beam profile of this refocused beam was characterized for a particular experimental geometry at the Coherent X-ray Imaging instrument at LCLS. A demonstration of this multiplexing capability was performed with two simultaneous serial femtosecond crystallography experiments, both yielding interpretable data of sufficient quality to produce electron density maps.

  8. Corrosion testing of spent nuclear fuel performed at Argonne National Laboratory for repository acceptance

    SciTech Connect (OSTI)

    Goldberg, M. M.

    2000-07-20

    Corrosion tests of DOE-owned spent nuclear fuel are performed at Argonne National Laboratory to support the license application for the Yucca Mountain Repository. The tests are designed to determine corrosion rates and degradation products formed when fuel is reacted at elevated temperature in different aqueous environments, including vapor, dripping water, submersion, and liquid film contact. Corrosion rates are determined from the quantity of radionuclides released from wetted fuel and from the weight loss of the test fuel specimen as a function of time. Degradation products include secondary mineral phases and dissolved, adsorbed, and colloidal species. Solid phase examinations determine fuel/mineral interface relationships, characterize radionuclide incorporation into secondary phases, and determine corrosion mechanisms at grain interfaces within the fuel. Leachate solution analyses quantify released radionuclides and determine the size and charge distribution of colloids. This paper presents selected results from corrosion tests on metallic fuels.

  9. Synthetic aggregate compositions derived from spent bed materials from fluidized bed combustion and fly ash

    DOE Patents [OSTI]

    Boyle, Michael J. (Aston, PA)

    1994-01-01

    Cementitious compositions useful as lightweight aggregates are formed from a blend of spent bed material from fluidized bed combustion and fly ash. The proportions of the blend are chosen so that ensuing reactions eliminate undesirable constituents. The blend is then mixed with water and formed into a shaped article. The shaped article is preferably either a pellet or a "brick" shape that is later crushed. The shaped articles are cured at ambient temperature while saturated with water. It has been found that if used sufficiently, the resulting aggregate will exhibit minimal dimensional change over time. The aggregate can be certified by also forming standardized test shapes, e.g., cylinders while forming the shaped articles and measuring the properties of the test shapes using standardized techniques including X-ray diffraction.

  10. Management Of Hanford KW Basin Knockout Pot Sludge As Spent Nuclear Fuel

    SciTech Connect (OSTI)

    Raymond, R. E. [CH2M HIll Plateau Remediation Company, Richland, WA (United States); Evans, K. M. [AREVA, Avignon (France)

    2012-10-22

    CH2M HILL Plateau Remediation Company (CHPRC) and AREVA Federal Services, LLC (AFS) have been working collaboratively to develop and deploy technologies to remove, transport, and interim store remote-handled sludge from the 10S-K West Reactor Fuel Storage Basin on the U.S. Department of Energy (DOE) Hanford Site near Richland, WA, USA. Two disposal paths exist for the different types of sludge found in the K West (KW) Basin. One path is to be managed as Spent Nuclear Fuel (SNF) with eventual disposal at an SNF at a yet to be licensed repository. The second path will be disposed as remote-handled transuranic (RH-TRU) waste at the Waste Isolation Pilot Plant (WIPP) in Carlsbad, NM. This paper describes the systems developed and executed by the Knockout Pot (KOP) Disposition Subproject for processing and interim storage of the sludge managed as SNF, (i.e., KOP material).

  11. Characterization and use of the spent beam for serial operation of LCLS

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Boutet, Sébastien; Foucar, Lutz; Barends, Thomas R. M.; Botha, Sabine; Doak, R. Bruce; Koglin, Jason E.; Messerschmidt, Marc; Nass, Karol; Schlichting, Ilme; Seibert, M. Marvin; et al

    2015-04-11

    X-ray free-electron laser sources such as the Linac Coherent Light Source offer very exciting possibilities for unique research. However, beam time at such facilities is very limited and in high demand. This has led to significant efforts towards beam multiplexing of various forms. One such effort involves re-using the so-called spent beam that passes through the hole in an area detector after a weak interaction with a primary sample. This beam can be refocused into a secondary interaction region and used for a second, independent experiment operating in series. The beam profile of this refocused beam was characterized for amore »particular experimental geometry at the Coherent X-ray Imaging instrument at LCLS. A demonstration of this multiplexing capability was performed with two simultaneous serial femtosecond crystallography experiments, both yielding interpretable data of sufficient quality to produce electron density maps.« less

  12. Practical considerations in the concentration and recovery of spent nitration acids

    SciTech Connect (OSTI)

    Evans, C.M. [Chemetics International Co. Ltd., Vancouver, British Columbia (Canada)

    1995-12-01

    Most organic nitrations employ sulphuric acid or oleum in the nitration acid. Even in rare nitric acid only nitrations, sulphuric acid is used as the dehydrating agent to produce 99% nitric acid. The used sulphuric acid is discharged in a diluted form contaminated with organic components and nitric/nitrous species. Pressures are emloyed to reconcentrate and reprocess such spent acids. Acid recovery and concentration is expensive. This paper discusses some of the aspects which must be considered when contemplating acid recovery. In the current industrial climate, acid recovery and recycle should be regarded as an integral part of a nitration process development rather than an afterthought. Case histories will be given in which such considerations influenced the course of the development of the nitration process itself. Emphasis will be placed on the importance of well planned bench and pilot scale test programmes.

  13. Testing of a Transport Cask for Research Reactor Spent Fuel - 13003

    SciTech Connect (OSTI)

    Mourao, Rogerio P.; Leite da Silva, Luiz; Miranda, Carlos A.; Mattar Neto, Miguel; Quintana, Jose F.A.; Saliba, Roberto O.; Novara, Oscar E.

    2013-07-01

    Since the beginning of the last decade three Latin American countries that operate research reactors - Argentina, Brazil and Chile - have been joining efforts to improve the regional capability in the management of spent fuel elements from the TRIGA and MTR reactors operated in the region. A main drive in this initiative, sponsored by the International Atomic Energy Agency, is the fact that no definite solution regarding the back end of the research reactor fuel cycle has been taken by any of the participating country. However, any long-term solution - either disposition in a repository or storage away from reactor - will involve at some stage the transportation of the spent fuel through public roads. Therefore, a licensed cask that provides adequate shielding, assurance of subcriticality, and conformance to internationally accepted safety, security and safeguards regimes is considered a strategic part of any future solution to be adopted at a regional level. As a step in this direction, a packaging for the transport of irradiated fuel for MTR and TRIGA research reactors was designed by the tri-national team and a half-scale model equipped with the MTR version of the internal basket was constructed in Argentina and Brazil and tested in Brazil. Three test campaigns have been carried out so far, covering both normal conditions of transportation and hypothetical accident conditions. After failing the tests in the first two test series, the specimen successfully underwent the last test sequence. A second specimen, incorporating the structural improvements in view of the previous tests results, will be tested in the near future. Numerical simulations of the free drop and thermal tests are being carried out in parallel, in order to validate the computational modeling that is going to be used as a support for the package certification. (authors)

  14. Range of Applicability and Bias Determination for Postclosure Criticality of Commercial Spent Nuclear Fuel

    SciTech Connect (OSTI)

    Radulescu, Georgeta; Mueller, Don; Goluoglu, Sedat; Hollenbach, Daniel F; Fox, Patricia B

    2007-10-01

    The purpose of this calculation report, Range of Applicability and Bias Determination for Postclosure Criticality of Commercial Spent Nuclear Fuel, is to validate the computational method used to perform postclosure criticality calculations. The validation process applies the criticality analysis methodology approach documented in Section 3.5 of the Disposal Criticality Analysis Methodology Topical Report. The application systems for this validation consist of waste packages containing transport, aging, and disposal canisters (TAD) loaded with commercial spent nuclear fuel (CSNF) of varying assembly types, initial enrichments, and burnup values that are expected from the waste stream and of varying degree of internal component degradation that may occur over the 10,000-year regulatory time period. The criticality computational tool being evaluated is the general-purpose Monte Carlo N-Particle (MCNP) transport code. The nuclear cross-section data distributed with MCNP 5.1.40 and used to model the various physical processes are based primarily on the Evaluated Nuclear Data File/B Version VI (ENDF/B-VI) library. Criticality calculation bias and bias uncertainty and lower bound tolerance limit (LBTL) functions for CSNF waste packages are determined based on the guidance in ANSI/ANS 8.1-1998 (Ref. 4) and ANSI/ANS 8.17-2004 (Ref. 5), as described in Section 3.5.3 of Ref. 1. The development of this report is consistent with Test Plan for: Range of Applicability and Bias Determination for Postclosure Criticality. This calculation report has been developed in support of licensing activities for the proposed repository at Yucca Mountain, Nevada, and the results of the calculation may be used in the criticality evaluation for CSNF waste packages based on a conceptual TAD canister.

  15. Prairie Island Nuclear Station Spent Filter Processing for Direct Disposal - 12333

    SciTech Connect (OSTI)

    Anderson, H. Michael [WMG, Inc., 16 Bank Street, Peekskill, NY 10566 (United States)

    2012-07-01

    This paper will discuss WMG's filter processing experience within the commercial nuclear power industry, specifically recent experience processing high activity spent filters generated by Xcel Energy's Prairie Island Nuclear Station (Prairie Island), located in Welch, MN. WMG processed for disposal eighty-four 55-gallon drums filled with varying types of high activity spent filters. The scope of work involved characterization, packaging plan development, transport to the WMG's Off-Site Processing location, shredding the filter contents of each drum, cement solidifying the shredded filter material, and finally shipping the solidified container of shredded filter material to Clive, Utah where the container was presented to EnergySolutions Disposal site for disposal in their Containerised Waste Facility. This sequence of events presented in this paper took place a total of nine (9) times over a period of four weeks. All 1294 filters were successfully solidified into nine (9) -WMG 142 steel liners, and each was successfully disposed of as Class A Waste at EnergySolutions Disposal Site in Clive, Utah. Prairie Island's waste material was unique in that all its filters were packaged in 55-gallon drums; and since the station packaged its filters in drums it was much easier to develop packaging plans for such a large volume of legacy filters. For this author, having over 20-years of waste management experiences, storing and shipping waste material in 55-gallon drums is not immediately thought of as a highly efficient method of managing its waste material. However, Prairie Island's use of 55-gallon drums to store and package its filters provided a significant advantage. Drums could be mixed and matched to provide the most efficient processing method while still meeting the Waste Class A limits required for disposal. (author)

  16. Nuclear Solid Waste Processing Design at the Idaho Spent Fuels Facility

    SciTech Connect (OSTI)

    Dippre, M. A.

    2003-02-25

    A spent nuclear fuels (SNF) repackaging and storage facility was designed for the Idaho National Engineering and Environmental Laboratory (INEEL), with nuclear solid waste processing capability. Nuclear solid waste included contaminated or potentially contaminated spent fuel containers, associated hardware, machinery parts, light bulbs, tools, PPE, rags, swabs, tarps, weld rod, and HEPA filters. Design of the nuclear solid waste processing facilities included consideration of contractual, regulatory, ALARA (as low as reasonably achievable) exposure, economic, logistical, and space availability requirements. The design also included non-attended transfer methods between the fuel packaging area (FPA) (hot cell) and the waste processing area. A monitoring system was designed for use within the FPA of the facility, to pre-screen the most potentially contaminated fuel canister waste materials, according to contact- or non-contact-handled capability. Fuel canister waste materials which are not able to be contact-handled after attempted decontamination will be processed remotely and packaged within the FPA. Noncontact- handled materials processing includes size-reduction, as required to fit into INEEL permitted containers which will provide sufficient additional shielding to allow contact handling within the waste areas of the facility. The current design, which satisfied all of the requirements, employs mostly simple equipment and requires minimal use of customized components. The waste processing operation also minimizes operator exposure and operator attendance for equipment maintenance. Recently, discussions with the INEEL indicate that large canister waste materials can possibly be shipped to the burial facility without size-reduction. New waste containers would have to be designed to meet the drop tests required for transportation packages. The SNF waste processing facilities could then be highly simplified, resulting in capital equipment cost savings, operational time savings, and significantly improved ALARA exposure.

