Powered by Deep Web Technologies
Note: This page contains sample records for the topic "recovery technology cxs" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

Summary - Caustic Recovery Technology  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Caustic Recovery Technology Caustic Recovery Technology ETR Report Date: July 2007 ETR-7 United States Department of Energy Office of Environmental Management (DOE-EM) External Technical Review of Caustic Recovery Technology Why DOE-EM Did This Review The Department of Energy (DOE) Environmental Management Office (EM-21) has been developing caustic recovery technology for application to the Hanford Waste Treatment Plant (WTP) to reduce the amount of Low Activity Waste (LAW) vitrified. Recycle of sodium hydroxide with an efficient caustic recovery process could reduce the amount of waste glass produced by greater than 30%. The Ceramatec Sodium (Na), Super fast Ionic CONductors (NaSICON) membrane has shown promise for directly producing 50% caustic with high sodium selectivity. The external review

2

Caustic Recovery Technology | Department of Energy  

Office of Environmental Management (EM)

Caustic Recovery Technology Caustic Recovery Technology Full Document and Summary Versions are available for download Caustic Recovery Technology Summary - Caustic Recovery...

3

Caustic Recovery Technology  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

366, REVISON 0 366, REVISON 0 Key Words: Waste Treatment Plant Sodium Recovery Electrochemical Retention: Permanent Review of Ceramatec's Caustic Recovery Technology W. R. Wilmarth D. T. Hobbs W. A. Averill E. B. Fox R. A. Peterson UNCLASSIFIED DOES NOT CONTAIN UNCLASSIFIED CONTROLLED NUCLEAR INFORMATION ADC & Reviewing Official:_______________________________________ (E. Stevens, Manager, Solid Waste and Special Programs) Date:______________________________________ JULY 20, 2007 Washington Savannah River Company Savannah River Site Aiken, SC 29808 Prepared for the U. S. Department of Energy Under Contract Number DE-AC09-96SR18500 Page 1 of 28 WSRC-STI-2007-00366, REVISON 0 DISCLAIMER This report was prepared for the United States Department of Energy under

4

Low Level Heat Recovery Technology  

E-Print Network (OSTI)

level heat recovery technology. This paper discusses heat distribution systems, latest developments in absorption refrigeration and organic Rankine cycles, and pressure, minimization possibilities. The relative merits and economics of the various...

O'Brien, W. J.

1982-01-01T23:59:59.000Z

5

Vehicle Technologies Office: Recovery Act Funding Opportunities  

NLE Websites -- All DOE Office Websites (Extended Search)

Recovery Act Funding Recovery Act Funding Opportunities to someone by E-mail Share Vehicle Technologies Office: Recovery Act Funding Opportunities on Facebook Tweet about Vehicle Technologies Office: Recovery Act Funding Opportunities on Twitter Bookmark Vehicle Technologies Office: Recovery Act Funding Opportunities on Google Bookmark Vehicle Technologies Office: Recovery Act Funding Opportunities on Delicious Rank Vehicle Technologies Office: Recovery Act Funding Opportunities on Digg Find More places to share Vehicle Technologies Office: Recovery Act Funding Opportunities on AddThis.com... Recovery Act Funding Opportunities President Barack Obama announced on March 19 that the DOE is offering up to $2.4 billion in American Recovery and Reinvestment Act funds to support next-generation plug-in hybrid electric vehicles (PHEV) and their advanced

6

Develop Thermoelectric Technology for Automotive Waste Heat Recovery...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Documents & Publications Development of Thermoelectric Technology for Automotive Waste Heat Recovery Development of Thermoelectric Technology for Automotive Waste Heat Recovery...

7

Department of Energy Recovery Act Investment in Biomass Technologies...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Department of Energy Recovery Act Investment in Biomass Technologies Department of Energy Recovery Act Investment in Biomass Technologies The American Recovery and Reinvestment Act...

8

Recovery rates, enhanced oil recovery and technological limits  

Science Journals Connector (OSTI)

...Oman-initial results and future plans. In Proc. SP EOR Conf...Moradi-Araghi, A . 2000 A review of thermally stable gels...through EOR: policy and regulatory considerations for greenhouse...TE Burchfield. 1989 Review of microbial technology...enhanced-oil-recovery technologies: a review of the past present and...

2014-01-01T23:59:59.000Z

9

Synchrophasor Technologies and their Deployment in the Recovery...  

Energy Savers (EERE)

Synchrophasor Technologies and their Deployment in the Recovery Act Smart Grid Programs (August 2013) Synchrophasor Technologies and their Deployment in the Recovery Act Smart Grid...

10

Recovery Act - Geothermal Technologies Program:Ground Source...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Recovery Act - Geothermal Technologies Program:Ground Source Heat Pumps Recovery Act - Geothermal Technologies Program:Ground Source Heat Pumps A detailled description of the...

11

Develop Thermoelectric Technology for Automotive Waste Heat Recovery  

Energy.gov (U.S. Department of Energy (DOE))

Develop thermoelectric technology for waste heat recovery with a 10% fuel economy improvement without increasing emissions.

12

Exhaust Gas Energy Recovery Technology Applications  

SciTech Connect

Exhaust waste heat recovery systems have the potential to significantly improve vehicle fuel economy for conventional and hybrid electric powertrains spanning passenger to heavy truck applications. This chapter discusses thermodynamic considerations and three classes of energy recovery technologies which are under development for vehicle applications. More specifically, this chapter describes the state-of-the-art in exhaust WHR as well as challenges and opportunities for thermodynamic power cycles, thermoelectric devices, and turbo-compounding systems.

Wagner, Robert M [ORNL] [ORNL; Szybist, James P [ORNL] [ORNL

2014-01-01T23:59:59.000Z

13

Fuel Cell Technologies Office: Recovery Act  

NLE Websites -- All DOE Office Websites (Extended Search)

Act Act Pie chart diagram shows the breakdown of how cost-sharing funds related to the American Recovery and Reinvestment Act from industry participants, totaling $54 million (for a grand total of $96 million), are allocated within the Fuel Cell Technologies Office, updated September 2010. The diagram shows that $18.5 million is allocated to backup power, $9.7 million is allocated to lift truck, $7.6 million is allocated to portable power, $3.4 million is allocated to residential and commercial CHP, and $2.4 million is allocated to auxiliary power research. The American Recovery and Reinvestment Act of 2009 (Recovery Act) presents opportunities with potential for hydrogen and fuel cell technologies. Signed into law by President Obama on February 17, 2009, the Recovery Act is an unprecedented effort to jumpstart our economy, create or save millions of jobs, and put a down payment on addressing long-neglected challenges so our country can thrive in the twenty-first century.

14

(Passamaquoddy Technology Recovery Scrubber trademark , March 1992)  

SciTech Connect

The Passamaquoddy Technology Recovery Scrubber{trademark} has been built and is being demonstrated on-line at the Dragon Products Plant in Thomaston, Maine. This Innovative Clean Coal Technology is using waste cement kiln dust (CKD) to scrub sulfur dioxide, some NO{sub x}, as well as a small amount of carbon dioxide from a coal burning kiln exhaust flue gas. The process also enables the cement plant to reuse the treated CKD, eliminating the need to landfill this material. Potassium, the offending contaminant in the CKD, is extracted in a useful form, potassium sulfate, which is used as a fertilizer. These useful products generate income from operation of this Recovery Scrubber. System start-up was begun in late December of 1990. At that time, several mechanical problems were encountered. These relatively minor problems were resolved enabling Phase III to begin on August 20, 1991. While inefficiencies are still being worked out, major program objectives are being met. Resolution of remaining operability problems is well in hand and should not hamper attainment of all project goals.

Not Available

1992-03-03T23:59:59.000Z

15

Building Technologies Office: Recovery Act-Funded HVAC Research Projects  

NLE Websites -- All DOE Office Websites (Extended Search)

HVAC Research Projects to someone by E-mail HVAC Research Projects to someone by E-mail Share Building Technologies Office: Recovery Act-Funded HVAC Research Projects on Facebook Tweet about Building Technologies Office: Recovery Act-Funded HVAC Research Projects on Twitter Bookmark Building Technologies Office: Recovery Act-Funded HVAC Research Projects on Google Bookmark Building Technologies Office: Recovery Act-Funded HVAC Research Projects on Delicious Rank Building Technologies Office: Recovery Act-Funded HVAC Research Projects on Digg Find More places to share Building Technologies Office: Recovery Act-Funded HVAC Research Projects on AddThis.com... About Take Action to Save Energy Partner with DOE Activities Appliances Research Building Envelope Research Windows, Skylights, & Doors Research Space Heating & Cooling Research

16

Building Technologies Office: Recovery Act-Funded Working Fluid Projects  

NLE Websites -- All DOE Office Websites (Extended Search)

Working Fluid Projects to someone by E-mail Working Fluid Projects to someone by E-mail Share Building Technologies Office: Recovery Act-Funded Working Fluid Projects on Facebook Tweet about Building Technologies Office: Recovery Act-Funded Working Fluid Projects on Twitter Bookmark Building Technologies Office: Recovery Act-Funded Working Fluid Projects on Google Bookmark Building Technologies Office: Recovery Act-Funded Working Fluid Projects on Delicious Rank Building Technologies Office: Recovery Act-Funded Working Fluid Projects on Digg Find More places to share Building Technologies Office: Recovery Act-Funded Working Fluid Projects on AddThis.com... About Take Action to Save Energy Partner with DOE Activities Appliances Research Building Envelope Research Windows, Skylights, & Doors Research Space Heating & Cooling Research

17

Recovery rates, enhanced oil recovery and technological limits  

Science Journals Connector (OSTI)

...significantly extend global oil reserves once oil prices are high enough to make these techniques...last plan on the assumption that the oil price is likely to remain relatively high...1970s at a time of relatively high oil prices. Improved oil recovery (IOR) is...

2014-01-01T23:59:59.000Z

18

Vehicle Technologies Office: Waste Heat Recovery | Department...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Batteries Fuel Efficiency & Emissions Combustion Engines Fuel Effects on Combustion Idle Reduction Emissions Waste Heat Recovery Lightweighting Parasitic Loss Reduction Lubricants...

19

Synchrophasor Technologies and their Deployment in the Recovery Act Smart  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Synchrophasor Technologies and their Deployment in the Recovery Act Synchrophasor Technologies and their Deployment in the Recovery Act Smart Grid Programs (August 2013) Synchrophasor Technologies and their Deployment in the Recovery Act Smart Grid Programs (August 2013) The American Recovery and Reinvestment Act of 2009 provided $4.5 billion for the Smart Grid Investment Grant (SGIG), Smart Grid Demonstration Program (SGDP), and other DOE smart grid programs. These programs provided grants to the electric utility industry to deploy smart grid technologies to modernize the nation's electric grid. As a part of these programs, independent system operators, regional transmission organizations, and electric utilities installed synchrophasor and supporting technologies and systems in their electric power transmission systems.

20

Department of Energy Recovery Act Investment in Biomass Technologies  

Energy.gov (U.S. Department of Energy (DOE))

The American Recovery and Reinvestment Act of 2009 (Recovery Act) provided more than $36 billion to the Department of Energy (DOE) to accelerate work on existing projects, undertake new and transformative research, and deploy clean energy technologies across the nation. Of this funding, $1029 million is supporting innovative work to advance biomass research, development, demonstration, and deployment.

Note: This page contains sample records for the topic "recovery technology cxs" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

Post-Shred Materials Recovery Technology Development and Demonstration...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Annual Merit Review and Peer Evaluation Meeting, May 18-22, 2009 -- Washington D.C. lm29jody.pdf More Documents & Publications Post-Shred Materials Recovery Technology...

22

NETL: Natural Gas Resources, Enhanced Oil Recovery, Deepwater Technology  

NLE Websites -- All DOE Office Websites (Extended Search)

and Natural Gas Projects and Natural Gas Projects Index of Research Project Summaries Use the links provided below to access detailed DOE/NETL project information, including project reports, contacts, and pertinent publications. Search Natural Gas and Oil Projects Current Projects Natural Gas Resources Shale Gas Environmental Other Natural Gas Resources Ehanced Oil Recovery CO2 EOR Environmental Other EOR & Oil Resources Deepwater Technology Offshore Architecture Safety & Environmental Other Deepwater Technology Methane Hydrates DOE/NETL Projects Completed Projects Completed Natural Gas Resources Completed Enhanced Oil Recovery Completed Deepwater Technology Completed E&P Technologies Completed Environmental Solutions Completed Methane Hydrates Completed Transmission & Distribution

23

Report on Synchrophasor Technologies and Their Deployment in Recovery Act  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Report on Synchrophasor Technologies and Their Deployment in Report on Synchrophasor Technologies and Their Deployment in Recovery Act Projects Now Available Report on Synchrophasor Technologies and Their Deployment in Recovery Act Projects Now Available August 15, 2013 - 10:48am Addthis The Office of Electricity Delivery and Energy Reliability has released a new report that explains synchrophasor technologies and how they can be used to improve the efficiency, reliability, and resiliency of grid operations. The report also includes an analysis of the costs and benefits of synchrophasors, based on data and initial results from Recovery Act-funded projects that are deploying the technologies. The report is available now for downloading. Addthis Related Articles Reports on the Impact of the Smart Grid Investment Grant Program Now

24

Faces of the Recovery Act: 1366 Technologies | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

1366 Technologies 1366 Technologies Faces of the Recovery Act: 1366 Technologies Addthis Description LEXINGTON, MA - At 1366 Technologies, Ely Sachs and Frank van Mierlo are using ARPA-E Recovery Act funding to dramatically reduce the costs of solar panel production. Speakers President Obama, Ely Sachs, Frank van Mierlo Duration 4:00 Topic Energy Economy Recovery Act Solar ARPA-E Summit Emerging Technologies Credit Energy Department Video PRESIDENT OBAMA: Next we need to encourage American innovation. Last year we made the largest investment in basic research funding in history - (applause) - an investment - an investment that could lead to the world's cheapest solar cells or treatment that kills cancer cells but leaves healthy ones untouched. And no area is more ripe for such

25

Report on Synchrophasor Technologies and Their Deployment in Recovery Act  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

on Synchrophasor Technologies and Their Deployment in on Synchrophasor Technologies and Their Deployment in Recovery Act Projects Now Available Report on Synchrophasor Technologies and Their Deployment in Recovery Act Projects Now Available August 15, 2013 - 10:48am Addthis The Office of Electricity Delivery and Energy Reliability has released a new report that explains synchrophasor technologies and how they can be used to improve the efficiency, reliability, and resiliency of grid operations. The report also includes an analysis of the costs and benefits of synchrophasors, based on data and initial results from Recovery Act-funded projects that are deploying the technologies. The report is available now for downloading. Addthis Related Articles Reports on the Impact of the Smart Grid Investment Grant Program Now

26

Thermoelectric Technology for Automotive Waste Heat Recovery  

Energy.gov (U.S. Department of Energy (DOE))

Presentation given at the 2007 Diesel Engine-Efficiency & Emissions Research Conference (DEER 2007). 13-16 August, 2007, Detroit, Michigan. Sponsored by the U.S. Department of Energy's (DOE) Office of FreedomCAR and Vehicle Technologies (OFCVT).

27

Categorical Exclusion Determinations: American Recovery and Reinvestment  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

12, 2011 12, 2011 CX-004980: Categorical Exclusion Determination Recovery Act ? Clean Energy Coalition Michigan Green Fleets CX(s) Applied: A7 Date: 01/12/2011 Location(s): Michigan Office(s): Energy Efficiency and Renewable Energy, National Energy Technology Laboratory January 12, 2011 CX-004979: Categorical Exclusion Determination Recovery Act ? Clean Energy Coalition Michigan Green Fleets CX(s) Applied: B5.1 Date: 01/12/2011 Location(s): Detroit, Michigan Office(s): Energy Efficiency and Renewable Energy, National Energy Technology Laboratory January 12, 2011 CX-004978: Categorical Exclusion Determination Recovery Act ? Clean Energy Coalition Michigan Green Fleets CX(s) Applied: B5.1 Date: 01/12/2011 Location(s): Taylor, Michigan Office(s): Energy Efficiency and Renewable Energy, National Energy

28

Fuel Cell Technologies Office: Recovery Act Projects Funded for Fuel Cell  

NLE Websites -- All DOE Office Websites (Extended Search)

Financial Opportunities Financial Opportunities Printable Version Share this resource Send a link to Fuel Cell Technologies Office: Recovery Act Projects Funded for Fuel Cell Market Transformation to someone by E-mail Share Fuel Cell Technologies Office: Recovery Act Projects Funded for Fuel Cell Market Transformation on Facebook Tweet about Fuel Cell Technologies Office: Recovery Act Projects Funded for Fuel Cell Market Transformation on Twitter Bookmark Fuel Cell Technologies Office: Recovery Act Projects Funded for Fuel Cell Market Transformation on Google Bookmark Fuel Cell Technologies Office: Recovery Act Projects Funded for Fuel Cell Market Transformation on Delicious Rank Fuel Cell Technologies Office: Recovery Act Projects Funded for Fuel Cell Market Transformation on Digg

29

Categorical Exclusion Determinations: American Recovery and Reinvestment  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

15, 2010 15, 2010 CX-004238: Categorical Exclusion Determination Carbon Dioxide-Water Emulsions for Enhanced Oil Recovery and Permanent Sequestration of Carbon Dioxide CX(s) Applied: A1, A9, A11 Date: 10/15/2010 Location(s): Traverse City, Michigan Office(s): Fossil Energy, National Energy Technology Laboratory October 15, 2010 CX-004237: Categorical Exclusion Determination Carbon Dioxide-Water Emulsions For Enhanced Oil Recovery And Permanent Sequestration Of Carbon Dioxide CX(s) Applied: A9, A11, B3.6 Date: 10/15/2010 Location(s): Lowell, Massachusetts Office(s): Fossil Energy, National Energy Technology Laboratory October 15, 2010 CX-004235: Categorical Exclusion Determination Oklahoma-Tribe-Ponca Tribe of Indians of Oklahoma CX(s) Applied: B2.5, B5.1 Date: 10/15/2010

30

OPTICAL FIBER SENSOR TECHNOLOGIES FOR EFFICIENT AND ECONOMICAL OIL RECOVERY  

SciTech Connect

Efficient recovery of petroleum reserves from existing oil wells has been proven to be difficult due to the lack of robust instrumentation that can accurately and reliably monitor processes in the downhole environment. Commercially available sensors for measurement of pressure, temperature, and fluid flow exhibit shortened lifetimes in the harsh downhole conditions, which are characterized by high pressures (up to 20 kpsi), temperatures up to 250 C, and exposure to chemically reactive fluids. Development of robust sensors that deliver continuous, real-time data on reservoir performance and petroleum flow pathways will facilitate application of advanced recovery technologies, including horizontal and multilateral wells. This is the final report for the four-year program ''Optical Fiber Sensor Technologies for Efficient and Economical Oil Recovery'', funded by the National Petroleum Technology Office of the U.S. Department of Energy, and performed by the Center for Photonics Technology of the Bradley Department of Electrical and Computer Engineering at Virginia Tech from October 1, 1999 to March 31, 2003. The main objective of this research program was to develop cost-effective, reliable optical fiber sensor instrumentation for real-time monitoring of various key parameters crucial to efficient and economical oil production. During the program, optical fiber sensors were demonstrated for the measurement of temperature, pressure, flow, and acoustic waves, including three successful field tests in the Chevron/Texaco oil fields in Coalinga, California, and at the world-class oil flow simulation facilities in Tulsa, Oklahoma. Research efforts included the design and fabrication of sensor probes, development of signal processing algorithms, construction of test systems, development and testing of strategies for the protection of optical fibers and sensors in the downhole environment, development of remote monitoring capabilities allowing real-time monitoring of the field test data from virtually anywhere in the world, and development of novel data processing techniques. Comprehensive testing was performed to systematically evaluate the performance of the fiber optic sensor systems in both lab and field environments.

Anbo Wang; Kristie L. Cooper; Gary R. Pickrell

2003-06-01T23:59:59.000Z

31

Optical Fiber Sensor Technologies for Efficient and Economical Oil Recovery  

NLE Websites -- All DOE Office Websites (Extended Search)

Optical Fiber Sensor Technologies for Optical Fiber Sensor Technologies for Efficient and Economical Oil Recovery Final Technical Report Reporting Period Start Date: 1 October 1998 Reporting Period End Date: 31 March 2003 Principal Investigator: Anbo Wang Principal Report Authors: Kristie L. Cooper, Gary R. Pickrell, Anbo Wang Report Issued: June 2003 DOE Award Number: DE-FT26-98BC15167 Submitted by: Center for Photonics Technology Bradley Department of Electrical and Computer Engineering Virginia Polytechnic Institute & State University Blacksburg, VA 24061-0111 ii Disclaimer: This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or

32

[Passamaquoddy Technology Recovery Scrubber{trademark}, March 1992  

SciTech Connect

The Passamaquoddy Technology Recovery Scrubber{trademark} has been built and is being demonstrated on-line at the Dragon Products Plant in Thomaston, Maine. This Innovative Clean Coal Technology is using waste cement kiln dust (CKD) to scrub sulfur dioxide, some NO{sub x}, as well as a small amount of carbon dioxide from a coal burning kiln exhaust flue gas. The process also enables the cement plant to reuse the treated CKD, eliminating the need to landfill this material. Potassium, the offending contaminant in the CKD, is extracted in a useful form, potassium sulfate, which is used as a fertilizer. These useful products generate income from operation of this Recovery Scrubber. System start-up was begun in late December of 1990. At that time, several mechanical problems were encountered. These relatively minor problems were resolved enabling Phase III to begin on August 20, 1991. While inefficiencies are still being worked out, major program objectives are being met. Resolution of remaining operability problems is well in hand and should not hamper attainment of all project goals.

Not Available

1992-03-03T23:59:59.000Z

33

Categorical Exclusion Determinations: American Recovery and Reinvestment  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

43: Categorical Exclusion Determination 43: Categorical Exclusion Determination American Recovery and Reinvestment Act (ARRA) Local Energy Assurance Planning (LEAP) - (Chicago, Illlinois) CX(s) Applied: A9, A11 Date: 04/01/2010 Location(s): Chicago, Illinois Office(s): Electricity Delivery and Energy Reliability, National Energy Technology Laboratory April 1, 2010 CX-001633: Categorical Exclusion Determination Port Townsend Paper Company CX(s) Applied: B5.1 Date: 04/01/2010 Location(s): Washington Office(s): Energy Efficiency and Renewable Energy, Golden Field Office April 1, 2010 CX-001682: Categorical Exclusion Determination Oklahoma State Energy Program (SEP) American Recovery and Reinvestment Act (ARRA) - Phase 1 - Wind Turbine for Guthrie Waste Water Treatment Plant CX(s) Applied: A9, A11 Date: 04/01/2010

34

NREL: Technology Deployment - Disaster Recovery Support at FEMA...  

NLE Websites -- All DOE Office Websites (Extended Search)

Disaster Recovery Support at FEMA Incorporates Sustainability in Rebuilding Efforts News FEMA Engages NREL in Hurricane Sandy Recovery Effort NREL's Federal Fueling Station Data...

35

Building Technologies Office: Recovery Act-Funded Ground Source Heat Pump  

NLE Websites -- All DOE Office Websites (Extended Search)

Ground Source Heat Pump Demonstration Projects to someone by E-mail Ground Source Heat Pump Demonstration Projects to someone by E-mail Share Building Technologies Office: Recovery Act-Funded Ground Source Heat Pump Demonstration Projects on Facebook Tweet about Building Technologies Office: Recovery Act-Funded Ground Source Heat Pump Demonstration Projects on Twitter Bookmark Building Technologies Office: Recovery Act-Funded Ground Source Heat Pump Demonstration Projects on Google Bookmark Building Technologies Office: Recovery Act-Funded Ground Source Heat Pump Demonstration Projects on Delicious Rank Building Technologies Office: Recovery Act-Funded Ground Source Heat Pump Demonstration Projects on Digg Find More places to share Building Technologies Office: Recovery Act-Funded Ground Source Heat Pump Demonstration Projects on AddThis.com...

36

Immediate Deployment of Waste Energy Recovery Technologies at Multi Sites  

SciTech Connect

Verso Paper Corp. implemented a portfolio of 13 commercially available proven industrial technologies each exceeding 30% minimum threshold efficiency and at least 25% efficiency increase. These sub-projects are a direct result of a grant received from the Department of Energy (DOE) through its FOA 0000044 (Deployment of Combined Heat and Power (CHP) Systems, District Energy Systems, Waste Energy Recovery Systems, and Efficient Industrial Equipment), which was funded by the American Recovery Act. These were installed at 3 sites in 2 states and are helping to reduce Verso costs, making the facilities more competitive. This created approximately 100 construction jobs (FTE's) and reduced impacted Verso facilities' expense budgets. These sub-projects were deployed at Verso paper mills located in Jay, Maine, Bucksport, Maine, and Sartell, Minnesota. The paper mills are the economic engines of the rural communities in which these mills are located. Reinvestment in waste energy recovery capital improvements is providing a stimulus to help maintain domestic jobs and to competitively position the US pulp and paper industry with rising energy costs. Energy efficiency improvements are also providing a positive environmental impact by reducing greenhouse gas emissions, the quantity of wastewater treated and discharged, and fossil fuel demand. As a result of these projects, when fully operating, Verso realized a total of approximately 1.5 TBtu/Year reduction in overall energy consumption, which is 119% of the project objectives. Note that three paper machines have since been permanently curtailed. However even with these shutdowns, the company still met its energy objectives. Note also that the Sartell mill's paper machine is down due to a recent fire which damaged the mill's electrical infrastructure (the company has not decided on the mill's future).

Dennis Castonguay

2012-06-29T23:59:59.000Z

37

Categorical Exclusion Determinations: American Recovery and Reinvestment  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

American Recovery and American Recovery and Reinvestment Act Related Categorical Exclusion Determinations: American Recovery and Reinvestment Act Related Categorical Exclusion Determinations issued for actions related to the the American Recovery and Reinvestment Act of 2009. DOCUMENTS AVAILABLE FOR DOWNLOAD September 14, 2011 CX-006764: Categorical Exclusion Determination Texas Propane Fleet Pilot Program CX(s) Applied: A1, A7, B5.1 Date: 09/14/2011 Location(s): Haltom City, Texas Office(s): Energy Efficiency and Renewable Energy, National Energy Technology Laboratory September 14, 2011 CX-006763: Categorical Exclusion Determination Texas Propane Fleet Pilot Program CX(s) Applied: A1, A7, B5.1 Date: 09/14/2011 Location(s): Friendswood, Texas Office(s): Energy Efficiency and Renewable Energy, National Energy

38

Categorical Exclusion Determinations: American Recovery and Reinvestment  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Categorical Exclusion Determinations: American Recovery and Categorical Exclusion Determinations: American Recovery and Reinvestment Act Related Categorical Exclusion Determinations: American Recovery and Reinvestment Act Related Categorical Exclusion Determinations issued for actions related to the the American Recovery and Reinvestment Act of 2009. DOCUMENTS AVAILABLE FOR DOWNLOAD November 23, 2010 CX-004590: Categorical Exclusion Determination Re-Utilization of Industrial Carbon Dioxide for Algae Production Using a Phase Change Material CX(s) Applied: A9, A11, B3.6 Date: 11/23/2010 Location(s): Dexter, Michigan Office(s): Fossil Energy, National Energy Technology Laboratory November 23, 2010 CX-004556: Categorical Exclusion Determination Kentucky-County-Hardin CX(s) Applied: B3.6, B5.1 Date: 11/23/2010 Location(s): Hardin County, Kentucky

39

Categorical Exclusion Determinations: American Recovery and Reinvestment  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Categorical Exclusion Determinations: American Recovery and Categorical Exclusion Determinations: American Recovery and Reinvestment Act Related Categorical Exclusion Determinations: American Recovery and Reinvestment Act Related Categorical Exclusion Determinations issued for actions related to the the American Recovery and Reinvestment Act of 2009. DOCUMENTS AVAILABLE FOR DOWNLOAD April 5, 2010 CX-001438: Categorical Exclusion Determination Clean Cities Transportation Sector Petroleum Reduction Project CX(s) Applied: A7 Date: 04/05/2010 Location(s): Utah Office(s): Energy Efficiency and Renewable Energy, National Energy Technology Laboratory April 5, 2010 CX-001437: Categorical Exclusion Determination Market Title: Clean Energy Grant Program CX(s) Applied: A9, A11 Date: 04/05/2010 Location(s): Florida Office(s): Energy Efficiency and Renewable Energy, National Energy

40

Categorical Exclusion Determinations: American Recovery and Reinvestment  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Categorical Exclusion Determinations: American Recovery and Categorical Exclusion Determinations: American Recovery and Reinvestment Act Related Categorical Exclusion Determinations: American Recovery and Reinvestment Act Related Categorical Exclusion Determinations issued for actions related to the the American Recovery and Reinvestment Act of 2009. DOCUMENTS AVAILABLE FOR DOWNLOAD November 2, 2009 CX-000026: Categorical Exclusion Determination Ivanoff Bay Village Energy Efficiency and Conservation Strategy CX(s) Applied: A1, A9, A11 Date: 11/02/2009 Location(s): Ivanoff Bay, Alaska Office(s): Energy Efficiency and Renewable Energy November 2, 2009 CX-000025: Categorical Exclusion Determination Cortina Rancheria of Wintun Indians Renewable Energy Technologies (Wind) on Government Buildings CX(s) Applied: B5.1, B3.6, A1

Note: This page contains sample records for the topic "recovery technology cxs" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

Categorical Exclusion Determinations: American Recovery and Reinvestment  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Categorical Exclusion Determinations: American Recovery and Categorical Exclusion Determinations: American Recovery and Reinvestment Act Related Categorical Exclusion Determinations: American Recovery and Reinvestment Act Related Categorical Exclusion Determinations issued for actions related to the the American Recovery and Reinvestment Act of 2009. DOCUMENTS AVAILABLE FOR DOWNLOAD January 19, 2011 CX-005047: Categorical Exclusion Determination Chicago Area Alternative Fuels Deployment Project CX(s) Applied: B5.1 Date: 01/19/2011 Location(s): Chicago, Illinois Office(s): Energy Efficiency and Renewable Energy, National Energy Technology Laboratory January 19, 2011 CX-005039: Categorical Exclusion Determination Development and Validation of a Gas-Fired Residential Heat Pump Water Heater CX(s) Applied: B3.6 Date: 01/19/2011

42

Categorical Exclusion Determinations: American Recovery and Reinvestment  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

July 13, 2011 July 13, 2011 CX-006171: Categorical Exclusion Determination Goochland Womens Correctional Facility - Replacing Coal Boiler with Liquefied Petroleum Gas Boiler CX(s) Applied: A1, B5.1 Date: 07/13/2011 Location(s): Goochland, Virginia Office(s): Energy Efficiency and Renewable Energy, National Energy Technology Laboratory July 13, 2011 CX-006167: Categorical Exclusion Determination Recovery Act ? Clean Energy Coalition Schwan?s Home Service CX(s) Applied: A7, B5.1 Date: 07/13/2011 Location(s): Michigan Office(s): Energy Efficiency and Renewable Energy, National Energy Technology Laboratory July 13, 2011 CX-006155: Categorical Exclusion Determination Wisconsin Clean Transportation Program/City of Milwaukee Compressed Natural Gas Infrastructure Project CX(s) Applied: B5.1

43

Contracts for field projects and supporting research on enhanced oil recovery and improved drilling technology  

SciTech Connect

Objectives are listed and technical progress is summarized for contracts for field projects and supporting research on: chemical flooding, carbon dioxide injection, thermal/heavy oil, extraction technology, improved drilling technology, residual oil, and microbial enhanced oil recovery. (DLC)

Linville, B. (ed.)

