Powered by Deep Web Technologies
Note: This page contains sample records for the topic "recycling source reduction" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

Pollution Prevention, Waste Reduction, and Recycling | Department...  

Office of Environmental Management (EM)

Pollution Prevention, Waste Reduction, and Recycling Pollution Prevention, Waste Reduction, and Recycling The Pollution Prevention, Waste Reduction and Recycling Program was...

2

Education and outreach challenges for the 21st century -- Promoting source reduction and recycling in a changing America  

SciTech Connect

Promoting source reduction and recycling is become increasingly more challenging as the demographics of America change. By the middle of the next century, non-Hispanic whites will be a minority in a number of states, including California. More than 30 million people already speak a language other than English at home, and in some cities, such as San Francisco and Miami, more than 40% of residents speak a language other than English. Motivating residents to practice source reduction and recycling will require an increasing sensitivity to multi-culturalism and multi-lingual outreach will become essential. Designing public education programs that are successful will require significant changes in the way outreach is planned and implemented. The San Francisco Recycling Program has long worked on developing not just multi-lingual, but also multi-cultural outreach to motivate residents to reduce waste and recycle. The program conducts outreach in 6 languages, and has direct contact with more than 50,000 households a year, including using a multilingual phone bank operation that reaches 30,000 households a year. Other outreach programs include neighborhood campaigns with incentives; street signs; exhibits; door to door campaigns; direct mail; field trips, assembly programs and presentations for students; web sites; trilingual hotlines; and multilingual brochures delivered to every new mover. Given limited resources, partnerships have also been a major vehicle for expanding the program's outreach. For example, the San Francisco Recycling Program has spearheaded a regional waste prevention partnership that includes 110 cities and counties, 400 supermarkets and other private partners to promote source reduction. This program has had documented impact on shopping behavior in the Bay Area.

Assmann, D.O.

1999-07-01T23:59:59.000Z

3

RecycleMania! Improving Waste Reduction and Recycling on  

E-Print Network (OSTI)

RecycleMania! Improving Waste Reduction and Recycling on Campus from Universities to Big Business #12;Contact Information Tracy Artley Recycling Coordinator University of Michigan Tel: 734-763-5539 Email: recycle@umich.edu #12;Agenda Waste Impacts of Large Institutions Unique Challenges Overcoming

Awtar, Shorya

4

Solid Waste Reduction, Recovery, and Recycling | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Reduction, Recovery, and Recycling Reduction, Recovery, and Recycling Solid Waste Reduction, Recovery, and Recycling < Back Eligibility Investor-Owned Utility Rural Electric Cooperative Utility Savings Category Alternative Fuel Vehicles Hydrogen & Fuel Cells Buying & Making Electricity Water Home Weatherization Solar Wind Program Info State Wisconsin Program Type Environmental Regulations Provider Department of Natural Resources This statute expresses the strong support of the State of Wisconsin for the reduction of the amount of solid waste generated, the reuse, recycling and composting of solid waste, and resource recovery from solid waste. The statute also notes that research, development and innovation in the design, management and operation of solid waste reduction, reuse, recycling,

5

Metal melting for volume reduction and recycle  

SciTech Connect

This paper summarizes the experiences with melting contaminated steel materials for volume reduction and melting uranium-contaminated copper and aluminum for possible recycle. In the past there has not been an economic incentive to reduce the volume of low-level beta-gamma contaminated metallic scrap materials in the United States. With the rising cost of transportation and burial facility fees new interest in volume reduction is being generated. This new interest has been primarily focused at the Idaho National Engineering Laboratory (INEL) where the Waste Experimental Reduction Facility (WERF) was established to demonstrate both metal melting and incineration of combustible material for volume reduction. Other demonstration programs involving melting for volume reduction and recycle of aluminum and copper, as well as ferrous scrap, were related to the Cascade Improvement and Cascade Upgrade Programs (CIP/CUP) at the Paducah, Kentucky facility. While the melting demonstrations for the CIP/CUP material were not primarily based on economic incentives, several observations recorded during the programs are of interest with regard to melting of copper and aluminum. (4 refs., 8 tabs.)

Miller, R.L.

1987-03-27T23:59:59.000Z

6

Energy, Greenhouse Gas, and Cost Reductions for Municipal Recycling Systems  

Science Journals Connector (OSTI)

Energy, Greenhouse Gas, and Cost Reductions for Municipal Recycling Systems ... An evaluation of the energy, greenhouse gas, and costs savings associated with logistics and infrastructure improvements to a curbside recycling program is presented. ... MSW recycling has been found to be costly for most municipalities compared to landfill disposal. ...

Mikhail Chester; Elliot Martin; Nakul Sathaye

2008-02-08T23:59:59.000Z

7

Municipal Waste Planning, Recycling and Waste Reduction Act (Pennsylvania)  

Open Energy Info (EERE)

Waste Planning, Recycling and Waste Reduction Act (Pennsylvania) Waste Planning, Recycling and Waste Reduction Act (Pennsylvania) No revision has been approved for this page. It is currently under review by our subject matter experts. Jump to: navigation, search Last modified on February 13, 2013. EZFeed Policy Place Pennsylvania Name Municipal Waste Planning, Recycling and Waste Reduction Act (Pennsylvania) Policy Category Other Policy Policy Type Environmental Regulations Affected Technologies Biomass/Biogas, Coal with CCS, Concentrating Solar Power, Energy Storage, Fuel Cells, Geothermal Electric, Hydroelectric, Hydroelectric (Small), Natural Gas, Nuclear, Solar Photovoltaics, Wind energy Active Policy Yes Implementing Sector State/Province Program Administrator Pennsylvania Department of Environmental Protection

8

Municipal Waste Planning, Recycling and Waste Reduction Act (Pennsylvania)  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Municipal Waste Planning, Recycling and Waste Reduction Act Municipal Waste Planning, Recycling and Waste Reduction Act (Pennsylvania) Municipal Waste Planning, Recycling and Waste Reduction Act (Pennsylvania) < Back Eligibility Agricultural Commercial Construction Fed. Government Fuel Distributor General Public/Consumer Industrial Installer/Contractor Institutional Investor-Owned Utility Local Government Low-Income Residential Multi-Family Residential Municipal/Public Utility Nonprofit Residential Retail Supplier Rural Electric Cooperative Schools State/Provincial Govt Systems Integrator Transportation Tribal Government Utility Savings Category Alternative Fuel Vehicles Hydrogen & Fuel Cells Buying & Making Electricity Water Home Weatherization Solar Wind Program Info State Pennsylvania Program Type Environmental Regulations

9

Recycle of iodine-loaded silver mordenite by hydrogen reduction  

SciTech Connect

In 1977 and 1978, workers at Idaho National Engineering Laboratory (INEL) developed and tested a process for the regeneration and reuse of silver mordenite, AgZ, used to trap iodine from the dissolver off-gas stream of a nuclear fuel reprocessing plant. We were requested by the Airborne Waste Management Program Office of the Department of Energy to perform a confirmatory recycle study using repeated loadings at about 150/sup 0/C with elemental iodine, each followed by a drying step at 300/sup 0/C, then by iodine removal using elemental hydrogen at 500/sup 0/C. The results of our study show that AgZ can be recycled. There was considerable difficulty in stripping the iodine at 500/sup 0/C.; however, this step went reasonably well at 550/sup 0/C or slightly higher, with no apparent loss in the iodine-loading capacity of the AgZ. Large releases of elemental iodine occurred during the drying stage and the early part of the stripping stage. Lead zeolite, which was employed in the original design to trap the HI produced, is ineffective in removal of I/sub 2/. The process needs modification to handle the iodine. Severe corrosion of the stainless steel components of the system resulted from the HI-I/sub 2/-H/sub 2/O mixture. Monel or other halogen-resistant materials need to be examined for this application. Because of difficulty with the stripping stage and with corrosion, the experiments were terminated after 12 cycles. Thus, the maximum lifetime (cycles) of recycle AgZ has not been determined. Mechanistic studies of iodine retention by silver zeolites and of the behavior of silver atoms on the reduction stage would be of assistance in optimizing silver mordenite recycle.

Burger, L.L.; Scheele, R.D.

1982-11-01T23:59:59.000Z

10

RECYCLING AND REMOVAL OF OFFSHORE WIND TURBINES AN INTERACTIVE METHOD FOR REDUCTION OF NEGATIVE ENVIRONMENTAL EFFECTS  

E-Print Network (OSTI)

RECYCLING AND REMOVAL OF OFFSHORE WIND TURBINES ­ AN INTERACTIVE METHOD FOR REDUCTION OF NEGATIVE.borup@risoe.dk ABSTRACT: This paper describes a method for reduction of negative environmental impacts of wind turbines and an analysis of future removal and recycling processes of offshore wind turbines. The method is process

11

Recycling  

Science Journals Connector (OSTI)

Recycling is a series of activities that include collecting recyclable materials that would otherwise be considered , sorting and processing recyclables into raw materials such as fibers, and manufacturing ra...

2008-01-01T23:59:59.000Z

12

Recycling  

NLE Websites -- All DOE Office Websites (Extended Search)

Recycling Recycling Reducing our impact requires big and small behavioral changes, from printing pages double-sided to separating metals during multi-million-dollar building...

13

The Source of Airborne Lead: Recycling Pb-Contaminated Soils  

NLE Websites -- All DOE Office Websites (Extended Search)

The Source of Airborne Lead: Recycling The Source of Airborne Lead: Recycling Pb-Contaminated Soils Starting in the 1970s, federal regulatory control and eventual elimination of lead-based "anti-knock" additives in gasoline decreased the level of airborne Pb in the USA by two orders-of-magnitude [1]. Blood lead levels of the USA figure 1 Figure 1. The good, the bad, and the ugly. Ambient airborne particulate matter captured on filters of woven silica fiber (large strips) and TeflonTM (round). Clean fiber filter at bottom for comparison. Take a deep breath? population decreased correspondingly [2,3]. Despite this dramatic improvement in both exposure risk and body burden of Pb, the sources and health threat of the low levels of lead in our "unleaded" air remain topics

14

Carbothermic reduction with parallel heat sources  

DOE Patents (OSTI)

Disclosed are apparatus and method of carbothermic direct reduction for producing an aluminum alloy from a raw material mix including aluminum oxide, silicon oxide, and carbon wherein parallel heat sources are provided by a combustion heat source and by an electrical heat source at essentially the same position in the reactor, e.g., such as at the same horizontal level in the path of a gravity-fed moving bed in a vertical reactor. The present invention includes providing at least 79% of the heat energy required in the process by the electrical heat source.

Troup, Robert L. (Murrysville, PA); Stevenson, David T. (Washington Township, Washington County, PA)

1984-12-04T23:59:59.000Z

15

Reduction of Electric Vehicle Life-Cycle Impacts through Battery Recycling  

NLE Websites -- All DOE Office Websites (Extended Search)

Reduction of Electric Vehicle Life-Cycle Impacts through Battery Recycling 29 th International Battery Seminar and Exhibit Ft. Lauderdale, FL March 15, 2012 The submitted manuscript has been created by UChicago Argonne, LLC, Operator of Argonne National Laboratory ("Argonne"). Argonne, a U.S. Department of Energy Office of Science laboratory, is operated under Contract No. DE-AC02-06CH11357. The U.S. Government retains for itself, and others acting on its behalf, a paid-up nonexclusive, irrevocable worldwide license in said article to reproduce, prepare derivative works, distribute copies to the public, and perform publicly and display publicly, by or on behalf of the Government. Why think about recycling?  Material scarcity alleviated

16

Alternative Fuels Data Center: Mobile Source Emissions Reduction  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Mobile Source Mobile Source Emissions Reduction Requirements to someone by E-mail Share Alternative Fuels Data Center: Mobile Source Emissions Reduction Requirements on Facebook Tweet about Alternative Fuels Data Center: Mobile Source Emissions Reduction Requirements on Twitter Bookmark Alternative Fuels Data Center: Mobile Source Emissions Reduction Requirements on Google Bookmark Alternative Fuels Data Center: Mobile Source Emissions Reduction Requirements on Delicious Rank Alternative Fuels Data Center: Mobile Source Emissions Reduction Requirements on Digg Find More places to share Alternative Fuels Data Center: Mobile Source Emissions Reduction Requirements on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type

17

Recycle of Zirconium from Used Nuclear Fuel Cladding: A Major Element of Waste Reduction  

SciTech Connect

Feasibility tests were initiated to determine if the zirconium in commercial used nuclear fuel (UNF) cladding can be recovered in sufficient purity to permit re-use, and if the recovery process can be operated economically. Initial tests are being performed with unirradiated, non-radioactive samples of various types of Zircaloy materials that are used in UNF cladding to develop the recovery process and determine the degree of purification that can be obtained. Early results indicate that quantitative recovery can be accomplished and product contamination with alloy constituents can be controlled sufficiently to meet purification requirements. Future tests with actual radioactive UNF cladding are planned. The objective of current research is to determine the feasibility of recovery and recycle of zirconium from used fuel cladding wastes. Zircaloy cladding, which contains 98+% of hafnium-free zirconium, is the second largest mass, on average {approx}25 wt %, of the components in used U.S. light-water-reactor fuel assemblies. Therefore, recovery and recycle of the zirconium would enable a large reduction in geologic waste disposal for advanced fuel cycles. Current practice is to compact or grout the cladding waste and store it for subsequent disposal in a geologic repository. This paper describes results of initial tests being performed with unirradiated, non-radioactive samples of various types of Zircaloy materials that are used in UNF cladding to develop the recovery process and determine the degree of purification that can be obtained. Future tests with actual radioactive UNF cladding are planned.

Collins, Emory D [ORNL; DelCul, Guillermo D [ORNL; Terekhov, Dmitri [ORNL; Emmanuel, N. V. [Chemical Vapor Metal Refining, Inc.

2011-01-01T23:59:59.000Z

18

Printing ink and paper recycling sources of TMDD in wastewater and rivers  

Science Journals Connector (OSTI)

Abstract 2,4,7,9-Tetramethyl-5-decyne-4,7-diol (TMDD) is a non-ionic surfactant which is preferentially used as defoamer in paints and printing ink and for the treatment of surfaces. Effluents of wastewater treatment plants (WWTPs) have been identified as the domination point sources for TMDD in rivers since the removal rate of the compound in the \\{WWTPs\\} is in general less than 70%. However, the dominating entry pathways of TMDD into the sewage were unknown so far. In this study effluents from both, municipal \\{WWTPs\\} with and without treatment of indirect industrial dischargers and from industrial \\{WWTPs\\} with direct discharge of wastewater into receiving rivers were analyzed for the first time to identify the proportions of TMDD coming from domestic wastewater and from various industrial sources. Moreover, rivers were samples before and after the influent of sewage water from WWTPs. The TMDD concentrations in the water samples were measured using solid phase extraction (SPE) followed by gas chromatography/mass spectrometry (GC/MS). High TMDD concentrations were found in rivers (up to 63.5 ?g/L), and in effluents of \\{WWTPs\\} (up to 310 ?g/L) affected by wastewater from paper recycling industry and factories producing paint and printing ink. Concentrations of TMDD revealed to be far higher in wastewater from factories processing recycled paper (up to 113 ?g/L) compared to wastewater from factories not processing recycled paper (0.066 ?g/L). The results indicate that the use of recycling paper in the paper production process is the dominating reason for increased TMDD concentrations in wastewaters and receiving rivers due to the wash out of TMDD from the paper impregnated with printing ink. Very high TMDD concentrations (up to 3300 ?g/L) were also detected in wastewater from a printing ink factory and a paint factory.

Arlen A. Guedez; Wilhelm Püttmann

2014-01-01T23:59:59.000Z

19

Recycling effect of Germanium on ECR Ion Source P. Leherissier, C. Baru, C. Canet, M. Dubois, M. Dupuis, J.L. Flambard, G. Gaubert, P. Jardin, N. Lecesne,  

E-Print Network (OSTI)

1 Recycling effect of Germanium on ECR Ion Source P. Leherissier, C. Barué, C. Canet, M. Dubois, M investigated the recycling effect of an SF6 plasma. The initial beam was produced by the classical method of production, the recycling effect and perspectives are described in this paper. #12;2 I. INTRODUCTION At GANIL

Paris-Sud XI, Université de

20

Model Reduction for Power Electronics Systems with Multiple Heat Sources  

E-Print Network (OSTI)

Model Reduction for Power Electronics Systems with Multiple Heat Sources A. Augustin, T. Hauck, B demonstrates the model order re- duction procedures applied to semiconductor devices with multiple heat sources. The approach is demonstrated for a device with nine heat sources where some of them are perma- nently active

Paris-Sud XI, Université de

Note: This page contains sample records for the topic "recycling source reduction" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

RETHINKING WASTE, RECYCLING, AND HOUSEKEEPING  

E-Print Network (OSTI)

RETHINKING WASTE, RECYCLING, AND HOUSEKEEPING EFFICIENCY.EFFICIENCY. A l GA leaner Green #12 t R li Management Recycling Staff The Office of Waste Reduction & Recycling started in The Office of Waste Reduction & Recycling started in 1990, we have 14 full time staff positions. ·We collect over 40

Howitt, Ivan

22

The performance of electrochemical peroxidation process for COD reduction and biodegradability improvement of the wastewater from a paper recycling plant  

Science Journals Connector (OSTI)

Abstract This study investigated pretreatment and biodegradability of wastewater from a paper recycling plant using the electrochemical peroxidation process in a bench scale reactor. The influence of wastewater pH, H2O2 concentration, current density, and reaction time was evaluated for the removal of COD from the wastewater. The COD of wastewater from paper recycling decreased from the initial level of 4300 mg/L in raw wastewater to 106 mg/L (95.7% removal) in wastewater treated by the electrochemical peroxidation process at optimum pH, H2O2 concentration, current densities of 4, 15 and 5 mA/cm2, and a reaction time of 30 min. The optimum ratio of H2O2 (mM) to Fe2+ (mM) was found to be 2. The biodegradability of wastewater increased from an initial level of 0.12 to 0.43 after treatment by the electrochemical peroxidation process under optimum experimental conditions at a reaction time of 30 min. Overall, the electrochemical peroxidation process proved to be an efficient and appropriate technique for COD reduction and enhancement of biodegradability of the industrial effluents containing high concentrations of recalcitrant organic compounds.

Gholamreza Moussavi; Mohammad Aghanejad

2014-01-01T23:59:59.000Z

23

Recycling Best Practices Report August 2011  

E-Print Network (OSTI)

Recycling Best Practices Report August 2011 Elizabeth Fox, Recycling Best Practices Intern Office of Waste Reduction and Recycling University of Michigan Plant Building and Grounds Services #12;Recycling Best Practices Report Office of Waste Reduction and Recycling 1 Executive Summary Due to the high

Kirschner, Denise

24

Ion Recognition Approach to Volume Reduction of Alkaline Tank Waste by Separation and Recycle of Sodium Hydroxide and Sodium Nitrate  

SciTech Connect

Disposal of high-level nuclear waste is horrendously expensive, in large part because the actual radioactive matter in the tanks has been diluted over 1000-fold by ordinary inorganic chemicals. Treatment processes themselves can exacerbate the problem by adding further volume to the waste. Waste retrieval and sludge washing, for example, will require copious amounts of sodium hydroxide. If the needed sodium hydroxide could be separated from the waste and recycled, however, the addition of fresh sodium hydroxide could be avoided, ultimately reducing the final waste volume and associated disposal costs. The major objective of this research is to explore new liquid-liquid extraction approaches to the selective separation of sodium hydroxide from alkaline high-level wastes stored in underground tanks at the Hanford and Savannah River sites. Consideration is also given to separating potassium and abundant anions, including nitrate, nitrite, aluminate, and carbonate. Salts of these ions represent possible additional value for recycle, alternative disposal, or even use as commodity chemicals. A comprehensive approach toward understanding the extractive chemistry of these salts is envisioned, involving systems of varying complexity, from use of simple solvents to new bifunctional host molecules for ion-pair recognition. These extractants will ideally require no adjustment of the waste composition and will release the extracted salt into water, thereby consuming no additional chemicals and producing no additional waste volume. The overall goal of this research is to provide a scientific foundation upon which the feasibility of new liquid-liquid extraction chemistry applicable to the bulk reduction of the volume of tank waste can be evaluated.

Moyer, Bruce A.; Marchand, Alan P.

2001-06-01T23:59:59.000Z

25

Ion Recognition Approach to Volume Reduction of Alkaline Tank Waste by Separation and Recycle of Sodium Hydroxide and Sodium Nitrate  

SciTech Connect

Disposal of high- level waste is horrendously expensive, in large part because the actual radioactive matter in the tanks has been diluted over 1000-fold by ordinary inorganic chemicals. Treatment processes themselves can exacerbate the problem by adding further volume to the waste. Waste retrieval and sludge washing, for example, will require copious amounts of sodium hydroxide. If the needed sodium hydroxide could be separated from the waste and recycled, however, the addition of fresh sodium hydroxide could be avoided, ultimately reducing the final waste volume and associated disposal costs. The major objective of this research is to explore new liquid- liquid extraction approaches to the selective separation of sodium hydroxide from alkaline high-level wastes stored in underground tanks at the Hanford and Savannah River sites. Consideration is also given to separating potassium and abundant anions, including nitrate, nitrite, aluminate, and carbonate. Salts of these ions represent possible additional value for recycle, alternative disposal, or even use as commodity chemicals. A comprehensive approach toward understanding the extractive chemistry of these salts is envisioned, involving systems of varying complexity, from use of simple solvents to new bifunctional host molecules for ion-pair recognition. These extractants will ideally require no adjustment of the waste composition and will release the extracted salt into water, thereby consuming no additional chemicals and producing no additional waste volume. The overall goal of this research is to provide a scientific foundation upon which the feasibility of new liquid-liquid extraction chemistry applicable to the bulk reduction of the volume of tank waste can be evaluated.

Moyer, Bruce A.; Marchand, Alan P.

2000-06-01T23:59:59.000Z

26

Environmental effects on recycled plastics.  

E-Print Network (OSTI)

??A major problem with recycling of post-consumer plastic is the reduction in key strength and durability properties when compared to virgin polymer. This reduction is… (more)

Li, Kan

2011-01-01T23:59:59.000Z

27

Ion Recognition Approach to Volume Reduction of Alkaline Tank Waste by Separation and Recycle of Sodium Hydroxide and Sodium Nitrate  

SciTech Connect

This research has focused on new liquid-liquid extraction chemistry applicable to separation of major sodium salts from alkaline tank waste. It was the overall goal to provide the scientific foundation upon which the feasibility of liquid-liquid extraction chemistry for bulk reduction of the volume of tank waste can be evaluated. Sodium hydroxide represented the initial test case and primary focus. It is a primary component of the waste1 and has the most value for recycle. A full explanation of the relevance of this research to USDOE Environmental Management needs will be given in the Relevance, Impact, and Technology Transfer section below. It should be noted that this effort was predicated on the need for sodium removal primarily from low-activity waste, whereas evolving needs have shifted attention to volume reduction of the high-activity waste. The results of the research to date apply to both applications, though treatment of high-activity wastes raises new questions that will be addressed in the renewal period. Toward understanding the extractive chemistry of sodium hydroxide and other sodium salts, it was the intent to identify candidate extractants and determine their applicable basic properties regarding selectivity, efficiency, speciation, and structure. A hierarchical strategy was to be employed in which the type of liquid-liquid-extraction system varied in sophistication from simple, single-component solvents to solvents containing designer host molecules. As an aid in directing this investigation toward addressing the fundamental questions having the most value, a conceptualization of an ideal process was advanced. Accordingly, achieving adequate selectivity for sodium hydroxide represented a primary goal, but this result is worthwhile for waste applications only if certain conditions are met.

Moyer, Bruce A.; Marchand, Alan P.; Bonnesen, Peter V.; Bryan, Jeffrey C.; Haverlock, Tamara J.

2002-03-30T23:59:59.000Z

28

Recycling Wastewater After Hemodialysis: An Environmental Analysis for Alternative Water Sources in Arid Regions  

Science Journals Connector (OSTI)

Water is a vital aspect of hemodialysis. During the procedure, large volumes of water are used to prepare dialysate and clean and reprocess machines. This report evaluates the technical and economic feasibility of recycling hemodialysis wastewater for irrigation uses, such as watering gardens and landscape plantings. Water characteristics, possible recycling methods, and production costs of treated water are discussed in terms of the quality of the generated wastewater. A cost-benefit analysis is also performed through comparison of intended cost with that of seawater desalination, which is widely used in irrigation.

Faissal Tarrass; Meryem Benjelloun; Omar Benjelloun

2008-01-01T23:59:59.000Z

29

Ion Recognition Approach to Volume Reduction of Alkaline Tank Waste by Separation and Recycle of Sodium Hydroxide and Sodium Nitrate  

SciTech Connect

The objective of this research is to explore new liquid-liquid extraction approaches to the selective separation of major sodium salts from alkaline high-level wastes stored in underground tanks at Hanford, Savannah River, and Oak Ridge sites. Disposal of high level waste is horrendously expensive, in large part because the actual radioactive matter in the tanks has been diluted over 1000-fold by ordinary inorganic chemicals. Since the residual bulk chemicals must still undergo expensive treatment and disposal after most of the hazardous radionuclides have been removed, large cost savings will result from processes that reduce the overall waste volume. It is proposed that major cost savings can be expected if sodium hydroxide needed for sludge washing can be obtained from the waste itself, thus avoiding the addition of yet another bulk chemical to the waste and still further increase of the waste volume and disposal cost. Secondary priority is given to separating potassium an d abundant anions, including nitrate, nitrite, aluminate, and carbonate. Salts of these ions represent possible additional value for recycle, alternative disposal, or even use as commodity chemicals. A comprehensive approach toward understanding the extractive chemistry of these salts is envisioned, involving systems of varying complexity, from use of simple solvents to new bifunctional host molecules for ion-pair recognition. These extractants will ideally require no adjustment of the waste composition and will release the extracted salt into water, thereby consuming no additional chemicals and producing no additional waste volume. The overall goal of this research is to provide a scientific foundation upon which the feasibility of new liquid-liquid extraction chemistry applicable to the bulk reduction of the volume of tank waste can be evaluated.

Moyer, Bruce A.; Marchand, Alan P.; Bryan, Jeffrey C.; Bonnesen, Peter V.

1999-06-01T23:59:59.000Z

30

Magnetic Divertor for Low Plasma Recycling in Tokamaks Ernesto Mazzucato |  

NLE Websites -- All DOE Office Websites (Extended Search)

Magnetic Divertor for Low Plasma Recycling in Tokamaks Ernesto Mazzucato Magnetic Divertor for Low Plasma Recycling in Tokamaks Ernesto Mazzucato Existing experiments indicate that low recycling of exhausted particles can improve the energy confinement in tokamaks, very likely by preventing the cooling of the plasma edge and thereby causing a reduction in the level of plasma turbulence. This can reduce the size of a tokamak fusion reactor, making the latter a more viable source of energy. The necessary conditions for low recycling can be achieved with the use of a new magnetic divertor, where the exhausted particles are injected through a narrow aperture into a large chamber. Exhausting the particles into a large chamber prevents their return to the plasma, resulting in a reduction in plasma recycling to a level where existing experiments have shown a large enhancement in plasma

31

Evaluating the reduction in green house gas emissions achieved by the implementation of the household appliance recycling in Japan  

Science Journals Connector (OSTI)

The Home Appliance Recycling Law (hereunder referred to as the Law) for used cathode ray tube (CRT) TVs, air conditioners, refrigerators and washing machines was enacted in April 2001 in Japan. The Law requires t...

Katsuyuki Nakano; Ryosuke Aoki…

2007-07-01T23:59:59.000Z

32

Solvent recycle/contaminant reduction testing - Phase I, Task 3. Topical progress report, June 1994--December 1994  

SciTech Connect

The Department of Energy (DOE) is now faced with the task of meeting decontamination and decommissioning obligations at numerous facilities by the year 2019. Due to the tremendous volume of material involved, innovative decontamination technologies are being sought that can reduce the volumes of contaminated waste materials and secondary wastes requiring disposal. With sufficient decontamination, some of the material from DOE facilities could be released as scrap into the commercial sector for recycle, thereby reducing the volume of radioactive waste requiring disposal. Although recycling may initially prove to be more costly than current disposal practices, rapidly increasing disposal costs are expected to make recycling more and more cost effective. Additionally, recycling is now perceived as the ethical choice in a world where the consequences of replacing resources and throwing away reusable materials are impacting the well-being of the environment. This report describes the solvent recyle test program for EDTA/ammonium carbonate solvent.

NONE

1995-07-01T23:59:59.000Z

33

Evaluating the contribution of cooperative sector recycling to the reduction of greenhouse gas emissions: an opportunity for recycling cooperatives in São Paulo to engage in the carbon credit market.  

E-Print Network (OSTI)

??Greenhouse gas emissions can be reduced through recovery and recycling of resources from the municipal solid waste stream. In São Paulo, Brazil, recycling cooperatives play… (more)

King, Megan Frances

2012-01-01T23:59:59.000Z

34

The Fermilab recycler ring  

SciTech Connect

The Fermilab Recycler is a permanent magnet storage ring for the accumulation of antiprotons from the Antiproton Source, and the recovery and cooling of the antiprotons remaining at the end of a Tevatron store. It is an integral part of the Fermilab III luminosity upgrade. The following paper describes the design features, operational and commissioning status of the Recycler Ring.

Martin Hu

2001-07-24T23:59:59.000Z

35

The College Student's Guide to Recycling,  

E-Print Network (OSTI)

The College Student's Guide to Recycling, Reduction, and Reuse UNIVERSITY AT ALBANY Phone Albany, NY 12222 Top 7 Recycling and Reuse TipsTop 7 Recycling and Reuse Tips University at Albany Office of Environmental Sustainability 1. Set up separate bins for recyclable materials such as plastics and papers. 2

Kidd, William S. F.

36

A monitoring system architecture and calculation of practical recycling rate for end-of-life vehicle recycling in Korea  

Science Journals Connector (OSTI)

End-of-life vehicles (ELVs) are important recycling sources, and there are several recycling stages, including dismantling, shredding, and treatment of the automotive shredder residues (ASR). The legal recycling ...

Jung Whan Park; Hwa-Cho Yi; Myon Woong Park…

2014-01-01T23:59:59.000Z

37

Recycling of sodium waste  

Science Journals Connector (OSTI)

Recycling of sodium waste ... Methods for handling and recycling a dangerous and costly chemical. ...

Bettina Hubler-Blank; Michael Witt; Herbert W. Roesky

1993-01-01T23:59:59.000Z

38

Extreme Recycling  

E-Print Network (OSTI)

Broadcast Transcript: Singing the recycling blues because you have to separate your chipboard from your newspaper, your steel from your aluminum, your #1 from your #2 plastic? Pantywaists! The residents of Kamikatsu, Japan ...

Hacker, Randi

2009-01-14T23:59:59.000Z

39

Implementation of VOC source reduction practices in a manufactured house and in school classrooms  

SciTech Connect

Detailed studies of a new manufactured house and four new industrialized relocatable school classrooms were conducted to determine the emission sources of formaldehyde and other VOCs and to identify and implement source reduction practices. Procedures were developed to generate VOC emission factors that allowed reasonably accurate predictions of indoor air VOC concentrations. Based on the identified sources of formaldehyde and other aldehydes, practices were developed to reduce the concentrations of these compounds in new house construction. An alternate ceiling panel reduced formaldehyde concentrations in the classrooms. Overall, the classrooms had relatively low VOC concentrations.

Hodgson, A.T.; Apte, M.G.; Shendell, D.G.; Beal, D.; McIlvaine, J.E.R.

2002-01-01T23:59:59.000Z

40

Chapter 7 - Copper Recycling  

Science Journals Connector (OSTI)

Abstract This chapter gives a brief overview of copper recycling from a metallurgist's view. As it is deemed impossible to give an in-depth presentation of such a broad and complex subject, a selection of references is given for further reading. Secondary sources of copper include a large variety of raw materials, ranging from slags, sludge and low-grade copper scrap, containing only a few percent Cu up to very high-grade copper as well as pure copper close to 100% Cu. Thus there are several options for recycling processes, within both primary and secondary plants. Although there are good recycling rates for copper, some challenges can be foreseen such as a scarcity of pure and high-grade scrap and an increased amount of products containing a mixture of materials and with low copper concentrations.

Caisa Samuelsson; Bo Björkman

2014-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "recycling source reduction" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

Nuclear fuel recycling in 4 minutes | Argonne National Laboratory  

NLE Websites -- All DOE Office Websites (Extended Search)

Nuclear fuel recycling in 4 minutes Share Topic Energy Energy sources Nuclear energy Nuclear fuel cycle Reactors...

42

Refrigerator recycling and CFCs  

SciTech Connect

Utility-sponsored refrigerator and freezer pick-up programs have removed almost 900,000 inefficient appliances from the North American electric grid to date. While the CFC-12 refrigerant from the discarded appliances is typically removed and recycled, in all but a few programs the CFC-11 in the foam insulation is not. About a quarter-billion pounds of CFC-11 are banked in refrigerator foam in the United States. Release of this ``bank`` of CFC, combined with that from foam insulation used in buildings, will be the largest source of future emissions if preventive measures are not taken. Methods exist to recover the CFC for reuse or to destroy it by incineration. The task of recycling or destroying the CFCs and other materials from millions of refrigerators is a daunting challenge, but one in which utilities can play a leadership role. E Source believes that utilities can profitably serve as the catalyst for public-private partnerships that deliver comprehensive refrigerator recycling. Rather than treating such efforts solely as a DSM resource acquisition, utilities could position these programs as a multifaceted service delivery that offers convenient appliance removal for homeowners, a solid waste minimization service for landfills, a source of recycled materials for industry, and a CFC recovery and/or disposal service in support of the HVAC industry and society`s atmospheric protection goals and laws. Financial mechanisms could be developed through these public-private enterprises to ensure that utilities are compensated for the extra cost of fully recycling refrigerators, including the foam CFC.

Shepard, M.; Hawthorne, W.; Wilson, A.

1994-12-31T23:59:59.000Z

43

Thermodynamics of resource recycling  

Science Journals Connector (OSTI)

Thermodynamics of resource recycling ... The author applies principles of thermodynamics to analyze the efficiency of resource recycling. ...

W. B. Hauserman

1988-01-01T23:59:59.000Z

44

Recycling silver chloride  

Science Journals Connector (OSTI)

Recycling silver chloride ... A simple way to reduce lab cost by recycling silver in the academic lab. ...

Edwin Thall

1981-01-01T23:59:59.000Z

45

Single-Use Recycling  

Science Journals Connector (OSTI)

Single-use recycling is specially used oil treatment, generating recycled product for a single finite reuse.

2014-01-01T23:59:59.000Z

46

Chapter 9 - Zinc and Residue Recycling  

Science Journals Connector (OSTI)

Abstract Annual global production of zinc is more than 13 million tons. More than 50% of this amount is used for galvanizing while the rest is mainly split into brass production, zinc-based alloys, semi manufacturers and zinc compounds such as zinc oxide and zinc sulfate. For the zinc and steel industries, recycling of zinc-coated steel provides an important new source of raw material. Historically, the generation of zinc-rich dusts from steel recycling was a source of loss from the life-cycle (landfill); however, technologies today provide incentive for steel recyclers to minimize waste. Thus, the recycling loop is endless—both zinc and steel can be recycled again and again without losing any of their physical or chemical properties. Depending on the composition of the scrap being recycled, it can either be remelted or returned to the refining process. This chapter describes the main processes for zinc recycling from different scraps and residues.

Jürgen Antrekowitsch; Stefan Steinlechner; Alois Unger; Gernot Rösler; Christoph Pichler; Rene Rumpold

2014-01-01T23:59:59.000Z

47

Sandia National Laboratories: Pollution Prevention: Recycling  

NLE Websites -- All DOE Office Websites (Extended Search)

Recycling Recycling Sandia goes beyond basic recycling of common papers, plastics, and metals. We divert as many waste streams for recycling as feasible. The list of materials diverted grows every year. We regularly re-evaluate processes for efficiency and improved revenues as well. Revenue received from recycling goes back into the program to fund material streams that currently cost to process, and to improve and expand the waste reduction infrastructure. The state of New Mexico has a target to recycle 35% of its waste by 2018. The Department of Energy has a goal of 50% by 2015. Sandia/New Mexico is contributing toward both of these goals by recycling nearly 71% of its waste in FY12. Sandia/California is doing even better at 78%. compost pile Composting Sandia/New Mexico sends green waste in the form of branches to Kirtland Air

48

Accelerating Data Acquisition, Reduction, and Analysis at the Spallation Neutron Source  

SciTech Connect

ORNL operates the world's brightest neutron source, the Spallation Neutron Source (SNS). Funded by the US DOE Office of Basic Energy Science, this national user facility hosts hundreds of scientists from around the world, providing a platform to enable break-through research in materials science, sustainable energy, and basic science. While the SNS provides scientists with advanced experimental instruments, the deluge of data generated from these instruments represents both a big data challenge and a big data opportunity. For example, instruments at the SNS can now generate multiple millions of neutron events per second providing unprecedented experiment fidelity but leaving the user with a dataset that cannot be processed and analyzed in a timely fashion using legacy techniques. To address this big data challenge, ORNL has developed a near real-time streaming data reduction and analysis infrastructure. The Accelerating Data Acquisition, Reduction, and Analysis (ADARA) system provides a live streaming data infrastructure based on a high-performance publish subscribe system, in situ data reduction, visualization, and analysis tools, and integration with a high-performance computing and data storage infrastructure. ADARA allows users of the SNS instruments to analyze their experiment as it is run and make changes to the experiment in real-time and visualize the results of these changes. In this paper we describe ADARA, provide a high-level architectural overview of the system, and present a set of use-cases and real-world demonstrations of the technology.

Campbell, Stuart I [ORNL; Kohl, James Arthur [ORNL; Granroth, Garrett E [ORNL; Miller, Ross G [ORNL; Doucet, Mathieu [ORNL; Stansberry, Dale V [ORNL; Proffen, Thomas E [ORNL; Taylor, Russell J [ORNL; Dillow, David [None

2014-01-01T23:59:59.000Z

49

The Global Threat Reduction Initiative's Orphan Source Recovery Project in the Russian Federation  

SciTech Connect

After 9/11, officials at the United States Department of Energy (DOE), National Nuclear Security Administration (NNSA) grew more concerned about radiological materials that were vulnerable to theft and illicit use around the world. The concern was that terrorists could combine stolen radiological materials with explosives to build and detonate a radiological dispersal device (RDD), more commonly known as a “dirty bomb.” In response to this and other terrorist threats, the DOE/NNSA formed what is now known as the Global Threat Reduction Initiative (GTRI) to consolidate and accelerate efforts to reduce and protect vulnerable nuclear and radiological materials located at civilian sites worldwide. Although a cooperative program was already underway in the Russian Federation to secure nuclear materials at a range of different facilities, thousands of sealed radioactive sources remained vulnerable at medical, research, and industrial sites. In response, GTRI began to focus efforts on addressing these materials. GTRI’s Russia Orphan Source Recovery Project, managed at the Nevada National Security Site’s North Las Vegas facility, was initiated in 2002. Throughout the life of the project, Joint Stock Company “Isotope” has served as the primary Russian subcontractor, and the organization has proven to be a successful partner. Since the first orphan source recovery of an industrial cobalt-60 irradiator with 647 curies (Ci) at an abandoned facility in Moscow in 2003, the GTRI Orphan Source Recovery Project in the Russian Federation has accomplished substantial levels of threat reduction. To date, GTRI has recovered and securely disposed of more than 5,100 sources totaling more that 628,000 Ci. This project serves as an extraordinary example of how international cooperation can be implemented by partners with mutual interests to achieve significant goals.

Russell, J. W. [NSTec; Ahumada, A. D. [NSTec; Blanchard, T. A. [NNSA

2012-06-04T23:59:59.000Z

50

The reduction of packaging waste  

SciTech Connect

Nationwide, packaging waste comprises approximately one-third of the waste disposed in sanitary landfills. the US Department of Energy (DOE) generated close to 90,000 metric tons of sanitary waste. With roughly one-third of that being packaging waste, approximately 30,000 metric tons are generated per year. The purpose of the Reduction of Packaging Waste project was to investigate opportunities to reduce this packaging waste through source reduction and recycling. The project was divided into three areas: procurement, onsite packaging and distribution, and recycling. Waste minimization opportunities were identified and investigated within each area, several of which were chosen for further study and small-scale testing at the Hanford Site. Test results, were compiled into five ``how-to`` recipes for implementation at other sites. The subject of the recipes are as follows: (1) Vendor Participation Program; (2) Reusable Containers System; (3) Shrink-wrap System -- Plastic and Corrugated Cardboard Waste Reduction; (4) Cardboard Recycling ; and (5) Wood Recycling.

Raney, E.A.; Hogan, J.J.; McCollom, M.L.; Meyer, R.J.

1994-04-01T23:59:59.000Z

51

Synthesis of AuPd alloyed nanoparticles via room-temperature electron reduction with argon glow discharge as electron source  

Science Journals Connector (OSTI)

Argon glow discharge has been employed as a cheap, environmentally friendly, and convenient electron source for simultaneous reduction of HAuCl4 and PdCl2...on the anodic aluminum oxide (AAO) substrate. The therm...

Manman Yang; Zongyuan Wang; Wei Wang; Chang-jun Liu

2014-08-01T23:59:59.000Z

52

Validating the role of AFVs in voluntary mobile source emission reduction programs.  

SciTech Connect

Late in 1997, EPA announced new allowances for voluntary emission control programs. As a result, the US Department of Energy's (DOE) Clean Cities and other metro areas that have made an ongoing commitment to increasing participation by alternative fuel vehicles (AFVs) in local fleets have the opportunity to estimate the magnitude and obtain emission reduction credit for following through on that commitment. Unexpectedly large reductions in key ozone precursor emissions in key locations and times of the day can be achieved per vehicle-mile by selecting specific light duty AFV offerings from original equipment manufacturers (OEMs) in lieu of their gasoline-fueled counterparts. Additional benefit accrues from the fact that evaporative emissions of non-methane hydrocarbons (generated in the case of CNG, LNG, and LPG by closed fuel-system AFV technology) can be essentially negligible. Upstream emissions from fuel storage and distribution with the airshed of interest are also reduced. This paper provides a justification and outlines a method for including AFVs in the mix of strategies to achieve local and regional improvements in ozone air quality, and for quantifying emission reduction credits. At the time of submission of this paper, the method was still under review by the US EPA Office of Mobile Sources, pending mutually satisfactory resolution of several of its key points. Some of these issues are discussed in the paper.

Santini, D. J.; Saricks, C. L.

1999-03-17T23:59:59.000Z

53

AzTEC Millimetre Survey of the COSMOS Field: I. Data Reduction and Source Catalogue  

E-Print Network (OSTI)

We present a 1.1 mm wavelength imaging survey covering 0.3 sq. deg. in the COSMOS field. These data, obtained with the AzTEC continuum camera on the James Clerk Maxwell Telescope (JCMT), were centred on a prominent large-scale structure over-density which includes a rich X-ray cluster at z = 0.73. A total of 50 millimetre galaxy candidates, with a significance ranging from 3.5-8.5 sigma, are extracted from the central 0.15 sq. deg. area which has a uniform sensitivity of 1.3 mJy/beam. Sixteen sources are detected with S/N > 4.5, where the expected false-detection rate is zero, of which a surprisingly large number (9) have intrinsic (de-boosted) fluxes > 5 mJy at 1.1 mm. Assuming the emission is dominated by radiation from dust, heated by a massive population of young, optically-obscured stars, then these bright AzTEC sources have FIR luminosities > 6 x 10^12 L(sun) and star formation-rates > 1100 M(sun)/yr. Two of these nine bright AzTEC sources are found towards the extreme peripheral region of the X-ray cluster, whilst the remainder are distributed across the larger-scale over-density. We describe the AzTEC data reduction pipeline, the source-extraction algorithm, and the characterisation of the source catalogue, including the completeness, flux de-boosting correction, false-detection rate and the source positional uncertainty, through an extensive set of Monte-Carlo simulations. We conclude with a preliminary comparison, via a stacked analysis, of the overlapping MIPS 24 micron data and radio data with this AzTEC map of the COSMOS field.