  17. Criticality Safety Analysis Of As-loaded Spent Nuclear Fuel Casks

    SciTech Connect (OSTI)

    Banerjee, Kaushik; Scaglione, John M

    2015-01-01

    The final safety analysis report (FSAR) or the safety analysis report (SAR) for a particular spent nuclear fuel (SNF) cask system documents models and calculations used to demonstrate that a system meets the regulatory requirements under all normal, off-normal, and accident conditions of spent fuel storage, and normal and accident conditions of transportation. FSAR/SAR calculations and approved content specifications are intended to be bounding in nature to certify cask systems for a variety of fuel characteristics with simplified SNF loading requirements. Therefore, in general, loaded cask systems possess excess and uncredited criticality margins (i.e., the difference between the licensing basis and the as-loaded calculations). This uncredited margin could be quantified by employing more detailed cask-specific evaluations that credit the actual as-loaded cask inventory, and taking into account full (actinide and fission product) burnup credit. This uncredited criticality margin could be potentially used to offset (1) uncertainties in the safety basis that needs to account for the effects of system aging during extended dry storage prior to transportation, and (2) increases in SNF system reactivity over a repository performance period (e.g., 10,000 years or more) as the system undergoes degradation and internal geometry changes. This paper summarizes an assessment of cask-specific, as-loaded criticality margins for SNF stored at eight reactor sites (215 loaded casks were analyzed) under fully flooded conditions to assess the margins available during transportation after extended storage. It is observed that the calculated keff margin varies from 0.05 to almost 0.3 keff for the eight selected reactor sites, demonstrating that significant uncredited safety margins are present. In addition, this paper evaluates the sufficiency of this excess margin in applications involving direct disposal of currently loaded SNF casks.

  18. Spent nuclear fuel retrieval system fuel handling development testing. Final report

    SciTech Connect (OSTI)

    Jackson, D.R.; Meeuwsen, P.V.

    1997-09-01

    Fuel handling development testing was performed in support of the Fuel Retrieval System (FRS) Sub-Project, a subtask of the Spent Nuclear Fuel Project at the Hanford Site in Richland, Washington. The FRS will be used to retrieve and repackage K-Basin Spent Nuclear Fuel (SNF) currently stored in old K-Plant storage basins. The FRS is required to retrieve full fuel canisters from the basin, clean the fuel elements inside the canister to remove excessive uranium corrosion products (or sludge), remove the contents from the canisters and sort the resulting debris, scrap, and fuel for repackaging. The fuel elements and scrap will be collected in fuel storage and scrap baskets in preparation for loading into a multi canister overpack (MCO), while the debris is loaded into a debris bin and disposed of as solid waste. This report describes fuel handling development testing performed from May 1, 1997 through the end of August 1997. Testing during this period was mainly focused on performance of a Schilling Robotic Systems` Conan manipulator used to simulate a custom designed version, labeled Konan, being fabricated for K-Basin deployment. In addition to the manipulator, the camera viewing system, process table layout, and fuel handling processes were evaluated. The Conan test manipulator was installed and fully functional for testing in early 1997. Formal testing began May 1. The purposes of fuel handling development testing were to provide proof of concept and criteria, optimize equipment layout, initialize the process definition, and identify special needs/tools and required design changes to support development of the performance specification. The test program was set up to accomplish these objectives through cold (non-radiological) development testing using simulated and prototype equipment.

  19. New red phosphor for near-ultraviolet light-emitting diodes with high color-purity

    SciTech Connect (OSTI)

    Wang, Zhengliang; He, Pei; Wang, Rui; Zhao, Jishou; Gong, Menglian

    2010-02-15

    New red phosphors, Na{sub 5}Eu(MoO{sub 4}){sub 4} doped with boron oxide were prepared by the solid-state reaction. Their structure and photo-luminescent properties were investigated. With the introduction of boron oxide, the red emission intensity of the phosphors under 395 nm excitation is strengthened, with high color-purity (x = 0.673, y = 0.327). The single red light-emitting diode was obtained by combining InGaN chip with the red phosphor, bright red light can be observed by naked eyes from the red light-emitting diodes under a forward bias of 20 mA.

  20. A comparison of spent fuel shipping cask response to 10 CFR 71 normal conditions and realistic hot day extremes

    SciTech Connect (OSTI)

    Manson, S.J.; Gianoulakis, S.E.

    1994-02-01

    The structural properties of spent nuclear fuel shipping containers vary as a function of the cask wall temperature. An analysis is performed to determine the effect of a realistic, though bounding, hot day environment on the thermal behavior of spent fuel shipping casks. These results are compared to those which develop under a steady-state application of the prescribed normal thermal conditions of 10CFR71. The completed analysis revealed that the majority of wall temperatures, for a wide variety of spent fuel shipping cask configurations, fall well below those predicted by using the steady-state application of the regulatory boundary conditions. It was found that maximum temperatures at the cask surface occasionally lie above temperatures predicted under the regulatory condition. This is due to the conservative assumptions present in the ambient conditions used. The analysis demonstrates that diurnal temperature variations which penetrate the cask wall have maxima substantially less than the corresponding temperatures obtained when applying the steady-state regulatory boundary conditions. Therefore, it is certain that vital cask components and the spent fuel itself will not exceed the temperatures calculated by use of the steady-state interpretation of the 10CFR71 normal conditions.

  1. Cost probability analysis of reprocessing spent nuclear fuel in the US G.D. Recktenwald, M.R. Deinert

    E-Print Network [OSTI]

    Deinert, Mark

    a b s t r a c ta r t i c l e i n f o Article history: Received 1 July 2011 Received in revised form 20 sustained transuranic recycle by the year 2100 (DOE, 2005). Here, all spent nuclear fuel from light­ water

  2. Foreign programs for the storage of spent nuclear power plant fuels, high-level waste canisters and transuranic wastes

    SciTech Connect (OSTI)

    Harmon, K.M.; Johnson, A.B. Jr.

    1984-04-01

    The various national programs for developing and applying technology for the interim storage of spent fuel, high-level radioactive waste, and TRU wastes are summarized. Primary emphasis of the report is on dry storage techniques for uranium dioxide fuels, but data are also provided concerning pool storage.

  3. However, the years that I spent in Egypt as a child and young adult blessed me with a solid foundation

    E-Print Network [OSTI]

    Zewail, Ahmed

    #12;However, the years that I spent in Egypt as a child and young adult blessed me with a solid of the world that often left me distressed. Many thought 1rode camels all day long in Egypt. The truth is that 1had never ridden a camel in Egypt. Many also imagined that most of my fellow Egyptians drilled

  4. Leachate Chemistry of Field-Weathered Spent Mushroom Substrate Mingxin Guo, Jon Chorover,* Rex Rosario, and Richard H. Fox

    E-Print Network [OSTI]

    Chorover, Jon

    Leachate Chemistry of Field-Weathered Spent Mushroom Substrate Mingxin Guo, Jon Chorover,* Rex reuse. During this field weathering process, leachate percolates into the underlying (Chong and Rinker leaching an SMS­peat column with distilled water at leachate and effects of infiltration. Two SMS piles

  5. Reunin Red CAPAP-H. Murcia 13-06-07

    E-Print Network [OSTI]

    Giménez, Domingo

    ) #12;Reunión Red CAPAP-H. Murcia 13-06-07 Sistemas de computación disponibles HP Cluster Superdome: 2 nodos SMP de 64 procesadores cada uno. 2 servidores HP Integrity Superdome con 64 procesadores Itanium2 configuración de los nodos de cálculo es la siguinte: · 1 x Sistema SMP Integrity tipo Superdome con 64 CPUs

  6. Alcian Blue Alizarin Red Skeletal Staining October 2003

    E-Print Network [OSTI]

    De Robertis, Eddy M.

    Alcian Blue ­ Alizarin Red Skeletal Staining October 2003 Eddy M. De Robertis 1. Dissect mice damage. 3. Replace 95% ethanol with Alcian blue staining solution for 1-3 days slowly rocking at room days. 4. Replace Alcian blue solution with 95% ethanol for 6 hours slowly rocking at room temperature

  7. Guide to Red Fluorescent Proteins and Biosensors for Flow Cytometry

    E-Print Network [OSTI]

    Verkhusha, Vladislav V.

    CHAPTER 17 Guide to Red Fluorescent Proteins and Biosensors for Flow Cytometry Kiryl D. Piatkevich. Simultaneous Detection of Multiple FPs V. Fluorescent Timers VI. FRET-Based Genetically Encoded Biosensors A. Conventional FRET Pairs B. Novel Advanced FRET Pairs C. FRET Biosensors in Multicolor Flow Cytometry D

  8. Seeing Red: New Tools for Mapping and Understanding Fire Severity

    E-Print Network [OSTI]

    1 Seeing Red: New Tools for Mapping and Understanding Fire Severity The 2012 fire season was resource managers tools to assess severity before, during, and after a wildfire. FIRESEV has produced a suite of tools for a wide range of fire management applications, including real-time forecasts

  9. Analysis of records of embryo production in Red Brahman cows 

    E-Print Network [OSTI]

    Riano Rocha, Edgar Hernando

    2005-11-01

    Records of embryo production in Red Brahman donor cows (n=50) and F1 recipients (n=531) were evaluated from the collection day to the birth of the embryo produced. The effects of the sire of the donor and the embryo, ...

  10. Varieties of Cotton in the Red Prairies of Northwest Texas. 

    E-Print Network [OSTI]

    Quinby, John Roy

    1927-01-01

    ......................................... Results in 1924 12 ......................................... ResuTts in 1925 13 .......................................... Resnlts in 1926 14 BULLETIN NO. 366 - NOVEMBER, 1927 VARIETIES OF COTTON IN THE RED PRAIRIES OF NORTH- WEST TEXAS Substation No..... ............... Durango. ................. Sunshine.. ................ Rowden.. ................. Snowflake.. ............... Summerour & Co Vernon Texas Summerour & SO; ~erno; Texas R. E. Hudson, ~uhurn, AI;. Cris Reuter, New Orleans, La. Texas Substat~on No.. 12...

