Powered by Deep Web Technologies
Note: This page contains sample records for the topic "recovery testing important" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

Alabama Injection Project Aimed at Enhanced Oil Recovery, Testing...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Alabama Injection Project Aimed at Enhanced Oil Recovery, Testing Important Geologic CO2 Storage Alabama Injection Project Aimed at Enhanced Oil Recovery, Testing Important...

2

RMOTC - Testing - Enhanced Oil Recovery  

NLE Websites -- All DOE Office Websites (Extended Search)

Enhanced Oil Recovery Enhanced Oil Recovery Notice: As of July 15th 2013, the Department of Energy announced the intent to sell Naval Petroleum Reserve Number 3 (NPR3). The sale of NPR-3 will also include the sale of all equipment and materials onsite. A decision has been made by the Department of Energy to complete testing at RMOTC by July 1st, 2014. RMOTC will complete testing in the coming year with the currently scheduled testing partners. For more information on the sale of NPR-3 and sale of RMOTC equipment and materials please join our mailing list here. RMOTC will play a significant role in continued enhanced oil recovery (EOR) technology development and field demonstration. A scoping engineering study on Naval Petroleum Reserve No. 3's (NPR-3) enhanced oil recovery

3

Advanced Vehicle Testing Activity: American Recovery and Reinvestment...  

NLE Websites -- All DOE Office Websites (Extended Search)

American Recovery and Reinvestment Act (ARRA) - Light-Duty Electric Drive Vehicle and Charging Infrastructure Testing to someone by E-mail Share Advanced Vehicle Testing Activity:...

4

LNG imports make strong recovery in 1996; exports increase also  

Science Conference Proceedings (OSTI)

LNG imports to the US jumped in 1996 as Algerian base-load plants resumed operations following major revamps. Exports from Alaska to Japan grew by nearly 4% over 1995. Total LNG imports to the US in 1996 were 40.27 bcf compared to 17.92 bcf in 1995, an increase of 124.8%. Algeria supplied 35.32 bcf; Abu Dhabi, 4.95 bcf. About 82.3% of the imported LNG was received at Distrigas Corp.`s terminal north of Boston. The remaining LNG was received at the Pan National terminal in Lake Charles, LA. LNG imports during 1995 fell to such a low level not because of depressed US demand but because of limited supply. The paper discusses LNG-receiving terminals, base-load producers, LNG pricing, and exports.

Swain, E.J. [Swain (Edward J.), Houston, TX (United States)

1998-01-19T23:59:59.000Z

5

OPERATIONAL TESTS OF EBWR VAPOR RECOVERY SYSTEM  

SciTech Connect

A description of the Experimental Boiling Water Reactor vapor-recovery system is given. The seal air operating pressures, temperatures, and moisture content were measured. Air flow through the seals was measured and seal wear was assessed. Assuming direct-cycle D/sub 2/ operation, the seals were evaluated relative to the amount of D/sub 2/ leakage that would be controlled (C.J.G.)

Gariboldi, R.J.; Jacobson, D.R.

1960-08-01T23:59:59.000Z

6

Recovery efficiency of enhanced oil recovery methods: a review of significant field tests  

SciTech Connect

This paper analyzes past enhanced oil recovery (EOR) projects to determine how well they have performed as a function of reservoir and process variables. In total, over 100 key tests covering the following six major enhanced oil recovery techniques are analyzed: Steam Drive, In-Situ Combustion, Carbon Dioxide Flooding, Polymer Flooding, Surfactant/Polymer Flooding, and Alkaline Flooding. The analysis includes, by technique and geographical area: the range of oil recovery due to EOR in barrels per acre-foot and as a percentage of oil remaining in-place; a comparison between predicted performance and actual oil recovery; an examination of the performance of different EOR processes within each of the six techniques; and an analysis of the relation of reservoir parameters and process variables to oil recovery.

Hammershaimb, E.C.; Kuuskraa, V.A.; Stosur, G.

1983-10-01T23:59:59.000Z

7

Recovery efficiency of enhanced oil recovery methods: a review of significant field tests  

Science Conference Proceedings (OSTI)

This study analyzes past enhanced oil recovery (EOR) projects to determine how well they have performed as a function of reservoir and process variables. In total, over 100 key tests covering the following 6 major enhanced oil recovery techniques are analyzed: steam drive, in situ combustion, carbon dioxide flooding, polymer flooding, surfactant/polymer flooding, and alkaline flooding. The analysis includes, by technique and geographic area, (1) the range of oil recovery due to EOR in barrels per acre-foot and as a percentage of oil remaining in-place; (2) a comparison between predicted performance and actual oil recovery; (3) an examination of the performance of different EOR processes within each of the 6 techniques; and (4) an analysis of the relation of reservoir parameters and process variables to oil recovery.

Hammershaimb, E.C.; Kuuskraa, V.A.; Stosur, G.

1983-01-01T23:59:59.000Z

8

Evaluation of the North Burbank unit tertiary recovery pilot test  

Science Conference Proceedings (OSTI)

A review of the performance of the Phillips North Burbank micellar-polymer flood has been completed. The projected ultimate recovery is estimated to be about 300,000 barrels, which is about one half of the initial prediction made by Phillips. Although oil recovery has been less than expected, sufficient additional oil has been recovered to consider the project technically successful. The lower-than-expected oil recovery is attributed principally to high sulfonate losses. Loss of the sulfonate appears to be the result of significant adsorption to the oil-wet pore surfaces and mixing of micellar fluids with in-place water, which is of high salinity and hardness. Contact of the sulfonate with the high concentration of calcium ions creates calcium sulfonate, which either precipitates as an insoluble phase or partitions into the oil phase. Sulfonate partitioning would have created an upper-phase microemulsion, which cannot be easily displaced by water due to the relatively high interfacial tension. The following recommendations are made for improvement of the project: (1) Since preflushes may not always be effective or practical, use a surfactant system which is more tolerant of salinity and hardness. (2) A preflush, if needed, could be improved by designing the volume and salinity of injected fluids to efficiently remove divalent ions from reservoir clays and to displace excess salinity. (3) The surfactant system should be designed with the aid of displacement tests in field cores, conducted over the range of frontal velocities expected in the reservoir. It is particularly important to evaluate displacement at the lower velocity range. (4) Improve operational procedures by conducting workovers prior to pilot initiation and by careful control of injection pressures to insure that fracture extension does not occur.

Tracy, G.W.; Dauben, D.L.

1982-08-01T23:59:59.000Z

9

Recovery Efficiency Test Project: Phase 1, Activity report  

SciTech Connect

This report is the second volume of the Recovery Efficiency Test Phase I Report of Activities. Volume 1 covered selection, well planning, drilling, coring, logging and completion operations. This volume reports on well testing activities, reclamation activities on the drilling site and access roads, and the results of physical and mechanical properties tests on the oriented core material obtained from a horizontal section of the well. 3 refs., 21 figs., 10 tabs.

Overbey, W.K. Jr.; Wilkins, D.W.; Keltch, B.; Saradji, B.; Salamy, S.P.

1988-04-01T23:59:59.000Z

10

Recovery Efficiency Test Project: Phase 1, Activity report  

SciTech Connect

The recovery Efficiency Test well project addressed a number of technical issues. The primary objective was to determine the increased efficiency gas recovery of a long horizontal wellbore over that of a vertical wellbore and, more specifically, what improvements can be expected from inducing multiple hydraulic fractures from such a wellbore. BDM corporation located, planned, and drilled a long radius turn horizontal well in the Devonian shale Lower Huron section in Wayne County, West Virginia, demonstrating that state-of-the-art technology is capable of drilling such wells. BDM successfully tested drilling, coring, and logging in a horizontal well using air as the circulating medium; conducted reservoir modeling studies to protect flow rates and reserves in advance of drilling operations; observed two phase flow conditions in the wellbore not observed previously; cored a fracture zone which produced gas; observed that fractures in the core and the wellbore were not systematically spaced (varied from 5 to 68 feet in different parts of the wellbore); observed that highest gas show rates reported by the mud logger corresponded to zone with lowest fracture spacing (five feet) or high fracture frequency. Four and one-half inch casting was successfully installed in the borehole and was equipped to isolate the horizontal section into eight (8) zones for future testing and stimulation operations. 6 refs., 48 figs., 10 tabs.

Overbey, W.K. Jr.; Carden, R.S.; Kirr, J.N.

1987-04-01T23:59:59.000Z

11

Livermore team successfully leads important test of a conventional warhead  

NLE Websites -- All DOE Office Websites (Extended Search)

102813_dod 102813_dod 10/28/2013 Livermore team successfully leads important test of a conventional warhead for the DoD Anne M Stark, LLNL, (925) 422-9799, stark8@llnl.gov LLNL served as technical lead and integrator on an important test to assess a new conventional warhead designed by the Lab. Dave Hare, Livermore's program manager of the test, called it an "unequivocal success." Below is the press release from the Department of Defense Defense Department successfully conducts warhead sled test The Defense Department announced recently the successful testing of an advanced conventional precision effects warhead, a critical part of a national effort to establish a conventional prompt strike capability. This capability will contribute to the country's ability to defend its interests

12

PROPERTIES IMPORTANT TO MIXING FOR WTP LARGE SCALE INTEGRATED TESTING  

Science Conference Proceedings (OSTI)

Large Scale Integrated Testing (LSIT) is being planned by Bechtel National, Inc. to address uncertainties in the full scale mixing performance of the Hanford Waste Treatment and Immobilization Plant (WTP). Testing will use simulated waste rather than actual Hanford waste. Therefore, the use of suitable simulants is critical to achieving the goals of the test program. External review boards have raised questions regarding the overall representativeness of simulants used in previous mixing tests. Accordingly, WTP requested the Savannah River National Laboratory (SRNL) to assist with development of simulants for use in LSIT. Among the first tasks assigned to SRNL was to develop a list of waste properties that matter to pulse-jet mixer (PJM) mixing of WTP tanks. This report satisfies Commitment 5.2.3.1 of the Department of Energy Implementation Plan for Defense Nuclear Facilities Safety Board Recommendation 2010-2: physical properties important to mixing and scaling. In support of waste simulant development, the following two objectives are the focus of this report: (1) Assess physical and chemical properties important to the testing and development of mixing scaling relationships; (2) Identify the governing properties and associated ranges for LSIT to achieve the Newtonian and non-Newtonian test objectives. This includes the properties to support testing of sampling and heel management systems. The test objectives for LSIT relate to transfer and pump out of solid particles, prototypic integrated operations, sparger operation, PJM controllability, vessel level/density measurement accuracy, sampling, heel management, PJM restart, design and safety margin, Computational Fluid Dynamics (CFD) Verification and Validation (V and V) and comparison, performance testing and scaling, and high temperature operation. The slurry properties that are most important to Performance Testing and Scaling depend on the test objective and rheological classification of the slurry (i.e., Newtonian or non-Newtonian). The most important properties for testing with Newtonian slurries are the Archimedes number distribution and the particle concentration. For some test objectives, the shear strength is important. In the testing to collect data for CFD V and V and CFD comparison, the liquid density and liquid viscosity are important. In the high temperature testing, the liquid density and liquid viscosity are important. The Archimedes number distribution combines effects of particle size distribution, solid-liquid density difference, and kinematic viscosity. The most important properties for testing with non-Newtonian slurries are the slurry yield stress, the slurry consistency, and the shear strength. The solid-liquid density difference and the particle size are also important. It is also important to match multiple properties within the same simulant to achieve behavior representative of the waste. Other properties such as particle shape, concentration, surface charge, and size distribution breadth, as well as slurry cohesiveness and adhesiveness, liquid pH and ionic strength also influence the simulant properties either directly or through other physical properties such as yield stress.

Koopman, D.; Martino, C.; Poirier, M.

2012-04-26T23:59:59.000Z

13

Recovery Efficiency Test Project Phase 2 activity report, Volume 1  

Science Conference Proceedings (OSTI)

The purpose of Phase II operations of the Recovery Efficiency Test Project is to enhance the natural production of the well and evaluate the relative improvement as a function of the type of stimulation conducted. Another purpose is to compare the stimulated production performance of the horizontal well with vertical wells in the field. The objectives considered for Phase II operations and plans were: (1) Develop a rationale for a systematic approach to designing stimulations for the well. (2) Conduct a series of stimulations designed to optimize the fluids, injection rates, proppant volumes and general approach to stimulating a horizontal well with similar geologic conditions. (3) Develop and test a method or methods for determining the geometry of stimulation-induced fractures. (4) Conduct tests and analyze the results to determine the efficiency of stimulation operations. The technical approach pursued in developing plans to accomplish three objectives was to: (1) Review the data needs for all objectives and obtain that data first. (2) Identify the operating geologic, geomechanical, and reservoir parameters that need additional clarification or definition. (3) Investigate existing models which could be used to plan or evaluate stimulation on the well and the reservoir. (4) Plan for analysis and verification of models and approaches.

Overbey, W.K. Jr.; Salamy, S.P.; Locke, C.D.

1989-02-01T23:59:59.000Z

14

Recovery Act Funds Test Reactor Dome Removal in Historic D&D Project |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Recovery Act Funds Test Reactor Dome Removal in Historic D&D Recovery Act Funds Test Reactor Dome Removal in Historic D&D Project Recovery Act Funds Test Reactor Dome Removal in Historic D&D Project February 1, 2011 - 12:00pm Addthis Media Contacts Jim Giusti, DOE (803) 952-7697 james-r.giusti@srs.gov Paivi Nettamo, SRNS (803) 646-6075 paivi.nettamo@srs.gov AIKEN, S.C. - The landscape of the Savannah River Site (SRS) is a little flatter and a little less colorful with the removal today of the 75-foot-tall rusty-orange dome from the Cold War-era test reactor. This $25-million reactor decommissioning and deactivation project is funded By the American Recovery and Reinvestment Act. Affectionately known by SRS employees as "Hector," the iconic Heavy Water Components Test Reactor (HWCTR) has stood in the Site's B Area since 1959

15

Evaluation of the North Burbank Unit tertiary recovery pilot test  

SciTech Connect

A review of the performance of the Phillips North Burbank micellar-polymer flood has been completed. The projected ultimate recovery is estimated to be ca 300,000 bbl, which is approximately one-half of the initial prediction made by Phillips. Although oil recovery has been less than expected, sufficient additional oil has been recovered to consider the project technically successful. The lower-than-expected oil recovery is attributed principally to high sulfonate losses. Loss of the sulfonate appears to be the result of significant adsorption to the oil-wet pore surfaces and mixing of micellar fluids with in-place water, which is of high salinity and hardness. Contact of the sulfonate with the high concentration of calcium ions creates calcium sulfonate, which either precipitates as an insoluble phase or partitions into the oil phase. Sulfonate partitioning would have created an upper-phase microemulsion, which cannot be displaced easily by water due to the relatively high interfacial tension. 11 references.

Tracy, G.W.; Dauben, D.L.

1982-08-01T23:59:59.000Z

16

Energy recovery from waste incineration: Assessing the importance of district heating networks  

SciTech Connect

Municipal solid waste incineration contributes with 20% of the heat supplied to the more than 400 district heating networks in Denmark. In evaluation of the environmental consequences of this heat production, the typical approach has been to assume that other (fossil) fuels could be saved on a 1:1 basis (e.g. 1 GJ of waste heat delivered substitutes for 1 GJ of coal-based heat). This paper investigates consequences of waste-based heat substitution in two specific Danish district heating networks and the energy-associated interactions between the plants connected to these networks. Despite almost equal electricity and heat efficiencies at the waste incinerators connected to the two district heating networks, the energy and CO{sub 2} accounts showed significantly different results: waste incineration in one network caused a CO{sub 2} saving of 48 kg CO{sub 2}/GJ energy input while in the other network a load of 43 kg CO{sub 2}/GJ. This was caused mainly by differences in operation mode and fuel types of the other heat producing plants attached to the networks. The paper clearly indicates that simple evaluations of waste-to-energy efficiencies at the incinerator are insufficient for assessing the consequences of heat substitution in district heating network systems. The paper also shows that using national averages for heat substitution will not provide a correct answer: local conditions need to be addressed thoroughly otherwise we may fail to assess correctly the heat recovery from waste incineration.

Fruergaard, T.; Christensen, T.H. [Department of Environmental Engineering, Technical University of Denmark, Kongens Lyngby (Denmark); Astrup, T., E-mail: tha@env.dtu.d [Department of Environmental Engineering, Technical University of Denmark, Kongens Lyngby (Denmark)

2010-07-15T23:59:59.000Z

17

Recovery Act-Funded Study Assesses Contamination at Former Test Site in  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Act-Funded Study Assesses Contamination at Former Test Act-Funded Study Assesses Contamination at Former Test Site in California Recovery Act-Funded Study Assesses Contamination at Former Test Site in California Workers in a study funded by $38 million from the American Recovery and Reinvestment Act to assess radiological contamination have collected more than 600 soil samples and surveyed 120 acres of land for gamma radiation. Under an interagency agreement with DOE, the Environmental Protection Agency (EPA) is conducting the study at Santa Susana Field Laboratory (SSFL) Area IV and the Northern Undeveloped Land. Recovery Act-Funded Study Assesses Contamination at Former Test Site in California More Documents & Publications EA-1345: Final Environmental Assessment EIS-0402: Notice of Intent to Prepare an Environmental Impact Statement

18

Important?  

NLE Websites -- All DOE Office Websites (Extended Search)

What are Neutrons, What are Neutrons, and Why are They Important? Before we can understand neutrons, we need to understand atoms. Everything in the world is made up of atoms: the air, trees, cars- even your body is made up of atoms. Atoms are so small that you need a very powerful magnifying glass to see them. There are 100,000,000,000,000,000,000 atoms in a single drop of water! Even though atoms are very small, they are made up

19

INDUSTRIAL HYGIENE ASPECTS OF UNDERGROUND NUCLEAR WEAPON TEST DEBRIS RECOVERY  

SciTech Connect

The formation of a collapse crater by underground nuclear explosions is described. Safety problems associated with the re-entry of underground nuclear explosion areas include cavity collapse, toxic gases, explosive gases, radioactive gases, radioactive core, and hazards from the movement of heavy equipment on unstable ground. Data irom television, geophones, and telemetered radiation detectors determine when radiation and toxic material surveys of the area can be made and drills can be used to obtain samples of the bubble crust for analysis. Hazards to persornel engaged in obtaining weapon debris samples are reviewed. Data are presented on the radiation dose received by personnel at the Nevada Test Site engaged in this work during 1962. (C.H.)

Wilcox, F.W.

1963-03-27T23:59:59.000Z

20

Design Construction and Test Results of a HTS Solenoid for Energy Recovery Linac  

NLE Websites -- All DOE Office Websites (Extended Search)

DESIGN CONSTRUCTION AND TEST RESULTS OF A HTS SOLENOID DESIGN CONSTRUCTION AND TEST RESULTS OF A HTS SOLENOID FOR ENERGY RECOVERY LINAC* R. Gupta # , M. Anerella, I. Ben-Zvi, G. Ganetis, D. Kayran, G. McIntyre, J. Muratore, S. Plate and W. Sampson, Brookhaven National Laboratory, Upton, NY, 11973 USA and M. Cole and D. Holmes, Advanced Energy Systems, Inc., Medord, NY, 11763 USA Abstract An innovative feature of the proposed Energy Recovery Linac (ERL) is the use of a solenoid made with High Temperature Superconductor (HTS) with the Superconducting RF cavity. The use of HTS allows solenoid to be placed in close proximity to the cavity and thus provides early focusing of the electron beam. In addition, cryogenic testing at ~77 K is simpler and cheaper than 4 K testing. This paper will present the

Note: This page contains sample records for the topic "recovery testing important" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

Field pilot tests for tertiary recovery using butane and propane injection  

SciTech Connect

This work describes a pilot project for tertiary recovery of liquid hydrocarbons through LPG injection in water-out sections of the Bolivar reservoir in La Pena Field, Santa Cruz, Boliva. The promising results obtained in the initial field miscibility tests, as well as the results from a mathematical model built to stimulate and evaluate the tertiary recovery project, directed subsequent work into a cyclic scheme for enhanced recovery. This scheme is explained and injection production data is presented. Field facilities built to handle both the injected LPG and the produced oil-LPG mixture are described. The oil/LPG ratio and the LPG recovered/injected fraction are the main factors measured in this to make further considerations for a full scale project.

Pacheco, E.F.; Garcia, A.I.

1981-01-01T23:59:59.000Z

22

Archaeological data recovery at drill hole U19az, Nevada Test Site, Nye County, Nevada  

Science Conference Proceedings (OSTI)

At the request of the Department of Energy, Nevada Field Office (DOE/NV), the Desert Research Institute (DRI) conducted archaeological data recovery at drill hole U19az on the Nevada Test Site in February 1988 and April 1990. The work focused on a site that was recommended as eligible to the National Register of Historic Places. DOE/NV chose to mitigate adverse impacts to the site though a data recovery program. The mapping and collection of artifacts took place in two discrete areas, covering almost 10 hectares (24.71 acres). In addition to surface collection, 11 test pits and 12 surface scrapes were excavated. Information was sought to address four research questions concerned with the age of the site, the subsistence and demography of the site's inhabitants, and the behavioral implications of their lithic technology. This report describes and presents the results of the data recovery at drill hole U19az. The analyses of the artifacts indicate that the site was inhabited between 5,000 years ago and historic times. Relative artifact abundance indicates the most intense use occurred from about 4,000 to 1,500 years ago.

Lancaster, J.

1992-01-01T23:59:59.000Z

23

Archaeological data recovery at drill hole U19az, Nevada Test Site, Nye County, Nevada  

SciTech Connect

At the request of the Department of Energy, Nevada Field Office (DOE/NV), the Desert Research Institute (DRI) conducted archaeological data recovery at drill hole U19az on the Nevada Test Site in February 1988 and April 1990. The work focused on a site that was recommended as eligible to the National Register of Historic Places. DOE/NV chose to mitigate adverse impacts to the site though a data recovery program. The mapping and collection of artifacts took place in two discrete areas, covering almost 10 hectares (24.71 acres). In addition to surface collection, 11 test pits and 12 surface scrapes were excavated. Information was sought to address four research questions concerned with the age of the site, the subsistence and demography of the site`s inhabitants, and the behavioral implications of their lithic technology. This report describes and presents the results of the data recovery at drill hole U19az. The analyses of the artifacts indicate that the site was inhabited between 5,000 years ago and historic times. Relative artifact abundance indicates the most intense use occurred from about 4,000 to 1,500 years ago.

Lancaster, J.

1992-12-31T23:59:59.000Z

24

Tests show ability of vacuum circuit breaker to interrupt fast transient recovery voltage rates of rise of transformer secondary faults  

Science Conference Proceedings (OSTI)

A vacuum circuit breaker demonstrated its ability to interrupt short circuits with faster than normal rates of rise of transient recovery voltage (TRV) at levels greater than those produced by most transformer secondary faults. Two recent exploratory test programs evaluated the interrupting ability of a 15kV vacuum circuit breaker containing interrupters of the rotating arc type with contacts made from a chromium-copper powder metal mixture. The interrupting conditions covered a wide range of currents from 10% to 130% of the 28kA rated short circuit current of the tested circuit breaker and a wide range of TRV rates of rise, including the relatively slow rate of rise, normally used in testing and found in most indoor circuit breaker applications, two faster rates of rise equaling and exceeding those found in a known power plant transformer secondary protection application, and the fastest rates of rise possible in the laboratory which exceed the requirements of most transformer secondary faults. These tests showed that the interrupting performance of the tested vacuum circuit breaker was unaffected by the TRV rate of rise to the fastest rates available in the test lab. Such a vacuum circuit breaker can therefore be used without TRV modifying capacitors to slow down the rate of rise provided by the power system. This ability is particularly important if analysis shows that the expected TRV from a transformer secondary fault has a fast rate of rise beyond the recognized ability of an older circuit breaker to acceptably interrupt.

Smith, R.K. [Westinghouse Science and Technology Center, Pittsburgh, PA (United States)

1995-01-01T23:59:59.000Z

25

Enhanced recovery update  

SciTech Connect

Three key projects featuring enhanced operations in California are described. In the Kern River oil field, steaming at a pilot project is testing the hot plate heavy oil recovery method. In Buena Vista oil field, steam will be injected in a test project to determine the commercial feasibility of using steam for the enhanced recovery of light crude oil. Also, in the McKittrick oil field, 2 processes are being considered for a commercial heavy oil mining venture. Steam continues to be the most important element in the recovery of hard-to-produce oil. Other steam-using projects are highlighted.

Rintoul, B.

1984-02-01T23:59:59.000Z

26

Design Construction and Test Results of a HTS Solenoid For Energy Recovery Linac  

SciTech Connect

An innovative feature of the proposed Energy Recovery Linac (ERL) is the use of a solenoid made with High Temperature Superconductor (HTS) with the Superconducting RF cavity. The use of HTS allows solenoid to be placed in close proximity to the cavity and thus provides early focusing of the electron beam. In addition, cryogenic testing at {approx}77 K is simpler and cheaper than 4 K testing. This paper will present the design, construction and test results of this HTS solenoid. The HTS solenoid in the proposed ERL will be situated in the transition region between the superconducting cavity at {approx}4 K and the cryostat at the room temperature. Solenoid inside the cryogenic structure provides an early focusing and hence low emittance beam. The temperature in the transition region will be too high for a conventional low temperature superconductor and resistive heat load from copper coils will be too high on cryogenic system. HTS coils also allow much higher current density and significant reduction in size as compared to copper coils. Hence HTS solenoid provide a unique and technically superior solution. The use of a HTS solenoid with superconducting cavity offers a unique option as it can be placed in a cold to warm transition region to provide early focussing without using additional space. Construction and test results so far are very encouraging for its use in the ERL project.

Anerella, M; Ben-Zvi, I; Kayran, D; McIntyre, G; Muratore, J; Plate, S; Sampson, W; Cole, M

2011-03-28T23:59:59.000Z

27

Assessing recycling versus incineration of key materials in municipal waste: The importance of efficient energy recovery and transport distances  

SciTech Connect

Highlights: Black-Right-Pointing-Pointer We model the environmental impact of recycling and incineration of household waste. Black-Right-Pointing-Pointer Recycling of paper, glass, steel and aluminium is better than incineration. Black-Right-Pointing-Pointer Recycling and incineration of cardboard and plastic can be equally good alternatives. Black-Right-Pointing-Pointer Recyclables can be transported long distances and still have environmental benefits. Black-Right-Pointing-Pointer Paper has a higher environmental benefit than recyclables found in smaller amounts. - Abstract: Recycling of materials from municipal solid waste is commonly considered to be superior to any other waste treatment alternative. For the material fractions with a significant energy content this might not be the case if the treatment alternative is a waste-to-energy plant with high energy recovery rates. The environmental impacts from recycling and from incineration of six material fractions in household waste have been compared through life cycle assessment assuming high-performance technologies for material recycling as well as for waste incineration. The results showed that there are environmental benefits when recycling paper, glass, steel and aluminium instead of incinerating it. For cardboard and plastic the results were more unclear, depending on the level of energy recovery at the incineration plant, the system boundaries chosen and which impact category was in focus. Further, the environmental impact potentials from collection, pre-treatment and transport was compared to the environmental benefit from recycling and this showed that with the right means of transport, recyclables can in most cases be transported long distances. However, the results also showed that recycling of some of the material fractions can only contribute marginally in improving the overall waste management system taking into consideration their limited content in average Danish household waste.

Merrild, Hanna [Department of Environmental Engineering, Technical University of Denmark, Miljoevej, Building 113, DK-2800 Kongens Lyngby (Denmark); Larsen, Anna W., E-mail: awla@env.dtu.dk [Department of Environmental Engineering, Technical University of Denmark, Miljoevej, Building 113, DK-2800 Kongens Lyngby (Denmark); Christensen, Thomas H. [Department of Environmental Engineering, Technical University of Denmark, Miljoevej, Building 113, DK-2800 Kongens Lyngby (Denmark)

2012-05-15T23:59:59.000Z

28

Recovery Efficiency Test Project Phase 2 activity report, Volume 1. Final report  

Science Conference Proceedings (OSTI)

The purpose of Phase II operations of the Recovery Efficiency Test Project is to enhance the natural production of the well and evaluate the relative improvement as a function of the type of stimulation conducted. Another purpose is to compare the stimulated production performance of the horizontal well with vertical wells in the field. The objectives considered for Phase II operations and plans were: (1) Develop a rationale for a systematic approach to designing stimulations for the well. (2) Conduct a series of stimulations designed to optimize the fluids, injection rates, proppant volumes and general approach to stimulating a horizontal well with similar geologic conditions. (3) Develop and test a method or methods for determining the geometry of stimulation-induced fractures. (4) Conduct tests and analyze the results to determine the efficiency of stimulation operations. The technical approach pursued in developing plans to accomplish three objectives was to: (1) Review the data needs for all objectives and obtain that data first. (2) Identify the operating geologic, geomechanical, and reservoir parameters that need additional clarification or definition. (3) Investigate existing models which could be used to plan or evaluate stimulation on the well and the reservoir. (4) Plan for analysis and verification of models and approaches.

Overbey, W.K. Jr.; Salamy, S.P.; Locke, C.D.

1989-02-01T23:59:59.000Z

29

Cryogenic system for the Energy Recovery Linac and vertical test facility at BNL  

SciTech Connect

A small cryogenic system and warm helium vacuum pumping system provides cooling to either the Energy Recovery Linac's (ERL) cryomodules that consist of a 5-cell cavity and an SRF gun or a large Vertical Test Dewar (VTD) at any given time. The cryogenic system consists of a model 1660S PSI piston plant, a 3800 liter storage dewar, subcooler, a wet expander, a 50 g/s main helium compressor, and a 170 m{sup 3} storage tank. A system description and operating plan of the cryogenic plant and cryomodules is given. The cryogenic system for ERL and the Vertical Test Dewar has a plant that can produce the equivalent of 300W at 4.5K with the addition of a wet expander 350 W at 4.5K. Along with this system, a sub-atmospheric, warm compression system provides pumping to produce 2K at the ERL cryomodules or the Vertical Test Dewar. The cryogenic system for ERL and the Vertical Test Dewar makes use of existing equipment for putting a system together. It can supply either the ERL side or the Vertical Test Dewar side, but not both at the same time. Double valve isolation on the liquid helium supply line allows one side to be warmed to room temperature and worked on while the other side is being held at operating temperature. The cryogenic system maintain the end loads from 4.4K to 2K or colder depending on capacity. Liquid helium storage dewar capacity allows ERL or the VTD to operate above the plant's capacity when required and ERL cryomodules ballast reservoirs and VTD reservoir allows the end loads to operate on full vacuum pump capacity when required.

Than, R.; Soria, V.; Lederle, D.; Orfin, P.; Porqueddu, R.; Talty, P.; Zhang, Y.; Tallerico, T.; Masi, L.

2011-03-28T23:59:59.000Z

30

Resource Conservation and Recovery Act Industrial Sites quality assurance project plan: Nevada Test Site, Nevada  

SciTech Connect

This quality assurance project plan (QAPjP) describes the measures that shall be taken to ensure that the environmental data collected during characterization and closure activities of Resource Conservation and Recovery Act (RCRA) Industrial Sites at the Nevada Test Site (NTS) are meaningful, valid, defensible, and can be used to achieve project objectives. These activities are conducted by the US Department of Energy Nevada Operations Office (DOE/NV) under the Nevada Environmental Restoration (ER) Project. The Nevada ER Project consists of environmental restoration activities on the NTS, Tonopah Test Range, Nellis Air Force Range, and eight sites in five other states. The RCRA Industrial Sites subproject constitutes a component of the Nevada ER Project. Currently, this QAPjP is limited to the seven RCRA Industrial Sites identified within this document that are to be closed under an interim status and pertains to all field-investigation, analytical-laboratory, and data-review activities in support of these closures. The information presented here supplements the RCRA Industrial Sites Project Management Plan and is to be used in conjunction with the site-specific subproject sampling and analysis plans.

Not Available

1994-06-01T23:59:59.000Z

31

Bleaching and Purifying Fats and Oils: Theory and PracticeChapter 9 Important Tests Relating to Bleaching  

Science Conference Proceedings (OSTI)

Bleaching and Purifying Fats and Oils: Theory and Practice Chapter 9 Important Tests Relating to Bleaching Processing eChapters Processing Press † Downloadable pdf of Chapter 9 Important Tests Relati

32

Waste Heat Recovery from the Advanced Test Reactor Secondary Coolant Loop  

Science Conference Proceedings (OSTI)

This study investigated the feasibility of using a waste heat recovery system (WHRS) to recover heat from the Advanced Test Reactor (ATR) secondary coolant system (SCS). This heat would be used to preheat air for space heating of the reactor building, thus reducing energy consumption, carbon footprint, and energy costs. Currently, the waste heat from the reactor is rejected to the atmosphere via a four-cell, induced-draft cooling tower. Potential energy and cost savings are 929 kW and $285K/yr. The WHRS would extract a tertiary coolant stream from the SCS loop and pump it to a new plate and frame heat exchanger, from which the heat would be transferred to a glycol loop for preheating outdoor air supplied to the heating and ventilation system. The use of glycol was proposed to avoid the freezing issues that plagued and ultimately caused the failure of a WHRS installed at the ATR in the 1980s. This study assessed the potential installation of a new WHRS for technical, logistical, and economic feasibility.

Donna Post Guillen

2012-11-01T23:59:59.000Z

33

Does Tracking Affect the Importance of Family Background on Studentís Test Scores?  

E-Print Network (OSTI)

This study investigates whether tracking students according to ability affects the importance of family background on studentís educational test scores. Using data from the PISA 2003, PISA 2000 and the PIRLS 2001 studies this paper uses the cross-country variation in tracking policies to identify the effect of tracking. The results indicate that family background is more important in countries, which track students early in a simple cross section. Using a difference-in-differences methodology to control for unobserved country level variables I find, however, that the importance of family background does not increase after actual tracking has taken place. This result is very different to the findings of two concurrent papers using a similar approach. Both of these papers Önd that tracking affects educational equity. Using a number of robustness checks, however, I find that the results presented in this research are robust to using different tracking measures, datasets and speciÖcations.

Fabian Waldinger

2005-01-01T23:59:59.000Z

34

Recovery Act-Funded Study Assesses Contamination at Former Test Site in California  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

CANOGA PARK, Calif. - Workers in a study funded by $38 million from the American Recovery CANOGA PARK, Calif. - Workers in a study funded by $38 million from the American Recovery and Reinvestment Act to assess radiological contamination have collected more than 600 soil samples and surveyed 120 acres of land for gamma radiation. Under an interagency agreement with DOE, the Environmental Protection Agency (EPA) is conduct- ing the study at Santa Susana Field Laboratory (SSFL) Area IV and the Northern Undeveloped Land. DOE's Energy Technology Engineering Center (ETEC) is located in Area IV. Results of the study will guide cleanup decisions for this portion of SSFL, which was once used for a broad range of energy related research and development. The EPA is collecting soil samples to determine the nature and extent of radiological contamina-

35

Bench-scale testing and evaluation of the direct sulfur recovery process. Final report, February 1990--March 1994  

SciTech Connect

The Direct Sulfur Recovery Process (DSRP) is a two-stage catalytic reduction process for efficiently recovering up to 99% or higher amounts of elemental sulfur from SO{sub 2}-containing regeneration tail-gas produced in advanced integrated gasification combined cycle (IGCC) power systems by reacting the tail-gas with a small slipstream of coal gas. In this project, the DSRP was demonstrated with simulated gases at bench-scale with 3-in. diameter, 1-L size catalytic reactors. Fundamental kinetic and modeling studies were conducted to explain the significantly higher than thermodynamically expected sulfur recoveries in DSRP and to enable prediction of sulfur recovery in larger reactors. Technology transfer activities to promote the DSRP consisted of publications and discussions with architectural engineering firms and industrial parties especially IGCC system developers. Toward the end of the project, an agreement was signed with an IGCC system developer to scale up the DSRP and test it with actual gases in their 10-MW (thermal) coal gasification pilot-plant under a cooperative R&D agreement with the US Department of Energy.

Gangwal, S.K.; Chen, D.H.

1994-05-01T23:59:59.000Z

36

Astrophysical tests of atomic data important for stellar Mg abundance determinations  

E-Print Network (OSTI)

Magnesium abundances of cool stars with different metallicities are important for understanding the galactic chemical evolution. This study tests atomic data used in stellar magnesium abundance analyses. We evaluate non-local thermodynamical equilibrium (NLTE) line formation for Mg I using the most up-to-date theoretical and experimental atomic data available so far and check the Mg abundances from individual lines in the Sun, four well studied A-type stars, and three reference metal-poor stars. With the adopted gf-values, NLTE abundances derived from the Mg I 4703 A, 5528 A, and Mg Ib lines are consistent within 0.05 dex for each A-type star. The same four Mg I lines in the solar spectrum give consistent NLTE abundances at $\\log N_{\\rm Mg}/N_{\\rm H} = -4.45$, when correcting the van der Waals damping constants inferred from the perturbation theory. Inelastic Mg+H collisions as treated by Barklem, Belyaev, Spielfiedel, Guitou, and Feautrier serve as efficient thermalizing process for the statistical equilibri...

Mashonkina, Lyudmila

2012-01-01T23:59:59.000Z

37

Recovery Efficiency Test Project: Phase 1, Activity report. Volume 1: Site selection, drill plan preparation, drilling, logging, and coring operations  

SciTech Connect

The recovery Efficiency Test well project addressed a number of technical issues. The primary objective was to determine the increased efficiency gas recovery of a long horizontal wellbore over that of a vertical wellbore and, more specifically, what improvements can be expected from inducing multiple hydraulic fractures from such a wellbore. BDM corporation located, planned, and drilled a long radius turn horizontal well in the Devonian shale Lower Huron section in Wayne County, West Virginia, demonstrating that state-of-the-art technology is capable of drilling such wells. BDM successfully tested drilling, coring, and logging in a horizontal well using air as the circulating medium; conducted reservoir modeling studies to protect flow rates and reserves in advance of drilling operations; observed two phase flow conditions in the wellbore not observed previously; cored a fracture zone which produced gas; observed that fractures in the core and the wellbore were not systematically spaced (varied from 5 to 68 feet in different parts of the wellbore); observed that highest gas show rates reported by the mud logger corresponded to zone with lowest fracture spacing (five feet) or high fracture frequency. Four and one-half inch casting was successfully installed in the borehole and was equipped to isolate the horizontal section into eight (8) zones for future testing and stimulation operations. 6 refs., 48 figs., 10 tabs.

Overbey, W.K. Jr.; Carden, R.S.; Kirr, J.N.

1987-04-01T23:59:59.000Z

38

Measurement of groove features and dimensions of the vertical test cathode and the choke joint of the superconducting electron gun cavity of the Energy Recovery LINAC  

Science Conference Proceedings (OSTI)

A testing program for the superconducting electron gun cavity that has been designed for the Energy Recovery LINAC is being planned. The goal of the testing program is to characterize the RF properties of the gun cavity at superconducting temperatures and, in particular, to study multipacting that is suspected to be occurring in the choke joint of the cavity where the vertical test cathode is inserted. The testing program will seek to understand the nature and cause of this multipacting and attempt to eliminate it, if possible, by supplying sufficient voltage to the cavity. These efforts are motivated by the multipacting issues that have been observed in the processing of the fine-grain niobium gun cavity. This cavity, which is being processed at Thomas Jefferson National Laboratory for Brookhaven, has encountered multipacting at a gradient of approximately 3 MV/m and, to date, has resisted efforts at elimination. Because of this problem, a testing program is being established here in C-AD that will use the large-grain niobium gun cavity that currently resides at Brookhaven and has been used for room-temperature measurements. The large-grain and fine-cavities are identical in every aspect of construction and only differ in niobium grain size. Thus, it is believed that testing and conditioning of the large-grain cavity should yield important insights about the fine-grain cavity. One element of this testing program involves characterizing the physical features of the choke joint of the cavity where the multipacting is believed to be occurring and, in particular the grooves of the joint. The configuration of the cavity and the vertical test cathode is shown in Figure 1. In addition, it is important to characterize the groove of the vertical test cathode. The grooved nature of these two components was specifically designed to prevent multipacting. However, it is suspected that, because of the chemical processing that the fine-grain gun cavity underwent along with the vertical test cathode, the geometry of these grooves was altered, presenting the possibility that multipacting may, in fact, be occurring in this area and contributing to the low gradients that have been observed in the fine-grain cavity. Therefore, the Survey and Alignment group in C-AD engaged in measurements of the cavity joint, shown in Figure 2 and the cathode weldment, shown in Figure 3 for the purpose of characterizing the grooves in both the cavity and the vertical test cathode and comparing the dimensions of the cathode with those of the prints supplied by Advanced Energy Systems (AES), the original designer and manufacturer of both the test cathode and the electron gun cavity, in preparation to have a new one manufactured. The goal was to ensure that the articles as built matched the design prints in preparation for manufacturing a new vertical test cathode. This report describes the data collected by the Survey group in these efforts. The endeavor was challenging for the group given the millimeter-scale dimensions of the grooves and the requirement for high precision.

Hammons, L.; Ke, M.

2011-10-13T23:59:59.000Z

39

THERMAL RECOVERY  

NLE Websites -- All DOE Office Websites (Extended Search)

THERMAL RECOVERY Thermal recovery comprises the techniques of steamflooding, cyclic steam stimulation, and in situ combustion. In steamflooding, high-temperature steam is injected...

40

Optimize carbon dioxide sequestration, enhance oil recovery  

NLE Websites -- All DOE Office Websites (Extended Search)

4 January Optimize carbon dioxide sequestration, enhance oil recovery Optimize carbon dioxide sequestration, enhance oil recovery The simulation provides an important...

Note: This page contains sample records for the topic "recovery testing important" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

Optimize carbon dioxide sequestration, enhance oil recovery  

NLE Websites -- All DOE Office Websites (Extended Search)

Optimize carbon dioxide sequestration, enhance oil recovery Optimize carbon dioxide sequestration, enhance oil recovery The simulation provides an important approach to estimate...