K. S. Scott; J. E. Austermann; T. A. Perera; G. W. Wilson; I. Aretxaga; J. J. Bock; D. H. Hughes; Y. Kang; S. Kim; P. D. Mauskopf; D. B. Sanders; N. Scoville; M. S. Yun

2008-01-17T23:59:59.000Z

54

TRANSPARENCY RECYCLING PROGRAM PROCEDURES  

NLE Websites -- All DOE Office Websites (Extended Search)

used overhead transparencies RECYCLE them for REUSE. It's Easy Follow these simple procedures: 1.) COLLECT used transparencies to be recycled. 2.) SEPARATE the transparencies...

55

Chapter 15 - Textile Recycling  

Science Journals Connector (OSTI)

Abstract Textiles are nearly 100% recyclable, yet for a variety of reasons many textiles end up in the landfill. In recent years, special attention to value-added products made from recycled textile materials is on the rise as consumers, policy makers, engineers and industry experts focus on environmental stewardship, strategic partnerships and holistic approaches that contribute significantly to the recycling process. This chapter describes the recycling process and the various categories that are considered as recycling companies manage the plethora of textiles that enter the recycling stream. By recycling textiles, the punitive costs of landfill are avoided. In addition, the recycling process contributes significantly to employment, charitable contributions and positive environmental impact.

Jana M. Hawley

2014-01-01T23:59:59.000Z

56

Assessment of opportunities to increase the recovery and recycling rates of waste oils  

SciTech Connect

Waste oil represents an important energy resource that, if properly managed and reused, would reduce US dependence on imported fuels. Literature and current practice regarding waste oil generation, regulations, collection, and reuse were reviewed to identify research needs and approaches to increase the recovery and recycling of this resource. The review revealed the need for research to address the following three waste oil challenges: (1) recover and recycle waste oil that is currently disposed of or misused; (2) identify and implement lubricating oil source and loss reduction opportunities; and (3) develop and foster an effective waste oil recycling infrastructure that is based on energy savings, reduced environment at impacts, and competitive economics. The United States could save an estimated 140 {times} 1012 Btu/yr in energy by meeting these challenges.

Graziano, D.J.; Daniels, E.J.

1995-08-01T23:59:59.000Z

57

Federal Recycling Program Printed on recycled paper.  

E-Print Network (OSTI)

#12;Federal Recycling Program Printed on recycled paper. The Forest Health Technology Enterprise of discrimination, write USDA, Director, Office of Civil Rights, Room 326-W, Whitten Building, 1400 independence MALEZAS POR ENEMIGOS NATURALES R. G. VAN DRIESCHE University of Massachusetts Amherst, Massachusetts, USA

Hoddle, Mark S.

58

ParadigmParadigm Concrete RecyclingConcrete Recycling  

E-Print Network (OSTI)

ParadigmParadigm Concrete RecyclingConcrete Recycling #12;Recycled ConcreteRecycled Concrete ·· Whatever steel goes into PCC must comeWhatever steel goes into PCC must come out for recycleout for recycle ·· Aggregates have a big impact on the costAggregates have a big impact on the cost of recyclingof recycling

59

Recycling | Department of Energy  

NLE Websites -- All DOE Office Websites (Extended Search)

Recycling Recycling Recycling In support of the Department's goal of implementing environmental sustainability practices across the complex, all DOE employees and contractors should incorporate the three "R's" of wise resource use as a core principle of their daily activities: reduce, reuse, and recycle. The Department's recycling program at Headquarters earns monetary credits from the GSA which is then credited to the Sheila Jo Watkins Memorial Child Development Centers for tuition assistance and the purchase of furniture and equipment. What Can Be Recycled, And Where What you can recycle Where to recycle White office paper, printed with any color ink. Staples are acceptable but paperclips, binder clips, plastic flags, tabs and colored post-it notes must be removed. Receptacles for white office paper are located in office suites and next to copy machines. Blue collection bins for individual offices may be obtained from the Facilities Management Helpdesk at (202) 586-6100 or by e-mailing:

60

Recycling Foam Countercurrent Chromatography  

Science Journals Connector (OSTI)

A new sample injection method for foam countercurrent chromatography (CCC), named the “recycle injection system”, has been developed. ... In this recycling foam CCC system, the effluent from the liquid outlet is directly returned into the column through the sample feed line so that the sample solution is continuously recycled. ...

Hisao Oka; Masato Iwaya; Ken-ichi Harada; Makoto Suzuki; Yoichiro Ito

2000-02-26T23:59:59.000Z

Note: This page contains sample records for the topic "recycling source reduction" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

The Energy Impact of Industrial Recycling and Waste Exchange  

E-Print Network (OSTI)

THE ENERGY IMPACT OF INDUSTRIAL RECYCLING AND WASTE EXCHANGE W. CURTIS PHILLIPS, SYSTEMS ENGINEER/INDUSTRIAL PROJECT MANAGER, N.C. ENERGY DIVISION, RALEIGH, NC ABSTRACT Recycling and waste exchange, particularly in the industrial sector, has a... products from virgin materials. Process energy reduction possible by recycling is estimated to be as high is 95% for aluminum and 88% for plastics. Industrial waste exchange is facilit~ted by having an independent agency to publicize and coordinate...

Phillips, W. C.

62

LANL exceeds Early Recovery Act recycling goals  

NLE Websites -- All DOE Office Websites (Extended Search)

LANL exceeds Early Recovery Act recycling goals LANL exceeds Early Recovery Act recycling goals LANL exceeds Early Recovery Act recycling goals Lab demolition projects under the American Recovery and Reinvestment Act have recovered more than 136 tons of recyclable metal since work began last year. March 8, 2010 Los Alamos National Laboratory sits on top of a once-remote mesa in northern New Mexico with the Jemez mountains as a backdrop to research and innovation covering multi-disciplines from bioscience, sustainable energy sources, to plasma physics and new materials. Los Alamos National Laboratory sits on top of a once-remote mesa in northern New Mexico with the Jemez mountains as a backdrop to research and innovation covering multi-disciplines from bioscience, sustainable energy sources, to plasma physics and new materials.

63

Used oil recycling: Closing the loop  

SciTech Connect

This paper provides an overview of the recycling and re-refining of used oil. Recommended best management practices to encourage the safe management, collection, recovery and purchasing of this resource are identified. Management practices address handling, separating, and specifications. Other topics outlined include collection methods, market research, state studies and programs, environmental and economic factors of recycling, re-refining, and oil filters. References, studies, regulations, and other sources of information are noted in the bibliography.

Arner, R. [Northern Virginia Planning District Commission, Annandale, VA (United States)

1996-08-01T23:59:59.000Z

64

St Andrews Recycling Points Recycling Points are situated locally to  

E-Print Network (OSTI)

St Andrews Recycling Points Recycling Points are situated locally to allow you to recycle the following materials: To find your nearest Recycling Point please visit www.fifedirect.org.uk/wasteaware or call the Recycling Helpline on 08451 55 00 22. R&A GOLF CLUB OLD COURSE HOTEL UNIVERSITY NORTH HAUGH

St Andrews, University of

65

Environmental impact of recycling nutrients in human excreta to agriculture compared with enhanced wastewater treatment  

Science Journals Connector (OSTI)

Abstract Human excreta are potential sources of plant nutrients, but are today usually considered a waste to be disposed of. The requirements on wastewater treatment plants (WWTPs) to remove nitrogen and phosphorus are increasing and to meet these requirements, more energy and chemicals are needed by WWTPs. Separating the nutrient-rich wastewater fractions at source and recycling them to agriculture as fertiliser is an alternative to removing them at the WWTP. This study used life cycle assessment methodology to compare the environmental impact of different scenarios for recycling the nutrients in the human excreta as fertiliser to arable land or removing them in an advanced WWTP. Three scenarios were assessed. In blackwater scenario, blackwater was source-separated and used as fertiliser. In urine scenario, the urine fraction was source-separated and used as fertiliser and the faecal water treated in an advanced WWTP. In NP scenario, chemical fertiliser was used as fertiliser and the toilet water treated in an advanced WWTP. The emissions from the WWTP were the same for all scenarios. This was fulfilled by the enhanced reduction in the WWTP fully removing the nutrients from the excreta that were not source-separated in the NP and urine scenarios. Recycling source-separated wastewater fractions as fertilisers in agriculture proved efficient for conserving energy and decreasing global warming potential (GWP). However, the blackwater and urine scenarios had a higher impact on potential eutrophication and potential acidification than the WWTP-chemical fertiliser scenario, due to large impacts by the ammonia emitted from storage and after spreading of the fertilisers. The cadmium input to the arable soil was very small with urine fertiliser. Source separation and recycling of excreta fractions as fertiliser thus has potential for saving energy and decreasing GWP emissions associated with wastewater management. However, for improved sustainability, the emissions from storage and after spreading of these fertilisers must decrease.

J. Spångberg; P. Tidåker; H. Jönsson

2014-01-01T23:59:59.000Z

66

TRANSPARENCY RECYCLING PROGRAM PROCEDURES  

NLE Websites -- All DOE Office Websites (Extended Search)

TRANSPARENCY RECYCLING Don't throw out your used overhead transparencies! RECYCLE them for REUSE. It's Easy! Follow these simple procedures: 1.) COLLECT used transparencies to be recycled. 2.) SEPARATE the transparencies from ringed binders, plastic or paper folders, envelopes, and/or files. 3.) PLACE the transparencies (only) into an intra-laboratory mail envelope. 4.) SEND the envelope to: Terri Schneider, Building 201, 1D-10. Terri will prepare a

67

Benchmarking survey for recycling.  

SciTech Connect

This report describes the methodology, analysis and conclusions of a comparison survey of recycling programs at ten Department of Energy sites including Sandia National Laboratories/New Mexico (SNL/NM). The goal of the survey was to compare SNL/NM's recycling performance with that of other federal facilities, and to identify activities and programs that could be implemented at SNL/NM to improve recycling performance.

Marley, Margie Charlotte; Mizner, Jack Harry

2005-06-01T23:59:59.000Z

68

Large volume recycling of oceanic lithosphere over short time scales: geochemical constraints from the Caribbean Large  

E-Print Network (OSTI)

Large volume recycling of oceanic lithosphere over short time scales: geochemical constraints from with derivation from recycled oceanic crust, while the depleted lavas are derived from a highly residual source source mantle could have been 9 500 Ma before CLIP formation and interpreted to reflect the recycling

Graham, David W.

69

Announcing: All Recycling Reduce your  

E-Print Network (OSTI)

Announcing: All Recycling Go Green! Reduce your contribution to the landfill, by choosing to voluntarily recycle acceptable items in the green All Recycling toters and containers around campus. ONLY THE ITEMS BELOW ARE ACCEPTED FOR ALL RECYCLING Please do not contaminate the recycling containers with trash

Papautsky, Ian

70

Residential recycling study.  

E-Print Network (OSTI)

?? The purpose of this study is to gain baseline performance figures and statistics for El Paso's curbside recycling program. With these baseline statistics the… (more)

Adams, Richard

2011-01-01T23:59:59.000Z

71

Recycling Magnets | Jefferson Lab  

NLE Websites -- All DOE Office Websites (Extended Search)

Recycling Magnets July 15, 2013 The cost of a nuclear or particle physics experiment can be enormous, several hundred million dollars for the Large Hadron Collider Experiments,...

72

Fuel Cycle Options for Optimized Recycling of Nuclear Fuel  

E-Print Network (OSTI)

The reduction of transuranic inventories of spent nuclear fuel depends upon the deployment of advanced fuels that can be loaded with recycled transuranics (TRU), and the availability of facilities to separate and reprocess ...

Aquien, A.

73

Recycling Programs | Department of Energy  

NLE Websites -- All DOE Office Websites (Extended Search)

Recycling Recycling Programs Recycling Programs The Office of Administration manages many recycling activities at DOE Headquarters that significantly impact energy and the environment. The Department of Energy Headquarters has instituted several recycling programs, starting with standard, solid waste recycling in 1991, and has expanded to include batteries, toner cartridges, carpeting and cell phones. Follow this link for a detailed listing of the products that DOE Headquarters recycles, and where to recycle them. Waste Recycling In FY 2011, DOE Headquarters recycled 134 tons of waste which earned over $7,200 in GSA credits that were provided to the Sheila Jo Watkins Memorial Child Development Centers. Since the recycling program began in 1991 over 6,800 tons of waste have been recycled earning over $350,000 for the Child

74

Quicksnap reusing & recycling system  

Science Journals Connector (OSTI)

"QuickSnap" is recyclable "Film with Lens" were first released by Fuji Film in 1986. The "Quicksnap Recycle Center" that was the manual lines was established in 1990. Furthermore, the "QuickSnap PLUS3" was released in 1992 and it was designed based on ...

Akira Fukano

1999-02-01T23:59:59.000Z

75

Peak Demand Reduction with Dual-Source Heat Pumps Using Municipal Water  

E-Print Network (OSTI)

The objective of this project was to examine a dual-source (air and/or water-coupled) heat pump concept which would reduce or eliminate the need for supplemental electrical resistance heating (strip heaters). The project examined two system options...

Morehouse, J. H.; Khan, J. A.; Connor, L. N.; Pal, D.

76

School Recycling Program  

NLE Websites -- All DOE Office Websites (Extended Search)

100% Recyclable 100% Recyclable Presentation Page Project Summary Scenario Student Pages Index of Projects Title of Project/Unit: 100% Recyclable Subject: Social Studies, Science, Healthy, & Communications Grade Level: Middle School (7th Grade) Abstract: The unit begins in the fall and will last about six weeks. Students will rely on working in collaborative groups in order to share information and problem solve. Students will us the Internet and e-mail to communicate with as many other schools as possible across the country. This unit will be part of an interdisciplinary unit to combine: Science: the study of waste, recycling & ecology Social Studies: how communities and groups of people historically handled waste and waste products, how native Americans re-cycled, how we became a 'disposable' society.

77

Solvent recycle/recovery  

SciTech Connect

This report describes Phase I of the Solvent Recycle/Recovery Task of the DOE Chlorinated Solvent Substitution Program for the US Air Force by the Idaho National Engineering Laboratory, EG G Idaho, Inc., through the US Department of Energy, Idaho Operations Office. The purpose of the task is to identify and test recovery and recycling technologies for proposed substitution solvents identified by the Biodegradable Solvent Substitution Program and the Alternative Solvents/Technologies for Paint Stripping Program with the overall objective of minimizing hazardous wastes. A literature search to identify recycle/recovery technologies and initial distillation studies has been conducted. 4 refs.

Paffhausen, M.W.; Smith, D.L.; Ugaki, S.N.

1990-09-01T23:59:59.000Z

78

RECYCLING RATE STUDY Prepared by  

E-Print Network (OSTI)

NATIONAL RECYCLING RATE STUDY Prepared by: Smith, Bucklin and Associates, Inc. Market Research and Statistics Division Chicago, Illinois July 2003 PRINTED ON RECYCLED PAPER #12;BCI RECYCLING RATE STUDY TABLE ....................................................................................................1 II. METHODOLOGY A. Total Pounds of Lead Recycled from Batteries

Laughlin, Robert B.

79

Authorization Recycling in RBAC Systems  

E-Print Network (OSTI)

Authorization Recycling in RBAC Systems 1Laboratory for Education and Research in Secure Systems ·motivation ·recycling approach recycling algorithms experimental evaluations summary & future work #12 issued before (precise recycling) #12;6 Laboratory for Education and Research in Secure Systems

80

Dual recycling for GEO 600  

Science Journals Connector (OSTI)

Dual recycling is the combination of signal recycling and power recycling; both optical techniques improve the shot-noise-limited sensitivity of interferometric gravitational-wave detectors. In addition, signal recycling can reduce the loss of light power due to imperfect interference and allows us, in principle, to beat the standard quantum limit. The interferometric gravitational-wave detector GEO 600 is the first of the kilometre-scale detectors to use signal recycling. We have recently equipped the detector with a signal-recycling mirror with a transmittance of 1%. In this paper, we present details of the detector commissioning and the first locks of the dual-recycled interferometer.

H Grote; A Freise; M Malec; G Heinzel; B Willke; H Lück; K A Strain; J Hough; K Danzmann

2004-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "recycling source reduction" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

Fermilab recycler diagnostics  

SciTech Connect

The Fermilab Recycler Ring is a permanent magnet storage ring for the storage and cooling of antiprotons. The following note describes the diagnostic tools currently available for commissioning, as well as the improvements and upgrades planned for the near future.

Martin Hu

2001-07-24T23:59:59.000Z

82

Recycling for radio astronomy  

Science Journals Connector (OSTI)

......research-article Features Recycling for radio astronomy Melvin Hoare Professor of Astrophysics at the...space missions, carry out single-dish radio astronomy and boost existing radio-astronomy interferometer arrays, objectives that bring......

Melvin Hoare

2012-02-01T23:59:59.000Z

83

Water Reuse and Recycling  

Science Journals Connector (OSTI)

Proper wastewater treatment is now recognized as an indispensable ... as an appropriate means for expanding through water recycling and reuse the efficient management of an ... public acceptance may restrict cert...

Nicolas Spulber; Asghar Sabbaghi

1998-01-01T23:59:59.000Z

84

Energy implications of glass-container recycling  

SciTech Connect

This report addresses the question of whether glass-container recycling actually saves energy. Glass-container production in 1991 was 10{sup 7} tons, with cullet making up about 30% of the input to manufacture. Two-thirds of the cullet is postconsumer waste; the remainder is in-house scrap (rejects). Most of the glass recycled is made into new containers. Total primary energy consumption includes direct process-energy use by the industry (adjusted to account for the efficiency of fuel production) plus fuel and raw-material transportation and production energies; the grand total for 1991 is estimated to be about 168 {times} 10{sup 12} Btu. The total primary energy use decreases as the percent of glass recycled rises, but the maximum energy saved is only about 13%. If distance to the landfill is kept fixed and that to the recovery facility multiplied by about eight, to 100 mi, a break-even point is reached, and recycling saves no energy. Previous work has shown that to save energy when using glass bottles, reuse is the clear choice. Recycling of glass does not save much energy or valuable raw material and does not reduce air or water pollution significantly. The most important impacts are the small reduction of waste sent to the landfill and increased production rates at glass plants.

Gaines, L.L.; Mintz, M.M. [Argonne National Lab., IL (United States)] [Argonne National Lab., IL (United States)

1994-03-01T23:59:59.000Z

85

Curbside recycling in the presence of alternatives  

E-Print Network (OSTI)

WITH MINOR REVISIONS). Curbside Recycling in the Presence ofConservation, Division of Recycling. The views expressed inThese historically high recycling rates have often been

Beatty, Timothy K.M.; Berck, Peter; Shimshack, Jay P

2007-01-01T23:59:59.000Z

86

E-Print Network 3.0 - animal waste recycling Sample Search Results  

NLE Websites -- All DOE Office Websites (Extended Search)

measure for recycling of house-hold waste to agriculture 12;Sustainability analysis Bioenergy... , cereal grain), grass from seminatural ecosystem e.g. ... Source: Ris...

87

Combustion Byproducts Recycling Consortium  

SciTech Connect

The Combustion Byproducts Recycling Consortium (CBRC) program was developed as a focused program to remove and/or minimize the barriers for effective management of over 123 million tons of coal combustion byproducts (CCBs) annually generated in the USA. At the time of launching the CBRC in 1998, about 25% of CCBs were beneficially utilized while the remaining was disposed in on-site or off-site landfills. During the ten (10) year tenure of CBRC (1998-2008), after a critical review, 52 projects were funded nationwide. By region, the East, Midwest, and West had 21, 18, and 13 projects funded, respectively. Almost all projects were cooperative projects involving industry, government, and academia. The CBRC projects, to a large extent, successfully addressed the problems of large-scale utilization of CCBs. A few projects, such as the two Eastern Region projects that addressed the use of fly ash in foundry applications, might be thought of as a somewhat smaller application in comparison to construction and agricultural uses, but as a novel niche use, they set the stage to draw interest that fly ash substitution for Portland cement might not attract. With consideration of the large increase in flue gas desulfurization (FGD) gypsum in response to EPA regulations, agricultural uses of FGD gypsum hold promise for large-scale uses of a product currently directed to the (currently stagnant) home construction market. Outstanding achievements of the program are: (1) The CBRC successfully enhanced professional expertise in the area of CCBs throughout the nation. The enhanced capacity continues to provide technology and information transfer expertise to industry and regulatory agencies. (2) Several technologies were developed that can be used immediately. These include: (a) Use of CCBs for road base and sub-base applications; (b) full-depth, in situ stabilization of gravel roads or highway/pavement construction recycled materials; and (c) fired bricks containing up to 30%-40% F-fly ash. Some developed technologies have similar potential in the longer term. (3) Laboratory studies have been completed that indicate that much higher amounts of fly ash could be added in cement-concrete applications under some circumstances. This could significantly increase use of fly ash in cement-concrete applications. (4) A study of the long-term environmental effects of structural fills in a surface mine in Indiana was completed. This study has provided much sought after data for permitting large-volume management options in both beneficial as well as non-beneficial use settings. (5) The impact of CBRC on CCBs utilization trends is difficult to quantify. However it is fair to say that the CBRC program had a significant positive impact on increased utilization of CCBs in every region of the USA. Today, the overall utilization of CCBs is over 43%. (6) CBRC-developed knowledge base led to a large number of other projects completed with support from other sources of funding. (7) CBRC research has also had a large impact on CCBs management across the globe. Information transfer activities and visitors from leading coal producing countries such as South Africa, Australia, England, India, China, Poland, Czech Republic and Japan are truly noteworthy. (8) Overall, the CBRC has been a truly successful, cooperative research program. It has brought together researchers, industry, government, and regulators to deal with a major problem facing the USA and other coal producing countries in the world.

Paul Ziemkiewicz; Tamara Vandivort; Debra Pflughoeft-Hassett; Y. Paul Chugh; James Hower

2008-08-31T23:59:59.000Z

88

recycled_uranium.cdr  

Office of Legacy Management (LM)

Recycled Uranium and Transuranics: Recycled Uranium and Transuranics: Their Relationship to Weldon Spring Site Remedial Action Project Introduction Historical Perspective On August 8, 1999, Energy Secretary Bill Richardson announced a comprehensive set of actions to address issues raised at the Paducah, Kentucky, Gaseous Diffusion Plant that may have had the potential to affect the health of the workers. One of the issues addressed the need to determine the extent and significance of radioactive fission products and transuranic elements in the uranium feed and waste products throughout the U.S. Department of Energy (DOE) national complex. Subsequently, a DOE agency-wide Recycled Uranium Mass Balance Project (RUMBP) was initiated. For the Weldon Spring Uranium Feed Materials Plant (WSUFMP or later referred to as Weldon Spring),

89

Scrap tire recycling  

SciTech Connect

As the automobile tire technology has grown and met the need for safer and more durable tires, stronger reinforcement and more chemically resistant rubber compounds have made recycling tires more difficult. In an effort to resolve this problem, techniques and equipment were developed to grind tires into small pieces, and new markets were sought to utilize the crumb rubber product streams from ground tires. Industrial combustion processes were modified to accept scrap tires as fuel. These efforts have been beneficial, steadily increasing the percentage of scrap tires recycled to about 10% in 1985, and reaching 72% in 1995. By the end of 1997, fully 100% of tires generated in the U.S. are expected to be recycled.

Lula, J.W.; Bohnert, G.W.

1997-03-01T23:59:59.000Z

90

Chapter 14 - Glass Recycling  

Science Journals Connector (OSTI)

Abstract Glass has established itself as an essential material in our lives. The composition of glass depends on what it is used for, but the majority of glass in circulation is of the soda-lime–silicate type. It is a material that is eminently recyclable, in the sense that it merely needs to be remelted and reformed to produce another glass article. However, glass must be color-sorted and processed to remove contaminants to ensure it is compatible with the product being manufactured. The key benefit of recycling via remelting is the reduced energy demand. However, because differences in color composition can arise between recovered glass and manufacturing output, alternative outlets are also often necessary. This chapter examines both the recycling of glass back into glass manufacture and these alternatives.

Thomas D. Dyer

2014-01-01T23:59:59.000Z

91

Recycling Automotive Scrap  

NLE Websites -- All DOE Office Websites (Extended Search)

Today's automobiles contain more plastic and less metal than ever. The metal from junked vehicles is easily recovered for Today's automobiles contain more plastic and less metal than ever. The metal from junked vehicles is easily recovered for reuse, but the remaining materials, called shredder residue, is creating new challenges for the vehicle recycling industry. Argonne National Laboratory is meeting these challenges head-on with innovative, award-winning solutions. With its on-site recycling pilot plant, Argonne is able to test actual materials, benchmark technologies, and demonstrate working

92

Power recycling for an interferometric gravitational wave  

E-Print Network (OSTI)

THESIS Power recycling for an interferometric gravitational wave detector Masaki Ando Department . . . . . . . . . . . . . . 48 3.3 Power recycling . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50 3.3.1 Principle of power recycling . . . . . . . . . . . . . . . . . 50 3.3.2 Recycling cavity

Ejiri, Shinji

93

http://nevadarecycles.gov/main/recyclables.htm  

National Nuclear Security Administration (NNSA)

Residential Recycling Guide for Clark County TV Recycling in Nevada National Recycling Web Resources Earth911.com provides a listing of recycling resources to help you find a way...

94

Recycling - a Marabastad community development.  

E-Print Network (OSTI)

?? The theme of this dissertation is recycling and recycling-awareness to the users of the city on a physical and non-physical level. In this the… (more)

Kunz, Barend Mattheus

2008-01-01T23:59:59.000Z

95

Design for chemical recycling  

Science Journals Connector (OSTI)

...than design. Life-cycle assessment (LCA), resource envi- ronmental profile analysis...product from cradle to grave. Although LCA is considered to be an evaluation tool and...polyol from oil. 7. The design check using LCA In order to check that chemical recycling...

1997-01-01T23:59:59.000Z

96

Recycling the Versatile Pipecolic Linker  

Science Journals Connector (OSTI)

Recycling the Versatile Pipecolic Linker ... We leveraged this to recycle the resin and reuse it several times. ... Recovery yields of cleaved materials ranged from 51 to 90% depending on the compound attached to the linker and are comparable to those obtained using non-recycled Pip-PS resin. ...

Pawel Zajdel; Nicolas Masurier; Pierre Sanchez; Maciej Pawlowski; Aude Kreiter; Gae?l Nomezine; Christine Enjalbal; Muriel Amblard; Jean Martinez; Gilles Subra

2010-08-17T23:59:59.000Z

97

CHERRY: CHECKPOINTED EARLY RESOURCE RECYCLING  

E-Print Network (OSTI)

1 2 3 CHERRY: CHECKPOINTED EARLY RESOURCE RECYCLING Jos´e F. Mart´inez1 , Jose Renau2 Michael C. Huang3 , Milos Prvulovic2 , and Josep Torrellas2 #12;Cherry: Checkpointed Early Resource Recycling efficient use by aggressive recycling Opportunity: Resources reserved until retirement § ¦ ¤ ¥ Solution

Torrellas, Josep

98

Plastics recycling: challenges and opportunities  

Science Journals Connector (OSTI)

...recycled resins are key actions to increase recycling. Most post-consumer...maximize both the volume and quality of recycled resins. 9. Conclusions...trends demonstrate a substantial increase in the rate of recovery and...impact of bottling Australian wine in the UK in PET and glass...

2009-01-01T23:59:59.000Z

99

Wastewater Recycle- A Sustainable Approach Towards Desalination  

E-Print Network (OSTI)

Strictly Confidential WASTEWATER RECYCLE ? A SUSTAINABLE APPROACH TOWARDS DESALINATION Presented at Industrial Energy Technology Conference 35th IETC ? 2013 New Orleans May 22, 2013 Arun Mittal Aquatech International Corporation, USA... ? Background ? Wastewater Recycle Drivers ? Technologies for Recycle ? Examples ? Cooling Tower Blowdown Recycle ? Refinery Treated Effluent Recycle ? Petrochemical Effluent Recycle ESL-IE-13-05-07 Proceedings of the Thrity-Fifth Industrial Energy...

Mittal, A.

2013-01-01T23:59:59.000Z

100

Recycled Thermoplastic Composite Bridge  

NLE Websites -- All DOE Office Websites (Extended Search)

Recycled Thermoplastic Composite Recycled Thermoplastic Composite Bridge Philip R. Columbus Office of the Assistant Chief of Staff for Installation Management Headquarters, Department of the Army 180900ZMay2012 1 Philip R. Columbus/571-256-9774/philip.r.columbus.civ@mail.mil/ Overview * The purpose of this project was to demonstrate that a thermoplastic composite I-beam bridge could be constructed to accommodate a M-1 battle tank. * This effort determined the engineering and construction of such a structure was possible and be cost competitive to a wood timber bridge * The materials are virtually maintenance-free and not subject to degradation from moisture, rot, insects and weather. 180900ZMay2012 2 Philip R. Columbus/571-256-9774/philip.r.columbus.civ@mail.mil/ Background

Note: This page contains sample records for the topic "recycling source reduction" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

Recycled Thermoplastic Composite Bridge  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Recycled Thermoplastic Composite Recycled Thermoplastic Composite Bridge Philip R. Columbus Office of the Assistant Chief of Staff for Installation Management Headquarters, Department of the Army 180900ZMay2012 1 Philip R. Columbus/571-256-9774/philip.r.columbus.civ@mail.mil/ Overview * The purpose of this project was to demonstrate that a thermoplastic composite I-beam bridge could be constructed to accommodate a M-1 battle tank. * This effort determined the engineering and construction of such a structure was possible and be cost competitive to a wood timber bridge * The materials are virtually maintenance-free and not subject to degradation from moisture, rot, insects and weather. 180900ZMay2012 2 Philip R. Columbus/571-256-9774/philip.r.columbus.civ@mail.mil/ Background

102

FINANCING ELECTRONIC WASTE RECYCLING - Californian Households’ Willingness to Pay Advanced Recycling Fees  

E-Print Network (OSTI)

to pay for curbside recycling; A comparison of payment carefees needed to sustain recycling of covered electronicsbehavior: waste recycling in Hong Kong. Journal of

Nixon, Hilary; Saphores, Jean-Daniel M

2007-01-01T23:59:59.000Z

103

Chapter 1 - Industrial Wastewater Treatment, Recycling, and Reuse: An Overview  

Science Journals Connector (OSTI)

Abstract Water availability; usage, treatment, and discharge of used water; and possible ways of recycling and reusing this used water are briefly discussed here. Issues pertaining to industrial wastewaters, sources of generation, characterization of wastewaters, and various methodologies of wastewater treatment have been reviewed along with economic perspectives of water management. Recent developments in the area of industrial wastewater treatment, recycling, and reuse are also briefly outlined here.

Vivek V. Ranade; Vinay M. Bhandari

2014-01-01T23:59:59.000Z

104

Multi-Recycling of Transuranic Elements in a Modified PWR Fuel Assembly  

E-Print Network (OSTI)

production/destruction, and radiotoxicity reduction as compared to a UOX and MOX assembly. It is found that the most beneficial recycling strategy is the one where all of the transuranics are recycled. The inclusion of Cm reduces the required U-235...

Chambers, Alex

2012-10-19T23:59:59.000Z

105

15 - Environmental Aspects of Recycling  

Science Journals Connector (OSTI)

Paper production has several negative effects on the environment. Recycling can moderate the negative impacts on the environment and have a positive economic effect. An important benefit of recycling is a double decrease in environment loading. Paper production from recycled fibres consumes less energy, conserves natural resources and decreases environmental pollution. The conflict between economic optimisation and environmental protection has received attention for waste management system planning. Nowadays, production and use of recycled paper is well established and widely accepted. The necessary technologies are available and it is possible to produce all types and qualities of paper using wastepaper as raw material. Paper recycling induces numerous environmental benefits. In this chapter, environmental aspects of recycling are discussed.

Pratima Bajpai

2014-01-01T23:59:59.000Z

106

Zero Waste Program 2011 Recycling Benefits  

E-Print Network (OSTI)

Rutgers Zero Waste Program 2011 Recycling Benefits Through WM's Recycling Program, our company saved energy and reduced Greenhouse Gases through recycling. Recycling uses less energy, preserves from recycled material than from virgin, raw material. RESOURCE SAVINGS 4203 Metric Tons (MTCO2E

Delgado, Mauricio

107

Recycling Bin Guide Locations and prices  

E-Print Network (OSTI)

Recycling Bin Guide Locations and prices Metal Bins Deskside Bins with Side Saddle Rubbermaid Bins.58 for auxiliaries. And Non-Public Areas Public Offices Non-Public Recyclables Recyclables RecyclablesTrash Trash Trash #12;New Recycling Bin Guidelines Frequently Asked Questions (as of December 2008) · Why

Kirschner, Denise

108

Emulsified industrial oils recycling  

SciTech Connect

The industrial lubricant market has been analyzed with emphasis on current and/or developing recycling and re-refining technologies. This task has been performed for the United States and other industrialized countries, specifically France, West Germany, Italy and Japan. Attention has been focused at emulsion-type fluids regardless of the industrial application involved. It was found that emulsion-type fluids in the United States represent a much higher percentage of the total fluids used than in other industrialized countries. While recycling is an active matter explored by the industry, re-refining is rather a result of other issues than the mere fact that oil can be regenerated from a used industrial emulsion. To extend the longevity of an emulsion is a logical step to keep expenses down by using the emulsion as long as possible. There is, however, another important factor influencing this issue: regulations governing the disposal of such fluids. The ecological question, the respect for nature and the natural balances, is often seen now as everybody's task. Regulations forbid dumping used emulsions in the environment without prior treatment of the water phase and separation of the oil phase. This is a costly procedure, so recycling is attractive since it postpones the problem. It is questionable whether re-refining of these emulsions - as a business - could stand on its own if these emulsions did not have to be taken apart for disposal purposes. Once the emulsion is separated into a water and an oil phase, however, re-refining of the oil does become economical.

Gabris, T.

1982-04-01T23:59:59.000Z

109

Direction of CRT waste glass processing: Electronics recycling industry communication  

SciTech Connect

Highlights: Black-Right-Pointing-Pointer Given a large flow rate of CRT glass {approx}10% of the panel glass stream will be leaded. Black-Right-Pointing-Pointer The supply of CRT waste glass exceeded demand in 2009. Black-Right-Pointing-Pointer Recyclers should use UV-light to detect lead oxide during the separation process. Black-Right-Pointing-Pointer Recycling market analysis techniques and results are given for CRT glass. Black-Right-Pointing-Pointer Academic initiatives and the necessary expansion of novel product markets are discussed. - Abstract: Cathode Ray Tube, CRT, waste glass recycling has plagued glass manufacturers, electronics recyclers and electronics waste policy makers for decades because the total supply of waste glass exceeds demand, and the formulations of CRT glass are ill suited for most reuse options. The solutions are to separate the undesirable components (e.g. lead oxide) in the waste and create demand for new products. Achieving this is no simple feat, however, as there are many obstacles: limited knowledge of waste glass composition; limited automation in the recycling process; transportation of recycled material; and a weak and underdeveloped market. Thus one of the main goals of this paper is to advise electronic glass recyclers on how to best manage a diverse supply of glass waste and successfully market to end users. Further, this paper offers future directions for academic and industry research. To develop the recommendations offered here, a combination of approaches were used: (1) a thorough study of historic trends in CRT glass chemistry; (2) bulk glass collection and analysis of cullet from a large-scale glass recycler; (3) conversations with industry members and a review of potential applications; and (4) evaluation of the economic viability of specific uses for recycled CRT glass. If academia and industry can solve these problems (for example by creating a database of composition organized by manufacturer and glass source) then the reuse of CRT glass can be increased.

Mueller, Julia R., E-mail: mueller.143@osu.edu [Ohio State University, William G. Lowrie Department of Chemical and Biomolecular Engineering, OH (United States) and University of Queensland, School of Chemical Engineering (Australia) and Ohio State University, Materials Science and Engineering, OH (United States); Boehm, Michael W. [University of Queensland, School of Chemical Engineering (Australia); Drummond, Charles [Ohio State University, Materials Science and Engineering, OH (United States)

2012-08-15T23:59:59.000Z

110

Single Stream Recycling Say Goodbye to Sorting  

E-Print Network (OSTI)

Single Stream Recycling Say Goodbye to Sorting Paper Please email recycle@umich.edu for more Containers Cardboard Please flatten all cardboard before placing into bin! Visit us at www.recycle

Awtar, Shorya

111

Flooding and Recycling Authorizations Konstantin (Kosta) Beznosov  

E-Print Network (OSTI)

Flooding and Recycling Authorizations Konstantin (Kosta) Beznosov Laboratory for Education delivery channels with speculatively pre- computed authorizations and actively recycling them on a just Security Keywords authorization recycling, authorization flooding, access con- trol, authorization, publish

112

The Economic Benefits of Recycling in Virginia  

E-Print Network (OSTI)

The Economic Benefits of Recycling in Virginia Alexander P. Miller Hang T. Nguyen Samantha D, and the recycling contacts from the participating Solid Waste Planning Units discussed in this study. #12;3 Table Determinants of Recycling_______________________________ 12 State Reports

Lewis, Robert Michael

113

Electronic Activation At Oxide Hetero-structure At Elevated Temperatures Source Of Markedly Accelerated Oxygen Reduction Kinetics  

E-Print Network (OSTI)

performance. Therefore, it is needed to synthesize cathode materials with high oxygen reduction activity activity and ionic conductivity give a promising alternative approach to achieve high-performance cathodes, based on such understanding, we aim to design novel oxide hetero-structure as highly active cathode

Yildiz, Bilge

114

Reduction of plasma density in the Helicity Injected Torus with Steady Inductance experiment by using a helicon pre-ionization source  

SciTech Connect

A helicon based pre-ionization source has been developed and installed on the Helicity Injected Torus with Steady Inductance (HIT-SI) spheromak. The source initiates plasma breakdown by injecting impurity-free, unmagnetized plasma into the HIT-SI confinement volume. Typical helium spheromaks have electron density reduced from (2–3) × 10{sup 19} m{sup ?3} to 1 × 10{sup 19} m{sup ?3}. Deuterium spheromak formation is possible with density as low as 2 × 10{sup 18} m{sup ?3}. The source also enables HIT-SI to be operated with only one helicity injector at injector frequencies above 14.5 kHz. A theory explaining the physical mechanism driving the reduction of breakdown density is presented.

Hossack, Aaron C.; Jarboe, Thomas R.; Victor, Brian S. [Department of Aeronautics and Astronautics, University of Washington, Seattle, Washington 98195 (United States)] [Department of Aeronautics and Astronautics, University of Washington, Seattle, Washington 98195 (United States); Firman, Taylor; Prager, James R.; Ziemba, Timothy [Eagle Harbor Technologies, Inc., 119 W. Denny Way, Suite 210, Seattle, Washington 98119 (United States)] [Eagle Harbor Technologies, Inc., 119 W. Denny Way, Suite 210, Seattle, Washington 98119 (United States); Wrobel, Jonathan S. [979B West Moorhead Circle, Boulder, Colorado 80305 (United States)] [979B West Moorhead Circle, Boulder, Colorado 80305 (United States)

2013-10-15T23:59:59.000Z

115

LANL exceeds Early Recovery Act recycling goals  

NLE Websites -- All DOE Office Websites (Extended Search)

LANL exceeds Early Recovery Act recycling goals LANL exceeds Early Recovery Act recycling goals Lab demolition projects under the American Recovery and Reinvestment Act have...

116

The potential environmental gains from recycling waste plastics: Simulation of transferring recycling and recovery technologies to Shenyang, China  

SciTech Connect

Research highlights: {yields} Urban symbiosis creates compatibility of industrial development and waste management. {yields} Mechanical technology leads to more CO{sub 2} emission reduction. {yields} Energy recovery technology leads to more fossil fuel saving. {yields} Clean energy makes recycling technologies cleaner. {yields} Demand management is crucial for realizing potential environmental gains of recycling. - Abstract: With the increasing attention on developing a low-carbon economy, it is necessary to seek appropriate ways on reducing greenhouse gas (GHG) emissions through innovative municipal solid waste management (MSWM), such as urban symbiosis. However, quantitative assessments on the environmental benefits of urban symbiosis, especially in developing countries, are limited because only a limited number of planned synergistic activities have been successful and it is difficult to acquire detailed inventory data from private companies. This paper modifies and applies a two-step simulation system and used it to assess the potential environmental benefits, including the reduction of GHG emissions and saving of fossil fuels, by employing various Japanese plastics recycling/energy-recovery technologies in Shenyang, China. The results showed that among various recycling/energy-recovery technologies, the mechanical waste plastics recycling technology, which produces concrete formwork boards (NF boards), has the greatest potential in terms of reducing GHG emissions (1.66 kg CO{sub 2}e/kg plastics), whereas the technology for the production of refuse plastic fuel (RPF) has the greatest potential on saving fossil fuel consumption (0.77 kgce/kg-plastics). Additional benefits can be gained by applying combined technologies that cascade the utilization of waste plastics. Moreover, the development of clean energy in conjunction with the promotion of new waste plastics recycling programs could contribute to additional reductions in GHG emissions and fossil fuel consumption.

Chen Xudong, E-mail: chen.xudong@nies.go.jp [Institute of Applied Ecology, Chinese Academy of Sciences, No. 72 Wenhua Road, Shenyang 110016 (China); National Institute for Environmental Studies, 16-2 Onogawa, Tsukuba, Ibaraki 305-8506 (Japan); Graduate School of Environmental Studies, Nagoya University, Furo-cho, Chikusa-ku, Nagoya City 464-8601 (Japan); Xi Fengming [Institute of Applied Ecology, Chinese Academy of Sciences, No. 72 Wenhua Road, Shenyang 110016 (China); Geng Yong, E-mail: gengyong@iae.ac.cn [Institute of Applied Ecology, Chinese Academy of Sciences, No. 72 Wenhua Road, Shenyang 110016 (China); Fujita, Tsuyoshi [National Institute for Environmental Studies, 16-2 Onogawa, Tsukuba, Ibaraki 305-8506 (Japan); Graduate School of Environmental Studies, Nagoya University, Furo-cho, Chikusa-ku, Nagoya City 464-8601 (Japan)

2011-01-15T23:59:59.000Z

117

Materials - Recycling - Dezincing  

NLE Websites -- All DOE Office Websites (Extended Search)

Dezincing Scrap Steel Dezincing Scrap Steel Electro winning cells for recovery of zinc from de-zincing process solutions. Electro winning cells for recovery of zinc from de-zincing process solutions. Steel is one of the most recycled resources in the U.S.; half of the steel produced is derived from scrap. Since 1980, automobile and appliance manufacturers have increased their use of galvanized steel almost five-fold, with a resulting increase in the amount of galvanized steel scrap returned to steel producers. Dezincing Challenges The steel galvanizing process involves the application of a zinc-coating, which provides corrosion resistance. When galvanized scrap is melted in a steelmaking furnace, the zinc that it contains volatizes. The costs of treating the resulting zinc-laden dust and sludge by-products are

118

Combustion Byproducts Recycling Consortium  

SciTech Connect

Each year, over 100 million tons of solid byproducts are produced by coal-burning electric utilities in the United States. Annual production of flue gas desulfurization (FGD) byproducts continues to increase as the result of more stringent sulfur emission restrictions. In addition, stricter limits on NOx emissions mandated by the 1990 Clean Air Act have resulted in utility burner/boiler modifications that frequently yield higher carbon concentrations in fly ash, which restricts the use of the ash as a cement replacement. Controlling ammonia in ash is also of concern. If newer, 'clean coal' combustion and gasification technologies are adopted, their byproducts may also present a management challenge. The objective of the Combustion Byproducts Recycling Consortium (CBRC) is to develop and demonstrate technologies to address issues related to the recycling of byproducts associated with coal combustion processes. A goal of CBRC is that these technologies, by the year 2010, will lead to an overall ash utilization rate from the current 34% to 50% by such measures as increasing the current rate of FGD byproduct use and increasing in the number of uses considered 'allowable' under state regulations. Another issue of interest to the CBRC would be to examine the environmental impact of both byproduct utilization and disposal. No byproduct utilization technology is likely to be adopted by industry unless it is more cost-effective than landfilling. Therefore, it is extremely important that the utility industry provide guidance to the R&D program. Government agencies and private-sector organizations that may be able to utilize these materials in the conduct of their missions should also provide input. The CBRC will serve as an effective vehicle for acquiring and maintaining guidance from these diverse organizations so that the proper balance in the R&D program is achieved.