  11. Resource Stewardship Tips for 2012 Recreational Red Snapper Season

    E-Print Network [OSTI]

    Watson, Craig A.

    trying to catch a bigger fish may have unintended consequences when water temperatures approach the mid creating a thermocline. The result is temperature shock and possibly death for the fish which remains rebuild and are reflected by the numerous large fish landed. Red Snapper dominate many Gulf of Mexico

  12. Thermo Exam 1 pg 1 Fall 2010 RED barcode here

    E-Print Network [OSTI]

    Hart, Gus

    Thermo Exam 1 ­ pg 1 Fall 2010 RED barcode here Physics 123 section 2 Exam 1 Colton 2-3669 Please otherwise instructed, give all numerical answers for the worked problems in SI units, to 3 or 4 significant not get this test booklet back. #12;Thermo Exam 1 ­ pg 2 (15 pts) Problem 1: Multiple choice conceptual

  13. Thermo Exam 2 pg 1 Fall 2010 RED barcode here

    E-Print Network [OSTI]

    Hart, Gus

    Thermo Exam 2 ­ pg 1 Fall 2010 RED barcode here Physics 123 section 2 Exam 2 Colton 2-3669 Please in SI units, to 3 or 4 significant digits. For answers that rely on intermediate results, remember to write down your CID at the top of the page? _________ #12;Thermo Exam 1 ­ pg 2 (15 pts) Problem 1

  14. ORIGINAL PAPER Responses of red deer (Cervus elaphus) to regular

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    ORIGINAL PAPER Responses of red deer (Cervus elaphus) to regular disturbance by hill walkers Angela calving rates in elk Cervus elaphus canadensis have been linked to human disturbance (Philips-recognised that the effect of disturbance can vary with its predictability; unexpected events, such as hill walkers

  15. Big Island Demonstration Project – Black Liquor

    Broader source: Energy.gov [DOE]

    This fact sheet summarizes a U.S. Department of Energy Biomass Program research and development project.

  16. Direct In Vivo Electrochemical Detection of Haemoglobin in Red Blood Cells

    E-Print Network [OSTI]

    Toh, Rou Jun

    The electrochemical behavior of iron ion in haemoglobin provides insight to the chemical activity in the red blood cell which is important in the field of hematology. Herein, the detection of haemoglobin in human red blood ...

  17. The Red Storm Architecture and Early Experiences with Multi-core...

    Office of Scientific and Technical Information (OSTI)

    with Multi-core Processors Citation Details In-Document Search Title: The Red Storm Architecture and Early Experiences with Multi-core Processors The Red Storm architecture, which...

  18. T-712: Red Hat Enterprise MRG Grid 2.0 security, bug fix and...

    Office of Environmental Management (EM)

    12: Red Hat Enterprise MRG Grid 2.0 security, bug fix and enhancement update T-712: Red Hat Enterprise MRG Grid 2.0 security, bug fix and enhancement update September 8, 2011 -...

  19. T-563: Red Hat Directory Server Bugs Let Local Users Gain Elevated...

    Broader source: Energy.gov (indexed) [DOE]

    T-671: Red Hat system-config-firewall Lets Local Users Gain Root Privileges V-041: Red Hat CloudForms Multiple Vulnerabilities U-198: IBM Lotus Expeditor Multiple Vulnerabilities...

  20. 52 Plant Protection Quarterly Vol.18(2) 2003 The red coconut scale (Furcaspis oceanica

    E-Print Network [OSTI]

    Reddy, Gadi VP

    52 Plant Protection Quarterly Vol.18(2) 2003 Summary The red coconut scale (Furcaspis oceanica agent of the red coconut scale. Keywords: Scale insect, Furcaspis oceanica, Homoptera, Diaspididae, parasitoid, Adelencyrtus oceanicus, Hy- menoptera, Encyrtidae, coconut, biologi- cal control, Guam

  1. Evaluation of various sulphur amino acid compounds in the diet of red drum, Sciaenops ocellatus 

    E-Print Network [OSTI]

    Goff, Jonathan B

    2003-01-01

    Refinement of diet formulations to enhance the efficiency of red drum production continues to be pursued. Based on previous studies, the sulfur amino acid (SAA) requirement of red drum for methionine plus cystine appears to be most limiting, which...

  2. Sedimentary processes of the Red River between Denison Dam, TX and Alexandria, LA 

    E-Print Network [OSTI]

    Weirich, Thomas Moody - Kenyon

    1990-01-01

    the processes that govern the suspended sediment concentration of the Red River; processes which may impact river navigation and the operation of lock and dams currently being constructed on the Red River between Alexandria, LA and Shreveport, LA. Knowledge.... 2. changes in land use which have promoted erosion of the lands along the reach of the Red River between Index, AR and Shreveport, LA. 3. easily erodible fine grained fractions that may be present in, or outcrop immediately adjacent to, the Red...

  3. Red Algae Lose Key Mitochondrial Genes in Response to Becoming Parasitic

    E-Print Network [OSTI]

    Lane, Chris

    Red Algae Lose Key Mitochondrial Genes in Response to Becoming Parasitic Lillian Hancock1 , Lynda independently evolved hundreds of times among the floridiophyte red algae. Much is known about the life history class of red algae, Plocamiocolax puvinata, has lost the atp8 gene entirely, indicating that this gene

  4. The Red-billed Quelea in southern Africa: primary moult and the rainfall migration model

    E-Print Network [OSTI]

    de Villiers, Marienne

    Chapter 4 The Red-billed Quelea in southern Africa: primary moult and the rainfall migration model #12;74 #12;75 The Red-billed Quelea in southern Africa: primary moult and the rainfall migration model Abstract The onset and duration of primary moult were investigated for Red-billed Quelea Quelea quelea

  5. Red-belted clearwing Synanthedon myopaeformis Michigan State University's invasive species factsheets

    E-Print Network [OSTI]

    Isaacs, Rufus

    Red-belted clearwing Synanthedon myopaeformis Michigan State University's invasive species State University IPM Program and M. Philip of Michigan Department of Agriculture. The red-belted. Michigan risk maps for exotic plant pests. Other common names small red-belted clearwing, apple clearwing

  6. "Red Sore Disease"in Game Fish1 Peggy Reed and Ruth Francis-Floyd2

    E-Print Network [OSTI]

    Watson, Craig A.

    VM85 "Red Sore Disease"in Game Fish1 Peggy Reed and Ruth Francis-Floyd2 1. This document is VM85 fish is generically referred to as "red sore disease." This problem usually occurs in the spring on their fish. Typically, "red sore disease" is caused by two organisms, Aeromonas hydrophila , a bacterium

  7. Upper Middle Mainstem Columbia River Subbasin Focal Species Information, Red-winged Blackbird

    E-Print Network [OSTI]

    Appendix C Upper Middle Mainstem Columbia River Subbasin Focal Species Information, Red-winged Blackbird Introduction The red-winged black bird is one of the most abundant birds in North America (Marshall et al. 2003). Red-winged Blackbirds are extremely adaptable; successfully colonizing many small

  8. TOPICAL REPORT ON ACTINIDE-ONLY BURNUP CREDIT FOR PWR SPENT NUCLEAR FUEL PACKAGES

    SciTech Connect (OSTI)

    DOE

    1997-04-01

    A methodology for performing and applying nuclear criticality safety calculations, for PWR spent nuclear fuel (SNF) packages with actinide-only burnup credit, is described. The changes in the U-234, U-235, U-236, U-238, Pu-238, Pu-239, Pu-240, Pu-241, Pu-242, and Am-241 concentration with burnup are used in burnup credit criticality analyses. No credit for fission product neutron absorbers is taken. The methodology consists of five major steps. (1) Validate a computer code system to calculate isotopic concentrations of SNF created during burnup in the reactor core and subsequent decay. A set of chemical assay benchmarks is presented for this purpose as well as a method for assessing the calculational bias and uncertainty, and conservative correction factors for each isotope. (2) Validate a computer code system to predict the subcritical multiplication factor, k{sub eff}, of a spent nuclear fuel package. Fifty-seven UO{sub 2}, UO{sub 2}/Gd{sub 2}O{sub 3}, and UO{sub 2}/PuO{sub 2} critical experiments have been selected to cover anticipated conditions of SNF. The method uses an upper safety limit on k{sub eff} (which can be a function of the trending parameters) such that the biased k{sub eff}, when increased for the uncertainty is less than 0.95. (3) Establish bounding conditions for the isotopic concentration and criticality calculations. Three bounding axial profiles have been established to assure the ''end effect'' is accounted for conservatively. (4) Use the validated codes and bounding conditions to generate package loading criteria (burnup credit loading curves). Burnup credit loading curves show the minimum burnup required for a given initial enrichment. The utility burnup record is compared to this requirement after the utility accounts for the uncertainty in its record. Separate curves may be generated for each assembly design, various minimum cooling times and burnable absorber histories. (5) Verify that SNF assemblies meet the package loading criteria and confirm proper assembly selection prior to loading. A measurement of the average assembly burnup is required and that measurement must be within 10% of the utility burnup record for the assembly to be accepted. The measurement device must be accurate to within 10%. Each step is described in detail for use with any computer code system and is then demonstrated with the SCALE 4.2 computer code package using 27BURNUPLIB cross sections.

  9. Spent Fuel Transportation Package Response to the Baltimore Tunnel Fire Scenario

    SciTech Connect (OSTI)

    Adkins, Harold E.; Cuta, Judith M.; Koeppel, Brian J.; Guzman, Anthony D.; Bajwa, Christopher S.

    2006-11-15

    On July 18, 2001, a freight train carrying hazardous (non-nuclear) materials derailed and caught fire while passing through the Howard Street railroad tunnel in downtown Baltimore, Maryland. The United States Nuclear Regulatory Commission (USNRC), one of the agencies responsible for ensuring the safe transportation of radioactive materials in the United States, undertook an investigation of the train derailment and fire to determine the possible regulatory implications of this particular event for the transportation of spent nuclear fuel by railroad. Shortly after the accident occurred, the USNRC met with the National Transportation Safety Board (NTSB, the U.S. agency responsible for determining the cause of transportation accidents), to discuss the details of the accident and the ensuing fire. Following these discussions, the USNRC assembled a team of experts from the National Institute of Standards and Technology (NIST), the Center for Nuclear Waste Regulatory Analyses (CNWRA), and Pacific Northwest National Laboratory (PNNL) to determine the thermal conditions that existed in the Howard Street tunnel fire and analyze the effects of this fire on various spent fuel transportation package designs. The Fire Dynamics Simulator (FDS) code, developed by NIST, was used to determine the thermal environment present in the Howard Street tunnel during the fire. The FDS results were used as boundary conditions in the COBRA-SFS and ANSYS® computer codes to evaluate the thermal performance of different package designs. The staff concluded that larger transportation packages resembling the HOLTEC Model No. HI STAR 100 and TransNuclear Model No. TN-68 would withstand a fire with thermal conditions similar to those that existed in the Baltimore tunnel fire event with only minor damage to peripheral components. This is due to their sizable thermal inertia and design specifications in compliance with currently imposed regulatory requirements. The staff also concluded that some components of smaller transportation packages resembling the NAC Model No. LWT, despite placement within an ISO container, could degrade. USNRC staff evaluated the radiological consequences of the package responses to the Baltimore tunnel fire. Though components in some packages heated up beyond their service temperatures, the staff determined that there would be no significant dose as a result of the fire for any of these and similar packages.