1980-10-01T23:59:59.000Z

44

Develop Thermoelectric Technology for Automotive Waste Heat Recovery...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

More Documents & Publications Skutterudite Thermoelectric Generator For Automotive Waste Heat Recovery Thermoelectric Conversion of Exhaust Gas Waste Heat into Usable...

45

Bartlesville Energy Technology Center enhanced oil recovery project data base  

SciTech Connect

The BETC Enhanced Oil Recovery Data Base is currently being developed to provide an information resource to accelerate the advancement and applications of EOR technology. The primary initial sources of data have been the Incentive and Cost-Shared Programs. The data base presently contains information on 607 EOR projects. This includes 410 of the approximately 423 projects which operators originally applied for certification with the Incentive Program; 20 EOR projects under the Cost-Shared Program; and a data base relating to 177 projects developed by Gulf Universities Research Consortium. In addition, relevant data from all previous DOE-funded contractor EOR data bases will be integrated into the BETC data base. Data collection activities from publicly available information sources is continuing on an on-going basis to insure the accuracy and timeliness of the information within the data base. The BETC data base is being developed utilizing a commercial data base management system. The basic structure of the data base is presented as Appendix I. This data base includes information relating to reservoir characteristics, process-specific data, cost information, production data, and contact persons for each project. The preliminary list of data elements and the current density of occurrence is presented as Appendix II. A basic profile of the types of projects contained within the developmental data base is contained in Appendix III. Appendix IV presents a number of system output reports to illustrate potential data base applications. Plans to eventually place the data base in a computer system which would be publicly accessible are currently under active consideration. A list of Incentive projects processed to date by BETC is provided as Appendix V. Appendix VI gives a detailed report by EOR Process for all projects in the BETC's Enhanced Oil Recovery Data Base.

Not Available

1982-03-01T23:59:59.000Z

46

American Recovery and Reinvestment Act of 2009: Bioenergy Technologies...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Recovery and Reinvestment Act of 2009 funds; the projects accelerate advanced biofuels RD&D, speed the deployment of commercialization of biofuels, and further the U.S....

47

Develop Thermoelectric Technology for Automotive Waste Heat Recovery...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

for Automotive Waste Heat Recovery Cost-Competitive Advanced Thermoelectric Generators for Direct Conversion of Vehicle Waste Heat into Useful Electrical Power Development...

48

Develop Thermoelectric Technology for Automotive Waste Heat Recovery...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Waste Heat Recovery Engineering and Materials for Automotive Thermoelectric Applications Electrical and Thermal Transport Optimization of High Efficient n-type Skutterudites...

49

Development of Thermoelectric Technology for Automotive Waste Heat Recovery  

Energy.gov (U.S. Department of Energy (DOE))

Overview and status of project to develop thermoelectric generator for automotive waste heat recovery and achieve at least 10% fuel economy improvement.

50

Categorical Exclusion Determinations: American Recovery and Reinvestment  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

1, 2010 1, 2010 CX-001067: Categorical Exclusion Determination Delaware State American Recovery and Reinvestment Act - Energy Efficiency and Conservation Block Grant (T) CX(s) Applied: A9, A11, B5.1 Date: 02/11/2010 Location(s): Delaware, Delaware Office(s): Energy Efficiency and Renewable Energy, Golden Field Office February 11, 2010 CX-001953: Categorical Exclusion Determination Texas State Energy Program (SEP) American Recovery and Reinvestment Act (ARRA) - Alternative Fuels and Technology Program - SEP CX(s) Applied: B2.5, B5.1 Date: 02/11/2010 Location(s): Texas Office(s): Energy Efficiency and Renewable Energy, Golden Field Office February 11, 2010 CX-001974: Categorical Exclusion Determination State Energy Program (SEP) American Recovery and Reinvestment Act (ARRA)

51

Categorical Exclusion Determinations: National Energy Technology Laboratory  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

December 27, 2010 December 27, 2010 CX-004778: Categorical Exclusion Determination Recovery Act: Innovative Carbon Dioxide Sequestration from Flue Gas using an In-Duct Scrubber CX(s) Applied: A9, A11, B3.6 Date: 12/27/2010 Location(s): Point Comfort, Texas Office(s): Fossil Energy, National Energy Technology Laboratory December 27, 2010 CX-004777: Categorical Exclusion Determination Recovery Act: Innovative Carbon Dioxide Sequestration from Flue Gas using an In-Duct Scrubber CX(s) Applied: A9, A11, B3.6 Date: 12/27/2010 Location(s): Pittsburgh, Pennsylvania Office(s): Fossil Energy, National Energy Technology Laboratory December 27, 2010 CX-004776: Categorical Exclusion Determination Recovery Act: Innovative Carbon Dioxide Sequestration from Flue Gas using an In-Duct Scrubber CX(s) Applied: A9, A11, B3.6

52

Categorical Exclusion Determinations: American Recovery and Reinvestment  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

6, 2011 6, 2011 CX-006097: Categorical Exclusion Determination California-City-Indio CX(s) Applied: A9, A11, B1.32, B2.5, B3.6, B5.1 Date: 06/16/2011 Location(s): Indio, California Office(s): Energy Efficiency and Renewable Energy June 14, 2011 CX-006141: Categorical Exclusion Determination Revised Market Title for Renewable Energy Program CX(s) Applied: A9, A11, B5.1 Date: 06/14/2011 Location(s): New York Office(s): Energy Efficiency and Renewable Energy, National Energy Technology Laboratory June 14, 2011 CX-006139: Categorical Exclusion Determination Recovery Act: San Bernardino Associated Government Natural Gas Truck Project CX(s) Applied: B2.2, B2.3, B5.1 Date: 06/14/2011 Location(s): Fontana, California Office(s): Energy Efficiency and Renewable Energy, National Energy

53

Categorical Exclusion Determinations: American Recovery and Reinvestment  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

December 16, 2010 December 16, 2010 CX-004754: Categorical Exclusion Determination State Energy Program: Renewable Energy Development CX(s) Applied: A1, A9, A11, B5.1 Date: 12/16/2010 Location(s): Maine Office(s): Energy Efficiency and Renewable Energy, National Energy Technology Laboratory December 14, 2010 CX-004730: Categorical Exclusion Determination Oklahoma State Energy Program American Recovery and Reinvestment Act - Oklahoma Municipal Power Authority Oklahoma Comfort Program Large System Request G CX(s) Applied: B5.1 Date: 12/14/2010 Location(s): Oklahoma Office(s): Energy Efficiency and Renewable Energy, Golden Field Office December 14, 2010 CX-004743: Categorical Exclusion Determination New River Solar Thermal Hot Water Project CX(s) Applied: B5.1 Date: 12/14/2010 Location(s): Virginia

54

Categorical Exclusion Determinations: American Recovery and Reinvestment  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

5, 2011 5, 2011 CX-005991: Categorical Exclusion Determination Prairie Village, Kansas Ground Source Heat Pump Relocation CX(s) Applied: B5.1 Date: 05/25/2011 Location(s): Prairie Village, Kansas Office(s): Energy Efficiency and Renewable Energy, Golden Field Office May 25, 2011 CX-005988: Categorical Exclusion Determination Solar Technology Acceleration Center - Solar Thermal Energy Storage Test Facility CX(s) Applied: A9, A11, B1.15, B3.6 Date: 05/25/2011 Location(s): Denver, Colorado Office(s): Energy Efficiency and Renewable Energy, Golden Field Office May 25, 2011 CX-005961: Categorical Exclusion Determination Recovery Act ? Clean Energy Coalition Michigan Green Fleets CX(s) Applied: B5.1 Date: 05/25/2011 Location(s): Taylor, Michigan Office(s): Energy Efficiency and Renewable Energy, National Energy

55

Categorical Exclusion Determinations: American Recovery and Reinvestment  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

1, 2010 1, 2010 CX-000956: Categorical Exclusion Determination Connecticut Clean Cities Future Fuels Project (New Vehicles) CX(s) Applied: A7, A11 Date: 03/01/2010 Location(s): Connecticut Office(s): Energy Efficiency and Renewable Energy, National Energy Technology Laboratory March 1, 2010 CX-001832: Categorical Exclusion Determination Deployment of Energy Efficiency and Renewable Energy - Agriculture CX(s) Applied: B5.1 Date: 03/01/2010 Location(s): Oregon Office(s): Energy Efficiency and Renewable Energy, Golden Field Office February 26, 2010 CX-002147: Categorical Exclusion Determination South Dakota American Recovery and Reinvestment Act - State Energy Program CX(s) Applied: A9, A11, B5.1 Date: 02/26/2010 Location(s): South Dakota Office(s): Energy Efficiency and Renewable Energy, Golden Field Office

56

Categorical Exclusion Determinations: American Recovery and Reinvestment  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

5, 2010 5, 2010 CX-002415: Categorical Exclusion Determination Energy Retrofits for State Correctional Facilities - East Thomas Officer Barracks Solar Thermal CX(s) Applied: B2.2, A9, B1.5, B5.1 Date: 05/25/2010 Location(s): West Birmingham, Alabama Office(s): Energy Efficiency and Renewable Energy, National Energy Technology Laboratory May 25, 2010 CX-002555: Categorical Exclusion Determination American Recovery and Reinvestment Act State Energy Program City of Weslaco Solar Project CX(s) Applied: B5.1 Date: 05/25/2010 Location(s): Weslaco, Texas Office(s): Energy Efficiency and Renewable Energy, Golden Field Office May 25, 2010 CX-002484: Categorical Exclusion Determination Bley LLC Green Energy Component Manufacturing Capacity and Capability Development Initiative CX(s) Applied: B5.1

57

Categorical Exclusion Determinations: American Recovery and Reinvestment  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

6, 2011 6, 2011 CX-005871: Categorical Exclusion Determination City of Mesa Reclamation Blower Units CX(s) Applied: B5.1 Date: 05/16/2011 Location(s): Mesa, Arizona Office(s): Energy Efficiency and Renewable Energy, Golden Field Office May 13, 2011 CX-005816: Categorical Exclusion Determination State Energy Program American Recovery and Reinvestment Act Program Administration CX(s) Applied: A1, A9, A11, B2.2, B5.1 Date: 05/13/2011 Location(s): Virginia Office(s): Energy Efficiency and Renewable Energy, National Energy Technology Laboratory May 13, 2011 CX-005815: Categorical Exclusion Determination Grant Rebate Program for Renewable Energy Projects (Solar, Wind, Biomass) at State/Local Government Facilities CX(s) Applied: A1, A9, A11, B5.1 Date: 05/13/2011 Location(s): Virginia

58

Categorical Exclusion Determinations: American Recovery and Reinvestment  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

9, 2010 9, 2010 CX-004415: Categorical Exclusion Determination New York-City-Babylon, Town of CX(s) Applied: A1, A9, B5.1 Date: 11/09/2010 Location(s): Babylon, New York Office(s): Energy Efficiency and Renewable Energy November 9, 2010 CX-004410: Categorical Exclusion Determination Non-Utility Scale Renewable Energy - Sandywood Homes CX(s) Applied: B5.1 Date: 11/09/2010 Location(s): Tiverton, Rhode Island Office(s): Energy Efficiency and Renewable Energy, National Energy Technology Laboratory November 8, 2010 CX-004433: Categorical Exclusion Determination Pennsylvania Economic Development Association Sustainable Business Recovery for the Fox Chase Cancer Center CX(s) Applied: B5.1 Date: 11/08/2010 Location(s): Philadelphia, Pennsylvania Office(s): Energy Efficiency and Renewable Energy, National Energy

59

Categorical Exclusion Determinations: American Recovery and Reinvestment  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

2, 2010 2, 2010 CX-001042: Categorical Exclusion Determination Verso Paper Corporation Waste Energy Recovery (Bucksport) CX(s) Applied: B1.24, B5.1 Date: 03/02/2010 Location(s): Bucksport, Maine Office(s): Energy Efficiency and Renewable Energy, National Energy Technology Laboratory March 2, 2010 CX-001017: Categorical Exclusion Determination High Efficiency, Wideband Three-Phase Rectifiers and Adaptive Rectivier Management CX(s) Applied: A9, B3.6, B5.1 Date: 03/02/2010 Location(s): Texas Office(s): Energy Efficiency and Renewable Energy, Golden Field Office March 2, 2010 CX-001015: Categorical Exclusion Determination Integrated Direct Current (dc)-dc Conversion for Energy-Efficiency Multicore Microprocessors CX(s) Applied: A9, B3.6 Date: 03/02/2010 Location(s): New York

60

Categorical Exclusion Determinations: American Recovery and Reinvestment  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

29, 2010 29, 2010 CX-001871: Categorical Exclusion Determination Low Energy Building Materials CX(s) Applied: B5.1 Date: 03/29/2010 Location(s): Caledonia, Wisconsin Office(s): Energy Efficiency and Renewable Energy, Golden Field Office March 29, 2010 CX-001878: Categorical Exclusion Determination Industrial Energy Efficiency CX(s) Applied: B5.1 Date: 03/29/2010 Location(s): Wisconsin Office(s): Energy Efficiency and Renewable Energy, Golden Field Office March 29, 2010 CX-001573: Categorical Exclusion Determination Recovery Act: City of Eagan Ice Arena CX(s) Applied: A9, A11, B5.1 Date: 03/29/2010 Location(s): Eagan, Minnesota Office(s): Energy Efficiency and Renewable Energy, Golden Field Office March 29, 2010 CX-001465: Categorical Exclusion Determination North Central Texas Alternative Fuel and Advanced Technology Investments

Note: This page contains sample records for the topic "recovery technology cxs" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

Categorical Exclusion Determinations: American Recovery and Reinvestment  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

9, 2011 9, 2011 CX-005353: Categorical Exclusion Determination Commercial Industrial and Large Profit- Keller Cresent Chiller Replacement CX(s) Applied: B5.1 Date: 03/09/2011 Location(s): Pineville, North Carolina Office(s): Energy Efficiency and Renewable Energy, National Energy Technology Laboratory March 9, 2011 CX-005716: Categorical Exclusion Determination City Facilities CX(s) Applied: B2.5, B5.1 Date: 03/09/2011 Location(s): Lancaster, Ohio Office(s): Energy Efficiency and Renewable Energy March 9, 2011 CX-005452: Categorical Exclusion Determination State Energy Program American Recovery and Reinvestment Act - GEN-X Energy Group, Incorporated CX(s) Applied: A9, B1.7, B5.1 Date: 03/09/2011 Location(s): Washington Office(s): Energy Efficiency and Renewable Energy, Golden Field Office

62

Categorical Exclusion Determinations: American Recovery and Reinvestment  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

31, 2010 31, 2010 CX-000717: Categorical Exclusion Determination Pennsylvania - Economic Development Authority Sustainable Business Recovery - Philadelphia Navy Yard CX(s) Applied: B1.15, B1.24, B1.31, B5.1 Date: 01/31/2010 Location(s): Philadelphia Navy Yard, Pennsylvania Office(s): Energy Efficiency and Renewable Energy, National Energy Technology Laboratory January 31, 2010 CX-000718: Categorical Exclusion Determination Pennsylvania - Economic Development Authority Sustainable Business Recovery - Pennsylvania Valley School District CX(s) Applied: B1.15, B1.24, B1.31 Date: 01/31/2010 Location(s): Pottsville, Pennsylvania Office(s): Energy Efficiency and Renewable Energy, National Energy Technology Laboratory January 31, 2010 CX-000719: Categorical Exclusion Determination

63

Advanced Oil Recovery Technologies for Improved Recovery from Slope Basin Clastic Reservoirs, Nash Draw Brushy Canyon Pool, Eddy County, NM  

SciTech Connect

The overall objective of this project is to demonstrate that a development program-based on advanced reservoir management methods- can significantly improve oil recovery. The plan includes developing a control area using standard reservoir management techniques and comparing its performance to an area developed using advanced reservoir management methods. Specific goals are (1) to demonstrate that an advanced development drilling and pressure maintenance program can significantly improve oil recovery compared to existing technology applications and (2) to transfer these advanced methodologies to oil and gas producers in the Permian Basin and elsewhere throughout the U.S. oil and gas industry.

Murphy, M.B.

1997-10-30T23:59:59.000Z

64

ADVANCED OIL RECOVERY TECHNOLOGIES FOR IMPROVED RECOVERY FROM SLOPE BASIN CLASTIC RESERVOIRS, NASH DRAW BRUSHY CANYON POOL, EDDY COUNTY, NM  

SciTech Connect

The overall objective of this project is to demonstrate that a development program based on advanced reservoir management methods can significantly improve oil recovery at the Nash Draw Pool (NDP). The plan includes developing a control area using standard reservoir management techniques and comparing its performance to an area developed using advanced reservoir management methods. Specific goals are (1) to demonstrate that an advanced development drilling and pressure maintenance program can significantly improve oil recovery compared to existing technology applications and (2) to transfer these advanced methodologies to oil and gas producers in the Permian Basin and elsewhere throughout the U.S. oil and gas industry.

Mark B. Murphy

2003-10-31T23:59:59.000Z

65

ADVANCED OIL RECOVERY TECHNOLOGIES FOR IMPROVED RECOVERY FROM SLOPE BASIN CLASTIC RESERVOIRS, NASH DRAW BRUSHY CANYON POOL, EDDY COUNTY, NM  

SciTech Connect

The overall objective of this project is to demonstrate that a development program based on advanced reservoir management methods can significantly improve oil recovery at the Nash Draw Pool (NDP). The plan includes developing a control area using standard reservoir management techniques and comparing its performance to an area developed using advanced reservoir management methods. Specific goals are (1) to demonstrate that an advanced development drilling and pressure maintenance program can significantly improve oil recovery compared to existing technology applications and (2) to transfer these advanced methodologies to oil and gas producers in the Permian Basin and elsewhere throughout the U.S. oil and gas industry.

Mark B. Murphy

2004-01-31T23:59:59.000Z

66

NETL: E&P Technologies - Improved Recovery - Stripper Well Technology  

NLE Websites -- All DOE Office Websites (Extended Search)

Exploration & Production Technologies Improved Recovery - Stripper Well Technology image of a well linking to Stripper Well Consortium “Stripper well" is a term used to describe wells that produce natural gas or oil at very low rates—less than 10 barrels per day of oil or less than 60 thousand cubic feet per day of gas. Despite their small output, stripper oil and gas wells make a significant contribution to the Nation’s energy supply—and they are the lifeblood of thousands of small, independent oil and gas operating companies. About 80 percent of the roughly 500,000 producing oil wells in the United States are classified as stripper wells. Despite their small volumes, they add up. The >400,000 stripper oil wells in the United States produce, in aggregate, nearly 1 million barrels per day of oil, which represents almost 19% of domestic oil production.

67

New CO2 Enhanced Recovery Technology Could Greatly Boost U.S. Oil |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

CO2 Enhanced Recovery Technology Could Greatly Boost U.S. Oil CO2 Enhanced Recovery Technology Could Greatly Boost U.S. Oil New CO2 Enhanced Recovery Technology Could Greatly Boost U.S. Oil March 3, 2006 - 11:40am Addthis WASHINGTON , D.C. - The Department of Energy (DOE) released today reports indicating that state-of-the-art enhanced oil recovery techniques could significantly increase recoverable oil resources of the United States in the future. According to the findings, 89 billion barrels or more could eventually be added to the current U.S. proven reserves of 21.4 billion barrels. "These promising new technologies could further help us reduce our reliance on foreign sources of oil," Energy Secretary Samuel W. Bodman said. "By using the proven technique of carbon sequestration, we get the double

68

Vehicle Technologies Office: Materials for Energy Recovery Systems...  

Energy Savers (EERE)

penalties associated with many emission control technologies. These technologies include diesel particulate filters, catalysts, filter substrates, and exhaust-gas recirculation...

69

Categorical Exclusion Determinations: National Energy Technology Laboratory  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

10, 2010 10, 2010 CX-003879: Categorical Exclusion Determination Recovery Act ? Clean Energy Coalition Michigan Green Fleets CX(s) Applied: A7 Date: 09/10/2010 Location(s): Michigan Office(s): Energy Efficiency and Renewable Energy, National Energy Technology Laboratory September 10, 2010 CX-003878: Categorical Exclusion Determination Recovery Act ? Clean Energy Coalition Michigan Green Fleets CX(s) Applied: B5.1 Date: 09/10/2010 Location(s): Melvindale, Michigan Office(s): Energy Efficiency and Renewable Energy, National Energy Technology Laboratory September 10, 2010 CX-003877: Categorical Exclusion Determination Hybrid Membrane/Absorption Process for Post-Combustion Carbon Dioxide Capture CX(s) Applied: B3.6 Date: 09/10/2010 Location(s): Des Plaines, Illinois Office(s): Fossil Energy, National Energy Technology Laboratory

70

Supporting technology for enhanced oil recovery: Chemical flood predictive model  

SciTech Connect

The Chemical Flood Predictive Model (CFPM) was developed by Scientific Software-Intercomp for the US Department of Energy and was used in the National Petroleum Council's (NPC) 1984 survey of US enhanced oil recovery potential (NPC, 1984). The CFPM models micellar (surfactant)-polymer (MP) floods in reservoirs which have been previously waterflooded to residual oil saturation. Thus, only true tertiary floods are considered. An option is available in the model which allows a rough estimate of oil recovery by caustic (alkaline) or caustic-polymer processes. This ''caustic'' option, added for the NPC survey, is not modeled as a separate process. Rather, the caustic and caustic-polymer oil recoveries are computed simply as 15% and 40%, respectively, of the MP oil recovery. In the CFPM, an oil rate versus time function for a single pattern is computed and the results are passed to the economic routines. To estimate multi-pattern project behavior, a pattern development schedule must be specified. After-tax cash flow is computed by combining revenues with capital costs for drilling, conversion and upgrading of wells, chemical handling costs, fixed and variable operating costs, injectant costs, depreciation, royalties, severance, state, federal, and windfall profit taxes, cost and price inflation rates, and the discount rate. A lumped parameter uncertainty routine is used to estimate risk, and allows for variation in computed project performance within an 80% confidence interval. The CFPM uses theory and the results of numerical simulation to predict MP oil recovery in five-spot patterns. Oil-bank and surfactant breakthrough and project life are determined from fractional flow theory. A Koval-type factor, based on the Dykstra-Parsons (1950) coefficient, is used to account for the effects of reservoir heterogeneity on surfactant and oil bank velocities. 18 refs., 17 figs., 27 tabs.

Ray, R.M.; Munoz, J.D.

1986-12-01T23:59:59.000Z

71

Develop Thermoelectric Technology for Automotive Waste Heat Recovery  

Energy.gov (U.S. Department of Energy (DOE))

2011 DOE Hydrogen and Fuel Cells Program, and Vehicle Technologies Program Annual Merit Review and Peer Evaluation

72

NREL: Technology Deployment - FEMA Engages NREL in Hurricane Sandy Recovery  

NLE Websites -- All DOE Office Websites (Extended Search)

FEMA Engages NREL in Hurricane Sandy Recovery Effort FEMA Engages NREL in Hurricane Sandy Recovery Effort May 8, 2013 Natural Disasters, By the Numbers There have been 144 weather/climate disasters since 1980 in which overall damages reached or exceeded $1 billion. In 2005, the estimated economic loss due to Hurricane Katrina was about $187 billion. In 2012, the estimated total loss due to Hurricane Sandy was $71 billion in New York and New Jersey alone. By the time Hurricane Sandy pounded the East Coast on October 29, 2012, it had grown to be the largest Atlantic hurricane on record-with winds spanning 1,100 miles. The devastation left in its wake affected 24 states with the most severe damage concentrated in New Jersey and New York; total damage topped an estimated $71 billion for the two states alone. For the first time, NREL was funded by the Federal Emergency Management

73

Rapid pipeline repair technology for war damage recovery. Technical note  

SciTech Connect

This report documents the development of three experimental pipeline couplers for rapid repair of fuel lines damaged in an attack. The experimental couplers are: (1) the Cold Forge coupler, (2) the Internal Coupler, and (3) the Inflatable Seal Coupler. The focus of the evaluation was to determine the feasibility of rapidly repairing bomb-damaged fuel lines with each coupler, particularly underground pipelines made of carbon steel. Evaluating the feasibility of repair with each coupler was based on such aspects as installations speed and effectiveness. The test results confirmed that each coupler could be used during base recovery, operations to rapidly and effectively repair a fuel pipeline that may be out-of-round or highly misaligned. Recommended that each experimental coupler be taken into advanced development for extensive testing and field evaluation. Base recovery, Expedient pipeline repair, Utility repair.

Anguiano, G.

1993-06-01T23:59:59.000Z

74

Supporting technology for enhanced oil recovery - EOR thermal processes  

SciTech Connect

This report contains the results of efforts under the six tasks of the Eighth Amendment and Extension of Annex IV, Enhanced Oil Recovery Thermal Processes of the Venezuela/USA Agreement. The report is presented in sections and each section contains one or more reports prepared by various individuals or groups describing the results of efforts under each of the tasks. A statement of each task, taken from the agreement, is presented on the first page of each section.

NONE

1995-03-01T23:59:59.000Z

75

Categorical Exclusion Determinations: American Recovery and Reinvestment  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

6, 2010 6, 2010 CX-003804: Categorical Exclusion Determination Recovery Act: San Bernardino Associated Government Natural Gas Truck Project (Orange, California Infrastructure Modification) CX(s) Applied: B5.1 Date: 09/16/2010 Location(s): Orange, California Office(s): Energy Efficiency and Renewable Energy, National Energy Technology Laboratory September 16, 2010 CX-003799: Categorical Exclusion Determination Electrochromic Glazing Technology: Improved Performance, Lower Price CX(s) Applied: A9, B2.2, B5.1 Date: 09/16/2010 Location(s): Faribault, Minnesota Office(s): Energy Efficiency and Renewable Energy, National Energy Technology Laboratory September 16, 2010 CX-003798: Categorical Exclusion Determination Master Curriculum Development for Energy Auditors, Commissioning Agents and

76

Commercial Demonstration of Wood Recovery, Recycling, and Value Adding Technologies  

SciTech Connect

This commercial demonstration project demonstrated the technical feasibility of converting low-value, underutilized and waste stream solid wood fiber material into higher valued products. With a growing need to increase product/production yield and reduce waste in most sawmills, few recovery operations and practically no data existed to support the viability of recovery operations. Prior to our efforts, most all in the forest products industry believed that recovery was difficult, extremely labor intensive, not cost effective, and that recovered products had low value and were difficult to sell. This project provided an opportunity for many within the industry to see through demonstration that converting waste stream material into higher valued products does in fact offer a solution. Our work, supported by the U.S. Department of Energy, throughout the project aimed to demonstrate a reasonable approach to reducing the millions of recoverable solid wood fiber tons that are annually treated as and converted into low value chips, mulch and fuel. Consequently sawmills continue to suffer from reduced availability of forest resources, higher raw material costs, growing waste disposal problems, increased global competition, and more pressure to operate in an Environmentally Friendly manner. It is our belief (based upon the experience of this project) that the successful mainstreaming of the recovery concept would assist in alleviating this burden as well as provide for a realistically achievable economic benefit to those who would seriously pursue the concept and tap into the rapidly growing ''GREEN'' building marketplace. Ultimately, with participation and aggressive pursuit of the recovery concept, the public would benefit in that: (1) Landfill/disposal waste volume could be reduced adding greater life to existing municipal landfill sites thereby minimizing the need to prematurely license and open added facilities. Also, there would be a cost avoidance benefit associated to what would have been the added municipal (community) management costs involved with maintaining closed landfills. (2) With greater quantities of recovered material being returned to and integrated into manufacturing and the marketplace, reduced demand upon virgin wood sources could help lead the way to promoting improved relations and environmental balance between producers and consumers further expanding the value of our natural resource without adding environmental burden.

Auburn Machinery, Inc.

2004-07-15T23:59:59.000Z

77

Development of Thermoelectric Technology for Automotive Waste Heat Recovery  

Energy.gov (U.S. Department of Energy (DOE))

Presentation from the U.S. DOE Office of Vehicle Technologies "Mega" Merit Review 2008 on February 25, 2008 in Bethesda, Maryland.

78

Develop Thermoelectric Technology for Automotive Waste Heat Recovery  

Energy.gov (U.S. Department of Energy (DOE))

2009 DOE Hydrogen Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting, May 18-22, 2009 -- Washington D.C.

79

Develop Thermoelectric Technology for Automotive Waste Heat Recovery  

Energy.gov (U.S. Department of Energy (DOE))

2010 DOE Vehicle Technologies and Hydrogen Programs Annual Merit Review and Peer Evaluation Meeting, June 7-11, 2010 -- Washington D.C.

80

Post-Shred Materials Recovery Technology Development and Demonstration  

Energy.gov (U.S. Department of Energy (DOE))

2009 DOE Hydrogen Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting, May 18-22, 2009 -- Washington D.C.

Note: This page contains sample records for the topic "recovery technology cxs" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

Post-Shred Materials Recovery Technology Development and Demonstration  

Energy.gov (U.S. Department of Energy (DOE))

Presentation from the U.S. DOE Office of Vehicle Technologies "Mega" Merit Review 2008 on February 25, 2008 in Bethesda, Maryland.

82

ADVANCED OIL RECOVERY TECHNOLOGIES FOR IMPROVED RECOVERY FROM SLOPE BASIN CLASTIC RESERVOIRS, NASH DRAW BRUSHY CANYON POOL, EDDY COUNTY, NM  

SciTech Connect

The overall objective of this project is to demonstrate that a development program-based on advanced reservoir management methods-can significantly improve oil recovery at the Nash Draw Pool (NDP). The plan includes developing a control area using standard reservoir management techniques and comparing its performance to an area developed using advanced reservoir management methods. Specific goals are (1) to demonstrate that an advanced development drilling and pressure maintenance program can significantly improve oil recovery compared to existing technology applications and (2) to transfer these advanced methodologies to oil and gas producers in the Permian Basin and elsewhere throughout the U.S. oil and gas industry. This is the twenty-eighth quarterly progress report on the project. Results obtained to date are summarized.

Mark B. Murphy

2002-09-30T23:59:59.000Z

83

Categorical Exclusion Determinations: National Energy Technology Laboratory  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

May 19, 2010 May 19, 2010 CX-002418: Categorical Exclusion Determination Energy Retrofits for State Correctional Facilities - Mobile Work Release/Work Center Facility Boiler CX(s) Applied: B1.24, B1.31, B2.2, A9, B5.1 Date: 05/19/2010 Location(s): Pritchard, Alabama Office(s): Energy Efficiency and Renewable Energy, National Energy Technology Laboratory May 19, 2010 CX-002289: Categorical Exclusion Determination Cavitation Pretreatment of a Flotation Feedstock for Enhanced Coal Recovery CX(s) Applied: B3.6 Date: 05/19/2010 Location(s): Lexington, Kentucky Office(s): Fossil Energy, National Energy Technology Laboratory May 19, 2010 CX-002290: Categorical Exclusion Determination Recovery - Advanced Underground Compressed Air Energy Storage (CAES) CX(s) Applied: A1, A9 Date: 05/19/2010

84

Supporting technology for enhanced oil recovery: Polymer predictive model  

SciTech Connect

The Polymer Flood Predictive Model (PFPM) was developed by Scientific Software-Intercomp for the National Petroleum Council's (NPC) 1984 survey of US enhanced oil recovery potential (NPC, 1984). The PFPM is switch-selectable for either polymer or waterflooding, and an option in the model allows the calculation of the incremental oil recovery and economics of polymer relative to waterflooding. The architecture of the PFPM is similar to that of the other predictive models in the series: in-situ combustion, steam drive (Aydelotte and Pope, 1983), chemical flooding (Paul et al., 1982) and CO/sub 2/ miscible flooding (Paul et al., 1984). In the PFPM, an oil rate versus time function for a single pattern is computed and then is passed to the economic calculations. Data for reservoir and process development, operating costs, and a pattern schedule (if multiple patterns are desired) allow the computation of discounted cash flow and other measures of profitability. The PFPM is a three-dimensional (stratified, five-spot), two-phase (water and oil) model which computes water from breakthrough and oil recovery using fractional flow theory, and models areal and vertical sweeps using a streamtube approach. A correlation based on numerical simulation results is used to model the polymer slug size effect. The physical properties of polymer fluids, such as adsorption, permeability reduction, and non-Newtonian effects, are included in the model. Pressure drop between the injector and producer is kept constant, and the injectivity at each time step is calculated based on the mobility in each streamtube. Heterogeneity is accounted for by either entering detailed layer data or using the Dykstra-Parsons coefficient for a reservoir with a log-normal permeability distribution. 24 refs., 27 figs., 59 tabs.

