Powered by Deep Web Technologies
Note: This page contains sample records for the topic "recycled fresh catalytic" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

,"Catalytic Reforming Downstream Processing of Fresh Feed Input"  

U.S. Energy Information Administration (EIA) Indexed Site

Catalytic Reforming Downstream Processing of Fresh Feed Input" Catalytic Reforming Downstream Processing of Fresh Feed Input" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Catalytic Reforming Downstream Processing of Fresh Feed Input",16,"Monthly","9/2013","1/15/2010" ,"Release Date:","11/27/2013" ,"Next Release Date:","Last Week of December 2013" ,"Excel File Name:","pet_pnp_dwns_a_(na)_ydr_mbblpd_m.xls" ,"Available from Web Page:","http://www.eia.gov/dnav/pet/pet_pnp_dwns_a_(na)_ydr_mbblpd_m.htm" ,"Source:","Energy Information Administration"

2

Catalytic Reforming Downstream Processing of Fresh Feed Input  

U.S. Energy Information Administration (EIA) Indexed Site

Process: Catalytic Reforming Catalytic Cracking Catalytic Hydrocracking Delayed and Fluid Coking Period-Unit: Monthly-Thousand Barrels per Day Annual-Thousand Barrels per Day Process: Catalytic Reforming Catalytic Cracking Catalytic Hydrocracking Delayed and Fluid Coking Period-Unit: Monthly-Thousand Barrels per Day Annual-Thousand Barrels per Day Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes Show Data By: Process Area Apr-13 May-13 Jun-13 Jul-13 Aug-13 Sep-13 View History U.S. 2,563 2,667 2,739 2,807 2,705 2,609 2010-2013 PADD 1 176 178 180 173 156 167 2010-2013 East Coast 166 164 163 161 140 153 2010-2013 Appalachian No. 1 9 14 16 12 15 14 2010-2013 PADD 2 642 638 668 695 677 615 2010-2013 Ind., Ill. and Ky. 426 411 426 460 450 399 2010-2013 Minn., Wis., N. Dak., S. Dak. 67 62 70 72 72 57 2010-2013 Okla., Kans., Mo.

3

A resource recycling technique of hydrogen production from the catalytic degradation of organics in wastewater  

Science Journals Connector (OSTI)

A resource recycling technique of hydrogen production from the catalytic degradation of organics in wastewater by aqueous phase reforming (APR) has...N,N-dimethylformamide (DMF) and cyclohexanol) in water could b...

XiaoNian Li; LingNiao Kong; YiZhi Xiang; YaoMing Ju…

2008-11-01T23:59:59.000Z

4

Catalytic coal liquefaction with treated solvent and SRC recycle  

DOE Patents (OSTI)

A process for the solvent refining of coal to distillable, pentane soluble products using a dephenolated and denitrogenated recycle solvent and a recycled, pentane-insoluble, solvent-refined coal material, which process provides enhanced oil-make in the conversion of coal.

Garg, Diwakar (Macungie, PA); Givens, Edwin N. (Bethlehem, PA); Schweighardt, Frank K. (Allentown, PA)

1986-01-01T23:59:59.000Z

5

Catalytic coal liquefaction with treated solvent and SRC recycle  

DOE Patents (OSTI)

A process is described for the solvent refining of coal to distillable, pentane soluble products using a dephenolated and denitrogenated recycle solvent and a recycled, pentane-insoluble, solvent-refined coal material, which process provides enhanced oil-make in the conversion of coal. 2 figs.

Garg, D.; Givens, E.N.; Schweighardt, F.K.

1986-12-09T23:59:59.000Z

6

Catalytic two-stage coal hydrogenation process using extinction recycle of heavy liquid fraction  

DOE Patents (OSTI)

A process is described for catalytic two-stage hydrogenation and liquefaction of coal with selective extinction recycle of all heavy liquid fractions boiling above a distillation cut point of about 600--750 F to produce increased yields of low-boiling hydrocarbon liquid and gas products. In the process, the particulate coal feed is slurried with a process-derived liquid solvent normally boiling above about 650 F and fed into a first stage catalytic reaction zone operated at conditions which promote controlled rate liquefaction of the coal, while simultaneously hydrogenating the hydrocarbon recycle oils. The first stage reactor is maintained at 710--800 F temperature, 1,000--4,000 psig hydrogen partial pressure, and 10-90 lb/hr per ft[sup 3] catalyst space velocity. Partially hydrogenated material withdrawn from the first stage reaction zone is passed directly to the second stage catalytic reaction zone maintained at 760--860 F temperature for further hydrogenation and hydroconversion reactions. A 600--750 F[sup +] fraction containing 0--20 W % unreacted coal and ash solids is recycled to the coal slurrying step. If desired, the cut point lower boiling fraction can be further catalytically hydrotreated. By this process, the coal feed is successively catalytically hydrogenated and hydroconverted at selected conditions, to provide significantly increased yields of desirable low-boiling hydrocarbon liquid products and minimal production of hydrocarbon gases, and no net production of undesirable heavy oils and residuum materials. 2 figs.

MacArthur, J.B.; Comolli, A.G.; McLean, J.B.

1989-10-17T23:59:59.000Z

7

Recycling  

Science Journals Connector (OSTI)

Recycling is a series of activities that include collecting recyclable materials that would otherwise be considered , sorting and processing recyclables into raw materials such as fibers, and manufacturing ra...

2008-01-01T23:59:59.000Z

8

Recycling  

NLE Websites -- All DOE Office Websites (Extended Search)

Recycling Recycling Reducing our impact requires big and small behavioral changes, from printing pages double-sided to separating metals during multi-million-dollar building...

9

Assessing the recycling potential of industrial wastewater to replace fresh water in concrete mixes: application of polyvinyl acetate resin wastewater  

Science Journals Connector (OSTI)

This study presents the use of industrial wastewater released from polyvinyl acetate resin manufacturing plant to totally replace the fresh water in concrete composites. Seventy-two laboratory prepared concrete composites were tested to investigate the effect of using various PVAW/C ratios of 0.30, 0.35, 0.40, and 0.45 on the slump, compressive strength, flexural strength, and dry density of the concrete mixes. Results indicated a slight to moderate increase in compressive strength and hard density values compared to those of the control concrete made with fresh water at 7 and 28 day curing. On the contrary, a reduction in the slump values of the PVAW–concrete was observed compared to the slump of the control mixes. However, the slump values increased with increasing the PVAW/C ratios. On the other hand, the waste material leaching test revealed that none of the PVAW toxic constituents was detected. The findings of this work would form basic information for recycling PVAW in concrete mixes and indicate a potential alternative for diminution the adverse effects on the environment posed by the hazardous effluent of the polyvinyl acetate resin industry.

Zainab Z. Ismail; Enas A. Al-Hashmi

2011-01-01T23:59:59.000Z

10

An integrated approach for the verification of fresh mixed oxide fuel (MOX) assemblies at light water reactor MOX recycle reactors  

SciTech Connect

This paper presents an integrated approach for the verification of mixed oxide (MOX) fuel assemblies prior to their being loaded into the reactor. There is a coupling of the verification approach that starts at the fuel fabrication plant and stops with the transfer of the assemblies into the thermal reactor. The key measurement points are at the output of the fuel fabrication plant, the receipt at the reactor site, and the storage in the water pool as fresh fuel. The IAEA currently has the capability to measure the MOX fuel assemblies at the output of the fuel fabrication plants using a passive neutron coincidence counting systems of the passive neutron collar (PNCL) type. Also. at the MOX reactor pool, the underwater coincidence counter (UWCC) has been developed to measure the MOX assemblies in the water. The UWCC measurement requires that the fuel assembly be lifted about two meters up in the storage rack to avoid interference from the fuel that is stored in the rack. This paper presents a new method to verify the MOX fuel assemblies that are in the storage rack without the necessity of moving the fuel. The detector system is called the Underwater MOX Verification System (UMVS). The integration and relationship of the three measurements systems is described.

Menlove, Howard O [Los Alamos National Laboratory; Lee, Sang - Yoon [Los Alamos National Laboratory

2009-01-01T23:59:59.000Z

11

Recycled Plastics in FCC Feedstocks:? Specific Contributions  

Science Journals Connector (OSTI)

Recycled Plastics in FCC Feedstocks:? Specific Contributions ... Zhibo, Z.; Nishio, S.; Morioka, Y.; Ueno, A.; Ohkita, H.; Tochihara, Y.; Mizushima, P.; Kakuta, N. Thermal and chemical recycle of waste polymers. ... Feedstock recycling of plastic waste by thermal and catalytic processes is a promising route to eliminate this refuse (which is harmful to the environment) by obtaining, at the same time, products that are useful as fuels or chemicals. ...

Gabriela de la Puente; José M. Arandes; Ulises A. Sedran

1997-11-03T23:59:59.000Z

12

Recycling of sodium waste  

Science Journals Connector (OSTI)

Recycling of sodium waste ... Methods for handling and recycling a dangerous and costly chemical. ...

Bettina Hubler-Blank; Michael Witt; Herbert W. Roesky

1993-01-01T23:59:59.000Z

13

Extreme Recycling  

E-Print Network (OSTI)

Broadcast Transcript: Singing the recycling blues because you have to separate your chipboard from your newspaper, your steel from your aluminum, your #1 from your #2 plastic? Pantywaists! The residents of Kamikatsu, Japan ...

Hacker, Randi

2009-01-14T23:59:59.000Z

14

Thermodynamics of resource recycling  

Science Journals Connector (OSTI)

Thermodynamics of resource recycling ... The author applies principles of thermodynamics to analyze the efficiency of resource recycling. ...

W. B. Hauserman

1988-01-01T23:59:59.000Z

15

Recycling silver chloride  

Science Journals Connector (OSTI)

Recycling silver chloride ... A simple way to reduce lab cost by recycling silver in the academic lab. ...

Edwin Thall

1981-01-01T23:59:59.000Z

16

Single-Use Recycling  

Science Journals Connector (OSTI)

Single-use recycling is specially used oil treatment, generating recycled product for a single finite reuse.

2014-01-01T23:59:59.000Z

17

TRANSPARENCY RECYCLING PROGRAM PROCEDURES  

NLE Websites -- All DOE Office Websites (Extended Search)

used overhead transparencies RECYCLE them for REUSE. It's Easy Follow these simple procedures: 1.) COLLECT used transparencies to be recycled. 2.) SEPARATE the transparencies...

18

Chapter 15 - Textile Recycling  

Science Journals Connector (OSTI)

Abstract Textiles are nearly 100% recyclable, yet for a variety of reasons many textiles end up in the landfill. In recent years, special attention to value-added products made from recycled textile materials is on the rise as consumers, policy makers, engineers and industry experts focus on environmental stewardship, strategic partnerships and holistic approaches that contribute significantly to the recycling process. This chapter describes the recycling process and the various categories that are considered as recycling companies manage the plethora of textiles that enter the recycling stream. By recycling textiles, the punitive costs of landfill are avoided. In addition, the recycling process contributes significantly to employment, charitable contributions and positive environmental impact.

Jana M. Hawley

2014-01-01T23:59:59.000Z

19

Contaminating Fresh Waters (Florida)  

Energy.gov (U.S. Department of Energy (DOE))

It is illegal to discharge any dyestuff, coal tar, oil, sawdust, poison, or deleterious substances into any fresh running waters in Florida in quantities sufficient to injure, stupefy, or kill fish...

20

Federal Recycling Program Printed on recycled paper.  

E-Print Network (OSTI)

#12;Federal Recycling Program Printed on recycled paper. The Forest Health Technology Enterprise of discrimination, write USDA, Director, Office of Civil Rights, Room 326-W, Whitten Building, 1400 independence MALEZAS POR ENEMIGOS NATURALES R. G. VAN DRIESCHE University of Massachusetts Amherst, Massachusetts, USA

Hoddle, Mark S.

Note: This page contains sample records for the topic "recycled fresh catalytic" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

ParadigmParadigm Concrete RecyclingConcrete Recycling  

E-Print Network (OSTI)

ParadigmParadigm Concrete RecyclingConcrete Recycling #12;Recycled ConcreteRecycled Concrete ·· Whatever steel goes into PCC must comeWhatever steel goes into PCC must come out for recycleout for recycle ·· Aggregates have a big impact on the costAggregates have a big impact on the cost of recyclingof recycling

22

Recycling | Department of Energy  

NLE Websites -- All DOE Office Websites (Extended Search)

Recycling Recycling Recycling In support of the Department's goal of implementing environmental sustainability practices across the complex, all DOE employees and contractors should incorporate the three "R's" of wise resource use as a core principle of their daily activities: reduce, reuse, and recycle. The Department's recycling program at Headquarters earns monetary credits from the GSA which is then credited to the Sheila Jo Watkins Memorial Child Development Centers for tuition assistance and the purchase of furniture and equipment. What Can Be Recycled, And Where What you can recycle Where to recycle White office paper, printed with any color ink. Staples are acceptable but paperclips, binder clips, plastic flags, tabs and colored post-it notes must be removed. Receptacles for white office paper are located in office suites and next to copy machines. Blue collection bins for individual offices may be obtained from the Facilities Management Helpdesk at (202) 586-6100 or by e-mailing:

23

Recycling Foam Countercurrent Chromatography  

Science Journals Connector (OSTI)

A new sample injection method for foam countercurrent chromatography (CCC), named the “recycle injection system”, has been developed. ... In this recycling foam CCC system, the effluent from the liquid outlet is directly returned into the column through the sample feed line so that the sample solution is continuously recycled. ...

Hisao Oka; Masato Iwaya; Ken-ichi Harada; Makoto Suzuki; Yoichiro Ito

2000-02-26T23:59:59.000Z

24

High Performance Catalytic Heat Exchanger for SOFC Systems - FuelCell Energy  

NLE Websites -- All DOE Office Websites (Extended Search)

Catalytic Heat Catalytic Heat Exchanger for SOFC Systems-FuelCell Energy Background In a typical solid oxide fuel cell (SOFC) power generation system, hot (~900 °C) effluent gas from a catalytic combustor serves as the heat source within a high-temperature heat exchanger, preheating incoming fresh air for the SOFC's cathode. The catalytic combustor and the cathode air heat exchanger together represent the largest opportunity for cost

25

CATALYTIC BIOMASS LIQUEFACTION  

E-Print Network (OSTI)

LBL-11 019 UC-61 CATALYTIC BIOMASS LIQUEFACTION Sabri Ergun,Catalytic Liquefaction of Biomass,n M, Seth, R. Djafar, G.of California. CATALYTIC BIOMASS LIQUEFACTION QUARTERLY

Ergun, Sabri

2013-01-01T23:59:59.000Z

26

St Andrews Recycling Points Recycling Points are situated locally to  

E-Print Network (OSTI)

St Andrews Recycling Points Recycling Points are situated locally to allow you to recycle the following materials: To find your nearest Recycling Point please visit www.fifedirect.org.uk/wasteaware or call the Recycling Helpline on 08451 55 00 22. R&A GOLF CLUB OLD COURSE HOTEL UNIVERSITY NORTH HAUGH

St Andrews, University of

27

Catalytic reactor  

DOE Patents (OSTI)

A catalytic reactor is provided with one or more reaction zones each formed of set(s) of reaction tubes containing a catalyst to promote chemical reaction within a feed stream. The reaction tubes are of helical configuration and are arranged in a substantially coaxial relationship to form a coil-like structure. Heat exchangers and steam generators can be formed by similar tube arrangements. In such manner, the reaction zone(s) and hence, the reactor is compact and the pressure drop through components is minimized. The resultant compact form has improved heat transfer characteristics and is far easier to thermally insulate than prior art compact reactor designs. Various chemical reactions are contemplated within such coil-like structures such that as steam methane reforming followed by water-gas shift. The coil-like structures can be housed within annular chambers of a cylindrical housing that also provide flow paths for various heat exchange fluids to heat and cool components.

Aaron, Timothy Mark (East Amherst, NY); Shah, Minish Mahendra (East Amherst, NY); Jibb, Richard John (Amherst, NY)

2009-03-10T23:59:59.000Z

28

Catalytic Coherence  

Science Journals Connector (OSTI)

Because of conservation of energy we cannot directly turn a quantum system with a definite energy into a superposition of different energies. However, if we have access to an additional resource in terms of a system with a high degree of coherence, as for standard models of laser light, we can overcome this limitation. The question is to what extent coherence gets degraded when utilized. Here it is shown that coherence can be turned into a catalyst, meaning that we can use it repeatedly without ever diminishing its power to enable coherent operations. This finding stands in contrast to the degradation of other quantum resources and has direct consequences for quantum thermodynamics, as it shows that latent energy that may be locked into superpositions of energy eigenstates can be released catalytically.

Johan Ĺberg

2014-10-07T23:59:59.000Z

29

TRANSPARENCY RECYCLING PROGRAM PROCEDURES  

NLE Websites -- All DOE Office Websites (Extended Search)

TRANSPARENCY RECYCLING Don't throw out your used overhead transparencies! RECYCLE them for REUSE. It's Easy! Follow these simple procedures: 1.) COLLECT used transparencies to be recycled. 2.) SEPARATE the transparencies from ringed binders, plastic or paper folders, envelopes, and/or files. 3.) PLACE the transparencies (only) into an intra-laboratory mail envelope. 4.) SEND the envelope to: Terri Schneider, Building 201, 1D-10. Terri will prepare a

30

Benchmarking survey for recycling.  

SciTech Connect

This report describes the methodology, analysis and conclusions of a comparison survey of recycling programs at ten Department of Energy sites including Sandia National Laboratories/New Mexico (SNL/NM). The goal of the survey was to compare SNL/NM's recycling performance with that of other federal facilities, and to identify activities and programs that could be implemented at SNL/NM to improve recycling performance.

Marley, Margie Charlotte; Mizner, Jack Harry

2005-06-01T23:59:59.000Z

31

Announcing: All Recycling Reduce your  

E-Print Network (OSTI)

Announcing: All Recycling Go Green! Reduce your contribution to the landfill, by choosing to voluntarily recycle acceptable items in the green All Recycling toters and containers around campus. ONLY THE ITEMS BELOW ARE ACCEPTED FOR ALL RECYCLING Please do not contaminate the recycling containers with trash

Papautsky, Ian

32

Residential recycling study.  

E-Print Network (OSTI)

?? The purpose of this study is to gain baseline performance figures and statistics for El Paso's curbside recycling program. With these baseline statistics the… (more)

Adams, Richard

2011-01-01T23:59:59.000Z

33

Recycling Magnets | Jefferson Lab  

NLE Websites -- All DOE Office Websites (Extended Search)

Recycling Magnets July 15, 2013 The cost of a nuclear or particle physics experiment can be enormous, several hundred million dollars for the Large Hadron Collider Experiments,...

34

Recycling Programs | Department of Energy  

NLE Websites -- All DOE Office Websites (Extended Search)

Recycling Recycling Programs Recycling Programs The Office of Administration manages many recycling activities at DOE Headquarters that significantly impact energy and the environment. The Department of Energy Headquarters has instituted several recycling programs, starting with standard, solid waste recycling in 1991, and has expanded to include batteries, toner cartridges, carpeting and cell phones. Follow this link for a detailed listing of the products that DOE Headquarters recycles, and where to recycle them. Waste Recycling In FY 2011, DOE Headquarters recycled 134 tons of waste which earned over $7,200 in GSA credits that were provided to the Sheila Jo Watkins Memorial Child Development Centers. Since the recycling program began in 1991 over 6,800 tons of waste have been recycled earning over $350,000 for the Child

35

The Fermilab recycler ring  

SciTech Connect

The Fermilab Recycler is a permanent magnet storage ring for the accumulation of antiprotons from the Antiproton Source, and the recovery and cooling of the antiprotons remaining at the end of a Tevatron store. It is an integral part of the Fermilab III luminosity upgrade. The following paper describes the design features, operational and commissioning status of the Recycler Ring.

Martin Hu

2001-07-24T23:59:59.000Z

36

Quicksnap reusing & recycling system  

Science Journals Connector (OSTI)

"QuickSnap" is recyclable "Film with Lens" were first released by Fuji Film in 1986. The "Quicksnap Recycle Center" that was the manual lines was established in 1990. Furthermore, the "QuickSnap PLUS3" was released in 1992 and it was designed based on ...

Akira Fukano

1999-02-01T23:59:59.000Z

37

School Recycling Program  

NLE Websites -- All DOE Office Websites (Extended Search)

100% Recyclable 100% Recyclable Presentation Page Project Summary Scenario Student Pages Index of Projects Title of Project/Unit: 100% Recyclable Subject: Social Studies, Science, Healthy, & Communications Grade Level: Middle School (7th Grade) Abstract: The unit begins in the fall and will last about six weeks. Students will rely on working in collaborative groups in order to share information and problem solve. Students will us the Internet and e-mail to communicate with as many other schools as possible across the country. This unit will be part of an interdisciplinary unit to combine: Science: the study of waste, recycling & ecology Social Studies: how communities and groups of people historically handled waste and waste products, how native Americans re-cycled, how we became a 'disposable' society.

38

Fresh Air That's as Good as Gold | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Fresh Air That's as Good as Gold Fresh Air That's as Good as Gold Fresh Air That's as Good as Gold July 8, 2013 - 5:25pm Addthis Brookhaven Lab physicists Peter Sutter, Eli Sutter,and Xiao Tong (left to right) with one of the Center for Functional Nanomaterials instruments used to characterize the new nanoparticle structures. | Photo courtesy of Brookhaven National Lab. Brookhaven Lab physicists Peter Sutter, Eli Sutter,and Xiao Tong (left to right) with one of the Center for Functional Nanomaterials instruments used to characterize the new nanoparticle structures. | Photo courtesy of Brookhaven National Lab. Charles Rousseaux Charles Rousseaux Senior Writer, Office of Science What are the key facts? Car engines produce traces of carbon monoxide, but they use catalytic converters to reduce that pollutant and others, such as nitrogen

39

RecycleMania! Improving Waste Reduction and Recycling on  

E-Print Network (OSTI)

RecycleMania! Improving Waste Reduction and Recycling on Campus from Universities to Big Business #12;Contact Information Tracy Artley Recycling Coordinator University of Michigan Tel: 734-763-5539 Email: recycle@umich.edu #12;Agenda Waste Impacts of Large Institutions Unique Challenges Overcoming

Awtar, Shorya

40

Solvent recycle/recovery  

SciTech Connect

This report describes Phase I of the Solvent Recycle/Recovery Task of the DOE Chlorinated Solvent Substitution Program for the US Air Force by the Idaho National Engineering Laboratory, EG G Idaho, Inc., through the US Department of Energy, Idaho Operations Office. The purpose of the task is to identify and test recovery and recycling technologies for proposed substitution solvents identified by the Biodegradable Solvent Substitution Program and the Alternative Solvents/Technologies for Paint Stripping Program with the overall objective of minimizing hazardous wastes. A literature search to identify recycle/recovery technologies and initial distillation studies has been conducted. 4 refs.

Paffhausen, M.W.; Smith, D.L.; Ugaki, S.N.

1990-09-01T23:59:59.000Z

Note: This page contains sample records for the topic "recycled fresh catalytic" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

RECYCLING RATE STUDY Prepared by  

E-Print Network (OSTI)

NATIONAL RECYCLING RATE STUDY Prepared by: Smith, Bucklin and Associates, Inc. Market Research and Statistics Division Chicago, Illinois July 2003 PRINTED ON RECYCLED PAPER #12;BCI RECYCLING RATE STUDY TABLE ....................................................................................................1 II. METHODOLOGY A. Total Pounds of Lead Recycled from Batteries

Laughlin, Robert B.

42

Authorization Recycling in RBAC Systems  

E-Print Network (OSTI)

Authorization Recycling in RBAC Systems 1Laboratory for Education and Research in Secure Systems ·motivation ·recycling approach recycling algorithms experimental evaluations summary & future work #12 issued before (precise recycling) #12;6 Laboratory for Education and Research in Secure Systems

43

RETHINKING WASTE, RECYCLING, AND HOUSEKEEPING  

E-Print Network (OSTI)

RETHINKING WASTE, RECYCLING, AND HOUSEKEEPING EFFICIENCY.EFFICIENCY. A l GA leaner Green #12 t R li Management Recycling Staff The Office of Waste Reduction & Recycling started in The Office of Waste Reduction & Recycling started in 1990, we have 14 full time staff positions. ·We collect over 40

Howitt, Ivan

44

Dual recycling for GEO 600  

Science Journals Connector (OSTI)

Dual recycling is the combination of signal recycling and power recycling; both optical techniques improve the shot-noise-limited sensitivity of interferometric gravitational-wave detectors. In addition, signal recycling can reduce the loss of light power due to imperfect interference and allows us, in principle, to beat the standard quantum limit. The interferometric gravitational-wave detector GEO 600 is the first of the kilometre-scale detectors to use signal recycling. We have recently equipped the detector with a signal-recycling mirror with a transmittance of 1%. In this paper, we present details of the detector commissioning and the first locks of the dual-recycled interferometer.

H Grote; A Freise; M Malec; G Heinzel; B Willke; H Lück; K A Strain; J Hough; K Danzmann

2004-01-01T23:59:59.000Z

45

Fermilab recycler diagnostics  

SciTech Connect

The Fermilab Recycler Ring is a permanent magnet storage ring for the storage and cooling of antiprotons. The following note describes the diagnostic tools currently available for commissioning, as well as the improvements and upgrades planned for the near future.

Martin Hu

2001-07-24T23:59:59.000Z

46

Recycling for radio astronomy  

Science Journals Connector (OSTI)

......research-article Features Recycling for radio astronomy Melvin Hoare Professor of Astrophysics at the...space missions, carry out single-dish radio astronomy and boost existing radio-astronomy interferometer arrays, objectives that bring......

Melvin Hoare

2012-02-01T23:59:59.000Z

47

Water Reuse and Recycling  

Science Journals Connector (OSTI)

Proper wastewater treatment is now recognized as an indispensable ... as an appropriate means for expanding through water recycling and reuse the efficient management of an ... public acceptance may restrict cert...

Nicolas Spulber; Asghar Sabbaghi

1998-01-01T23:59:59.000Z

48

CATALYTIC LIQUEFACTION OF BIOMASS  

E-Print Network (OSTI)

liquid Fuels from Biomass: "Catalyst Screening and KineticUC-61 (l, RCO osn CDL or BIOMASS CATALYTIC LIQUEFACTION ManuCATALYTIC LIQUEFACTION OF BIOMASS Manu Seth, Roger Djafar,

Seth, Manu

2012-01-01T23:59:59.000Z

49

CATALYTIC BIOMASS LIQUEFACTION  

E-Print Network (OSTI)

Solvent Systems Catalystic Biomass Liquefaction Investigatereactor Product collection Biomass liquefaction process12-13, 1980 CATALYTIC BIOMASS LIQUEFACTION Sabri Ergun,

Ergun, Sabri

2013-01-01T23:59:59.000Z

50

Curbside recycling in the presence of alternatives  

E-Print Network (OSTI)

WITH MINOR REVISIONS). Curbside Recycling in the Presence ofConservation, Division of Recycling. The views expressed inThese historically high recycling rates have often been

Beatty, Timothy K.M.; Berck, Peter; Shimshack, Jay P

2007-01-01T23:59:59.000Z

51

Pollution Prevention, Waste Reduction, and Recycling | Department...  

Office of Environmental Management (EM)

Pollution Prevention, Waste Reduction, and Recycling Pollution Prevention, Waste Reduction, and Recycling The Pollution Prevention, Waste Reduction and Recycling Program was...

52

recycled_uranium.cdr  

Office of Legacy Management (LM)

Recycled Uranium and Transuranics: Recycled Uranium and Transuranics: Their Relationship to Weldon Spring Site Remedial Action Project Introduction Historical Perspective On August 8, 1999, Energy Secretary Bill Richardson announced a comprehensive set of actions to address issues raised at the Paducah, Kentucky, Gaseous Diffusion Plant that may have had the potential to affect the health of the workers. One of the issues addressed the need to determine the extent and significance of radioactive fission products and transuranic elements in the uranium feed and waste products throughout the U.S. Department of Energy (DOE) national complex. Subsequently, a DOE agency-wide Recycled Uranium Mass Balance Project (RUMBP) was initiated. For the Weldon Spring Uranium Feed Materials Plant (WSUFMP or later referred to as Weldon Spring),

53

Scrap tire recycling  

SciTech Connect

As the automobile tire technology has grown and met the need for safer and more durable tires, stronger reinforcement and more chemically resistant rubber compounds have made recycling tires more difficult. In an effort to resolve this problem, techniques and equipment were developed to grind tires into small pieces, and new markets were sought to utilize the crumb rubber product streams from ground tires. Industrial combustion processes were modified to accept scrap tires as fuel. These efforts have been beneficial, steadily increasing the percentage of scrap tires recycled to about 10% in 1985, and reaching 72% in 1995. By the end of 1997, fully 100% of tires generated in the U.S. are expected to be recycled.

Lula, J.W.; Bohnert, G.W.

1997-03-01T23:59:59.000Z

54

Chapter 14 - Glass Recycling  

Science Journals Connector (OSTI)

Abstract Glass has established itself as an essential material in our lives. The composition of glass depends on what it is used for, but the majority of glass in circulation is of the soda-lime–silicate type. It is a material that is eminently recyclable, in the sense that it merely needs to be remelted and reformed to produce another glass article. However, glass must be color-sorted and processed to remove contaminants to ensure it is compatible with the product being manufactured. The key benefit of recycling via remelting is the reduced energy demand. However, because differences in color composition can arise between recovered glass and manufacturing output, alternative outlets are also often necessary. This chapter examines both the recycling of glass back into glass manufacture and these alternatives.

Thomas D. Dyer

2014-01-01T23:59:59.000Z

55

Chapter 7 - Copper Recycling  

Science Journals Connector (OSTI)

Abstract This chapter gives a brief overview of copper recycling from a metallurgist's view. As it is deemed impossible to give an in-depth presentation of such a broad and complex subject, a selection of references is given for further reading. Secondary sources of copper include a large variety of raw materials, ranging from slags, sludge and low-grade copper scrap, containing only a few percent Cu up to very high-grade copper as well as pure copper close to 100% Cu. Thus there are several options for recycling processes, within both primary and secondary plants. Although there are good recycling rates for copper, some challenges can be foreseen such as a scarcity of pure and high-grade scrap and an increased amount of products containing a mixture of materials and with low copper concentrations.

Caisa Samuelsson; Bo Björkman

2014-01-01T23:59:59.000Z

56

Recycling Automotive Scrap  

NLE Websites -- All DOE Office Websites (Extended Search)

Today's automobiles contain more plastic and less metal than ever. The metal from junked vehicles is easily recovered for Today's automobiles contain more plastic and less metal than ever. The metal from junked vehicles is easily recovered for reuse, but the remaining materials, called shredder residue, is creating new challenges for the vehicle recycling industry. Argonne National Laboratory is meeting these challenges head-on with innovative, award-winning solutions. With its on-site recycling pilot plant, Argonne is able to test actual materials, benchmark technologies, and demonstrate working

57

,"U.S. Downstream Processing of Fresh Feed Input"  

U.S. Energy Information Administration (EIA) Indexed Site

Annual",2012,"6/30/1987" Annual",2012,"6/30/1987" ,"Release Date:","9/27/2013" ,"Next Release Date:","9/26/2014" ,"Excel File Name:","pet_pnp_dwns_dc_nus_mbblpd_a.xls" ,"Available from Web Page:","http://www.eia.gov/dnav/pet/pet_pnp_dwns_dc_nus_mbblpd_a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.gov" ,,"(202) 586-8800",,,"11/25/2013 11:17:28 AM" "Back to Contents","Data 1: U.S. Downstream Processing of Fresh Feed Input" "Sourcekey","M_NA_YDR_NUS_MBBLD","MCRCCUS2","MCRCHUS2","MCRDFUS2" "Date","U.S. Downstream Processing of Fresh Feed Input by Catalytic Reforming Units (Thousand Barrels per Day)","U.S. Downstream Processing of Fresh Feed Input by Catalytic Cracking Units (Thousand Barrels per Day)","U.S. Downstream Processing of Fresh Feed Input by Catalytic Hydrocracking Units (Thousand Barrels per Day)","U.S. Downstream Processing of Fresh Feed Input by Delayed and Fluid Coking Units (Thousand Barrels per Day)"

58

Power recycling for an interferometric gravitational wave  

E-Print Network (OSTI)

THESIS Power recycling for an interferometric gravitational wave detector Masaki Ando Department . . . . . . . . . . . . . . 48 3.3 Power recycling . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50 3.3.1 Principle of power recycling . . . . . . . . . . . . . . . . . 50 3.3.2 Recycling cavity

Ejiri, Shinji

59

http://nevadarecycles.gov/main/recyclables.htm  

National Nuclear Security Administration (NNSA)

Residential Recycling Guide for Clark County TV Recycling in Nevada National Recycling Web Resources Earth911.com provides a listing of recycling resources to help you find a way...

60

Recycling - a Marabastad community development.  

E-Print Network (OSTI)

?? The theme of this dissertation is recycling and recycling-awareness to the users of the city on a physical and non-physical level. In this the… (more)

Kunz, Barend Mattheus

2008-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "recycled fresh catalytic" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

Selecting Fresh Fruits and Vegetables  

E-Print Network (OSTI)

time. Selecting Fresh Fruits and Vegetables Amanda Scott* E-197 9/08 This publication was sponsored by a grant from the Initiative for Future Agriculture Food Systems, a program of the Cooperative State Research, Education, and Extension Service, which...

Scott, Amanda

2008-09-05T23:59:59.000Z

62

Rich catalytic injection  

DOE Patents (OSTI)

A gas turbine engine includes a compressor, a rich catalytic injector, a combustor, and a turbine. The rich catalytic injector includes a rich catalytic device, a mixing zone, and an injection assembly. The injection assembly provides an interface between the mixing zone and the combustor. The injection assembly can inject diffusion fuel into the combustor, provides flame aerodynamic stabilization in the combustor, and may include an ignition device.

Veninger, Albert (Coventry, CT)

2008-12-30T23:59:59.000Z

63

Cumene by catalytic distillation  

SciTech Connect

Catalytic distillation, a combination of catalytic reaction and distillation in a single column, has several advantages when used in a process to make cumene from benzene and propylene. An extremely high purity cumene is obtained in high yield. The catalytic distillation principle was used in an earlier process to make MTBE. A unit, started up up in Houston refinery in 1981, operated successfully for four years. Since then, three other MTBE units of this design have gone into service.

Shoemaker, J.D.; Jones, E.M. Jr.

1987-06-01T23:59:59.000Z

64

Design for chemical recycling  

Science Journals Connector (OSTI)

...than design. Life-cycle assessment (LCA), resource envi- ronmental profile analysis...product from cradle to grave. Although LCA is considered to be an evaluation tool and...polyol from oil. 7. The design check using LCA In order to check that chemical recycling...

1997-01-01T23:59:59.000Z

65

Recycling the Versatile Pipecolic Linker  

Science Journals Connector (OSTI)

Recycling the Versatile Pipecolic Linker ... We leveraged this to recycle the resin and reuse it several times. ... Recovery yields of cleaved materials ranged from 51 to 90% depending on the compound attached to the linker and are comparable to those obtained using non-recycled Pip-PS resin. ...

Pawel Zajdel; Nicolas Masurier; Pierre Sanchez; Maciej Pawlowski; Aude Kreiter; Gae?l Nomezine; Christine Enjalbal; Muriel Amblard; Jean Martinez; Gilles Subra

2010-08-17T23:59:59.000Z

66

CHERRY: CHECKPOINTED EARLY RESOURCE RECYCLING  

E-Print Network (OSTI)

1 2 3 CHERRY: CHECKPOINTED EARLY RESOURCE RECYCLING Jos´e F. Mart´inez1 , Jose Renau2 Michael C. Huang3 , Milos Prvulovic2 , and Josep Torrellas2 #12;Cherry: Checkpointed Early Resource Recycling efficient use by aggressive recycling Opportunity: Resources reserved until retirement § ¦ ¤ ¥ Solution

Torrellas, Josep

67

Plastics recycling: challenges and opportunities  

Science Journals Connector (OSTI)

...recycled resins are key actions to increase recycling. Most post-consumer...maximize both the volume and quality of recycled resins. 9. Conclusions...trends demonstrate a substantial increase in the rate of recovery and...impact of bottling Australian wine in the UK in PET and glass...

2009-01-01T23:59:59.000Z

68

Wastewater Recycle- A Sustainable Approach Towards Desalination  

E-Print Network (OSTI)

Strictly Confidential WASTEWATER RECYCLE ? A SUSTAINABLE APPROACH TOWARDS DESALINATION Presented at Industrial Energy Technology Conference 35th IETC ? 2013 New Orleans May 22, 2013 Arun Mittal Aquatech International Corporation, USA... ? Background ? Wastewater Recycle Drivers ? Technologies for Recycle ? Examples ? Cooling Tower Blowdown Recycle ? Refinery Treated Effluent Recycle ? Petrochemical Effluent Recycle ESL-IE-13-05-07 Proceedings of the Thrity-Fifth Industrial Energy...

Mittal, A.

2013-01-01T23:59:59.000Z

69

Refrigerator recycling and CFCs  

SciTech Connect

Utility-sponsored refrigerator and freezer pick-up programs have removed almost 900,000 inefficient appliances from the North American electric grid to date. While the CFC-12 refrigerant from the discarded appliances is typically removed and recycled, in all but a few programs the CFC-11 in the foam insulation is not. About a quarter-billion pounds of CFC-11 are banked in refrigerator foam in the United States. Release of this ``bank`` of CFC, combined with that from foam insulation used in buildings, will be the largest source of future emissions if preventive measures are not taken. Methods exist to recover the CFC for reuse or to destroy it by incineration. The task of recycling or destroying the CFCs and other materials from millions of refrigerators is a daunting challenge, but one in which utilities can play a leadership role. E Source believes that utilities can profitably serve as the catalyst for public-private partnerships that deliver comprehensive refrigerator recycling. Rather than treating such efforts solely as a DSM resource acquisition, utilities could position these programs as a multifaceted service delivery that offers convenient appliance removal for homeowners, a solid waste minimization service for landfills, a source of recycled materials for industry, and a CFC recovery and/or disposal service in support of the HVAC industry and society`s atmospheric protection goals and laws. Financial mechanisms could be developed through these public-private enterprises to ensure that utilities are compensated for the extra cost of fully recycling refrigerators, including the foam CFC.

Shepard, M.; Hawthorne, W.; Wilson, A.

1994-12-31T23:59:59.000Z

70

Catalytic distillation structure  

SciTech Connect

Catalytic distillation structure for use in reaction distillation columns, a providing reaction sites and distillation structure and consisting of a catalyst component and a resilient component intimately associated therewith. The resilient component has at least about 70 volume % open space and being present with the catalyst component in an amount such that the catalytic distillation structure consist of at least 10 volume % open space.

Smith, Jr., Lawrence A. (Bellaire, TX)

1984-01-01T23:59:59.000Z

71

Recycled Thermoplastic Composite Bridge  

NLE Websites -- All DOE Office Websites (Extended Search)

Recycled Thermoplastic Composite Recycled Thermoplastic Composite Bridge Philip R. Columbus Office of the Assistant Chief of Staff for Installation Management Headquarters, Department of the Army 180900ZMay2012 1 Philip R. Columbus/571-256-9774/philip.r.columbus.civ@mail.mil/ Overview * The purpose of this project was to demonstrate that a thermoplastic composite I-beam bridge could be constructed to accommodate a M-1 battle tank. * This effort determined the engineering and construction of such a structure was possible and be cost competitive to a wood timber bridge * The materials are virtually maintenance-free and not subject to degradation from moisture, rot, insects and weather. 180900ZMay2012 2 Philip R. Columbus/571-256-9774/philip.r.columbus.civ@mail.mil/ Background

72

Recycled Thermoplastic Composite Bridge  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Recycled Thermoplastic Composite Recycled Thermoplastic Composite Bridge Philip R. Columbus Office of the Assistant Chief of Staff for Installation Management Headquarters, Department of the Army 180900ZMay2012 1 Philip R. Columbus/571-256-9774/philip.r.columbus.civ@mail.mil/ Overview * The purpose of this project was to demonstrate that a thermoplastic composite I-beam bridge could be constructed to accommodate a M-1 battle tank. * This effort determined the engineering and construction of such a structure was possible and be cost competitive to a wood timber bridge * The materials are virtually maintenance-free and not subject to degradation from moisture, rot, insects and weather. 180900ZMay2012 2 Philip R. Columbus/571-256-9774/philip.r.columbus.civ@mail.mil/ Background

73

FINANCING ELECTRONIC WASTE RECYCLING - Californian Households’ Willingness to Pay Advanced Recycling Fees  

E-Print Network (OSTI)

to pay for curbside recycling; A comparison of payment carefees needed to sustain recycling of covered electronicsbehavior: waste recycling in Hong Kong. Journal of

Nixon, Hilary; Saphores, Jean-Daniel M

2007-01-01T23:59:59.000Z

74

15 - Environmental Aspects of Recycling  

Science Journals Connector (OSTI)

Paper production has several negative effects on the environment. Recycling can moderate the negative impacts on the environment and have a positive economic effect. An important benefit of recycling is a double decrease in environment loading. Paper production from recycled fibres consumes less energy, conserves natural resources and decreases environmental pollution. The conflict between economic optimisation and environmental protection has received attention for waste management system planning. Nowadays, production and use of recycled paper is well established and widely accepted. The necessary technologies are available and it is possible to produce all types and qualities of paper using wastepaper as raw material. Paper recycling induces numerous environmental benefits. In this chapter, environmental aspects of recycling are discussed.

Pratima Bajpai

2014-01-01T23:59:59.000Z

75

Zero Waste Program 2011 Recycling Benefits  

E-Print Network (OSTI)

Rutgers Zero Waste Program 2011 Recycling Benefits Through WM's Recycling Program, our company saved energy and reduced Greenhouse Gases through recycling. Recycling uses less energy, preserves from recycled material than from virgin, raw material. RESOURCE SAVINGS 4203 Metric Tons (MTCO2E

Delgado, Mauricio

76

Recycling Bin Guide Locations and prices  

E-Print Network (OSTI)

Recycling Bin Guide Locations and prices Metal Bins Deskside Bins with Side Saddle Rubbermaid Bins.58 for auxiliaries. And Non-Public Areas Public Offices Non-Public Recyclables Recyclables RecyclablesTrash Trash Trash #12;New Recycling Bin Guidelines Frequently Asked Questions (as of December 2008) · Why

Kirschner, Denise

77

Recycling Best Practices Report August 2011  

E-Print Network (OSTI)

Recycling Best Practices Report August 2011 Elizabeth Fox, Recycling Best Practices Intern Office of Waste Reduction and Recycling University of Michigan Plant Building and Grounds Services #12;Recycling Best Practices Report Office of Waste Reduction and Recycling 1 Executive Summary Due to the high

Kirschner, Denise

78

Environmental effects on recycled plastics.  