  10. Reversible Bending Fatigue Test System for Investigating Vibration Integrity of Spent Nuclear Fuel during Transportation

    SciTech Connect (OSTI)

    Wang, Jy-An John; Wang, Hong; Bevard, Bruce Balkcom; Howard, Rob L; Flanagan, Michelle

    2013-01-01

    Transportation packages for spent nuclear fuel (SNF) must meet safety requirements under normal and accident conditions as specified by federal regulations. During transportation, SNF experiences unique conditions and challenges to cladding integrity due to the vibrational and impact loading during road or rail shipment. Oak Ridge National Laboratory (ORNL) has been developing testing capabilities that can be used to improve the understanding of the impacts on SNF integrity due to vibration loading, especially for high burn-up SNF in normal transportation operation conditions. This information can be used to meet the nuclear industry and U.S. Nuclear Regulatory Commission needs in the area of safety and security of spent nuclear fuel storage and transport operations. The ORNL developed test system can perform reversible-bending fatigue testing to evaluate both the static and dynamic mechanical response of SNF rods under simulated loads. The testing apparatus is also designed to meet the challenges of hot-cell operation, including remote installation and detachment of the SNF test specimen, in-situ test specimen deformation measurement, and implementation of a driving system suitable for use in a hot cell. The system contains a U-frame set-up equipped with uniquely designed grip rigs, to protect SNF rod and to ensure valid test results, and use of 3 specially designed LVDTs to obtain the in-situ curvature measurement. A variety of surrogate test rods have been used to develop and calibrate the test system as well as in performing a series of systematic cyclic fatigue tests. The surrogate rods include stainless steel (SS) cladding, SS cladding with cast epoxy, and SS cladding with alumina pellets inserts simulating fuel pellets. Testing to date has shown that the interface bonding between the SS cladding and the alumina pellets has a significant impact on the bending response of the test rods as well as their fatigue strength. The failure behaviors observed from tested surrogate rods provides a fundamental understanding of the underlying failure mechanisms of the SNF surrogate rod under vibration which has not been achieved previously. The newly developed device is scheduled to be installed in the hot-cell in summer 2013 to test high burnup SNF.

  11. Extremely red galaxies in the Phoenix Deep Survey

    E-Print Network [OSTI]

    A. M. Hopkins; J. Afonso; A. Georgakakis; M. Sullivan; B. Mobasher; L. E. Cram

    2003-09-04

    The Phoenix Deep Survey (PDS) is a multiwavelength survey based on deep 1.4 GHz radio observations used to identify a large sample of star forming galaxies to z=1. Here we present an exploration of the evolutionary constraints on the star-forming population imposed by the 1.4 GHz source counts, followed by an analysis of the average properties of extremely red galaxies in the PDS, by using the "stacking" technique.

  12. Advisor Self Service -General Overview Signing into MyRED

    E-Print Network [OSTI]

    Powers, Robert

    tab allows you to do a class search for a specific term. Click on the drop down box to find the term://www.unl.edu/ 3. From the Current Student Link, click on the MyRED Link 4. Enter your NUID number in the NUID field 5. Enter your password (Use the password you use to access Firefly) 6. Click Sign In Student

  13. Red Cliffs Campground, Cedar City District, Utah | Department of Energy

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on DeliciousMathematics AndBeryllium Disease |Records Management Field Officer (RMFO) Records ManagementEconomyRed Cliffs

  14. Differential Die-Away Instrument: Report on Initial Simulations of Spent Fuel Experiment

    SciTech Connect (OSTI)

    Goodsell, Alison V.; Henzl, Vladimir; Swinhoe, Martyn T.

    2014-04-01

    New Monte Carlo simulations of the differential die-away (DDA) instrument response to the assay of spent and fresh fuel helped to redefine the signal-to-Background ratio and the effects of source neutron tailoring on the system performance. Previously, burst neutrons from the neutron generator together with all neutrons from a fission chain started by a fast fission of 238U were considered to contribute to active background counts. However, through additional simulations, the magnitude of the 238U first fission contribution was found to not affect the DDA performance in reconstructing 239Pueff. As a result, the newly adopted DDA active background definition considers now any neutrons within a branch of the fission chain that does not include at least one fission event induced by a thermal neutron, before being detected, to be the active background. The active background, consisting thus of neutrons from a fission chain or its individual branches composed entirely of sequence of fast fissions on any fissile or fissionable nuclei, is not expected to change significantly with different fuel assemblies. Additionally, while source tailoring materials surrounding the neutron generator were found to influence and possibly improve the instrument performance, the effect was not substantial.

  15. FATE Unified Modeling Method for Spent Nuclear Fuel and Sludge Processing, Shipping and Storage - 13405

    SciTech Connect (OSTI)

    Plys, Martin; Burelbach, James; Lee, Sung Jin; Apthorpe, Robert

    2013-07-01

    A unified modeling method applicable to the processing, shipping, and storage of spent nuclear fuel and sludge has been incrementally developed, validated, and applied over a period of about 15 years at the US DOE Hanford site. The software, FATE{sup TM}, provides a consistent framework for a wide dynamic range of common DOE and commercial fuel and waste applications. It has been used during the design phase, for safety and licensing calculations, and offers a graded approach to complex modeling problems encountered at DOE facilities and abroad (e.g., Sellafield). FATE has also been used for commercial power plant evaluations including reactor building fire modeling for fire PRA, evaluation of hydrogen release, transport, and flammability for post-Fukushima vulnerability assessment, and drying of commercial oxide fuel. FATE comprises an integrated set of models for fluid flow, aerosol and contamination release, transport, and deposition, thermal response including chemical reactions, and evaluation of fire and explosion hazards. It is one of few software tools that combine both source term and thermal-hydraulic capability. Practical examples are described below, with consideration of appropriate model complexity and validation. (authors)

  16. An Analysis of Dual Zone Loading for Shipping Spent Nuclear Fuel

    SciTech Connect (OSTI)

    Allen, William Christopher; Yim, Man-Sung

    2007-07-01

    The bumps current fuel assembly designs can achieve exceeds the fuel assembly burnups the current fleet of shipping casks can ship. One method of handling this situation which has been proposed is regionalized loading. This concept involves administratively separating the fuel basket of a shipping cask into two or more regions and loading fuel with different burnup, cooling times and enrichments into these regions. To evaluate how regionalized loading patterns might affect shipping spent nuclear fuel in comparison to uniform loading, a test case study was performed using fuel assemblies discharged from an actual nuclear plant and a shipping cask licensed by the NRC. Using the same fuel assemblies and shipping cask, results were obtained assuming a uniform loading pattern and compared to the results obtained assuming a dual zone loading pattern. Source terms for the analysis were generated using SAS2 and the dose levels were calculated using MCNPS. The analysis showed that the dual zone loading reduced the amount of time required to ship the given quantity of fuel by roughly thirty percent compared to the uniform loading. The average dose rate to the transportation workers and the public due to the implementation of dual zone loading increased. Implications of these increases are discussed. (authors)

  17. OVERVIEW OF CRITERIA FOR INTERIM WET & DRY STORAGE OF RESEARCH REACTOR SPENT NUCLEAR FUEL

    SciTech Connect (OSTI)

    Sindelar, R.; Vinson, D.; Iyer, N.; Fisher, D.

    2010-11-03

    Following discharge from research reactors, spent nuclear fuel may be stored 'wet' in water pools or basins, or it may be stored 'dry' in various configurations including non-sealed or sealed containers until retrieved for ultimate disposition. Interim safe storage practices are based on avoiding degradation to the fuel that would impact functions related to safety. Recommended practices including environmental controls with technical bases, are outlined for wet storage and dry storage of aluminum-clad, aluminum-based research reactor fuel. For wet storage, water quality must be maintained to minimize corrosion degradation of aluminum fuel. For dry storage, vented canister storage of aluminum fuel readily provides a safe storage configuration. For sealed dry storage, drying must be performed so as to minimize water that would cause additional corrosion and hydrogen generation. Consideration must also be given to the potential for radiolytically-generated hydrogen from the bound water in the attendant oxyhydroxides on aluminum fuel from reactor operation for dry storage systems.

  18. COMPLETION OF THE FIRST INTEGRATED SPENT NUCLEAR FUEL TRANSSHIPMENT/INTERIM STORAGE FACILITY IN NW RUSSIA

    SciTech Connect (OSTI)

    Dyer, R.S.; Barnes, E.; Snipes, R.L.; Hoeibraaten, S.; Gran, H.C.; Foshaug, E.; Godunov, V.

    2003-02-27

    Northwest and Far East Russia contain large quantities of unsecured spent nuclear fuel (SNF) from decommissioned submarines that potentially threaten the fragile environments of the surrounding Arctic and North Pacific regions. The majority of the SNF from the Russian Navy, including that from decommissioned nuclear submarines, is currently stored in on-shore and floating storage facilities. Some of the SNF is damaged and stored in an unstable condition. Existing Russian transport infrastructure and reprocessing facilities cannot meet the requirements for moving and reprocessing this amount of fuel. Additional interim storage capacity is required. Most of the existing storage facilities being used in Northwest Russia do not meet health and safety, and physical security requirements. The United States and Norway are currently providing assistance to the Russian Federation (RF) in developing systems for managing these wastes. If these wastes are not properly managed, they could release significant concentrations of radioactivity to these sensitive environments and could become serious global environmental and physical security issues. There are currently three closely-linked trilateral cooperative projects: development of a prototype dual-purpose transport and storage cask for SNF, a cask transshipment interim storage facility, and a fuel drying and cask de-watering system. The prototype cask has been fabricated, successfully tested, and certified. Serial production is now underway in Russia. In addition, the U.S. and Russia are working together to improve the management strategy for nuclear submarine reactor compartments after SNF removal.

  19. Long-term, low-temperature oxidation of PWR spent fuel: Interim transition report

    SciTech Connect (OSTI)

    Einziger, R.E.; Buchanan, H.C.

    1988-05-01

    Since some of the fuel rods will be breached and eventually most of the cladding will corrode, exposing fuel, one factor influencing the ability of spent fuel to retain radionuclides is its oxidation state in the expected moist air atmosphere. Oxidation of the fuel could split the cladding, exposing additional fuel and changing the leaching characteristics. Thermodynamically, there is no reason why UO{sub 2} should not oxidize completely to UO{sub 3} at repository temperatures. The underlying uncertainty is the rate of oxidation. Extrapolation of higher temperature data indicates that insufficient oxidation to convert all of the fuel to U{sub 3}O{sub 8} will occur during the first 10,000 years. However, lower oxidation states, such as U{sub 4}O{sub 9} and U{sub 3}O{sub 7}, might form. To date, the tests have run between 3200 and 4100 hours out of a planned 16,000-hour duration. Some preliminary conclusions can be drawn: (1) Moisture content of the air has no significant effect on oxidation rate, (2) the data have an uncertainty of 15 to 20%, which must be accounted for in the interpretation of single sample tests, and (3) below 175{degree}C, the oxidation rate is dependent on the particle size in the sample. The smaller particles oxidize more rapidly. 19 refs., 23 figs., 7 tabs.

  20. Integrated data base report--1996: US spent nuclear fuel and radioactive waste inventories, projections, and characteristics

    SciTech Connect (OSTI)

    1997-12-01

    The Integrated Data Base Program has compiled historic data on inventories and characteristics of both commercial and U.S. Department of Energy (DOE) spent nuclear fuel (SNF) and commercial and U.S. government-owned radioactive wastes. Inventories of most of these materials are reported as of the end of fiscal year (FY) 1996, which is September 30, 1996. Commercial SNF and commercial uranium mill tailings inventories are reported on an end-of-calendar year (CY) basis. All SNF and radioactive waste data reported are based on the most reliable information available from government sources, the open literature, technical reports, and direct contacts. The information forecasted is consistent with the latest DOE/Energy Information Administration (EIA) projections of U.S. commercial nuclear power growth and the expected DOE-related and private industrial and institutional activities. The radioactive materials considered, on a chapter-by-chapter basis, are SNF, high-level waste, transuranic waste, low-level waste, uranium mill tailings, DOE Environmental Restoration Program contaminated environmental media, naturally occurring and accelerator-produced radioactive material, and mixed (hazardous and radioactive) low-level waste. For most of these categories, current and projected inventories are given through FY 2030, and the radioactivity and thermal power are calculated based on reported or estimated isotopic compositions.