Not Available

1986-12-01T23:59:59.000Z

85

Energy Requirements for Butanol Recovery Using the Flash Fermentation Technology  

Science Journals Connector (OSTI)

The bioreactor is operated at atmospheric pressure and the broth is circulated in a closed loop to a vacuum chamber where ABE is continuously boiled off at 37 C and condensed afterward. ... Having in mind that the accuracy of the amount of butanol recovered in the flash tank is given by a good representation of the thermodynamics characteristics of the vaporliquid equilibrium of the n-butanol/water system, validation of the equilibrium calculations was carried out using experimental data available in the literature. ... (phase) properties of butanol and water systems, this paper presents a structured approach to det. the key characteristics of various butanol recovery methods. ...

Adriano P. Mariano; Mohammad J. Keshtkar; Daniel I. P. Atala; Francisco Maugeri Filho; Maria Regina Wolf Maciel; Rubens Maciel Filho; Paul Stuart

2011-04-12T23:59:59.000Z

86

DOE-Sponsored Technology Enhances Recovery of Natural Gas in Wyoming |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Sponsored Technology Enhances Recovery of Natural Gas in Sponsored Technology Enhances Recovery of Natural Gas in Wyoming DOE-Sponsored Technology Enhances Recovery of Natural Gas in Wyoming March 26, 2009 - 1:00pm Addthis Washington, DC --Research sponsored by the U.S. Department of Energy (DOE) Oil and Natural Gas Program has found a way to distinguish between groundwater and the water co-produced with coalbed natural gas, thereby boosting opportunities to tap into the vast supply of natural gas in Wyoming as well as Montana. In a recently completed project, researchers at the University of Wyoming used the isotopic carbon-13 to carbon-12 ratio to address environmental issues associated with water co-produced with coalbed natural gas. The research resulted in a patent application for this unique use of the ratio.

87

DOE-Sponsored Technology Enhances Recovery of Natural Gas in Wyoming |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Technology Enhances Recovery of Natural Gas in Technology Enhances Recovery of Natural Gas in Wyoming DOE-Sponsored Technology Enhances Recovery of Natural Gas in Wyoming March 26, 2009 - 1:00pm Addthis Washington, DC --Research sponsored by the U.S. Department of Energy (DOE) Oil and Natural Gas Program has found a way to distinguish between groundwater and the water co-produced with coalbed natural gas, thereby boosting opportunities to tap into the vast supply of natural gas in Wyoming as well as Montana. In a recently completed project, researchers at the University of Wyoming used the isotopic carbon-13 to carbon-12 ratio to address environmental issues associated with water co-produced with coalbed natural gas. The research resulted in a patent application for this unique use of the ratio. An added benefit of the project, which was managed by the National Energy

88

Promising technology for recovery and use of liquefied natural gas  

Science Journals Connector (OSTI)

Use of liquefied natural gas is proposed as an alternative to motor fuel. Technology for recovering liquid natural gas based on the principle of internal gas cooling in a turbo-expander, and the equipment require...

E. B. Fedorova; V. V. Fedorov; A. D. Shakhov

2009-03-01T23:59:59.000Z

89

Categorical Exclusion Determinations: National Energy Technology Laboratory  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

23, 2012 23, 2012 CX-008929: Categorical Exclusion Determination Fundamental Investigations and Rational Design of Durable, High-Performance Cathode Materials CX(s) Applied: B3.6 Date: 08/23/2012 Location(s): Georgia Offices(s): National Energy Technology Laboratory August 23, 2012 CX-008928: Categorical Exclusion Determination High Efficiency Molten-Bed Oxy-Coal Combustion with Low Flue Gas Recirculation CX(s) Applied: B3.6 Date: 08/23/2012 Location(s): Utah Offices(s): National Energy Technology Laboratory August 22, 2012 CX-008930: Categorical Exclusion Determination Recovery Act: Clean Cities Transportation Petroleum Reduction Technologies Program CX(s) Applied: A1 Date: 08/22/2012 Location(s): Utah Offices(s): National Energy Technology Laboratory August 21, 2012 CX-008931: Categorical Exclusion Determination

90

Advanced Oil Recovery Technologies for Improved Recovery from Slope Basin Clastic Reservoirs, Nash Draw Brushy Canyon Pool, Eddy County, NM  

SciTech Connect

The Nash Draw Brushy Canyon Pool in Eddy County New Mexico is a cost-shared field demonstration project in the US Department of Energy Class II Program. A major goal of the Class III Program is to stimulate the use of advanced technologies to increase ultimate recovery from slope-basin clastic reservoirs. Advanced characterization techniques are being used at the Nash Draw project to develop reservoir management strategies for optimizing oil recovery from this Delaware reservoir. Analysis, interpretation, and integration of recently acquired geologic, geophysical, and engineering data revealed that the initial reservoir characterization was too simplistic to capture the critical features of this complex formation. Contrary to the initial characterization, a new reservoir description evolved that provided sufficient detail regarding the complexity of the Brushy Canyon interval at Nash Draw. This new reservoir description is being used as a risk reduction tool to identify ''sweet spots'' for a development drilling program as well as to evaluate pressure maintenance strategies. The reservoir characterization, geological modeling, 3-D seismic interpretation, and simulation studies have provided a detailed model of the Brushy Canyon zones. This model was used to predict the success of different reservoir management scenarios and to aid in determining the most favorable combination of targeted drilling, pressure maintenance, well simulation, and well spacing to improve recovery from this reservoir.

Murphy, Mark B.

1999-02-24T23:59:59.000Z

91

Remarks by The President on Recovery Act Funding For Smart Grid Technology  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Remarks by The President on Recovery Act Funding For Smart Grid Remarks by The President on Recovery Act Funding For Smart Grid Technology Remarks by The President on Recovery Act Funding For Smart Grid Technology October 27, 2009 - 12:00am Addthis (Arcadia, Florida) - Today, President Obama spoke at the DeSoto Next Generation Solar Energy Center in Arcadia, Florida where he delivered the below remarks: THE PRESIDENT: Thank you, guys. Thank you very much. Please, have a seat. Thank you so much. Well, first of all, let me thank Lew Hay and his visionary leadership at Florida Power & Light. It's an example of a company that is doing well by doing good. And I think it's a model for what we could duplicate all across the country. To Greg Bove, who just gave me the tour and was a construction manager for this facility, congratulations. We've got a couple of special guests here:

92

American Recovery and Reinvestment Act of 2009: Bioenergy Technologies Office Investments  

Energy.gov (U.S. Department of Energy (DOE))

The Bioenergy Technologies Office rewarded about $178 million in American Recovery and Reinvestment Act of 2009 funds; the projects accelerate advanced biofuels RD&D, speed the deployment of commercialization of biofuels, and further the U.S. bioindustry through market transformation.

93

Energy recovery from solid waste fuels using advanced gasification technology  

SciTech Connect

Since the mid-1980s, TPS Termiska Processer AB has been working on the development of an atmospheric-pressure gasification process. A major aim at the start of this work was the generation of fuel gas from indigenous fuels to Sweden (i.e. biomass). As the economic climate changed and awareness of the damage to the environment caused by the use of fossil fuels in power generation equipment increased, the aim of the development work at TPS was changed to applying the process to heat and power generation from feedstocks such as biomass and solid wastes. Compared with modern waste incineration with heat recovery, the gasification process will permit an increase in electricity output of up to 50%. The gasification process being developed is based on an atmospheric-pressure circulating fluidized bed gasifier coupled to a tar-cracking vessel. The gas produced from this process is then cooled and cleaned in conventional equipment. The energy-rich gas produced is clean enough to be fired in a gas boiler without requiring extensive flue gas cleaning, as is normally required in conventional waste incineration plants. Producing clean fuel gas in this manner, which facilitates the use of efficient gas-fired boilers, means that overall plant electrical efficiencies of close to 30% can be achieved. TPS has performed a considerable amount of pilot plant testing on waste fuels in their gasification/gas cleaning pilot plant in Sweden. Two gasifiers of TPS design have been in operation in Greve-in-Chianti, italy since 1992. This plant processes 200 tonnes of RDF (refuse-derived fuel) per day.

Morris, M.; Waldheim, L. [TPS Termiska Processer AB, Nykoeping (Sweden)] [TPS Termiska Processer AB, Nykoeping (Sweden)

1998-12-31T23:59:59.000Z

94

Nanoparticle technology for heavy oil in-situ upgrading and recovery enhancement: Opportunities and challenges  

Science Journals Connector (OSTI)

Abstract With more than 170 billion barrels of estimated oil sands reserves in Canada, Canada has the third largest oil reserves in the world. However, more than 80% of oil sands reserves are located deep underground and could not be accessed by surface mining. Nonetheless, a number of in-situ recovery methods have been developed to extract heavy oil and bitumen from deep reservoirs. Once produced, bitumen is transferred to upgraders converting low quality oil to synthetic crude oil. However, in the present context, heavy oil and bitumen exploitation process is not just high-energy and water intensive, but also it has significant environmental footprints as it produces significant amount of gaseous emissions and wastewater. In addition, the level of contaminants in bitumen requires special equipment, and has also environmental repercussions. Recently, nanotechnology has emerged as an alternative technology for in-situ heavy oil upgrading and recovery enhancement. Nanoparticle catalysts (nanocatalysts) are one of the important examples on nanotechnology applications. Nanocatalysts portray unique catalytic and sorption properties due to their exceptionally high surface area-to-volume ratio and active surface sites. In-situ catalytic conversion or upgrading of heavy oil with the aid of multi-metallic nanocatalysts is a promising cost effective and environmentally friendly technology for production of high quality oils that meet pipeline and refinery specifications. Further, nanoparticles could be employed as inhibitors for preventing or delaying asphaltene precipitation and subsequently enhance oil recovery. Nevertheless, as with any new technologies, there are a number of challenges facing the employment of nanoparticles for in-situ catalytic upgrading and recovery enhancement. The main goal of this article is to provide an overview of nanoparticle technology usage for enhancing the in-situ catalytic upgrading and recovery processes of crude oil. Furthermore, the article sheds lights on the advantages of employment of nanoparticles in heavy oil industry and addresses some of the limitations and challenges facing this new technology.

Rohallah Hashemi; Nashaat N. Nassar; Pedro Pereira Almao

2014-01-01T23:59:59.000Z

95

Categorical Exclusion Determinations: National Energy Technology Laboratory  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

3, 2011 3, 2011 CX-006451: Categorical Exclusion Determination Research and Development of an Advanced Low Temperature Heat Recovery Absorption Chiller CX(s) Applied: B3.6 Date: 08/03/2011 Location(s): Park Forest, Illinois Office(s): Energy Efficiency and Renewable Energy, National Energy Technology Laboratory August 3, 2011 CX-006448: Categorical Exclusion Determination Carolina Blue Skies Initiative CX(s) Applied: A1, B5.1 Date: 08/03/2011 Location(s): Knightdale, North Carolina Office(s): Energy Efficiency and Renewable Energy, National Energy Technology Laboratory August 3, 2011 CX-006446: Categorical Exclusion Determination DeKalb County/Metropolitan Atlanta Alternative Fuel and Advanced Technology Vehicle Project CX(s) Applied: A1, B5.1 Date: 08/03/2011 Location(s): Morrow, Georgia

96

Categorical Exclusion Determinations: National Energy Technology Laboratory  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

4, 2010 4, 2010 CX-003817: Categorical Exclusion Determination Appliance Technology Evaluation Center (ATEC)- Modification CX(s) Applied: B3.6 Date: 09/14/2010 Location(s): Morgantown, West Virginia Office(s): Energy Efficiency and Renewable Energy, National Energy Technology Laboratory September 14, 2010 CX-003816: Categorical Exclusion Determination Recovery Act: San Bernardino Associated Government Natural Gas Truck Project CX(s) Applied: B5.1 Date: 09/14/2010 Location(s): Rancho Dominguez, California Office(s): Energy Efficiency and Renewable Energy, National Energy Technology Laboratory September 14, 2010 CX-003815: Categorical Exclusion Determination Hardin County General Hospital Energy Efficiency Upgrades CX(s) Applied: B1.3, B2.2, B2.5, B5.1 Date: 09/14/2010 Location(s): Rosiclare, Illinois

97

Diesel Engine Waste Heat Recovery Utilizing Electric Turbocompound Technology  

SciTech Connect

Caterpillar's Technology & Solutions Division conceived, designed, built and tested an electric turbocompound system for an on-highway heavy-duty truck engine. The heart of the system is a unique turbochargerr with an electric motor/generator mounted on the shaft between turbine and compressor wheels. When the power produced by the turbocharger turbine exceeds the power of the compressor, the excess power is converted to electrical power by the generator on the turbo shaft; that power is then used to help turn the crankshaft via an electric motor mounted in the engine flywheel housing. The net result is an improvement in engine fuel economy. The electric turbocompound system provides added control flexibility because it is capable of varying the amount of power extracted from the exhaust gases, thus allowing for control of engine boost. The system configuration and design, turbocharger features, control system development, and test results are presented.

Hopman, Ulrich,; Kruiswyk, Richard W.

2005-07-05T23:59:59.000Z

98

Thermally Activated Desiccant Technology for Heat Recovery and Comfort  

SciTech Connect

Desiccant cooling is an important part of the diverse portfolio of Thermally Activated Technologies (TAT) designed for conversion of heat for the purpose of indoor air quality control. Thermally activated desiccant cooling incorporates a desiccant material that undergoes a cyclic process involving direct dehumidification of moist air and thermal regeneration. Desiccants fall into two categories: liquid and solid desiccants. Regardless of the type, solid or liquid, the governing principles of desiccant dehumidification systems are the same. In the dehumidification process, the vapor pressure of the moist air is higher than that of the desiccant, leading to transfer of moisture from the air to the desiccant material. By heating the desiccant, the vapor pressure differential is reversed in the regeneration process that drives the moisture from the desiccant. Figure 1 illustrates a rotary solid-desiccant dehumidifier. A burner or a thermally compatible source of waste heat can provide the required heat for regeneration.

Jalalzadeh, A. A.

2005-11-01T23:59:59.000Z

99

Bartlesville Energy Technology Center enhanced oil recovery project data base  

SciTech Connect

A comprehensive EOR project data base that is validated, integrated, and continuously maintained and updated is being developed at BETC. The data base, which is not currently available to the public, provides an information resource to accelerate the advancement and applications of EOR technology. The primary sources of data have been specific EOR Projects certified in the Incentives Program, the DOE Cost-Shared Tertiary Program, and a data base of ongoing EOR projects supplied by Gulf Universities Research Consortium (GURC). Information from these sources has provided an extensive basis for the development of a comprehensive data base relating the key parameters for EOR projects in the United States. The sources and types of data within the data base are organized in a manner which will facilitate information transfer within the petroleum industry. 28 references, 3 figures, 2 tables.

French, T.R.; Ray, R.M.

1984-01-01T23:59:59.000Z

100

Categorical Exclusion Determinations: American Recovery and Reinvestment  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Categorical Exclusion Determinations: American Recovery and Categorical Exclusion Determinations: American Recovery and Reinvestment Act Related Categorical Exclusion Determinations: American Recovery and Reinvestment Act Related Categorical Exclusion Determinations issued for actions related to the the American Recovery and Reinvestment Act of 2009. DOCUMENTS AVAILABLE FOR DOWNLOAD June 28, 2010 CX-002841: Categorical Exclusion Determination Texas Propane Fleet Pilot Program (Summary Categorical Exclusion) CX(s) Applied: A7, B5.1 Date: 06/28/2010 Location(s): Texas Office(s): Energy Efficiency and Renewable Energy, National Energy Technology Laboratory June 25, 2010 CX-003086: Categorical Exclusion Determination Improvement of Access Roads on the Cougar-Thurston Number 1 115-Kilovolt and the Thurston-McKenzie Number 1 115-Kilovolt Transmission Lines

Note: This page contains sample records for the topic "recovery technology cxs" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

Advanced Oil Recovery Technologies for Improved Recovery from Slope Basin Clastic Reservoirs, Nash Draw Brushy Canyon Pool, Eddy County, NM  

SciTech Connect

The Nash Draw Brushy Canyon Pool in Eddy County New Mexico was a cost-shared field demonstration project in the U.S. Department of Energy Class III Program. A major goal of the Class III Program was to stimulate the use of advanced technologies to increase ultimate recovery from slope-basin clastic reservoirs. Advanced characterization techniques were used at the Nash Draw Pool (NDP) project to develop reservoir management strategies for optimizing oil recovery from this Delaware reservoir. The objective of the project was to demonstrate that a development program, which was based on advanced reservoir management methods, could significantly improve oil recovery at the NDP. Initial goals were (1) to demonstrate that an advanced development drilling and pressure maintenance program can significantly improve oil recovery compared to existing technology applications and (2) to transfer these advanced methodologies to other oil and gas producers. Analysis, interpretation, and integration of recently acquired geological, geophysical, and engineering data revealed that the initial reservoir characterization was too simplistic to capture the critical features of this complex formation. Contrary to the initial characterization, a new reservoir description evolved that provided sufficient detail regarding the complexity of the Brushy Canyon interval at Nash Draw. This new reservoir description was used as a risk reduction tool to identify 'sweet spots' for a development drilling program as well as to evaluate pressure maintenance strategies. The reservoir characterization, geological modeling, 3-D seismic interpretation, and simulation studies have provided a detailed model of the Brushy Canyon zones. This model was used to predict the success of different reservoir management scenarios and to aid in determining the most favorable combination of targeted drilling, pressure maintenance, well stimulation, and well spacing to improve recovery from this reservoir. An Advanced Log Analysis technique developed from the NDP project has proven useful in defining additional productive zones and refining completion techniques. This program proved to be especially helpful in locating and evaluating potential recompletion intervals, which has resulted in low development costs with only small incremental increases in lifting costs. To develop additional reserves at lower costs, zones behind pipe in existing wells were evaluated using techniques developed for the Brushy Canyon interval. These techniques were used to complete uphole zones in thirteen of the NDP wells. A total of 14 recompletions were done: four during 1999, four during 2000, two during 2001, and four during 2002-2003. These workovers added reserves of 332,304 barrels of oil (BO) and 640,363 MCFG (thousand cubic feet of gas) at an overall weighted average development cost of $1.87 per BOE (barrel of oil equivalent). A pressure maintenance pilot project in a developed area of the field was not conducted because the pilot area was pressure depleted, and the reservoir in that area was found to be compartmentalized and discontinuous. Economic analyses and simulation studies indicated that immiscible injection of lean hydrocarbon gas for pressure maintenance was not warranted at the NDP and would need to be considered for implementation in similar fields very soon after production has started. Simulation studies suggested that the injection of miscible carbon dioxide (CO{sub 2}) could recover significant quantities of oil at the NDP, but a source of low-cost CO{sub 2} was not available in the area. Results from the project indicated that further development will be under playa lakes and potash areas that were beyond the regions covered by well control and are not accessible with vertical wells. These areas, covered by 3-D seismic surveys that were obtained as part of the project, were accessed with combinations of deviated/horizontal wells. Three directional/horizontal wells have been drilled and completed to develop reserves under surface-restricted areas and potash mines. The third

Mark B. Murphy

2005-09-30T23:59:59.000Z

102

Contracts for field projects and supporting research on enhanced oil recovery and improved drilling technology. Progress review No. 26, quarter ending March 31, 1981  

SciTech Connect

Objectives and technical progress are summarized for field projects and supporting research in chemical flooding, CO/sub 2/ injection, thermal/heavy oil recovery, resource assessment, extraction technology, microbial enhanced oil recovery, and improved drilling technology. (DLC)

Linville, B. (ed.)

1981-07-01T23:59:59.000Z

103

Categorical Exclusion Determinations: American Recovery and Reinvestment  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

0, 2009 0, 2009 CX-001287: Categorical Exclusion Determination Hire a Consultant, Energy Equipment Upgrades, Building Retrofits, Participate in Programs, Traffic Signal Retrofits Date: 12/10/2009 Location(s): Tacoma, Washington Office(s): Energy Efficiency and Renewable Energy December 10, 2009 CX-000354: Categorical Exclusion Determination Plug-In Hybrid Electric Medium Duty Commercial Fleet Demonstration and Evaluation CX(s) Applied: A1, B3.6 Date: 12/10/2009 Location(s): Troy, Michigan Office(s): Energy Efficiency and Renewable Energy, National Energy Technology Laboratory December 10, 2009 CX-000353: Categorical Exclusion Determination General Administrative Action to gather information for American Recovery and Reinvestment Act Award CX(s) Applied: A9 Date: 12/10/2009

104

Categorical Exclusion Determinations: American Recovery and Reinvestment  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

9, 2010 9, 2010 CX-004104: Categorical Exclusion Determination State Energy Program Conductor Optimized Rotary Energy Mega-Watt Scale Direct Wind Generator CX(s) Applied: A9, B5.1 Date: 09/29/2010 Location(s): Ronan, Montana Office(s): Energy Efficiency and Renewable Energy, Golden Field Office September 28, 2010 CX-004168: Categorical Exclusion Determination Modeling Variable Refrigerant Flow Heat Pump and Heat Recovery Equipment in EnergyPlus CX(s) Applied: A1, A9, B2.2, B3.6, B5.1 Date: 09/28/2010 Location(s): Brevard County, Florida Office(s): Energy Efficiency and Renewable Energy, National Energy Technology Laboratory September 27, 2010 CX-004077: Categorical Exclusion Determination Replacement of a Relay/Transfer Trip Rack at Redmond Substation and a Transfer Trip Panel at LaPine Substation

105

Categorical Exclusion Determinations: National Energy Technology Laboratory  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

8, 2011 8, 2011 CX-006458: Categorical Exclusion Determination Installation of Retail Biofuel Infrastructure Supporting I-75 Green Corridor Project CX(s) Applied: A1, B5.1 Date: 08/08/2011 Location(s): Detroit, Michigan Office(s): Energy Efficiency and Renewable Energy, National Energy Technology Laboratory August 8, 2011 CX-006456: Categorical Exclusion Determination Fuel Cell Program CX(s) Applied: A1, B2.2, B5.1 Date: 08/08/2011 Location(s): Weston, Connecticut Office(s): Energy Efficiency and Renewable Energy, National Energy Technology Laboratory August 4, 2011 CX-006455: Categorical Exclusion Determination Pennsylvania Energy Development Authority Sustainable Business Recovery - City of Pittsburgh Natural Gas Refuse Trucks CX(s) Applied: A1, B5.1 Date: 08/04/2011 Location(s): Pittsburgh, Pennsylvania

106

Categorical Exclusion Determinations: National Energy Technology Laboratory  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

3, 2011 3, 2011 CX-006156: Categorical Exclusion Determination Utility Metering Installation: B3, B14, B36 CX(s) Applied: B1.15, B2.2 Date: 07/13/2011 Location(s): Morgantown, West Virginia Office(s): Fossil Energy, National Energy Technology Laboratory July 13, 2011 CX-006155: Categorical Exclusion Determination Wisconsin Clean Transportation Program/City of Milwaukee Compressed Natural Gas Infrastructure Project CX(s) Applied: B5.1 Date: 07/13/2011 Location(s): Milwaukee, Wisconsin Office(s): Energy Efficiency and Renewable Energy, National Energy Technology Laboratory July 13, 2011 CX-006154: Categorical Exclusion Determination Recovery State Energy Program - Renewable Energy Incentives - Spencer Residence Open Loop Heat Pump System CX(s) Applied: B5.1 Date: 07/13/2011

107

Categorical Exclusion Determinations: National Energy Technology Laboratory  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

30, 2010 30, 2010 CX-004106: Categorical Exclusion Determination Green Oil: Carbon Dioxide Enhanced Oil Recovery for America?s Small Oil Producers CX(s) Applied: A9 Date: 09/30/2010 Location(s): Socorro, New Mexico Office(s): Fossil Energy, National Energy Technology Laboratory September 30, 2010 CX-004105: Categorical Exclusion Determination High Resolution Three-Dimensional Laser Imaging for Inspection, Maintenance, Repair and Operations CX(s) Applied: B3.6 Date: 09/30/2010 Location(s): Houston, Texas Office(s): Fossil Energy, National Energy Technology Laboratory September 30, 2010 CX-004100: Categorical Exclusion Determination High Resolution Three-Dimensional Laser Imaging for Inspection, Maintenance, Repair and Operations CX(s) Applied: B3.6 Date: 09/30/2010 Location(s): Boulder, Colorado

108

Categorical Exclusion Determinations: National Energy Technology Laboratory  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

7, 2010 7, 2010 CX-003795: Categorical Exclusion Determination Recovery Act: San Bernardino Associated Government Natural Gas Truck Project CX(s) Applied: B5.1 Date: 09/17/2010 Location(s): Rancho Cucamonga, California Office(s): Energy Efficiency and Renewable Energy, National Energy Technology Laboratory September 17, 2010 CX-003793: Categorical Exclusion Determination Texas Propane Fleet Pilot Program CX(s) Applied: B5.1 Date: 09/17/2010 Location(s): Bastrop, Texas Office(s): Energy Efficiency and Renewable Energy, National Energy Technology Laboratory September 17, 2010 CX-003790: Categorical Exclusion Determination Texas Propane Fleet Pilot Program CX(s) Applied: B5.1 Date: 09/17/2010 Location(s): Taylor, Texas Office(s): Energy Efficiency and Renewable Energy, National Energy

109

Status report on energy recovery from municipal solid waste: technologies, lessons and issues. Information bulletin of the energy task force of the urban consortium  

SciTech Connect

A review is presented of the lessons learned and issues raised regarding the recovery of energy from solid wastes. The review focuses on technologies and issues significant to currently operating energy recovery systems in the US - waterwall incineration, modular incineration, refuse derived fuels systems, landfill gas recovery systems. Chapters are: Energy Recovery and Solid Waste Disposal; Energy Recovery Systems; Lessons in Energy Recovery; Issues in Energy Recovery. Some basic conclusions are presented concerning the state of the art of energy from waste. Plants in shakedown or under construction, along with technologies in the development stages, are briefly described. Sources of additional information and a bibliography are included. (MCW)

None

1980-01-01T23:59:59.000Z

110

Recovery Act  

Energy.gov (U.S. Department of Energy (DOE))

The American Recovery and Reinvestment Act of 2009 (Recovery Act) presents opportunities with potential for hydrogen and fuel cell technologies. Signed into law by President Obama on February 17,...

111

Contracts for field projects and supporting research on enhanced oil recovery and improved drilling technology. Progress Review No. 31, quarter ending June 30, 1982  

SciTech Connect

Progress reports are presented of contracts for field projects and supporting research on chemical flooding, carbon dioxide injection, thermal/heavy oil, resource assessment technology, extraction technology, environmental, petroleum technology, microbial enhanced oil recovery, oil recovery by gravity mining, improved drilling technology, and general supporting research.

Linville, B. (ed.)

1982-10-01T23:59:59.000Z

112

Contracts for field projects and supporting research on enhanced oil recovery and improved drilling technology. Progress review No. 28  

SciTech Connect

Highlights of progress during the quarter ending September 30, 1981 are summarized. Field projects and supporting research in the following areas are reported: chemical flooding; carbon dioxide injection; thermal processes/heavy oil (steam and in-situ combustion); resource assessment technology; extraction technology; environmental; petroleum technology; microbial enhanced oil recovery; and improved drilling technology. A list of BETC publications with abstracts, published during the quarter is included. (DMC)

Linville, B.

1982-01-01T23:59:59.000Z

113

Advanced Oil Recovery Technologies for Improved Recovery from Slope Basin Clastic Reservoirs, Nash Draw Brushy Canyon Pool, Eddy County, New Mexico, Class III  

SciTech Connect

The overall objective of this project is to demonstrate that a development program based on advanced reservoir management methods can significantly improve oil recovery at the Nash Draw Pool (NDP). The plan includes developing a control area using standard reservoir management techniques and comparing its performance to an area developed using advanced reservoir management methods. Specific goals are (1) to demonstrate that an advanced development drilling and pressure maintenance program can significantly improve oil recovery compared to existing technology applications and (2) to transfer these advanced methodologies to oil and gas producers in the Permian Basin and elsewhere throughout the U.S. oil and gas industry.

Murphy, Michael B.

2002-02-21T23:59:59.000Z

114

Advanced Oil Recovery Technologies for Improved Recovery from Slope Basin Clastic Reservoirs, Nash Draw Brushy Canyon Pool, Eddy County, New Mexico, Class III  

SciTech Connect

The overall objective of this project was to demonstrate that a development program-based on advanced reservoir management methods-can significantly improve oil recovery at the Nash Draw Pool (NDP). The plan included developing a control area using standard reservoir management techniques and comparing its performance to an area developed using advanced reservoir management methods. Specific goals were (1) to demonstrate that an advanced development drilling and pressure maintenance program can significantly improve oil recovery compared to existing technology applications and (2) to transfer these advanced methodologies to oil and gas producers in the Permian Basin and elsewhere throughout the U.S. oil and gas industry.

Murphy, Mark B.

2002-01-16T23:59:59.000Z

115

Characterization of oil and gas reservoirs and recovery technology deployment on Texas State Lands  

SciTech Connect

Texas State Lands oil and gas resources are estimated at 1.6 BSTB of remaining mobile oil, 2.1 BSTB, or residual oil, and nearly 10 Tcf of remaining gas. An integrated, detailed geologic and engineering characterization of Texas State Lands has created quantitative descriptions of the oil and gas reservoirs, resulting in delineation of untapped, bypassed compartments and zones of remaining oil and gas. On Texas State Lands, the knowledge gained from such interpretative, quantitative reservoir descriptions has been the basis for designing optimized recovery strategies, including well deepening, recompletions, workovers, targeted infill drilling, injection profile modification, and waterflood optimization. The State of Texas Advanced Resource Recovery program is currently evaluating oil and gas fields along the Gulf Coast (South Copano Bay and Umbrella Point fields) and in the Permian Basin (Keystone East, Ozona, Geraldine Ford and Ford West fields). The program is grounded in advanced reservoir characterization techniques that define the residence of unrecovered oil and gas remaining in select State Land reservoirs. Integral to the program is collaboration with operators in order to deploy advanced reservoir exploitation and management plans. These plans are made on the basis of a thorough understanding of internal reservoir architecture and its controls on remaining oil and gas distribution. Continued accurate, detailed Texas State Lands reservoir description and characterization will ensure deployment of the most current and economically viable recovery technologies and strategies available.