42

Definitions common to all certification and test procedures are in: D-200 Definitions for Certification Procedures and Test Procedures for Vapor Recovery Systems  

E-Print Network (OSTI)

For the purpose of this procedure, the term "ARB " refers to the State of California Air Resources Board, and the term "ARB Executive Officer " refers to the Executive Officer of the ARB or his or her authorized representative or designate. 1.1 General Applicability This procedure applies to the determination of the one minute static pressure performance of a vapor recovery system of a cargo tank by fluid mechanical principles. This procedure applies to any vapor emissions associated with the dispensing of any fluid, although it is written to reflect application to the hydrocarbon vapors associated with the dispensing of gasoline. 1.2 Determinations of Compliance and Violation Determinations of certain modes of compliance with and violation of certification specifications is outlined in ß 9. 1.3 Modifications Modification of this procedure may be necessary for vapors and fluids other than the hydrocarbon vapors associated with the dispensing of gasoline. Any modification of this method shall be subject to approval by the ARB Executive Officer. 2 PRINCIPLE AND SUMMARY OF TEST PROCEDURE Upon completion of loading operations at the bulk gasoline distribution facility, the gasoline cargo tank is pressurized, with nitrogen, to 18 inches water column. By using the total cargo California Air Resources Board March 17, 1999 TP-204.2, Page 1tank shell capacity, post-loading headspace volume, and the Ideal Gas Law, a one-minute maximum allowable pressure decay is calculated. The pressure decay is monitored for one minute and compliance is determined by comparison with the maximum allowable calculated value. The leak rate through the cargo tank internal vapor vent valve is similarly obtained. 3

unknown authors

1996-01-01T23:59:59.000Z

43

CO2 Storage and Enhanced Oil Recovery: Bald Unit Test Site, Mumford Hills Oil Field, Posey County, Indiana  

SciTech Connect

The Midwest Geological Sequestration Consortium (MGSC) carried out a small-scale carbon dioxide (CO2) injection test in a sandstone within the Clore Formation (Mississippian System, Chesterian Series) in order to gauge the large-scale CO2 storage that might be realized from enhanced oil recovery (EOR) of mature Illinois Basin oil fields via miscible liquid CO2 flooding. As part of the MGSC√?¬?√?¬?√?¬?√?¬Ę√?¬?√?¬?√?¬?√?¬?√?¬?√?¬?√?¬?√?¬?s Validation Phase (Phase II) studies, the small injection pilot test was conducted at the Bald Unit site within the Mumford Hills Field in Posey County, southwestern Indiana, which was chosen for the project on the basis of site infrastructure and reservoir conditions. Geologic data on the target formation were extensive. Core analyses, porosity and permeability data, and geophysical logs from 40 wells were used to construct cross sections and structure contour and isopach maps in order to characterize and define the reservoir architecture of the target formation. A geocellular model of the reservoir was constructed to improve understanding of CO2 behavior in the subsurface. At the time of site selection, the Field was under secondary recovery through edge-water injection, but the wells selected for the pilot in the Bald Unit had been temporarily shut-in for several years. The most recently shut-in production well, which was surrounded by four nearby shut-in production wells in a five-spot pattern, was converted to CO2 injection for this pilot. Two additional wells outside the immediate five-spot pattern, one of which was an active producer, were instrumented to measure surface temperature and pressure. The CO2 injection period lasted from September 3, 2009, through December 14, 2010, with one three-month interruption caused by cessation of CO2 deliveries due to winter weather. Water was injected into the CO2 injection well during this period. A total of 6,300 tonnes (6,950 tons) of CO2 were injected into the reservoir at rates that generally ranged from 18 to 32 tonnes (20 to 35 tons) per day. The CO2 injection bottomhole pressure generally remained at 8.3 to 9.0 MPag (1,200 to 1,300 psig). The CO2 injection was followed by continued monitoring for nine months during post-CO2 water injection. A monitoring, verification, and accounting (MVA) program was designed to determine the fate of injected CO2. Extensive periodic sampling and analysis of brine, groundwater, and produced gases began before CO2 injection and continued through the monitored waterflood periods. Samples were gathered from production wells and three newly installed groundwater monitoring wells. Samples underwent geochemical and isotopic analyses to reveal any CO2-related changes. Groundwater and kinetic modeling and mineralogical analysis were also employed to better understand the long-term dynamics of CO2 in the reservoir. No CO2 leakage into groundwater was detected, and analysis of brine and gas chemistry made it possible to track the path of plume migration and infer geochemical reactions and trapping of CO2. Cased-hole logging did not detect any CO2 in the near-wellbore region. An increase in CO2 concentration was first detected in February 2010 from the gas present in the carboy during brine sampling; however, there was no appreciable gas volume associated with the detection of CO2. The first indication of elevated gas rates from the commingled gas of the pilot√?¬?√?¬?√?¬?√?¬Ę√?¬?√?¬?√?¬?√?¬?√?¬?√?¬?√?¬?√?¬?s production wells occurred in July 2010 and reached a maximum of 0.36 tonnes/day (0.41 tons/day) in September 2010. An estimated 27 tonnes (30 tons) of CO2 were produced at the surface from the gas separator at the tank battery from September 3, 2009, through September 11, 2011, representing 0.5% of the injected CO2. Consequently, 99.5%

Frailey, Scott M.; Krapac, Ivan G.; Damico, James R.; Okwen, Roland T.; McKaskle, Ray W.

2012-03-30T23:59:59.000Z

44

Combustion testing and heat recovery study: Frank E. Van Lare Wastewater Treatment Plant, Monroe County. Final report  

DOE Green Energy (OSTI)

The objectives of the study were to record and analyze sludge management operations data and sludge incinerator combustion data; ascertain instrumentation and control needs; calculate heat balances for the incineration system; and determine the feasibility of different waste-heat recovery technologies for the Frank E. Van Lare (FEV) Wastewater Treatment Plant. As an integral part of this study, current and pending federal and state regulations were evaluated to establish their impact on furnace operation and subsequent heat recovery. Of significance is the effect of the recently promulgated Federal 40 CFR Part 503 regulations on the FEV facility. Part 503 regulations were signed into law in November 1992, and, with some exceptions, affected facilities must be in compliance by February 19, 1994. Those facilities requiring modifications or upgrades to their incineration or air pollution control equipment to meet Part 503 regulations must be in compliance by February 19, 1995.

NONE

1995-01-01T23:59:59.000Z

45

Symposium on enhanced oil recovery  

SciTech Connect

The Second Joint Symposium on Enhanced Oil Recovery was held in Tulsa, Oklahoma on April 5 to 8, 1981. Forty-four technical papers were presented which covered all phases of enhanced oil recovery. Field tests, laboratory investigations, and mathematical analyses of tertiary recovery methods such as microemulsion flooding, carbon dioxide injection, in-situ combustion, steam injection, and gas injection are presented.

Not Available

1981-01-01T23:59:59.000Z

46

Blackboard Test Taking tips Very important: If your instructor gives you a time block of one, two, or several days to complete  

E-Print Network (OSTI)

Blackboard Test Taking tips Very important: If your instructor gives you a time block of one, two instructor might also be less sympathetic. Before you start the test: · Be certain that you are ready to take the test & set aside time in which you will be free from interruptions BEFORE clicking on the link

Barrash, Warren

47

Recovery Act Recipient Reporting  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Smart Grid Investment Grant Recipients Smart Grid Investment Grant Recipients November 19, 2009 1 Outline of Presentation * OMB Reporting Requirements * Jobs Guidance * FR.gov 2 Section 1512 of American Reinvestment and Recovery Act Outlines Recipient Reporting Requirements "Recipient reports required by Section 1512 of the Recovery Act will answer important questions, such as: ‚Ė™ Who is receiving Recovery Act dollars and in what amounts? ‚Ė™ What projects or activities are being funded with Recovery Act dollars? ‚Ė™ What is the completion status of such projects or activities and what impact have they had on job creation and retention?" "When published on www.Recovery.gov, these reports will provide the public with an unprecedented level of transparency into how Federal dollars are being spent and will help drive accountability for the timely,

48

Interlinked Test Results for Fusion Fuel Processing and Blanket Tritium Recovery Systems Using Cryogenic Molecular Sieve Bed  

Science Conference Proceedings (OSTI)

A simulated fuel processing (cryogenic distillation columns and a palladium diffuser) and CMSB (cryogenic molecular sieve bed) systems were linked together, and were operated. The validity of the CMSB was discussed through this experiment as an integrated system for the recovery of blanket tritium. A gas stream of hydrogen isotopes and He was supplied to the CMSB as the He sweep gas in blanket of a fusion reactor. After the breakthrough of tritium was observed, regeneration of the CMSB was carried out by evacuating and heating. The hydrogen isotopes were finally recovered by the diffuser. At first, only He gas was sent by the evacuating. The hydrogen isotopes gas was then rapidly released by the heating. The system worked well against the above drastic change of conditions. The amount of hydrogen isotopes gas finally recovered by the diffuser was in good agreement with that adsorbed by the CMSB. The dynamic behaviors (breakthrough and regeneration) of the system were explained well by a set of basic codes.

Yamanishi, Toshihiko; Hayashi, Takumi; Kawamura, Yoshinori; Iwai, Yasunori; Isobe, Kanetsugu; Uzawa, Masayuki; Nishi, Masataka [Japan Atomic Energy Research Institute (Japan)

2005-07-15T23:59:59.000Z

49

Total Imports  

U.S. Energy Information Administration (EIA) Indexed Site

Data Series: Imports - Total Imports - Crude Oil Imports - Crude Oil, Commercial Imports - by SPR Imports - into SPR by Others Imports - Total Products Imports - Total Motor Gasoline Imports - Finished Motor Gasoline Imports - Reformulated Gasoline Imports - Reformulated Gasoline Blended w/ Fuel Ethanol Imports - Other Reformulated Gasoline Imports - Conventional Gasoline Imports - Conv. Gasoline Blended w/ Fuel Ethanol Imports - Conv. Gasoline Blended w/ Fuel Ethanol, Ed55 & Ed55 Imports - Other Conventional Gasoline Imports - Motor Gasoline Blend. Components Imports - Motor Gasoline Blend. Components, RBOB Imports - Motor Gasoline Blend. Components, RBOB w/ Ether Imports - Motor Gasoline Blend. Components, RBOB w/ Alcohol Imports - Motor Gasoline Blend. Components, CBOB Imports - Motor Gasoline Blend. Components, GTAB Imports - Motor Gasoline Blend. Components, Other Imports - Fuel Ethanol Imports - Kerosene-Type Jet Fuel Imports - Distillate Fuel Oil Imports - Distillate F.O., 15 ppm Sulfur and Under Imports - Distillate F.O., > 15 ppm to 500 ppm Sulfur Imports - Distillate F.O., > 500 ppm to 2000 ppm Sulfur Imports - Distillate F.O., > 2000 ppm Sulfur Imports - Residual Fuel Oil Imports - Propane/Propylene Imports - Other Other Oils Imports - Kerosene Imports - NGPLs/LRGs (Excluding Propane/Propylene) Exports - Total Crude Oil and Products Exports - Crude Oil Exports - Products Exports - Finished Motor Gasoline Exports - Kerosene-Type Jet Fuel Exports - Distillate Fuel Oil Exports - Residual Fuel Oil Exports - Propane/Propylene Exports - Other Oils Net Imports - Total Crude Oil and Products Net Imports - Crude Oil Net Imports - Petroleum Products Period: Weekly 4-Week Avg.

50

Environmental Restoration of Corrective Action Unit 408: Bomblet Target Area, Tonopah Test Range, Nevada (Funded by the American Reinvestment and Recovery Act)  

SciTech Connect

The mission of the U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office (NNSA/NSO) Environmental Restoration Program is to address the environmental impacts of weapons testing conducted on the Nevada National Security Site and the Nevada Test and Training Range. The large physical size of these sites, along with limits on funding and other resources available for remediation efforts, means that environmental restoration activities must be prioritized and accomplished incrementally over time. The remediation of a bomblet target area on the Tonopah Test Range (TTR), which is located within the Nevada Test and Training Range, was originally planned in 2007 but was not carried out until funding became available in the summer of 2009 through the American Reinvestment and Recovery Act. This activity was implemented in accordance with the Federal Facility Agreement and Consent Order established between NNSA/NSO and the Nevada Division of Environmental Protection. This activity which was complete by the end of Fiscal Year 2010, involved the excavation of disposal pits suspected of containing submunitions and the surface clearance of submunitions on seven target areas amounting to approximately 6.7 square kilometers of land at the TTR. The TTR was used by Sandia National Laboratories from the late 1960s through the mid-1980s to conduct research into the deployment of submunitions. Although there were efforts to identify, collect, and dispose various amounts of unexploded ordnance on the TTR in the past, no comprehensive effort to remediate the entire flightline area for submunitions was undertaken before this project.

Kevin Cabble (NSO), Mark Burmeister and Mark Krauss (N-I)

2011-03-03T23:59:59.000Z

51

Prototype Tests for the Recovery and Conversion of UF6 Chemisorbed in NaF Traps for the Molten Salt Reactor Remediation Project  

SciTech Connect

The remediation of the Molten Salt Reactor Experiment (MSRE) site includes the removal of about 37 kg of uranium. Of that inventory, about 23 kg have already been removed from the piping system and chemisorbed in 25 NaF traps. This material is being stored in Building 3019. The planned recovery of -11 kg of uranium from the fuel salt will generate another 15 to 19 NaF traps. The remaining 2 to 3 kg of uranium are present in activated charcoal beds, which are also scheduled to be removed from the reactor site. Since all of these materials (NaF traps and the uranium-laden charcoal) are not suitable for long-term storage, they will be converted to a chemical form [uranium oxide], which is suitable for long-term storage. This document describes the process that will be used to recover and convert the uranium in the NaF traps into a stable oxide for long-term storage. Included are a description of the process, equipment, test results, and lessons learned. The process was developed for remote operation in a hot cell. Lessons learned from the prototype testing were incorporated into the process design.

Del Cul, G.D.; Icenhour, A.S.; Simmons, D.W.

2000-04-01T23:59:59.000Z

52

Prototype Tests for the Recovery and Conversion of UF6Chemisorbed in NaF Traps for the Molten Salt Reactor Remediation Project  

SciTech Connect

The remediation of the Molten Salt Reactor Experiment (MSRE) site includes the removal of about 37 kg of uranium. Of that inventory, about 23 kg have already been removed from the piping system and chemisorbed in 25 NaF traps. This material is being stored in Building 3019. The planned recovery of {approx}11 kg of uranium from the fuel salt will generate another 15 to 19 NaF traps. The remaining 2 to 3 kg of uranium are present in activated charcoal beds, which are also scheduled to be removed from the reactor site. Since all of these materials (NaF traps and the uranium-laden charcoal) are not suitable for long-term storage, they will be converted to a chemical form [uranium oxide (U{sub 3}O{sub 8})], which is suitable for long-term storage. This document describes the process that will be used to recover and convert the uranium in the NaF traps into a stable oxide for long-term storage. Included are a description of the process, equipment, test results, and lessons learned. The process was developed for remote operation in a hot cell. Lessons learned from the prototype testing were incorporated into the process design.

Del Cul, G.D.

2000-06-07T23:59:59.000Z

53

Recovery Act  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

3 3 Recovery Act Buy American Requirements for Information Needed from Financial Assistance Applicants/Recipients for Waiver Requests Based on Unreasonable Cost or Nonavailability Applicants for and recipients of financial assistance funded by the Recovery Act must comply with the requirement that all of the iron, steel, and manufactured goods used for a project for the construction, alteration, maintenance, or repair of a public building or public work be produced in the United States, unless the head of the agency makes a waiver, or determination of inapplicability of the Buy American Recovery Act provisions, based on one of the authorized exceptions. The authorized exceptions are unreasonable cost, nonavailability, and in furtherance of the public interest. This

54

Recovery Act State Memos Ohio  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

20 20 For total Recovery Act jobs numbers in Ohio go to www.recovery.gov DOE Recovery Act projects in Ohio: 83 U.S. DEPARTMENT OF ENERGY * OHIO RECOVERY ACT SNAPSHOT The American Recovery & Reinvestment Act (ARRA) is making a meaningful down payment on the nation's energy and environmental future. The Recovery Act investments in Ohio are supporting a broad range of clean energy projects from the smart grid and energy efficiency to advanced battery manufacturing, biofuels, carbon capture and storage, and cleanup of the state's Cold War legacy nuclear sites Through these investments, Ohio's businesses, universities, non-profits, and local governments are creating quality jobs today and positioning Ohio to play an important role in the new energy economy of the future. EXAMPLES OF OHIO FORMULA GRANTS Program

55

Enhanced coalbed methane recovery  

SciTech Connect

The recovery of coalbed methane can be enhanced by injecting CO{sub 2} in the coal seam at supercritical conditions. Through an in situ adsorption/desorption process the displaced methane is produced and the adsorbed CO{sub 2} is permanently stored. This is called enhanced coalbed methane recovery (ECBM) and it is a technique under investigation as a possible approach to the geological storage of CO{sub 2} in a carbon dioxide capture and storage system. This work reviews the state of the art on fundamental and practical aspects of the technology and summarizes the results of ECBM field tests. These prove the feasibility of ECBM recovery and highlight substantial opportunities for interdisciplinary research at the interface between earth sciences and chemical engineering.

Mazzotti, M.; Pini, R.; Storti, G. [ETH, Zurich (Switzerland). Inst. of Process Engineering

2009-01-15T23:59:59.000Z

56

ARKANSAS RECOVERY ACT SNAPSHOT | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

ARKANSAS RECOVERY ACT SNAPSHOT ARKANSAS RECOVERY ACT SNAPSHOT ARKANSAS RECOVERY ACT SNAPSHOT Arkansas has substantial natural resources, including gas, oil, wind, biomass, and hydroelectric power. The American Recovery & Reinvestment Act (ARRA) is making a meaningful down payment on the nation's energy and environmental future. The Recovery Act investments in Arkansas are supporting a broad range of clean energy projects, from energy efficiency and the smart grid to advanced battery manufacturing and renewable energy. Through these investments, Arkansas's businesses, non-profits, and local governments are creating quality jobs today and positioning Arkansas to play an important role in the new energy economy of the future. ARKANSAS RECOVERY ACT SNAPSHOT More Documents & Publications

57

ALASKA RECOVERY ACT SNAPSHOT | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

ALASKA RECOVERY ACT SNAPSHOT ALASKA RECOVERY ACT SNAPSHOT ALASKA RECOVERY ACT SNAPSHOT Alaska has substantial natural resources, including oil, gas, coal, solar, wind, geothermal, and hydroelectric power .The American Recovery & Reinvestment Act (ARRA) is making a meaningful down payment on the nation's energy and environmental future. The Recovery Act investments in Alaska are supporting a broad range of clean energy projects, from energy efficiency and electric grid improvements to geothermal power. Through these investments, Alaska's businesses, universities, non-profits, and local governments are creating quality jobs today and positioning Alaska to play an important role in the new energy economy of the future. ALASKA RECOVERY ACT SNAPSHOT More Documents & Publications

58

GEORGIA RECOVERY ACT SNAPSHOT | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

GEORGIA RECOVERY ACT SNAPSHOT GEORGIA RECOVERY ACT SNAPSHOT GEORGIA RECOVERY ACT SNAPSHOT Georgia has substantial natural resources, including biomass and hydroelectric power .The American Recovery & Reinvestment Act (ARRA) is making a meaningful down payment on the nation's energy and environmental future. The Recovery Act investments in Georgia are supporting a broad range of clean energy projects, from energy efficiency and the smart grid to environmental cleanup and alternative fuels and vehicles. Through these investments, Georgia's businesses, universities, non-profits, and local governments are creating quality jobs today and positioning Georgia to play an important role in the new energy economy of the future. GEORGIA RECOVERY ACT SNAPSHOT More Documents & Publications

59

ARIZONA RECOVERY ACT SNAPSHOT | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

ARIZONA RECOVERY ACT SNAPSHOT ARIZONA RECOVERY ACT SNAPSHOT ARIZONA RECOVERY ACT SNAPSHOT Arizona has substantial natural resources, including coal, solar, and hydroelectric resources. The American Recovery & Reinvestment Act (ARRA) is making a meaningful down payment on the nation's energy and environmental future. The Recovery Act investments in Arizona reflect a broad range of clean energy projects, from energy efficiency and the smart grid to transportation, carbon capture and storage, and geothermal energy. Through these investments, Arizona's businesses, universities, non-profits, and local governments are creating quality jobs today and positioning Arizona to play an important role in the new energy economy of the future. ARIZONA RECOVERY ACT SNAPSHOT More Documents & Publications

60

ARKANSAS RECOVERY ACT SNAPSHOT | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

ARKANSAS RECOVERY ACT SNAPSHOT ARKANSAS RECOVERY ACT SNAPSHOT ARKANSAS RECOVERY ACT SNAPSHOT Arkansas has substantial natural resources, including gas, oil, wind, biomass, and hydroelectric power. The American Recovery & Reinvestment Act (ARRA) is making a meaningful down payment on the nation's energy and environmental future. The Recovery Act investments in Arkansas are supporting a broad range of clean energy projects, from energy efficiency and the smart grid to advanced battery manufacturing and renewable energy. Through these investments, Arkansas's businesses, non-profits, and local governments are creating quality jobs today and positioning Arkansas to play an important role in the new energy economy of the future. ARKANSAS RECOVERY ACT SNAPSHOT More Documents & Publications

Note: This page contains sample records for the topic "recovery testing important" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

GEORGIA RECOVERY ACT SNAPSHOT | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

GEORGIA RECOVERY ACT SNAPSHOT GEORGIA RECOVERY ACT SNAPSHOT GEORGIA RECOVERY ACT SNAPSHOT Georgia has substantial natural resources, including biomass and hydroelectric power .The American Recovery & Reinvestment Act (ARRA) is making a meaningful down payment on the nation's energy and environmental future. The Recovery Act investments in Georgia are supporting a broad range of clean energy projects, from energy efficiency and the smart grid to environmental cleanup and alternative fuels and vehicles. Through these investments, Georgia's businesses, universities, non-profits, and local governments are creating quality jobs today and positioning Georgia to play an important role in the new energy economy of the future. GEORGIA RECOVERY ACT SNAPSHOT More Documents & Publications

62

Distributed Generation Heat Recovery  

Science Conference Proceedings (OSTI)

Economic and environmental drivers are promoting the adoption of combined heat and power (CHP) systems. Technology advances have produced new and improved distributed generation (DG) units that can be coupled with heat recovery hardware to create CHP systems. Performance characteristics vary considerably among DG options, and it is important to understand how these characteristics influence the selection of CHP systems that will meet both electric and thermal site loads.

2002-03-06T23:59:59.000Z

63

Recovery Newsletters  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

newsletters Office of Environmental newsletters Office of Environmental Management 1000 Independence Ave., SW Washington, DC 20585 202-586-7709 en 2011 ARRA Newsletters http://energy.gov/em/downloads/2011-arra-newsletters 2011 ARRA Newsletters

64

Connecticut Recovery Act State Memo | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Connecticut Recovery Act State Memo Connecticut Recovery Act State Memo Connecticut Recovery Act State Memo The American Recovery & Reinvestment Act (ARRA) is making a meaningful downpayment on the nation's energy and environmental future. The Recovery Act investments in Connecticut are supporting abroad range of clean energy projects, from energy efficiency and the smartgrid to alternative fuels and geothermal energy. Through these investments, Connecticut's businesses, universities,non-profits, and local governments are creating quality jobs today and positioning Connecticut to play an important role in the new energy economy of the future. Connecticut Recovery Act State Memo More Documents & Publications California Recovery Act State Memo District of Columbia Recovery Act State Memo

65

HEAVY AND THERMAL OIL RECOVERY PRODUCTION MECHANISMS  

SciTech Connect

The Stanford University Petroleum Research Institute (SUPRI-A) studies oil recovery mechanisms relevant to thermal and heavy-oil production. The scope of work is relevant across near-, mid-, and long-term time frames. In August of 2000 we received funding from the U. S. DOE under Award No. DE-FC26-00BC15311 that completed December 1, 2003. The project was cost shared with industry. Heavy oil (10 to 20{sup o} API) is an underutilized energy resource of tremendous potential. Heavy oils are much more viscous than conventional oils. As a result, they are difficult to produce with conventional recovery methods. Heating reduces oil viscosity dramatically. Hence, thermal recovery is especially important because adding heat, usually via steam injection generally improves displacement efficiency. The objectives of this work were to improve our understanding of the production mechanisms of heavy oil under both primary and enhanced modes of operation. The research described spanned a spectrum of topics related to heavy and thermal oil recovery and is categorized into: (1) multiphase flow and rock properties, (2) hot fluid injection, (3) improved primary heavy-oil recovery, (4) in-situ combustion, and (5) reservoir definition. Technology transfer efforts and industrial outreach were also important to project effort. The research tools and techniques used were quite varied. In the area of experiments, we developed a novel apparatus that improved imaging with X-ray computed tomography (CT) and high-pressure micromodels etched with realistic sandstone roughness and pore networks that improved visualization of oil-recovery mechanisms. The CT-compatible apparatus was invaluable for investigating primary heavy-oil production, multiphase flow in fractured and unfractured media, as well as imbibition. Imbibition and the flow of condensed steam are important parts of the thermal recovery process. The high-pressure micromodels were used to develop a conceptual and mechanistic picture of primary heavy-oil production by solution gas drive. They allowed for direct visualization of gas bubble formation, bubble growth, and oil displacement. Companion experiments in representative sands and sandstones were also conducted to understand the mechanisms of cold production. The evolution of in-situ gas and oil saturation was monitored with CT scanning and pressure drop data. These experiments highlighted the importance of depletion rate, overburden pressure, and oil-phase chemistry on the cold production process. From the information provided by the experiments, a conceptual and numerical model was formulated and validated for the heavy-oil solution gas drive recovery process. Also in the area of mechanisms, steamdrive for fractured, low permeability porous media was studied. Field tests have shown that heat injected in the form of steam is effective at unlocking oil from such reservoir media. The research reported here elucidated how the basic mechanisms differ from conventional steamdrive and how these differences are used to an advantage. Using simulations of single and multiple matrix blocks that account for details of heat transfer, capillarity, and fluid exchange between matrix and fracture, the importance of factors such as permeability contrast between matrix and fracture and oil composition were quantified. Experimentally, we examined the speed and extent to which steam injection alters the permeability and wettability of low permeability, siliceous rocks during thermal recovery. Rock dissolution tends to increase permeability moderately aiding in heat delivery, whereas downstream the cooled fluid deposits silica reducing permeability. Permeability reduction is not catastrophic. With respect to wettability, heat shifts rock wettability toward more water wet conditions. This effect is beneficial for the production of heavy and medium gravity oils as it improves displacement efficiency. A combination of analytical and numerical studies was used to examine the efficiency of reservoir heating using nonconventional wells such as horizontal and multi

Anthony R. Kovscek; Louis M. Castanier

2003-12-31T23:59:59.000Z

66

CALIFORNIA RECOVERY ACT SNAPSHOT | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

CALIFORNIA RECOVERY ACT SNAPSHOT CALIFORNIA RECOVERY ACT SNAPSHOT CALIFORNIA RECOVERY ACT SNAPSHOT California has substantial natural resources, including oil, gas, solar, wind, geothermal, and hydroelectric power .The American Recovery & Reinvestment Act (ARRA) is making a meaningful down payment on the nation's energy and environmental future. The Recovery Act investments in California are supporting a broad range of clean energy projects, from energy efficiency and the smart grid to solar and wind, geothermal and biofuels, carbon capture and storage, and environmental cleanup. Through these investments, California's businesses, universities, national labs, non-profits, and local governments are creating quality jobs today and positioning California to play an important role in the new energy economy

67

CALIFORNIA RECOVERY ACT SNAPSHOT | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

CALIFORNIA RECOVERY ACT SNAPSHOT CALIFORNIA RECOVERY ACT SNAPSHOT CALIFORNIA RECOVERY ACT SNAPSHOT California has substantial natural resources, including oil, gas, solar, wind, geothermal, and hydroelectric power .The American Recovery & Reinvestment Act (ARRA) is making a meaningful down payment on the nation's energy and environmental future. The Recovery Act investments in California are supporting a broad range of clean energy projects, from energy efficiency and the smart grid to solar and wind, geothermal and biofuels, carbon capture and storage, and environmental cleanup. Through these investments, California's businesses, universities, national labs, non-profits, and local governments are creating quality jobs today and positioning California to play an important role in the new energy economy

68

Fermilab | Recovery Act | Features  

NLE Websites -- All DOE Office Websites (Extended Search)

Features - Archive Features - Archive photo Industrial Building 3 addition Fermilab Today-November 5, 2010 IB3 addition nears completion The future site of Fermilab’s new materials laboratory space has evolved from a steel outline to a fully enclosed building over the past five months. Read full column photo Fermilab Today-October 22, 2010 Recovery Act gives LBNE team chance to grow Thanks to funding from the American Recovery and Reinvestment Act, the collaboration for the Long-Baseline Neutrino Experiment, LBNE, has expanded its project team. Read full column photo cooling units Fermilab Today-October 15, 2010 Local company completes FCC roof construction A local construction company recently completed work on the roof of the Feynman Computing Center, an important step in an ongoing project funded by

69

Heavy crude oil recovery  

SciTech Connect

The oil crisis of the past decade has focused most of the attention and effort of researchers on crude oil resources, which are accepted as unrecoverable using known technology. World reserves are estimated to be 600-1000 billion metric tons, and with present technology 160 billion tons of this total can be recovered. This book is devoted to the discussion of Enhanced Oil Recovery (EOR) techniques, their mechanism and applicability to heavy oil reservoirs. The book also discusses some field results. The use of numerical simulators has become important, in addition to laboratory research, in analysing the applicability of oil recovery processes, and for this reason the last section of the book is devoted to simulators used in EOR research.

Okandan, E.

1984-01-01T23:59:59.000Z

70

Recovery Act Progress at Idaho National Lab | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Progress at Idaho National Lab Progress at Idaho National Lab Recovery Act Progress at Idaho National Lab August 19, 2010 - 5:09pm Addthis Andy Oare Andy Oare Former New Media Strategist, Office of Public Affairs Idaho National Laboratory (INL) is a hot bed of activity with various Recovery Act projects funded through the Office of Environmental Management. For example, North Wind Services will be constructing several new structures at the INL Radioactive Waste Management Complex -- facilities that will provide important protection from the elements and minimize the spread of contamination during buried waste excavation, retrieval and packaging operations. Pictures of Recovery Act Projects at Idaho National Lab Down the road at the Advanced Test Reactor Complex, TerranearPMC is working

71

ARM - Recovery Act Instruments  

NLE Websites -- All DOE Office Websites (Extended Search)

ActRecovery Act Instruments ActRecovery Act Instruments Recovery Act Logo Subscribe FAQs Recovery Act Instruments Recovery Act Fact Sheet March 2010 Poster (PDF, 10MB) External Resources Recovery Act - Federal Recovery Act - DOE Recovery Act - ANL Recovery Act - BNL Recovery Act - LANL Recovery Act - PNNL Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Recovery Act Instruments These pages provide a breakdown of the new instruments planned for installation among the permanent and mobile ARM sites. In addition, several instruments will be purchased for use throughout the facility and deployed as needed. These are considered "facility spares" and are included in the table below. View All | Hide All ARM Aerial Facility Instrument Title Instrument Mentor Measurement Group Measurements

72

Outlook for enhanced oil recovery  

Science Conference Proceedings (OSTI)

This paper reviews the potential for enhanced oil recovery, the evolutionary nature of the recovery processes being applied in oilfields today, key parameters that describe the technology state-of-the-art for each of the major oil recovery processes, and the nature and key outputs from the current Department of Energy research program on enhanced oil recovery. From this overview, it will be seen that the DOE program is focused on the analysis of ongoing tests and on long-range, basic research to support a more thorough understanding of process performance. Data from the program will be made available through reports, symposia, and on-line computer access; the outputs are designed to allow an independent producer to evaluate his own project as an effort to transfer rapidly the technology now being developed.

Johnson, H.R.

1982-01-01T23:59:59.000Z

73

Recovery Act Open House  

NLE Websites -- All DOE Office Websites (Extended Search)

Recovery Act Open House North Wind Environmental was one of three local small businesses that received Recovery Funding for projects at DOE's Idaho Site. Members of the community...

74

IOWA RECOVERY ACT SNAPSHOT | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

IOWA RECOVERY ACT SNAPSHOT IOWA RECOVERY ACT SNAPSHOT IOWA RECOVERY ACT SNAPSHOT Iowa has substantial natural resources, including wind power and is the largest ethanol producer in the United States. The American Recovery & Reinvestment Act (ARRA) is making a meaningful down payment on the nation's energy and environmental future. The Recovery Act investments in Iowa are supporting a broad range of clean energy projects, from energy efficiency and the smart grid to the Ames Laboratory. Through these investments, Iowa's businesses, universities, national labs, non-profits, and local governments are creating quality jobs today and positioning Iowa to play an important role in the new energy economy of the future. IOWA RECOVERY ACT SNAPSHOT More Documents & Publications Iowa Recovery Act State Memo

75

Eventdriven, Rolebased Mobility in Disaster Recovery Networks  

E-Print Network (OSTI)

-1-59593-737-7/07/0009 ...$5.00. disaster response scenarios, understanding communication patterns in such networks is criticalEvent­driven, Role­based Mobility in Disaster Recovery Networks Samuel C. Nelson, Albert F. Harris important tools in understanding the com- plex characteristics of disaster recovery networks is simula- tion

Kravets, Robin

76

Potential roles for bioprocessing in enhanced oil recovery  

SciTech Connect

Biotechnology can and is likely to play an important role in many aspects of microbial enhanced oil recovery (MEOR). Most current research is directed at in-situ production of surfactants, polymers, and other materials which can enhance the recovery of oil by altering interfacial properties, water (or oil) viscosity, or bulk flow patterns in the field. The mechanisms of MEOR are still not well understood, and better evaluations of the relative merits of in-situ and surface production of these materials are needed. Great care is needed to insure that field tests of MEOR are planned and executed so they answer specific questions and increase our understanding and predictions of MEOR results. There are also other potential uses of biotechnology in enhanced oil recovery which should be explored. The use of microbial action to reduce environmental problems from release or reinjection of flood waters could become very important if current exemptions of oil recovery operations from environmental regulations are not extended. 11 refs., 1 tab.

Watson, J.S.; Scott, C.D.

1987-01-01T23:59:59.000Z

77

Recovery News Flashes | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Recovery News Flashes Recovery News Flashes Recovery News Flashes RSS September 1, 2011 Workers Complete Asbestos Removal at West Valley to Prepare Facility for Demolition American Recovery and Reinvestment Act workers safely cleared asbestos from more than 5,500 feet of piping in the Main Plant Process Building. Project completion is an important step in preparing the former commercial nuclear fuel reprocessing building for demolition. August 29, 2011 Idaho Workers Complete Last of Transuranic Waste Transfers Funded by Recovery Act American Recovery and Reinvestment Act workers successfully transferred 130 containers of remote-handled transuranic waste – each weighing up to 15 tons – to a facility for repackaging and shipment to a permanent disposal location.

78

Recovery News Flashes | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

March 10, 2011 March 10, 2011 American Recovery and Reinvestment Act Payments Surge Past $4 Billion EM has made more than $4 billion in Recovery Act payments, or 32 percent of the DOE's $12.4 billion in Recovery Act payments. DOE received $35.2 billion from the Recovery Act, and EM's portion of that was $6 billion, or 17 percent. March 7, 2011 Recovery Act-Funded Study Assesses Contamination at Former Test Site in California Workers in a study funded by $38 million from the American Recovery and Reinvestment Act to assess radiological contamination have collected more than 600 soil samples and surveyed 120 acres of land for gamma radiation. Under an interagency agreement with DOE, the Environmental Protection Agency (EPA) is conducting the study at Santa Susana Field Laboratory

79

Microbiology for enhanced oil recovery  

Science Conference Proceedings (OSTI)

The U. S. Department of Energy has sponsored several projects to investigate the feasibility of using microorganisms to enhance oil recovery. Microbes from the Wilmington oilfield, California, were found to be stimulated in growth by polyacrylamide mobility-control polymers and the microbes also can reduce the viscosity of the polyacrylamide solutions. Microbes have been discovered that produce surface active molecules, and several mixed cultures have been developed that make low viscosity, non-wetting, emulsions of heavy oils (/sup 0/API oil deposits, in China for enhanced recovery of light oils and successful field tests have been conducted in Romania and Arkansas.

Donaldson, E.C.

1983-06-01T23:59:59.000Z

80

Categorical Exclusion Determinations: American Recovery and Reinvestme...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Recovery Act: Direct Confirmation of Commercial Geothermal Resources in Colorado Using Remote Sensing and On-Site Exploration, Testing and Analysis CX(s) Applied: A9 Date: 04...

Note: This page contains sample records for the topic "recovery testing important" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

Cement Kiln Flue Gas Recovery Scrubber Project  

NLE Websites -- All DOE Office Websites (Extended Search)

been expensive to simulate. Performance results were sufficiently promising to justify a commercial-scale test under the CCT program. A flowsheet of the Recovery Scrubber(tm) is...

82

Post-Closure Report for Closed Resource Conservation and Recovery Act Corrective Action Units, Nevada Test Site, Nevada, for Fiscal Year 2009  

Science Conference Proceedings (OSTI)

This report serves as the combined annual report for post-closure activities for the following closed Corrective Action Units (CAUs): ∑ CAU 90, Area 2 Bitcutter Containment ∑ CAU 91, Area 3 U-3fi Injection Well ∑ CAU 92, Area 6 Decon Pond Facility ∑ CAU 110, Area 3 WMD U-3ax/bl Crater ∑ CAU 112, Area 23 Hazardous Waste Trenches This report covers fiscal year 2009 (October 2008ĖSeptember 2009). The post-closure requirements for these sites are described in Resource Conservation and Recovery Act Permit Number NEV HW0021 and summarized in each CAU-specific section in Section 1.0 of this report. Site inspections are conducted semiannually at CAUs 90 and 91 and quarterly at CAUs 92, 110, and 112. Additional inspections are conducted at CAU 92 if precipitation occurs in excess of 0.50 inches in a 24-hour period. Inspections include an evaluation of the condition of the units and identification of any deficiencies that may compromise the integrity of the units. The condition of covers, fencing, signs, gates, and locks is documented. In addition, soil moisture monitoring and subsidence surveys are conducted at CAU 110. The results of the inspections, summary of maintenance activities, results of vegetations surveys, and analysis of monitoring data are presented in this report. Copies of the inspection checklists are included as Appendix A. Field notes completed during each inspection are included in Appendix B. Photographs taken during the site inspections are included in Appendix C.

NSTec Environmental Restoration

2010-01-31T23:59:59.000Z

83

Maryland Recovery Act State Memo | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Maryland Recovery Act State Memo Maryland Recovery Act State Memo Maryland Recovery Act State Memo The American Recovery & Reinvestment Act (ARRA) is making a meaningful down payment on the nation's energy and environmental future. The Recovery Act investments in Maryland are supporting a broad range of clean energy projects, from energy efficiency and smart grid to advanced battery manufacturing. Through these investments, Maryland's businesses, universities, nonprofits, and local governments are creating quality jobs today and positioning Maryland to play an important role in the new energy economy of the future. Maryland Recovery Act State Memo More Documents & Publications District of Columbia Recovery Act State Memo Virginia Recovery Act State Memo Nevada Recovery Act State Memo

84

American Samoa Recovery Act State Memo | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

American Samoa Recovery Act State Memo American Samoa Recovery Act State Memo American Samoa Recovery Act State Memo The American Recovery & Reinvestment Act (ARRA) is making a meaningful down payment on the nation's energy and environmental future. The Recovery Act investments in American Samoa are supporting a broad range of clean energy projects, from energy efficiency and the smart grid to solar power and biofuels. Through these investments, American Samoa's businesses, universities, non-profits, and local governments are creating quality jobs today and positioning American Samoa to play an important role in the new energy economy of the future. American Samoa Recovery Act State Memo More Documents & Publications AMERICAN SAMOA RECOVERY ACT SNAPSHOT Guam Recovery Act State Memo State Energy Efficient Appliance Rebate Program (SEEARP) American Recovery

85

Colorado Recovery Act State Memo | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Colorado Recovery Act State Memo Colorado Recovery Act State Memo Colorado Recovery Act State Memo The American Recovery & Reinvestment Act (ARRA) is making a meaningful down payment on the nation's energy and environmental future. The Recovery Act investments in Colorado are supporting a broad range of clean energy projects, from energy efficiency and the smart grid to solar power and biofuels. Through these investments, Colorado's businesses, universities, nonprofits, and local governments are creating quality jobs today and positioning Colorado to play an important role in the new energy economy of the future. Colorado Recovery Act State Memo More Documents & Publications California Recovery Act State Memo Nevada Recovery Act State Memo District of Columbia Recovery Act State Memo

86

Guam Recovery Act State Memo | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Guam Recovery Act State Memo Guam Recovery Act State Memo Guam Recovery Act State Memo The American Recovery & Reinvestment Act (ARRA) is making a meaningful downpayment on the nation's energy and environmental future. The Recovery Act investments in Guam are supporting abroad range of clean energy projects, from solar power and wind. Through these investments, Guam's businesses, universities, non-profits, and local governments are creating quality jobs today and positioning Guam to play an important role in the new energy economy of the future. Guam Recovery Act State Memo More Documents & Publications GUAM RECOVERY ACT SNAPSHOT State Energy Efficient Appliance Rebate Program (SEEARP) American Recovery and Reinvestment Act (ARRA) Funding Opportunity Number: DE-FOA-0000119 American Samoa Recovery Act State Memo

87

Post-Closure Report for Closed Resource Conservation and Recovery Act Corrective Action Units, Nevada Test Site, Nevada, For Fiscal Year 2008 (October 2007-September 2008)  

Science Conference Proceedings (OSTI)

This report is the first combined annual report for post-closure activities for the following closed Corrective Action Units (CAUs): ē CAU 90, Area 2 Bitcutter Containment ē CAU 91, Area 3 U-3fi Injection Well ē CAU 92, Area 6 Decon Pond Facility ē CAU 110, Area 3 WMD U-3ax/bl Crater ē CAU 112, Area 23 Hazardous Waste Trenches The locations of the sites are shown in Figure 1. This report covers fiscal year (FY) 2008 (October 2007ĖSeptember 2008). Because this is the first combined annual report for these CAUs, this report only covers the period not covered in the previous annual report for each CAU. For example, the last report submitted for CAU 91 covered the period January 2007ĖDecember 2007; therefore, this report only covers the remainder of FY2008 (January 2008ĖSeptember 2008) for CAU 91. The post-closure requirements for these sites are described in Resource Conservation and Recovery Act Permit Number NEV HW0021 and summarized in each CAU-specific section in Section 1.0 of this report. Site inspections are conducted semiannually at CAUs 90 and 91 and quarterly at CAUs 92, 110, and 112. Additional inspections are conducted at CAU 92 if precipitation occurs in excess of 0.50 inches in a 24-hour period. Inspections include an evaluation of the condition of the units and identification of any deficiencies that may compromise the integrity of the units. The condition of covers, fencing, signs, gates, and locks is documented. In addition, soil moisture monitoring and subsidence surveys are conducted at CAU 110. The results of the inspections, summary of maintenance activities, results of vegetations surveys, and analysis of monitoring data are presented in this report. Copies of the inspection checklists are included as Appendix A. Field notes completed during each inspection are included in Appendix B. Photographs taken during the site inspections are included in Appendix C.

NSTec Environmental Restoration

2008-12-23T23:59:59.000Z

88

Mass and Heat Recovery  

E-Print Network (OSTI)

In the last few years heat recovery was under spot and in air conditioning fields usually we use heat recovery by different types of heat exchangers. The heat exchanging between the exhaust air from the building with the fresh air to the building (air to air heat exchanger). In my papers I use (water to air heat exchanger) as a heat recovery and I use the water as a mass recovery. The source of mass and heat recovery is the condensate water which we were dispose and connect it to the drain lines.

Hindawai, S. M.

2010-01-01T23:59:59.000Z

89

American Recovery and Reinvestment Act Information Services  

NLE Websites -- All DOE Office Websites (Extended Search)

Recovery and Reinvestment Act Recovery and Reinvestment Act Information Services American Recovery and Reinvestment Act American Recovery and Reinvestment Act Information Services American Recovery and Reinvestment Act American Recovery and Reinvestment Act Information Services American Recovery and Reinvestment Act American Recovery and Reinvestment Act American Recovery and Reinvestment Act American Recovery and Reinvestment Act American Recovery and Reinvestment Act American Recovery and Reinvestment Act American Recovery and Reinvestment Act American Recovery and Reinvestment Act American Recovery and Reinvestment Act American Recovery and Reinvestment Act American Recovery and Reinvestment Act American Recovery and Reinvestment Act American Recovery and Reinvestment Act American Recovery and Reinvestment Act

90

Battleground Energy Recovery Project  

Science Conference Proceedings (OSTI)

In October 2009, the project partners began a 36-month effort to develop an innovative, commercial-scale demonstration project incorporating state-of-the-art waste heat recovery technology at Clean Harbors, Inc., a large hazardous waste incinerator site located in Deer Park, Texas. With financial support provided by the U.S. Department of Energy, the Battleground Energy Recovery Project was launched to advance waste heat recovery solutions into the hazardous waste incineration market, an area that has seen little adoption of heat recovery in the United States. The goal of the project was to accelerate the use of energy-efficient, waste heat recovery technology as an alternative means to produce steam for industrial processes. The project had three main engineering and business objectives: Prove Feasibility of Waste Heat Recovery Technology at a Hazardous Waste Incinerator Complex; Provide Low-cost Steam to a Major Polypropylene Plant Using Waste Heat; and Ô?∑ Create a Showcase Waste Heat Recovery Demonstration Project.

Daniel Bullock

2011-12-31T23:59:59.000Z

91

Experimental study of mechanisms of improving oil recovery in Shale.  

E-Print Network (OSTI)

??ABSTRACT Extensive laboratory work was done to investigate some of the important mechanisms of improving oil recovery in Shale formations. The objective of this researchÖ (more)

Onyenwere, Emmanuel

2012-01-01T23:59:59.000Z

92

American Recovery and Reinvestment Act (ARRA) - Light-Duty Electric...  

NLE Websites -- All DOE Office Websites (Extended Search)

American Recovery and Reinvestment Act (ARRA) Light-Duty Electric Drive Vehicle and Charging Infrastructure Testing What's New Chevrolet Volt Vehicle Demonstration: Project to...