  1. Performance assessment for the geological disposal of Deep Burn spent fuel using TTBX

    SciTech Connect (OSTI)

    Van den Akker, B.P.; Ahn, J. [Department of Nuclear Engineering, University of California, Berkeley, CA 94720 (United States)

    2013-07-01

    The behavior of Deep Burn Modular High Temperature Reactor Spent Fuel (DBSF) is investigated in the Yucca Mountain geological repository (YMR) with respect to the annual dose (Sv/yr) delivered to the Reasonably Maximally Exposed Individual (RMEI) from the transport of radionuclides released from the graphite waste matrix. Transport calculations are performed with a novel computer code, TTBX which is capable of modeling transport pathways that pass through heterogeneous geological formations. TTBX is a multi-region extension of the existing single region TTB transport code. Overall the peak annual dose received by the RMEI is seen to be four orders of magnitude lower than the regulatory threshold for exposure, even under pessimistic scenarios. A number of factors contribute to the favorable performance of DBSF. A reduction of one order of magnitude in the peak annual dose received by the RMEI is observed for every order of magnitude increase in the waste matrix lifetime, highlighting the importance of the waste matrix durability and suggesting graphite's utility as a potential waste matrix for the disposal of high-level waste. Furthermore, we see that by incorporating a higher fidelity far-field model the peak annual dose calculated to be received by the RMEI is reduced by two orders of magnitude. By accounting for the heterogeneities of the far field we have simultaneously removed unnecessary conservatisms and improved the fidelity of the transport model. (authors)

  2. US Department of Energy Storage of Spent Fuel and High Level Waste

    SciTech Connect (OSTI)

    Sandra M Birk

    2010-10-01

    ABSTRACT This paper provides an overview of the Department of Energy's (DOE) spent nuclear fuel (SNF) and high level waste (HLW) storage management. Like commercial reactor fuel, DOE's SNF and HLW were destined for the Yucca Mountain repository. In March 2010, the DOE filed a motion with the Nuclear Regulatory Commission (NRC) to withdraw the license application for the repository at Yucca Mountain. A new repository is now decades away. The default for the commercial and DOE research reactor fuel and HLW is on-site storage for the foreseeable future. Though the motion to withdraw the license application and delay opening of a repository signals extended storage, DOE's immediate plans for management of its SNF and HLW remain the same as before Yucca Mountain was designated as the repository, though it has expanded its research and development efforts to ensure safe extended storage. This paper outlines some of the proposed research that DOE is conducting and will use to enhance its storage systems and facilities.

  3. Present experience of NRI REZ with preparation of spent nuclear fuel shipment to Russian Federation

    SciTech Connect (OSTI)

    Svitak, F.; Broz, V.; Hrehor, M.; Marek, M.; Novosad, P.; Podlaha, J.; Rychecky, J. [Nuclear Research Institute Rez plc, Husinec 130, CZ-25068 (Czech Republic)

    2008-07-15

    The Nuclear Research Institute Rez plc (NRI) jointed the Russian Research Reactor Fuel Return (RRRFR) programme under the US-Russian Global Threat Reduction Initiative (GTRI) initiative and started the preparation of the spent nuclear fuel (SNF) shipment from the LVR-15 research reactor back to the Russian Federation (RF). The transport of 16 SKODA VPVR/M casks with EK-10, IRT-2M 80 %, and IRT-2M 36% fuel types is planned for the autumn of 2007. The paper describes the experience gained so far during the preparatory works for the SNF shipment (facility equipment modification, cask licenses) and the actual preparation of the SNF for transport, in particular its checking, repacking in a hot cell, loading into the VPVR/M casks, drying, manipulation, completion of the transport documentation, etc., including its transport to the SNF storage facility at the NRI before it is shipped to the RF. The paper also briefly describes a regulatory framework for these activities with a focus on legislative and methodological aspects of the return of vitrified waste back to the Czech Republic. (author)

  4. Standard review plan for reviewing safety analysis reports for dry metallic spent fuel storage casks

    SciTech Connect (OSTI)

    Not Available

    1988-01-01

    The Cask Standard Review Plan (CSRP) has been prepared as guidance to be used in the review of Cask Safety Analysis Reports (CSARs) for storage packages. The principal purpose of the CSRP is to assure the quality and uniformity of storage cask reviews and to present a well-defined base from which to evaluate proposed changes in the scope and requirements of reviews. The CSRP also sets forth solutions and approaches determined to be acceptable in the past by the NRC staff in dealing with a specific safety issue or safety-related design area. These solutions and approaches are presented in this form so that reviewers can take consistent and well-understood positions as the same safety issues arise in future cases. An applicant submitting a CSAR does not have to follow the solutions or approaches presented in the CSRP. However, applicants should recognize that the NRC staff has spent substantial time and effort in reviewing and developing their positions for the issues. A corresponding amount of time and effort will probably be required to review and accept new or different solutions and approaches.

  5. High Burn-Up Spent Nuclear Fuel Vibration Integrity Study 15134

    SciTech Connect (OSTI)

    Wang, Jy-An John; Wang, Hong; Jiang, Hao; Bevard, Bruce Balkcom; Howard, Rob L; Scaglione, John M

    2015-01-01

    The Oak Ridge National Laboratory (ORNL) has developed the cyclic integrated reversible-bending fatigue tester (CIRFT) approach to successfully demonstrate the controllable fatigue fracture on high burnup (HBU) spent nuclear fuel (SNF) in a normal vibration mode. CIRFT enables examination of the underlying mechanisms of SNF system dynamic performance. Due to the inhomogeneous composite structure of the SNF system, the detailed mechanisms of the pellet-pellet and pellet-clad interactions and the stress concentration effects at the pellet-pellet interface cannot be readily obtained from a CIRFT system measurement. Therefore, finite element analyses (FEAs) are used to translate the global moment-curvature measurement into local stress-strain profiles for further investigation. The major findings of CIRFT on the HBU SNF are as follows: SNF system interface bonding plays an important role in SNF vibration performance. Fuel structure contributes to SNF system stiffness. There are significant variations in stress and curvature of SNF systems during vibration cycles resulting from segment pellets and clad interactions. SNF failure initiates at the pellet-pellet interface region and appears to be spontaneous.

  6. Effects of the MacArthur Maze Fire and Roadway Collapse on a Spent Nuclear Fuel Transportation Package

    SciTech Connect (OSTI)

    Bajwa, Christopher S.; Easton, Earl P.; Adkins, Harold E.; Cuta, Judith M.; Klymyshyn, Nicholas A.; Suffield, Sarah R.

    2011-03-03

    In 2007, a severe transportation accident occurred near Oakland, California, on a section of Interstate 880 known as the "MacArthur Maze," involving a tractor trailer carrying gasoline which impacted an overpass support column and burst into flames. The subsequent fire caused the collapse of portions of the Interstate 580 overpass onto the remains of the tractor-trailer in less than 20 minutes, due to a reduction of strength in the structural steel exposed to the fire. The US Nuclear Regulatory Commission is in the process of examining the impacts of this accident on the performance of a spent nuclear fuel transportation package, using detailed analysis models, in order to determine the potential regulatory implications related to the safe transport of spent nuclear fuel in the United States. This paper will provide a summary of this ongoing effort and present some preliminary results and conclusions.

  7. The MacArthur Maze Fire and Roadway Collapse: A "Worst Case Scenario" for Spent Nuclear Fuel Transportation?

    SciTech Connect (OSTI)

    Bajwa, Christopher S.; Easton, Earl P.; Adkins, Harold E.; Cuta, Judith M.; Klymyshyn, Nicholas A.; Suffield, Sarah R.

    2012-07-06

    In 2007, a severe transportation accident occurred near Oakland, California, at the interchange known as the "MacArthur Maze." The accident involved a double tanker truck of gasoline overturning and bursting into flames. The subsequent fire reduced the strength of the supporting steel structure of an overhead interstate roadway causing the collapse of portions of that overpass onto the lower roadway in less than 20 minutes. The US Nuclear Regulatory Commission has analyzed what might have happened had a spent nuclear fuel transportation package been involved in this accident, to determine if there are any potential regulatory implications of this accident to the safe transport of spent nuclear fuel in the United States. This paper provides a summary of this effort, presents preliminary results and conclusions, and discusses future work related to the NRC's analysis of the consequences of this type of severe accident.

  8. BWR spent fuel storage cask performance test. Volume 1. Cask handling experience and decay heat, heat transfer, and shielding data

    SciTech Connect (OSTI)

    McKinnon, M.A.; Doman, J.W.; Tanner, J.E.; Guenther, R.J.; Creer, J.M.; King, C.E.

    1986-02-01

    This report documents a heat transfer and shielding performance test conducted on a Ridihalgh, Eggers and Associates REA 2023 boiling water reactor (BWR) spent fuel storage cask. The testing effort consisted of three parts: pretest preparations, performance testing, and post-test activities. Pretest preparations included conducting cask handling dry runs and characterizing BWR spent fuel assemblies from Nebraska Public Power District's Cooper Nuclear Station. The performance test matrix included 14 runs consisting of two loadings, two cask orientations, and three backfill environments. Post-test activities included calorimetry and axial radiation scans of selected fuel assemblies, in-basin sipping of each assembly, crud collection, video and photographic scans, and decontamination of the cask interior and exterior.

  9. FY13 Summary Report on the Augmentation of the Spent Fuel Composition Dataset for Nuclear Forensics: SFCOMPO/NF

    SciTech Connect (OSTI)

    Brady Raap, Michaele C.; Lyons, Jennifer A.; Collins, Brian A.; Livingston, James V.

    2014-03-31

    This report documents the FY13 efforts to enhance a dataset of spent nuclear fuel isotopic composition data for use in developing intrinsic signatures for nuclear forensics. A review and collection of data from the open literature was performed in FY10. In FY11, the Spent Fuel COMPOsition (SFCOMPO) excel-based dataset for nuclear forensics (NF), SFCOMPO/NF was established and measured data for graphite production reactors, Boiling Water Reactors (BWRs) and Pressurized Water Reactors (PWRs) were added to the dataset and expanded to include a consistent set of data simulated by calculations. A test was performed to determine whether the SFCOMPO/NF dataset will be useful for the analysis and identification of reactor types from isotopic ratios observed in interdicted samples.

  10. Electrochemical cell apparatus having axially distributed entry of a fuel-spent fuel mixture transverse to the cell lengths

    DOE Patents [OSTI]

    Reichner, Philip (Plum Borough, PA); Dollard, Walter J. (Churchill Borough, PA)

    1991-01-01

    An electrochemical apparatus (10) is made having a generator section (22) containing axially elongated electrochemical cells (16), a fresh gaseous feed fuel inlet (28), a gaseous feed oxidant inlet (30), and at least one gaseous spent fuel exit channel (46), where the spent fuel exit channel (46) passes from the generator chamber (22) to combine with the fresh feed fuel inlet (28) at a mixing apparatus (50), reformable fuel mixture channel (52) passes through the length of the generator chamber (22) and connects with the mixing apparatus (50), that channel containing entry ports (54) within the generator chamber (22), where the axis of the ports is transverse to the fuel electrode surfaces (18), where a catalytic reforming material is distributed near the reformable fuel mixture entry ports (54).