Tyler, R.; Major, R.P.; Holtz, M.H. [Univ. of Texas, Austin, TX (United States)] [and others

1997-08-01T23:59:59.000Z

116

NETL: News Release - DOE-Sponsored Technology Enhances Recovery of Natural  

NLE Websites -- All DOE Office Websites (Extended Search)

March 26, 2009 March 26, 2009 DOE-Sponsored Technology Enhances Recovery of Natural Gas in Wyoming Researchers Seek Patent for Isotopic Ratio to Evaluate Water in Coalbeds Washington, DC -Research sponsored by the U.S. Department of Energy (DOE) Oil and Natural Gas Program has found a way to distinguish between groundwater and the water co-produced with coalbed natural gas, thereby boosting opportunities to tap into the vast supply of natural gas in Wyoming as well as Montana. In a recently completed project, researchers at the University of Wyoming used the isotopic carbon-13 to carbon-12 ratio to address environmental issues associated with water co-produced with coalbed natural gas. The research resulted in a patent application for this unique use of the ratio. An added benefit of the project, which was managed by the National Energy Technology Laboratory for the DOE Office of Fossil Energy, was the creation of 27 jobs over the project's 2+ years.

117

Categorical Exclusion Determinations: National Energy Technology Laboratory  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

20, 2009 20, 2009 CX-000438: Categorical Exclusion Determination A Modular Curriculum for Training University Students in Industry Standard Sequestration and Enhanced Oil Recovery Methods CX(s) Applied: A9, B3.8 Date: 11/20/2009 Location(s): Odessa, Texas Office(s): Fossil Energy, National Energy Technology Laboratory November 20, 2009 CX-000437: Categorical Exclusion Determination A Modular Curriculum for Training University Students in Industry Standard Sequestration and Enhanced Oil Recovery Methods CX(s) Applied: A9, B3.8 Date: 11/20/2009 Location(s): Odessa, Texas Office(s): Fossil Energy, National Energy Technology Laboratory November 20, 2009 CX-000373: Categorical Exclusion Determination Measurements of 222 Radon, 220 Radon, and Carbon Dioxide Emissions in Natural Carbon Dioxide Fields in Wyoming: Monitoring, Verification, and

118

Advanced Oil Recovery Technologies for Improved Recovery from Slope Basin Clastic Reservoirs, Nash Draw Brushy Canyon Pool, Eddy County, NM  

SciTech Connect

Advanced reservoir characterization techniques are being used at the Nash Draw Brushy Canyon Pool project to develop reservoir management strategies for optimizing oil recovery from this Delaware reservoir. The reservoir characterization, geologic modeling, 3-D seismic interpretation, and simulation studies have provided a detailed model of the Brushy Canyon zones. This model was used to predict the success of different reservoir management scenarios and to aid in determining the most favorable combination of targeted drilling, pressure maintenance, well stimulation, and well spacing to improve recovery from this reservoir.

Murphy, M.B.

1999-02-01T23:59:59.000Z

119

Contracts for field projects and supporting research on enhanced oil recovery and improved drilling technology. Progress review No. 32, quarter ending September 30, 1982  

SciTech Connect

Progress reports are presented of contracts for field projects and supporting research on chemical flooding, carbon dioxide injection, thermal/heavy oil, resource assessment technology, extraction technology, environmental and safety, microbial enhanced oil recovery, oil recovery by gravity mining, improved drilling technology, and general supporting research.

Linville, B. (ed.)

1983-01-01T23:59:59.000Z

120

Contracts for field projects and supporting research on enhanced oil recovery and improved drilling technology. Progress review No. 33, quarter ending December 31, 1982  

SciTech Connect

Progress reports are presented of contracts for field projects and supporting research on chemical flooding, carbon dioxide injection, thermal/heavy oil, resource assessment technology, extraction technology, environmental and safety, microbial enhanced oil recovery, oil recovery by gravity mining, improved drilling technology, and general supporting research.

Linville, B. (ed.)

1983-04-01T23:59:59.000Z

Note: This page contains sample records for the topic "recovery technology cxs" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

Contracts for field projects and supporting research on enhanced oil recovery and improved drilling technology. Progress review No. 36 for quarter ending September 30, 1983  

SciTech Connect

Progress reports for the quarter ending September 30, 1983, are presented for field projects and supported research for the following: chemical flooding; carbon dioxide injection; thermal/heavy oil; resource assessment technology; extraction technology; environmental and safety; microbial enhanced oil recovery; oil recovery by gravity mining; improved drilling technology; and general supporting research.

Linville, B. (ed.)

1984-03-01T23:59:59.000Z

122

Advanced Membrane Separation Technologies for Energy Recovery from Industrial Process Streams  

SciTech Connect

Recovery of energy from relatively low-temperature waste streams is a goal that has not been achieved on any large scale. Heat exchangers do not operate efficiently with low-temperature streams and thus require such large heat exchanger surface areas that they are not practical. Condensing economizers offer one option for heat recovery from such streams, but they have not been widely implemented by industry. A promising alternative to these heat exchangers and economizers is a prototype ceramic membrane system using transport membrane technology for separation of water vapor and recovery of heat. This system was successfully tested by the Gas Technology Institute (GTI) on a natural gas fired boiler where the flue gas is relatively clean and free of contaminants. However, since the tubes of the prototype system were constructed of aluminum oxide, the brittle nature of the tubes limited the robustness of the system and even limited the length of tubes that could be used. In order to improve the robustness of the membrane tubes and make the system more suitable for industrial applications, this project was initiated with the objective of developing a system with materials that would permit the system to function successfully on a larger scale and in contaminated and potentially corrosive industrial environments. This required identifying likely industrial environments and the hazards associated with those environments. Based on the hazardous components in these environments, candidate metallic materials were identified that are expected to have sufficient strength, thermal conductivity and corrosion resistance to permit production of longer tubes that could function in the industrial environments identified. Tests were conducted to determine the corrosion resistance of these candidate alloys, and the feasibility of forming these materials into porous substrates was assessed. Once the most promising metallic materials were identified, the ability to form an alumina membrane layer on the surface of the metallic tubes was evaluated. Evaluation of this new style of membrane tube involved exposure to SO{sub 2} containing gases as well as to materials with a potential for fouling. Once the choice of substrate and membrane materials and design were confirmed, about 150 tubes were fabricated and assembled into three modules. These modules were mounted on an industrial size boiler and their performance carefully monitored during a limited testing period. The positive results of this performance test confirm the feasibility of utilizing such a system for recovery of heat and water from industrial waste streams. The improved module design along with use of long metallic substrate tubes with a ceramic membrane on the outer surface resulted in the successful, limited scale demonstration of the Transport Membrane Condenser (TMC) technology in the GTI test facility. This test showed this technology can successfully recover a significant amount of heat and water from gaseous waste streams. However, before industry will make the investment to install a full scale TMC, a full scale system will need to be constructed, installed and successfully operated at a few industrial sites. Companies were identified that had an interest in serving as a host site for a demonstration system.

Keiser, J.R.; Wang, D. (Gas Technology Institute); Bischoff, B.; Ciora (Media and Process Technology); Radhakrishnan, B.; Gorti, S.B.

2013-01-14T23:59:59.000Z

123

Contracts for field projects and supporting research on enhanced oil recovery and improved drilling technology. Progress review No. 22, quarter ending March 31, 1980  

SciTech Connect

This report contains statements of objectives and summaries of technical progress on all DOE contracts pertaining to enhanced oil recovery and improved drilling techniques. Subject categories include chemical flooding; carbon dioxide injection; thermal recovery of heavy oil; resource assessment; improved drilling technology; residual oil; environmental; petroleum technology; and microbial enhanced oil recovery. An index containing the names of the companies and institutions involved is included. Current publications resulting from the DOE contractual program are listed. (DMC)

Linville, B. (ed.)

1980-07-01T23:59:59.000Z

124

Advanced Oil Recovery Technologies for Improved Recovery from Slope Basin Clastic Reservoirs, Nash Draw Brushy Canyon Pool, Eddy County, New Mexico, Class III  

SciTech Connect

The Nash Draw Brushy Canyon Pool (NDP) is southeast New Mexico is one of the nine projects selected in 1995 by the U.S. Department of Energy (DOE) for participation in the Class III Reservoir Field Demonstration Program. The goals of the DOE cost-shared Class Program are to: (1) extend economic production, (2) increase ultimate recovery, and (3) broaden information exchange and technology application. Reservoirs in the Class III Program are focused on slope-basin and deep-basin clastic depositional types.

Murphy, Mark B.

2000-10-25T23:59:59.000Z

125

Determination of technology transfer requirements for enhanced oil recovery. Final report  

SciTech Connect

A detailed field study was conducted to determine the technical information needs of current and potential users of enhanced oil recovery data. Under the direction of the Bartlesville Energy Technology Center (BETC), the study (1) identifies groups which have a need for EOR-related information, (2) delineate the specific information needs of each user-group, and (3) outlines methods for improved transfer of appropriate information to the end users. This study also assesses attitudes toward the EOR-related efforts of the US Department of Energy (DOE) and the BETC, and the role each should play in facilitating the commercialization of EOR processes. More than 300 users and potential users of EOR information were surveyed. Included in the survey sample were representatives of major oil companies, independent oil companies, engineering consulting firms, university and private research organizations, financial institutions and federal, state, and local policy-making bodies. In-depth questionnaires were specifically designed for each group. This study analyzes each group's position pertaining to (1) current level of EOR activity or interest, (2) current and projected EOR information needs, (3) assessments of the BETC's current information services and suggestions for improvement, (4) delineation of technical and economic constraints to increased EOR activity, and (5) steps the DOE might take to enhance the attractiveness of commercial EOR operations.

Wilson, T.D.; Scott, J.P.

1980-09-01T23:59:59.000Z

126

The potential environmental gains from recycling waste plastics: Simulation of transferring recycling and recovery technologies to Shenyang, China  

SciTech Connect

Research highlights: {yields} Urban symbiosis creates compatibility of industrial development and waste management. {yields} Mechanical technology leads to more CO{sub 2} emission reduction. {yields} Energy recovery technology leads to more fossil fuel saving. {yields} Clean energy makes recycling technologies cleaner. {yields} Demand management is crucial for realizing potential environmental gains of recycling. - Abstract: With the increasing attention on developing a low-carbon economy, it is necessary to seek appropriate ways on reducing greenhouse gas (GHG) emissions through innovative municipal solid waste management (MSWM), such as urban symbiosis. However, quantitative assessments on the environmental benefits of urban symbiosis, especially in developing countries, are limited because only a limited number of planned synergistic activities have been successful and it is difficult to acquire detailed inventory data from private companies. This paper modifies and applies a two-step simulation system and used it to assess the potential environmental benefits, including the reduction of GHG emissions and saving of fossil fuels, by employing various Japanese plastics recycling/energy-recovery technologies in Shenyang, China. The results showed that among various recycling/energy-recovery technologies, the mechanical waste plastics recycling technology, which produces concrete formwork boards (NF boards), has the greatest potential in terms of reducing GHG emissions (1.66 kg CO{sub 2}e/kg plastics), whereas the technology for the production of refuse plastic fuel (RPF) has the greatest potential on saving fossil fuel consumption (0.77 kgce/kg-plastics). Additional benefits can be gained by applying combined technologies that cascade the utilization of waste plastics. Moreover, the development of clean energy in conjunction with the promotion of new waste plastics recycling programs could contribute to additional reductions in GHG emissions and fossil fuel consumption.

Chen Xudong, E-mail: chen.xudong@nies.go.jp [Institute of Applied Ecology, Chinese Academy of Sciences, No. 72 Wenhua Road, Shenyang 110016 (China); National Institute for Environmental Studies, 16-2 Onogawa, Tsukuba, Ibaraki 305-8506 (Japan); Graduate School of Environmental Studies, Nagoya University, Furo-cho, Chikusa-ku, Nagoya City 464-8601 (Japan); Xi Fengming [Institute of Applied Ecology, Chinese Academy of Sciences, No. 72 Wenhua Road, Shenyang 110016 (China); Geng Yong, E-mail: gengyong@iae.ac.cn [Institute of Applied Ecology, Chinese Academy of Sciences, No. 72 Wenhua Road, Shenyang 110016 (China); Fujita, Tsuyoshi [National Institute for Environmental Studies, 16-2 Onogawa, Tsukuba, Ibaraki 305-8506 (Japan); Graduate School of Environmental Studies, Nagoya University, Furo-cho, Chikusa-ku, Nagoya City 464-8601 (Japan)

2011-01-15T23:59:59.000Z

127

Progress review No. 24: contracts for field projects and supporting research on enhanced oil recovery and improved drilling technology. Progress report, quarter ending September 30, 1980  

SciTech Connect

Reports are presented of contracts for field projects and supporting research on chemical flooding, carbon dioxide injection and thermal/heavy oil, as well as for the following areas of research: extraction technology; resource assessment technology; environmental; petroleum technology; microbial enhanced oil recovery; improved drilling technology; and general supporting research.

Linville, B. (ed.)

1981-02-01T23:59:59.000Z

128

Supporting technology for enhanced oil recovery: Third ammendment and extension to Annex IV enhanced oil recovery thermal processes  

SciTech Connect

This report contains the results of efforts under the seven tasks of the Third Amendment and Extension of Annex IV, Enhanced Oil Recovery Thermal Processes of the Venezuela/USA Agreement. The report is presented in sections (for each of the tasks) and each section contains one or more reports prepared by various individuals or groups describing the results of effort under each of the tasks. A statement of each task, taken from the agreement, is presented on the first page of each section. The tasks are numbered 25 through 31. The first, second, and third reports on Annex IV, ((Venezuela-MEM/USA-DOE Fossil Energy Report IV-1, IV-2, and IV-3 (DOE/BETC/SP-83/15, DOE/BC-84/6/SP, and DOE/BC-86/2/SP)) contain the results from the first 24 tasks. Those reports are dated April 1983, August 1984, and March 1986. Selected papers have been processed for inclusion in the Energy Data Base.

Peterson, G.; Munoz, J.D.

1987-07-01T23:59:59.000Z

129

An LCA model for waste incineration enhanced with new technologies for metal recovery and application to the case of Switzerland  

SciTech Connect

Highlights: An enhanced process-based LCA model for MSWI is featured and applied in case study. LCA modeling of recent technological developments for metal recovery from fly ash. Net release from Swiss MSWI 133 kg CO{sub 2}-eq/tonne waste from attributional LCA perspective. Net savings from a consequential LCA perspective reach up to 303 kg CO{sub 2}-eq/tonne waste. Impacts according to ReCiPe and CExD show similar pattern to climate change. - Abstract: A process model of municipal solid waste incinerators (MSWIs) and new technologies for metal recovery from combustion residues was developed. The environmental impact is modeled as a function of waste composition as well as waste treatment and material recovery technologies. The model includes combustion with a grate incinerator, several flue gas treatment technologies, electricity and steam production from waste heat recovery, metal recovery from slag and fly ash, and landfilling of residues and can be tailored to specific plants and sites (software tools can be downloaded free of charge). Application of the model to Switzerland shows that the treatment of one tonne of municipal solid waste results on average in 425 kg CO{sub 2}-eq. generated in the incineration process, and 54 kg CO{sub 2}-eq. accrue in upstream processes such as waste transport and the production of operating materials. Downstream processes, i.e. residue disposal, generates 5 kg CO{sub 2}-eq. Savings from energy recovery are in the range of 67 to 752 kg CO{sub 2}-eq. depending on the assumptions regarding the substituted energy production, while the recovery of metals from slag and fly ash currently results in a net saving of approximately 35 kg CO{sub 2}-eq. A similar impact pattern is observed when assessing the MSWI model for aggregated environmental impacts (ReCiPe) and for non-renewable resource consumption (cumulative exergy demand), except that direct emissions have less and no relevance, respectively, on the total score. The study illustrates that MSWI plants can be an important element of industrial ecology as they provide waste disposal services and can help to close material and energetic cycles.

Boesch, Michael E. [Aveny GmbH, Schwandenholzstr. 212, CH-8046 Zrich (Switzerland); Vadenbo, Carl, E-mail: vadenbo@ifu.baug.ethz.ch [ETH Zurich, Institute of Environmental Engineering, Schafmattstrasse 6, CH-8093 Zurich (Switzerland); Saner, Dominik [Swiss Post, Communications, Politics and Social Responsibility, Viktoriastrasse 21, P.O. Box, CH-3030 Berne (Switzerland); Huter, Christoph [City of Zrich, ERZ Entsorgung - Recycling Zrich, Hagenholzstrasse 110, P.O. Box, CH-8050 Zrich (Switzerland); Hellweg, Stefanie [ETH Zurich, Institute of Environmental Engineering, Schafmattstrasse 6, CH-8093 Zurich (Switzerland)

2014-02-15T23:59:59.000Z

130

Categorical Exclusion Determinations: National Energy Technology Laboratory  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

January 21, 2011 January 21, 2011 CX-005058: Categorical Exclusion Determination Improving Reservoir Contact for Increased Production and Recovery of Gas Shale Reservoirs CX(s) Applied: B3.6 Date: 01/21/2011 Location(s): Salt Lake City, Utah Office(s): Fossil Energy, National Energy Technology Laboratory January 20, 2011 CX-005057: Categorical Exclusion Determination Area of Interest 1, Carbon Dioxide at the Interface: Nature and Dynamics of the Reservoir/Caprock Contact and Implications for Carbon Storage Performance CX(s) Applied: A9, B3.1 Date: 01/20/2011 Location(s): Eau Claire, Wisconsin Office(s): Fossil Energy, National Energy Technology Laboratory January 20, 2011 CX-005056: Categorical Exclusion Determination Area of Interest 1, Carbon Dioxide at the Interface: Nature and Dynamics of

131

Categorical Exclusion Determinations: National Energy Technology Laboratory  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

22, 2011 22, 2011 CX-005287: Categorical Exclusion Determination New Jersey Compressed Natural Gas Refuse Trucks, Shuttle Buses and Infrastructure Project: Essex Company Resource Recovery Facility CX(s) Applied: B5.1 Date: 02/22/2011 Location(s): Newark, New Jersey Office(s): Energy Efficiency and Renewable Energy, National Energy Technology Laboratory February 18, 2011 CX-005283: Categorical Exclusion Determination Installation of Retail Biofuel Infrastructure Supporting I-75 Green Corridor Project CX(s) Applied: A1, B5.1 Date: 02/18/2011 Location(s): Miami, Florida Office(s): Energy Efficiency and Renewable Energy, National Energy Technology Laboratory February 18, 2011 CX-005282: Categorical Exclusion Determination Installation of Retail Biofuel Infrastructure Supporting I-75 Green

132

Categorical Exclusion Determinations: National Energy Technology Laboratory  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

20, 2010 20, 2010 CX-003720: Categorical Exclusion Determination Recovery Act - Los Angeles Department of Water and Power Smart Grid Regional Demonstration Project CX(s) Applied: A9, A11, B3.6, B4.4, B5.1 Date: 09/20/2010 Location(s): Los Angeles County, California Office(s): Electricity Delivery and Energy Reliability, National Energy Technology Laboratory September 20, 2010 CX-003727: Categorical Exclusion Determination State Energy Program: Strengthening Building Retrofit Markets and Stimulating Energy Efficiency Action CX(s) Applied: A9, A11, B5.1 Date: 09/20/2010 Location(s): Michigan Office(s): Energy Efficiency and Renewable Energy, National Energy Technology Laboratory September 20, 2010 CX-003726: Categorical Exclusion Determination Phipps Conservatory and Botanical Gardens Waste-to-Energy Project

133

APPLICATION OF RESERVOIR CHARACTERIZATION AND ADVANCED TECHNOLOGY TO IMPROVE RECOVERY AND ECONOMICS IN A LOWER QUALITY SHALLOW SHELF SANANDRES RESERVOIR  

SciTech Connect

The Class 2 Project at West Welch was designed to demonstrate the use of advanced technologies to enhance the economics of improved oil recovery (IOR) projects in lower quality Shallow Shelf Carbonate (SSC) reservoirs, resulting in recovery of additional oil that would otherwise be left in the reservoir at project abandonment. Accurate reservoir description is critical to the effective evaluation and efficient design of IOR projects in the heterogeneous SSC reservoirs. Therefore, the majority of Budget Period 1 was devoted to reservoir characterization. Technologies being demonstrated include: (1) Advanced petrophysics; (2) Three-dimensional (3-D) seismic; (3) Crosswell bore tomography; (4) Advanced reservoir simulation; (5) Carbon dioxide (CO{sub 2}) stimulation treatments; (6) Hydraulic fracturing design and monitoring; (7) Mobility control agents.

Unknown

2003-01-15T23:59:59.000Z

134

Contracts for field projects and supporting research on enhanced oil recovery and improved drilling technology. Progress review No. 35, quarter ending June 30, 1983  

SciTech Connect

Progress reports are presented for field projects and supporting research for the following: chemical flooding; carbon dioxide injection; thermal/heavy oil; resource assessment technology; extraction technology; environmental and safety; microbial enhanced oil recovery; improved drilling technology; and general supporting research.

Linville, B. (ed.)

1983-10-01T23:59:59.000Z

135

Contracts for field projects and supporting research on enhanced oil recovery and improved drilling technology. Progress review No. 30, quarter ending March 31, 1982  

SciTech Connect

Reports are presented of contracts for field projects and supporting research on chemical flooding, carbon dioxide injection, thermal/heavy oil, as well as for the following areas of research: resource assessment technology; extraction technology; microbial enhanced oil recovery; improved drilling technology, and general supporting research.

Linville, B. (ed.)

1982-07-01T23:59:59.000Z

136

Progress review No. 25: contracts for field projects and supporting research on enhanced oil recovery and improved drilling technology. Progress report, quarter ending December 31, 1980  

SciTech Connect

Reports are presented of contracts for field projects and supporting research on chemical flooding, carbon dioxide injection, thermal/heavy oil, as well as for the following areas of research: resource assessment technology; extraction technology; environmental; microbial enhanced oil recovery; improving drilling technology; and general supporting research.

Linville, B. (ed.)

1981-05-01T23:59:59.000Z

137

Contracts and grants for cooperative research on enhanced oil recovery and improved drilling technology. Progress review No. 20, quarter ending September 30, 1979  

SciTech Connect

The contracts and grants for field projects and supporting research on enhanced oil recovery and improved drilling technology are arranged according to: chemical flooding; carbon dioxide injection; thermal/heavy oil; resource assessment technology; improved drilling technology; residual oil; environmental; and petroleum techology.

Linville, B. (ed.)

1980-01-01T23:59:59.000Z

138

Contracts for field projects and supporting research on enhanced oil recovery and improved drilling technology. Progress review No. 27, for quarter ending June 30, 1981  

SciTech Connect

Reports are presented of contracts for field projects and supporting research on chemical flooding, carbon dioxide injection, thermal/heavy oil, as well as for the following areas of research: resource assessment technology; extraction technology; environmental; microbial enhanced oil recovery; improved drilling technology; and general supporting research.

Linville, B. (ed.)

1981-09-01T23:59:59.000Z

139

Contracts for field projects and supporting research on enhanced oil recovery and improved drilling technology. Progress review No. 34, quarter ending March 31, 1983  

SciTech Connect

Progress achieved for the quarter ending March 1983 are presented for field projects and supporting research for the following: chemical flooding; carbon dioxide injection; and thermal/heavy oil. In addition, progress reports are presented for: resource assessment technology; extraction technology; environmental and safety; microbial enhanced oil recovery; oil recovered by gravity mining; improved drilling technology; and general supporting research. (ATT)

Linville, B. (ed.) [ed.

1983-07-01T23:59:59.000Z

140

Program Final Report - Develop Thermoelectric Technology for Automotive Waste Heat Recovery  

SciTech Connect

We conducted a vehicle analysis to assess the feasibility of thermoelectric technology for waste heat recovery and conversion to useful electrical power and found that eliminating the 500 W of electrical power generated by the alternator corresponded to about a 7% increase in fuel economy (FE) for a small car and about 6% for a full size truck. Electric power targets of 300 W were established for city and highway driving cycles for this project. We obtained critical vehicle level information for these driving cycles that enabled a high-level design and performance analysis of radiator and exhaust gas thermoelectric subsystems for several potential vehicle platforms, and we identified the location and geometric envelopes of the radiator and exhaust gas thermoelectric subsystems. Based on this analysis, we selected the Chevrolet Suburban as the most suitable demonstration vehicle for this project. Our modeling and thermal analysis assessment of a radiator-based thermoelectric generator (TEG), however, revealed severe practical limitations. Specifically the small temperature difference of 100°C or less between the engine coolant and ambient air results in a low Carnot conversion efficiency, and thermal resistance associated with air convection would reduce this conversion efficiency even further. We therefore decided not to pursue a radiator-based waste heat recovery system and focused only on the exhaust gas. Our overall approach was to combine science and engineering: (1) existing and newly developed TE materials were carefully selected and characterized by the material researcher members of our team, and most of the material property results were validated by our research partners, and (2) system engineers worked closely with vehicle engineers to ensure that accurate vehicle-level information was used for developing subsystem models and designs, and the subsystem output was analyzed for potential fuel economy gains. We incorporated material, module, subsystem, and integration costs into the material selection criteria in order to balance various materials, module and subsystem design, and vehicle integration options. Our work on advanced TE materials development and on TEG system design, assembly, vehicle integration, and testing proceeded in parallel efforts. Results from our two preliminary prototype TEGs using only Bi-Te TE modules allowed us to solve various mechanical challenges and to finalize and fine tune aspects of the design and implementation. Our materials research effort led us to quickly abandon work on PbTe and focus on the skutterudite materials due to their superior mechanical performance and suitability at automotive exhaust gas operating temperatures. We synthesized a sufficiently large quantity of skutterudite material for module fabrication for our third and final prototype. Our TEG#3 is the first of its kind to contain state-of-the-art skutterudite-based TE modules to be installed and tested on a production vehicle. The design, which consisted of 24 skutterudite modules and 18 Bi-Te modules, attempted to optimize electrical power generation by using these two kinds of TE modules that have their peak performance temperatures matched to the actual temperature profile of the TEG during operation. The performance of TEG#3 was limited by the maximum temperature allowable for the Bi-Te TE modules located in the colder end of the TEG, resulting in the operating temperature for the skutterudite modules to be considerably below optimum. We measured the power output for (1) the complete TEG (25 Watts) and (2) an individual TE module series string (1/3 of the TEG) operated at a 60°C higher temperature (19 Watts). We estimate that under optimum operating temperature conditions, TEG#3 will generate about 235 Watts. With additional improvements in thermal and electrical interfaces, temperature homogeneity, and power conditioning, we estimate TEG#3 could deliver a power output of about 425 Watts.

Gregory Meisner

2011-08-31T23:59:59.000Z

Note: This page contains sample records for the topic "recovery technology cxs" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

Waste Heat Recovery  

Office of Environmental Management (EM)

DRAFT - PRE-DECISIONAL - DRAFT 1 Waste Heat Recovery 1 Technology Assessment 2 Contents 3 1. Introduction to the TechnologySystem ......

142

Contracts for field projects and supporting research on enhanced oil recovery and improved drilling technology. Progress review No. 29, quarter ending December 31, 1981  

SciTech Connect

Highlights of progress accomplished during the quarter ending December, 1981, are summarized in this report. Discussion is presented under the following headings: chemical flooding - field projects; chemical flooding - supporting research; carbon dioxide injection - field projects; carbon dioxide injection - supporting research; thermal/heavy oil - field projects and supporting research; resource assessment technology; extraction technology; environmental aspects; petroleum processing technology; microbial enhanced oil recovery; and improved drilling technology. (DMC)

Linville, B. (ed.)

1982-05-01T23:59:59.000Z

143

Analysis of energy recovery potential using innovative technologies of waste gasification  

SciTech Connect

Highlights: Black-Right-Pointing-Pointer Energy recovery from waste by gasification was simulated. Black-Right-Pointing-Pointer Two processes: high temperature gasification and gasification associated to plasma. Black-Right-Pointing-Pointer Two types of feeding waste: Refuse Derived Fuel (RDF) and pulper residues. Black-Right-Pointing-Pointer Different configurations for the energy cycles were considered. Black-Right-Pointing-Pointer Comparison with performances from conventional Waste-to-Energy process. - Abstract: In this paper, two alternative thermo-chemical processes for waste treatment were analysed: high temperature gasification and gasification associated to plasma process. The two processes were analysed from the thermodynamic point of view, trying to reconstruct two simplified models, using appropriate simulation tools and some support data from existing/planned plants, able to predict the energy recovery performances by process application. In order to carry out a comparative analysis, the same waste stream input was considered as input to the two models and the generated results were compared. The performances were compared with those that can be obtained from conventional combustion with energy recovery process by means of steam turbine cycle. Results are reported in terms of energy recovery performance indicators as overall energy efficiency, specific energy production per unit of mass of entering waste, primary energy source savings, specific carbon dioxide production.

Lombardi, Lidia, E-mail: lidia.lombardi@unifit.it [Dipartimento di Energetica, University of Florence, via Santa Marta 3, 50139 Florence (Italy); Carnevale, Ennio [Dipartimento di Energetica, University of Florence, via Santa Marta 3, 50139 Florence (Italy); Corti, Andrea [Dipartimento di Ingegneria dell'Informazione, University of Siena, via Roma 56, 56100 Siena (Italy)

2012-04-15T23:59:59.000Z

144

Categorical Exclusion Determinations: American Recovery and Reinvestment  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

7, 2010 7, 2010 CX-003486: Categorical Exclusion Determination Recovery Act - State Energy Program CX(s) Applied: B5.1 Date: 08/17/2010 Location(s): Kenner, Louisiana Office(s): Energy Efficiency and Renewable Energy, Golden Field Office August 17, 2010 CX-003482: Categorical Exclusion Determination State Energy Program American Recovery and Reinvestment Act EE-0000169 CX(s) Applied: B5.1 Date: 08/17/2010 Location(s): Bloomington, Indiana Office(s): Energy Efficiency and Renewable Energy, Golden Field Office August 17, 2010 CX-003480: Categorical Exclusion Determination State Energy Program American Recovery and Reinvestment Act EE-0000169 CX(s) Applied: B5.1 Date: 08/17/2010 Location(s): Lafayette, Indiana Office(s): Energy Efficiency and Renewable Energy, Golden Field Office

145

Supporting technology for enhanced oil recovery: EOR thermal processes. Seventh Amendment and Extension to Annex 4, Enhanced oil recovery thermal processes  

SciTech Connect

This report contains the results of efforts under the six tasks of the Seventh Amendment and Extension of Annex IV, Enhanced Oil Recovery Thermal Processes of the Venezuela/USA Agreement. The report is presented in sections (for each of the 6 tasks) and each section contains one or more reports prepared by various individuals or groups describing the results of efforts under each of the tasks. A statement of each task, taken from the agreement, is presented on the first page of each section. The tasks are numbered 50 through 55. The first, second, third, fourth, fifth, sixth and seventh reports on Annex IV, Venezuela MEM/USA-DOE Fossil Energy Report IV-1, IV-2, IV-3, IV-4, IV-5 and IV-6 (DOE/BETC/SP-83/15, DOE/BC-84/6/SP, DOE/BC-86/2/SP, DOE/BC-87/2/SP, DOE/BC-89/l/SP, DOE/BC-90/l/SP, and DOE/BC-92/l/SP) contain the results for the first 49 tasks. Those reports are dated April 1983, August 1984, March 1986, July 1987, November 1988, December 1989, and October 1991, respectively. Each task report has been processed separately for inclusion in the Energy Science and Technology Database.