E-Print Network (OSTI)

??A major problem with recycling of post-consumer plastic is the reduction in key strength and durability properties when compared to virgin polymer. This reduction is… (more)

Li, Kan

2011-01-01T23:59:59.000Z

79

Catalytic distillation process  

DOE Patents (OSTI)

A method is described for conducting chemical reactions and fractionation of the reaction mixture comprising feeding reactants to a distillation column reactor into a feed zone and concurrently contacting the reactants with a fixed bed catalytic packing to concurrently carry out the reaction and fractionate the reaction mixture. For example, a method for preparing methyl tertiary butyl ether in high purity from a mixed feed stream of isobutene and normal butene comprising feeding the mixed feed stream to a distillation column reactor into a feed zone at the lower end of a distillation reaction zone, and methanol into the upper end of said distillation reaction zone, which is packed with a properly supported cationic ion exchange resin, contacting the C[sub 4] feed and methanol with the catalytic distillation packing to react methanol and isobutene, and concurrently fractionating the ether from the column below the catalytic zone and removing normal butene overhead above the catalytic zone.

Smith, L.A. Jr.

1982-06-22T23:59:59.000Z

80

Catalytic distillation process  

DOE Patents (OSTI)

A method for conducting chemical reactions and fractionation of the reaction mixture comprising feeding reactants to a distillation column reactor into a feed zone and concurrently contacting the reactants with a fixed bed catalytic packing to concurrently carry out the reaction and fractionate the reaction mixture. For example, a method for preparing methyl tertiary butyl ether in high purity from a mixed feed stream of isobutene and normal butene comprising feeding the mixed feed stream to a distillation column reactor into a feed zone at the lower end of a distillation reaction zone, and methanol into the upper end of said distillation reaction zone, which is packed with a properly supported cationic ion exchange resin, contacting the C.sub.4 feed and methanol with the catalytic distillation packing to react methanol and isobutene, and concurrently fractionating the ether from the column below the catalytic zone and removing normal butene overhead above the catalytic zone.

Smith, Jr., Lawrence A. (Bellaire, TX)

1982-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "recycled fresh catalytic" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

Catalytic Combustion Processes  

Science Journals Connector (OSTI)

This work presents experimental data on the effect of catalytic additives on the combustion characteristics of ammonium nitrate and perchlorate and the explosives of different classes. Burning rates are determ...

A. P. Glaskova

1991-01-01T23:59:59.000Z

82

Emulsified industrial oils recycling  

SciTech Connect

The industrial lubricant market has been analyzed with emphasis on current and/or developing recycling and re-refining technologies. This task has been performed for the United States and other industrialized countries, specifically France, West Germany, Italy and Japan. Attention has been focused at emulsion-type fluids regardless of the industrial application involved. It was found that emulsion-type fluids in the United States represent a much higher percentage of the total fluids used than in other industrialized countries. While recycling is an active matter explored by the industry, re-refining is rather a result of other issues than the mere fact that oil can be regenerated from a used industrial emulsion. To extend the longevity of an emulsion is a logical step to keep expenses down by using the emulsion as long as possible. There is, however, another important factor influencing this issue: regulations governing the disposal of such fluids. The ecological question, the respect for nature and the natural balances, is often seen now as everybody's task. Regulations forbid dumping used emulsions in the environment without prior treatment of the water phase and separation of the oil phase. This is a costly procedure, so recycling is attractive since it postpones the problem. It is questionable whether re-refining of these emulsions - as a business - could stand on its own if these emulsions did not have to be taken apart for disposal purposes. Once the emulsion is separated into a water and an oil phase, however, re-refining of the oil does become economical.

Gabris, T.

1982-04-01T23:59:59.000Z

83

Catalytic distillation structure  

DOE Patents (OSTI)

Catalytic distillation structure is described for use in reaction distillation columns, and provides reaction sites and distillation structure consisting of a catalyst component and a resilient component intimately associated therewith. The resilient component has at least about 70 volume % open space and is present with the catalyst component in an amount such that the catalytic distillation structure consists of at least 10 volume % open space. 10 figs.

Smith, L.A. Jr.

1984-04-17T23:59:59.000Z

84

Regenerative catalytic oxidation  

SciTech Connect

Currently Regenerative Thermal Oxidizers (R.T.O.`s) are an accepted technology for the control of volatile organic compounds (VOC`s) and hazardous air pollutants (HAP`s). This control technology, when introduced, offered substantial reductions in operating costs, especially auxiliary fuel requirements when compared to existing control technologies such as recuperative thermal and recuperative catalytic oxidizers. While these savings still exist, there is a demand for control of new and/or hybrid technologies, one of which is Regenerative Catalytic Oxidizers (R.C.O.`s). This paper will explore the development of regenerative catalytic oxidation from the theoretical stage through pilot testing through a commercial installation. The operating cost of R.C.O.`s will be compared to R.T.O.`s to verify the savings that are achievable through the use of regenerative catalytic oxidation. In the development of this technology, which is a combination of two (2) existing technologies, R.T.O.`s and catalysis, a second hybrid technology was explored and pilot tested. This is a combination R.C.O. for VOC and HAP control and simultaneous SCR (Selective Catalytic Reduction) for NOx (Oxides of Nitrogen) control. Based on the pilot and full scale testing, both regenerative catalytic oxidizers and systems which combine R.C.O. with SCR for both VOC and NOx reduction are economically viable and are in fact commercially available. 6 figs., 2 tabs.

Gribbon, S.T. [Engelhard Process Emission Systems, South Lyon, MI (United States)

1996-12-31T23:59:59.000Z

85

Single Stream Recycling Say Goodbye to Sorting  

E-Print Network (OSTI)

Single Stream Recycling Say Goodbye to Sorting Paper Please email recycle@umich.edu for more Containers Cardboard Please flatten all cardboard before placing into bin! Visit us at www.recycle

Awtar, Shorya

86

Flooding and Recycling Authorizations Konstantin (Kosta) Beznosov  

E-Print Network (OSTI)

Flooding and Recycling Authorizations Konstantin (Kosta) Beznosov Laboratory for Education delivery channels with speculatively pre- computed authorizations and actively recycling them on a just Security Keywords authorization recycling, authorization flooding, access con- trol, authorization, publish

87

The Economic Benefits of Recycling in Virginia  

E-Print Network (OSTI)

The Economic Benefits of Recycling in Virginia Alexander P. Miller Hang T. Nguyen Samantha D, and the recycling contacts from the participating Solid Waste Planning Units discussed in this study. #12;3 Table Determinants of Recycling_______________________________ 12 State Reports

Lewis, Robert Michael

88

Effects of recycling peroxide liquor on brightness of mechanical pulp  

SciTech Connect

The high cost of bleaching softwood mechanical pulps to 80% brightness with peroxide can be partly offset by recycling the unreacted peroxide in the effluent. However, the situation is complicated by the presence of dissolved organic material, aged silicate, and calcium extracted from the pulp. This study examines the effects of these materials on brightening efficiency. Dissolved organic material did not consume peroxide in subsequent cycles. Aged silicate stabilized peroxide as efficiently as fresh silicate. Interaction of silicate with calcium and magnesium caused silicon residue to precipitate on the fibers, with deposition increasing with the number of cycles. Calcium silicate adhered strongly to stainless steel, while magnesium silicate did not.

Froass, W.C. (International Paper Co., Tuxedo, NY (United States)); Omori, S.; Francis, R.C.; Dence, C.W. (State Univ. of New York, Syracuse, NY (United States). Empire State Paper Research Inst.)

1993-11-01T23:59:59.000Z

89

CNEA Fresh Fuel Plate Characterization Summary Report  

SciTech Connect

Characterization summary report outlining the findings of the fresh fuel examinations of the plates received from CNEA.

D. Keiser; F. Rice

2012-02-01T23:59:59.000Z

90

LANL exceeds Early Recovery Act recycling goals  

NLE Websites -- All DOE Office Websites (Extended Search)

LANL exceeds Early Recovery Act recycling goals LANL exceeds Early Recovery Act recycling goals Lab demolition projects under the American Recovery and Reinvestment Act have...

91

Fluid catalytic cracking of heavy petroleum fractions  

SciTech Connect

A process is claimed for fluid catalytic cracking of residuum and other heavy oils comprising of gas oil, petroleum residue, reduced and whole crudes and shale oil to produce gasoline and other liquid products which are separated in various streams in a fractionator and associated vapor recovery equipment. The heat from combustion of coke on the coked catalyst is removed by reacting sulfur-containing coke deposits with steam and oxygen in a separate stripper-gasifier to produce a low btu gas stream comprising of sulfur compounds, methane, carbon monoxide, hydrogen, and carbon dioxide at a temperature of from about 1100/sup 0/F. To about 2200/sup 0/F. The partially regenerated catalyst then undergoes complete carbon removal in a regeneration vessel. The regenerated catalyst is recycled for re-use in the cracking of heavy petroleum fractions. The liquid products are gasoline, distillates, heavy fuel oil, and light hydrocarbons.

McHenry, K.W.

1981-06-30T23:59:59.000Z

92

Fresh Food Online Supermarket Development Study  

Science Journals Connector (OSTI)

The preservation of fresh food is difficult, so the problems of food safety and the waste of it are very serious. The development of Fresh food online supermarkets will contribute to solve the problem. On the basis of describing the concept, scope and ... Keywords: Cold Chain Logistics, Food Safety, Fresh Food, Internet, Online Supermarket, SWOT

Xie Xiang, Liu Jiashi, Guan Zhongliang, Ke Xinsheng

2014-04-01T23:59:59.000Z

93

Introducing a fresh approach to health care.  

E-Print Network (OSTI)

Introducing a fresh approach to health care. Healthy Blue HSA MEMBER GUIDE #12;fresh {fresh Blue Shield of Michigan to provide health care spending account administration services. An independent the things that are working in health care and combine them under one comprehensive health plan. A Blues

94

Catalytic nanoporous membranes  

DOE Patents (OSTI)

A nanoporous catalytic membrane which displays several unique features Including pores which can go through the entire thickness of the membrane. The membrane has a higher catalytic and product selectivity than conventional catalysts. Anodic aluminum oxide (AAO) membranes serve as the catalyst substrate. This substrate is then subjected to Atomic Layer Deposition (ALD), which allows the controlled narrowing of the pores from 40 nm to 10 nm in the substrate by deposition of a preparatory material. Subsequent deposition of a catalytic layer on the inner surfaces of the pores reduces pore sizes to less than 10 nm and allows for a higher degree of reaction selectivity. The small pore sizes allow control over which molecules enter the pores, and the flow-through feature can allow for partial oxidation of reactant species as opposed to complete oxidation. A nanoporous separation membrane, produced by ALD is also provided for use in gaseous and liquid separations. The membrane has a high flow rate of material with 100% selectivity. Also provided is a method for producing a catalytic membrane having flow-through pores and discreet catalytic clusters adhering to the inside surfaces of the pores.

Pellin, Michael J; Hryn, John N; Elam, Jeffrey W

2013-08-27T23:59:59.000Z

95

Catalytic Solutions Inc CSI | Open Energy Information  

Open Energy Info (EERE)

Developer of the breakthrough catalytic coating technology and the Mixed Phase Catalyst (MPCTM), and also manufacturer of catalytic converters. References: Catalytic...

96

Materials - Recycling - Dezincing  

NLE Websites -- All DOE Office Websites (Extended Search)

Dezincing Scrap Steel Dezincing Scrap Steel Electro winning cells for recovery of zinc from de-zincing process solutions. Electro winning cells for recovery of zinc from de-zincing process solutions. Steel is one of the most recycled resources in the U.S.; half of the steel produced is derived from scrap. Since 1980, automobile and appliance manufacturers have increased their use of galvanized steel almost five-fold, with a resulting increase in the amount of galvanized steel scrap returned to steel producers. Dezincing Challenges The steel galvanizing process involves the application of a zinc-coating, which provides corrosion resistance. When galvanized scrap is melted in a steelmaking furnace, the zinc that it contains volatizes. The costs of treating the resulting zinc-laden dust and sludge by-products are

97

Combustion Byproducts Recycling Consortium  

SciTech Connect

Each year, over 100 million tons of solid byproducts are produced by coal-burning electric utilities in the United States. Annual production of flue gas desulfurization (FGD) byproducts continues to increase as the result of more stringent sulfur emission restrictions. In addition, stricter limits on NOx emissions mandated by the 1990 Clean Air Act have resulted in utility burner/boiler modifications that frequently yield higher carbon concentrations in fly ash, which restricts the use of the ash as a cement replacement. Controlling ammonia in ash is also of concern. If newer, 'clean coal' combustion and gasification technologies are adopted, their byproducts may also present a management challenge. The objective of the Combustion Byproducts Recycling Consortium (CBRC) is to develop and demonstrate technologies to address issues related to the recycling of byproducts associated with coal combustion processes. A goal of CBRC is that these technologies, by the year 2010, will lead to an overall ash utilization rate from the current 34% to 50% by such measures as increasing the current rate of FGD byproduct use and increasing in the number of uses considered 'allowable' under state regulations. Another issue of interest to the CBRC would be to examine the environmental impact of both byproduct utilization and disposal. No byproduct utilization technology is likely to be adopted by industry unless it is more cost-effective than landfilling. Therefore, it is extremely important that the utility industry provide guidance to the R&D program. Government agencies and private-sector organizations that may be able to utilize these materials in the conduct of their missions should also provide input. The CBRC will serve as an effective vehicle for acquiring and maintaining guidance from these diverse organizations so that the proper balance in the R&D program is achieved.

Paul Ziemkiewicz; Tamara Vandivort; Debra Pflughoeft-Hassett; Y. Paul Chugh; James Hower

2008-08-31T23:59:59.000Z

98

Combustion Byproducts Recycling Consortium  

SciTech Connect

Each year, over 100 million tons of solid byproducts are produced by coal-burning electric utilities in the United States. Annual production of flue gas desulfurization (FGD) byproducts continues to increase as the result of more stringent sulfur emission restrictions. In addition, stricter limits on NOx emissions mandated by the 1990 Clean Air Act have resulted in utility burner/boiler modifications that frequently yield higher carbon concentrations in fly ash, which restricts the use of the ash as a cement replacement. Controlling ammonia in ash is also of concern. If newer, “clean coal” combustion and gasification technologies are adopted, their byproducts may also present a management challenge. The objective of the Combustion Byproducts Recycling Consortium (CBRC) is to develop and demonstrate technologies to address issues related to the recycling of byproducts associated with coal combustion processes. A goal of CBRC is that these technologies, by the year 2010, will lead to an overall ash utilization rate from the current 34% to 50% by such measures as increasing the current rate of FGD byproduct use and increasing in the number of uses considered “allowable” under state regulations. Another issue of interest to the CBRC would be to examine the environmental impact of both byproduct utilization and disposal. No byproduct utilization technology is likely to be adopted by industry unless it is more cost-effective than landfilling. Therefore, it is extremely important that the utility industry provide guidance to the R&D program. Government agencies and privatesector organizations that may be able to utilize these materials in the conduct of their missions should also provide input. The CBRC will serve as an effective vehicle for acquiring and maintaining guidance from these diverse organizations so that the proper balance in the R&D program is achieved.

Ziemkiewicz, Paul; Vandivort, Tamara; Pflughoeft-Hassett, Debra; Chugh, Y Paul; Hower, James

2008-08-31T23:59:59.000Z

99

Sustained Recycle in Light Water and Sodium-Cooled Reactors  

SciTech Connect

From a physics standpoint, it is feasible to sustain recycle of used fuel in either thermal or fast reactors. This paper examines multi-recycle potential performance by considering three recycling approaches and calculating several fuel cycle parameters, including heat, gamma, and neutron emission of fresh fuel; radiotoxicity of waste; and uranium utilization. The first recycle approach is homogeneous mixed oxide (MOX) fuel assemblies in a light water reactor (LWR). The transuranic portion of the MOX was varied among Pu, NpPu, NpPuAm, or all-TRU. (All-TRU means all isotopes through Cf-252.) The Pu case was allowed to go to 10% Pu in fresh fuel, but when the minor actinides were included, the transuranic enrichment was kept below 8% to satisfy the expected void reactivity constraint. The uranium portion of the MOX was enriched uranium. That enrichment was increased (to as much as 6.5%) to keep the fuel critical for a typical LWR irradiation. The second approach uses heterogeneous inert matrix fuel (IMF) assemblies in an LWR - a mix of IMF and traditional UOX pins. The uranium-free IMF fuel pins were Pu, NpPu, NpPuAm, or all-TRU. The UOX pins were limited to 4.95% U-235 enrichment. The number of IMF pins was set so that the amount of TRU in discharged fuel from recycle N (from both IMF and UOX pins) was made into the new IMF pins for recycle N+1. Up to 60 of the 264 pins in a fuel assembly were IMF. The assembly-average TRU content was 1-6%. The third approach uses fast reactor oxide fuel in a sodium-cooled fast reactor with transuranic conversion ratio of 0.50 and 1.00. The transuranic conversion ratio is the production of transuranics divided by destruction of transuranics. The FR at CR=0.50 is similar to the CR for the MOX case. The fast reactor cases had a transuranic content of 33-38%, higher than IMF or MOX.

Steven J. Piet; Samuel E. Bays; Michael A. Pope; Gilles J. Youinou

2010-11-01T23:59:59.000Z

100

Catalytic Coal Gasification Process  

NLE Websites -- All DOE Office Websites (Extended Search)

Catalytic Coal Gasification Process Catalytic Coal Gasification Process for the Production of Methane-Rich Syngas Opportunity Research is active on the patent pending technology, titled "Production of Methane-Rich Syngas from Fuels Using Multi-functional Catalyst/Capture Agent." This technology is available for licensing and/or further collaborative research from the U.S. Department of Energy's National Energy Technology Laboratory. Overview Reducing pollution emitted by coal and waste power plants in an economically viable manner and building power plants that co-generate fuels and chemicals during times of low electricity demand are pressing goals for the energy industry. One way to achieve these goals in an economically viable manner is through the use of a catalytic gasifier that

Note: This page contains sample records for the topic "recycled fresh catalytic" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

Chapter 3 - Recycling in Context  

Science Journals Connector (OSTI)

Abstract The recycling of metals is widely viewed as a fruitful sustainability strategy, but information on the degree to which recycling is actually occurring is limited in scope and detail. In this chapter we define various metrics for the recycling of metals and present current information on recycled content (RC), end-of-life recycling rates (EOL-RR), and old scrap ratios (OSR) for 60 metals of the periodic table. Because of growth in metal use over time, and because metal in-use lifetimes can be many years to several decades, many RC values are low and will remain so for the foreseeable future. In addition, because relatively low efficiencies often exist in the collection and processing of most discarded products, because of inherent limitations in recycling processes, and because primary material is often relatively abundant and low cost (thereby keeping down the price of scrap), many EOL-RR are very low but have the potential for improvement. Only 12 metals (Co, Fe, Mn, Nb, Ni, Pb, Pd, Pt, Re, Rh, Sn and Ti) have the EOL-RR above 50% at present. Only Nb, Pb and Ru have an RC above 50%, although 15 metals are in the 25–50% range. Thirteen metals have an OSR >50%. Improving recycling performance will be increasingly challenging as materials integration continues its rise.

T.E. Graedel; Barbara K. Reck

2014-01-01T23:59:59.000Z

102

Optimising the Fresh Air Economiser  

E-Print Network (OSTI)

Optimising the Fresh Air Economiser Rob Bishop Technical Director Energy Solutions Ltd. Wellington New Zealand ABSTRACT This paper proposes using measurements of CO2 to infer the amount of Outside Air (OA) ventilation delivered to a... and the number of occupants only, but since 2004 has also included a value based on the floor area of the space. In New Zealand, the ventilation code is based on ASHRAE Standard 62:1989 (with local amendments), and has not been updated to include the area...

Biship, R.

2013-01-01T23:59:59.000Z

103

Applied ecotechnological issues for recycling cars  

Science Journals Connector (OSTI)

The paper shows the need for recycling cars. Recycling operation is particularly complicated because after dismantling and split a wide range of material resulting in a proportion different and difficult to separate. There are presented two recycling ... Keywords: end-of-life-vehicle recycling, hammer mill technology, shrreder technology

Gheorghe Amza; Zoia Apostolescu; Mihaiela Iliescu; Zlatko Garac; Sanda Paise; Maria Groza

2011-07-01T23:59:59.000Z

104

Plant Networks for Processing Recyclable Materials  

Science Journals Connector (OSTI)

We use a modified optimal market area model to examine how links between material recycling and other aspects of operations strategy can shape plant networks for the processing of recyclable materials. We characterize the complementarity of the recyclate ... Keywords: localization, material versatility, minimills, operations strategy, optimal market area, plant networks, recycling

Lieven Demeester; Mei Qi; Luk N. Van Wassenhove

2013-10-01T23:59:59.000Z

105

Super recycled water: quenching January 30, 2014  

E-Print Network (OSTI)

purifying" wastewater, plus recycling waste to replace concrete We know water is a precious resource. Currently, we're recycling about 300,000 gallons of industrial wastewater daily at the Sanitary Effluent- 1 - Super recycled water: quenching computers January 30, 2014 Conserving, recycling and "super

106

WasteTraining Booklet Waste & Recycling Impacts  

E-Print Network (OSTI)

WasteTraining Booklet #12;Waste & Recycling Impacts Environment: The majority of our municipal jobs while recycling 10,000 tons of waste creates 36 jobs. Environment: Recycling conserves resources. It takes 95% less energy to make aluminum from recycled aluminum than from virgin materials, 60% less

Saldin, Dilano

107

RECYCLING PROGRAM TYPE LOCATION ALLOWED NOT ALLOWED  

E-Print Network (OSTI)

RECYCLING PROGRAM TYPE LOCATION ALLOWED NOT ALLOWED Batteries, toner, ink cartridges & cell phones and recycling is an important part of that effort. Below is a guide to on-campus recycling at RSMAS: Visit http://www.rsmas.miami.edu/msgso/ for map of recycling bin locations. NOTE: This is not an exhaustive list. If unauthorized items are found

Miami, University of

108

The College Student's Guide to Recycling,  

E-Print Network (OSTI)

The College Student's Guide to Recycling, Reduction, and Reuse UNIVERSITY AT ALBANY Phone Albany, NY 12222 Top 7 Recycling and Reuse TipsTop 7 Recycling and Reuse Tips University at Albany Office of Environmental Sustainability 1. Set up separate bins for recyclable materials such as plastics and papers. 2

Kidd, William S. F.

109

The Environment Team to Waste & Recycling  

E-Print Network (OSTI)

The Environment Team A-Z Guide to Waste & Recycling www.le.ac.uk/environment #12;Welcome ...to the University of Leicester's `A-Z Guide to Waste and Recycling'. Over the last 3 years, the Environment Team has introduced an award- winning recycling scheme across the campus that allows us to recycle paper, plastics

St Andrews, University of

110

Ink and Toner Recycling Rewards Program Overview  

E-Print Network (OSTI)

Ink and Toner Recycling Rewards Program Overview www.MyBusinessRecycles.com April 2013 #12;Program Overview · All BSD contract customers can participate in the MyBusinessRecycles program · Customers located in AK, HI or PR are not currently eligible. ­ Education sector customers should join the Recycling Rules

Meyers, Steven D.

111

Recycled Materials Resource Jeffrey S. Melton  

E-Print Network (OSTI)

Recycled Materials Resource Center Jeffrey S. Melton Outreach Director Recycled Materials Resource Center NCC Meeting, April 9th, 2008 #12;Recycled Materials Resource Center Partner laboratory of FHWA Founded in 1998, renewed in 2007 Dedicated to the appropriate use of recycled materials in the highway

112

Welcome new and returning residents! Help us make USC greener by recycling! Your Room Recycling Bin  

E-Print Network (OSTI)

Welcome new and returning residents! Help us make USC greener by recycling! Your Room Recycling Bin Every room is provided with a recycling bin to make it easy for you to recycle while living in University Housing. Use this bin to collect mixed recyclables in your room and take them to your nearest

Almor, Amit

113

Molecular Modeling at Plastic Recycling  

Science Journals Connector (OSTI)

The possibility to model the new materials from recycled post industrial polymer rejects by molecular modeling methods was investigated by comparison of the results obtained from the simulation process and the experiments.

Laura Martinelli; Sabino Sinesi; Alessio Baron Toaldo; Maurizio Fermeglia; Paola Posocco; Tomasz Szczurek; Marek Kozlowski

2007-01-01T23:59:59.000Z

114

Framework for Building Design Recyclability  

E-Print Network (OSTI)

and reusing it as compacted base or drain material; 2. hauling it to a recycling facility Regardless of which recovery strategy is used, the physical processing of the material is the same: the concrete shards are fed into an impact crusher, followed... to Recycling Facilities 17 side discharge conveyor, screening plant, and a return conveyor from the screen to the crusher inlet for reprocessing oversize materials. Compact, self-contained mini- crushers are also available that can handle up to 150 tons per...

Zhang, Fan

2008-01-01T23:59:59.000Z

115

Materials - Recycling - Shredder Residue  

NLE Websites -- All DOE Office Websites (Extended Search)

Recovering Materials from Shredder Residue Recovering Materials from Shredder Residue Obsolete automobiles, home appliances and other metal-containing scrap are shredded for the recovery of metals. More than 50% of the material shredded is automobiles. In the United States, shredders generate about 5 million tons of shredder residue every year. Similar amounts are produced in Europe and in the Pacific Rim. Because recycling shredder waste has not been profitable, most of it ends up in landfills; smaller amounts are incinerated. Argonne researchers have developed and tested a process to recover polymers and metals from shredder residue. A 2-ton/hr pilot plant, consisting of a mechanical separation facility and a six-stage wet density/froth flotation plant, was built at Argonne. In the mechanical part of the plant, the shredder waste was separated into five primary components: a polymer fraction (about 45% by weight), a residual metals concentrate (about 10% by weight), a polyurethane foam portion (about 5% by weight), an organic-rich fraction (about 25% by weight) and a metal oxides fraction (about 15% by weight). The polymer fraction was then separated further in the wet density/froth flotation system to recover individual plastic types or compatible families of polymers.

116

Key recycling in authentication  

E-Print Network (OSTI)

In their seminal work on authentication, Wegman and Carter propose that to authenticate multiple messages, it is sufficient to reuse the same hash function as long as each tag is encrypted with a one-time pad. They argue that because the one-time pad is perfectly hiding, the hash function used remains completely unknown to the adversary. Since their proof is not composable, we revisit it using a composable security framework. It turns out that the above argument is insufficient: if the adversary learns whether a corrupted message was accepted or rejected, information about the hash function is leaked, and after a bounded finite amount of rounds it is completely known. We show however that this leak is very small: Wegman and Carter's protocol is still $\\epsilon$-secure, if $\\epsilon$-almost strongly universal$_2$ hash functions are used. This implies that the secret key corresponding to the choice of hash function can be reused in the next round of authentication without any additional error than this $\\epsilon$. We also show that if the players have a mild form of synchronization, namely that the receiver knows when a message should be received, the key can be recycled for any arbitrary task, not only new rounds of authentication.

Christopher Portmann

2012-02-06T23:59:59.000Z

117

Airvest's Breath of Fresh Air  

NLE Websites -- All DOE Office Websites (Extended Search)

7 7 The Cutting Edge: Airvest's Breath of Fresh Air Spray booths are a common sight in the industrial sector. Designed to remove pollutants during industrial processes such as spray painting or welding, a booth is a rectangular enclosure open on one side where the worker stands, and equipped on the opposite wall with a fan and filter arrangement to suck away the dirty air. The full-size mannequin in these photographs simulates a worker in a spray booth facing the exhaust filters. In experiments designed by LBL researcher Ashok Gadgil, smoke was released in front of the mannequin to simulate the spraying of paint in the booth. The photo on the left shows the spray booth during standard operation. The smoke-representing a pollutant-is entrained in the eddy that forms in

118

RDS and Recycling Waste Diversion in Food Prep  

E-Print Network (OSTI)

RDS and Recycling Waste Diversion in Food Prep Setting #12;Why Recycle? Recycling saves resources Recycling one ton of paper saves 17 trees! Recycling saves energy Recycling one aluminum can saves enough energy to power a television for 3 hours! Recycling is easy There are 4 waste categories here at UM

Awtar, Shorya

119

Combustion Byproducts Recycling Consortium  

SciTech Connect

The Combustion Byproducts Recycling Consortium (CBRC) program was developed as a focused program to remove and/or minimize the barriers for effective management of over 123 million tons of coal combustion byproducts (CCBs) annually generated in the USA. At the time of launching the CBRC in 1998, about 25% of CCBs were beneficially utilized while the remaining was disposed in on-site or off-site landfills. During the ten (10) year tenure of CBRC (1998-2008), after a critical review, 52 projects were funded nationwide. By region, the East, Midwest, and West had 21, 18, and 13 projects funded, respectively. Almost all projects were cooperative projects involving industry, government, and academia. The CBRC projects, to a large extent, successfully addressed the problems of large-scale utilization of CCBs. A few projects, such as the two Eastern Region projects that addressed the use of fly ash in foundry applications, might be thought of as a somewhat smaller application in comparison to construction and agricultural uses, but as a novel niche use, they set the stage to draw interest that fly ash substitution for Portland cement might not attract. With consideration of the large increase in flue gas desulfurization (FGD) gypsum in response to EPA regulations, agricultural uses of FGD gypsum hold promise for large-scale uses of a product currently directed to the (currently stagnant) home construction market. Outstanding achievements of the program are: (1) The CBRC successfully enhanced professional expertise in the area of CCBs throughout the nation. The enhanced capacity continues to provide technology and information transfer expertise to industry and regulatory agencies. (2) Several technologies were developed that can be used immediately. These include: (a) Use of CCBs for road base and sub-base applications; (b) full-depth, in situ stabilization of gravel roads or highway/pavement construction recycled materials; and (c) fired bricks containing up to 30%-40% F-fly ash. Some developed technologies have similar potential in the longer term. (3) Laboratory studies have been completed that indicate that much higher amounts of fly ash could be added in cement-concrete applications under some circumstances. This could significantly increase use of fly ash in cement-concrete applications. (4) A study of the long-term environmental effects of structural fills in a surface mine in Indiana was completed. This study has provided much sought after data for permitting large-volume management options in both beneficial as well as non-beneficial use settings. (5) The impact of CBRC on CCBs utilization trends is difficult to quantify. However it is fair to say that the CBRC program had a significant positive impact on increased utilization of CCBs in every region of the USA. Today, the overall utilization of CCBs is over 43%. (6) CBRC-developed knowledge base led to a large number of other projects completed with support from other sources of funding. (7) CBRC research has also had a large impact on CCBs management across the globe. Information transfer activities and visitors from leading coal producing countries such as South Africa, Australia, England, India, China, Poland, Czech Republic and Japan are truly noteworthy. (8) Overall, the CBRC has been a truly successful, cooperative research program. It has brought together researchers, industry, government, and regulators to deal with a major problem facing the USA and other coal producing countries in the world.

Paul Ziemkiewicz; Tamara Vandivort; Debra Pflughoeft-Hassett; Y. Paul Chugh; James Hower

2008-08-31T23:59:59.000Z

120

CSD: Research: Catalytic Science  

NLE Websites -- All DOE Office Websites (Extended Search)

Catalytic Science Catalytic Science The DOE Chemical Energy program supports basic research in the area of chemical transformations or conversions which are fundamental to new or existing concepts of energy production and storage. A further goal of the program is to identify and develop environmentally benign approaches to the synthesis of chemicals via routes requiring a minimal consumption of energy. These objectives lead naturally to an emphasis on catalysis. Novel homogeneous and heterogeneous catalysts are constantly being sought to enable the synthesis of desired products from nontraditional reactants, often with the aim of minimizing the production of toxic intermediates or byproducts, or to enable the more efficient production of products via existing reaction pathways. To this end, efforts are undertaken to

Note: This page contains sample records for the topic "recycled fresh catalytic" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

Chapter 31 - The Economics of Recycling  

Science Journals Connector (OSTI)

Abstract Recycling is generally considered an important strategy for alleviating the pressures of society on the environment while creating employment and attracting investments. In recent years, many countries have experienced large increases in recycling. This chapter aims to identify the main economic drivers of recycling, address the economic effects of recycling-related activities, and demonstrate the effectiveness of economic policies promoting recycling. The chapter demonstrates how recycling takes place in a volatile, dynamic, and globalizing world, which complicates the projections of future developments in the recycling sector. Moreover, the chapter describes which private and external costs of recycling-related activities need to be taken into account and how these effects can be valued in economic terms. Finally, the most important economic instruments to promote recycling are identified and explained.

Pieter van Beukering; Onno Kuik; Frans Oosterhuis

2014-01-01T23:59:59.000Z

122

Textile Wastewater Treatment and Recycling  

Science Journals Connector (OSTI)

Textile industry consumes huge quantities of fresh water (100–150 l/kg of cotton for direct dye). During various stages of textile processing, wastewater is charged with substantial amounts of chemical polluta...

Raja Ben Amar; Gazza Masmoudi

2013-01-01T23:59:59.000Z

123

The economics of cell phone reuse and recycling  

E-Print Network (OSTI)

documents. Else Refining & Recycling Ltd. , Shefford 54.and the potential for recycling other small electrical andon material recovery and recycling of end-of-life mobile

Geyer, Roland; Doctori Blass, Vered

2010-01-01T23:59:59.000Z

124

Catalytic distillation : design and application of a catalytic distillation column.  

E-Print Network (OSTI)

??Catalytic Distillation (CD) is a hybrid technology that utilizes the dynamics of si- multaneous reaction and separation in a single process unit to achieve a… (more)

Nieuwoudt, Josias Jakobus (Jako)

2005-01-01T23:59:59.000Z

125

Materials - Recycling - ABS and HIPS  

NLE Websites -- All DOE Office Websites (Extended Search)

Separation and Recovery of ABS and HIPS from Mixed Plastics via Froth Flotation Separation and Recovery of ABS and HIPS from Mixed Plastics via Froth Flotation Every day, obsolete appliances, consumer electronics, and cars make their way into landfills. These no-longer-wanted items contain something valuable--plastics that have the potential to be recycled. Although current technologies enable the separation of some plastics, they do not yet offer cost-effective purity and yields. Additionally, these methods do not effectively separate plastics that have the same density. Argonne and Appliance Recycling Centers of America (ARCA) undertook a project to develop a process to effectively separate and recover high-quality acrylonitrile butadiene styrene (ABS)--a plastic used to produce lightweight, tough, rigid products--from the mixed-plastics wastes generated in ARCA's appliance-recycling operation.

126

Ad Building demolition, recycling completed  

NLE Websites -- All DOE Office Websites (Extended Search)

Ad Building demolition, recycling completed Ad Building demolition, recycling completed Ad Building demolition, recycling completed Demolition of the Administration Building helps Los Alamos meet an NNSA directive to reduce its structural footprint, modernize its infrastructure, and provide workers with safe, energy-efficient facilities. October 11, 2011 Demolition of the administration building Demolition of the Administration Building Contact Steve Sandoval Communications Office (505) 665-9206 Email Project finished under budget, ahead of schedule LOS ALAMOS, New Mexico, October 11, 2011-Los Alamos National Laboratory has completed demolition of its former Administration Building. Demolition of the 316,500-square-foot building that was home to seven Laboratory directors was completed five months ahead of the original schedule and

127

Materials - Recycling - Polymer Matrix Composites  

NLE Websites -- All DOE Office Websites (Extended Search)

Recycling of Polymer Matrix Composites Recycling of Polymer Matrix Composites Polymer matrix composites Carbon fibers recovered from a epoxy-based polymer matrix composite. Carbon fiber reinforced polymer matrix composites (PMCs) are materials with superior strength-to-weight ratios. Finding increased applications in the aerospace industry, PMCs are now being evaluated for possible use in automobile construction. The materialÂ’s high cost, however, along with concerns about whether the PMCs will be recyclable when the vehicles reach the end of their useful lives, are barriers to its widespread use. With funding provided by the U.S. Department of EnergyÂ’s Vehicle Technologies Program (formerly called the Office of Advanced Transportation Technologies), Argonne is developing an efficient and cost-effective

128

Process to recycle shredder residue  

DOE Patents (OSTI)

A system and process for recycling shredder residue, in which separating any polyurethane foam materials are first separated. Then separate a fines fraction of less than about 1/4 inch leaving a plastics-rich fraction. Thereafter, the plastics rich fraction is sequentially contacted with a series of solvents beginning with one or more of hexane or an alcohol to remove automotive fluids; acetone to remove ABS; one or more of EDC, THF or a ketone having a boiling point of not greater than about 125.degree. C. to remove PVC; and one or more of xylene or toluene to remove polypropylene and polyethylene. The solvents are recovered and recycled.

Jody, Bassam J. (Chicago, IL); Daniels, Edward J. (Oak Lawn, IL); Bonsignore, Patrick V. (Channahon, IL)

2001-01-01T23:59:59.000Z

129

The Role of Carbon in Catalytically Stabilized Transition Metal Sulfides  

SciTech Connect

Since WWII considerable progress has been made in understanding the basis for the activity and the selectivity of molybdenum and tungsten based hydrotreating catalysts. Recently, the focus of investigation has turned to the structure of the catalytically stabilized active catalyst. The surface of the catalytically stabilized MoS2 has been shown to be carbided with the formula MoSxCy under hydrotreating conditions. In this paper we review the basis for this finding and present new data extending the concept to the promoted TMS (transition metal sulfides) systems CoMoC and NiMoC. Freshly sulfided CoMoS and NiMoS catalyst have a strong tendency to form the carbided surface phases from any available carbon source.

Kelty,S.; Berhault, G.; Chianelli, R.

2007-01-01T23:59:59.000Z

130

Ford Opens Door to Plastics Recycling  

Science Journals Connector (OSTI)

Ford Opens Door to Plastics Recycling ... With the passage of the European "take-back" laws all but inevitable, American automakers are stepping up efforts to recycle U.S. cars. ...

Kellyn S. Betts

2011-06-09T23:59:59.000Z

131

Automobile Recycling Policy: Findings and Recommendations  

E-Print Network (OSTI)

This report focuses on recycling. As an objective neutral party, MIT has compiled a knowledge base that examines the many complex issues relating to re-cycling. Although this report was prepared at the request of the ...

Field, Frank

132

Residential Refrigerator Recycling Ninth Year Retention Study  

E-Print Network (OSTI)

Residential Refrigerator Recycling Ninth Year Retention Study Study ID Nos. 546B, 563 Prepared RECYCLING PROGRAMS Study ID Nos. 546B and 563 Prepared for Southern California Edison Rosemead, California

133

Compositional evaluation of asphalt binder recycling agents  

E-Print Network (OSTI)

Several experiments were performed to determine how recycling agent composition affects the high, intermediate, and low temperature properties as well as long term oxidative aging characteristics of recycled asphalt blends. Specifically, several...

Madrid, Richard Charles

1997-01-01T23:59:59.000Z

134

Cumene by Catalytic Distillation  

SciTech Connect

The novel concept of Catalytic Distillation has been commercialized in the CRandL MTBE process, in which combined reaction and distillation provide energy savings over conventional processes. This concept has now been extended to production of cumene from benzene and propylene. In this case the advantages of the technique are not only energy savings but significant reductions in by-product losses and capital requirements. In this paper the development of the process is discussed and the economics of commercial operation are presented.

Jones, E.M.; Mawer, J.

1986-01-01T23:59:59.000Z

135

Redesigned recycle valves abate compressor vibration  

SciTech Connect

New recycle valves installed in 1994 on the compressors in the East Brae field in the North Sea corrected the noise and vibration problem that damaged the original valves shortly after commissioning the platform. The original recycle valves, especially on the second-stage compressors, showed severe damage. The paper describes the Brae field, the recycle system, recycle valves, operations, the new valve design, noise and vibration, and valve actuators.

Laing, D.E. [Marathon Oil U.K. Ltd., Aberdeen (United Kingdom); Miller, H.L.; McCaskill, J.W. [Engineering Control Components Inc., Rancho Santa Margarita, CA (United States)

1995-06-05T23:59:59.000Z

136

Proceedings of the waste recycling workshop  

SciTech Connect

Recorded are seventeen talks from five sessions at the workshop. FERMCO`s recycling program, state of the art recycling technology, and an integrated demonstration of deactivation, decommissioning and decommissioning are presented in the plenary session. In the concrete session, decontamination and recycling are discussed. In the transite session, regulations are considered along with recycling and decontamination. In the metals session, radioactive scrap metals are emphasized. And in the regulatory considerations and liabilities session, DOE and EPA viewpoints are discussed. (GHH)

Bailey, R.E.; Thomas, A.F.; Ries, M.A. [eds.] [Ohio State Univ., Columbus, OH (United States)] [eds.; Ohio State Univ., Columbus, OH (United States)

1993-12-31T23:59:59.000Z

137

TTUAB PLASTIC & ALUMINUM RECYCLING PROTOCOL Fall 2012 What Plastic Do We Recycle?  

E-Print Network (OSTI)

TTUAB PLASTIC & ALUMINUM RECYCLING PROTOCOL ­ Fall 2012 What Plastic Do We Recycle? TTUAB has taken on the responsibility of recycling #1 PET and #2 HDPE plastics by placing a yellow TTUAB Plastic Recycling bin on each. Technically, we are only responsible for aforementioned plastics and aluminum. However, any trash or other

Rock, Chris

138

TTUAB PLASTIC & ALUMINUM RECYCLING PROTOCOL 2013 What Plastic Do We Recycle?  

E-Print Network (OSTI)

TTUAB PLASTIC & ALUMINUM RECYCLING PROTOCOL 2013 What Plastic Do We Recycle? TTUAB has taken on the responsibility of recycling ALL plastics (#1 through #7) by placing a yellow TTUAB Plastic Recycling bin on each and in LH100. Technically, we are only responsible for aforementioned plastics and aluminum. However, any

Rock, Chris

139

TTUAB PLASTIC RECYCLING PROTOCOL Fall 2011 What Plastic Do We Recycle?  