93

American Recovery and Reinvestment Act (ARRA) - Light-Duty Electric...  

NLE Websites -- All DOE Office Websites (Extended Search)

American Recovery and Reinvestment Act (ARRA) Light-Duty Electric Drive Vehicle and Charging Infrastructure Testing What's New EV Project Overview Report: Project to date...

94

Recovery Act's HWCTR Project Empty of Equipment, Ready for Grouting...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

from the American Recovery and Reinvestment Act, the next phase has begun on decommissioning the Heavy Water Components Test Reactor (HWCTR) at the Savannah River Site (SRS)....

95

IDAHO RECOVERY ACT SNAPSHOT | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

IDAHO RECOVERY ACT SNAPSHOT IDAHO RECOVERY ACT SNAPSHOT IDAHO RECOVERY ACT SNAPSHOT Idaho has substantial natural resources, including wind, geothermal, and hydroelectric power .The American Recovery & Reinvestment Act (ARRA) is making a meaningful down payment on the nation's energy and environmental future. The Recovery Act investments in Idaho are supporting a broad range of clean energy projects, from energy efficiency and the smart grid to geothermal and alternative fuels, as well as major commitments to research efforts and environmental cleanup at the Idaho National Laboratory in Idaho Falls. Through these investments, Idaho's businesses, universities, national labs, non-profits, and local governments are creating quality jobs today and positioning Idaho to play an important role in the new

96

TEST  

Science Conference Proceedings (OSTI)

This is an abstract. TEST Lorem ipsum dolor sit amet, consectetur adipiscing elit. Cras lacinia dui et est venenatis lacinia. Vestibulum lacus dolor, adipiscing id mattis sit amet, ultricies sed purus. Nulla consectetur aliquet feugiat. Maecenas ips

97

EM Recovery NEWS FLASH RECOVERY.GOV U.S. Depar  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

August 23, 2011 August 23, 2011 We are now in the homestretch of Recovery Act work, and surpassing $5 billion in Recovery Act payments is an important milestone in our accelerated cleanup of the legacy of the Cold War. The $5 billion has been instrumental in significantly exceeding the Admin- istration's High Priority Performance Goal of 40 percent footprint reduction within EM, a full five months ahead of schedule. EM's footprint has been reduced a total of 489 square miles, or 53 percent, through July as a result of the Recovery Act funding. EM Recovery Act Program Director Thomas Johnson, Jr. American Recovery and Reinvestment Act Payments Surge Past $5 Billion More than $5 billion in Recovery Act payments are accelerating environmental cleanup Site Spend Plan

98

An Introduction to Waste Heat Recovery  

E-Print Network (OSTI)

The recovery of waste heat energy is one element of a complete energy conservation plan. In addition to contributing to the goal of saving energy, utilization of waste heat is also an important source of cost savings. This presentation details the steps necessary to develop a good waste heat recovery plan. The necessity of performing a complete waste heat audit is detailed, together with guidelines to selecting waste heat recovery projects. The economic analysis of potential projects, and the art of selling these projects to management are discussed. Also included are brief descriptions of the various types of heat exchangers commonly used in industry today.

Darby, D. F.

1985-05-01T23:59:59.000Z

99

Indiana Recovery Act State Memo | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Indiana Recovery Act State Memo Indiana Recovery Act State Memo Indiana Recovery Act State Memo The American Recovery & Reinvestment Act (ARRA) is making a meaningful down payment on the nation's energy and environmental future. The Recovery Act investments in Indiana are supporting a broad range of clean energy projects from advanced battery manufacturing and alternative fuels and vehicles to energy efficiency and the smart grid. Through these investments, Indiana's businesses, universities, nonprofits, and local governments are creating quality jobs today and positioning Indiana to play an important role in the new energy economy of the future. Indiana Recovery Act State Memo More Documents & Publications Louisiana Recovery Act State Memo Colorado Recovery Act State Memo California

100

Michigan Recovery Act State Memo | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Michigan Recovery Act State Memo Michigan Recovery Act State Memo Michigan Recovery Act State Memo The American Recovery & Reinvestment Act (ARRA) is making a meaningful down payment on the nation's energy and environmental future. The Recovery Act investments in Michigan are supporting abroad range of clean energy projects from battery manufacturing to energy efficiency and the smart grid, renewable energy, and carbon capture and storage. Through these investments, Michigan's businesses, universities, non-profits, and local governments are creating quality jobs today and positioning Michigan to play an important role in the new energy economy of the future. Michigan Recovery Act State Memo More Documents & Publications Indiana Recovery Act State Memo Ohio Recovery Act State Memo

Note: This page contains sample records for the topic "recovery testing important" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

North Carolina Recovery Act State Memo | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

North Carolina Recovery Act State Memo North Carolina Recovery Act State Memo North Carolina Recovery Act State Memo The American Recovery & Reinvestment Act (ARRA) is making a meaningful down payment on the nation's energy and environmental future. The Recovery Act investments in North Carolina are supporting a broad range of clean energy projects from energy efficiency and the smart grid to solar power and biofuels. Through these investments, North Carolina's businesses, universities, non-profits, and local governments are creating quality jobs today and positioning North Carolina to play an important role in the new energy economy of the future. North Carolina Recovery Act State Memo More Documents & Publications South Carolina Recovery Act State Memo Nevada Recovery Act State Memo

102

Tenth oil recovery conference  

SciTech Connect

The Tertiary Oil Recovery Project is sponsored by the State of Kansas to introduce Kansas producers to the economic potential of enhanced recovery methods for Kansas fields. Specific objectives include estimation of the state-wide tertiary oil resource, identification and evaluation of the most applicable processes, dissemination of technical information to producers, occasional collaboration on recovery projects, laboratory studies on Kansas applicable processes, and training of students and operators in tertiary oil recovery methods. Papers have been processed separately for inclusion on the data base.

Sleeper, R. (ed.)

1993-01-01T23:59:59.000Z

103

Cyanidation Recovery Process  

Science Conference Proceedings (OSTI)

Heat Treatment of Black Dross for the Production of a Value Added Material ... Leaching Studies for Metals Recovery from Waste Printed Wiring Boards (PWBs).

104

The impact of bioprocessing on enhanced oil recovery. [104 references  

SciTech Connect

Biotechnology can, and is likely to, play an important role in many aspects of microbial-enhanced oil recovery (MEOR). This report reviews current MEOR studies and assesses the additional roles which biotechnology is likely to have in future oil recovery operations. For example, the use of microbial action to reduce environmental problems from release or reinjection of floodwaters could become very important if current exemptions of oil recovery operations from environmental regulations are not extended. 104 refs.

Watson, J.S.; Scott, C.D.

1988-03-01T23:59:59.000Z

105

Recovery Act State Summaries | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Recovery Act State Summaries Recovery Act State Summaries Recovery Act State Summaries Alabama Recovery Act State Memo Alaska Recovery Act State Memo American Samoa Recovery Act State Memo Arizona Recovery Act State Memo Arkansas Recovery Act State Memo California Recovery Act State Memo Colorado Recovery Act State Memo Connecticut Recovery Act State Memo Delaware Recovery Act State Memo District of Columbia Recovery Act State Memo Florida Recovery Act State Memo Georgia Recovery Act State Memo Guam Recovery Act State Memo Hawaii Recovery Act State Memo Idaho Recovery Act State Memo Illinois Recovery Act State Memo Indiana Recovery Act State Memo Iowa Recovery Act State Memo Kansas Recovery Act State Memo Kentucky Recovery Act State Memo Louisiana Recovery Act State Memo Maine Recovery Act State Memo

106

Transformation of Resources to Reserves: Next Generation Heavy-Oil Recovery Techniques  

Science Conference Proceedings (OSTI)

This final report and technical progress report describes work performed from October 1, 2004 through September 30, 2007 for the project 'Transformation of Resources to Reserves: Next Generation Heavy Oil Recovery Techniques', DE-FC26-04NT15526. Critical year 3 activities of this project were not undertaken because of reduced funding to the DOE Oil Program despite timely submission of a continuation package and progress on year 1 and 2 subtasks. A small amount of carried-over funds were used during June-August 2007 to complete some work in the area of foamed-gas mobility control. Completion of Year 3 activities and tasks would have led to a more thorough completion of the project and attainment of project goals. This progress report serves as a summary of activities and accomplishments for years 1 and 2. Experiments, theory development, and numerical modeling were employed to elucidate heavy-oil production mechanisms that provide the technical foundations for producing efficiently the abundant, discovered heavy-oil resources of the U.S. that are not accessible with current technology and recovery techniques. Work fell into two task areas: cold production of heavy oils and thermal recovery. Despite the emerging critical importance of the waterflooding of viscous oil in cold environments, work in this area was never sanctioned under this project. It is envisioned that heavy oil production is impacted by development of an understanding of the reservoir and reservoir fluid conditions leading to so-called foamy oil behavior, i.e, heavy-oil solution gas drive. This understanding should allow primary, cold production of heavy and viscous oils to be optimized. Accordingly, we evaluated the oil-phase chemistry of crude oil samples from Venezuela that give effective production by the heavy-oil solution gas drive mechanism. Laboratory-scale experiments show that recovery correlates with asphaltene contents as well as the so-called acid number (AN) and base number (BN) of the crude oil. A significant number of laboratory-scale tests were made to evaluate the solution gas drive potential of West Sak (AK) viscous oil. The West Sak sample has a low acid number, low asphaltene content, and does not appear foamy under laboratory conditions. Tests show primary recovery of about 22% of the original oil in place under a variety of conditions. The acid number of other Alaskan North Slope samples tests is greater, indicating a greater potential for recovery by heavy-oil solution gas drive. Effective cold production leads to reservoir pressure depletion that eases the implementation of thermal recovery processes. When viewed from a reservoir perspective, thermal recovery is the enhanced recovery method of choice for viscous and heavy oils because of the significant viscosity reduction that accompanies the heating of oil. One significant issue accompanying thermal recovery in cold environments is wellbore heat losses. Initial work on thermal recovery found that a technology base for delivering steam, other hot fluids, and electrical heat through cold subsurface environments, such as permafrost, was in place. No commercially available technologies are available, however. Nevertheless, the enabling technology of superinsulated wells appears to be realized. Thermal subtasks focused on a suite of enhanced recovery options tailored to various reservoir conditions. Generally, electrothermal, conventional steam-based, and thermal gravity drainage enhanced oil recovery techniques appear to be applicable to 'prime' Ugnu reservoir conditions to the extent that reservoir architecture and fluid conditions are modeled faithfully here. The extent of reservoir layering, vertical communication, and subsurface steam distribution are important factors affecting recovery. Distribution of steam throughout reservoir volume is a significant issue facing thermal recovery. Various activities addressed aspects of steam emplacement. Notably, hydraulic fracturing of horizontal steam injection wells and implementation of steam trap control that limits steam entry into hor

Stanford University; Department of Energy Resources Engineering Green Earth Sciences

2007-09-30T23:59:59.000Z

107

Recovery Act | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

September 24, 2013 September 24, 2013 Carbon fiber material produced at SGL Automotive Carbon Fibers in Moses Lake, Wash. (Photo courtesy of SGL Automotive Carbon Fibers) Electric Car Featuring High-Tech Material Made in the USA Makes Its Debut One of the world's first electric vehicles built using ultra lightweight carbon fiber material manufactured in the U.S. was recently unveiled. September 20, 2013 Electrical transmission lines cross a snow-covered field in Dallas Dam, Oregon. | Energy Department photo. Top 9 Things You Didn't Know About America's Power Grid Ever wonder how electricity gets to your home? Test your knowledge with these top power grid facts. September 16, 2013 Cumulative Federal Payments to OE Recovery Act Recipients, through August 31, 2013 Graph of cumulative Federal Payments to OE Recovery Act Recipients, through

108

Recovery Act | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

December 2, 2009 December 2, 2009 Alabama Family Staying Nice and Cozy This Fall Recovery Act money to weatherize homes has resulted in much lower energy bills for Alabama families, including Mary, whose bill is about $300 cheaper now. December 2, 2009 Training Center Gets People Work, Teaches New Skills Corporation for Ohio Appalachian Development, a nonprofit organization comprised of 17 community action agencies involved in weatherization, has been awarded Recovery Act funds to help train weatherization providers and create jobs across Ohio. December 2, 2009 Former Auto Worker Gauges Efficiency of American Homes Holland, Michigan resident retools skills learned testing car parts to land new job assessing home energy efficiency as a weatherization inspector. October 15, 2009

109

Summary - Caustic Recovery Technology  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Caustic Recovery Technology Caustic Recovery Technology ETR Report Date: July 2007 ETR-7 United States Department of Energy Office of Environmental Management (DOE-EM) External Technical Review of Caustic Recovery Technology Why DOE-EM Did This Review The Department of Energy (DOE) Environmental Management Office (EM-21) has been developing caustic recovery technology for application to the Hanford Waste Treatment Plant (WTP) to reduce the amount of Low Activity Waste (LAW) vitrified. Recycle of sodium hydroxide with an efficient caustic recovery process could reduce the amount of waste glass produced by greater than 30%. The Ceramatec Sodium (Na), Super fast Ionic CONductors (NaSICON) membrane has shown promise for directly producing 50% caustic with high sodium selectivity. The external review

110

Current status of nonthermal heavy oil recovery  

Science Conference Proceedings (OSTI)

Heavy oils are an important resource worldwide, and yet two-thirds of the heavy oil deposits cannot be exploited by means of thermal recovery methods, because the effective energy production approaches energy input for reasons of formation thickness, depth, oil saturation and/or porosity. In such instances, especially if the heavy oil is not too viscous (below ca 1000 cp), it may be economical to employ nonthermal recovery methods. These include polymer flooding, alkaline flooding, CO/sub 2/ (gaseous) floods, solvent floods, and other more specialized recovery methods, such as emulsion flooding, and combination techniques. This work discusses nonthermal heavy oil recovery methods, based upon their application in the field. The processes and their mechanistic features are discussed in the light of laboratory observations, which tend to be more optimistic than field results. 48 references.

Alikhan, A.A.; Farouq Ali, S.M.

1983-01-01T23:59:59.000Z

111

OE Recovery Act Blog | Department of Energy  

NLE Websites -- All DOE Office Websites (Extended Search)

Recovery Recovery Act Blog OE Recovery Act Blog RSS September 20, 2013 Electrical transmission lines cross a snow-covered field in Dallas Dam, Oregon. | Energy Department photo. Top 9 Things You Didn't Know About America's Power Grid Ever wonder how electricity gets to your home? Test your knowledge with these top power grid facts. July 11, 2013 Demand Response: Lessons Learned with an Eye to the Future Under the Recovery Act, the Energy Department awarded $3.5 billion in funds to the electricity industry, including OG&E, to help catalyze the adoption of smart grid tools, technologies and techniques such as demand response that are designed to increase the electric grid's flexibility, reliability, efficiency, affordability, and resiliency. Understanding lessons learned from these projects is vital.

112

American Recovery and Reinvestment Act  

Energy.gov (U.S. Department of Energy (DOE))

Here is one compliance agreement for EMís American Recovery and Reinvestment Act Program on accelerated milestones for the Recovery Act program.

113

Kansas Recovery Act State Memo | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Kansas Recovery Act State Memo Kansas Recovery Act State Memo Kansas Recovery Act State Memo Kansas has substantial natural resources, including oil, gas, biomass and wind power.The American Recovery & Reinvestment Act (ARRA) is making a meaningful down payment on the nation's energy and environmental future. The Recovery Act investments in Kansas are supporting abroad range of clean energy projects, from energy efficiency and the smart grid to geothermal and carbon capture and storage. Through these investments, Kansas' businesses, universities, non-profits, and local governments are creating quality jobs today and positioning Kansas to play an important role in the new energy economy of the future. Kansas Recovery Act State Memo More Documents & Publications Slide 1 District of Columbia Recovery Act State Memo

114

Maine Recovery Act State Memo | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Maine Recovery Act State Memo Maine Recovery Act State Memo Maine Recovery Act State Memo Maine has substantial natural resources, including wind, biomass, and hydroelectric power. The American Recovery & Reinvestment Act (ARRA) is making a meaningful down payment on the nation's energy and environmental future. The Recovery Act investments in Maine are supporting a broad range of clean energy projects, from energy efficiency and the smart grid to solar and wind. Through these investments, Maine's businesses, universities, non-profits, and local governments are creating quality jobs today and positioning Maine to play an important role in the new energy economy of the future. Maine Recovery Act State Memo More Documents & Publications Slide 1 District of Columbia Recovery Act State Memo

115

Wisconsin Recovery Act State Memo | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Wisconsin Recovery Act State Memo Wisconsin Recovery Act State Memo Wisconsin Recovery Act State Memo Wisconsin has substantial natural resources, including biomass and hydroelectric power. The American Recovery & Reinvestment Act (ARRA)is making a meaningful down payment on the nation's energy and environmental future. The Recovery Act investments in Wisconsin are supporting a broad range of clean energy projects from energy efficiency and the smart grid to alternative fuel vehicles. Through these investments, Wisconsin's businesses, non-profits, and local governments are creating quality jobs today and positioning Wisconsin to play an important role in the new energy economy of the future. Wisconsin Recovery Act State Memo More Documents & Publications California Recovery Act State Memo

116

Hawaii Recovery Act State Memo | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Hawaii Recovery Act State Memo Hawaii Recovery Act State Memo Hawaii Recovery Act State Memo Hawaii has substantial natural resources, including solar, biomass , geothermal, and hydroelectric power. The American Recovery & Reinvestment Act (ARRA) is making a meaningful down payment on the nation's energy and environmental future. The Recovery Act investments in Hawaii are supporting a broad range of clean energy projects, from energy efficiency and the smart grid to wind power and biofuels. Through these investments, Hawaii's businesses, universities, non-profits, and local governments are creating quality jobs today and positioning Hawaii to play an important role in the new energy economy of the future. Hawaii Recovery Act State Memo More Documents & Publications Slide 1 Arizona Recovery Act State Memo

117

Ohio Recovery Act State Memo | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Ohio Recovery Act State Memo Ohio Recovery Act State Memo Ohio Recovery Act State Memo The American Recovery & Reinvestment Act (ARRA) is making a meaningful down payment on the nation's energy and environmental future. The Recovery Act investments in Ohio are supporting a broad range of clean energy projects from the smart grid and energy efficiency to advanced batter manufacturing, biofuels, carbon capture and storage, and cleanup of the state's Cold War legacy nuclear sites. Through these investments, Ohio's businesses, universities, non-profits, and local governments are creating quality jobs today and positioning Ohio to play an important role in the new energy economy of the future. Ohio Recovery Act State Memo More Documents & Publications Ohio.pdf Indiana Recovery Act State Memo

118

Rhode Island Recovery Act State Memo | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Rhode Island Recovery Act State Memo Rhode Island Recovery Act State Memo Rhode Island Recovery Act State Memo Rhode Island has substantial natural resources, including wind and biomass. The American Recovery & Reinvestment Act (ARRA) is making a meaningful down payment on the nation's energy and environmental future. The Recovery Act investments in Rhode Island are supporting a broad range of clean energy projects, from weatherization to smart grid workforce training. Through these investments, Rhode Island's businesses, universities, non-profits, and local governments are creating quality jobs today and positioning Rhode Island to play an important role in the new energy economy of the future. Rhode Island Recovery Act State Memo More Documents & Publications Slide 1 Guam Recovery Act State Memo

119

Virgin Islands Recovery Act State Memo | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Virgin Islands Recovery Act State Memo Virgin Islands Recovery Act State Memo Virgin Islands Recovery Act State Memo The American Recovery & Reinvestment Act( ARRA) is making a meaningful down payment on the nation's energy and environmental future. The Recovery Act investments in the U.S. Virgin Islands are supporting a broad range of clean energy projects from energy efficiency and the smart grid to solar power and biofuels. Through these investments, the U.S. Virgin Islands' businesses, universities, non-profits, and local governments are creating quality jobs today and positioning the U.S. Virgin Islands to play an important role in the new energy economy of the future. Virgin Islands Recovery Act State Memo More Documents & Publications Slide 1 MP_recovery_act_memo__updated.pdf Northern Mariana Islands

120

Nebraska Recovery Act State Memo | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Nebraska Recovery Act State Memo Nebraska Recovery Act State Memo Nebraska Recovery Act State Memo Nebraska has substantial natural resources, including oil, coal, wind, and hydro electric power. The American Recovery & Reinvestment Act (ARRA) is making a meaningful down payment on the nation's energy and environmental future. The Recovery Act investments in Nebraska are supporting abroad range of clean energy projects, from weatherization and retrofits to the smart grid and wind power. Through these investments, Nebraska's businesses, non-profits, and local governments are creating quality jobs today and positioning Nebraska to play an important role in the new energy economy of the future. Nebraska Recovery Act State Memo More Documents & Publications Slide 1 State Energy Efficient Appliance Rebate Program (SEEARP) American Recovery

Note: This page contains sample records for the topic "recovery testing important" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

New Hampshire Recovery Act State Memo | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Hampshire Recovery Act State Memo Hampshire Recovery Act State Memo New Hampshire Recovery Act State Memo New Hampshire has substantial natural resources, including wind, biomass, and hydroelectric power. The American Recovery & Reinvestment Act (ARRA) is making a meaningful down payment on the nation's energy and environmental future. The Recovery Act investments in New Hampshire are supporting a broad range of clean energy projects, from weatherization and retrofits to the smart grid. Through these investments, New Hampshire's businesses, non-profits, and local governments are creating quality jobs today and positioning New Hampshire to play an important role in the new energy economy of the future. New Hampshire Recovery Act State Memo More Documents & Publications Slide 1 Virginia Recovery Act State Memo

122

District of Columbia Recovery Act State Memo | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

District of Columbia Recovery Act State Memo District of Columbia Recovery Act State Memo District of Columbia Recovery Act State Memo The American Recovery & Reinvestment Act (ARRA) is making a meaningful down payment on the nation's energy and environmental future. The Recovery Act investments in the District of Columbia reflect a broad range of clean energy projects, from energy efficiency and the smart grid to renewable energy and advanced battery manufacturing. Through these investments, the District of Columbia's businesses, non-profits, and local governments are creating quality jobs today and positioning the District of Columbia to play an important role in the new energy economy of the future. Washington, D.C. Recovery Act State Memo More Documents & Publications New York Recovery Act State Memo

123

Hawaii Recovery Act State Memo | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Hawaii Recovery Act State Memo Hawaii Recovery Act State Memo Hawaii Recovery Act State Memo Hawaii has substantial natural resources, including solar, biomass , geothermal, and hydroelectric power. The American Recovery & Reinvestment Act (ARRA) is making a meaningful down payment on the nation's energy and environmental future. The Recovery Act investments in Hawaii are supporting a broad range of clean energy projects, from energy efficiency and the smart grid to wind power and biofuels. Through these investments, Hawaii's businesses, universities, non-profits, and local governments are creating quality jobs today and positioning Hawaii to play an important role in the new energy economy of the future. Hawaii Recovery Act State Memo More Documents & Publications Slide 1 Arizona Recovery Act State Memo

124

Recovery Act | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

April 25, 2013 April 25, 2013 Economic Impact of Recovery Act Investments in the Smart Grid Report Now Available A report on the Economic Impact of Recovery Act Investments in the Smart Grid is now available. This study analyzes the economy-wide impacts of the Recovery Act funding for smart grid project deployment in the United States, administered by Office of Electricity Delivery and Energy Reliability. Key findings include: April 25, 2013 Smart Grid: Powering Our Way to a Greener Future Learning how to be smarter and more efficient about reducing our energy consumption is on the minds of everyone this week. The smart grid, with its improved efficiency and performance, is helping consumers conserve energy and save money every day. April 9, 2013 The Notrees Wind Storage Demonstration Project is a 36-megawatt energy storage and power management system, which completed testing and became fully operational in December. It shows how energy storage can moderate the intermittent nature of wind by storing excess energy when the wind is blowing and making it available later to the electric grid to meet customer demand.

125

RECOVERY Ė Health Information Technology (HIT) Testing ...  

Science Conference Proceedings (OSTI)

... Our work supports the VHA Security Architect in developing and ... OCIO in which we analyzed the security architecture plans (or ... 1.3.3 Smart Grid ...

2013-04-09T23:59:59.000Z

126

Savannah River Site Removes Dome, Opening Reactor for Recovery Act  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Savannah River Site Removes Dome, Opening Reactor for Recovery Act Savannah River Site Removes Dome, Opening Reactor for Recovery Act Decommissioning Savannah River Site Removes Dome, Opening Reactor for Recovery Act Decommissioning American Recovery and Reinvestment Act workers achieved a significant milestone in the decommissioning of a Cold War reactor at the Savannah River Site this month after they safely removed its rusty, orange, 75-foot-tall dome. With the help of a 660-ton crane and lifting lugs, the workers pulled the 174,000-pound dome off the Heavy Water Components Test Reactor, capping more than 16 months of preparations. Savannah River Site Removes Dome, Opening Reactor for Recovery Act Decommissioning More Documents & Publications Recovery Act Changes Hanford Skyline with Explosive Demolitions Recovery Act Workers Add Time Capsule Before Sealing Reactor for Hundreds

127

Recovery News Flashes  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

news-flashes Office of Environmental news-flashes Office of Environmental Management 1000 Independence Ave., SW Washington, DC 20585 202-586-7709 en "TRU" Success: SRS Recovery Act Prepares to Complete Shipment of More Than 5,000 Cubic Meters of Nuclear Waste to WIPP http://energy.gov/em/downloads/tru-success-srs-recovery-act-prepares-complete-shipment-more-5000-cubic-meters-nuclear recovery-act-prepares-complete-shipment-more-5000-cubic-meters-nuclear" class="title-link">"TRU" Success: SRS Recovery Act Prepares to Complete Shipment of More Than 5,000 Cubic Meters of Nuclear Waste to WIPP

128

Power-grade butanol recovery and utilization  

DOE Green Energy (OSTI)

As an alternative to the traditional recovery systems, it was proposed in a previous publication that the n-butanol/acetone/ethanol fermentation products could be recovered as a power grade fuel blend and used directly as a fuel. This would affect a savings in process energy requirements because each chemical component would not have to be processed individually to technical grade purity. Further, some residual water could be tolerated in the fuel blend. To develop such a power grade fuel recovery scheme beyond the conceptual stage, the Energy Research and Resource Division of the Kansas Energy Office undertook a two-fold program to demonstrate and test a power grade butanol/acetone/ethanol fuel recovery system, and further to demonstrate the feasibility of using the fuel blend in a standard type engine. A development program was initiated to accomplish the following objectives: design and test an operational power grade butanol recovery plant that would operate at one liter per hour output; and test and assess the performance of power grade butanol in a spark ignition automotive engine. This project has demonstrated that recovery of a power grade butanol fuel blend is simple and can be accomplished at a considered energy advantage over ethanol. It was further demonstrated that such a power grade blend works well in a typical spark ignition engine.

Noon, R.

1982-02-12T23:59:59.000Z

129

Enhanced oil recovery: major equipment and its projected demand  

Science Conference Proceedings (OSTI)

After years of research and pilot tests, the enhanced oil recovery (EOR) industry is taking major leaps forward in 1981. With the launching of several hundred new EOR pilot tests, the announcement of major CO/sub 2/ pipelines into W. Texas, and a $3.6-billion purchase of South Belridge heavy oil by Shell, oil companies are showing their confidence in this technologically-emerging area. While much research remains to be done to make these processes more efficient and economic, the important commercial stage of the EOR industry's growth has clearly been reached. Along with the growth of the EOR industry will come a major demand for equipment and facilities. This demand will include traditional requirements for steam generators and compressors, although on a scale many times larger than at present, as well as new requirements for gas separation, chemical storage, and special tubulars.

Kuuskraa, V.A.; Hammershaimb, E.C.; Wicks, D.E.

1981-09-01T23:59:59.000Z

130

Industrial Heat Recovery - 1982  

E-Print Network (OSTI)

Two years ago I summarized 20 years of experience on Industrial Heat Recovery for the Energy-source Technology Conference and Exhibition held in New Orleans, Louisiana. At the end of that paper I concluded with brief advice on 'How to specify heat recovery equipment.' The two years which have elapsed since then have convinced me that proper specification assures the most reliable equipment at the lowest price. The most economical specification describes the operating and site data but leaves the design details for the supplier. A true specialist will be able to provide you with the latest technology at the best possible price. This paper explores the impact of specifications on heat recovery equipment and its associated cost.

Csathy, D.

1982-01-01T23:59:59.000Z

131

Utah Recovery Act State Memo | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Utah Recovery Act State Memo Utah Recovery Act State Memo Utah Recovery Act State Memo Utah has substantial natural resources, including oil, coal, natural gas, wind, geothermal, and solar power. The American Recovery & Reinvestment Act (ARRA) is making a meaningful down payment on the nation's energy and environmental future. The Recovery Act investments in Utah are supporting a broad range of clean energy projects, from energy efficiency and the smart grid to wind and geothermal, alternative fuel vehicles, and the clean-up of legacy uranium processing sites. Through these investments, Utah's businesses, non-profits, and local governments are creating quality jobs today and positioning Utah to play an important role in the new energy economy of the future. Utah Recovery Act State Memo

132

New Jersey Recovery Act State Memo | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Jersey Recovery Act State Memo Jersey Recovery Act State Memo New Jersey Recovery Act State Memo New Jersey has substantial natural resources, including wind and biomass. The American Recovery & Reinvestment Act (ARRA) is making a meaningful down payment on the nation's energy and environmental future. The Recovery Act investments in New Jersey are supporting a broad range of clean energy projects, from energy efficiency and the smart grid to alternative fuels and vehicles, as well as the Princeton Plasma Physics Laboratory in Plainsboro. Through these investments, New Jersey's businesses, universities, non-profits, and local governments are creating quality jobs today and positioning New Jersey to play an important role in the new energy economy of the future. New Jersey Recovery Act State Memo

133

Pennsylvania Recovery Act State Memo | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Pennsylvania Recovery Act State Memo Pennsylvania Recovery Act State Memo Pennsylvania Recovery Act State Memo Pennsylvania has substantial natural resources, including coal reserves, wind power and abundant hydropower. The American Recovery and Reinvestment Act( ARRA) is making a meaningful downpayment on the nation's energy and environmental future. The Recovery Act investments in Pennsylvania are supporting a broad range of clean energy projects, from energy efficiency and the smart grid to wind and geothermal, hydro and biofuels. Through these investments, Pennsylvania's businesses, non-profits, and local governments are creating quality jobs today and positioning Pennsylvania to play an important role in the new energy economy of the future. Pennsylvania Recovery Act State Memo More Documents & Publications

134

Texas Recovery Act State Memo | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Texas Recovery Act State Memo Texas Recovery Act State Memo Texas Recovery Act State Memo Texas has substantial natural resources, including oil, gas, solar, biomass, and wind power. The American Recovery & Reinvestment Act (ARRA) is making a meaningful down payment on the nation's energy and environmental future. The Recovery Act investments in Texas are supporting a broad range of clean energy projects, from carbon capture and storage to energy efficiency, the smart grid, solar, geothermal, and biomass projects. Through these investments, Texas's businesses, universities, non-profits, and local governments are creating quality jobs today and positioning Texas to play an important role in the new energy economy of the future. Texas Recovery Act State Memo More Documents & Publications

135

Arkansas Recovery Act State Memo | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Arkansas Recovery Act State Memo Arkansas Recovery Act State Memo Arkansas Recovery Act State Memo Arkansas has substantial natural resources, including gas, oil, wind, biomass, and hydroelectric power. The American Recovery & Reinvestment Act (ARRA) is making a meaningful down payment on the nation's energy and environmental future. The Recovery Act investments in Arkansas are supporting a broad range of clean energy projects, from energy efficiency and the smart grid to advanced battery manufacturing and renewable energy. Through these investments, Arkansas's businesses, non-profits, and local governments are creating quality jobs today and positioning Arkansas to play an important role in the new energy economy of the future. Arkansas Recovery Act State Memo More Documents & Publications

136

Georgia Recovery Act State Memo | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Georgia Recovery Act State Memo Georgia Recovery Act State Memo Georgia Recovery Act State Memo Georgia has substantial natural resources, including biomass and hydroelectric power. The American Recovery & Reinvestment Act (ARRA) is making a meaningful down payment on the nation's energy and environmental future. The Recovery Act investments in Georgia are supporting a broad range of clean energy projects, from energy efficiency and the smart grid to environmental cleanup and alternative fuels and vehicles. Through these investments, Georgia's businesses, universities, non-profits, and local governments are creating quality jobs today and positioning Georgia to play an important role in the new energy economy of the future. Georgia Recovery Act State Memo More Documents & Publications

137

Alaska Recovery Act State Memo | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Alaska Recovery Act State Memo Alaska Recovery Act State Memo Alaska Recovery Act State Memo Alaska has substantial natural resources, including oil, gas, coal, solar, wind, geothermal, and hydroelectric power. The American Recovery & Reinvestment Act (ARRA) is making a meaningful down payment on the nation's energy and environmental future. The Recovery Act investments in Alaska are supporting a broad range of clean energy projects, from energy efficiency and electric grid improvements to geothermal power. Through these investments, Alaska's businesses, universities, non-profits, and local governments are creating quality jobs today and positioning Alaska to play an important role in the new energy economy of the future. Alaska Recovery Act State Memo More Documents & Publications

138

Virginia Recovery Act State Memo | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Virginia Recovery Act State Memo Virginia Recovery Act State Memo Virginia Recovery Act State Memo Virginia has substantial natural resources, including coal and natural gas. The American Recovery & Reinvestment Act (ARRA) is making a meaningful down payment on the nation's energy and environmental future. The Recovery Act investments in Virginia are supporting a broad range of clean energy projects, from energy efficiency and the smart grid to alternative fuel vehicles and the Thomas Jefferson National Accelerator Facility in Newport News. Through these investments, Virginia's businesses, universities, non-profits, and local governments are creating quality jobs today and positioning Virginia to play an important role in the new energy economy of the future. Virginia Recovery Act State Memo

139

Louisiana Recovery Act State Memo | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Louisiana Recovery Act State Memo Louisiana Recovery Act State Memo Louisiana Recovery Act State Memo Louisiana has substantial natural resources, including abundant oil, gas, coal, biomass, and hydroelectric power. The American Recovery & Reinvestment Act (ARRA) is making a meaningful down payment on the nation's energy and environmental future. The Recovery Act investments in Louisiana are supporting a broad range of clean energy projects, from energy efficiency and smart grid to solar and geothermal, advanced battery manufacturing and biofuels. Through these investments, Louisiana's businesses, universities, non-profits, and local governments are creating quality jobs today and positioning Louisiana to play an important role in the new energy economy of the future. Louisiana Recovery Act State Memo

140

Secretary Chu Highlights Recovery Act Cleanup Progress | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Highlights Recovery Act Cleanup Progress Highlights Recovery Act Cleanup Progress Secretary Chu Highlights Recovery Act Cleanup Progress March 23, 2010 - 12:00am Addthis OAK RIDGE, TENN. - Energy Secretary Steven Chu announced today that the Department's Environmental Management program has spent more than $1.5 billion in American Recovery and Reinvestment Act funds on cleanup projects around the country - 25 percent of the program's total - creating an estimated 14,400 jobs since the start of the Recovery Act. "Because of the Recovery Act, programs around the country have been able to expand, hire and continue our important cleanup work," said Secretary Chu. "These investments have played a key role in helping local economies recover, creating jobs and supporting small businesses in dozens of

Note: This page contains sample records for the topic "recovery testing important" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

Wyoming Recovery Act State Memo | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Wyoming Recovery Act State Memo Wyoming Recovery Act State Memo Wyoming Recovery Act State Memo Wyoming has substantial natural resources including coal, natural gas, oil, and wind power. The American Recovery & Reinvestment Act (ARRA) is making a meaningful down payment on the nation's energy and environmental future. The Recovery Act investments in Wyoming are supporting a broad range of clean energy projects from energy efficiency and the smart grid to carbon capture and storage. Through these investments, Wyoming's businesses, the University of Wyoming, non-profits, and local governments are creating quality jobs today and positioning Wyoming to play an important role in the new energy economy of the future. Recovery_Act_Memo_Wyoming.pdf More Documents & Publications Slide 1

142

The American Recovery and Reinvestment Act (ARRA) Energy Assurance Planning  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

The American Recovery and Reinvestment Act (ARRA) Energy Assurance The American Recovery and Reinvestment Act (ARRA) Energy Assurance Planning (EAP) Bulletin, January 3 2012, Volume 3 No. 1 The American Recovery and Reinvestment Act (ARRA) Energy Assurance Planning (EAP) Bulletin, January 3 2012, Volume 3 No. 1 The American Recovery and Reinvestment Act (ARRA) Energy Assurance Planning (EAP) Bulletin provides information on energy assurance planning resources, upcoming events, training opportunities, and important grant deliverable dates. VOLUME 3, NUMBER 1. January 2012 Energy Assurance Planning Bulletin Volume 3 No 1.pdf More Documents & Publications The American Recovery and Reinvestment Act (ARRA) Energy Assurance Planning (EAP) Bulletin, July 1 2010, Volume 1 No. 3 The American Recovery and Reinvestment Act (ARRA) Energy Assurance Planning

143

New York Recovery Act State Memo | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

York Recovery Act State Memo York Recovery Act State Memo New York Recovery Act State Memo The American Recovery & Reinvestment Act (ARRA) is making a meaningful down payment on the nation's energy and environmental future. The Recovery Act investments in New York are supporting a broad range of clean energy projects from energy efficiency and the smart grid to advanced battery manufacturing, the Brookhaven National Lab in Upton, and cleanup of the state's Cold War legacy nuclear sites. Through these investments, New York's businesses, universities, national labs, non-profits, and local governments are creating quality jobs today and positioning New York to play an important role in the new energy economy of the future. New York Recovery Act State Memo More Documents & Publications

144

Kentucky Recovery Act State Memo | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Kentucky Recovery Act State Memo Kentucky Recovery Act State Memo Kentucky Recovery Act State Memo Kentucky has substantial natural resources, including coal, oil, gas, and hydroelectric power. The American Recovery & Reinvestment Act (ARRA) is making a meaningful down payment on the nation's energy and environmental future. The Recovery Act investments in Kentucky are supporting a broad range of clean energy projects, from energy efficiency and the smart grid to environmental cleanup and alternative fuels and vehicles. Through these investments, Kentucky's businesses, universities, non-profits, and local governments are creating quality jobs today and positioning Kentucky to play an important role in the new energy economy of the future. Kentucky Recovery Act State Memo More Documents & Publications

145

Oklahoma Recovery Act State Memo | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Oklahoma Recovery Act State Memo Oklahoma Recovery Act State Memo Oklahoma Recovery Act State Memo Oklahoma has substantial natural resources, including oil, gas, solar, wind, and hydroelectric power. The American Recovery & Reinvestment Act (ARRA) is making a meaningful down payment on the nation's energy and environmental future. The Recovery Act investments in Oklahoma are supporting a broad range of clean energy projects from energy efficiency and the smart grid to environmental cleanup and geothermal. Through these investments, Oklahoma's businesses, universities, non-profits, and local governments are creating quality jobs today and positioning Ohio to play an important role in the new energy economy of the future. Oklahoma Recovery Act State Memo More Documents & Publications

146

The American Recovery and Reinvestment Act (ARRA) Energy Assurance Planning  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

The American Recovery and Reinvestment Act (ARRA) Energy Assurance The American Recovery and Reinvestment Act (ARRA) Energy Assurance Planning (EAP) Bulletin, April 1 2010, Volume 1 No. 2 The American Recovery and Reinvestment Act (ARRA) Energy Assurance Planning (EAP) Bulletin, April 1 2010, Volume 1 No. 2 The American Recovery and Reinvestment Act (ARRA) Energy Assurance Planning (EAP) Bulletin provides information on energy assurance planning resources, upcoming events, training opportunities, and important grant deliverable dates. VOLUME 1, NUMBER 2. The American Recovery and Reinvestment Act (ARRA) Energy Assurance Planning (EAP) Bulletin, April 1 2010, Volume 1 No. 2 More Documents & Publications The American Recovery and Reinvestment Act (ARRA) Energy Assurance Planning (EAP) Bulletin, July 1 2010, Volume 1 No. 3

147

Alaska Recovery Act State Memo | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Alaska Recovery Act State Memo Alaska Recovery Act State Memo Alaska Recovery Act State Memo Alaska has substantial natural resources, including oil, gas, coal, solar, wind, geothermal, and hydroelectric power. The American Recovery & Reinvestment Act (ARRA) is making a meaningful down payment on the nation's energy and environmental future. The Recovery Act investments in Alaska are supporting a broad range of clean energy projects, from energy efficiency and electric grid improvements to geothermal power. Through these investments, Alaska's businesses, universities, non-profits, and local governments are creating quality jobs today and positioning Alaska to play an important role in the new energy economy of the future. Alaska Recovery Act State Memo More Documents & Publications

148

Iowa Recovery Act State Memo | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Iowa Recovery Act State Memo Iowa Recovery Act State Memo Iowa Recovery Act State Memo Iowa has substantial natural resources, including wind power and is the largest ethanol producer in the United States. The American Recovery & Reinvestment Act (ARRA) is making a meaningful down payment on the nation's energy and environmental future. The Recovery Act investments in Iowa are supporting a broad range of clean energy projects, from energy efficiency and the smart grid to the Ames Laboratory. Through these investments, Iowa's businesses, universities, national labs, non-profits, and local governments are creating quality jobs today and positioning Iowa to play an important role in the new energy economy of the future. Iowa Recovery Act State Memo More Documents & Publications

149

Arizona Recovery Act State Memo | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Arizona Recovery Act State Memo Arizona Recovery Act State Memo Arizona Recovery Act State Memo Arizona has substantial natural resources, including coal, solar, and hydroelectric resources. The American Recovery & Reinvestment Act (ARRA) is making a meaningful down payment on the nation's energy and environmental future. The Recovery Act investments in Arizona reflect a broad range of clean energy projects, from energy efficiency and the smart grid to transportation, carbon capture and storage, and geothermal energy. Through these investments, Arizona's businesses, universities, non-profits, and local governments are creating quality jobs today and positioning Arizona to play an important role in the new energy economy of the future. Arizona Recovery Act State Memo More Documents & Publications

150

Kentucky Recovery Act State Memo | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Kentucky Recovery Act State Memo Kentucky Recovery Act State Memo Kentucky Recovery Act State Memo Kentucky has substantial natural resources, including coal, oil, gas, and hydroelectric power. The American Recovery & Reinvestment Act (ARRA) is making a meaningful down payment on the nation's energy and environmental future. The Recovery Act investments in Kentucky are supporting a broad range of clean energy projects, from energy efficiency and the smart grid to environmental cleanup and alternative fuels and vehicles. Through these investments, Kentucky's businesses, universities, non-profits, and local governments are creating quality jobs today and positioning Kentucky to play an important role in the new energy economy of the future. Kentucky Recovery Act State Memo More Documents & Publications

151

Alabama Recovery Act State Memo | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Alabama Recovery Act State Memo Alabama Recovery Act State Memo Alabama Recovery Act State Memo Alabama has substantial natural resources, including gas, coal, biomass, geothermal, and hydroelectric power. The American Recovery & Reinvestment Act (ARRA) is making a meaningful down payment on the nation's energy and environmental future. The Recovery Act investments in Alabama are supporting a broad range of clean energy projects, from energy efficiency and the electric grid to renewable energy and carbon capture and storage. Through these investments, Alabama's businesses, universities, nonprofits, and local governments are creating quality jobs today and positioning Alabama to play an important role in the new energy economy of the future. Alabama Recovery Act State Memo More Documents & Publications

152

Missouri Recovery Act State Memo | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Missouri Recovery Act State Memo Missouri Recovery Act State Memo Missouri Recovery Act State Memo Missouri has substantial natural resources, including wind and hydroelectric power. The American Recovery & Reinvestment Act (ARRA) is making a meaningful down payment on the nation's energy and environmental future. The Recovery Act investments in Missouri are supporting a broad range of clean energy projects from energy efficiency and the smart grid to advanced biofuels and transportation electrification initiatives. Through these investments, Missouri's businesses, universities, non-profits, and local governments are creating quality jobs today and positioning Missouri to play an important role in the new energy economy of the future. Missouri Recovery Act State Memo More Documents & Publications