Paul Ziemkiewicz; Tamara Vandivort; Debra Pflughoeft-Hassett; Y. Paul Chugh; James Hower

2008-08-31T23:59:59.000Z

119

Combustion Byproducts Recycling Consortium  

SciTech Connect

Each year, over 100 million tons of solid byproducts are produced by coal-burning electric utilities in the United States. Annual production of flue gas desulfurization (FGD) byproducts continues to increase as the result of more stringent sulfur emission restrictions. In addition, stricter limits on NOx emissions mandated by the 1990 Clean Air Act have resulted in utility burner/boiler modifications that frequently yield higher carbon concentrations in fly ash, which restricts the use of the ash as a cement replacement. Controlling ammonia in ash is also of concern. If newer, “clean coal” combustion and gasification technologies are adopted, their byproducts may also present a management challenge. The objective of the Combustion Byproducts Recycling Consortium (CBRC) is to develop and demonstrate technologies to address issues related to the recycling of byproducts associated with coal combustion processes. A goal of CBRC is that these technologies, by the year 2010, will lead to an overall ash utilization rate from the current 34% to 50% by such measures as increasing the current rate of FGD byproduct use and increasing in the number of uses considered “allowable” under state regulations. Another issue of interest to the CBRC would be to examine the environmental impact of both byproduct utilization and disposal. No byproduct utilization technology is likely to be adopted by industry unless it is more cost-effective than landfilling. Therefore, it is extremely important that the utility industry provide guidance to the R&D program. Government agencies and privatesector organizations that may be able to utilize these materials in the conduct of their missions should also provide input. The CBRC will serve as an effective vehicle for acquiring and maintaining guidance from these diverse organizations so that the proper balance in the R&D program is achieved.

Ziemkiewicz, Paul; Vandivort, Tamara; Pflughoeft-Hassett, Debra; Chugh, Y Paul; Hower, James

2008-08-31T23:59:59.000Z

120

Chapter 3 - Recycling in Context  

Science Journals Connector (OSTI)

Abstract The recycling of metals is widely viewed as a fruitful sustainability strategy, but information on the degree to which recycling is actually occurring is limited in scope and detail. In this chapter we define various metrics for the recycling of metals and present current information on recycled content (RC), end-of-life recycling rates (EOL-RR), and old scrap ratios (OSR) for 60 metals of the periodic table. Because of growth in metal use over time, and because metal in-use lifetimes can be many years to several decades, many RC values are low and will remain so for the foreseeable future. In addition, because relatively low efficiencies often exist in the collection and processing of most discarded products, because of inherent limitations in recycling processes, and because primary material is often relatively abundant and low cost (thereby keeping down the price of scrap), many EOL-RR are very low but have the potential for improvement. Only 12 metals (Co, Fe, Mn, Nb, Ni, Pb, Pd, Pt, Re, Rh, Sn and Ti) have the EOL-RR above 50% at present. Only Nb, Pb and Ru have an RC above 50%, although 15 metals are in the 25–50% range. Thirteen metals have an OSR >50%. Improving recycling performance will be increasingly challenging as materials integration continues its rise.

T.E. Graedel; Barbara K. Reck

2014-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "recycling source reduction" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

Containment at the Source during Waste Volume Reduction of Large Radioactive Components Using Oxylance High-Temperature Cutting Equipment - 13595  

SciTech Connect

As a waste-volume reduction and management technique, highly contaminated Control Element Drive Mechanism (CEDM) housings were severed from the Reactor Pressure Vessel Head (RPVH) inside the San Onofre Unit 2 primary containment utilizing Oxylance high-temperature cutting equipment and techniques. Presented are relevant data concerning: - Radiological profiles of the RPVH and individual CEDMs; - Design overviews of the engineering controls and the specialized confinement housings; - Utilization of specialized shielding; - Observations of apparent metallurgical-contamination coalescence phenomena at high temperatures resulting in positive control over loose-surface contamination conditions; - General results of radiological and industrial hygiene air sampling and monitoring; - Collective dose and personnel contamination event statistics; - Lessons learned. (author)

Keeney, G. Neil [Health Physicist, HazMat CATS, LLC (United States)] [Health Physicist, HazMat CATS, LLC (United States)

2013-07-01T23:59:59.000Z

122

Applied ecotechnological issues for recycling cars  

Science Journals Connector (OSTI)

The paper shows the need for recycling cars. Recycling operation is particularly complicated because after dismantling and split a wide range of material resulting in a proportion different and difficult to separate. There are presented two recycling ... Keywords: end-of-life-vehicle recycling, hammer mill technology, shrreder technology

Gheorghe Amza; Zoia Apostolescu; Mihaiela Iliescu; Zlatko Garac; Sanda Paise; Maria Groza

2011-07-01T23:59:59.000Z

123

Plant Networks for Processing Recyclable Materials  

Science Journals Connector (OSTI)

We use a modified optimal market area model to examine how links between material recycling and other aspects of operations strategy can shape plant networks for the processing of recyclable materials. We characterize the complementarity of the recyclate ... Keywords: localization, material versatility, minimills, operations strategy, optimal market area, plant networks, recycling

Lieven Demeester; Mei Qi; Luk N. Van Wassenhove

2013-10-01T23:59:59.000Z

124

Super recycled water: quenching January 30, 2014  

E-Print Network (OSTI)

purifying" wastewater, plus recycling waste to replace concrete We know water is a precious resource. Currently, we're recycling about 300,000 gallons of industrial wastewater daily at the Sanitary Effluent- 1 - Super recycled water: quenching computers January 30, 2014 Conserving, recycling and "super

125

WasteTraining Booklet Waste & Recycling Impacts  

E-Print Network (OSTI)

WasteTraining Booklet #12;Waste & Recycling Impacts Environment: The majority of our municipal jobs while recycling 10,000 tons of waste creates 36 jobs. Environment: Recycling conserves resources. It takes 95% less energy to make aluminum from recycled aluminum than from virgin materials, 60% less

Saldin, Dilano

126

RECYCLING PROGRAM TYPE LOCATION ALLOWED NOT ALLOWED  

E-Print Network (OSTI)

RECYCLING PROGRAM TYPE LOCATION ALLOWED NOT ALLOWED Batteries, toner, ink cartridges & cell phones and recycling is an important part of that effort. Below is a guide to on-campus recycling at RSMAS: Visit http://www.rsmas.miami.edu/msgso/ for map of recycling bin locations. NOTE: This is not an exhaustive list. If unauthorized items are found

Miami, University of

127

The Environment Team to Waste & Recycling  

E-Print Network (OSTI)

The Environment Team A-Z Guide to Waste & Recycling www.le.ac.uk/environment #12;Welcome ...to the University of Leicester's `A-Z Guide to Waste and Recycling'. Over the last 3 years, the Environment Team has introduced an award- winning recycling scheme across the campus that allows us to recycle paper, plastics

St Andrews, University of

128

Ink and Toner Recycling Rewards Program Overview  

E-Print Network (OSTI)

Ink and Toner Recycling Rewards Program Overview www.MyBusinessRecycles.com April 2013 #12;Program Overview · All BSD contract customers can participate in the MyBusinessRecycles program · Customers located in AK, HI or PR are not currently eligible. ­ Education sector customers should join the Recycling Rules

Meyers, Steven D.

129

Recycled Materials Resource Jeffrey S. Melton  

E-Print Network (OSTI)

Recycled Materials Resource Center Jeffrey S. Melton Outreach Director Recycled Materials Resource Center NCC Meeting, April 9th, 2008 #12;Recycled Materials Resource Center Partner laboratory of FHWA Founded in 1998, renewed in 2007 Dedicated to the appropriate use of recycled materials in the highway

130

Welcome new and returning residents! Help us make USC greener by recycling! Your Room Recycling Bin  

E-Print Network (OSTI)

Welcome new and returning residents! Help us make USC greener by recycling! Your Room Recycling Bin Every room is provided with a recycling bin to make it easy for you to recycle while living in University Housing. Use this bin to collect mixed recyclables in your room and take them to your nearest

Almor, Amit

131

Molecular Modeling at Plastic Recycling  

Science Journals Connector (OSTI)

The possibility to model the new materials from recycled post industrial polymer rejects by molecular modeling methods was investigated by comparison of the results obtained from the simulation process and the experiments.

Laura Martinelli; Sabino Sinesi; Alessio Baron Toaldo; Maurizio Fermeglia; Paola Posocco; Tomasz Szczurek; Marek Kozlowski

2007-01-01T23:59:59.000Z

132

Framework for Building Design Recyclability  

E-Print Network (OSTI)

and reusing it as compacted base or drain material; 2. hauling it to a recycling facility Regardless of which recovery strategy is used, the physical processing of the material is the same: the concrete shards are fed into an impact crusher, followed... to Recycling Facilities 17 side discharge conveyor, screening plant, and a return conveyor from the screen to the crusher inlet for reprocessing oversize materials. Compact, self-contained mini- crushers are also available that can handle up to 150 tons per...

Zhang, Fan

2008-01-01T23:59:59.000Z

133

Materials - Recycling - Shredder Residue  

NLE Websites -- All DOE Office Websites (Extended Search)

Recovering Materials from Shredder Residue Recovering Materials from Shredder Residue Obsolete automobiles, home appliances and other metal-containing scrap are shredded for the recovery of metals. More than 50% of the material shredded is automobiles. In the United States, shredders generate about 5 million tons of shredder residue every year. Similar amounts are produced in Europe and in the Pacific Rim. Because recycling shredder waste has not been profitable, most of it ends up in landfills; smaller amounts are incinerated. Argonne researchers have developed and tested a process to recover polymers and metals from shredder residue. A 2-ton/hr pilot plant, consisting of a mechanical separation facility and a six-stage wet density/froth flotation plant, was built at Argonne. In the mechanical part of the plant, the shredder waste was separated into five primary components: a polymer fraction (about 45% by weight), a residual metals concentrate (about 10% by weight), a polyurethane foam portion (about 5% by weight), an organic-rich fraction (about 25% by weight) and a metal oxides fraction (about 15% by weight). The polymer fraction was then separated further in the wet density/froth flotation system to recover individual plastic types or compatible families of polymers.

134

Key recycling in authentication  

E-Print Network (OSTI)

In their seminal work on authentication, Wegman and Carter propose that to authenticate multiple messages, it is sufficient to reuse the same hash function as long as each tag is encrypted with a one-time pad. They argue that because the one-time pad is perfectly hiding, the hash function used remains completely unknown to the adversary. Since their proof is not composable, we revisit it using a composable security framework. It turns out that the above argument is insufficient: if the adversary learns whether a corrupted message was accepted or rejected, information about the hash function is leaked, and after a bounded finite amount of rounds it is completely known. We show however that this leak is very small: Wegman and Carter's protocol is still $\\epsilon$-secure, if $\\epsilon$-almost strongly universal$_2$ hash functions are used. This implies that the secret key corresponding to the choice of hash function can be reused in the next round of authentication without any additional error than this $\\epsilon$. We also show that if the players have a mild form of synchronization, namely that the receiver knows when a message should be received, the key can be recycled for any arbitrary task, not only new rounds of authentication.

Christopher Portmann

2012-02-06T23:59:59.000Z

135

Wastewater recycling and heat reclamation at the Red Lion Central Laundry, Portland, Oregon  

SciTech Connect

This report discusses water, energy, and cost savings that can be achieved in a commercial laundry through the use of a wastewater recycling and heat recovery system. Cost savings are achieved through reductions in water use, reduction in sewage charges, reductions in water heating energy, and potential reductions in water treatment chemicals. This report provides an economic analysis of the impact of capital investment, daily consumption, and local utility rates on the payback period.

Garlick, T.F.; Halverson, M.A.; Ledbetter, M.R.

1996-09-01T23:59:59.000Z

136

RDS and Recycling Waste Diversion in Food Prep  

E-Print Network (OSTI)

RDS and Recycling Waste Diversion in Food Prep Setting #12;Why Recycle? Recycling saves resources Recycling one ton of paper saves 17 trees! Recycling saves energy Recycling one aluminum can saves enough energy to power a television for 3 hours! Recycling is easy There are 4 waste categories here at UM

Awtar, Shorya

137

Effects of Biochar Recycling on Switchgrass Growth and Soil and Water Quality in Bioenergy Production Systems  

E-Print Network (OSTI)

Intensive biomass production in emerging bioenergy systems could increase nonpoint-source sediment and nutrient losses and impair surface and groundwater quality. Recycling biochar, a charcoal byproduct from pyrolysis of biomass, provides potential...

Husmoen, Derek Howard

2012-07-16T23:59:59.000Z

138

Chapter 31 - The Economics of Recycling  

Science Journals Connector (OSTI)

Abstract Recycling is generally considered an important strategy for alleviating the pressures of society on the environment while creating employment and attracting investments. In recent years, many countries have experienced large increases in recycling. This chapter aims to identify the main economic drivers of recycling, address the economic effects of recycling-related activities, and demonstrate the effectiveness of economic policies promoting recycling. The chapter demonstrates how recycling takes place in a volatile, dynamic, and globalizing world, which complicates the projections of future developments in the recycling sector. Moreover, the chapter describes which private and external costs of recycling-related activities need to be taken into account and how these effects can be valued in economic terms. Finally, the most important economic instruments to promote recycling are identified and explained.

Pieter van Beukering; Onno Kuik; Frans Oosterhuis

2014-01-01T23:59:59.000Z

139

The economics of cell phone reuse and recycling  

E-Print Network (OSTI)

documents. Else Refining & Recycling Ltd. , Shefford 54.and the potential for recycling other small electrical andon material recovery and recycling of end-of-life mobile

Geyer, Roland; Doctori Blass, Vered

2010-01-01T23:59:59.000Z

140

Recycled Materials Affirmative Procurement Tracking System (RMAPTS). Software user`s manual  

SciTech Connect

RMAPTS is designed to interact with other computer systems. This system can upload or download data from other RMAPTS systems. RMAPTS also complies with Federal Acquisition Regulations (FARs). Section 6002 of the Resource Conservation of Recovery Act (RCRA), Title 40 Part 247-25 of the Code of Federal Regulations, and Executive Order 12780 present mandates and guidelines to the Department of Energy (DOE) and its contractors for the procurement of products containing recycled materials. These regulations promote cost-effective waste reduction and recovery of reusable materials from Federally generated waste; promote environmentally sound and economically efficient waste reduction and recycling of the nation`s resources; and stimulate private sector markets through preferential procurement of designated items. On August 4, 1992, the Deputy Secretary of the Department of Energy requested DOE to show its commitment to Executive Order 12780, Federal Agency Recycling and Procurement Policy. This software was developed in response to this request. RMAPTS will allow users to track and report specific data concerning the procurement of products that contain recycled material and the quantity of recycled material contained in each product. This system provides greater detail, improved accuracy, and less time spent on year-end reporting. Users can quickly check the year-to-date status of recycled material purchases and recycled material contents of products at any time.

Not Available

1994-07-01T23:59:59.000Z

Note: This page contains sample records for the topic "recycling source reduction" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

Materials - Recycling - ABS and HIPS  

NLE Websites -- All DOE Office Websites (Extended Search)

Separation and Recovery of ABS and HIPS from Mixed Plastics via Froth Flotation Separation and Recovery of ABS and HIPS from Mixed Plastics via Froth Flotation Every day, obsolete appliances, consumer electronics, and cars make their way into landfills. These no-longer-wanted items contain something valuable--plastics that have the potential to be recycled. Although current technologies enable the separation of some plastics, they do not yet offer cost-effective purity and yields. Additionally, these methods do not effectively separate plastics that have the same density. Argonne and Appliance Recycling Centers of America (ARCA) undertook a project to develop a process to effectively separate and recover high-quality acrylonitrile butadiene styrene (ABS)--a plastic used to produce lightweight, tough, rigid products--from the mixed-plastics wastes generated in ARCA's appliance-recycling operation.

142

Ad Building demolition, recycling completed  

NLE Websites -- All DOE Office Websites (Extended Search)

Ad Building demolition, recycling completed Ad Building demolition, recycling completed Ad Building demolition, recycling completed Demolition of the Administration Building helps Los Alamos meet an NNSA directive to reduce its structural footprint, modernize its infrastructure, and provide workers with safe, energy-efficient facilities. October 11, 2011 Demolition of the administration building Demolition of the Administration Building Contact Steve Sandoval Communications Office (505) 665-9206 Email Project finished under budget, ahead of schedule LOS ALAMOS, New Mexico, October 11, 2011-Los Alamos National Laboratory has completed demolition of its former Administration Building. Demolition of the 316,500-square-foot building that was home to seven Laboratory directors was completed five months ahead of the original schedule and

143

Materials - Recycling - Polymer Matrix Composites  

NLE Websites -- All DOE Office Websites (Extended Search)

Recycling of Polymer Matrix Composites Recycling of Polymer Matrix Composites Polymer matrix composites Carbon fibers recovered from a epoxy-based polymer matrix composite. Carbon fiber reinforced polymer matrix composites (PMCs) are materials with superior strength-to-weight ratios. Finding increased applications in the aerospace industry, PMCs are now being evaluated for possible use in automobile construction. The material’s high cost, however, along with concerns about whether the PMCs will be recyclable when the vehicles reach the end of their useful lives, are barriers to its widespread use. With funding provided by the U.S. Department of Energy’s Vehicle Technologies Program (formerly called the Office of Advanced Transportation Technologies), Argonne is developing an efficient and cost-effective

144

Process to recycle shredder residue  

DOE Patents (OSTI)

A system and process for recycling shredder residue, in which separating any polyurethane foam materials are first separated. Then separate a fines fraction of less than about 1/4 inch leaving a plastics-rich fraction. Thereafter, the plastics rich fraction is sequentially contacted with a series of solvents beginning with one or more of hexane or an alcohol to remove automotive fluids; acetone to remove ABS; one or more of EDC, THF or a ketone having a boiling point of not greater than about 125.degree. C. to remove PVC; and one or more of xylene or toluene to remove polypropylene and polyethylene. The solvents are recovered and recycled.

Jody, Bassam J. (Chicago, IL); Daniels, Edward J. (Oak Lawn, IL); Bonsignore, Patrick V. (Channahon, IL)

2001-01-01T23:59:59.000Z

145

Ford Opens Door to Plastics Recycling  

Science Journals Connector (OSTI)

Ford Opens Door to Plastics Recycling ... With the passage of the European "take-back" laws all but inevitable, American automakers are stepping up efforts to recycle U.S. cars. ...

Kellyn S. Betts

2011-06-09T23:59:59.000Z

146

Automobile Recycling Policy: Findings and Recommendations  

E-Print Network (OSTI)

This report focuses on recycling. As an objective neutral party, MIT has compiled a knowledge base that examines the many complex issues relating to re-cycling. Although this report was prepared at the request of the ...

Field, Frank

147

Residential Refrigerator Recycling Ninth Year Retention Study  

E-Print Network (OSTI)

Residential Refrigerator Recycling Ninth Year Retention Study Study ID Nos. 546B, 563 Prepared RECYCLING PROGRAMS Study ID Nos. 546B and 563 Prepared for Southern California Edison Rosemead, California

148

Compositional evaluation of asphalt binder recycling agents  

E-Print Network (OSTI)

Several experiments were performed to determine how recycling agent composition affects the high, intermediate, and low temperature properties as well as long term oxidative aging characteristics of recycled asphalt blends. Specifically, several...

Madrid, Richard Charles

1997-01-01T23:59:59.000Z

149

Greenhouse Gas Reductions: SF6  

ScienceCinema (OSTI)

Argonne National Laboratory is leading the way in greenhouse gas reductions, particularly with the recapture and recycling of sulfur hexafluoride (SF6). SF6 is a gas used in industry as an anti-arcing agent. It is an extremely potent greenhouse gas ? one pound of SF6 is equivalent to 12 tons of carbon dioxide. While the U.S. does not currently regulate SF6 emissions, Argonne is proactively and voluntarily recovering and recycling to reduce SF6 emissions. Argonne saves over 16,000 tons of SF6 from being emitted into the atmosphere each year, and by recycling the gas rather than purchasing it new, we save taxpayers over $208,000 each year.

Anderson, Diana

2013-04-19T23:59:59.000Z

150

Greenhouse Gas Reductions: SF6  

SciTech Connect

Argonne National Laboratory is leading the way in greenhouse gas reductions, particularly with the recapture and recycling of sulfur hexafluoride (SF6). SF6 is a gas used in industry as an anti-arcing agent. It is an extremely potent greenhouse gas — one pound of SF6 is equivalent to 12 tons of carbon dioxide. While the U.S. does not currently regulate SF6 emissions, Argonne is proactively and voluntarily recovering and recycling to reduce SF6 emissions. Argonne saves over 16,000 tons of SF6 from being emitted into the atmosphere each year, and by recycling the gas rather than purchasing it new, we save taxpayers over $208,000 each year.

Anderson, Diana

2012-01-01T23:59:59.000Z

151

Redesigned recycle valves abate compressor vibration  

SciTech Connect

New recycle valves installed in 1994 on the compressors in the East Brae field in the North Sea corrected the noise and vibration problem that damaged the original valves shortly after commissioning the platform. The original recycle valves, especially on the second-stage compressors, showed severe damage. The paper describes the Brae field, the recycle system, recycle valves, operations, the new valve design, noise and vibration, and valve actuators.

Laing, D.E. [Marathon Oil U.K. Ltd., Aberdeen (United Kingdom); Miller, H.L.; McCaskill, J.W. [Engineering Control Components Inc., Rancho Santa Margarita, CA (United States)

1995-06-05T23:59:59.000Z

152

Proceedings of the waste recycling workshop  

SciTech Connect

Recorded are seventeen talks from five sessions at the workshop. FERMCO`s recycling program, state of the art recycling technology, and an integrated demonstration of deactivation, decommissioning and decommissioning are presented in the plenary session. In the concrete session, decontamination and recycling are discussed. In the transite session, regulations are considered along with recycling and decontamination. In the metals session, radioactive scrap metals are emphasized. And in the regulatory considerations and liabilities session, DOE and EPA viewpoints are discussed. (GHH)

Bailey, R.E.; Thomas, A.F.; Ries, M.A. [eds.] [Ohio State Univ., Columbus, OH (United States)] [eds.; Ohio State Univ., Columbus, OH (United States)

1993-12-31T23:59:59.000Z

153

TTUAB PLASTIC & ALUMINUM RECYCLING PROTOCOL Fall 2012 What Plastic Do We Recycle?  

E-Print Network (OSTI)

TTUAB PLASTIC & ALUMINUM RECYCLING PROTOCOL ­ Fall 2012 What Plastic Do We Recycle? TTUAB has taken on the responsibility of recycling #1 PET and #2 HDPE plastics by placing a yellow TTUAB Plastic Recycling bin on each. Technically, we are only responsible for aforementioned plastics and aluminum. However, any trash or other

Rock, Chris

154

TTUAB PLASTIC & ALUMINUM RECYCLING PROTOCOL 2013 What Plastic Do We Recycle?  

E-Print Network (OSTI)

TTUAB PLASTIC & ALUMINUM RECYCLING PROTOCOL 2013 What Plastic Do We Recycle? TTUAB has taken on the responsibility of recycling ALL plastics (#1 through #7) by placing a yellow TTUAB Plastic Recycling bin on each and in LH100. Technically, we are only responsible for aforementioned plastics and aluminum. However, any

Rock, Chris

155

TTUAB PLASTIC RECYCLING PROTOCOL Fall 2011 What Plastic Do We Recycle?  

E-Print Network (OSTI)

TTUAB PLASTIC RECYCLING PROTOCOL ­ Fall 2011 What Plastic Do We Recycle? TTUAB has taken on the responsibility of recycling #1 PET and #2 HDPE plastics by placing a yellow TTUAB Plastic Recycling bin on each floor. Technically, we are only responsible for aforementioned plastics. However, any trash or other

Rock, Chris

156

Research Report Recycling gone bad: When the option to recycle increases  

E-Print Network (OSTI)

Research Report Recycling gone bad: When the option to recycle increases resource consumption Jesse Abstract In this study, we propose that the ability to recycle may lead to increased resource usage compared to when a recycling option is not available. Supporting this hypothesis, our first experiment

Loudon, Catherine

157

Where can I recycle it year-round? Item Local Recycling Locations  

E-Print Network (OSTI)

Where can I recycle it year-round? Item Local Recycling Locations Styrofoam First Alternative Co-op Recycling Center, 1007 SE 3rd St., 541-753-3115 (small fee) Packing Peanuts OSU Surplus, 644 SW 13 th St., 541-737-7347 Commercial shipping stores Film Plastics First Alternative Co-op Recycling Center, 1007

Escher, Christine

158

Recycling of wasted energy : thermal to electrical energy conversion  

E-Print Network (OSTI)

CALIFORNIA, SAN DIEGO Recycling of Wasted Energy : ThermalOF THE DISSERTATION Recycling of Wasted Energy : Thermal to

Lim, Hyuck

2011-01-01T23:59:59.000Z

159

Nottingham Trent University Plastic Recycling  

E-Print Network (OSTI)

5015/03/08 Nottingham Trent University Plastic Recycling Water and fizzy drinks bottles Contaminated plastic (food, fluids, etc.) Oil containers Toxic chemical containers Metal strips or fasteners Carrier bags and bin liners Margarine tubs, wall coverings Yoghurt pots, egg cartons, plastic packaging

Evans, Paul

160

Chapter 21 - Recycling of Packaging  

Science Journals Connector (OSTI)

Abstract Packaging is so common throughout our lives and the world that we hardly realize the massive volume of material consumed for packaging. Packaging is the key factor determining the volume and composition of municipal solid waste in many countries. The volume and composition of packaging waste are affected by a number of factors. Economic development, population, and a variety of national factors are key drivers for the total volume. The composition changes over time due to technology and economic drivers, but it is also affected by national traditions and policies. Due to the important contribution to the total volume of waste generated, packaging has historically received a lot of attention in waste management policy. This had led to a range of experiences with different ways to collect packaging waste throughout the world. The type of collection scheme is driven by the type of packaging or material (i.e. reuse, recycling, or waste treatment). Recycling rates vary by material type, with the highest collection and recycling rates found for metals, glass, and paper. Collection and recycling rates of plastics are generally still very low. The effectiveness and efficiency of collection are affected by a variety of factors, including cultural, economic, and organizational factors.

Ernst Worrell

2014-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "recycling source reduction" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

Recent innovations in paper recycling  

SciTech Connect

From many process steps in paper recycling systems, two have been selected for discussion, namely washing deinking and flotation deinking flotation deinking. Recent innovations are reviewed, in the context of the basic mechanisms responsible for the functioning of these machines. An update is also given for their application in the processing of used office papers.

Seifert, P. (Black Clawson Co., Middletown, OH (United States))

1994-02-01T23:59:59.000Z

162

Ames Lab 101: Rare-Earth Recycling  

SciTech Connect

Recycling keeps paper, plastics, and even jeans out of landfills. Could recycling rare-earth magnets do the same? Perhaps, if the recycling process can be improved. Scientists at the U.S. Department of Energy's Ames Laboratory are working to more effectively remove the neodymium, a rare earth, from the mix of other materials in a magnet.

Ryan Ott

2012-09-05T23:59:59.000Z

163

Recycling at Mooov-In 2011  

E-Print Network (OSTI)

Cardboard Recycling at Mooov-In 2011 For the second year in a row, Division of Housing and Food Service (DHFS) and Recycling & Sustainability teamed up to divert as much cardboard as possible from area landfills. In addition to the paper, cardboard, aluminum and plastic recycling available in all residence

Julien, Christine

164

Energy and Environmental Considerations in Recycling  

E-Print Network (OSTI)

Energy and Environmental Considerations in Recycling Griffin Hosseinzadeh 11 April 2012 Physics H materials from recyclables · Carbon emissions & water pollution from production of virgin materials vs. recycling · Methane from decomposing materials in landfill · Depletion of natural resources (trees, minerals

Budker, Dmitry

165

Cost effectiveness of recycling: A systems model  

SciTech Connect

Highlights: • Curbside collection of recyclables reduces overall system costs over a range of conditions. • When avoided costs for recyclables are large, even high collection costs are supported. • When avoided costs for recyclables are not great, there are reduced opportunities for savings. • For common waste compositions, maximizing curbside recyclables collection always saves money. - Abstract: Financial analytical models of waste management systems have often found that recycling costs exceed direct benefits, and in order to economically justify recycling activities, externalities such as household expenses or environmental impacts must be invoked. Certain more empirically based studies have also found that recycling is more expensive than disposal. Other work, both through models and surveys, have found differently. Here we present an empirical systems model, largely drawn from a suburban Long Island municipality. The model accounts for changes in distribution of effort as recycling tonnages displace disposal tonnages, and the seven different cases examined all show that curbside collection programs that manage up to between 31% and 37% of the waste stream should result in overall system savings. These savings accrue partially because of assumed cost differences in tip fees for recyclables and disposed wastes, and also because recycling can result in a more efficient, cost-effective collection program. These results imply that increases in recycling are justifiable due to cost-savings alone, not on more difficult to measure factors that may not impact program budgets.

Tonjes, David J., E-mail: david.tonjes@stonybrook.edu [Department of Technology and Society, College of Engineering and Applied Sciences, Stony Brook University, Stony Brook, NY 11794-3560 (United States); Waste Reduction and Management Institute, School of Marine and Atmospheric Sciences, Stony Brook University, Stony Brook, NY 11794-5000 (United States); Center for Bioenergy Research and Development, Advanced Energy Research and Technology Center, Stony Brook University, 1000 Innovation Rd., Stony Brook, NY 11794-6044 (United States); Mallikarjun, Sreekanth, E-mail: sreekanth.mallikarjun@stonybrook.edu [Department of Technology and Society, College of Engineering and Applied Sciences, Stony Brook University, Stony Brook, NY 11794-3560 (United States)

2013-11-15T23:59:59.000Z

166

Recycling Guide: Reduce, Reuse, Recycle Recycling Information Call 301-496-7990 or visit the NEMS Website at http://www.nems.nih.gov  

E-Print Network (OSTI)

Recycling Guide: Reduce, Reuse, Recycle Recycling Information ­ Call 301-496-7990 or visit the NEMS in COMMINGLED bin Rinse food/beverage containers before recycling No Pyrex or Styrofoam Printer and Copier Toner Cartridges in TONER CARTRIDGE bin Recycle packaging material in appropriate bin NIH charities

Baker, Chris I.

167

International Recycling of LLW Metals  

SciTech Connect

Melting of radioactive scrap metal has been successfully practiced for more than 15 years, with approximately 60,000 tons of steel being processed into beneficial reuse applications. This process has converted radioactive scrap metal at a licensed facility into useful products such as shield blocks, security barriers and shield containers. These products are used within the nuclear industry, such as nuclear power plants, waste disposal facilities and high-energy physics research facilities. Recycling provides the following benefits by comparison with direct disposal: - Preserving metal resources. - Conserving valuable Low Level Waste (LLW) disposal site resources, thereby extending disposal site life. - Reducing the cost of metal products to end users by using materials less expensive than virgin metals. This paper outlines international metal recycling practices implemented at EnergySolutions' Bear Creek Facility in Oak Ridge, Tennessee. (authors)

Eshleman, T.; Jansen, J. [EnergySolutions (United States); Shinya, Sawada [KEK - High Energy Accelerator Research Organization (Japan)

2008-07-01T23:59:59.000Z

168

Chapter 4 - Recycling Rare Metals  

Science Journals Connector (OSTI)

Abstract The industrial system now utilizes many more elements, especially rare metals, than was the case even a half century ago. Most are not mined for themselves but are obtained as by-products or “hitchhikers” of the more familiar industrial metals, such as iron, aluminum, copper, nickel, and zinc. This imposes a limit on the production of by-product metals. But in some cases, demand may increase much faster than new supply. This suggests a need for recycling. But the uses of these metals are often in products, such as cell phones, that are mass-produced but where the amount in each individual product is very small. Some uses are also inherently dissipative. This makes recycling very difficult in principle. It constitutes a serious challenge for the future economy. Prices will rise.

Robert U. Ayres; Gara Villalba Méndez; Laura Talens Peiró

2014-01-01T23:59:59.000Z

169

Ozone bleaching of recycled paper  

SciTech Connect

Chlorinated bleaching chemicals, notably chlorine and hypochlorite, are still being used to bleach deinked, woodfree pulps. Increasing environmental concern about the use of these chemicals--coupled with the industry's efforts to increase the use of recycled fibers--highlight the need to develop better techniques for producing high-quality deinked pulp. Results presented in this report suggest that deinked fibers can be treated with ozone followed by a peroxide bleaching stage to produce a high-quality pulp.

Muguet, M.; Kogan, J. (American Air Liquide, Countryside, IL (United States))

1993-11-01T23:59:59.000Z

170

17 - Future of Paper Recycling  

Science Journals Connector (OSTI)

Recycled fibre is becoming a globally traded commodity with countries that are rich in it developing important export businesses around its trade. The main drivers for the use of recycled fibre continue to be availability at an economic price, legislative and voluntary agreements based on environmental pressure, and continuously improving technologies for deinking and other recovered fibre processing. Despite this increasing role as a raw material for the paper industry, issues such as price volatility of recovered paper, quality factors, food contact proposals and ever-increasing environmental pressures and considerations may cause a rethink in some sectors. This is resulting in some companies opting for virgin fibre, which greatly reduces issues related to quality and food contact. Quality and price issues can, to a certain extent, be influenced by the industry and its supply chain. Environmental considerations and any new proposals relating to food contact will require effective lobbying to ensure the overall industry is not disadvantaged. The future of paper recycling is discussed in this chapter.

Pratima Bajpai

2014-01-01T23:59:59.000Z

171

Unanticipated potential cancer risk near metal recycling facilities  

SciTech Connect

Metal recycling is an important growing industry. Prior to this study, area sources consisting of metal recycling facilities fell in a category of limited regulatory scrutiny because of assumed low levels of annual emissions. Initiating with community complaints of nuisance from smoke, dust and odor, the Houston Department of Health and Human Services (HDHHS) began a monitoring program outside metal recycler facilities and found metal particulates in outdoor ambient air at levels which could pose a carcinogenic human health risk. In a study of five similar metal recycler facilities which used a torch cutting process, air downwind and outside the facility was sampled for eight hours between 6 and 10 times each over 18 months using a mobile laboratory. Ten background locations were also sampled. Iron, manganese, copper, chromium, nickel, lead, cobalt, cadmium and mercury were detected downwind of the metal recyclers at frequencies ranging from 100% of the time for iron to 2% of the time for mercury. Of these metals, chromium, nickel, lead, cobalt, cadmium and mercury were not detected in any sample in the background. Two pairs of samples were analyzed for total chromium and hexavalent chromium to establish a ratio of the fraction of hexavalent chromium in total chromium. This fraction was used to estimate hexavalent chromium at all locations. The carcinogenic risk posed to a residential receptor from metal particulate matter concentrations in the ambient air attributed to the metal recyclers was estimated from each of the five facilities in an effort to rank the importance of this source and inform the need for further investigation. The total risk from these area sources ranged from an increased cancer risk of 1 in 1,000,000 to 6 in 10,000 using the 95th upper confidence limit of the mean of the carcinogenic metal particulate matter concentration, assuming the point of the exposure is the sample location for a residential receptor after accounting for wind direction and the number of shifts that could operate a year. Further study is warranted to better understand the metal air pollution levels in the community and if necessary, to evaluate the feasibility of emission controls and identify operational improvements and best management practices for this industry. This research adds two new aspects to the literature: identification of types and magnitude of metal particulate matter air pollutants associated with a previously unrecognized area source, metal recyclers and their potential risk to health. -- Highlights: • Air monitoring study in response to community complaints found metal contamination. • Metal recyclers found to potentially pose cancer from metal particulates • Chromium, nickel, cobalt and cadmium samples were detected in five metal recyclers. • These metals were not detected in background air samples. • Estimated increased cancer risk ranges from 1 in 1,000,000 to 8 in 10,000.

Raun, Loren, E-mail: raun@rice.edu [Department of Statistics, MS 138, Rice University, P.O. Box 1892, Houston, TX 77251-1892 (United States)] [Department of Statistics, MS 138, Rice University, P.O. Box 1892, Houston, TX 77251-1892 (United States); Pepple, Karl, E-mail: pepple.karl@epa.gov [State and Local Programs Group, Air Quality Policy Division, Office of Air Quality Planning and Standards, Policy, Analysis, and Communications Staff, Mail Drop C404-03, U.S. EPA, Research Triangle Park, NC 27711 (United States)] [State and Local Programs Group, Air Quality Policy Division, Office of Air Quality Planning and Standards, Policy, Analysis, and Communications Staff, Mail Drop C404-03, U.S. EPA, Research Triangle Park, NC 27711 (United States); Hoyt, Daniel, E-mail: hoyt.daniel@epa.gov [Air Surveillance Section, US EPA, Region 6, 6EN-AS, 1445 Ross Avenue, Dallas, TX 75202-2733 (United States)] [Air Surveillance Section, US EPA, Region 6, 6EN-AS, 1445 Ross Avenue, Dallas, TX 75202-2733 (United States); Richner, Donald, E-mail: Donald.Richner@houstontx.gov [Houston Department of Health and Human Services, Bureau of Pollution Control and Prevention, 7411 Park Place Blvd., Houston, TX 77087 (United States)] [Houston Department of Health and Human Services, Bureau of Pollution Control and Prevention, 7411 Park Place Blvd., Houston, TX 77087 (United States); Blanco, Arturo, E-mail: arturo.blanco@houstontx.gov [Pollution Control and Prevention, Environmental Health Division, Houston Department of Health and Human Services, 7411 Park Place Blvd., Houston, TX 77087 (United States)] [Pollution Control and Prevention, Environmental Health Division, Houston Department of Health and Human Services, 7411 Park Place Blvd., Houston, TX 77087 (United States); Li, Jiao, E-mail: jiao.li@rice.edu [Wiess School of Natural Science, Rice University, 6100 Main St., Houston, TX 77005 (United States)] [Wiess School of Natural Science, Rice University, 6100 Main St., Houston, TX 77005 (United States)

2013-07-15T23:59:59.000Z

172

The pinch of cold ions from recycling in the tokamak edge pedestal  

SciTech Connect

We apply the ''natural fueling mechanism'' [W. Wan, S. E. Parker, Y. Chen, and F. W. Perkins, Phys. Plasmas 17, 040701 (2010)] to the edge pedestal. The natural fueling mechanism is where cold ions naturally pinch radially inward for a heat-flux dominated plasma. It is shown from neoclassical-neutral transport coupled simulations that the recycling neutrals and the associated source ions are colder than the main ions in the edge pedestal. These recycling source ions will pinch radially inward due to microturbulence. Gyrokinetic turbulence simulations indicate that near the top of the pedestal, the pinch velocity of the recycling source ions is much higher than the main ion outgoing flow velocity. The turbulent pinch of the recycling source ions may play a role in the edge pedestal transport and dynamics. The cold ion temperature significantly enhances the pinch velocity of the recycling source ions near to the pedestal top. Neoclassical calculations show a cold ion pinch in the pedestal as well.

Wan Weigang; Parker, Scott E.; Chen Yang [Department of Physics, University of Colorado, Boulder, Colorado 80309 (United States); Park, Gun-Young [National Fusion Research Institute, 113 Gwahangno, Yuseong-Gu, DaeJeon 305-333 (Korea, Republic of); Chang, Choong-Seock [Courant Institute of Mathematical Sciences, New York University, New York, New York 10003 (United States); Stotler, Daren [Princeton Plasma Physics Laboratory, Princeton, New Jersey 08543 (United States)

2011-05-15T23:59:59.000Z

173

INEEL Lead Recycling in a Moratorium Environment  

SciTech Connect

Since 1999, the Idaho National Engineering and Environmental Laboratory (INEEL) Lead Project successfully recycled over 700,000 pounds of excess INEEL lead to the private sector. On February 14, 2000, the Secretary of Energy, Bill Richardson, formalized the January 12, 2000, moratorium on recycling radioactive scrap metal that prevented the unrestricted release of recycled scrap metals to the private sector. This moratorium created significant problems for the INEEL lead recycling program and associated plans; however, through the cooperative efforts of the INEEL and Idaho State University as well as innovative planning and creative thinking the recycling issues were resolved. This collaboration has recycled over 160,000 pounds of excess lead to Idaho State University with a cost savings of over $.5M.

Kooda, K. E.; Galloway, K.; McCray, C. W.; Aitken, D. W.

2003-02-26T23:59:59.000Z

174

INEEL Lead Recycling in a Moratorium Environment  

SciTech Connect

Since 1999, the Idaho National Engineering and Environmental Laboratory (INEEL) Lead Project successfully recycled over 700,000 pounds of excess INEEL lead to the private sector. On February 14, 2000, the Secretary of Energy, Bill Richardson, formalized the January 12, 2000, moratorium on recycling radioactive scrap metal that prevented the unrestricted release of recycled scrap metals to the private sector. This moratorium created significant problems for the INEEL lead recycling program and associated plans; however, through the cooperative efforts of the INEEL and Idaho State University as well as innovative planning and creative thinking the recycling issues were resolved. This collaboration has recycled over 160,000 pounds of excess lead to Idaho State University with a cost savings of over $.5M.

Kooda, Kevin Evan; Mc Cray, Casey William; Aitken, Darren William; Galloway, Kelly

2003-02-01T23:59:59.000Z

175

Waste Reduction plan for Oak Ridge National Laboratory  

SciTech Connect

Oak Ridge National Laboratory (ORNL) is a multipurpose research and development (R D) facility owned and operated by the Department of Energy (DOE) and managed under subcontract by Martin Marietta Energy Systems (Energy Systems), Inc. ORNL R D activities generate numerous small waste streams. In the hazardous waste category alone, over 300 streams of a diverse nature exist. Generation avoidance, reduction or recycling of wastes is an important goal in maintaining efficiency of ORNL R D activities and protection of workers, the public, and the environment. Waste minimization is defined as any action that minimizes or eliminates the volume or toxicity of waste by avoiding its generation or recycling. This is accomplished by material substitution and inventory management, process modification, or recycling wastes for reuse. Waste reduction is defined as waste minimization plus treatment which results in volume or toxicity reduction. The ORNL Waste Reduction Program will include both waste minimization and waste reduction activities.

Not Available

1991-12-01T23:59:59.000Z

176

Waste Reduction plan for Oak Ridge National Laboratory  

SciTech Connect

Oak Ridge National Laboratory (ORNL) is a multipurpose research and development (R&D) facility owned and operated by the Department of Energy (DOE) and managed under subcontract by Martin Marietta Energy Systems (Energy Systems), Inc. ORNL R&D activities generate numerous small waste streams. In the hazardous waste category alone, over 300 streams of a diverse nature exist. Generation avoidance, reduction or recycling of wastes is an important goal in maintaining efficiency of ORNL R&D activities and protection of workers, the public, and the environment. Waste minimization is defined as any action that minimizes or eliminates the volume or toxicity of waste by avoiding its generation or recycling. This is accomplished by material substitution and inventory management, process modification, or recycling wastes for reuse. Waste reduction is defined as waste minimization plus treatment which results in volume or toxicity reduction. The ORNL Waste Reduction Program will include both waste minimization and waste reduction activities.

Not Available

1991-12-01T23:59:59.000Z

177

Recycled Plastics in FCC Feedstocks:? Specific Contributions  

Science Journals Connector (OSTI)

Recycled Plastics in FCC Feedstocks:? Specific Contributions ... Zhibo, Z.; Nishio, S.; Morioka, Y.; Ueno, A.; Ohkita, H.; Tochihara, Y.; Mizushima, P.; Kakuta, N. Thermal and chemical recycle of waste polymers. ... Feedstock recycling of plastic waste by thermal and catalytic processes is a promising route to eliminate this refuse (which is harmful to the environment) by obtaining, at the same time, products that are useful as fuels or chemicals. ...

Gabriela de la Puente; José M. Arandes; Ulises A. Sedran

1997-11-03T23:59:59.000Z

178

Plastic film recycling: A new beginning  

SciTech Connect

Only two years ago, plastic film recycling was considered an onerous task. Different resins had to be identified, colors had to be separated, and minute contaminants had to be weeded out almost by hand to produce a quality material. But the tide of plastic film recycling is changing now that new technologies have emerged and more organized collection infrastructure have been developed. Today, plastic film recycling maintains a lucrative market for those with the right combination of equipment and know-how.

Goff, J.A.