E-Print Network (OSTI)

TTUAB PLASTIC RECYCLING PROTOCOL ­ Fall 2011 What Plastic Do We Recycle? TTUAB has taken on the responsibility of recycling #1 PET and #2 HDPE plastics by placing a yellow TTUAB Plastic Recycling bin on each floor. Technically, we are only responsible for aforementioned plastics. However, any trash or other

Rock, Chris

140

Research Report Recycling gone bad: When the option to recycle increases  

E-Print Network (OSTI)

Research Report Recycling gone bad: When the option to recycle increases resource consumption Jesse Abstract In this study, we propose that the ability to recycle may lead to increased resource usage compared to when a recycling option is not available. Supporting this hypothesis, our first experiment

Loudon, Catherine

Note: This page contains sample records for the topic "recycled fresh catalytic" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

Where can I recycle it year-round? Item Local Recycling Locations  

E-Print Network (OSTI)

Where can I recycle it year-round? Item Local Recycling Locations Styrofoam First Alternative Co-op Recycling Center, 1007 SE 3rd St., 541-753-3115 (small fee) Packing Peanuts OSU Surplus, 644 SW 13 th St., 541-737-7347 Commercial shipping stores Film Plastics First Alternative Co-op Recycling Center, 1007

Escher, Christine

142

Recycling of wasted energy : thermal to electrical energy conversion  

E-Print Network (OSTI)

CALIFORNIA, SAN DIEGO Recycling of Wasted Energy : ThermalOF THE DISSERTATION Recycling of Wasted Energy : Thermal to

Lim, Hyuck

2011-01-01T23:59:59.000Z

143

Nottingham Trent University Plastic Recycling  

E-Print Network (OSTI)

5015/03/08 Nottingham Trent University Plastic Recycling Water and fizzy drinks bottles Contaminated plastic (food, fluids, etc.) Oil containers Toxic chemical containers Metal strips or fasteners Carrier bags and bin liners Margarine tubs, wall coverings Yoghurt pots, egg cartons, plastic packaging

Evans, Paul

144

Chapter 21 - Recycling of Packaging  

Science Journals Connector (OSTI)

Abstract Packaging is so common throughout our lives and the world that we hardly realize the massive volume of material consumed for packaging. Packaging is the key factor determining the volume and composition of municipal solid waste in many countries. The volume and composition of packaging waste are affected by a number of factors. Economic development, population, and a variety of national factors are key drivers for the total volume. The composition changes over time due to technology and economic drivers, but it is also affected by national traditions and policies. Due to the important contribution to the total volume of waste generated, packaging has historically received a lot of attention in waste management policy. This had led to a range of experiences with different ways to collect packaging waste throughout the world. The type of collection scheme is driven by the type of packaging or material (i.e. reuse, recycling, or waste treatment). Recycling rates vary by material type, with the highest collection and recycling rates found for metals, glass, and paper. Collection and recycling rates of plastics are generally still very low. The effectiveness and efficiency of collection are affected by a variety of factors, including cultural, economic, and organizational factors.

Ernst Worrell

2014-01-01T23:59:59.000Z

145

Recent innovations in paper recycling  

SciTech Connect

From many process steps in paper recycling systems, two have been selected for discussion, namely washing deinking and flotation deinking flotation deinking. Recent innovations are reviewed, in the context of the basic mechanisms responsible for the functioning of these machines. An update is also given for their application in the processing of used office papers.

Seifert, P. (Black Clawson Co., Middletown, OH (United States))

1994-02-01T23:59:59.000Z

146

Ames Lab 101: Rare-Earth Recycling  

SciTech Connect

Recycling keeps paper, plastics, and even jeans out of landfills. Could recycling rare-earth magnets do the same? Perhaps, if the recycling process can be improved. Scientists at the U.S. Department of Energy's Ames Laboratory are working to more effectively remove the neodymium, a rare earth, from the mix of other materials in a magnet.

Ryan Ott

2012-09-05T23:59:59.000Z

147

Recycling at Mooov-In 2011  

E-Print Network (OSTI)

Cardboard Recycling at Mooov-In 2011 For the second year in a row, Division of Housing and Food Service (DHFS) and Recycling & Sustainability teamed up to divert as much cardboard as possible from area landfills. In addition to the paper, cardboard, aluminum and plastic recycling available in all residence

Julien, Christine

148

Energy and Environmental Considerations in Recycling  

E-Print Network (OSTI)

Energy and Environmental Considerations in Recycling Griffin Hosseinzadeh 11 April 2012 Physics H materials from recyclables · Carbon emissions & water pollution from production of virgin materials vs. recycling · Methane from decomposing materials in landfill · Depletion of natural resources (trees, minerals

Budker, Dmitry

149

Novel Catalytic Membrane Reactors  

SciTech Connect

There are many industrial catalytic organic reversible reactions with amines or alcohols that have water as one of the products. Many of these reactions are homogeneously catalyzed. In all cases removal of water facilitates the reaction and produces more of the desired chemical product. By shifting the reaction to right we produce more chemical product with little or no additional capital investment. Many of these reactions can also relate to bioprocesses. Given the large number of water-organic compound separations achievable and the ability of the Compact Membrane Systems, Inc. (CMS) perfluoro membranes to withstand these harsh operating conditions, this is an ideal demonstration system for the water-of-reaction removal using a membrane reactor. Enhanced reaction synthesis is consistent with the DOE objective to lower the energy intensity of U.S. industry 25% by 2017 in accord with the Energy Policy Act of 2005 and to improve the United States manufacturing competitiveness. The objective of this program is to develop the platform technology for enhancing homogeneous catalytic chemical syntheses.

Stuart Nemser, PhD

2010-10-01T23:59:59.000Z

150

5, 35333559, 2005 Catalytic conversion  

E-Print Network (OSTI)

measurement technique, employing selective gas- phase catalytic conversion of methanol to formaldehyde it the second most abundant organic trace gas after methane. Methanol can play an important role in upper tropoACPD 5, 3533­3559, 2005 Catalytic conversion of methanol to formaldehyde S. J. Solomon et al. Title

Paris-Sud XI, Université de

151

Safe Storage of Fresh Fruits and Vegetables  

E-Print Network (OSTI)

Proper storage of fresh fruits and vegetables can help consumers avoid foodborne illness. This publication explains how to safely store apples, bananas, berries, beets, broccoli, carrots, corn, grapes, herbs, lettuce and greens, melons, nectarines...

Scott, Amanda

2008-09-05T23:59:59.000Z

152

Cost effectiveness of recycling: A systems model  

SciTech Connect

Highlights: • Curbside collection of recyclables reduces overall system costs over a range of conditions. • When avoided costs for recyclables are large, even high collection costs are supported. • When avoided costs for recyclables are not great, there are reduced opportunities for savings. • For common waste compositions, maximizing curbside recyclables collection always saves money. - Abstract: Financial analytical models of waste management systems have often found that recycling costs exceed direct benefits, and in order to economically justify recycling activities, externalities such as household expenses or environmental impacts must be invoked. Certain more empirically based studies have also found that recycling is more expensive than disposal. Other work, both through models and surveys, have found differently. Here we present an empirical systems model, largely drawn from a suburban Long Island municipality. The model accounts for changes in distribution of effort as recycling tonnages displace disposal tonnages, and the seven different cases examined all show that curbside collection programs that manage up to between 31% and 37% of the waste stream should result in overall system savings. These savings accrue partially because of assumed cost differences in tip fees for recyclables and disposed wastes, and also because recycling can result in a more efficient, cost-effective collection program. These results imply that increases in recycling are justifiable due to cost-savings alone, not on more difficult to measure factors that may not impact program budgets.

Tonjes, David J., E-mail: david.tonjes@stonybrook.edu [Department of Technology and Society, College of Engineering and Applied Sciences, Stony Brook University, Stony Brook, NY 11794-3560 (United States); Waste Reduction and Management Institute, School of Marine and Atmospheric Sciences, Stony Brook University, Stony Brook, NY 11794-5000 (United States); Center for Bioenergy Research and Development, Advanced Energy Research and Technology Center, Stony Brook University, 1000 Innovation Rd., Stony Brook, NY 11794-6044 (United States); Mallikarjun, Sreekanth, E-mail: sreekanth.mallikarjun@stonybrook.edu [Department of Technology and Society, College of Engineering and Applied Sciences, Stony Brook University, Stony Brook, NY 11794-3560 (United States)

2013-11-15T23:59:59.000Z

153

Microbial flora of fresh and stored shrimp  

E-Print Network (OSTI)

's multiple range test (16), treat- ment 1 (plate incubation, aerobic at 28 C for 2 days) differed significantly from the others. However treatments 2, 3, and 4 did not differ significantly. No statistically significant differences were observed among... Microbial Flora of Fresh and Stored Shrimp. ( May 1970) Eva Mroz, B . S . , Texas A&M University Directed by: Dr. C . Vanderzant On the basis of the experimental results presented in this study, it is recommended that aerobic agar plate counts on fresh...

Mroz, Eva

1970-01-01T23:59:59.000Z

154

Sandia National Laboratories: Pollution Prevention: Recycling  

NLE Websites -- All DOE Office Websites (Extended Search)

Recycling Recycling Sandia goes beyond basic recycling of common papers, plastics, and metals. We divert as many waste streams for recycling as feasible. The list of materials diverted grows every year. We regularly re-evaluate processes for efficiency and improved revenues as well. Revenue received from recycling goes back into the program to fund material streams that currently cost to process, and to improve and expand the waste reduction infrastructure. The state of New Mexico has a target to recycle 35% of its waste by 2018. The Department of Energy has a goal of 50% by 2015. Sandia/New Mexico is contributing toward both of these goals by recycling nearly 71% of its waste in FY12. Sandia/California is doing even better at 78%. compost pile Composting Sandia/New Mexico sends green waste in the form of branches to Kirtland Air

155

Chapter 9 - Zinc and Residue Recycling  

Science Journals Connector (OSTI)

Abstract Annual global production of zinc is more than 13 million tons. More than 50% of this amount is used for galvanizing while the rest is mainly split into brass production, zinc-based alloys, semi manufacturers and zinc compounds such as zinc oxide and zinc sulfate. For the zinc and steel industries, recycling of zinc-coated steel provides an important new source of raw material. Historically, the generation of zinc-rich dusts from steel recycling was a source of loss from the life-cycle (landfill); however, technologies today provide incentive for steel recyclers to minimize waste. Thus, the recycling loop is endless—both zinc and steel can be recycled again and again without losing any of their physical or chemical properties. Depending on the composition of the scrap being recycled, it can either be remelted or returned to the refining process. This chapter describes the main processes for zinc recycling from different scraps and residues.

Jürgen Antrekowitsch; Stefan Steinlechner; Alois Unger; Gernot Rösler; Christoph Pichler; Rene Rumpold

2014-01-01T23:59:59.000Z

156

Recycling Guide: Reduce, Reuse, Recycle Recycling Information Call 301-496-7990 or visit the NEMS Website at http://www.nems.nih.gov  

E-Print Network (OSTI)

Recycling Guide: Reduce, Reuse, Recycle Recycling Information ­ Call 301-496-7990 or visit the NEMS in COMMINGLED bin Rinse food/beverage containers before recycling No Pyrex or Styrofoam Printer and Copier Toner Cartridges in TONER CARTRIDGE bin Recycle packaging material in appropriate bin NIH charities

Baker, Chris I.

157

Recent experience measuring breeder fresh fuel assemblies  

SciTech Connect

The International Atomic Energy Agency (IAEA) is required to conduct independent on-site verification of nuclear material held under safeguards agreements with member states. The nuclear material contained in liquid-metal fast breeder reactor (LMFBR) fresh fuel assemblies presents unique safeguards and measurement problems. Since LMFBR fresh fuel may contain uranium of various enrichments, plutonium, or mixtures of uranium and plutonium, a combination of nondestructive assay (NDA) methods and equipment must be used to achieve independent verification of the nuclear material contained in LMFBR fresh fuel assemblies. During 1985 and 1986, a number of measurements were carried out at the BOR-60 LMFBR facility near Dimitrovgrad, USSR to train IAEA inspectors in the use of standard NDA equipment and measurement procedures that can be employed to verify the nuclear material content of LMFBR fresh fuel. Since these measurements were conducted at an operation LMFBR facility, agency inspectors had an opportunity to receive training under actual field conditions. These activities also presented the first opportunity for the agency to test NDA measurement methods on LMFBR fresh fuel of the BOR-60 design. The measurements conducted at the BOR-60 site established that standard agency NDA equipment and procedures can be employed to independently verify the nuclear material content of LMFBR fresh fuel assemblies.

Rizhikov, V.; Fager, J.; Menlove, H.O.

1987-01-01T23:59:59.000Z

158

International Recycling of LLW Metals  

SciTech Connect

Melting of radioactive scrap metal has been successfully practiced for more than 15 years, with approximately 60,000 tons of steel being processed into beneficial reuse applications. This process has converted radioactive scrap metal at a licensed facility into useful products such as shield blocks, security barriers and shield containers. These products are used within the nuclear industry, such as nuclear power plants, waste disposal facilities and high-energy physics research facilities. Recycling provides the following benefits by comparison with direct disposal: - Preserving metal resources. - Conserving valuable Low Level Waste (LLW) disposal site resources, thereby extending disposal site life. - Reducing the cost of metal products to end users by using materials less expensive than virgin metals. This paper outlines international metal recycling practices implemented at EnergySolutions' Bear Creek Facility in Oak Ridge, Tennessee. (authors)

Eshleman, T.; Jansen, J. [EnergySolutions (United States); Shinya, Sawada [KEK - High Energy Accelerator Research Organization (Japan)

2008-07-01T23:59:59.000Z

159

Chapter 4 - Recycling Rare Metals  

Science Journals Connector (OSTI)

Abstract The industrial system now utilizes many more elements, especially rare metals, than was the case even a half century ago. Most are not mined for themselves but are obtained as by-products or “hitchhikers” of the more familiar industrial metals, such as iron, aluminum, copper, nickel, and zinc. This imposes a limit on the production of by-product metals. But in some cases, demand may increase much faster than new supply. This suggests a need for recycling. But the uses of these metals are often in products, such as cell phones, that are mass-produced but where the amount in each individual product is very small. Some uses are also inherently dissipative. This makes recycling very difficult in principle. It constitutes a serious challenge for the future economy. Prices will rise.

Robert U. Ayres; Gara Villalba Méndez; Laura Talens Peiró

2014-01-01T23:59:59.000Z

160

Ozone bleaching of recycled paper  

SciTech Connect

Chlorinated bleaching chemicals, notably chlorine and hypochlorite, are still being used to bleach deinked, woodfree pulps. Increasing environmental concern about the use of these chemicals--coupled with the industry's efforts to increase the use of recycled fibers--highlight the need to develop better techniques for producing high-quality deinked pulp. Results presented in this report suggest that deinked fibers can be treated with ozone followed by a peroxide bleaching stage to produce a high-quality pulp.

Muguet, M.; Kogan, J. (American Air Liquide, Countryside, IL (United States))

1993-11-01T23:59:59.000Z

Note: This page contains sample records for the topic "recycled fresh catalytic" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

17 - Future of Paper Recycling  

Science Journals Connector (OSTI)

Recycled fibre is becoming a globally traded commodity with countries that are rich in it developing important export businesses around its trade. The main drivers for the use of recycled fibre continue to be availability at an economic price, legislative and voluntary agreements based on environmental pressure, and continuously improving technologies for deinking and other recovered fibre processing. Despite this increasing role as a raw material for the paper industry, issues such as price volatility of recovered paper, quality factors, food contact proposals and ever-increasing environmental pressures and considerations may cause a rethink in some sectors. This is resulting in some companies opting for virgin fibre, which greatly reduces issues related to quality and food contact. Quality and price issues can, to a certain extent, be influenced by the industry and its supply chain. Environmental considerations and any new proposals relating to food contact will require effective lobbying to ensure the overall industry is not disadvantaged. The future of paper recycling is discussed in this chapter.

Pratima Bajpai

2014-01-01T23:59:59.000Z

162

Catalytic multi-stage process for hydroconversion and refining hydrocarbon feeds  

DOE Patents (OSTI)

A multi-stage catalytic hydrogenation and hydroconversion process for heavy hydrocarbon feed materials such as coal, heavy petroleum fractions, and plastic waste materials. In the process, the feedstock is reacted in a first-stage, back-mixed catalytic reactor with a highly dispersed iron-based catalyst having a powder, gel or liquid form. The reactor effluent is pressure-reduced, vapors and light distillate fractions are removed overhead, and the heavier liquid fraction is fed to a second stage back-mixed catalytic reactor. The first and second stage catalytic reactors are operated at 700-850.degree. F. temperature, 1000-3500 psig hydrogen partial pressure and 20-80 lb./hr per ft.sup.3 reactor space velocity. The vapor and light distillates liquid fractions removed from both the first and second stage reactor effluent streams are combined and passed to an in-line, fixed-bed catalytic hydrotreater for heteroatom removal and for producing high quality naphtha and mid-distillate or a full-range distillate product. The remaining separator bottoms liquid fractions are distilled at successive atmospheric and vacuum pressures, low and intermediate-boiling hydrocarbon liquid products are withdrawn, and heavier distillate fractions are recycled and further upgraded to provide additional low-boiling hydrocarbon liquid products. This catalytic multistage hydrogenation process provides improved flexibility for hydroprocessing the various carbonaceous feedstocks and adjusting to desired product structures and for improved economy of operations.

Comolli, Alfred G. (Yardley, PA); Lee, Lap-Keung (Cranbury, NJ)

2001-01-01T23:59:59.000Z

163

Catalytic steam gasification of coals  

Science Journals Connector (OSTI)

Catalytic steam gasification of coals ... Steam–Coal Gasification Using CaO and KOH for in Situ Carbon and Sulfur Capture ... Steam–Coal Gasification Using CaO and KOH for in Situ Carbon and Sulfur Capture ...

P. Pereira; G. A. Somorjai; H. Heinemann

1992-07-01T23:59:59.000Z

164

INEEL Lead Recycling in a Moratorium Environment  

SciTech Connect

Since 1999, the Idaho National Engineering and Environmental Laboratory (INEEL) Lead Project successfully recycled over 700,000 pounds of excess INEEL lead to the private sector. On February 14, 2000, the Secretary of Energy, Bill Richardson, formalized the January 12, 2000, moratorium on recycling radioactive scrap metal that prevented the unrestricted release of recycled scrap metals to the private sector. This moratorium created significant problems for the INEEL lead recycling program and associated plans; however, through the cooperative efforts of the INEEL and Idaho State University as well as innovative planning and creative thinking the recycling issues were resolved. This collaboration has recycled over 160,000 pounds of excess lead to Idaho State University with a cost savings of over $.5M.

Kooda, K. E.; Galloway, K.; McCray, C. W.; Aitken, D. W.

2003-02-26T23:59:59.000Z

165

INEEL Lead Recycling in a Moratorium Environment  

SciTech Connect

Since 1999, the Idaho National Engineering and Environmental Laboratory (INEEL) Lead Project successfully recycled over 700,000 pounds of excess INEEL lead to the private sector. On February 14, 2000, the Secretary of Energy, Bill Richardson, formalized the January 12, 2000, moratorium on recycling radioactive scrap metal that prevented the unrestricted release of recycled scrap metals to the private sector. This moratorium created significant problems for the INEEL lead recycling program and associated plans; however, through the cooperative efforts of the INEEL and Idaho State University as well as innovative planning and creative thinking the recycling issues were resolved. This collaboration has recycled over 160,000 pounds of excess lead to Idaho State University with a cost savings of over $.5M.

Kooda, Kevin Evan; Mc Cray, Casey William; Aitken, Darren William; Galloway, Kelly

2003-02-01T23:59:59.000Z

166

The catalytic oxidation of propane  

E-Print Network (OSTI)

THE CATALYTIC OXIDATION OP PROPANE A Thesis By Charles Frederick Sandersont * * June 1949 Approval as to style and content recommended: Head of the Department of Chemical Engineering THE CATALYTICi OXIDATTON OF PROPANE A Thesis By Charles... Frederick ;Sandersonit * June 1949 THE CATALYTIC OXIDATION OP PROPANE A Thesis Submitted to the Faculty of the Agricultural and Mechanical College of Texas in Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy Major...

Sanderson, Charles Frederick

2013-10-04T23:59:59.000Z

167

Plastic film recycling: A new beginning  

SciTech Connect

Only two years ago, plastic film recycling was considered an onerous task. Different resins had to be identified, colors had to be separated, and minute contaminants had to be weeded out almost by hand to produce a quality material. But the tide of plastic film recycling is changing now that new technologies have emerged and more organized collection infrastructure have been developed. Today, plastic film recycling maintains a lucrative market for those with the right combination of equipment and know-how.

Goff, J.A.

1995-02-01T23:59:59.000Z

168

USF Physical Plant Recycling Program Updated November 2013  

E-Print Network (OSTI)

USF Physical Plant Recycling Program Updated November 2013 #12;Beginnings ďż˝ Program initiated ďż˝ Continuously expanding recycling efforts #12;Paper Recycling ďż˝ Currently recycling mixed paper Office paper, newspaper, magazines, cardboard, paperbacks ďż˝ PPD has distributed about 2,400 office-size recycling

Meyers, Steven D.

169

Request for Information on Photovoltaic Module Recycling  

Energy.gov (U.S. Department of Energy (DOE))

The U.S. Department of Energy SunShot Initiative requests feedback from industry, academia, research laboratories, government agencies, and other stakeholders on issues related to photovoltaic (PV) module recycling technology. SunShot intends to understand the current state of recycling technology and the areas of research that could lead to impactful recycling technologies to support the developing PV industry. The intent of this request for information is to generate discussion related to planning for the end of life of photovoltaic modules and to create a list of high impact research topics in photovoltaics recycling.

170

Recommendation 221: Recommendation Regarding Recycling of Metals...  

Office of Environmental Management (EM)

recycling program to address radiologically contaminated metals and equipment for free-release. Recommendation 221 Responseto221.pdf More Documents & Publications EM SSAB...

171

Howard Waste Recycling Ltd | Open Energy Information  

Open Energy Info (EERE)

Product: London-based project developer and manufacturer of biomass feedstock for energy production. References: Howard Waste Recycling Ltd1 This article is a stub. You can help...

172

Recycling in America: A Reference Handbook  

E-Print Network (OSTI)

and academic libraries, the handbook presents a nontechnicalRecycling in America: A Reference Handbook Patricia Murphy Handbook (Contemporary World Issues

Murphy, Patricia

1994-01-01T23:59:59.000Z

173

RECYCLING: SUPPLY, ECONOMICS, ENVIRONMENT, AND TECHNOLOGY  

E-Print Network (OSTI)

Proceedings Technology Park/Atlanta P. O. Box 105113 Atlanta, GA 303+8-5113, USA on recycled paper 416 / TAPPI

Abubakr, Said

174

What Gets Recycled:? An Information Theory Based Model for Product Recycling  

Science Journals Connector (OSTI)

What Gets Recycled:? An Information Theory Based Model for Product Recycling ... plastics ... This is due in part because we have not included many additional low value items which have very low, or zero recycling rates such as Styrofoam cups, plastic bags, staples, straws, gum wrappers, etc. ...

Jeffrey B. Dahmus; Timothy G. Gutowski

2007-09-29T23:59:59.000Z

175

Wastewater recycling and heat reclamation project: Red Lion Central Laundry, Portland, Oregon  

SciTech Connect

This report discusses water, energy, and cost savings that can be achieved in a commercial laundry through the use of a wastewater recycling and heat recovery system. Cost savings are achieved through reductions in water use, reduction in sewage charges (typically based on water use), reductions in water heating energy, and potential reductions in water treatment chemicals because the recycled water has already been treated with soaps and conditioners. A recovery system saves water by recycling wash water that would normally be dumped into the city sewage system. Recycling the wash water produces considerable energy savings because the recycled water has a higher temperature than fresh water. As a result, a hot water heater consumes less energy to heat the recycled water. The demonstration project discussed in this report was based in a large commercial laundry in Portland, Oregon. The laundry serves a large hotel/motel chain and processes an average of 25,000 pounds of laundry per day. A wastewater recovery system using a membrane microfiltration unit (MFU) was installed in the laundry in September 1995. Time series data of the water and energy consumption of the laundry were taken before and after installation of the MFU. Energy savings were measured by performing a thermal energy balance around the washing machines. Water savings were calculated by metering volumetric flow rates. After a period of approximately five months, the MFU has achieved final results of 52 percent savings in water consumption and 44 percent savings in energy to heat water. This five-month period represents a learning curve during which several small technical improvements were made to the MFU and laundry staff adjusted laundry operations to maximize the benefits of the MFU. An economic analysis discusses the impact of capital investment, daily consumption, and local utility rates on the payback period.

Garlick, T.F.; Halverson, M.A.; Ledbetter, M.R.

1997-06-01T23:59:59.000Z

176

Fresh Fruit with Cinnamon Yogurt Dip Ingredients  

E-Print Network (OSTI)

Fresh Fruit with Cinnamon Yogurt Dip Ingredients: 1 apple 1 orange 1 banana 6 ounces nonfat yogurt slices. 2. Cut off both ends of orange. Starting at top, slide knife between skin and fruit and cut off into individual sections. 3. Peel banana, cut into slices. 4. Arrange fruit on a plate. Mix the yogurt

Liskiewicz, Maciej

177

The economics of cell phone reuse and recycling  

E-Print Network (OSTI)

Sullivan DE (2006) Recycled cell phones—a treasure trove ofsheet: recycle your cell phone—it’s an easy call, EPA530-F-ARTICLE The economics of cell phone reuse and recycling

Geyer, Roland; Doctori Blass, Vered

2010-01-01T23:59:59.000Z

178

ENVIRONMENTAL BIOTECHNOLOGY Electricity generation and treatment of paper recycling  

E-Print Network (OSTI)

ENVIRONMENTAL BIOTECHNOLOGY Electricity generation and treatment of paper recycling wastewater production and treatment of a paper recycling plant wastewater using microbial fuel cells. Treatment. Keywords Microbial fuel cell . Paper recycling wastewater. Cellulose . Solution conductivity. Power

179

Bituminous pavement recycling Aravind K. and Animesh Das  

E-Print Network (OSTI)

Bituminous pavement recycling Aravind K. and Animesh Das Department of Civil Engineering IIT Kanpur Introduction The bituminous pavement rehabilitation alternatives are mainly overlaying, recycling and reconstruction. In the recycling process the material from deteriorated pavement, known as reclaimed asphalt

Das, Animesh

180

Argonne National Laboratory's Recycling Pilot Plant  

ScienceCinema (OSTI)

Argonne has a Recycling Pilot Plant designed to save the non-metal portions of junked cars. Here, program managers demonstrate how plastic shredder residue can be recycled. (Currently these automotive leftovers are sent to landfills.) For more information, visit Argonne's Transportation Technology R&D Center Web site at http://www.transportation.anl.gov.

Spangenberger, Jeff; Jody, Sam;

2013-04-19T23:59:59.000Z

Note: This page contains sample records for the topic "recycled fresh catalytic" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

Bay area regional water recycling program  

SciTech Connect

The Bay Area Regional Water Recycling Project is a partnership of 19 water and wastewater agencies working to maximize San Francisco Bay Area water recycling. Benefits of the partnership are described, and the methodologies and analysis tools to implement the regional approach are identified.

Ritchie, S.; Bailey, M.; Raines, R.

1998-07-01T23:59:59.000Z

182

Preconceptual Design Description for Caustic Recycle Facility  

SciTech Connect

The U.S. Department of Energy plans to vitrify both high-level and low-activity waste at the Hanford Site in southeastern Washington State. One aspect of the planning includes a need for a caustic recycle process to separate sodium hydroxide for recycle. Sodium is already a major limitation to the waste-oxide loading in the low-activity waste glass to be vitrified at the Waste Treatment Plant, and additional sodium hydroxide will be added to remove aluminum and to control precipitation in the process equipment. Aluminum is being removed from the high level sludge to reduce the number of high level waste canisters produced. A sodium recycle process would reduce the volume of low-activity waste glass produced and minimize the need to purchase new sodium hydroxide, so there is a renewed interest in investigating sodium recycle. This document describes an electrochemical facility for recycling sodium for the WTP.

Sevigny, Gary J.; Poloski, Adam P.; Fountain, Matthew S.; Kurath, Dean E.

2008-04-12T23:59:59.000Z

183

Solid waste recycling programs at Rocky Flats  

SciTech Connect

The Rocky Flats (RFP) recycling programs for solid waste materials have been in place for over ten years. Within the last three years, the programs were centralized under the direction of the Rocky Flats Waste Minimization department, with the assistance of various plant organizations (e.g., Trucking, Building Services, Regulated Waste Operations, property Utilization and Disposal and Security). Waste Minimization designs collection and transportation systems for recyclable materials and evaluates recycling markets for opportunities to add new commodities to the existing programs. The Waste Minimization department also promotes employee participation in the Rocky Flats Recycling Programs, and collects all recycling data for publication. A description of the program status as of January 1994 is given.

Millette, R.L.; Blackman, T.E.; Shepard, M.D. [EG and G Rocky Flats, Inc., Golden, CO (United States)

1994-12-31T23:59:59.000Z

184

A monitoring system architecture and calculation of practical recycling rate for end-of-life vehicle recycling in Korea  

Science Journals Connector (OSTI)

End-of-life vehicles (ELVs) are important recycling sources, and there are several recycling stages, including dismantling, shredding, and treatment of the automotive shredder residues (ASR). The legal recycling ...

Jung Whan Park; Hwa-Cho Yi; Myon Woong Park…

2014-01-01T23:59:59.000Z

185

St. Petersburg, FL: Vehicle Use of Recycled Natural Gas Derived...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

St. Petersburg, FL: Vehicle Use of Recycled Natural Gas Derived from Wastewater Biosolids St. Petersburg, FL: Vehicle Use of Recycled Natural Gas Derived from Wastewater Biosolids...

186

Massive Hanford Test Reactor Removed - Plutonium Recycle Test...  

Office of Environmental Management (EM)

Massive Hanford Test Reactor Removed - Plutonium Recycle Test Reactor removed from Hanford's 300 Area Massive Hanford Test Reactor Removed - Plutonium Recycle Test Reactor removed...

187

Mark Caffarey, UMICORE, "Opportunities and Limits to Recycling...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Mark Caffarey, UMICORE, "Opportunities and Limits to Recycling of Critical Materials for Clean Energies Mark Caffarey, UMICORE, "Opportunities and Limits to Recycling of Critical...

188

London Waste and Recycling Board | Open Energy Information  

Open Energy Info (EERE)

London Waste and Recycling Board Jump to: navigation, search Name: London Waste and Recycling Board Place: London, England, United Kingdom Zip: SE1 0AL Sector: Services Product:...

189

North Dakota: EERE-Funded Project Recycles Energy, Generates...  

Office of Environmental Management (EM)

North Dakota: EERE-Funded Project Recycles Energy, Generates Electricity North Dakota: EERE-Funded Project Recycles Energy, Generates Electricity June 17, 2014 - 2:58pm Addthis...

190

Catalytic distillation extends its reach  

SciTech Connect

Since the early 1980s, catalytic distillation processes have been selected by more than a hundred operators for various applications. Since such a unit performs both reaction and distillation simultaneously, a combined column can replace a separate, fixed-bed reactor and distillation column, thereby eliminating equipment and reducing capital costs. And, compared to the conventional approach, catalytic distillation may also improve other factors, such as reactant conversion, selectivity, mass transfer, operating pressure, oligomer formation and catalyst fouling. The constant washing of the catalyst by liquid flowing down the column and the distillation of high-boiling foulants results in extended catalyst life. Four selective hydrogenation applications of catalytic distillation are discussed: Butadiene selective hydrogenation combined within an MTBE unit; Pentadiene selective hydrogenation; C{sub 4} acetylene conversion; and Benzene saturation.

Rock, K.; McGuirk, T. [Catalytic Distillation Technologies, Houston, TX (United States); Gildert, G.R. [Catalytic Distillation Technologies, Pasadena, TX (United States)

1997-07-01T23:59:59.000Z

191

Centralized consolidation/recycling center  

SciTech Connect

There are approximately 175 separate locations on the Hanford Site where dangerous waste is accumulated in hundreds of containers according to compatibility. Materials that are designated as waste could be kept from entering the waste stream by establishing collection points for these materials and wastes and then transporting them to a centralized consolidation/recycling center (hereinafter referred to as the consolidation center). Once there the materials would be prepared for offsite recycling. This document discusses the removal of batteries, partially full aerosol cans, and DOP light ballasts from the traditional waste management approach, which eliminates 89 satellite accumulation areas from the Hanford Site (43 for batteries, 33 for aerosols, and 13 for DOP ballasts). Eliminating these 89 satellite accumulation areas would reduce by hundreds the total number of containers shipped offsite as hazardous waste (due to the increase in containers when the wastes that are accumulated are segregated according to compatibility for final shipment). This new approach is in line with the U.S. Environmental Protection Agency`s (EPA) draft Universal Waste Rules for these {open_quotes}nuisance{close_quotes} and common waste streams. Additionally, future reviews of other types of wastes that can be handled in this less restrictive and more cost-effective manner will occur as part of daily operations at the consolidation center. The Hanford Site has been identified as a laboratory for reinventing government by the Secretary of the U.S. Department of Energy (DOE), Hazel O`Leary, and as a demonstration zone where {open_quotes}innovative ideas, processes and technologies can be created, tested and demonstrated.{close_quotes} Additionally, DOE, EPA, and the Washington State Department of Ecology (Ecology) have agreed to cut Hanford cleanup costs by $1 billion over a 5-year period.

St. Georges, L.T. [Westinghouse Hanford Co., Richland, WA (United States); Poor, A.D.

1995-05-01T23:59:59.000Z

192

Heterogeneous Recycling in Fast Reactors  

SciTech Connect

Current sodium fast reactor (SFR) designs have avoided the use of depleted uranium blankets over concerns of creating weapons grade plutonium. While reducing proliferation risks, this restrains the reactor design space considerably. This project will analyze various blanket and transmutation target configurations that could broaden the design space while still addressing the non-proliferation issues. The blanket designs will be assessed based on the transmutation efficiency of key minor actinide (MA) isotopes and also on mitigation of associated proliferation risks. This study will also evaluate SFR core performance under different scenarios in which depleted uranium blankets are modified to include minor actinides with or without moderators (e.g. BeO, MgO, B4C, and hydrides). This will be done in an effort to increase the sustainability of the reactor and increase its power density while still offering a proliferation resistant design with the capability of burning MA waste produced from light water reactors (LWRs). Researchers will also analyze the use of recycled (as opposed to depleted) uranium in the blankets. The various designs will compare MA transmutation efficiency, plutonium breeding characteristics, proliferation risk, shutdown margins and reactivity coefficients with a current reference sodium fast reactor design employing homogeneous recycling. The team will also evaluate the out-of-core accumulation and/or burn-down rates of MAs and plutonium isotopes on a cycle-by-cycle basis. This cycle-by-cycle information will be produced in a format readily usable by the fuel cycle systems analysis code, VISION, for assessment of the sustainability of the deployment scenarios.

Dr. Benoit Forget; Michael Pope; Piet, Steven J.; Michael Driscoll

2012-07-30T23:59:59.000Z

193

RECYCLING COORDINATOR GRADUATE ASSISTANTSHIP University of Nebraska--Lincoln Landscape Services  

E-Print Network (OSTI)

RECYCLING COORDINATOR GRADUATE ASSISTANTSHIP University of Nebraska--Lincoln Landscape Services, implementing and maintaining recycling on campus. Assist in annual recycler's survey; tracking of recycling drop- off program; assist in market research for selected recycled materials; assist in developing

Farritor, Shane

194

The Effects of Pesticides on Life in Fresh Waters  

Science Journals Connector (OSTI)

...pesticides on life in fresh waters. | Journal Article | 0 Hydrocarbons, Halogenated 0 Pesticides...Fishes drug effects Fresh Water Great Britain Hydrocarbons, Halogenated toxicity Pesticides toxicity Water Pollution Water Pollution...

1972-01-01T23:59:59.000Z

195

Understanding ammonia selective catalytic reduction kinetics...  

NLE Websites -- All DOE Office Websites (Extended Search)

temperature programmed reduction (TPR), and electron paramagnetic resonance (EPR) spectroscopy. Catalytic properties are examined using NO oxidation, ammonia oxidation,...

196

To Recycle or Not to Recycle: That Is the Question - Insights from Life-Cycle Analysis  

NLE Websites -- All DOE Office Websites (Extended Search)

MRS BULLETIN MRS BULLETIN * VOLUME 37 * APRIL 2012 * www.mrs.org/bulletin © 2012 Materials Research Society MANUFACTURING * RECYCLING Why recycle? The most commonly stated reason for recycling is to reduce burdens associated with the disposal of our never-ending stream of wastes. Waste disposal potentially causes air and water pollution and is costly; moreover, landfi lls compete with other land uses. In addition, recycling can extend our supply of materials to alleviate scarcity and to moderate rising prices of raw materials. Furthermore, recycling is often more environmentally benign than using virgin raw materials and can reduce energy use and emissions of greenhouse gases and other pollutants. Life-cycle analysis Despite these positive attributes, not all recycling processes

197

Cellubrevin-targeted Fluorescence Uncovers Heterogeneity in the Recycling Endosomes*  

E-Print Network (OSTI)

Cellubrevin-targeted Fluorescence Uncovers Heterogeneity in the Recycling Endosomes* (Received, University of California, Berkeley, California 94720-3200 The pH and trafficking of recycling endosomes have-enriched recycling endosomes (pHCb) and FITC-transferrin to measure the pH of transferrin- enriched recycling

Machen, Terry E.

198

Evaluating Water Recycling in California Sachi De Souza  

E-Print Network (OSTI)

i Evaluating Water Recycling in California By Sachi De Souza B.Sc.Hon (Queen's University) 2005 Recycling in California ii ABSTRACT This document describes how to complete an economic analysis, financial analysis, and cost allocation for a water recycling project. Water recycling is gaining importance

Lund, Jay R.

199

Recycling Realities: ASU's Quest for Zero Solid Waste  

E-Print Network (OSTI)

Recycling Realities: ASU's Quest for Zero Solid Waste Dawn RatcliffePast Recycling Coordinator Alana LevineRecycling Program Manager For the last 16 years, Dawn Ratcliffe has worked and volunteered in the sustainability and animal-advocacy fields. She has organized several Earth Day events, recycling events

Zhang, Junshan

200

LANL exceeds Early Recovery Act recycling goals  

NLE Websites -- All DOE Office Websites (Extended Search)

LANL exceeds Early Recovery Act recycling goals LANL exceeds Early Recovery Act recycling goals LANL exceeds Early Recovery Act recycling goals Lab demolition projects under the American Recovery and Reinvestment Act have recovered more than 136 tons of recyclable metal since work began last year. March 8, 2010 Los Alamos National Laboratory sits on top of a once-remote mesa in northern New Mexico with the Jemez mountains as a backdrop to research and innovation covering multi-disciplines from bioscience, sustainable energy sources, to plasma physics and new materials. Los Alamos National Laboratory sits on top of a once-remote mesa in northern New Mexico with the Jemez mountains as a backdrop to research and innovation covering multi-disciplines from bioscience, sustainable energy sources, to plasma physics and new materials.

Note: This page contains sample records for the topic "recycled fresh catalytic" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

Brickyard Recycling Biomass Facility | Open Energy Information  

Open Energy Info (EERE)

Recycling Biomass Facility Recycling Biomass Facility Jump to: navigation, search Name Brickyard Recycling Biomass Facility Facility Brickyard Recycling Sector Biomass Facility Type Landfill Gas Location Vermilion County, Illinois Coordinates 40.122469°, -87.697554° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":40.122469,"lon":-87.697554,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

202

Bayshore Recycling Solar Project | Open Energy Information  

Open Energy Info (EERE)

Bayshore Recycling Solar Project Bayshore Recycling Solar Project Jump to: navigation, search Name Bayshore Recycling Solar Project Facility Bayshore Recycling Solar Project Sector Solar Facility Type Roof-mount Owner EnXco Developer EnXco Location Keasbey, New Jersey Coordinates 40.51667°, -74.30556° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":40.51667,"lon":-74.30556,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

203

RecycleBank | Open Energy Information  

Open Energy Info (EERE)

RecycleBank RecycleBank Jump to: navigation, search Logo: RecycleBank Name RecycleBank Address 95 Morton Street Place New York, New York Sector Efficiency Number of employees 51-200 Website http://www.recyclebank.com/ Coordinates 40.731373°, -74.008584° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":40.731373,"lon":-74.008584,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

204

Renewable, Recycled and Conserved Energy Objective  

Energy.gov (U.S. Department of Energy (DOE))

In February 2008, South Dakota enacted legislation (HB 1123) establishing an objective that 10% of all retail electricity sales in the state be obtained from renewable and recycled energy by 2015....

205

Enhanced Photon Recycling in Multijunction Solar Cells  

NLE Websites -- All DOE Office Websites (Extended Search)

a nd J .A. R ogers, " Device A rchitectures f or E nhanced Photon Recycling in Thin---Film MulQjuncQon Solar Cells." Adv. Energy M ater. (2014). DOI: 1 0.1002aenm.201400919...

206

Mervento 3.6-118 Recycling Rate.  

E-Print Network (OSTI)

??My Bachelor’s thesis work has been to make an investigation of the recycling rate of Mervento Oy's new wind turbine Mervento 3.6-118. The study has… (more)

Forsman, Andreas

2012-01-01T23:59:59.000Z

207

printed on recycled paper INDUSTRIAL ASSESSMENT CENTER  

E-Print Network (OSTI)

printed on recycled paper INDUSTRIAL ASSESSMENT CENTER ENERGY EFFICIENCY, POLLUTION PREVENTION ASSESSMENT REPORT FOR ENERGY EFFICIENCY, POLLUTION PREVENTION, AND PRODUCTIVITY IMPROVEMENT No. CO0999 ASSESSMENT DATE: February 29, 2000 LOCATION: ______, Colorado PRINCIPAL PRODUCTS: Injection molded plastic

208

Preparation of Cu nanoparticle loaded SBA-15 and their excellent catalytic activity in reduction of variety of dyes  

Science Journals Connector (OSTI)

Abstract In this paper, we report a simple aqueous solution based chemical method for preparation of Cu nanoparticle loaded mesoporous silica SBA-15 (Cu@SBA-15) catalysts. Synthesized catalysts were characterized by powder X-ray diffraction (XRD), atomic absorption spectroscopy (AAS), Fourier transform infrared spectroscopy (FTIR), high resolution transmission electron microscope (HRTEM), N2 adsorption–desorption surface area and pore size analyzer, and particle size analyzer. Catalytic activity of Cu nanoparticle loaded SBA-15 towards reduction of various dyes, such as 4-nitrophenol, Methyl Orange, Congo Red, Rhodamine B, Methylene Blue and mixture of dyes were investigated in the presence of excess NaBH4. Catalysis reactions were monitored by employing UV–vis spectroscopy. Catalysis reactions followed pseudo-first order rate equation. These catalysts exhibited excellent catalytic activity and convenient recycling. The high catalytic activity, cost effectiveness and simple preparation methodology make 12.5Cu@SBA-15 an attractive catalyst for decolorization of organic dyes.

Barun Kumar Ghosh; Subhenjit Hazra; Bhanudas Naik; Narendra Nath Ghosh

2015-01-01T23:59:59.000Z

209

Used oil recycling: Closing the loop  

SciTech Connect

This paper provides an overview of the recycling and re-refining of used oil. Recommended best management practices to encourage the safe management, collection, recovery and purchasing of this resource are identified. Management practices address handling, separating, and specifications. Other topics outlined include collection methods, market research, state studies and programs, environmental and economic factors of recycling, re-refining, and oil filters. References, studies, regulations, and other sources of information are noted in the bibliography.