153

Georgia Recovery Act State Memo | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Georgia Recovery Act State Memo Georgia Recovery Act State Memo Georgia Recovery Act State Memo Georgia has substantial natural resources, including biomass and hydroelectric power. The American Recovery & Reinvestment Act (ARRA) is making a meaningful down payment on the nation's energy and environmental future. The Recovery Act investments in Georgia are supporting a broad range of clean energy projects, from energy efficiency and the smart grid to environmental cleanup and alternative fuels and vehicles. Through these investments, Georgia's businesses, universities, non-profits, and local governments are creating quality jobs today and positioning Georgia to play an important role in the new energy economy of the future. Georgia Recovery Act State Memo More Documents & Publications

154

Montana Recovery Act State Memo | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Montana Recovery Act State Memo Montana Recovery Act State Memo Montana Recovery Act State Memo Montana has substantial natural resources, including coal, oil, natural gas, hydroelectric, and wind power. The American Recovery & Reinvestment Act (ARRA) is making a meaningful down payment on the nation's energy and environmental future. The Recovery Act investments in Montana are supporting abroad range of clean energy projects, from energy efficiency and the smart grid to wind and geothermal. Through these investments, Montana's businesses, Montana Tech of the University of Montana, non-profits, and local governments are creating quality jobs today and positioning Montana to play an important role in the new energy economy of the future. Montana Recovery Act State Memo More Documents & Publications

155

South Dakota Recovery Act State Memo | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

South Dakota Recovery Act State Memo South Dakota Recovery Act State Memo South Dakota Recovery Act State Memo South Dakota has substantial natural resources, including biomass, wind, geothermal, and hydroelectric power. The American Recovery & Reinvestment Act (ARRA) is making a meaningful down payment on the nation's energy and environmental future. The Recovery Act investments in South Dakota are supporting a broad range of clean energy projects, from energy efficiency to smart grid and geothermal power. Through these investments, South Dakota's businesses, the University of South Dakota, non-profits, and local governments are creating quality jobs today and positioning South Dakota to play an important role in the new energy economy of the future. South Dakota Recovery Act State Memo

156

Nevada Recovery Act State Memo | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Nevada Recovery Act State Memo Nevada Recovery Act State Memo Nevada Recovery Act State Memo Nevada has substantial natural resources, including geothermal, solar, wind, and hydroelectric power. The American Recovery & Reinvestment Act (ARRA) is making a meaningful down payment on the nation's energy and environmental future. The Recovery Act investments in Nevada are supporting a broad range of clean energy projects from energy efficiency and the smart grid to geothermal, advanced battery manufacturing, and environmental cleanup. Through these investments, Nevada's businesses, non-profits, and local governments are creating quality jobs today and positioning Nevada to play an important role in the new energy economy of the future. Nevada Recovery Act State Memo More Documents & Publications

157

Montana Recovery Act State Memo | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Montana Recovery Act State Memo Montana Recovery Act State Memo Montana Recovery Act State Memo Montana has substantial natural resources, including coal, oil, natural gas, hydroelectric, and wind power. The American Recovery & Reinvestment Act (ARRA) is making a meaningful down payment on the nation's energy and environmental future. The Recovery Act investments in Montana are supporting abroad range of clean energy projects, from energy efficiency and the smart grid to wind and geothermal. Through these investments, Montana's businesses, Montana Tech of the University of Montana, non-profits, and local governments are creating quality jobs today and positioning Montana to play an important role in the new energy economy of the future. Montana Recovery Act State Memo More Documents & Publications

158

Oklahoma Recovery Act State Memo | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Oklahoma Recovery Act State Memo Oklahoma Recovery Act State Memo Oklahoma Recovery Act State Memo Oklahoma has substantial natural resources, including oil, gas, solar, wind, and hydroelectric power. The American Recovery & Reinvestment Act (ARRA) is making a meaningful down payment on the nation's energy and environmental future. The Recovery Act investments in Oklahoma are supporting a broad range of clean energy projects from energy efficiency and the smart grid to environmental cleanup and geothermal. Through these investments, Oklahoma's businesses, universities, non-profits, and local governments are creating quality jobs today and positioning Ohio to play an important role in the new energy economy of the future. Oklahoma Recovery Act State Memo More Documents & Publications

159

Oregon Recovery Act State Memo | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Oregon Recovery Act State Memo Oregon Recovery Act State Memo Oregon Recovery Act State Memo Oregon has substantial natural resources, including wind, geothermal, biomass, and hydroelectric power. The American Recovery & Reinvestment Act (ARRA) is making a meaningful down payment on the nation's energy and environmental future. The Recovery Act investments in Oregon reflect a broad spectrum of opportunities, from energy efficiency and the smart grid to advanced fuels, battery manufacturing, and geothermal and solar power. Through these investments, Oregon's businesses, non-profits, and local governments are creating quality jobs today and positioning Oregon to play an important role in the new energy economy of the future. Oregon Recovery Act State Memo More Documents & Publications

160

Solvent Carryover Characterization and Recovery for a 10-inch Single Stage Centrifugal Contactor  

Science Conference Proceedings (OSTI)

A test program has been performed to characterize the organic solvent carryover and recovery from centrifugal contactors in the Caustic-side Solvent Extraction (CSSX) process. CSSX is the baseline design for removing cesium from salt solutions for Department of Energy (DOE) Savannah River Site's Salt Waste Processing Facility. CSSX uses a custom solvent to extract cesium from the salt solution in a series of single stage centrifugal contactors. Meeting the Waste Acceptance Criteria at the Defense Waste Processing Facility and Saltstone, as well as plant economics, dictate that solvent loss should be kept to a minimum. Solvent droplet size distribution in the aqueous outlet streams of the CSSX contactors is of particular importance to the design of solvent recovery equipment. Because insufficient solvent droplet size data existed to form a basis for the recovery system design, DOE funded the CSSX Solvent Carryover Characterization and Recovery Test (SCCRT). This paper presents the droplet size distribution of solvent and concentration in the contactor aqueous outlet streams as a function of rotor speed, bottom plate type, and flow rate. It also presents the performance data of a prototype coalescer. (authors)

Lentsch, R.D.; Stephens, A.B.; Leung, D.T. [General Atomics, 3550 General Atomics Court, San Diego, CA 92121 (United States); Baffling, K.E. [Parsons, 1080 Silver Bluff Road, Aiken, SC 29803 (United States); Harmon, H.D. [Battelle, Pacific Northwest National Laboratory, P.O. Box 999, Richland, WA 99352 (United States); Suggs, P.C. [U.S. Department of Energy, P.O. Box A, Aiken, SC 29808 (United States)

2006-07-01T23:59:59.000Z

Note: This page contains sample records for the topic "recovery testing important" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

Business Owners: Prepare a Business Recovery Plan | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

a Business Recovery Plan a Business Recovery Plan Business Owners: Prepare a Business Recovery Plan Business Owners: Prepare a Business Recovery Plan Smart business owners develop and test a written business recovery plan to support them through disasters and help them stay in operation. Planning ahead will help your company get back to business more quickly. Consider your risks-How might a disaster affect your business operations? What natural disasters are most likely where you operate? Identify your critical business functions-What resources and personnel will you need to restore or reproduce these functions during a recovery? Assign disaster response duties to your employees. Identify critical suppliers-Identify suppliers, providers, shippers, resources, and other businesses you typically interact with and

162

Recovery Act Workers Demolish Facility Tied to Project Pluto History |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Recovery Act Workers Demolish Facility Tied to Project Pluto Recovery Act Workers Demolish Facility Tied to Project Pluto History Recovery Act Workers Demolish Facility Tied to Project Pluto History Workers recently razed a facility used in the historic Project Pluto, the latest American Recovery and Reinvestment Act accomplishment helping clean up traces of past nuclear testing at the Nevada National Security Site (NNSS). Recovery Act workers safely hauled the last demolition waste from the Pluto Disassembly Facility to disposal facilities Jan. 11. The project is slated for completion this spring after workers finish installing a concrete cap over the below-ground level where the facility stood. Recovery Act Workers Demolish Facility Tied to Project Pluto History More Documents & Publications 2010 ARRA Newsletters

163

Waste Steam Recovery  

E-Print Network (OSTI)

An examination has been made of the recovery of waste steam by three techniques: direct heat exchange to process, mechanical compression, and thermocompression. Near atmospheric steam sources were considered, but the techniques developed are equally applicable to other sources of steam. The interaction of the recovery system with the plant's steam/power system has been included. Typical operating economics have been prepared. It was found that the profitability of most recovery schemes is generally dependent on the techniques used, the existing steam/power system, and the relative costs of steam and power. However, there will always be site-specific factors to consider. It is shown that direct heat exchange and thermocompression will always yield an energy profit when interacting with PRVs in the powerhouse. A set of typical comparisons between the three recovery techniques, interacting with various powerhouse and plant steam system configurations, is presented. A brief outline of the analysis techniques needed to prepare the comparison is also shown. Only operating costs are examined; capital costs are so size - and site-specific as to be impossible to generalize. The operating cost savings may be used to give an indication of investment potential.

Kleinfeld, J. M.

1979-01-01T23:59:59.000Z

164

Recycling and Secondary Recovery  

Science Conference Proceedings (OSTI)

"Applying Ausmelt Technology to Recover Cu, Ni, and Co from Slags" .... " Enhancing Cobalt Recovery from Primary and Secondary Resources" .... " Modifying Alumina Red Mud to Support a Revegetation Cover" (Research .... " Recycling Used Automotive Oil Filters" (Research Summary), K.D. Peaslee, February 1994, pp.

165

Bank financing of secondary recovery projects  

SciTech Connect

Investment requirements of the average independent oil operator desiring to develop a secondary recovery project usually are sought from a lending institution. The criteria by which The Chase Manhattan Bank judges such an application are discussed: managerial competence of the operator, the engineering information and program, and an economic analysis of the project and proposed financing. The application of these principles to the case of a successful waterflood in the Mid-Continent area is presented. Some problems are presented to illustrate the importance of the bank's standards in considering the financing of a secondary recovery project. Good management and competent, continuing engineering guidance are considered essential to a financeable secondary recovery project. The quality of the properties must be proven by comparison of laboratory data and engineering studies with pilot flood performance. The amount of financing the bank will be willing to undertake is determined by an economic analysis and valuation method as described.

Brown, C.L.

1982-01-01T23:59:59.000Z

166

Deputy Secretary Poneman: Recovery Act Putting Americans to Work and  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Poneman: Recovery Act Putting Americans to Work Poneman: Recovery Act Putting Americans to Work and Accelerating Important Work at Savannah River Site Deputy Secretary Poneman: Recovery Act Putting Americans to Work and Accelerating Important Work at Savannah River Site November 4, 2009 - 12:00am Addthis Aiken, South Carolina - At a community breakfast in Aiken, South Carolina today, U.S. Deputy Secretary of Energy Daniel Poneman discussed how funding from the American Recovery and Reinvestment Act is accelerating environmental cleanup work at the Savannah River Site and creating or saving thousands of jobs in the area. Additionally, he discussed how the Recovery Act is putting Americans to work helping weatherize homes and improve energy efficiency in communities throughout Georgia and South Carolina.

167

Environmental effects of microbial enhanced oil recovery processes  

SciTech Connect

This status report addresses key milestones 4 and 5 of the FY86 Annual Plan for BE3. These milestones are: Preliminary Design for Microbial Field Compatibility Test Developed; and Recommendation on Continuation of Field Testing. A consistent objective of BE3 has been to determine guidelines for performing microbial enhanced oil recovery (MEOR) processes in the field. Laboratory research has focused upon the compatibility and behavior of microorganisms used for MEOR in porous media. Information from these compatibility experiments, along with continual reviews of current MEOR literature, has been used to design a field MEOR compatibility test. This test has several objectives: (1) to determine the best available and scientifically accurate method for sampling and monitoring microorganisms in the oilfield; (2) to obtain information about what microorganisms are indigenous to that particular field; (3) to correlate a laboratory research effort with this field test so that some predictions can be made about the outcome; (4) to develop a set of guidelines for other field MEOR projects so that any environmental concerns could be addressed and satisfied; and (5) to provide recommendations for future MEOR field research. To perform and monitor a successful microbial field compatibility test, an important parameter is the preliminary design and planning. 2 refs.

Bryant, R.S.

1986-07-01T23:59:59.000Z

168

Recovery Act | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Recovery Act Recovery Act Recovery Act Center Map PERFORMANCE The Department estimates the $6 billion Recovery Act investment will allow us to complete work now that would cost approximately $13 billion in future years, saving $7 billion. As Recovery Act work is completed through the cleanup of contaminated sites, facilities, and material disposition, these areas will becoming available for potential reuse by other entities. Recovery Act funding is helping the Department reach our cleanup goals faster. Through the end of December 2012, EM achieved a total footprint reduction of 74%, or 690 of 931 square miles. EM achieved its goal of 40% footprint reduction in April 2011, five months ahead of schedule. Recovery Act payments exceeded $5.9 billion in December 2012. Recovery Act

169

Recovery Act | OpenEI  

Open Energy Info (EERE)

Recovery Act Recovery Act Dataset Summary Description This dataset, updated quarterly by Recovery.org, contains a breakdown of state-by-state recovery act funds awarded and received, as well as the number of jobs created and saved. The shows two periods, February 17, 2009 to December 31, 2010, and January 1, 2011 to March 31, 2011. The jobs created and saved are displayed just for January 1, 2011 to March 31, 2011. The document was downloaded from Recovery.org. It is a simple document displaying 50 states, as well as American territories. Source Recovery.org Date Released June 08th, 2011 (3 years ago) Date Updated Unknown Keywords award funding jobs Recovery Act Recovery.org Data text/csv icon recipientfundingawardedbystate.csv (csv, 5.1 KiB) Quality Metrics Level of Review Some Review

170

Improved screen-bowl centrifuge recovery using polymer injection technology  

Science Conference Proceedings (OSTI)

The paper reports the improved screen-bowl centrifuge recovery process using polymer injection technology. Field test and economic analysis are also included in the paper. 3 refs., 3 figs., 1 tab.

Burchett, R.T.; McGough, K.M.; Luttrell, G.H.

2006-08-15T23:59:59.000Z

171

COLORADO RECOVERY ACT SNAPSHOT | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

COLORADO RECOVERY ACT SNAPSHOT COLORADO RECOVERY ACT SNAPSHOT The American Recovery & Reinvestment Act (ARRA) is making a meaningful down payment on the nation's energy and...

172

Caustic Recovery Technology  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

366, REVISON 0 366, REVISON 0 Key Words: Waste Treatment Plant Sodium Recovery Electrochemical Retention: Permanent Review of Ceramatec's Caustic Recovery Technology W. R. Wilmarth D. T. Hobbs W. A. Averill E. B. Fox R. A. Peterson UNCLASSIFIED DOES NOT CONTAIN UNCLASSIFIED CONTROLLED NUCLEAR INFORMATION ADC & Reviewing Official:_______________________________________ (E. Stevens, Manager, Solid Waste and Special Programs) Date:______________________________________ JULY 20, 2007 Washington Savannah River Company Savannah River Site Aiken, SC 29808 Prepared for the U. S. Department of Energy Under Contract Number DE-AC09-96SR18500 Page 1 of 28 WSRC-STI-2007-00366, REVISON 0 DISCLAIMER This report was prepared for the United States Department of Energy under

173

Fermilab | Recovery Act | Videos  

NLE Websites -- All DOE Office Websites (Extended Search)

Videos Videos Watch videos documenting progress on Fermilab projects funded by the American Recovery and Reinvestment Act. NOvA - Community Voices - September 2009 Residents of northern Minnesota and construction workers building the NOvA detector facility discuss the benefits the high-energy physics research project has brought their communities. Congressman Bill Foster at Fermilab Congressman Bill Foster speaks to Fermilab Technical Division employees and members of the media at a press conference on Wednesday, August 5 to announce an additional $60.2 million in Recovery Act funds for the lab. NOvA first blast On July 20, construction crews began blasting into the rock at the future site of the NOvA detector facility in northern Minnesota. NOvA groundbreaking ceremony

174

Elemental sulfur recovery process  

DOE Patents (OSTI)

An improved catalytic reduction process for the direct recovery of elemental sulfur from various SO[sub 2]-containing industrial gas streams. The catalytic process provides combined high activity and selectivity for the reduction of SO[sub 2] to elemental sulfur product with carbon monoxide or other reducing gases. The reaction of sulfur dioxide and reducing gas takes place over certain catalyst formulations based on cerium oxide. The process is a single-stage, catalytic sulfur recovery process in conjunction with regenerators, such as those used in dry, regenerative flue gas desulfurization or other processes, involving direct reduction of the SO[sub 2] in the regenerator off gas stream to elemental sulfur in the presence of a catalyst. 4 figures.

Flytzani-Stephanopoulos, M.; Zhicheng Hu.

1993-09-07T23:59:59.000Z

175

Recovery Act | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

May 14, 2010 May 14, 2010 PPG and MAG Team Up for Turbine Blade Research Two companies work together to move forward in the industry, researching materials and processes that could lead to stronger, more reliable wind blades. May 14, 2010 Energy Corps Takes Root in Montana, Seeks to Make America Greener For the last 17 years, AmeriCorps members have pledged to uphold their duties as public servants, vowing to "get things done for America-to make our people safer, smarter and healthier." But a new type of volunteering in Montana is adding one more thing to that list: making America greener. May 14, 2010 Recovery Act Funding Hundreds of Jobs in California Solar Power, Inc. of Roseville, Calif., does almost everything in solar photovoltaics - from manufacturing and testing to home solar panel

176

Recovery Boiler Modeling  

E-Print Network (OSTI)

Preliminary computations of the cold flow in a simplified geometry of a recovery boiler are presented. The computations have been carried out using a new code containing multigrid methods and segmentation techniques. This approach is shown to provide good resolution of the complex flow near the air ports and greatly improve the convergence characteristics of the numerical procedure. The improved resolution enhances the predictive capabilities of the computations, and allows the assessment of the relative performance of different air delivery systems.

Abdullah, Z.; Salcudean, M.; Nowak, P.

1994-04-01T23:59:59.000Z

177

Chemically enhanced oil recovery  

Science Conference Proceedings (OSTI)

Yet when conducted according to present state of the art, chemical flooding (i.e., micellar/polymer flooding, surfactant/polymer flooding, surfactant flooding) can mobilize more residual crude oil than any other method of enhanced oil recovery. It also is one of the most expensive methods of enhanced oil recovery. This contribution will describe some of the technology that comprises the state of the art technology that must be adhered to if a chemical flood is to be successful. Although some of the efforts to reduce cost and other points are discussed, the principle focus is on technical considerations in designing a good chemical flooding system. The term chemical flooding is restricted here to methods of enhanced oil recovery that employs a surfactant, either injected into the oil reservoir or generated in situ, primarily to reduce oil-water interfacial tension. Hence, polymer-water floods for mobility or profile control, steam foams, and carbon dioxide foams are excluded. Some polymer considerations are mentioned because they apply to providing mobility control for chemical flooding systems.

Nelson, R.C.

1989-03-01T23:59:59.000Z

178

Company Level Imports Archives  

U.S. Energy Information Administration (EIA) Indexed Site

Company Level Imports Company Level Imports Archives 2013 Imports by Month January XLS February XLS March XLS April XLS May XLS June XLS July XLS August XLS September XLS...

179

Natural Gas Imports (Summary)  

U.S. Energy Information Administration (EIA) Indexed Site

Netscape Navigator 3+ Make sure that JavaScript is enabled in your browser U.S. Natural Gas Imports & Exports by State (Million Cubic Feet) Data Series: Import Volume Import...

180

From South Carolina to Massachusetts, Recovery Act Boosts Domestic Wind |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

From South Carolina to Massachusetts, Recovery Act Boosts Domestic From South Carolina to Massachusetts, Recovery Act Boosts Domestic Wind From South Carolina to Massachusetts, Recovery Act Boosts Domestic Wind November 2, 2010 - 5:02pm Addthis Jacques Beaudry-Losique Director, Wind & Water Program Last week, Clemson University broke ground on a facility critical to the expansion of domestic wind power. At a converted Navy base in North Charleston, this one-of-a-kind center will test large drivetrains - the machinery that converts wind energy to electricity. With $45 million of Recovery Act funding from the Department of Energy, and another $53 million matched by private funding, the test facility will allow engineers to simulate 20 years worth of wear and tear on large drivetrains in only a few months. Some of the wind gust exposure tests made possible by this facility

Note: This page contains sample records for the topic "recovery testing important" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

Comprehensive Municipal Solid Waste Management, Resource Recovery...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Municipal Solid Waste Management, Resource Recovery, and Conservation Act (Texas) Comprehensive Municipal Solid Waste Management, Resource Recovery, and Conservation...

182

Idaho Recovery Act State Memo | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Idaho Recovery Act State Memo Idaho Recovery Act State Memo Idaho Recovery Act State Memo Idaho has substantial natural resources, including wind, geothermal, and hydroelectric power. The American Recovery & Reinvestment Act (ARRA) is making a meaningful down payment on the nation's energy and environmental future. The Recovery Act investments in Idaho are supporting a broad range of clean energy projects, from energy efficiency and the smart grid to geothermal and alternative fuels, as well as major commitments to research efforts and environmental cleanup at the Idaho National Laboratory in Idaho Falls. Through these investments, Idaho's businesses, universities, national labs, non-profits, and local governments are creating quality jobs today and positioning Idaho to play an important role in the new energy economy

183

The American Recovery and Reinvestment Act (ARRA) Energy Assurance Planning  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

3 2012, Volume 3 No. 1 3 2012, Volume 3 No. 1 The American Recovery and Reinvestment Act (ARRA) Energy Assurance Planning (EAP) Bulletin, January 3 2012, Volume 3 No. 1 The American Recovery and Reinvestment Act (ARRA) Energy Assurance Planning (EAP) Bulletin provides information on energy assurance planning resources, upcoming events, training opportunities, and important grant deliverable dates. VOLUME 3, NUMBER 1. January 2012 Energy Assurance Planning Bulletin Volume 3 No 1.pdf More Documents & Publications The American Recovery and Reinvestment Act (ARRA) Energy Assurance Planning (EAP) Bulletin, July 1 2010, Volume 1 No. 3 The American Recovery and Reinvestment Act (ARRA) Energy Assurance Planning (EAP) Bulletin, October 3 2011, Volume 2 No. 4 The American Recovery and Reinvestment Act (ARRA) Energy Assurance Planning

184

North Dakota Recovery Act State Memo | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

North Dakota Recovery Act State Memo North Dakota Recovery Act State Memo North Dakota Recovery Act State Memo North Dakota has substantial natural resources, including coal, natural gas, oil, wind, and hydroelectric power. The American Recovery & Reinvestment Act (ARRA) is making a meaningful down payment on the nation's energy and environmental future. The Recovery Act investments in North Dakota are supporting a broad range of clean energy projects, from energy efficiency and the smart grid to clean coal, wind, and carbon capture and storage. Through these investments, North Dakota's businesses, the University of North Dakota, non-profits, and local governments are creating quality jobs today and positioning North Dakota to play an important role in the new energy economy of the future.

185

The American Recovery and Reinvestment Act (ARRA) Energy Assurance Planning  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

October 1 2010, Volume 1, No. 4 October 1 2010, Volume 1, No. 4 The American Recovery and Reinvestment Act (ARRA) Energy Assurance Planning (EAP) Bulletin, October 1 2010, Volume 1, No. 4 The American Recovery and Reinvestment Act (ARRA) Energy Assurance Planning (EAP) Bulletin provides information on energy assurance planning resources, upcoming events, training opportunities, and important grant deliverable dates. VOLUME 1, NUMBER 4. The American Recovery and Reinvestment Act (ARRA) Energy Assurance Planning (EAP) Bulletin, October 1 2010, Volume 1, No. 4 More Documents & Publications The American Recovery and Reinvestment Act (ARRA) Energy Assurance Planning (EAP) Bulletin, July 1 2010, Volume 1 No. 3 The American Recovery and Reinvestment Act (ARRA) Energy Assurance Planning (EAP) Bulletin, January 3 2011, Volume 2 No. 1

186

Idaho Recovery Act State Memo | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Idaho Recovery Act State Memo Idaho Recovery Act State Memo Idaho Recovery Act State Memo Idaho has substantial natural resources, including wind, geothermal, and hydroelectric power. The American Recovery & Reinvestment Act (ARRA) is making a meaningful down payment on the nation's energy and environmental future. The Recovery Act investments in Idaho are supporting a broad range of clean energy projects, from energy efficiency and the smart grid to geothermal and alternative fuels, as well as major commitments to research efforts and environmental cleanup at the Idaho National Laboratory in Idaho Falls. Through these investments, Idaho's businesses, universities, national labs, non-profits, and local governments are creating quality jobs today and positioning Idaho to play an important role in the new energy economy

187

Minnesota Recovery Act State Memo | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Minnesota Recovery Act State Memo Minnesota Recovery Act State Memo Minnesota Recovery Act State Memo Minnesota has substantial natural resources, including biomass, wind power, and is a large ethanol producer. The American Recovery & Reinvestment Act (ARRA) is making a meaningful down payment on the nation's energy and environmental future. The Recovery Act investments in Minnesota are supporting abroad range of clean energy projects, from energy efficiency and the smart grid to solar and wind, geothermal power, and the Fermi National Accelerator Laboratory. Through these investments, Minnesota's businesses, universities, national labs, non-profits, and local governments are creating quality jobs today and positioning Minnesota to play an important role in the new energy economy of the future.

188

The American Recovery and Reinvestment Act (ARRA) Energy Assurance Planning  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

April 2, 2012, Volume 3 No. 2 April 2, 2012, Volume 3 No. 2 The American Recovery and Reinvestment Act (ARRA) Energy Assurance Planning (EAP) Bulletin, April 2, 2012, Volume 3 No. 2 The American Recovery and Reinvestment Act (ARRA) Energy Assurance Planning (EAP) Bulletin provides information on energy assurance planning resources, upcoming events, training opportunities, and important grant deliverable dates. VOLUME 3, NUMBER 2. April 2012 Energy Assurance Planning Bulletin Volume 3 No 2.pdf More Documents & Publications The American Recovery and Reinvestment Act (ARRA) Energy Assurance Planning (EAP) Bulletin, April 1 2010, Volume 1 No. 2 The American Recovery and Reinvestment Act (ARRA) Energy Assurance Planning (EAP) Bulletin, July 1 2010, Volume 1 No. 3 The American Recovery and Reinvestment Act (ARRA) Energy Assurance Planning

189

The American Recovery and Reinvestment Act (ARRA) Energy Assurance Planning  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

1, Volume 2 No. 2 1, Volume 2 No. 2 The American Recovery and Reinvestment Act (ARRA) Energy Assurance Planning (EAP) Bulletin, April 1 2011, Volume 2 No. 2 The American Recovery and Reinvestment Act (ARRA) Energy Assurance Planning (EAP) Bulletin provides information on energy assurance planning resources, upcoming events, training opportunities, and important grant deliverable dates. VOLUME 2, NUMBER 2. The American Recovery and Reinvestment Act (ARRA) Energy Assurance Planning (EAP) Bulletin, April 1 2011, Volume 2 No. 2 More Documents & Publications The American Recovery and Reinvestment Act (ARRA) Energy Assurance Planning (EAP) Bulletin, July 1 2011, Volume 2 No. 3 The American Recovery and Reinvestment Act (ARRA) Energy Assurance Planning (EAP) Bulletin, October 3 2011, Volume 2 No. 4

190

Washington Recovery Act State Memo | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Washington Recovery Act State Memo Washington Recovery Act State Memo Washington Recovery Act State Memo Washington State has substantial natural resources, including biomass, wind, geothermal, and hydroelectric power. The American Recovery & Reinvestment Act (ARRA)is making a meaningful down payment on the nation's energy and environmental future. The Recovery Act investments in Washington are supporting a broad range of clean energy projects from energy efficiency and the smart grid to wind, biomass, and geothermal, as well as cleaning up the legacy of Cold War nuclear facilities at Hanford. Through these investments, Washington's businesses, non-profits, and local governments are creating quality jobs today and positioning Washington to play an important role in the new energy economy of the

191

The American Recovery and Reinvestment Act (ARRA) Energy Assurance Planning  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

October 1, 2012, Volume 3 No. 4 October 1, 2012, Volume 3 No. 4 The American Recovery and Reinvestment Act (ARRA) Energy Assurance Planning (EAP) Bulletin, October 1, 2012, Volume 3 No. 4 The American Recovery and Reinvestment Act (ARRA) Energy Assurance Planning (EAP) Bulletin provides information on energy assurance planning resources, upcoming events, training opportunities, and important grant deliverable dates. VOLUME 3, NUMBER 4. October 2012 Energy Assurance Planning Bulletin Volume 3 No 4 More Documents & Publications The American Recovery and Reinvestment Act (ARRA) Energy Assurance Planning (EAP) Bulletin, January 3 2011, Volume 2 No. 1 The American Recovery and Reinvestment Act (ARRA) Energy Assurance Planning (EAP) Bulletin, January 3 2012, Volume 3 No. 1 The American Recovery and Reinvestment Act (ARRA) Energy Assurance Planning

192

North Dakota Recovery Act State Memo | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

North Dakota Recovery Act State Memo North Dakota Recovery Act State Memo North Dakota Recovery Act State Memo North Dakota has substantial natural resources, including coal, natural gas, oil, wind, and hydroelectric power. The American Recovery & Reinvestment Act (ARRA) is making a meaningful down payment on the nation's energy and environmental future. The Recovery Act investments in North Dakota are supporting a broad range of clean energy projects, from energy efficiency and the smart grid to clean coal, wind, and carbon capture and storage. Through these investments, North Dakota's businesses, the University of North Dakota, non-profits, and local governments are creating quality jobs today and positioning North Dakota to play an important role in the new energy economy of the future.

193

Tennessee Recovery Act State Memo | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Tennessee Recovery Act State Memo Tennessee Recovery Act State Memo Tennessee Recovery Act State Memo Tennessee has substantial natural resources, including coal and hydroelectric power. The American Recovery & Reinvestment Act (ARRA) is making a meaningful down payment on the nation's energy and environmental future. The Recovery Act investments in Tennessee are supporting a broad range of clean energy projects, from energy efficiency and the smart grid to solar and advanced batteries, as well as over $580 million to accelerate environmental cleanup efforts on the Oak Ridge Reservation. Through these investments, Tennessee's businesses, Oak Ridge National Laboratory, non-profits, and local governments are creating quality jobs today and positioning Tennessee to play an important role in the new energy economy

194

California Recovery Act State Memo | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

California Recovery Act State Memo California Recovery Act State Memo California Recovery Act State Memo California has substantial natural resources, including oil, gas, solar, wind, geothermal, and hydroelectric power. The American Recovery & Reinvestment Act (ARRA) is making a meaningful down payment on the nation's energy and environmental future. The Recovery Act investments in California are supporting a broad range of clean energy projects, from energy efficiency and the smart grid to solar and wind, geothermal and biofuels, carbon capture and storage, and environmental cleanup. Through these investments, California's businesses, universities, national labs, non-profits, and local governments are creating quality jobs today and positioning California to play an important role in the new energy economy

195

The American Recovery and Reinvestment Act (ARRA) Energy Assurance Planning  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

January 3 2011, Volume 2 No. 1 January 3 2011, Volume 2 No. 1 The American Recovery and Reinvestment Act (ARRA) Energy Assurance Planning (EAP) Bulletin, January 3 2011, Volume 2 No. 1 The American Recovery and Reinvestment Act (ARRA) Energy Assurance Planning (EAP) Bulletin provides information on energy assurance planning resources, upcoming events, training opportunities, and important grant deliverable dates. VOLUME 2, NUMBER 1. The American Recovery and Reinvestment Act (ARRA) Energy Assurance Planning (EAP) Bulletin, January 3 2011, Volume 2 No. 1 More Documents & Publications The American Recovery and Reinvestment Act (ARRA) Energy Assurance Planning (EAP) Bulletin, July 1 2011, Volume 2 No. 3 The American Recovery and Reinvestment Act (ARRA) Energy Assurance Planning (EAP) Bulletin, October 1 2010, Volume 1, No. 4

196

The American Recovery and Reinvestment Act (ARRA) Energy Assurance Planning  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

0, Volume 1 No. 2 0, Volume 1 No. 2 The American Recovery and Reinvestment Act (ARRA) Energy Assurance Planning (EAP) Bulletin, April 1 2010, Volume 1 No. 2 The American Recovery and Reinvestment Act (ARRA) Energy Assurance Planning (EAP) Bulletin provides information on energy assurance planning resources, upcoming events, training opportunities, and important grant deliverable dates. VOLUME 1, NUMBER 2. The American Recovery and Reinvestment Act (ARRA) Energy Assurance Planning (EAP) Bulletin, April 1 2010, Volume 1 No. 2 More Documents & Publications The American Recovery and Reinvestment Act (ARRA) Energy Assurance Planning (EAP) Bulletin, April 1 2011, Volume 2 No. 2 The American Recovery and Reinvestment Act (ARRA) Energy Assurance Planning (EAP) Bulletin, July 1 2010, Volume 1 No. 3

197

South Carolina Recovery Act State Memo | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Carolina Recovery Act State Memo Carolina Recovery Act State Memo South Carolina Recovery Act State Memo South Carolina has substantial nuclear and hydroelectric resources. The American Recovery & Reinvestment Act (ARRA) is making a meaningful down payment on the nation's energy and environmental future. The Recovery Act investments in South Carolina reflect a broad range of clean energy projects, from energy efficiency and the smart grid to wind and solar, as well as nearly $1.6 billion to accelerate the environmental cleanup efforts at the Savannah River Site. Through these investments, South Carolina's businesses, Clemson University, non-profits, and local governments are creating quality jobs today and positioning South Carolina to play an important role in the new energy economy of the future.

198

The American Recovery and Reinvestment Act (ARRA) Energy Assurance Planning  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

1 2010, Volume 1 No. 3 1 2010, Volume 1 No. 3 The American Recovery and Reinvestment Act (ARRA) Energy Assurance Planning (EAP) Bulletin, July 1 2010, Volume 1 No. 3 The American Recovery and Reinvestment Act (ARRA) Energy Assurance Planning (EAP) Bulletin provides information on energy assurance planning resources, upcoming events, training opportunities, and important grant deliverable dates. VOLUME 1, NUMBER 3. The American Recovery and Reinvestment Act (ARRA) Energy Assurance Planning (EAP) Bulletin, July 1 2010, Volume 1 No. 3 More Documents & Publications The American Recovery and Reinvestment Act (ARRA) Energy Assurance Planning (EAP) Bulletin, October 1 2010, Volume 1, No. 4 The American Recovery and Reinvestment Act (ARRA) Energy Assurance Planning (EAP) Bulletin, October 3 2011, Volume 2 No. 4

199

South Carolina Recovery Act State Memo | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

South Carolina Recovery Act State Memo South Carolina Recovery Act State Memo South Carolina Recovery Act State Memo South Carolina has substantial nuclear and hydroelectric resources. The American Recovery & Reinvestment Act (ARRA) is making a meaningful down payment on the nation's energy and environmental future. The Recovery Act investments in South Carolina reflect a broad range of clean energy projects, from energy efficiency and the smart grid to wind and solar, as well as nearly $1.6 billion to accelerate the environmental cleanup efforts at the Savannah River Site. Through these investments, South Carolina's businesses, Clemson University, non-profits, and local governments are creating quality jobs today and positioning South Carolina to play an important role in the new energy economy of the future.

200

WIPP Uses Recovery Act Funding to Reduce Nuclear Waste Footprint |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Uses Recovery Act Funding to Reduce Nuclear Waste Footprint Uses Recovery Act Funding to Reduce Nuclear Waste Footprint WIPP Uses Recovery Act Funding to Reduce Nuclear Waste Footprint August 1, 2011 - 12:00pm Addthis Media Contact Deb Gill www.wipp.energy.gov 575-234-7270 CARLSBAD, N.M. - The U.S. Department of Energy's (DOE's) Carlsbad Field Office (CBFO) reduced the nuclear waste footprint by using American Recovery and Reinvestment Act funds to expedite the clean up of five transuranic (TRU) waste storage sites and to make important infrastructure improvements at the Waste Isolation Pilot Plant (WIPP). Expediting TRU waste shipments supports DOE's goal to dispose of 90 percent of legacy TRU waste by 2015, saving taxpayers million of dollars in storage and maintenance costs. Recovery Act funds allowed highly trained teams to safely prepare and load

Note: This page contains sample records for the topic "recovery testing important" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

URANIUM RECOVERY PROCESS  

DOE Patents (OSTI)

A method is described for recovering uranium values from uranium bearing phosphate solutions such as are encountered in the manufacture of phosphate fertilizers. The solution is first treated with a reducing agent to obtain all the uranium in the tetravalent state. Following this reduction, the solution is treated to co-precipitate the rcduced uranium as a fluoride, together with other insoluble fluorides, thereby accomplishing a substantially complete recovery of even trace amounts of uranium from the phosphate solution. This precipitate usually takes the form of a complex fluoride precipitate, and after appropriate pre-treatment, the uranium fluorides are leached from this precipitate and rccovered from the leach solution.

Bailes, R.H.; Long, R.S.; Olson, R.S.; Kerlinger, H.O.

1959-02-10T23:59:59.000Z

202

Laundry heat recovery system  

SciTech Connect

A laundry heat recovery system includes a heat exchanger associated with each dryer in the system, the heat exchanger being positioned within the exhaust system of the dryer. A controller responsive to the water temperature of the heat exchangers and the water storage for the washer selectively circulates the water through a closed loop system whereby the water within the exchangers is preheated by the associated dryers. By venting the exhaust air through the heat exchanger, the air is dehumidified to permit recirculation of the heated air into the dryer.

Alio, P.

1985-04-09T23:59:59.000Z

203

The ALEXIS mission recovery  

SciTech Connect

The authors report the recovery of the ALEXIS small satellite mission. ALEXIS is a 113-kg satellite that carries an ultrasoft x-ray telescope array and a high-speed VHF receiver/digitizer (BLACKBEARD), supported by a miniature spacecraft bus. It was launched by a Pegasus booster on 1993 April 25, but a solar paddle was damaged during powered flight. Initial attempts to contact ALEXIS were unsuccessful. The satellite finally responded in June, and was soon brought under control. Because the magnetometer had failed, the rescue required the development of new attitude control-techniques. The telemetry system has performed nominally. They discuss the procedures used to recover the ALEXIS mission.

Bloch, J.; Armstrong, T.; Dingler, B.; Enemark, D.; Holden, D.; Little, C.; Munson, C.; Priedhorsky, B.; Roussel-Dupre, D.; Smith, B. [Los Alamos National Lab., NM (United States); Warner, R.; Dill, B.; Huffman, G.; McLoughlin, F.; Mills, R.; Miller, R. [AeroAstro, Inc., Herndon, VA (United States)

1994-03-01T23:59:59.000Z

204

High efficiency shale oil recovery  

SciTech Connect

The overall project objective is to demonstrate the high efficiency of the Adams Counter-Current shale oil recovery process. The efficiency will first be demonstrated on a small scale, in the current phase, after which the demonstration will be extended to the operation of a small pilot plant. Thus the immediate project objective is to obtain data on oil shale retorting operations in a small batch rotary kiln that will be representative of operations in the proposed continuous process pilot plant. Although an oil shale batch sample is sealed in the batch kiln from the start until the end of the run, the process conditions for the batch are the same as the conditions that an element of oil shale would encounter in a continuous process kiln. Similar chemical and physical conditions (heating, mixing, pyrolysis, oxidation) exist in both systems.The two most important data objectives in this phase of the project are to demonstrate (1) that the heat recovery projected for this project is reasonable and (2) that an oil shale kiln will run well and not plug up due to sticking and agglomeration. The following was completed this quarter. (1) Twelve pyrolysis runs were made on five different oil shales. All of the runs exhibited a complete absence of any plugging, tendency. Heat transfer for Green River oil shale in the rotary kiln was 84.6 Btu/hr/ft[sup 2]/[degrees]F, and this will provide for ample heat exchange in the Adams kiln. (2) One retorted residue sample was oxidized at 1000[degrees]F. Preliminary indications are that the ash of this run appears to have been completely oxidized. (3) Further minor equipment repairs and improvements were required during the course of the several runs.

Adams, D.C.

1993-04-22T23:59:59.000Z

205

High efficiency shale oil recovery  

SciTech Connect

The overall project objective is to demonstrate the high efficiency of the Adams Counter-Current shale oil recovery process. The efficiency will first be demonstrated on a small scale, in the current phase, after which the demonstration will be extended to the operation of a small pilot plant. Thus the immediate project objective is to obtain data on oil shale retorting operations in a small batch rotary kiln that will be representative of operations in the proposed continuous process pilot plant. Although an oil shale batch sample is sealed in the batch kiln from the start until the end of the run, the process conditions for the batch are the same as the conditions that an element of oil shale would encounter in a continuous process kiln. Similar chemical and physical (heating, mixing) conditions exist in both systems. The two most important data objectives in this phase of the project are to demonstrate (1) that the heat recovery projected for this project is reasonable and (2) that an oil shale kiln will run well and not plug up due to sticking and agglomeration. The following was completed and is reported on this quarter: (1) A software routine was written to eliminate intermittently inaccurate temperature readings. (2) We completed the quartz sand calibration runs, resolving calibration questions from the 3rd quarter. (3) We also made low temperature retorting runs to identify the need for certain kiln modifications and kiln modifications were completed. (4) Heat Conductance data on two Pyrolysis runs were completed on two samples of Occidental oil shale.

Adams, D.C.

1992-01-01T23:59:59.000Z

206

Contracts for field projects and supporting research on enhanced oil recovery. Progress Review No. 39, quarter ending June 30, 1984  

SciTech Connect

Progress reports are presented for field tests and supporting research for the following: chemical flooding; gas displacement; thermal recovery/heavy oil; resource assessment technology; extraction technology; and microbial enhanced oil recovery.

Linville, B. (ed.)

1984-12-01T23:59:59.000Z

207

Contracts for field projects and supporting research on enhanced oil recovery. Progress review No. 41, quarter ending December 31, 1984  

SciTech Connect

Progress reports are presented for field tests and supporting research for the following: chemical flooding; gas displacement; thermal recovery/heavy oil; resource assessment technology; extraction technology; environmental technology; and microbial enhanced oil recovery.

Linville, B. (ed.)

1985-07-01T23:59:59.000Z

208

Contracts for field projects and supporting research on enhanced oil recovery. Progress Review No. 42, quarter ending March 31, 1985  

Science Conference Proceedings (OSTI)

Progress reports are presented for field tests and supporting research for the following: chemical flooding; gas displacement; thermal recovery/heavy oil; resource assessment technology; extraction technology; environmental technology; and microbial enhanced oil recovery.

Linville, B. (ed.)

1985-11-01T23:59:59.000Z

209

Recovery Act | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Energy Economy ¬Ľ Recovery Act Energy Economy ¬Ľ Recovery Act Recovery Act December 18, 2013 BPA Wins Platts Global Energy Award for Grid Optimization Platts awarded the Bonneville Power Administration (BPA) a Global Energy Award for grid optimization on December 12 in New York City for its development of a synchrophasor network. BPA is part of the Recovery Act-funded Western Interconnection Synchrophasor Program. December 13, 2013 Cumulative Federal Payments to OE Recovery Act Recipients, through November 30, 2013 Graph of cumulative Federal Payments to OE Recovery Act Recipients, through November 30, 2013. December 12, 2013 Energy Department Announces $150 Million in Tax Credits to Invest in U.S. Clean Energy Manufacturing Domestic Manufacturing Projects to Support Renewable Energy Generation as

210

Resource Conservation and Recovery Act  

NLE Websites -- All DOE Office Websites (Extended Search)

Resource Conservation and Recovery Act (RCRA) Resource Conservation and Recovery Act (RCRA) In 1965 the Solid Waste Disposal Act [Public Law (Pub. L.) 89-72] was enacted to improve solid waste disposal methods. It was amended in 1970 by the Resource Recovery Act (Pub. L. 91-512), which provided the Environmental Protection Agency (EPA) with funding for resource recovery programs. However, that Act had little impact on the management and ultimate disposal of hazardous waste. In 1976 Congress enacted the Resource Conservation and Recovery Act (RCRA, Pub. L. 94-580). RCRA established a system for managing non-hazardous and hazardous solid wastes in an environmentally sound manner. Specifically, it provides for the management of hazardous wastes from the point of origin to the point of final disposal (i.e., "cradle to grave"). RCRA also promotes resource recovery and waste minimization.