1995-02-01T23:59:59.000Z

179

Wastewater recycling and heat reclamation project: Red Lion Central Laundry, Portland, Oregon  

SciTech Connect

This report discusses water, energy, and cost savings that can be achieved in a commercial laundry through the use of a wastewater recycling and heat recovery system. Cost savings are achieved through reductions in water use, reduction in sewage charges (typically based on water use), reductions in water heating energy, and potential reductions in water treatment chemicals because the recycled water has already been treated with soaps and conditioners. A recovery system saves water by recycling wash water that would normally be dumped into the city sewage system. Recycling the wash water produces considerable energy savings because the recycled water has a higher temperature than fresh water. As a result, a hot water heater consumes less energy to heat the recycled water. The demonstration project discussed in this report was based in a large commercial laundry in Portland, Oregon. The laundry serves a large hotel/motel chain and processes an average of 25,000 pounds of laundry per day. A wastewater recovery system using a membrane microfiltration unit (MFU) was installed in the laundry in September 1995. Time series data of the water and energy consumption of the laundry were taken before and after installation of the MFU. Energy savings were measured by performing a thermal energy balance around the washing machines. Water savings were calculated by metering volumetric flow rates. After a period of approximately five months, the MFU has achieved final results of 52 percent savings in water consumption and 44 percent savings in energy to heat water. This five-month period represents a learning curve during which several small technical improvements were made to the MFU and laundry staff adjusted laundry operations to maximize the benefits of the MFU. An economic analysis discusses the impact of capital investment, daily consumption, and local utility rates on the payback period.

Garlick, T.F.; Halverson, M.A.; Ledbetter, M.R.

1997-06-01T23:59:59.000Z

180

USF Physical Plant Recycling Program Updated November 2013  

E-Print Network (OSTI)

USF Physical Plant Recycling Program Updated November 2013 #12;Beginnings � Program initiated � Continuously expanding recycling efforts #12;Paper Recycling � Currently recycling mixed paper Office paper, newspaper, magazines, cardboard, paperbacks � PPD has distributed about 2,400 office-size recycling

Meyers, Steven D.

Note: This page contains sample records for the topic "recycling source reduction" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

Request for Information on Photovoltaic Module Recycling  

Energy.gov (U.S. Department of Energy (DOE))

The U.S. Department of Energy SunShot Initiative requests feedback from industry, academia, research laboratories, government agencies, and other stakeholders on issues related to photovoltaic (PV) module recycling technology. SunShot intends to understand the current state of recycling technology and the areas of research that could lead to impactful recycling technologies to support the developing PV industry. The intent of this request for information is to generate discussion related to planning for the end of life of photovoltaic modules and to create a list of high impact research topics in photovoltaics recycling.

182

Recommendation 221: Recommendation Regarding Recycling of Metals...  

Office of Environmental Management (EM)

recycling program to address radiologically contaminated metals and equipment for free-release. Recommendation 221 Responseto221.pdf More Documents & Publications EM SSAB...

183

Howard Waste Recycling Ltd | Open Energy Information  

Open Energy Info (EERE)

Product: London-based project developer and manufacturer of biomass feedstock for energy production. References: Howard Waste Recycling Ltd1 This article is a stub. You can help...

184

Recycling in America: A Reference Handbook  

E-Print Network (OSTI)

and academic libraries, the handbook presents a nontechnicalRecycling in America: A Reference Handbook Patricia Murphy Handbook (Contemporary World Issues

Murphy, Patricia

1994-01-01T23:59:59.000Z

185

RECYCLING: SUPPLY, ECONOMICS, ENVIRONMENT, AND TECHNOLOGY  

E-Print Network (OSTI)

Proceedings Technology Park/Atlanta P. O. Box 105113 Atlanta, GA 303+8-5113, USA on recycled paper 416 / TAPPI

Abubakr, Said

186

Data summary of municipal solid waste management alternatives. Volume 7, Appendix E -- Material recovery/material recycling technologies  

SciTech Connect

The enthusiasm for and commitment to recycling of municipal solid wastes is based on several intuitive benefits: Conservation of landfill capacity; Conservation of non-renewable natural resources and energy sources; Minimization of the perceived potential environmental impacts of MSW combustion and landfilling; Minimization of disposal costs, both directly and through material resale credits. In this discussion, ``recycling`` refers to materials recovered from the waste stream. It excludes scrap materials that are recovered and reused during industrial manufacturing processes and prompt industrial scrap. Materials recycling is an integral part of several solid waste management options. For example, in the preparation of refuse-derived fuel (RDF), ferrous metals are typically removed from the waste stream both before and after shredding. Similarly, composting facilities, often include processes for recovering inert recyclable materials such as ferrous and nonferrous metals, glass, Plastics, and paper. While these two technologies have as their primary objectives the production of RDF and compost, respectively, the demonstrated recovery of recyclables emphasizes the inherent compatibility of recycling with these MSW management strategies. This appendix discusses several technology options with regard to separating recyclables at the source of generation, the methods available for collecting and transporting these materials to a MRF, the market requirements for post-consumer recycled materials, and the process unit operations. Mixed waste MRFs associated with mass bum plants are also presented.

none,

1992-10-01T23:59:59.000Z

187

Anaerobic Digestion of Food Waste?recycling Wastewater  

Science Journals Connector (OSTI)

Food waste?recycling (FWR) wastewater was evaluated as feedstock for two?stage anaerobic digestion at different hydraulic retention times (HRTs). The FWR wastewater tested contained high concentrations of organic materials and had chemical oxygen demand (COD) >130 g/L and volatile solids (VS) >55 g/L. Two identical two?stage anaerobic digesters were operated to investigate the performance at six HRTs ranging from 10–25 days. In the acidogenic reactor the total carbohydrate reduction efficiency and volatile fatty acid production dramatically decreased when acidogenic HRT was wastewater as feedstock.

Gyuseong Han; Seung Gu Shin; Juntaek Lim; Minho Jo; Seokhwan Hwang

2010-01-01T23:59:59.000Z

188

What Gets Recycled:? An Information Theory Based Model for Product Recycling  

Science Journals Connector (OSTI)

What Gets Recycled:? An Information Theory Based Model for Product Recycling ... plastics ... This is due in part because we have not included many additional low value items which have very low, or zero recycling rates such as Styrofoam cups, plastic bags, staples, straws, gum wrappers, etc. ...

Jeffrey B. Dahmus; Timothy G. Gutowski

2007-09-29T23:59:59.000Z

189

The economics of cell phone reuse and recycling  

E-Print Network (OSTI)

Sullivan DE (2006) Recycled cell phones—a treasure trove ofsheet: recycle your cell phone—it’s an easy call, EPA530-F-ARTICLE The economics of cell phone reuse and recycling

Geyer, Roland; Doctori Blass, Vered

2010-01-01T23:59:59.000Z

190

ENVIRONMENTAL BIOTECHNOLOGY Electricity generation and treatment of paper recycling  

E-Print Network (OSTI)

ENVIRONMENTAL BIOTECHNOLOGY Electricity generation and treatment of paper recycling wastewater production and treatment of a paper recycling plant wastewater using microbial fuel cells. Treatment. Keywords Microbial fuel cell . Paper recycling wastewater. Cellulose . Solution conductivity. Power

191

Bituminous pavement recycling Aravind K. and Animesh Das  

E-Print Network (OSTI)

Bituminous pavement recycling Aravind K. and Animesh Das Department of Civil Engineering IIT Kanpur Introduction The bituminous pavement rehabilitation alternatives are mainly overlaying, recycling and reconstruction. In the recycling process the material from deteriorated pavement, known as reclaimed asphalt

Das, Animesh

192

Argonne National Laboratory's Recycling Pilot Plant  

ScienceCinema (OSTI)

Argonne has a Recycling Pilot Plant designed to save the non-metal portions of junked cars. Here, program managers demonstrate how plastic shredder residue can be recycled. (Currently these automotive leftovers are sent to landfills.) For more information, visit Argonne's Transportation Technology R&D Center Web site at http://www.transportation.anl.gov.

Spangenberger, Jeff; Jody, Sam;

2013-04-19T23:59:59.000Z

193

Bay area regional water recycling program  

SciTech Connect

The Bay Area Regional Water Recycling Project is a partnership of 19 water and wastewater agencies working to maximize San Francisco Bay Area water recycling. Benefits of the partnership are described, and the methodologies and analysis tools to implement the regional approach are identified.

Ritchie, S.; Bailey, M.; Raines, R.

1998-07-01T23:59:59.000Z

194

Preconceptual Design Description for Caustic Recycle Facility  

SciTech Connect

The U.S. Department of Energy plans to vitrify both high-level and low-activity waste at the Hanford Site in southeastern Washington State. One aspect of the planning includes a need for a caustic recycle process to separate sodium hydroxide for recycle. Sodium is already a major limitation to the waste-oxide loading in the low-activity waste glass to be vitrified at the Waste Treatment Plant, and additional sodium hydroxide will be added to remove aluminum and to control precipitation in the process equipment. Aluminum is being removed from the high level sludge to reduce the number of high level waste canisters produced. A sodium recycle process would reduce the volume of low-activity waste glass produced and minimize the need to purchase new sodium hydroxide, so there is a renewed interest in investigating sodium recycle. This document describes an electrochemical facility for recycling sodium for the WTP.

Sevigny, Gary J.; Poloski, Adam P.; Fountain, Matthew S.; Kurath, Dean E.

2008-04-12T23:59:59.000Z

195

Solid waste recycling programs at Rocky Flats  

SciTech Connect

The Rocky Flats (RFP) recycling programs for solid waste materials have been in place for over ten years. Within the last three years, the programs were centralized under the direction of the Rocky Flats Waste Minimization department, with the assistance of various plant organizations (e.g., Trucking, Building Services, Regulated Waste Operations, property Utilization and Disposal and Security). Waste Minimization designs collection and transportation systems for recyclable materials and evaluates recycling markets for opportunities to add new commodities to the existing programs. The Waste Minimization department also promotes employee participation in the Rocky Flats Recycling Programs, and collects all recycling data for publication. A description of the program status as of January 1994 is given.

Millette, R.L.; Blackman, T.E.; Shepard, M.D. [EG and G Rocky Flats, Inc., Golden, CO (United States)

1994-12-31T23:59:59.000Z

196

St. Petersburg, FL: Vehicle Use of Recycled Natural Gas Derived...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

St. Petersburg, FL: Vehicle Use of Recycled Natural Gas Derived from Wastewater Biosolids St. Petersburg, FL: Vehicle Use of Recycled Natural Gas Derived from Wastewater Biosolids...

197

Massive Hanford Test Reactor Removed - Plutonium Recycle Test...  

Office of Environmental Management (EM)

Massive Hanford Test Reactor Removed - Plutonium Recycle Test Reactor removed from Hanford's 300 Area Massive Hanford Test Reactor Removed - Plutonium Recycle Test Reactor removed...

198

Mark Caffarey, UMICORE, "Opportunities and Limits to Recycling...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Mark Caffarey, UMICORE, "Opportunities and Limits to Recycling of Critical Materials for Clean Energies Mark Caffarey, UMICORE, "Opportunities and Limits to Recycling of Critical...

199

London Waste and Recycling Board | Open Energy Information  

Open Energy Info (EERE)

London Waste and Recycling Board Jump to: navigation, search Name: London Waste and Recycling Board Place: London, England, United Kingdom Zip: SE1 0AL Sector: Services Product:...

200

North Dakota: EERE-Funded Project Recycles Energy, Generates...  

Office of Environmental Management (EM)

North Dakota: EERE-Funded Project Recycles Energy, Generates Electricity North Dakota: EERE-Funded Project Recycles Energy, Generates Electricity June 17, 2014 - 2:58pm Addthis...

Note: This page contains sample records for the topic "recycling source reduction" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

UPDATE AND ENHANCEMENT OF ODOT'S CRASH REDUCTION FACTORS  

E-Print Network (OSTI)

A Printed on recycled paper #12;ii SI* (MODERN METRIC) CONVERSION FACTORS APPROXIMATE CONVERSIONS TO SIUPDATE AND ENHANCEMENT OF ODOT'S CRASH REDUCTION FACTORS Final Report SPR 612 by Christopher M and Enhancement of ODOT's Crash Reduction Factors 6. Performing Organization Code 7. Author(s) Christopher M

Bertini, Robert L.

202

Broadband squeezing of quantum noise in a Michelson interferometer with Twin-Signal-Recycling  

E-Print Network (OSTI)

Twin-Signal-Recycling (TSR) builds on the resonance doublet of two optically coupled cavities and efficiently enhances the sensitivity of an interferometer at a dedicated signal frequency. We report on the first experimental realization of a Twin-Signal-Recycling Michelson interferometer and also its broadband enhancement by squeezed light injection. The complete setup was stably locked and a broadband quantum noise reduction of the interferometers shot noise by a factor of up to 4\\,dB was demonstrated. The system was characterized by measuring its quantum noise spectra for several tunings of the TSR cavities. We found good agreement between the experimental results and numerical simulations.

André Thüring; Christian Gräf; Henning Vahlbruch; Moritz Mehmet; Karsten Danzmann; Roman Schnabel

2010-05-25T23:59:59.000Z

203

Economic Feasibility of Electrochemical Caustic Recycling at the Hanford Site  

SciTech Connect

This report contains a review of potential cost benefits of NaSICON Ceramic membranes for the separation of sodium from Hanford tank waste. The primary application is for caustic recycle to the Waste Treatment and Immobilization Plant (WTP) pretreatment leaching operation. The report includes a description of the waste, the benefits and costs for a caustic-recycle facility, and Monte Carlo results obtained from a model of these costs and benefits. The use of existing cost information has been limited to publicly available sources. This study is intended to be an initial evaluation of the economic feasibility of a caustic recycle facility based on NaSICON technology. The current pretreatment flowsheet indicates that approximately 6,500 metric tons (MT) of Na will be added to the tank waste, primarily for removing Al from the high-level waste (HLW) sludge (Kirkbride et al. 2007). An assessment (Alexander et al. 2004) of the pretreatment flowsheet, equilibrium chemistry, and laboratory results indicates that the quantity of Na required for sludge leaching will increase by 6,000 to 12,000 MT in order to dissolve sufficient Al from the tank-waste sludge material to maintain the number of HLW canisters produced at 9,400 canisters as defined in the Office of River Protection (ORP) System Plan (Certa 2003). This additional Na will significantly increase the volume of LAW glass and extend the processing time of the Waste Treatment and Immobilization Plant (WTP). Future estimates on sodium requirements for caustic leaching are expected to significantly exceed the 12,000-MT value and approach 40,000-MT of total sodium addition for leaching (Gilbert, 2007). The cost benefit for caustic recycling is assumed to consist of four major contributions: 1) the cost savings realized by not producing additional immobilized low-activity waste (ILAW) glass, 2) caustic recycle capital investment, 3) caustic recycle operating and maintenance costs, and 4) research and technology costs needed to deploy the technology. In estimating costs for each of these components, several parameters are used as inputs. Due to uncertainty in assuming a singular value for each of these parameters, a range of possible values is assumed. A Monte Carlo simulation is then performed where the range of these parameters is exercised, and the resulting range of cost benefits is determined.

Poloski, Adam P.; Kurath, Dean E.; Holton, Langdon K.; Sevigny, Gary J.; Fountain, Matthew S.

2009-03-01T23:59:59.000Z

204

Centralized consolidation/recycling center  

SciTech Connect

There are approximately 175 separate locations on the Hanford Site where dangerous waste is accumulated in hundreds of containers according to compatibility. Materials that are designated as waste could be kept from entering the waste stream by establishing collection points for these materials and wastes and then transporting them to a centralized consolidation/recycling center (hereinafter referred to as the consolidation center). Once there the materials would be prepared for offsite recycling. This document discusses the removal of batteries, partially full aerosol cans, and DOP light ballasts from the traditional waste management approach, which eliminates 89 satellite accumulation areas from the Hanford Site (43 for batteries, 33 for aerosols, and 13 for DOP ballasts). Eliminating these 89 satellite accumulation areas would reduce by hundreds the total number of containers shipped offsite as hazardous waste (due to the increase in containers when the wastes that are accumulated are segregated according to compatibility for final shipment). This new approach is in line with the U.S. Environmental Protection Agency`s (EPA) draft Universal Waste Rules for these {open_quotes}nuisance{close_quotes} and common waste streams. Additionally, future reviews of other types of wastes that can be handled in this less restrictive and more cost-effective manner will occur as part of daily operations at the consolidation center. The Hanford Site has been identified as a laboratory for reinventing government by the Secretary of the U.S. Department of Energy (DOE), Hazel O`Leary, and as a demonstration zone where {open_quotes}innovative ideas, processes and technologies can be created, tested and demonstrated.{close_quotes} Additionally, DOE, EPA, and the Washington State Department of Ecology (Ecology) have agreed to cut Hanford cleanup costs by $1 billion over a 5-year period.

St. Georges, L.T. [Westinghouse Hanford Co., Richland, WA (United States); Poor, A.D.

1995-05-01T23:59:59.000Z

205

Heterogeneous Recycling in Fast Reactors  

SciTech Connect

Current sodium fast reactor (SFR) designs have avoided the use of depleted uranium blankets over concerns of creating weapons grade plutonium. While reducing proliferation risks, this restrains the reactor design space considerably. This project will analyze various blanket and transmutation target configurations that could broaden the design space while still addressing the non-proliferation issues. The blanket designs will be assessed based on the transmutation efficiency of key minor actinide (MA) isotopes and also on mitigation of associated proliferation risks. This study will also evaluate SFR core performance under different scenarios in which depleted uranium blankets are modified to include minor actinides with or without moderators (e.g. BeO, MgO, B4C, and hydrides). This will be done in an effort to increase the sustainability of the reactor and increase its power density while still offering a proliferation resistant design with the capability of burning MA waste produced from light water reactors (LWRs). Researchers will also analyze the use of recycled (as opposed to depleted) uranium in the blankets. The various designs will compare MA transmutation efficiency, plutonium breeding characteristics, proliferation risk, shutdown margins and reactivity coefficients with a current reference sodium fast reactor design employing homogeneous recycling. The team will also evaluate the out-of-core accumulation and/or burn-down rates of MAs and plutonium isotopes on a cycle-by-cycle basis. This cycle-by-cycle information will be produced in a format readily usable by the fuel cycle systems analysis code, VISION, for assessment of the sustainability of the deployment scenarios.

Dr. Benoit Forget; Michael Pope; Piet, Steven J.; Michael Driscoll

2012-07-30T23:59:59.000Z

206

Used oil disposal and recycling in the United States  

SciTech Connect

Used oil represents an important energy resource, which, if properly managed and reused, could lessen US dependence on imported fuels. About 1.4 million gallons of used oil is generated annually in the United States. Of that total, about 70% is recycled: 57% is used as fuel and 12% is refined. In August 1992, the US Environmental Protection Agency adopted standards for recycling of used oil, and many states also regulate used oil (six states list used oil as hazardous waste). This report reviews the sources of used oil and methods of disposition, focusing on reprocessing and re-refining. About 83% of the recycled used oil is reprocessed for use as fuel. However, concern about the level of lead in such fuel is increasing. Re-refining used oil is an environmentally friendly process that yields higher energy savings than reprocessing; however, it is more capital-intensive. Reprocessing used oil for use as fuel yields an energy savings (over disposal) of 131,130 Btu/gal, while re-refining the oil for reuse as lube oil saves 180,000 Btu/gal, an advantage of 48,870 Btu/gal. However, further research is needed to enhance re- refining and to demonstrate the quality and competitiveness of its products.

Karvelas, D.E.; Daniels, E.J.

1993-07-01T23:59:59.000Z

207

RECYCLING COORDINATOR GRADUATE ASSISTANTSHIP University of Nebraska--Lincoln Landscape Services  

E-Print Network (OSTI)

RECYCLING COORDINATOR GRADUATE ASSISTANTSHIP University of Nebraska--Lincoln Landscape Services, implementing and maintaining recycling on campus. Assist in annual recycler's survey; tracking of recycling drop- off program; assist in market research for selected recycled materials; assist in developing

Farritor, Shane

208

To Recycle or Not to Recycle: That Is the Question - Insights from Life-Cycle Analysis  

NLE Websites -- All DOE Office Websites (Extended Search)

MRS BULLETIN MRS BULLETIN * VOLUME 37 * APRIL 2012 * www.mrs.org/bulletin © 2012 Materials Research Society MANUFACTURING * RECYCLING Why recycle? The most commonly stated reason for recycling is to reduce burdens associated with the disposal of our never-ending stream of wastes. Waste disposal potentially causes air and water pollution and is costly; moreover, landfi lls compete with other land uses. In addition, recycling can extend our supply of materials to alleviate scarcity and to moderate rising prices of raw materials. Furthermore, recycling is often more environmentally benign than using virgin raw materials and can reduce energy use and emissions of greenhouse gases and other pollutants. Life-cycle analysis Despite these positive attributes, not all recycling processes

209

Cellubrevin-targeted Fluorescence Uncovers Heterogeneity in the Recycling Endosomes*  

E-Print Network (OSTI)

Cellubrevin-targeted Fluorescence Uncovers Heterogeneity in the Recycling Endosomes* (Received, University of California, Berkeley, California 94720-3200 The pH and trafficking of recycling endosomes have-enriched recycling endosomes (pHCb) and FITC-transferrin to measure the pH of transferrin- enriched recycling

Machen, Terry E.

210

Evaluating Water Recycling in California Sachi De Souza  

E-Print Network (OSTI)

i Evaluating Water Recycling in California By Sachi De Souza B.Sc.Hon (Queen's University) 2005 Recycling in California ii ABSTRACT This document describes how to complete an economic analysis, financial analysis, and cost allocation for a water recycling project. Water recycling is gaining importance

Lund, Jay R.

211

Recycling Realities: ASU's Quest for Zero Solid Waste  

E-Print Network (OSTI)

Recycling Realities: ASU's Quest for Zero Solid Waste Dawn RatcliffePast Recycling Coordinator Alana LevineRecycling Program Manager For the last 16 years, Dawn Ratcliffe has worked and volunteered in the sustainability and animal-advocacy fields. She has organized several Earth Day events, recycling events

Zhang, Junshan

212

Brickyard Recycling Biomass Facility | Open Energy Information  

Open Energy Info (EERE)

Recycling Biomass Facility Recycling Biomass Facility Jump to: navigation, search Name Brickyard Recycling Biomass Facility Facility Brickyard Recycling Sector Biomass Facility Type Landfill Gas Location Vermilion County, Illinois Coordinates 40.122469°, -87.697554° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":40.122469,"lon":-87.697554,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

213

Bayshore Recycling Solar Project | Open Energy Information  

Open Energy Info (EERE)

Bayshore Recycling Solar Project Bayshore Recycling Solar Project Jump to: navigation, search Name Bayshore Recycling Solar Project Facility Bayshore Recycling Solar Project Sector Solar Facility Type Roof-mount Owner EnXco Developer EnXco Location Keasbey, New Jersey Coordinates 40.51667°, -74.30556° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":40.51667,"lon":-74.30556,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

214

RecycleBank | Open Energy Information  

Open Energy Info (EERE)

RecycleBank RecycleBank Jump to: navigation, search Logo: RecycleBank Name RecycleBank Address 95 Morton Street Place New York, New York Sector Efficiency Number of employees 51-200 Website http://www.recyclebank.com/ Coordinates 40.731373°, -74.008584° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":40.731373,"lon":-74.008584,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

215

Renewable, Recycled and Conserved Energy Objective  

Energy.gov (U.S. Department of Energy (DOE))

In February 2008, South Dakota enacted legislation (HB 1123) establishing an objective that 10% of all retail electricity sales in the state be obtained from renewable and recycled energy by 2015....

216

Enhanced Photon Recycling in Multijunction Solar Cells  

NLE Websites -- All DOE Office Websites (Extended Search)

a nd J .A. R ogers, " Device A rchitectures f or E nhanced Photon Recycling in Thin---Film MulQjuncQon Solar Cells." Adv. Energy M ater. (2014). DOI: 1 0.1002aenm.201400919...

217

Mervento 3.6-118 Recycling Rate.  

E-Print Network (OSTI)

??My Bachelor’s thesis work has been to make an investigation of the recycling rate of Mervento Oy's new wind turbine Mervento 3.6-118. The study has… (more)

Forsman, Andreas

2012-01-01T23:59:59.000Z

218

printed on recycled paper INDUSTRIAL ASSESSMENT CENTER  

E-Print Network (OSTI)

printed on recycled paper INDUSTRIAL ASSESSMENT CENTER ENERGY EFFICIENCY, POLLUTION PREVENTION ASSESSMENT REPORT FOR ENERGY EFFICIENCY, POLLUTION PREVENTION, AND PRODUCTIVITY IMPROVEMENT No. CO0999 ASSESSMENT DATE: February 29, 2000 LOCATION: ______, Colorado PRINCIPAL PRODUCTS: Injection molded plastic

219

Waste tire recycling by pyrolysis  

SciTech Connect

This project examines the City of New Orleans' waste tire problem. Louisiana State law, as of January 1, 1991, prohibits the knowing disposal of whole waste tires in landfills. Presently, the numerous waste tire stockpiles in New Orleans range in size from tens to hundreds of tires. New Orleans' waste tire problem will continue to increase until legal disposal facilities are made accessible and a waste tire tracking and regulatory system with enforcement provisions is in place. Tires purchased outside of the city of New Orleans may be discarded within the city's limits; therefore, as a practical matter this study analyzes the impact stemming from the entire New Orleans metropolitan area. Pyrolysis mass recovery (PMR), a tire reclamation process which produces gas, oil, carbon black and steel, is the primary focus of this report. The technical, legal and environmental aspects of various alternative technologies are examined. The feasibility of locating a hypothetical PMR operation within the city of New Orleans is analyzed based on the current economic, regulatory, and environmental climate in Louisiana. A thorough analysis of active, abandoned, and proposed Pyrolysis operations (both national and international) was conducted as part of this project. Siting a PMR plant in New Orleans at the present time is technically feasible and could solve the city's waste tire problem. Pending state legislation could improve the city's ability to guarantee a long term supply of waste tires to any large scale tire reclamation or recycling operation, but the local market for PMR end products is undefined.

Not Available

1992-10-01T23:59:59.000Z

220

Generalized teleportation and entanglement recycling  

E-Print Network (OSTI)

We introduce new teleportation protocols which are generalizations of the original teleportation protocols that use the Pauli group [Bennett, et al. Physical Review Letters, 70(13) 1895-1899] and the port-based teleportation protocols, introduced by Hiroshima and Ishizaka [Physical Review Letters, 101(24) 240501], that use the symmetric permutation group. We derive sufficient condition for a set of operations, which in general need not form a group, to give rise to a teleportation protocol and provide examples of such schemes. This generalization leads to protocols with novel properties and is needed to push forward new schemes of computation based on them. Port-based teleportation protocols and our generalizations use a large resource state consisting of N singlets to teleport only a single qubit state reliably. We provide two distinct protocols which recycle the resource state to teleport multiple states with error linearly increasing with their number. The first protocol consists of sequentially teleporting qubit states, and the second teleports them in a bulk.

Sergii Strelchuk; Micha? Horodecki; Jonathan Oppenheim

2012-09-12T23:59:59.000Z

Note: This page contains sample records for the topic "recycling source reduction" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

FSC-Watch: FSC undermines paper recycling, contributes to global warming FSC undermines paper recycling, contributes to global  

E-Print Network (OSTI)

FSC-Watch: FSC undermines paper recycling, contributes to global warming FSC-Watch FSC undermines paper recycling, contributes to global warming Tags: Canada, Recycling, Certifier conflict of interest undermines paper recycling, contributes to global warming in Pine Falls to manufacture paper with some

222

Project Information Form Project Title Evaluation of the Combined Effect of Recycled Asphalt Pavement (RAP),  

E-Print Network (OSTI)

(s) and Amounts Provided (by each agency or organization) Caltrans $90,315 Total Project Cost $90,315 Agency IDProject Information Form Project Title Evaluation of the Combined Effect of Recycled Asphalt of Research Project As virgin material sources become increasingly scarce, and the volume of pavement material

California at Davis, University of

223

Project Information Form Project Title Evaluation of the Combined Effect of Recycled Asphalt Pavement (RAP),  

E-Print Network (OSTI)

(s) and Amounts Provided (by each agency or organization) Caltrans $90,538 Total Project Cost $90,538 Agency IDProject Information Form Project Title Evaluation of the Combined Effect of Recycled Asphalt of Research Project As virgin material sources become increasingly scarce, and the volume of pavement material

California at Davis, University of

224

DWPF RECYCLE EVAPORATOR FLOWSHEET EVALUATION (U)  

SciTech Connect

The Defense Waste Processing Facility (DWPF) converts the high level waste slurries stored at the Savannah River Site into borosilicate glass for long-term storage. The vitrification process results in the generation of approximately five gallons of dilute recycle streams for each gallon of waste slurry vitrified. This dilute recycle stream is currently transferred to the H-area Tank Farm and amounts to approximately 1,400,000 gallons of effluent per year. Process changes to incorporate salt waste could increase the amount of effluent to approximately 2,900,000 gallons per year. The recycle consists of two major streams and four smaller streams. The first major recycle stream is condensate from the Chemical Process Cell (CPC), and is collected in the Slurry Mix Evaporator Condensate Tank (SMECT). The second major recycle stream is the melter offgas which is collected in the Off Gas Condensate Tank (OGCT). The four smaller streams are the sample flushes, sump flushes, decon solution, and High Efficiency Mist Eliminator (HEME) dissolution solution. These streams are collected in the Decontamination Waste Treatment Tank (DWTT) or the Recycle Collection Tank (RCT). All recycle streams are currently combined in the RCT and treated with sodium nitrite and sodium hydroxide prior to transfer to the tank farm. Tank Farm space limitations and previous outages in the 2H Evaporator system due to deposition of sodium alumino-silicates have led to evaluation of alternative methods of dealing with the DWPF recycle. One option identified for processing the recycle was a dedicated evaporator to concentrate the recycle stream to allow the solids to be recycled to the DWPF Sludge Receipt and Adjustment Tank (SRAT) and the condensate from this evaporation process to be sent and treated in the Effluent Treatment Plant (ETP). In order to meet process objectives, the recycle stream must be concentrated to 1/30th of the feed volume during the evaporation process. The concentrated stream must be pumpable to the DWPF SRAT vessel and should not precipitate solids to avoid fouling the evaporator vessel and heat transfer coils. The evaporation process must not generate excessive foam and must have a high Decontamination Factor (DF) for many species in the evaporator feed to allow the condensate to be transferred to the ETP. An initial scoping study was completed in 2001 to evaluate the feasibility of the evaporator which concluded that the concentration objectives could be met. This initial study was based on initial estimates of recycle concentration and was based solely on OLI modeling of the evaporation process. The Savannah River National Laboratory (SRNL) has completed additional studies using simulated recycle streams and OLI{reg_sign} simulations. Based on this work, the proposed flowsheet for the recycle evaporator was evaluated for feasibility, evaporator design considerations, and impact on the DWPF process. This work was in accordance with guidance from DWPF-E and was performed in accordance with the Technical Task and Quality Assurance Plan.

Stone, M

2005-04-30T23:59:59.000Z

225

Membrane Purification Cell for Aluminum Recycling  

SciTech Connect

Recycling mixed aluminum scrap usually requires adding primary aluminum to the scrap stream as a diluent to reduce the concentration of non-aluminum constituents used in aluminum alloys. Since primary aluminum production requires approximately 10 times more energy than melting scrap, the bulk of the energy and carbon dioxide emissions for recycling are associated with using primary aluminum as a diluent. Eliminating the need for using primary aluminum as a diluent would dramatically reduce energy requirements, decrease carbon dioxide emissions, and increase scrap utilization in recycling. Electrorefining can be used to extract pure aluminum from mixed scrap. Some example applications include producing primary grade aluminum from specific scrap streams such as consumer packaging and mixed alloy saw chips, and recycling multi-alloy products such as brazing sheet. Electrorefining can also be used to extract valuable alloying elements such as Li from Al-Li mixed scrap. This project was aimed at developing an electrorefining process for purifying aluminum to reduce energy consumption and emissions by 75% compared to conventional technology. An electrolytic molten aluminum purification process, utilizing a horizontal membrane cell anode, was designed, constructed, operated and validated. The electrorefining technology could also be used to produce ultra-high purity aluminum for advanced materials applications. The technical objectives for this project were to: - Validate the membrane cell concept with a lab-scale electrorefining cell; - Determine if previously identified voltage increase issue for chloride electrolytes holds for a fluoride-based electrolyte system; - Assess the probability that voltage change issues can be solved; and - Conduct a market and economic analysis to assess commercial feasibility. The process was tested using three different binary alloy compositions (Al-2.0 wt.% Cu, Al-4.7 wt.% Si, Al-0.6 wt.% Fe) and a brazing sheet scrap composition (Al-2.8 wt.% Si-0.7 wt.% Fe-0.8 wt.% Mn),. Purification factors (defined as the initial impurity concentration divided by the final impurity concentration) of greater than 20 were achieved for silicon, iron, copper, and manganese. Cell performance was measured using its current and voltage characteristics and composition analysis of the anode, cathode, and electrolytes. The various cells were autopsied as part of the study. Three electrolyte systems tested were: LiCl-10 wt. % AlCl3, LiCl-10 wt. % AlCl3-5 wt.% AlF3 and LiF-10 wt.% AlF3. An extended four-day run with the LiCl-10 wt.% AlCl3-5 wt.% AlF3 electrolyte system was stable for the entire duration of the experiment, running at energy requirements about one third of the Hoopes and the conventional Hall-Heroult process. Three different anode membranes were investigated with respect to their purification performance and survivability: a woven graphite cloth with 0.05 cm nominal thickness & > 90 % porosity, a drilled rigid membrane with nominal porosity of 33%, and another drilled rigid graphite membrane with increased thickness. The latter rigid drilled graphite was selected as the most promising membrane design. The economic viability of the membrane cell to purify scrap is sensitive to primary & scrap aluminum prices, and the cost of electricity. In particular, it is sensitive to the differential between scrap and primary aluminum price which is highly variable and dependent on the scrap source. In order to be economically viable, any scrap post-processing technology in the U.S. market must have a total operating cost well below the scrap price differential of $0.20-$0.40 per lb to the London Metal Exchange (LME), a margin of 65%-85% of the LME price. The cost to operate the membrane cell is estimated to be < $0.24/lb of purified aluminum. The energy cost is estimated to be $0.05/lb of purified aluminum with the remaining costs being repair and maintenance, electrolyte, labor, taxes and depreciation. The bench-scale work on membrane purification cell process has demonstrated technological advantages and subs

David DeYoung; James Wiswall; Cong Wang

2011-11-29T23:59:59.000Z

226

Electroless nickel recycling via electrodialysis  

SciTech Connect

Electroless nickel is widely used in the metal finishing industry as a coating. It plates evenly on a variety of surfaces and replicates or enhances the surface finish. It has high hardness and good corrosion resistance and machinability. However, its bath life is limited and it has a tendency to spontaneously plate out on the tank and associated equipment. These problems add to the cost per unit component plated. Also, expensive waste treatment is required before users can dispose of the spent solution. Electroless nickel`s limited bath life is inherent in its chemical make-up. Using hypophosphite as the reducing agent for the nickel ion generates by-products of nickel metal and orthophosphite. When the level of orthophosphite in the solution reaches a high concentration, the reaction slows and finally stops. The bath must be disposed of, and its treatment and replacement costs are high. Metal salts have a tendency to plate out because of the dissolved solids present, and this also makes it necessary to discard the bath. Lawrence Livermore National Laboratory (LLNL) has conducted a study of an electrodialysis process that can reduce both chemical purchases and disposal costs. Electrodialysis employs a membrane, deionized water, and an electromotive potential to separate the orthophosphite and other dissolved solids from the nickel ions. With the aid of the electromotive potential, the dissolved solids migrate across the membrane from the process solution into the water in the recycling unit`s holding cell. This migration lowers the total dissolved solids (TDS) in the process solution and improves plating performance. The dialysis process makes it possible to reuse the bath many times without disposal.

Steffani, C.; Meltzer, M.

1995-04-01T23:59:59.000Z

227

Waste tire recycling by pyrolysis  

SciTech Connect

This project examines the City of New Orleans` waste tire problem. Louisiana State law, as of January 1, 1991, prohibits the knowing disposal of whole waste tires in landfills. Presently, the numerous waste tire stockpiles in New Orleans range in size from tens to hundreds of tires. New Orleans` waste tire problem will continue to increase until legal disposal facilities are made accessible and a waste tire tracking and regulatory system with enforcement provisions is in place. Tires purchased outside of the city of New Orleans may be discarded within the city`s limits; therefore, as a practical matter this study analyzes the impact stemming from the entire New Orleans metropolitan area. Pyrolysis mass recovery (PMR), a tire reclamation process which produces gas, oil, carbon black and steel, is the primary focus of this report. The technical, legal and environmental aspects of various alternative technologies are examined. The feasibility of locating a hypothetical PMR operation within the city of New Orleans is analyzed based on the current economic, regulatory, and environmental climate in Louisiana. A thorough analysis of active, abandoned, and proposed Pyrolysis operations (both national and international) was conducted as part of this project. Siting a PMR plant in New Orleans at the present time is technically feasible and could solve the city`s waste tire problem. Pending state legislation could improve the city`s ability to guarantee a long term supply of waste tires to any large scale tire reclamation or recycling operation, but the local market for PMR end products is undefined.

Not Available

1992-10-01T23:59:59.000Z

228

Demand Reduction  

Energy.gov (U.S. Department of Energy (DOE))

Grantees may use funds to coordinate with electricity supply companies and utilities to reduce energy demands on their power systems. These demand reduction programs are usually coordinated through...

229

Energy implications of recycling packaging materials  

SciTech Connect

In 1992, Congress sought to rewrite the United States comprehensive solid waste legislation -- the Resource Conservation and Recovery Act (RCRA). Commodity-specific recycling rates were proposed for consumer-goods packaging materials and newsprint We compare the impacts on energy, materials use, and landfill volume of recycling at those rates to the impacts for alternative methods of material disposition to determine the optimum for each material. After products have served their intended uses, there are several alternative paths for material disposition. These include reuse, recycling to the same product, recycling to a lower-valued product, combustion for energy recovery, incineration without energy recovery, and landfill. Only options considered to be environmentally sound are Included. Both houses of Congress specifically excluded combustion for energy recovery from counting towards the recovery goats, probably because combustion is viewed as a form of disposal and is therefore assumed to waste resources and have n environmental effects. However, co-combustion in coal-fired plants or combustion in appropriately pollution-controlled waste-to-energy plants Is safe, avoids landfill costs, and can displace fossil fuels. In some cases, more fossil fuels can be displaced by combustion than by recycling. We compare the alternative life-cycle energies to the energies for producing the products from virgin materials. Results depend on the material and on the objective to be achieved. There are trade-offs among possible goals. For instance, paper packaging recycling conserves trees but may require greater fossil-fuel input than virgin production. Therefore, the objectives for proposed legislation must be examined to see whether they can most effectively be achieved by mandated recycling rates or by other methods of disposition. The optimal choices for the United States may not necessarily be the same as those for Europe and other parts of the world.

Gaines, L.L. [Argonne National Lab., IL (United States); Stodolsky, F. [Argonne National Lab., Washington, DC (United States)

1994-03-01T23:59:59.000Z

230

Vehicle Technologies Office: Fact #341: October 11, 2004 Tire Recycling  

NLE Websites -- All DOE Office Websites (Extended Search)

1: October 11, 1: October 11, 2004 Tire Recycling to someone by E-mail Share Vehicle Technologies Office: Fact #341: October 11, 2004 Tire Recycling on Facebook Tweet about Vehicle Technologies Office: Fact #341: October 11, 2004 Tire Recycling on Twitter Bookmark Vehicle Technologies Office: Fact #341: October 11, 2004 Tire Recycling on Google Bookmark Vehicle Technologies Office: Fact #341: October 11, 2004 Tire Recycling on Delicious Rank Vehicle Technologies Office: Fact #341: October 11, 2004 Tire Recycling on Digg Find More places to share Vehicle Technologies Office: Fact #341: October 11, 2004 Tire Recycling on AddThis.com... Fact #341: October 11, 2004 Tire Recycling In 2001, the United States generated 281 million scrap tires. Nearly 78% of those scrap tires were reused, recycled, or recovered; that is a dramatic

231

Photo Courtesy of Carlsbad Water Distict Economic Evaluation for Water Recycling  

E-Print Network (OSTI)

-i- Photo Courtesy of Carlsbad Water Distict Economic Evaluation for Water Recycling In Urban Areas........................................................................................................................................... 4 BENEFICIAL USES OF RECYCLED WATER................................................................................................ 5 MOTIVATIONS FOR RECYCLED WATER USE

Lund, Jay R.

232

The use of NTA and EDTA for lead phytoextraction from soil from a battery recycling site  

E-Print Network (OSTI)

are lead mining, lead smelting and battery recycling.Areas near Pb recycling facilities may be enriched bysoil with lead. A battery recycling site is a location where

Freitas, Eriberto; Nascimento, Clistenes; Silva, Airon

2009-01-01T23:59:59.000Z

233

The importance of cytosolic glutamine synthetase in nitrogen assimilation and recycling  

E-Print Network (OSTI)

nitrogen mobilization and recycling in trees. Photosynthesisloci mapping for nitrogen recycling in rice. Journal ofNitrogen Assimilation and Recycling Stéphanie M. Bernard 1

Bernard, S.M.

2009-01-01T23:59:59.000Z

234

Plutonium Recycle Test Reactor 309 B-Roll | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Plutonium Recycle Test Reactor 309 B-Roll Plutonium Recycle Test Reactor 309 B-Roll Addthis Description Plutonium Recycle Test Reactor 309 B-Roll...

235

Experimental realisation of Shor's quantum factoring algorithm using qubit recycling  

E-Print Network (OSTI)

Quantum computational algorithms exploit quantum mechanics to solve problems exponentially faster than the best classical algorithms. Shor's quantum algorithm for fast number factoring is a key example and the prime motivator in the international effort to realise a quantum computer. However, due to the substantial resource requirement, to date, there have been only four small-scale demonstrations. Here we address this resource demand and demonstrate a scalable version of Shor's algorithm in which the n qubit control register is replaced by a single qubit that is recycled n times: the total number of qubits is one third of that required in the standard protocol. Encoding the work register in higher-dimensional states, we implement a two-photon compiled algorithm to factor N=21. The algorithmic output is distinguishable from noise, in contrast to previous demonstrations. These results point to larger-scale implementations of Shor's algorithm by harnessing scalable resource reductions applicable to all physical architectures.

Enrique Martin-Lopez; Anthony Laing; Thomas Lawson; Roberto Alvarez; Xiao-Qi Zhou; Jeremy L. O'Brien

2011-11-17T23:59:59.000Z

236

Recycled Energy Development | Open Energy Information  

Open Energy Info (EERE)

Recycled Energy Development Recycled Energy Development Jump to: navigation, search Name Recycled Energy Development Place Westmont, Illinois Zip 60559 Product RED acquires industrial utility plants and then builds and installs waste energy capture and combined heat and power systems. Coordinates 40.316095°, -78.956753° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":40.316095,"lon":-78.956753,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

237

Development on simultaneous reduction system of NOx and PM from...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

More Documents & Publications An Improvement of Diesel PM and NOx Reduction System An Improvement of Diesel PM and NOx Reduction System EPA Mobile Source Rule Update...

238

Data Reduction  

Science Journals Connector (OSTI)

Data reduction has two meanings. Firstly, in analysis, it is the process of reducing large masses of data to produce a few summary statistics. This process involves grouping data into tables, visualizing the...

2008-01-01T23:59:59.000Z

239

Field-Scale Evaluation of Biological Uranium Reduction and Reoxidation in the Near-Source Zone at the NABIR Field Research Center in Oak Ridge, TN  

SciTech Connect

We have now added ethanol intermittently for over 700 days. Ethanol has been added weekly with each injection lasting for a few days. We are now observing: (1) Uranium immobilization at 700-2000 mg/kg. Baseline levels before remediation were 30-500 mg/kg. (2) Uranium concentrations in groundwater at the monitoring wells have fallen below the U.S. drinking water standard (30 ppb). This is an important milestone. (3) XANES analyses for day 535 indicate 51% U(IV) at the inner loop injection well, 35% U(IV) at MLS well 101-2, and 28% U(IV) at the extraction well. These numbers indicate that U(IV) reduction is not localized to the injection well, and is spreading through the aquifer. (4) We have had success removing trace levels of oxygen from recirculated water by addition of sulfite and related compounds. These compounds also provide the added benefit that in removing oxygen that themselves are oxidized to sulfate, an important electron acceptor needed for maintenance of our system.