Arner, R. [Northern Virginia Planning District Commission, Annandale, VA (United States)

1996-08-01T23:59:59.000Z

210

Waste tire recycling by pyrolysis  

SciTech Connect

This project examines the City of New Orleans' waste tire problem. Louisiana State law, as of January 1, 1991, prohibits the knowing disposal of whole waste tires in landfills. Presently, the numerous waste tire stockpiles in New Orleans range in size from tens to hundreds of tires. New Orleans' waste tire problem will continue to increase until legal disposal facilities are made accessible and a waste tire tracking and regulatory system with enforcement provisions is in place. Tires purchased outside of the city of New Orleans may be discarded within the city's limits; therefore, as a practical matter this study analyzes the impact stemming from the entire New Orleans metropolitan area. Pyrolysis mass recovery (PMR), a tire reclamation process which produces gas, oil, carbon black and steel, is the primary focus of this report. The technical, legal and environmental aspects of various alternative technologies are examined. The feasibility of locating a hypothetical PMR operation within the city of New Orleans is analyzed based on the current economic, regulatory, and environmental climate in Louisiana. A thorough analysis of active, abandoned, and proposed Pyrolysis operations (both national and international) was conducted as part of this project. Siting a PMR plant in New Orleans at the present time is technically feasible and could solve the city's waste tire problem. Pending state legislation could improve the city's ability to guarantee a long term supply of waste tires to any large scale tire reclamation or recycling operation, but the local market for PMR end products is undefined.

Not Available

1992-10-01T23:59:59.000Z

211

Generalized teleportation and entanglement recycling  

E-Print Network (OSTI)

We introduce new teleportation protocols which are generalizations of the original teleportation protocols that use the Pauli group [Bennett, et al. Physical Review Letters, 70(13) 1895-1899] and the port-based teleportation protocols, introduced by Hiroshima and Ishizaka [Physical Review Letters, 101(24) 240501], that use the symmetric permutation group. We derive sufficient condition for a set of operations, which in general need not form a group, to give rise to a teleportation protocol and provide examples of such schemes. This generalization leads to protocols with novel properties and is needed to push forward new schemes of computation based on them. Port-based teleportation protocols and our generalizations use a large resource state consisting of N singlets to teleport only a single qubit state reliably. We provide two distinct protocols which recycle the resource state to teleport multiple states with error linearly increasing with their number. The first protocol consists of sequentially teleporting qubit states, and the second teleports them in a bulk.

Sergii Strelchuk; Micha? Horodecki; Jonathan Oppenheim

2012-09-12T23:59:59.000Z

212

FSC-Watch: FSC undermines paper recycling, contributes to global warming FSC undermines paper recycling, contributes to global  

E-Print Network (OSTI)

FSC-Watch: FSC undermines paper recycling, contributes to global warming FSC-Watch FSC undermines paper recycling, contributes to global warming Tags: Canada, Recycling, Certifier conflict of interest undermines paper recycling, contributes to global warming in Pine Falls to manufacture paper with some

213

Catalytic Device International LLC | Open Energy Information  

Open Energy Info (EERE)

Catalytic Device International LLC Catalytic Device International LLC Jump to: navigation, search Name Catalytic Device International LLC Place Pleasanton, California Product California-based, firm focused on portable, heat-on-demand products. References Catalytic Device International LLC[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Catalytic Device International LLC is a company located in Pleasanton, California . References ↑ "Catalytic Device International LLC" Retrieved from "http://en.openei.org/w/index.php?title=Catalytic_Device_International_LLC&oldid=343285" Categories: Clean Energy Organizations Companies Organizations Stubs What links here Related changes Special pages

214

DWPF RECYCLE EVAPORATOR FLOWSHEET EVALUATION (U)  

SciTech Connect

The Defense Waste Processing Facility (DWPF) converts the high level waste slurries stored at the Savannah River Site into borosilicate glass for long-term storage. The vitrification process results in the generation of approximately five gallons of dilute recycle streams for each gallon of waste slurry vitrified. This dilute recycle stream is currently transferred to the H-area Tank Farm and amounts to approximately 1,400,000 gallons of effluent per year. Process changes to incorporate salt waste could increase the amount of effluent to approximately 2,900,000 gallons per year. The recycle consists of two major streams and four smaller streams. The first major recycle stream is condensate from the Chemical Process Cell (CPC), and is collected in the Slurry Mix Evaporator Condensate Tank (SMECT). The second major recycle stream is the melter offgas which is collected in the Off Gas Condensate Tank (OGCT). The four smaller streams are the sample flushes, sump flushes, decon solution, and High Efficiency Mist Eliminator (HEME) dissolution solution. These streams are collected in the Decontamination Waste Treatment Tank (DWTT) or the Recycle Collection Tank (RCT). All recycle streams are currently combined in the RCT and treated with sodium nitrite and sodium hydroxide prior to transfer to the tank farm. Tank Farm space limitations and previous outages in the 2H Evaporator system due to deposition of sodium alumino-silicates have led to evaluation of alternative methods of dealing with the DWPF recycle. One option identified for processing the recycle was a dedicated evaporator to concentrate the recycle stream to allow the solids to be recycled to the DWPF Sludge Receipt and Adjustment Tank (SRAT) and the condensate from this evaporation process to be sent and treated in the Effluent Treatment Plant (ETP). In order to meet process objectives, the recycle stream must be concentrated to 1/30th of the feed volume during the evaporation process. The concentrated stream must be pumpable to the DWPF SRAT vessel and should not precipitate solids to avoid fouling the evaporator vessel and heat transfer coils. The evaporation process must not generate excessive foam and must have a high Decontamination Factor (DF) for many species in the evaporator feed to allow the condensate to be transferred to the ETP. An initial scoping study was completed in 2001 to evaluate the feasibility of the evaporator which concluded that the concentration objectives could be met. This initial study was based on initial estimates of recycle concentration and was based solely on OLI modeling of the evaporation process. The Savannah River National Laboratory (SRNL) has completed additional studies using simulated recycle streams and OLI{reg_sign} simulations. Based on this work, the proposed flowsheet for the recycle evaporator was evaluated for feasibility, evaporator design considerations, and impact on the DWPF process. This work was in accordance with guidance from DWPF-E and was performed in accordance with the Technical Task and Quality Assurance Plan.

Stone, M

2005-04-30T23:59:59.000Z

215

Electroless nickel recycling via electrodialysis  

SciTech Connect

Electroless nickel is widely used in the metal finishing industry as a coating. It plates evenly on a variety of surfaces and replicates or enhances the surface finish. It has high hardness and good corrosion resistance and machinability. However, its bath life is limited and it has a tendency to spontaneously plate out on the tank and associated equipment. These problems add to the cost per unit component plated. Also, expensive waste treatment is required before users can dispose of the spent solution. Electroless nickel`s limited bath life is inherent in its chemical make-up. Using hypophosphite as the reducing agent for the nickel ion generates by-products of nickel metal and orthophosphite. When the level of orthophosphite in the solution reaches a high concentration, the reaction slows and finally stops. The bath must be disposed of, and its treatment and replacement costs are high. Metal salts have a tendency to plate out because of the dissolved solids present, and this also makes it necessary to discard the bath. Lawrence Livermore National Laboratory (LLNL) has conducted a study of an electrodialysis process that can reduce both chemical purchases and disposal costs. Electrodialysis employs a membrane, deionized water, and an electromotive potential to separate the orthophosphite and other dissolved solids from the nickel ions. With the aid of the electromotive potential, the dissolved solids migrate across the membrane from the process solution into the water in the recycling unit`s holding cell. This migration lowers the total dissolved solids (TDS) in the process solution and improves plating performance. The dialysis process makes it possible to reuse the bath many times without disposal.

Steffani, C.; Meltzer, M.

1995-04-01T23:59:59.000Z

216

Waste tire recycling by pyrolysis  

SciTech Connect

This project examines the City of New Orleans` waste tire problem. Louisiana State law, as of January 1, 1991, prohibits the knowing disposal of whole waste tires in landfills. Presently, the numerous waste tire stockpiles in New Orleans range in size from tens to hundreds of tires. New Orleans` waste tire problem will continue to increase until legal disposal facilities are made accessible and a waste tire tracking and regulatory system with enforcement provisions is in place. Tires purchased outside of the city of New Orleans may be discarded within the city`s limits; therefore, as a practical matter this study analyzes the impact stemming from the entire New Orleans metropolitan area. Pyrolysis mass recovery (PMR), a tire reclamation process which produces gas, oil, carbon black and steel, is the primary focus of this report. The technical, legal and environmental aspects of various alternative technologies are examined. The feasibility of locating a hypothetical PMR operation within the city of New Orleans is analyzed based on the current economic, regulatory, and environmental climate in Louisiana. A thorough analysis of active, abandoned, and proposed Pyrolysis operations (both national and international) was conducted as part of this project. Siting a PMR plant in New Orleans at the present time is technically feasible and could solve the city`s waste tire problem. Pending state legislation could improve the city`s ability to guarantee a long term supply of waste tires to any large scale tire reclamation or recycling operation, but the local market for PMR end products is undefined.

Not Available

1992-10-01T23:59:59.000Z

217

Energy implications of recycling packaging materials  

SciTech Connect

In 1992, Congress sought to rewrite the United States comprehensive solid waste legislation -- the Resource Conservation and Recovery Act (RCRA). Commodity-specific recycling rates were proposed for consumer-goods packaging materials and newsprint We compare the impacts on energy, materials use, and landfill volume of recycling at those rates to the impacts for alternative methods of material disposition to determine the optimum for each material. After products have served their intended uses, there are several alternative paths for material disposition. These include reuse, recycling to the same product, recycling to a lower-valued product, combustion for energy recovery, incineration without energy recovery, and landfill. Only options considered to be environmentally sound are Included. Both houses of Congress specifically excluded combustion for energy recovery from counting towards the recovery goats, probably because combustion is viewed as a form of disposal and is therefore assumed to waste resources and have n environmental effects. However, co-combustion in coal-fired plants or combustion in appropriately pollution-controlled waste-to-energy plants Is safe, avoids landfill costs, and can displace fossil fuels. In some cases, more fossil fuels can be displaced by combustion than by recycling. We compare the alternative life-cycle energies to the energies for producing the products from virgin materials. Results depend on the material and on the objective to be achieved. There are trade-offs among possible goals. For instance, paper packaging recycling conserves trees but may require greater fossil-fuel input than virgin production. Therefore, the objectives for proposed legislation must be examined to see whether they can most effectively be achieved by mandated recycling rates or by other methods of disposition. The optimal choices for the United States may not necessarily be the same as those for Europe and other parts of the world.

Gaines, L.L. [Argonne National Lab., IL (United States); Stodolsky, F. [Argonne National Lab., Washington, DC (United States)

1994-03-01T23:59:59.000Z

218

Vehicle Technologies Office: Fact #341: October 11, 2004 Tire Recycling  

NLE Websites -- All DOE Office Websites (Extended Search)

1: October 11, 1: October 11, 2004 Tire Recycling to someone by E-mail Share Vehicle Technologies Office: Fact #341: October 11, 2004 Tire Recycling on Facebook Tweet about Vehicle Technologies Office: Fact #341: October 11, 2004 Tire Recycling on Twitter Bookmark Vehicle Technologies Office: Fact #341: October 11, 2004 Tire Recycling on Google Bookmark Vehicle Technologies Office: Fact #341: October 11, 2004 Tire Recycling on Delicious Rank Vehicle Technologies Office: Fact #341: October 11, 2004 Tire Recycling on Digg Find More places to share Vehicle Technologies Office: Fact #341: October 11, 2004 Tire Recycling on AddThis.com... Fact #341: October 11, 2004 Tire Recycling In 2001, the United States generated 281 million scrap tires. Nearly 78% of those scrap tires were reused, recycled, or recovered; that is a dramatic

219

Photo Courtesy of Carlsbad Water Distict Economic Evaluation for Water Recycling  

E-Print Network (OSTI)

-i- Photo Courtesy of Carlsbad Water Distict Economic Evaluation for Water Recycling In Urban Areas........................................................................................................................................... 4 BENEFICIAL USES OF RECYCLED WATER................................................................................................ 5 MOTIVATIONS FOR RECYCLED WATER USE

Lund, Jay R.

220

The use of NTA and EDTA for lead phytoextraction from soil from a battery recycling site  

E-Print Network (OSTI)

are lead mining, lead smelting and battery recycling.Areas near Pb recycling facilities may be enriched bysoil with lead. A battery recycling site is a location where

Freitas, Eriberto; Nascimento, Clistenes; Silva, Airon

2009-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "recycled fresh catalytic" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

The importance of cytosolic glutamine synthetase in nitrogen assimilation and recycling  

E-Print Network (OSTI)

nitrogen mobilization and recycling in trees. Photosynthesisloci mapping for nitrogen recycling in rice. Journal ofNitrogen Assimilation and Recycling Stéphanie M. Bernard 1

Bernard, S.M.

2009-01-01T23:59:59.000Z

222

Plutonium Recycle Test Reactor 309 B-Roll | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Plutonium Recycle Test Reactor 309 B-Roll Plutonium Recycle Test Reactor 309 B-Roll Addthis Description Plutonium Recycle Test Reactor 309 B-Roll...

223

Energy implications of glass-container recycling  

SciTech Connect

This report addresses the question of whether glass-container recycling actually saves energy. Glass-container production in 1991 was 10{sup 7} tons, with cullet making up about 30% of the input to manufacture. Two-thirds of the cullet is postconsumer waste; the remainder is in-house scrap (rejects). Most of the glass recycled is made into new containers. Total primary energy consumption includes direct process-energy use by the industry (adjusted to account for the efficiency of fuel production) plus fuel and raw-material transportation and production energies; the grand total for 1991 is estimated to be about 168 {times} 10{sup 12} Btu. The total primary energy use decreases as the percent of glass recycled rises, but the maximum energy saved is only about 13%. If distance to the landfill is kept fixed and that to the recovery facility multiplied by about eight, to 100 mi, a break-even point is reached, and recycling saves no energy. Previous work has shown that to save energy when using glass bottles, reuse is the clear choice. Recycling of glass does not save much energy or valuable raw material and does not reduce air or water pollution significantly. The most important impacts are the small reduction of waste sent to the landfill and increased production rates at glass plants.

Gaines, L.L.; Mintz, M.M. [Argonne National Lab., IL (United States)] [Argonne National Lab., IL (United States)

1994-03-01T23:59:59.000Z

224

Bifunctional Catalysts for the Selective Catalytic Reduction...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

for the Selective Catalytic Reduction of NO by Hydrocarbons Development of Optimal Catalyst Designs and Operating Strategies for Lean NOx Reduction in Coupled LNT-SCR Systems...

225

Synthesis, Characterization, and Catalytic Function of Novel...  

NLE Websites -- All DOE Office Websites (Extended Search)

Function of Novel Highly Dispersed Tungsten Oxide Catalysts on Mesoporous Silica . Synthesis, Characterization, and Catalytic Function of Novel Highly Dispersed Tungsten Oxide...

226

Testing of advanced liquefaction concepts in HTI Run ALC-1: Coal cleaning and recycle solvent treatment  

SciTech Connect

In 1991, the Department of Energy initiated the Advanced Liquefaction Concepts Program to promote the development of new and emerging technology that has potential to reduce the cost of producing liquid fuels by direct coal liquefaction. Laboratory research performed by researchers at CAER, CONSOL, Sandia, and LDP Associates in Phase I is being developed further and tested at the bench scale at HTI. HTI Run ALC-1, conducted in the spring of 1996, was the first of four planned tests. In Run ALC-1, feed coal ash reduction (coal cleaning) by oil agglomeration, and recycle solvent quality improvement through dewaxing and hydrotreatment of the recycle distillate were evaluated. HTI`s bench liquefaction Run ALC-1 consisted of 25 days of operation. Major accomplishments were: 1) oil agglomeration reduced the ash content of Black Thunder Mine coal by 40%, from 5.5% to 3.3%; 2) excellent coal conversion of 98% was obtained with oil agglomerated coal, about 3% higher than the raw Black Thunder Mine coal, increasing the potential product yield by 2-3% on an MAF coal basis; 3) agglomerates were liquefied with no handling problems; 4) fresh catalyst make-up rate was decreased by 30%, with no apparent detrimental operating characteristics, both when agglomerates were fed and when raw coal was fed (with solvent dewaxing and hydrotreating); 5) recycle solvent treatment by dewaxing and hydrotreating was demonstrated, but steady-state operation was not achieved; and 6) there was some success in achieving extinction recycle of the heaviest liquid products. Performance data have not been finalized; they will be available for full evaluation in the new future.

Robbins, G.A.; Winschel, R.A.; Burke, F.P. [CONSOL, Inc., Library, PA (United States). Research and Development Dept.] [CONSOL, Inc., Library, PA (United States). Research and Development Dept.; Derbyshire, F.L.; Givens, E.N. [Kentucky Univ., Lexington, KY (United States). Center for Applied Energy Research] [Kentucky Univ., Lexington, KY (United States). Center for Applied Energy Research; Hu, J.; Lee, T.L.K. [Hydrocarbon Research, Inc., Lawrenceville, NJ (United States)] [Hydrocarbon Research, Inc., Lawrenceville, NJ (United States); Miller, J.E.; Stephens, H.P. [Sandia National Labs., Albuquerque, NM (United States)] [Sandia National Labs., Albuquerque, NM (United States); Peluso, M. [LDP Associates, Hamilton Square, NJ (United States)] [LDP Associates, Hamilton Square, NJ (United States)

1996-09-01T23:59:59.000Z

227

Recycled Energy Development | Open Energy Information  

Open Energy Info (EERE)

Recycled Energy Development Recycled Energy Development Jump to: navigation, search Name Recycled Energy Development Place Westmont, Illinois Zip 60559 Product RED acquires industrial utility plants and then builds and installs waste energy capture and combined heat and power systems. Coordinates 40.316095°, -78.956753° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":40.316095,"lon":-78.956753,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

228

Study of freshly excised brain tissues using terahertz imaging  

Science Journals Connector (OSTI)

We demonstrated that tumors in freshly excised whole brain tissue could be differentiated clearly from normal brain tissue using a reflection-type terahertz (THz) imaging system. THz...

Oh, Seung Jae; Kim, Sang-Hoon; Ji, Young Bin; Jeong, Kiyoung; Park, Yeonji; Yang, Jaemoon; Park, Dong Woo; Noh, Sam Kyu; Kang, Seok-Gu; Huh, Yong-Min; Son, Joo-Hiuk; Suh, Jin-Suck

2014-01-01T23:59:59.000Z

229

Novel Fast Pyrolysis/Catalytic Technology for the Production of Stable Upgraded Liquids  

SciTech Connect

The objective of the proposed research is the demonstration and development of a novel biomass pyrolysis technology for the production of a stable bio-oil. The approach is to carry out catalytic hydrodeoxygenation (HDO) and upgrading together with pyrolysis in a single fluidized bed reactor with a unique two-level design that permits the physical separation of the two processes. The hydrogen required for the HDO will be generated in the catalytic section by the water-gas shift reaction employing recycled CO produced from the pyrolysis reaction itself. Thus, the use of a reactive recycle stream is another innovation in this technology. The catalysts will be designed in collaboration with BASF Catalysts LLC (formerly Engelhard Corporation), a leader in the manufacture of attrition-resistant cracking catalysts. The proposed work will include reactor modeling with state-of-the-art computational fluid dynamics in a supercomputer, and advanced kinetic analysis for optimization of bio-oil production. The stability of the bio-oil will be determined by viscosity, oxygen content, and acidity determinations in real and accelerated measurements. A multi-faceted team has been assembled to handle laboratory demonstration studies and computational analysis for optimization and scaleup.

Ted Oyama, Foster Agblevor, Francine Battaglia, Michael Klein

2013-01-18T23:59:59.000Z

230

Catalytic steam reforming of hydrocarbons  

SciTech Connect

The hot effluent from the catalytic steam reforming of a major portion of a fluid hydrocarbon feed stream in the reformer tubes of a primary reformer, or said effluent after secondary reforming thereof, is mixed with the hot effluent from the catalytic steam reforming of the remaining portion of the feed discharged from the reformer tubes of a primary reformer-exchanger. The combined gas steam is passed on the shell side of the reformer-exchanger countercurrently to the passage of feed in the reformer tubes thereof, thus supplying the heat for the reforming of the portion of the feed passed through the reformer tubes of the reformerexchanger. At least about 2/3 of the hydrocarbon feed stream is passed to the reformer tubes of said primary reformer, heated by radiant heat transfer and/or by contact with combustion gases, at a steam/hydrocarbon mole ratio of about 2-4/1. The remainder of said feed stream is passed to the reformer tubes of said reformer -exchanger at a steam/hydrocarbon mole ratio of about 3-6/1. The reformer shell of the reformer-exchanger is internally insulated by a refractory lining or by use of a double shell with passage of water or a portion of the feed material between the inner and outer shells. There is no significant difference between the pressure inside and outside of the reformer tubes of said primary reformer-exchanger.

Fuderer, A.

1982-06-29T23:59:59.000Z

231

Relationship between composition and performance of asphalt recycling agents  

E-Print Network (OSTI)

This research was aimed at determining the effects of recycling agent composition on the performance of recycled asphalt with aging. To accomplish this, five experiments were performed, in which blends were produced with controlled compositions...

Peterson, Gerald Dean

1993-01-01T23:59:59.000Z

232

Ion Exchange for the Recycling of Wastewater Constituents  

Science Journals Connector (OSTI)

Recycling or the constituents of wastewater requires efficient and cheap separation methods. Pollutants ... removed in a concentrated form to facilitate their recycling. Similarly, the raw water must be ... has a...

Brian Bolto; Lucjan Pawlowski

1985-01-01T23:59:59.000Z

233

Waste Toolkit A-Z Can I recycle paper cups?  

E-Print Network (OSTI)

in the Grundon recycling boxes. Do not leave dregs of drink in them, as this will contaminate the recycling box) www.pefc.co.uk FSC Forest Stewardship Council www.fsc.org Contact University Environmental

Melham, Tom

234

Breakout Session: Getting in the Loop: PV Hardware Recycling...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Getting in the Loop: PV Hardware Recycling and Sustainability Breakout Session: Getting in the Loop: PV Hardware Recycling and Sustainability May 21, 2014 6:30PM to 7:30PM PDT...

235

Impact of hybrid and electric vehicles on automobile recycling infrastructure  

Science Journals Connector (OSTI)

The recycling infrastructure for end-of-use vehicles in the United States is driven by profitability due to the absence of regulations. Typically, the recycling consists of removing reusable components for resale and shredding and separating remaining ...

Deogratias Kibira; Sanjay Jain

2011-12-01T23:59:59.000Z

236

Nuclear fuel recycling in 4 minutes | Argonne National Laboratory  

NLE Websites -- All DOE Office Websites (Extended Search)

Nuclear fuel recycling in 4 minutes Share Topic Energy Energy sources Nuclear energy Nuclear fuel cycle Reactors...

237

The economics of cell phone reuse and recycling  

E-Print Network (OSTI)

from obsolete handsets without batteries and accessories.recycling agents remove the batteries, which have their own

Geyer, Roland; Doctori Blass, Vered

2010-01-01T23:59:59.000Z

238

Microbial Fuel Cells for Recycle of Process Water from Cellulosic...  

NLE Websites -- All DOE Office Websites (Extended Search)

to improve ethanol process economics in biorefineries Decreased water consumption Enables wastewater recycling Electricity or hydrogen generation Inexpensive Versatile Applications...

239

Utilization of char from biomass gasification in catalytic applications  

E-Print Network (OSTI)

Utilization of char from biomass gasification in catalytic applications Naomi Klinghoffer Submitted Utilization of char from biomass gasification in catalytic applications Naomi Klinghoffer Utilization takes place during catalytic decomposition. This thesis focuses on the utilization of char as a catalyst

240

Advanced power systems featuring a closely coupled catalytic gasification carbonate fuel cell plant  

SciTech Connect

Pursuing the key national goal of clean and efficient uulization of the abundant domestic coal resources for power generation, a study was conducted with DOE/METC support to evaluate the potential of integrated gasification/carbonate fuel cell power generation systems. By closely coupling the fuel cell with the operation of a catalytic gasifier, the advantages of both the catalytic gasification and the high efficiency fuel cell complement each other, resulting in a power plant system with unsurpassed efficiencies approaching 55% (HHV). Low temperature catalytic gasification producing a high methane fuel gas offers the potential for high gas efficiencies by operating with minimal or no combustion. Heat required for gasification is provided by combination of recycle from the fuel cell and exothermic methanation and shift reactions. Air can be supplemented if required. In combination with internally reforming carbonate fuel cells, low temperature catalytic gasification can achieve very attractive system efficiencies while producing extremely low emissions compared to conventional plants utilizing coal. Three system configurations based on recoverable and disposable gasification catalysts were studied. Experimental tests were conducted to evaluate these gasification catalysts. The recoverable catalyst studied was potassium carbonate, and the disposable catalysts were calcium in the form of limestone and iron in the form of taconite. Reactivities of limestone and iron were lower than that of potassium, but were improved by using the catalyst in solution form. Promising results were obtained in the system evaluations as well as the experimental testing of the gasification catalysts. To realize the potential of these high efficiency power plant systems more effort is required to develop catalytic gasification systems and their integration with carbonate fuel cells.

Steinfeld, G.; Wilson, W.G.

1993-06-01T23:59:59.000Z

Note: This page contains sample records for the topic "recycled fresh catalytic" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

Advanced power systems featuring a closely coupled catalytic gasification carbonate fuel cell plant  

SciTech Connect

Pursuing the key national goal of clean and efficient uulization of the abundant domestic coal resources for power generation, a study was conducted with DOE/METC support to evaluate the potential of integrated gasification/carbonate fuel cell power generation systems. By closely coupling the fuel cell with the operation of a catalytic gasifier, the advantages of both the catalytic gasification and the high efficiency fuel cell complement each other, resulting in a power plant system with unsurpassed efficiencies approaching 55% (HHV). Low temperature catalytic gasification producing a high methane fuel gas offers the potential for high gas efficiencies by operating with minimal or no combustion. Heat required for gasification is provided by combination of recycle from the fuel cell and exothermic methanation and shift reactions. Air can be supplemented if required. In combination with internally reforming carbonate fuel cells, low temperature catalytic gasification can achieve very attractive system efficiencies while producing extremely low emissions compared to conventional plants utilizing coal. Three system configurations based on recoverable and disposable gasification catalysts were studied. Experimental tests were conducted to evaluate these gasification catalysts. The recoverable catalyst studied was potassium carbonate, and the disposable catalysts were calcium in the form of limestone and iron in the form of taconite. Reactivities of limestone and iron were lower than that of potassium, but were improved by using the catalyst in solution form. Promising results were obtained in the system evaluations as well as the experimental testing of the gasification catalysts. To realize the potential of these high efficiency power plant systems more effort is required to develop catalytic gasification systems and their integration with carbonate fuel cells.

Steinfeld, G.; Wilson, W.G.

1993-01-01T23:59:59.000Z

242

Correction magnets for the Fermilab Recycler Ring  

SciTech Connect

In the commissioning of the Fermilab Recycler ring the need for higher order corrector magnets in the regions near beam transfers was discovered. Three types of permanent magnet skew quadrupoles, and two types of permanent magnet sextupoles were designed and built. This paper describes the need for these magnets, the design, assembly, and magnetic measurements.

James T Volk et al.

2003-05-27T23:59:59.000Z

243

Plastic bottles > Remove lids (not recyclable)  

E-Print Network (OSTI)

Plastic bottles Please: > Remove lids (not recyclable) > Empty bottles > Rinse milk bottles, & other bottles if possible > Squash bottles www.st-andrews.ac.uk/estates/environment All types of plastic bottle accepted Clear, opaque and coloured bottles Labels can remain on X No plastic bags X No plastics

Brierley, Andrew

244

8. Has recycled ber been used appropriately?  

E-Print Network (OSTI)

,788,008North and Central America 33,246,500 45,945,000 47,806,928 38%** 2,417,000South America 2,665,000 4. Recovery rate is 62.6% if including European recovered paper recycled in third countries. ** North America

245

Recycling, production and use of reprocessed rubbers  

SciTech Connect

This article examines the various methods used to produce recycled rubber and to compare their characteristics and application. The topics discussed include reclaiming by chemical digestion, devulcanization by the severing of sulfur bonds, ambient temperature and cryogenically ground rubber, processing and mixing of ground rubber, and properties of reclaimed rubbers by reclamation method.

Klingensmith, B. (Akron Rubber Consulting, OH (United States))

1991-03-01T23:59:59.000Z

246

Temperature-gradient calendering of recycled boxboard  

SciTech Connect

In this study, the TG calendering technique was applied to multi-ply boxboard samples made from 100% recycled fibers. The effects of the following three calendering techniques on the surface properties and bulk of the board are investigated: conventional calendering, two-sided TG calendering, and one-sided TG calendering.

Gratton, M.F. (Pulp and Paper Research Institute of Canada, Pointe Claire, Que. (CA))

1989-03-01T23:59:59.000Z

247

ENVIRONMENTAL PROTECTION FOR THE AUTOMOBILE RECYCLING INDUSTRY  

E-Print Network (OSTI)

- Best Management Practices Volume 2- Technical Pollution Prevention Guide Volume 3- Code of Practice DOE 224 West Esplanade North Vancouver, B.C. Vm3H7 #12;BEST MANAGEMENT PRACTICES FOR THE AUTO RECYCLING volumes, including the Best Management Practices, Technical Pollution Prevention Guide, and Code

248

"Maximum recycling of Material and Energy, Minimum of Landfilling"  

E-Print Network (OSTI)

in "Recycling". "Waste-to-Energy" is now defined as Recycling, when energy efficiency is > 0,65 Prevention Reuse Recycling and Waste-to Energy? #12;6 European Policies on Landfill Ban The EU Landfill Directive The amount Ban decided upon in 2000, in force in 2005. A very strong effect, with a strong increase of Waste-to-Energy

Columbia University

249

2014 International and Western States In-Place Recycling Conference  

E-Print Network (OSTI)

2014 International and Western States In-Place Recycling Conference August 5­7, 2014 Denver and the road to revitalizing in-place recycling technologies. · Join this prestigious forum especially designed/research agencies to discuss the status of in-place recycling. · Experience what we know today for each form of in

250

Development/Plasticity/Repair Identification of Nicotinic Acetylcholine Receptor Recycling  

E-Print Network (OSTI)

Development/Plasticity/Repair Identification of Nicotinic Acetylcholine Receptor Recycling and Its, University of Michigan, Ann Arbor, Michigan 48109 In the CNS, receptor recycling is critical for synaptic plasticity; however, the recycling of receptors has never been observed at peripheral synapses. Using a novel

Alford, Simon

251

Using OWL Ontologies Selective Waste Sorting and Recycling  

E-Print Network (OSTI)

Using OWL Ontologies for Selective Waste Sorting and Recycling Arnab Sinha and Paul Couderc INRIA for better recycling of materials. Our motive for using ontologies is for representing and rea- soning, recyclable materials, N-ary relations 1 Introduction Today Pervasive computing is gradually entering people

Paris-Sud XI, Université de

252

Pesticide Container Recycling "It's Just The Right Thing To Do!"  

E-Print Network (OSTI)

Pesticide Container Recycling "It's Just The Right Thing To Do!" Some of you may recall that when I Container Recycling Programs in counties around the state. Highlands County was one of the first counties to establish a Pesticide Container Recycling Collection Center (which is still in operation). I set up twenty

Jawitz, James W.

253

Recycling Computed Answers in Rewrite Systems for Abduction Fangzhen Lin #  

E-Print Network (OSTI)

Recycling Computed Answers in Rewrite Systems for Abduction Fangzhen Lin # http computed answers can be recycled arises. A yes answer could result in sub­ stantial savings of repeated tends to be­ lieve that the answer should be no, since recycling is a form of adding information

Wu, Dekai

254

Production and recycling of oceanic crust in the early Earth  

E-Print Network (OSTI)

Chapter 6 Production and recycling of oceanic crust in the early Earth Abstract Because in the production and recycling of oceanic crust: (1) Small scale (x · 100km) convection involving the lower crust have been different from those in the present-day Earth. Crustal recycling must however have taken

van Thienen, Peter

255

Archetypes: Durer's Rhino and the Recycling of Images  

E-Print Network (OSTI)

Chapter 17 Archetypes: D¨urer's Rhino and the Recycling of Images 17.1 Introduction: Aref's Rule Rule-of-Thumb 5 (Aref's Rule) Never publish the same graph more than once. As we shall below, recycling illustrate when recycling of previously published images is good, and also when and how it can go

Boyd, John P.

256

Locating a Recycling Center: The General Density Case Jannett Highfill  

E-Print Network (OSTI)

Locating a Recycling Center: The General Density Case Jannett Highfill Department of Economics) 677-3374. #12;2 Locating a Recycling Center: The General Density Case Abstract: The present paper considers a municipality that has a landfill (fixed in location) and plans to optimally locate a "recycling

Mou, Libin

257

Energy, Greenhouse Gas, and Cost Reductions for Municipal Recycling Systems  

Science Journals Connector (OSTI)

Energy, Greenhouse Gas, and Cost Reductions for Municipal Recycling Systems ... An evaluation of the energy, greenhouse gas, and costs savings associated with logistics and infrastructure improvements to a curbside recycling program is presented. ... MSW recycling has been found to be costly for most municipalities compared to landfill disposal. ...

Mikhail Chester; Elliot Martin; Nakul Sathaye

2008-02-08T23:59:59.000Z

258

Freshness-driven adaptive caching for dynamic content web sites  

Science Journals Connector (OSTI)

Both response time and content freshness are essential to e-commerce applications on the Web. One option to achieve good response time is to build a high performance Web site by deploying the state of art IT infrastructures with large network and server ... Keywords: dynamic content, freshness, network latency, response time, web acceleration

Wen-Syan Li; Oliver Po; Wang-Pin Hsiung; K. Selçuk Candan; Divyakant Agrawal

2003-11-01T23:59:59.000Z

259

Waste Toolkit A-Z Food waste (recycling on-site)  

E-Print Network (OSTI)

Waste Toolkit A-Z Food waste (recycling on-site) How can I recycle food waste on-site? Recycling to be recycled. While this is better than sending waste to landfill, there is a more sustainable way to recycle and parks. See examples of Tidy Planet's customers recycling on-site: www.tidyplanet.co.uk/our-news Short

Melham, Tom

260

Passive Catalytic Approach to Low Temperature NOx Emission Abatement...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Catalytic Approach to Low Temperature NOx Emission Abatement Passive Catalytic Approach to Low Temperature NOx Emission Abatement Numerically evaluated and optimized proposed...

Note: This page contains sample records for the topic "recycled fresh catalytic" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

Measurement of diesel solid nanoparticle emissions using a catalytic...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

diesel solid nanoparticle emissions using a catalytic stripper for comparison with Europe's PMP protocol Measurement of diesel solid nanoparticle emissions using a catalytic...

262

TCS 2014 Symposium on Thermal and Catalytic Sciences for Biofuels...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

TCS 2014 Symposium on Thermal and Catalytic Sciences for Biofuels and Biobased Products TCS 2014 Symposium on Thermal and Catalytic Sciences for Biofuels and Biobased Products...

263

Fuel-Flexible, Low-Emissions Catalytic Combustor for Opportunity...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Flexible, Low-Emissions Catalytic Combustor for Opportunity Fuels Fuel-Flexible, Low-Emissions Catalytic Combustor for Opportunity Fuels This fact sheet provides an overview of the...

264

Catalytic Hydrothermal Gasification of Biomass  

SciTech Connect

A recent development in biomass gasification is the use of a pressurized water processing environment in order that drying of the biomass can be avoided. This paper reviews the research undertaken developing this new option for biomass gasification. This review does not cover wet oxidation or near-atmospheric-pressure steam-gasification of biomass. Laboratory research on hydrothermal gasification of biomass focusing on the use of catalysts is reviewed here, and a companion review focuses on non-catalytic processing. Research includes liquid-phase, sub-critical processing as well as super-critical water processing. The use of heterogeneous catalysts in such a system allows effective operation at lower temperatures, and the issues around the use of catalysts are presented. This review attempts to show the potential of this new processing concept by comparing the various options under development and the results of the research.

Elliott, Douglas C.

2008-05-06T23:59:59.000Z

265

Mathematical Modeling for CostMathematical Modeling for Cost Optimization of PV RecyclingOptimization of PV Recycling  

E-Print Network (OSTI)

Mathematical Modeling for CostMathematical Modeling for Cost Optimization of PV RecyclingOptimization of PV Recycling InfrastructureInfrastructure JunJun--Ki ChoiKi Choi & Vasilis Fthenakis& Vasilis Recycling ­Cost Optimization 1. Where is the optimized location? · Centralized/decentralized collection

266

Catalytic hydrodesulfurization by molybdenum nitride  

SciTech Connect

High surface area molybdenum nitride (up to 108 m{sup 2}/g) was synthesized, characterized, and tested for thiophene desulfurization activity. The surface area was found to depend on synthesis temperature profile, mass transfer, and passivation procedure. Passivated and sulfided catalysts retained the bulk structure of face-centered-cubic Mo{sub 2}N. X-ray diffraction and Raman spectroscopy showed no evidence for MoO{sub 3} or MoS{sub 2} formation in fresh catalysts or catalysts sulfided at 673 K. Thiophene desulfurization activity was measured over a broad range Mo{sub 2}N surface areas and reactor condition. Small amounts of tetrahydrothiophene were formed during desulfurization and low-conversion data at 673 K indicate that butane is one of the initial products of the thiophene desulfurization reaction, in addition to butadiene and the butenes.

Markel, E.J.; Van Zee, J.W. (Univ. of South Carolina, Columbia (USA))

1990-12-01T23:59:59.000Z

267

Catalytic converter with thermoelectric generator  

SciTech Connect

The unique design of an electrically heated catalyst (EHC) and the inclusion of an ECO valve in the exhaust of an internal combustion engine will meet the strict new emission requirements, especially at vehicle cold start, adopted by several states in this country as well as in Europe and Japan. The catalytic converter (CC) has been a most useful tool in pollution abatement for the automobile. But the emission requirements are becoming more stringent and, along with other improvements, the CC must be improved to meet these new standards. Coupled with the ECO valve, the EHC can meet these new emission limits. In an internal combustion engine vehicle (ICEV), approximately 80% of the energy consumed leaves the vehicle as waste heat: out the tail pipe, through the radiator, or convected/radiated off the engine. Included with the waste heat out the tail pipe are the products of combustion which must meet strict emission requirements. The design of a new CC is presented here. This is an automobile CC that has the capability of producing electrical power and reducing the quantity of emissions at vehicle cold start, the Thermoelectric Catalytic Power Generator. The CC utilizes the energy of the exothermic reactions that take place in the catalysis substrate to produce electrical energy with a thermoelectric generator. On vehicle cold start, the thermoelectric generator is used as a heat pump to heat the catalyst substrate to reduce the time to catalyst light-off. Thus an electrically heated catalyst (EHC) will be used to augment the abatement of tail pipe emissions. Included with the EHC in the exhaust stream of the automobile is the ECO valve. This valve restricts the flow of pollutants out the tail pipe of the vehicle for a specified amount of time until the EHC comes up to operating temperature. Then the ECO valve opens and allows the full exhaust, now treated by the EHC, to leave the vehicle.

Parise, R.J.

1998-07-01T23:59:59.000Z

268

Solid Waste Reduction, Recovery, and Recycling | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Reduction, Recovery, and Recycling Reduction, Recovery, and Recycling Solid Waste Reduction, Recovery, and Recycling < Back Eligibility Investor-Owned Utility Rural Electric Cooperative Utility Savings Category Alternative Fuel Vehicles Hydrogen & Fuel Cells Buying & Making Electricity Water Home Weatherization Solar Wind Program Info State Wisconsin Program Type Environmental Regulations Provider Department of Natural Resources This statute expresses the strong support of the State of Wisconsin for the reduction of the amount of solid waste generated, the reuse, recycling and composting of solid waste, and resource recovery from solid waste. The statute also notes that research, development and innovation in the design, management and operation of solid waste reduction, reuse, recycling,

269

Model institutional infrastructures for recycling of photovoltaic modules  

SciTech Connect

How will photovoltaic modules (PVMS) be recycled at the end of their service lives? This question has technological and institutional components (Reaven, 1994a). The technological aspect concerns the physical means of recycling: what advantages and disadvantages of the several existing and emerging mechanical, thermal, and chemical recycling processes and facilities merit consideration? The institutional dimension refers to the arrangements for recycling: what are the operational and financial roles of the parties with an interest in PVM recycling? These parties include PVM manufacturers, trade organizations; distributors, and retailers; residential, commercial, and utility PVM users; waste collectors, transporters, reclaimers, and reclaimers; and governments.

Reaven, S.J.; Moskowitz, P.D.; Fthenakis, V.

1996-01-01T23:59:59.000Z

270

WEEK ONE MONDAY TUESDAY WEDNESDAY THURSDAY FRIDAY MORNING SNACK Fresh fruit with milk or  

E-Print Network (OSTI)

WEEK ONE MONDAY TUESDAY WEDNESDAY THURSDAY FRIDAY MORNING SNACK Fresh fruit with milk or water to drink. Fresh fruit with milk or water to drink Fresh fruit with milk or water to drink Fresh fruit with milk or water to drink Fresh fruit with milk or water to drink MAIN COURSE Spaghetti Bolognese (minced

Mumby, Peter J.

271

The accumulation of nonylphenol in a wastewater recycling process  

Science Journals Connector (OSTI)

A mathematical model was developed in this paper to describe the nonylphenol (NP) accumulation in the effluent of a wastewater recycling system. The model quantitatively presented the relationships among the NP concentrations in the raw wastewater and the system effluent, the number of wastewater recycling cycles, the water recycling ratio, the system NP removal efficiency, and the NP accumulation factor. The mathematical model was then verified through experimental modeling of a wastewater recycling process, and it was indicated that the Pearson correlation coefficient between mathematical simulation and experimental modeling results was 0.652. The study results indicated that the NP accumulation factor of a wastewater recycling system would approach a constant for large number of wastewater recycling cycles given the wastewater recycling ratio and system NP removal efficiency. The results also revealed that the NP concentration in the effluent increased with the wastewater recycling ratio given the system NP removal efficiency, and the increase of NP removal efficiency would decrease the NP accumulation in the system effluent under a given wastewater recycling ratio condition. The model was then applied to compute the maximum wastewater recycling ratio, predict reclaimed water quality and direct the design and management of sewage recycling systems in China.