211

Natural Gas Imports Price  

U.S. Energy Information Administration (EIA) Indexed Site

Netscape Navigator 3+ Make sure that JavaScript is enabled in your browser U.S. Natural Gas Imports & Exports by State (Dollars per Thousand Cubic Feet) Data Series: Import...

212

Recovery Act State Memos Louisiana  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Louisiana Louisiana For questions about DOE's Recovery Act activities, please contact the DOE Recovery Act Clearinghouse: 1-888-DOE-RCVY (888-363-7289), Monday through Friday, 9 a.m. to 7 p.m. Eastern Time https://recoveryclearinghouse.energy.gov/contactUs.htm. All numbers and projects listed as of June 1, 2010 TABLE OF CONTENTS RECOVERY ACT SNAPSHOT................................................................................... 1 FUNDING ALLOCATION TABLE.............................................................................. 2 ENERGY EFFICIENCY ............................................................................................... 3 RENEWABLE ENERGY ............................................................................................. 5

213

Recovery Act State Memos Alabama  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Alabama Alabama For questions about DOE's Recovery Act activities, please contact the DOE Recovery Act Clearinghouse: 1-888-DOE-RCVY (888-363-7289), Monday through Friday, 9 a.m. to 7 p.m. Eastern Time https://recoveryclearinghouse.energy.gov/contactUs.htm. All numbers and projects listed as of June 1, 2010 TABLE OF CONTENTS RECOVERY ACT SNAPSHOT................................................................................... 1 FUNDING ALLOCATION TABLE.............................................................................. 2 ENERGY EFFICIENCY ............................................................................................... 3 RENEWABLE ENERGY ............................................................................................. 5

214

Recovery Act State Memos Oklahoma  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Oklahoma Oklahoma For questions about DOE's Recovery Act activities, please contact the DOE Recovery Act Clearinghouse: 1-888-DOE-RCVY (888-363-7289), Monday through Friday, 9 a.m. to 7 p.m. Eastern Time https://recoveryclearinghouse.energy.gov/contactUs.htm. All numbers and projects listed as of June 1, 2010 TABLE OF CONTENTS RECOVERY ACT SNAPSHOT................................................................................... 1 FUNDING ALLOCATION TABLE.............................................................................. 2 ENERGY EFFICIENCY ............................................................................................... 3 RENEWABLE ENERGY ............................................................................................. 5

215

Recovery Act State Memos Massachusetts  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Massachusetts Massachusetts For questions about DOE's Recovery Act activities, please contact the DOE Recovery Act Clearinghouse: 1-888-DOE-RCVY (888-363-7289), Monday through Friday, 9 a.m. to 7 p.m. Eastern Time https://recoveryclearinghouse.energy.gov/contactUs.htm. All numbers and projects listed as of June 1, 2010 TABLE OF CONTENTS RECOVERY ACT SNAPSHOT................................................................................... 1 FUNDING ALLOCATION TABLE.............................................................................. 2 ENERGY EFFICIENCY ............................................................................................... 3 RENEWABLE ENERGY ............................................................................................. 5

216

Recovery Act State Memos Mississippi  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Mississippi Mississippi For questions about DOE's Recovery Act activities, please contact the DOE Recovery Act Clearinghouse: 1-888-DOE-RCVY (888-363-7289), Monday through Friday, 9 a.m. to 7 p.m. Eastern Time https://recoveryclearinghouse.energy.gov/contactUs.htm. All numbers and projects listed as of June 1, 2010 TABLE OF CONTENTS RECOVERY ACT SNAPSHOT................................................................................... 1 FUNDING ALLOCATION TABLE.............................................................................. 2 ENERGY EFFICIENCY ............................................................................................... 3 RENEWABLE ENERGY ............................................................................................. 4

217

Recovery Act State Memos Wyoming  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Wyoming Wyoming For questions about DOE's Recovery Act activities, please contact the DOE Recovery Act Clearinghouse: 1-888-DOE-RCVY (888-363-7289), Monday through Friday, 9 a.m. to 7 p.m. Eastern Time https://recoveryclearinghouse.energy.gov/contactUs.htm. All numbers and projects listed as of June 1, 2010 TABLE OF CONTENTS RECOVERY ACT SNAPSHOT................................................................................... 1 FUNDING ALLOCATION TABLE.............................................................................. 2 ENERGY EFFICIENCY ............................................................................................... 3 ELECTRIC GRID ........................................................................................................ 4

218

Recovery Act State Memos Connecticut  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Connecticut Connecticut For questions about DOE's Recovery Act activities, please contact the DOE Recovery Act Clearinghouse: 1-888-DOE-RCVY (888-363-7289), Monday through Friday, 9 a.m. to 7 p.m. Eastern Time https://recoveryclearinghouse.energy.gov/contactUs.htm. All numbers and projects listed as of June 1, 2010 TABLE OF CONTENTS RECOVERY ACT SNAPSHOT................................................................................... 1 FUNDING ALLOCATION TABLE.............................................................................. 2 ENERGY EFFICIENCY ............................................................................................... 3 RENEWABLE ENERGY ............................................................................................. 4

219

Recovery Act State Memos Oregon  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Oregon Oregon For questions about DOE's Recovery Act activities, please contact the DOE Recovery Act Clearinghouse: 1-888-DOE-RCVY (888-363-7289), Monday through Friday, 9 a.m. to 7 p.m. Eastern Time https://recoveryclearinghouse.energy.gov/contactUs.htm. All numbers and projects listed as of June 1, 2010 TABLE OF CONTENTS RECOVERY ACT SNAPSHOT................................................................................... 1 FUNDING ALLOCATION TABLE.............................................................................. 2 ENERGY EFFICIENCY ............................................................................................... 4 RENEWABLE ENERGY ............................................................................................. 5

220

Recovery Act State Memos Utah  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Utah Utah For questions about DOE's Recovery Act activities, please contact the DOE Recovery Act Clearinghouse: 1-888-DOE-RCVY (888-363-7289), Monday through Friday, 9 a.m. to 7 p.m. Eastern Time https://recoveryclearinghouse.energy.gov/contactUs.htm. All numbers and projects listed as of June 1, 2010 TABLE OF CONTENTS RECOVERY ACT SNAPSHOT................................................................................... 1 FUNDING ALLOCATION TABLE.............................................................................. 2 ENERGY EFFICIENCY ............................................................................................... 3 RENEWABLE ENERGY ............................................................................................. 5

Note: This page contains sample records for the topic "recovery testing important" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

Recovery Act State Memos Nebraska  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Nebraska Nebraska For questions about DOE's Recovery Act activities, please contact the DOE Recovery Act Clearinghouse: 1-888-DOE-RCVY (888-363-7289), Monday through Friday, 9 a.m. to 7 p.m. Eastern Time https://recoveryclearinghouse.energy.gov/contactUs.htm. All numbers and projects listed as of June 1, 2010 TABLE OF CONTENTS RECOVERY ACT SNAPSHOT................................................................................... 1 FUNDING ALLOCATION TABLE.............................................................................. 2 ENERGY EFFICIENCY ............................................................................................... 3 RENEWABLE ENERGY ............................................................................................. 4

222

Recovery Act State Memos Alaska  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Alaska Alaska For questions about DOE's Recovery Act activities, please contact the DOE Recovery Act Clearinghouse: 1-888-DOE-RCVY (888-363-7289), Monday through Friday, 9 a.m. to 7 p.m. Eastern Time https://recoveryclearinghouse.energy.gov/contactUs.htm. All numbers and projects listed as of June 1, 2010 TABLE OF CONTENTS RECOVERY ACT SNAPSHOT................................................................................... 1 FUNDING ALLOCATION TABLE.............................................................................. 2 ENERGY EFFICIENCY ............................................................................................... 3 RENEWABLE ENERGY ............................................................................................. 5

223

Recovery Act State Memos Arkansas  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Arkansas Arkansas For questions about DOE's Recovery Act activities, please contact the DOE Recovery Act Clearinghouse: 1-888-DOE-RCVY (888-363-7289), Monday through Friday, 9 a.m. to 7 p.m. Eastern Time https://recoveryclearinghouse.energy.gov/contactUs.htm. All numbers and projects listed as of June 1, 2010 TABLE OF CONTENTS RECOVERY ACT SNAPSHOT................................................................................... 1 FUNDING ALLOCATION TABLE.............................................................................. 2 ENERGY EFFICIENCY ............................................................................................... 3 RENEWABLE ENERGY ............................................................................................. 4

224

Recovery Act State Memos Indiana  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Indiana Indiana For questions about DOE's Recovery Act activities, please contact the DOE Recovery Act Clearinghouse: 1-888-DOE-RCVY (888-363-7289), Monday through Friday, 9 a.m. to 7 p.m. Eastern Time https://recoveryclearinghouse.energy.gov/contactUs.htm. All numbers and projects listed as of June 1, 2010 TABLE OF CONTENTS RECOVERY ACT SNAPSHOT................................................................................... 1 FUNDING ALLOCATION TABLE.............................................................................. 2 ENERGY EFFICIENCY ............................................................................................... 3 RENEWABLE ENERGY ............................................................................................. 5

225

Recovery Act State Memos Guam  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Guam Guam For questions about DOE's Recovery Act activities, please contact the DOE Recovery Act Clearinghouse: 1-888-DOE-RCVY (888-363-7289), Monday through Friday, 9 a.m. to 7 p.m. Eastern Time https://recoveryclearinghouse.energy.gov/contactUs.htm. All numbers and projects listed as of June 1, 2010 TABLE OF CONTENTS RECOVERY ACT SNAPSHOT................................................................................... 1 FUNDING ALLOCATION TABLE.............................................................................. 2 ENERGY EFFICIENCY ............................................................................................... 3 ELECTRIC GRID ........................................................................................................ 4

226

Recovery Act State Memos Iowa  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Iowa Iowa For questions about DOE's Recovery Act activities, please contact the DOE Recovery Act Clearinghouse: 1-888-DOE-RCVY (888-363-7289), Monday through Friday, 9 a.m. to 7 p.m. Eastern Time https://recoveryclearinghouse.energy.gov/contactUs.htm. All numbers and projects listed as of June 1, 2010 TABLE OF CONTENTS RECOVERY ACT SNAPSHOT................................................................................... 1 FUNDING ALLOCATION TABLE.............................................................................. 2 ENERGY EFFICIENCY ............................................................................................... 3 RENEWABLE ENERGY ............................................................................................. 4

227

Recovery Act State Memos Georgia  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Georgia Georgia For questions about DOE's Recovery Act activities, please contact the DOE Recovery Act Clearinghouse: 1-888-DOE-RCVY (888-363-7289), Monday through Friday, 9 a.m. to 7 p.m. Eastern Time https://recoveryclearinghouse.energy.gov/contactUs.htm. All numbers and projects listed as of June 1, 2010 TABLE OF CONTENTS RECOVERY ACT SNAPSHOT................................................................................... 1 FUNDING ALLOCATION TABLE.............................................................................. 2 ENERGY EFFICIENCY ............................................................................................... 3 RENEWABLE ENERGY ............................................................................................. 5

228

Recovery Act State Memos Minnesota  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Minnesota Minnesota For questions about DOE's Recovery Act activities, please contact the DOE Recovery Act Clearinghouse: 1-888-DOE-RCVY (888-363-7289), Monday through Friday, 9 a.m. to 7 p.m. Eastern Time https://recoveryclearinghouse.energy.gov/contactUs.htm. All numbers and projects listed as of June 1, 2010 TABLE OF CONTENTS RECOVERY ACT SNAPSHOT................................................................................... 1 FUNDING ALLOCATION TABLE.............................................................................. 2 ENERGY EFFICIENCY ............................................................................................... 3 RENEWABLE ENERGY ............................................................................................. 5

229

Recovery Act State Memos Idaho  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Idaho Idaho For questions about DOE's Recovery Act activities, please contact the DOE Recovery Act Clearinghouse: 1-888-DOE-RCVY (888-363-7289), Monday through Friday, 9 a.m. to 7 p.m. Eastern Time https://recoveryclearinghouse.energy.gov/contactUs.htm. All numbers and projects listed as of June 1, 2010 TABLE OF CONTENTS RECOVERY ACT SNAPSHOT................................................................................... 1 FUNDING ALLOCATION TABLE.............................................................................. 2 ENERGY EFFICIENCY ............................................................................................... 3 RENEWABLE ENERGY ............................................................................................. 4

230

Recovery Act State Memos Illinois  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Illinois Illinois For questions about DOE's Recovery Act activities, please contact the DOE Recovery Act Clearinghouse: 1-888-DOE-RCVY (888-363-7289), Monday through Friday, 9 a.m. to 7 p.m. Eastern Time https://recoveryclearinghouse.energy.gov/contactUs.htm. All numbers and projects listed as of June 1, 2010 TABLE OF CONTENTS RECOVERY ACT SNAPSHOT................................................................................... 1 FUNDING ALLOCATION TABLE.............................................................................. 2 ENERGY EFFICIENCY ............................................................................................... 3 RENEWABLE ENERGY ............................................................................................. 7

231

Recovery Act State Memos Pennsylvania  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Pennsylvania Pennsylvania For questions about DOE's Recovery Act activities, please contact the DOE Recovery Act Clearinghouse: 1-888-DOE-RCVY (888-363-7289), Monday through Friday, 9 a.m. to 7 p.m. Eastern Time https://recoveryclearinghouse.energy.gov/contactUs.htm. All numbers and projects listed as of June 1, 2010 TABLE OF CONTENTS RECOVERY ACT SNAPSHOT................................................................................... 1 FUNDING ALLOCATION TABLE.............................................................................. 2 ENERGY EFFICIENCY ............................................................................................ 3 RENEWABLE ENERGY ......................................................................................... 7

232

Recovery Act State Memos Wisconsin  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Wisconsin Wisconsin For questions about DOE's Recovery Act activities, please contact the DOE Recovery Act Clearinghouse: 1-888-DOE-RCVY (888-363-7289), Monday through Friday, 9 a.m. to 7 p.m. Eastern Time https://recoveryclearinghouse.energy.gov/contactUs.htm. All numbers and projects listed as of June 1, 2010 TABLE OF CONTENTS RECOVERY ACT SNAPSHOT................................................................................... 1 FUNDING ALLOCATION TABLE.............................................................................. 2 ENERGY EFFICIENCY ............................................................................................... 3 RENEWABLE ENERGY ............................................................................................. 6

233

Recovery Act State Memos Montana  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Montana Montana For questions about DOE's Recovery Act activities, please contact the DOE Recovery Act Clearinghouse: 1-888-DOE-RCVY (888-363-7289), Monday through Friday, 9 a.m. to 7 p.m. Eastern Time https://recoveryclearinghouse.energy.gov/contactUs.htm. All numbers and projects listed as of June 1, 2010 TABLE OF CONTENTS RECOVERY ACT SNAPSHOT................................................................................... 1 FUNDING ALLOCATION TABLE.............................................................................. 2 ENERGY EFFICIENCY ............................................................................................... 3 RENEWABLE ENERGY ............................................................................................. 4

234

Recovery Act State Memos Arizona  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Arizona Arizona For questions about DOE's Recovery Act activities, please contact the DOE Recovery Act Clearinghouse: 1-888-DOE-RCVY (888-363-7289), Monday through Friday, 9 a.m. to 7 p.m. Eastern Time https://recoveryclearinghouse.energy.gov/contactUs.htm. All numbers and projects listed as of June 1, 2010 TABLE OF CONTENTS RECOVERY ACT SNAPSHOT................................................................................... 1 FUNDING ALLOCATION TABLE.............................................................................. 2 ENERGY EFFICIENCY ............................................................................................... 3 RENEWABLE ENERGY ............................................................................................. 5

235

Recovery Act State Memos Kansas  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Kansas Kansas For questions about DOE's Recovery Act activities, please contact the DOE Recovery Act Clearinghouse: 1-888-DOE-RCVY (888-363-7289), Monday through Friday, 9 a.m. to 7 p.m. Eastern Time https://recoveryclearinghouse.energy.gov/contactUs.htm. All numbers and projects listed as of June 1, 2010 TABLE OF CONTENTS RECOVERY ACT SNAPSHOT................................................................................... 1 FUNDING ALLOCATION TABLE.............................................................................. 2 ENERGY EFFICIENCY ............................................................................................... 3 RENEWABLE ENERGY ............................................................................................. 5

236

Recovery Act State Memos California  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

California California For questions about DOE's Recovery Act activities, please contact the DOE Recovery Act Clearinghouse: 1-888-DOE-RCVY (888-363-7289), Monday through Friday, 9 a.m. to 7 p.m. Eastern Time https://recoveryclearinghouse.energy.gov/contactUs.htm. All numbers and projects listed as of June 1, 2010 TABLE OF CONTENTS RECOVERY ACT SNAPSHOT................................................................................... 1 FUNDING ALLOCATION TABLE.............................................................................. 2 ENERGY EFFICIENCY .............................................................................................. 3 RENEWABLE ENERGY ............................................................................................ 12

237

Recovery Act State Memos Washington  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Washington Washington For questions about DOE's Recovery Act activities, please contact the DOE Recovery Act Clearinghouse: 1-888-DOE-RCVY (888-363-7289), Monday through Friday, 9 a.m. to 7 p.m. Eastern Time https://recoveryclearinghouse.energy.gov/contactUs.htm. All numbers and projects listed as of June 1, 2010 TABLE OF CONTENTS RECOVERY ACT SNAPSHOT................................................................................... 1 FUNDING ALLOCATION TABLE.............................................................................. 2 ENERGY EFFICIENCY ............................................................................................... 3 RENEWABLE ENERGY ............................................................................................. 6

238

Recovery Act State Memos Nevada  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Nevada Nevada For questions about DOE's Recovery Act activities, please contact the DOE Recovery Act Clearinghouse: 1-888-DOE-RCVY (888-363-7289), Monday through Friday, 9 a.m. to 7 p.m. Eastern Time https://recoveryclearinghouse.energy.gov/contactUs.htm. All numbers and projects listed as of June 1, 2010 TABLE OF CONTENTS RECOVERY ACT SNAPSHOT................................................................................... 1 FUNDING ALLOCATION TABLE.............................................................................. 2 ENERGY EFFICIENCY ................................................................................................ 1 RENEWABLE ENERGY ............................................................................................. 5

239

Recovery Act State Memos Virginia  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Virginia Virginia For questions about DOE's Recovery Act activities, please contact the DOE Recovery Act Clearinghouse: 1-888-DOE-RCVY (888-363-7289), Monday through Friday, 9 a.m. to 7 p.m. Eastern Time https://recoveryclearinghouse.energy.gov/contactUs.htm. All numbers and projects listed as of June 1, 2010 TABLE OF CONTENTS RECOVERY ACT SNAPSHOT................................................................................... 1 FUNDING ALLOCATION TABLE.............................................................................. 2 ENERGY EFFICIENCY ............................................................................................... 3 RENEWABLE ENERGY ............................................................................................. 5

240

Recovery Act State Memos Maine  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Maine Maine For questions about DOE's Recovery Act activities, please contact the DOE Recovery Act Clearinghouse: 1-888-DOE-RCVY (888-363-7289), Monday through Friday, 9 a.m. to 7 p.m. Eastern Time https://recoveryclearinghouse.energy.gov/contactUs.htm. All numbers and projects listed as of June 1, 2010 TABLE OF CONTENTS RECOVERY ACT SNAPSHOT................................................................................... 1 FUNDING ALLOCATION TABLE.............................................................................. 2 ENERGY EFFICIENCY ............................................................................................... 3 RENEWABLE ENERGY ............................................................................................. 4

Note: This page contains sample records for the topic "recovery testing important" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

Recovery Act State Memos Missouri  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Missouri Missouri For questions about DOE's Recovery Act activities, please contact the DOE Recovery Act Clearinghouse: 1-888-DOE-RCVY (888-363-7289), Monday through Friday, 9 a.m. to 7 p.m. Eastern Time https://recoveryclearinghouse.energy.gov/contactUs.htm. All numbers and projects listed as of June 1, 2010 TABLE OF CONTENTS RECOVERY ACT SNAPSHOT................................................................................... 1 FUNDING ALLOCATION TABLE.............................................................................. 2 ENERGY EFFICIENCY ............................................................................................... 3 RENEWABLE ENERGY ............................................................................................. 5

242

Recovery Act State Memos Maryland  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Maryland Maryland For questions about DOE's Recovery Act activities, please contact the DOE Recovery Act Clearinghouse: 1-888-DOE-RCVY (888-363-7289), Monday through Friday, 9 a.m. to 7 p.m. Eastern Time https://recoveryclearinghouse.energy.gov/contactUs.htm. All numbers and projects listed as of June 1, 2010 TABLE OF CONTENTS RECOVERY ACT SNAPSHOT................................................................................... 1 FUNDING ALLOCATION TABLE.............................................................................. 2 ENERGY EFFICIENCY ....................................................................................................... 3 RENEWABLE ENERGY ..................................................................................................... 4

243

Recovery Act State Memos Colorado  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Colorado Colorado For questions about DOE's Recovery Act activities, please contact the DOE Recovery Act Clearinghouse: 1-888-DOE-RCVY (888-363-7289), Monday through Friday, 9 a.m. to 7 p.m. Eastern Time https://recoveryclearinghouse.energy.gov/contactUs.htm. All numbers and projects listed as of June 1, 2010 TABLE OF CONTENTS RECOVERY ACT SNAPSHOT................................................................................... 1 FUNDING ALLOCATION TABLE.............................................................................. 2 ENERGY EFFICIENCY ............................................................................................... 3 RENEWABLE ENERGY ............................................................................................. 6

244

Recovery Act State Memos Texas  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Texas Texas For questions about DOE's Recovery Act activities, please contact the DOE Recovery Act Clearinghouse: 1-888-DOE-RCVY (888-363-7289), Monday through Friday, 9 a.m. to 7 p.m. Eastern Time https://recoveryclearinghouse.energy.gov/contactUs.htm. All numbers and projects listed as of June 1, 2010 TABLE OF CONTENTS RECOVERY ACT SNAPSHOT................................................................................... 1 FUNDING ALLOCATION TABLE.............................................................................. 2 ENERGY EFFICIENCY ............................................................................................... 3 RENEWABLE ENERGY ............................................................................................. 7

245

Recovery Act State Memos Vermont  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Vermont Vermont For questions about DOE's Recovery Act activities, please contact the DOE Recovery Act Clearinghouse: 1-888-DOE-RCVY (888-363-7289), Monday through Friday, 9 a.m. to 7 p.m. Eastern Time https://recoveryclearinghouse.energy.gov/contactUs.htm. All numbers and projects listed as of June 1, 2010 TABLE OF CONTENTS RECOVERY ACT SNAPSHOT................................................................................... 1 FUNDING ALLOCATION TABLE.............................................................................. 2 ENERGY EFFICIENCY ............................................................................................... 3 RENEWABLE ENERGY ............................................................................................ 4

246

Recovery Act State Memos Michigan  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Michigan Michigan For questions about DOE's Recovery Act activities, please contact the DOE Recovery Act Clearinghouse: 1-888-DOE-RCVY (888-363-7289), Monday through Friday, 9 a.m. to 7 p.m. Eastern Time https://recoveryclearinghouse.energy.gov/contactUs.htm. All numbers and projects listed as of June 1, 2010 TABLE OF CONTENTS RECOVERY ACT SNAPSHOT................................................................................... 1 FUNDING ALLOCATION TABLE.............................................................................. 2 ENERGY EFFICIENCY ............................................................................................... 3 RENEWABLE ENERGY ............................................................................................. 4

247

Recovery Act State Memos Tennessee  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Tennessee Tennessee For questions about DOE's Recovery Act activities, please contact the DOE Recovery Act Clearinghouse: 1-888-DOE-RCVY (888-363-7289), Monday through Friday, 9 a.m. to 7 p.m. Eastern Time https://recoveryclearinghouse.energy.gov/contactUs.htm. All numbers and projects listed as of June 1, 2010 TABLE OF CONTENTS RECOVERY ACT SNAPSHOT................................................................................... 1 FUNDING ALLOCATION TABLE.............................................................................. 2 ENERGY EFFICIENCY ............................................................................................... 3 RENEWABLE ENERGY ............................................................................................. 5

248

Recovery Act State Memos Hawaii  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Hawaii Hawaii For questions about DOE's Recovery Act activities, please contact the DOE Recovery Act Clearinghouse: 1-888-DOE-RCVY (888-363-7289), Monday through Friday, 9 a.m. to 7 p.m. Eastern Time https://recoveryclearinghouse.energy.gov/contactUs.htm. All numbers and projects listed as of June 1, 2010 TABLE OF CONTENTS RECOVERY ACT SNAPSHOT................................................................................... 1 FUNDING ALLOCATION TABLE.............................................................................. 2 ENERGY EFFICIENCY ............................................................................................... 3 RENEWABLE ENERGY ............................................................................................. 4

249

Recovery Act | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Research and Commercialization New green jobs a benefit of effort to end dependence on foreign oil April 29, 2009 Secretary Chu Announces 93 Million from Recovery Act to...

250

Economic Recovery Loan Program (Maine)  

Energy.gov (U.S. Department of Energy (DOE))

The Economic Recovery Loan Program provides subordinate financing to help businesses remain viable and improve productivity. Eligibility criteria are based on ability to repay, and the loan is...

251

Recovery Act | Department of Energy  

NLE Websites -- All DOE Office Websites (Extended Search)

Reports Calendar Year Reports Recovery Act Peer Reviews DOE Directives Performance Strategic Plan Testimony Financial Statements Semiannual Reports Work Plan Mission About Us...

252

Recovery Act State Memos Delaware  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

weatherization efforts in the state, creating jobs, reducing carbon emissions, and saving money for Delaware's low-income families. Over the course of the Recovery Act,...

253

Fermilab | Recovery Act  

NLE Websites -- All DOE Office Websites (Extended Search)

NOvA NOvA In April 2010, workers set up two cranes at the construction site for the NOvA detector facility in Ash River, Minnesota. In 2009, the U.S. Department of Energy's Office of Science, under the American Recovery and Reinvestment Act, provided DOE's Fermi National Accelerator Laboratory with $114.2 million. Fermilab invested the funds in critical scientific infrastructure to strengthen the nation's global scientific leadership as well as to provide immediate economic relief to local communities. This Web site provided citizens with clear and accurate information about how Fermilab used the new funding and its immediate benefits for our neighbors and our nation. Features photo Industrial Building 3 addition Fermilab Today-November 5, 2010 IB3 addition nears completion

254

Enhanced oil recovery system  

DOE Patents (OSTI)

All energy resources available from a geopressured geothermal reservoir are used for the production of pipeline quality gas using a high pressure separator/heat exchanger and a membrane separator, and recovering waste gas from both the membrane separator and a low pressure separator in tandem with the high pressure separator for use in enhanced oil recovery, or in powering a gas engine and turbine set. Liquid hydrocarbons are skimmed off the top of geothermal brine in the low pressure separator. High pressure brine from the geothermal well is used to drive a turbine/generator set before recovering waste gas in the first separator. Another turbine/generator set is provided in a supercritical binary power plant that uses propane as a working fluid in a closed cycle, and uses exhaust heat from the combustion engine and geothermal energy of the brine in the separator/heat exchanger to heat the propane.

Goldsberry, Fred L. (Spring, TX)

1989-01-01T23:59:59.000Z

255

Energy recovery system  

DOE Patents (OSTI)

The present invention is directed to an improved wet air oxidation system and method for reducing the chemical oxygen demand (COD) of waste water used from scrubbers of coal gasification plants, with this COD reduction being sufficient to effectively eliminate waste water as an environmental pollutant. The improvement of the present invention is provided by heating the air used in the oxidation process to a temperature substantially equal to the temperature in the oxidation reactor before compressing or pressurizing the air. The compression of the already hot air further heats the air which is then passed in heat exchange with gaseous products of the oxidation reaction for "superheating" the gaseous products prior to the use thereof in turbines as the driving fluid. The superheating of the gaseous products significantly minimizes condensation of gaseous products in the turbine so as to provide a substantially greater recovery of mechanical energy from the process than heretofore achieved.

Moore, Albert S. (Morgantown, WV); Verhoff, Francis H. (Morgantown, WV)

1980-01-01T23:59:59.000Z

256

Speech recovery device  

DOE Patents (OSTI)

There is provided an apparatus and method for assisting speech recovery in people with inability to speak due to aphasia, apraxia or another condition with similar effect. A hollow, rigid, thin-walled tube with semi-circular or semi-elliptical cut out shapes at each open end is positioned such that one end mates with the throat/voice box area of the neck of the assistor and the other end mates with the throat/voice box area of the assisted. The speaking person (assistor) makes sounds that produce standing wave vibrations at the same frequency in the vocal cords of the assisted person. Driving the assisted person's vocal cords with the assisted person being able to hear the correct tone enables the assisted person to speak by simply amplifying the vibration of membranes in their throat.

Frankle, Christen M.

2000-10-19T23:59:59.000Z

257

Flash Steam Recovery Project  

E-Print Network (OSTI)

One of the goals of Vulcan's cost reduction effort is to reduce energy consumption in production facilities through energy optimization. As part of this program, the chloromethanes production unit, which produces a wide variety of chlorinated organic compounds, was targeted for improvement. This unit uses a portion of the high-pressure steam available from the plant's cogeneration facility. Continuous expansions within the unit had exceeded the optimum design capacity of the unit's steam/condensate recovery system, resulting in condensate flash steam losses to the atmosphere. Using computer simulation models and pinch analysis techniques, the Operational Excellence Group (Six Sigma) was able to identify a project to recover the flash steam losses as a supplemental low-pressure steam supply. The project was designed and implemented at no capital cost using existing instrumentation and controls. On an annualized basis steam usage per ton of product fell by about three percent. Absolute savings were about 15,800 million Btu.

Bronhold, C. J.

2000-04-01T23:59:59.000Z

258

Speech recovery device  

SciTech Connect

There is provided an apparatus and method for assisting speech recovery in people with inability to speak due to aphasia, apraxia or another condition with similar effect. A hollow, rigid, thin-walled tube with semi-circular or semi-elliptical cut out shapes at each open end is positioned such that one end mates with the throat/voice box area of the neck of the assistor and the other end mates with the throat/voice box area of the assisted. The speaking person (assistor) makes sounds that produce standing wave vibrations at the same frequency in the vocal cords of the assisted person. Driving the assisted person's vocal cords with the assisted person being able to hear the correct tone enables the assisted person to speak by simply amplifying the vibration of membranes in their throat.

Frankle, Christen M.

2000-10-19T23:59:59.000Z

259

Recovery Act: State Assistance for Recovery Act Related Electricity  

NLE Websites -- All DOE Office Websites (Extended Search)

State State Assistance for Recovery Act Related Electricity Policies Recovery Act: State Assistance for Recovery Act Related Electricity Policies $44 Million for State Public Utility Commissions State public utility commissions (PUCs), which regulate and oversee electricity projects in their states, will be receiving more than $44.2 million in Recovery Act funding to hire new staff and retrain existing employees to ensure they have the capacity to quickly and effectively review proposed electricity projects. The funds will help the individual state PUCs accelerate reviews of the large number of electric utility requests that are expected under the Recovery Act. State PUCs will be reviewing electric utility investments in projects such as energy efficiency, renewable energy, carbon capture and storage, transmission

260

Products Imports from Uzbekistan  

U.S. Energy Information Administration (EIA)

Import Area: Country 2010 View History; Gulf Coast (PADD 3) 51: 2010-2010-= No Data Reported; --= Not Applicable; NA = Not Available; W ...

Note: This page contains sample records for the topic "recovery testing important" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

Heat Recovery From Solid Waste  

E-Print Network (OSTI)

More opportunity exists today for the successful implementation of resource recovery projects than at any other period. However, that doesn't mean that energy/resource recovery exists for everyone. You must have a favorable match of all the critical areas of evaluation, including the cost of fuel, cost of solid waste disposal, plant energy requirements, available technology, etc.

Underwood, O. W.

1981-01-01T23:59:59.000Z

262

Metal recovery from porous materials  

DOE Patents (OSTI)

The present invention relates to recovery of metals. More specifically, the present invention relates to the recovery of plutonium and other metals from porous materials using microwaves. The United States Government has rights in this invention pursuant to Contract No. DE-AC09-89SR18035 between the US Department of Energy and Westinghouse Savannah River Company.

Sturcken, E.F.

1991-01-01T23:59:59.000Z

263

ARM - ARM Recovery Act Project FAQs  

NLE Websites -- All DOE Office Websites (Extended Search)

ActARM Recovery Act Project FAQs ActARM Recovery Act Project FAQs Recovery Act Logo Subscribe FAQs Recovery Act Instruments Recovery Act Fact Sheet March 2010 Poster (PDF, 10MB) External Resources Recovery Act - Federal Recovery Act - DOE Recovery Act - ANL Recovery Act - BNL Recovery Act - LANL Recovery Act - PNNL Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send ARM Recovery Act Project FAQs Why is ARM buying new instruments and equipment? The ARM Climate Research Facility (ARM) is receiving $60 million dollars in Recovery Act funding from the U.S. Department of Energy Office of Science to build the next generation facility for climate change research. Using input from past ARM user workshops and ARM working group discussion, ARM has planned for the purchase and deployment of an expansive array of new

264

HIGH CURRENT ENERGY RECOVERY LINAC AT BNL.  

SciTech Connect

We present the design and parameters of an energy recovery linac (ERL) facility, which is under construction in the Collider-Accelerator Department at BNL. This R&D facility has the goal of demonstrating CW operation of an ERL with an average beam current in the range of 0.1-1 ampere and with very high efficiency of energy recovery. The possibility of a future upgrade to a two-pass ERL is also being considered. The heart of the facility is a 5-cell 703.75 MHz super-conducting RF linac with strong Higher Order Mode (HOM) damping. The flexible lattice of the ERL provides a test-bed for exploring issues of transverse and longitudinal instabilities and diagnostics of intense CW electron beams. This ERL is also perfectly suited for a far-IR FEL. We present the status and plans for construction and commissioning of this facility.

LITVINENKO,V.N.; BEN-ZVI,I.; BARTON,D.S.; ET AL.

2005-05-16T23:59:59.000Z

265

Recovery | National Nuclear Security Administration  

NLE Websites -- All DOE Office Websites (Extended Search)

Recovery | National Nuclear Security Administration Recovery | National Nuclear Security Administration Our Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure Continuing Management Reform Countering Nuclear Terrorism About Us Our Programs Our History Who We Are Our Leadership Our Locations Budget Our Operations Media Room Congressional Testimony Fact Sheets Newsletters Press Releases Speeches Events Social Media Video Gallery Photo Gallery NNSA Archive Federal Employment Apply for Our Jobs Our Jobs Working at NNSA Blog Recovery Home > About Us > Our Programs > Emergency Response > Planning for Emergencies > Recovery Recovery NNSA ensures that capabilities are in place to respond to any NNSA and Department of Energy facility emergency. It is also the nation's premier

266

Recovery Act | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

26, 2010 26, 2010 200,000 Homes Weatherized Under the Recovery Act -- Video from Cathy Zoi Vice President Biden announced that 200,000 homes have been Weatherized under the Recovery Act. Hear what Cathy Zoi, Assistant Secretary for Energy Efficiency and Renewable Energy, has to say on Weatherization. August 26, 2010 200,000 homes weatherized under the Recovery Act August 25, 2010 The Recovery Act: Cutting Costs and Upping Capacity Secretary Chu joined Vice President Joe Biden at the White House to help unveil a new report on how investments made through the Recovery Act have been impacting innovation. While the report analyzed several major sectors, its most striking findings centered on energy. August 25, 2010 Eco Technologies, Inc., hired eleven workers to install these solar panels at the Hillsborough County judicial center. | Photo courtesy of Hillsborough County

267

Recovery Act | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

31, 2009 31, 2009 Energy Secretary Chu Announces $755 Million in Recovery Act Funding for Environmental Cleanup in Tennessee New Funding Will Create Jobs and Accelerate Cleanup Efforts March 31, 2009 Energy Secretary Chu Announces $1.615 Billion in Recovery Act Funding for Environmental Cleanup in South Carolina New Funding Will Create Jobs and Accelerate Cleanup Efforts March 31, 2009 Energy Secretary Chu Announces $138 Million in Recovery Act Funding for Environmental Cleanup in Ohio New Funding Will Create Jobs and Accelerate Cleanup Efforts March 31, 2009 Energy Secretary Chu Announces $148 million in Recovery Act Funding for Environmental Cleanup in New York New Funding Will Create Jobs and Accelerate Cleanup Efforts March 31, 2009 Energy Secretary Chu Announces $384 Million in Recovery Act Funding for

268

Recovery Act | Department of Energy  

NLE Websites -- All DOE Office Websites (Extended Search)

Act Act Recovery Act Total Federal Payments to OE Recovery Act Recipients by Month, through November 30, 2013 Total Federal Payments to OE Recovery Act Recipients by Month, through November 30, 2013 American Recovery and Reinvestment Act Overview PROJECTS TOTAL OBLIGATIONS AWARD RECIPIENTS Smart Grid Investment Grant $3,482,831,000 99 Smart Grid Regional and Energy Storage Demonstration Projects $684,829,000 42 Workforce Development Program $100,000,000 52 Interconnection Transmission Planning $80,000,000 6 State Assistance for Recovery Act Related Electricity Policies $48,619,000 49 Enhancing State Energy Assurance $43,500,000 50 Enhancing Local Government Energy Assurance $8,024,000 43 Interoperability Standards and Framework $12,000,000 1 Program Direction1 $27,812,000 --

269

Recovery Act | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Recovery Act Recovery Act Recovery Act The American Recovery and Reinvestment Act of 2009 -- commonly called the "stimulus" -- was designed to spur economic growth while creating new jobs and saving existing ones. Through the Recovery Act, the Energy Department invested more than $31 billion to support a wide range of clean energy projects across the nation -- from investing in the smart grid and developing alternative fuel vehicles to helping homeowners and businesses reduce their energy costs with energy efficiency upgrades and deploying carbon capture and storage technologies. The Department's programs helped create new power sources, conserve resources and aligned the nation to lead the global energy economy. Featured Leaders of the Fuel Cell Pack Fuel cell forklifts like the one shown here are used by leading companies across the U.S. as part of their daily business operations. | Energy Department file photo.

270

Infill drilling enhances waterflood recovery  

Science Conference Proceedings (OSTI)

Two sets of west Texas carbonate reservoir and waterflood data were studied to evaluate the impact of infill drilling on waterflood recovery. Results show that infill drilling enhanced the current and projected waterflood recovery from most of the reservoirs. The estimated ultimate and incremental infill-drilling waterflood recovery was correlated with well spacing and other reservoir and process parameters. Results of the correlation indicate that reducing well spacing from 40 to 20 acres (16 to 8 ha) per well would increase the oil recovery by 8 to 9% of the original oil in place (OOIP). Because of the limited data base and regressional nature of the correlation models, the infill-drilling recovery estimate must be used with caution.

Wu, C.H.; Jardon, M. (Texas A and M Univ., College Station, TX (USA)); Laughlin, B.A. (Union Pacific Research Co. (US))

1989-10-01T23:59:59.000Z

271

A Single-Objective Recovery Phase Model  

Science Conference Proceedings (OSTI)

The Federal Emergency Management Agency FEMA has identified the four phases of disaster related planning as mitigation, preparation, response, and recovery. The recovery phase is characterized by activity to return life to normal or improved levels. ... Keywords: Disaster Recovery, Disaster Recovery Strategy, Optimization, Recovery, Response, Transportation Model

Sandy Mehlhorn; Michael Racer; Stephanie Ivey; Martin Lipinski

2011-07-01T23:59:59.000Z

272

EOR (enhanced oil recovery): the reservoir and its contents  

SciTech Connect

Factors in commitment to enhanced oil recovery of any type are discussed with relation to reservoir characteristics. Core analysis, well logging, reservoir engineering studies, well transient testing, and chemical tracer testing are recommended in order to ascertain the dimensions and conditions of the potentially hydrocarbon bearing reservoir. The calculated risk that is necessary even after conducting the recommended practices is emphasized.

Frederick, R.O.

1982-08-01T23:59:59.000Z

273

Company Level Imports  

U.S. Energy Information Administration (EIA) Indexed Site

All Petroleum & Other Liquids Reports All Petroleum & Other Liquids Reports Company Level Imports With Data for September 2013 | Release Date: November 27, 2013 | Next Release Date: December 30, 2013 | XLS Previous Issues Month: September 2013 August 2013 July 2013 June 2013 May 2013 April 2013 March 2013 February 2013 January 2013 prior issues Go September 2013 Import Highlights Monthly data on the origins of crude oil imports in September 2013 has been released and it shows that two countries exported more than 1 million barrels per day to the United States (see table below). The top five exporting countries accounted for 75 percent of United States crude oil imports in September while the top ten sources accounted for approximately 92 percent of all U.S. crude oil imports. The top five sources of US crude

274

Wastewater heat recovery apparatus  

DOE Patents (OSTI)

A heat recovery system with a heat exchanger and a mixing valve. A drain trap includes a heat exchanger with an inner coiled tube, baffle plate, wastewater inlet, wastewater outlet, cold water inlet, and preheated water outlet. Wastewater enters the drain trap through the wastewater inlet, is slowed and spread by the baffle plate, and passes downward to the wastewater outlet. Cold water enters the inner tube through the cold water inlet and flows generally upward, taking on heat from the wastewater. This preheated water is fed to the mixing valve, which includes a flexible yoke to which are attached an adjustable steel rod, two stationary zinc rods, and a pivoting arm. The free end of the arm forms a pad which rests against a valve seat. The rods and pivoting arm expand or contract as the temperature of the incoming preheated water changes. The zinc rods expand more than the steel rod, flexing the yoke and rotating the pivoting arm. The pad moves towards the valve seat as the temperature of the preheated water rises, and away as the temperature falls, admitting a variable amount of hot water to maintain a nearly constant average process water temperature.

Kronberg, James W. (108 Independent Blvd., Aiken, SC 29801)

1992-01-01T23:59:59.000Z

275

Wastewater heat recovery apparatus  

DOE Patents (OSTI)

A heat recovery system is described with a heat exchanger and a mixing valve. A drain trap includes a heat exchanger with an inner coiled tube, baffle plate, wastewater inlet, wastewater outlet, cold water inlet, and preheated water outlet. Wastewater enters the drain trap through the wastewater inlet, is slowed and spread by the baffle plate, and passes downward to the wastewater outlet. Cold water enters the inner tube through the cold water inlet and flows generally upward, taking on heat from the wastewater. This preheated water is fed to the mixing valve, which includes a flexible yoke to which are attached an adjustable steel rod, two stationary zinc rods, and a pivoting arm. The free end of the arm forms a pad which rests against a valve seat. The rods and pivoting arm expand or contract as the temperature of the incoming preheated water changes. The zinc rods expand more than the steel rod, flexing the yoke and rotating the pivoting arm. The pad moves towards the valve seat as the temperature of the preheated water rises, and away as the temperature falls, admitting a variable amount of hot water to maintain a nearly constant average process water temperature. 6 figs.

Kronberg, J.W.

1992-09-01T23:59:59.000Z

276

URANIUM RECOVERY PROCESS  

DOE Patents (OSTI)

The recovery of uranium from the acidic aqueous metal waste solutions resulting from the bismuth phosphate carrier precipitation of plutonium from solutions of neutron irradiated uranium is described. The waste solutions consist of phosphoric acid, sulfuric acid, and uranium as a uranyl salt, together with salts of the fission products normally associated with neutron irradiated uranium. Generally, the process of the invention involves the partial neutralization of the waste solution with sodium hydroxide, followed by conversion of the solution to a pH 11 by mixing therewith sufficient sodium carbonate. The resultant carbonate-complexed waste is contacted with a titanated silica gel and the adsorbent separated from the aqueous medium. The aqueous solution is then mixed with sufficient acetic acid to bring the pH of the aqueous medium to between 4 and 5, whereby sodium uranyl acetate is precipitated. The precipitate is dissolved in nitric acid and the resulting solution preferably provided with salting out agents. Uranyl nitrate is recovered from the solution by extraction with an ether such as diethyl ether.