Reid, T B [USDOE Bartlesville Project Office, OK (United States)] [USDOE Bartlesville Project Office, OK (United States); Colonomos, P [INTEVEP, Filial de Petroleos de Venezuela, SA, Caracas (Venezuela)] [INTEVEP, Filial de Petroleos de Venezuela, SA, Caracas (Venezuela)

1993-02-01T23:59:59.000Z

146

SciTech Connect: Recovery Act: Oxy-Combustion Technology Development...  

Office of Scientific and Technical Information (OSTI)

Publication: United States Language: English Subject: 99 GENERAL AND MISCELLANEOUS Clean Coal Technology; Coal-Fuels; Industrial and Environmental Processes; Electricity;...

147

Advanced oil recovery technologies for improved recovery from slope basin clastic reservoirs, Nash Draw Brushy Canyon Pool, Eddy County, NM. Quarterly technical progress report, January 1--March 31, 1998  

SciTech Connect

The overall objective of this project is to demonstrate that a development program--based on advanced reservoir management methods--can significantly improve oil recovery at the Nash Draw Pool (NDP). The plan includes developing a control area using standard reservoir management techniques and comparing its performance to an area developed using advanced reservoir management methods. Specific goals are (1) to demonstrate that an advanced development drilling and pressure maintenance program can significantly improve oil recovery compared to existing technology applications and (2) to transfer these advanced methodologies to oil and gas producers in the Permian Basin and elsewhere throughout the US oil and gas industry. Results obtained to date are summarized for the following: geostatistics and reservoir mapping; reservoir engineering; reservoir characterization/reservoir simulation; miscible recovery simulations; and technology transfer.

NONE

1998-04-30T23:59:59.000Z

148

Vehicle Technologies Office Merit Review 2014: Heavy Duty Roots Expander Heat Energy Recovery (HD-REHER)  

Energy.gov (U.S. Department of Energy (DOE))

Presentation given by Eaton Corporation at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about heavy duty roots expander...

149

Advanced oil recovery technologies for improved recovery from slope basin clastic reservoirs, Nash Draw Brushy Canyon Pool, Eddy County, NM. Quarterly technical progress report (seventh quarter), April 1--June 30, 1997  

SciTech Connect

The overall objective of this project is to demonstrate that a development program -- based on advanced reservoir management methods -- can significantly improve oil recovery. The plan includes developing a control area using standard reservoir management techniques and comparing its performance to an area developed using advanced reservoir management methods. Specific goals are (1) to demonstrate that an advanced development drilling and pressure maintenance program can significantly improve oil recovery compared to existing technology applications and (2) to transfer these advanced methodologies to oil and gas producers in the Permian Basin and elsewhere throughout the US oil and gas industry. Results obtained to date are summarized.

NONE

1997-07-30T23:59:59.000Z

150

Fuel Cell Technologies Office: Recovery Act Projects Funded for Fuel Cell  

NLE Websites -- All DOE Office Websites (Extended Search)

Act Projects Funded for Fuel Cell Market Transformation Act Projects Funded for Fuel Cell Market Transformation Following the fuel cell funding announcement, DOE funded the fuel cell market transformation projects listed below. These projects focus on fuel cell systems in emergency backup power, material handling, and combined heat and power applications, with the goal of improving the potential of fuel cells to provide power in stationary, portable, and specialty vehicles. The Fuel Cell Technologies Office is collecting and analyzing data from these projects to show potential adopters the benefits and real-world performance of fuel cells. These data are aggregated across industries and sites as composite data products to provide relevant technology status results and fuel cell performance data without revealing proprietary information. These publicly available data products build the business case for fuel cells and help fuel cell developers understand the state of technologies while identifying ways to improve them.

151

Development of the Polish wasteless technology of apatite phosphogypsum utilization with recovery of rare earths  

Science Journals Connector (OSTI)

The most promising source of rare earth elements in Poland is apatite phosphogypsum, a waste product obtained in the process of phosphoric acid production from Kola apatite. Depending on the technology used, as the hydration ratio of calcium sulphate is changed from hemihydrate to dihydrate, the content of rare earths varies from 0.6% to 0.3% Ln2O3 respectively. Technological flow charts for recovering the rare earths as a byproduct have been developed. The basic process used in the technology consists of three steps: apatite phosphogypsum leaching with dilute sulphuric acid solution; separation of rare earth concentrates from leaching sulphuric acid by preconcentration via evaporization, liquid-liquid extraction or precipitation method; anhydrite production from purified phosphogypsum by recrystallization in concentrated sulphuric acid solution.

A. Jarosi?ski; J. Kowalczyk; Cz. Mazanek

1993-01-01T23:59:59.000Z

152

Categorical Exclusion Determinations: American Recovery and Reinvestment  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

7, 2010 7, 2010 CX-002885: Categorical Exclusion Determination Abandonment and Closure of Domestic Wells 905-89G and 905-56G CX(s) Applied: B1.27 Date: 05/27/2010 Location(s): Aiken, South Carolina Office(s): Environmental Management, Savannah River Operations Office May 27, 2010 CX-002536: Categorical Exclusion Determination American Recovery and Reinvestment Act Green Industry Business Development Program CX(s) Applied: B5.1 Date: 05/27/2010 Location(s): Chicago, Illinois Office(s): Energy Efficiency and Renewable Energy, Golden Field Office May 27, 2010 CX-002538: Categorical Exclusion Determination Tangent Grant Application for American Recovery and Reinvestment Act Business Development Program CX(s) Applied: B5.1 Date: 05/27/2010 Location(s): Aurora, Illinois Office(s): Energy Efficiency and Renewable Energy, Golden Field Office

153

Categorical Exclusion Determinations: American Recovery and Reinvestment  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

2469: Categorical Exclusion Determination 2469: Categorical Exclusion Determination Oklahoma State Energy Program American Recovery and Reinvestment Act - City of Owasso - Compressed Natural Gas (CNG) Fueling Infrastructure and CNG Vehicles CX(s) Applied: B5.1 Date: 06/02/2010 Location(s): Owasso, Oklahoma Office(s): Energy Efficiency and Renewable Energy, Golden Field Office June 2, 2010 CX-002460: Categorical Exclusion Determination State of New Mexico American Recovery and Reinvestment Act Solar Projects CX(s) Applied: B5.1 Date: 06/02/2010 Location(s): New Mexico Office(s): Energy Efficiency and Renewable Energy, Golden Field Office June 2, 2010 CX-003079: Categorical Exclusion Determination Applied Materials - Novel High Energy Density Lithium Ion Cell Designs CX(s) Applied: B3.6 Date: 06/02/2010

154

Supporting Technology for Enhanced Oil Recovery-EOR Thermal Processes Report IV-12  

SciTech Connect

This report contains the results of efforts under the six tasks of the Ninth Amendment and Extension of Annex IV, Enhanced Oil Recovery Thermal Processes of the Venezuela/USA Agreement. The report is presented in sections (for each of the 6 tasks) and each section contains one or more reports prepared by various individuals or groups describing the results of efforts under each of the tasks. A statement of each task, taken from the agreement, is presented on the first page of each section. The tasks are numbered 62 through 67. The first, second, third, fourth, fifth, sixth, seventh, eight, and ninth reports on Annex IV, [Venezuela MEM/USA-DOE Fossil Energy Report IV-1, IV-2, IV-3, IV-4, IV-5, IV-6, IV-7, and IV-8 (DOE/BETC/SP-83/15, DOE/BC-84/6/SP, DOE/BC-86/2/SP, DOE/BC-87/2/SP, DOE/BC-89/1/SP, DOE/BC-90/1/SP) DOE/BC-92/1/SP, DOE/BC-93/3/SP, and DOE/BC-95/3/SP] contain the results from the first 61 tasks. Those reports are dated April 1983, August 1984, March 1986, July 1! 987, November 1988, December 1989, October 1991, February 1993, and March 1995 respectively.

Izequeido, Alexandor

2001-04-01T23:59:59.000Z

155

Data summary of municipal solid waste management alternatives. Volume 7, Appendix E -- Material recovery/material recycling technologies  

SciTech Connect

The enthusiasm for and commitment to recycling of municipal solid wastes is based on several intuitive benefits: Conservation of landfill capacity; Conservation of non-renewable natural resources and energy sources; Minimization of the perceived potential environmental impacts of MSW combustion and landfilling; Minimization of disposal costs, both directly and through material resale credits. In this discussion, ``recycling`` refers to materials recovered from the waste stream. It excludes scrap materials that are recovered and reused during industrial manufacturing processes and prompt industrial scrap. Materials recycling is an integral part of several solid waste management options. For example, in the preparation of refuse-derived fuel (RDF), ferrous metals are typically removed from the waste stream both before and after shredding. Similarly, composting facilities, often include processes for recovering inert recyclable materials such as ferrous and nonferrous metals, glass, Plastics, and paper. While these two technologies have as their primary objectives the production of RDF and compost, respectively, the demonstrated recovery of recyclables emphasizes the inherent compatibility of recycling with these MSW management strategies. This appendix discusses several technology options with regard to separating recyclables at the source of generation, the methods available for collecting and transporting these materials to a MRF, the market requirements for post-consumer recycled materials, and the process unit operations. Mixed waste MRFs associated with mass bum plants are also presented.

none,

1992-10-01T23:59:59.000Z

156

Advanced oil recovery technologies for improved recovery from slope basin clastic reservoirs, Nash Draw Brushy Canyon Pool, Eddy County, NM. Quarterly technical progress report, October 1--December 31, 1996 (fifth quarter)  

SciTech Connect

The overall objective of this project is to demonstrate that a development program--based on advanced reservoir management methods--can significantly improve oil recovery. The plan includes developing a control area using standard reservoir management techniques while comparing its performance to an area developed using advanced reservoir management methods. Specific goals are (1) to demonstrate that an advanced development drilling and pressure maintenance program, can significantly improve oil recovery compared to existing technology applications and (2) to transfer these advanced methodologies to oil and gas producers in the Permian Basin and elsewhere throughout the US oil and gas industry. Results so far are described on geology, engineering, 3-D seismic, reservoir characterization and simulation, and technology transfer.

NONE

1997-01-31T23:59:59.000Z

157

Advanced oil recovery technologies for improved recovery from slope basin clastic reservoirs, Nash Draw Brushy Canyon Pool, Eddy County, NM. Quarterly technical progress report, July 1--September 30, 1996 (fourth quarter)  

SciTech Connect

The overall objective of this project is to demonstrate that a development program based on advanced reservoir management methods can significantly improve oil recovery. The demonstration plan includes developing a control area using standard reservoir management techniques and comparing the performance of the control area with an area developed using advanced reservoir management methods. Specific goals to attain the objective are: (1) to demonstrate that a development drilling program and pressure maintenance program, based on advanced reservoir management methods, can significantly improve oil recovery compared with existing technology applications, and (2) to transfer the advanced methodologies to oil and gas producers in the Permian Basin and elsewhere in the US oil and gas industry. Results obtained to date are summarized on the following: geology, engineering, 3-D seismic, reservoir characterization and simulation, and technology transfer.

NONE

1996-10-31T23:59:59.000Z

158

Categorical Exclusion Determinations: National Energy Technology Laboratory  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

6, 2009 6, 2009 CX-000305: Categorical Exclusion Determination State Energy Program American Recovery and Reinvestment Act Kentucky Revision 1 - Green Bank Loan Program - School for Deaf CX(s) Applied: B1.4, B1.5, B1.15, B1.22, B1.24, B1.31, B2.1, B2.2, B2.5, B5.1 Date: 11/06/2009 Location(s): Kentucky Office(s): Energy Efficiency and Renewable Energy, National Energy Technology Laboratory November 6, 2009 CX-000304: Categorical Exclusion Determination State Energy Program American Recovery and Reinvestment Act Kentucky Revision 1 - Green Bank Loan Program - School for Blind CX(s) Applied: B1.4, B1.5, B1.15, B1.22, B1.24, B1.31, B2.1, B2.2, B2.5, B5.1 Date: 11/06/2009 Location(s): Kentucky Office(s): Energy Efficiency and Renewable Energy, National Energy Technology Laboratory

159

Advanced Oil Recovery Technologies for Improved Recovery From Slope Basin Clastic reservoirs, Nash Draw Brushy Canyon Pool, Eddy County, New Mexico  

SciTech Connect

The overall goal of this project is to demonstrate that an advanced development drilling and pressure maintenance program based on advanced reservoir management methods can significantly improve oil recovery. The plan included developing a control area using standard reservoir management techniques and comparing its performance to an area developed using advanced methods. A key goal is to transfer advanced methodologies to oil and gas producers in the Permian Basin and elsewhere, and throughout the US oil and gas industry.

Mark B. Murphy

1998-04-30T23:59:59.000Z

160

Advanced Oil Recovery Technologies for Improved Recovery From Slope Basin Clastic Reservoirs, Nash Draw Brushy Canyon Pool, Eddy County, New Mexico  

SciTech Connect

The overall goal of this project is to demonstrate that an advanced development drilling and pressure maintenance program based on advanced reservoir management methods can significantly improve oil recovery. The plan included developing a control area using standard reservoir management techniques and comparing its performance to an area developed using advanced methods. A key goal is to transfer advanced methodologies to oil and gas producers in the Permian Basin and elsewhere, and throughout the US oil and gas industry.

Mark B. Murphy

1997-04-30T23:59:59.000Z

Note: This page contains sample records for the topic "recovery technology cxs" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

Categorical Exclusion Determinations: American Recovery and Reinvestment  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

9, 2010 9, 2010 CX-003355: Categorical Exclusion Determination Oklahoma State Energy Program American Recovery and Reinvestment Act- Phase 2 - Wind Turbine for Guthrie Waste Water Treatment Plant CX(s) Applied: B5.1 Date: 08/09/2010 Location(s): Guthrie, Oklahoma Office(s): Energy Efficiency and Renewable Energy, Golden Field Office August 9, 2010 CX-003354: Categorical Exclusion Determination Oklahoma State Energy Program American Recovery and Reinvestment Act - Heating, Ventilating, and Air Conditioning and Window Replacement in Administration Building CX(s) Applied: B5.1 Date: 08/09/2010 Location(s): Shawnee, Oklahoma Office(s): Energy Efficiency and Renewable Energy, Golden Field Office August 9, 2010 CX-003353: Categorical Exclusion Determination Oklahoma State Energy Program American Recovery and Reinvestment Act -

162

Categorical Exclusion Determinations: American Recovery and Reinvestment  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

30, 2010 30, 2010 CX-003509: Categorical Exclusion Determination State Energy Program American Recovery and Reinvestment Act: Energy Innovations Expansion of Solar Module Production Lines CX(s) Applied: B5.1 Date: 08/30/2010 Location(s): Poway, California Office(s): Energy Efficiency and Renewable Energy, Golden Field Office August 30, 2010 CX-003506: Categorical Exclusion Determination State Energy Program American Recovery and Reinvestment Act: Quantum Solar Photovoltaic Module Manufacturing Plant CX(s) Applied: B5.1 Date: 08/30/2010 Location(s): Irvine, California Office(s): Energy Efficiency and Renewable Energy, Golden Field Office August 30, 2010 CX-003505: Categorical Exclusion Determination State Energy Program American Recovery and Reinvestment Act: Calisolar's

163

Advanced oil recovery technologies for improved recovery from slope basin clastic reservoirs, Nash Draw Brushy Canyon Pool, Eddy County, NM. Quarterly technical progress report, April 1, 1996--June 30, 1996  

SciTech Connect

The overall objective of this project is to demonstrate that a development program based on advanced reservoir management methods can significantly improve oil recovery. The demonstration plan includes developing a control area using standard reservoir management techniques and comparing the performance of the control area with an area developed using advanced reservoir management methods. Specific goals to attain the objective are: (1) to demonstrate that a development drilling program and pressure maintenance program, based on advanced reservoir management methods, can significantly improve oil recovery compared with existing technology applications, and (2) to transfer the advanced methodologies to oil and gas producers in the Permian Basin and elsewhere in the U.S. oil and gas industry.

Murphy, M.B.

1996-07-26T23:59:59.000Z

164

Enhanced Oil Recovery | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Enhanced Oil Recovery Enhanced Oil Recovery Thanks in part to innovations supported by the Office of Fossil Energy's National Energy Technology Laboratory over the past 30 years,...

165

APPLICATION OF RESERVOIR CHARACTERIZATION AND ADVANCED TECHNOLOGY TO IMPROVE RECOVERY AND ECONOMICS IN A LOWER QUALITY SHALLOW SHELF SAN ANDRES RESERVOIR  

SciTech Connect

The Class 2 Project at West Welch was designed to demonstrate the use of advanced technologies to enhance the economics of improved oil recovery (IOR) projects in lower quality Shallow Shelf Carbonate (SSC) reservoirs, resulting in recovery of additional oil that would otherwise be left in the reservoir at project abandonment. Accurate reservoir description is critical to the effective evaluation and efficient design of IOR projects in the heterogeneous SSC reservoirs. Therefore, the majority of Budget Period 1 was devoted to reservoir characterization. Technologies being demonstrated include: (1) Advanced petrophysics; (2) Three-dimensional (3-D) seismic; (3) Crosswell bore tomography; (4) Advanced reservoir simulation; (5) Carbon dioxide (CO{sub 2}) stimulation treatments; (6) Hydraulic fracturing design and monitoring; and (7) Mobility control agents.

T. Scott Hickman; James J. Justice

2001-06-16T23:59:59.000Z

166

APPLICATION OF RESERVOIR CHARACTERIZATION AND ADVANCED TECHNOLOGY TO IMPROVE RECOVERY AND ECONOMICS IN A LOWER QUALITY SHALLOW SHELF SAN ANDRES RESERVOIR  

SciTech Connect

The Class 2 Project at West Welch was designed to demonstrate the use of advanced technologies to enhance the economics of improved oil recovery (IOR) projects in lower quality Shallow Shelf Carbonate (SSC) reservoirs, resulting in recovery of additional oil that would otherwise be left in the reservoir at project abandonment. Accurate reservoir description is critical to the effective evaluation and efficient design of IOR projects in the heterogeneous SSC reservoirs. Therefore, the majority of Budget Period 1 was devoted to reservoir characterization. Technologies being demonstrated include: (1) Advanced petrophysics; (2) Three-dimensional (3-D) seismic; (3) Crosswell bore tomography; (4) Advanced reservoir simulation; (5) Carbon dioxide (CO{sub 2}) stimulation treatments; (6) Hydraulic fracturing design and monitoring; and (7) Mobility control agents.

T. Scott Hickman; James J. Justice

2001-08-10T23:59:59.000Z

167

APPLICATION OF RESERVOIR CHARACTERIZATION AND ADVANCED TECHNOLOGY TO IMPROVE RECOVERY AND ECONOMICS IN A LOWER QUALITY SHALLOW SHELF SAN ANDRES RESERVOIR  

SciTech Connect

The Class 2 Project at West Welch was designed to demonstrate the use of advanced technologies to enhance the economics of improved oil recovery (IOR) projects in lower quality Shallow Shelf Carbonate (SSC) reservoirs, resulting in recovery of additional oil that would otherwise be left in the reservoir at project abandonment. Accurate reservoir description is critical to the effective evaluation and efficient design of IOR projects in the heterogeneous SSC reservoirs. Therefore, the majority of Budget Period 1 was devoted to reservoir characterization. Technologies being demonstrated include: (1) Advanced petrophysics; (2) Three-dimensional (3-D) seismic; (3) Crosswell bore tomography; (4) Advanced reservoir simulation; (5) Carbon dioxide (CO{sub 2}) stimulation treatments; (6) Hydraulic fracturing design and monitoring; and (7) Mobility control agents.

Raj Kumar; Keith Brown; T. Scott Hickman; James J. Justice

2000-04-27T23:59:59.000Z

168

APPLICATION OF RESERVOIR CHARACTERIZATION AND ADVANCED TECHNOLOGY TO IMPROVE RECOVERY AND ECONOMICS IN A LOWER QUALITY SHALLOW SHELF SAN ANDRES RESERVOIR  

SciTech Connect

The Class 2 Project at West Welch was designed to demonstrate the use of advanced technologies to enhance the economics of improved oil recovery (IOR) projects in lower quality Shallow Shelf Carbonate (SSC) reservoirs, resulting in recovery of additional oil that would otherwise be left in the reservoir at project abandonment. Accurate reservoir description is critical to the effective evaluation and efficient design of IOR projects in the heterogeneous SSC reservoirs. Therefore, the majority of Budget Period 1 was devoted to reservoir characterization. Technologies being demonstrated include: (1) Advanced petrophysics; (2) Three-dimensional (3-D) seismic; (3) Crosswell bore tomography; (4) Advanced reservoir simulation; (5) Carbon dioxide (CO{sub 2}) stimulation treatments; (6) Hydraulic fracturing design and monitoring; and (7) Mobility control agents.

T. Scott Hickman; James J. Justice

2001-12-11T23:59:59.000Z

169

APPLICATION OF RESERVOIR CHARACTERIZATION AND ADVANCED TECHNOLOGY TO IMPROVE RECOVERY AND ECONOMICS IN A LOWER QUALITY SHALLOW SHELF SAN ANDRES RESERVOIR  

SciTech Connect

The Class 2 Project at West Welch was designed to demonstrate the use of advanced technologies to enhance the economics of improved oil recovery (IOR) projects in lower quality Shallow Shelf Carbonate (SSC) reservoirs, resulting in recovery of additional oil that would otherwise be left in the reservoir at project abandonment. Accurate reservoir description is critical to the effective evaluation and efficient design of IOR projects in the heterogeneous SSC reservoirs. Therefore, the majority of Budget Period 1 was devoted to reservoir characterization. Technologies being demonstrated include: (1) Advanced petrophysics; (2) Three-dimensional (3-D) seismic; (3) Crosswell bore tomography; (4) Advanced reservoir simulation; (5) Carbon dioxide (CO{sub 2}) stimulation treatments; (6) Hydraulic fracturing design and monitoring; and (7) Mobility control agents.

T. Scott Hickman

2003-01-17T23:59:59.000Z

170

Categorical Exclusion Determinations: American Recovery and Reinvestment  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

30, 2010 30, 2010 CX-002115: Categorical Exclusion Determination Fos Biofuels CX(s) Applied: B5.1 Date: 04/30/2010 Location(s): Chicago, Illinois Office(s): Energy Efficiency and Renewable Energy, Golden Field Office April 30, 2010 CX-002114: Categorical Exclusion Determination Illinois State Energy Program Solar Project - Austin Building Corporation CX(s) Applied: B5.1 Date: 04/30/2010 Location(s): Chicago, Illinois Office(s): Energy Efficiency and Renewable Energy, Golden Field Office April 30, 2010 CX-002110: Categorical Exclusion Determination Colorado State Energy Program American Recovery and Reinvestment Act - Capital Investment New Energy Economic Development - B&H Industries Photovoltaic CX(s) Applied: B5.1 Date: 04/30/2010 Location(s): Rocky Ford, Colorado Office(s): Energy Efficiency and Renewable Energy, Golden Field Office

171

Categorical Exclusion Determinations: American Recovery and Reinvestment  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

7, 2010 7, 2010 CX-001827: Categorical Exclusion Determination Recovery Act: Finding Large Aperture Fractures in Geothermal Resource Areas Using a 3-Component Long-Offset Surface Seismic Survey, PSlnSAR and Kinematic Structural Analysis CX(s) Applied: B3.1, A9 Date: 04/27/2010 Location(s): Washoe County, Nevada Office(s): Energy Efficiency and Renewable Energy, Golden Field Office April 26, 2010 CX-001951: Categorical Exclusion Determination Preparation of Energy Efficiency and Conservation Strategy CX(s) Applied: A8, A11, B5.1 Date: 04/26/2010 Location(s): Perth Amboy, New Jersey Office(s): Energy Efficiency and Renewable Energy April 26, 2010 CX-001950: Categorical Exclusion Determination Preparation of Energy Efficiency and Conservation Block Grant Application CX(s) Applied: A1, B5.1

172

Categorical Exclusion Determinations: American Recovery and Reinvestment  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

917: Categorical Exclusion Determination 917: Categorical Exclusion Determination Energy Efficiency and Conservation Block Grant - National Environmental Policy Act Template (T) CX(s) Applied: A9, A11, B5.1 Date: 04/20/2010 Location(s): Virginia Office(s): Energy Efficiency and Renewable Energy, Golden Field Office April 20, 2010 CX-001913: Categorical Exclusion Determination Wind Power Project - American Recovery and Reinvestment Act CX(s) Applied: B5.1 Date: 04/20/2010 Location(s): Peru, Illinois Office(s): Energy Efficiency and Renewable Energy, Golden Field Office April 20, 2010 CX-001909: Categorical Exclusion Determination MRC Polyethylene Terephthalate (PET) Recycling Facility CX(s) Applied: B5.1 Date: 04/20/2010 Location(s): Chicago, Illinois Office(s): Energy Efficiency and Renewable Energy, Golden Field Office

173

Categorical Exclusion Determinations: American Recovery and Reinvestment  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

February 8, 2010 February 8, 2010 CX-001085: Categorical Exclusion Determination Energy Efficiency and Renewable Energy for State Buildings and Schools CX(s) Applied: A9, A11, B5.1 Date: 02/08/2010 Location(s): Nevada, Nevada Office(s): Energy Efficiency and Renewable Energy, Golden Field Office February 8, 2010 CX-001103: Categorical Exclusion Determination State of South Carolina American Recovery and Reinvestment Act Energy Efficiency and Conservation Block Grant (T) CX(s) Applied: A9, A11, B2.5, B5.1 Date: 02/08/2010 Location(s): South Carolina Office(s): Energy Efficiency and Renewable Energy, Golden Field Office February 7, 2010 CX-000766: Categorical Exclusion Determination New York State Alternative Fuel Vehicle and Infrastructure Deployment - New Vehicle Purchase CX(s) Applied: A7, A11

174

Categorical Exclusion Determinations: American Recovery and Reinvestment  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

8, 2010 8, 2010 CX-004028: Categorical Exclusion Determination State Energy Program - Brevini Wind United States of America, Incorporated CX(s) Applied: B5.1 Date: 10/08/2010 Location(s): Yorktown, Indiana Office(s): Energy Efficiency and Renewable Energy, Golden Field Office October 8, 2010 CX-004027: Categorical Exclusion Determination State Energy Program - Cedar Rapids Linn County Solid Waste Agency Landfill Gas Cogeneration Project CX(s) Applied: B5.1 Date: 10/08/2010 Location(s): Cedar Rapids, Iowa Office(s): Energy Efficiency and Renewable Energy, Golden Field Office October 8, 2010 CX-004021: Categorical Exclusion Determination State Energy Program American Recovery and Reinvestment Act: Solaria Photovoltaic Manufacturing Facility CX(s) Applied: B5.1 Date: 10/08/2010

175

Categorical Exclusion Determinations: American Recovery and Reinvestment  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

11, 2010 11, 2010 CX-001935: Categorical Exclusion Determination Deployment of Innovative Energy Efficiency and Renewable Energy - Residential Buildings CX(s) Applied: B5.1 Date: 03/11/2010 Location(s): Oregon Office(s): Energy Efficiency and Renewable Energy, Golden Field Office March 10, 2010 CX-001931: Categorical Exclusion Determination Oklahoma State Energy Program (SEP) American Recovery and Reinvestment Act (ARRA) - New Compressed Natural Gas (CNG) Fueling Stations CX(s) Applied: B5.1 Date: 03/10/2010 Location(s): Cherokee County, Oklahoma Office(s): Energy Efficiency and Renewable Energy, Golden Field Office March 10, 2010 CX-006361: Categorical Exclusion Determination Tennessee-City-Johnson City CX(s) Applied: B1.15, B2.5, B5.1 Date: 03/10/2010 Location(s): Johnson City, Tennessee

176

Categorical Exclusion Determinations: American Recovery and Reinvestment  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

22, 2010 22, 2010 CX-000710: Categorical Exclusion Determination Virginia Revision 3 - Economic Development Market Title CX(s) Applied: A9, A11, B5.1 Date: 01/22/2010 Location(s): Virginia Office(s): Energy Efficiency and Renewable Energy, National Energy Technology Laboratory January 22, 2010 CX-000735: Categorical Exclusion Determination Catalytic Transformation of Waste Carbon Dioxide into Valuable Products CX(s) Applied: A9, B3.6 Date: 01/22/2010 Location(s): Newtown Square, Pennsylvania Office(s): Fossil Energy, National Energy Technology Laboratory January 22, 2010 CX-000736: Categorical Exclusion Determination Catalytic Transformation of Waste Carbon Dioxide into Valuable Products CX(s) Applied: A9, B3.6 Date: 01/22/2010 Location(s): Cincinnati, Ohio Office(s): Fossil Energy, National Energy Technology Laboratory

177

Categorical Exclusion Determinations: American Recovery and Reinvestment  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

7, 2010 7, 2010 CX-001326: Categorical Exclusion Determination Development and Utilization of Host Materials for White Phosphorescent Organic Light-Emitting Diodes CX(s) Applied: B3.6 Date: 03/17/2010 Location(s): Rochester, New York Office(s): Energy Efficiency and Renewable Energy, National Energy Technology Laboratory March 17, 2010 CX-001325: Categorical Exclusion Determination Midwest Region Alternative Fuels Project - Biodiesel Station CX(s) Applied: B5.1 Date: 03/17/2010 Location(s): Springfield, Missouri Office(s): Energy Efficiency and Renewable Energy, National Energy Technology Laboratory March 17, 2010 CX-001324: Categorical Exclusion Determination North Central Texas Alternative Fuel and Advanced Technology Investments (Dallas - 2) CX(s) Applied: B5.1 Date: 03/17/2010

178

Categorical Exclusion Determinations: American Recovery and Reinvestment  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

February 18, 2011 February 18, 2011 CX-005273: Categorical Exclusion Determination Carolina Blue Skies Initiative CX(s) Applied: A1, B5.1 Date: 02/18/2011 Location(s): South Carolina Office(s): Energy Efficiency and Renewable Energy, National Energy Technology Laboratory February 18, 2011 CX-005271: Categorical Exclusion Determination Carolina Blue Skies Initiative CX(s) Applied: A1, B5.1 Date: 02/18/2011 Location(s): Waxhaw, North Carolina Office(s): Energy Efficiency and Renewable Energy, National Energy Technology Laboratory February 18, 2011 CX-005258: Categorical Exclusion Determination Carolina Blue Skies Initiative CX(s) Applied: A1, B5.1 Date: 02/18/2011 Location(s): South Carolina Office(s): Energy Efficiency and Renewable Energy, National Energy Technology Laboratory February 18, 2011

179

Categorical Exclusion Determinations: American Recovery and Reinvestment  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

3, 2009 3, 2009 CX-000387: Categorical Exclusion Determination Lawrence Livermore National Laboratory - Alameda, California CX(s) Applied: A1, A9 Date: 11/13/2009 Location(s): Livermore, California Office(s): Fossil Energy, National Energy Technology Laboratory November 13, 2009 CX-000386: Categorical Exclusion Determination Lawrence Berkeley National Laboratory - Alameda, California CX(s) Applied: A1, A9 Date: 11/13/2009 Location(s): Berkley, California Office(s): Fossil Energy, National Energy Technology Laboratory November 13, 2009 CX-000384: Categorical Exclusion Determination Carbon Dioxide Capture Site Survey in California CX(s) Applied: A1, A9, B3.1 Date: 11/13/2009 Location(s): Contra Costa County, California Office(s): Fossil Energy, National Energy Technology Laboratory

180

Categorical Exclusion Determinations: American Recovery and Reinvestment  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

3, 2010 3, 2010 CX-003824: Categorical Exclusion Determination Renewable Energy Program CX(s) Applied: A9, B1.24, B2.2, B5.1 Date: 09/13/2010 Location(s): Kellenberg, New York Office(s): Energy Efficiency and Renewable Energy, National Energy Technology Laboratory September 13, 2010 CX-003823: Categorical Exclusion Determination Renewable Energy Program CX(s) Applied: A9, B1.24, B2.2, B5.1 Date: 09/13/2010 Location(s): Bronx, New York Office(s): Energy Efficiency and Renewable Energy, National Energy Technology Laboratory September 13, 2010 CX-003822: Categorical Exclusion Determination Renewable Energy Program CX(s) Applied: A9, B1.24, B2.2, B5.1 Date: 09/13/2010 Location(s): New York City, New York Office(s): Energy Efficiency and Renewable Energy, National Energy Technology Laboratory

Note: This page contains sample records for the topic "recovery technology cxs" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

Energy recovery from municipal solid waste and sewage sludge using multi-solid fluidized bed combustion technology  

SciTech Connect

This study was initiated to investigate the recovery of energy from municipal solid waste (MSW) and domestic sewage sludge (DSS) simultaneously by using Battelle's multi-solid fluidized-bed combustion (MS-FBC) technology. The concept was to recover energy as high and low pressure steam, simultaneously. High pressure steam would be generated from flue gas using a conventional tubular boiler. Low pressure steam would be generated by direct contact drying of DSS (as 4% solids) with hot sand in a fluidized bed that is an integral part of the MS-FBC process. It was proposed that high pressure steam could be used for district heating or electricity generation. The low pressure steam could be used for close proximity building heat. Alternatively, low pressure steam could be used to heat wastewater in a sewage treatment plant to enhance sedimentation and biological activity that would provide a captive market for this part of the recovered energy. The direct contact drying or tubeless steam generation eliminates fouling problems that are common during heat exchange with DSS. The MS-FBC process was originally developed for coal and was chosen for this investigation because its combustion rate is about three times that of conventional fluidized beds and it was projected to have the flexibility needed for accomplishing tubeless steam generation. The results of the investigation show that the MS-FBC process concept for the co-utilization of MSW and DSS is technically feasible and that the thermal efficiency of the process is 76 to 82% based on experiments conducted in a 70 to 85 lb/h pilot plant and calculations on three conceptual cases.