Rui-Xia Hao; Yu-Wen Zhou; Shui-Yuan Cheng; Jian-Bing Li; Man Zhao; Xi Chen; Ning Yao

2008-01-01T23:59:59.000Z

272

Technology Analysis - Battery Recycling and Life Cycle Analysis  

NLE Websites -- All DOE Office Websites (Extended Search)

Lithium-Ion Battery Recycling and Life Cycle Analysis Lithium-Ion Battery Recycling and Life Cycle Analysis diagram of the battery recycling life cycle Several types of recycling processes are available, recovering materials usable at different stages of the production cycle- from metallic elements to materials that can be reused directly in new batteries. Recovery closer to final usable form avoids more impact-intensive process steps. Portions courtesy of Umicore, Inc. To identify the potential impacts of the growing market for automotive lithium-ion batteries, Argonne researchers are examining the material demand and recycling issues related to lithium-ion batteries. Research includes: Conducting studies to identify the greenest, most economical recycling processes, Investigating recycling practices to determine how much of which

273

New Choctaw Nation Recycling Center Posts Quick Results | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

New Choctaw Nation Recycling Center Posts Quick Results New Choctaw Nation Recycling Center Posts Quick Results New Choctaw Nation Recycling Center Posts Quick Results March 8, 2011 - 5:08pm Addthis Albert Bond Project Officer, Golden Field Office What does this mean for me? The Choctaw Nation used approximately $800,000 in Energy Efficiency and Conservation Block Grant funding to build a state-of-the-art recycling center and improve stewardship of the land and environment. "If you build it, they will come" ...to recycle. That line from the 1989 film Field of Dreams is as good a way as any to describe how the Choctaw Nation of Oklahoma's new regional recycling center is being received. The Choctaw Nation used approximately $800,000 in Energy Efficiency and Conservation Block Grant funding to build a state-of-the-art recycling

274

New Choctaw Nation Recycling Center Posts Quick Results | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Choctaw Nation Recycling Center Posts Quick Results Choctaw Nation Recycling Center Posts Quick Results New Choctaw Nation Recycling Center Posts Quick Results March 8, 2011 - 5:08pm Addthis Albert Bond Project Officer, Golden Field Office What does this mean for me? The Choctaw Nation used approximately $800,000 in Energy Efficiency and Conservation Block Grant funding to build a state-of-the-art recycling center and improve stewardship of the land and environment. "If you build it, they will come" ...to recycle. That line from the 1989 film Field of Dreams is as good a way as any to describe how the Choctaw Nation of Oklahoma's new regional recycling center is being received. The Choctaw Nation used approximately $800,000 in Energy Efficiency and Conservation Block Grant funding to build a state-of-the-art recycling

275

Evaluation of engine coolant recycling processes: Part 2  

SciTech Connect

Engine coolant recycling continues to provide solutions to both economic and environmental challenges often faced with the disposal of used engine coolant. General Motors` Service Technology Group (STG), in a continuing effort to validate the general practice of recycling engine coolants, has conducted an in-depth study on the capabilities of recycled coolants. Various recycling processes ranging from complex forms of fractional distillation to simple filtration were evaluated in this study to best represent the current state of coolant recycling technology. This study incorporates both lab and (limited) fleet testing to determine the performance capabilities of the recycled coolants tested. While the results suggest the need for additional studies in this area, they reveal the true capabilities of all types of engine coolant recycling technologies.

Bradley, W.H. [General Motors, Warren, MI (United States). Service Technology Group

1999-08-01T23:59:59.000Z

276

Lattice Boltzmann simulation of catalytic reactions  

Science Journals Connector (OSTI)

A lattice Boltzmann model is developed to simulate finite-rate catalytic surface chemistry. Diffusive wall boundary conditions are established to account for catalytic reactions in multicomponent mixtures. Implementation of wall boundary conditions with chemical reactions is based on a general second-order accurate interpolation scheme. Results of lattice Boltzmann simulations for a four-component mixture with a global catalytic methane oxidation reaction in a straight channel are in excellent agreement with a finite volume Navier-Stokes solver in terms of both the flow field and species concentrations.

S. Arcidiacono; J. Mantzaras; I. V. Karlin

2008-10-28T23:59:59.000Z

277

Recycling of Li-Ion Batteries  

NLE Websites -- All DOE Office Websites (Extended Search)

1 1 Linda Gaines Center for Transportation Research Argonne National Laboratory Recycling of Li-Ion Batteries Illinois Sustainable Technology Center University of Illinois We don't want to trade one crisis for another!  Battery material shortages are unlikely - We demonstrated that lithium demand can be met - Recycling mitigates potential scarcity  Life-cycle analysis checks for unforeseen impacts  We need to find something to do with the used materials - Safe - Economical 2 We answer these questions to address material supply issues  How many electric-drive vehicles will be sold in the US and world-wide?  What kind of batteries might they use? - How much lithium would each battery use?  How much lithium would be needed each year?

278

A Ceramic membrane to Recycle Caustic  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

A A Ceramic Membrane to Recycle Caustic in Low-Activity Waste Stream Processing The Office of Waste Processing is sponsoring an R&D project with Ceramatec, Inc. to develop a ceramic membrane capable of separating sodium from the Hanford Low Activity Waste (LAW) stream. The Hanford High-Level Waste (HLW) tanks must be maintained in a caustic environment to inhibit corrosion. Consequently, they contain large quantities of NaOH. Ultimately the HLW will be retrieved, separated into HLW and LAW streams, with both streams being vitrified at the Waste Treatment Plant (WTP). Prior to processing, additional NaOH will be added to the LAW stream to solubilize the alumina, preventing alumina precipitation, but further increasing the NaOH quantity. This project's goal is to separate the sodium from the LAW stream prior to vitrification which will allow the NaOH to be recycled and further

279

Argonne explains nuclear recycling in 4 minutes  

SciTech Connect

Currently, when using nuclear energy only about five percent of the uranium used in a fuel rod gets fissioned for energy; after that, the rods are taken out of the reactor and put into permanent storage. There is a way, however, to use almost all of the uranium in a fuel rod. Recycling used nuclear fuel could produce hundreds of years of energy from just the uranium we've already mined, all of it carbon-free. Problems with older technology put a halt to recycling used nuclear fuel in the United States, but new techniques developed by scientists at Argonne National Laboratory address many of those issues. For more information, visit http://www.anl.gov/energy/nuclear-energy.

None

2012-01-01T23:59:59.000Z

280

Transverse Instabilities in the Fermilab Recycler  

SciTech Connect

Transverse instabilities of the antiproton beam have been observed in the Recycler ring soon after its commissioning. After installation of transverse dampers, the threshold for the instability limit increased significantly but the instability is still found to limit the brightness of the antiprotons extracted from the Recycler for Tevatron shots. In this paper, we describe observations of the instabilities during the extraction process as well as during dedicated studies. The measured instability threshold phase density agrees with the prediction of the rigid beam model within a factor of 2. Also, we conclude that the instability threshold can be significantly lowered for a bunch contained in a narrow and shallow potential well due to effective exclusion of the longitudinal tails from Landau damping.

Prost, L.R.; Burov, A.; Shemyakin, A.; Bhat, C.M.; Crisp, J.; Eddy, N.; /Fermilab

2011-07-01T23:59:59.000Z

Note: This page contains sample records for the topic "recycled fresh catalytic" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

Argonne explains nuclear recycling in 4 minutes  

ScienceCinema (OSTI)

Currently, when using nuclear energy only about five percent of the uranium used in a fuel rod gets fissioned for energy; after that, the rods are taken out of the reactor and put into permanent storage. There is a way, however, to use almost all of the uranium in a fuel rod. Recycling used nuclear fuel could produce hundreds of years of energy from just the uranium we've already mined, all of it carbon-free. Problems with older technology put a halt to recycling used nuclear fuel in the United States, but new techniques developed by scientists at Argonne National Laboratory address many of those issues. For more information, visit http://www.anl.gov/energy/nuclear-energy.

None

2013-04-19T23:59:59.000Z

282

Water balance analysis and wastewater recycling investigation in electrolytic manganese industry of China — A case study  

Science Journals Connector (OSTI)

Abstract A water balance investigation was performed for a representative electrolytic manganese metal (EMM) enterprise to study the details of water consumption and generation in the production process. A new integrated wastewater treatment approach was put forward to recover useful chemicals from the process wastewater, which contained high concentrations of Mn2 +, Cr(VI), Cr3 +, and NH4+. Cr(VI) was recovered from the wastewater by ion exchange techniques and reused as EMM passivant. The remaining wastewater containing Mn2 + and NH4+ was returned to the leaching section before the impurity removal procedure to prepare electrolytes. Complete wastewater recycling was achieved after water balance regulation and optimization. Final demonstration line results proved that the proposed process is feasible and exhibits significant advantages of better treatment effects, lower costs and lower environmental impact compared to the traditional reduction–neutralization–sedimentation treatment method. With the adoption of the proposed approach, solid waste disposal cost and the required area for the landfill yard were decreased by 80%. Operating costs for wastewater treatment were lowered by 85%. Around 4.8 kg/t EMM of Mn2 +, 5.2 kg/t EMM of NH4+ and 0.24 kg/t EMM of Cr(VI) were recovered. The recycled wastewater proportion was increased from 6.2% to 100.0%. 1.168 m3/t EMM of fresh water was saved and the equivalent amount of discharging wastewater was reduced to the environment.

Fuyuan Xu; Linhua Jiang; Zhigang Dan; Xiaojuan Gao; Ning Duan; Guimei Han; Hong Zhu

2014-01-01T23:59:59.000Z

283

Glycoside hydrolases: Catalytic base/nucleophile diversity  

NLE Websites -- All DOE Office Websites (Extended Search)

Glycoside Glycoside Hydrolases: Catalytic Base/Nucleophile Diversity Thu V. Vuong, David B. Wilson Department of Molecular Biology and Genetics, Cornell University, 458 Biotechnology Building, Ithaca, New York 14850; telephone: 607-255-5706; fax: 607-255-2428; e-mail: dbw3@cornell.edu Received 1 April 2010; revision received 27 May 2010; accepted 2 June 2010 Published online 15 June 2010 in Wiley Online Library (wileyonlinelibrary.com). DOI 10.1002/bit.22838 ABSTRACT: Recent studies have shown that a number of glycoside hydrolase families do not follow the classical catalytic mechanisms, as they lack a typical catalytic base/ nucleophile. A variety of mechanisms are used to replace this function, including substrate-assisted catalysis, a network of several residues, and the use of non-carboxylate residues or exogenous nucleophiles. Removal of the catalytic base/ nucleophile

284

Preparation, Characterization, and Catalytic Properties of Tungsten...  

NLE Websites -- All DOE Office Websites (Extended Search)

Abstract: The structure and catalytic activity of tungsten oxide clusters formed via sublimation of monodispersed cyclic (WO3)3 onto FeO(111)Pt(111) surface has been studied...

285

Bifunctional Catalysts for the Selective Catalytic Reduction...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Reduction of NO by Hydrocarbons Selectlive Catalytic Reducution of NOx wilth Diesel-Based Fuels as Reductants Engine and Reactor Evaluations of HC-SCR for Diesel NOx Reduction...

286

Microsecond Catalytic Partial Oxidation of Alkanes  

Science Journals Connector (OSTI)

...HICKMAN A. D. , PRODUCTION OF SYNGAS BY DIRECT CATALYTIC-OXIDATION OF METHANE...PFEFFERLE D. L. , CATALYSIS IN COMBUSTION , CATALYSIS...a-alu-mina monoliths coated with Rh (for syngas) (1, 2) or with Pt (for olefins...

Duane A. Goetsch; Lanny D. Schmidt

1996-03-15T23:59:59.000Z

287

Year/PAD District Cokers Catalytic Crackers Hydrocrackers Capacity  

U.S. Energy Information Administration (EIA) Indexed Site

Cokers Catalytic Crackers Hydrocrackers Capacity Inputs Capacity Inputs Capacity Inputs Table 8. Capacity and Fresh Feed Input to Selected Downstream Units at U.S. Refineries, 2011 - 2013 (Barrels per Calendar Day) Reformers Capacity Inputs 2011 2,396,787 5,794,214 1,687,745 2,093,849 4,952,455 1,466,627 2,570,970 3,346,457 93,700 673,300 41,500 37,932 490,729 18,030 PADD I 188,389 266,950 373,897 1,176,972 254,000 350,063 1,017,616 223,751 PADD II 664,852 812,244 1,318,440 2,933,842 841,285 1,183,318 2,570,348 744,638 PADD III 1,243,427 1,629,967 80,350 185,800 28,200 63,362 158,192 18,214 PADD IV 96,649 120,190 530,400 824,300 522,760 459,175 715,570 461,995 PADD V 377,652 517,106 2012 2,499,293 5,611,191 1,706,540 2,173,336 4,901,284 1,528,708 2,614,571 3,246,874 74,900 489,300 20,000

288

Prompt non-tire rubber recycling : final report for phases 1 and 2.  

SciTech Connect

This report summarizes an assessment conducted by Environmental Technologies Alternatives, Inc., under a subcontract to Argonne National Laboratory. The project was conducted in two phases. An assessment of alternative technologies for recycling of prompt non-tire rubber was conducted in the first phase, and an experimental program focusing on a new technology called the catalytic Regeneration Process offered the greatest opportunity for recovery of high-value recyclable rubber material. An experimental and large-scale test program was undertaken to further delineate the economic potential as an essential step leading to commercial deployment and to determine the course of continued development of the technology by the private sector. The experimental program defined process-operating conditions for the technology and verified the degree of devulcanisation achievable for two rubber compounds: ethylene-propylene-nonconjugated-diene monomer (EPDM) and neoprene. To determine product acceptance, samples of devulcanized EPDM and neoprene were prepared and used in factory trials for the production of automotive moldings (EPDM) and fiber-filled belting (neoprene). The factory trials indicated that the physical properties of the products were acceptable in both cases. The appearance of molded and calendared surface finishes was acceptable, while that of extruded finishes was unsatisfactory. The fiber-filled neoprene belting application offers the greatest economic potential. Process costs were estimated at $0.34/lb for neoprene waste rubber relative to a value of $0.57/lb. The results of the experimental program led to the decision to continue development of this technology is being planned, subject to the availability of about $3 million in financing from private-sector investors. The ability to recycle non-tire rubber scrap could conserve as much as 90,000 Btu/lb, thus yielding an estimated energy savings potential of about 0.25 quad/yr.

Smith, F. G.; Daniels, E. J.

1999-06-25T23:59:59.000Z

289

Vacuum-insulated catalytic converter  

DOE Patents (OSTI)

A catalytic converter has an inner canister that contains catalyst-coated substrates and an outer canister that encloses an annular, variable vacuum insulation chamber surrounding the inner canister. An annular tank containing phase-change material for heat storage and release is positioned in the variable vacuum insulation chamber a distance spaced part from the inner canister. A reversible hydrogen getter in the variable vacuum insulation chamber, preferably on a surface of the heat storage tank, releases hydrogen into the variable vacuum insulation chamber to conduct heat when the phase-change material is hot and absorbs the hydrogen to limit heat transfer to radiation when the phase-change material is cool. A porous zeolite trap in the inner canister absorbs and retains hydrocarbons from the exhaust gases when the catalyst-coated substrates and zeolite trap are cold and releases the hydrocarbons for reaction on the catalyst-coated substrate when the zeolite trap and catalyst-coated substrate get hot.

Benson, David K. (Golden, CO)

2001-01-01T23:59:59.000Z

290

Recycling used engine coolant using high-volume stationary, multiple technology equipment  

SciTech Connect

Recycling used engine coolant has become increasingly desirable due to two significant factors. First, engine coolant frequently merits designation as a hazardous waste under the Federal Clean Water Act. Federal and some state environmental protection agencies have instituted strict regulation of the disposal of used engine coolant. In some cases, the disposal of engine coolant requires imposition of waste disposal fees and surcharges. Secondly, ethylene glycol, the principal cost component of engine coolant, has experienced dramatic price fluctuations and occasional shortages in supply. Therefore, there are both environmental and economic pressures to recycle engine coolant and recover the ethylene glycol component in an efficient and cost-effective manner. This paper discusses a multistage apparatus and a process for recycling used engine coolant that employs a combination of filtration, centrifugation (hydrocyclone separation), dissolved air flotation, nanofiltration, reverse osmosis, continuous deionization, and ion exchange processes for separating ethylene glycol and water from used engine coolant. The engine coolant is prefiltered through a series of filters. The filters remove particulate contaminates. This filtered fluid is then subjected to dissolved air flotation and centrifugation to remove petroleum. Then it is heated and pressurized prior to being passed over a series of two different sets of semipermeable membranes. The membrane technologies separate the feed stream into a permeate solution of ethylene glycol and water and a concentrate waste solution. The concentrate solution is returned to a concentrate tank for continuous circulation through the apparatus. The permeate solution is subjected to final refining by continuous deionization followed by a cation and anion ion exchange polishing process. The continuous deionization reduces ionic contaminants, and the ion exchange system eliminates any ionic contaminants left by the previous purification methods. A mechanical blender is used to mix the purified recovered fluid with fresh ethylene glycol (to adjust freeze point) and performance enhancing chemicals.

Haddock, M.E. [Recycled Engine Coolants, Inc., Austin, TX (United States); Eaton, E.R. [Penray Companies, Inc., Elk Grove Village, IL (United States)

1999-08-01T23:59:59.000Z

291

Charged State of Freshly Nucleated Particles: Implications for Nucleation Mechanisms  

E-Print Network (OSTI)

worldwide, and may have significant climatic and health implications. Despite extensive studies in the pastCharged State of Freshly Nucleated Particles: Implications for Nucleation Mechanisms Fangqun Yu1

Yu, Fangqun

292

Global Access to Energy and Fresh Water - Nuclear Engineering Division  

NLE Websites -- All DOE Office Websites (Extended Search)

Global Access to Energy and Fresh Water Global Access to Energy and Fresh Water International Safety Projects Overview Hydrogen as an Energy Carrier Global access to energy and fresh water International cooperation on safety of nuclear plants Other Major Programs Work with Argonne Contact us For Employees Site Map Help Join us on Facebook Follow us on Twitter NE Division on Flickr International Safety Projects Global Access to Energy and Fresh Water Bookmark and Share Water Water shortages, unreliable water supplies, and poor water quality have been considered in recent years to be major obstacles to sustainable development and poverty alleviation that require urgent attention. Over 1 billion people lack access to safe drinking water. In such areas, water shortages are increasingly limiting development options.

293

Improving the quality of deteriorated recycle solvents. Quarterly report, August 1982-November 1982  

SciTech Connect

The overall objective of this work is to identify reasons for solvent degeneration and to determine a feasible mechanism whereby coal-liquefaction processes can be modified to inhibit solvent degradation during the liquefaction process. In this work, the response in product distribution (or oil yield) to different pre-treatment methods was investigated. In related past works, solvent quality was based solely on the amount of standard coal conversion. In this work, solvent quality was also determined with the use of a standard product separation procedure. A brief discussion of related past works is followed up by a discussion of current work in the area of upgrading deteriorated recycle solvents. The effect of solvent pre-treatment on quality during thermal (non-catalytic) and catalytic liquefaction of coal was examined, and a comparison was made. In addition, the effect of the presence of typical compounds found in coal liquids (e.g. pyrene), during solvent pre-treatment, on solvent quality was also investigated. 2 references, 3 figures, 5 tables.

Tarrer, A.R.; Guin, J.A.; Curtis, C.W.

1982-01-01T23:59:59.000Z

294

An intraseasonal price analysis for Texas fresh grapefruit  

E-Print Network (OSTI)

AN INTRASEASONAL PRICE ANALYSIS FOR TEXAS FRESH GRAPEFRUIT A Thesis by EDWARD GAIL SMITH Submitted to the Graduate College of Texas A&M University in partial fulfillment of the requirement for the degree of MASTER OF SCIENCE May 1975 Major... Subject: Agricultural Economics AN INTRASEASONAL PRICE ANALYSIS FOR TEXAS FRESH GRAPEFRUIT A Thesis by EDWARD GAIL SMITH Approved as to style and content by: (~? tl ?0') /X~g, . (Chairman of Committee) g r=-;- . . . ') (Head of Depart ent...

Smith, E. G

2012-06-07T23:59:59.000Z

295

Loveland Water and Power - Refrigerator Recycling Program | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Refrigerator Recycling Program Refrigerator Recycling Program Loveland Water and Power - Refrigerator Recycling Program < Back Eligibility Residential Savings Category Appliances & Electronics Maximum Rebate Limit one rebate per account per year Program Info State Colorado Program Type Utility Rebate Program Rebate Amount Refrigerator and Freezer Recycling: $35 Loveland Water and Power is providing an incentive for its customers to recycle their old refrigerators. Interested customers can call the utility to arrange a time to pick up the old refrigerator. The old refrigerator should be brought outside but remain plugged in so the utility can make it is in working condition. the utility will then take the refrigerator to a recycling facility and issue a $35 bill credit. Other Information

296

Charlotte Green Supply Chain: Reduce, Reuse, Recycle | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Charlotte Green Supply Chain: Reduce, Reuse, Recycle Charlotte Green Supply Chain: Reduce, Reuse, Recycle Charlotte Green Supply Chain: Reduce, Reuse, Recycle July 30, 2010 - 10:59am Addthis Andy Oare Andy Oare Former New Media Strategist, Office of Public Affairs Three years ago at Sacred Heart grade school in Norfolk, Neb., efforts to recycle were grim. "When I got here, we had no paper recycling program," says Troy Berryman, who is entering his sixth year as principal at Sacred Heart. "A couple years prior, we had a guy park a semi-truck in the parking lot for people to recycle paper." But Berryman says this system did not work out well, as the truck was often locked and papers would be left to blow around in the wind or get wet with rain. Knowing that something must be done, he began to look into the local

297

Recycling Energy Yields Super Savings | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Recycling Energy Yields Super Savings Recycling Energy Yields Super Savings Recycling Energy Yields Super Savings April 23, 2010 - 4:34pm Addthis Joshua DeLung Recycling has been part of going green for a long time, but one company is going a step further by actually recycling energy that has already been used to power manufacturing plants. How do they do it? Recycled Energy Development implements proven technologies that help capture wasted heat and increase their energy efficiency. Dick Munson, senior vice president for public affairs at RED, says facilities that undertake such projects are generally able to cut their energy expenses by up to 20 percent. West Virginia Alloys, in Alloy, W.Va., is a silicon manufacturing plant that makes materials that end up in products such as solar cells and computer chips. In 2013, with help from

298

Role of Recycling in the Life Cycle of Batteries  

NLE Websites -- All DOE Office Websites (Extended Search)

ROLE OF RECYCLING IN THE LIFE CYCLE OF BATTERIES ROLE OF RECYCLING IN THE LIFE CYCLE OF BATTERIES J.L. Sullivan, L. Gaines, and A. Burnham Argonne National Laboratory, Energy Systems Division Keywords: battery, materials, recycling, energy Abstract Over the last few decades, rechargeable battery production has increased substantially. Applications including phones, computers, power tools, power storage, and electric-drive vehicles are either commonplace or will be in the next decade or so. Because advanced rechargeable batteries, like those

299

The Energy Impact of Industrial Recycling and Waste Exchange  

E-Print Network (OSTI)

THE ENERGY IMPACT OF INDUSTRIAL RECYCLING AND WASTE EXCHANGE W. CURTIS PHILLIPS, SYSTEMS ENGINEER/INDUSTRIAL PROJECT MANAGER, N.C. ENERGY DIVISION, RALEIGH, NC ABSTRACT Recycling and waste exchange, particularly in the industrial sector, has a... products from virgin materials. Process energy reduction possible by recycling is estimated to be as high is 95% for aluminum and 88% for plastics. Industrial waste exchange is facilit~ted by having an independent agency to publicize and coordinate...

Phillips, W. C.

300

VOC Destruction by Catalytic Combustion Microturbine  

SciTech Connect

This project concerned the application of a catalytic combustion system that has been married to a micro-turbine device. The catalytic combustion system decomposes the VOC's and transmits these gases to the gas turbine. The turbine has been altered to operate on very low-level BTU fuels equivalent to 1.5% methane in air. The performance of the micro-turbine for VOC elimination has some flexibility with respect to operating conditions, and the system is adaptable to multiple industrial applications. The VOC source that was been chosen for examination was the emissions from coal upgrading operations. The overall goal of the project was to examine the effectiveness of a catalytic combustion based system for elimination of VOCs while simultaneously producing electrical power for local consumption. Project specific objectives included assessment of the feasibility for using a Flex-Microturbine that generates power from natural gas while it consumes VOCs generated from site operations; development of an engineering plan for installation of the Flex-Microturbine system; operation of the micro-turbine through various changes in site and operation conditions; measurement of the VOC destruction quantitatively; and determination of the required improvements for further studies. The micro-turbine with the catalytic bed worked effectively to produce power on levels of fuel much lower than the original turbine design. The ability of the device to add or subtract supplemental fuel to augment the amount of VOC's in the inlet air flow made the device an effective replacement for a traditional flare. Concerns about particulates in the inlet flow and the presence of high sulfur concentrations with the VOC mixtures was identified as a drawback with the current catalytic design. A new microturbine design was developed based on this research that incorporates a thermal oxidizer in place of the catalytic bed for applications where particulates or contamination would limit the lifetime of the catalytic bed.

Tom Barton

2009-03-10T23:59:59.000Z

Note: This page contains sample records for the topic "recycled fresh catalytic" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

at the Weizmann Institute We are launching a new cardboard recycling e ort  

E-Print Network (OSTI)

Cardboard Recycling at the Weizmann Institute We are launching a new cardboard recycling e ort and brought to the Weizmann warehouse for reuse. Damaged boxes will be compressed and recycled by the by the recycling company (Kamam). Why do it? Re-using and recycling saves garbage burial space and frees space

Shapiro, Ehud

302

THE OPTIMAL LOCATION OF TWO RECYCLING CENTERS Jannett Highfill, Michael McAsey, Libin Mou1  

E-Print Network (OSTI)

of the transportation costs from i) households to the recycling centers and ii) recycling centers to the landfill-recyclables are subsequently transported to the landfill. The landfill location and the proportion of waste recycled recycling center is located at the landfill. (R1: General Spatial Economics, H7: Publicly Provided Goods

Mou, Libin

303

Developing Criteria and Metrics for Assessing Recycled Water Program Effectiveness.  

E-Print Network (OSTI)

?? Many U.S. states are currently experiencing or expect to experience water shortages in the next ten years. Recycling water is one strategy states are… (more)

Arias, Michelle

2011-01-01T23:59:59.000Z

304

Orange and Rockland Utilities (Electric)- Residential Appliance Recycling Program  

Energy.gov (U.S. Department of Energy (DOE))

Orange and Rockland Utilities provides rebates for residential customers for recycling older, inefficient refrigerators and freezers. All appliances must meet the program requirements listed on the...

305

Modeling agricultural recycling systems for system size and economic potential.  

E-Print Network (OSTI)

??Water is one of the most valued natural resources, and its availability for consumption varies considerably within any region. Recycling water and biomass through reuse… (more)

Hanson, Jeffrey Leland

2007-01-01T23:59:59.000Z

306

MACKAY, NEIL A., AND JAMES J. ELSER. Nutrient recycling by ...  

Science Journals Connector (OSTI)

Nutrient recycling by Daphnia reduces N, fixation by cyanobacteria. ,,,,iimentally e”tro phied lake ..... Standard methods for the examination of wastewater. APHA.

2000-10-07T23:59:59.000Z

307

Patterns in Trash: Factors that Drive Municipal Solid Waste Recycling.  

E-Print Network (OSTI)

??Municipal recycling is driven by a variety of factors. Yet how these factors change over time is not well understood. I analyze a suite of… (more)

Starr, Jared

2014-01-01T23:59:59.000Z

308

Increasing the recycling rate in Clark County, Nevada.  

E-Print Network (OSTI)

??The purpose of this study was to identify and evaluate policies that could increase the amount of municipal solid waste recycled in Clark County, Nevada.… (more)

Laija, Emerald

2008-01-01T23:59:59.000Z

309

Chapter 7, Refrigerator Recycling Evaluation Protocol: The Uniform...  

Office of Environmental Management (EM)

of refrigerators recycled through the program EXISTINGUEC The average annual unit energy consumption of participating refrigerators PARTUSE The portion of the year the...

310

A Critical Analysis of Technological Innovation and Economic Development in Southern California's Urban Water Reuse And Recycling Industry  

E-Print Network (OSTI)

Water Task Force, “Water Recycling 2030: Recommendation’s of2007. Water Funding Recycling Program Strategic Plan. Web.grants_loans/water_recycling/docs/strategicplan2007.pdf

Pilip-Florea, Shadrach Jay

2012-01-01T23:59:59.000Z

311

How to recycle asbestos containing materials (ACM)  

SciTech Connect

The current disposal of asbestos containing materials (ACM) in the private sector consists of sealing asbestos wetted with water in plastic for safe transportation and burial in regulated land fills. This disposal methodology requires large disposal volumes especially for asbestos covered pipe and asbestos/fiberglass adhering to metal framework, e.g. filters. This wrap and bury technology precludes recycle of the asbestos, the pipe and/or the metal frameworks. Safe disposal of ACM at U.S. Department of Energy (DOE) sites, likewise, requires large disposal volumes in landfills for non-radioactive ACM and large disposal volumes in radioactive burial grounds for radioactive and suspect contaminated ACM. The availability of regulated disposal sites is rapidly diminishing causing recycle to be a more attractive option. Asbestos adhering to metal (e.g., pipes) can be recycled by safely removing the asbestos from the metal in a patented hot caustic bath which prevents airborne contamination /inhalation of asbestos fibers. The dissolution residue (caustic and asbestos) can be wet slurry fed to a melter and vitrified into a glass or glass-ceramic. Palex glasses, which are commercially manufactured, are shown to be preferred over conventional borosilicate glasses. The Palex glasses are alkali magnesium silicate glasses derived by substituting MgO for B{sub 2}O{sub 3} in borosilicate type glasses. Palex glasses are very tolerant of the high MgO and high CaO content of the fillers used in forming asbestos coverings for pipes and found in boiler lashing, e.g., hydromagnesite (3MgCO{sub 3} Mg(OH){sub 2} 3H{sub 2}O) and plaster of paris, gypsum (CaSO{sub 4}). The high temperate of the vitrification process destroys the asbestos fibers and renders the asbestos non-hazardous, e.g., a glass or glass-ceramic. In this manner the glass or glass-ceramic produced can be recycled, e.g., glassphalt or glasscrete, as can the clean metal pipe or metal framework.

Jantzen, C.M.

2000-04-11T23:59:59.000Z

312

Deactivation and regeneration of ZSM-5 zeolite in catalytic pyrolysis of plastic wastes  

SciTech Connect

Highlights: > Pyrolysis transforms plastic wastes in valuable liquids and gases useful as fuels or source of chemicals. > The use of ZSM-5 zeolite in pyrolysis favours the production of gases and of lighter and more aromatic liquids. > ZSM-5 zeolite is almost completely deactivated after one plastics pyrolysis experiment. > ZSM-5 zeolite used in plastic wastes pyrolysis can be regenerated by burning the deposited coke in an air stream. > Regenerated ZSM-5 recovers its activity and produces liquids and gases equivalent to those obtained with fresh catalyst. - Abstract: In this work, a study of the regeneration and reuse of ZSM-5 zeolite in the pyrolysis of a plastic mixture has been carried out in a semi-batch reactor at 440 deg. C. The results have been compared with those obtained with fresh-catalyst and in non-catalytic experiments with the same conditions. The use of fresh catalyst produces a significant change in both the pyrolysis yields and the properties of the liquids and gases obtained. Gases more rich in C3-C4 and H{sub 2} are produced, as well as lower quantities of aromatic liquids if compared with those obtained in thermal decomposition. The authors have proved that after one pyrolysis experiment the zeolite loses quite a lot of its activity, which is reflected in both the yields and the products quality; however, this deactivation was found to be reversible since after regeneration heating at 550 deg. C in oxygen atmosphere, this catalyst recovered its initial activity, generating similar products and in equivalent proportions as those obtained with fresh catalyst.

Lopez, A., E-mail: alex.lopez@ehu.es [Chemical and Environmental Engineering Department, School of Engineering of Bilbao, Alameda Urquijo s/n, 48013 Bilbao (Spain); Marco, I. de; Caballero, B.M.; Adrados, A.; Laresgoiti, M.F. [Chemical and Environmental Engineering Department, School of Engineering of Bilbao, Alameda Urquijo s/n, 48013 Bilbao (Spain)

2011-08-15T23:59:59.000Z

313

Catalytic reactive separation system for energy-efficient production of cumene  

DOE Patents (OSTI)

The present invention relates to an atmospheric pressure, reactive separation column packed with a solid acid zeolite catalyst for producing cumene from the reaction of benzene with propylene. Use of this un-pressurized column, where simultaneous reaction and partial separation occur during cumene production, allow separation of un-reacted, excess benzene from other products as they form. This high-yielding, energy-efficient system allows for one-step processing of cumene, with reduced need for product purification. Reacting propylene and benzene in the presence of beta zeolite catalysts generated a selectivity greater than 85% for catalytic separation reactions at a reaction temperature of 115 degrees C and at ambient pressure. Simultaneously, up to 76% of un-reacted benzene was separated from the product; which could be recycled back to the reactor for re-use.

Buelna, Genoveva (Nuevo Laredo, MX); Nenoff, Tina M. (Albuquerque, NM)

2009-07-28T23:59:59.000Z

314

Study of catalytic effects of mineral matter level on coal reactivity  

SciTech Connect

Coal liquefaction experiments using a 400-lb/day bubble-column reactor tested the catalytic effects of added mineral matter level on coal conversion, desulfurization, and distillate yields in continuous operation under recycle conditions, with specific emphasis on the use of a disposable pyrite catalyst indigenous to the feed coal. Western Kentucky No. 11 run-of-mine (ROM) and washed coals were used as feedstocks to determine the effects of levels of mineral matter, specifically iron compounds. Liquefaction reactivity as characterized by total distillate yield was lower for washed coal, which contained less mineral matter. Liquefaction reactivity was regained when pyrite concentrate was added as a disposable catalyst to the washed coal feed in sufficient quantity to match the feed iron concentration of the run-of-mine coal liquefaction test run.

Mazzocco, Nestor J.; Klunder, Edgar B.; Krastman, Donald

1981-03-01T23:59:59.000Z

315

Catalytic Combustor for Fuel-Flexible Turbine  

SciTech Connect

Under the sponsorship of the U.S. Department of Energy's National Energy Technology Laboratory, Siemens Westinghouse is conducting a three-year program to develop an ultra low NOx, fuel flexible catalytic combustor for gas turbine application in IGCC. The program is defined in three phases: Phase 1-Implementation Plan, Phase 2-Validation Testing and Phase 3-Field Testing. The Phase 1 program has been completed. Phase II was initiated in October 2004. In IGCC power plants, the gas turbine must be capable of operating on syngas as a primary fuel and an available back-up fuel such as natural gas. In this program the Rich Catalytic Lean (RCL{trademark}) technology is being developed as an ultra low NOx combustor. In this concept, ultra low NOx is achieved by stabilizing a lean premix combustion process by using a catalytic reactor to react part of the fuel, increasing the fuel/air mixture temperature. In Phase 1, the feasibility of the catalytic concept for syngas application has been evaluated and the key technology issues identified. In Phase II the catalytic concept will be demonstrated through subscale testing. Phase III will consist of full-scale combustor basket testing on natural gas and syngas.

W. R. Laster; E. Anoshkina; P. Szedlacsek

2006-03-31T23:59:59.000Z

316

Catalytic Combustor for Fuel-Flexible Turbine  

SciTech Connect

Under the sponsorship of the U. S. Department of Energy's National Energy Technology Laboratory, Siemens Westinghouse has conducted a three-year program to develop an ultra low NOx, fuel flexible catalytic combustor for gas turbine application in IGCC. The program is defined in three phases: Phase 1 - Implementation Plan, Phase 2 - Validation Testing and Phase 3 - Field Testing. Both Phase 1 and Phase 2 of the program have been completed. In IGCC power plants, the gas turbine must be capable of operating on syngas as a primary fuel and an available back-up fuel such as natural gas. In this program the Rich Catalytic Lean (RCLTM) technology is being developed as an ultra low NOx combustor. In this concept, ultra low NOx is achieved by stabilizing a lean premix combustion process by using a catalytic reactor to oxidize a portion of the fuel, increasing the temperature of fuel/air mixture prior to the main combustion zone. In Phase 1, the feasibility of the catalytic concept for syngas application has been evaluated and the key technology issues identified. In Phase II the technology necessary for the application of the catalytic concept to IGCC fuels was developed through detailed design and subscale testing. Phase III (currently not funded) will consist of full-scale combustor basket testing on natural gas and syngas.

W. R. Laster; E. Anoshkina

2008-01-31T23:59:59.000Z

317

Catalytic Combustor for Fuel-Flexible Turbine  

SciTech Connect

Under the sponsorship of the U. S. Department of Energy’s National Energy Technology Laboratory, Siemens Westinghouse has conducted a three-year program to develop an ultra low NOx, fuel flexible catalytic combustor for gas turbine application in IGCC. The program is defined in three phases: Phase 1- Implementation Plan, Phase 2- Validation Testing and Phase 3 – Field Testing. Both Phase 1 and Phase 2 of the program have been completed. In IGCC power plants, the gas turbine must be capable of operating on syngas as a primary fuel and an available back-up fuel such as natural gas. In this program the Rich Catalytic Lean (RCLTM) technology is being developed as an ultra low NOx combustor. In this concept, ultra low NOx is achieved by stabilizing a lean premix combustion process by using a catalytic reactor to oxidize a portion of the fuel, increasing the temperature of fuel/air mixture prior to the main combustion zone. In Phase 1, the feasibility of the catalytic concept for syngas application has been evaluated and the key technology issues identified. In Phase II the technology necessary for the application of the catalytic concept to IGCC fuels was developed through detailed design and subscale testing. Phase III (currently not funded) will consist of full-scale combustor basket testing on natural gas and syngas.

Laster, W. R.; Anoshkina, E.

2008-01-31T23:59:59.000Z

318

The economics of salt cake recycling  

SciTech Connect

The Process Evaluation Section at Argonne National Laboratory (ANL) has a major program aimed at developing cost-effective technologies for salt cake recycling. This paper addresses the economic feasibility of technologies for the recovery of aluminum, salt, and residue-oxide fractions from salt cake. Four processes were assessed for salt recovery from salt cake: (1) base case: leaching in water at 25{degree}C, with evaporation to crystallize salts; (2) high-temperature case: leaching in water at 250{degree}C, with flash crystallization to precipitate salts; (3) solventlantisolvent case: leaching in water at 25{degree}C, concentrating by evaporation, and reacting with acetone to precipitate salts; and (4) electrodialysis: leaching in water at 25{degree}C, with concentration and recovery of salts by electrodialysis. All test cases for salt recovery had a negative present value, given current pricing structure and 20% return on investment. Although manufacturing costs (variable plus fixed) could reasonably be recovered in the sales price of the salt product, capital costs cannot. The economics for the recycling processes are improved, however, if the residueoxide can be sold instead of landfilled. For example, the base case process would be profitable at a wet oxide value of $220/metric ton. The economics of alternative scenarios were also considered, including aluminum recovery with landfilling of salts and oxides.

Graziano, D.; Hryn, J.N.; Daniels, E.J.

1996-03-01T23:59:59.000Z

319

Metal melting for volume reduction and recycle  

SciTech Connect

This paper summarizes the experiences with melting contaminated steel materials for volume reduction and melting uranium-contaminated copper and aluminum for possible recycle. In the past there has not been an economic incentive to reduce the volume of low-level beta-gamma contaminated metallic scrap materials in the United States. With the rising cost of transportation and burial facility fees new interest in volume reduction is being generated. This new interest has been primarily focused at the Idaho National Engineering Laboratory (INEL) where the Waste Experimental Reduction Facility (WERF) was established to demonstrate both metal melting and incineration of combustible material for volume reduction. Other demonstration programs involving melting for volume reduction and recycle of aluminum and copper, as well as ferrous scrap, were related to the Cascade Improvement and Cascade Upgrade Programs (CIP/CUP) at the Paducah, Kentucky facility. While the melting demonstrations for the CIP/CUP material were not primarily based on economic incentives, several observations recorded during the programs are of interest with regard to melting of copper and aluminum. (4 refs., 8 tabs.)

Miller, R.L.

1987-03-27T23:59:59.000Z

320

Interim storage of recyclable materials. Final report  

SciTech Connect

The purpose of this study was to investigate long-term, economical, outdoor storage of a variety of postconsumer recyclable materials. Field investigations and laboratory analysis were performed to examine how protected and unprotected storage would affect marketability and product quality of baled plastics, papers, and other miscellaneous potentially recyclable materials. Baled materials were stored and evaluated over a period of approximately two years. Evaluation of the stored paper products was undertaken using handsheets to perform tests as published by the Technical Association of the Pulp and Paper Industry (TAPPI). A beater curve analysis of selected stored papers, a pilot-scale papermaking run on a Number 2 Fourdrinier Paper machine, and two microbial analysis of the paper materials were also undertaken. Plastic samples obtained from the field were evaluated for oxidation using an Infrared Spectrophotometer (IR), and a controlled `blackbox` IR study was completed. Liquid run-off from bales was analyzed on a quarterly basis. The authors` investigations show that inexpensive outdoor storage for some paper and plastic products is potentially viable as some postconsumer paper and plastic products can be stored outdoors for long periods of time, 300 days or more, without protection. Few potential negative environmental impacts of such storage were found.

NONE

1998-11-01T23:59:59.000Z

Note: This page contains sample records for the topic "recycled fresh catalytic" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

Integrating catalytic coal gasifiers with solid oxide fuel cells  

SciTech Connect

A review was conducted for coal gasification technologies that integrate with solid oxide fuel cells (SOFC) to achieve system efficiencies near 60% while capturing and sequestering >90% of the carbon dioxide [1-2]. The overall system efficiency can reach 60% when a) the coal gasifier produces a syngas with a methane composition of roughly 25% on a dry volume basis, b) the carbon dioxide is separated from the methane-rich synthesis gas, c) the methane-rich syngas is sent to a SOFC, and d) the off-gases from the SOFC are recycled back to coal gasifier. The thermodynamics of this process will be reviewed and compared to conventional processes in order to highlight where available work (i.e. exergy) is lost in entrained-flow, high-temperature gasification, and where exergy is lost in hydrogen oxidation within the SOFC. The main advantage of steam gasification of coal to methane and carbon dioxide is that the amount of exergy consumed in the gasifier is small compared to conventional, high temperature, oxygen-blown gasifiers. However, the goal of limiting the amount of exergy destruction in the gasifier has the effect of limiting the rates of chemical reactions. Thus, one of the main advantages of steam gasification leads to one of its main problems: slow reaction kinetics. While conventional entrained-flow, high-temperature gasifiers consume a sizable portion of the available work in the coal oxidation, the consumed exergy speeds up the rates of reactions. And while the rates of steam gasification reactions can be increased through the use of catalysts, only a few catalysts can meet cost requirements because there is often significant deactivation due to chemical reactions between the inorganic species in the coal and the catalyst. Previous research into increasing the kinetics of steam gasification will be reviewed. The goal of this paper is to highlight both the challenges and advantages of integrating catalytic coal gasifiers with SOFCs.

Siefert, N.; Shamsi, A.; Shekhawat, D.; Berry, D.