Hyman, H.H.; Dreher, J.L.

1959-07-01T23:59:59.000Z

277

import | OpenEI  

Open Energy Info (EERE)

import import Dataset Summary Description This dataset comes from the Energy Information Administration (EIA), and is part of the 2011 Annual Energy Outlook Report (AEO2011). This dataset is table 1, and contains only the reference case. The dataset uses quadrillion BTUs, and quantifies the energy prices using U.S. dollars. The data is broken down into total production, imports, exports, consumption, and prices for energy types. Source EIA Date Released April 26th, 2011 (3 years ago) Date Updated Unknown Keywords 2011 AEO consumption EIA export import production reference case total energy Data application/vnd.ms-excel icon AEO2011: Total Energy Supply, Disposition, and Price Summary - Reference Case (xls, 112.8 KiB) Quality Metrics Level of Review Peer Reviewed Comment

278

Recovery tasks: an automated approach to failure recovery  

Science Conference Proceedings (OSTI)

We present a new approach for developing robust software applications that breaks dependences on the failed parts of an application's execution to allow the rest of the application to continue executing. When a failure occurs, the recovery algorithm ...

Brian Demsky; Jin Zhou; William Montaz

2010-11-01T23:59:59.000Z

279

American Recovery & Reinvestment Act Newsletter - Issue 16  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Site (SRS) is committed to performing the Cold War-era cleanup safely and with transparency. Oversight and direc- tion provided by stakeholders is key to keeping American taxpayers informed of American Recovery and Reinvestment Act spending and progress as America works toward economic prosperity. SRS's $1.6 billion Recovery Act pack- age invests in the workforce and area businesses to complete important cleanup projects years ahead of origi- nal projections. "We are pleased that the community is interested and supportive of our mis- sion. The Recovery Act's benefits are far reaching and cover the cleanup of Cold War relics and legacy waste," said Jack Craig, DOE-Savannah River acting man- ager. "Now halfway through the Recovery Continued on page 3

280

Cementation process for minerals recovery from Salton Sea geothermal brines  

DOE Green Energy (OSTI)

The potential for minerals recovery from a 1000-MWe combined geothermal power and minerals recovery plant in the Salton Sea is examined. While the possible value of minerals recovered would substantially exceed the revenue from power production, information is insufficient to carry out a detailed economic analysis. The recovery of precious metals - silver, gold, and platinum - is the most important factor in determining the economics of a minerals recovery plant; however, the precious metals content of the brines is not certain. Such a power plant could recover 14 to 31% of the US demand for manganese and substantial amounts of zinc and lead. Previous work on minerals extraction from Salton Sea brines is also reviewed and a new process, based on a fluidized-bed cementation reaction with metallic iron, is proposed. This process would recover the precious metals, lead, and tin present in the brines.

Maimoni, A.

1982-01-26T23:59:59.000Z

Note: This page contains sample records for the topic "recovery testing important" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

Evaluation of Reservoir Wettability and its Effect on Oil Recovery.  

SciTech Connect

We report on the first year of the project, `Evaluation of Reservoir Wettability and its Effect on Oil Recovery.` The objectives of this five-year project are (1) to achieve improved understanding of the surface and interfacial properties of crude oils and their interactions with mineral surfaces, (2) to apply the results of surface studies to improve predictions of oil production from laboratory measurements, and (3) to use the results of this research to recommend ways to improve oil recovery by waterflooding. During the first year of this project we have focused on understanding the interactions between crude oils and mineral surfaces that establish wetting in porous media. As background, mixed-wetting and our current understanding of the influence of stable and unstable brine films are reviewed. The components that are likely to adsorb and alter wetting are divided into two groups: those containing polar heteroatoms, especially organic acids and bases; and the asphaltenes, large molecules that aggregate in solution and precipitate upon addition of n-pentane and similar agents. Finally, the test procedures used to assess the extent of wetting alteration-tests of adhesion and adsorption on smooth surfaces and spontaneous imbibition into porous media are introduced. In Part 1, we report on studies aimed at characterizing both the acid/base and asphaltene components. Standard acid and base number procedures were modified and 22 crude oil samples were tested. Our approach to characterizing the asphaltenes is to focus on their solvent environment. We quantify solvent properties by refractive index measurements and report the onset of asphaltene precipitation at ambient conditions for nine oil samples. Four distinct categories of interaction mechanisms have been identified that can be demonstrated to occur when crude oils contact solid surfaces: polar interactions can occur on dry surfaces, surface precipitation is important if the oil is a poor solvent for its asphaltenes, and acid/base and ion-binding interactions occur in the presence of water. Specific instances when each of these mechanisms is dominant can be identified using crude oils of different acid number, base number, and solvent quality. Part 2 of this project is devoted to improved assessment of wetting. We report on a baseline study of crude oil interactions with mica surfaces that shows wettability alteration characteristics that are comparable to those reported previously for glass surfaces. Mica has advantages over amorphous glass that make it a better choice as a standard surface for wettability testing, especially for tests at high temperatures.

Buckley, J.S.

1998-01-15T23:59:59.000Z

282

Petroleum recovery materials and process  

SciTech Connect

A petroleum recovery process uses micellar solutions made from liquefied petroleum gas (LPG). During the process, microemulsions utilizing LPG in the external phase are injected through at least one injection well into the oil-bearing formations. The microemulsions are driven toward at least one recovery well and crude petroleum is recovered through the recovery well. The LPG in the micellar system may be propane or butane. Corrosion inhibitors can be used in sour fields, and bactericides can be used where necessary. The microemulsions used contain up to about 10-20% water and about 8% surfactant. (4 claims)

Gogarty, W.B.; Olson, R.W.

1967-01-31T23:59:59.000Z

283

Recovery Act Workers Demolish Facility Tied to Project Pluto History |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Demolish Facility Tied to Project Pluto Demolish Facility Tied to Project Pluto History Recovery Act Workers Demolish Facility Tied to Project Pluto History Workers recently razed a facility used in the historic Project Pluto, the latest American Recovery and Reinvestment Act accomplishment helping clean up traces of past nuclear testing at the Nevada National Security Site (NNSS). Recovery Act workers safely hauled the last demolition waste from the Pluto Disassembly Facility to disposal facilities Jan. 11. The project is slated for completion this spring after workers finish installing a concrete cap over the below-ground level where the facility stood. Recovery Act Workers Demolish Facility Tied to Project Pluto History More Documents & Publications 2010 ARRA Newsletters 2011 ARRA Newsletters

284

American coal imports 2015  

SciTech Connect

As 2007 ends, the US coal industry passes two major milestones - the ending of the Synfuel tax break, affecting over 100M st annually, and the imposition of tighter and much more expensive safety measures, particularly in deep mines. Both of these issues, arriving at a time of wretched steam coal price levels, promise to result in a major shake up in the Central Appalachian mining sector. The report utilizes a microeconomic regional approach to determine whether either of these two schools of thought have any validity. Transport, infrastructure, competing fuels and regional issues are examined in detail and this forecasts estimates coal demand and imports on a region by region basis for the years 2010 and 2015. Some of the major highlights of the forecast are: Import growth will be driven by steam coal demand in the eastern and southern US; Transport will continue to be the key driver - we believe that inland rail rates will deter imports from being railed far inland and that the great majority of imports will be delivered directly by vessel, barge or truck to end users; Colombian coal will be the overwhelmingly dominant supply source and possesses a costs structure to enable it to compete with US-produced coal in any market conditions; Most of the growth will come from existing power plants - increasing capacity utilization at existing import facilities and other plants making investments to add imports to the supply portfolio - the growth is not dependent upon a lot of new coal fired capacity being built. Contents of the report are: Key US market dynamics; International supply dynamics; Structure of the US coal import market; and Geographic analysis.

Frank Kolojeski [TransGlobal Ventures Corp. (United States)

2007-09-15T23:59:59.000Z

285

Recovery Act Funding Opportunity Announcement: Enhanced Geothermal...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

You are here Home Recovery Act Funding Opportunity Announcement: Enhanced Geothermal Systems Component Research and DevelopmentAnalysis Recovery Act Funding Opportunity...

286

Enhanced Oil Recovery | Department of Energy  

NLE Websites -- All DOE Office Websites (Extended Search)

(or enhanced) recovery. During primary recovery, the natural pressure of the reservoir or gravity drive oil into the wellbore, combined with artificial lift techniques (such as...

287

Enhanced Oil Recovery | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Enhanced Oil Recovery Enhanced Oil Recovery Thanks in part to innovations supported by the Office of Fossil Energy's National Energy Technology Laboratory over the past 30 years,...

288

Some Thoughts on Econometric Information Recovery  

E-Print Network (OSTI)

Thoughts on Econometric Information Recovery George G. JudgeSome Thoughts on Econometric Information Recovery George G.G. Judge. ed. 2013. ďAn Information Theoretic Approach to

Judge, George G.

2013-01-01T23:59:59.000Z

289

Energy Recovery Inc | Open Energy Information  

Open Energy Info (EERE)

California . References "Energy Recovery Inc" Retrieved from "http:en.openei.orgwindex.php?titleEnergyRecoveryInc&oldid344878" Categories: Clean Energy Organizations...

290

imports | OpenEI  

Open Energy Info (EERE)

1 1 Varnish cache server imports Dataset Summary Description This dataset comes from the Energy Information Administration (EIA), and is part of the 2011 Annual Energy Outlook Report (AEO2011). This dataset is Table 146, and contains only the reference case. The dataset uses million barrels per day. The data is broken down into crude oil, light refined products and heavy refined products. Source EIA Date Released April 26th, 2011 (3 years ago) Date Updated Unknown Keywords 2011 AEO EIA imports liquids Data application/vnd.ms-excel icon AEO2011: Imported Liquids by Source- Reference Case (xls, 85.2 KiB) Quality Metrics Level of Review Peer Reviewed Comment Temporal and Spatial Coverage Frequency Annually Time Period 2008-2035 License License Open Data Commons Public Domain Dedication and Licence (PDDL)

291

importing | OpenEI  

Open Energy Info (EERE)

6 6 Varnish cache server Browse Upload data GDR 429 Throttled (bot load) Error 429 Throttled (bot load) Throttled (bot load) Guru Meditation: XID: 2142281466 Varnish cache server importing Dataset Summary Description This dataset comes from the Energy Information Administration (EIA), and is part of the 2011 Annual Energy Outlook Report (AEO2011). This dataset is table 142, and contains only the reference case. The dataset uses million short tons. The data is broken down into steam coal exports to Europe, Asia and America. Source EIA Date Released April 26th, 2011 (3 years ago) Date Updated Unknown Keywords 2011 AEO Coal flows countries EIA exporting importing Data application/vnd.ms-excel icon AEO2011: World Steam Coal Flows By Importing Regions and Exporting Countries- Reference Case (xls, 103.7 KiB)

292

Recovery Act State Memos Florida  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

October 1, 2010 October 1, 2010 TABLE OF CONTENTS RECOVERY ACT SNAPSHOT................................................................................... 1 FUNDING ALLOCATION TABLE.............................................................................. 2 ENERGY EFFICIENCY ............................................................................................... 3 RENEWABLE ENERGY ............................................................................................. 5 ELECTRIC GRID ........................................................................................................ 6 TRANSPORTATION ................................................................................................. 8 CARBON CAPTURE AND STORAGE ........................................................................ 9

293

Recovery Act State Memos Florida  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

June 1, 2010 June 1, 2010 TABLE OF CONTENTS RECOVERY ACT SNAPSHOT................................................................................... 1 FUNDING ALLOCATION TABLE.............................................................................. 2 ENERGY EFFICIENCY ............................................................................................... 3 RENEWABLE ENERGY ............................................................................................. 5 ELECTRIC GRID ........................................................................................................ 8 TRANSPORTATION ............................................................................................... 10 CARBON CAPTURE AND STORAGE ...................................................................... 10

294

UML Fever: Diagnosis and Recovery  

Science Conference Proceedings (OSTI)

Acknowledgment is only the first step toward recovery from this potentially devastating affliction. The Institute of Infectious Diseases has recently published research confirming that the many and varied strains of UML Fever continue to spread ...

Alex E. Bell

2005-03-01T23:59:59.000Z

295

Case study: City of Industry landfill gas recovery operation  

DOE Green Energy (OSTI)

Development of civic, recreation, and conservation facilities throughout a 150-acre site which had been used for waste disposal from 1951 to 1970 is described. The history of the landfill site, the geology of the site, and a test well program to assess the feasibility of recoverying landfill gas economically from the site are discussed. Based on results of the test well program, the City of Industry authorized the design and installation of a full-scale landfill gas recovery system. Design, construction, and operation of the system are described. The landfill gas system provides fuel for use in boilers to meet space heating and hot water demands for site development (MCW)

None

1981-11-01T23:59:59.000Z

296

Federal Energy Management Program: Recovery Act  

NLE Websites -- All DOE Office Websites (Extended Search)

Recovery Act to Recovery Act to someone by E-mail Share Federal Energy Management Program: Recovery Act on Facebook Tweet about Federal Energy Management Program: Recovery Act on Twitter Bookmark Federal Energy Management Program: Recovery Act on Google Bookmark Federal Energy Management Program: Recovery Act on Delicious Rank Federal Energy Management Program: Recovery Act on Digg Find More places to share Federal Energy Management Program: Recovery Act on AddThis.com... Energy Savings Performance Contracts ENABLE Utility Energy Service Contracts On-Site Renewable Power Purchase Agreements Energy Incentive Programs Recovery Act Technical Assistance Projects Project Stories Recovery Act The American Recovery and Reinvestment Act of 2009 included funding for the Federal Energy Management Program (FEMP) to facilitate the Federal

297

EMSL: Capabilities: American Recovery and Reinvestment Act  

NLE Websites -- All DOE Office Websites (Extended Search)

EMSL Procurements under Recovery Act EMSL Procurements under Recovery Act Additional Information Investing in Innovation: EMSL and the American Recovery and Reinvestment Act Recovery Act and Systems Biology at EMSL Recovery Act Instruments coming to EMSL In the News EMSL ARRA Capability Features News: Recovery Act and PNNL Recovery Act in the Tri-City Herald Related Links Recovery.gov DOE and the Recovery Act Message from Energy Secretary Chu Recovery Act at PNNL EMSL evolves with the needs of its scientific users, and the American Recovery and Reinvestment Act has helped to accelerate this evolution. Thirty-one instruments were acquired and installed at EMSL. These instruments are listed below, and each listing is accompanied by a brief overview. Each of these new and leading-edge instruments was chosen by design to

298

Lessons Learned from Three Mile Island Packaging, Transportation and Disposition that Apply to Fukushima Daiichi Recovery  

SciTech Connect

Following the massive earthquake and resulting tsunami damage in March of 2011 at the Fukushima Daiichi nuclear power plant in Japan, interest was amplified for what was done for recovery at the Three Mile Island Unit 2 (TMI-2) in the United States following its meltdown in 1979. Many parallels could be drawn between to two accidents. This paper presents the results of research done into the TMI-2 recovery effort and its applicability to the Fukushima Daiichi cleanup. This research focused on three topics: packaging, transportation, and disposition. This research work was performed as a collaboration between Japanís Central Research Institute of Electric Power Industry (CRIEPI) and the Idaho National Laboratory (INL). Hundreds of TMI-2 related documents were searched and pertinent information was gleaned from these documents. Other important information was also obtained by interviewing employees who were involved first hand in various aspects of the TMI-2 cleanup effort. This paper is organized into three main sections: (1) Transport from Three Mile Island to Central Facilities Area at INL, (2) Transport from INL Central Receiving Facility to INL Test Area North (TAN) and wet storage at TAN, and (3) Transport from TAN to INL Idaho Nuclear Technology and Engineering Center (INTEC) and Dry Storage at INTEC. Within each of these sections, lessons learned from performing recovery activities are presented and their applicability to the Fukushima Daiichi nuclear power plant cleanup are outlined.

Layne Pincock; Wendell Hintze; Dr. Koji Shirai

2012-07-01T23:59:59.000Z

299

Developing a Regional Recovery Framework  

Science Conference Proceedings (OSTI)

Abstract A biological attack would present an unprecedented challenge for local, state, and federal agencies; the military; the private sector; and individuals on many fronts ranging from vaccination and treatment to prioritization of cleanup actions to waste disposal. To prepare the Seattle region to recover from a biological attack, the Seattle Urban Area Security Initiative (UASI) partners collaborated with military and federal agencies to develop a Regional Recovery Framework for a Biological Attack in the Seattle Urban Area. The goal was to reduce the time and resources required to recover and restore wide urban areas, military installations, and other critical infrastructure following a biological incident by providing a coordinated systems approach. Based on discussions in small workshops, tabletop exercises, and interviews with emergency response agency staff, the partners identified concepts of operation for various areas to address critical issues the region will face as recovery progresses. Key to this recovery is the recovery of the economy. Although the Framework is specific to a catastrophic, wide-area biological attack using anthrax, it was designed to be flexible and scalable so it could also serve as the recovery framework for an all-hazards approach. The Framework also served to coalesce policy questions that must be addressed for long-term recovery. These questions cover such areas as safety and health, security, financial management, waste management, legal issues, and economic development.

Lesperance, Ann M.; Olson, Jarrod; Stein, Steven L.; Clark, Rebecca; Kelly, Heather; Sheline, Jim; Tietje, Grant; Williamson, Mark; Woodcock, Jody

2011-09-01T23:59:59.000Z

300

NETL: News Release - Carbon Sequestration Field Test Begins in...  

NLE Websites -- All DOE Office Websites (Extended Search)

5 , 2007 Carbon Sequestration Field Test Begins in Illinois Basin Field Test Pairs Geologic Sequestration and Enhanced Oil Recovery WASHINGTON, DC - The Midwest Geological...

Note: This page contains sample records for the topic "recovery testing important" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

Recovery Act Measurement Science and Engineering ...  

Science Conference Proceedings (OSTI)

*. Bookmark and Share. Recovery Act Measurement Science and Engineering Fellowship Program. Grants.gov Synopsis. ...

2013-03-15T23:59:59.000Z

302

Weatherization and Intergovernmental Program: Recovery Act  

NLE Websites -- All DOE Office Websites (Extended Search)

Recovery Act to someone by E-mail Share Weatherization and Intergovernmental Program: Recovery Act on Facebook Tweet about Weatherization and Intergovernmental Program: Recovery Act on Twitter Bookmark Weatherization and Intergovernmental Program: Recovery Act on Google Bookmark Weatherization and Intergovernmental Program: Recovery Act on Delicious Rank Weatherization and Intergovernmental Program: Recovery Act on Digg Find More places to share Weatherization and Intergovernmental Program: Recovery Act on AddThis.com... Plans, Implementation, & Results Weatherization Assistance Program WAP - Sustainable Energy Resources for Consumers Grants WAP - Weatherization Innovation Pilot Program State Energy Program Energy Efficiency & Conservation Block Grant Program

303

EMSL: Capabilities: American Recovery and Reinvestment Act  

NLE Websites -- All DOE Office Websites (Extended Search)

American Recovery and Reinvestment Act American Recovery and Reinvestment Act Recovery Act Logo EMSL researchers are benefitting from a recent $60 million investment in innovation through the American Recovery and Reinvestment Act. These Recovery Act funds were employed to further develop and deploy transformational capabilities that deliver scientific discoveries in support of DOE's mission. Today, they are helping EMSL accomplish the following: Establish leadership in in situ chemical imaging and procure ultrahigh-resolution microscopy tools Additional Information Investing in Innovation: EMSL and the American Recovery and Reinvestment Act Recovery Act and Systems Biology at EMSL Recovery Act Instruments coming to EMSL In the News EMSL ARRA Capability Features News: Recovery Act and PNNL Recovery Act in the Tri-City Herald

304

Vehicle Technologies Office: Recovery Act Funding Opportunities  

NLE Websites -- All DOE Office Websites (Extended Search)

Recovery Act Funding Recovery Act Funding Opportunities to someone by E-mail Share Vehicle Technologies Office: Recovery Act Funding Opportunities on Facebook Tweet about Vehicle Technologies Office: Recovery Act Funding Opportunities on Twitter Bookmark Vehicle Technologies Office: Recovery Act Funding Opportunities on Google Bookmark Vehicle Technologies Office: Recovery Act Funding Opportunities on Delicious Rank Vehicle Technologies Office: Recovery Act Funding Opportunities on Digg Find More places to share Vehicle Technologies Office: Recovery Act Funding Opportunities on AddThis.com... Recovery Act Funding Opportunities President Barack Obama announced on March 19 that the DOE is offering up to $2.4 billion in American Recovery and Reinvestment Act funds to support next-generation plug-in hybrid electric vehicles (PHEV) and their advanced

305

Evaluation of the Implementation of Contained Recovery of Oily Waste (CROW(TM)) Enhanced Recovery at a Manufactured Gas Plant Site  

Science Conference Proceedings (OSTI)

This report describes the implementation of an enhanced tar recovery remediation system at a former Manufactured Gas Plant (MGP) site. The project included investigations, treatability and testing, cost analysis, system design, construction, and operations.

1999-11-03T23:59:59.000Z

306

Partial Recovery of Quantum Entanglement  

E-Print Network (OSTI)

Suppose Alice and Bob try to transform an entangled state shared between them into another one by local operations and classical communications. Then in general a certain amount of entanglement contained in the initial state will decrease in the process of transformation. However, an interesting phenomenon called partial entanglement recovery shows that it is possible to recover some amount of entanglement by adding another entangled state and transforming the two entangled states collectively. In this paper we are mainly concerned with the feasibility of partial entanglement recovery. The basic problem we address is whether a given state is useful in recovering entanglement lost in a specified transformation. In the case where the source and target states of the original transformation satisfy the strict majorization relation, a necessary and sufficient condition for partial entanglement recovery is obtained. For the general case we give two sufficient conditions. We also give an efficient algorithm for the feasibility of partial entanglement recovery in polynomial time. As applications, we establish some interesting connections between partial entanglement recovery and the generation of maximally entangled states, quantum catalysis, mutual catalysis, and multiple-copy entanglement transformation.

Runyao Duan; Yuan Feng; Mingsheng Ying

2004-04-07T23:59:59.000Z

307

Special Report on the "Department of Energy's Efforts to Meet Accountability and Performance Reporting Objectives of the American Recovery and Reinvestment Act"  

Science Conference Proceedings (OSTI)

The purpose of the American Recovery and Reinvestment Act of 2009 (Recovery Act) was to jumpstart the U.S. economy, create or save millions of jobs, spur technological advances in health and science, and invest in the Nation's energy future. The Department of Energy will receive an unprecedented $38 billion in Recovery Act funding to support a variety of science, energy, and environmental initiatives. The Recovery Act requires transparency and accountability over these funds. To this end, the Office of Management and Budget (OMB) issued guidance requiring the Department to compile and report a wide variety of funding, accounting, and performance information. The Department plans to leverage existing information systems to develop accounting and performance information that will be used by program managers and ultimately reported to Recovery.gov, the government-wide source of Recovery Act information, and to OMB. The Department's iManage iPortal, a system that aggregates information from a number of corporate systems, will serve as the main reporting gateway for accounting information. In addition, the Department plans to implement a methodology or system that will permit it to monitor information reported directly to OMB by prime funding recipients. Furthermore, performance measures or metrics that outline expected outcomes are being developed, with results ultimately to be reported in a recently developed Department-wide system. Because of the significance of funds provided and their importance to strengthening the Nation's economy, we initiated this review to determine whether the Department had taken the steps necessary to ensure that Recovery Act funds can be appropriately tracked and are transparent to the public, and whether the benefits of the expenditures can be properly measured and reported clearly, accurately, and in a timely manner. Although not yet fully mature, we found that the Department's efforts to develop, refine, and apply the control structure needed to ensure accurate, timely, and reliable reporting to be both proactive and positive. We did, however, identify certain issues relating to Recovery Act performance management, accounting and reporting accuracy, and timeliness that should be addressed and resolved. In particular, at the time of our review: (1) Program officials had not yet determined whether existing information systems will be able to process anticipated transaction increases associated with the Recovery Act; (2) System modifications made to the Department's performance management system to accommodate Recovery Act performance measures had not yet been fully tested and verified; (3) The ability of prime and sub-recipients to properly segregate and report both accounting and performance information had not been determined; (4) There was a lack of coordination between Headquarters organizations related to aspects of Recovery Act reporting. For example, we observed that the Offices of Fossil Energy and Program, Analysis and Evaluation were both involved in developing job creation estimates that could yield significantly different results; and, (5) A significant portion (91 of 142, or 64 percent) of the performance measures developed for the Recovery Act activities were not quantifiable. In some instances, Project Operating Plans had not been finalized and we were not able to verify that all needed performance measures had been developed. Furthermore, the Department had not developed specific metrics to measure federal and contractor jobs creation and retention, an essential Recovery Act objective. The Department had devoted a great deal of time and resources to identifying and mitigating Recovery Act-related risks. For example, the Department developed a risk assessment tool that is intended to assist programs in identifying risks that can prevent its Recovery Act projects from meeting their intended goals. We also found that program staff and management officials at multiple levels were actively engaged in designing Recovery Act-related control and accountability programs. These efforts ra

None

2009-09-01T23:59:59.000Z

308

Quantifying the impact of AIDC technologies for vehicle component recovery  

Science Conference Proceedings (OSTI)

Recovering value from end-of-life vehicles (ELV) has become increasingly important in recent years due to legislative pressures. In this context, cannibalisation of valuable components for possible reuse in secondary markets is becoming a popular option. ... Keywords: Decision-making, RFID, Value of information, Vehicle component recovery

Ajith Kumar Parlikad; Duncan McFarlane

2010-09-01T23:59:59.000Z

309

Microsoft Word - Recovery Act Cover  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Inspector General Inspector General Office of Audit Services Audit Report Decommissioning and Demolition Activities at Office of Science Sites OAS-RA-L-10-05 August 2010 DOE F 1325.8 (08-93) United States Government Department of Energy Memorandum DATE: August 12, 2010 Audit Report Number: OAS-RA-L-10-05 REPLY TO ATTN OF: IG-32 (A10RA005) SUBJECT: Audit Report on "Decommissioning and Demolition Activities at Office of Science Sites" TO: Deputy Director for Field Operations, SC-3 Manager, Brookhaven Site Office Manager, Argonne Site Office INTRODUCTION AND OBJECTIVE In February 2009, the President signed the American Recovery and Reinvestment Act of 2009 (Recovery Act) into law. The Department of Energy's (Department) Office of Environmental Management (EM) allocated $140 million of Recovery Act funds to

310

Recovery Act | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

69.2 Million in 69.2 Million in Weatherization Funding and Energy Efficiency Grants for Maine Part of nearly $8 billion in Recovery Act funding for energy efficiency efforts nationwide that will create 100,000 jobs and cut energy bills for families March 12, 2009 Obama-Biden Administration Announces More Than $94.7 Million in Weatherization Funding and Energy Efficiency Grants for Kansas Part of nearly $8 billion in Recovery Act funding for energy efficiency efforts nationwide that will create 100,000 jobs and cut energy bills for families March 12, 2009 Obama-Biden Administration Announces More Than $121.3 Million in Weatherization Funding and Energy Efficiency Grants for Iowa Part of nearly $8 billion in Recovery Act funding for energy efficiency efforts nationwide that will create 100,000 jobs and cut energy bills for

311

Recovery Act | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

June 18, 2010 June 18, 2010 Energetx Composites was able to purchase equipment such as this mold for utility-scale wind turbine blades thanks to a Recovery Act grant that matched the company's $3.5 million investment. | Photo Courtesy of Energetx | VP 100: Retooling Michigan -- Yachts and Watts Tiara Yachts makes fiber composite structures for boats. Now the Holland, Mich.-based company is transforming part of its factory and using its 30 years of expertise in composites to establish a new company - Energetx Composites - that will produce commercial-sized wind turbine blades. June 18, 2010 Five More States Reach Major Recovery Act Weatherization Milestone Minnesota, Montana, New Hampshire, New Mexico, and Utah Have Weatherized Over 9,000 Homes with Recovery Act Funding

312

Recovery Act | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

12, 2009 12, 2009 Obama-Biden Administration Announces More Than $89.8 Million in Weatherization Funding and Energy Efficiency Grants for Mississippi Part of nearly $8 billion in Recovery Act funding for energy efficiency efforts nationwide that will create 100,000 jobs and cut energy bills for families March 12, 2009 Obama-Biden Administration Announces More Than $122.3 Million in Weatherization Funding and Energy Efficiency Grants for Louisiana Part of nearly $8 billion in Recovery Act funding for energy efficiency efforts nationwide that will create 100,000 jobs and cut energy bills for families March 12, 2009 Obama-Biden Administration Announces More Than $123.4 Million in Weatherization Funding and Energy Efficiency Grants for Kentucky Part of nearly $8 billion in Recovery Act funding for energy efficiency

313

Recovery Act | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Nearly $80.7 Million in Weatherization Nearly $80.7 Million in Weatherization Funding and Energy Efficiency Grants for Oregon Part of nearly $8 billion in Recovery Act funding for energy efficiency efforts nationwide that will create 100,000 jobs and cut energy bills for families March 12, 2009 Obama-Biden Administration Announces More Than $107.6 Million in Weatherization Funding and Energy Efficiency Grants for Oklahoma Part of nearly $8 billion in Recovery Act funding for energy efficiency efforts nationwide that will create 100,000 jobs and cut energy bills for families March 12, 2009 Obama-Biden Administration Announces More Than $362.8 Million in Weatherization Funding and Energy Efficiency Grants for Ohio Part of nearly $8 billion in Recovery Act funding for energy efficiency efforts nationwide that will create 100,000 jobs and cut energy bills for

314

Recovery Act | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

9, 2010 9, 2010 AcuTemp received a $900,000 48C manufacturing tax credit under the American Recovery and Reinvestment Act to increase production of the company's ThermoCor vacuum insulation panels for more efficient ENERGY STAR appliances. | Photo courtesy of AcuTemp | AcuTemp Expands as Appliances Become More Energy Efficient AcuTemp, a small U.S. company that manufactures vacuum insulation panels that are needed to maintain precise temperatures for cold-storage products, is expanding and creating jobs in Dayton, OH thanks in part to the Recovery Act. August 6, 2010 A $20 million Recovery Act award will help Solazyme take production from tens of thousands of gallons a year of its algae "drop-in" oil to an annual production capacity of over half a million gallons. | Photo courtesy of Solazyme, Inc. |

315

Heat Recovery in Building Envelopes  

SciTech Connect

Infiltration has traditionally been assumed to contribute to the energy load of a building by an amount equal to the product of the infiltration flow rate and the enthalpy difference between inside and outside. Application of such a simple formula may produce an unreasonably high contribution because of heat recovery within the building envelope. Previous laboratory and simulation research has indicated that such heat transfer between the infiltrating air and walls may be substantial. In this study, Computational Fluid Dynamics was used to simulate sensible heat transfer in typical envelope constructions. The results show that the traditional method may over-predict the infiltration energy load by up to 95 percent at low leakage rates. A simplified physical model has been developed and used to predict the infiltration heat recovery based on the Peclet number of the flow and the fraction of the building envelope active in infiltration heat recovery.

Sherman, Max H.; Walker, Iain S.

2001-01-01T23:59:59.000Z

316

Recovery Act | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

August 12, 2010 August 12, 2010 Department of Energy Paves Way for Additional Clean Energy Projects and Jobs Through Manufacturing Solicitation Recovery Act Funds to Support New Renewable Energy Manufacturing Projects August 2, 2010 Department of Energy Announces $188 Million for Small Business Technology Commercialization Includes $73 million in Recovery Act Investments to Help Small Businesses Bring Clean Energy Ideas to the Marketplace July 22, 2010 Secretary Chu Announces Six Projects to Convert Captured CO2 Emissions from Industrial Sources into Useful Products $106 Million Recovery Act Investment will Reduce CO2 Emissions and Mitigate Climate Change July 21, 2010 DOE Hosts Workshop on Transition to Electric Vehicles Washington, DC - On Thursday, July 22, 2010, the Department of Energy will

317

OE Recovery Act Blog  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

blog Office of Electricity Delivery & blog Office of Electricity Delivery & Energy Reliability 1000 Independence Avenue, SW Washington, DC 20585 202-586-1411 en Top 9 Things You Didn't Know About America's Power Grid http://energy.gov/articles/top-9-things-you-didnt-know-about-americas-power-grid Top 9 Things You Didn't Know About America's Power Grid

318

Direct Refrigeration from Heat Recovery Using 2-Stage Absorption Chillers  

E-Print Network (OSTI)

Although the cost of some fossil fuels has moderated, the importance of energy conservation by heat recovery has not diminished. The application of waste heat generated steam to produce chilled water is not new. However, there is a newly developed absorption chiller which can produce chilled water 44% more efficiently than the conventional single stage absorption chillers. The new 2-stage parallel flow system makes the chiller package more compact, more efficient, and easier to operate. Many types of waste heat, not just steam, can be used directly in this new chiller without the need for costly recovery and conversion systems.

Hufford, P. E.

1983-01-01T23:59:59.000Z

319

LPG-recovery processes for baseload LNG plants examined  

SciTech Connect

With demand on the rise, LPG produced from a baseload LNG plant becomes more attractive as a revenue-earning product similar to LNG. Efficient use of gas expanders in baseload LNG plants for LPG production therefore becomes more important. Several process variations for LPG recovery in baseload LNG plants are reviewed here. Exergy analysis (based on the Second Law of Thermodynamics) is applied to three cases to compare energy efficiency resulting from integration with the main liquefaction process. The paper discusses extraction in a baseload plant, extraction requirements, process recovery parameters, extraction process variations, and exergy analysis.

Chiu, C.H. [Bechtel Corp., Houston, TX (United States)

1997-11-24T23:59:59.000Z

320

Fast crash recovery in RAMCloud  

Science Conference Proceedings (OSTI)

RAMCloud is a DRAM-based storage system that provides inexpensive durability and availability by recovering quickly after crashes, rather than storing replicas in DRAM. RAMCloud scatters backup data across hundreds or thousands of disks, and it harnesses ... Keywords: crash recovery, main memory databases, scalability, storage systems

Diego Ongaro; Stephen M. Rumble; Ryan Stutsman; John Ousterhout; Mendel Rosenblum

2011-10-01T23:59:59.000Z

Note: This page contains sample records for the topic "recovery testing important" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

Biosurfactant and enhanced oil recovery  

DOE Patents (OSTI)

A pure culture of Bacillus licheniformis strain JF-2 (ATCC No. 39307) and a process for using said culture and the surfactant lichenysin produced thereby for the enhancement of oil recovery from subterranean formations. Lichenysin is an effective surfactant over a wide range of temperatures, pH's, salt and calcium concentrations.

McInerney, Michael J. (Norman, OK); Jenneman, Gary E. (Norman, OK); Knapp, Roy M. (Norman, OK); Menzie, Donald E. (Norman, OK)

1985-06-11T23:59:59.000Z

322

Ion energy recovery experiment based on magnetic electro suppression  

DOE Green Energy (OSTI)

A proof-of-principle experiment on direct recovery of residual hydrogen ions based on a magnetic electron suppression scheme is described. Ions extracted from a source plasma a few kilovolts above the ground potential (approx. 20 A) are accelerated to 40 keV by a negative potential maintained on a neutralizer gas cell. As the residual ions exit the gas cell, they are deflected from the neutral beam by a magnetic field that also suppresses gas cell electrons and then recovered on a ground-potential surface. Under optimum conditions, a recovery efficiency (the ratio of the net recovered current to the available full-energy ion current) of 80% +- 20% has been obtained. Magnetic suppression of the beam plasma electrons was rather easily achieved; however, handling the fractional-energy ions originating from molecular species (H/sub 2//sup +/ and H/sub 3//sup +/) proved to be extremely important to recovery efficiency.

Kim, J.; Stirling, W.L.; Dagenhart, W.K.; Barber, G.C.; Ponte, N.S.

1980-05-01T23:59:59.000Z

323

Recovery Act Workers Demolish Facility Tied to Project Pluto History  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

LAS VEGAS - Workers recently razed a facility used in the LAS VEGAS - Workers recently razed a facility used in the historic Project Pluto, the latest American Recovery and Rein- vestment Act accomplishment helping clean up traces of past nuclear testing at the Nevada National Security Site (NNSS). Recovery Act workers safely hauled the last demolition waste from the Pluto Disassembly Facility to disposal facilities Jan. 11. The project is slated for completion this spring after work- ers finish installing a concrete cap over the below-ground level where the facility stood. "Without Recovery Act funding, the demolition of Pluto would not have been feasible for several more years," Federal Sub- Project Director Kevin Cabble said. In the late 1950s and early 1960s, the Pluto facility was used to develop the world's first

324

EM Recovery Act Press Releases | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

February 23, 2011 February 23, 2011 Recovery Act's HWCTR Project Empty of Equipment, Ready for Grouting AIKEN, S.C. - Thanks to investments from the American Recovery and Reinvestment Act, the next phase has begun on decommissioning the Heavy Water Components Test Reactor (HWCTR) at the Savannah River Site (SRS). February 23, 2011 Major Recovery Act Project Completed at Hanford: Two New Super Cells Go Into Service To Accept Contaminated Soil and Debris Months Ahead of Schedule and Millions Under Budget RICHLAND, WASH. - Two new super cells are going into service to expand disposal capacity for contaminated soil and debris at the Environmental Restoration Disposal Facility (ERDF), at the Department of Energy's (DOE) Hanford Site in southeastern Washington State. February 9, 2011

325

Recovery Act-Funded Working Fluid Projects | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Working Fluid Projects Working Fluid Projects Recovery Act-Funded Working Fluid Projects The U.S. Department of Energy was allocated funding from the American Recovery and Reinvestment Act to conduct research into working fluid technologies and applications. Projects funded by the Recovery Act include: Developing Next Generation Refrigeration Lubricants for Low Global Warming Potential and Low Ozone Depleting Refrigeration and Air Conditioning Systems Funding amount: $1.45 million Chemtura Corp. The goal of this project is to develop, test, and bring to market new synthetic lubricants that possess high compatibility with new low ozone depleting and low global warming potential refrigerants and offer improved performance-including lubricity and wear protection-over current lubricant technologies. Lubricants play a pivotal role in both the

326

Recovery Act Reports | Department of Energy  

NLE Websites -- All DOE Office Websites (Extended Search)

Recovery Act ¬Ľ Recovery Act Reports Recovery Act ¬Ľ Recovery Act Reports Recovery Act Reports The following is a list of the oversight results by the Office of Inspector General regarding The Department's programs, grants, and projects funded under the Recovery Act. November 25, 2013 Audit Report: OAS-RA-14-02 The Department of Energy's American Recovery and Reinvestment Act Energy Efficiency and Conservation Block Grant Program - District of Columbia September 27, 2013 Audit Report: OAS-RA-13-31 The Department of Energy's Hydrogen and Fuel Cells Program September 19, 2013 Examination Report: OAS-RA-13-30 Alamo Area Council of Governments - Weatherization Assistance Program Funds Provided by the American Recovery and Reinvestment Act of 2009 September 9, 2013 Audit Report: IG-0893 Follow-up Audit of the Department of Energy's Financial Assistance for

327

HVAC Energy Recovery Design and Economic Evaluation  

E-Print Network (OSTI)

ENRECO has prepared this paper on HVAC energy recovery to provide the engineer with an overview of the design engineering as well as the economic analysis considerations necessary to evaluate the potential benefits of energy recovery.

Kinnier, R. J.

1979-01-01T23:59:59.000Z

328

COUNTER DISASTER AND RECOVERY PLAN -UNIVERSITY RECORDS  

E-Print Network (OSTI)

...................................................................................10 3.1 Disaster Response and Recovery Team...........................................10 3.2 Emergency Disaster Response.......................................................................23 6.1 AssessingCOUNTER DISASTER AND RECOVERY PLAN - UNIVERSITY RECORDS Records Management & Archives Murdoch

329

Web Services for Recovery.gov  

E-Print Network (OSTI)

established and widely supported Web technologies such asof Information Report 2009-035 Web Services for Recovery.govof Recovery.gov as a user-friendly Web site and hence most

Wilde, Erik; Kansa, Eric C; Yee, Raymond

2009-01-01T23:59:59.000Z

330

Vermont Recovery Act State Memo | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Vermont Recovery Act State Memo Vermont Recovery Act State Memo The American Recovery & Reinvestment Act (ARRA) is making a meaningful down payment on the nation's energy and...

331

Colorado Recovery Act State Memo | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Colorado Recovery Act State Memo Colorado Recovery Act State Memo The American Recovery & Reinvestment Act (ARRA) is making a meaningful down payment on the nation's energy and...

332

Recovery Act: Smart Grid Interoperability Standards and Framework...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Act: Smart Grid Interoperability Standards and Framework Recovery Act: Smart Grid Interoperability Standards and Framework Congressional Testimony Recovery Act Recovery Act...

333

Implementing the American Recovery and Reinvestment Act  

Ė $20 million for geologic carbon sequestration training and research . Recovery Act Tax Provisions on Clean Energy Production Tax Credit

334

Distributed Generation with Heat Recovery and Storage  

E-Print Network (OSTI)

L ABORATORY Distributed Generation with Heat Recovery andequal opportunity employer. Distributed Generation with Heatenergy resources (DER), distributed generation (DG), and

Siddiqui, Afzal S.; Marnay, Chris; Firestone, Ryan M.; Zhou, Nan

2008-01-01T23:59:59.000Z

335

Recovery Act NIST Construction Grant Program  

Science Conference Proceedings (OSTI)

Recovery Act NIST Construction Grant Program. ... Fraud Prevention Training for Recipients; Fraud Indicators Pamphlet; Red Flags of Collusion ...

2011-08-17T23:59:59.000Z

336

Effects of Microwave Radiation on Oil Recovery  

Science Conference Proceedings (OSTI)

A variety of oil recovery methods have been developed and applied to mature and depleted reservoirs in order to improve the efficiency. Microwave radiation oil recovery method is a relatively new method and has been of great interest in the recent years. Crude oil is typically co?mingled with suspended solids and water. To increase oil recovery

2011-01-01T23:59:59.000Z

337

Recovery Act | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

June 22, 2011 June 22, 2011 Recovery Act SGDP View a map which combines the above two maps View the full list of selected projects June 22, 2011 Recovery Act: Smart Grid Interoperability Standards and Framework May 18, 2009 Locke, Chu Announce Significant Steps in Smart Grid Development WASHINGTON - U.S. Commerce Secretary Gary Locke and U.S. Energy Secretary Steven Chu today announced significant progress that will help expedite development of a nationwide "smart" electric power grid. June 22, 2011 Strategic Plan A modern, reliable, secure, affordable and environmentally sensitive national energy infrastructure is fundamental to our quality of life and energy future. Yet since 1982, growth in peak demand for electricity has exceeded the growth and development of our electric grid. This demand

338

Recovery Act | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

April 12, 2011 April 12, 2011 Department of Energy Offers Conditional Commitment for $1.187 Billion Loan Guarantee to Support California Solar Generation Project Recovery Act-Supported Project Estimated to Create Over 350 Jobs and Avoid over 430,000 Tons of Carbon Dioxide Annually March 3, 2011 Department of Energy Offers Conditional Commitment for a Loan Guarantee to Support Maine Wind Project Recovery Act-Funded Project Expected to Create Approximately 200 Jobs and Avoid over 70,000 Tons of Carbon Pollution Annually February 17, 2011 Department of Energy Offers Support for an Oregon Solar Manufacturing Project Project Estimated to Create Over 700 Jobs and Greater Efficiencies in the Production of Photovoltaic Panels February 15, 2011 Department of Energy Finalizes Loan Guarantee for New Transmission Project

339

Recovery Act | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

19, 2010 19, 2010 North Community Police Substation upgraded its solar energy system with the help of Recovery Act funds. The city's electric bill will be about $5,000 cheaper. | Courtesy of the City of Henderson Police Station Triples Solar Power - and Savings The Henderson, Nevada, police department is going above and beyond the call of duty by tripling the size of its solar panel system on its LEED-certified station, saving the city thousands of dollars in energy costs. July 15, 2010 VP 100: President Obama Hails Electric-Vehicle Battery Plant President Obama visits Compact Power in Holland, Michigan -- one of nine new battery plants under construction as a result of the $2.4 billion in Recovery Act advanced battery and electric vehicle awards the President announced last August.