  11. A methodology for estimating the residual contamination contribution to the source term in a spent-fuel transport cask

    SciTech Connect (OSTI)

    Sanders, T.L. ); Jordan, H. . Rocky Flats Plant); Pasupathi, V. ); Mings, W.J. ); Reardon, P.C. )

    1991-09-01

    This report describes the ranges of the residual contamination that may build up in spent-fuel transport casks. These contamination ranges are calculated based on data taken from published reports and from previously unpublished data supplied by cask transporters. The data involve dose rate measurements, interior smear surveys, and analyses of water flushed out of cask cavities during decontamination operations. A methodology has been developed to estimate the effect of residual contamination on spent-fuel cask containment requirements. Factors in estimating the maximum permissible leak rates include the form of the residual contamination; possible release modes; internal gas-borne depletion; and the temperature, pressure, and vibration characteristics of the cask during transport under normal and accident conditions. 12 refs., 9 figs., 4 tabs.

  12. Standard guide for pyrophoricity/combustibility testing in support of pyrophoricity analyses of metallic uranium spent nuclear fuel

    E-Print Network [OSTI]

    American Society for Testing and Materials. Philadelphia

    2007-01-01

    1.1 This guide covers testing protocols for testing the pyrophoricity/combustibility characteristics of metallic uranium-based spent nuclear fuel (SNF). The testing will provide basic data for input into more detailed computer codes or analyses of thermal, chemical, and mechanical SNF responses. These analyses would support the engineered barrier system (EBS) design bases and safety assessment of extended interim storage facilities and final disposal in a geologic repository. The testing also could provide data related to licensing requirements for the design and operation of a monitored retrievable storage facility (MRS) or independent spent fuel storage installation (ISFSI). 1.2 This guide describes testing of metallic uranium and metallic uranium-based SNF in support of transportation (in accordance with the requirements of 10CFR71), interim storage (in accordance with the requirements of 10CFR72), and geologic repository disposal (in accordance with the requirements of 10CFR60/63). The testing described ...

  13. Hanford spent nuclear fuel project recommended path forward, volume III: Alternatives and path forward evaluation supporting documentation

    SciTech Connect (OSTI)

    Fulton, J.C.

    1994-10-01

    Volume I of the Hanford Spent Nuclear Fuel Project - Recommended Path Forward constitutes an aggressive series of projects to construct and operate systems and facilities to safely retrieve, package, transport, process, and store K Basins fuel and sludge. Volume II provided a comparative evaluation of four Alternatives for the Path Forward and an evaluation for the Recommended Path Forward. Although Volume II contained extensive appendices, six supporting documents have been compiled in Volume III to provide additional background for Volume II.

  14. Draft Supplement Analysis: Two Proposed Shipments of Commercial Spent Nuclear Fuel to Idaho National Laboratory for Research and Development Purposes

    Broader source: Energy.gov [DOE]

    DOE is proposing to transport, in two separate truck shipments, small quantities of commercial power spent nuclear fuel (SNF) to the Idaho National Laboratory (INL) Site for research purposes consistent with the mission of the DOE Office of Nuclear Energy. DOE is preparing a Supplement Analysis to determine whether an existing environmental impact statement should be supplemented, a new environmental impact statement should be prepared, or that no further NEPA documentation is required for this proposed action.

  15. Technical Approach and Plan for Transitioning Spent Nuclear Fuel (SNF) Project Facilities to the Environmental Restoration Program

    SciTech Connect (OSTI)

    SKELLY, W.A.

    1999-10-06

    This document describes the approach and process in which the 100-K Area Facilities are to be deactivated and transitioned over to the Environmental Restoration Program after spent nuclear fuel has been removed from the K Basins. It describes the Transition Project's scope and objectives, work breakdown structure, activity planning, estimated cost, and schedule. This report will be utilized as a planning document for project management and control and to communicate details of project content and integration.

  16. Method using CO for extending the useful shelf-life of refrigerated red blood cells

    DOE Patents [OSTI]

    Bitensky, Mark W. (Los Alamos, NM)

    1995-01-01

    Method using CO for extending the useful shelf-life of refrigerated red blood cells. Carbon monoxide is utilized for stabilizing hemoglobin in red blood cells to be stored at low temperature. Changes observed in the stored cells are similar to those found in normal red cell aging in the body, the extent thereof being directly related to the duration of refrigerated storage. Changes in cell buoyant density, vesiculation, and the tendency of stored cells to bind autologous IgG antibody directed against polymerized band 3 IgG, all of which are related to red blood cell senescence and increase with refrigerated storage time, have been substantially slowed when red blood cells are treated with CO. Removal of the carbon monoxide from the red blood cells is readily and efficiently accomplished by photolysis in the presence of oxygen so that the stored red blood cells may be safely transfused into a recipient.

  17. Method using CO for extending the useful shelf-life of refrigerated red blood cells

    DOE Patents [OSTI]

    Bitensky, M.W.

    1995-12-19

    A method is disclosed using CO for extending the useful shelf-life of refrigerated red blood cells. Carbon monoxide is utilized for stabilizing hemoglobin in red blood cells to be stored at low temperature. Changes observed in the stored cells are similar to those found in normal red cell aging in the body, the extent thereof being directly related to the duration of refrigerated storage. Changes in cell buoyant density, vesiculation, and the tendency of stored cells to bind autologous IgG antibody directed against polymerized band 3 IgG, all of which are related to red blood cell senescence and increase with refrigerated storage time, have been substantially slowed when red blood cells are treated with CO. Removal of the carbon monoxide from the red blood cells is readily and efficiently accomplished by photolysis in the presence of oxygen so that the stored red blood cells may be safely transfused into a recipient. 5 figs.

  18. Regeneration of field-spent activated carbon catalysts for low-temperature selective catalytic reduction of NOx with NH3

    SciTech Connect (OSTI)

    Jeon, Jong Ki; Kim, Hyeonjoo; Park, Young-Kwon; Peden, Charles HF; Kim, Do Heui

    2011-10-15

    In the process of producing liquid crystal displays (LCD), the emitted NOx is removed over an activated carbon catalyst by using selective catalytic reduction (SCR) with NH3 at low temperature. However, the catalyst rapidly deactivates primarily due to the deposition of boron discharged from the process onto the catalyst. Therefore, this study is aimed at developing an optimal regeneration process to remove boron from field-spent carbon catalysts. The spent carbon catalysts were regenerated by washing with a surfactant followed by drying and calcination. The physicochemical properties before and after the regeneration were investigated by using elemental analysis, TG/DTG (thermogravimetric/differential thermogravimetric) analysis, N2 adsorption-desorption and NH3 TPD (temperature programmed desorption). Spent carbon catalysts demonstrated a drastic decrease in DeNOx activity mainly due to heavy deposition of boron. Boron was accumulated to depths of about 50 {mu}m inside the granule surface of the activated carbons, as evidenced by cross-sectional SEM-EDX analysis. However, catalyst activity and surface area were significantly recovered by removing boron in the regeneration process, and the highest NOx conversions were obtained after washing with a non-ionic surfactant in H2O at 70 C, followed by treatment with N2 at 550 C.

  19. Simultaneous separation of cesium and strontium from spent nuclear fuel using the fission-product extraction process

    SciTech Connect (OSTI)

    Law, J.D.; Peterman, D.R.; Riddle, C.L.; Meikrantz, D.A.; Todd, T.A.

    2008-07-01

    The Fission-Product Extraction (FPEX) Process is being developed as part of the United States Department of Energy Global Nuclear Energy Partnership (GNEP) for the simultaneous separation of cesium and strontium from spent LWR fuel. Separation of the Cs and Sr will reduce the short-term heat load in a geological repository and, when combined with the separation of Am and Cm, could increase the capacity of the geological repository by a factor of approximately 100. The FPEX process is based on two highly-specific extractants: 4,4',(5')-di-(t-butyl-dicyclohexano)- 18-crown-6 (DtBuCH18C6) and calix[4]arene-bis-(t-octyl-benzo-crown-6 ) (BOBCalixC6). The DtBuCH18C6 extractant is selective for strontium, and the BOBCalixC6 extractant is selective for cesium. Results of flowsheet testing of the FPEX process with simulated and actual spent-nuclear-fuel feed solution in centrifugal contactors are detailed. Removal efficiencies, co-extraction of metals, and process hydrodynamic performance ar e discussed along with recommendations for future flowsheet testing with actual spent nuclear fuel. Recent advances in the evaluation of alternative calixarenes with increased solubility and stability are also detailed. (authors)

  20. SPENT SHALE AS A CONTROL TECHNOLOGY FOR OIL SHALE RETORT WATER. ANNUAL REPORT FOR PERIOD OCTOBER 1, 1978 - SEPTEMBER 30, 1979.

    E-Print Network [OSTI]

    Fox, J.P.

    2013-01-01

    Properties of Spent Shales. Surface Area Measurements.Carbon. Effects. ~~ co 2,and Oil~Shale Partial-pressure andWater from Green River Oil Shale, 11 Chem. Ind. 1, 485 (

  1. Processes for washing a spent ion exchange bed and for treating biomass-derived pyrolysis oil, and apparatuses for treating biomass-derived pyrolysis oil

    DOE Patents [OSTI]

    Baird, Lance Awender; Brandvold, Timothy A.

    2015-11-24

    Processes and apparatuses for washing a spent ion exchange bed and for treating biomass-derived pyrolysis oil are provided herein. An exemplary process for washing a spent ion exchange bed employed in purification of biomass-derived pyrolysis oil includes the step of providing a ion-depleted pyrolysis oil stream having an original oxygen content. The ion-depleted pyrolysis oil stream is partially hydrotreated to reduce the oxygen content thereof, thereby producing a partially hydrotreated pyrolysis oil stream having a residual oxygen content that is less than the original oxygen content. At least a portion of the partially hydrotreated pyrolysis oil stream is passed through the spent ion exchange bed. Water is passed through the spent ion exchange bed after passing at least the portion of the partially hydrotreated pyrolysis oil stream therethrough.

  2. EIS-0250: Geologic Repository for the Disposal of Spent Nuclear Fuel and High-Level Radioactive Waste at Yucca Mountain, Nye County, Nevada

    Broader source: Energy.gov [DOE]

    This EIS analyzes DOE's proposed action to construct, operate, monitor, and eventually close a geologic repository at Yucca Mountain  for the disposal of spent nuclear fuel and high-level...

  3. Application of Neutron-Absorbing Structural-Amorphous metal (SAM) Coatings for Spent Nuclear Fuel (SNF) Container to Enhance Criticality Safety Controls

    E-Print Network [OSTI]

    2006-01-01

    enhance criticality safety for spent nuclear fuel in basketsNuclear Fuel (SNF) Container to Enhance Criticality SafetyNuclear Fuel (SNF) Containers: Use of Novel Coating Materials to Enhance Criticality Safety

  4. User`s guide to REVERT. A CDC 7600 program for converting Spent Fuel Test - Climax data to engineering units, with corrections

    SciTech Connect (OSTI)

    Hage, G.

    1984-10-01

    A CDC 7600 computer program, REVERT, can revise Spent Fuel Test - Climax data files using one of several algorithms, depending on the type of data. The algorithms use coefficients from a separate file organized by data type identifiers. REVERT can also make that file of coefficients, using data from tapes made by Hewlett-Packard equipment employed for data acquisition on the spent Fuel Test - Climax at NTS. 12 references.