2010-01-01T23:59:59.000Z

322

CATALYTIC GASIFICATION OF COAL USING EUTECTIC SALT MIXTURES  

SciTech Connect

The Gas Research Institute (GRI) estimates that by the year 2010, 40% or more of U.S. gas supply will be provided by supplements including substitute natural gas (SNG) from coal. These supplements must be cost competitive with other energy sources. The first generation technologies for coal gasification e.g. the Lurgi Pressure Gasification Process and the relatively newer technologies e.g. the KBW (Westinghouse) Ash Agglomerating Fluidized-Bed, U-Gas Ash Agglomerating Fluidized-Bed, British Gas Corporation/Lurgi Slagging Gasifier, Texaco Moving-Bed Gasifier, and Dow and Shell Gasification Processes, have several disadvantages. These disadvantages include high severities of gasification conditions, low methane production, high oxygen consumption, inability to handle caking coals, and unattractive economics. Another problem encountered in catalytic coal gasification is deactivation of hydroxide forms of alkali and alkaline earth metal catalysts by oxides of carbon (CO{sub x}). To seek solutions to these problems, a team consisting of Clark Atlanta University (CAU, a Historically Black College and University, HBCU), the University of Tennessee Space Institute (UTSI) and Georgia Institute of Technology (Georgia Tech) proposed to identify suitable low melting eutectic salt mixtures for improved coal gasification. The research objectives of this project were to: Identify appropriate eutectic salt mixture catalysts for coal gasification; Assess agglomeration tendency of catalyzed coal; Evaluate various catalyst impregnation techniques to improve initial catalyst dispersion; Determine catalyst dispersion at high carbon conversion levels; Evaluate effects of major process variables (such as temperature, system pressure, etc.) on coal gasification; Evaluate the recovery, regeneration and recycle of the spent catalysts; and Conduct an analysis and modeling of the gasification process to provide better understanding of the fundamental mechanisms and kinetics of the process.

Dr. Yaw D. Yeboah; Dr. Yong Xu; Dr. Atul Sheth; Dr. Pradeep Agrawal

2001-12-01T23:59:59.000Z

323

Analysis of the cost of recycling compliance for the automobile industry  

E-Print Network (OSTI)

Cars are one of the most recycled commercial products. Currently, approximately 75% of the total vehicle weight is recycled. The EU directives on End-of-life vehicles try to push the recycling process further: it fixed the ...

Dantec, Delphine

2005-01-01T23:59:59.000Z

324

Application of Radial Basis Function Neural Network in Modeling Wastewater Sludge Recycle System  

Science Journals Connector (OSTI)

Sludge recycle system is an important part of wastewater treatment plants(WWTP), which can ensure ... Neural Network model for prediction of the Sludge recycling flowrate, which ultimately affect the Sludge recycling

Long Luo; Liyou Zhou

2010-01-01T23:59:59.000Z

325

NREL Materials Recycling Procedure Purpose To promote environmental sustainability and stewardship, NREL provides the  

E-Print Network (OSTI)

NREL Materials Recycling Procedure Purpose To promote environmental sustainability and stewardship, NREL provides the infrastructure for workers to incorporate materials recycling in daily operations. This procedure identifies appropriate materials, collection locations, and rules and processes for recycling

326

Nonparametric Bootstrap Recycling Val'erie Ventura, Department of Statistics, Baker Hall 132  

E-Print Network (OSTI)

Nonparametric Bootstrap Recycling Val'erie Ventura, Department of Statistics, Baker Hall 132 adjustments. The amount of computation involved is usually considerable, and recycling provides a less computer intensive alternative. Recycling consists of using repeatedly the same samples drawn from

327

Hot Showers, Fresh Laundry, Clean Dishes | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Hot Showers, Fresh Laundry, Clean Dishes Hot Showers, Fresh Laundry, Clean Dishes Hot Showers, Fresh Laundry, Clean Dishes March 5, 2013 - 11:17am Addthis The GE GeoSpring™ Electric Heat Pump Water Heater is readily integrated into new and existing home designs. Taking up the same footprint as a traditional 50-gallon tank water heater, the Electric Heat Pump Water Heater uses the existing water heater's plumbing and electrical connections. Credit: GE The GE GeoSpring(tm) Electric Heat Pump Water Heater is readily integrated into new and existing home designs. Taking up the same footprint as a traditional 50-gallon tank water heater, the Electric Heat Pump Water Heater uses the existing water heater's plumbing and electrical connections. Credit: GE To introduce this new electric heat pump water heater, GE ran a memorable ad during the 2010 Winter Olympics featuring snow monkeys enjoying a hot soak. Credit: GE

328

Comparison of the Recyclability of Flame-Retarded Plastics  

Science Journals Connector (OSTI)

The halogen-free plastic grades showed a significant deterioration of mechanical properties after recycling, whereas those plastics containing BFRs were able to pass all test criteria, thus maintaining their original properties. ... When the plastic material is being mechanically recycled, the material will be exposed to temperatures up to 250 °C during the processing steps, such as extrusion or injection molding. ...

Takaretu Imai; Stephan Hamm; Klaus P. Rothenbacher

2002-11-28T23:59:59.000Z

329

Plastic bottles recycled into sails for tall ship  

Science Journals Connector (OSTI)

Plastic bottles recycled into sails for tall ship ... Using new and conventional plastics recycling technology, Du Pont has converted plastic soda bottles (right) and plastic car fenders into 13,000 sq ft of sail for the tall ship HMS Rose (left). ...

LOIS EMBER

1992-07-06T23:59:59.000Z

330

Recent trends in automobile recycling: An energy and economic assessment  

SciTech Connect

Recent and anticipated trends in the material composition of domestic and imported automobiles and the increasing cost of landfilling the non-recyclable portion of automobiles (automobile shredder residue or ASR) pose questions about the future of automobile recycling. This report documents the findings of a study sponsored by the US Department of Energy`s Office of Environmental Analysis to examine the impacts of these and other relevant trends on the life-cycle energy consumption of automobiles and on the economic viability of the domestic automobile recycling industry. More specifically, the study (1) reviewed the status of the automobile recycling industry in the United States, including the current technologies used to process scrapped automobiles and the challenges facing the automobile recycling industry; (2) examined the current status and future trends of automobile recycling in Europe and Japan, with the objectives of identifying ``lessons learned`` and pinpointing differences between those areas and the United States; (3) developed estimates of the energy system impacts of the recycling status quo and projections of the probable energy impacts of alternative technical and institutional approaches to recycling; and (4) identified the key policy questions that will determine the future economic viability of automobile shredder facilities in the United States.

Curlee, T.R.; Das, S.; Rizy, C.G. [Oak Ridge National Lab., TN (United States); Schexanyder, S.M. [Tennessee Univ., Knoxville, TN (United States). Dept. of Biochemistry

1994-03-01T23:59:59.000Z

331

AN EXAMINATION OF WOOD RECYCLING PROVISIONS IN NORTH AMERICAN GREEN  

E-Print Network (OSTI)

! ! ! AN EXAMINATION OF WOOD RECYCLING PROVISIONS IN NORTH AMERICAN GREEN BUILDING PROGRAMS DR. JIM in North American Green Building Programs Introduction Recycled content is a prominent aspect of many North American green building standards, with use of such materials awarded or specified. Construction

332

Chapter 5 - Theory and Tools of Physical Separation/Recycling  

Science Journals Connector (OSTI)

Abstract Materials for recycling may consist of end-of-life (EOL) product streams, byproducts and waste streams from original equipment manufacturing and the production of components, and finally also rejects, byproducts and waste streams from raw-material producers. A common feature is that all consist of compounds. The elements of the compounds can be recycled only by chemical or metallurgical means.

Kari Heiskanen

2014-01-01T23:59:59.000Z

333

Why Become a Master By encouraging Connecticut residents to recycle  

E-Print Network (OSTI)

Why Become a Master Composter? By encouraging Connecticut residents to recycle organic waste Service Matt Freund, Freund's Farm Bob Jacquier, Laurelbrook Farm Connecticut Recycling Coalition The UConn Home & Garden Education Center is an informational resource for the residents of Connecticut who

Holsinger, Kent

334

Why Become a Master By encouraging Connecticut residents to recycle  

E-Print Network (OSTI)

Why Become a Master Composter? By encouraging Connecticut residents to recycle organic waste Connecticut Recycling Coalition The UConn Home & Garden Education Center is an informational resource for the residents of Connecticut who are urged to contact us for accurate, thorough and timely information on home

Alpay, S. Pamir

335

Fresh nuclear fuel measurements at Ukrainian nuclear power plants  

SciTech Connect

In 2005, the Provisions on Nuclear Material Measurement System was enacted in Ukraine as an important regulatory driver to support international obligations in nuclear safeguards and nonproliferation. It defines key provisions and requirements for material measurement and measurement control programs to ensure the quality and reliability of measurement data within the framework of the State MC&A System. Implementing the Provisions requires establishing a number of measurement techniques for both fresh and spent nuclear fuel for various types of Ukrainian reactors. Our first efforts focused on measurements of fresh nuclear fuel from a WWR-1000 power reactor.

Kuzminski, Jozef [Los Alamos National Laboratory; Ewing, Tom [ANL; Dickman, Debbie [PNNL; Gavrilyuk, Victor [UKRAINE; Drapey, Sergey [UKRAINE; Kirischuk, Vladimir [UKRAINE; Strilchuk, Nikolay [UKRAINE

2009-01-01T23:59:59.000Z

336

Magnetic Divertor for Low Plasma Recycling in Tokamaks Ernesto Mazzucato |  

NLE Websites -- All DOE Office Websites (Extended Search)

Magnetic Divertor for Low Plasma Recycling in Tokamaks Ernesto Mazzucato Magnetic Divertor for Low Plasma Recycling in Tokamaks Ernesto Mazzucato Existing experiments indicate that low recycling of exhausted particles can improve the energy confinement in tokamaks, very likely by preventing the cooling of the plasma edge and thereby causing a reduction in the level of plasma turbulence. This can reduce the size of a tokamak fusion reactor, making the latter a more viable source of energy. The necessary conditions for low recycling can be achieved with the use of a new magnetic divertor, where the exhausted particles are injected through a narrow aperture into a large chamber. Exhausting the particles into a large chamber prevents their return to the plasma, resulting in a reduction in plasma recycling to a level where existing experiments have shown a large enhancement in plasma

337

Safeguards and nonproliferation aspects of a dry fuel recycling technology  

SciTech Connect

Los Alamos National Laboratory undertook an independent assessment of the proliferation potentials and safeguardability of a dry fuel recycling technology, whereby spent pressurized-water reactor (PWR) fuels are used to fuel canadian deuterium uranium (CANDU) reactors. Objectives of this study included (1) the evaluation of presently available technologies that may be useful to safeguard technology options for dry fuel recycling (2) and identification of near-term and long-term research needs to develop process-specific safeguards requirements. The primary conclusion of this assessment is that like all other fuel cycle alternatives proposed in the past, the dry fuel recycle entails prolfferation risks and that there are no absolute technical fixes to eliminate such risks. This study further concludes that the proliferation risks of dry fuel recycling options are relatively minimal and presently known safeguards systems and technologies can be modified and/or adapted to meet the requirements of safeguarding such fuel recycle facilities.

Pillay, K.K.S.

1993-05-01T23:59:59.000Z

338

EA-1919: Recycle of Scrap Metals Originating from Radiological Areas |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

EA-1919: Recycle of Scrap Metals Originating from Radiological EA-1919: Recycle of Scrap Metals Originating from Radiological Areas EA-1919: Recycle of Scrap Metals Originating from Radiological Areas Summary This Programmatic EA evaluates alternatives for the management of scrap metal originating from DOE radiological control areas, including the proposed action to allow for the recycle of uncontaminated scrap metal that meets the requirements of DOE Order 458.1. (Metals with volumetric radioactive contamination are not included in the scope of this Programmatic EA.) PUBLIC COMMENT OPPORTUNITIES None available at this time. DOCUMENTS AVAILABLE FOR DOWNLOAD December 28, 2012 EA-1919: Notice of Public Comment Period Extension Recycling of Scrap Metals Originating from Radiological Areas December 12, 2012 EA-1919: Notice of Availability of a Draft Programmatic Environmental

339

Plastic Identification Sensor with Five Wavelength Laser Diodes Used in Recycling Robot  

Science Journals Connector (OSTI)

Plastic identification is a key technology for recycling. Six different types of plastics are identified by a sensor with five wavelengths lasers. The new plastic recycling robots,...

Kawata, Satoshi; Inada, Koji; Hirao, Tadaetsu; Fujita, Toshihiro; Aubuchon, Roger

340

E-Print Network 3.0 - avoids recycling endosomal Sample Search...  

NLE Websites -- All DOE Office Websites (Extended Search)

avoids recycling endosomal Search Powered by Explorit Topic List Advanced Search Sample search results for: avoids recycling endosomal Page: << < 1 2 3 4 5 > >> 1 Selective...

Note: This page contains sample records for the topic "recycled fresh catalytic" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

Catalytic gasification of tars from a dumping site  

Science Journals Connector (OSTI)

The work deals with catalytic gasification, pyrolysis and non-catalytic gasification of tar from an industrial dumping site. ... were carried out in a vertical stainless steel gasification reactor at 800 °C. Crus...

Lukáš Gašparovi?; Lukáš Šugár…

2013-10-01T23:59:59.000Z

342

Rapid Deployment of Rich Catalytic Combustion  

SciTech Connect

The overall objective of this research under the Turbines Program is the deployment of fuel flexible rich catalytic combustion technology into high-pressure ratio industrial gas turbines. The resulting combustion systems will provide fuel flexibility for gas turbines to burn coal derived synthesis gas or natural gas and achieve NO{sub x} emissions of 2 ppmvd or less (at 15 percent O{sub 2}), cost effectively. This advance will signify a major step towards environmentally friendly electric power generation and coal-based energy independence for the United States. Under Phase 1 of the Program, Pratt & Whitney (P&W) performed a system integration study of rich catalytic combustion in a small high-pressure ratio industrial gas turbine with a silo combustion system that is easily scalable to a larger multi-chamber gas turbine system. An implementation plan for this technology also was studied. The principal achievement of the Phase 1 effort was the sizing of the catalytic module in a manner which allowed a single reactor (rather than multiple reactors) to be used by the combustion system, a conclusion regarding the amount of air that should be allocated to the reaction zone to achieve low emissions, definition of a combustion staging strategy to achieve low emissions, and mechanical integration of a Ceramic Matrix Composite (CMC) combustor liner with the catalytic module.

Richard S. Tuthill

2004-06-10T23:59:59.000Z

343

Catalytic wet oxidation of phenolic wastes  

E-Print Network (OSTI)

Possible catalyst deactivation problems High capital, low operating Supercritical water oxidation (SCWO) Feasible only at high organic concentra- tions High Fast reaction, complete oxidation Severe reaction conditions, canosion problems... of milder reaction conditions and is much less energy intensive. Thus, catalytic wet oxidation would be an alternative to solvent extraction, supercritical water oxidation, homogeneous oxidation, and incineration. It should also be feasible at low...

Thomas, Brook James

1995-01-01T23:59:59.000Z

344

Catalytic Partial Oxidation Pilot Plant Study  

Science Journals Connector (OSTI)

Foster Wheeler Corporation, 585 North Dairy Ashford Street, Houston, Texas 77079 ... This is accomplished in this study with a new reactor system named the catalytic hot oxygen reactor (CHOR). ... Studying the integration of the reactor with the rest of the plant and developing detailed process economics in parallel with the system development are necessary. ...

Vasilis Papavassiliou; Perry Pacouloute; KT Wu; Raymont Drnevich; Dionisios Vlachos; John Hemmings; Leo Bonnel

2009-11-24T23:59:59.000Z

345

Remediation of water contamination using catalytic technologies  

Science Journals Connector (OSTI)

Remediation of contaminated ground and underground water is becoming a critical issue in Europe and worldwide. We discuss here the role of catalysis in water remediation, with reference to two specific examples of catalytic water remediation technologies: (i) the elimination of nitrate and pesticides from water contaminated as a result of agricultural practices and (ii) the conversion of methyl tert-butyl ether (MTBE) in contaminated underground water. Of particular interest is a technology based on catalytic membranes for remediation of water contaminated by nitrate, which offers various advantages with respect to conventional technologies. Using a Pd-Cu-based catalytic membrane, a reaction temperature below 15 °C, a mixed 4:1 CO2:H2 feed and controlling bulk solution pH by \\{HCl\\} addition, it is possible to obtain a nitrate conversion higher than 80% even with ammonium ion formation below 0.5 ppm, i.e. the maximum concentration allowed to meet the requirements for drinking water quality. In MTBE conversion in contaminated underground water, acid zeolites with suitable pore structures (channel structure and pore openings) such as H-ZSM-5 and H-BEA can be used as catalytic permeable reactive barriers for in situ remediation. These zeolites not only act as adsorbents for both MTBE and its reaction products, but also effectively catalyze the hydrolysis of MTBE to t-butyl alcohol (TBA) and methanol (MeOH) which then can be rapidly biodegraded by indigenous microorganisms.

Gabriele Centi; Siglinda Perathoner

2003-01-01T23:59:59.000Z

346

Recycling of Lithium-Ion Batteries  

NLE Websites -- All DOE Office Websites (Extended Search)

B. Dunn B. Dunn Center for Transportation Research Argonne National Laboratory Recycling of Lithium-Ion Batteries Plug-In 2013 San Diego, CA October 2, 2013 The submitted manuscript has been created by UChicago Argonne, LLC, Operator of Argonne National Laboratory ("Argonne"). Argonne, a U.S. Department of Energy Office of Science laboratory, is operated under Contract No. DE-AC02-06CH11357. The U.S. Government retains for itself, and others acting on its behalf, a paid-up nonexclusive, irrevocable worldwide license in said article to reproduce, prepare derivative works, distribute copies to the public, and perform publicly and display publicly, by or on behalf of the Government.

347

Production of rubber pads by tyre recycling  

Science Journals Connector (OSTI)

Tyre recycling is a social problem but it may be a profitable operation if valid industrial applications would be experimented. In this study, the authors suggest that the combination of powder comminution and compression moulding of powders is an efficient solution to produce large rubber pads with good mechanical properties. An experimental approach is reported to design a 'direct powder moulding' (in absence of virgin rubber or linking agent). Small samples were moulded in stainless steel moulds to evaluate the mechanical performances. Good results were obtained even if medium size particles are directly moulded, whereas the existing scientific contributions only deal with fine particles. Large pads were moulded in an aluminium mould to reduce cycle time. Due to the technical limits, the moulding pressure was reduced and this occurrence limited the final performances of the rubber pad. Nevertheless, the final properties are high enough to allow structural and functional applications.

Alessandro Guglielmotti; Carmine Lucignano; Fabrizio Quadrini

2009-01-01T23:59:59.000Z

348

Recycling technologies and market opportunities: Proceedings  

SciTech Connect

These proceedings are the result of our collective effort to meet that challenge. They reflect the dedication and commitment of many people in government, academia, the private sector and national laboratories to finding practical solutions to one of the most pressing problems of our time -- how to deal effectively with the growing waste s that is the product of our affluent industrial society. The Conference was successful in providing a clear picture of the scope of the problem and of the great potential that recycling holds for enhancing economic development while at the same time, having a significant positive impact on the waste management problem. That success was due in large measure to the enthusiastic response of our panelists to our invitation to participate and share their expertise with us.

Goland, A.N.; Petrakis, L. [eds.

1993-09-20T23:59:59.000Z

349

Energy Return on Investment - Fuel Recycle  

SciTech Connect

This report provides a methodology and requisite data to assess the potential Energy Return On Investment (EROI) for nuclear fuel cycle alternatives, and applies that methodology to a limited set of used fuel recycle scenarios. This paper is based on a study by Lawrence Livermore National Laboratory and a parallel evaluation by AREVA Federal Services LLC, both of which were sponsored by the DOE Fuel Cycle Technologies (FCT) Program. The focus of the LLNL effort was to develop a methodology that can be used by the FCT program for such analysis that is consistent with the broader energy modeling community, and the focus of the AREVA effort was to bring industrial experience and operational data into the analysis. This cooperative effort successfully combined expertise from the energy modeling community with expertise from the nuclear industry. Energy Return on Investment is one of many figures of merit on which investment in a new energy facility or process may be judged. EROI is the ratio of the energy delivered by a facility divided by the energy used to construct, operate and decommission that facility. While EROI is not the only criterion used to make an investment decision, it has been shown that, in technologically advanced societies, energy supplies must exceed a minimum EROI. Furthermore, technological history shows a trend towards higher EROI energy supplies. EROI calculations have been performed for many components of energy technology: oil wells, wind turbines, photovoltaic modules, biofuels, and nuclear reactors. This report represents the first standalone EROI analysis of nuclear fuel reprocessing (or recycling) facilities.

Halsey, W; Simon, A J; Fratoni, M; Smith, C; Schwab, P; Murray, P

2012-06-06T23:59:59.000Z

350

Offshore fresh groundwater reserves as a global phenomenon  

Science Journals Connector (OSTI)

... the salinity range used for the definition of brackish water in the area of water desalination. Brackish water is increasingly seen as a resource for water supply because the energy ... resource for water supply because the energy needs of reverse osmosis, and therefore costs of desalination, are decreasing. The widespread confirmation of the scale of offshore fresh and brackish groundwater ...

Vincent E.A. Post; Jacobus Groen; Henk Kooi; Mark Person; Shemin Ge; W. Mike Edmunds

2013-12-04T23:59:59.000Z

351

Fresh Water Increased temperature means higher proportion of water  

E-Print Network (OSTI)

Fresh Water Increased temperature means higher proportion of water falling on surface higher evaporation higher rainfall greater intensity of floods and droughts. Water use has grown four on How much storage compared to average flow Demand as percentage of supply How much ground water is used

Houston, Paul L.

352

Direction of CRT waste glass processing: Electronics recycling industry communication  

SciTech Connect

Highlights: Black-Right-Pointing-Pointer Given a large flow rate of CRT glass {approx}10% of the panel glass stream will be leaded. Black-Right-Pointing-Pointer The supply of CRT waste glass exceeded demand in 2009. Black-Right-Pointing-Pointer Recyclers should use UV-light to detect lead oxide during the separation process. Black-Right-Pointing-Pointer Recycling market analysis techniques and results are given for CRT glass. Black-Right-Pointing-Pointer Academic initiatives and the necessary expansion of novel product markets are discussed. - Abstract: Cathode Ray Tube, CRT, waste glass recycling has plagued glass manufacturers, electronics recyclers and electronics waste policy makers for decades because the total supply of waste glass exceeds demand, and the formulations of CRT glass are ill suited for most reuse options. The solutions are to separate the undesirable components (e.g. lead oxide) in the waste and create demand for new products. Achieving this is no simple feat, however, as there are many obstacles: limited knowledge of waste glass composition; limited automation in the recycling process; transportation of recycled material; and a weak and underdeveloped market. Thus one of the main goals of this paper is to advise electronic glass recyclers on how to best manage a diverse supply of glass waste and successfully market to end users. Further, this paper offers future directions for academic and industry research. To develop the recommendations offered here, a combination of approaches were used: (1) a thorough study of historic trends in CRT glass chemistry; (2) bulk glass collection and analysis of cullet from a large-scale glass recycler; (3) conversations with industry members and a review of potential applications; and (4) evaluation of the economic viability of specific uses for recycled CRT glass. If academia and industry can solve these problems (for example by creating a database of composition organized by manufacturer and glass source) then the reuse of CRT glass can be increased.

Mueller, Julia R., E-mail: mueller.143@osu.edu [Ohio State University, William G. Lowrie Department of Chemical and Biomolecular Engineering, OH (United States) and University of Queensland, School of Chemical Engineering (Australia) and Ohio State University, Materials Science and Engineering, OH (United States); Boehm, Michael W. [University of Queensland, School of Chemical Engineering (Australia); Drummond, Charles [Ohio State University, Materials Science and Engineering, OH (United States)

2012-08-15T23:59:59.000Z

353

Municipal Waste Planning, Recycling and Waste Reduction Act (Pennsylvania)  

Open Energy Info (EERE)

Waste Planning, Recycling and Waste Reduction Act (Pennsylvania) Waste Planning, Recycling and Waste Reduction Act (Pennsylvania) No revision has been approved for this page. It is currently under review by our subject matter experts. Jump to: navigation, search Last modified on February 13, 2013. EZFeed Policy Place Pennsylvania Name Municipal Waste Planning, Recycling and Waste Reduction Act (Pennsylvania) Policy Category Other Policy Policy Type Environmental Regulations Affected Technologies Biomass/Biogas, Coal with CCS, Concentrating Solar Power, Energy Storage, Fuel Cells, Geothermal Electric, Hydroelectric, Hydroelectric (Small), Natural Gas, Nuclear, Solar Photovoltaics, Wind energy Active Policy Yes Implementing Sector State/Province Program Administrator Pennsylvania Department of Environmental Protection

354

Municipal Waste Planning, Recycling and Waste Reduction Act (Pennsylvania)  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Municipal Waste Planning, Recycling and Waste Reduction Act Municipal Waste Planning, Recycling and Waste Reduction Act (Pennsylvania) Municipal Waste Planning, Recycling and Waste Reduction Act (Pennsylvania) < Back Eligibility Agricultural Commercial Construction Fed. Government Fuel Distributor General Public/Consumer Industrial Installer/Contractor Institutional Investor-Owned Utility Local Government Low-Income Residential Multi-Family Residential Municipal/Public Utility Nonprofit Residential Retail Supplier Rural Electric Cooperative Schools State/Provincial Govt Systems Integrator Transportation Tribal Government Utility Savings Category Alternative Fuel Vehicles Hydrogen & Fuel Cells Buying & Making Electricity Water Home Weatherization Solar Wind Program Info State Pennsylvania Program Type Environmental Regulations

355

Alabama Land Recycling And Economic Redevelopment Act (Alabama) |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Land Recycling And Economic Redevelopment Act (Alabama) Land Recycling And Economic Redevelopment Act (Alabama) Alabama Land Recycling And Economic Redevelopment Act (Alabama) < Back Eligibility Commercial Construction Developer Industrial Savings Category Alternative Fuel Vehicles Hydrogen & Fuel Cells Buying & Making Electricity Water Home Weatherization Solar Wind Program Info State Alabama Program Type Environmental Regulations Provider Department of Environmental Management This article establishes a program, to be implemented, maintained, and administered by the Alabama Department of Environmental Management, to encourage the voluntary cleanup and the reuse and redevelopment of environmentally contaminated properties. The article states criteria for applicant participation and property qualification in the voluntary cleanup

356

Iowa Land Recycling and Environmental Remediation Standards Act (Iowa) |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Iowa Land Recycling and Environmental Remediation Standards Act Iowa Land Recycling and Environmental Remediation Standards Act (Iowa) Iowa Land Recycling and Environmental Remediation Standards Act (Iowa) < Back Eligibility Agricultural Commercial Construction Fed. Government Fuel Distributor General Public/Consumer Industrial Installer/Contractor Institutional Investor-Owned Utility Local Government Low-Income Residential Multi-Family Residential Municipal/Public Utility Nonprofit Residential Retail Supplier Rural Electric Cooperative Schools State/Provincial Govt Systems Integrator Transportation Tribal Government Utility Savings Category Alternative Fuel Vehicles Hydrogen & Fuel Cells Buying & Making Electricity Water Home Weatherization Solar Wind Program Info State Iowa Program Type Environmental Regulations Provider Iowa Department of Natural Resources

357

Recycled Uranium Mass Balance Project Y-12 National Security Complex Site Report  

SciTech Connect

This report has been prepared to summarize the findings of the Y-12 National Security Complex (Y-12 Complex) Mass Balance Project and to support preparation of associated U. S. Department of Energy (DOE) site reports. The project was conducted in support of DOE efforts to assess the potential for health and environmental issues resulting from the presence of transuranic (TRU) elements and fission products in recycled uranium (RU) processed by DOE and its predecessor agencies. The United States government used uranium in fission reactors to produce plutonium and tritium for nuclear weapons production. Because uranium was considered scarce relative to demand when these operations began almost 50 years ago, the spent fuel from U.S. fission reactors was processed to recover uranium for recycling. The estimated mass balance for highly enriched RU, which is of most concern for worker exposure and is the primary focus of this project, is summarized in a table. A discrepancy in the mass balance between receipts and shipments (plus inventory and waste) reflects an inability to precisely distinguish between RU and non-RU shipments and receipts involving the Y-12 Complex and Savannah River. Shipments of fresh fuel (non-RU) and sweetener (also non-RU) were made from the Y-12 Complex to Savannah River along with RU shipments. The only way to distinguish between these RU and non-RU streams using available records is by enrichment level. Shipments of {le}90% enrichment were assumed to be RU. Shipments of >90% enrichment were assumed to be non-RU fresh fuel or sweetener. This methodology using enrichment level to distinguish between RU and non-RU results in good estimates of RU flows that are reasonably consistent with Savannah River estimates. Although this is the best available means of distinguishing RU streams, this method does leave a difference of approximately 17.3 MTU between receipts and shipments. Slightly depleted RU streams received by the Y-12 Complex from ORGDP and PGDP are believed to have been returned to the shipping site or disposed of as waste on the Oak Ridge Reservation. No evidence of Y-12 Complex processing of this material was identified in the historical records reviewed by the Project Team.

NONE

2000-12-01T23:59:59.000Z

358

A novel recycling process using the treated citric acid wastewater as ingredients water for citric acid production  

Science Journals Connector (OSTI)

Abstract In this study, an integrated process coupling citric acid and methane fermentations was proposed to solve severe wastewater pollution problem in cassava-based citric acid production. The accumulation patterns of the potential and major inhibitors in this process, including organic compounds, volatile fatty acids (VFAs), total ions and pigments were investigated. Both simulation and experimental results indicated that these inhibitors could reach their equilibrium levels after 3–7 fermentation runs when reutilizing the treated citric acid wastewater. As a result, the proposed citric acid fermentation process by recycling the wastewater treated in methane fermentation could be stably operated for more than 15 runs, which could save a large amount of fresh water and relieve the severe wastewater pollution in citric acid production potentially.

Hong-Jian Zhang; Jian-Hua Zhang; Jian Xu; Lei Tang; Zhong-Gui Mao

2014-01-01T23:59:59.000Z

359

Recycle of contaminated scrap metal, Volume 2. Semi-annual report, September 1993--January 1996  

SciTech Connect

Catalytic Extraction Processing (CEP) has been demonstrated to be a robust, one-step process that is relatively insensitive to wide variations in waste composition and is applicable to a broad spectrum of DOE wastes. Catalytic Processing Unit (CPU) design models have been validated through experimentation to provide a high degree of confidence in our ability to design a bulk solids CPU for processing DOE wastes. Two commercial CEP facilities have been placed in commission and are currently processing mixed low level wastes. These facilities provide a compelling indication of the maturity, regulatory acceptance, and commercial viability of CEP. In concert with the DOE, Nolten Metal Technology designed a program which would challenge preconceptions of the limitations of waste processing technologies: demonstrate the recycling of ferrous and non-ferrous metals--to establish that radioactively contaminated scrap metal could be converted to high-grade, ferrous and non-ferrous alloys which can be reused by DOE or reintroduced into commerce; immobilize radionuclides--that CEP would concentrate the radionuclides in a durable vitreous phase, minimize secondary waste generation and stabilize and reduce waste volume; destroy hazardous organics--that CEP would convert hazardous organics to valuable industrial gases, which could be used as an energy source; recover volatile heavy metals--that CEP`s off-gas treatment system would capture volatile heavy metals, such as mercury and lead; and establish that CEP is economical for processing contaminated scrap metal in the DOE inventory. The execution of this program resulted in all objectives being met. Volume II contains: Task 1.4, optimization of the vitreous phase for stabilization of radioactive species; Task 1.5, experimental testing of Resource Conservation and Recovery Act (RCRA) wastes; and Task 1.6, conceptual design of a CEP facility.

NONE

1996-07-01T23:59:59.000Z

360

Method and apparatus for a catalytic firebox reactor  

DOE Patents (OSTI)

A catalytic firebox reactor employing an exothermic catalytic reaction channel and multiple cooling conduits for creating a partially reacted fuel/oxidant mixture. An oxidation catalyst is deposited on the walls forming the boundary between the multiple cooling conduits and the exothermic catalytic reaction channel, on the side of the walls facing the exothermic catalytic reaction channel. This configuration allows the oxidation catalyst to be backside cooled by any fluid passing through the cooling conduits. The heat of reaction is added to both the fluid in the exothermic catalytic reaction channel and the fluid passing through the cooling conduits. After discharge of the fluids from the exothermic catalytic reaction channel, the fluids mix to create a single combined flow. A further innovation in the reactor incorporates geometric changes in the exothermic catalytic reaction channel to provide streamwise variation of the velocity of the fluids in the reactor.

Smith, Lance L. (North Haven, CT); Etemad, Shahrokh (Trumbull, CT); Ulkarim, Hasan (Hamden, CT); Castaldi, Marco J. (Bridgeport, CT); Pfefferle, William C. (Madison, CT)

2001-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "recycled fresh catalytic" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

A Facile Synthesis–Fabrication Strategy for Integration of Catalytically Active Viral-Palladium Nanostructures into Polymeric Hydrogel Microparticles via Replica Molding  

Science Journals Connector (OSTI)

High catalytic activity, recyclability and stability of the hybrid Pd–TMV–PEG microparticles are further demonstrated through dichromate reduction as a model reaction. ... The samples for the HRTEM characterizations were prepared as follows: 10 ?L of well-dispersed Pd–TMV solution was placed onto 300 mesh copper grid carbon TEM grids (FCF300-Cu, EMS Sciences, Hatfield, PA), and left to dry before examination. ... The TEM measurements were performed at the Center for Nanoscale Systems (CNS) in Harvard University, a member of the National Nanotechnology Infrastructure Network (NNIN), which is supported by the National Science Foundation under NSF award no. ...

Cuixian Yang; Chang-Hyung Choi; Chang-Soo Lee; Hyunmin Yi

2013-05-23T23:59:59.000Z

362

Nonparametric Bootstrap Recycling Val'erie Ventura, Department of Statistics, Baker Hall 132  

E-Print Network (OSTI)

Nonparametric Bootstrap Recycling Val'erie Ventura, Department of Statistics, Baker Hall 132. The amount of computation involved is usually considerable, and recycling provides a less computer intensive alternative. Recycling consists of using repeatedly the same samples drawn from a recycling distribution G

363

GLOBAL STABILITY IN CHEMOSTAT-TYPE COMPETITION MODELS WITH NUTRIENT RECYCLING  

E-Print Network (OSTI)

GLOBAL STABILITY IN CHEMOSTAT-TYPE COMPETITION MODELS WITH NUTRIENT RECYCLING SHIGUI RUAN AND XUE- type competition models with nutrient recycling. In the first model the recycling is instantaneous, whereas in the second, the recycling is delayed. They carried out the equilibrium analysis and obtained

Ruan, Shigui

364

The Recycling Center at UAB opened March 2, 2009! It is located at 620 11th  

E-Print Network (OSTI)

The Recycling Center at UAB opened March 2, 2009! It is located at 620 11th St. South. See map on the next UAB workday. UAB RECYCLING CENTER LAUNCHES DRIVE-THRU DROP-OFF SERVICE UAB RECYCLING CENTER 620 11 Paolone UAB Recycling Coordinator (205) 996-9043 GENERAL INSTRUCTIONS Please bring separated materials

Bedwell, David M.

365

Green Labs and EH&S, Nov. 2013 ___________________ Lab Recycling Guide  

E-Print Network (OSTI)

Green Labs and EH&S, Nov. 2013 ___________________ Lab Recycling Guide Non-contaminated, clean lab plastic containers and conical tubes may be recycled. To be accepted, containers must be clean, triple. Recycling bin located: PSB Loading Dock Alcohol cans and metal shipping containers may be recycled

California at Santa Cruz, University of

366

Recycling Evaluation of Newly Developed Environmentally Benign Pressure Sensitive Adhesive for Postage Applications  

E-Print Network (OSTI)

Recycling Evaluation of Newly Developed Environmentally Benign Pressure Sensitive Adhesive stamp products that can be successfully recycled into fine paper products in a typical recycling additional burden on plants that are using recycled fiber. As a result of an initiative by the USPS, a team

Abubakr, Said

367

Site Recycles Millions of Pounds of Metal | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Recycles Millions of Pounds of Metal Recycles Millions of Pounds of Metal Site Recycles Millions of Pounds of Metal May 30, 2013 - 12:00pm Addthis The Portsmouth site worked with two regional companies and local law enforcement to arrange transportation of 10 massive synchronous condensers as part of an asset recovery effort. The Portsmouth site worked with two regional companies and local law enforcement to arrange transportation of 10 massive synchronous condensers as part of an asset recovery effort. PIKETON, Ohio - The EM program at the Portsmouth site and its contractor, Fluor-B&W Portsmouth, recycled millions of pounds of metal from the demolition of an electrical switchyard that served the former gaseous diffusion plant. The effort at the Portsmouth site diverted more than 4 million pounds of

368

Site Recycles Millions of Pounds of Metal | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Site Recycles Millions of Pounds of Metal Site Recycles Millions of Pounds of Metal Site Recycles Millions of Pounds of Metal May 30, 2013 - 12:00pm Addthis The Portsmouth site worked with two regional companies and local law enforcement to arrange transportation of 10 massive synchronous condensers as part of an asset recovery effort. The Portsmouth site worked with two regional companies and local law enforcement to arrange transportation of 10 massive synchronous condensers as part of an asset recovery effort. PIKETON, Ohio - The EM program at the Portsmouth site and its contractor, Fluor-B&W Portsmouth, recycled millions of pounds of metal from the demolition of an electrical switchyard that served the former gaseous diffusion plant. The effort at the Portsmouth site diverted more than 4 million pounds of

369

Renewable and Recycled Energy Objective | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Renewable and Recycled Energy Objective Renewable and Recycled Energy Objective Renewable and Recycled Energy Objective < Back Eligibility Investor-Owned Utility Municipal Utility Rural Electric Cooperative Savings Category Bioenergy Buying & Making Electricity Water Alternative Fuel Vehicles Hydrogen & Fuel Cells Solar Wind Program Info State North Dakota Program Type Renewables Portfolio Standard Provider North Dakota Public Service Commission In March 2007, the North Dakota enacted legislation (H.B. 1506) establishing an ''objective'' that 10% of all retail electricity sold in the state be obtained from renewable energy and recycled energy by 2015. The objective must be measured by qualifying megawatt-hours (MWh) delivered at retail, or by credits purchased and retired to offset non-qualifying

370

Demolitions Produce Recyclable Materials for Organization Promoting Economic Activity  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

August 15, 2011 August 15, 2011 Demolitions Produce Recyclable Materials for Organization Promoting Economic Activity PIKETON, Ohio - Demolitions have helped generate more than 8 million pounds of metal at the Piketon site for recycling, further promoting economic activity in the region thanks to the American Recovery and Reinvestment Act. Proceeds from recycling that metal through the unique program will add to the more than $2.8 million already generated from recycling more than 5.2 million pounds of material from site demolition efforts. "This metal represents economic opportunity for the surround- ing community, as proceeds from this material will create local jobs, utilize surrounding area facilities and generate money to be reinvested back into the community," said Pete Mingus, who

371

Vehicle Use of Recycled Natural Gas Derived from Wastewater Biosolids  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

PE Brown and Caldwell Project Design Manager St. Petersburg, FL: Vehicle Use of Recycled Natural Gas Derived from Wastewater Biosolids U.S Department of Energy - Biomass 2014 John...

372

Vehicle Technologies Office Merit Review 2014: Advanced Battery Recycling  

Energy.gov (U.S. Department of Energy (DOE))

Presentation given by OnTo Technology LLC at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about advanced battery recycling.

373

International investigation of electronic waste recycling plant design  

E-Print Network (OSTI)

This thesis investigates the industry of electronic waste recycling industry in three countries: Germany, the United States, and Chile. Despite differences in the legal structure surrounding the industry, there are many ...

Theurer, Jean E

2010-01-01T23:59:59.000Z

374

Fuel cycle options for optimized recycling of nuclear fuel  

E-Print Network (OSTI)

The accumulation of transuranic inventories in spent nuclear fuel depends on both deployment of advanced reactors that can be loaded with recycled transuranics (TRU), and on availability of the facilities that separate and ...

Aquien, Alexandre

2006-01-01T23:59:59.000Z

375

Fuel Cycle Options for Optimized Recycling of Nuclear Fuel  

E-Print Network (OSTI)

The reduction of transuranic inventories of spent nuclear fuel depends upon the deployment of advanced fuels that can be loaded with recycled transuranics (TRU), and the availability of facilities to separate and reprocess ...

Aquien, A.

376

Superharmonic Injection Locked Quadrature LC VCO Using Current Recycling Architecture  

E-Print Network (OSTI)

. This thesis investigates a coupling mechanism to implement a quadrature voltage controlled oscillator using indirect injection method. The coupling network in this QVCO couples the two LC cores with their super-harmonic and it recycles its bias current back...

Kalusalingam, Shriram

2011-02-22T23:59:59.000Z

377

Demolitions Produce Recyclable Materials for Organization Promoting Economic Activity  

Energy.gov (U.S. Department of Energy (DOE))

Demolitions have helped generate more than 8 million pounds of metal at the Piketon site for recycling, further promoting economic activity in the region thanks to the American Recovery and...

378

Phosphorous Recycling from Pre-Coagulated Wastewater Sludge  

Science Journals Connector (OSTI)

The amount of rock phosphorous remained in the world is limited. Therefore, it is important to develop the technology and construct the social system for use of recycled phosphorous. Municipal wastewater contains...

Y. Watanabe; T. Tadano; T. Hasegawa…

2000-01-01T23:59:59.000Z

379

Strategies for aluminum recycling : insights from material system optimization  

E-Print Network (OSTI)

The dramatic increase in aluminum consumption over the past decades necessitates a societal effort to recycle and reuse these materials to promote true sustainability and energy savings in aluminum production. However, the ...

Li, Preston Pui-Chuen

2005-01-01T23:59:59.000Z

380

Recycling of organic matter in Antarctic sediments: A transect ...  

Science Journals Connector (OSTI)

The first porewater distributions of O2 and NO3= and organic carbon data in the solid phase in this part of the ocean were used to model the recycling of organic ...

Note: This page contains sample records for the topic "recycled fresh catalytic" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

Considerations in the recycling of urban parking garages  

E-Print Network (OSTI)

Because of the decreasing use of private automobiles in city centers and because of usual development pressures, some urban parking garages will become available for replacement or recycling. The choice between replacement ...

Paul, Michael Johannes

1981-01-01T23:59:59.000Z

382

A critical analysis of bulk precipitation recycling models  

E-Print Network (OSTI)

Precipitation recycling is the contribution of local land evaporation to the precipitation of a region. The significant local evaporative contribution to rainfall in many continental regions highlights the potential ...

Fitzmaurice, Jean Anne

2007-01-01T23:59:59.000Z

383

DOE, Washington Closure complete recycling project at Hanford  

Energy.gov (U.S. Department of Energy (DOE))

RICHLAND, Wash. – The U.S. Department of Energy (DOE) recently teamed with contractor Washington Closure Hanford to complete a major recycling effort during cleanup of the Hanford Site in southeastern Washington State.

384

Applications of industrial ecology : manufacturing, recycling, and efficiency  

E-Print Network (OSTI)

This work applies concepts from industrial ecology to analyses of manufacturing, recycling, and efficiency. The first part focuses on an environmental analysis of machining, with a specific emphasis on energy consumption. ...