340

Recovery Act | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

February 25, 2010 February 25, 2010 Bluegrass State Getting Greener To help reduce Kentucky's energy appetite, the state set a goal of 25-percent energy reduction by 2025 and is using Recovery Act funding from the U.S. Department of Energy to improve the energy-efficiency of its buildings. February 19, 2010 Homes Weatherized by State for Calendar Year 2009 February 19, 2010 Secretary Chu's Remarks on the Anniversary of the Recovery Act February 19, 2010 January 26, 2010 Electric Cars Coming to Former Delaware GM Plant If a company's cars are luxurious enough for the Crown Prince of Denmark, then just imagine how the vehicles - which have a 50-mile, emission-free range on a single electric charge - might be received by folks in the U.S. January 15, 2010 Secretary Chu Announces More than $37 Million for Next Generation Lighting

Note: This page contains sample records for the topic "recovery testing important" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

Recovery Act | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

April 22, 2010 April 22, 2010 Weatherization Subgrantees Reach More N.Y. Homes Why weatherization is booming in the South Bronx. April 21, 2010 Vice President Biden Kicks Off Five Days of Earth Day Activities with Announcement of Major New Energy Efficiency Effort 25 Communities Selected for Recovery Act "Retrofit Ramp-Up" Awards April 15, 2010 Arkansas Preparing for Wind Power Arkansas energy leaders are working to get the best data for potential wind energy decisions. April 1, 2010 Wisconsin LED Plant Benefits from Recovery Act "It's a win for everyone: the environment, the cities, buildings, for us," says Gianna O'Keefe, marketing manager for Ruud Lighting, which is producing LED lights that emit more light, have a longer life and provide anywhere from 50 to 70 percent in energy savings.

342

Recovery Act | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

46.3 Million in 46.3 Million in Weatherization Funding and Energy Efficiency Grants for Alaska Part of nearly $8 billion in Recovery Act funding for energy efficiency efforts nationwide that will create 100,000 jobs and cut energy bills for families March 12, 2009 Obama-Biden Administration Announces More Than $127.3 Million in Weatherization Funding and Energy Efficiency Grants for Alabama Part of nearly $8 billion in Recovery Act funding for energy efficiency efforts nationwide that will create 100,000 jobs and cut energy bills for families March 11, 2009 Statement of Steven Chu Secretary of Energy Before the Committee on the Budget March 11, 2009 March 5, 2009 Secretary Steven Chu Editorial in USA Today Washington, D.C. - This morning's edition of USA Today includes the following editorial from Energy Secretary Steven Chu highlighting President

343

Recovery Act | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

185.5 Million in 185.5 Million in Weatherization Funding and Energy Efficiency Grants for Missouri Part of nearly $8 billion in Recovery Act funding for energy efficiency efforts nationwide that will create 100,000 jobs and cut energy bills for families March 12, 2009 Obama-Biden Administration Announces More Than $35.1 Million in Weatherization Funding and Energy Efficiency Grants for Wyoming Washington, DC -- Vice President Joe Biden and Energy Secretary Chu today announced Wyoming will receive $35,180,261 in weatherization and energy efficiency funding - including $10,239,261 for the Weatherization Assistance Program and $24,941,000 for the State Energy Program. This is part of a nationwide investment announced today of nearly $8 billion under the President's American Recovery and Reinvestment Act - an investment that

344

Recovery Act | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

July 11, 2013 July 11, 2013 Analysis of Customer Enrollment Patterns in TIme-Based Rate Programs: Initial Results from the SGIG Consumer Behavior Studies (July 2013) The Smart Grid Investment Grant program's consumer behavior study effort presents an opportunity to advance the electric power industry's understanding of consumer behaviors in terms of customer acceptance and retention, and energy and peak demand impacts. July 10, 2013 Cumulative Federal Payments to OE Recovery Act Recipients, through June 30, 2013 Graph of cumulative Federal Payments to OE Recovery Act Recipients, through June 30, 2013. July 7, 2013 Voices of Experience: Insights on Smart Grid Customer Engagement (July 2013) The success of the Smart Grid will depend in part on consumers taking a more proactive role in managing their energy use. This document is the

345

Recovery Act | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

February 7, 2011 February 7, 2011 Mechanics train with plasma arc cutting equipment at the Paducah Site | Courtesy of Paducah Gaseous Diffusion Plant 240 Jobs Later: The Recovery Act's Impact at the Paducah Site Workers at the Department of Energy's Paducah Site are doing great things with the training they've received as part of the Recovery Act. January 25, 2011 Watercolor print of the Aldo Leopold Nature Center (ALNC) with new facilities. How a Wisconsin Nature Center is Leading by Example With funding from the U.S. Department of Energy, this Wisconsin nature center will be at the forefront in demonstrating the latest energy efficiency and renewable energy technologies to thousands of visitors every year. January 24, 2011 Vids 4 Grids: Surge Arresters and Switchgears A new video series is increasing general public knowledge of the cutting

346

Recovery Act | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

March 17, 2010 March 17, 2010 Solar panels at Terry Sandstrom's home in Wheatland, Wyo. | Photo courtesy of Terry Sandstrom Solar and Wind Powering Wyoming Home Terry Sandstrom never thought he would run his house entirely on renewable energy, but when faced with a $100,000 price tag to get connected to the grid, he had to look at alternative options. March 17, 2010 DOE Releases New Report on Benefits of Recovery Act for Small Businesses in Clean Energy, Environmental Management Sectors WASHINGTON - The Department of Energy today released a new report highlighting the benefits of the Recovery Act to small businesses throughout the clean, renewable energy industry and environmental management sector. The report found that as of early March 2010, small businesses have been selected to receive nearly $5.4 billion in funding

347

Recovery Act | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

September 14, 2009 September 14, 2009 Obama Administration Delivers More than $60 Million for Weatherization Programs in Six States and Territories Recovery Act funding to expand weatherization assistance programs, create jobs and weatherize nearly 17,000 homes in American Samoa, Northern Arapahoe Tribe, Northern Mariana Islands, Puerto Rico, Tennessee and the U.S. Virgin Islands September 14, 2009 DOE Delivers More than $354 Million for Energy Efficiency and Conservation Projects in 22 States Washington, DC - Energy Secretary Steven Chu announced today that more than $354 million in funding from the American Recovery and Reinvestment Act is being awarded to 22 states to support energy efficiency and conservation activities. Under the Department of Energy's Efficiency and Conservation

348

Categorical Exclusion Determinations: American Recovery and Reinvestment  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

5, 2011 5, 2011 CX-005991: Categorical Exclusion Determination Prairie Village, Kansas Ground Source Heat Pump Relocation CX(s) Applied: B5.1 Date: 05/25/2011 Location(s): Prairie Village, Kansas Office(s): Energy Efficiency and Renewable Energy, Golden Field Office May 25, 2011 CX-005988: Categorical Exclusion Determination Solar Technology Acceleration Center - Solar Thermal Energy Storage Test Facility CX(s) Applied: A9, A11, B1.15, B3.6 Date: 05/25/2011 Location(s): Denver, Colorado Office(s): Energy Efficiency and Renewable Energy, Golden Field Office May 25, 2011 CX-005961: Categorical Exclusion Determination Recovery Act ? Clean Energy Coalition Michigan Green Fleets CX(s) Applied: B5.1 Date: 05/25/2011 Location(s): Taylor, Michigan Office(s): Energy Efficiency and Renewable Energy, National Energy

349

Improved recovery demonstration for Williston Basin carbonates  

SciTech Connect

The purpose of this project is to demonstrate targeted infill and extension drilling opportunities, better determinations of oil-in- place, methods for improved completion efficiency and the suitability of waterflooding in certain shallow-shelf carbonate reservoirs in the Williston Basin, Montana, North Dakota and South Dakota. Improved reservoir characterization utilizing 3-dimensional (3D) and multi- component seismic are being investigated for identification of structural and stratigraphic reservoir compartments. These seismic characterization tools are integrated with geological and engineering studies. Improved completion efficiency is being tested with short- lateral and horizontal drilling technologies. Improved completion efficiency, additional wells at closer spacing and better estimates of oil-in-place will result in additional oil production by primary and enhanced recovery processes.

Carrell, L. A., Luff Exploration Co., Denver, CO

1996-09-01T23:59:59.000Z

350

Improved Recovery Demonstration for Williston Basin Carbonates  

SciTech Connect

The purpose of this project is to demonstrate targeted infill and extension drilling opportunities, better determinations of oil-in- place, methods for improved completion efficiency and the suitability of waterflooding in certain shallow-shelf carbonate reservoirs in the Williston Basin, Montana, North Dakota and South Dakota. Improved reservoir characterization utilizing 3-dimensional (3-D) and multi- component seismic are being investigated for identification of structural and stratigraphic reservoir compartments. These seismic characterization tools are integrated with geological and engineering studies. Improved completion efficiency is being tested with short- lateral and horizontal drilling technologies. Improved completion efficiency, additional wells at closer spacing and better estimate of oil-in-place will result in additional oil production by primary and enhanced recovery processes.

1997-03-01T23:59:59.000Z

351

Improved Recovery Demonstration for Williston Basin Carbonates  

SciTech Connect

The purpose of this project is to demonstrate targeted infill and extension drilling opportunities, better determinations of oil-in-place, methods for improved completion efficiency and the suitability of waterflooding in certain shallow-shelf carbonate reservoirs in the Williston Basin, Montana, North Dakota and South Dakota. Improved reservoir characterization utilizing three-dimensional is being investigated for identification of structural and stratigraphic reservoir compartments. These seismic characterization tools are integrated with geological and engineering studies. Improved completion efficiency is being tested with short-lateral and horizontal drilling technologies. Improved completion efficiency, additional wells at closer spacing and better estimates of oil-in-place will result in additional oil production by primary and enhanced recovery processes.

Larry A. Carrell

1997-12-31T23:59:59.000Z

352

Improved Recovery Demonstration for Williston Basin Carbonates.  

SciTech Connect

The purpose of this project is to demonstrate targeted infill and extension drilling opportunities, better determinations of oil-in- place, methods for improved completion efficiency and the suitability of waterflooding in certain shallow-shelf carbonate reservoirs in the Williston Basin, Montana, North Dakota and South Dakota. Improved reservoir characterization utilizing 3-dimensional (3-D) and multi-component seismic are being investigated for identification of structural and stratigraphic reservoir compartments. These seismic characterization tools are integrated with geological and engineering studies. Improved completion efficiency is being tested with short-lateral and horizontal drilling technologies. Improved completion efficiency, additional wells at closer spacing and better estimate of oil-in-place will result in additional oil production by primary and enhanced recovery processes.

1997-12-31T23:59:59.000Z

353

Improved recovery demonstration for Williston Basin carbonates  

SciTech Connect

The purpose of this project is to demonstrate targeted infill and extension drilling opportunities, better determination of oil-in-place, methods for improved completion efficiency and the suitability of waterflooding in certain shallow-shelf carbonate reservoirs in the Williston Basin, Montana, North Dakota and South Dakota. Improved reservoir characterization utilizing 3-dimensional (3D) is being investigated for identification of structural and stratigraphic reservoir compartments. These seismic characterization tools are integrated with geological and engineering studies. Improved completion efficiency is being tested with short lateral and horizontal drilling technologies. Improved completion efficiency, additional wells at closer spacing and better estimates of oil-in- place will result in additional oil production by primary and enhanced recovery processes.

Carrell, L. A., Luff Exploration Co., Denver, CO

1997-12-01T23:59:59.000Z

354

Effects of soldering void on recovery characteristics of a cryostable superconductor  

DOE Green Energy (OSTI)

A conductor for a cryostable magnet is usually made by soldering a superconducting matrix to an OFHC copper strip. The presence of voids between the matrix and the stabilizer due to the imperfection in the soldering bond is of great concern to magnet designers. An experiment was set up to investigate the effect of the void on the characteristics of hot end recovery and cold and recovery for CFFF superconductors. Tests were made on samples having different lengths of soldering void under various magnetic field strengths and injecting energies. The recovery current and the temperature distributions along the matrix and the copper stabilizer were mentioned. The test results are presented.

Huang, Y.; Wang, S.T.

1980-01-01T23:59:59.000Z

355

Low Level Heat Recovery Technology  

E-Print Network (OSTI)

With today's high fuel prices, energy conservation projects to utilize low level waste heat have become more attractive. Exxon Chemical Company Central Engineering has been developing guidelines and assessing the potential for application of low level heat recovery technology. This paper discusses heat distribution systems, latest developments in absorption refrigeration and organic Rankine cycles, and pressure, minimization possibilities. The relative merits and economics of the various possibilities and some guidelines on when they should be considered will be presented.

O'Brien, W. J.

1982-01-01T23:59:59.000Z

356

Counterpulse railgun energy recovery circuit  

SciTech Connect

In an electromagnetic launcher such as a railgun for propelling a projectile at high velocity, a counterpulse energy recovery circuit is employed to transfer stored inductive energy from a source inductor to the railgun inductance to propel the projectile down the railgun. Switching circuitry and an energy transfer capacitor are used to switch the energy back to the source inductor in readiness for a repetitive projectile propelling cycle.

Honig, Emanuel M. (Los Alamos, NM)

1986-01-01T23:59:59.000Z

357

Heat recovery in building envelopes  

SciTech Connect

Infiltration has traditionally been assumed to contribute to the energy load of a building by an amount equal to the product of the infiltration flow rate and the enthalpy difference between inside and outside. Some studies have indicated that application of such a simple formula may produce an unreasonably high contribution because of heat recovery within the building envelope. The major objective of this study was to provide an improved prediction of the energy load due to infiltration by introducing a correction factor that multiplies the expression for the conventional load. This paper discusses simplified analytical modeling and CFD simulations that examine infiltration heat recovery (IHR) in an attempt to quantify the magnitude of this effect for typical building envelopes. For comparison, we will also briefly examine the results of some full-scale field measurements of IHR based on infiltration rates and energy use in real buildings. The results of this work showed that for houses with insulated walls the heat recovery is negligible due to the small fraction of the envelope that participates in heat exchange with the infiltrating air. However; there is the potential for IHR to have a significant effect for higher participation dynamic walls/ceilings or uninsulated walls. This result implies that the existing methods for evaluating infiltration related building loads provide adequate results for typical buildings.

Walker, Iain S.; Sherman, Max H.

2003-08-01T23:59:59.000Z

358

Modeling soil quality thresholds to ecosystem recovery at Fort Benning, GA, USA  

SciTech Connect

The objective of this research was to use a simple model of soil carbon (C) and nitrogen (N) dynamics to predict nutrient thresholds to ecosystem recovery on degraded soils at Fort Benning, Georgia, in the southeastern USA. Artillery, wheeled, and tracked vehicle training at military installations can produce soil disturbance and potentially create barren, degraded soils. Ecosystem reclamation is an important component of natural resource management at military installations. Four factors were important to the development of thresholds to recovery of aboveground biomass on degraded soils: (1) initial amounts of aboveground biomass, (2) initial soil C stocks (i.e., soil quality), (3) relative recovery rates of biomass, and (4) soil sand content. Forests and old fields on soils with varying sand content had different predicted thresholds for ecosystem recovery. Soil C stocks at barren sites on Fort Benning were generally below predicted thresholds to 100% recovery of desired future ecosystem conditions defined on the basis of aboveground biomass. Predicted thresholds to ecosystem recovery were less on soils with more than 70% sand content. The lower thresholds for old field and forest recovery on more sandy soils were apparently due to higher relative rates of net soil N mineralization. Calculations with the model indicated that a combination of desired future conditions, initial levels of soil quality (defined by soil C stocks), and the rate of biomass accumulation determine the predicted success of ecosystem recovery on disturbed soils.

Garten Jr, Charles T [ORNL; Ashwood, Tom L [ORNL

2004-12-01T23:59:59.000Z

359

Test Automation Test Automation  

E-Print Network (OSTI)

Test Automation Test Automation Mohammad Mousavi Eindhoven University of Technology, The Netherlands Software Testing 2013 Mousavi: Test Automation #12;Test Automation Outline Test Automation Mousavi: Test Automation #12;Test Automation Why? Challenges of Manual Testing Test-case design: Choosing inputs

Mousavi, Mohammad

360

Waste Heat Recovery from Refrigeration in a Meat Processing Facility  

E-Print Network (OSTI)

A case study is reviewed on a heat recovery system installed in a meat processing facility to preheat water for the plant hot water supply. The system utilizes waste superheat from the facility's 1,350-ton ammonia refrigeration system. The heat recovery system consists of a shell and tube heat exchanger (16"? x 14'0") installed in the compressor hot gas discharge line. Water is recirculated from a 23,000-gallon tempered water storage tank to the heat exchanger by a circulating pump at the rate of 100 gallons per minute. All make-up water to the plant hot water system is supplied from this tempered water storage tank, which is maintained at a constant filled level. Tests to determine the actual rate of heat recovery were conducted from October 3, 1979 to October 12, 1979, disclosing an average usage of 147,000 gallons of hot water daily. These tests illustrated a varied heat recovery of from 0.5 to 1.0 million BTU per hour. The deviations were the result of both changing refrigeration demands and compressor operating modes. An average of 16 million BTU per day was realized, resulting in reduced boiler fuel costs of $30,000 annually, based on the present $.80 per gallon #2 fuel oil price. At the total installed cost of $79,000, including test instrumentation, the project was found to be economically viable. The study has demonstrated the technical and economic feasibility of refrigeration waste heat recovery as a positive energy conservation strategy which has broad applications in industry and commerce.

Murphy, W. T.; Woods, B. E.; Gerdes, J. E.

1980-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "recovery testing important" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

Enhanced oil recovery. Byron Field polymer waterflood will achieve two important firsts  

SciTech Connect

When Marathon Oil Co. starts up its long-awaited, Byron Field Tensleep-Embar Unit polymer waterflood this December 2, firsts will have been achieved: the Big-Horn basin will see its first full-field commercial tertiary flood, and Marathon also will see its first full-field commercial tertiary flood. Marathon's flood will use a massive amount of polymer. Seventy percent of pore volume will be injected. Big Horn basin fields usually have been subjected only to infill drilling and waterflood because the thicker than average crude lies in heterogeneous formations, yielding a situation whereby, even 60 to 70 yr after discovery, simple infill drilling can cause virgin oil to flow to the well bore. In some cases, 20-, 10-, or 5-acre spacing might be required to drain a reservoir adequately, giving long effective lift to simple primary production techniques. In addition, a natural water drive often is present.

Gill, D.

1982-09-01T23:59:59.000Z

362

American Recovery and Reinvestment Act of 2009  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

4, 2009 financial assistance 4, 2009 financial assistance Special provisions relating to work funded under American Recovery and Reinvestment Act of 2009 (Mar 2009) [Prescription: This clause must be included in all grants, cooperative agreements and TIAs (new or amended) when funds appropriated under the Recovery Act are obligated to the agreement.] Preamble The American Recovery and Reinvestment Act of 2009, Pub. L. 111-5, (Recovery Act) was enacted to preserve and create jobs and promote economic recovery, assist those most impacted by the recession, provide investments needed to increase economic efficiency by spurring technological advances in science and health, invest in transportation, environmental protection, and other infrastructure that will provide long-

363

Recovery Act State Memos American Samoa  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

American American Samoa For questions about DOE's Recovery Act activities, please contact the DOE Recovery Act Clearinghouse: 1-888-DOE-RCVY (888-363-7289), Monday through Friday, 9 a.m. to 7 p.m. Eastern Time https://recoveryclearinghouse.energy.gov/contactUs.htm. All numbers and projects listed as of June 1, 2010 TABLE OF CONTENTS RECOVERY ACT SNAPSHOT................................................................................... 1 FUNDING ALLOCATION TABLE.............................................................................. 2 ENERGY EFFICIENCY ................................................................................................ 1 For total Recovery Act jobs numbers in American Samoa go to www.recovery.gov

364

Recovery Act State Memos Virgin Islands  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Virgin Virgin Islands For questions about DOE's Recovery Act activities, please contact the DOE Recovery Act Clearinghouse: 1-888-DOE-RCVY (888-363-7289), Monday through Friday, 9 a.m. to 7 p.m. Eastern Time https://recoveryclearinghouse.energy.gov/contactUs.htm. All numbers and projects listed as of June 1, 2010 TABLE OF CONTENTS RECOVERY ACT SNAPSHOT................................................................................... 1 FUNDING ALLOCATION TABLE.............................................................................. 2 ENERGY EFFICIENCY ............................................................................................... 3 For total Recovery Act jobs numbers in the U.S. Virgin Islands go to www.recovery.gov

365

Crude Oil Imports from Qatar  

U.S. Energy Information Administration (EIA)

PAD District Imports by Country of Origin ... Crude oil includes imports for storage in the Stategic Petroleum Reserve. The Persian Gulf includes Bahrain, ...

366

Crude Oil Imports from Sweden  

U.S. Energy Information Administration (EIA)

PAD District Imports by Country of Origin ... Crude oil includes imports for storage in the Stategic Petroleum Reserve. The Persian Gulf includes Bahrain, ...

367

Special Naphthas Imports from Colombia  

U.S. Energy Information Administration (EIA)

PAD District Imports by Country of Origin ... Crude oil includes imports for storage in the Stategic Petroleum Reserve. The Persian Gulf includes Bahrain, ...

368

Drain Water Heat Recovery | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Drain Water Heat Recovery Drain Water Heat Recovery Drain Water Heat Recovery June 15, 2012 - 6:20pm Addthis Diagram of a drain water heat recovery system. Diagram of a drain water heat recovery system. How does it work? Use heat from water you've already used to preheat more hot water, reducing your water heating costs. Any hot water that goes down the drain carries away energy with it. That's typically 80%-90% of the energy used to heat water in a home. Drain-water (or greywater) heat recovery systems capture this energy from water you've already used (for example, to shower, wash dishes, or wash clothing) to preheat cold water entering the water heater or going to other water fixtures. This reduces the amount of energy needed for water heating. How It Works Drain-water heat recovery technology works well with all types of water

369

EM Recovery Act Performance | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Mission ¬Ľ Recovery Act ¬Ľ EM Recovery Act Performance Mission ¬Ľ Recovery Act ¬Ľ EM Recovery Act Performance EM Recovery Act Performance Footprint Reduction The Office of Environmental Management's (EM) American Recovery and Reinvestment Act Program recently achieved 74 percent footprint reduction, exceeding the originally established goal of 40 percent. EM has reduced its pre-Recovery Act footprint of 931 square miles, established in 2009, by 690 square miles. Reducing its contaminated footprint to 241 square miles has proven to be a monumental task, and a challenge the EM team was ready to take on from the beginning. In 2009, EM identified a goal of 40 percent footprint reduction by September 2011 as its High Priority Performance Goal. EM achieved that goal in April 2011, five months ahead of schedule, and continues to achieve

370

Recovery News Flashes | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Recovery News Flashes Recovery News Flashes Recovery News Flashes RSS January 29, 2013 "TRU" Success: SRS Recovery Act Prepares to Complete Shipment of More Than 5,000 Cubic Meters of Nuclear Waste to WIPP With the American Recovery and Reinvestment Act funding, Savannah River Site (SRS) continues to safely treat and dispose of radioactive waste created while producing materials for nuclear weapons throughout the Cold War. The DOE site in Aiken, S.C., is safely, steadily, and cost-effectively making progress to analyze, measure, and then carefully cleanup or dispose of legacy transuranic (TRU) waste remaining at SRS after the lengthy nuclear arms race. November 2, 2012 Recovery Act Exceeds Major Cleanup Milestone, DOE Complex Now 74 Percent Remediated The Office of Environmental Management's (EM) American Recovery and

371

Enhanced Oil Recovery | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Enhanced Oil Recovery Enhanced Oil Recovery Enhanced Oil Recovery Cross-section illustrating how carbon dioxide and water can be used to flush residual oil from a subsurface rock formation between wells. Cross-section illustrating how carbon dioxide and water can be used to flush residual oil from a subsurface rock formation between wells. Crude oil development and production in U.S. oil reservoirs can include up to three distinct phases: primary, secondary, and tertiary (or enhanced) recovery. During primary recovery, the natural pressure of the reservoir or gravity drive oil into the wellbore, combined with artificial lift techniques (such as pumps) which bring the oil to the surface. But only about 10 percent of a reservoir's original oil in place is typically produced during primary recovery. Secondary recovery techniques extend a

372

Drain Water Heat Recovery | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Drain Water Heat Recovery Drain Water Heat Recovery Drain Water Heat Recovery June 15, 2012 - 6:20pm Addthis Diagram of a drain water heat recovery system. Diagram of a drain water heat recovery system. How does it work? Use heat from water you've already used to preheat more hot water, reducing your water heating costs. Any hot water that goes down the drain carries away energy with it. That's typically 80%-90% of the energy used to heat water in a home. Drain-water (or greywater) heat recovery systems capture this energy from water you've already used (for example, to shower, wash dishes, or wash clothing) to preheat cold water entering the water heater or going to other water fixtures. This reduces the amount of energy needed for water heating. How It Works Drain-water heat recovery technology works well with all types of water

373

Company Level Imports Explanatory Notes  

Gasoline and Diesel Fuel Update (EIA)

Company Level Imports Explanatory Notes Company Level Imports Explanatory Notes Notice: Ongoing analysis of imports data to the Energy Information Administration reveals that some imports are not correctly reported on Form EIA-814 "Monthly Imports Report". Contact with the companies provides sufficient information for EIA to include these imports in the data even though they have not provided complete reports on Form EIA-814. Estimates are included in aggregate data, but the estimates are not included in the file of Company-Level Imports. Therefore, summation of volumes for PAD Districts 1-5 from the Company-Level Imports will not equal aggregate import totals. Explanation of Codes Used in Imports Database Files SURVEY_ID EIA-814 Survey Form Number for Collecting Petroleum Import Statistics

374

Alkaline injection for enhanced oil recovery: a status report  

SciTech Connect

In the past several years, there has been renewed interest in enhanced oil recovery (EOR) by alkaline injection. Alkaline solutions also are being used as preflushes in micellar/polymer projects. Several major field tests of alkaline flooding are planned, are in progress, or recently have been completed. Considerable basic research on alkaline injection has been published recently, and more is in progress. This paper summarizes known field tests and, where available, the amount of alkali injected and the performance results. Recent laboratory work, much sponsored by the U.S. DOE, and the findings are described. Alkaline flood field test plans for new projects are summarized.

Mayer, E.H.; Berg, R.L.; Carmichael, J.D.; Weinbrandt, R.M.

1983-01-01T23:59:59.000Z

375

Tracer Recovery and Mixing from Two Geothermal Injection-Backflow Studies |  

Open Energy Info (EERE)

Tracer Recovery and Mixing from Two Geothermal Injection-Backflow Studies Tracer Recovery and Mixing from Two Geothermal Injection-Backflow Studies Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Conference Proceedings: Tracer Recovery and Mixing from Two Geothermal Injection-Backflow Studies Details Activities (2) Areas (2) Regions (0) Abstract: Injection-backflow tracer testing on a single well is not a commonly used procedure for geothermal reservoir evaluation, and, consequently, there is little published information on the character or interpretation of tracer recovery curves. Two field experiments were conducted to develop chemical tracer procedures for use with injection-backflow testing, one on the fracture-permeability Raft River reservoir and the other on the matrix-permeability East Mesa reservoir. Results from tests conducted with incremental increases in the injection

376

Tests on Comprehensive Recovery of Iron Minerals and Bauxite ...  

Science Conference Proceedings (OSTI)

In comparison with high temperature smelting process, the energy consumption is ... Value of Systems Integration to Optimize Operation in Alumina Refineries.

377

ESP Dust Recovery Process Test Works, Plant Trial, Commissioning ...  

Science Conference Proceedings (OSTI)

Most of the volatile arsenic will report to Isasmelt Electrostatic Precipitator (ESP) or Waste Heat Boiler dusts where it will form a re-circulating load within the†...

378

Advanced Vehicle Testing Activity: American Recovery and Reinvestment...  

NLE Websites -- All DOE Office Websites (Extended Search)

deployment of 5,700 battery electric vehicle (BEV) Nissan Leafs and 2,600 extended range electric vehicle (EREV) General Motors Volts, that will be recharged in private residence,...

379

Wyoming chemical flood test for oil recovery shows promise  

Science Conference Proceedings (OSTI)

This project was begun in 1978 to provide data to promote surfactant chemical flooding on a commercial scale in the low-permeability reservoirs of eastern Wyoming and Colorado. The Big Muddy Field in Wyoming was selected because of the large resource, potential net pay, and high oil saturation. Injection began on February 20, 1980 with a surfactant flooding process. Water mixed with salt (brine) was injected as a preflush which was completed on January 20, 1981. This produced 12,122 bbl of oil. The next step involves injecting a surfactant, co-surfactant (alcohol), and polymer. When the injection of the surfactant is completed in the summer of 1982, polymer alone will be injected. Polymer injection will be completed sometime in 1984. The final phase will be a followup water drive scheduled for 1984-1987. As of February 1, 1982, 36,683 bbl of oil had been produced. About 88 bbl of oil per day is being produced, compared to only about 41 bbl per day in February 1981. (ATT)

Not Available

1981-01-01T23:59:59.000Z

380

North Burbank Unit Tertiary Recovery Pilot Test. Final report  

Science Conference Proceedings (OSTI)

During the last fifteen months of the project, fresh water injection was continued, while efforts were made to raise injection rates. Chemical analyses of fluids showed that production of surfactant components and polyacrylamide declined steadily almost to the vanishing point in all the producers. The oil production rate has declined slowly since reaching its peak level of 286 BPD in April 1978, and appears to be on an exponential decline curve which projects the continuation of tertiary oil production several years into the future. As of August 11, 1979 (expiration date), the total oil production rate was about 195 BPD at a water-oil ratio of about 66. At that time, a total of 153,500 barrels of tertiary oil had been recovered. It is predicted that 283,000 barrels of tertiary oil will be recovered if the pilot is operated to the economic limit of the wells. This will require an additional 9 years at present rates of injection.

Trantham, J.C. (ed.)

1980-06-01T23:59:59.000Z

Note: This page contains sample records for the topic "recovery testing important" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

Screen Test of Tritium Recovery from Stainless Steel Type 316  

Science Conference Proceedings (OSTI)

Decontamination and Waste / Proceedings of the Sixth International Conference on Tritium Science and Technology Tsukuba, Japan November 12-16, 2001

A. Perevezentsev; K. Watanabe; M. Matsuyama; Y. Torikai

382

High potential recovery -- Gas repressurization  

SciTech Connect

The objective of this project was to demonstrate that small independent oil producers can use existing gas injection technologies, scaled to their operations, to repressurize petroleum reservoirs and increase their economic oil production. This report gives background information for gas repressurization technologies, the results of workshops held to inform small independent producers about gas repressurization, and the results of four gas repressurization field demonstration projects. Much of the material in this report is based on annual reports (BDM-Oklahoma 1995, BDM-Oklahoma 1996, BDM-Oklahoma 1997), a report describing the results of the workshops (Olsen 1995), and the four final reports for the field demonstration projects which are reproduced in the Appendix. This project was designed to demonstrate that repressurization of reservoirs with gas (natural gas, enriched gas, nitrogen, flue gas, or air) can be used by small independent operators in selected reservoirs to increase production and/or decrease premature abandonment of the resource. The project excluded carbon dioxide because of other DOE-sponsored projects that address carbon dioxide processes directly. Two of the demonstration projects, one using flue gas and the other involving natural gas from a deeper coal zone, were both technical and economic successes. The two major lessons learned from the projects are the importance of (1) adequate infrastructure (piping, wells, compressors, etc.) and (2) adequate planning including testing compatibility between injected gases and fluids, and reservoir gases, fluids, and rocks.

Madden, M.P.

1998-05-01T23:59:59.000Z

383

Measuring Dependence on Imported Oil  

Gasoline and Diesel Fuel Update (EIA)

Dependence on Imported Oil Dependence on Imported Oil by C. William Skinner* U.S. dependence on imported oil** can be measured in at least two ways. The differences hinge largely on whether oil imports are defined as net imports (total imports minus exports) or as total imports. EIA believes that the net-imports definition gives a clearer indication of the fraction of oil consumed that could not have been supplied from domestic sources and is thus the most appropriate measure. With this issue of the Monthly Energy Review, the Energy Information Administration (EIA) introduces a revised table that expresses depend- ence on imports in terms of both measures. How dependent is the United States on foreign oil? How dependent are we on oil from the Persian Gulf or other sensitive areas? Do we import more than we produce domes-

384

Overpulse railgun energy recovery circuit  

DOE Patents (OSTI)

The invention presented relates to a high-power pulsing circuit and more particularly to a repetitive pulse inductive energy storage and transfer circuit for an electromagnetic launcher. In an electromagnetic launcher such as a railgun for propelling a projectile at high velocity, an overpulse energy recovery circuit is employed to transfer stored inductive energy from a source inductor to the railgun inductance to propel the projectile down the railgun. Switching circuitry and an energy transfer capacitor are used to switch the energy back to the source inductor in readiness for a repetitive projectile propelling cycle.

Honig, E.M.

1984-09-28T23:59:59.000Z

385

Counterpulse railgun energy recovery circuit  

DOE Patents (OSTI)

The invention presented relates to a high-power pulsing circuit and more particularly to a repetitive pulse inductive energy storage and transfer circuit for an electromagnetic launcher. In an electromagnetic launcher such as a railgun for propelling a projectile at high velocity, a counterpulse energy recovery circuit is employed to transfer stored inductive energy from a source inductor to the railgun inductance to propel the projectile down the railgun. Switching circuitry and an energy transfer capacitor are used to switch the energy back to the source inductor in readiness for a repetitive projectile propelling cycle.

Honig, E.M.

1984-09-28T23:59:59.000Z

386

Development of an In Situ Biosurfactant Production Technology for Enhanced Oil Recovery  

Science Conference Proceedings (OSTI)

The long-term economic potential for enhanced oil recovery (EOR) is large with more than 300 billion barrels of oil remaining in domestic reservoirs after conventional technologies reach their economic limit. Actual EOR production in the United States has never been very large, less than 10% of the total U. S. production even though a number of economic incentives have been used to stimulate the development and application of EOR processes. The U.S. DOE Reservoir Data Base contains more than 600 reservoirs with over 12 billion barrels of unrecoverable oil that are potential targets for microbially enhanced oil recovery (MEOR). If MEOR could be successfully applied to reduce the residual oil saturation by 10% in a quarter of these reservoirs, more than 300 million barrels of oil could be added to the U.S. oil reserve. This would stimulate oil production from domestic reservoirs and reduce our nation's dependence on foreign imports. Laboratory studies have shown that detergent-like molecules called biosurfactants, which are produced by microorganisms, are very effective in mobilizing entrapped oil from model test systems. The biosurfactants are effective at very low concentrations. Given the promising laboratory results, it is important to determine the efficacy of using biosurfactants in actual field applications. The goal of this project is to move biosurfactant-mediated oil recovery from laboratory investigations to actual field applications. In order to meet this goal, several important questions must be answered. First, it is critical to know whether biosurfactant-producing microbes are present in oil formations. If they are present, then it will be important to know whether a nutrient regime can be devised to stimulate their growth and activity in the reservoir. If biosurfactant producers are not present, then a suitable strain must be obtained that can be injected into oil reservoirs. We were successful in answering all three questions. The specific objectives of the project were (1) to determine the prevalence of biosurfactant producers in oil reservoirs, and (2) to develop a nutrient regime that would stimulate biosurfactant production in the oil reservoir.

M.J. McInerney; R.M. Knapp; Kathleen Duncan; D.R. Simpson; N. Youssef; N. Ravi; M.J. Folmsbee; T.Fincher; S. Maudgalya; Jim Davis; Sandra Weiland

2007-09-30T23:59:59.000Z

387

Improved recovery from Gulf of Mexico reservoirs  

Science Conference Proceedings (OSTI)

The Gulf of Mexico Basin offers the greatest near-term potential for reducing the future decline in domestic oil and gas production. The Basin is less mature than productive on-shore areas, large unexplored areas remain, and there is great potential for reducing bypassed oil in known fields. Much of the remaining oil in the offshore is trapped in formations that are extremely complex due to intrusions Of salt domes. Recently, however, significant innovations have been made in seismic processing and reservoir simulation. In addition, significant advances have been made in deviated and horizontal drilling technologies. Effective application of these technologies along with improved integrated resource management methods offer opportunities to significantly increase Gulf of Mexico production, delay platform abandonments, and preserve access to a substantial remaining oil target for both exploratory drilling and advanced recovery processes. On February 18, 1992, Louisiana State University (the Prime Contractor) with two technical subcontractors, BDNL Inc. and ICF, Inc., began a research program to estimate the potential oil and gas reserve additions that could result from the application of advanced secondary and enhanced oil recovery technologies and the exploitation of undeveloped and attic oil zones in the Gulf of Mexico oil fields that are related to piercement salt dornes. This project is a one year continuation of this research and will continue work in reservoir description, extraction processes, and technology transfer. Detailed data will be collected for two previously studied reservoirs: a South Marsh Island reservoir operated by Taylor Energy and a South Pelto reservoir operated by Mobil. This data will include reprocessed 2-D seismic data, newly acquired 3-D data, fluid data, fluid samples, pressure data, well test data, well logs, and core data/samples. Geologic data is being compiled; extraction research has not begun.

Schenewerk, P.

1995-07-30T23:59:59.000Z

388

Enhanced oil recovery water requirements  

SciTech Connect

Water requirements for enhanced oil recovery (EOR) are evaluated using publicly available information, data from actual field applications, and information provided by knowledgeable EOR technologists in 14 major oil companies. Water quantity and quality requirements are estimated for individual EOR processes (steam drive; in situ combustion; and CO/sub 2/, micellar-polymer, polymer, and caustic flooding) in those states and specific geographic locations where these processes will play major roles in future petroleum production by the year 2000. The estimated quantity requirements represent the total water needed from all sources. A reduction in these quantities can be achieved by reinjecting all of the produced water potentially available for recycle in the oil recovery method. For injection water quality requirements, it is noted that not all of the water used for EOR needs to be fresh. The use of treated produced water can reduce significantly the quantities of fresh water that would be sought from other sources. Although no major EOR project to date has been abandoned because of water supply problems, competing regional uses for water, drought situations, and scarcity of high quality surface water and ground water could be impediments to certain projects in the near future.

Royce, B.; Kaplan, E.; Garrell, M.; Geffen, T.M.

1983-03-01T23:59:59.000Z

389

Recovery Act Milestones | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Milestones Milestones Recovery Act Milestones Addthis Description Every 100 days, the Department of Energy is held accountable for a progress report on the American Recovery and Reinvestment Act. Update at 200 days, hosted by Matt Rogers, Senior Advisor to Secretary Steven Chu for Recovery Act Implementation. Speakers Matt Rogers Duration 3:07 Topic Energy Efficiency Batteries Recovery Act Energy Policy Credit Energy Department Video MATTHEW ROGERS: So I'm Matt Rogers. I'm the senior adviser to the secretary for Recovery Act implementation. And Saturday, September the 5th, was the 200th day of the Recovery Act. And it should be no surprise that we are accountable every hundred days; so it was a good chance to reflect on what we've accomplished and where we're headed over the next

390

Use expander cycles for LPG recovery  

SciTech Connect

Expander-type cycles are competitive with other gas recovery processes even when applied to relatively rich gas feeds for a high recovery of only propane plus. These cycles are the most economical to use when (1) ''free pressure drop'' is available between feed and residue gas pressure; (2) product requires demethanization only; (3) feed is very lean and propane plus heavier components are required; (4) a small, unattended, prefabricated unit for LPG recovery is needed; (5) an offshore LPG facility is required to be built on a platform where space and weight allowance is at a premium; (6) a facility is initially built for propane recovery, but is planned for future conversion to ethane recovery; and (7) relatively low-pressure gas feeds (which are usually quite rich) must be processed for a high recovery of ethane. A flow chart for an oil absorption plant is presented.

Valdes, A.R.

1974-01-01T23:59:59.000Z

391

Overview of Recovery Act FAR Clauses  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Recovery Act FAR Clauses Recovery Act FAR Clauses The Table below provides a brief overview of the FAR clauses in FAC 2005-32. These clauses and H.999 Special provisions relating to work funded under American Recovery and Reinvestment Act of 2009 must be incorporated into all contracts and orders that will have Recovery Act funds. ARRA Requirement Clause Number Prescription 52.225-21 Include in Recovery Act funded contracts for construction projects under $7,443,000 - replaces 52.225-9 52.225-22 Include if using 52.225-21 - replaces 52.225-10 52.225-23 Include Recovery Act funded contracts for construction projects of $7,443,000 or more - replaces 52.225-11 Section 1605 Buy American 52.225-24 Include if using 52.225-23 - replaces 52.225-12 Section 1552 Whistleblower

392

Important notice about using /house  

NLE Websites -- All DOE Office Websites (Extended Search)

Important notice about using house Important notice about using house July 6, 2012 (0 Comments) Description There have been a lot of issues recently with NFS hangs on the gpint...

393

U.S. Propane Imports  

Gasoline and Diesel Fuel Update (EIA)

4 Notes: Another source of supply of propane is from imports. Imports for the first five months of this year have decreased about 8 percent (about 13 thousand barrels per day)...

394

A mixed formulation for a modification to Darcy equation with applications to enhanced oil recovery and carbon-dioxide sequestration  

E-Print Network (OSTI)

In this paper we consider a modification to Darcy equation by taking into account the dependence of viscosity on the pressure. We present a stabilized mixed formulation for the resulting governing equations. Equal-order interpolation for the velocity and pressure is considered, and shown to be stable (which is not the case under the classical mixed formulation). The proposed mixed formulation is tested using a wide variety of numerical examples. The proposed formulation is also implemented in a parallel setting, and the performance of the formulation for large-scale problems is illustrated using a representative problem. Two practical and technologically important problems, one each on enhanced oil recovery and carbon-dioxide sequestration, are solved using the proposed formulation. The numerical results clearly indicate the importance of considering the role of dependence of viscosity on the pressure.