Criddle, Craig S.

2006-06-01T23:59:59.000Z

240

Field-scale evaluation of biological uranium reduction and reoxidation in the near-source zone at the NABIR Field Research Center in Oak Ridge, TN  

SciTech Connect

The primary objective of the project is to advance the understanding and predictive capability of coupled hydrological, geochemical, and microbiological processes that control the in situ transport and bioremediation radionuclides and co-contaminants at multiple scales. Specific objectives include: (1) Investigate the feasibility of in situ bioremediation of uranium in a highly contaminated region within the subsurface of Area 3 of the DoE ERSP FRC (2) Using a variety of tracer strategies, develop and model a system that establishes hydraulic control of the target region for biostimulation (3) Perform long term in situ biostimulation studies that create a microbial communities capable of reducing residual nitrate to N2 and mobile U(VI) to sparingly soluble U(IV) (4) Use a variety of solid and solution phase interrogation techniques to quantify the extent of in situ reduction and immobilization of U(VI). (5) Investigate a variety of geochemical factors that influence the stability and possible reoxidation of reduced uranium.

Craig S. Criddle; Peter Kitanidis; Scott Fendorf; Weimin Wu; Philip M. Jardine; Jizhong Zhou; Baohua Gu

2006-06-01T23:59:59.000Z

Note: This page contains sample records for the topic "recycling source reduction" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

Relationship between composition and performance of asphalt recycling agents  

E-Print Network (OSTI)

This research was aimed at determining the effects of recycling agent composition on the performance of recycled asphalt with aging. To accomplish this, five experiments were performed, in which blends were produced with controlled compositions...

Peterson, Gerald Dean

1993-01-01T23:59:59.000Z

242

Ion Exchange for the Recycling of Wastewater Constituents  

Science Journals Connector (OSTI)

Recycling or the constituents of wastewater requires efficient and cheap separation methods. Pollutants ... removed in a concentrated form to facilitate their recycling. Similarly, the raw water must be ... has a...

Brian Bolto; Lucjan Pawlowski

1985-01-01T23:59:59.000Z

243

Waste Toolkit A-Z Can I recycle paper cups?  

E-Print Network (OSTI)

in the Grundon recycling boxes. Do not leave dregs of drink in them, as this will contaminate the recycling box) www.pefc.co.uk FSC Forest Stewardship Council www.fsc.org Contact University Environmental

Melham, Tom

244

Breakout Session: Getting in the Loop: PV Hardware Recycling...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Getting in the Loop: PV Hardware Recycling and Sustainability Breakout Session: Getting in the Loop: PV Hardware Recycling and Sustainability May 21, 2014 6:30PM to 7:30PM PDT...

245

Impact of hybrid and electric vehicles on automobile recycling infrastructure  

Science Journals Connector (OSTI)

The recycling infrastructure for end-of-use vehicles in the United States is driven by profitability due to the absence of regulations. Typically, the recycling consists of removing reusable components for resale and shredding and separating remaining ...

Deogratias Kibira; Sanjay Jain

2011-12-01T23:59:59.000Z

246

The economics of cell phone reuse and recycling  

E-Print Network (OSTI)

from obsolete handsets without batteries and accessories.recycling agents remove the batteries, which have their own

Geyer, Roland; Doctori Blass, Vered

2010-01-01T23:59:59.000Z

247

Microbial Fuel Cells for Recycle of Process Water from Cellulosic...  

NLE Websites -- All DOE Office Websites (Extended Search)

to improve ethanol process economics in biorefineries Decreased water consumption Enables wastewater recycling Electricity or hydrogen generation Inexpensive Versatile Applications...

248

Correction magnets for the Fermilab Recycler Ring  

SciTech Connect

In the commissioning of the Fermilab Recycler ring the need for higher order corrector magnets in the regions near beam transfers was discovered. Three types of permanent magnet skew quadrupoles, and two types of permanent magnet sextupoles were designed and built. This paper describes the need for these magnets, the design, assembly, and magnetic measurements.

James T Volk et al.

2003-05-27T23:59:59.000Z

249

Plastic bottles > Remove lids (not recyclable)  

E-Print Network (OSTI)

Plastic bottles Please: > Remove lids (not recyclable) > Empty bottles > Rinse milk bottles, & other bottles if possible > Squash bottles www.st-andrews.ac.uk/estates/environment All types of plastic bottle accepted Clear, opaque and coloured bottles Labels can remain on X No plastic bags X No plastics

Brierley, Andrew

250

8. Has recycled ber been used appropriately?  

E-Print Network (OSTI)

,788,008North and Central America 33,246,500 45,945,000 47,806,928 38%** 2,417,000South America 2,665,000 4. Recovery rate is 62.6% if including European recovered paper recycled in third countries. ** North America

251

Recycling, production and use of reprocessed rubbers  

SciTech Connect

This article examines the various methods used to produce recycled rubber and to compare their characteristics and application. The topics discussed include reclaiming by chemical digestion, devulcanization by the severing of sulfur bonds, ambient temperature and cryogenically ground rubber, processing and mixing of ground rubber, and properties of reclaimed rubbers by reclamation method.

Klingensmith, B. (Akron Rubber Consulting, OH (United States))

1991-03-01T23:59:59.000Z

252

Temperature-gradient calendering of recycled boxboard  

SciTech Connect

In this study, the TG calendering technique was applied to multi-ply boxboard samples made from 100% recycled fibers. The effects of the following three calendering techniques on the surface properties and bulk of the board are investigated: conventional calendering, two-sided TG calendering, and one-sided TG calendering.

Gratton, M.F. (Pulp and Paper Research Institute of Canada, Pointe Claire, Que. (CA))

1989-03-01T23:59:59.000Z

253

ENVIRONMENTAL PROTECTION FOR THE AUTOMOBILE RECYCLING INDUSTRY  

E-Print Network (OSTI)

- Best Management Practices Volume 2- Technical Pollution Prevention Guide Volume 3- Code of Practice DOE 224 West Esplanade North Vancouver, B.C. Vm3H7 #12;BEST MANAGEMENT PRACTICES FOR THE AUTO RECYCLING volumes, including the Best Management Practices, Technical Pollution Prevention Guide, and Code

254

"Maximum recycling of Material and Energy, Minimum of Landfilling"  

E-Print Network (OSTI)

in "Recycling". "Waste-to-Energy" is now defined as Recycling, when energy efficiency is > 0,65 Prevention Reuse Recycling and Waste-to Energy? #12;6 European Policies on Landfill Ban The EU Landfill Directive The amount Ban decided upon in 2000, in force in 2005. A very strong effect, with a strong increase of Waste-to-Energy

Columbia University

255

2014 International and Western States In-Place Recycling Conference  

E-Print Network (OSTI)

2014 International and Western States In-Place Recycling Conference August 5­7, 2014 Denver and the road to revitalizing in-place recycling technologies. · Join this prestigious forum especially designed/research agencies to discuss the status of in-place recycling. · Experience what we know today for each form of in

256

Development/Plasticity/Repair Identification of Nicotinic Acetylcholine Receptor Recycling  

E-Print Network (OSTI)

Development/Plasticity/Repair Identification of Nicotinic Acetylcholine Receptor Recycling and Its, University of Michigan, Ann Arbor, Michigan 48109 In the CNS, receptor recycling is critical for synaptic plasticity; however, the recycling of receptors has never been observed at peripheral synapses. Using a novel

Alford, Simon

257

Using OWL Ontologies Selective Waste Sorting and Recycling  

E-Print Network (OSTI)

Using OWL Ontologies for Selective Waste Sorting and Recycling Arnab Sinha and Paul Couderc INRIA for better recycling of materials. Our motive for using ontologies is for representing and rea- soning, recyclable materials, N-ary relations 1 Introduction Today Pervasive computing is gradually entering people

Paris-Sud XI, Université de

258

Pesticide Container Recycling "It's Just The Right Thing To Do!"  

E-Print Network (OSTI)

Pesticide Container Recycling "It's Just The Right Thing To Do!" Some of you may recall that when I Container Recycling Programs in counties around the state. Highlands County was one of the first counties to establish a Pesticide Container Recycling Collection Center (which is still in operation). I set up twenty

Jawitz, James W.

259

Recycling Computed Answers in Rewrite Systems for Abduction Fangzhen Lin #  

E-Print Network (OSTI)

Recycling Computed Answers in Rewrite Systems for Abduction Fangzhen Lin # http computed answers can be recycled arises. A yes answer could result in sub­ stantial savings of repeated tends to be­ lieve that the answer should be no, since recycling is a form of adding information

Wu, Dekai

260

Production and recycling of oceanic crust in the early Earth  

E-Print Network (OSTI)

Chapter 6 Production and recycling of oceanic crust in the early Earth Abstract Because in the production and recycling of oceanic crust: (1) Small scale (x · 100km) convection involving the lower crust have been different from those in the present-day Earth. Crustal recycling must however have taken

van Thienen, Peter

Note: This page contains sample records for the topic "recycling source reduction" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

Archetypes: Durer's Rhino and the Recycling of Images  

E-Print Network (OSTI)

Chapter 17 Archetypes: D¨urer's Rhino and the Recycling of Images 17.1 Introduction: Aref's Rule Rule-of-Thumb 5 (Aref's Rule) Never publish the same graph more than once. As we shall below, recycling illustrate when recycling of previously published images is good, and also when and how it can go

Boyd, John P.

262

Locating a Recycling Center: The General Density Case Jannett Highfill  

E-Print Network (OSTI)

Locating a Recycling Center: The General Density Case Jannett Highfill Department of Economics) 677-3374. #12;2 Locating a Recycling Center: The General Density Case Abstract: The present paper considers a municipality that has a landfill (fixed in location) and plans to optimally locate a "recycling

Mou, Libin

263

Waste Toolkit A-Z Food waste (recycling on-site)  

E-Print Network (OSTI)

Waste Toolkit A-Z Food waste (recycling on-site) How can I recycle food waste on-site? Recycling to be recycled. While this is better than sending waste to landfill, there is a more sustainable way to recycle and parks. See examples of Tidy Planet's customers recycling on-site: www.tidyplanet.co.uk/our-news Short

Melham, Tom

264

Mathematical Modeling for CostMathematical Modeling for Cost Optimization of PV RecyclingOptimization of PV Recycling  

E-Print Network (OSTI)

Mathematical Modeling for CostMathematical Modeling for Cost Optimization of PV RecyclingOptimization of PV Recycling InfrastructureInfrastructure JunJun--Ki ChoiKi Choi & Vasilis Fthenakis& Vasilis Recycling ­Cost Optimization 1. Where is the optimized location? · Centralized/decentralized collection

265

Model institutional infrastructures for recycling of photovoltaic modules  

SciTech Connect

How will photovoltaic modules (PVMS) be recycled at the end of their service lives? This question has technological and institutional components (Reaven, 1994a). The technological aspect concerns the physical means of recycling: what advantages and disadvantages of the several existing and emerging mechanical, thermal, and chemical recycling processes and facilities merit consideration? The institutional dimension refers to the arrangements for recycling: what are the operational and financial roles of the parties with an interest in PVM recycling? These parties include PVM manufacturers, trade organizations; distributors, and retailers; residential, commercial, and utility PVM users; waste collectors, transporters, reclaimers, and reclaimers; and governments.

Reaven, S.J.; Moskowitz, P.D.; Fthenakis, V.

1996-01-01T23:59:59.000Z

266

Preliminary report on blending strategies for inert-matrix fuel recycling in LWRs.  

SciTech Connect

Various recycle strategies have been proposed to manage the inventory of transuranics in commercial spent nuclear fuel (CSNF), with a particular goal of increasing the loading capacity of spent fuel and reprocessing wastes in the Yucca Mountain repository. Transuranic recycling in commercial LWRs can be seen as a viable means of slowing the accumulation of transuranics in the nationwide CSNF stockpile. Furthermore, this type of approach is an important first step in demonstrating the benefits of a nuclear fuel cycle which incorporates recycling, such as envisioned for Generation-IV reactor systems under development. Recycling strategies of this sort are not proposed as an attempt to eliminate the need of a geologic nuclear waste repository, but as a means to enhance the usefulness of the repository currently under construction in the U.S., perhaps circumventing the need for a second facility. A US-DOE Secretarial recommendation on the need for the construction of a second geologic repository is required by 2010. The Advanced Fuel Cycle Initiative (AFCI) has supported a breadth of work to evaluate the ideal transuranic separation and recycle strategy. Previous AFCI studies of LWR-based transmutation have considered the benefits of homogeneously recycling plutonium, plutonium and neptunium, and all transuranic (TRU) species. A study of a wide range of hypothetical separation schemes (Pu, Pu+Np, Pu+Np+Am, etc.) with multi-recycling has also been performed, focusing on the proliferation resistance of the various fuel cycles and fuel handling issues. The direct recycle of the recovered TRU from spent inert-matrix fuel (IMF) into new IMF was found to be quite limited due to the rapid burndown of the fissile plutonium. The IMF is very effective at destroying the fissile fraction of the TRU with destruction rates in excess of 80% of the fissile material without recycling the IMF. Blending strategies have been proposed to mitigate the rapid burndown of the fissile plutonium by mixing high fissile feed from new sources (e.g., spent UO{sub 2} pins) with the low fissile material recovered from the recycled transmutation fuel. The blending of the fuels is anticipated to aid the multi-recycle of the transuranics. A systematic study of blending strategies (for both IMF and MOX) has been initiated and is currently ongoing. This work extends the previous study that considered separation strategies for plutonium, neptunium, and americium recycling in MOX, CORAIL, and IMF{sub 6} by considering blending schemes and approach to continuous recycle. Plutonium and americium are recycled in order to reduce the intermediate term (100 to 1500 years after spent fuel irradiation) decay heat of the disposed waste which accounts for the bulk of the repository heating. Since the long-term released dose from the repository is dominated by neptunium, it is sensible to consume it by transmutation in a reactor, as well. Curium accounts for {approx}0.6% of the TRU mass in spent UO{sub 2} fuel ({approx}0.008% of the heavy metal), but does constitute significantly higher fractions in spent transmutation fuels. This initial evaluation will focus on blending strategies for the multirecycling of Pu+Np+Am. The impact of curium recycle will be investigated as part of the systematic study of blending strategies. The initial study focuses on understanding a simple strategy for IMF recycle and blending. More complex strategies (i.e., heterogeneous assemblies) will be evaluated later in the year, including enriched uranium support options. Currently, a preliminary study of a serial blending strategy has been performed in order to evaluate the impact of blending on the performance of the IMF recycle and to evaluate the potential for continuous or infinite recycle. The continuous recycle of Pu+Np+Am in IMF would allow for complete destruction of all heat contributing actinides in the same LWRs that originally produced them. The only transuranics sent to the repository would be those lost in reprocessing and curium if it is not eventually recycled.

Hoffman, E. A.; Nuclear Engineering Division

2005-04-29T23:59:59.000Z

267

The accumulation of nonylphenol in a wastewater recycling process  

Science Journals Connector (OSTI)

A mathematical model was developed in this paper to describe the nonylphenol (NP) accumulation in the effluent of a wastewater recycling system. The model quantitatively presented the relationships among the NP concentrations in the raw wastewater and the system effluent, the number of wastewater recycling cycles, the water recycling ratio, the system NP removal efficiency, and the NP accumulation factor. The mathematical model was then verified through experimental modeling of a wastewater recycling process, and it was indicated that the Pearson correlation coefficient between mathematical simulation and experimental modeling results was 0.652. The study results indicated that the NP accumulation factor of a wastewater recycling system would approach a constant for large number of wastewater recycling cycles given the wastewater recycling ratio and system NP removal efficiency. The results also revealed that the NP concentration in the effluent increased with the wastewater recycling ratio given the system NP removal efficiency, and the increase of NP removal efficiency would decrease the NP accumulation in the system effluent under a given wastewater recycling ratio condition. The model was then applied to compute the maximum wastewater recycling ratio, predict reclaimed water quality and direct the design and management of sewage recycling systems in China.

Rui-Xia Hao; Yu-Wen Zhou; Shui-Yuan Cheng; Jian-Bing Li; Man Zhao; Xi Chen; Ning Yao

2008-01-01T23:59:59.000Z

268

Technology Analysis - Battery Recycling and Life Cycle Analysis  

NLE Websites -- All DOE Office Websites (Extended Search)

Lithium-Ion Battery Recycling and Life Cycle Analysis Lithium-Ion Battery Recycling and Life Cycle Analysis diagram of the battery recycling life cycle Several types of recycling processes are available, recovering materials usable at different stages of the production cycle- from metallic elements to materials that can be reused directly in new batteries. Recovery closer to final usable form avoids more impact-intensive process steps. Portions courtesy of Umicore, Inc. To identify the potential impacts of the growing market for automotive lithium-ion batteries, Argonne researchers are examining the material demand and recycling issues related to lithium-ion batteries. Research includes: Conducting studies to identify the greenest, most economical recycling processes, Investigating recycling practices to determine how much of which

269

New Choctaw Nation Recycling Center Posts Quick Results | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

New Choctaw Nation Recycling Center Posts Quick Results New Choctaw Nation Recycling Center Posts Quick Results New Choctaw Nation Recycling Center Posts Quick Results March 8, 2011 - 5:08pm Addthis Albert Bond Project Officer, Golden Field Office What does this mean for me? The Choctaw Nation used approximately $800,000 in Energy Efficiency and Conservation Block Grant funding to build a state-of-the-art recycling center and improve stewardship of the land and environment. "If you build it, they will come" ...to recycle. That line from the 1989 film Field of Dreams is as good a way as any to describe how the Choctaw Nation of Oklahoma's new regional recycling center is being received. The Choctaw Nation used approximately $800,000 in Energy Efficiency and Conservation Block Grant funding to build a state-of-the-art recycling

270

New Choctaw Nation Recycling Center Posts Quick Results | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Choctaw Nation Recycling Center Posts Quick Results Choctaw Nation Recycling Center Posts Quick Results New Choctaw Nation Recycling Center Posts Quick Results March 8, 2011 - 5:08pm Addthis Albert Bond Project Officer, Golden Field Office What does this mean for me? The Choctaw Nation used approximately $800,000 in Energy Efficiency and Conservation Block Grant funding to build a state-of-the-art recycling center and improve stewardship of the land and environment. "If you build it, they will come" ...to recycle. That line from the 1989 film Field of Dreams is as good a way as any to describe how the Choctaw Nation of Oklahoma's new regional recycling center is being received. The Choctaw Nation used approximately $800,000 in Energy Efficiency and Conservation Block Grant funding to build a state-of-the-art recycling

271

Evaluation of engine coolant recycling processes: Part 2  

SciTech Connect

Engine coolant recycling continues to provide solutions to both economic and environmental challenges often faced with the disposal of used engine coolant. General Motors` Service Technology Group (STG), in a continuing effort to validate the general practice of recycling engine coolants, has conducted an in-depth study on the capabilities of recycled coolants. Various recycling processes ranging from complex forms of fractional distillation to simple filtration were evaluated in this study to best represent the current state of coolant recycling technology. This study incorporates both lab and (limited) fleet testing to determine the performance capabilities of the recycled coolants tested. While the results suggest the need for additional studies in this area, they reveal the true capabilities of all types of engine coolant recycling technologies.

Bradley, W.H. [General Motors, Warren, MI (United States). Service Technology Group

1999-08-01T23:59:59.000Z

272

Recycling of Li-Ion Batteries  

NLE Websites -- All DOE Office Websites (Extended Search)

1 1 Linda Gaines Center for Transportation Research Argonne National Laboratory Recycling of Li-Ion Batteries Illinois Sustainable Technology Center University of Illinois We don't want to trade one crisis for another!  Battery material shortages are unlikely - We demonstrated that lithium demand can be met - Recycling mitigates potential scarcity  Life-cycle analysis checks for unforeseen impacts  We need to find something to do with the used materials - Safe - Economical 2 We answer these questions to address material supply issues  How many electric-drive vehicles will be sold in the US and world-wide?  What kind of batteries might they use? - How much lithium would each battery use?  How much lithium would be needed each year?

273

A Ceramic membrane to Recycle Caustic  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

A A Ceramic Membrane to Recycle Caustic in Low-Activity Waste Stream Processing The Office of Waste Processing is sponsoring an R&D project with Ceramatec, Inc. to develop a ceramic membrane capable of separating sodium from the Hanford Low Activity Waste (LAW) stream. The Hanford High-Level Waste (HLW) tanks must be maintained in a caustic environment to inhibit corrosion. Consequently, they contain large quantities of NaOH. Ultimately the HLW will be retrieved, separated into HLW and LAW streams, with both streams being vitrified at the Waste Treatment Plant (WTP). Prior to processing, additional NaOH will be added to the LAW stream to solubilize the alumina, preventing alumina precipitation, but further increasing the NaOH quantity. This project's goal is to separate the sodium from the LAW stream prior to vitrification which will allow the NaOH to be recycled and further

274

Argonne explains nuclear recycling in 4 minutes  

SciTech Connect

Currently, when using nuclear energy only about five percent of the uranium used in a fuel rod gets fissioned for energy; after that, the rods are taken out of the reactor and put into permanent storage. There is a way, however, to use almost all of the uranium in a fuel rod. Recycling used nuclear fuel could produce hundreds of years of energy from just the uranium we've already mined, all of it carbon-free. Problems with older technology put a halt to recycling used nuclear fuel in the United States, but new techniques developed by scientists at Argonne National Laboratory address many of those issues. For more information, visit http://www.anl.gov/energy/nuclear-energy.

None

2012-01-01T23:59:59.000Z

275

Transverse Instabilities in the Fermilab Recycler  

SciTech Connect

Transverse instabilities of the antiproton beam have been observed in the Recycler ring soon after its commissioning. After installation of transverse dampers, the threshold for the instability limit increased significantly but the instability is still found to limit the brightness of the antiprotons extracted from the Recycler for Tevatron shots. In this paper, we describe observations of the instabilities during the extraction process as well as during dedicated studies. The measured instability threshold phase density agrees with the prediction of the rigid beam model within a factor of 2. Also, we conclude that the instability threshold can be significantly lowered for a bunch contained in a narrow and shallow potential well due to effective exclusion of the longitudinal tails from Landau damping.

Prost, L.R.; Burov, A.; Shemyakin, A.; Bhat, C.M.; Crisp, J.; Eddy, N.; /Fermilab

2011-07-01T23:59:59.000Z

276

Argonne explains nuclear recycling in 4 minutes  

ScienceCinema (OSTI)

Currently, when using nuclear energy only about five percent of the uranium used in a fuel rod gets fissioned for energy; after that, the rods are taken out of the reactor and put into permanent storage. There is a way, however, to use almost all of the uranium in a fuel rod. Recycling used nuclear fuel could produce hundreds of years of energy from just the uranium we've already mined, all of it carbon-free. Problems with older technology put a halt to recycling used nuclear fuel in the United States, but new techniques developed by scientists at Argonne National Laboratory address many of those issues. For more information, visit http://www.anl.gov/energy/nuclear-energy.

None

2013-04-19T23:59:59.000Z

277

Allocation Reductions  

NLE Websites -- All DOE Office Websites (Extended Search)

Allocation Allocation Reductions Quarterly Allocation Reductions MPP (or computational) repositories that haven't used significant amounts of time are adjusted at certain times by transferring a part of the unused balance to the corresponding DOE Office reserve. The following schedule will be used for allocation year 2014 (which runs 14 January 2014 through 132January 2015). On April 9: if usage is less than 10% remove 25% of the unused balance On July 9: if usage is less than 25% remove 25% of the unused balance if usage is less than 10% remove 50% of the unused balance On October 8: if usage is less than 50% remove 25% of the unused balance if usage is less than 25% remove 75% of the unused balance if usage is less than 10% remove 90% of the unused balance On November 5:

278

Nitrate reduction  

DOE Patents (OSTI)

Nitrates are reduced to nitrogen gas by contacting the nitrates with a metal to reduce the nitrates to nitrites which are then contacted with an amide to produce nitrogen and carbon dioxide or acid anions which can be released to the atmosphere. Minor amounts of metal catalysts can be useful in the reduction of the nitrates to nitrites. Metal salts which are formed can be treated electrochemically to recover the metals.

Dziewinski, Jacek J. (Los Alamos, NM); Marczak, Stanislaw (Los Alamos, NM)

2000-01-01T23:59:59.000Z

279

Property-close source separation of hazardous waste and waste electrical and electronic equipment - A Swedish case study  

SciTech Connect

Through an agreement with EEE producers, Swedish municipalities are responsible for collection of hazardous waste and waste electrical and electronic equipment (WEEE). In most Swedish municipalities, collection of these waste fractions is concentrated to waste recycling centres where households can source-separate and deposit hazardous waste and WEEE free of charge. However, the centres are often located on the outskirts of city centres and cars are needed in order to use the facilities in most cases. A full-scale experiment was performed in a residential area in southern Sweden to evaluate effects of a system for property-close source separation of hazardous waste and WEEE. After the system was introduced, results show a clear reduction in the amount of hazardous waste and WEEE disposed of incorrectly amongst residual waste or dry recyclables. The systems resulted in a source separation ratio of 70 wt% for hazardous waste and 76 wt% in the case of WEEE. Results show that households in the study area were willing to increase source separation of hazardous waste and WEEE when accessibility was improved and that this and similar collection systems can play an important role in building up increasingly sustainable solid waste management systems.

Bernstad, Anna, E-mail: anna.bernstad@chemeng.lth.se [Dep. of Chem. Eng., Faculty of Eng., Lund University, Lund (Sweden); Cour Jansen, Jes la [Dep. of Chem. Eng., Faculty of Eng., Lund University, Lund (Sweden); Aspegren, Henrik [VA SYD, City of Malmoe (Sweden)

2011-03-15T23:59:59.000Z

280

Loveland Water and Power - Refrigerator Recycling Program | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Refrigerator Recycling Program Refrigerator Recycling Program Loveland Water and Power - Refrigerator Recycling Program < Back Eligibility Residential Savings Category Appliances & Electronics Maximum Rebate Limit one rebate per account per year Program Info State Colorado Program Type Utility Rebate Program Rebate Amount Refrigerator and Freezer Recycling: $35 Loveland Water and Power is providing an incentive for its customers to recycle their old refrigerators. Interested customers can call the utility to arrange a time to pick up the old refrigerator. The old refrigerator should be brought outside but remain plugged in so the utility can make it is in working condition. the utility will then take the refrigerator to a recycling facility and issue a $35 bill credit. Other Information

Note: This page contains sample records for the topic "recycling source reduction" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

Charlotte Green Supply Chain: Reduce, Reuse, Recycle | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Charlotte Green Supply Chain: Reduce, Reuse, Recycle Charlotte Green Supply Chain: Reduce, Reuse, Recycle Charlotte Green Supply Chain: Reduce, Reuse, Recycle July 30, 2010 - 10:59am Addthis Andy Oare Andy Oare Former New Media Strategist, Office of Public Affairs Three years ago at Sacred Heart grade school in Norfolk, Neb., efforts to recycle were grim. "When I got here, we had no paper recycling program," says Troy Berryman, who is entering his sixth year as principal at Sacred Heart. "A couple years prior, we had a guy park a semi-truck in the parking lot for people to recycle paper." But Berryman says this system did not work out well, as the truck was often locked and papers would be left to blow around in the wind or get wet with rain. Knowing that something must be done, he began to look into the local

282

Recycling Energy Yields Super Savings | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Recycling Energy Yields Super Savings Recycling Energy Yields Super Savings Recycling Energy Yields Super Savings April 23, 2010 - 4:34pm Addthis Joshua DeLung Recycling has been part of going green for a long time, but one company is going a step further by actually recycling energy that has already been used to power manufacturing plants. How do they do it? Recycled Energy Development implements proven technologies that help capture wasted heat and increase their energy efficiency. Dick Munson, senior vice president for public affairs at RED, says facilities that undertake such projects are generally able to cut their energy expenses by up to 20 percent. West Virginia Alloys, in Alloy, W.Va., is a silicon manufacturing plant that makes materials that end up in products such as solar cells and computer chips. In 2013, with help from

283

White goods recycling in the United States: Economic and technical issues in recovering, reclaiming, and reusing nonmetallic materials  

SciTech Connect

Obsolete white goods (appliances such as refrigerators, freezers, washers, dryers, ranges, dishwashers, water heaters, dehumidifiers, and air conditioners) contain significant quantities of recyclable materials, but because of economic and environmental concerns, only limited quantities of these scrap materials are currently being recycled. Appliances are manufactured from a mix of materials, such as metals, polymers, foam, and fiberglass; metals represent more than 75% of the total weight. Appliance recycling is driven primarily by the value of the steel in the appliances. Over the last 15 years, however, the use of polymers in appliance manufacturing has increased substantially at the expense of metals. The shift in the materials composition of appliances may threaten the economics of the use of obsolete appliances as a source for scrap metals. To increase the recycling of white goods, cost-effective and environmentally acceptable technologies must be developed to separate, recover, reclaim, and reuse polymers from discarded appliances. Argonne National Laboratory is currently conducting research, with industry support, to develop cost-effective processes and methods for recovering and reclaiming acrylonitrile butadiene-styrene and High-density polystyrene from discarded appliances. This collaborative research focuses on developing a combination of mechanical/physical and chemical separation methods for recovering and reusing these high-value plastics. In addition, cost-effective methods for improving the performance characteristics of the recovered plastics are being investigated with the goal of recycling these plastics to their original application. In this paper, we examine the technical and economic issues that affect the recycling of white goods and present results of Argonne`s white goods recycling research and development activities.

Karvelas, D.E.; Jody, B.J.; Daniels, E.J.

1995-02-01T23:59:59.000Z

284

Role of Recycling in the Life Cycle of Batteries  

NLE Websites -- All DOE Office Websites (Extended Search)

ROLE OF RECYCLING IN THE LIFE CYCLE OF BATTERIES ROLE OF RECYCLING IN THE LIFE CYCLE OF BATTERIES J.L. Sullivan, L. Gaines, and A. Burnham Argonne National Laboratory, Energy Systems Division Keywords: battery, materials, recycling, energy Abstract Over the last few decades, rechargeable battery production has increased substantially. Applications including phones, computers, power tools, power storage, and electric-drive vehicles are either commonplace or will be in the next decade or so. Because advanced rechargeable batteries, like those

285

at the Weizmann Institute We are launching a new cardboard recycling e ort  

E-Print Network (OSTI)

Cardboard Recycling at the Weizmann Institute We are launching a new cardboard recycling e ort and brought to the Weizmann warehouse for reuse. Damaged boxes will be compressed and recycled by the by the recycling company (Kamam). Why do it? Re-using and recycling saves garbage burial space and frees space

Shapiro, Ehud

286

THE OPTIMAL LOCATION OF TWO RECYCLING CENTERS Jannett Highfill, Michael McAsey, Libin Mou1  

E-Print Network (OSTI)

of the transportation costs from i) households to the recycling centers and ii) recycling centers to the landfill-recyclables are subsequently transported to the landfill. The landfill location and the proportion of waste recycled recycling center is located at the landfill. (R1: General Spatial Economics, H7: Publicly Provided Goods

Mou, Libin

287

Developing Criteria and Metrics for Assessing Recycled Water Program Effectiveness.  

E-Print Network (OSTI)

?? Many U.S. states are currently experiencing or expect to experience water shortages in the next ten years. Recycling water is one strategy states are… (more)

Arias, Michelle

2011-01-01T23:59:59.000Z

288

Orange and Rockland Utilities (Electric)- Residential Appliance Recycling Program  

Energy.gov (U.S. Department of Energy (DOE))

Orange and Rockland Utilities provides rebates for residential customers for recycling older, inefficient refrigerators and freezers. All appliances must meet the program requirements listed on the...

289

Modeling agricultural recycling systems for system size and economic potential.  

E-Print Network (OSTI)

??Water is one of the most valued natural resources, and its availability for consumption varies considerably within any region. Recycling water and biomass through reuse… (more)

Hanson, Jeffrey Leland

2007-01-01T23:59:59.000Z

290

MACKAY, NEIL A., AND JAMES J. ELSER. Nutrient recycling by ...  

Science Journals Connector (OSTI)

Nutrient recycling by Daphnia reduces N, fixation by cyanobacteria. ,,,,iimentally e”tro phied lake ..... Standard methods for the examination of wastewater. APHA.

2000-10-07T23:59:59.000Z

291

Patterns in Trash: Factors that Drive Municipal Solid Waste Recycling.  

E-Print Network (OSTI)

??Municipal recycling is driven by a variety of factors. Yet how these factors change over time is not well understood. I analyze a suite of… (more)

Starr, Jared

2014-01-01T23:59:59.000Z

292

Increasing the recycling rate in Clark County, Nevada.  

E-Print Network (OSTI)

??The purpose of this study was to identify and evaluate policies that could increase the amount of municipal solid waste recycled in Clark County, Nevada.… (more)

Laija, Emerald

2008-01-01T23:59:59.000Z

293

Chapter 7, Refrigerator Recycling Evaluation Protocol: The Uniform...  

Office of Environmental Management (EM)

of refrigerators recycled through the program EXISTINGUEC The average annual unit energy consumption of participating refrigerators PARTUSE The portion of the year the...

294

A Critical Analysis of Technological Innovation and Economic Development in Southern California's Urban Water Reuse And Recycling Industry  

E-Print Network (OSTI)

Water Task Force, “Water Recycling 2030: Recommendation’s of2007. Water Funding Recycling Program Strategic Plan. Web.grants_loans/water_recycling/docs/strategicplan2007.pdf

Pilip-Florea, Shadrach Jay

2012-01-01T23:59:59.000Z

295

How to recycle asbestos containing materials (ACM)  

SciTech Connect

The current disposal of asbestos containing materials (ACM) in the private sector consists of sealing asbestos wetted with water in plastic for safe transportation and burial in regulated land fills. This disposal methodology requires large disposal volumes especially for asbestos covered pipe and asbestos/fiberglass adhering to metal framework, e.g. filters. This wrap and bury technology precludes recycle of the asbestos, the pipe and/or the metal frameworks. Safe disposal of ACM at U.S. Department of Energy (DOE) sites, likewise, requires large disposal volumes in landfills for non-radioactive ACM and large disposal volumes in radioactive burial grounds for radioactive and suspect contaminated ACM. The availability of regulated disposal sites is rapidly diminishing causing recycle to be a more attractive option. Asbestos adhering to metal (e.g., pipes) can be recycled by safely removing the asbestos from the metal in a patented hot caustic bath which prevents airborne contamination /inhalation of asbestos fibers. The dissolution residue (caustic and asbestos) can be wet slurry fed to a melter and vitrified into a glass or glass-ceramic. Palex glasses, which are commercially manufactured, are shown to be preferred over conventional borosilicate glasses. The Palex glasses are alkali magnesium silicate glasses derived by substituting MgO for B{sub 2}O{sub 3} in borosilicate type glasses. Palex glasses are very tolerant of the high MgO and high CaO content of the fillers used in forming asbestos coverings for pipes and found in boiler lashing, e.g., hydromagnesite (3MgCO{sub 3} Mg(OH){sub 2} 3H{sub 2}O) and plaster of paris, gypsum (CaSO{sub 4}). The high temperate of the vitrification process destroys the asbestos fibers and renders the asbestos non-hazardous, e.g., a glass or glass-ceramic. In this manner the glass or glass-ceramic produced can be recycled, e.g., glassphalt or glasscrete, as can the clean metal pipe or metal framework.

Jantzen, C.M.

2000-04-11T23:59:59.000Z

296

Recycling of hydroblasting waste water. Final rpt. , Oct 88-Sep 91  

SciTech Connect

The objective of this project undertaken by the Naval Civil Engineering Laboratory (NCEL) is to develop a recycling technology for reducing the volume of boiler hydroblasting wastewater at Naval Shipyards by up to 90 percent. Steam boiler tubes of a Navy ship undergoing regular overhaul are cleaned twice by hydroblasting. The first washing is performed before ship overhaul and the second washing after ship overhaul. The initial feasibility study, completed in FY88, involved bench scale work at NCEL and pilot scale tests at Long Beach (LBNSY) and Norfolk Naval Shipyards (NNSY). Full scale field tests were conducted at NNSY in FY89. The wastewater recycling process consisted of five steps: collecting, settling, filtering, reconditioning, and reusing. All five steps were successfully demonstrated in the three series of field tests. These tests were assisted by and coordinated with NNSY and Naval Ship Systems Engineering Station (NAVSSES). The results show that the hydroblasting wastewater could be recycled nine times to achieve 90 percent reduction without any adverse effect.

Pan, B.Y.; Swaidan, B.

1991-10-01T23:59:59.000Z

297

Spent Sealed Sources Management in Switzerland - 12011  

SciTech Connect

Information is provided about the international recommendations for the safe management of disused and spent sealed radioactive sources wherein the return to the supplier or manufacturer is encouraged for large radioactive sources. The legal situation in Switzerland is described mentioning the demand of minimization of radioactive waste as well as the situation with respect to the interim storage facility at the Paul Scherrer Institute (PSI). Based on this information and on the market situation with a shortage of some medical radionuclides the management of spent sealed sources is provided. The sources are sorted according to their activity in relation to the nuclide-specific A2-value and either recycled as in the case of high active sources or conditioned as in the case for sources with lower activity. The results are presented as comparison between recycled and conditioned activity for three selected nuclides, i.e. Cs-137, Co-60 and Am-241. (author)

Beer, H.F. [Paul Scherrer Institute, CH-5232 Villigen (Switzerland)

2012-07-01T23:59:59.000Z

298

The economics of salt cake recycling  

SciTech Connect

The Process Evaluation Section at Argonne National Laboratory (ANL) has a major program aimed at developing cost-effective technologies for salt cake recycling. This paper addresses the economic feasibility of technologies for the recovery of aluminum, salt, and residue-oxide fractions from salt cake. Four processes were assessed for salt recovery from salt cake: (1) base case: leaching in water at 25{degree}C, with evaporation to crystallize salts; (2) high-temperature case: leaching in water at 250{degree}C, with flash crystallization to precipitate salts; (3) solventlantisolvent case: leaching in water at 25{degree}C, concentrating by evaporation, and reacting with acetone to precipitate salts; and (4) electrodialysis: leaching in water at 25{degree}C, with concentration and recovery of salts by electrodialysis. All test cases for salt recovery had a negative present value, given current pricing structure and 20% return on investment. Although manufacturing costs (variable plus fixed) could reasonably be recovered in the sales price of the salt product, capital costs cannot. The economics for the recycling processes are improved, however, if the residueoxide can be sold instead of landfilled. For example, the base case process would be profitable at a wet oxide value of $220/metric ton. The economics of alternative scenarios were also considered, including aluminum recovery with landfilling of salts and oxides.

Graziano, D.; Hryn, J.N.; Daniels, E.J.

1996-03-01T23:59:59.000Z

299

Interim storage of recyclable materials. Final report  

SciTech Connect

The purpose of this study was to investigate long-term, economical, outdoor storage of a variety of postconsumer recyclable materials. Field investigations and laboratory analysis were performed to examine how protected and unprotected storage would affect marketability and product quality of baled plastics, papers, and other miscellaneous potentially recyclable materials. Baled materials were stored and evaluated over a period of approximately two years. Evaluation of the stored paper products was undertaken using handsheets to perform tests as published by the Technical Association of the Pulp and Paper Industry (TAPPI). A beater curve analysis of selected stored papers, a pilot-scale papermaking run on a Number 2 Fourdrinier Paper machine, and two microbial analysis of the paper materials were also undertaken. Plastic samples obtained from the field were evaluated for oxidation using an Infrared Spectrophotometer (IR), and a controlled `blackbox` IR study was completed. Liquid run-off from bales was analyzed on a quarterly basis. The authors` investigations show that inexpensive outdoor storage for some paper and plastic products is potentially viable as some postconsumer paper and plastic products can be stored outdoors for long periods of time, 300 days or more, without protection. Few potential negative environmental impacts of such storage were found.

NONE

1998-11-01T23:59:59.000Z

300

Testing of advanced liquefaction concepts in HTI Run ALC-1: Coal cleaning and recycle solvent treatment  

SciTech Connect

In 1991, the Department of Energy initiated the Advanced Liquefaction Concepts Program to promote the development of new and emerging technology that has potential to reduce the cost of producing liquid fuels by direct coal liquefaction. Laboratory research performed by researchers at CAER, CONSOL, Sandia, and LDP Associates in Phase I is being developed further and tested at the bench scale at HTI. HTI Run ALC-1, conducted in the spring of 1996, was the first of four planned tests. In Run ALC-1, feed coal ash reduction (coal cleaning) by oil agglomeration, and recycle solvent quality improvement through dewaxing and hydrotreatment of the recycle distillate were evaluated. HTI`s bench liquefaction Run ALC-1 consisted of 25 days of operation. Major accomplishments were: 1) oil agglomeration reduced the ash content of Black Thunder Mine coal by 40%, from 5.5% to 3.3%; 2) excellent coal conversion of 98% was obtained with oil agglomerated coal, about 3% higher than the raw Black Thunder Mine coal, increasing the potential product yield by 2-3% on an MAF coal basis; 3) agglomerates were liquefied with no handling problems; 4) fresh catalyst make-up rate was decreased by 30%, with no apparent detrimental operating characteristics, both when agglomerates were fed and when raw coal was fed (with solvent dewaxing and hydrotreating); 5) recycle solvent treatment by dewaxing and hydrotreating was demonstrated, but steady-state operation was not achieved; and 6) there was some success in achieving extinction recycle of the heaviest liquid products. Performance data have not been finalized; they will be available for full evaluation in the new future.

Robbins, G.A.; Winschel, R.A.; Burke, F.P. [CONSOL, Inc., Library, PA (United States). Research and Development Dept.] [CONSOL, Inc., Library, PA (United States). Research and Development Dept.; Derbyshire, F.L.; Givens, E.N. [Kentucky Univ., Lexington, KY (United States). Center for Applied Energy Research] [Kentucky Univ., Lexington, KY (United States). Center for Applied Energy Research; Hu, J.; Lee, T.L.K. [Hydrocarbon Research, Inc., Lawrenceville, NJ (United States)] [Hydrocarbon Research, Inc., Lawrenceville, NJ (United States); Miller, J.E.; Stephens, H.P. [Sandia National Labs., Albuquerque, NM (United States)] [Sandia National Labs., Albuquerque, NM (United States); Peluso, M. [LDP Associates, Hamilton Square, NJ (United States)] [LDP Associates, Hamilton Square, NJ (United States)

1996-09-01T23:59:59.000Z

Note: This page contains sample records for the topic "recycling source reduction" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

Analysis of the cost of recycling compliance for the automobile industry  

E-Print Network (OSTI)

Cars are one of the most recycled commercial products. Currently, approximately 75% of the total vehicle weight is recycled. The EU directives on End-of-life vehicles try to push the recycling process further: it fixed the ...

Dantec, Delphine

2005-01-01T23:59:59.000Z

302

Application of Radial Basis Function Neural Network in Modeling Wastewater Sludge Recycle System  

Science Journals Connector (OSTI)

Sludge recycle system is an important part of wastewater treatment plants(WWTP), which can ensure ... Neural Network model for prediction of the Sludge recycling flowrate, which ultimately affect the Sludge recycling

Long Luo; Liyou Zhou

2010-01-01T23:59:59.000Z

303

NREL Materials Recycling Procedure Purpose To promote environmental sustainability and stewardship, NREL provides the  

E-Print Network (OSTI)

NREL Materials Recycling Procedure Purpose To promote environmental sustainability and stewardship, NREL provides the infrastructure for workers to incorporate materials recycling in daily operations. This procedure identifies appropriate materials, collection locations, and rules and processes for recycling

304

Nonparametric Bootstrap Recycling Val'erie Ventura, Department of Statistics, Baker Hall 132  

E-Print Network (OSTI)

Nonparametric Bootstrap Recycling Val'erie Ventura, Department of Statistics, Baker Hall 132 adjustments. The amount of computation involved is usually considerable, and recycling provides a less computer intensive alternative. Recycling consists of using repeatedly the same samples drawn from

305

Comparison of the Recyclability of Flame-Retarded Plastics  

Science Journals Connector (OSTI)

The halogen-free plastic grades showed a significant deterioration of mechanical properties after recycling, whereas those plastics containing BFRs were able to pass all test criteria, thus maintaining their original properties. ... When the plastic material is being mechanically recycled, the material will be exposed to temperatures up to 250 °C during the processing steps, such as extrusion or injection molding. ...