  5. Red Flag Indicators in Export Transactions The following are some indicators (red flags) that a buyer of your products may not be

    E-Print Network [OSTI]

    Massachusetts at Amherst, University of

    Red Flag Indicators in Export Transactions The following are some indicators (red flags) that a buyer of your products may not be authorized to receive them due to Export Administration Regulations are for domestic use or re- export. The company is less than five years old. The buyer or their address is similar

  6. Assessing the Feasibility of Using Neutron Resonance Transmission Analysis (NRTA) for Assaying Plutonium in Spent Fuel Assemblies

    SciTech Connect (OSTI)

    D. L. Chichester; J. W. Sterbentz

    2012-07-01

    Neutron resonance transmission analysis (NRTA) is an active-interrogation nondestructive assay (NDA) technique capable of assaying spent nuclear fuel to determine plutonium content. Prior experimental work has definitively shown the technique capable of assaying plutonium isotope composition in spent-fuel pins to a precision of approximately 3%, with a spatial resolution of a few millimeters. As a Grand Challenge to investigate NDA options for assaying spent fuel assemblies (SFAs) in the commercial fuel cycle, Idaho National Laboratory has explored the feasibility of using NRTA to assay plutonium in a whole SFA. The goal is to achieve a Pu assay precision of 1%. The NRTA technique uses low-energy neutrons from 0.1-40 eV, at the bottom end of the actinide-resonance range, in a time-of-flight arrangement. Isotopic composition is determined by relating absorption of the incident neutrons to the macroscopic cross-section of the actinides of interest in the material, and then using this information to determine the areal density of the isotopes in the SFA. The neutrons used for NRTA are produced using a pulsed, accelerator-based neutron source. Distinguishable resonances exist for both the plutonium (239,240,241,242Pu) and uranium (235,236,238U) isotopes of interest in spent fuel. Additionally, in this energy range resonances exists for six important fission products (99Tc, 103Rh, 131Xe, 133Cs, 145Nd, and 152Sm) which provide additional information to support spent fuel plutonium assay determinations. Based on extensive modeling of the problem using Monte Carlo-based simulation codes, our preliminary results suggest that by rotating an SFA to acquire four symmetric views, sufficient neutron transmission can be achieved to assay a SFA. In this approach multiple scan information for the same pins may also be unfolded to potentially allow the determination of plutonium for sub-regions of the assembly. For a 17 ? 17 pressurized water reactor SFA, a simplistic preliminary analysis indicates the mass of 239Pu may be determined with a precision on the order of 5%, without the need for operator-supplied fuel information or operational histories. This paper will present our work to date on this topic, indicate our preliminary findings for a conceptual assay approach, discuss resilience against spoofing, and outline our future plans for evaluating the NRTA technique for SFA plutonium determination.

  7. DEMONSTRATION OF LONG-TERM STORAGE CAPABILITY FOR SPENT NUCLEAR FUEL IN L BASIN

    SciTech Connect (OSTI)

    Sindelar, R.; Deible, R.

    2011-04-27

    The U.S. Department of Energy decisions for the ultimate disposition of its inventory of used nuclear fuel presently in, and to be received and stored in, the L Basin at the Savannah River Site, and schedule for project execution have not been established. A logical decision timeframe for the DOE is following the review of the overall options for fuel management and disposition by the Blue Ribbon Commission on America's Nuclear Future (BRC). The focus of the BRC review is commercial fuel; however, the BRC has included the DOE fuel inventory in their review. Even though the final report by the BRC to the U.S. Department of Energy is expected in January 2012, no timetable has been established for decisions by the U.S. Department of Energy on alternatives selection. Furthermore, with the imminent lay-up and potential closure of H-canyon, no ready path for fuel disposition would be available, and new technologies and/or facilities would need to be established. The fuel inventory in wet storage in the 3.375 million gallon L Basin is primarily aluminum-clad, aluminum-based fuel of the Materials Test Reactor equivalent design. An inventory of non-aluminum-clad fuel of various designs is also stored in L Basin. Safe storage of fuel in wet storage mandates several high-level 'safety functions' that would be provided by the Structures, Systems, and Components (SSCs) of the storage system. A large inventory of aluminum-clad, aluminum-based spent nuclear fuel, and other nonaluminum fuel owned by the U.S. Department of Energy is in wet storage in L Basin at the Savannah River Site. An evaluation of the present condition of the fuel, and the Structures, Systems, or Components (SSCs) necessary for its wet storage, and the present programs and storage practices for fuel management have been performed. Activities necessary to validate the technical bases for, and verify the condition of the fuel and the SSCs under long-term wet storage have also been identified. The overall conclusion is that the fuel can be stored in L Basin, meeting general safety functions for fuel storage, for an additional 50 years and possibly beyond contingent upon continuation of existing fuel management activities and several augmented program activities. It is concluded that the technical bases and well-founded technologies have been established to store spent nuclear fuel in the L Basin. Methodologies to evaluate the fuel condition and characteristics, and systems to prepare fuel, isolate damaged fuel, and maintain water quality storage conditions have been established. Basin structural analyses have been performed against present NPH criteria. The aluminum fuel storage experience to date, supported by the understanding of the effects of environmental variables on materials performance, demonstrates that storage systems that minimize degradation and provide full retrievability of the fuel up to and greater than 50 additional years will require maintaining the present management programs, and with the recommended augmented/additional activities in this report.

  8. Evaluation of the Strategic Value of Fully Burnt PBMR Spent Fuel - A Report to ISPO in Response to IAEA Letter Request (2004-08-30)

    SciTech Connect (OSTI)

    A. M. Ougouag; H. D. Gougar; T. A. Todd

    2006-05-01

    The IAEA needs to determine the value of imposing safeguards on the spent fuel storage at the Pebble Bed Modular Reactor (PBMR) planned for construction in the Republic of South Africa. The PBMR will use hundreds of thousands of fuel elements in the shape of small spheres (6 cm in diameter). The PBMR plant design calls for the storage on site of all the spent fuel generated during the whole life of the reactor, expected to span 40 years. The spent fuel storage system is designed (or to be designed) for a functional life of 80 years. If it is determined that the spent fuel contains materials of interest to a would-be proliferant, then safeguards would have to be imposed and maintained until the spent fuel elements are processed into a form and composition that no longer requires safeguards. The problem addressed in this report is the determination of the strategic value of the spent fuel to such a would-be proliferant.

  9. Expected environments in high-level nuclear waste and spent fuel repositories in salt

    SciTech Connect (OSTI)

    Claiborne, H.C.; Rickertsen, L.D., Graham, R.F.

    1980-08-01

    The purpose of this report is to describe the expected environments associated with high-level waste (HLW) and spent fuel (SF) repositories in salt formations. These environments include the thermal, fluid, pressure, brine chemistry, and radiation fields predicted for the repository conceptual designs. In this study, it is assumed that the repository will be a room and pillar mine in a rock-salt formation, with the disposal horizon located approx. 2000 ft (610 m) below the surface of the earth. Canistered waste packages containing HLW in a solid matrix or SF elements are emplaced in vertical holes in the floor of the rooms. The emplacement holes are backfilled with crushed salt or other material and sealed at some later time. Sensitivity studies are presented to show the effect of changing the areal heat load, the canister heat load, the barrier material and thickness, ventilation of the storage room, and adding a second row to the emplacement configuration. The calculated thermal environment is used as input for brine migration calculations. The vapor and gas pressure will gradually attain the lithostatic pressure in a sealed repository. In the unlikely event that an emplacement hole will become sealed in relatively early years, the vapor space pressure was calculated for three scenarios (i.e., no hole closure - no backfill, no hole closure - backfill, and hole closure - no backfill). It was assumed that the gas in the system consisted of air and water vapor in equilibrium with brine. A computer code (REPRESS) was developed assuming that these changes occur slowly (equilibrium conditions). The brine chemical environment is outlined in terms of brine chemistry, corrosion, and compositions. The nuclear radiation environment emphasized in this report is the stored energy that can be released as a result of radiation damage or crystal dislocations within crystal lattices.

  10. Interim report spent nuclear fuel retrieval system fuel handling development testing

    SciTech Connect (OSTI)

    Ketner, G.L.; Meeuwsen, P.V.; Potter, J.D.; Smalley, J.T.; Baker, C.P.; Jaquish, W.R.

    1997-06-01

    Fuel handling development testing was performed in support of the Fuel Retrieval System (FRS) Sub-Project at the Hanford Site. The project will retrieve spent nuclear fuel, clean and remove fuel from canisters, repackage fuel into baskets, and load fuel into a multi-canister overpack (MCO) for vacuum drying and interim dry storage. The FRS is required to retrieve basin fuel canisters, clean fuel elements sufficiently of uranium corrosion products (or sludge), empty fuel from canisters, sort debris and scrap from whole elements, and repackage fuel in baskets in preparation for MCO loading. The purpose of fuel handling development testing was to examine the systems ability to accomplish mission activities, optimization of equipment layouts for initial process definition, identification of special needs/tools, verification of required design changes to support performance specification development, and validation of estimated activity times/throughput. The test program was set up to accomplish this purpose through cold development testing using simulated and prototype equipment; cold demonstration testing using vendor expertise and systems; and graphical computer modeling to confirm feasibility and throughput. To test the fuel handling process, a test mockup that represented the process table was fabricated and installed. The test mockup included a Schilling HV series manipulator that was prototypic of the Schilling Hydra manipulator. The process table mockup included the tipping station, sorting area, disassembly and inspection zones, fuel staging areas, and basket loading stations. The test results clearly indicate that the Schilling Hydra arm cannot effectively perform the fuel handling tasks required unless it is attached to some device that can impart vertical translation, azimuth rotation, and X-Y translation. Other test results indicate the importance of camera locations and capabilities, and of the jaw and end effector tool design. 5 refs., 35 figs., 3 tabs.

  11. Calculation Method for the Projection of Future Spent Nuclear Fuel Discharges

    SciTech Connect (OSTI)

    B. McLeod

    2002-02-28

    This report describes the calculation method developed for the projection of future utility spent nuclear fuel (SNF) discharges in regard to their timing, quantity, burnup, and initial enrichment. This projection method complements the utility-supplied RW-859 data on historic discharges and short-term projections of SNF discharges by providing long-term projections that complete the total life cycle of discharges for each of the current U.S. nuclear power reactors. The method was initially developed in mid-1999 to update the SNF discharge projection associated with the 1995 RW-859 utility survey (CRWMS M&O 1996). and was further developed as described in Rev. 00 of this report (CRWMS M&O 2001a). Primary input to the projection of SNF discharges is the utility projection of the next five discharges from each nuclear unit, which is provided via the revised final version of the Energy Information Administration (EIA) 1998 RW-859 utility survey (EIA 2000a). The projection calculation method is implemented via a set of Excel 97 spreadsheets. These calculations provide the interface between receipt of the utility five-discharge projections that are provided in the RW-859 survey, and the delivery of projected life-cycle SNF discharge quantities and characteristics in the format requisite for performing logistics analysis to support design of the Civilian Radioactive Waste Management System (CRWMS). Calculation method improvements described in this report include the addition of a reactor-specific maximum enrichment-based discharge burnup limit. This limit is the consequence of the enrichment limit, currently 5 percent. which is imposed as a Nuclear Regulatory Commission (NRC) license condition on nuclear fuel fabrication plants. In addition, the calculation method now includes the capability for projecting future nuclear plant power upratings, consistent with many such recent plant uprates and the prospect of additional future uprates. Finally. this report summarizes the results of the 2002 Reference SNF Discharge Projection.