Nakshatrala, K B

2011-01-01T23:59:59.000Z

395

Recovery Act State Memos Washington, DC  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Washington, DC Washington, DC For questions about DOE's Recovery Act activities, please contact the DOE Recovery Act Clearinghouse: 1-888-DOE-RCVY (888-363-7289), Monday through Friday, 9 a.m. to 7 p.m. Eastern Time https://recoveryclearinghouse.energy.gov/contactUs.htm. All numbers and projects listed as of June 1, 2010 TABLE OF CONTENTS RECOVERY ACT SNAPSHOT................................................................................... 1 FUNDING ALLOCATION TABLE.............................................................................. 2 ENERGY EFFICIENCY ............................................................................................... 3 RENEWABLE ENERGY ............................................................................................. 5

396

Recovery Act State Memos North Dakota  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Dakota Dakota For questions about DOE's Recovery Act activities, please contact the DOE Recovery Act Clearinghouse: 1-888-DOE-RCVY (888-363-7289), Monday through Friday, 9 a.m. to 7 p.m. Eastern Time https://recoveryclearinghouse.energy.gov/contactUs.htm. All numbers and projects listed as of June 1, 2010 TABLE OF CONTENTS RECOVERY ACT SNAPSHOT................................................................................... 1 FUNDING ALLOCATION TABLE.............................................................................. 2 ENERGY EFFICIENCY ............................................................................................... 3 RENEWABLE ENERGY ............................................................................................. 4

397

Recovery Act State Memos South Dakota  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Dakota Dakota For questions about DOE's Recovery Act activities, please contact the DOE Recovery Act Clearinghouse: 1-888-DOE-RCVY (888-363-7289), Monday through Friday, 9 a.m. to 7 p.m. Eastern Time https://recoveryclearinghouse.energy.gov/contactUs.htm. All numbers and projects listed as of June 1, 2010 TABLE OF CONTENTS RECOVERY ACT SNAPSHOT................................................................................... 1 FUNDING ALLOCATION TABLE.............................................................................. 2 ENERGY EFFICIENCY ............................................................................................... 3 RENEWABLE ENERGY ............................................................................................. 4

398

Recovery Act State Memos South Carolina  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Carolina Carolina For questions about DOE's Recovery Act activities, please contact the DOE Recovery Act Clearinghouse: 1-888-DOE-RCVY (888-363-7289), Monday through Friday, 9 a.m. to 7 p.m. Eastern Time https://recoveryclearinghouse.energy.gov/contactUs.htm. All numbers and projects listed as of June 1, 2010 TABLE OF CONTENTS RECOVERY ACT SNAPSHOT................................................................................... 1 FUNDING ALLOCATION TABLE.............................................................................. 2 ENERGY EFFICIENCY ............................................................................................... 3 RENEWABLE ENERGY ............................................................................................. 4

399

Recovery Act State Memos New York  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

York York For questions about DOE's Recovery Act activities, please contact the DOE Recovery Act Clearinghouse: 1-888-DOE-RCVY (888-363-7289), Monday through Friday, 9 a.m. to 7 p.m. Eastern Time https://recoveryclearinghouse.energy.gov/contactUs.htm. All numbers and projects listed as of June 1, 2010 TABLE OF CONTENTS RECOVERY ACT SNAPSHOT................................................................................... 1 FUNDING ALLOCATION TABLE.............................................................................. 2 ENERGY EFFICIENCY ............................................................................................... 3 RENEWABLE ENERGY ............................................................................................. 6

400

Recovery Act State Memos New Jersey  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Jersey Jersey For questions about DOE's Recovery Act activities, please contact the DOE Recovery Act Clearinghouse: 1-888-DOE-RCVY (888-363-7289), Monday through Friday, 9 a.m. to 7 p.m. Eastern Time https://recoveryclearinghouse.energy.gov/contactUs.htm. All numbers and projects listed as of June 1, 2010 TABLE OF CONTENTS RECOVERY ACT SNAPSHOT................................................................................... 1 FUNDING ALLOCATION TABLE.............................................................................. 2 ENERGY EFFICIENCY ............................................................................................... 3 RENEWABLE ENERGY ............................................................................................. 5

Note: This page contains sample records for the topic "recovery testing important" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

Recovery Act State Memos North Carolina  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Carolina Carolina For questions about DOE's Recovery Act activities, please contact the DOE Recovery Act Clearinghouse: 1-888-DOE-RCVY (888-363-7289), Monday through Friday, 9 a.m. to 7 p.m. Eastern Time https://recoveryclearinghouse.energy.gov/contactUs.htm. All numbers and projects listed as of June 1, 2010 TABLE OF CONTENTS RECOVERY ACT SNAPSHOT................................................................................... 1 FUNDING ALLOCATION TABLE.............................................................................. 2 ENERGY EFFICIENCY ............................................................................................... 3 RENEWABLE ENERGY ............................................................................................. 5

402

Recovery Act State Memos Puerto Rico  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Puerto Rico Puerto Rico For questions about DOE's Recovery Act activities, please contact the DOE Recovery Act Clearinghouse: 1-888-DOE-RCVY (888-363-7289), Monday through Friday, 9 a.m. to 7 p.m. Eastern Time https://recoveryclearinghouse.energy.gov/contactUs.htm. All numbers and projects listed as of June 1, 2010 TABLE OF CONTENTS RECOVERY ACT SNAPSHOT................................................................................... 1 FUNDING ALLOCATION TABLE.............................................................................. 2 ENERGY EFFICIENCY ............................................................................................... 3 RENEWABLE ENERGY ............................................................................................. 5

403

Recovery Act State Memos New Mexico  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Mexico Mexico For questions about DOE's Recovery Act activities, please contact the DOE Recovery Act Clearinghouse: 1-888-DOE-RCVY (888-363-7289), Monday through Friday, 9 a.m. to 7 p.m. Eastern Time https://recoveryclearinghouse.energy.gov/contactUs.htm. All numbers and projects listed as of June 1, 2010 TABLE OF CONTENTS RECOVERY ACT SNAPSHOT................................................................................... 1 FUNDING ALLOCATION TABLE.............................................................................. 2 ENERGY EFFICIENCY ............................................................................................... 3 RENEWABLE ENERGY ............................................................................................. 4

404

Recovery Act State Memos Rhode Island  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Rhode Island Rhode Island For questions about DOE's Recovery Act activities, please contact the DOE Recovery Act Clearinghouse: 1-888-DOE-RCVY (888-363-7289), Monday through Friday, 9 a.m. to 7 p.m. Eastern Time https://recoveryclearinghouse.energy.gov/contactUs.htm. All numbers and projects listed as of June 1, 2010 TABLE OF CONTENTS RECOVERY ACT SNAPSHOT................................................................................... 1 FUNDING ALLOCATION TABLE.............................................................................. 2 ENERGY EFFICIENCY ............................................................................................... 3 RENEWABLE ENERGY ............................................................................................. 4

405

Recovery Act State Memos New Hampshire  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Hampshire Hampshire For questions about DOE's Recovery Act activities, please contact the DOE Recovery Act Clearinghouse: 1-888-DOE-RCVY (888-363-7289), Monday through Friday, 9 a.m. to 7 p.m. Eastern Time https://recoveryclearinghouse.energy.gov/contactUs.htm. All numbers and projects listed as of June 1, 2010 TABLE OF CONTENTS RECOVERY ACT SNAPSHOT................................................................................... 1 FUNDING ALLOCATION TABLE.............................................................................. 2 ENERGY EFFICIENCY ............................................................................................... 3 RENEWABLE ENERGY ............................................................................................. 4

406

A time-cognizant dynamic crash recovery scheme suitable for distributed real-time main memory databases  

Science Conference Proceedings (OSTI)

Rapid and efficient recovery in the event of site crash is very important for distributed real-time main memory database system. In this paper, the recovery correctness criteria of distributed real-time main memory databases are first given. Then, a ...

Yingyuan Xiao; Yunsheng Liu; Xiangyang Chen; Xiaofeng Liu

2006-09-01T23:59:59.000Z

407

Effect of shale-water recharge on brine and gas recovery from geopressured reservoirs  

DOE Green Energy (OSTI)

The concept of shale-water recharge has often been discussed and preliminary assessments of its significance in the recovery of geopressured fluids have been given previously. The present study uses the Pleasant Bayou Reservoir data as a base case and varies the shale formation properties to investigate their impact on brine and gas recovery. The parametric calculations, based on semi-analytic solutions and finite-difference techniques, show that for vertical shale permeabilities which are at least of the order of 10/sup -5/ md, shale recharge will constitute an important reservoir drive mechanism and will result in much larger fluid recovery than that possible in the absence of shale dewatering.

Riney, T.D.; Garg, S.K.; Wallace, R.H. Jr.

1985-01-01T23:59:59.000Z

408

HALON & CFC DESTRUCTION, RECOVERY, RECYCLING ...  

Science Conference Proceedings (OSTI)

... Refrigeration and Air Conditioning .. Foam -- Aerosol and Sterilants ... EMERGING . - Low emissions and cost; commercial unit available for testing. ...

2011-09-27T23:59:59.000Z

409

Recovery, reuse, and recycle of industrial waste  

SciTech Connect

The major goal of this work is to produce a document useful in planning efforts aimed at elimination of industrial wastes through the application of recycle, recovery, and reuse technology. The pollutants considered in this study are basically organic and inorganic by-products from wastewater effluents, solid residue and gaseous emissions from industrial operations. The first section contains chapters on methodology currently available for recovery of industrial and hazardous waste, and developing technology for recycle, reuse and recovery. The second section contains chapters on 5 technical categories, used for recovery namely, sorption, molecular separation, phase transition, chemical modification, and physical dispersion and separation.

Noll, K.E.; Haas, C.N.; Schmidt, C.; Kodukula, P.

1983-11-01T23:59:59.000Z

410

Nickel Recovery from Sukinda Chromite Overburden Using ...  

Science Conference Proceedings (OSTI)

Abstract Scope, Shewanella putrefaciens is exploited for recovery of Nickel and Cobalt from Chromite overburden (COB) which is found to have 0.5- 1.0†...

411

NREL: Technology Deployment - Disaster Resiliency and Recovery  

NLE Websites -- All DOE Office Websites (Extended Search)

government, non-profits, and communities to address the energy-related considerations of disaster prevention and planning, response and recovery, and rebuilding. a woman leads a...

412

Generic Melt Circulation Technology for Metals Recovery  

Science Conference Proceedings (OSTI)

Ideally, when such materials are smelted in isolation, excess energy should be available for recovery by steam-based electric power generation to satisfy†...

413

Distributed Generation with Heat Recovery and Storage  

E-Print Network (OSTI)

Distributed Generation with Heat Recovery and Storage áenergy resources (DER), distributed generation (DG), andload of Figure 2. distributed generation of part or all of

Siddiqui, Afzal; Marnay, Chris; Firestone, Ryan M.; Zhou, Nan

2005-01-01T23:59:59.000Z

414

Optimising Circuit Design for Gravity Gold Recovery  

Science Conference Proceedings (OSTI)

Abstract Scope, To determine the optimal circuit configuration for gravity gold recovery ... Energy Management Planning, Following the ISO 50001 Draft Standard.

415

Categorical Exclusion Determinations: American Recovery and Reinvestme...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Pennsylvania Economic Development Association Sustainable Business Recovery for the Fox Chase Cancer Center CX(s) Applied: B5.1 Date: 11082010 Location(s): Philadelphia,...

416

Recovery News Flashes | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

associated with a waste disposal system used during Hanford operations. April 20, 2011 Manhattan Project Truck Unearthed in Recovery Act Cleanup A Los Alamos National Laboratory...

417

Industrial Plate Exchangers Heat Recovery and Fouling  

E-Print Network (OSTI)

Plate and Frame Heat Exchangers have special characteristics for both fouling and heat recovery. These are discussed in general then related to two industrial examples.

Cross, P. H.

1981-01-01T23:59:59.000Z

418

Categorical Exclusion Determinations: American Recovery and Reinvestme...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Office April 20, 2010 CX-002040: Categorical Exclusion Determination Electric Vehicle Charging Station Location 2 American Recovery and Reinvestment Act - Energy Efficiency...

419

Supercritical Recovery Systems LLC | Open Energy Information  

Open Energy Info (EERE)

Recovery Systems LLC Place Clayton, Missouri Zip 63105 Product Holder of various biofuel processing technologies. Deeveloping an ethanol plant in Lacassine, Louisiana....

420

DOE Policy Re Recovery Act Recipient Use of Recovery Act Logos on Signage  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

INTERIM GUIDANCE INTERIM GUIDANCE May 12, 2010 TO: Program Office Leadership FROM: [Matt Rogers] SUBJECT: DOE Policy Re Recovery Act Recipient Use of Recovery Act Logos on Signage This memorandum clarifies the U.S. Department of Energy ("DOE") policy regarding use of the Recovery Act logo by Recovery Act recipients and subgrantees. The appropriate use of the logo will serve to highlight the Recovery Act's positive impact while preventing potential misrepresentations. Signs and websites are a useful part of efforts to increase accountability and transparency into how American taxpayer dollars are being spent through Recovery Act efforts. Signage: * DOE permits the use of Recovery Act logos and/or the text, "U.S. Department of Energy" or "Department of Energy," on any Recovery Act recipient physical or structural

Note: This page contains sample records for the topic "recovery testing important" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

Recovery Act | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

May 14, 2010 May 14, 2010 Club's Chairman Leading by Example Why the Sierra Club Oregon Chairman is helping his organization live up to its legacy. May 14, 2010 Cincinnati Non-profits Getting Help Saving Energy How one church is saving money and saving energy. May 14, 2010 Charlevoix, MI is using Recovery Act funds for energy upgrades | Photo courtesy Charlevoix, Michigan, City Manager | Michigan Town Committed to Sustainable Future Charlevoix, Mich. residents are taking steps to become a more environmentally-conscious community, and a $50,000 Energy Efficiency and Conservation Block Grant will help that cause. The funding will be used to launch projects aimed at energy efficiency and sustainability, such as retrofitting the city's fire and emergency vehicles with new,

422

Recovery Act | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

19, 2010 19, 2010 The Blaine County Public Safety Facility houses between 60 and 80 prisoners and roughly 30 staffers. | Photo courtesy of Blaine High Water Heating Bills on Lockdown at Idaho Jail Using funds from the American Recovery and Reinvestment Act, the county is installing a solar thermal hot water system that will provide nearly 70 percent of the power required for heating 600,000 gallons of water for the jail annually. August 16, 2010 800,000 Jobs by 2012 President Barack Obama visited ZBB Energy Corporation in Wisconsin and declared that our commitment to clean energy is expected to lead to more than 800,000 jobs by 2012. August 16, 2010 An array of solar collectors | Photo courtesy of Trane Knox County Detention Facility Goes Solar for Heating Water Hot water demand soars at the six-building Knox County Detention Facility

423

Recovery Act | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

August 16, 2010 August 16, 2010 New energy recovery systems and occupancy sensors are greatly reducing energy costs at Woonsocket Middle School at Hamlet. | Photo courtesy of Woonsocket Education Department New School Year Means New Energy Systems for Two Rhode Island Schools How Woonsocket, R.I. is making two of their new middle schools energy efficient this time around. August 13, 2010 The Crayola solar farm became fully operational this week. Ten children from around the country, known as the "Crayola Green Team," helped dedicate the newest addition to the Easton, Pa.-plant. Photos courtesy of Crayola. | Photo Courtesy of Crayola Crayola's True Color Shines Through: Green About 26,000 "thin-film" solar panels - manufactured by First Solar in Perrysburg, Ohio - are providing enough power to make 1 billion crayons.

424

Recovery Act | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

March 15, 2010 March 15, 2010 A woodchip-fired combined heat and power system will be built in Montpelier, Vt. | File photo Jobs, sustainable heating coming to Vermont city Their new woodchip-fired combined heat and power system will heat the Capitol Complex, the city's schools, City Hall and as many as 156 other buildings in the downtown area. March 12, 2010 Reginald Speight, CEO of Martin County Community Action | Photo courtesy of Martin County Community Action N.C. Agency Growing, Helping Citizens Save Money MCCA runs a hybrid program in the state that has expanded energy efficiency services to municipalities and made advanced-income households eligible for weatherization, and this work helped prepare the agency for the workload it is seeing now under the Recovery Act.

425

Recovery Act | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

21, 2011 21, 2011 Smart grid technology installations provided not only new work, but new customers for Narrows Electric owner Gary Miklethun, far l., and his team, from l. to r., Ken Dehart, Rodney Thomas and Dave Brosie. Smart Grid Technology Gives Small Business New Light Gary Miklethun, the owner of Narrows Electric, a small electrical contractor in Gig Harbor, Wash., that specializes in residential and small commercial projects, definitely felt it when the economy slowed down. But installing new smart grid technology in 500 homes not only gave his team new work, but new customers. September 21, 2011 Communications and Guidance Issued Guidance: Throughout the life of the Recovery Act, it has at times been necessary to issue guidance around certain policies or procedures.

426

Recovery Act | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

September 24, 2010 September 24, 2010 MONDAY: Secretary Chu Travels to New Jersey and Philadelphia WASHINGTON - On Monday, September 27, 2010, U.S. Energy Secretary Steven Chu and Representative Rush Holt will tour Applied Photovoltaics. With help from a Recovery Act-funded $1.1 million clean energy manufacturing tax credit, Applied Photovoltaics will manufacture solar energy modules for use in building-integrated photovoltaics. September 22, 2010 Assistant Secretary Cathy Zoi and Senior Advisor Matt Rogers to Participate in Platts Energy Reporter Roundtable WASHINGTON -Thursday, September 23, 2010, Cathy Zoi, Assistant Secretary of Energy Efficiency and Renewable Energy and Matt Rogers, Senior Advisor to the Secretary of Energy, will participate in a roundtable discussion with

427

Recovery Act | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

November 17, 2009 November 17, 2009 Obama Administration Announces Nearly $40 Million for Energy Efficiency and Conservation Projects in Florida and Maine Washington, DC - Energy Secretary Steven Chu announced today that DOE is awarding nearly $40 million in funding from the American Recovery and Reinvestment Act to Florida and Maine to support clean energy projects. Under DOE's Energy Efficiency and Conservation Block Grant (EECBG) program, these states will implement programs that lower energy use, reduce carbon pollution, and create green jobs locally. November 16, 2009 Oak Ridge 'Jaguar' Supercomputer is World's Fastest Six-core upgrade has 70 percent more computational muscle than last year's quad-core November 10, 2009 DOE Announces New Executive Director of Loan Guarantee Program

428

Department of Energy - Recovery Act  

429

Recovery Act | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

May 15, 2012 May 15, 2012 Workers install the final LED streetlight for DC's EECBG-funded energy efficient lighting upgrade. | Energy Department photo, credit Chris Galm. Brighter Lights, Safer Streets Thanks to support from an Energy Department Recovery Act grant, Washington, DC streets are becoming brighter. May 1, 2012 A student gets hands-on experience in the electric sector during an internship and mentoring program with Northeast Utilities, through ARRA workforce development funding. | Photo courtesy of Office of Electricity Delivery and Energy Reliability. Building Tomorrow's Smart Grid Workforce Today Many community colleges, universities, utilities and manufacturers across America are taking smart, pragmatic steps to train the next generation of workers needed to modernize the nation's electric grid.

430

Recovery Act | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

November 1, 2010 November 1, 2010 Weatherizing Wilkes-Barre October 28, 2010 Baltimore resident Paul Bennett installed 14 solar panels such as these on his historic row home with the help of a state solar grant and federal tax credit through the Recovery Act. | Energy Department Photo | Baltimore Vet Cuts Energy Bills With Solar Baltimore resident and disabled veteran Paul Bennett shares his experience utilizing state and federal grants and tax credits to install solar panels on his historic row home and cut energy costs. October 27, 2010 Mississippi's Cowboy Maloney stores saw increases of up to 90 percent on front-loading washing machines in April. | Photo courtesy of Flickr user Andrew Kelsall via the Creative Commons license Mississippi Residents Save Through Appliance Rebate Program

431

State Agency Recovery Act Funding  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Agency Agency Recovery Act Funding .Alabama Alabama Public Service Commission $868,824 .Alaska Regulatory Commission of Alaska $767,493 .Arizona Arizona Corporation Commission $915,679 .Arkansas Arkansas Public Service Commission $822,779 .California California Public Utilities Commission $1,686,869 .Colorado The Public Utilities Commission of the State of Colorado $875,899 .Connecticut Connecticut Department of Public Utility Control $839,241 .Delaware Delaware Public Service Commission $772,254 .District of Columbia Public Service Commission of the District of Columbia $765,085 .Florida Florida Public Service Commission $1,217,160 .Georgia Georgia Public Service Commission $996,874 .Hawaii Hawaii Public Utilities Commission $782,834 .Idaho Idaho Public Utilities Commission $788,840 .Illinois

432

Recovery Act | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

August 23, 2012 August 23, 2012 New Report Highlights Growth of America's Clean Energy Job Sector Taking a moment to break-down key findings from the latest Clean Energy Jobs Roundup. August 13, 2012 INFOGRAPHIC: Wind Energy in America August 3, 2012 A worker suppresses dust during the final demolition stages of the historic DP West site, located at Los Alamos National Laboratory's (LANL) Technical Area 21. The demolition was funded by the American Recovery and Reinvestment Act (ARRA) and is part of $212 million in ARRA funds the Lab received for environmental remediation. | Photo courtesy of Los Alamos National Laboratory. Photo of the Week: August 3, 2012 Check out our favorite energy-related photos! August 2, 2012 With new pipes and controls, the natural gas kilns Highland Craftsmen uses to produce poplar bark shingles will operate about 40 percent more efficiently, saving the company $5,000 a year in energy costs. | Photo courtesy of Highland Craftsmen.

433

Recovery Act | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

September 7, 2010 September 7, 2010 MetroTek installed a 620kW solar panel system at Buckman's Inc. in Pottstown, PA. The Recovery Act-funded project is expected to save the pool chemical business $5 million over the next 25 years. | Photo Courtesy of MetroTek Electrical Services Pennsylvania Pool Chemical Business Soaks Up Rays Most people catching rays poolside don't realize this, but it takes a lot of energy to make swimming pool chemicals. So much so that Buckman's Inc., a small business in Pottstown, PA, decided to tap into a fitting energy source to help offset high energy costs from its pool chemical manufacturing facility: the sun. September 2, 2010 Ice storage coolers lie next to the central plant for the American Indian Cultural Center and Museum in Oklahoma City, OK. | Photo courtesy of the American Indian Cultural Center and Museum |

434

Recovery Act | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

July 18, 2011 July 18, 2011 Secretary Chu speaks at the A123 Systems lithium-ion battery manufacturing plant in Romulus, Michigan, while employees look on. | Photo Courtesy of Damien LaVera, Energy Department Secretary Chu Visits Advanced Battery Plant in Michigan, Announces New Army Partnership Thirty new manufacturing plants across the country for electric vehicle batteries and components - including A123 in Michigan - were supported through the Recovery Act, meaning we'll have the capacity to manufacture enough batteries and components for 500,000 electric vehicles annually by 2015. July 26, 2011 Smart Meters Helping Oklahoma Consumers Save Hundreds During Summer Heat With already 32 days reaching over 100 degrees this summer, Oklahoma is certainly feeling the heat. But smart meters -- just one of the advanced

435

Recovery Act | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

November 4, 2011 November 4, 2011 The Lawrence Community team, leadership pictured above, saved the highest total amount of any community. They hold a basketball signed by Kansas Governor Brownback. The basketball signifies both the sport's history in Kansas, as well as the fact that the average Kansas home has enough energy leaks in their home to equal a basketball-sized hole in their roof. 'Taking Charge': Kansans Save $2.3M in Challenge to Change Their Energy Behavior How did the Climate and Energy Project (CEP), a small environmental organization that has received Recovery Act funding, achieve $2.3 million in savings annually for Kansans? Learn more about the Take Charge Challenge, a 9-month competition in which residents across 16 communities competed against each other to save the most energy and money.

436

Heat Recovery from Coal Gasifiers  

E-Print Network (OSTI)

This paper deals with heat recovery from pressurized entrained and fixed bed coal gasifiers for steam generation. High temperature waste heat, from slagging entrained flow coal gasifier, can be recovered effectively in a series of radiant and convection waste heat boilers. Medium level waste heat leaving fixed bed type gasifiers can be recovered more economically by convection type boilers or shell and tube heat exchangers. An economic analysis for the steam generation and process heat exchanger is presented. Steam generated from the waste heat boiler is used to drive steam turbines for power generation or air compressors for the oxygen plant. Low level heat recovered by process heat exchangers is used to heat product gas or support the energy requirement of the gasification plant. The mechanical design for pressure vessel shell and boiler tubes is discussed. The design considers metallurgical requirements associated with hydrogen rich, high temperature, and high pressure atmosphere.

Wen, H.; Lou, S. C.

1981-01-01T23:59:59.000Z

437

Method for enhanced oil recovery  

DOE Patents (OSTI)

The present invention is directed to an improved method for enhanced recovery of oil from relatively "cold" reservoirs by carbon dioxide flooding. In oil reservoirs at a temperature less than the critical temperature of 87.7.degree. F. and at a pore pressure greater than the saturation pressure of carbon dioxide at the temperature of the reservoir, the carbon dioxide remains in the liquid state which does not satisfactorily mix with the oil. However, applicants have found that carbon dioxide can be vaporized in situ in the reservoir by selectively reducing the pore pressure in the reservoir to a value less than the particular saturated vapor pressure so as to greatly enhance the mixing of the carbon dioxide with the oil.

Comberiati, Joseph R. (Morgantown, WV); Locke, Charles D. (Morgantown, WV); Kamath, Krishna I. (Chicago, IL)

1980-01-01T23:59:59.000Z

438

Heat Recovery Steam Generator Simulation  

E-Print Network (OSTI)

The paper discusses the applications of Heat Recovery Steam Generator Simulation. Consultants, plant engineers and plant developers can evaluate the steam side performance of HRSGs and arrive at the optimum system which matches the needs of the process plant, cogeneration or combined cycle plant. There is no need to design the HRSG per se and hence simulation is a valuable tool for anyone interested in evaluating the HRSG performance even before it is designed. It can also save a lot of time for specification writers as they need not guess how the steam side performance will vary with different gas/steam parameters. A few examples are given to show how simulation methods can be applied to real life problems.

Ganapathy, V.

1993-03-01T23:59:59.000Z

439

Shell boosts recovery at Kernridge  

Science Conference Proceedings (OSTI)

Since acquiring the Kernridge property in December 1979, Shell Oil Co. has drilled more than 1,800 wells and steadily increased production from 42,000 to 89,000 b/d of oil. Currently, the Kernridge Production Division of Shell California Production Inc. (SCPI), a newly formed subsidiary of Shell Oil Co., is operator for the property. The property covers approximately 35,000 mostly contiguous net acres, with production concentrated mainly on about 5,500 net acres. SCPI's four major fields in the area are the North and South Belridge, Lost Hills, and Antelope Hills. Most of the production comes from the North and South Belridge fields, which were previously held by the Belridge Oil Co. Productive horizons in the fields are the Tulare, Diatomite, Brown Shale, Antelope Shale, 64 Zone, and Agua sand. The Tulare and Diatomite are the two major reservoirs SCPI is developing. The Tulare, encountered between 400 and 1,300 ft, is made up of fine- to coarse-grained, unconsolidated sands with interbedded shales and silt stones and contains 13 /sup 0/ API oil. Using steam drive as the main recovery method, SCPI estimates an ultimate recovery from the Tulare formation of about 60% of the original 1 billion barrels in place. The Diatomite horizon, found between 800 and 3,500 ft and containing light, 28 /sup 0/ API oil, has high porosity (more than 60%), low permeability (less than 1 md), and natural fractures. Because of the Diatomite's low permeability, fracture stimulation is being used to increase well productivity. SCPI anticipates that approximately 5% of the almost 2 billion barrels of oil originally in place will be recovered by primary production.

Moore, S.

1984-01-01T23:59:59.000Z

440

Feasibility of methane-gas recovery at the St. John's Landfill  

DOE Green Energy (OSTI)

All facets reviewed in assessing the feasibility of a commercial landfill gas recovery system at the St. Johns Landfill in Portland, Oregon are discussed. Included are: landfill operational history, step-by-step descriptions of the field testing (and all results therein), landfill gas production/recovery predictions, results of the preliminary market research, cost matrices for primary utilization modes, and conclusions and recommendations based on analysis of the data gathered. Tables and figures are used to illustrate various aspects of the report.

Not Available

1983-03-01T23:59:59.000Z

Note: This page contains sample records for the topic "recovery testing important" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

Design of heat-recovery and seed-recovery units in MHD power generation  

DOE Green Energy (OSTI)

Crucial and limiting engineering and materials problems associated with the design of an MHD steam bottoming plant are discussed. Existing experimental and theoretical results on corrosion, fouling and deposits, potassium seed recovery and regeneration, are reviewed. The state of knowledge regarding the design of heat recovery and seed recovery units for coal-fired MHD plants is inadequate at the present time.

Bergman, P.D.; Joubert, J.I.; Demski, R.J.; Bienstock, D.

1974-01-01T23:59:59.000Z

442

Modeling Soil Quality Thresholds to Ecosystem Recovery at Fort Benning, Georgia, USA  

DOE Green Energy (OSTI)

The objective of this research was to use a simple model of soil C and N dynamics to predict nutrient thresholds to ecosystem recovery on degraded soils at Fort Benning, Georgia, in the southeastern USA. The model calculates aboveground and belowground biomass, soil C inputs and dynamics, soil N stocks and availability, and plant N requirements. A threshold is crossed when predicted soil N supplies fall short of predicted N required to sustain biomass accrual at a specified recovery rate. Four factors were important to development of thresholds to recovery: (1) initial amounts of aboveground biomass, (2) initial soil C stocks (i.e., soil quality), (3) relative recovery rates of biomass, and (4) soil sand content. Thresholds to ecosystem recovery predicted by the model should not be interpreted independent of a specified recovery rate. Initial soil C stocks influenced the predicted patterns of recovery by both old field and forest ecosystems. Forests and old fields on soils with varying sand content had different predicted thresholds to recovery. Soil C stocks at barren sites on Fort Benning generally lie below predicted thresholds to 100% recovery of desired future ecosystem conditions defined on the basis of aboveground biomass (18000 versus 360 g m{sup -2} for forests and old fields, respectively). Calculations with the model indicated that reestablishment of vegetation on barren sites to a level below the desired future condition is possible at recovery rates used in the model, but the time to 100% recovery of desired future conditions, without crossing a nutrient threshold, is prolonged by a reduced rate of forest growth. Predicted thresholds to ecosystem recovery were less on soils with more than 70% sand content. The lower thresholds for old field and forest recovery on more sandy soils are apparently due to higher relative rates of net soil N mineralization in more sandy soils. Calculations with the model indicate that a combination of desired future conditions, initial levels of soil quality (defined by soil C stocks), and the rate of biomass accumulation determines the predicted success of ecosystem recovery on disturbed soils.

Garten Jr., C.T.

2004-03-08T23:59:59.000Z

443

Recovery, recycle and reuse of industrial wastes  

Science Conference Proceedings (OSTI)

This book discusses the elimination of industrial wastes through the application of recycle, recovery and reuse technology. An overview is provided of how various processes can recover potential contaminants for eventual reuse. Chapters include resource recovery from hazardous waste, sorption, molecular separation, phase transition, chemical modifications, physical dispersion and separation.

Noll, K.E.; Haas, C.N.; Schmidt, C.; Kodukula, P.

1985-01-01T23:59:59.000Z

444

Emergency Response, Business Continuity and Disaster Recovery  

E-Print Network (OSTI)

Emergency Response, Business Continuity and Disaster Recovery at UCAR Presented by Stephen Sadler the "university" system ·Open Campus ·Public Access-Mesa Lab #12;Emergency Response, Disaster Recovery Issues Response ·Install backup power #12;Curtailed Public Access if Necessary (3 times since 2000

445

Testing of java web services for robustness  

Science Conference Proceedings (OSTI)

This paper presents a new compile-time analysis that enables a testing methodology for white-box coverage testing of error recovery code (i.e., exception handlers) in Java web services using compiler-directed fault injection. The analysis allows compiler-generated ... Keywords: def-use testing, exceptions, java, test coverage metrics

Chen Fu; Barbara G. Ryder; Ana Milanova; David Wonnacott

2004-07-01T23:59:59.000Z

446

recovery (EOR). Conducted by the Southeast Regional Carbon  

NLE Websites -- All DOE Office Websites (Extended Search)

recovery (EOR). Conducted by the Southeast Regional Carbon recovery (EOR). Conducted by the Southeast Regional Carbon Sequestration Partnership (SECARB), one of seven DOE Regional Carbon Sequestration Partnerships (RCSPs), the "Anthropogenic Test" uses CO 2 from the newly constructed post-combustion CO 2 -capture facility at Alabama Power's 2,657-megawatt (MW) Barry Electric Generating Plant. Located in southwest Alabama, the project will help demonstrate the feasibility of carbon capture, utilization, and storage (CCUS) by diverting a small amount of flue gas from Plant Barry (equivalent to amount produced when generating 25 MW of electricity) and capturing it using Mitsubishi Heavy Industries' advanced amine process to produce a nearly pure stream of CO

447

Development of computer simulations for landfill methane recovery  

DOE Green Energy (OSTI)

Two- and three-dimensional finite-difference computer programs simulating methane recovery systems in landfills have been developed. These computer programs model multicomponent combined pressure and diffusional flow in porous media. Each program and the processes it models are described in this report. Examples of the capabilities of each program are also presented. The two-dimensional program was used to simulate methane recovery systems in a cylindrically shaped landfill. The effects of various pump locations, geometries, and extraction rates were determined. The three-dimensional program was used to model the Puente Hills landfill, a field test site in southern California. The biochemical and microbiological details of methane generation in landfills are also given. Effects of environmental factors, such as moisture, oxygen, temperature, and nutrients on methane generation are discussed and an analytical representation of the gas generation rate is developed.

Massmann, J.W.; Moore, C.A.; Sykes, R.M.

1981-12-01T23:59:59.000Z

448

Recovery Act Reports | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

August 22, 2011 August 22, 2011 Audit Report: OAS-RA-11-11 The Advanced Research Projects July 28, 2011 Audit Report: OAS-RA-11-10 The Department of Energy's American Recovery and Reinvestment Act - California State Energy Program July 21, 2011 Audit Report: OAS-RA-L-11-10 Department of Energy's Controls over Recovery Act Spending at the Idaho National Laboratory July 7, 2011 Audit Report: OAS-RA-L-11-09 Performance of Recovery Act Funds at the Waste Isolation Pilot Plant June 13, 2011 Audit Report: OAS-RA-11-09 The Department of Energy's Weatherization Assistance Program under the American Recovery and Reinvestment Act in the State of West Virginia June 6, 2011 Audit Report: OAS-RA-11-07 The Department of Energy's Weatherization Assistance Program Funded under the American Recovery and Reinvestment Act for the State of Wisconsin

449

DOE Recovery Act Awardees | OpenEI  

Open Energy Info (EERE)

Recovery Act Awardees Recovery Act Awardees Dataset Summary Description The data contained within the .xls is the latest list of DOE recovery act awardees. The list is to be updated weekly by the DOE. Source DOE Date Released December 10th, 2010 (3 years ago) Date Updated Unknown Keywords Awardees DOE Recovery Act Data application/vnd.ms-excel icon DOE Recovery Act Awardees - Dec 10 2010 (xls, 949.2 KiB) Quality Metrics Level of Review Some Review Comment Temporal and Spatial Coverage Frequency Weekly Time Period License License Open Data Commons Public Domain Dedication and Licence (PDDL) Comment http://www.energy.gov/webpolicies.htm Rate this dataset Usefulness of the metadata Average vote Your vote Usefulness of the dataset Average vote Your vote Ease of access Average vote Your vote

450

Federal Energy Management Program: Recovery Act  

NLE Websites -- All DOE Office Websites (Extended Search)

Recovery Act Recovery Act The American Recovery and Reinvestment Act of 2009 included funding for the Federal Energy Management Program (FEMP) to facilitate the Federal Government's implementation of sound, cost-effective energy management and investment practices to enhance the nation's energy security and environmental stewardship. FEMP completed nearly 120 technical assistance projects through this effort. FEMP national laboratory teams and contractor service providers visited more than 80 Federal sites located throughout the U.S. The site visits were a key component of FEMP Recovery Act funded technical assistance activity, which provided more than $13.2 million in funding for direct technical assistance to energy managers across the Federal Government. This service helped agencies accelerate their Recovery Act projects and make internal management decisions for investment in energy efficiency and deployment of renewable energy.

451

Ohio Celebrates Recovery Act Weatherization Program Performance |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Ohio Celebrates Recovery Act Weatherization Program Performance Ohio Celebrates Recovery Act Weatherization Program Performance Ohio Celebrates Recovery Act Weatherization Program Performance June 10, 2010 - 12:41pm Addthis Ohio Celebrates Recovery Act Weatherization Program Performance Joshua DeLung What are the key facts? More than 10,000 Ohio homes have been weatherized, making the state one of the national leaders in helping income-eligible families become more energy-efficient. Ohio has reached a milestone in the clean energy economy - more than 10,000 homes in the state have been weatherized, making the state one of the national leaders in helping income-eligible families become more energy-efficient. Ohio officials celebrated the success of weatherization work funded by the American Recovery and Reinvestment Act with about 100 attendees at a

452

OE Recovery Act News | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Recovery Recovery Act News OE Recovery Act News RSS April 17, 2012 ARRA Program Celebrates Milestone 600,000 Smart Meter Installations On April 11, 2012, DOE Recovery Act funding recipient Sacramento Municipal Utility District (SMUD) celebrated a major milestone in the development of a regional smart grid in California: the installation of over 600,000 smart meters. February 15, 2011 Department of Energy Finalizes Loan Guarantee for New Transmission Project to Deliver Renewable Energy to Southwest Nevada Project Expected to Create Over 400 Jobs and Improve Grid Reliability September 16, 2009 Department of Energy Announces Start of Western Area Power Administration Recovery Act Project New transmission line to help move renewable energy resources to market May 18, 2009 Locke, Chu Announce Significant Steps in Smart Grid Development

453

Ohio Celebrates Recovery Act Weatherization Program Performance |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Ohio Celebrates Recovery Act Weatherization Program Performance Ohio Celebrates Recovery Act Weatherization Program Performance Ohio Celebrates Recovery Act Weatherization Program Performance June 10, 2010 - 12:41pm Addthis Ohio Celebrates Recovery Act Weatherization Program Performance Joshua DeLung What are the key facts? More than 10,000 Ohio homes have been weatherized, making the state one of the national leaders in helping income-eligible families become more energy-efficient. Ohio has reached a milestone in the clean energy economy - more than 10,000 homes in the state have been weatherized, making the state one of the national leaders in helping income-eligible families become more energy-efficient. Ohio officials celebrated the success of weatherization work funded by the American Recovery and Reinvestment Act with about 100 attendees at a

454

Solar technology application to enhanced oil recovery  

SciTech Connect

One proposed near-term commercial application for solar energy technology is the use of solar energy systems to generate steam for thermal enhanced oil recovery (EOR). This report examines four aspects of solar energy employed for steam EOR. First, six solar technologies are evaluated and two - parabolic troughs and central receivers - are selected for closer study; typical systems that would meet current production requirements are proposed and costed. Second, the legal and environmental issues attending solar EOR are analyzed. Third, the petroleum producing companies' preferences and requirements are discussed. Finally, alternative means of financing solar EOR are addressed. The study concludes that within the next four to five years, conventional (fossil-fueled) thermal EOR means are much less expensive and more available than solar EOR systems, even given environmental requirements. Within 10 to 15 years, assuming specified advances in solar technologies, central receiver EOR systems will be significantly more cost-effective than parabolic trough EOR systems and will be price competitive with conventional thermal EOR systems. Important uncertainties remain (both in solar energy technologies and in how they affect the operating characteristics of petroleum reservoirs) that need resolution before definitive projections can be made.

de Leon, P.; Brown, K.C.; Margolis, J.W.; Nasr, L.H.

1979-12-01T23:59:59.000Z

455

Solar technology application to enhanced oil recovery  

DOE Green Energy (OSTI)

One proposed near-term commercial application for solar energy technology is the use of solar energy systems to generate steam for thermal enhanced oil recovery (EOR). This report examines four aspects of solar energy employed for steam EOR. First, six solar technologies are evaluated and two - parabolic troughs and central receivers - are selected for closer study; typical systems that would meet current production requirements are proposed and costed. Second, the legal and environmental issues attending solar EOR are analyzed. Third, the petroleum producing companies' preferences and requirements are discussed. Finally, alternative means of financing solar EOR are addressed. The study concludes that within the next four to five years, conventional (fossil-fueled) thermal EOR means are much less expensive and more available than solar EOR systems, even given environmental requirements. Within 10 to 15 years, assuming specified advances in solar technologies, central receiver EOR systems will be significantly more cost-effective than parabolic trough EOR systems and will be price competitive with conventional thermal EOR systems. Important uncertainties remain (both in solar energy technologies and in how they affect the operating characteristics of petroleum reservoirs) that need resolution before definitive projections can be made.

de Leon, P.; Brown, K.C.; Margolis, J.W.; Nasr, L.H.

1979-12-01T23:59:59.000Z

456

"Smart" Multifunctional Polymers for Enhanced Oil Recovery  

Science Conference Proceedings (OSTI)

Herein we report the synthesis and solution characterization of a novel series of AB diblock copolymers with neutral, water-soluble A blocks comprised of N,N-dimethylacrylamide (DMA) and pH-responsive B blocks of N,N-dimethylvinylbenzylamine (DMVBA). To our knowledge, this represents the first example of an acrylamido-styrenic block copolymer prepared directly in homogeneous aqueous solution. The best blocking order (using polyDMA as a macro-CTA) was shown to yield well-defined block copolymers with minimal homopolymer impurity. Reversible aggregation of these block copolymers in aqueous media was studied by {sup 1}H NMR spectroscopy and dynamic light scattering. Finally, an example of core-crosslinked micelles was demonstrated by the addition of a difunctional crosslinking agent to a micellar solution of the parent block copolymer. Our ability to form micelles directly in water that are responsive to pH represents an important milestone in developing ''smart'' multifunctional polymers that have potential for oil mobilization in Enhanced Oil Recovery Processes.

Charles McCormick; Andrew Lowe

2005-10-15T23:59:59.000Z

457

imported | OpenEI Community  

Open Energy Info (EERE)

imported imported Home Graham7781's picture Submitted by Graham7781(1992) Super contributor 24 July, 2012 - 09:48 Visualizing OpenEI Data imported OpenEI Want to create a visualization like the one on the new OpenEI front page? There are several online tools that make organizing and visualizing data free and easy. Graham7781's picture Submitted by Graham7781(1992) Super contributor 18 July, 2012 - 10:02 New OpenEI Homepage imported OpenEI OpenEI has gotten a makeover, and we couldn't help gush over how nice we think we look. Graham7781's picture Submitted by Graham7781(1992) Super contributor 10 July, 2012 - 14:04 S & P Opines on Securitizing Distributed Generation imported OpenEI Article originally published at NREL's Renewable Energy Project Finance website Graham7781's picture

458

Waste water heat recovery appliance. Final report  

SciTech Connect

An efficient convective waste heat recovery heat exchanger was designed and tested. The prototype appliance was designed for use in laundromats and other small commercial operations which use large amounts of hot water. Information on general characteristics of the coin-op laundry business, energy use in laundromats, energy saving resources already in use, and the potential market for energy saving devices in laundromats was collected through a literature search and interviews with local laundromat operators in Fort Collins, Colorado. A brief survey of time-use patterns in two local laundromats was conducted. The results were used, with additional information from interviews with owners, as the basis for the statistical model developed. Mathematical models for the advanced and conventional types were developed and the resulting computer program listed. Computer simulations were made using a variety of parameters; for example, different load profiles, hold-up volumes, wall resistances, and wall areas. The computer simulation results are discussed with regard to the overall conclusions. Various materials were explored for use in fabricating the appliance. Resistance to corrosion, workability, and overall suitability for laundromat installations were considered for each material.

Chapin, H.D.; Armstrong, P.R.; Chapin, F.A.W.

1983-11-21T23:59:59.000Z

459

Contracts for field projects and supporting research on enhanced oil recovery: Progress review No. 45, Quarter ending December 31, 1985  

Science Conference Proceedings (OSTI)

Progress reports are presented for field tests and supporting research for the following: chemical flooding; gas displacement; thermal methods; resource assessment; environmental technology; and microbial enhanced oil recovery. (AT)

Not Available

1986-12-01T23:59:59.000Z

460

Contracts for field projects and supporting research on enhanced oil recovery. Progress review No. 40, quarter ending September 30, 1984  

SciTech Connect

Progress reports are presented for field tests and supporting research for the following: chemical flooding; gas displacement; thermal recovery/heavy oil; resource assessment technology; extraction technology; and microbial technology.

Linville, B. (ed.)

1985-05-01T23:59:59.000Z

Note: This page contains sample records for the topic "recovery testing important" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

Why Sequence Biogeochemically Important Bacteria?  

NLE Websites -- All DOE Office Websites (Extended Search)

Biogeochemically Important Bacteria? Biogeochemically Important Bacteria? DOE-JGI will be sequencing three biogeochemically important bacteria, Diaphorobacter sp. strain TPSY, Ferrutens nitratireducens strain 2002 and Azospira suillum strain PS. These organisms represent diverse genera capable of anaerobically oxidizing both iron(II) and humic acids by using nitrate as the electron acceptor. Two of these organisms, strain 2002 and strain TPSY, are also capable of the anaerobic nitrate-dependent oxidation of uranium(IV) to uranium(VI). Left to right, Azospira suillum PS, Ferrutens nitratireducens 2002, and Diaphorobacter TPSY. Nitrate-dependent microbial metal oxidation is of critical importance because of its potential effect on the fate and transport of radioactive contaminants. Nitrate-dependent Iron(II) oxidation by organisms such as

462

Importance of glass and brass  

E-Print Network (OSTI)

The importance of scientific instruments in the scientific revolution, especially brass and glass. Precise lenses and lens grinding, glass vessels for chemical experiments, the advances in astronomy, microscopy and many other areas due to glass...

Dugan, David

2004-08-17T23:59:59.000Z

</