Takaretu Imai; Stephan Hamm; Klaus P. Rothenbacher

2002-11-28T23:59:59.000Z

306

Plastic bottles recycled into sails for tall ship  

Science Journals Connector (OSTI)

Plastic bottles recycled into sails for tall ship ... Using new and conventional plastics recycling technology, Du Pont has converted plastic soda bottles (right) and plastic car fenders into 13,000 sq ft of sail for the tall ship HMS Rose (left). ...

LOIS EMBER

1992-07-06T23:59:59.000Z

307

Recent trends in automobile recycling: An energy and economic assessment  

SciTech Connect

Recent and anticipated trends in the material composition of domestic and imported automobiles and the increasing cost of landfilling the non-recyclable portion of automobiles (automobile shredder residue or ASR) pose questions about the future of automobile recycling. This report documents the findings of a study sponsored by the US Department of Energy`s Office of Environmental Analysis to examine the impacts of these and other relevant trends on the life-cycle energy consumption of automobiles and on the economic viability of the domestic automobile recycling industry. More specifically, the study (1) reviewed the status of the automobile recycling industry in the United States, including the current technologies used to process scrapped automobiles and the challenges facing the automobile recycling industry; (2) examined the current status and future trends of automobile recycling in Europe and Japan, with the objectives of identifying ``lessons learned`` and pinpointing differences between those areas and the United States; (3) developed estimates of the energy system impacts of the recycling status quo and projections of the probable energy impacts of alternative technical and institutional approaches to recycling; and (4) identified the key policy questions that will determine the future economic viability of automobile shredder facilities in the United States.

Curlee, T.R.; Das, S.; Rizy, C.G. [Oak Ridge National Lab., TN (United States); Schexanyder, S.M. [Tennessee Univ., Knoxville, TN (United States). Dept. of Biochemistry

1994-03-01T23:59:59.000Z

308

Catalytic coal liquefaction with treated solvent and SRC recycle  

DOE Patents (OSTI)

A process for the solvent refining of coal to distillable, pentane soluble products using a dephenolated and denitrogenated recycle solvent and a recycled, pentane-insoluble, solvent-refined coal material, which process provides enhanced oil-make in the conversion of coal.

Garg, Diwakar (Macungie, PA); Givens, Edwin N. (Bethlehem, PA); Schweighardt, Frank K. (Allentown, PA)

1986-01-01T23:59:59.000Z

309

AN EXAMINATION OF WOOD RECYCLING PROVISIONS IN NORTH AMERICAN GREEN  

E-Print Network (OSTI)

! ! ! AN EXAMINATION OF WOOD RECYCLING PROVISIONS IN NORTH AMERICAN GREEN BUILDING PROGRAMS DR. JIM in North American Green Building Programs Introduction Recycled content is a prominent aspect of many North American green building standards, with use of such materials awarded or specified. Construction

310

Chapter 5 - Theory and Tools of Physical Separation/Recycling  

Science Journals Connector (OSTI)

Abstract Materials for recycling may consist of end-of-life (EOL) product streams, byproducts and waste streams from original equipment manufacturing and the production of components, and finally also rejects, byproducts and waste streams from raw-material producers. A common feature is that all consist of compounds. The elements of the compounds can be recycled only by chemical or metallurgical means.

Kari Heiskanen

2014-01-01T23:59:59.000Z

311

Why Become a Master By encouraging Connecticut residents to recycle  

E-Print Network (OSTI)

Why Become a Master Composter? By encouraging Connecticut residents to recycle organic waste Service Matt Freund, Freund's Farm Bob Jacquier, Laurelbrook Farm Connecticut Recycling Coalition The UConn Home & Garden Education Center is an informational resource for the residents of Connecticut who

Holsinger, Kent

312

Why Become a Master By encouraging Connecticut residents to recycle  

E-Print Network (OSTI)

Why Become a Master Composter? By encouraging Connecticut residents to recycle organic waste Connecticut Recycling Coalition The UConn Home & Garden Education Center is an informational resource for the residents of Connecticut who are urged to contact us for accurate, thorough and timely information on home

Alpay, S. Pamir

313

Catalytic coal liquefaction with treated solvent and SRC recycle  

DOE Patents (OSTI)

A process is described for the solvent refining of coal to distillable, pentane soluble products using a dephenolated and denitrogenated recycle solvent and a recycled, pentane-insoluble, solvent-refined coal material, which process provides enhanced oil-make in the conversion of coal. 2 figs.

Garg, D.; Givens, E.N.; Schweighardt, F.K.

1986-12-09T23:59:59.000Z

314

Safeguards and nonproliferation aspects of a dry fuel recycling technology  

SciTech Connect

Los Alamos National Laboratory undertook an independent assessment of the proliferation potentials and safeguardability of a dry fuel recycling technology, whereby spent pressurized-water reactor (PWR) fuels are used to fuel canadian deuterium uranium (CANDU) reactors. Objectives of this study included (1) the evaluation of presently available technologies that may be useful to safeguard technology options for dry fuel recycling (2) and identification of near-term and long-term research needs to develop process-specific safeguards requirements. The primary conclusion of this assessment is that like all other fuel cycle alternatives proposed in the past, the dry fuel recycle entails prolfferation risks and that there are no absolute technical fixes to eliminate such risks. This study further concludes that the proliferation risks of dry fuel recycling options are relatively minimal and presently known safeguards systems and technologies can be modified and/or adapted to meet the requirements of safeguarding such fuel recycle facilities.

Pillay, K.K.S.

1993-05-01T23:59:59.000Z

315

EA-1919: Recycle of Scrap Metals Originating from Radiological Areas |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

EA-1919: Recycle of Scrap Metals Originating from Radiological EA-1919: Recycle of Scrap Metals Originating from Radiological Areas EA-1919: Recycle of Scrap Metals Originating from Radiological Areas Summary This Programmatic EA evaluates alternatives for the management of scrap metal originating from DOE radiological control areas, including the proposed action to allow for the recycle of uncontaminated scrap metal that meets the requirements of DOE Order 458.1. (Metals with volumetric radioactive contamination are not included in the scope of this Programmatic EA.) PUBLIC COMMENT OPPORTUNITIES None available at this time. DOCUMENTS AVAILABLE FOR DOWNLOAD December 28, 2012 EA-1919: Notice of Public Comment Period Extension Recycling of Scrap Metals Originating from Radiological Areas December 12, 2012 EA-1919: Notice of Availability of a Draft Programmatic Environmental

316

Plastic Identification Sensor with Five Wavelength Laser Diodes Used in Recycling Robot  

Science Journals Connector (OSTI)

Plastic identification is a key technology for recycling. Six different types of plastics are identified by a sensor with five wavelengths lasers. The new plastic recycling robots,...

Kawata, Satoshi; Inada, Koji; Hirao, Tadaetsu; Fujita, Toshihiro; Aubuchon, Roger

317

E-Print Network 3.0 - avoids recycling endosomal Sample Search...  

NLE Websites -- All DOE Office Websites (Extended Search)

avoids recycling endosomal Search Powered by Explorit Topic List Advanced Search Sample search results for: avoids recycling endosomal Page: << < 1 2 3 4 5 > >> 1 Selective...

318

Potential of crop residue in India as a source of energy  

Science Journals Connector (OSTI)

Here is given an estimate of crop residue production and different recycling options as a source of renewable energy. India produces 388 Tg crop residues but only 182 Tg equivalent to 2818 PJ is usable. Recycling as manure can replace 15% of 595 PJ national fertiliser energy. Recycling in digester can produce 20.32 billion m³ biogas. It can be converted into 182 Tg of biocoal generating 156â??258.3 billion unit (kWh) electricity. It can lead to 16 billion dm³ ethanol productions. Having less environmental consequences, different recycling options can make the crop residue an environmentally sound sustainable energy system.

Apurba Sarkar

2007-01-01T23:59:59.000Z

319

Physicochemical and Mechanical Properties of Experimental Coextruded Food-Packaging Films Containing a Buried Layer of Recycled Low-Density Polyethylene  

Science Journals Connector (OSTI)

Environmental protection in conjunction with waste reduction considerations have oriented industry, research, and government authorities toward recycling and/or reuse of packaging materials, especially plastics (1, 2). ... Technical processes such as blending or coextrusion of recycled plastics with virgin polymer resins are being developed for the most widely used polymers, namely, polyethylene, polypropylene, poly(ethylene terephthalate), and polystyrene (3?7). ... For iso-octane the temperature/time of plastic/simulant contact was 20 ± 0.5 °C for 2 days (14). ...

Anastasia Badeka; Antonios E. Goulas; Antigoni Adamantiadi; Michael G. Kontominas

2003-03-13T23:59:59.000Z

320

Recycling of Lithium-Ion Batteries  

NLE Websites -- All DOE Office Websites (Extended Search)

B. Dunn B. Dunn Center for Transportation Research Argonne National Laboratory Recycling of Lithium-Ion Batteries Plug-In 2013 San Diego, CA October 2, 2013 The submitted manuscript has been created by UChicago Argonne, LLC, Operator of Argonne National Laboratory ("Argonne"). Argonne, a U.S. Department of Energy Office of Science laboratory, is operated under Contract No. DE-AC02-06CH11357. The U.S. Government retains for itself, and others acting on its behalf, a paid-up nonexclusive, irrevocable worldwide license in said article to reproduce, prepare derivative works, distribute copies to the public, and perform publicly and display publicly, by or on behalf of the Government.

Note: This page contains sample records for the topic "recycling source reduction" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

Production of rubber pads by tyre recycling  

Science Journals Connector (OSTI)

Tyre recycling is a social problem but it may be a profitable operation if valid industrial applications would be experimented. In this study, the authors suggest that the combination of powder comminution and compression moulding of powders is an efficient solution to produce large rubber pads with good mechanical properties. An experimental approach is reported to design a 'direct powder moulding' (in absence of virgin rubber or linking agent). Small samples were moulded in stainless steel moulds to evaluate the mechanical performances. Good results were obtained even if medium size particles are directly moulded, whereas the existing scientific contributions only deal with fine particles. Large pads were moulded in an aluminium mould to reduce cycle time. Due to the technical limits, the moulding pressure was reduced and this occurrence limited the final performances of the rubber pad. Nevertheless, the final properties are high enough to allow structural and functional applications.

Alessandro Guglielmotti; Carmine Lucignano; Fabrizio Quadrini

2009-01-01T23:59:59.000Z

322

Recycling technologies and market opportunities: Proceedings  

SciTech Connect

These proceedings are the result of our collective effort to meet that challenge. They reflect the dedication and commitment of many people in government, academia, the private sector and national laboratories to finding practical solutions to one of the most pressing problems of our time -- how to deal effectively with the growing waste s that is the product of our affluent industrial society. The Conference was successful in providing a clear picture of the scope of the problem and of the great potential that recycling holds for enhancing economic development while at the same time, having a significant positive impact on the waste management problem. That success was due in large measure to the enthusiastic response of our panelists to our invitation to participate and share their expertise with us.

Goland, A.N.; Petrakis, L. [eds.

1993-09-20T23:59:59.000Z

323

Energy Return on Investment - Fuel Recycle  

SciTech Connect

This report provides a methodology and requisite data to assess the potential Energy Return On Investment (EROI) for nuclear fuel cycle alternatives, and applies that methodology to a limited set of used fuel recycle scenarios. This paper is based on a study by Lawrence Livermore National Laboratory and a parallel evaluation by AREVA Federal Services LLC, both of which were sponsored by the DOE Fuel Cycle Technologies (FCT) Program. The focus of the LLNL effort was to develop a methodology that can be used by the FCT program for such analysis that is consistent with the broader energy modeling community, and the focus of the AREVA effort was to bring industrial experience and operational data into the analysis. This cooperative effort successfully combined expertise from the energy modeling community with expertise from the nuclear industry. Energy Return on Investment is one of many figures of merit on which investment in a new energy facility or process may be judged. EROI is the ratio of the energy delivered by a facility divided by the energy used to construct, operate and decommission that facility. While EROI is not the only criterion used to make an investment decision, it has been shown that, in technologically advanced societies, energy supplies must exceed a minimum EROI. Furthermore, technological history shows a trend towards higher EROI energy supplies. EROI calculations have been performed for many components of energy technology: oil wells, wind turbines, photovoltaic modules, biofuels, and nuclear reactors. This report represents the first standalone EROI analysis of nuclear fuel reprocessing (or recycling) facilities.

Halsey, W; Simon, A J; Fratoni, M; Smith, C; Schwab, P; Murray, P

2012-06-06T23:59:59.000Z

324

Actinide recycle potential in the IFR (Integral Fast Reactor)  

SciTech Connect

Rising concern about the greenhouse effect reinforces the need to reexamine the question of a next-generation reactor concept that can contribute significantly toward substitution for fossil-based energy generation. Even with only the nuclear capacity on-line today, world-wide reasonably assured uranium resources would last for only about 50 years. If nuclear is to make a significant contribution, breeding is a fundamental requirement. Uranium resources can then be extended by two orders of magnitude, making nuclear essentially a renewable energy source. The key technical elements of the IFR concept are metallic fuel and fuel cycle technology based on pyroprocessing. Pyroprocessing is radically different from the conventional PUREX reprocessing developed for the LWR oxide fuel. Chemical feasibility of pyroprocessing has been demonstrated. The next major step in the IFR development program will be the full-scale pyroprocessing demonstration to be carried out in conjunction with EBR-II. IFR fuel cycle closure based on pyroprocessing can also have a dramatic impact on the waste management options, and in particular on the actinide recycling. 6 figs.

Chang, Y.I.

1989-01-01T23:59:59.000Z

325

Advanced Recyclable Media System{reg_sign}. Innovative technology summary report  

SciTech Connect

The objective of the Large-Scale Demonstration Project (LSDP) is to select and demonstrate potentially beneficial technologies at the Argonne National Laboratory East`s (ANL) Chicago Pile-5 (CP-5) Research Reactor. The purpose of the LSDP is to demonstrate that using innovative and improved deactivation and decommissioning (D and D) technologies from various sources can result in significant benefits, such as decreased cost and increased health and safety, as compared with baseline D and D technologies. This report describes a demonstration of the Advanced Recyclable Media System{reg_sign} technology which was employed by Surface Technology Systems, Inc. to remove coatings from a concrete floor. This demonstration is part of the CP-5 LSDP sponsored by the US Department of Energy (DOE) Office of Science and Technology Deactivation and Decommissioning Focus Area (DDFA). The Advanced Recyclable Media System{reg_sign} (ARMS) technology is an open blast technology which uses a soft recyclable media. The patented ARMS Engineered Blast Media consists of a fiber-reinforced polymer matrix which can be manufactured in various grades of abrasiveness. The fiber media can be remade and/or reused up to 20 times and can clean almost any surface (e.g., metal, wood, concrete, lead) and geometry including corners and the inside of air ducts.

NONE

1998-12-01T23:59:59.000Z

326

Alabama Land Recycling And Economic Redevelopment Act (Alabama) |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Land Recycling And Economic Redevelopment Act (Alabama) Land Recycling And Economic Redevelopment Act (Alabama) Alabama Land Recycling And Economic Redevelopment Act (Alabama) < Back Eligibility Commercial Construction Developer Industrial Savings Category Alternative Fuel Vehicles Hydrogen & Fuel Cells Buying & Making Electricity Water Home Weatherization Solar Wind Program Info State Alabama Program Type Environmental Regulations Provider Department of Environmental Management This article establishes a program, to be implemented, maintained, and administered by the Alabama Department of Environmental Management, to encourage the voluntary cleanup and the reuse and redevelopment of environmentally contaminated properties. The article states criteria for applicant participation and property qualification in the voluntary cleanup

327

Iowa Land Recycling and Environmental Remediation Standards Act (Iowa) |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Iowa Land Recycling and Environmental Remediation Standards Act Iowa Land Recycling and Environmental Remediation Standards Act (Iowa) Iowa Land Recycling and Environmental Remediation Standards Act (Iowa) < Back Eligibility Agricultural Commercial Construction Fed. Government Fuel Distributor General Public/Consumer Industrial Installer/Contractor Institutional Investor-Owned Utility Local Government Low-Income Residential Multi-Family Residential Municipal/Public Utility Nonprofit Residential Retail Supplier Rural Electric Cooperative Schools State/Provincial Govt Systems Integrator Transportation Tribal Government Utility Savings Category Alternative Fuel Vehicles Hydrogen & Fuel Cells Buying & Making Electricity Water Home Weatherization Solar Wind Program Info State Iowa Program Type Environmental Regulations Provider Iowa Department of Natural Resources

328

Pyrolysis Using Microwave Heating: A Sustainable Process for Recycling Used Car Engine Oil  

Science Journals Connector (OSTI)

Pyrolysis Using Microwave Heating: A Sustainable Process for Recycling Used Car Engine Oil ... A reaction temperature of 600 °C provided the greatest yield of commercially valuable products: the recovered liquid oils were composed of light paraffins and aromatic hydrocarbons that could be used as industrial feedstock; the remaining incondensable gases comprised light hydrocarbons that could potentially be used as a fuel source to power the process. ... The pyrolysis products leave the reactor and pass through a system of three water-cooled Liebig condensers [5, 6, 7], which collect condensed hydrocarbons in main and secondary collection flasks [8, 9]. ...

Su Shiung Lam; Alan D. Russell; Howard A. Chase

2010-06-18T23:59:59.000Z

329

Nonparametric Bootstrap Recycling Val'erie Ventura, Department of Statistics, Baker Hall 132  

E-Print Network (OSTI)

Nonparametric Bootstrap Recycling Val'erie Ventura, Department of Statistics, Baker Hall 132. The amount of computation involved is usually considerable, and recycling provides a less computer intensive alternative. Recycling consists of using repeatedly the same samples drawn from a recycling distribution G

330

GLOBAL STABILITY IN CHEMOSTAT-TYPE COMPETITION MODELS WITH NUTRIENT RECYCLING  

E-Print Network (OSTI)

GLOBAL STABILITY IN CHEMOSTAT-TYPE COMPETITION MODELS WITH NUTRIENT RECYCLING SHIGUI RUAN AND XUE- type competition models with nutrient recycling. In the first model the recycling is instantaneous, whereas in the second, the recycling is delayed. They carried out the equilibrium analysis and obtained

Ruan, Shigui

331

The Recycling Center at UAB opened March 2, 2009! It is located at 620 11th  

E-Print Network (OSTI)

The Recycling Center at UAB opened March 2, 2009! It is located at 620 11th St. South. See map on the next UAB workday. UAB RECYCLING CENTER LAUNCHES DRIVE-THRU DROP-OFF SERVICE UAB RECYCLING CENTER 620 11 Paolone UAB Recycling Coordinator (205) 996-9043 GENERAL INSTRUCTIONS Please bring separated materials

Bedwell, David M.

332

Green Labs and EH&S, Nov. 2013 ___________________ Lab Recycling Guide  

E-Print Network (OSTI)

Green Labs and EH&S, Nov. 2013 ___________________ Lab Recycling Guide Non-contaminated, clean lab plastic containers and conical tubes may be recycled. To be accepted, containers must be clean, triple. Recycling bin located: PSB Loading Dock Alcohol cans and metal shipping containers may be recycled

California at Santa Cruz, University of

333

Recycling Evaluation of Newly Developed Environmentally Benign Pressure Sensitive Adhesive for Postage Applications  

E-Print Network (OSTI)

Recycling Evaluation of Newly Developed Environmentally Benign Pressure Sensitive Adhesive stamp products that can be successfully recycled into fine paper products in a typical recycling additional burden on plants that are using recycled fiber. As a result of an initiative by the USPS, a team

Abubakr, Said

334

Site Recycles Millions of Pounds of Metal | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Recycles Millions of Pounds of Metal Recycles Millions of Pounds of Metal Site Recycles Millions of Pounds of Metal May 30, 2013 - 12:00pm Addthis The Portsmouth site worked with two regional companies and local law enforcement to arrange transportation of 10 massive synchronous condensers as part of an asset recovery effort. The Portsmouth site worked with two regional companies and local law enforcement to arrange transportation of 10 massive synchronous condensers as part of an asset recovery effort. PIKETON, Ohio - The EM program at the Portsmouth site and its contractor, Fluor-B&W Portsmouth, recycled millions of pounds of metal from the demolition of an electrical switchyard that served the former gaseous diffusion plant. The effort at the Portsmouth site diverted more than 4 million pounds of

335

Site Recycles Millions of Pounds of Metal | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Site Recycles Millions of Pounds of Metal Site Recycles Millions of Pounds of Metal Site Recycles Millions of Pounds of Metal May 30, 2013 - 12:00pm Addthis The Portsmouth site worked with two regional companies and local law enforcement to arrange transportation of 10 massive synchronous condensers as part of an asset recovery effort. The Portsmouth site worked with two regional companies and local law enforcement to arrange transportation of 10 massive synchronous condensers as part of an asset recovery effort. PIKETON, Ohio - The EM program at the Portsmouth site and its contractor, Fluor-B&W Portsmouth, recycled millions of pounds of metal from the demolition of an electrical switchyard that served the former gaseous diffusion plant. The effort at the Portsmouth site diverted more than 4 million pounds of

336

Renewable and Recycled Energy Objective | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Renewable and Recycled Energy Objective Renewable and Recycled Energy Objective Renewable and Recycled Energy Objective < Back Eligibility Investor-Owned Utility Municipal Utility Rural Electric Cooperative Savings Category Bioenergy Buying & Making Electricity Water Alternative Fuel Vehicles Hydrogen & Fuel Cells Solar Wind Program Info State North Dakota Program Type Renewables Portfolio Standard Provider North Dakota Public Service Commission In March 2007, the North Dakota enacted legislation (H.B. 1506) establishing an ''objective'' that 10% of all retail electricity sold in the state be obtained from renewable energy and recycled energy by 2015. The objective must be measured by qualifying megawatt-hours (MWh) delivered at retail, or by credits purchased and retired to offset non-qualifying

337

Demolitions Produce Recyclable Materials for Organization Promoting Economic Activity  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

August 15, 2011 August 15, 2011 Demolitions Produce Recyclable Materials for Organization Promoting Economic Activity PIKETON, Ohio - Demolitions have helped generate more than 8 million pounds of metal at the Piketon site for recycling, further promoting economic activity in the region thanks to the American Recovery and Reinvestment Act. Proceeds from recycling that metal through the unique program will add to the more than $2.8 million already generated from recycling more than 5.2 million pounds of material from site demolition efforts. "This metal represents economic opportunity for the surround- ing community, as proceeds from this material will create local jobs, utilize surrounding area facilities and generate money to be reinvested back into the community," said Pete Mingus, who

338

Vehicle Use of Recycled Natural Gas Derived from Wastewater Biosolids  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

PE Brown and Caldwell Project Design Manager St. Petersburg, FL: Vehicle Use of Recycled Natural Gas Derived from Wastewater Biosolids U.S Department of Energy - Biomass 2014 John...

339

Vehicle Technologies Office Merit Review 2014: Advanced Battery Recycling  

Energy.gov (U.S. Department of Energy (DOE))

Presentation given by OnTo Technology LLC at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about advanced battery recycling.

340

International investigation of electronic waste recycling plant design  

E-Print Network (OSTI)

This thesis investigates the industry of electronic waste recycling industry in three countries: Germany, the United States, and Chile. Despite differences in the legal structure surrounding the industry, there are many ...

Theurer, Jean E

2010-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "recycling source reduction" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

Fuel cycle options for optimized recycling of nuclear fuel  

E-Print Network (OSTI)

The accumulation of transuranic inventories in spent nuclear fuel depends on both deployment of advanced reactors that can be loaded with recycled transuranics (TRU), and on availability of the facilities that separate and ...

Aquien, Alexandre

2006-01-01T23:59:59.000Z

342

Superharmonic Injection Locked Quadrature LC VCO Using Current Recycling Architecture  

E-Print Network (OSTI)

. This thesis investigates a coupling mechanism to implement a quadrature voltage controlled oscillator using indirect injection method. The coupling network in this QVCO couples the two LC cores with their super-harmonic and it recycles its bias current back...

Kalusalingam, Shriram

2011-02-22T23:59:59.000Z

343

Demolitions Produce Recyclable Materials for Organization Promoting Economic Activity  

Energy.gov (U.S. Department of Energy (DOE))

Demolitions have helped generate more than 8 million pounds of metal at the Piketon site for recycling, further promoting economic activity in the region thanks to the American Recovery and...

344

Phosphorous Recycling from Pre-Coagulated Wastewater Sludge  

Science Journals Connector (OSTI)

The amount of rock phosphorous remained in the world is limited. Therefore, it is important to develop the technology and construct the social system for use of recycled phosphorous. Municipal wastewater contains...

Y. Watanabe; T. Tadano; T. Hasegawa…

2000-01-01T23:59:59.000Z

345

Strategies for aluminum recycling : insights from material system optimization  

E-Print Network (OSTI)

The dramatic increase in aluminum consumption over the past decades necessitates a societal effort to recycle and reuse these materials to promote true sustainability and energy savings in aluminum production. However, the ...

Li, Preston Pui-Chuen

2005-01-01T23:59:59.000Z

346

Recycling of organic matter in Antarctic sediments: A transect ...  

Science Journals Connector (OSTI)

The first porewater distributions of O2 and NO3= and organic carbon data in the solid phase in this part of the ocean were used to model the recycling of organic ...

347

Considerations in the recycling of urban parking garages  

E-Print Network (OSTI)

Because of the decreasing use of private automobiles in city centers and because of usual development pressures, some urban parking garages will become available for replacement or recycling. The choice between replacement ...

Paul, Michael Johannes

1981-01-01T23:59:59.000Z

348

A critical analysis of bulk precipitation recycling models  

E-Print Network (OSTI)

Precipitation recycling is the contribution of local land evaporation to the precipitation of a region. The significant local evaporative contribution to rainfall in many continental regions highlights the potential ...

Fitzmaurice, Jean Anne

2007-01-01T23:59:59.000Z

349

DOE, Washington Closure complete recycling project at Hanford  

Energy.gov (U.S. Department of Energy (DOE))

RICHLAND, Wash. – The U.S. Department of Energy (DOE) recently teamed with contractor Washington Closure Hanford to complete a major recycling effort during cleanup of the Hanford Site in southeastern Washington State.

350

Applications of industrial ecology : manufacturing, recycling, and efficiency  

E-Print Network (OSTI)

This work applies concepts from industrial ecology to analyses of manufacturing, recycling, and efficiency. The first part focuses on an environmental analysis of machining, with a specific emphasis on energy consumption. ...

Dahmus, Jeffrey B. (Jeffrey Brian), 1974-

2007-01-01T23:59:59.000Z

351

Heavy-duty fleet test evaluation of recycled engine coolant  

SciTech Connect

A 240,000 mile (386,232 km) fleet test was conducted to evaluate recycled engine coolant against factory fill coolant. The fleet consisted of 12 new Navistar International Model 9600 trucks equipped with Detroit Diesel Series 60 engines. Six of the trucks were drained and filled with the recycled engine coolant that had been recycled by a chemical treatment/filtration/reinhibited process. The other six test trucks contained the factory filled coolant. All the trucks followed the same maintenance practices which included the use of supplemental coolant additives. The trucks were equipped with metal specimen bundles. Metal specimen bundles and coolant samples were periodically removed to monitor the cooling system chemistry. A comparison of the solution chemistry and metal coupon corrosion patterns for the recycled and factory filled coolants is presented and discussed.

Woyciesjes, P.M.; Frost, R.A. [Prestone Products Corp., Danbury, CT (United States). Coolant Group

1999-08-01T23:59:59.000Z

352

Chapter 13 - Energy Conversion of Biomass and Recycling of Waste Plastics Using Supercritical Fluid, Subcritical Fluid and High-Pressure Superheated Steam  

Science Journals Connector (OSTI)

Abstract Utilization of unused or waste biomass as fuels is receiving much attention owing to the reduction of CO2 emission and the development of alternative energy to expensive fossil fuels. On the other hand, the recycling of waste plastics is important for the prevention of the exhaustion of fossil resources. In this chapter, typical several examples of the energy conversion of biomass and the recycling of waste plastics using supercritical fluid, subcritical fluid, and high-pressure superheated steam were introduced: (1) bioethanol production from paper sludge with subcritical water, (2) hydrogen production from various biomass with high-pressure superheated steam, (3) production of composite solid fuel from waste biomass and plastics with subcritical water, (4) waste treatment and recovery of thermal energy with high-pressure superheated steam oxidation, (5) recycling of carbon fiber-reinforced plastic with high-pressure superheated steam and supercritical alcohol, (6) recycling of laminate film with subcritical water, and (7) recycling of cross-linked polyethylene with supercritical methanol.

Idzumi Okajima; Takeshi Sako

2014-01-01T23:59:59.000Z

353

Vehicle Technologies Office: Fact #434: July 24, 2006 Scrap Tire Recycling  

NLE Websites -- All DOE Office Websites (Extended Search)

4: July 24, 2006 4: July 24, 2006 Scrap Tire Recycling to someone by E-mail Share Vehicle Technologies Office: Fact #434: July 24, 2006 Scrap Tire Recycling on Facebook Tweet about Vehicle Technologies Office: Fact #434: July 24, 2006 Scrap Tire Recycling on Twitter Bookmark Vehicle Technologies Office: Fact #434: July 24, 2006 Scrap Tire Recycling on Google Bookmark Vehicle Technologies Office: Fact #434: July 24, 2006 Scrap Tire Recycling on Delicious Rank Vehicle Technologies Office: Fact #434: July 24, 2006 Scrap Tire Recycling on Digg Find More places to share Vehicle Technologies Office: Fact #434: July 24, 2006 Scrap Tire Recycling on AddThis.com... Fact #434: July 24, 2006 Scrap Tire Recycling The recycling of scrap tires has come a long way in the last decade. In 1990, only 11% of the tires that were scrapped were recycled or reused, but

354

Technical specifications for mechanical recycling of agricultural plastic waste  

SciTech Connect

Highlights: • Technical specifications for agricultural plastic wastes (APWs) recycling proposed. • Specifications are the base for best economical and environmental APW valorisation. • Analysis of APW reveals inherent characteristics and constraints of APW streams. • Thorough survey on mechanical recycling processes and industry as it applies to APW. • Specifications for APW recycling tested, adjusted and verified through pilot trials. - Abstract: Technical specifications appropriate for the recycling of agricultural plastic wastes (APWs), widely accepted by the recycling industry were developed. The specifications establish quality standards to be met by the agricultural plastics producers, users and the agricultural plastic waste management chain. They constitute the base for the best economical and environmental valorisation of the APW. The analysis of the APW streams conducted across Europe in the framework of the European project “LabelAgriWaste” revealed the inherent characteristics of the APW streams and the inherent constraints (technical or economical) of the APW. The APW stream properties related to its recycling potential and measured during pilot trials are presented and a subsequent universally accepted simplified and expanded list of APW recycling technical specifications is proposed and justified. The list includes two sets of specifications, applied to two different quality categories of recyclable APW: one for pellet production process (“Quality I”) and another one for plastic profile production process (“Quality II”). Parameters that are taken into consideration in the specifications include the APW physical characteristics, contamination, composition and degradation. The proposed specifications are focused on polyethylene based APW that represents the vast majority of the APW stream. However, the specifications can be adjusted to cover also APW of different materials (e.g. PP or PVC) that are found in very small quantities in protected cultivations in Europe. The adoption of the proposed specifications could transform this waste stream into a labelled commodity traded freely in the market and will constitute the base for the best economical and environmental valorisation of the APW.

Briassoulis, D., E-mail: briassou@aua.gr; Hiskakis, M.; Babou, E.

2013-06-15T23:59:59.000Z

355

Recycling asphaltic concrete with sulphur as a supplemental binder  

E-Print Network (OSTI)

RECYCLING ASPHALTIC CONCRETE WITH SULPHUR AS A SUPPLEMENTAL BINDER A Thesis by ROBERT WILLIAM BARNETT Submitted to the Graduate College of Texas A&M University in partial fulfillment of the requirement for the degree of MASTER OF SCIENCE... August 1976 Major Subject: Civil Engineering RECYCLING ASPHALTIC CONCRETE WITH SULPHUR AS A SUPPLEMENTAL BINDER A Thesis by ROBERT WILLIAM BARNETT Approved as to style and content by: :) (Chairm o I ommit tee) (M ber) Mem er) August 1976...

Barnett, Robert William

1976-01-01T23:59:59.000Z

356

Optics of electron beam in the Recycler  

SciTech Connect

Electron cooling of 8.9 GeV/c antiprotons in the Recycler ring (Fermilab) requires high current and good quality of the DC electron beam. Electron trajectories of {approx}0.2 A or higher DC electron beam have to be parallel in the cooling section, within {approx}0.2 mrad, making the beam envelope cylindrical. These requirements yielded a specific scheme of the electron transport from a gun to the cooling section, with electrostatic acceleration and deceleration in the Pelletron. Recuperation of the DC beam limits beam losses at as tiny level as {approx}0.001%, setting strict requirements on the return electron line to the Pelletron and a collector. To smooth the beam envelope in the cooling section, it has to be linear and known at the transport start. Also, strength of the relevant optic elements has to be measured with good accuracy. Beam-based optic measurements are being carried out and analyzed to get this information. They include beam simulations in the Pelletron, differential optic (beam response) measurements and simulation, beam profile measurements with optical transition radiation, envelope measurements and analysis with orifice scrapers. Current results for the first half-year of commissioning are presented. Although electron cooling is already routinely used for pbar stacking, its efficiency is expected to be improved.

Burov, Alexey V.; Kazakevich, G.; Kroc, T.; Lebedev, V.; Nagaitsev, S.; Prost, L.; Pruss, S.; Shemyakin, A.; Sutherland, M.; Tiunov, M.; Warner, A.; /Fermilab

2005-11-01T23:59:59.000Z

357

Duality and Recycling Computing in Quantum Computers  

E-Print Network (OSTI)

Quantum computer possesses quantum parallelism and offers great computing power over classical computer \\cite{er1,er2}. As is well-know, a moving quantum object passing through a double-slit exhibits particle wave duality. A quantum computer is static and lacks this duality property. The recently proposed duality computer has exploited this particle wave duality property, and it may offer additional computing power \\cite{r1}. Simply put it, a duality computer is a moving quantum computer passing through a double-slit. A duality computer offers the capability to perform separate operations on the sub-waves coming out of the different slits, in the so-called duality parallelism. Here we show that an $n$-dubit duality computer can be modeled by an $(n+1)$-qubit quantum computer. In a duality mode, computing operations are not necessarily unitary. A $n$-qubit quantum computer can be used as an $n$-bit reversible classical computer and is energy efficient. Our result further enables a $(n+1)$-qubit quantum computer to run classical algorithms in a $O(2^n)$-bit classical computer. The duality mode provides a natural link between classical computing and quantum computing. Here we also propose a recycling computing mode in which a quantum computer will continue to compute until the result is obtained. These two modes provide new tool for algorithm design. A search algorithm for the unsorted database search problem is designed.

Gui Lu Long; Yang Liu

2007-08-15T23:59:59.000Z

358

Recycling of the Solar Corona's Magnetic Field  

Science Journals Connector (OSTI)

Magnetic fields play a dominant role in the atmospheres of the Sun and other Sun-like stars. Outside sunspot regions, the photosphere of the so-called quiet Sun contains myriads of small-scale magnetic concentrations, with strengths ranging from the detection limit of ~1016 Mx up to ~3 ? 1020 Mx. The tireless motion of these magnetic flux concentrations, along with the continual appearance and disappearance of opposite-polarity pairs of fluxes, releases a substantial amount of energy that may be associated with a whole host of physical processes in the solar corona, not least the enigma of coronal heating. We find here that the timescale for magnetic flux to be remapped in the quiet-Sun corona is, surprisingly, only 1.4 hr (around 1/10 of the photospheric flux recycling time), implying that the quiet-Sun corona is far more dynamic than previously thought. Besides leading to a fuller understanding of the origins of magnetically driven phenomena in our Sun's corona, such a process may also be crucial for the understanding of stellar atmospheres in general.

R. M. Close; C. E. Parnell; D. W. Longcope; E. R. Priest

2004-01-01T23:59:59.000Z

359

Assessment of Noise and Heavy Metals (Cr, Cu, Cd, Pb) in the Ambience of the Production Line for Recycling Waste Printed Circuit Boards  

Science Journals Connector (OSTI)

It indicates that carcinogenic risks on workers are relatively light in the workshop. ... The automatic line for recycling waste PCBs has a number of noise sources such as shredder, hammer grinder, vibrating screen, and bag-type dust collector. ... But Pb had higher composition in coarse fraction than in fine particle mode. ...

Mianqiang Xue; Yichen Yang; Jujun Ruan; Zhenming Xu

2011-11-29T23:59:59.000Z

360

Chapter 7 - Hydrolysis in Near- and Supercritical Water for Biomass Conversion and Material Recycling  

Science Journals Connector (OSTI)

Abstract Supercritical water (SCW) has been investigated for about 20 years for chemical reactions and processes. Water above its critical point (Tc = 374 °C, pc = 22.1 MPa, ?c = 0.322 g/cm3) has remarkable tunable properties and has been at the origin of a number of major developments especially due to its environmental innocuousness. SCW has been extensively used in the last 15 years to perform hydrolysis reactions. We propose to discuss in this book chapter the main fields of the application of the SCW hydrolysis reactions: (1) biomass liquefaction toward biofuels and platform molecules and (2) material recycling. SCW has been identified as an efficient medium in the transformation of biomass. Actually, Supercritical Biomass Valorization is a new generation of SCW-based technology, following the R&D development performed in SCW Oxidation. Two main routes can be investigated: the SuperCritical Biomass Gasification process and the SuperCritical Biomass Liquefaction process. Moreover, at present, the increase in the plant sourcing in the chemical industry is inescapable because of the social request for low environmental impact products and the high prices of products from fossil resources. In this context, biomass is particularly interesting because it is abundant and can be easily mobilized. Since lignocellulosic materials constitute approximately 95% of the total plant biomass, the discovery and the investigation of novel and effective pathways for their conversion are very important. In this chapter, we will present the direct SCW liquefaction of this new resource of carbon in order to produce two types of “biobased” products: 2G biofuels and platform molecules. In the context of a sustainable society, material recycling has an important role to play. Nowadays, the industry cannot produce consumer goods or industrial products without thinking about the future of each product in an environment and energetic point of view. Therefore in the field of environmentally friendly processes, a major challenge is the recycling of man-made materials. SCW has also been identified as an interesting medium for this aim. In this chapter, we will present two major aspects of material recycling using SCW: recycling of plastics and composite materials. We will see that hydrolysis reactions can be completed with alcoholysis reactions using near- and supercritical alcohols.

Anne Loppinet-Serani; Cyril Aymonier

2014-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "recycling source reduction" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

Removal of {sup 14}C from Irradiated Graphite for Graphite Recycle and Waste Volume Reduction  

SciTech Connect

The aim of the research presented here was to identify the checmical from of {sup 14}C inirradiated graphite. A greater understanding of the chemical form of this longest-lived isotope in irradiated graphite will inform not only management of legacy waste, but also development of next generation gas-cooled reactors. Approimately 250,000 metric tons of irradiated graphite waste exists worldwide, with the largest single quantity originating in the Magnox and AGR reactors of UK. The waste quantity is expected to increase with decommissioning of Generation II reactors and deployment of Generation I gas-cooled, graphite moderated reactors. Of greatest concern for long-term disposal of irradiated graphite is carbon-14 ({sup 14}C), with a half-life of 5730 years.

Dunzik-Gougar, Mary Lou; Windes, Will; Marsden, Barry

2014-06-10T23:59:59.000Z

362

Waste reduction through consumer education. Final report  

SciTech Connect

The Waste Reduction through Consumer Education research project was conducted to determine how environmental educational strategies influence purchasing behavior in the supermarket. The objectives were to develop, demonstrate, and evaluate consumer education strategies for waste reduction. The amount of waste generated by packaging size and form, with an adjustment for local recyclability of waste, was determined for 14 product categories identified as having more waste generating and less waste generating product choices (a total of 484 products). Using supermarket scan data and shopper identification numbers, the research tracked the purchases of shoppers in groups receiving different education treatments for 9 months. Statistical tests applied to the purchase data assessed patterns of change between the groups by treatment period. Analysis of the data revealed few meaningful statistical differences between study groups or changes in behavior over time. Findings suggest that broad brush consumer education about waste reduction is not effective in changing purchasing behaviors in the short term. However, it may help create a general awareness of the issues surrounding excess packaging and consumer responsibility. The study concludes that the answer to waste reduction in the future may be a combination of voluntary initiatives by manufacturers and retailers, governmental intervention, and better-informed consumers.

Harrison, E.Z.

1996-05-01T23:59:59.000Z

363

Microbial reduction of iron ore  

DOE Patents (OSTI)

A process is provided for reducing iron ore by treatment with microorganisms which comprises forming an aqueous mixture of iron ore, microorganisms operable for reducing the ferric iron of the iron ore to ferrous iron, and a substrate operable as an energy source for the microbial reduction; and maintaining the aqueous mixture for a period of time and under conditions operable to effect the reduction of the ore. Preferably the microorganism is Pseudomonas sp. 200 and the reduction conducted anaerobically with a domestic wastewater as the substrate. An aqueous solution containing soluble ferrous iron can be separated from the reacted mixture, treated with a base to precipitate ferrous hydroxide which can then be recovered as a concentrated slurry.

Hoffmann, Michael R. (Pasadena, CA); Arnold, Robert G. (Pasadena, CA); Stephanopoulos, Gregory (Pasadena, CA)

1989-01-01T23:59:59.000Z

364

Microbial reduction of iron ore  

DOE Patents (OSTI)

A process is provided for reducing iron ore by treatment with microorganisms which comprises forming an aqueous mixture of iron ore, microorganisms operable for reducing the ferric iron of the iron ore to ferrous iron, and a substrate operable as an energy source for the microbial reduction; and maintaining the aqueous mixture for a period of time and under conditions operable to effect the reduction of the ore. Preferably the microorganism is Pseudomonas sp. 200 and the reduction conducted anaerobically with a domestic wastewater as the substrate. An aqueous solution containing soluble ferrous iron can be separated from the reacted mixture, treated with a base to precipitate ferrous hydroxide which can then be recovered as a concentrated slurry. 11 figs.

Hoffmann, M.R.; Arnold, R.G.; Stephanopoulos, G.

1989-11-14T23:59:59.000Z

365

Human U4/U6 snRNP Recycling Factor p110: Mutational Analysis Reveals the Function of the Tetratricopeptide Repeat Domain in Recycling  

Science Journals Connector (OSTI)

...ARTICLE GENE EXPRESSION Human U4/U6 snRNP Recycling Factor p110: Mutational Analysis Reveals...the Tetratricopeptide Repeat Domain in Recycling Jan Medenbach 1 Silke Schreiner 1 Sunbin...Here we demonstrate under in vitro recycling conditions that U6-p110 is an essential...

Jan Medenbach; Silke Schreiner; Sunbin Liu; Reinhard Lührmann; Albrecht Bindereif

2004-09-01T23:59:59.000Z

366

Water balance analysis and wastewater recycling investigation in electrolytic manganese industry of China — A case study  

Science Journals Connector (OSTI)

Abstract A water balance investigation was performed for a representative electrolytic manganese metal (EMM) enterprise to study the details of water consumption and generation in the production process. A new integrated wastewater treatment approach was put forward to recover useful chemicals from the process wastewater, which contained high concentrations of Mn2 +, Cr(VI), Cr3 +, and NH4+. Cr(VI) was recovered from the wastewater by ion exchange techniques and reused as EMM passivant. The remaining wastewater containing Mn2 + and NH4+ was returned to the leaching section before the impurity removal procedure to prepare electrolytes. Complete wastewater recycling was achieved after water balance regulation and optimization. Final demonstration line results proved that the proposed process is feasible and exhibits significant advantages of better treatment effects, lower costs and lower environmental impact compared to the traditional reduction–neutralization–sedimentation treatment method. With the adoption of the proposed approach, solid waste disposal cost and the required area for the landfill yard were decreased by 80%. Operating costs for wastewater treatment were lowered by 85%. Around 4.8 kg/t EMM of Mn2 +, 5.2 kg/t EMM of NH4+ and 0.24 kg/t EMM of Cr(VI) were recovered. The recycled wastewater proportion was increased from 6.2% to 100.0%. 1.168 m3/t EMM of fresh water was saved and the equivalent amount of discharging wastewater was reduced to the environment.