Not Available

1981-07-01T23:59:59.000Z

182

Advanced oil recovery technologies for improved recovery from slope basin clastic reservoirs, Nash Draw Brushy Canyon Pool, Eddy County, New Mexico. Annual report, September 25, 1995--September 24, 1996  

SciTech Connect

The basic driver for this project is the low recovery observed in Delaware reservoirs, such as the Nash Draw Pool (NDP). This low recovery is caused by low reservoir energy, less than optimum permeabilities and porosities, and inadequate reservoir characterization and reservoir management strategies which are typical of projects operated by independent producers. Rapid oil decline rates and high gas/oil ratios are typically observed in the first year of primary production. Based on the production characteristics that have been observed in similar Delaware fields, pressure maintenance is a likely requirement at the Nash Pool. Three basic constraints to producing the Nash Draw Brushy Canyon Reservoir are: (1) limited areal and interwell geologic knowledge, (2) lack of an engineering tool to evaluate the various producing strategies, and (3) limited surface access prohibiting development with conventional drilling. The limited surface access is caused by the proximity of underground potash mining and surface playa lakes. The objectives of this project are: (1) to demonstrate that a development drilling program and pressure maintenance program, based on advanced reservoir management methods, can significantly improve oil recovery compared with existing technology applications and (2) to transfer these advanced methodologies to oil and gas producers, especially in the Permian Basin.

Murphy, M.B.

1997-08-01T23:59:59.000Z

183

Solvent recycle/recovery  

SciTech Connect

This report describes Phase I of the Solvent Recycle/Recovery Task of the DOE Chlorinated Solvent Substitution Program for the US Air Force by the Idaho National Engineering Laboratory, EG G Idaho, Inc., through the US Department of Energy, Idaho Operations Office. The purpose of the task is to identify and test recovery and recycling technologies for proposed substitution solvents identified by the Biodegradable Solvent Substitution Program and the Alternative Solvents/Technologies for Paint Stripping Program with the overall objective of minimizing hazardous wastes. A literature search to identify recycle/recovery technologies and initial distillation studies has been conducted. 4 refs.

Paffhausen, M.W.; Smith, D.L.; Ugaki, S.N.

1990-09-01T23:59:59.000Z

184

Targeted technology applications for infield reserve growth: A synopsis of the Secondary Natural Gas Recovery project, Gulf Coast Basin. Topical report, September 1988--April 1993  

SciTech Connect

The Secondary Natural Gas Recovery (SGR): Targeted Technology Applications for Infield Reserve Growth is a joint venture research project sponsored by the Gas Research Institute (GRI), the US Department of Energy (DOE), the State of Texas through the Bureau of Economic Geology at The University of Texas at Austin, with the cofunding and cooperation of the natural gas industry. The SGR project is a field-based program using an integrated multidisciplinary approach that integrates geology, geophysics, engineering, and petrophysics. A major objective of this research project is to develop, test, and verify those technologies and methodologies that have near- to mid-term potential for maximizing recovery of gas from conventional reservoirs in known fields. Natural gas reservoirs in the Gulf Coast Basin are targeted as data-rich, field-based models for evaluating infield development. The SGR research program focuses on sandstone-dominated reservoirs in fluvial-deltaic plays within the onshore Gulf Coast Basin of Texas. The primary project research objectives are: To establish how depositional and diagenetic heterogeneities cause, even in reservoirs of conventional permeability, reservoir compartmentalization and hence incomplete recovery of natural gas. To document examples of reserve growth occurrence and potential from fluvial and deltaic sandstones of the Texas Gulf Coast Basin as a natural laboratory for developing concepts and testing applications. To demonstrate how the integration of geology, reservoir engineering, geophysics, and well log analysis/petrophysics leads to strategic recompletion and well placement opportunities for reserve growth in mature fields.

Levey, R.A.; Finley, R.J.; Hardage, B.A.

1994-06-01T23:59:59.000Z

185

Categorical Exclusion Determinations: American Recovery and Reinvestment  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

12, 2010 12, 2010 CX-003381: Categorical Exclusion Determination Geothermal Incentive Program -Gordon CX(s) Applied: A9, A11, B2.2, B5.1 Date: 08/12/2010 Location(s): Avon, Connecticut Office(s): Energy Efficiency and Renewable Energy, National Energy Technology Laboratory August 12, 2010 CX-003380: Categorical Exclusion Determination Geothermal Incentive Program -McCuda CX(s) Applied: A9, A11, B2.2, B5.1 Date: 08/12/2010 Location(s): East Windsor, Connecticut Office(s): Energy Efficiency and Renewable Energy, National Energy Technology Laboratory August 12, 2010 CX-003379: Categorical Exclusion Determination Geothermal Incentive Program -Maheu CX(s) Applied: A9, A11, B2.2, B5.1 Date: 08/12/2010 Location(s): Coventry, Connecticut Office(s): Energy Efficiency and Renewable Energy, National Energy

186

Categorical Exclusion Determinations: American Recovery and Reinvestment  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

August 25, 2011 August 25, 2011 CX-006516: Categorical Exclusion Determination Carolina Blue Skies Initiative CX(s) Applied: A1, B5.1 Date: 08/25/2011 Location(s): Durham, North Carolina Office(s): Energy Efficiency and Renewable Energy, National Energy Technology Laboratory August 25, 2011 CX-006515: Categorical Exclusion Determination Midwest Region Alternative Fuels Project CX(s) Applied: A7 Date: 08/25/2011 Location(s): Lincoln, Nebraska Office(s): Energy Efficiency and Renewable Energy, National Energy Technology Laboratory August 24, 2011 CX-006570: Categorical Exclusion Determination North Dakota-Tribe-Standing Rock Sioux Tribe CX(s) Applied: B3.6, B5.1 Date: 08/24/2011 Location(s): Fort Yates, North Dakota Office(s): Energy Efficiency and Renewable Energy August 24, 2011 CX-006569: Categorical Exclusion Determination

187

Categorical Exclusion Determinations: American Recovery and Reinvestment  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

681: Categorical Exclusion Determination 681: Categorical Exclusion Determination Texas Propane Fleet Pilot Program CX(s) Applied: B5.1 Date: 04/22/2010 Location(s): Austin, Texas Office(s): Energy Efficiency and Renewable Energy, National Energy Technology Laboratory April 22, 2010 CX-001679: Categorical Exclusion Determination Manufacture of Battery Containers for Lithium Ion Batteries for the Aerospace and Hybrid Electric Vehicles (HEV) Markets CX(s) Applied: B1.24, B1.31, B5.1 Date: 04/22/2010 Location(s): Michigan Office(s): Energy Efficiency and Renewable Energy, National Energy Technology Laboratory April 22, 2010 CX-001677: Categorical Exclusion Determination Compressed Natural Gas Fueling Infrastructure Program (Republic Services of Florida) CX(s) Applied: B1.24, B1.31, B2.5, A11, B5.1 Date: 04/22/2010

188

Categorical Exclusion Determinations: American Recovery and Reinvestment  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

22, 2010 22, 2010 CX-002811: Categorical Exclusion Determination Clean Energy Development Fund - Renewable Energy Program CX(s) Applied: A9, B5.1 Date: 06/22/2010 Location(s): South Burlington, Vermont Office(s): Energy Efficiency and Renewable Energy, National Energy Technology Laboratory June 22, 2010 CX-002810: Categorical Exclusion Determination Pennsylvania Geothermal Fund Market Title CX(s) Applied: A9, A11, B5.1 Date: 06/22/2010 Location(s): Pennsylvania Office(s): Energy Efficiency and Renewable Energy, National Energy Technology Laboratory June 22, 2010 CX-002789: Categorical Exclusion Determination California-Tribe-Big Valley Band of Pomo Indians of the Big Valley Rancheria CX(s) Applied: B5.1 Date: 06/22/2010 Location(s): California Office(s): Energy Efficiency and Renewable Energy

189

Categorical Exclusion Determinations: American Recovery and Reinvestment  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

21, 2010 21, 2010 CX-000967: Categorical Exclusion Determination Energy Efficiency in State Buildings: West Virginia Department of Agriculture CX(s) Applied: B5.1 Date: 02/21/2010 Location(s): West Virginia Office(s): Energy Efficiency and Renewable Energy, National Energy Technology Laboratory February 21, 2010 CX-000966: Categorical Exclusion Determination Energy Efficiency in State Buildings: Higher Education CX(s) Applied: B5.1 Date: 02/21/2010 Location(s): West Virginia Office(s): Energy Efficiency and Renewable Energy, National Energy Technology Laboratory February 21, 2010 CX-000965: Categorical Exclusion Determination Energy Efficiency in State Buildings: Administration CX(s) Applied: B5.1 Date: 02/21/2010 Location(s): West Virginia Office(s): Energy Efficiency and Renewable Energy, National Energy

190

Categorical Exclusion Determinations: American Recovery and Reinvestment  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

30, 2010 30, 2010 CX-003320: Categorical Exclusion Determination Renewable Energy Program - Eastern Long Island Solar Project CX(s) Applied: A9, B5.1 Date: 07/30/2010 Location(s): Suffolk County, New York Office(s): Energy Efficiency and Renewable Energy, National Energy Technology Laboratory July 30, 2010 CX-003318: Categorical Exclusion Determination Pacific Northwest Smart Grid Demonstration CX(s) Applied: A1, A9, A11, B1.7, B4.4, B5.1 Date: 07/30/2010 Location(s): Kennewick, Washington Office(s): Electricity Delivery and Energy Reliability, National Energy Technology Laboratory July 30, 2010 CX-003501: Categorical Exclusion Determination Community-Wide Public Facilities Energy Efficiency Retrofit and Biomass Space Heating Conversion Project CX(s) Applied: A1, A9, A11, B5.1

191

Categorical Exclusion Determinations: American Recovery and Reinvestment  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

0, 2011 0, 2011 CX-005788: Categorical Exclusion Determination Connecticut-City-Milford CX(s) Applied: A9, B2.5, B5.1 Date: 05/10/2011 Location(s): Milford, Connecticut Office(s): Energy Efficiency and Renewable Energy May 9, 2011 CX-005824: Categorical Exclusion Determination Grants to Promote Mid-size Renewables at Private and Government Buildings - Ocean Landings CX(s) Applied: A1, B5.1 Date: 05/09/2011 Location(s): Berlin, Maryland Office(s): Energy Efficiency and Renewable Energy, National Energy Technology Laboratory May 5, 2011 CX-005827: Categorical Exclusion Determination Midwest Region Alternative Fuels Project CX(s) Applied: B5.1 Date: 05/05/2011 Location(s): Leawood, Kansas Office(s): Energy Efficiency and Renewable Energy, National Energy Technology Laboratory

192

Categorical Exclusion Determinations: American Recovery and Reinvestment  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

30, 2010 30, 2010 CX-004581: Categorical Exclusion Determination Re-Utilization of Industrial Carbon Dioxide for Algae Production Using a Phase Change Material CX(s) Applied: A9, A11, B3.6 Date: 11/30/2010 Location(s): Wooster, Ohio Office(s): Fossil Energy, National Energy Technology Laboratory November 30, 2010 CX-004580: Categorical Exclusion Determination Geothermal Incentive Program CX(s) Applied: B5.1 Date: 11/30/2010 Location(s): Glastonbury, Connecticut Office(s): Energy Efficiency and Renewable Energy, National Energy Technology Laboratory November 29, 2010 CX-004812: Categorical Exclusion Determination Relocation of Trailer 704-29G to P-Area CX(s) Applied: B1.22 Date: 11/29/2010 Location(s): Aiken, South Carolina Office(s): Savannah River Operations Office November 29, 2010

193

Categorical Exclusion Determinations: American Recovery and Reinvestment  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

9, 2010 9, 2010 CX-003050: Categorical Exclusion Determination Irvine Smart Grid Demonstration Project CX(s) Applied: A9, A11, B3.6, B4.6, B5.1 Date: 07/19/2010 Location(s): Irvine, California Office(s): Electricity Delivery and Energy Reliability, National Energy Technology Laboratory July 19, 2010 CX-003049: Categorical Exclusion Determination Public Serving Institutions - Folsom School Parking Lot Lights Project CX(s) Applied: B2.3, B5.1 Date: 07/19/2010 Location(s): North Hero, Vermont Office(s): Energy Efficiency and Renewable Energy, National Energy Technology Laboratory July 19, 2010 CX-003048: Categorical Exclusion Determination Training Program Development for Commercial Building Equipment Technicians CX(s) Applied: A1, A9, A11 Date: 07/19/2010 Location(s): College Station, Texas

194

Categorical Exclusion Determinations: American Recovery and Reinvestment  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

December 9, 2010 December 9, 2010 CX-004649: Categorical Exclusion Determination The Painesville Municipal Power Vanadium Redox Battery Demonstration Program CX(s) Applied: B3.6 Date: 12/09/2010 Location(s): Painesville, Ohio Office(s): Electricity Delivery and Energy Reliability, National Energy Technology Laboratory December 9, 2010 CX-004648: Categorical Exclusion Determination The Painesville Municipal Power Vanadium Redox Battery Demonstration Program CX(s) Applied: A11, B3.6, B5.1 Date: 12/09/2010 Location(s): Johnstown, Pennsylvania Office(s): Electricity Delivery and Energy Reliability, National Energy Technology Laboratory December 9, 2010 CX-004641: Categorical Exclusion Determination Integrated Whole Building Energy Diagnostics CX(s) Applied: A9, B2.2, B5.1 Date: 12/09/2010

195

Categorical Exclusion Determinations: American Recovery and Reinvestment  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

0, 2011 0, 2011 CX-005214: Categorical Exclusion Determination Chicago Area Alternative Fuels Deployment Project CX(s) Applied: B5.1 Date: 02/10/2011 Location(s): Downers Grove, Illinois Office(s): Energy Efficiency and Renewable Energy, National Energy Technology Laboratory February 10, 2011 CX-005213: Categorical Exclusion Determination Chicago Area Alternative Fuels Deployment Project CX(s) Applied: B5.1 Date: 02/10/2011 Location(s): Wheaton, Illinois Office(s): Energy Efficiency and Renewable Energy, National Energy Technology Laboratory February 10, 2011 CX-005265: Categorical Exclusion Determination Hybrid Vehicle Purchase Project CX(s) Applied: A1, B5.1 Date: 02/10/2011 Location(s): Moline, Illinois Office(s): Energy Efficiency and Renewable Energy February 9, 2011

196

Categorical Exclusion Determinations: American Recovery and Reinvestment  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

1, 2010 1, 2010 CX-004307: Categorical Exclusion Determination Geothermal Incentive Program - Minesh CX(s) Applied: B1.24, B2.2, B5.1 Date: 11/01/2010 Location(s): Litchfield, Connecticut Office(s): Energy Efficiency and Renewable Energy, National Energy Technology Laboratory November 1, 2010 CX-004306: Categorical Exclusion Determination State Energy Program: Non-Utility Scale Renewable Energy Program CX(s) Applied: B5.1 Date: 11/01/2010 Location(s): Pawtucket, Rhode Island Office(s): Energy Efficiency and Renewable Energy, National Energy Technology Laboratory November 1, 2010 CX-004305: Categorical Exclusion Determination Commercial Renewable Energy Systems - Myers Park Baptist Church Solar CX(s) Applied: A9, B5.1 Date: 11/01/2010 Location(s): Charlotte, North Carolina

197

Categorical Exclusion Determinations: American Recovery and Reinvestment  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

81: Categorical Exclusion Determination 81: Categorical Exclusion Determination Commercial Renewable Energy Systems - Pisgah Inn Solar CX(s) Applied: B5.1 Date: 04/01/2010 Location(s): Waynesville, North Carolina Office(s): Energy Efficiency and Renewable Energy, National Energy Technology Laboratory April 1, 2010 CX-001482: Categorical Exclusion Determination Commercial Renewable Energy Systems - Remington Arms Solar CX(s) Applied: A9, B5.1 Date: 04/01/2010 Location(s): Madison, North Carolina Office(s): Energy Efficiency and Renewable Energy, National Energy Technology Laboratory April 1, 2010 CX-001400: Categorical Exclusion Determination Nye County Energy Efficiency Projects CX(s) Applied: A9, A11, B5.1 Date: 04/01/2010 Location(s): Nye County, Nevada Office(s): Energy Efficiency and Renewable Energy

198

Categorical Exclusion Determinations: American Recovery and Reinvestment  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

9, 2010 9, 2010 CX-000977: Categorical Exclusion Determination Virginia Women's Correction Center Biomass and Biodiesel Project CX(s) Applied: B5.1 Date: 02/19/2010 Location(s): Goochland County, Virginia Office(s): Energy Efficiency and Renewable Energy, National Energy Technology Laboratory February 19, 2010 CX-000976: Categorical Exclusion Determination Town of Christiansburg Wastewater Treatment Plant Combined Heat and Power from Biogas CX(s) Applied: B1.15, B1.31, B5.1 Date: 02/19/2010 Location(s): Christiansburg, Virginia Office(s): Energy Efficiency and Renewable Energy, National Energy Technology Laboratory February 19, 2010 CX-000975: Categorical Exclusion Determination Rockingham Memorial Hospital Methane Gas Conversion CX(s) Applied: B5.1 Date: 02/19/2010 Location(s): Rockingham County, Virginia

199

Categorical Exclusion Determinations: American Recovery and Reinvestment  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

9, 2010 9, 2010 CX-002976: Categorical Exclusion Determination Propane Corridor Development Program CX(s) Applied: A1, A7, B5.1 Date: 07/09/2010 Location(s): Pelzer, South Carolina Office(s): Energy Efficiency and Renewable Energy, National Energy Technology Laboratory July 9, 2010 CX-002974: Categorical Exclusion Determination Propane Corridor Development Program - Greenville, South Carolina CX(s) Applied: A1, A7, B5.1 Date: 07/09/2010 Location(s): South Carolina Office(s): Energy Efficiency and Renewable Energy, National Energy Technology Laboratory July 9, 2010 CX-002972: Categorical Exclusion Determination Propane Corridor Development Program - Traveler's Rest, South Carolina CX(s) Applied: A1, A7, B5.1 Date: 07/09/2010 Location(s): South Carolina Office(s): Energy Efficiency and Renewable Energy, National Energy

200

Categorical Exclusion Determinations: American Recovery and Reinvestment  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

6, 2011 6, 2011 CX-005433: Categorical Exclusion Determination Oklahoma State Energy Program American Recovery and Reinvestment Act - Oklahoma Municipal Power Authority Large System Application Request N CX(s) Applied: B5.1 Date: 03/16/2011 Location(s): Oklahoma Office(s): Energy Efficiency and Renewable Energy, Golden Field Office March 16, 2011 CX-005429: Categorical Exclusion Determination State Energy Program American Recovery and Reinvestment Act -Solid Waste Authority of Central Ohio CX(s) Applied: B5.1 Date: 03/16/2011 Location(s): Grove City, Ohio Office(s): Energy Efficiency and Renewable Energy, Golden Field Office March 16, 2011 CX-005425: Categorical Exclusion Determination Energy Efficiency and Conservation Block Grant - Brookhaven New York: Henrietta Acampora Recreation Center

Note: This page contains sample records for the topic "recovery technology cxs" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

Categorical Exclusion Determinations: American Recovery and Reinvestment  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

9, 2010 9, 2010 CX-001081: Categorical Exclusion Determination State of Montana Energy Efficiency and Conservation Block Grant (T) CX(s) Applied: A9, A11, B5.1 Date: 02/09/2010 Location(s): Montana Office(s): Energy Efficiency and Renewable Energy, Golden Field Office February 9, 2010 CX-001082: Categorical Exclusion Determination State of New Hampshire Energy Efficiency and Conservation Block Grant - American Recovery and Reinvestment Act (T) CX(s) Applied: A9, A11, B5.1 Date: 02/09/2010 Location(s): New Hampshire, New Hampshire Office(s): Energy Efficiency and Renewable Energy, Golden Field Office February 9, 2010 CX-001088: Categorical Exclusion Determination City of New York American Recovery and Reinvestment Act - Energy Efficiency and Conservation Block Grant (S)

202

IMPROVED OIL RECOVERY FROM UPPER JURASSIC SMACKOVER CARBONATES THROUGH THE APPLICATION OF ADVANCED TECHNOLOGIES AT WOMACK HILL OIL FIELD, CHOCTAW AND CLARKE COUNTIES, EASTERN GULF COASTAL PLAIN  

SciTech Connect

Pruet Production Co. and the Center for Sedimentary Basin Studies at the University of Alabama, in cooperation with Texas A&M University, Mississippi State University, University of Mississippi, and Wayne Stafford and Associates are undertaking a focused, comprehensive, integrated and multidisciplinary study of Upper Jurassic Smackover carbonates (Class II Reservoir), involving reservoir characterization and 3-D modeling and an integrated field demonstration project at Womack Hill Oil Field Unit, Choctaw and Clarke Counties, Alabama, Eastern Gulf Coastal Plain. The principal objectives of the project are: increasing the productivity and profitability of the Womack Hill Field Unit, thereby extending the economic life of this Class II Reservoir and transferring effectively and in a timely manner the knowledge gained and technology developed from this project to producers who are operating other domestic fields with Class II Reservoirs. The principal research efforts for Year 3 of the project have been recovery technology analysis and recovery technology evaluation. The research focus has primarily been on well test analysis, 3-D reservoir simulation, microbial core experiments, and the decision to acquire new seismic data for the Womack Hill Field area. Although Geoscientific Reservoir Characterization and 3-D Geologic Modeling have been completed and Petrophysical and Engineering Characterization and Microbial Characterization are essentially on schedule, a no-cost extension until September 30, 2003, has been granted by DOE so that new seismic data for the Womack Hill Field can be acquired and interpreted to assist in the determination as to whether Phase II of the project should be implemented.

Ernest A. Mancini

2003-05-20T23:59:59.000Z

203

Review of ASP EOR (alkaline surfactant polymer enhanced oil recovery) technology in the petroleum industry: Prospects and challenges  

Science Journals Connector (OSTI)

Abstract Owing to the inefficiency of the conventional primary and secondary recovery methods to yield above 2040% of the OOIP (original oil in place) as incremental oil, the need for EOR (Enhanced Oil Recovery) techniques to recover a higher proportion of the OOIP has become imperative. ASP (Alkaline/Surfactant/Polymer) is one of such techniques that has proven successful due to its ability to improve displacement and sweep efficiency. Alkalinesurfactantpolymer (ASP) flooding is a combination process in which alkali, surfactant and polymer are injected at the same slug. Because of the synergy of these three components, ASP is widely practiced in both pilot and field operations with the objective of achieving optimum chemistry at large injection volumes for minimum cost. Despite its popularity as a potentially cost-effective chemical flooding method, it is not without its limitations. This paper therefore focuses on the reviews of the application of ASP flooding process in oil recovery in the petroleum industry and its limitations in maximizing oil recovery from onshore and offshore reservoirs. Also discussed are technical solutions to some of these challenges.

Abass A. Olajire

2014-01-01T23:59:59.000Z

204

Low-Temperature Mineral Recovery Program FOA Selections  

Energy.gov (U.S. Department of Energy (DOE))

Energy Department's geothermal technologies office awarded nine projects in low-temperature and mineral recovery.

205

Categorical Exclusion Determinations: American Recovery and Reinvestment  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

8, 2010 8, 2010 CX-002902: Categorical Exclusion Determination DeKalb County/Metropolitan Atlanta Alternative Fuel and Advanced Technology Vehicle Project CX(s) Applied: A1, A7, B5.1 Date: 07/08/2010 Location(s): Tucker, Georgia Office(s): Energy Efficiency and Renewable Energy, National Energy Technology Laboratory July 8, 2010 CX-002901: Categorical Exclusion Determination DeKalb County/Metropolitan Atlanta Alternative Fuel and Advanced Technology Vehicle Project CX(s) Applied: A1, A7, B5.1 Date: 07/08/2010 Location(s): East Point, Georgia Office(s): Energy Efficiency and Renewable Energy, National Energy Technology Laboratory July 8, 2010 CX-002900: Categorical Exclusion Determination DeKalb County/Metropolitan Atlanta Alternative Fuel and Advanced Technology Vehicle Project

206

Categorical Exclusion Determinations: American Recovery and Reinvestment  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

19, 2010 19, 2010 CX-000858: Categorical Exclusion Determination Joint BioEnergy Institute Lease and Operation of Greenhouses at University of California at Davis CX(s) Applied: A7, B1.3, B1.15, B3.6 Date: 01/19/2010 Location(s): Davis, California Office(s): Science, Berkeley Site Office January 18, 2010 CX-000705: Categorical Exclusion Determination Florida - Sunshine State Buildings Parking Lot Canopies - State Energy Program CX(s) Applied: B1.15, B1.24, B2.1, B5.1 Date: 01/18/2010 Location(s): Tallahassee, Florida Office(s): Energy Efficiency and Renewable Energy, National Energy Technology Laboratory January 18, 2010 CX-000706: Categorical Exclusion Determination Florida - Compressed Natural Gas Fleet Fueling - State Energy Program CX(s) Applied: B1.15, B1.24, B1.31, B2.5, B5.1

207

Categorical Exclusion Determinations: American Recovery and Reinvestment  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

31, 2010 31, 2010 CX-001532: Categorical Exclusion Determination City of Orlando - Statement of Work (S) CX(s) Applied: A9, A11, B5.1 Date: 03/31/2010 Location(s): Orlando, Florida Office(s): Energy Efficiency and Renewable Energy, Golden Field Office March 31, 2010 CX-001516: Categorical Exclusion Determination Energy Efficiency Audits CX(s) Applied: A9, A11, B5.1 Date: 03/31/2010 Location(s): Pinal County, Arizona Office(s): Energy Efficiency and Renewable Energy, Golden Field Office March 31, 2010 CX-001526: Categorical Exclusion Determination Advance Technology Energy Efficient Equipment - Various County Central Chiller Plants CX(s) Applied: B5.1 Date: 03/31/2010 Location(s): San Diego County, California Office(s): Energy Efficiency and Renewable Energy, Golden Field Office

208

Categorical Exclusion Determinations: American Recovery and Reinvestment  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

5, 2009 5, 2009 CX-000286: Categorical Exclusion Determination Engineer, Assemble, and Test Electrified Vehicle Drive Electronics CX(s) Applied: A9, B3.6, B5.1, B1.31 Date: 12/15/2009 Location(s): Fargo, North Dakota Office(s): Energy Efficiency and Renewable Energy, National Energy Technology Laboratory December 15, 2009 CX-000235: Categorical Exclusion Determination California City Fresno CX(s) Applied: A9, A11, B5.1 Date: 12/15/2009 Location(s): Fresno, California Office(s): Energy Efficiency and Renewable Energy, Golden Field Office December 14, 2009 CX-001266: Categorical Exclusion Determination Develop Energy Efficiency and Conservation Strategy CX(s) Applied: A9, A11 Date: 12/14/2009 Location(s): Kennebec, Maine Office(s): Energy Efficiency and Renewable Energy December 14, 2009

209

Categorical Exclusion Determinations: American Recovery and Reinvestment  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

18, 2009 18, 2009 CX-000250: Categorical Exclusion Determination WA County Kitsap CX(s) Applied: A9, A11, B5.1 Date: 12/18/2009 Location(s): Washington Office(s): Energy Efficiency and Renewable Energy, Golden Field Office December 18, 2009 CX-000142: Categorical Exclusion Determination Village of Venetie Energy Distribution Project CX(s) Applied: B2.5, B5.1 Date: 12/18/2009 Location(s): Venetie, Alaska Office(s): Energy Efficiency and Renewable Energy December 18, 2009 CX-000141: Categorical Exclusion Determination Village of Kaltag Energy Audits CX(s) Applied: B5.1, A9, A11 Date: 12/18/2009 Location(s): Kaltag, Alaska Office(s): Energy Efficiency and Renewable Energy December 18, 2009 CX-000140: Categorical Exclusion Determination Shageluk Native Village Renewable Energy Technology - Solar

210

Categorical Exclusion Determinations: American Recovery and Reinvestment  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

0, 2010 0, 2010 CX-002214: Categorical Exclusion Determination Susanville Indian Rancheria Portfolio Manager Tool CX(s) Applied: B2.5, B5.1 Date: 05/10/2010 Location(s): California Office(s): Energy Efficiency and Renewable Energy May 10, 2010 CX-002355: Categorical Exclusion Determination Kansas City Power and Light (KCP&L) Green Impact Zone Smart Grid Demonstration CX(s) Applied: B4.6, A1, A9, A11, B1.7, B4.11, B5.1 Date: 05/10/2010 Location(s): Kansas City, Missouri Office(s): Electricity Delivery and Energy Reliability, National Energy Technology Laboratory May 10, 2010 CX-002351: Categorical Exclusion Determination Interstate Electrification Improvement CX(s) Applied: A1, B5.1 Date: 05/10/2010 Location(s): Portland, Oregon Office(s): Energy Efficiency and Renewable Energy, National Energy

211

Categorical Exclusion Determinations: American Recovery and Reinvestment  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