Dahmus, Jeffrey B. (Jeffrey Brian), 1974-

2007-01-01T23:59:59.000Z

385

Heavy-duty fleet test evaluation of recycled engine coolant  

SciTech Connect

A 240,000 mile (386,232 km) fleet test was conducted to evaluate recycled engine coolant against factory fill coolant. The fleet consisted of 12 new Navistar International Model 9600 trucks equipped with Detroit Diesel Series 60 engines. Six of the trucks were drained and filled with the recycled engine coolant that had been recycled by a chemical treatment/filtration/reinhibited process. The other six test trucks contained the factory filled coolant. All the trucks followed the same maintenance practices which included the use of supplemental coolant additives. The trucks were equipped with metal specimen bundles. Metal specimen bundles and coolant samples were periodically removed to monitor the cooling system chemistry. A comparison of the solution chemistry and metal coupon corrosion patterns for the recycled and factory filled coolants is presented and discussed.

Woyciesjes, P.M.; Frost, R.A. [Prestone Products Corp., Danbury, CT (United States). Coolant Group

1999-08-01T23:59:59.000Z

386

Catalytic fast pyrolysis of lignocellulosic biomass  

SciTech Connect

Increasing energy demand, especially in the transportation sector, and soaring CO2 emissions necessitate the exploitation of renewable sources of energy. Despite the large variety of new energy Q3 carriers, liquid hydrocarbon still appears to be the most attractive and feasible form of transportation fuel taking into account the energy density, stability and existing infrastructure. Biomass is an abundant, renewable source of energy; however, utilizing it in a cost-effective way is still a substantial challenge. Lignocellulose is composed of three major biopolymers, namely cellulose, hemicellulose and lignin. Fast pyrolysis of biomass is recognized as an efficient and feasible process to selectively convert lignocellulose into a liquid fuel—bio-oil. However bio-oil from fast pyrolysis contains a large amount of oxygen, distributed in hundreds of oxygenates. These oxygenates are the cause of many negative properties, such as low heating values, high corrosiveness, high viscosity, and instability; they also greatly Q4 limit the application of bio-oil particularly as transportation fuel. Hydrocarbons derived from biomass are most attractive because of their high energy density and compatibility with the existing infrastructure. Thus, converting lignocellulose into transportation fuels via catalytic fast pyrolysis has attracted much attention. Many studies related to catalytic fast pyrolysis of biomass have been published. The main challenge of this process is the development of active and stable catalysts that can deal with a large variety of decomposition intermediates from lignocellulose. This review starts with the current understanding of the chemistry in fast pyrolysis of lignocellulose and focuses on the development of catalysts in catalytic fast pyrolysis. Recent progress in the experimental studies on catalytic fast pyrolysis of biomass is also summarized with the emphasis on bio-oil yields and quality.

Liu, Changjun; Wang, Huamin; Karim, Ayman M.; Sun, Junming; Wang, Yong

2014-11-21T23:59:59.000Z

387

Vehicle Technologies Office: Fact #434: July 24, 2006 Scrap Tire Recycling  

NLE Websites -- All DOE Office Websites (Extended Search)

4: July 24, 2006 4: July 24, 2006 Scrap Tire Recycling to someone by E-mail Share Vehicle Technologies Office: Fact #434: July 24, 2006 Scrap Tire Recycling on Facebook Tweet about Vehicle Technologies Office: Fact #434: July 24, 2006 Scrap Tire Recycling on Twitter Bookmark Vehicle Technologies Office: Fact #434: July 24, 2006 Scrap Tire Recycling on Google Bookmark Vehicle Technologies Office: Fact #434: July 24, 2006 Scrap Tire Recycling on Delicious Rank Vehicle Technologies Office: Fact #434: July 24, 2006 Scrap Tire Recycling on Digg Find More places to share Vehicle Technologies Office: Fact #434: July 24, 2006 Scrap Tire Recycling on AddThis.com... Fact #434: July 24, 2006 Scrap Tire Recycling The recycling of scrap tires has come a long way in the last decade. In 1990, only 11% of the tires that were scrapped were recycled or reused, but

388

Technical specifications for mechanical recycling of agricultural plastic waste  

SciTech Connect

Highlights: • Technical specifications for agricultural plastic wastes (APWs) recycling proposed. • Specifications are the base for best economical and environmental APW valorisation. • Analysis of APW reveals inherent characteristics and constraints of APW streams. • Thorough survey on mechanical recycling processes and industry as it applies to APW. • Specifications for APW recycling tested, adjusted and verified through pilot trials. - Abstract: Technical specifications appropriate for the recycling of agricultural plastic wastes (APWs), widely accepted by the recycling industry were developed. The specifications establish quality standards to be met by the agricultural plastics producers, users and the agricultural plastic waste management chain. They constitute the base for the best economical and environmental valorisation of the APW. The analysis of the APW streams conducted across Europe in the framework of the European project “LabelAgriWaste” revealed the inherent characteristics of the APW streams and the inherent constraints (technical or economical) of the APW. The APW stream properties related to its recycling potential and measured during pilot trials are presented and a subsequent universally accepted simplified and expanded list of APW recycling technical specifications is proposed and justified. The list includes two sets of specifications, applied to two different quality categories of recyclable APW: one for pellet production process (“Quality I”) and another one for plastic profile production process (“Quality II”). Parameters that are taken into consideration in the specifications include the APW physical characteristics, contamination, composition and degradation. The proposed specifications are focused on polyethylene based APW that represents the vast majority of the APW stream. However, the specifications can be adjusted to cover also APW of different materials (e.g. PP or PVC) that are found in very small quantities in protected cultivations in Europe. The adoption of the proposed specifications could transform this waste stream into a labelled commodity traded freely in the market and will constitute the base for the best economical and environmental valorisation of the APW.

Briassoulis, D., E-mail: briassou@aua.gr; Hiskakis, M.; Babou, E.

2013-06-15T23:59:59.000Z

389

Recycling asphaltic concrete with sulphur as a supplemental binder  

E-Print Network (OSTI)

RECYCLING ASPHALTIC CONCRETE WITH SULPHUR AS A SUPPLEMENTAL BINDER A Thesis by ROBERT WILLIAM BARNETT Submitted to the Graduate College of Texas A&M University in partial fulfillment of the requirement for the degree of MASTER OF SCIENCE... August 1976 Major Subject: Civil Engineering RECYCLING ASPHALTIC CONCRETE WITH SULPHUR AS A SUPPLEMENTAL BINDER A Thesis by ROBERT WILLIAM BARNETT Approved as to style and content by: :) (Chairm o I ommit tee) (M ber) Mem er) August 1976...

Barnett, Robert William

1976-01-01T23:59:59.000Z

390

Chapter 1 - Industrial Wastewater Treatment, Recycling, and Reuse: An Overview  

Science Journals Connector (OSTI)

Abstract Water availability; usage, treatment, and discharge of used water; and possible ways of recycling and reusing this used water are briefly discussed here. Issues pertaining to industrial wastewaters, sources of generation, characterization of wastewaters, and various methodologies of wastewater treatment have been reviewed along with economic perspectives of water management. Recent developments in the area of industrial wastewater treatment, recycling, and reuse are also briefly outlined here.

Vivek V. Ranade; Vinay M. Bhandari

2014-01-01T23:59:59.000Z

391

SOLAR DESALINATION: A CHALLENGE FOR SUSTAINABLE FRESH WATER IN THE 21ST CENTURY  

Science Journals Connector (OSTI)

Combining renewable solar energy and desalination would generate a sustainable source of fresh ... solar energy highly competitive against fossil fuels. Desalination has been relied on to provide fresh ... cities...

HISHAM ETTOUNEY; LUCIO RIZZUTI

2007-01-01T23:59:59.000Z

392

Optics of electron beam in the Recycler  

SciTech Connect

Electron cooling of 8.9 GeV/c antiprotons in the Recycler ring (Fermilab) requires high current and good quality of the DC electron beam. Electron trajectories of {approx}0.2 A or higher DC electron beam have to be parallel in the cooling section, within {approx}0.2 mrad, making the beam envelope cylindrical. These requirements yielded a specific scheme of the electron transport from a gun to the cooling section, with electrostatic acceleration and deceleration in the Pelletron. Recuperation of the DC beam limits beam losses at as tiny level as {approx}0.001%, setting strict requirements on the return electron line to the Pelletron and a collector. To smooth the beam envelope in the cooling section, it has to be linear and known at the transport start. Also, strength of the relevant optic elements has to be measured with good accuracy. Beam-based optic measurements are being carried out and analyzed to get this information. They include beam simulations in the Pelletron, differential optic (beam response) measurements and simulation, beam profile measurements with optical transition radiation, envelope measurements and analysis with orifice scrapers. Current results for the first half-year of commissioning are presented. Although electron cooling is already routinely used for pbar stacking, its efficiency is expected to be improved.

Burov, Alexey V.; Kazakevich, G.; Kroc, T.; Lebedev, V.; Nagaitsev, S.; Prost, L.; Pruss, S.; Shemyakin, A.; Sutherland, M.; Tiunov, M.; Warner, A.; /Fermilab

2005-11-01T23:59:59.000Z

393

Membrane Purification Cell for Aluminum Recycling  

SciTech Connect

Recycling mixed aluminum scrap usually requires adding primary aluminum to the scrap stream as a diluent to reduce the concentration of non-aluminum constituents used in aluminum alloys. Since primary aluminum production requires approximately 10 times more energy than melting scrap, the bulk of the energy and carbon dioxide emissions for recycling are associated with using primary aluminum as a diluent. Eliminating the need for using primary aluminum as a diluent would dramatically reduce energy requirements, decrease carbon dioxide emissions, and increase scrap utilization in recycling. Electrorefining can be used to extract pure aluminum from mixed scrap. Some example applications include producing primary grade aluminum from specific scrap streams such as consumer packaging and mixed alloy saw chips, and recycling multi-alloy products such as brazing sheet. Electrorefining can also be used to extract valuable alloying elements such as Li from Al-Li mixed scrap. This project was aimed at developing an electrorefining process for purifying aluminum to reduce energy consumption and emissions by 75% compared to conventional technology. An electrolytic molten aluminum purification process, utilizing a horizontal membrane cell anode, was designed, constructed, operated and validated. The electrorefining technology could also be used to produce ultra-high purity aluminum for advanced materials applications. The technical objectives for this project were to: - Validate the membrane cell concept with a lab-scale electrorefining cell; - Determine if previously identified voltage increase issue for chloride electrolytes holds for a fluoride-based electrolyte system; - Assess the probability that voltage change issues can be solved; and - Conduct a market and economic analysis to assess commercial feasibility. The process was tested using three different binary alloy compositions (Al-2.0 wt.% Cu, Al-4.7 wt.% Si, Al-0.6 wt.% Fe) and a brazing sheet scrap composition (Al-2.8 wt.% Si-0.7 wt.% Fe-0.8 wt.% Mn),. Purification factors (defined as the initial impurity concentration divided by the final impurity concentration) of greater than 20 were achieved for silicon, iron, copper, and manganese. Cell performance was measured using its current and voltage characteristics and composition analysis of the anode, cathode, and electrolytes. The various cells were autopsied as part of the study. Three electrolyte systems tested were: LiCl-10 wt. % AlCl3, LiCl-10 wt. % AlCl3-5 wt.% AlF3 and LiF-10 wt.% AlF3. An extended four-day run with the LiCl-10 wt.% AlCl3-5 wt.% AlF3 electrolyte system was stable for the entire duration of the experiment, running at energy requirements about one third of the Hoopes and the conventional Hall-Heroult process. Three different anode membranes were investigated with respect to their purification performance and survivability: a woven graphite cloth with 0.05 cm nominal thickness & > 90 % porosity, a drilled rigid membrane with nominal porosity of 33%, and another drilled rigid graphite membrane with increased thickness. The latter rigid drilled graphite was selected as the most promising membrane design. The economic viability of the membrane cell to purify scrap is sensitive to primary & scrap aluminum prices, and the cost of electricity. In particular, it is sensitive to the differential between scrap and primary aluminum price which is highly variable and dependent on the scrap source. In order to be economically viable, any scrap post-processing technology in the U.S. market must have a total operating cost well below the scrap price differential of $0.20-$0.40 per lb to the London Metal Exchange (LME), a margin of 65%-85% of the LME price. The cost to operate the membrane cell is estimated to be < $0.24/lb of purified aluminum. The energy cost is estimated to be $0.05/lb of purified aluminum with the remaining costs being repair and maintenance, electrolyte, labor, taxes and depreciation. The bench-scale work on membrane purification cell process has demonstrated technological advantages and subs

David DeYoung; James Wiswall; Cong Wang

2011-11-29T23:59:59.000Z

394

Duality and Recycling Computing in Quantum Computers  

E-Print Network (OSTI)

Quantum computer possesses quantum parallelism and offers great computing power over classical computer \\cite{er1,er2}. As is well-know, a moving quantum object passing through a double-slit exhibits particle wave duality. A quantum computer is static and lacks this duality property. The recently proposed duality computer has exploited this particle wave duality property, and it may offer additional computing power \\cite{r1}. Simply put it, a duality computer is a moving quantum computer passing through a double-slit. A duality computer offers the capability to perform separate operations on the sub-waves coming out of the different slits, in the so-called duality parallelism. Here we show that an $n$-dubit duality computer can be modeled by an $(n+1)$-qubit quantum computer. In a duality mode, computing operations are not necessarily unitary. A $n$-qubit quantum computer can be used as an $n$-bit reversible classical computer and is energy efficient. Our result further enables a $(n+1)$-qubit quantum computer to run classical algorithms in a $O(2^n)$-bit classical computer. The duality mode provides a natural link between classical computing and quantum computing. Here we also propose a recycling computing mode in which a quantum computer will continue to compute until the result is obtained. These two modes provide new tool for algorithm design. A search algorithm for the unsorted database search problem is designed.

Gui Lu Long; Yang Liu

2007-08-15T23:59:59.000Z

395

Recycling of the Solar Corona's Magnetic Field  

Science Journals Connector (OSTI)

Magnetic fields play a dominant role in the atmospheres of the Sun and other Sun-like stars. Outside sunspot regions, the photosphere of the so-called quiet Sun contains myriads of small-scale magnetic concentrations, with strengths ranging from the detection limit of ~1016 Mx up to ~3 ? 1020 Mx. The tireless motion of these magnetic flux concentrations, along with the continual appearance and disappearance of opposite-polarity pairs of fluxes, releases a substantial amount of energy that may be associated with a whole host of physical processes in the solar corona, not least the enigma of coronal heating. We find here that the timescale for magnetic flux to be remapped in the quiet-Sun corona is, surprisingly, only 1.4 hr (around 1/10 of the photospheric flux recycling time), implying that the quiet-Sun corona is far more dynamic than previously thought. Besides leading to a fuller understanding of the origins of magnetically driven phenomena in our Sun's corona, such a process may also be crucial for the understanding of stellar atmospheres in general.

R. M. Close; C. E. Parnell; D. W. Longcope; E. R. Priest

2004-01-01T23:59:59.000Z

396

FreshTracks Capital LP | Open Energy Information  

Open Energy Info (EERE)

FreshTracks Capital LP FreshTracks Capital LP Jump to: navigation, search Name FreshTracks Capital LP Address 29 Harbor Road, Suite 200 Place Shelburne, New Hampshire Zip 05482 Product Venture capital with a focus on investing in Vermont. Phone number (802) 923-1500 Website http://www.freshtrackscap.com/ Coordinates 44.38055°, -73.228195° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":44.38055,"lon":-73.228195,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

397

Alginate-Based Edible Coating to Enhance Quality and Shelf-Life of Fresh-Cut Watermelon (Citrullus Lanatus)  

E-Print Network (OSTI)

Fresh-cut watermelon is appreciated for its taste, flavor, and juiciness. However, there are challenges in maintaining the freshness since fresh-cut processing of fruits promotes faster deterioration. Our objective was to determine the effectiveness...

Sipahi, Rabia

2012-10-19T23:59:59.000Z

398

Human U4/U6 snRNP Recycling Factor p110: Mutational Analysis Reveals the Function of the Tetratricopeptide Repeat Domain in Recycling  

Science Journals Connector (OSTI)

...ARTICLE GENE EXPRESSION Human U4/U6 snRNP Recycling Factor p110: Mutational Analysis Reveals...the Tetratricopeptide Repeat Domain in Recycling Jan Medenbach 1 Silke Schreiner 1 Sunbin...Here we demonstrate under in vitro recycling conditions that U6-p110 is an essential...

Jan Medenbach; Silke Schreiner; Sunbin Liu; Reinhard Lührmann; Albrecht Bindereif

2004-09-01T23:59:59.000Z

399

Selective Catalytic Reduction and Exhaust Gas Recirculation Systems...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Catalytic Reduction and Exhaust Gas Recirculation Systems Optimization A patented EGR-SCR approach was shown to readily meet the 2010 EPA requirments for NOx and PM emisisons...

400

Selectlive Catalytic Reducution of NOx wilth Diesel-Based Fuels...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

of NO by Hydrocarbons Bifunctional Catalysts for the Selective Catalytic Reduction of NO by Hydrocarbons Progress on Acidic Zirconia Mixed Oxides for Efficient NH3-SCR Catalysis...

Note: This page contains sample records for the topic "recycled fresh catalytic" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

Printing 3D Catalytic Devices | The Ames Laboratory  

NLE Websites -- All DOE Office Websites (Extended Search)

Printing 3D Catalytic Devices Ames Laboratory scientist Igor Slowing discusses using 3D printers to create new materials, including catalysts...

402

Catalytic Conversion of Biomass-derived Feedstock (HMF) into...  

NLE Websites -- All DOE Office Websites (Extended Search)

Industrial Technologies Industrial Technologies Biomass and Biofuels Biomass and Biofuels Find More Like This Return to Search Catalytic Conversion of Biomass-derived Feedstock...

403

Catalytic distillation for the synthesis of tertiary butyl alcohol.  

E-Print Network (OSTI)

??Catalytic Distillation for the synthesis of tertiary butyl alcohol (TBA) is investigated in this thesis. The solvent, ethylene glycol, is proposed as a means of… (more)

Safinski, Tomasz

2005-01-01T23:59:59.000Z

404

Single Supported Atoms Participate in Catalytic Processes | ornl...  

NLE Websites -- All DOE Office Websites (Extended Search)

Functional Materials for Energy Single Supported Atoms Participate in Catalytic Processes December 04, 2014 Pathways for NO oxidation on single Pt atoms supported on the (010)...

405

3D Printing of nanostructured catalytic materials | The Ames...  

NLE Websites -- All DOE Office Websites (Extended Search)

3D Printing of nanostructured catalytic materials Over the last couple of decades, scientists have been able to develop a tremendous control over the synthesis and properties of...

406

The Effects of Trace Contaminants on Catalytic Processing of...  

NLE Websites -- All DOE Office Websites (Extended Search)

Processing of Biomass-Derived Feedstocks . Abstract: Trace components in biomass feedstocks are potential catalyst poisons when catalytically processing these materials to...

407

Catalytic Upgrading of Sugars to Hydrocarbons Technology Pathway...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

the catalytic conversion of solubilized carbohydrate streams to hydrocarbon biofuels, utilizing data from recent efforts within the National Advanced Biofuels Consortium...

408

Passive Catalytic Approach to Low Temperature NOx Emission Abatement  

Energy.gov (U.S. Department of Energy (DOE))

Numerically evaluated and optimized proposed state-of-the-art passive catalytic technology designed to reduce NOx released during vehicle cold start portion of the FTP-75 cycle

409

Auto shredder residue recycling: Mechanical separation and pyrolysis  

Science Journals Connector (OSTI)

Directive 2000/53/EC sets a goal of 85% material recycling from end-of-life vehicles (ELVs) by the end of 2015. The current ELV recycling rate is around 80%, while the remaining waste is called automotive shredder residue (ASR), or car fluff. In Europe, this is mainly landfilled because it is extremely heterogeneous and often polluted with car fluids. Despite technical difficulties, in the coming years it will be necessary to recover materials from car fluff in order to meet the ELV Directive requirement. This study deals with ASR pretreatment and pyrolysis, and aims to determine whether the ELV material recycling target may be achieved by car fluff mechanical separation followed by pyrolysis with a bench scale reactor. Results show that flotation followed by pyrolysis of the light, organic fraction may be a suitable ASR recycling technique if the oil can be further refined and used as a chemical. Moreover, metals are liberated during thermal cracking and can be easily separated from the pyrolysis char, amounting to roughly 5% in mass. Lastly, pyrolysis can be a good starting point from a “waste-to-chemicals” perspective, but further research should be done with a focus on oil and gas refining, in order both to make products suitable for the chemical industry and to render the whole recycling process economically feasible.

Alessandro Santini; Fabrizio Passarini; Ivano Vassura; David Serrano; Javier Dufour; Luciano Morselli

2012-01-01T23:59:59.000Z

410

Catalytic bromine recovery from HBr waste  

SciTech Connect

Waste HBr is formed during the bromination of many organic molecules, such as flame retardants, pharmaceuticals, and agricultural chemicals. For over 50 years attempts to recover the bromine from waste HBr by catalytic oxidation have been unsuccessful due to low catalyst activity and stability. The discovery of a new high-activity catalysts with excellent long-term stability and life capable of high HBr conversion below 300{degrees}C has made catalytic oxidation of waste HBr commercially feasible. The oxidation of anhydrous HBr using oxygen is highly exothermic, giving an adiabatic temperature rise of 2000{degrees}C. Use of 48 wt% HBr in the oxidation reduces the adiabatic temperature rise to only 300{degrees}C. A multitubular heat exchanger type of reactor can then be used to manage the heat. A 5,000 kg/yr pilot plant was built to verify the performance of the catalyst, the suitability of the reactor materials of construction, and the multibular reactor concept. The pilot unit has a single full-scale reactor tube 4 m long and 2.54 cm in diameter with a hot oil jacket for heat management. Excellent catalyst stability was observed during a 600 h catalyst-life test. HBr conversion of 99% was maintained throughout the run, and over 360 kg of bromine was produced. The temperature at a localized hot spot near the reactor inlet was only 15-20{degrees}C above the reactor inlet temperature, indicating efficient heat management.

Schubert, P.F.; Beatty, R.D.; Mahajan, S. [Catalytica Inc., Mountain View, CA (United States)

1993-12-31T23:59:59.000Z

411

Catalytic reactor for low-Btu fuels  

DOE Patents (OSTI)

An improved catalytic reactor includes a housing having a plate positioned therein defining a first zone and a second zone, and a plurality of conduits fabricated from a heat conducting material and adapted for conducting a fluid therethrough. The conduits are positioned within the housing such that the conduit exterior surfaces and the housing interior surface within the second zone define a first flow path while the conduit interior surfaces define a second flow path through the second zone and not in fluid communication with the first flow path. The conduit exits define a second flow path exit, the conduit exits and the first flow path exit being proximately located and interspersed. The conduits define at least one expanded section that contacts adjacent conduits thereby spacing the conduits within the second zone and forming first flow path exit flow orifices having an aggregate exit area greater than a defined percent of the housing exit plane area. Lastly, at least a portion of the first flow path defines a catalytically active surface.

Smith, Lance (North Haven, CT); Etemad, Shahrokh (Trumbull, CT); Karim, Hasan (Simpsonville, SC); Pfefferle, William C. (Madison, CT)

2009-04-21T23:59:59.000Z

412

Recycling Carbon Dioxide to Make Plastics | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Recycling Carbon Dioxide to Make Plastics Recycling Carbon Dioxide to Make Plastics Recycling Carbon Dioxide to Make Plastics May 20, 2013 - 1:31pm Addthis Novomer’s thermoplastic pellets incorporate waste CO2 into a variety of consumer products. Novomer's thermoplastic pellets incorporate waste CO2 into a variety of consumer products. Why is this important? By using CO2 that would otherwise be emitted to the atmosphere, the process has the potential to cut greenhouse gas emissions while simultaneously reducing petroleum consumption and producing useful products for American consumers. The world's first successful large-scale production of a polypropylene carbonate (PPC) polymer using waste carbon dioxide (CO2) as a key raw material has resulted from a projected funded in part by the U.S. Department of Energy's Office of Fossil Energy.

413

Parametric Analysis of Environmental Performance of Reused/Recycled Packaging  

Science Journals Connector (OSTI)

Much higher targets are now required:? paper and glass 60%, metals 50%, plastics 22.5%, and overall recycling between 55% and 80% (1). ... If the systems have the same net imports, that is, if Inet1 = Inet2, or ?Inet = 0, the system with higher ? is associated with lower environmental impacts from production (K3) at steady state, if and only if its production level, Pe2, remains below a critical level given by Pe2 recycle flow remains below a critical value, R2 recycled material and virgin resources, respectively (values for p and q, related to various impacts, for glass, aluminum, ferrous, and various plastic packaging materials are given in ref 15). ...

C. A. Tsiliyannis

2005-11-16T23:59:59.000Z

414

'Recycling' Grid Energy with Flywheel Technology | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

'Recycling' Grid Energy with Flywheel Technology 'Recycling' Grid Energy with Flywheel Technology 'Recycling' Grid Energy with Flywheel Technology September 30, 2010 - 5:03pm Addthis Seven-foot tall cylinders equipped with flywheel technology (shown above) will make up Beacon Power’s energy storage plant in Stephentown, N.Y. The company received a $43 million loan guarantee from the Energy Department to build the plant. | Photo courtesy of Beacon Power Corporation Seven-foot tall cylinders equipped with flywheel technology (shown above) will make up Beacon Power's energy storage plant in Stephentown, N.Y. The company received a $43 million loan guarantee from the Energy Department to build the plant. | Photo courtesy of Beacon Power Corporation Stephen Graff Former Writer & editor for Energy Empowers, EERE

415

Modelling of automobile shredder residue recycling in the Japanese legislative context  

Science Journals Connector (OSTI)

Abstract End-of-life vehicles (ELVs) represent one of the most important waste flows in Japan and 3.58 million was processed only in fiscal year 2008. In an attempt to reduce waste originating from ELVs, the Japanese Government introduced the ELV Recycling Law in 2002. Automobile shredder residue (ASR) recycling is essential to achieving the goals of the ELV Recycling Law and represents a major concern for the Japanese vehicle recycling industry. This paper proposes the tactical ASR recycling planning model, which can be used to assist Japanese vehicle recyclers to improve their profitability and ASR recycling efficiency. A numerical study is conducted in order to illustrate the potentials and applicability of the proposed modelling approach, and to gain insights into the performances of the Japanese vehicle recycling system and into the influence of the ELV Recycling Law. Sensitivity analyses demonstrate and validate the approach and its potentials. ELV Recycling Law influence is found to be crucial for the decision making on ASR recycling, as the 20% increase in valid recycling quota will cause approximately 50% decrease in the quantity of disposed ASR. We show that the stringent ASR recycling quota is easily attainable and present many interesting insights.

Vladimir Simic; Branka Dimitrijevic

2013-01-01T23:59:59.000Z

416

Quantitative Analysis of Pesticides in Postconsumer Recycled Plastics Using Off-Line Supercritical Fluid Extraction/GC-ECD  

Science Journals Connector (OSTI)

One of the better alternatives is to recycle the plastic again for the same use. ... When these plastics are recycled, the pesticides remain in the plastic even after five recycling steps. ...

C. Nerín; R. Batlle; J. Cacho

1997-08-15T23:59:59.000Z

417

SNX17 regulates Notch pathway and pancreas development through the retromer-dependent recycling of Jag1  

E-Print Network (OSTI)

the retromer-dependent recycling of Jag1. Cell RegenerationWnt secretion by recycling Yin et al. Cell Regenerationthe retromer-dependent recycling of Jag1 Wenguang Yin 1 ,

2012-01-01T23:59:59.000Z

418

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 19, NO. 7, JULY 2008 1 Cooperative Secondary Authorization Recycling  

E-Print Network (OSTI)

Secondary Authorization Recycling Qiang Wei, Matei Ripeanu, Member, IEEE, and Konstantin Beznosov, Member recycles previously received authorizations and shares them with other application servers to mask authorization recycling system and its evaluation using simulation and prototype implementation. The results

419

Recycling tires. (Latest citations from Pollution abstracts). Published Search  

SciTech Connect

The bibliography contains citations concerning the technology and economic advantages of scrap tire recycling. The application of crumb rubber in the production of asphalt paving, floor-coverings, high performance composites, and other products is described. The production of fuels from scrap tires is also discussed. Legislation which promotes recycling, and the roles of government and the private sector in developing new markets and expanding existing markets are included. (Contains a minimum of 76 citations and includes a subject term index and title list.)

Not Available

1994-01-01T23:59:59.000Z

420

Recycling tires. (Latest citations from Pollution Abstracts). Published Search  

SciTech Connect

The bibliography contains citations concerning the technology and economic advantages of scrap tire recycling. The application of crumb rubber in the production of asphalt paving, floor-coverings, high performance composites, and other products is described. The production of fuels from scrap tires is also discussed. Legislation which promotes recycling, and the roles of government and the private sector in developing new markets and expanding existing markets are included.(Contains 50-250 citations and includes a subject term index and title list.) (Copyright NERAC, Inc. 1995)

NONE

1996-12-01T23:59:59.000Z

Note: This page contains sample records for the topic "recycled fresh catalytic" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

Recycling tires. (Latest citations from Pollution Abstracts). Published Search  

SciTech Connect

The bibliography contains citations concerning the technology and economic advantages of scrap tire recycling. The application of crumb rubber in the production of asphalt paving, floor-coverings, high performance composites, and other products is described. The production of fuels from scrap tires is also discussed. Legislation which promotes recycling, and the roles of government and the private sector in developing new markets and expanding existing markets are included.(Contains 50-250 citations and includes a subject term index and title list.) (Copyright NERAC, Inc. 1995)

NONE

1995-11-01T23:59:59.000Z

422

Recycling tires. (Latest citations from Pollution abstracts). NewSearch  

SciTech Connect

The bibliography contains citations concerning the technology and economic advantages of scrap tire recycling. The application of crumb rubber in the production of asphalt paving, floor-coverings, high performance composites, and other products is described. The production of fuels from scrap tires is also discussed. Legislation which promotes recycling, and the roles of government and the private sector in developing new markets and expanding existing markets are included. (Contains a minimum of 83 citations and includes a subject term index and title list.)

Not Available

1994-11-01T23:59:59.000Z

423

Dynamic Systems Analysis Report for Nuclear Fuel Recycle  

SciTech Connect

This report examines the time-dependent dynamics of transitioning from the current United States (U.S.) nuclear fuel cycle where used nuclear fuel is disposed in a repository to a closed fuel cycle where the used fuel is recycled and only fission products and waste are disposed. The report is intended to help inform policy developers, decision makers, and program managers of system-level options and constraints as they guide the formulation and implementation of advanced fuel cycle development and demonstration efforts and move toward deployment of nuclear fuel recycling infrastructure.

Brent Dixon; Sonny Kim; David Shropshire; Steven Piet; Gretchen Matthern; Bill Halsey

2008-12-01T23:59:59.000Z

424

Energy Return on Investment from Recycling Nuclear Fuel  

SciTech Connect

This report presents an evaluation of the Energy Return on Investment (EROI) from recycling an initial batch of 800 t/y of used nuclear fuel (UNF) through a Recycle Center under a number of different fuel cycle scenarios. The study assumed that apart from the original 800 t of UNF only depleted uranium was available as a feed. Therefore for each subsequent scenario only fuel that was derived from the previous fuel cycle scenario was considered. The scenarios represent a good cross section of the options available and the results contained in this paper and associated appendices will allow for other fuel cycle options to be considered.

None

2011-08-17T23:59:59.000Z

425

Catalytic Membrane Reactor for Extraction of Hydrogen from Bioethanol Reforming  

E-Print Network (OSTI)

-gas-shift catalytic membrane reactor, and (2) a multi-layer design for bioethanol reforming. A two-dimensional model is developed to describe reaction and diffusion in the catalytic membrane coupled with plug-flow equations in the retentate and permeate volumes using...

Kuncharam, Bhanu Vardhan

2013-11-26T23:59:59.000Z

426

Evaluating the contribution of cooperative sector recycling to the reduction of greenhouse gas emissions: an opportunity for recycling cooperatives in Săo Paulo to engage in the carbon credit market.  

E-Print Network (OSTI)

??Greenhouse gas emissions can be reduced through recovery and recycling of resources from the municipal solid waste stream. In Săo Paulo, Brazil, recycling cooperatives play… (more)

King, Megan Frances

2012-01-01T23:59:59.000Z

427

Rheological Modification of Lubricating Greases with Recycled Polymers from Different Plastics Waste  

Science Journals Connector (OSTI)

Rheological Modification of Lubricating Greases with Recycled Polymers from Different Plastics Waste ... Tall, S.; Albertsson, A. C.; Karlsson, S. Recycling of Mixed Plastic Fractions: Mechanical Properties of Multicomponent Extruded Polyolefin Blends Using Response Surface Methodology J. Appl. ...

J. E. Martín-Alfonso; C. Valencia; M. C. Sánchez; J. M. Franco; C. Gallegos

2009-03-12T23:59:59.000Z

428

Opportunities and Experiences in Implementing the Recycling Methods for Industrial Water Supply in Bulgaria  

Science Journals Connector (OSTI)

In this chapter, the importance of recycling of industrial wastewater in general and in Bulgaria is explained. The necessary preconditions for water recycling, i.e. environmental, technical and economical ... The...

Plamen Stoychev

2011-01-01T23:59:59.000Z

429

Organic contaminants in sewage sludge (biosolids) and their significance for agricultural recycling  

Science Journals Connector (OSTI)

...contaminants in water and wastewater' compiled and edited...significance for agricultural recycling S. R. Smith * * s...discharged in urban wastewater from industrial and...significance for agricultural recycling. | Organic chemicals discharged in urban wastewater from industrial and...

2009-01-01T23:59:59.000Z

430

Fact #763: January 21, 2013 Eighty-four Percent of Scrapped Tires Are Recycled  

Energy.gov (U.S. Department of Energy (DOE))

There were 263 million tires scrapped in 2009 (latest available data) which amounts to more than 4.7 million tons of waste. Fortunately, 84% of that waste was recycled. Most of the recycled tires...

431

Modeling of recycling oxic and anoxic treatment system for swine wastewater using neural networks  

Science Journals Connector (OSTI)

A recycling reactor system operated under sequential anoxic and oxic conditions for the treatment of swine wastewater has been developed, in which piggery slurry ... treated and then part of the effluent is recycled

Jung-Hye Choi; Jun-Il Sohn; Hyun-Sook Yang…

2000-10-01T23:59:59.000Z

432

Recycling Rare Earth Elements from Industrial Wastewater with Flowerlike Nano-Mg(OH)2  

Science Journals Connector (OSTI)

Recycling Rare Earth Elements from Industrial Wastewater with Flowerlike Nano-Mg(OH)2 ... The pilot-scale experiment indicated that the self-supported flowerlike nano-Mg(OH)2 had great potential to recycle REEs from industrial wastewater. ...

Chaoran Li; Zanyong Zhuang; Feng Huang; Zhicheng Wu; Yangping Hong; Zhang Lin

2013-09-13T23:59:59.000Z

433

Demo of below ground site that once held the Plutonium Recycle...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Demo of below ground site that once held the Plutonium Recycle Test Reactor at Hanford Demo of below ground site that once held the Plutonium Recycle Test Reactor at Hanford...

434

The potential environmental gains from recycling waste plastics: Simulation of transferring recycling and recovery technologies to Shenyang, China  

SciTech Connect

Research highlights: {yields} Urban symbiosis creates compatibility of industrial development and waste management. {yields} Mechanical technology leads to more CO{sub 2} emission reduction. {yields} Energy recovery technology leads to more fossil fuel saving. {yields} Clean energy makes recycling technologies cleaner. {yields} Demand management is crucial for realizing potential environmental gains of recycling. - Abstract: With the increasing attention on developing a low-carbon economy, it is necessary to seek appropriate ways on reducing greenhouse gas (GHG) emissions through innovative municipal solid waste management (MSWM), such as urban symbiosis. However, quantitative assessments on the environmental benefits of urban symbiosis, especially in developing countries, are limited because only a limited number of planned synergistic activities have been successful and it is difficult to acquire detailed inventory data from private companies. This paper modifies and applies a two-step simulation system and used it to assess the potential environmental benefits, including the reduction of GHG emissions and saving of fossil fuels, by employing various Japanese plastics recycling/energy-recovery technologies in Shenyang, China. The results showed that among various recycling/energy-recovery technologies, the mechanical waste plastics recycling technology, which produces concrete formwork boards (NF boards), has the greatest potential in terms of reducing GHG emissions (1.66 kg CO{sub 2}e/kg plastics), whereas the technology for the production of refuse plastic fuel (RPF) has the greatest potential on saving fossil fuel consumption (0.77 kgce/kg-plastics). Additional benefits can be gained by applying combined technologies that cascade the utilization of waste plastics. Moreover, the development of clean energy in conjunction with the promotion of new waste plastics recycling programs could contribute to additional reductions in GHG emissions and fossil fuel consumption.

Chen Xudong, E-mail: chen.xudong@nies.go.jp [Institute of Applied Ecology, Chinese Academy of Sciences, No. 72 Wenhua Road, Shenyang 110016 (China); National Institute for Environmental Studies, 16-2 Onogawa, Tsukuba, Ibaraki 305-8506 (Japan); Graduate School of Environmental Studies, Nagoya University, Furo-cho, Chikusa-ku, Nagoya City 464-8601 (Japan); Xi Fengming [Institute of Applied Ecology, Chinese Academy of Sciences, No. 72 Wenhua Road, Shenyang 110016 (China); Geng Yong, E-mail: gengyong@iae.ac.cn [Institute of Applied Ecology, Chinese Academy of Sciences, No. 72 Wenhua Road, Shenyang 110016 (China); Fujita, Tsuyoshi [National Institute for Environmental Studies, 16-2 Onogawa, Tsukuba, Ibaraki 305-8506 (Japan); Graduate School of Environmental Studies, Nagoya University, Furo-cho, Chikusa-ku, Nagoya City 464-8601 (Japan)

2011-01-15T23:59:59.000Z

435

Innovative Fresh Water Production Process for Fossil Fuel Plants  

SciTech Connect

This project concerns a diffusion driven desalination (DDD) process where warm water is evaporated into a low humidity air stream, and the vapor is condensed out to produce distilled water. Although the process has a low fresh water to feed water conversion efficiency, it has been demonstrated that this process can potentially produce low cost distilled water when driven by low grade waste heat. This report summarizes the progress made in the development and analysis of a Diffusion Driven Desalination (DDD) system. Detailed heat and mass transfer analyses required to size and analyze the diffusion tower using a heated water input are described. The analyses agree quite well with the current data and the information available in the literature. The direct contact condenser has also been thoroughly analyzed and the system performance at optimal operating conditions has been considered using a heated water/ambient air input to the diffusion tower. The diffusion tower has also been analyzed using a heated air input. The DDD laboratory facility has successfully been modified to include an air heating section. Experiments have been conducted over a range of parameters for two different cases: heated air/heated water and heated air/ambient water. A theoretical heat and mass transfer model has been examined for both of these cases and agreement between the experimental and theoretical data is good. A parametric study reveals that for every liquid mass flux there is an air mass flux value where the diffusion tower energy consumption is minimal and an air mass flux where the fresh water production flux is maximized. A study was also performed to compare the DDD process with different inlet operating conditions as well as different packing. It is shown that the heated air/heated water case is more capable of greater fresh water production with the same energy consumption than the ambient air/heated water process at high liquid mass flux. It is also shown that there can be significant advantage when using the heated air/heated water process with a less dense less specific surface area packed bed. Use of one configuration over the other depends upon the environment and the desired operating conditions.

James F. Klausner; Renwei Mei; Yi Li; Jessica Knight

2006-09-29T23:59:59.000Z

436

Recycling: General studies. (Latest citations from the NTIS bibliographic database). Published Search  

SciTech Connect

The bibliography contains citations concerning the processes, techniques, and benefits of recycling. The recycling processes for aluminum, chromium, nickel, cobalt, lead, copper, and precious metals scrap are discussed. Also included are citations on recycling of waste paper fibers and rubber wastes for the production of new products. Recycling in the jewelry, electronics, milling, beverage, automotive, and aircraft industries are considered. (Contains 250 citations and includes a subject term index and title list.)

Not Available

1993-12-01T23:59:59.000Z

437

Recycling: General studies. (Latest citations from the NTIS Bibliographic database). Published Search  

SciTech Connect

The bibliography contains citations concerning the processes, techniques, and benefits of recycling. The recycling processes for aluminum, chromium, nickel, cobalt, lead, copper, and precious metals scrap are discussed. Also included are citations on recycling of waste paper fibers and rubber wastes for the production of new products. Recycling in the jewelry, electronics, milling, beverage, automotive, and aircraft industries are considered. (Contains 250 citations and includes a subject term index and title list.)

Not Available

1994-11-01T23:59:59.000Z

438

Recycling: General studies. (Latest citations from the NTIS bibliographic database). Published Search  

SciTech Connect

The bibliography contains citations concerning the processes, techniques, and benefits of recycling. The recycling processes for aluminum, chromium, nickel, cobalt, lead, copper, and precious metals scrap are discussed. Also included are citations on recycling of waste paper fibers and rubber wastes for the production of new products. Recycling in the jewelry, electronics, milling, beverage, automotive, and aircraft industries are considered. (Contains 50-250 citations and includes a subject term index and title list.) (Copyright NERAC, Inc. 1995)

NONE

1995-12-01T23:59:59.000Z

439

Development of asphalts and pavements using recycled tire rubber. Phase 1: technical feasibility. Final report  

SciTech Connect

This report documents the technical progress made on the development of asphalts and pavements using recycled tire rubber.

Bullin, J.A.; Davison, R.R.; Glover, C.J. [and others

1998-01-01T23:59:59.000Z

440

A Research Needs Assessment for waste plastics recycling: Volume 2, Project report. Final report  

SciTech Connect

This second volume contains detailed information on a number of specific topics relevant to the recovery/recycling of plastics.

NONE

1994-12-01T23:59:59.000Z

Note: This page contains sample records for the topic "recycled fresh catalytic" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

Contact structure for use in catalytic distillation  

DOE Patents (OSTI)

A method is described for conducting catalytic chemical reactions and fractionation of the reaction mixture comprising feeding reactants into a distillation column reactor, contracting said reactant in liquid phase with a fixed bed catalyst in the form of a contact catalyst structure consisting of closed porous containers containing the catalyst for the reaction and a clip means to hold and support said containers, which are disposed above, i.e., on the distillation trays in the tower. The trays have weir means to provide a liquid level on the trays to substantially cover the containers. In other words, the trays function in their ordinary manner with the addition thereto of the catalyst. The reaction mixture is concurrently fractionated in the column. 7 figs.

Jones, E.M. Jr.

1984-03-27T23:59:59.000Z

442

Contact structure for use in catalytic distillation  

DOE Patents (OSTI)

A method and apparatus are disclosed for conducting catalytic chemical reactions and fractionation of the reaction mixture, comprising and feeding reactants into a distillation column reactor contracting said reactant in a liquid phase with a fixed bed catalyst in the form of a contact catalyst structure, consisting of closed porous containers containing the catalyst for the reaction and a clip means to hold and support said containers, which are disposed above, i.e., on the distillation trays in the tower. The trays have weir means to provide a liquid level on the trays to substantially cover the containers. In other words, the trays function in their ordinary manner with the addition thereto of the catalyst. The reaction mixture is concurrently fractionated in the column. 7 figs.