Fuyuan Xu; Linhua Jiang; Zhigang Dan; Xiaojuan Gao; Ning Duan; Guimei Han; Hong Zhu

2014-01-01T23:59:59.000Z

367

Auto shredder residue recycling: Mechanical separation and pyrolysis  

Science Journals Connector (OSTI)

Directive 2000/53/EC sets a goal of 85% material recycling from end-of-life vehicles (ELVs) by the end of 2015. The current ELV recycling rate is around 80%, while the remaining waste is called automotive shredder residue (ASR), or car fluff. In Europe, this is mainly landfilled because it is extremely heterogeneous and often polluted with car fluids. Despite technical difficulties, in the coming years it will be necessary to recover materials from car fluff in order to meet the ELV Directive requirement. This study deals with ASR pretreatment and pyrolysis, and aims to determine whether the ELV material recycling target may be achieved by car fluff mechanical separation followed by pyrolysis with a bench scale reactor. Results show that flotation followed by pyrolysis of the light, organic fraction may be a suitable ASR recycling technique if the oil can be further refined and used as a chemical. Moreover, metals are liberated during thermal cracking and can be easily separated from the pyrolysis char, amounting to roughly 5% in mass. Lastly, pyrolysis can be a good starting point from a “waste-to-chemicals” perspective, but further research should be done with a focus on oil and gas refining, in order both to make products suitable for the chemical industry and to render the whole recycling process economically feasible.

Alessandro Santini; Fabrizio Passarini; Ivano Vassura; David Serrano; Javier Dufour; Luciano Morselli

2012-01-01T23:59:59.000Z

368

Letter from Nuclear Energy Institute regarding Integrated Safety Analysis: Why it is Appropropriate for Fuel Recycling Facilities  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

082 l F: 202.533.0166 l rxm@nei.org l www.nei.org 082 l F: 202.533.0166 l rxm@nei.org l www.nei.org Rod McCullum DIRECTOR FUEL CYCLE PROJECTS NUCLEAR GENERATION DIVISION September 10, 2010 Ms. Catherine Haney Director Office of Nuclear Material Safety and Safeguards U.S. Nuclear Regulatory Commission Washington, DC 20555-0001 Subject: Integrated Safety Analysis: Why It Is Appropriate for Fuel Recycling Facilities Project Number: 689 Dear Ms. Haney: Enclosed for your review is a Nuclear Energy Institute white paper on the use of Integrated Safety Analysis (ISA) at U.S. Nuclear Regulatory Commission-licensed recycling facilities. This paper is intended as an information source for the NRC and should serve as a foundation for discussion with industry representatives on the issue.

369

Dose Reduction Techniques  

SciTech Connect

As radiation safety specialists, one of the things we are required to do is evaluate tools, equipment, materials and work practices and decide whether the use of these products or work practices will reduce radiation dose or risk to the environment. There is a tendency for many workers that work with radioactive material to accomplish radiological work the same way they have always done it rather than look for new technology or change their work practices. New technology is being developed all the time that can make radiological work easier and result in less radiation dose to the worker or reduce the possibility that contamination will be spread to the environment. As we discuss the various tools and techniques that reduce radiation dose, keep in mind that the radiological controls should be reasonable. We can not always get the dose to zero, so we must try to accomplish the work efficiently and cost-effectively. There are times we may have to accept there is only so much you can do. The goal is to do the smart things that protect the worker but do not hinder him while the task is being accomplished. In addition, we should not demand that large amounts of money be spent for equipment that has marginal value in order to save a few millirem. We have broken the handout into sections that should simplify the presentation. Time, distance, shielding, and source reduction are methods used to reduce dose and are covered in Part I on work execution. We then look at operational considerations, radiological design parameters, and discuss the characteristics of personnel who deal with ALARA. This handout should give you an overview of what it takes to have an effective dose reduction program.

WAGGONER, L.O.

2000-05-16T23:59:59.000Z

370

Recycling Carbon Dioxide to Make Plastics | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Recycling Carbon Dioxide to Make Plastics Recycling Carbon Dioxide to Make Plastics Recycling Carbon Dioxide to Make Plastics May 20, 2013 - 1:31pm Addthis Novomer’s thermoplastic pellets incorporate waste CO2 into a variety of consumer products. Novomer's thermoplastic pellets incorporate waste CO2 into a variety of consumer products. Why is this important? By using CO2 that would otherwise be emitted to the atmosphere, the process has the potential to cut greenhouse gas emissions while simultaneously reducing petroleum consumption and producing useful products for American consumers. The world's first successful large-scale production of a polypropylene carbonate (PPC) polymer using waste carbon dioxide (CO2) as a key raw material has resulted from a projected funded in part by the U.S. Department of Energy's Office of Fossil Energy.

371

Parametric Analysis of Environmental Performance of Reused/Recycled Packaging  

Science Journals Connector (OSTI)

Much higher targets are now required:? paper and glass 60%, metals 50%, plastics 22.5%, and overall recycling between 55% and 80% (1). ... If the systems have the same net imports, that is, if Inet1 = Inet2, or ?Inet = 0, the system with higher ? is associated with lower environmental impacts from production (K3) at steady state, if and only if its production level, Pe2, remains below a critical level given by Pe2 recycle flow remains below a critical value, R2 recycled material and virgin resources, respectively (values for p and q, related to various impacts, for glass, aluminum, ferrous, and various plastic packaging materials are given in ref 15). ...

C. A. Tsiliyannis

2005-11-16T23:59:59.000Z

372

'Recycling' Grid Energy with Flywheel Technology | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

'Recycling' Grid Energy with Flywheel Technology 'Recycling' Grid Energy with Flywheel Technology 'Recycling' Grid Energy with Flywheel Technology September 30, 2010 - 5:03pm Addthis Seven-foot tall cylinders equipped with flywheel technology (shown above) will make up Beacon Power’s energy storage plant in Stephentown, N.Y. The company received a $43 million loan guarantee from the Energy Department to build the plant. | Photo courtesy of Beacon Power Corporation Seven-foot tall cylinders equipped with flywheel technology (shown above) will make up Beacon Power's energy storage plant in Stephentown, N.Y. The company received a $43 million loan guarantee from the Energy Department to build the plant. | Photo courtesy of Beacon Power Corporation Stephen Graff Former Writer & editor for Energy Empowers, EERE

373

Doing the impossible: Recycling nuclear waste  

ScienceCinema (OSTI)

A Science Channel feature explores how Argonne techniques could be used to safely reduce the amount of radioactive waste generated by nuclear power?the most plentiful carbon-neutral energy source. Read more at http://www.anl.gov/Media_Center/ArgonneNow/Fall_2009/nuclear.html

None

2013-04-19T23:59:59.000Z

374

Modelling of automobile shredder residue recycling in the Japanese legislative context  

Science Journals Connector (OSTI)

Abstract End-of-life vehicles (ELVs) represent one of the most important waste flows in Japan and 3.58 million was processed only in fiscal year 2008. In an attempt to reduce waste originating from ELVs, the Japanese Government introduced the ELV Recycling Law in 2002. Automobile shredder residue (ASR) recycling is essential to achieving the goals of the ELV Recycling Law and represents a major concern for the Japanese vehicle recycling industry. This paper proposes the tactical ASR recycling planning model, which can be used to assist Japanese vehicle recyclers to improve their profitability and ASR recycling efficiency. A numerical study is conducted in order to illustrate the potentials and applicability of the proposed modelling approach, and to gain insights into the performances of the Japanese vehicle recycling system and into the influence of the ELV Recycling Law. Sensitivity analyses demonstrate and validate the approach and its potentials. ELV Recycling Law influence is found to be crucial for the decision making on ASR recycling, as the 20% increase in valid recycling quota will cause approximately 50% decrease in the quantity of disposed ASR. We show that the stringent ASR recycling quota is easily attainable and present many interesting insights.

Vladimir Simic; Branka Dimitrijevic

2013-01-01T23:59:59.000Z

375

Quantitative Analysis of Pesticides in Postconsumer Recycled Plastics Using Off-Line Supercritical Fluid Extraction/GC-ECD  

Science Journals Connector (OSTI)

One of the better alternatives is to recycle the plastic again for the same use. ... When these plastics are recycled, the pesticides remain in the plastic even after five recycling steps. ...

C. Nerín; R. Batlle; J. Cacho

1997-08-15T23:59:59.000Z

376

SNX17 regulates Notch pathway and pancreas development through the retromer-dependent recycling of Jag1  

E-Print Network (OSTI)

the retromer-dependent recycling of Jag1. Cell RegenerationWnt secretion by recycling Yin et al. Cell Regenerationthe retromer-dependent recycling of Jag1 Wenguang Yin 1 ,

2012-01-01T23:59:59.000Z

377

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 19, NO. 7, JULY 2008 1 Cooperative Secondary Authorization Recycling  

E-Print Network (OSTI)

Secondary Authorization Recycling Qiang Wei, Matei Ripeanu, Member, IEEE, and Konstantin Beznosov, Member recycles previously received authorizations and shares them with other application servers to mask authorization recycling system and its evaluation using simulation and prototype implementation. The results

378

Recycling tires. (Latest citations from Pollution abstracts). Published Search  

SciTech Connect

The bibliography contains citations concerning the technology and economic advantages of scrap tire recycling. The application of crumb rubber in the production of asphalt paving, floor-coverings, high performance composites, and other products is described. The production of fuels from scrap tires is also discussed. Legislation which promotes recycling, and the roles of government and the private sector in developing new markets and expanding existing markets are included. (Contains a minimum of 76 citations and includes a subject term index and title list.)

Not Available

1994-01-01T23:59:59.000Z

379

Recycling tires. (Latest citations from Pollution Abstracts). Published Search  

SciTech Connect

The bibliography contains citations concerning the technology and economic advantages of scrap tire recycling. The application of crumb rubber in the production of asphalt paving, floor-coverings, high performance composites, and other products is described. The production of fuels from scrap tires is also discussed. Legislation which promotes recycling, and the roles of government and the private sector in developing new markets and expanding existing markets are included.(Contains 50-250 citations and includes a subject term index and title list.) (Copyright NERAC, Inc. 1995)

NONE

1996-12-01T23:59:59.000Z

380

Recycling tires. (Latest citations from Pollution Abstracts). Published Search  

SciTech Connect

The bibliography contains citations concerning the technology and economic advantages of scrap tire recycling. The application of crumb rubber in the production of asphalt paving, floor-coverings, high performance composites, and other products is described. The production of fuels from scrap tires is also discussed. Legislation which promotes recycling, and the roles of government and the private sector in developing new markets and expanding existing markets are included.(Contains 50-250 citations and includes a subject term index and title list.) (Copyright NERAC, Inc. 1995)

NONE

1995-11-01T23:59:59.000Z

Note: This page contains sample records for the topic "recycling source reduction" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

Recycling tires. (Latest citations from Pollution abstracts). NewSearch  

SciTech Connect

The bibliography contains citations concerning the technology and economic advantages of scrap tire recycling. The application of crumb rubber in the production of asphalt paving, floor-coverings, high performance composites, and other products is described. The production of fuels from scrap tires is also discussed. Legislation which promotes recycling, and the roles of government and the private sector in developing new markets and expanding existing markets are included. (Contains a minimum of 83 citations and includes a subject term index and title list.)

Not Available

1994-11-01T23:59:59.000Z

382

Dynamic Systems Analysis Report for Nuclear Fuel Recycle  

SciTech Connect

This report examines the time-dependent dynamics of transitioning from the current United States (U.S.) nuclear fuel cycle where used nuclear fuel is disposed in a repository to a closed fuel cycle where the used fuel is recycled and only fission products and waste are disposed. The report is intended to help inform policy developers, decision makers, and program managers of system-level options and constraints as they guide the formulation and implementation of advanced fuel cycle development and demonstration efforts and move toward deployment of nuclear fuel recycling infrastructure.

Brent Dixon; Sonny Kim; David Shropshire; Steven Piet; Gretchen Matthern; Bill Halsey

2008-12-01T23:59:59.000Z

383

Energy Return on Investment from Recycling Nuclear Fuel  

SciTech Connect

This report presents an evaluation of the Energy Return on Investment (EROI) from recycling an initial batch of 800 t/y of used nuclear fuel (UNF) through a Recycle Center under a number of different fuel cycle scenarios. The study assumed that apart from the original 800 t of UNF only depleted uranium was available as a feed. Therefore for each subsequent scenario only fuel that was derived from the previous fuel cycle scenario was considered. The scenarios represent a good cross section of the options available and the results contained in this paper and associated appendices will allow for other fuel cycle options to be considered.

None

2011-08-17T23:59:59.000Z

384

Rheological Modification of Lubricating Greases with Recycled Polymers from Different Plastics Waste  

Science Journals Connector (OSTI)

Rheological Modification of Lubricating Greases with Recycled Polymers from Different Plastics Waste ... Tall, S.; Albertsson, A. C.; Karlsson, S. Recycling of Mixed Plastic Fractions: Mechanical Properties of Multicomponent Extruded Polyolefin Blends Using Response Surface Methodology J. Appl. ...

J. E. Martín-Alfonso; C. Valencia; M. C. Sánchez; J. M. Franco; C. Gallegos

2009-03-12T23:59:59.000Z

385

Opportunities and Experiences in Implementing the Recycling Methods for Industrial Water Supply in Bulgaria  

Science Journals Connector (OSTI)

In this chapter, the importance of recycling of industrial wastewater in general and in Bulgaria is explained. The necessary preconditions for water recycling, i.e. environmental, technical and economical ... The...

Plamen Stoychev

2011-01-01T23:59:59.000Z

386

Organic contaminants in sewage sludge (biosolids) and their significance for agricultural recycling  

Science Journals Connector (OSTI)

...contaminants in water and wastewater' compiled and edited...significance for agricultural recycling S. R. Smith * * s...discharged in urban wastewater from industrial and...significance for agricultural recycling. | Organic chemicals discharged in urban wastewater from industrial and...

2009-01-01T23:59:59.000Z

387

Fact #763: January 21, 2013 Eighty-four Percent of Scrapped Tires Are Recycled  

Energy.gov (U.S. Department of Energy (DOE))

There were 263 million tires scrapped in 2009 (latest available data) which amounts to more than 4.7 million tons of waste. Fortunately, 84% of that waste was recycled. Most of the recycled tires...

388

Modeling of recycling oxic and anoxic treatment system for swine wastewater using neural networks  

Science Journals Connector (OSTI)

A recycling reactor system operated under sequential anoxic and oxic conditions for the treatment of swine wastewater has been developed, in which piggery slurry ... treated and then part of the effluent is recycled

Jung-Hye Choi; Jun-Il Sohn; Hyun-Sook Yang…

2000-10-01T23:59:59.000Z

389

Recycling Rare Earth Elements from Industrial Wastewater with Flowerlike Nano-Mg(OH)2  

Science Journals Connector (OSTI)

Recycling Rare Earth Elements from Industrial Wastewater with Flowerlike Nano-Mg(OH)2 ... The pilot-scale experiment indicated that the self-supported flowerlike nano-Mg(OH)2 had great potential to recycle REEs from industrial wastewater. ...

Chaoran Li; Zanyong Zhuang; Feng Huang; Zhicheng Wu; Yangping Hong; Zhang Lin

2013-09-13T23:59:59.000Z

390

Demo of below ground site that once held the Plutonium Recycle...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Demo of below ground site that once held the Plutonium Recycle Test Reactor at Hanford Demo of below ground site that once held the Plutonium Recycle Test Reactor at Hanford...

391

A Feasibility Study for Recycling Used Automotive Oil Filters In A Blast Furnace  

SciTech Connect

This feasibility study has indicated that of the approximately 120,000 tons of steel available to be recycled from used oil filters (UOF's), a maximum blast furnace charge of 2% of the burden may be anticipated for short term use of a few months. The oil contained in the most readily processed UOF's being properly hot drained and crushed is approximately 12% to 14% by weight. This oil will be pyrolized at a rate of 98% resulting in additional fuel gas of 68% and a condensable hydrocarbon fraction of 30%, with the remaining 2% resulting as carbon being added into the burden. Based upon the writer's collected information and assessment, there appears to be no operational problems relating to the recycling of UOF's to the blast furnace. One steel plant in the US has been routinely charging UOF's at about 100 tons to 200 tons per month for many years. Extensive analysis and calculations appear to indicate no toxic consideration as a result of the pyrolysis of the small contained oil ( in the 'prepared' UOFs) within the blast furnace. However, a hydrocarbon condensate in the ''gasoline'' fraction will condense in the blast furnace scrubber water and may require additional processing the water treatment system to remove benzene and toluene from the condensate. Used oil filters represent an additional source of high quality iron units that may be effectively added to the charge of a blast furnace for beneficial value to the operator and to the removal of this resource from landfills.

Ralph M. Smailer; Gregory L. Dressel; Jennifer Hsu Hill

2002-01-21T23:59:59.000Z

392

Recycling: General studies. (Latest citations from the NTIS bibliographic database). Published Search  

SciTech Connect

The bibliography contains citations concerning the processes, techniques, and benefits of recycling. The recycling processes for aluminum, chromium, nickel, cobalt, lead, copper, and precious metals scrap are discussed. Also included are citations on recycling of waste paper fibers and rubber wastes for the production of new products. Recycling in the jewelry, electronics, milling, beverage, automotive, and aircraft industries are considered. (Contains 250 citations and includes a subject term index and title list.)

Not Available

1993-12-01T23:59:59.000Z

393

Recycling: General studies. (Latest citations from the NTIS Bibliographic database). Published Search  

SciTech Connect

The bibliography contains citations concerning the processes, techniques, and benefits of recycling. The recycling processes for aluminum, chromium, nickel, cobalt, lead, copper, and precious metals scrap are discussed. Also included are citations on recycling of waste paper fibers and rubber wastes for the production of new products. Recycling in the jewelry, electronics, milling, beverage, automotive, and aircraft industries are considered. (Contains 250 citations and includes a subject term index and title list.)

Not Available

1994-11-01T23:59:59.000Z

394

Recycling: General studies. (Latest citations from the NTIS bibliographic database). Published Search  

SciTech Connect

The bibliography contains citations concerning the processes, techniques, and benefits of recycling. The recycling processes for aluminum, chromium, nickel, cobalt, lead, copper, and precious metals scrap are discussed. Also included are citations on recycling of waste paper fibers and rubber wastes for the production of new products. Recycling in the jewelry, electronics, milling, beverage, automotive, and aircraft industries are considered. (Contains 50-250 citations and includes a subject term index and title list.) (Copyright NERAC, Inc. 1995)

NONE

1995-12-01T23:59:59.000Z

395

Development of asphalts and pavements using recycled tire rubber. Phase 1: technical feasibility. Final report  

SciTech Connect

This report documents the technical progress made on the development of asphalts and pavements using recycled tire rubber.

Bullin, J.A.; Davison, R.R.; Glover, C.J. [and others

1998-01-01T23:59:59.000Z

396

A Research Needs Assessment for waste plastics recycling: Volume 2, Project report. Final report  

SciTech Connect

This second volume contains detailed information on a number of specific topics relevant to the recovery/recycling of plastics.

NONE

1994-12-01T23:59:59.000Z

397

NETL: IEP - Coal Utilization By-Products: Consortium Byproducts Recycling  

NLE Websites -- All DOE Office Websites (Extended Search)

Combustion Byproducts Recycling Consortium (CBRC) Combustion Byproducts Recycling Consortium (CBRC) The mission of the Combustion Byproducts Recycling Consortium (CBRC) is to promote and support the commercially viable and environmentally sound recycling of coal combustion byproducts for productive uses through scientific research, development, and field testing. The overall goals of CBRC are to: Increase the overall national rate of byproduct use by to ~ 50 % by 2010 Increase the number of “allowable” byproduct uses under state regulations by ~ 25% Double of the current rate of FGD byproduct use CBRC is a unique partnership that integrates the electric power industry, State and Federal regulatory agencies, and academia to form a strong, cohesive consortium to guide the national and regional research priorities of the CBRC. CBRC is managed by the West Virginia Water Research Institute at West Virginia University and is administered by regional centers at the University of Kentucky (Eastern Region), Southern Illinois University (Midwest Region) and the University of North Dakota (Western Region). Primary funding for CBRC is provided by the U.S. Department of Energy’s National Energy Technology Laboratory (DOE-NETL).

398

Process for gasifying carbonaceous material from a recycled condensate slurry  

DOE Patents (OSTI)

Coal or other carbonaceous material is gasified by reaction with steam and oxygen in a manner to minimize the problems of effluent water stream disposal. The condensate water from the product gas is recycled to slurry the coal feed and the amount of additional water or steam added for cooling or heating is minimized and preferably kept to a level of about that required to react with the carbonaceous material in the gasification reaction. The gasification is performed in a pressurized fluidized bed with the coal fed in a water slurry and preheated or vaporized by indirect heat exchange contact with product gas and recycled steam. The carbonaceous material is conveyed in a gas-solid mixture from bottom to top of the pressurized fluidized bed gasifier with the solids removed from the product gas and recycled steam in a supported moving bed filter of the resulting carbonaceous char. Steam is condensed from the product gas and the condensate recycled to form a slurry with the feed coal carbonaceous particles.

Forney, Albert J. (Coraopolis, PA); Haynes, William P. (Pittsburgh, PA)

1981-01-01T23:59:59.000Z

399

BLEACHABILITY OF RECYCLED FIBERS DEINKED WITH ENZYME PREPARATIONS  

E-Print Network (OSTI)

the recycling emphasis from ink removal to color removal. Our research indicates that enzymes can. This brightness matched that achieved by bleaching conven- tionally deinked pulps that used additional peroxide deinking. BACKGROUND For the removal of toner inks, enzyme preparations are ef- fective substitutes

Abubakr, Said

400

Recycling Energy to Restore Impaired Ankle Function during Human Walking  

E-Print Network (OSTI)

Recycling Energy to Restore Impaired Ankle Function during Human Walking Steven H. Collins1 walking, largely at the transitions between steps. The ankle then acts to restore energy during push-off, which may be the reason that ankle impairment nearly always leads to poorer walking economy

Collins, Steven H.

Note: This page contains sample records for the topic "recycling source reduction" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

Environmentally-friendly organochlorine waste processing and recycling  

E-Print Network (OSTI)

; 5) purification of VCM; 6) burning organochlorine waste (OCW) (Lakshmanan et al., 1999). In additionEnvironmentally-friendly organochlorine waste processing and recycling Sergei A. Kurta a , Alex A in revised form 12 May 2013 Accepted 12 May 2013 Available online 20 May 2013 Keywords: Organochlorine waste

Volinsky, Alex A.

402

EA-1919: Recycle of Scrap Metals Originating from Radiological Areas  

Energy.gov (U.S. Department of Energy (DOE))

This Programmatic EA evaluates alternatives for the management of scrap metal originating from DOE radiological control areas, including the proposed action to allow for the recycle of uncontaminated scrap metal that meets the requirements of DOE Order 458.1. (Metals with volumetric radioactive contamination are not included in the scope of this Programmatic EA.)

403

Recycling Water: one step to making algal biofuels a reality  

E-Print Network (OSTI)

Recycling Water: one step to making algal biofuels a reality Manuel Vasquez, Juan Sandoval acquisition of solar power, nuclear power, and biofuels to diversify the country's domestic energy profile, the chemical make-up of biofuels allows them to be readily converted into their petroleum counterparts making

Fay, Noah

404

The recycling of the coal fly ash in glass production  

SciTech Connect

The recycling of fly ash obtained from the combustion of coal in thermal power plant has been studied. Coal fly ash was vitrified by melting at 1773 K for 5 hours without any additives. The properties of glasses produced from coal fly ash were investigated by means of Differential Thermal Analysis (DTA), X-ray Diffraction (XRD) and Scanning Electron Microscopy (SEM) techniques. DTA study indicated that there was only one endothermic peak at 1003 K corresponding to the glass transition temperature. XRD analysis showed the amorphous state of the glass sample produced from coal fly ash. SEM investigations revealed that the coal fly ash based glass sample had smooth surface. The mechanical, physical and chemical properties of the glass sample were also determined. Recycling of coal fly ash by using vitrification technique resulted to a glass material that had good mechanical, physical and chemical properties. Toxicity characteristic leaching procedure (TCLP) results showed that the heavy metals of Pb, Cr, Zn and Mn were successfully immobilized into the glass. It can be said that glass sample obtained by the recycling of coal fly ash can be taken as a non-hazardous material. Overall, results indicated that the vitrification technique is an effective way for the stabilization and recycling of coal fly ash.

Erol, M.M.; Kucukbayrak, S.; Ersoy-Mericboyu, A. [Istanbul Technical University, Istanbul (Turkey). Dept. of Chemical Engineering

2006-09-15T23:59:59.000Z

405

Hydrogen recycling with multistep and resonance line absorption effects  

SciTech Connect

Recycling of hydrogen at a neutralizer plate in a tokamak divertor is considered, with particular emphasis on the effects of multistep atomic processes and photoexcitation by the resonant Lyman {alpha} line. These effects are shown to be significant for parameters relevant to International Thermonuclear Experimental Reactor (ITER) (S. A. Cohen {ital et} {ital al}., J. Nucl. Mater. {bold 176} {bold 177}, 909 (1990)).

Marchand, R.; Lauzon, J. (INRS-Energie, C. P. 1020, Varennes, Quebec J3X 1S2 (Canada))

1992-04-01T23:59:59.000Z

406

Recycling Campaign Prizes for best project proposal to  

E-Print Network (OSTI)

coffee cups into the paper bin; which makes us come to the conclusion that communication around, but prevention and raising awareness is better. There are new posters being utilized, what other ways can that is described below. Register Each coordinator is asked to send an e-mail (subject: Recycling Campaign Award

van der Torre, Leon

407

please recycle. Creating Leaders of Consequence for a Sustainable Future  

E-Print Network (OSTI)

manages U.S. legislative and regulatory issues related to transportation fuels and climate changeplease recycle. Creating Leaders of Consequence for a Sustainable Future Hybrid Environmental Professional Program Providing financial aid for dual degree students Today's environmental leaders need a foot

Reif, John H.

408

Nanochannel-Based Single Molecule Recycling John F. Lesoine,  

E-Print Network (OSTI)

Nanochannel-Based Single Molecule Recycling John F. Lesoine, Prahnesh A. Venkataraman, Peter C for measuring the fluorescence from a single molecule hundreds of times without surface immobilization. The approach is based on the use of electroosmosis to repeatedly drive a single target molecule in a fused

Novotny, Lukas

409

Weathering Effects on Mechanical Properties of Recycled HDPE Based Plastic Lumber  

E-Print Network (OSTI)

Weathering Effects on Mechanical Properties of Recycled HDPE Based Plastic Lumber Jennifer K. Lynch recycled plastic lumber (RPL) decking was exposed to the environment for eleven years. The weathering in the construction of the deck were a commingled recycled plastic material referred to as curbside tailings, NJCT

410

A Property-Based Optimization of Direct Recycle Networks and Wastewater  

E-Print Network (OSTI)

A Property-Based Optimization of Direct Recycle Networks and Wastewater Treatment Processes Jose a mathematical programming approach to optimize direct recycle-reuse networks together with wastewater treatment formulation is developed to optimize the recycle/reuse of process streams to units and the perform- ance

Grossmann, Ignacio E.

411

Plasma wall interaction induced oscillations and their effects on the global recycling  

E-Print Network (OSTI)

1 Plasma wall interaction induced oscillations and their effects on the global recycling from Devices 2007.05.20-22 NIFS #12;2 contents 1. MOTIVATION (ULFE & termination) 2. dynamics of recycling 3 in signals on heat loads, particle recycling, and impurity influx and contents. Frequency ~ 1-2Â¥10-3 Hz

Princeton Plasma Physics Laboratory

412

Aggregation methods in food chains with nutrient recycling B.W. Kooi a,  

E-Print Network (OSTI)

Aggregation methods in food chains with nutrient recycling B.W. Kooi a, *, J.C. Poggiale b , P recycling is taken into account. The food chain is formed by a nutrient and two populations, prey. The excreted material together with death material, detritus, is decomposed and this gives the recycling

Poggiale, Jean-Christophe

413

Int. Symposium on Recycling and Reuse of Glass Cullet 19-20 March, 2001  

E-Print Network (OSTI)

Int. Symposium on Recycling and Reuse of Glass Cullet 19-20 March, 2001 University of Dundee, Scotland Recycled Glass ­ From Waste Material to Valuable Resource By Christian Meyer Department of Civil acceptance of the need for recycling. Glass constitutes a major component of solid waste both in the US

Meyer, Christian

414

Automation of waste recycling using hyperspectral image analysis Artzai Picon1  

E-Print Network (OSTI)

Automation of waste recycling using hyperspectral image analysis Artzai Picon1 Ovidiu Ghita2 Pedro. In this paper we present a novel methodology to automate the recycling process of non-ferrous metal Waste from that the proposed solution can be used to replace the manual procedure that is currently used in WEEE recycling

Whelan, Paul F.

415

Control of Delayed Recycling Systems with an Unstable Pole at Forward Path  

E-Print Network (OSTI)

Control of Delayed Recycling Systems with an Unstable Pole at Forward Path J. F. Marquez Rubio, B. del Muro Cu´ellar and Olivier Sename Abstract-- Unstable time delay system and recycling system pose a challenge problem in their own. When unstable time delay system have recycle the control problem becomes

Paris-Sud XI, Université de

416

SAMPLE INTERNSHIP DESCRIPTION NOT CURRENTLY OPEN FOR INFORMATION ONLY Recycling Internship  

E-Print Network (OSTI)

SAMPLE INTERNSHIP DESCRIPTION ­ NOT CURRENTLY OPEN ­ FOR INFORMATION ONLY Recycling Internship Free and disassemble little stuff. You like warehouses. You'll want to look into our Recycling Internship. For more information and information on how to apply, please visit: http://www.freegeek.org/internships/descriptions#recycling

417

Non-parametric Bootstrap Recycling Val erie Ventura, Department of Statistics, Baker Hall 132  

E-Print Network (OSTI)

Non-parametric Bootstrap Recycling Val#19;erie Ventura, Department of Statistics, Baker Hall 132 adjustments. The amount of computation involved is usually considerable, and recycling provides a less computer intensive alternative. Recycling consists of using repeatedly the same samples drawn from

418

Combining Retiming and Recycling to Optimize the Performance of Synchronous Circuits  

E-Print Network (OSTI)

Combining Retiming and Recycling to Optimize the Performance of Synchronous Circuits Luca P, CA 94720-1772 Abstract Recycling was recently proposed as a system-level design tech- nique to facilitate the building of complex System-on-Chips (SOC) by assembling pre-designed components. Recycling

Carloni, Luca

419

PPPL3157 Preprint Date: March 1996, UC421, 423, 426 Investigations of the Tritium Recycling  

E-Print Network (OSTI)

1 PPPL­3157 ­ Preprint Date: March 1996, UC­421, 423, 426 Investigations of the Tritium Recycling material to be ejected into the plasma. This recycling of plasma fuel, which occurs primarily on the inner influx from the edge. Despite its importance, a full understanding of the factors influencing recycling

420

Material Recycling at Product End-of-Life Jeffrey B. Dahmus and Timothy G. Gutowski  

E-Print Network (OSTI)

Material Recycling at Product End-of-Life Jeffrey B. Dahmus and Timothy G. Gutowski Department, Massachusetts, USA Abstract--This work focuses on developing a compact representation of the material recycling different ores, the work here provides insight into the relative attractiveness of recycling different

Gutowski, Timothy

Note: This page contains sample records for the topic "recycling source reduction" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

Control of Delayed Recycling Systems with Unstable First Order Forward Loop  

E-Print Network (OSTI)

Control of Delayed Recycling Systems with Unstable First Order Forward Loop J. F. M Abstract Unstable time-delay systems and recycling systems are challenging problems for control analysis and design. When an unstable time-delay system has a recycle, its control problem becomes even more difficult

Boyer, Edmond

422

The Covered Device Recycling (Act 108) of 2010 (CDRA) A General Overview  

E-Print Network (OSTI)

The Covered Device Recycling (Act 108) of 2010 (CDRA) A General Overview Electronic products address the manufacture, sales, and end-of-life collection, management and recycling of covered devices to their covered devices. o Must establish and conduct ongoing recycling programs that offer covered device

Bushman, Frederic

423

Stoichiometry of nutrient recycling by vertebrates in a tropical stream: linking species identity and  

E-Print Network (OSTI)

REPORT Stoichiometry of nutrient recycling by vertebrates in a tropical stream: linking species in recycling nutrients, thus providing a mechanism for how animal species identity mediates ecosystem processes) recycled nitrogen (N) and phosphorus (P) in a tropical stream supports stoichiometry theory. Mass

Flecker, Alex

424

84 Yun et al. Ribosome recycling factor Acta Cryst. (2000). D56, 8485 crystallization papers  

E-Print Network (OSTI)

84 Yun et al. Ribosome recycling factor Acta Cryst. (2000). D56, 84±85 crystallization papers Acta crystallographic studies of ribosome recycling factor from Escherichia coli Jungmin Yun,a Wookhyun Kim,a Sung Chul rights reserved Ribosome recycling factor (RRF) catalyzes the disassembly of a termination complex during

Suh, Se Won

425

JABSOM EHSO E-WASTE Recycling Program Created: May 13, 2010 Revised: January 6, 2013  

E-Print Network (OSTI)

JABSOM EHSO ­ E-WASTE Recycling Program Created: May 13, 2010 ­ Revised: January 6, 2013 Page 1 of 2 UH eWaste Recycling Program at JABSOM Kaka'ako The University of Hawaii has established a long-term, free-of-charge quarterly recycling program of UH electronic waste (eWaste), compliments of APPLE

Olsen, Stephen L.

426

Vitrinite recycling: diagnostic criteria and reflectance changes during weathering and reburial  

E-Print Network (OSTI)

Vitrinite recycling: diagnostic criteria and reflectance changes during weathering and reburial P CNRS, Université d'Orléans, Bâtiment de Géosciences, 45067 Orléans cedex 2, France Keywords: Recycled to distinguish recycled and autochthonous vitrinite particles and, second, to examine and try to explain

Boyer, Edmond

427

TRITIUM RECYCLING AND INVENTORY IN ERODED DEBRIS OF PLASMA-FACING MATERIALS*  

E-Print Network (OSTI)

.,, TRITIUM RECYCLING AND INVENTORY IN ERODED DEBRIS OF PLASMA-FACING MATERIALS* Ahmed Hassanein. Invited Paper at Advanced Research Workshop on HYDROGEN RECYCLE AT PLASMA FACING MATERIALS Sept. 15 RECYCLING AND INVENTORY IN ERODED DEBRIS OF PLASMA-FACING MATERIALS AmvlED H.ASSANEIN Argonne Mm

Harilal, S. S.

428

A Charge Recycling Differential Noise Immune Jabulani Nyathi, Valeriu Beiu, Suryanarayana Tatapudi, and David 3. Betowski  

E-Print Network (OSTI)

A Charge Recycling Differential Noise Immune Perceptron Jabulani Nyathi, Valeriu Beiu in [SI, [91, [lo]. recycling differential noise-immune threshold logic (CRD-NTL) In this paper we shall focus primarily on charge recycling perceptron is based on combining the split-level precharge

Nyathi, Jabulani

429

ENVIRONMENTALLY BENIGN LINERLESS SELF-ADHESIVE COIL STAMPS: R&D AND RECYCLING STUDIES  

E-Print Network (OSTI)

ENVIRONMENTALLY BENIGN LINERLESS SELF-ADHESIVE COIL STAMPS: R&D AND RECYCLING STUDIES Kim K been easy and quick to use, and have offered consistent adhesion. For recyclers, however, these adhesive stamps have caused concern for their paper recycling processes. In addition, there is the issue

Abubakr, Said

430

PPPL-3157 -Preprint Date: March 1996, UC-421, 423, 426 Investigations of the Tritium Recycling  

E-Print Network (OSTI)

1 PPPL-3157 - Preprint Date: March 1996, UC-421, 423, 426 Investigations of the Tritium Recycling material to be ejected into the plasma. This recycling of plasma fuel, which occurs primarily on the inner influx from the edge. Despite its importance, a full understanding of the factors influencing recycling

431

Cherry: Checkpointed Early Resource Recycling in Out-of-order Microprocessors  

E-Print Network (OSTI)

Cherry: Checkpointed Early Resource Recycling in Out-of-order Microprocessors£ Jos´e F. Mart of Rochester michael.huang@ece.rochester.edu ABSTRACT This paper presents CHeckpointed Early Resource RecYcling (Cherry), a hybrid mode of execution based on ROB and checkpoint- ing that decouples resource recycling

Renau, Jose

432

Cherry-MP: Correctly Integrating Checkpointed Early Resource Recycling in Chip Multiprocessors  

E-Print Network (OSTI)

Cherry-MP: Correctly Integrating Checkpointed Early Resource Recycling in Chip Multiprocessors 14853 USA http://m3.csl.cornell.edu/ ABSTRACT Checkpointed Early Resource Recycling (Cherry by performing aggres- sive resource recycling decoupled from instruction retire- ment, using a checkpoint

Martínez, José F.

433

Resources, Conservation and Recycling 54 (2010) 242249 Contents lists available at ScienceDirect  

E-Print Network (OSTI)

Resources, Conservation and Recycling 54 (2010) 242­249 Contents lists available at ScienceDirect Resources, Conservation and Recycling journal homepage: www.elsevier.com/locate/resconrec Factors influencing the rate of recycling: An analysis of Minnesota counties Shaufique F. Sidiquea, , Satish V. Joshib

Lupi, Frank

434

Resources, Conservation and Recycling 54 (2010) 163170 Contents lists available at ScienceDirect  

E-Print Network (OSTI)

Resources, Conservation and Recycling 54 (2010) 163­170 Contents lists available at ScienceDirect Resources, Conservation and Recycling journal homepage: www.elsevier.com/locate/resconrec The effects of behavior and attitudes on drop-off recycling activities Shaufique F. Sidiquea, , Frank Lupib , Satish V

Lupi, Frank

435

Municipal Energy Reduction Fund | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Municipal Energy Reduction Fund Municipal Energy Reduction Fund Municipal Energy Reduction Fund < Back Eligibility Local Government Savings Category Heating & Cooling Commercial Heating & Cooling Heating Home Weatherization Commercial Weatherization Sealing Your Home Cooling Construction Design & Remodeling Manufacturing Other Windows, Doors, & Skylights Ventilation Heat Pumps Appliances & Electronics Commercial Lighting Lighting Insulation Buying & Making Electricity Energy Sources Maximum Rebate $400,000 Program Info Start Date 3/17/2010 State New Hampshire Program Type State Loan Program Rebate Amount $5,000 to $400,000 Provider New Hampshire Community Development Finance Authority In March 2010, the New Hampshire Community Development Finance Authority (CDFA) launched a revolving loan program to encourage the state's

436

Nox reduction system utilizing pulsed hydrocarbon injection  

DOE Patents (OSTI)

Hydrocarbon co-reductants, such as diesel fuel, are added by pulsed injection to internal combustion engine exhaust to reduce exhaust NO.sub.x to N.sub.2 in the presence of a catalyst. Exhaust NO.sub.x reduction of at least 50% in the emissions is achieved with the addition of less than 5% fuel as a source of the hydrocarbon co-reductants. By means of pulsing the hydrocarbon flow, the amount of pulsed hydrocarbon vapor (itself a pollutant) can be minimized relative to the amount of NO.sub.x species removed.

Brusasco, Raymond M. (Livermore, CA); Penetrante, Bernardino M. (San Ramon, CA); Vogtlin, George E. (Fremont, CA); Merritt, Bernard T. (Livermore, CA)

2001-01-01T23:59:59.000Z

437

Analysis of nuclear proliferation resistance reprocessing and recycling technologies  

SciTech Connect

The PUREX process has been progressively and continuously improved during the past three decades, and these improvements account for successful commercialization of reprocessing in a few countries. The renewed interest in nuclear energy and the international growth of nuclear electricity generation do not equate – and should not be equated -with increasing proliferation risks. Indeed, the nuclear renaissance presents a unique opportunity to enhance the culture of non-proliferation. With the recent revival of interest in nuclear technology, technical methods for prevention of nuclear proliferation are being revisited. Robust strategies to develop new advanced separation technologies are emerging worldwide for sustainability and advancement of nuclear energy with enhanced proliferation resistance. On the other hand, at this moment, there are no proliferation resistance advanced technologies. . Until now proliferation resistance as it applies to reprocessing has been focused on not separating a pure stream of weapons-usable plutonium. France, as an example, has proposed a variant of the PUREX process, the COEX TM process, which does not result on a pure plutonium product stream. A further step is to implement a process based on group extraction of actinides and fission products associated with a homogeneous recycling strategy (UNEX process in the US, GANEX process in France). Such scheme will most likely not be deployable on an industrial scale before 2030 or so because it requires intensive R&D and robust flowsheets. Finally, future generation recycling schemes will handle the used nuclear fuel in fast neutron reactors. This means that the plutonium throughput of the recycling process may increase. The need is obvious for advanced aqueous recycling technologies that are intrinsically more proliferation resistant than the commercial PUREX process. In this paper, we review the actual PUREX process along with the advanced recycling technologies that will enhance technical barriers, making plutonium diversion more difficult by not isolating plutonium or/and coexistence of fission products with plutonium.

Patricia Paviet-Hartmann; Gary Cerefice; Marcela Stacey; Steven Bakhtiar

2011-05-01T23:59:59.000Z

438

Review on potential for waste recycled based bioenergy for marine system  

Science Journals Connector (OSTI)

Human status today can best be defined as an age of knowledge, efficiency and sustainable developments towards fulfilling significant part of human existence in this beautiful planet we all share. Previous time in human history has been dominated with various experimentation, knowledge acquisition which has resulted to new discovery and new philosophy of doing things in efficient, sensitive, cooperative and above all sustainable manner (maintaining quarto bottom balance, i.e. economic, technical, environmental and social, between man technosphere and environsphere world in order to sustain continuous healthy existence of our planet and the right of future generation). New knowledge and technology have emerged, since there is no drain in this planet, the greatest challenge for humanity lies in recycling our waste to the lowest level of usage. This paper will discuss the need to choose waste derived biofuel above all other food sources. This paper also discusses risk and abatement required for choice of best practice sustainable bioenergy generation for marine system.

O.O. Sulaiman; A.S. Abd Kader; A.H. Saharuddin; W.B. Wan Nik; K.B. Samo

2011-01-01T23:59:59.000Z

439

Charcoal from agricultural residues as alternative reducing agent in metal recycling  

Science Journals Connector (OSTI)

Typical carbonization units have the target to produce a charcoal which is in nearly all cases used as energy carrier for the production of heat in different forms. These often very old and not efficient processes are in most cases operated at temperatures between 350 and 500 °C and generate a charcoal with only medium quality. To realize an application of charcoals as CO2-neutral reducing agent in metallurgical processes special high quality charcoals are needed, which meet metallurgical requirements - fixed carbon content of more than 85%, low ash amount and low content of volatiles. Therefore carbonization processes at higher temperature are required. The performed carbonization experiments with agricultural residues at temperatures up to 1000 °C show the possibility of the production of a charcoal which meets the requirements of various metallurgical processes and can act in these industry sector as reducing agent and substitute the so far used fossil coals and cokes. This was realized with some first reduction tests of heavy metal containing residues where charcoals showed a better performance than petroleum coke typically used in such reduction processes. The charcoal application in metal production and recycling processes as substitute of fossil carbon carriers leads to an enormous potential of saved fossil based CO2-emissions because of the high energy and reducing agent demands in these industry sector. So the metal industry has the opportunity to fulfill environmental regulations and restrictions to reduce their CO2-footprint and guarantee the supply of metals in Central Europe in future.