2, 2010 2, 2010 CX-004765: Categorical Exclusion Determination State Energy Program - Building Code Technical Assistance CX(s) Applied: A1, A9, A11, B5.1 Date: 12/22/2010 Location(s): Maryland Office(s): Energy Efficiency and Renewable Energy, National Energy Technology Laboratory December 22, 2010 CX-004838: Categorical Exclusion Determination Recycling of Solar Panels CX(s) Applied: B5.1 Date: 12/22/2010 Location(s): Wisconsin Office(s): Energy Efficiency and Renewable Energy, Golden Field Office December 22, 2010 CX-004834: Categorical Exclusion Determination Scott Jenkins Parking Lot Light Emitting Diode Lighting with Solar Arrays and On?site Electric Vehicle Charging Stations CX(s) Applied: B5.1 Date: 12/22/2010 Location(s): Loudoun County, Virginia Office(s): Energy Efficiency and Renewable Energy, Golden Field Office

212

Categorical Exclusion Determinations: American Recovery and Reinvestment  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

12, 2011 12, 2011 CX-005692: Categorical Exclusion Determination State Energy Program Illinois Green Industry Business Development and Large Customer Energy Efficiency Program CX(s) Applied: A9, A11, B5.1 Date: 04/12/2011 Location(s): Peoria, Illinois Office(s): Energy Efficiency and Renewable Energy, Golden Field Office April 11, 2011 CX-005595: Categorical Exclusion Determination Texas Propane Fleet Pilot Program CX(s) Applied: A1, A7, B5.1 Date: 04/11/2011 Location(s): Houston, Texas Office(s): Energy Efficiency and Renewable Energy, National Energy Technology Laboratory April 11, 2011 CX-005734: Categorical Exclusion Determination Energy Efficiency and Conservation Block Grant - Solar Compactors and Recycling Units CX(s) Applied: B5.1 Date: 04/11/2011 Location(s): Richmond, Virginia

213

Categorical Exclusion Determinations: American Recovery and Reinvestment  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

3, 2010 3, 2010 CX-002430: Categorical Exclusion Determination Rattlesnake-Garrison Number-1 Wood Pole Installation CX(s) Applied: B1.13, B4.6, B1.3 Date: 05/13/2010 Location(s): Missoula County, Montana Office(s): Bonneville Power Administration May 13, 2010 CX-002238: Categorical Exclusion Determination Evaluation of Instrumentation and Dynamic Thermal Circuit Rating (DTCR) for Overhead Lines CX(s) Applied: B3.11, B4.6 Date: 05/13/2010 Location(s): St. Lawrence County, New York Office(s): Electricity Delivery and Energy Reliability, National Energy Technology Laboratory May 13, 2010 CX-002575: Categorical Exclusion Determination Blacksburg Virginia: Energy Efficiency and Conservation Plan Development CX(s) Applied: B2.5, A1, A9, B1.2, B5.1 Date: 05/13/2010 Location(s): Blacksburg, Virginia

214

Categorical Exclusion Determinations: American Recovery and Reinvestment  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

January 27, 2011 January 27, 2011 CX-005127: Categorical Exclusion Determination Philadelphia (Pennsylvania): Energy Loan to Community Legal Services for the Erie Avenue Office CX(s) Applied: B5.1 Date: 01/27/2011 Location(s): Philadelphia, Pennsylvania Office(s): Energy Efficiency and Renewable Energy, Golden Field Office January 27, 2011 CX-005076: Categorical Exclusion Determination Jefferson County Sheriff's Department Propane Infrastructure Project CX(s) Applied: B5.1 Date: 01/27/2011 Location(s): Jefferson, Wisconsin Office(s): Energy Efficiency and Renewable Energy, National Energy Technology Laboratory January 27, 2011 CX-005068: Categorical Exclusion Determination City of Riverside, California CX(s) Applied: A9, A11, B5.1 Date: 01/27/2011 Location(s): Riverside, California

215

Categorical Exclusion Determinations: American Recovery and Reinvestment  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

21, 2011 21, 2011 CX-006348: Categorical Exclusion Determination North Carolina-County-Davidson CX(s) Applied: A9, A11, B2.5, B5.1 Date: 06/21/2011 Location(s): Davidson County, North Carolina Office(s): Energy Efficiency and Renewable Energy June 21, 2011 CX-006339: Categorical Exclusion Determination Minnesota-City-Brooklyn Park CX(s) Applied: A9, B1.32, B2.5, B5.1 Date: 06/21/2011 Location(s): Brooklyn Park, Minnesota Office(s): Energy Efficiency and Renewable Energy June 21, 2011 CX-006133: Categorical Exclusion Determination Geothermal Incentive Program CX(s) Applied: B5.1 Date: 06/21/2011 Location(s): New Canaan, Connecticut Office(s): Energy Efficiency and Renewable Energy, National Energy Technology Laboratory June 21, 2011 CX-006130: Categorical Exclusion Determination

216

Categorical Exclusion Determinations: American Recovery and Reinvestment  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

August 8, 2011 August 8, 2011 CX-006456: Categorical Exclusion Determination Fuel Cell Program CX(s) Applied: A1, B2.2, B5.1 Date: 08/08/2011 Location(s): Weston, Connecticut Office(s): Energy Efficiency and Renewable Energy, National Energy Technology Laboratory August 5, 2011 CX-006422: Categorical Exclusion Determination New York-City-Tonawanda, Town of CX(s) Applied: B5.1 Date: 08/05/2011 Location(s): Tonawanda, New York Office(s): Energy Efficiency and Renewable Energy August 4, 2011 CX-006471: Categorical Exclusion Determination Air Awareness Campaign Electric Car Charging Station CX(s) Applied: B5.1 Date: 08/04/2011 Location(s): Greenville, South Carolina Office(s): Energy Efficiency and Renewable Energy, Golden Field Office August 4, 2011 CX-006455: Categorical Exclusion Determination

217

Categorical Exclusion Determinations: American Recovery and Reinvestment  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

March 25, 2011 March 25, 2011 CX-005548: Categorical Exclusion Determination Crittendon County Courthouse Window Replacement and Building Lighting Retrofit CX(s) Applied: A1, B2.5, B5.1 Date: 03/25/2011 Location(s): Crittendon County, Arkansas Office(s): Civilian Radioactive Waste Management, Energy Efficiency and Renewable Energy March 25, 2011 CX-005478: Categorical Exclusion Determination Clean Energy Grants - City of Marianna CX(s) Applied: A1, B1.4, B5.1, B5.2 Date: 03/25/2011 Location(s): Marianna, Florida Office(s): Energy Efficiency and Renewable Energy, National Energy Technology Laboratory March 24, 2011 CX-005523: Categorical Exclusion Determination Washington-City-Bellevue CX(s) Applied: A9, A11, B5.1 Date: 03/24/2011 Location(s): Bellevue, Washington Office(s): Energy Efficiency and Renewable Energy

218

Vehicle Technologies Office Merit Review 2014: Nanostructured High-Temperature Bulk Thermoelectric Energy Conversion for Efficient Waste Heat Recovery  

Energy.gov (U.S. Department of Energy (DOE))

Presentation given by GMZ Energy Inc. at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about nanostructured high...

219

Use Feedwater Economizers for Waste Heat Recovery: Office of Industrial Technologies (OIT) Steam Energy Tips No.3  

SciTech Connect

A feedwater economizer reduces steam boiler fuel requirements by transferring heat from the flue gas to incoming feedwater. Boiler flue gases are often rejected to the stack at temperatures more than 100 F to 150 F higher than the temperature of the generated steam. Generally, boiler efficiency can be increased by 1% for every 40 F reduction in flue gas temperature. By recovering waste heat, an economizer can often reduce fuel requirements by 5% to 10% and pay for itself in less than 2 years. The table provides examples of the potential for heat recovery.

Not Available

2002-03-01T23:59:59.000Z

220

Categorical Exclusion Determinations: National Energy Technology Laboratory  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

May 1, 2012 May 1, 2012 CX-008288: Categorical Exclusion Determination Decommissioning of the Appliance Testing and Evaluation Center in Morgantown CX(s) Applied: B3.6 Date: 05/01/2012 Location(s): West Virginia Offices(s): National Energy Technology Laboratory May 1, 2012 CX-008287: Categorical Exclusion Determination Technology Integration Program CX(s) Applied: A9 Date: 05/01/2012 Location(s): CX: none Offices(s): National Energy Technology Laboratory May 1, 2012 CX-008286: Categorical Exclusion Determination Technology Integration Program CX(s) Applied: A9, A11, B3.6 Date: 05/01/2012 Location(s): Tennessee Offices(s): National Energy Technology Laboratory May 1, 2012 CX-008285: Categorical Exclusion Determination E85 (Ethanol) Retail Fueling Infrastructure Installation CX(s) Applied: B5.22

Note: This page contains sample records for the topic "recovery technology cxs" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

Passamaquoddy Technology Recovery Scrubber{trademark} at the Dragon Products, Inc. Cement Plant located in Thomaston, Maine. 1990 Annual technical report  

SciTech Connect

The background and process of the Passamaquoddy Technology Recovery Scrubber{trademark} are described. The Scrubber was developed for Dragon Cement Plant in Thomaston, Maine and facilitates a number of process improvements. The exhaust gas is scrubbed of SO{sub 2} with better than 90% efficiency. The kiln dust is cleaned of alkalines and so can be returned to kiln feed instead of dumped to landfill. Potassium sulfate in commercial quantity and purity can be recovered. Distilled water is recovered which also has commercial potential. Thus, various benefits are accrued and no waste streams remain for disposal. The process is applicable to both wet and dry process cement kilns and appears to have potential in any industry which generates acidic gaseous exhausts and/or basic solid or liquid wastes.

Not Available

1990-12-31T23:59:59.000Z

222

Horizontal oil well applications and oil recovery assessment. Volume 1: Success of horizontal well technology, Final report  

SciTech Connect

Horizontal technology has been applied in over 110 formations in the USA. Volume I of this study addresses the overall success of horizontal technology, especially in less-publicized formations, i.e., other than the Austin Chalk, Bakken, and Niobrara. Operators in the USA. and Canada were surveyed on a formation-by-formation basis by means of a questionnaire. Response data were received describing horizontal well projects in 58 formations in the USA. and 88 in Canada. Operators responses were analyzed for trends in technical and economic success based on lithology (clastics and carbonates) and resource type (light oil, heavy oil, and gas). The potential impact of horizontal technology on reserves was also estimated. A forecast of horizontal drilling activity over the next decade was developed.

Deskins, W.G.; McDonald, W.J.; Knoll, R.G.; Springer, S.J.

1995-03-01T23:59:59.000Z

223

Categorical Exclusion Determinations: American Recovery and Reinvestment  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

4, 2011 4, 2011 CX-005572: Categorical Exclusion Determination Energy Efficiency and Conservation Block Grant - Washington-Tribe-Cowlitz Indian Tribe CX(s) Applied: B2.5, B5.1 Date: 04/04/2011 Location(s): Washington Office(s): Energy Efficiency and Renewable Energy April 4, 2011 CX-005569: Categorical Exclusion Determination Montgomery County American Recovery and Reinvestment Act -Energy Efficiency and Conservation Block Grant - Act 1 (County Retrofits - Madison Lakes Park Geothermal) CX(s) Applied: B5.1 Date: 04/04/2011 Location(s): Montgomery County, Ohio Office(s): Energy Efficiency and Renewable Energy, Golden Field Office April 4, 2011 CX-005562: Categorical Exclusion Determination Energy Efficiency and Conservation Block Grant - Michigan-City-Clinton, Charter Township of

224

Categorical Exclusion Determinations: American Recovery and Reinvestment  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

5, 2011 5, 2011 CX-004864: Categorical Exclusion Determination Geothermal Incentive Program CX(s) Applied: A9, A11, B5.1 Date: 01/05/2011 Location(s): Newtown, Connecticut Office(s): Energy Efficiency and Renewable Energy, National Energy Technology Laboratory January 4, 2011 CX-004863: Categorical Exclusion Determination Arkansas Energy Technology Loan Program - General Energy Solutions Anaerobic Digester Loan Request Date: 01/04/2011 Location(s): Clarksville, Arkansas Office(s): Energy Efficiency and Renewable Energy, National Energy Technology Laboratory January 4, 2011 CX-004859: Categorical Exclusion Determination Multi-Family Housing Weatherization CX(s) Applied: A9, A11, B5.1 Date: 01/04/2011 Location(s): Kansas Office(s): Energy Efficiency and Renewable Energy, Golden Field Office

225

Multiwavelength all-optical clock recovery  

E-Print Network (OSTI)

Multiwavelength clock recovery is especially desirable in systems that use wavelength-division-multipleged technology. A multiwavelength clock-recovery device can greatly simplify costs by eliminating the need to have a ...

Johnson, C.; Demarest, Kenneth; Allen, Christopher Thomas; Hui, Rongqing; Peddanarappagari, K. V.; Zhu, B.

1999-07-01T23:59:59.000Z

226

Demonstration of Air-Power-Assist Engine Technology for Clean Combustion and Direct Energy Recovery in Heavy Duty Application  

SciTech Connect

The first phase of the project consists of four months of applied research, starting from September 1, 2005 and was completed by December 31, 2005. During this time, the project team heavily relied on highly detailed numerical modeling techniques to evaluate the feasibility of the APA technology. Specifically, (i) A GT-Power{sup TM}engine simulation model was constructed to predict engine efficiency at various operating conditions. Efficiency was defined based on the second-law thermodynamic availability. (ii) The engine efficiency map generated by the engine simulation was then fed into a simplified vehicle model, which was constructed in the Matlab/Simulink environment, to predict fuel consumption of a refuse truck on a simple collection cycle. (iii) Design and analysis work supporting the concept of retrofitting an existing Sturman Industries Hydraulic Valve Actuation (HVA) system with the modifications that are required to run the HVA system with Air Power Assist functionality. A Matlab/Simulink model was used to calculate the dynamic response of the HVA system. Computer aided design (CAD) was done in Solidworks for mechanical design and hydraulic layout. At the end of Phase I, 11% fuel economy improvement was predicted. During Phase II, the engine simulation group completed the engine mapping work. The air handling group made substantial progress in identifying suppliers and conducting 3D modelling design. Sturman Industries completed design modification of the HVA system, which was reviewed and accepted by Volvo Powertrain. In Phase II, the possibility of 15% fuel economy improvement was shown with new EGR cooler design by reducing EGR cooler outlet temperature with APA engine technology from Air Handling Group. In addition, Vehicle Simulation with APA technology estimated 4 -21% fuel economy improvement over a wide range of driving cycles. During Phase III, the engine experimental setup was initiated at VPTNA, Hagerstown, MD. Air Handling system and HVA system were delivered to VPTNA and then assembly of APA engine was completed by June 2007. Functional testing of APA engine was performed and AC and AM modes testing were completed by October 2007. After completing testing, data analysis and post processing were performed. Especially, the models were instrumental in identifying some of the key issues with the experimental HVA system. Based upon the available engine test results during AC and AM modes, the projected fuel economy improvement over the NY composite cycle is 14.7%. This is close to but slightly lower than the originally estimated 18% from ADVISOR simulation. The APA project group demonstrated the concept of APA technology by using simulation and experimental testing. However, there are still exists of technical challenges to meet the original expectation of APA technology. The enabling technology of this concept, i.e. a fully flexible valve actuation system that can handle high back pressure from the exhaust manifold is identified as one of the major technical challenges for realizing the APA concept.

Hyungsuk Kang; Chun Tai

2010-05-01T23:59:59.000Z

227

Development of Thermoelectric Technology for Automotive Waste...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Thermoelectric Technology for Automotive Waste Heat Recovery Development of Thermoelectric Technology for Automotive Waste Heat Recovery Overview and status of project to develop...

228

Development of Thermoelectric Technology for Automotive Waste...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Thermoelectric Technology for Automotive Waste Heat Recovery Development of Thermoelectric Technology for Automotive Waste Heat Recovery Presentation from the U.S. DOE Office of...

229

Technology for the Recovery of Fuel and Adsorbent Carbons from Coal Burning Utility Ash Ponds and Landfills  

SciTech Connect

Several sampling techniques were evaluated to recover representative core samples from the ash ponds at Western Kentucky Energy's Coleman Station. The most successful was a combination of continuous-flight augers and specially designed soft-sediment sampling tubes driven by a Hammerhead drill mounted on an amphibious ARGO vehicle. A total of 51 core samples were recovered and analyzed in 3 ft sections and it was determined that there are 1,354,974 tons of ash in Pond C. Of the over 1.35M tons of ash present, 14% or 190K tons can be considered as coarse (+100 mesh). Pond C contains approximately 88K tons of carbon, nearly half of which is coarse and potentially recoverable with spiral concentration while the fine carbon (-100 mesh) is recoverable with froth flotation. There are 1.27M tons of carbon-free ash, 12% of which is coarse and potentially usable as block sand. Spiral concentration testing on bulk samples showed that product grade of 30 to 38% C (4200 to 5500 Btu/lb) was obtainable. When this product was cleaned again in an additional stage of spiral concentration, the product grade was improved to 7200 to 8200 Btu/lb with an accompanying 13 to 29% decrease in yield. Release analysis of hydraulically classified pond ash showed that froth flotation could provide froth products with as high a grade as 9000 Btu/lb with a yield of 5%. Increasing yield to 10% reduced froth grade to 7000 Btu/lb. Batch flotation provided froth grades as high as 6500 Btu/lb with yields of 7% with 1.5 lb/ton SPP and 1 lb/ton frother. Column flotation test results were similar to those achieved in batch flotation in terms of both grade and yield, however, carbon recoveries were lower (<70%). High airflow rate was required to achieve >50% carbon recovery and using wash water improved froth grade. Bottom ash samples were recovered from each of the units at Coleman Station. Characterization confirmed that sufficient quantity and quality of material is generated to produce a marketable lightweight aggregate and recover a high-grade fuel product. Spiral concentration provided acceptable grade lightweight aggregate with yields of only 10 to 20%. Incorporating a sieve bend into the process to recover coarse, porous ash particles from the outside race of the spirals increased aggregate yield to as high as 75%, however, the carbon content of the aggregate also increased. An opening size of 28 mesh on the sieve bend appeared to be sufficient. Lightweight concrete blocks (28 to 32 lbs) were produced from bottom ash and results show that acceptable strength could be attained with a cement/concrete ratio as low as 1/4. A mobile Proof-of-Concept (POC) field unit was designed and fabricated to meet the processing objectives of the project. The POC plant consisted of two trailer-mounted modules and was completely self sufficient with respect to power and water requirements. The POC unit was hauled to Coleman Station and operated at a feed rate of 2 tph. Results showed that the spirals operated similarly to previous pilot-scale operations and a 500 lb composite sample of coarse carbon was collected with a grade of 51.7% C or 7279 Btu/lb. Flotation results compared favorably with release analysis and 500 lbs of composite froth product was collected with a grade of 35% C or 4925 Btu/lb. The froth product was dewatered to 39% moisture with vacuum filtration. Pan pelletization and briquetting were evaluated as a means of minimizing handling concerns. Rotary pan pelletization produced uniform pellets with a compressive strength of 4 lbf without the use of any binder. Briquettes were produced by blending the coarse and fine carbon products at a ratio of 1:10, which is the proportion that the two products would be produced in a commercial operation. Using 3% lime as a binder produced the most desirable briquettes with respect to strength, attrition and drop testing. Additionally, the POC carbon products compared favorably with commercial activated carbon when used for removal of mercury from simulated flue gas. A business model was generated to summarize anti

J.G. Groppo; T.L. Robl

2005-09-30T23:59:59.000Z

230

Categorical Exclusion Determinations: National Energy Technology Laboratory  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

13, 2011 13, 2011 CX-007475: Categorical Exclusion Determination North Carolina Fuel Monitoring Initiative CX(s) Applied: B5.1 Date: 12/13/2011 Location(s): North Carolina Offices(s): National Energy Technology Laboratory December 13, 2011 CX-007474: Categorical Exclusion Determination A Geomechanical Analysis of Gas Shale Fracturing and Its Containment CX(s) Applied: B3.6 Date: 12/13/2011 Location(s): Utah Offices(s): National Energy Technology Laboratory December 12, 2011 CX-007476: Categorical Exclusion Determination CEDF - Renewable Energy Program CX(s) Applied: B5.18 Date: 12/12/2011 Location(s): Vermont Offices(s): National Energy Technology Laboratory December 9, 2011 CX-007487: Categorical Exclusion Determination City of Las Vegas Electric Vehicle Program CX(s) Applied: B5.23

231

Categorical Exclusion Determinations: American Recovery and Reinvestment  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

7, 2009 7, 2009 CX-000460: Categorical Exclusion Determination Thermal Integration of Carbon Dioxide Compression Processes with Coal-Fired Power Plants Equipped with Carbon Capture CX(s) Applied: A9 Date: 12/07/2009 Location(s): Bethlehem, Pennsylvania Office(s): Fossil Energy, National Energy Technology Laboratory December 7, 2009 CX-000459: Categorical Exclusion Determination Molecular Simulation of Dissolved Inorganic Carbons for Underground Brine Carbon Dioxide Sequestration CX(s) Applied: A9, B3.6 Date: 12/07/2009 Location(s): Pasadena, California Office(s): Fossil Energy, National Energy Technology Laboratory December 7, 2009 CX-000458: Categorical Exclusion Determination Investigation on Flame Characteristics and Burner Operability Issues of Oxy-Fuel Combustion

232

Categorical Exclusion Determinations: American Recovery and Reinvestment  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

5, 2011 5, 2011 CX-005250: Categorical Exclusion Determination Wisconsin Clean Transportation Program - City of Milwaukee Lincoln Avenue, Compressed Natural Gas Infrastructure CX(s) Applied: B5.1 Date: 02/15/2011 Location(s): Milwaukee, Wisconsin Office(s): Energy Efficiency and Renewable Energy, National Energy Technology Laboratory February 15, 2011 CX-005249: Categorical Exclusion Determination Wisconsin Clean Transportation Program - City of Milwaukee Ruby Avenue Compressed Natural Gas Infrastructure CX(s) Applied: B5.1 Date: 02/15/2011 Location(s): Milwaukee, Wisconsin Office(s): Energy Efficiency and Renewable Energy, National Energy Technology Laboratory February 15, 2011 CX-005239: Categorical Exclusion Determination Alaska-Tribe-Interior Regional Housing Authority Kaltag Community

233

Categorical Exclusion Determinations: American Recovery and Reinvestment  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

, 2011 , 2011 CX-005345: Categorical Exclusion Determination New Jersey Compressed Natural Gas Refuse Trucks, Shuttle Buses and Infrastructure Project: Blue Diamond Disposal Compressed Natural Gas Station CX(s) Applied: B5.1 Date: 03/01/2011 Location(s): Mount Arlington, New Jersey Office(s): Energy Efficiency and Renewable Energy, National Energy Technology Laboratory March 1, 2011 CX-005344: Categorical Exclusion Determination State of Indiana Clean Cities Alternative Fuels Implementation - Compressed Natural Gas Project at Fair Oaks CX(s) Applied: B5.1 Date: 03/01/2011 Location(s): Fair Oaks, Indiana Office(s): Energy Efficiency and Renewable Energy, National Energy Technology Laboratory March 1, 2011 CX-005343: Categorical Exclusion Determination Long Island Regional Energy Collaborative

234

Categorical Exclusion Determinations: American Recovery and Reinvestment  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

1, 2009 1, 2009 CX-000421: Categorical Exclusion Determination Characterization of the Triassic Newark Basin of New York and New Jersey for Geologic Storage of Carbon Dioxide CX(s) Applied: B3.1, A9 Date: 12/11/2009 Location(s): Houston, Texas Office(s): Fossil Energy, National Energy Technology Laboratory December 11, 2009 CX-000420: Categorical Exclusion Determination Characterization of the Triassic Newark Basin of New York and New Jersey for Geologic Storage of Carbon Dioxide CX(s) Applied: B3.1, A9 Date: 12/11/2009 Location(s): Houston, Texas Office(s): Fossil Energy, National Energy Technology Laboratory December 11, 2009 CX-000419: Categorical Exclusion Determination Characterization of the Triassic Newark Basin of New York and New Jersey for Geologic Storage of Carbon Dioxide

235

Categorical Exclusion Determinations: American Recovery and Reinvestment  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

5, 2010 5, 2010 CX-001353: Categorical Exclusion Determination Space Geodesy and Geochemistry Applied to the Monitoring, Verification of Carbon Capture and Storage - Kimberlina CX(s) Applied: A9, B3.1 Date: 03/15/2010 Location(s): Kimberlina, California Office(s): Fossil Energy, National Energy Technology Laboratory March 15, 2010 CX-001362: Categorical Exclusion Determination Interest Creating Jobs Through Energy Efficiency Using Wisconsin's Focus on Energy - Courtland Township CX(s) Applied: B1.24, B5.1 Date: 03/15/2010 Location(s): Courtland, Wisconsin Office(s): Energy Efficiency and Renewable Energy, National Energy Technology Laboratory March 15, 2010 CX-001361: Categorical Exclusion Determination Interest Creating Jobs Through Energy Efficiency Using Wisconsin's Focus on

236

Recovery Act Funding Opportunities Webcast  

Energy.gov (U.S. Department of Energy (DOE))

As a result of the 2009 American Reinvestment and Recovery Act, the Geothermal Technologies Office (GTO) has four open Funding Opportunity Announcements (FOAs) totaling $484 million for cost-shared...

237

ASSESSING AND FORECASTING, BY PLAY, NATURAL GAS ULTIMATE RECOVERY GROWTH AND QUANTIFYING THE ROLE OF TECHNOLOGY ADVANCEMENTS IN THE TEXAS GULF COAST BASIN AND EAST TEXAS  

SciTech Connect

A detailed natural gas ultimate recovery growth (URG) analysis of the Texas Gulf Coast Basin and East Texas has been undertaken. The key to such analysis was determined to be the disaggregation of the resource base to the play level. A play is defined as a conceptual geologic unit having one or more reservoirs that can be genetically related on the basis of depositional origin of the reservoir, structural or trap style, source rocks and hydrocarbon generation, migration mechanism, seals for entrapment, and type of hydrocarbon produced. Plays are the geologically homogeneous subdivision of the universe of petroleum pools within a basin. Therefore, individual plays have unique geological features that can be used as a conceptual model that incorporates geologic processes and depositional environments to explain the distribution of petroleum. Play disaggregation revealed important URG trends for the major natural gas fields in the Texas Gulf Coast Basin and East Texas. Although significant growth and future potential were observed for the major fields, important URG trends were masked by total, aggregated analysis based on a broad geological province. When disaggregated by plays, significant growth and future potential were displayed for plays that were associated with relatively recently discovered fields, deeper reservoir depths, high structural complexities due to fault compartmentalization, reservoirs designated as tight gas/low-permeability, and high initial reservoir pressures. Continued technology applications and advancements are crucial in achieving URG potential in these plays.

William L. Fisher; Eugene M. Kim

2000-12-01T23:59:59.000Z

238

Recativation of an Idle Lease to Increase Heavy Oil Recovery Through Application of Conventional Steam Drive Technology in a Low Dip Slope and Basin Reservoir in the Midway-Sunset Field, San Jaoquin Basin, California  

SciTech Connect

This project reactivates ARCO`s idle Pru Fee lease in the Midway- Sunset field, California and conducts a continuous steamflood enhanced oil recovery demonstration aided by an integration of modem reservoir characterization and simulation methods. Cyclic steaming is being used to reestablish baseline production within the reservoir characterization phase of the project. During the demonstration phase scheduled to begin in January 1997, a continuous steamflood enhanced oil recovery will be initiated to test the incremental value of this method as an alternative to cyclic steaming. Other economically marginal Class III reservoirs having similar producibility problems will benefit from insight gained in this project. The objectives of the project are: (1) to return the shut-in portion of the reservoir to optimal commercial production; (2) to accurately describe the reservoir and recovery process; and (3) to convey the details of this activity to the domestic petroleum industry, especially to other producers in California, through an aggressive technology transfer program.

Schamel, Steven

1997-03-24T23:59:59.000Z

239

Reactivation of an Idle Lease to Increase Heavy Oil Recovery through Application of Conventional Steam Drive Technology in a Low Dip Slope and Reservoir in the Midway-Sunset Field, San Jaoquin Basin, California  

SciTech Connect

This project reactivates ARCO's idle Pru Fee lease in the Midway-Sunset field, California and conducts a continuous steamflood enhanced oil recovery demonstration aided by an integration of modern reservoir characterization and simulation methods. Cyclic steam was used to reestablish baseline production within the reservoir characterization phase of the project completed in December 1996. During the demonstration phase begun in January 1997, a continuous steamflood enhanced oil recovery is testing the incremental value of this method as an alternative to cyclic steaming. Other economically marginal Class III reservoirs having similar producibility problems will benefit from insight gained in this project. The objective of the project are: (1) to return the shut-in portion of the reservoir to optimal commercial production; (2) to accurately describe the reservoir and recovery process; and (3) to convey the details of this activity to the domestic petroleum industry, especially to other producers in California, through an aggressive technology transfer program.

Schamel, Steven

1999-07-08T23:59:59.000Z

240

Reactivation of an Idle Lease to Increase Heavy Oil Recovery Through Application of Conventional Steam Drive Technology in a Low Dip Slope and Basin Reservoir in the Midway-Sunset Field, San Jaoquin Basin, California  

SciTech Connect

This project reactivates ARCO?s idle Pru Fee property in the Midway-Sunset field, California and conducts a continuous steamflood enhanced oil recovery demonstration aided by an integration of modern reservoir characterization and simulation methods. Cyclic steaming was used to reestablish baseline production within the reservoir characterization phase of the project. During the demonstration phase begun in January 1997, a continuous steamflood enhanced oil recovery was initiated to test the incremental value of this method as an alternative to cyclic steaming. Other economically marginal Class III reservoirs having similar producibility problems will benefit from insight gained in this project. The objectives of the project are: (1) to return the shut-in portion of the reservoir to optimal commercial production; (2) to accurately describe the reservoir and the recovery process; and (3) to convey the details of this activity to the domestic petroleum industry, especially to other producers in California, through an aggressive technology transfer program.

Steven Schamel

1997-07-29T23:59:59.000Z

Note: This page contains sample records for the topic "recovery technology cxs" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

Reactivation of an Idle Lease to Increase Heavy Oil Recovery through Application of Conventional Steam Drive Technology in a Low Dip Slope and Basin Reservoir in the Midway-Sunset Field, San Jaoquin Basin, California  

SciTech Connect

This project reactivates ARCO's idle Pru Fee lease in the Midway-Sunset field, California and conducts a continuous steamflood enhanced oil recovery demonstration aided by an integration of modern reservoir characterization and simulation methods. Cyclic steaming was used to reestablish baseline production within the reservoir characterization phase of the project completed in December 1996. During the demonstration phase begun in January 1997, a continuous steamflood enhanced oil recovery is testing the incremental value of this method as an alternative to cyclic steaming. Other economically marginal Class III reservoirs having simular producibility problems will benefit from insight gained in this project. The objectives of the project are: (1) to return the shut-in portion of the reservoir to optimal commercial production; (2) to accurately describe the reservoir and recovery process; and (3) to convey the details of this activity to the domestic petroleum industry, especially t o other producers in California, through an aggressive technology transfer program.

Deo, M.; Forster, C.; Jenkins, C.; Schamel, S.; Sprinkel, D.; and Swain, R.