  12. Simulated dry storage test of a spent PWR nuclear fuel assembly in air

    SciTech Connect (OSTI)

    Johnson, A.B. Jr.; Gilbert, E.R.; Oden, D.R.; Stidham, D.L.; Garnier, J.E.; Weeks, D.L.; Dobbins, J.C.

    1985-02-01

    The purpose of the dry storage test was to investigate the behavior of Zircaloy-clad spent fuel in air between 200 and 275/sup 0/C. Atmospheric air was used for the cover gas because of the interest in establishing regimes where air inleakage into an initially inert system would not cause potential fuel degradation. Samples of the cover gas atmosphere were extracted monthly to determine fission gas concentrations as a function of time. The oxygen concentration was monitored to detect oxygen depletion, which would signal oxidation of the fuel. The gas analyses indicated very low but detectable levels of /sup 85/Kr during the first month of the test. A large increase (five orders of magnitude) in /sup 85/Kr and the appearance of helium in the cover gas indicated that a fuel rod had breached during the second month of the test. Stress rupture calculations showed that the stresses and temperatures were too low to expect breaches to form in defect-free cladding. It is theorized that the breach occurred in a fuel rod weakened by an existing cladding or end cap defect. Calculations based on the rate of /sup 85/Kr release suggest that the diameter of the initial breach was about 25 microns. A post-test fuel examination will be performed to locate and investigate the cause of the cladding breach and to determine if detectable fuel degradation progressed after the breach occurred. The post-test evaluation will define the consequences of a fuel rod breach occurring in an air cover gas at 270/sup 0/C, followed by subsequent exposure to air at a prototypic descending temperature.

  13. Summary engineering description of underwater fuel storage facility for foreign research reactor spent nuclear fuel

    SciTech Connect (OSTI)

    Dahlke, H.J.; Johnson, D.A.; Rawlins, J.K.; Searle, D.K.; Wachs, G.W.

    1994-10-01

    This document is a summary description for an Underwater Fuel Storage Facility (UFSF) for foreign research reactor (FRR) spent nuclear fuel (SNF). A FRR SNF environmental Impact Statement (EIS) is being prepared and will include both wet and dry storage facilities as storage alternatives. For the UFSF presented in this document, a specific site is not chosen. This facility can be sited at any one of the five locations under consideration in the EIS. These locations are the Idaho National Engineering Laboratory, Savannah River Site, Hanford, Oak Ridge National Laboratory, and Nevada Test Site. Generic facility environmental impacts and emissions are provided in this report. A baseline fuel element is defined in Section 2.2, and the results of a fission product analysis are presented. Requirements for a storage facility have been researched and are summarized in Section 3. Section 4 describes three facility options: (1) the Centralized-UFSF, which would store the entire fuel element quantity in a single facility at a single location, (2) the Regionalized Large-UFSF, which would store 75% of the fuel element quantity in some region of the country, and (3) the Regionalized Small-UFSF, which would store 25% of the fuel element quantity, with the possibility of a number of these facilities in various regions throughout the country. The operational philosophy is presented in Section 5, and Section 6 contains a description of the equipment. Section 7 defines the utilities required for the facility. Cost estimates are discussed in Section 8, and detailed cost estimates are included. Impacts to worker safety, public safety, and the environment are discussed in Section 9. Accidental releases are presented in Section 10. Standard Environmental Impact Forms are included in Section 11.

  14. NRC Technical Research Program to Evaluate Extended Storage and Transportation of Spent Nuclear Fuel - 12547

    SciTech Connect (OSTI)

    Einziger, R.E.; Compton, K.; Gordon, M.; Ahn, T.; Gonzales, H.; Pan, Y.

    2012-07-01

    Any new direction proposed for the back-end of spent nuclear fuel (SNF) cycle will require storage of SNF beyond the current licensing periods. The Nuclear Regulatory Commission (NRC) has established a technical research program to determine if any changes in the 10 CFR part 71, and 72 requirements, and associated guidance might be necessary to regulate the safety of anticipated extended storage, and subsequent transport of SNF. This three part program of: 1) analysis of knowledge gaps in the potential degradation of materials, 2) short-term research and modeling, and 3) long-term demonstration of systems, will allow the NRC to make informed regulatory changes, and determine when and if additional monitoring and inspection of the systems is necessary. The NRC has started a research program to obtain data necessary to determine if the current regulatory guidance is sufficient if interim dry storage has to be extended beyond the currently approved licensing periods. The three-phased approach consists of: - the identification and prioritization of potential degradation of the components related to the safe operation of a dry cask storage system, - short-term research to determine if the initial analysis was correct, and - a long-term prototypic demonstration project to confirm the models and results obtained in the short-term research. The gap analysis has identified issues with the SCC of the stainless steel canisters, and SNF behavior. Issues impacting the SNF and canister internal performance such as high and low temperature distributions, and drying have also been identified. Research to evaluate these issues is underway. Evaluations have been conducted to determine the relative values that various types of long-term demonstration projects might provide. These projects or follow-on work is expected to continue over the next five years. (authors)

  15. Plan for characterization of K Basin Spent Nuclear Fuel and sludge. Revision 1

    SciTech Connect (OSTI)

    Lawrence, L.A.

    1995-10-05

    This plan outlines a Characterization Program that provides the necessary data to support the Integrated Process Strategy scope and schedules for the Spent Nuclear Fuel (SNF) and sludge stored in the Hanford K Basins. The plan is driven by the schedule to begin fuel transfer by December 1997. The program is structured for 4 years (i.e., FY 1995 through FY 1998) and is limited to in-situ and laboratory examinations of the SNF and sludge in the K East and K West Basins. In order to assure the scope and schedule of the Characterization Program fully supports the Integrated Process Strategy, key project management has approved the plan. The intent of the program is to provide bounding behavior for the fuel, and acceptability for the transfer of the sludge to the Double Shell Tanks. Fuel examinations are based on two shipping compains from the K West Basin and one from the K East Basin with coincident sludge sampling campaings for the associated canister sludge. Sampling of the basin floor and pit sludge will be conducted independent of the fuel and canister sludge shipping activities. Fuel behavior and properties investigated in the laboratory include physical condition, hydride and oxide content, conditioning testing, oxidation kinetics, and dry storage behavior. These laboratory examinations are expected to provide the necessary data to establish or confirm fuel conditioning process limits and support safety analysis. Sludge laboratory examinations include measurement of quantity and content, measurement of properties for equipment design and recovery process limits and support safety analysis. Sludge laboratory examinations include measurement of quantity and content, measurement of properties for equipment design and recovery precesses, tank farm acceptance, simulant development, measurement of corrosion products, and measurements of drying behavior.

  16. Characterization Program Management Plan for Hanford K Basin Spent Nuclear Fuel (SNF) (OCRWM)

    SciTech Connect (OSTI)

    BAKER, R.B.; TRIMBLE, D.J.

    2000-12-12

    The management plan developed to characterize the K Basin spent nuclear fuel (SNF) and sludge was originally developed for Westinghouse Hanford Company and Pacific Northwest National Laboratory to work together on a program to provide characterization data to support removal, conditioning, and subsequent dry storage of the SNF stored at the Hanford K Basins. The plan also addressed necessary characterization for the removal, transport, and storage of the sludge from the Hanford K Basins. This plan was revised in 1999 (i.e., Revision 2) to incorporate actions necessary to respond to the deficiencies revealed as the result of Quality Assurance surveillances and audits in 1999 with respect to the fuel characterization activities. Revision 3 to this Program Management Plan responds to a Worker Assessment resolution determined in Fical Year 2000. This revision includes an update to current organizational structures and other revisions needed to keep this management plan consistent with the current project scope. The plan continues to address both the SNF and the sludge accumulated at K Basins. Most activities for the characterization of the SNF have been completed. Data validation, Office of Civilian Radioactive Waste Management (OCRWM) document reviews, and OCRWM data qualification are the remaining SNF characterization activities. The transport and storage of K Basin sludge are affected by recent path forward revisions. These revisions require additional laboratory analyses of the sludge to complete the acquisition of required supporting engineering data. Hence, this revision of the management plan provides the overall work control for these remaining SNF and sludge characterization activities given the current organizational structure of the SNF Project.

  17. Final report spent nuclear fuel retrieval system primary cleaning development testing

    SciTech Connect (OSTI)

    Ketner, G.L.; Meeuwsen, P.V.

    1997-09-01

    Developmental testing of the primary cleaning station for spent nuclear fuel (SNF) and canisters is reported. A primary clean machine will be used to remove the gross sludge from canisters and fuel while maintaining water quality in the downstream process area. To facilitate SNF separation from canisters and minimize the impact to water quality, all canisters will be subjected to mechanical agitation and flushing with the Primary Clean Station. The Primary Clean Station consists of an outer containment box with an internally mounted, perforated wash basket. A single canister containing up to 14 fuel assemblies will be loaded into the wash basket, the confinement box lid closed, and the wash basket rotated for a fixed cycle time. During this cycle, basin water will be flushed through the wash basket and containment box to remove and entrain the sludge and carry it out of the box. Primary cleaning tests were performed to provide information concerning the removal of sludge from the fuel assemblies while in the basin canisters. The testing was also used to determine if additional fuel cleaning is required outside of the fuel canisters. Hydraulic performance and water demand requirements of the cleaning station were also evaluated. Thirty tests are reported in this document. Tests demonstrated that sludge can be dislodged and suspended sufficiently to remove it from the canister. Examination of fuel elements after cleaning suggested that more than 95% of the exposed fuel surfaces were cleaned so that no visual evidence of remained. As a result of testing, recommendations are made for the cleaning cycle. 3 refs., 16 figs., 4 tabs.

  18. Inhibition of Photosynthesis in Some Algae by Extreme-Red Light Author(s): Eugene Rabinowitch, Govindjee, Jan B. Thomas

    E-Print Network [OSTI]

    Govindjee

    Inhibition of Photosynthesis in Some Algae by Extreme-Red Light Author(s): Eugene Rabinowitch://www.jstor.org #12;Inhibition of Photosynthesis in Some Algae by Extreme"Red Light Abstract. Photosynthesis produced by far-red light (about 700 m,b) is reversibly inhibited in some algae by extreme-red light ( 750 m

  19. Picture from http://www.first-school.ws/activities/crafts/animals/birds/turkeymaple.htm A Red Maple Turkey Centerpiece

    E-Print Network [OSTI]

    Ashline, George

    A Red Maple Turkey Centerpiece Materials: -Toilet Paper Tube -A Couple of Red Maple Leaves (any color make a Turkey with using a Red Maple Tree? "Did you know?": Red Maples have a huge span of colors when have color in it. · After collecting about 3 leaves each, we will start constructing our turkey

  20. The Soils of Bowie, Denton, Freestone, and Red River Counties. 

    E-Print Network [OSTI]

    Fraps, G. S. (George Stronach)

    1928-01-01

    in the next column. This is 18 to 24 bushels the first crop. The yields fall off rapidly in succeeding crops, shom- ing the importance of nitrogen. Classification of Soils of Bowie County Upland soils of the forested area: Non-calcareous, gray to brownish...-calcareous, gray to brownish-gray surface soil, ycl upper subsoil, red lower subsoil. Crowley silt loam.-Upland soil of the original forested area n calcareous with dark gray to brown surface soil and heavy mottled g and brown subsoil. Leaf very fine sandy...