Thomas Griessacher; Jürgen Antrekowitsch; Stefan Steinlechner

2012-01-01T23:59:59.000Z

440

Cleaning Out? Don't Forget to Recycle! | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Cleaning Out? Don't Forget to Recycle! Cleaning Out? Don't Forget to Recycle! Cleaning Out? Don't Forget to Recycle! January 24, 2013 - 5:30pm Addthis Recycling your old electronics is easy and good for the environment. | Photo by Nicki Johnson, NREL 15669. Recycling your old electronics is easy and good for the environment. | Photo by Nicki Johnson, NREL 15669. Kristin Swineford Communication Specialist, Weatherization and Intergovernmental Programs How can I participate? Next time you need to get rid of old electronics or lighting, find out about recycling opportunities in your area. We all know recycling isn't necessarily a new idea for being energy conscious, but it's important to remember just how useful and easy it actually is. We explore a myriad of different energy saving tips every day

Note: This page contains sample records for the topic "recycling source reduction" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

Sustained Recycle in Light Water and Sodium-Cooled Reactors  

SciTech Connect

From a physics standpoint, it is feasible to sustain recycle of used fuel in either thermal or fast reactors. This paper examines multi-recycle potential performance by considering three recycling approaches and calculating several fuel cycle parameters, including heat, gamma, and neutron emission of fresh fuel; radiotoxicity of waste; and uranium utilization. The first recycle approach is homogeneous mixed oxide (MOX) fuel assemblies in a light water reactor (LWR). The transuranic portion of the MOX was varied among Pu, NpPu, NpPuAm, or all-TRU. (All-TRU means all isotopes through Cf-252.) The Pu case was allowed to go to 10% Pu in fresh fuel, but when the minor actinides were included, the transuranic enrichment was kept below 8% to satisfy the expected void reactivity constraint. The uranium portion of the MOX was enriched uranium. That enrichment was increased (to as much as 6.5%) to keep the fuel critical for a typical LWR irradiation. The second approach uses heterogeneous inert matrix fuel (IMF) assemblies in an LWR - a mix of IMF and traditional UOX pins. The uranium-free IMF fuel pins were Pu, NpPu, NpPuAm, or all-TRU. The UOX pins were limited to 4.95% U-235 enrichment. The number of IMF pins was set so that the amount of TRU in discharged fuel from recycle N (from both IMF and UOX pins) was made into the new IMF pins for recycle N+1. Up to 60 of the 264 pins in a fuel assembly were IMF. The assembly-average TRU content was 1-6%. The third approach uses fast reactor oxide fuel in a sodium-cooled fast reactor with transuranic conversion ratio of 0.50 and 1.00. The transuranic conversion ratio is the production of transuranics divided by destruction of transuranics. The FR at CR=0.50 is similar to the CR for the MOX case. The fast reactor cases had a transuranic content of 33-38%, higher than IMF or MOX.

Steven J. Piet; Samuel E. Bays; Michael A. Pope; Gilles J. Youinou

2010-11-01T23:59:59.000Z

442

A cost and benefit analysis of future end-of-life vehicle glazing recycling in France: a  

E-Print Network (OSTI)

1 A cost and benefit analysis of future end-of- life vehicle glazing recycling in France-of-life vehicle glazing recycling in France: a system dynamics approach," Resources, Conservation and Recycling, published in "Resources, Conservation and Recycling (2013) xx" DOI : 10.1016/j.resconrec.2013.02.013 #12;2 1

Paris-Sud XI, Université de

443

Proceedings of 2008 NSF Engineering Research and Innovation Conference, Knoxville, Tennessee Grant #DMI-0423484 Analysis of Recycling Systems  

E-Print Network (OSTI)

#DMI-0423484 Analysis of Recycling Systems Timothy G. Gutowski Malima I. Wolf Jeffrey B. Dahmus Dominic 02139 Abstract: This paper outlines past and future work on the topic of recycling systems. This project focuses on the performance of recycling systems from a range of perspectives. The recyclability

Gutowski, Timothy

444

Recycling flows in eMergy evaluation: A Mathematical Paradox? N.Y. Amponsah, O. Le Corre1  

E-Print Network (OSTI)

37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 Recycling involving recycling or reuse of waste. If waste exergy (its residual usefulness) is not negligible, wastes could serve as input to another process or be recycled. In cases of continuous waste recycle or reuse

Paris-Sud XI, Université de

445

RECYCLING GALVANIZED STEEL: OPERATING EXPERIENCE AND BENEFrI'S  

Office of Scientific and Technical Information (OSTI)

RECYCLING RECYCLING GALVANIZED STEEL: OPERATING EXPERIENCE AND BENEFrI'S Frederick J. Dudek Edward J. Daniels Argonne National Laboratory 9700 S. Cass Avenue Argonne, Illinois 60439, USA William A. Morgan 415 E. 151st Street Metal Recovery Industries U.S., Inc. East Chicago, Indiana 46312, USA DISCLAIMER This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsi- bility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Refer- ence herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise

446

Recycling of LiFePO4 Batteries  

NLE Websites -- All DOE Office Websites (Extended Search)

8-11, 2011 8-11, 2011 Linda Gaines Center for Transportation Research Argonne National Laboratory Recycling of LiFePO 4 Batteries 7th International Symposium on Inorganic Phosphate Materials Phosphate Materials for Energy Storage We don't want to trade one crisis for another!  Battery material shortages are unlikely - We demonstrated that lithium demand can be met - Recycling mitigates potential scarcity  Life-cycle analysis checks for unforeseen impacts  We need to find something to do with the used materials - Safe - Economical 2 Battery materials could get used multiple times Initial Use Automotive power Secondary Use Utility storage Residential storage Power at remote location Refurbishment Rejuvenate (change electrolyte) Switch out bad module

447

Selective control of SNARE recycling by Golgi retention  

Science Journals Connector (OSTI)

Abstract Two distinct sets of soluble N-ethylmaleimide-sensitive factor attachment protein receptors (SNARE) catalyze membrane fusion in the cis-Golgi and trans-Golgi. The mechanism that controls Golgi localization of \\{SNAREs\\} remains largely unknown. Here we tested three potential mechanisms, including vesicle recycling between the Golgi and the endoplasmic reticulum, partitioning in Golgi lipid microdomains, and selective intra-Golgi retention. Recycling rates showed a linear relationship with intra-Golgi mobility of SNAREs. The cis-Golgi \\{SNAREs\\} had higher mobility than intra-Golgi SNAREs, whereas vesicle \\{SNAREs\\} had higher mobility than target membrane SNAREs. The differences in SNARE mobility were not due to preferential partitioning into detergent-resistant membrane microdomains. We propose that intra-Golgi retention precludes entropy-driven redistribution of \\{SNAREs\\} to the endoplasmic reticulum and endocytic compartments.

Masayoshi Fukasawa; Anda Cornea; Oleg Varlamov

2013-01-01T23:59:59.000Z

448

Drying and recycling of primary sludge at Champion International  

SciTech Connect

Champion International Corp.'s Hamilton, OH, mill uses a triple pass rotary dryer to dry primary sludge to a nominal 85% total solids content. The sludge can be recycled and used in the manufacture of such products as paperboard or portland cement. A state of the art landfill was constructed in Reily township in 1990. This landfill is licensed to receive the papermaking waste and boiler ash from the mill. It is the goal of the environmental department of the mill only to use this facility as an absolute emergency backup to the recycling options available to the mill for these two waste streams. At the time of the writing of this article, no waste had been taken to this new landfill.

Hardesty, K.L.; Beer, E.H. (Champion International Corp., Hamilton, OH (United States))

1993-08-01T23:59:59.000Z

449

Remediation and Recycling of Linde FUSRAP Materials  

SciTech Connect

During World War II, the Manhattan Engineering District (MED) utilized facilities in the Buffalo, New York area to extract natural uranium from uranium-bearing ores. The Linde property is one of several properties within the Tonawanda, New York Formerly Utilized Sites Remedial Action Program (FUSRAP) site, which includes Linde, Ashland 1, Ashland 2, and Seaway. Union Carbide Corporation's Linde Division was placed under contract with the Manhattan Engineering District (MED) from 1942 to 1946 to extract uranium from seven different ore sources: four African pitchblende ores and three domestic ores. Over the years, erosion and weathering have spread contamination from the residuals handled and disposed of at Linde to adjacent soils. The U.S. Department of Energy (DOE) and the U.S. Environmental Protection Agency (EPA) negotiated a Federal Facilities Agreement (FFA) governing remediation of the Linde property. In Fiscal Year (FY) 1998, Congress transferred cleanup management responsibility for the sites in the FUSRAP program, including the Linde Site, from the DOE to the U.S. Army Corps of Engineers (USACE), with the charge to commence cleanup promptly. All actions by the USACE at the Linde Site are being conducted subject to the administrative, procedural, and regulatory provisions of the Comprehensive Environmental Response Compensation and Liability Act (CERCLA) and the existing FFA. USACE issued a Proposed Plan for the Linde Property in 1999 and a Final Record of Decision (ROD) in 2000. USACE worked with the local community near the Tonawanda site, and after considering public comment, selected the remedy calling for removing soils that exceed the site-specific cleanup standard, and transporting the contaminated material to off-site locations. The selected remedy is protective of human health and the environment, complies with Federal and State requirements, and meets commitments to the community.

Coutts, P. W.; Franz, J. P.; Rehmann, M. R.

2002-02-27T23:59:59.000Z

450

CANMET CO2 Consortium - O2/CO2 Recycle Combustion  

NLE Websites -- All DOE Office Websites (Extended Search)

CANMET CO CANMET CO 2 Consortium - O 2 /CO 2 Recycle Combustion Background The mission of the U.S. Department of Energy/National Energy Technology Laboratory (DOE/NETL) Existing Plants, Emissions & Capture (EPEC) Research & Development (R&D) Program is to develop innovative environmental control technologies to enable full use of the nation's vast coal reserves, while at the same time allowing the current fleet of coal-fired power plants to comply with existing and emerging environmental

451

Magnetic error analysis of recycler pbar injection transfer line  

SciTech Connect

Detailed study of Fermilab Recycler Ring anti-proton injection line became feasible with its BPM system upgrade, though the beamline has been in existence and operational since year 2000. Previous attempts were not fruitful due to limitations in the BPM system. Among the objectives are the assessment of beamline optics and the presence of error fields. In particular the field region of the permanent Lambertson magnets at both ends of R22 transfer line will be scrutinized.

Yang, M.J.; /Fermilab

2007-06-01T23:59:59.000Z

452

Decontamination of process equipment using recyclable chelating solvent  

SciTech Connect

The Department of Energy (DOE) is now faced with the task of meeting decontamination and decommissioning obligations at numerous facilities by the year 2019. Due to the tremendous volume of material involved, innovative decontamination technologies are being sought that can reduce the volumes of contaminated waste materials and secondary wastes requiring disposal. With sufficient decontamination, some of the material from DOE facilities could be released as scrap into the commercial sector for recycle, thereby reducing the volume of radioactive waste requiring disposal. Although recycling may initially prove to be more costly than current disposal practices, rapidly increasing disposal costs are expected to make recycling more and more cost effective. Additionally, recycling is now perceived as the ethical choice in a world where the consequences of replacing resources and throwing away reusable materials are impacting the well-being of the environment. Current approaches to the decontamination of metals most often involve one of four basic process types: (1) chemical, (2) manual and mechanical, (3) electrochemical, and (4) ultrasonic. {open_quotes}Hard{close_quotes} chemical decontamination solutions, capable of achieving decontamination factors (Df`s) of 50 to 100, generally involve reagent concentrations in excess of 5%, tend to physically degrade the surface treated, and generate relatively large volumes of secondary waste. {open_quotes}Soft{close_quotes} chemical decontamination solutions, capable of achieving Df`s of 5 to 10, normally consist of reagents at concentrations of 0.1 to 1%, generally leave treated surfaces in a usable condition, and generate relatively low secondary waste volumes. Under contract to the Department of Energy, the Babcock & Wilcox Company is developing a chemical decontamination process using chelating agents to remove uranium compounds and other actinide species from process equipment.

Jevec, J.; Lenore, C.; Ulbricht, S.

1995-12-01T23:59:59.000Z

453

Actinide recycle potential in the integral fast reactor  

SciTech Connect

The Integral Fast Reactor (IFR) fuel cycle holds promise for substantial improvements in economics, diversion-resistance, and waste management. In the IFR pyroprocessing, minor actinides accompany plutonium product stream, and therefore, actinide recycle occurs naturally. The fast neutron spectrum of the IFR makes it an ideal actinide burner, as well. This paper discusses technical features of the IFR fuel cycle, its technical progress, the development status, and potential implications on long-term waste management.

Chang, Y.I. [Argonne National Laboratory, IL (United States)

1993-12-31T23:59:59.000Z

454

AISI waste oxide recycling program. Final technical report  

SciTech Connect

In March 1995 AISI completed a five-year, $60 million collaborative development program on Direct Steelmaking cost-shared by DOE under the Metals Initiative. This program defined an energy-efficient and environmentally-friendly technology to produce hot metal for steelmaking directly from coal and iron ore pellets without incurring the high capital costs and environmental problems associated with traditional coke oven and blast furnace technology. As it becomes necessary to replace present capacity, this new technology will be favored because of reduced capital costs, higher energy efficiency, and lower operating costs. In April 1994, having failed to move forward with a demonstration plant for direct ironmaking, despite substantial efforts by both Stelco and Geneva Steel, an alternative opportunity was sought to commercialize this new technology without waiting until existing ironmaking capacity needed to be replaced. Recycling and resource recovery of steel plant waste oxides was considered an attractive possibility. This led to approval of a ten-month, $8.3 million joint program with DOE on recycling steel plant waste oxides utilizing this new smelting technology. This highly successful trial program was completed in December 1994. The results of the pilot plant work and a feasibility study for a recycling demonstration plant are presented in this final technical report.

Aukrust, E.; Downing, K.B.; Sarma, B.

1995-08-01T23:59:59.000Z

455

In situ recycling of contaminated soil uses bioremediation  

SciTech Connect

OxyChem Pipeline Operations, primarily an ethylene and propylene products mover, has determined that substantial savings can be realized by adopting a bioremediation maintenance and recycling approach to hydrocarbon-contaminated soil. By this method, the soil can be recycled in situ, or in containers. To implement the soil-recycling program, OxyChem elected to use a soil remediator and natural absorbent product, Oil Snapper. This field maintenance material, based on an Enhanced Urea Technology, provides a diet to stimulate the growth of hydrocarbon-eating microbes. It works well either with indigenous soil microbes or with commercial microbes. The product is carried in field vehicles, which makes it immediately available when leaks or spills are discovered. Procedure for clean-up is to apply product and mix it into affected soil. Thus the contaminant is contained, preventing further migration; the contaminant is dispersed throughout the product, making it more accessible to the microbes; nutrients are immediately available to the microbes; and the material contributes aeration and moisture-retention properties.

Shevlin, P.J.; Reel, D.A.

1996-04-01T23:59:59.000Z

456

Microbial stabilization and mass reduction of wastes containing radionuclides and toxic metals  

DOE Patents (OSTI)

A process is provided to treat wastes containing radionuclides and toxic metals with Clostridium sp. BFGl to release a large fraction of the waste solids into solution and convert the radionuclides and toxic metals to a more concentrated and stable form with concurrent volume and mass reduction. The radionuclides and toxic metals being in a more stable form are available for recovery, recycling and disposal. 18 figures.

Francis, A.J.; Dodge, C.J.; Gillow, J.B.

1991-09-10T23:59:59.000Z

457

Microbial stabilization and mass reduction of wastes containing radionuclides and toxic metals  

DOE Patents (OSTI)

A process is provided to treat wastes containing radionuclides and toxic metals with Clostridium sp. BFGl to release a large fraction of the waste solids into solutin and convert the radionuclides and toxic metals to a more concentrated and stable form with concurrent volume and mass reduction. The radionuclides and toxic metals being in a more stable form are available for recovery, recycling and disposal.

Francis, Arokiasamy J. (Middle Island, NY); Dodge, Cleveland J. (Wading River, NY); Gillow, Jeffrey B. (Valley Cottage, NY)

1991-01-01T23:59:59.000Z

458

Landfill reduction experience in The Netherlands  

Science Journals Connector (OSTI)

Abstract Modern waste legislation aims at resource efficiency and landfill reduction. This paper analyses more than 20 years of landfill reduction in the Netherlands. The combination of landfill regulations, landfill tax and landfill bans resulted in the desired landfill reduction, but also had negative effects. A fierce competition developed over the remaining waste to be landfilled. In 2013 the Dutch landfill industry generated €40 million of annual revenue, had €58 million annual costs and therefore incurred an annual loss of €18 million. It is not an attractive option to prematurely end business. There is a risk that Dutch landfill operators will not be able to fulfil the financial obligations for closure and aftercare. Contrary to the polluter pays principle the burden may end up with society. EU regulations prohibiting export of waste for disposal are in place. Strong differentials in landfill tax rate between nations have nevertheless resulted in transboundary shipment of waste and in non-compliance with the self-sufficiency and proximity principles. During the transformation from a disposal society to a recycling society, it is important to carefully plan required capacity and to guide the reorganisation of the landfill sector. At some point, it is no longer profitable to provide landfill services. It may be necessary for public organisations or the state to take responsibility for the continued operation of a ‘safety net’ in waste management. Regulations have created a financial incentive to pass on the burden of monitoring and controlling the impact of waste to future generations. To prevent this, it is necessary to revise regulations on aftercare and create incentives to actively stabilise landfills.

Heijo Scharff

2014-01-01T23:59:59.000Z

459

Prioritize Strategies and Set Internal Reduction Targets for Scope 3  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Strategies and Set Internal Reduction Targets for Scope Strategies and Set Internal Reduction Targets for Scope 3 Greenhouse Gas Emissions Prioritize Strategies and Set Internal Reduction Targets for Scope 3 Greenhouse Gas Emissions October 7, 2013 - 10:22am Addthis The final steps in the greenhouse gas (GHG) mitigation planning process for Scope 3 emissions include: Prioritizing strategies across all Scope 3 emission sources Setting internal Scope 3 reduction targets. Prioritizing All Scope 3 Strategies Once the Federal agency understands what Scope 3 reductions are feasible and at what costs, it should prioritize proposed GHG reduction activities across all Scope 3 emission sources. This prioritization will help agencies determine how to get the most out of limited resources for Scope 3 mitigation. It will also assist in developing more informed targets at the

460

Reduction of fuel consumption  

Science Journals Connector (OSTI)

Replacing standard oil pumps with bypass control by regulated oil pumps with variable oil pressure which adapt their variable oil pumping quantity to the engine oil pressure requirements promises reductions in fuel

Dieter Voigt

2003-12-01T23:59:59.000Z

Note: This page contains sample records for the topic "recycling source reduction" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

Ann Arbor's New Recycling Trucks Get an 'Assist' from Clean Cities |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Ann Arbor's New Recycling Trucks Get an 'Assist' from Clean Cities Ann Arbor's New Recycling Trucks Get an 'Assist' from Clean Cities Ann Arbor's New Recycling Trucks Get an 'Assist' from Clean Cities August 18, 2010 - 2:22pm Addthis Peterbilt Model 320 Hybrid HLAs are being put to use in Ann Arbor, MI, where they will serve as recycling trucks. | Photo Courtesy of Peterbilt Motors Company Peterbilt Model 320 Hybrid HLAs are being put to use in Ann Arbor, MI, where they will serve as recycling trucks. | Photo Courtesy of Peterbilt Motors Company Joshua DeLung Hydraulics in vehicles - best known for bouncing cars and kneeling buses - are getting a serious look in Ann Arbor, Mich. The reasons - saving fuel and increasing the life of heavy-use vehicles. With the support of a $120,000 Recovery Act grant, Ann Arbor, Mich., deployed four recycling trucks with hydraulic hybrid power systems

462

Isolation and Purification of Glycoconjugates from Complex Biological Sources by Recycling High-Performance Liquid Chromatography  

Science Journals Connector (OSTI)

Louis, MO) provided 2?,4?,6?-trihydroxyacetophenone monohydrate (THAP), ammonium acetate, ?-mercaptoethanol (?ME), 4-aminobenzamide (4-AB), sodium cyanoborohydride, 4-(2-aminoethyl)aniline, ribonuclease B, ?1-acid glycoprotein (AGP), and bovine fetuin. ... N-Glycanase F (PNGase F) was purchased from Northstar Bioproducts (East Falmouth, MA). ... On the basis of the MS data, the estimated purity for each isomer was greater than 99%. ...

William R. Alley, Jr.; Benjamin F. Mann; Vlastimil Hruska; Milos V. Novotny

2013-09-26T23:59:59.000Z

463

Waste reduction assistance program (WRAP) on-site consultation audit report: Seafood processing plant  

SciTech Connect

The waste audit study was conducted at a seafood processing plant in Alaska. The report discusses process descriptions, waste types and quantities, current waste and materials management practices, and waste reduction alternatives. The company's current practices include use of fish waste, burning of used oil and solvents, and water conservation. Additional opportunities include microfiltration of solvents and oils, recycling of used batteries, inventory control and formation of a waste reduction team. Appendices include a summary of state regulations, a fact sheet on used oil, and a list of vendors and services.

Not Available

1989-07-29T23:59:59.000Z

464

Best Management Practice: Alternate Water Sources | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Best Management Practice: Alternate Water Sources Best Management Practice: Alternate Water Sources Best Management Practice: Alternate Water Sources October 8, 2013 - 9:50am Addthis Many Federal facilities may have water uses that can be met with non-potable water from alternate water sources. Potentially available alternative water sources for Federal sources include municipal-supplied reclaimed water, treated gray water from on-site sanitary sources, and storm water. Overview On-site alternative water sources are most economic if included in the original design. Common uses for these sources include landscape irrigation, ornamental pond and fountain filling, cooling tower make-up, and toilet and urinal flushing. Municipal-Supplied Reclaimed Water Municipal supplied reclaimed water has been treated and recycled for

465

Impacts of the Manufacturing and Recycling Stages on Battery Life Cycles  

NLE Websites -- All DOE Office Websites (Extended Search)

IMPACTS OF THE MANUFACTURING AND RECYCLING STAGES ON BATTERY IMPACTS OF THE MANUFACTURING AND RECYCLING STAGES ON BATTERY LIFE CYCLES J. B. Dunn 1 , L. Gaines 1 , M. Barnes 2 , and J.L. Sullivan 1 1 Argonne National Laboratory, Energy Systems Division 9700 South Cass Avenue, Building 362 Argonne, IL 60439-4815, USA 2 Department of Mechanical Engineering The Pennsylvania State University 157E Hammond Building University Park, PA 16802 Keywords: battery, materials, manufacturing, life cycle, recycling Abstract

466

Mechanical Properties of Chemically Treated Sawdust-Reinforced Recycled Polyethylene Composites  

Science Journals Connector (OSTI)

They have now understood that unregulated dumping or burning can no longer be continued as the environmental devastation already caused by these processes is enormous and that recycling and reuse of polymer-based solid waste can assuage this problem. ... MFCs provides a way to recycle commingled plastics, and MFCs would be potential matrixes for natural fiber polymer composites. ... Ashori, A.; Nourbakhsh, A.Characteristics of wood–fiber plastic composites made of recycled materials Waste Manage. ...

Md. Nazrul Islam; Md. Sakinul Islam

2011-08-20T23:59:59.000Z

467

Process Analysis of Recycled Thermoplasts from Consumer Electronics by Laser-Induced Plasma Spectroscopy  

Science Journals Connector (OSTI)

The practicability of LIPS for the elemental monitoring of recycled plastics was tested during a campaign at a double chain extruder (see Figure 1b) within a recycling plant. ... To evaluate whether the LIPS system can detect a concentration gradient during a load change at the extruder, the emission signals of Sb and Ti were monitored during the transition between the extrusion of unused polymeric material (ABS) and recycled plastic (granulate from casings of electronic waste). ...

Herbert Fink; Ulrich Panne; Reinhard Niessner

2002-07-31T23:59:59.000Z

468

Record of Decision, Tritium Supply and Recycling Programmatic Environmental Impact Statement  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

63877 63877 Tuesday December 12, 1995 Part VII Department of Energy Record of Decision; Tritium Supply and Recycling Programmatic Environmental Impact Statement; Notice 63878 Federal Register / Vol. 60, No. 238 / Tuesday, December 12, 1995 / Notices DEPARTMENT OF ENERGY Record of Decision: Tritium Supply and Recycling Programmatic Environmental Impact Statement AGENCY: Department of Energy. ACTION: Record of Decision: Selection of Tritium Supply Technology and Siting of Tritium Supply and Recycling Facilities. SUMMARY: The Department of Energy (DOE) is issuing this Record of Decision regarding DOE's proposal for Tritium Supply and Recycling Facilities. The Department is making three simultaneous decisions. First, the Department will pursue a dual track on the two most promising tritium supply

469

THE PERFORMANCE AND MODIFICATION OF RECYCLED ELECTRONIC WASTE PLASTICS FOR THE IMPROVEMENT OF ASPHALT PAVEMENT MATERIALS.  

E-Print Network (OSTI)

?? Bulk electric waste plastics were recycled and reduced in size into plastic chips before pulverization or cryogenic grinding into powders. Two major types of… (more)

Colbert, Baron W.

2012-01-01T23:59:59.000Z

470

ARTICLE IN PRESS Massive recycling of nitrogen and other uid-mobile elements  

E-Print Network (OSTI)

of sedimentary N recycled in subduction zones is estimated at 7.6U1011 g/yr. Mass balance calculations strongly

Cartigny, Pierre

471

E-Print Network 3.0 - as recycling process Sample Search Results  

NLE Websites -- All DOE Office Websites (Extended Search)

Energy 98 Photo Courtesy of Carlsbad Water Distict Economic Evaluation for Water Recycling Summary: is limited by the extent of treatment process that wastewater undergoes...

472

Assessing the feasibility of wastewater recycling and treatment efficiency of wastewater treatment units  

Science Journals Connector (OSTI)

Wastewater reuse can significantly reduce environmental pollution and ... in southern Taiwan to discuss the feasibility of wastewater recycling and treatment efficiency of wastewater treatment units. The treatmen...

Jie-Chung Lou; Yung-Chang Lin

2008-02-01T23:59:59.000Z

473

Ground water monitoring system for effluent irrigated areas : a case study of Hawkesbury water recycling scheme.  

E-Print Network (OSTI)

??Water recycling schemes are increasingly being implemented across Australia as an effective means of converting wastewater into a valuable resource. There is currently a lack… (more)

Beveridge, Gavin John

2006-01-01T23:59:59.000Z

474

The recycling rate of atmospheric moisture over the past two decades (1988–2009)  

Science Journals Connector (OSTI)

Numerical models predict that the recycling rate of atmospheric moisture decreases with time at the global scale, in response to global warming. A recent observational study (Wentz et al 2007 Science 317 233–5) did not agree with the results from numerical models. Here, we examine the recycling rate by using the latest data sets for precipitation and water vapor, and suggest a consistent view of the global recycling rate of atmospheric moisture between numerical models and observations. Our analyses show that the recycling rate of atmospheric moisture has also decreased over the global oceans during the past two decades. In addition, we find different temporal variations of the recycling rate in different regions when exploring the spatial pattern of the recycling rate. In particular, the recycling rate has increased in the high-precipitation region around the equator (i.e., the intertropical convergence zone) and decreased in the low-precipitation region located either side of the equator over the past two decades. Further exploration suggests that the temporal variation of precipitation is stronger than that of water vapor, which results in the positive trend of the recycling rate in the high-precipitation region and the negative trend of the recycling rate in the low-precipitation region.

Liming Li; Xun Jiang; Moustafa T Chahine; Edward T Olsen; Eric J Fetzer; Luke Chen; Yuk L Yung

2011-01-01T23:59:59.000Z

475

E-Print Network 3.0 - ash quality recycling Sample Search Results  

NLE Websites -- All DOE Office Websites (Extended Search)

Utilization Summary: Center for By-Products Utilization RECENT ADVANCES IN RECYCLING CLEAN- COAL ASH By Tarun R. Naik... CANMET Conference on Quality of Concrete Structures and...

476

Impact of Recycling Stillage on Conversion of Dilute Sulfuric Acid Pretreated Corn Stover to Ethanol (Poster)  

SciTech Connect

A description of methods and results from an experiment designed to assess the impact of process water recycle on corn stover-to-ethanol conversion process performance.

Mohagheghi, A.; Schell, D. J.

2009-11-01T23:59:59.000Z

477

Accelerated test methods for evaluating alkali-silica reactivity of recycled concrete aggregates.  

E-Print Network (OSTI)

??This thesis reports the findings of a study carried out to determine the effectiveness of Accelerated Tests in evaluating the Alkali-Silica Reactivity of Recycled Concrete… (more)

Johnson, Robert C (Author)

2011-01-01T23:59:59.000Z

478

Analysis of multi-recycle thorium fuel cycles in comparison with once-through fuel cycles.  

E-Print Network (OSTI)

??The purpose of this research is to develop a methodology for a thorium fuel recycling analysis that provides results for isotopics and radio-toxicity evaluation and… (more)

Huang, Lloyd Michael

2013-01-01T23:59:59.000Z

479

Impact of Transportation on Cost, Energy and Particulate Emissions for Recycled Concrete Aggregate.  

E-Print Network (OSTI)

??IMPACT OF TRANSPORTATION ON COST, ENERGY AND PARTICULATE EMISSIONS FOR RECYCLED CONCRETE AGGREGATE Transportation distances can have a huge impact on cost, energy, and particulate… (more)

Hameed, Mohamed

2009-01-01T23:59:59.000Z

480

Physical chemistry of carbothermic reduction of alumina  

SciTech Connect

Production of aluminium, by means of carbothermic reduction of alumina, is discussed. By employing a solvent metal bath to absorb the alumina metal, carbothermic reduction of alumina was accomplished at temperatures 300/degree/C lower than the temperatures reported in the literature. Reduction occurred without the formation of intermediate compounds and without the high volatilization of aluminum bearing species. Reduction of alumina immersed in a solvent bath appeared to be rate limited by chemical reaction control. The rates seemed to be a function of the activity of aluminum in the solvent metal bath. Reduction of alumina particles, above the surface of the bath, seemed to occur via vapor transport with carbon in the particles or in the crucible walls. Mass transport in the gas phase appeared to be rate limiting. The rates seemed to be a function of the distance separating the alumina and carbon sources. With both submerged alumina and alumina particles, increasing the surface area of the alumina increased the rate of reduction. 58 refs., 65 figs., 9 tabs.

Frank, Robert A.

1985-09-01T23:59:59.000Z

Note: This page contains sample records for the topic "recycling source reduction" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


481

Transverse instability of the antiproton beam in the Recycler Ring  

SciTech Connect

The brightness of the antiproton beam in Fermilab's 8 GeV Recycler ring is limited by a transverse instability. This instability has occurred during the extraction process to the Tevatron for large stacks of antiprotons even with dampers in operation. This paper describes observed features of the instability, introduces the threshold phase density to characterize the beam stability, and finds the results to be in agreement with a resistive wall instability model. Effective exclusion of the longitudinal tails from Landau damping by decreasing the depth of the RF potential well is observed to lower the threshold density by up to a factor of two.

Prost, L.R.; Bhat, C.M.; Burov, A.; Crisp, J.; Eddy, N.; Hu, M.; Shemyakin, A.; /Fermilab

2011-03-01T23:59:59.000Z

482

Water Recycling removal using temperature-sensitive hydronen  

SciTech Connect

The overall objective of this project was to study the proposed Water Recycling/Removal Using Temperature-Sensitive Hydrogels. The main element of this technology is the design of a suitable hydrogel that can perform needed water separation for pulp and paper industry. The specific topics studied are to answer following questions: (a) Can water be removed using hydrogel from large molecules such as lignin? (b) Can the rate of separation be made faster? (c) What are the molecular interactions with hydrogel surface? (d) Can a hydrogel be designed for a high ionic strength and high temperature? Summary of the specific results are given.

Rana B. Gupta

2002-10-30T23:59:59.000Z

483

Recycling and composting demonstration projects for the Memphis region  

SciTech Connect

This report documents the development and implementation of the project entitled Recycling and Composting Demonstration Projects for the Memphis Region.'' The project was funded by the Energy Task Force of the Urban Consortium for Technology Initiatives. This Project was implemented by the staff of the Special Programs Section of the Memphis and Shelby County Division of Planning and Development. The project began November 1, 1990, and was completed December 31, 1991. The purpose of the project was to evaluate the feasibility of a variety of solid waste disposal alternatives.

Muller, D. (Memphis and Shelby County Div. of Planning and Development, TN (United States))

1992-05-01T23:59:59.000Z

484

Recycling and composting demonstration projects for the Memphis region  

SciTech Connect

This report documents the development and implementation of the project entitled ``Recycling and Composting Demonstration Projects for the Memphis Region.`` The project was funded by the Energy Task Force of the Urban Consortium for Technology Initiatives. This Project was implemented by the staff of the Special Programs Section of the Memphis and Shelby County Division of Planning and Development. The project began November 1, 1990, and was completed December 31, 1991. The purpose of the project was to evaluate the feasibility of a variety of solid waste disposal alternatives.

Muller, D. [Memphis and Shelby County Div. of Planning and Development, TN (United States)

1992-05-01T23:59:59.000Z

485

Design and analysis of recycled content sign blanks  

E-Print Network (OSTI)

/3. 66 m length Uniform gray ASTM D638 ASTM D638 ASTM D790 ASTM D790 ASTM D695 ASTM D695 ASTM D732 ASTM D256 ASTM D648 ASTM D3841 ASTM D696 ASTM D3841 2. 4 REVIEW OF RESEARCH ON RECYCLED SIGN BLANK SUBSTRATES 2. 4. 1 Aluminum... Properties Physical Specific Gravity Testing Standard (2) ASTM D 792-91 0. 7 Minimum Test Performance (3) Comments (4) Sofiening Point Flash Ignition Flame Spread Oassification Smoke Developed Classincation Decay Resistance Termite Resisimce...

Harrison, Ben Frank

2012-06-07T23:59:59.000Z

486

Effects of recycling peroxide liquor on brightness of mechanical pulp  

SciTech Connect

The high cost of bleaching softwood mechanical pulps to 80% brightness with peroxide can be partly offset by recycling the unreacted peroxide in the effluent. However, the situation is complicated by the presence of dissolved organic material, aged silicate, and calcium extracted from the pulp. This study examines the effects of these materials on brightening efficiency. Dissolved organic material did not consume peroxide in subsequent cycles. Aged silicate stabilized peroxide as efficiently as fresh silicate. Interaction of silicate with calcium and magnesium caused silicon residue to precipitate on the fibers, with deposition increasing with the number of cycles. Calcium silicate adhered strongly to stainless steel, while magnesium silicate did not.

Froass, W.C. (International Paper Co., Tuxedo, NY (United States)); Omori, S.; Francis, R.C.; Dence, C.W. (State Univ. of New York, Syracuse, NY (United States). Empire State Paper Research Inst.)

1993-11-01T23:59:59.000Z

487

Source Emissions and Transport  

NLE Websites -- All DOE Office Websites (Extended Search)

electron micrograph image, Lara Gundel with instrumentation electron micrograph image, Lara Gundel with instrumentation Source Emissions and Transport Investigators conduct research here to characterize and better understand the sources of airborne volatile, semi-volatile and particulate organic pollutants in the indoor environment. This research includes studies of the physical and chemical processes that govern indoor air pollutant concentrations and exposures. The motivation is to contribute to the reduction of potential human health effects. Contacts Randy Maddalena RLMaddalena@lbl.gov (510) 486-4924 Mark Mendell MJMendell@lbl.gov (510) 486-5762 Links Pollutant Sources, Dynamics and Chemistry Group Batteries and Fuel Cells Buildings Energy Efficiency Electricity Grid Energy Analysis Energy Technologies Environmental Impacts

488

WIPP Doubles Solid Waste Reduction Rate in Fiscal Year 2013 | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Doubles Solid Waste Reduction Rate in Fiscal Year 2013 Doubles Solid Waste Reduction Rate in Fiscal Year 2013 WIPP Doubles Solid Waste Reduction Rate in Fiscal Year 2013 December 5, 2013 - 12:00pm Addthis WIPP environmental and operations personnel gather next to pallets that will be provided to the local community as part of WIPP’s wood waste diversion program. WIPP environmental and operations personnel gather next to pallets that will be provided to the local community as part of WIPP's wood waste diversion program. CARLSBAD, N.M. - EM's Waste Isolation Pilot Plant (WIPP) almost doubled its solid waste reduction rate from 15.5 percent in fiscal year 2012 to 33 percent in fiscal year 2013 through programs that diverted WIPP's wood waste from the municipal landfill by reusing, repurposing or recycling.

489

WIPP Doubles Solid Waste Reduction Rate in Fiscal Year 2013 | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

WIPP Doubles Solid Waste Reduction Rate in Fiscal Year 2013 WIPP Doubles Solid Waste Reduction Rate in Fiscal Year 2013 WIPP Doubles Solid Waste Reduction Rate in Fiscal Year 2013 December 5, 2013 - 12:00pm Addthis WIPP environmental and operations personnel gather next to pallets that will be provided to the local community as part of WIPP’s wood waste diversion program. WIPP environmental and operations personnel gather next to pallets that will be provided to the local community as part of WIPP's wood waste diversion program. CARLSBAD, N.M. - EM's Waste Isolation Pilot Plant (WIPP) almost doubled its solid waste reduction rate from 15.5 percent in fiscal year 2012 to 33 percent in fiscal year 2013 through programs that diverted WIPP's wood waste from the municipal landfill by reusing, repurposing or recycling.

490

FY 2009 Progress Report for Lightweighting Materials- 11. Recycling  

Energy.gov (U.S. Department of Energy (DOE))

The primary Lightweight Materials activity goal is to validate a cost-effective weight reduction in total vehicle weight while maintaining safety, performance, and reliability.

491

Global Threat Reduction Initiative  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

comprehensive comprehensive strategy to prevent nuclear terrorism; and  The key organization responsible for implementing the U.S. HEU minimization policy. GTRI MISSION Reduce and protect vulnerable nuclear and radiological material located at civilian sites worldwide. DOE STRATEGIC GOAL 2.2 Prevent the acquisition of nuclear and radiological materials for use in weapons of mass destruction and other acts of terrorism Protect high priority nuclear and radiological materials from theft and sabotage These efforts result in threat reduction by improving security on the bomb material remaining at civilian sites - each vulnerable building that is protected reduces the risk until a permanent threat reduction solution can be implemented.

492

Status of LLNL Hot-Recycled-Solid oil shale retort  

SciTech Connect

We have investigated the technical and economic barriers facing the introduction of an oil shale industry and we have chosen Hot-Recycled-Solid (HRS) oil shale retorting as the primary advanced technology of interest. We are investigating this approach through fundamental research, operation of a 4 tonne-per-day, HRS pilot plant and development of an Oil Shale Process (OSP) mathematical model. Over the last three years, from June 1991 to June 1993, we completed a series of runs (H10--H27) using the 4-TPD pilot plant to demonstrate the technical feasibility of the HRS process and answer key scale-up questions. With our CRADA partners, we seek to further develop the HRS technology, maintain and enhance the knowledge base gained over the past two decades through research and development by Government and industry and determine the follow on steps needed to advance the technology towards commercialization. The LLNL Hot-Recycled-Solid process has the potential to improve existing oil shale technology. It processes oil shale in minutes instead of hours, reducing plant size. It processes all oil shale, including fines rejected by other processes. It provides controls to optimize product quality for different applications. It co-generates electricity to maximize useful energy output. And, it produces negligible SO{sub 2} and NO{sub x} emissions, a non-hazardous waste shale and uses minimal water.

Baldwin, D.E.; Cena, R.J.

1993-12-31T23:59:59.000Z

493

A Membrane Process for Recycling Die Lube from Wastewater Solutions  

SciTech Connect

An active-surface membrane technology was used to separate a die lube manufacturing wastewater stream consisting of various oils, hydrocarbons, heavy metals, and silicones. The ultrafiltration membranes reduced organics from initial oil and grease contents by 20–25X, carbon oxygen demand (COD) by 1.5 to 2X, and total organic carbon (TOC) by 0.6, while the biological oxygen demand (BOD) remained constant. The active-surface membranes were not fouled as badly as non-active-surface systems and the active-surface membrane flux levels were consistently higher and more stable than those of the non-active-surface membranes tested. Field testing demonstrated that the rotary microfilter can concentrate the die lube, i.e. remove the glycerin component, and produce a die lube suitable for recycling. The recycling system operated for six weeks with only seven cleaning cycles and no mechanical or electrical failures. Test data and quality records indicate that the die casting scrap was reduced from 8.4 to 7.8%. There is no doubt that this test yielded tremendous results. This separation process presents significant opportunities that can be evaluated further.

Eric S. Peterson; Jessica Trudeau; Bill Cleary; Michael Hackett; William A. Greene

2003-04-01T23:59:59.000Z

494

A Membrane Process for Recycling Die Lube from Wastewater Solutions  

SciTech Connect

An active-surface membrane technology was used to separate a die lube manufacturing wastewater stream consisting of various oils, hydrocarbons, heavy metals, and silicones. The ultrafiltration membranes reduced organics from initial oil and grease contents by 20?25X, carbon oxygen demand (COD) by 1.5 to 2X, and total organic carbon (TOC) by 0.6, while the biological oxygen demand (BOD) remained constant. The active-surface membranes were not fouled as badly as non-active-surface systems and the active-surface membrane flux levels were consistently higher and more stable than those of the non-active-surface membranes tested. Field testing demonstrated that the rotary microfilter can concentrate the die lube, i.e. remove the glycerin component, and produce a die lube suitable for recycling. The recycling system operated for six weeks with only seven cleaning cycles and no mechanical or electrical failures. Test data and quality records indicate that the die casting scrap was reduced from 8.4 to 7.8%. There is no doubt that this test yielded tremendous results. This separation process presents significant opportunities that can be evaluated further.

Peterson, E.S.; Trudeau, J.; Cleary, B.; Hackett, M.; Greene, W.A.

2003-04-30T23:59:59.000Z

495

Proceedings of 2009 NSF Engineering Research and Innovation Conference, Honolulu, Hawaii Grant #0423484 Separation and Energy Use Performance of Material Recycling Systems  

E-Print Network (OSTI)

#0423484 Separation and Energy Use Performance of Material Recycling Systems Timothy Gutowski Malima I Abstract: This paper outlines current research on the performance of recycling processes and systems of recycling processes. Descriptive terminology for separation performance is presented. The goal

Gutowski, Timothy

496

DOI: 10.1002/adem.201400414 Self-Assembled Recyclable Hierarchical Bucky Aerogels**  

E-Print Network (OSTI)

DOI: 10.1002/adem.201400414 Self-Assembled Recyclable Hierarchical Bucky Aerogels** By Mehmet, and recyclable multi-wall carbon nanotube (MWCNT) based light weight (density aerogels (BAGs than the energy dissipated by commercial foams with similar densities. 1. Introduction Aerogels

Daraio, Chiara

497

In search of some R and R: Industries, cities gravitate toward wastewater recycling, reuse  

SciTech Connect

Although its advantages are touted highly by experts, wastewater recycling is still a relatively new and complex issue for environmental managers. Industries increasingly are seeking cost-effective, efficient ways to recycle their wastewater rather than merely treat it, and, as such, are beginning to realize some long-term benefits because of improved production processes and conservation of limited resources.

Nichele, V.B.

1996-02-01T23:59:59.000Z

498

EXTENDING FIBER RESOURCES: FIBER LOADING RECYCLED FIBER AND MECHANICAL PULPS FOR LIGHTWEIGHT, HIGH OPACITY PAPER  

E-Print Network (OSTI)

alkalinity, precipitates calcium carbonate (PCC) in situ within pulp fibers. Because paper made from fiber include increasing the recovery and utilization of recycled fiber and optimizing virgin fiber yieldEXTENDING FIBER RESOURCES: FIBER LOADING RECYCLED FIBER AND MECHANICAL PULPS FOR LIGHTWEIGHT, HIGH

Abubakr, Said

499

EXTENDING FIBER RESOURCES: FIBER LOADING RECYCLED FIBERAND MECHANICAL PULPS FOR LIGHTWEIGHT, HIGH OPACITY PAPER  

E-Print Network (OSTI)

, precipitates calcium carbonate (PCC) in situ within pulp fibers. Because paper made from fiber-loaded pulp increasing the recovery and utilization of recycled fiber and optimizing virgin fiber yield by relying moreEXTENDING FIBER RESOURCES: FIBER LOADING RECYCLED FIBERAND MECHANICAL PULPS FOR LIGHTWEIGHT, HIGH

Abubakr, Said

500

A Green Approach to Femtocells Capacity Improvement by Recycling Wasted Resources  

E-Print Network (OSTI)

A Green Approach to Femtocells Capacity Improvement by Recycling Wasted Resources Leonardo S and transmit power. The proposed technique recycles redundant resources of OFDM transmissions (e.g., guard, a better average link quality, more efficient usage of spectrum resources and higher spatial reuse (co

Boyer, Edmond