Jones, E.M. Jr.

1985-08-20T23:59:59.000Z

443

Contact structure for use in catalytic distillation  

DOE Patents (OSTI)

A method for conducting catalytic chemical reactions and fractionation of the reaction mixture comprising feeding reactants into a distillation column reactor contracting said reactant in liquid phase with a fixed bed catalyst in the form of a contact catalyst structure consisting of closed porous containers containing the catatlyst for the reaction and a clip means to hold and support said containers, which are disposed above, i.e., on the distillation trays in the tower. The trays have weir means to provide a liquid level on the trays to substantially cover the containers. In other words, the trays function in their ordinary manner with the addition thereto of the catalyst. The reaction mixture is concurrently fractionated in the column.

Jones, Jr., Edward M. (Friendswood, TX)

1984-01-01T23:59:59.000Z

444

Contact structure for use in catalytic distillation  

DOE Patents (OSTI)

A method and apparatus for conducting catalytic chemical reactions and fractionation of the reaction mixture, comprising and feeding reactants into a distillation column reactor contracting said reactant in a liquid phase with a fixed bed catalyst in the form of a contact catalyst structure, consisting of closed porous containers containing the catalyst for the reaction and a clip means to hold and support said containers, which are disposed above, i.e., on the distillation trays in the tower. The trays have weir means to provide a liquid level on the trays to substantially cover the containers. In other words, the trays function in their ordinary manner with the addition thereto of the catalyst. The reaction mixture is concurrently fractionated in the column.

Jones, Jr., Edward M. (Friendswood, TX)

1985-01-01T23:59:59.000Z

445

Catalytic cartridge SO/sub 3/ decomposer  

DOE Patents (OSTI)

A catalytic cartridge surrounding a heat pipe driven by a heat source is utilized as a SO/sub 3/ decomposer for thermochemical hydrogen production. The cartridge has two embodiments, a cross-flow cartridge and an axial flow cartridge. In the cross-flow cartridge, SO/sub 3/ gas is flowed through a chamber and incident normally to a catalyst coated tube extending through the chamber, the catalyst coated tube surrounding the heat pipe. In the axial-flow cartridge, SO/sub 3/ gas is flowed through the annular space between concentric inner and outer cylindrical walls, the inner cylindrical wall being coated by a catalyst and surrounding the heat pipe. The modular cartridge decomposer provides high thermal efficiency, high conversion efficiency, and increased safety. A fusion reactor may be used as the heat source.

Galloway, T.R.

1980-11-18T23:59:59.000Z

446

NSAIDs acutely inhibit TRPC channels in freshly isolated rat glomeruli  

SciTech Connect

Highlights: {yields} We have established a unique approach to search for physiologically relevant mechanisms of TRPC channels in podocytes. {yields} This study describes endogenous TRPC channels in the isolated decapsulated glomeruli preparation. {yields} We report for the first time that NSAIDs inhibit TRPC channels in podocytes. -- Abstract: Using a novel approach for analysis of TRPC channel activity, we report here that NSAIDs are involved into regulation of TRPC channels in the podocytes of the freshly isolated decapsulated glomeruli. Fluorescence and electron microscopy techniques confirmed the integrity of podocytes in the glomeruli. Western blotting showed that TRPC1, 3 and 6 are highly expressed in the glomeruli. Single-channel patch clamp analysis revealed cation currents with distinct TRPC properties. This is the first report describing single TRPC-like currents in glomerular podocytes. Furthermore, our data provide a novel mechanism of NSAIDs regulation of TRPC channels, which might be implicated in maintaining the glomerular filtration barrier.

Ilatovskaya, Daria V. [Department of Physiology, Medical College of Wisconsin, Milwaukee, WI (United States) [Department of Physiology, Medical College of Wisconsin, Milwaukee, WI (United States); Institute of Cytology RAS, St. Petersburg (Russian Federation); Levchenko, Vladislav; Ryan, Robert P.; Cowley, Allen W. [Department of Physiology, Medical College of Wisconsin, Milwaukee, WI (United States)] [Department of Physiology, Medical College of Wisconsin, Milwaukee, WI (United States); Staruschenko, Alexander, E-mail: Staruschenko@mcw.edu [Department of Physiology, Medical College of Wisconsin, Milwaukee, WI (United States)] [Department of Physiology, Medical College of Wisconsin, Milwaukee, WI (United States)

2011-05-06T23:59:59.000Z

447

NETL: IEP - Coal Utilization By-Products: Consortium Byproducts Recycling  

NLE Websites -- All DOE Office Websites (Extended Search)

Combustion Byproducts Recycling Consortium (CBRC) Combustion Byproducts Recycling Consortium (CBRC) The mission of the Combustion Byproducts Recycling Consortium (CBRC) is to promote and support the commercially viable and environmentally sound recycling of coal combustion byproducts for productive uses through scientific research, development, and field testing. The overall goals of CBRC are to: Increase the overall national rate of byproduct use by to ~ 50 % by 2010 Increase the number of “allowable” byproduct uses under state regulations by ~ 25% Double of the current rate of FGD byproduct use CBRC is a unique partnership that integrates the electric power industry, State and Federal regulatory agencies, and academia to form a strong, cohesive consortium to guide the national and regional research priorities of the CBRC. CBRC is managed by the West Virginia Water Research Institute at West Virginia University and is administered by regional centers at the University of Kentucky (Eastern Region), Southern Illinois University (Midwest Region) and the University of North Dakota (Western Region). Primary funding for CBRC is provided by the U.S. Department of Energy’s National Energy Technology Laboratory (DOE-NETL).

448

Process for gasifying carbonaceous material from a recycled condensate slurry  

DOE Patents (OSTI)

Coal or other carbonaceous material is gasified by reaction with steam and oxygen in a manner to minimize the problems of effluent water stream disposal. The condensate water from the product gas is recycled to slurry the coal feed and the amount of additional water or steam added for cooling or heating is minimized and preferably kept to a level of about that required to react with the carbonaceous material in the gasification reaction. The gasification is performed in a pressurized fluidized bed with the coal fed in a water slurry and preheated or vaporized by indirect heat exchange contact with product gas and recycled steam. The carbonaceous material is conveyed in a gas-solid mixture from bottom to top of the pressurized fluidized bed gasifier with the solids removed from the product gas and recycled steam in a supported moving bed filter of the resulting carbonaceous char. Steam is condensed from the product gas and the condensate recycled to form a slurry with the feed coal carbonaceous particles.

Forney, Albert J. (Coraopolis, PA); Haynes, William P. (Pittsburgh, PA)

1981-01-01T23:59:59.000Z

449

BLEACHABILITY OF RECYCLED FIBERS DEINKED WITH ENZYME PREPARATIONS  

E-Print Network (OSTI)

the recycling emphasis from ink removal to color removal. Our research indicates that enzymes can. This brightness matched that achieved by bleaching conven- tionally deinked pulps that used additional peroxide deinking. BACKGROUND For the removal of toner inks, enzyme preparations are ef- fective substitutes

Abubakr, Said

450

Recycling Energy to Restore Impaired Ankle Function during Human Walking  

E-Print Network (OSTI)

Recycling Energy to Restore Impaired Ankle Function during Human Walking Steven H. Collins1 walking, largely at the transitions between steps. The ankle then acts to restore energy during push-off, which may be the reason that ankle impairment nearly always leads to poorer walking economy

Collins, Steven H.

451

Environmentally-friendly organochlorine waste processing and recycling  

E-Print Network (OSTI)

; 5) purification of VCM; 6) burning organochlorine waste (OCW) (Lakshmanan et al., 1999). In additionEnvironmentally-friendly organochlorine waste processing and recycling Sergei A. Kurta a , Alex A in revised form 12 May 2013 Accepted 12 May 2013 Available online 20 May 2013 Keywords: Organochlorine waste

Volinsky, Alex A.

452

EA-1919: Recycle of Scrap Metals Originating from Radiological Areas  

Energy.gov (U.S. Department of Energy (DOE))

This Programmatic EA evaluates alternatives for the management of scrap metal originating from DOE radiological control areas, including the proposed action to allow for the recycle of uncontaminated scrap metal that meets the requirements of DOE Order 458.1. (Metals with volumetric radioactive contamination are not included in the scope of this Programmatic EA.)

453

Recycling Water: one step to making algal biofuels a reality  

E-Print Network (OSTI)

Recycling Water: one step to making algal biofuels a reality Manuel Vasquez, Juan Sandoval acquisition of solar power, nuclear power, and biofuels to diversify the country's domestic energy profile, the chemical make-up of biofuels allows them to be readily converted into their petroleum counterparts making

Fay, Noah

454

The recycling of the coal fly ash in glass production  

SciTech Connect

The recycling of fly ash obtained from the combustion of coal in thermal power plant has been studied. Coal fly ash was vitrified by melting at 1773 K for 5 hours without any additives. The properties of glasses produced from coal fly ash were investigated by means of Differential Thermal Analysis (DTA), X-ray Diffraction (XRD) and Scanning Electron Microscopy (SEM) techniques. DTA study indicated that there was only one endothermic peak at 1003 K corresponding to the glass transition temperature. XRD analysis showed the amorphous state of the glass sample produced from coal fly ash. SEM investigations revealed that the coal fly ash based glass sample had smooth surface. The mechanical, physical and chemical properties of the glass sample were also determined. Recycling of coal fly ash by using vitrification technique resulted to a glass material that had good mechanical, physical and chemical properties. Toxicity characteristic leaching procedure (TCLP) results showed that the heavy metals of Pb, Cr, Zn and Mn were successfully immobilized into the glass. It can be said that glass sample obtained by the recycling of coal fly ash can be taken as a non-hazardous material. Overall, results indicated that the vitrification technique is an effective way for the stabilization and recycling of coal fly ash.

Erol, M.M.; Kucukbayrak, S.; Ersoy-Mericboyu, A. [Istanbul Technical University, Istanbul (Turkey). Dept. of Chemical Engineering

2006-09-15T23:59:59.000Z

455

Hydrogen recycling with multistep and resonance line absorption effects  

SciTech Connect

Recycling of hydrogen at a neutralizer plate in a tokamak divertor is considered, with particular emphasis on the effects of multistep atomic processes and photoexcitation by the resonant Lyman {alpha} line. These effects are shown to be significant for parameters relevant to International Thermonuclear Experimental Reactor (ITER) (S. A. Cohen {ital et} {ital al}., J. Nucl. Mater. {bold 176} {bold 177}, 909 (1990)).

Marchand, R.; Lauzon, J. (INRS-Energie, C. P. 1020, Varennes, Quebec J3X 1S2 (Canada))

1992-04-01T23:59:59.000Z

456

Recycling Campaign Prizes for best project proposal to  

E-Print Network (OSTI)

coffee cups into the paper bin; which makes us come to the conclusion that communication around, but prevention and raising awareness is better. There are new posters being utilized, what other ways can that is described below. Register Each coordinator is asked to send an e-mail (subject: Recycling Campaign Award

van der Torre, Leon

457

please recycle. Creating Leaders of Consequence for a Sustainable Future  

E-Print Network (OSTI)

manages U.S. legislative and regulatory issues related to transportation fuels and climate changeplease recycle. Creating Leaders of Consequence for a Sustainable Future Hybrid Environmental Professional Program Providing financial aid for dual degree students Today's environmental leaders need a foot

Reif, John H.

458

Nanochannel-Based Single Molecule Recycling John F. Lesoine,  

E-Print Network (OSTI)

Nanochannel-Based Single Molecule Recycling John F. Lesoine, Prahnesh A. Venkataraman, Peter C for measuring the fluorescence from a single molecule hundreds of times without surface immobilization. The approach is based on the use of electroosmosis to repeatedly drive a single target molecule in a fused

Novotny, Lukas

459

Weathering Effects on Mechanical Properties of Recycled HDPE Based Plastic Lumber  

E-Print Network (OSTI)

Weathering Effects on Mechanical Properties of Recycled HDPE Based Plastic Lumber Jennifer K. Lynch recycled plastic lumber (RPL) decking was exposed to the environment for eleven years. The weathering in the construction of the deck were a commingled recycled plastic material referred to as curbside tailings, NJCT

460

A Property-Based Optimization of Direct Recycle Networks and Wastewater  

E-Print Network (OSTI)

A Property-Based Optimization of Direct Recycle Networks and Wastewater Treatment Processes Jose a mathematical programming approach to optimize direct recycle-reuse networks together with wastewater treatment formulation is developed to optimize the recycle/reuse of process streams to units and the perform- ance

Grossmann, Ignacio E.

Note: This page contains sample records for the topic "recycled fresh catalytic" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

Plasma wall interaction induced oscillations and their effects on the global recycling  

E-Print Network (OSTI)

1 Plasma wall interaction induced oscillations and their effects on the global recycling from Devices 2007.05.20-22 NIFS #12;2 contents 1. MOTIVATION (ULFE & termination) 2. dynamics of recycling 3 in signals on heat loads, particle recycling, and impurity influx and contents. Frequency ~ 1-2ÂĄ10-3 Hz

Princeton Plasma Physics Laboratory

462

Aggregation methods in food chains with nutrient recycling B.W. Kooi a,  

E-Print Network (OSTI)

Aggregation methods in food chains with nutrient recycling B.W. Kooi a, *, J.C. Poggiale b , P recycling is taken into account. The food chain is formed by a nutrient and two populations, prey. The excreted material together with death material, detritus, is decomposed and this gives the recycling

Poggiale, Jean-Christophe

463

Int. Symposium on Recycling and Reuse of Glass Cullet 19-20 March, 2001  

E-Print Network (OSTI)

Int. Symposium on Recycling and Reuse of Glass Cullet 19-20 March, 2001 University of Dundee, Scotland Recycled Glass ­ From Waste Material to Valuable Resource By Christian Meyer Department of Civil acceptance of the need for recycling. Glass constitutes a major component of solid waste both in the US

Meyer, Christian

464

Automation of waste recycling using hyperspectral image analysis Artzai Picon1  

E-Print Network (OSTI)

Automation of waste recycling using hyperspectral image analysis Artzai Picon1 Ovidiu Ghita2 Pedro. In this paper we present a novel methodology to automate the recycling process of non-ferrous metal Waste from that the proposed solution can be used to replace the manual procedure that is currently used in WEEE recycling

Whelan, Paul F.

465

Control of Delayed Recycling Systems with an Unstable Pole at Forward Path  

E-Print Network (OSTI)

Control of Delayed Recycling Systems with an Unstable Pole at Forward Path J. F. Marquez Rubio, B. del Muro Cu´ellar and Olivier Sename Abstract-- Unstable time delay system and recycling system pose a challenge problem in their own. When unstable time delay system have recycle the control problem becomes

Paris-Sud XI, Université de

466

Large volume recycling of oceanic lithosphere over short time scales: geochemical constraints from the Caribbean Large  

E-Print Network (OSTI)

Large volume recycling of oceanic lithosphere over short time scales: geochemical constraints from with derivation from recycled oceanic crust, while the depleted lavas are derived from a highly residual source source mantle could have been 9 500 Ma before CLIP formation and interpreted to reflect the recycling

Graham, David W.

467

SAMPLE INTERNSHIP DESCRIPTION NOT CURRENTLY OPEN FOR INFORMATION ONLY Recycling Internship  

E-Print Network (OSTI)

SAMPLE INTERNSHIP DESCRIPTION ­ NOT CURRENTLY OPEN ­ FOR INFORMATION ONLY Recycling Internship Free and disassemble little stuff. You like warehouses. You'll want to look into our Recycling Internship. For more information and information on how to apply, please visit: http://www.freegeek.org/internships/descriptions#recycling

468

Non-parametric Bootstrap Recycling Val erie Ventura, Department of Statistics, Baker Hall 132  

E-Print Network (OSTI)

Non-parametric Bootstrap Recycling Val#19;erie Ventura, Department of Statistics, Baker Hall 132 adjustments. The amount of computation involved is usually considerable, and recycling provides a less computer intensive alternative. Recycling consists of using repeatedly the same samples drawn from

469

Combining Retiming and Recycling to Optimize the Performance of Synchronous Circuits  

E-Print Network (OSTI)

Combining Retiming and Recycling to Optimize the Performance of Synchronous Circuits Luca P, CA 94720-1772 Abstract Recycling was recently proposed as a system-level design tech- nique to facilitate the building of complex System-on-Chips (SOC) by assembling pre-designed components. Recycling

Carloni, Luca

470

PPPL3157 Preprint Date: March 1996, UC421, 423, 426 Investigations of the Tritium Recycling  

E-Print Network (OSTI)

1 PPPL­3157 ­ Preprint Date: March 1996, UC­421, 423, 426 Investigations of the Tritium Recycling material to be ejected into the plasma. This recycling of plasma fuel, which occurs primarily on the inner influx from the edge. Despite its importance, a full understanding of the factors influencing recycling

471

Material Recycling at Product End-of-Life Jeffrey B. Dahmus and Timothy G. Gutowski  

E-Print Network (OSTI)

Material Recycling at Product End-of-Life Jeffrey B. Dahmus and Timothy G. Gutowski Department, Massachusetts, USA Abstract--This work focuses on developing a compact representation of the material recycling different ores, the work here provides insight into the relative attractiveness of recycling different

Gutowski, Timothy

472

Control of Delayed Recycling Systems with Unstable First Order Forward Loop  

E-Print Network (OSTI)

Control of Delayed Recycling Systems with Unstable First Order Forward Loop J. F. M Abstract Unstable time-delay systems and recycling systems are challenging problems for control analysis and design. When an unstable time-delay system has a recycle, its control problem becomes even more difficult

Boyer, Edmond

473

The Covered Device Recycling (Act 108) of 2010 (CDRA) A General Overview  

E-Print Network (OSTI)

The Covered Device Recycling (Act 108) of 2010 (CDRA) A General Overview Electronic products address the manufacture, sales, and end-of-life collection, management and recycling of covered devices to their covered devices. o Must establish and conduct ongoing recycling programs that offer covered device

Bushman, Frederic

474

Stoichiometry of nutrient recycling by vertebrates in a tropical stream: linking species identity and  

E-Print Network (OSTI)

REPORT Stoichiometry of nutrient recycling by vertebrates in a tropical stream: linking species in recycling nutrients, thus providing a mechanism for how animal species identity mediates ecosystem processes) recycled nitrogen (N) and phosphorus (P) in a tropical stream supports stoichiometry theory. Mass

Flecker, Alex

475

84 Yun et al. Ribosome recycling factor Acta Cryst. (2000). D56, 8485 crystallization papers  

E-Print Network (OSTI)

84 Yun et al. Ribosome recycling factor Acta Cryst. (2000). D56, 84±85 crystallization papers Acta crystallographic studies of ribosome recycling factor from Escherichia coli Jungmin Yun,a Wookhyun Kim,a Sung Chul rights reserved Ribosome recycling factor (RRF) catalyzes the disassembly of a termination complex during

Suh, Se Won

476

JABSOM EHSO E-WASTE Recycling Program Created: May 13, 2010 Revised: January 6, 2013  

E-Print Network (OSTI)

JABSOM EHSO ­ E-WASTE Recycling Program Created: May 13, 2010 ­ Revised: January 6, 2013 Page 1 of 2 UH eWaste Recycling Program at JABSOM Kaka'ako The University of Hawaii has established a long-term, free-of-charge quarterly recycling program of UH electronic waste (eWaste), compliments of APPLE

Olsen, Stephen L.

477

Vitrinite recycling: diagnostic criteria and reflectance changes during weathering and reburial  

E-Print Network (OSTI)

Vitrinite recycling: diagnostic criteria and reflectance changes during weathering and reburial P CNRS, Université d'Orléans, Bâtiment de Géosciences, 45067 Orléans cedex 2, France Keywords: Recycled to distinguish recycled and autochthonous vitrinite particles and, second, to examine and try to explain

Boyer, Edmond

478

TRITIUM RECYCLING AND INVENTORY IN ERODED DEBRIS OF PLASMA-FACING MATERIALS*  

E-Print Network (OSTI)

.,, TRITIUM RECYCLING AND INVENTORY IN ERODED DEBRIS OF PLASMA-FACING MATERIALS* Ahmed Hassanein. Invited Paper at Advanced Research Workshop on HYDROGEN RECYCLE AT PLASMA FACING MATERIALS Sept. 15 RECYCLING AND INVENTORY IN ERODED DEBRIS OF PLASMA-FACING MATERIALS AmvlED H.ASSANEIN Argonne Mm

Harilal, S. S.

479

A Charge Recycling Differential Noise Immune Jabulani Nyathi, Valeriu Beiu, Suryanarayana Tatapudi, and David 3. Betowski  

E-Print Network (OSTI)

A Charge Recycling Differential Noise Immune Perceptron Jabulani Nyathi, Valeriu Beiu in [SI, [91, [lo]. recycling differential noise-immune threshold logic (CRD-NTL) In this paper we shall focus primarily on charge recycling perceptron is based on combining the split-level precharge

Nyathi, Jabulani

480

ENVIRONMENTALLY BENIGN LINERLESS SELF-ADHESIVE COIL STAMPS: R&D AND RECYCLING STUDIES  

E-Print Network (OSTI)

ENVIRONMENTALLY BENIGN LINERLESS SELF-ADHESIVE COIL STAMPS: R&D AND RECYCLING STUDIES Kim K been easy and quick to use, and have offered consistent adhesion. For recyclers, however, these adhesive stamps have caused concern for their paper recycling processes. In addition, there is the issue

Abubakr, Said

Note: This page contains sample records for the topic "recycled fresh catalytic" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


481

PPPL-3157 -Preprint Date: March 1996, UC-421, 423, 426 Investigations of the Tritium Recycling  

E-Print Network (OSTI)

1 PPPL-3157 - Preprint Date: March 1996, UC-421, 423, 426 Investigations of the Tritium Recycling material to be ejected into the plasma. This recycling of plasma fuel, which occurs primarily on the inner influx from the edge. Despite its importance, a full understanding of the factors influencing recycling

482

Cherry: Checkpointed Early Resource Recycling in Out-of-order Microprocessors  

E-Print Network (OSTI)

Cherry: Checkpointed Early Resource Recycling in Out-of-order Microprocessors£ Jos´e F. Mart of Rochester michael.huang@ece.rochester.edu ABSTRACT This paper presents CHeckpointed Early Resource RecYcling (Cherry), a hybrid mode of execution based on ROB and checkpoint- ing that decouples resource recycling

Renau, Jose

483

Cherry-MP: Correctly Integrating Checkpointed Early Resource Recycling in Chip Multiprocessors  

E-Print Network (OSTI)

Cherry-MP: Correctly Integrating Checkpointed Early Resource Recycling in Chip Multiprocessors 14853 USA http://m3.csl.cornell.edu/ ABSTRACT Checkpointed Early Resource Recycling (Cherry by performing aggres- sive resource recycling decoupled from instruction retire- ment, using a checkpoint

Martínez, José F.

484

Resources, Conservation and Recycling 54 (2010) 242249 Contents lists available at ScienceDirect  

E-Print Network (OSTI)

Resources, Conservation and Recycling 54 (2010) 242­249 Contents lists available at ScienceDirect Resources, Conservation and Recycling journal homepage: www.elsevier.com/locate/resconrec Factors influencing the rate of recycling: An analysis of Minnesota counties Shaufique F. Sidiquea, , Satish V. Joshib

Lupi, Frank

485

Resources, Conservation and Recycling 54 (2010) 163170 Contents lists available at ScienceDirect  

E-Print Network (OSTI)

Resources, Conservation and Recycling 54 (2010) 163­170 Contents lists available at ScienceDirect Resources, Conservation and Recycling journal homepage: www.elsevier.com/locate/resconrec The effects of behavior and attitudes on drop-off recycling activities Shaufique F. Sidiquea, , Frank Lupib , Satish V

Lupi, Frank

486

Incorporation of catalytic dehydrogenation into Fischer-Tropsch synthesis to lower carbon dioxide emissions  

DOE Patents (OSTI)

A method for producing liquid fuels includes the steps of gasifying a starting material selected from a group consisting of coal, biomass, carbon nanotubes and mixtures thereof to produce a syngas, subjecting that syngas to Fischer-Tropsch synthesis (FTS) to produce a hyrdrocarbon product stream, separating that hydrocarbon product stream into C1-C4 hydrocarbons and C5+ hydrocarbons to be used as liquid fuels and subjecting the C1-C4 hydrocarbons to catalytic dehydrogenation (CDH) to produce hydrogen and carbon nanotubes. The hydrogen produced by CDH is recycled to be mixed with the syngas incident to the FTS reactor in order to raise the hydrogen to carbon monoxide ratio of the syngas to values of 2 or higher, which is required to produce liquid hydrocarbon fuels. This is accomplished with little or no production of carbon dioxide, a greenhouse gas. The carbon is captured in the form of a potentially valuable by-product, multi-walled carbon nanotubes (MWNT), while huge emissions of carbon dioxide are avoided and very large quantities of water employed for the water-gas shift in traditional FTS systems are saved.

Huffman, Gerald P

2012-09-18T23:59:59.000Z

487

E-Print Network 3.0 - australian fresh water Sample Search Results  

NLE Websites -- All DOE Office Websites (Extended Search)

search results for: australian fresh water Page: << < 1 2 3 4 5 > >> 1 Freshwater fish resources in the Snowy River, Victoria. Freshwater fish resources in the Snowy Summary:...

488

Quantitative and dynamic measurements of biological fresh samples with X-ray phase contrast tomography  

Science Journals Connector (OSTI)

Quantitative measurements of biological fresh samples based on three-dimensional densitometry using X-ray phase contrast tomography are presented.

Hoshino, M.

2014-10-08T23:59:59.000Z

489

E-Print Network 3.0 - appetizingly fresh appearance Sample Search...  

NLE Websites -- All DOE Office Websites (Extended Search)

authentic food, fresh salad, and absolutely delicious spaghetti carbonara... , ,,fried seafood appetizer, ,,baked halibut, ,,elec- tronic bill and ,,red drink do not indicate...

490

Biomimicry using Nano-Engineered Enhanced Condensing Surfaces for Sustainable Fresh Water Technology  

E-Print Network (OSTI)

renewable energy-powered technologies for fresh water supply to replace current energy-intensive water desalination techniques, especially for arid, developing countries.

Al-Beaini, Sara

2012-01-01T23:59:59.000Z

491

Analysis of nuclear proliferation resistance reprocessing and recycling technologies  

SciTech Connect

The PUREX process has been progressively and continuously improved during the past three decades, and these improvements account for successful commercialization of reprocessing in a few countries. The renewed interest in nuclear energy and the international growth of nuclear electricity generation do not equate – and should not be equated -with increasing proliferation risks. Indeed, the nuclear renaissance presents a unique opportunity to enhance the culture of non-proliferation. With the recent revival of interest in nuclear technology, technical methods for prevention of nuclear proliferation are being revisited. Robust strategies to develop new advanced separation technologies are emerging worldwide for sustainability and advancement of nuclear energy with enhanced proliferation resistance. On the other hand, at this moment, there are no proliferation resistance advanced technologies. . Until now proliferation resistance as it applies to reprocessing has been focused on not separating a pure stream of weapons-usable plutonium. France, as an example, has proposed a variant of the PUREX process, the COEX TM process, which does not result on a pure plutonium product stream. A further step is to implement a process based on group extraction of actinides and fission products associated with a homogeneous recycling strategy (UNEX process in the US, GANEX process in France). Such scheme will most likely not be deployable on an industrial scale before 2030 or so because it requires intensive R&D and robust flowsheets. Finally, future generation recycling schemes will handle the used nuclear fuel in fast neutron reactors. This means that the plutonium throughput of the recycling process may increase. The need is obvious for advanced aqueous recycling technologies that are intrinsically more proliferation resistant than the commercial PUREX process. In this paper, we review the actual PUREX process along with the advanced recycling technologies that will enhance technical barriers, making plutonium diversion more difficult by not isolating plutonium or/and coexistence of fission products with plutonium.

Patricia Paviet-Hartmann; Gary Cerefice; Marcela Stacey; Steven Bakhtiar

2011-05-01T23:59:59.000Z

492

Sequential tasks performed by catalytic pumps for colloidal crystallization  

E-Print Network (OSTI)

Gold-platinum catalytic pumps immersed in a chemical fuel are used to manipulate silica colloids. The manipulation relies on the electric field and the fluid flow generated by the pump. Catalytic pumps perform various tasks, such as the repulsion of colloids, the attraction of colloids, and the guided crystallization of colloids. We demonstrate that catalytic pumps can execute these tasks sequentially over time. Switching from one task to the next is related to the local change of the proton concentration, which modifies the colloid zeta potential and consequently the electric force acting on the colloids.

Ali Afshar Farniya; Maria J. Esplandiu; Adrian Bachtold

2014-10-20T23:59:59.000Z

493

Catalytic conversion of methane over a biomass char for hydrogen production: deactivation and regeneration by steam gasification  

Science Journals Connector (OSTI)

Abstract CH4 decomposition over a wood char was investigated as an alternative green catalyst to produce hydrogen from hydrocarbons. Pyrolytic carbon (pyrocarbon) deposition leads to apparent deactivation of the catalyst by pore-mouth plugging. The activity of the carbon bed and its available surface area is easily restored by H2O gasification. The used char with pyrocarbon deposition was even found to be more reactive to gasification than the fresh char used in our conditions. This finding was highlighted by: (i) determination of gasification reaction extents by steam, (ii) temperature-programmed oxidation (TPO) of the fresh, used and reactivated chars, (iii) TPO under Differential Scanning Calorimetry of these chars and demineralised chars. High Resolution Transmission Electron Microscope (HRTEM) analysis of the chars showed different multiscale organisation of the carbon materials (disordered and graphitic mesoporous nanostructures). The fast regeneration of the used char could be attributed to the catalytic effect of the minerals present in the char that are reduced under our conditions of CH4 conversion. The predominant oxidation of the pyrocarbon compared to the char during its regeneration is evidenced through differential annealing (at 1800 °C) followed by XRD analysis. The oxidation of pyrocarbon is faster than the oxidation of the weakly reactive mesoporous carbon in char as shown by the HRTEM analysis. Consequently, wood char is an effective, easy to regenerate, and cheap catalyst for converting hydrocarbons (CH4 or tar) into syngas.

A. Dufour; A. Celzard; V. Fierro; F. Broust; C. Courson; A. Zoulalian; J.N. Rouzaud

2014-01-01T23:59:59.000Z

494

Ion Recognition Approach to Volume Reduction of Alkaline Tank Waste by Separation and Recycle of Sodium Hydroxide and Sodium Nitrate  

SciTech Connect

Disposal of high-level nuclear waste is horrendously expensive, in large part because the actual radioactive matter in the tanks has been diluted over 1000-fold by ordinary inorganic chemicals. Treatment processes themselves can exacerbate the problem by adding further volume to the waste. Waste retrieval and sludge washing, for example, will require copious amounts of sodium hydroxide. If the needed sodium hydroxide could be separated from the waste and recycled, however, the addition of fresh sodium hydroxide could be avoided, ultimately reducing the final waste volume and associated disposal costs. The major objective of this research is to explore new liquid-liquid extraction approaches to the selective separation of sodium hydroxide from alkaline high-level wastes stored in underground tanks at the Hanford and Savannah River sites. Consideration is also given to separating potassium and abundant anions, including nitrate, nitrite, aluminate, and carbonate. Salts of these ions represent possible additional value for recycle, alternative disposal, or even use as commodity chemicals. A comprehensive approach toward understanding the extractive chemistry of these salts is envisioned, involving systems of varying complexity, from use of simple solvents to new bifunctional host molecules for ion-pair recognition. These extractants will ideally require no adjustment of the waste composition and will release the extracted salt into water, thereby consuming no additional chemicals and producing no additional waste volume. The overall goal of this research is to provide a scientific foundation upon which the feasibility of new liquid-liquid extraction chemistry applicable to the bulk reduction of the volume of tank waste can be evaluated.

Moyer, Bruce A.; Marchand, Alan P.

2001-06-01T23:59:59.000Z

495

Ion Recognition Approach to Volume Reduction of Alkaline Tank Waste by Separation and Recycle of Sodium Hydroxide and Sodium Nitrate  

SciTech Connect

Disposal of high- level waste is horrendously expensive, in large part because the actual radioactive matter in the tanks has been diluted over 1000-fold by ordinary inorganic chemicals. Treatment processes themselves can exacerbate the problem by adding further volume to the waste. Waste retrieval and sludge washing, for example, will require copious amounts of sodium hydroxide. If the needed sodium hydroxide could be separated from the waste and recycled, however, the addition of fresh sodium hydroxide could be avoided, ultimately reducing the final waste volume and associated disposal costs. The major objective of this research is to explore new liquid- liquid extraction approaches to the selective separation of sodium hydroxide from alkaline high-level wastes stored in underground tanks at the Hanford and Savannah River sites. Consideration is also given to separating potassium and abundant anions, including nitrate, nitrite, aluminate, and carbonate. Salts of these ions represent possible additional value for recycle, alternative disposal, or even use as commodity chemicals. A comprehensive approach toward understanding the extractive chemistry of these salts is envisioned, involving systems of varying complexity, from use of simple solvents to new bifunctional host molecules for ion-pair recognition. These extractants will ideally require no adjustment of the waste composition and will release the extracted salt into water, thereby consuming no additional chemicals and producing no additional waste volume. The overall goal of this research is to provide a scientific foundation upon which the feasibility of new liquid-liquid extraction chemistry applicable to the bulk reduction of the volume of tank waste can be evaluated.

Moyer, Bruce A.; Marchand, Alan P.

2000-06-01T23:59:59.000Z

496

Unanticipated potential cancer risk near metal recycling facilities  

SciTech Connect

Metal recycling is an important growing industry. Prior to this study, area sources consisting of metal recycling facilities fell in a category of limited regulatory scrutiny because of assumed low levels of annual emissions. Initiating with community complaints of nuisance from smoke, dust and odor, the Houston Department of Health and Human Services (HDHHS) began a monitoring program outside metal recycler facilities and found metal particulates in outdoor ambient air at levels which could pose a carcinogenic human health risk. In a study of five similar metal recycler facilities which used a torch cutting process, air downwind and outside the facility was sampled for eight hours between 6 and 10 times each over 18 months using a mobile laboratory. Ten background locations were also sampled. Iron, manganese, copper, chromium, nickel, lead, cobalt, cadmium and mercury were detected downwind of the metal recyclers at frequencies ranging from 100% of the time for iron to 2% of the time for mercury. Of these metals, chromium, nickel, lead, cobalt, cadmium and mercury were not detected in any sample in the background. Two pairs of samples were analyzed for total chromium and hexavalent chromium to establish a ratio of the fraction of hexavalent chromium in total chromium. This fraction was used to estimate hexavalent chromium at all locations. The carcinogenic risk posed to a residential receptor from metal particulate matter concentrations in the ambient air attributed to the metal recyclers was estimated from each of the five facilities in an effort to rank the importance of this source and inform the need for further investigation. The total risk from these area sources ranged from an increased cancer risk of 1 in 1,000,000 to 6 in 10,000 using the 95th upper confidence limit of the mean of the carcinogenic metal particulate matter concentration, assuming the point of the exposure is the sample location for a residential receptor after accounting for wind direction and the number of shifts that could operate a year. Further study is warranted to better understand the metal air pollution levels in the community and if necessary, to evaluate the feasibility of emission controls and identify operational improvements and best management practices for this industry. This research adds two new aspects to the literature: identification of types and magnitude of metal particulate matter air pollutants associated with a previously unrecognized area source, metal recyclers and their potential risk to health. -- Highlights: • Air monitoring study in response to community complaints found metal contamination. • Metal recyclers found to potentially pose cancer from metal particulates • Chromium, nickel, cobalt and cadmium samples were detected in five metal recyclers. • These metals were not detected in background air samples. • Estimated increased cancer risk ranges from 1 in 1,000,000 to 8 in 10,000.

Raun, Loren, E-mail: raun@rice.edu [Department of Statistics, MS 138, Rice University, P.O. Box 1892, Houston, TX 77251-1892 (United States)] [Department of Statistics, MS 138, Rice University, P.O. Box 1892, Houston, TX 77251-1892 (United States); Pepple, Karl, E-mail: pepple.karl@epa.gov [State and Local Programs Group, Air Quality Policy Division, Office of Air Quality Planning and Standards, Policy, Analysis, and Communications Staff, Mail Drop C404-03, U.S. EPA, Research Triangle Park, NC 27711 (United States)] [State and Local Programs Group, Air Quality Policy Division, Office of Air Quality Planning and Standards, Policy, Analysis, and Communications Staff, Mail Drop C404-03, U.S. EPA, Research Triangle Park, NC 27711 (United States); Hoyt, Daniel, E-mail: hoyt.daniel@epa.gov [Air Surveillance Section, US EPA, Region 6, 6EN-AS, 1445 Ross Avenue, Dallas, TX 75202-2733 (United States)] [Air Surveillance Section, US EPA, Region 6, 6EN-AS, 1445 Ross Avenue, Dallas, TX 75202-2733 (United States); Richner, Donald, E-mail: Donald.Richner@houstontx.gov [Houston Department of Health and Human Services, Bureau of Pollution Control and Prevention, 7411 Park Place Blvd., Houston, TX 77087 (United States)] [Houston Department of Health and Human Services, Bureau of Pollution Control and Prevention, 7411 Park Place Blvd., Houston, TX 77087 (United States); Blanco, Arturo, E-mail: arturo.blanco@houstontx.gov [Pollution Control and Prevention, Environmental Health Division, Houston Department of Health and Human Services, 7411 Park Place Blvd., Houston, TX 77087 (United States)] [Pollution Control and Prevention, Environmental Health Division, Houston Department of Health and Human Services, 7411 Park Place Blvd., Houston, TX 77087 (United States); Li, Jiao, E-mail: jiao.li@rice.edu [Wiess School of Natural Science, Rice University, 6100 Main St., Houston, TX 77005 (United States)] [Wiess School of Natural Science, Rice University, 6100 Main St., Houston, TX 77005 (United States)

2013-07-15T23:59:59.000Z

497

A fresh look at coal-derived liquid fuels  

SciTech Connect

35% of the world's energy comes from oil, and 96% of that oil is used for transportation. The current number of vehicles globally is estimated to be 700 million; that number is expected to double overall by 2030, and to triple in developing countries. Now consider that the US has 27% of the world's supply of coal yet only 2% of the oil. Coal-to-liquids technologies could bridge the gap between US fuel supply and demand. The advantages of coal-derived liquid fuels are discussed in this article compared to the challenges of alternative feedstocks of oil sands, oil shale and renewable sources. It is argued that pollutant emissions from coal-to-liquid facilities could be minimal because sulfur compounds will be removed, contaminants need to be removed for the FT process, and technologies are available for removing solid wastes and nitrogen oxides. If CO{sub 2} emissions for coal-derived liquid plants are captured and sequestered, overall emissions of CO{sub 2} would be equal or less than those from petroleum. Although coal liquefaction requires large volumes of water, most water used can be recycled. Converting coal to liquid fuels could, at least in the near term, bring a higher level of stability to world oil prices and the global economy and could serve as insurance for the US against price hikes from oil-producing countries. 7 figs.

Paul, A.D. [Benham Companies LLC (USA)

2009-01-15T23:59:59.000Z

498

Cleaning Out? Don't Forget to Recycle! | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Cleaning Out? Don't Forget to Recycle! Cleaning Out? Don't Forget to Recycle! Cleaning Out? Don't Forget to Recycle! January 24, 2013 - 5:30pm Addthis Recycling your old electronics is easy and good for the environment. | Photo by Nicki Johnson, NREL 15669. Recycling your old electronics is easy and good for the environment. | Photo by Nicki Johnson, NREL 15669. Kristin Swineford Communication Specialist, Weatherization and Intergovernmental Programs How can I participate? Next time you need to get rid of old electronics or lighting, find out about recycling opportunities in your area. We all know recycling isn't necessarily a new idea for being energy conscious, but it's important to remember just how useful and easy it actually is. We explore a myriad of different energy saving tips every day

499

Economic Feasibility of Electrochemical Caustic Recycling at the Hanford Site  

SciTech Connect

This report contains a review of potential cost benefits of NaSICON Ceramic membranes for the separation of sodium from Hanford tank waste. The primary application is for caustic recycle to the Waste Treatment and Immobilization Plant (WTP) pretreatment leaching operation. The report includes a description of the waste, the benefits and costs for a caustic-recycle facility, and Monte Carlo results obtained from a model of these costs and benefits. The use of existing cost information has been limited to publicly available sources. This study is intended to be an initial evaluation of the economic feasibility of a caustic recycle facility based on NaSICON technology. The current pretreatment flowsheet indicates that approximately 6,500 metric tons (MT) of Na will be added to the tank waste, primarily for removing Al from the high-level waste (HLW) sludge (Kirkbride et al. 2007). An assessment (Alexander et al. 2004) of the pretreatment flowsheet, equilibrium chemistry, and laboratory results indicates that the quantity of Na required for sludge leaching will increase by 6,000 to 12,000 MT in order to dissolve sufficient Al from the tank-waste sludge material to maintain the number of HLW canisters produced at 9,400 canisters as defined in the Office of River Protection (ORP) System Plan (Certa 2003). This additional Na will significantly increase the volume of LAW glass and extend the processing time of the Waste Treatment and Immobilization Plant (WTP). Future estimates on sodium requirements for caustic leaching are expected to significantly exceed the 12,000-MT value and approach 40,000-MT of total sodium addition for leaching (Gilbert, 2007). The cost benefit for caustic recycling is assumed to consist of four major contributions: 1) the cost savings realized by not producing additional immobilized low-activity waste (ILAW) glass, 2) caustic recycle capital investment, 3) caustic recycle operating and maintenance costs, and 4) research and technology costs needed to deploy the technology. In estimating costs for each of these components, several parameters are used as inputs. Due to uncertainty in assuming a singular value for each of these parameters, a range of possible values is assumed. A Monte Carlo simulation is then performed where the range of these parameters is exercised, and the resulting range of cost benefits is determined.

Poloski, Adam P.; Kurath, Dean E.; Holton, Langdon K.; Sevigny, Gary J.; Fountain, Matthew S.

2009-03-01T23:59:59.000Z

500

INFLUENCE OF HYDROTHERMAL TREATMENT ON RHEOLOGICAL AND COOKING CHARACTERISTICS OF FRESH EGG PASTA  

E-Print Network (OSTI)

0 INFLUENCE OF HYDROTHERMAL TREATMENT ON RHEOLOGICAL AND COOKING CHARACTERISTICS OF FRESH EGG PASTA@univ-lr.fr Keywords: D.I.C. Hydrothermal treatment; Fresh egg pasta; Mechanical properties; Apparent density; Cooking (2008) 283­291" DOI : 10.1016/j.jcs.2007.04.014 #12;1 Abstract. The effect of D.I.C. processing

Paris-Sud XI, Université de