1999-02-01T23:59:59.000Z

242

Reactivation of an Idle Lease to Increase Heavy Oil Recovery Through Application of Conventional Steam Drive Technology in a Low Dip Slope and Basin Resrvoir in the Midway-Sunset Field, San Jaoquin Basin, California  

SciTech Connect

This project reactivates ARCO?s idle Pru Fee lease in the Midway-Sunset field, California and conducts a continuous steamflood enhanced oil recovery demonstration aided by an integration of modern reservoir characterization and simulation methods. Cyclic steaming is being used to reestablish baseline production within the reservoir characterization phase of the project. During the demonstration phase scheduled to begin in January 1997, a continuous steamflood enhanced oil recovery will be initiated to test the incremental value of this method as an alternative to cyclic steaming. Other economically marginal Class III reservoirs having similar producibility problems will benefit from insight gained in this project. The objectives of the project are: (1) to return the shut-in portion of the reservoir to optimal commercial production; (2) to accurately describe the reservoir and recovery process; and (3) to convey the details of this activity to the domestic petroleum industry, especially to other producers in California, through an aggressive technology transfer program.

Creties Jenkins; Doug Sprinkel; Milind Deo; Ray Wydrinski; Robert Swain

1997-10-21T23:59:59.000Z

243

Olefin recovery via chemical absorption  

SciTech Connect

The recovery of fight olefins in petrochemical plants has generally been accomplished through cryogenic distillation, a process which is very capital and energy intensive. In an effort to simplify the recovery process and reduce its cost, BP Chemicals has developed a chemical absorption technology based on an aqueous silver nitrate solution. Stone & Webster is now marketing, licensing, and engineering the technology. The process is commercially ready for recovering olefins from olefin derivative plant vent gases, such as vents from polyethylene, polypropylene, ethylene oxide, and synthetic ethanol units. The process can also be used to debottleneck C{sub 2} or C{sub 3} splinters, or to improve olefin product purity. This paper presents the olefin recovery imp technology, discusses its applications, and presents economics for the recovery of ethylene and propylene.

Barchas, R. [Stone & Webster Engineering Corporation, Houston, TX (United States)

1998-06-01T23:59:59.000Z

244

Enhanced coalbed methane recovery  

SciTech Connect

The recovery of coalbed methane can be enhanced by injecting CO{sub 2} in the coal seam at supercritical conditions. Through an in situ adsorption/desorption process the displaced methane is produced and the adsorbed CO{sub 2} is permanently stored. This is called enhanced coalbed methane recovery (ECBM) and it is a technique under investigation as a possible approach to the geological storage of CO{sub 2} in a carbon dioxide capture and storage system. This work reviews the state of the art on fundamental and practical aspects of the technology and summarizes the results of ECBM field tests. These prove the feasibility of ECBM recovery and highlight substantial opportunities for interdisciplinary research at the interface between earth sciences and chemical engineering.

Mazzotti, M.; Pini, R.; Storti, G. [ETH, Zurich (Switzerland). Inst. of Process Engineering

2009-01-15T23:59:59.000Z

245

Categorical Exclusion Determinations: American Recovery and Reinvestment  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

2, 2009 2, 2009 CX-000062: Categorical Exclusion Determination Greenville's SMART Building Program CX(s) Applied: B2.5, B5.1, B2.2 Date: 11/12/2009 Location(s): Greenville, Mississippi Office(s): Energy Efficiency and Renewable Energy November 12, 2009 CX-000379: Categorical Exclusion Determination Sweeney Integrated Gasification Combined Cycle/Carbon Capture and Sequestration Project - Carbon Dioxide Pipeline and Storage CX(s) Applied: A1, A9, B3.1 Date: 11/12/2009 Location(s): Sweeney, Texas Office(s): Fossil Energy, National Energy Technology Laboratory November 12, 2009 CX-000378: Categorical Exclusion Determination Monitoring, Verification, and Analysis Feasibility Study (for Demonstration of Carbon Capture and Sequestration from Steam Methane Reforming Process Gas Used for Large-Scale Hydrogen Production)

246

Categorical Exclusion Determinations: National Energy Technology Laboratory  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

January 13, 2010 January 13, 2010 CX-000726: Categorical Exclusion Determination A Novel Integrated Oxy-Combustion Flue Gas Purification Technology: A Near-Zero Emissions Pathway CX(s) Applied: B3.6 Date: 01/13/2010 Location(s): Birmingham, Alabama Office(s): Fossil Energy, National Energy Technology Laboratory January 13, 2010 CX-000727: Categorical Exclusion Determination A Novel Integrated Oxy-Combustion Flue Gas Purification Technology: A Near-Zero Emissions Pathway CX(s) Applied: A9 Date: 01/13/2010 Location(s): Bridgewater, New Jersey Office(s): Fossil Energy, National Energy Technology Laboratory January 13, 2010 CX-000728: Categorical Exclusion Determination A Novel Integrated Oxy-Combustion Flue Gas Purification Technology: A Near-Zero Emissions Pathway CX(s) Applied: A9

247

Categorical Exclusion Determinations: National Energy Technology Laboratory  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

September 9, 2011 September 9, 2011 CX-006745: Categorical Exclusion Determination Clean Coal Conference CX(s) Applied: A9 Date: 09/09/2011 Location(s): Pittsburgh, Pennsylvania Office(s): Fossil Energy, National Energy Technology Laboratory September 8, 2011 CX-006742: Categorical Exclusion Determination National Energy Technology Laboratory Pittsburgh - Replace 25 Kilovolt Air Switch 920 Area CX(s) Applied: B4.6 Date: 09/08/2011 Location(s): Pittsburgh, Pennsylvania Office(s): Fossil Energy, National Energy Technology Laboratory September 8, 2011 CX-006741: Categorical Exclusion Determination Information Technology Hub Relocation CX(s) Applied: B1.31 Date: 09/08/2011 Location(s): Morgantown, West Virginia Office(s): Fossil Energy, National Energy Technology Laboratory September 8, 2011

248

Categorical Exclusion Determinations: National Energy Technology Laboratory  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

3, 2010 3, 2010 CX-003766: Categorical Exclusion Determination Development of High Rate Coating Technology for Low Cost Electrochemical Dynamic Windows CX(s) Applied: B3.6 Date: 09/03/2010 Location(s): Berkeley, California Office(s): Energy Efficiency and Renewable Energy, National Energy Technology Laboratory September 3, 2010 CX-003761: Categorical Exclusion Determination Ramgen Supersonic Shock Wave Compression and Engine Technology CX(s) Applied: B3.6 Date: 09/03/2010 Location(s): Redmond, Washington Office(s): Fossil Energy, National Energy Technology Laboratory September 3, 2010 CX-003759: Categorical Exclusion Determination Geological Sequestration Fundamental Research Lab Move CX(s) Applied: B3.6 Date: 09/03/2010 Location(s): Pittsburgh, Pennsylvania Office(s): Fossil Energy, National Energy Technology Laboratory

249

Recovery Act  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

3 3 Recovery Act Buy American Requirements for Information Needed from Financial Assistance Applicants/Recipients for Waiver Requests Based on Unreasonable Cost or Nonavailability Applicants for and recipients of financial assistance funded by the Recovery Act must comply with the requirement that all of the iron, steel, and manufactured goods used for a project for the construction, alteration, maintenance, or repair of a public building or public work be produced in the United States, unless the head of the agency makes a waiver, or determination of inapplicability of the Buy American Recovery Act provisions, based on one of the authorized exceptions. The authorized exceptions are unreasonable cost, nonavailability, and in furtherance of the public interest. This

250

Contracts for field projects and supporting research on enhanced oil recovery and improved drilling technology. Progress review No. 21, quarter ending December 31, 1979  

SciTech Connect

Individual report are presented of contracts for field projects and supporting research on chemical flooding, CO/sub 2/ injection, thermal/heavy oil, resource assessment technology, improved drilling technology, residual oil, environment, and petroleum technology. (DLC)

Linville, B. (ed.)

1980-04-01T23:59:59.000Z

251

Recovery Act | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Recovery Act Recovery Act Recovery Act The American Recovery and Reinvestment Act of 2009 -- commonly called the "stimulus" -- was designed to spur economic growth while creating new jobs and saving existing ones. Through the Recovery Act, the Energy Department invested more than $31 billion to support a wide range of clean energy projects across the nation -- from investing in the smart grid and developing alternative fuel vehicles to helping homeowners and businesses reduce their energy costs with energy efficiency upgrades and deploying carbon capture and storage technologies. The Department's programs helped create new power sources, conserve resources and aligned the nation to lead the global energy economy. Featured Leaders of the Fuel Cell Pack Fuel cell forklifts like the one shown here are used by leading companies across the U.S. as part of their daily business operations. | Energy Department file photo.

252

Recovery Act | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

26, 2010 26, 2010 200,000 Homes Weatherized Under the Recovery Act -- Video from Cathy Zoi Vice President Biden announced that 200,000 homes have been Weatherized under the Recovery Act. Hear what Cathy Zoi, Assistant Secretary for Energy Efficiency and Renewable Energy, has to say on Weatherization. August 26, 2010 200,000 homes weatherized under the Recovery Act August 25, 2010 The Recovery Act: Cutting Costs and Upping Capacity Secretary Chu joined Vice President Joe Biden at the White House to help unveil a new report on how investments made through the Recovery Act have been impacting innovation. While the report analyzed several major sectors, its most striking findings centered on energy. August 25, 2010 Eco Technologies, Inc., hired eleven workers to install these solar panels at the Hillsborough County judicial center. | Photo courtesy of Hillsborough County

253

Outlook for enhanced oil recovery  

SciTech Connect

This paper reviews the potential for enhanced oil recovery, the evolutionary nature of the recovery processes being applied in oilfields today, key parameters that describe the technology state-of-the-art for each of the major oil recovery processes, and the nature and key outputs from the current Department of Energy research program on enhanced oil recovery. From this overview, it will be seen that the DOE program is focused on the analysis of ongoing tests and on long-range, basic research to support a more thorough understanding of process performance. Data from the program will be made available through reports, symposia, and on-line computer access; the outputs are designed to allow an independent producer to evaluate his own project as an effort to transfer rapidly the technology now being developed.

Johnson, H.R.

1982-01-01T23:59:59.000Z

254

Categorical Exclusion Determinations: American Recovery and Reinvestment  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

3, 2009 3, 2009 CX-000331: Categorical Exclusion Determination Kentucky Revision 2 - Commercial Office Building Retrofit Showcase CX(s) Applied: B1.4, B1.5, B1.15, B1.23, B1.24, B1.31, B2.1, B2.2, B2.5, B5.1 Date: 12/03/2009 Location(s): Lexington, Kentucky Office(s): Energy Efficiency and Renewable Energy, National Energy Technology Laboratory December 3, 2009 CX-000234: Categorical Exclusion Determination Nevada City Reno CX(s) Applied: B3.1, B5.1 Date: 12/03/2009 Location(s): Reno, Nevada Office(s): Energy Efficiency and Renewable Energy, Golden Field Office December 3, 2009 CX-000233: Categorical Exclusion Determination New Jersey City Jersey City CX(s) Applied: B3.1, B5.1 Date: 12/03/2009 Location(s): Jersey City, New Jersey Office(s): Energy Efficiency and Renewable Energy, Golden Field Office

255

Categorical Exclusion Determinations: American Recovery and Reinvestment  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

9, 2009 9, 2009 CX-000548: Categorical Exclusion Determination Disposition of Water from the 105-C Disassembly Basin CX(s) Applied: B6.1 Date: 11/19/2009 Location(s): Aiken, South Carolina Office(s): Environmental Management, Savannah River Operations Office November 19, 2009 CX-000317: Categorical Exclusion Determination Massachusetts Revision 1 - Massachusetts Solar Stimulus CX(s) Applied: A1, A9, A11, B1.7, B1.15, B1.24, B1.31, B2.1, B2.2, B5.1 Date: 11/19/2009 Location(s): Massachusetts Office(s): Energy Efficiency and Renewable Energy, National Energy Technology Laboratory November 19, 2009 CX-000316: Categorical Exclusion Determination Massachusetts Revision 1 - High Performance Buildings Program CX(s) Applied: B1.15, B1.22, B1.23, B1.31, B2.1, B2.3, B2.5, A1, A9, A11,

256

Categorical Exclusion Determinations: National Energy Technology Laboratory  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

24, 2011 24, 2011 CX-005319: Categorical Exclusion Determination Alternative Fuel/Advanced Vehicle Technology - City of Raleigh CX(s) Applied: A1, B5.1 Date: 02/24/2011 Location(s): Raleigh, North Carolina Office(s): Energy Efficiency and Renewable Energy, National Energy Technology Laboratory February 24, 2011 CX-005318: Categorical Exclusion Determination Alternative Fuel/Advanced Vehicle Technology - North Carolina State University CX(s) Applied: A1, B5.1 Date: 02/24/2011 Location(s): North Carolina Office(s): Energy Efficiency and Renewable Energy, National Energy Technology Laboratory February 24, 2011 CX-005317: Categorical Exclusion Determination University of Arkansas for Medical Sciences (UAMS), District Energy Service Modifications CX(s) Applied: A1, B5.1 Date: 02/24/2011

257

Categorical Exclusion Determinations: National Energy Technology Laboratory  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

August 14, 2013 August 14, 2013 CX-010787: Categorical Exclusion Determination Fire Loop Soil Excavation CX(s) Applied: B3.1, B6.1 Date: 08/14/2013 Location(s): Oregon Offices(s): National Energy Technology Laboratory August 14, 2013 CX-010786: Categorical Exclusion Determination North Central Texas Alternative Fuel and Advanced Technology Investments CX(s) Applied: B5.23 Date: 08/14/2013 Location(s): Texas Offices(s): National Energy Technology Laboratory August 14, 2013 CX-010791: Categorical Exclusion Determination Gulf of Mexico Miocene Carbon Dioxide (CO2) Site Characterization Mega Transect CX(s) Applied: A9, A11 Date: 08/14/2013 Location(s): Texas Offices(s): National Energy Technology Laboratory August 14, 2013 CX-010792: Categorical Exclusion Determination Gulf of Mexico Miocene Carbon Dioxide (CO2) Site Characterization Mega

258

Categorical Exclusion Determinations: National Energy Technology Laboratory  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

7, 2012 7, 2012 CX-009374: Categorical Exclusion Determination Development of a Carbon Dioxide Chemical Sensor for Downhole Carbon Dioxide Monitoring in Carbon Sequestration CX(s) Applied: B3.6 Date: 09/17/2012 Location(s): New Mexico Offices(s): National Energy Technology Laboratory September 17, 2012 CX-009373: Categorical Exclusion Determination Testing of an Advanced Dry Cooling Technology for Power Plants CX(s) Applied: B3.6 Date: 09/17/2012 Location(s): North Dakota Offices(s): National Energy Technology Laboratory September 17, 2012 CX-009372: Categorical Exclusion Determination Small Scale Coal-Biomass to Liquids Using Highly Selective Fischer-Tropsch Synthesis CX(s) Applied: A9 Date: 09/17/2012 Location(s): California Offices(s): National Energy Technology Laboratory

259

Categorical Exclusion Determinations: National Energy Technology Laboratory  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

2, 2010 2, 2010 CX-002250: Categorical Exclusion Determination North Central Texas Alternative Fuel and Advanced Technology Investments CX(s) Applied: B5.1 Date: 05/12/2010 Location(s): Southlake, Texas Office(s): Energy Efficiency and Renewable Energy, National Energy Technology Laboratory May 12, 2010 CX-002249: Categorical Exclusion Determination North Central Texas Alternative Fuel and Advanced Technology Investments CX(s) Applied: B5.1 Date: 05/12/2010 Location(s): Southlake, Texas Office(s): Energy Efficiency and Renewable Energy, National Energy Technology Laboratory May 12, 2010 CX-002248: Categorical Exclusion Determination Competitive Renewable Grants Program - Claflin University Solar Thermal CX(s) Applied: A1, B1.5, B5.1 Date: 05/12/2010 Location(s): Orangeburg, South Carolina

260

Categorical Exclusion Determinations: National Energy Technology Laboratory  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

20, 2012 20, 2012 CX-008446: Categorical Exclusion Determination Solid Oxide Fuel Cells Operating on Alternative and Renewable Fuels CX(s) Applied: B3.6 Date: 06/20/2012 Location(s): Missouri Offices(s): National Energy Technology Laboratory June 20, 2012 CX-008445: Categorical Exclusion Determination Solid Oxide Fuel Cells Operating on Alternative and Renewable Fuels CX(s) Applied: B3.6 Date: 06/20/2012 Location(s): New York Offices(s): National Energy Technology Laboratory June 19, 2012 CX-008450: Categorical Exclusion Determination Building 93 Heat Exchanger Removal at National Energy Technology Laboratory Pittsburgh CX(s) Applied: B1.23, B1.31 Date: 06/19/2012 Location(s): Pennsylvania Offices(s): National Energy Technology Laboratory June 19, 2012 CX-008449: Categorical Exclusion Determination

Note: This page contains sample records for the topic "recovery technology cxs" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

Categorical Exclusion Determinations: National Energy Technology Laboratory  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

April 27, 2012 April 27, 2012 CX-008292: Categorical Exclusion Determination Waste Heat Integration with Solvent Process for More Efficient Carbon Dioxide Removal from Coal-Fired Flue Gas CX(s) Applied: A11 Date: 04/27/2012 Location(s): Texas Offices(s): National Energy Technology Laboratory April 25, 2012 CX-008309: Categorical Exclusion Determination Evaluation of Solid Sorbents as a Retrofit Technology for Carbon Dioxide Capture CX(s) Applied: B3.6 Date: 04/25/2012 Location(s): Colorado Offices(s): National Energy Technology Laboratory April 25, 2012 CX-008307: Categorical Exclusion Determination Deepwater Reverse-Circulation Primary Cementing CX(s) Applied: A9 Date: 04/25/2012 Location(s): Texas Offices(s): National Energy Technology Laboratory April 25, 2012 CX-008306: Categorical Exclusion Determination

262

Categorical Exclusion Determinations: National Energy Technology Laboratory  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

December 5, 2011 December 5, 2011 CX-007500: Categorical Exclusion Determination Carbon Absorber Retrofit Equipment (CARE) CX(s) Applied: B3.6 Date: 12/05/2011 Location(s): Colorado Offices(s): National Energy Technology Laboratory October 19, 2011 CX-007063: Categorical Exclusion Determination Geothermal Incentive Program CX(s) Applied: A1, A9, B5.1 Date: 10/19/2011 Location(s): Windsor, Connecticut Office(s): Energy Efficiency and Renewable Energy, National Energy Technology Laboratory October 18, 2011 CX-007065: Categorical Exclusion Determination Slipstream Pilot-Scale Demonstration of a Novel Amine-Based Post-Combustion Technology for Carbon Dioxide Capture CX(s) Applied: B3.6 Date: 10/18/2011 Location(s): Wilsonville, Alabama Office(s): Fossil Energy, National Energy Technology Laboratory

263

American Recovery and Reinvestment Act of 2009  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

4, 2009 financial assistance 4, 2009 financial assistance Special provisions relating to work funded under American Recovery and Reinvestment Act of 2009 (Mar 2009) [Prescription: This clause must be included in all grants, cooperative agreements and TIAs (new or amended) when funds appropriated under the Recovery Act are obligated to the agreement.] Preamble The American Recovery and Reinvestment Act of 2009, Pub. L. 111-5, (Recovery Act) was enacted to preserve and create jobs and promote economic recovery, assist those most impacted by the recession, provide investments needed to increase economic efficiency by spurring technological advances in science and health, invest in transportation, environmental protection, and other infrastructure that will provide long-

264

Technolog  

NLE Websites -- All DOE Office Websites (Extended Search)

Research in Research in Science and Technolog y Sandia pushes frontiers of knowledge to meet the nation's needs, today and tomorrow Sandia National Laboratories' fundamental science and technology research leads to greater understanding of how and why things work and is intrinsic to technological advances. Basic research that challenges scientific assumptions enables the nation to push scientific boundaries. Innovations and breakthroughs produced at Sandia allow it to tackle critical issues, from maintaining the safety, security and effectiveness of the nation's nuclear weapons and preventing domestic and interna- tional terrorism to finding innovative clean energy solutions, develop- ing cutting-edge nanotechnology and moving the latest advances to the marketplace. Sandia's expertise includes:

265

Vehicle Technologies Office Merit Review 2014: Thermoelectric...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Thermoelectric Waste Heat Recovery Program for Passenger Vehicles Vehicle Technologies Office Merit Review 2014: Thermoelectric Waste Heat Recovery Program for Passenger Vehicles...

266

Categorical Exclusion Determinations: National Energy Technology Laboratory  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

20, 2011 20, 2011 CX-007453: Categorical Exclusion Determination Paving the Way with Propane: The AutoGas Corridor Development Program CX(s) Applied: B5.1 Date: 12/20/2011 Location(s): Georgia Offices(s): National Energy Technology Laboratory December 20, 2011 CX-007452: Categorical Exclusion Determination Utah Expansion of Alternative Fueling Infrastructure - Electric Charging Stations CX(s) Applied: B5.23 Date: 12/20/2011 Location(s): Utah Offices(s): National Energy Technology Laboratory December 20, 2011 CX-007451: Categorical Exclusion Determination Commuter Services Compressed Natural Gas Station CX(s) Applied: B5.1, B5.22 Date: 12/20/2011 Location(s): Utah Offices(s): National Energy Technology Laboratory December 20, 2011 CX-007450: Categorical Exclusion Determination

267

Categorical Exclusion Determinations: National Energy Technology Laboratory  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

, 2011 , 2011 CX-005342: Categorical Exclusion Determination Installation of Impalement Protection Over Existing Pointed Air Terminals at National Energy Technology Laboratory CX(s) Applied: B2.5 Date: 03/01/2011 Location(s): Pittsburgh, Pennsylvania Office(s): Fossil Energy, National Energy Technology Laboratory March 1, 2011 CX-005341: Categorical Exclusion Determination Solid State Energy Conversion Alliance Coal-Based Systems - FuelCell Energy CX(s) Applied: A9, B3.6 Date: 03/01/2011 Location(s): Alberta, Canada Office(s): Fossil Energy, National Energy Technology Laboratory March 1, 2011 CX-005340: Categorical Exclusion Determination Midwest Region Alternative Fuels Project CX(s) Applied: A7 Date: 03/01/2011 Location(s): Greene, Missouri Office(s): Energy Efficiency and Renewable Energy, National Energy

268

Categorical Exclusion Determinations: National Energy Technology Laboratory  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

27, 2010 27, 2010 CX-002519: Categorical Exclusion Determination Texas Propane Fleet Pilot Program CX(s) Applied: A7, B5.1 Date: 05/27/2010 Location(s): Dallas, Texas Office(s): Energy Efficiency and Renewable Energy, National Energy Technology Laboratory May 27, 2010 CX-002518: Categorical Exclusion Determination Gadsden State Community College Green Operations Plan CX(s) Applied: B5.1 Date: 05/27/2010 Location(s): Gadsen, Alabama Office(s): Energy Efficiency and Renewable Energy, National Energy Technology Laboratory May 27, 2010 CX-002517: Categorical Exclusion Determination Texas Propane Fleet Pilot Program CX(s) Applied: A7, B5.1 Date: 05/27/2010 Location(s): Dallas, Texas Office(s): Energy Efficiency and Renewable Energy, National Energy Technology Laboratory May 27, 2010

269

Categorical Exclusion Determinations: National Energy Technology Laboratory  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

30, 2013 30, 2013 CX-010824: Categorical Exclusion Determination Manufacturing Process for Organic Light-Emitting Diode (OLED) Integrated Substrate CX(s) Applied: B3.6 Date: 07/30/2013 Location(s): New Jersey Offices(s): National Energy Technology Laboratory July 30, 2013 CX-010823: Categorical Exclusion Determination Manufacturing Process for Organic Light-Emitting Diode (OLED) Integrated Substrate CX(s) Applied: B3.6 Date: 07/30/2013 Location(s): Pennsylvania Offices(s): National Energy Technology Laboratory July 30, 2013 CX-010822: Categorical Exclusion Determination Manufacturing Process for Organic Light-Emitting Diode (OLED) Integrated Substrate CX(s) Applied: B3.6 Date: 07/30/2013 Location(s): Illinois Offices(s): National Energy Technology Laboratory July 30, 2013 CX-010821: Categorical Exclusion Determination

270

Categorical Exclusion Determinations: National Energy Technology Laboratory  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

25, 2012 25, 2012 CX-008442: Categorical Exclusion Determination Arizona Power Partners - Smart Grid Data Access from an Advanced Meter Reading Network CX(s) Applied: A9, B5.1 Date: 06/25/2012 Location(s): Arizona Offices(s): National Energy Technology Laboratory June 21, 2012 CX-008448: Categorical Exclusion Determination Hurricane Natural Gas Fueling Station CX(s) Applied: B5.1, B5.22 Date: 06/21/2012 Location(s): Utah Offices(s): National Energy Technology Laboratory June 21, 2012 CX-008447: Categorical Exclusion Determination The Shift for Good Community Program (Switch 4 Good) CX(s) Applied: A1, A8, A9, A11 Date: 06/21/2012 Location(s): Multiple Offices(s): National Energy Technology Laboratory June 21, 2012 CX-008444: Categorical Exclusion Determination Smart Cementing Materials and Drilling Muds for Real Time Monitoring of

271

Categorical Exclusion Determinations: National Energy Technology Laboratory  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

26, 2013 26, 2013 CX-010900: Categorical Exclusion Determination Pittsburgh Building 84 Gas Line Project CX(s) Applied: B2.5 Date: 06/26/2013 Location(s): Pennsylvania Offices(s): National Energy Technology Laboratory June 26, 2013 CX-010898: Categorical Exclusion Determination Minnesota ethanol-85 (E85) Fueling Network Expansion Project CX(s) Applied: B5.22 Date: 06/26/2013 Location(s): Minnesota Offices(s): National Energy Technology Laboratory June 25, 2013 CX-010906: Categorical Exclusion Determination Research and Development (R&D) to Prepare and Characterize Coal/Biomass Mixtures for Direct Co-Feeding into Gasification Systems CX(s) Applied: B3.6 Date: 09/25/2013 Location(s): Alabama Offices(s): National Energy Technology Laboratory June 20, 2013 CX-010441: Categorical Exclusion Determination

272

Categorical Exclusion Determinations: National Energy Technology Laboratory  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

0, 2012 0, 2012 CX-009354: Categorical Exclusion Determination High Resolution 3D Laser Imaging for Inspection, Maintenance, Repair and Operations - Phase II CX(s) Applied: A9, A11, B3.6 Date: 09/20/2012 Location(s): Colorado Offices(s): National Energy Technology Laboratory September 20, 2012 CX-009353: Categorical Exclusion Determination The Sustainability Workshop (Energy Regional Innovation Cluster) CX(s) Applied: A9 Date: 09/20/2012 Location(s): Pennsylvania Offices(s): National Energy Technology Laboratory September 20, 2012 CX-009352: Categorical Exclusion Determination Navy Yard Network Operations Center (Energy Regional Innovation Cluster) CX(s) Applied: A1, A9, B2.2 Date: 09/20/2012 Location(s): Pennsylvania Offices(s): National Energy Technology Laboratory September 19, 2012

273

Categorical Exclusion Determinations: National Energy Technology Laboratory  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

5, 2010 5, 2010 CX-004434: Categorical Exclusion Determination Geothermal Incentive Program CX(s) Applied: B5.1 Date: 11/05/2010 Location(s): Stonington, Connecticut Office(s): Energy Efficiency and Renewable Energy, National Energy Technology Laboratory November 5, 2010 CX-004400: Categorical Exclusion Determination Repair Brick Support Plates on Connecting Bridges - Building 58 CX(s) Applied: B2.3 Date: 11/05/2010 Location(s): Allegheny City, Pennsylvania Office(s): Fossil Energy, National Energy Technology Laboratory November 5, 2010 CX-004399: Categorical Exclusion Determination Mississippi Energy Efficiency Appliance Rebate Program CX(s) Applied: B5.1 Date: 11/05/2010 Location(s): Mississippi Office(s): Energy Efficiency and Renewable Energy, National Energy Technology Laboratory

274

Categorical Exclusion Determinations: National Energy Technology Laboratory  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

23, 2010 23, 2010 CX-003463: Categorical Exclusion Determination Carbon Dioxide Capture by Sub-Ambient Membrane Operation CX(s) Applied: A9, B3.6 Date: 08/23/2010 Location(s): Newark, Delaware Office(s): Fossil Energy, National Energy Technology Laboratory August 23, 2010 CX-003462: Categorical Exclusion Determination Visitor's Center Conference Room CX(s) Applied: B1.7, B1.15 Date: 08/23/2010 Location(s): Morgantown,West Virginia Office(s): Fossil Energy, National Energy Technology Laboratory August 23, 2010 CX-003461: Categorical Exclusion Determination Low-Cost Wet Gas Compressor for Stripper Gas Wells CX(s) Applied: B3.6 Date: 08/23/2010 Location(s): Cambridge, Massachusetts Office(s): Fossil Energy, National Energy Technology Laboratory August 23, 2010 CX-003460: Categorical Exclusion Determination

275

Categorical Exclusion Determinations: National Energy Technology Laboratory  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

0, 2012 0, 2012 CX-009310: Categorical Exclusion Determination Optimization of Reservoir Storage Capacity in Different Depositional Environments (Rock Sampling) CX(s) Applied: B3.1 Date: 08/30/2012 Location(s): Multiple Offices(s): National Energy Technology Laboratory August 30, 2012 CX-009309: Categorical Exclusion Determination Unraveling the Role of Transport, Electrocatalysis, and Surface Science in the SOFC Cathode ORR CX(s) Applied: B3.6 Date: 08/30/2012 Location(s): Multiple Offices(s): National Energy Technology Laboratory August 29, 2012 CX-008916: Categorical Exclusion Determination Development of a Scientific Plan for a Hydrate-Focused Marine Drilling, Logging and Coring Program CX(s) Applied: A1, A9 Date: 08/29/2012 Location(s): Washington, DC Offices(s): National Energy Technology Laboratory

276

Categorical Exclusion Determinations: National Energy Technology Laboratory  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

30, 2012 30, 2012 CX-009314: Categorical Exclusion Determination Roof Replacement and Fall Arrest System Installation CX(s) Applied: B1.15, B2.5 Date: 08/30/2012 Location(s): West Virginia Offices(s): National Energy Technology Laboratory August 30, 2012 CX-009313: Categorical Exclusion Determination Advanced Methane Hydrate Reservoir Modeling Using Rock Physics Techniques CX(s) Applied: A1, A9 Date: 08/30/2012 Location(s): Texas Offices(s): National Energy Technology Laboratory August 30, 2012 CX-009312: Categorical Exclusion Determination Pecan Street Smart Grid Extension Service CX(s) Applied: A9 Date: 08/30/2012 Location(s): Texas Offices(s): National Energy Technology Laboratory August 30, 2012 CX-009311: Categorical Exclusion Determination Optimization of Reservoir Storage Capacity in Different Depositional

277

Categorical Exclusion Determinations: National Energy Technology Laboratory  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

9, 2010 9, 2010 CX-003837: Categorical Exclusion Determination Simulation of Shale Gas Reservoirs Incorporating the Correct Physics for Capillarity CX(s) Applied: A9 Date: 09/09/2010 Location(s): Norman, Oklahoma Office(s): Fossil Energy, National Energy Technology Laboratory September 9, 2010 CX-003836: Categorical Exclusion Determination Large Project Impact Fund Competitive Grants - Colby College CX(s) Applied: B1.15, B1.24, B2.2, B5.1 Date: 09/09/2010 Location(s): Waterville, Maine Office(s): Energy Efficiency and Renewable Energy, National Energy Technology Laboratory September 9, 2010 CX-003835: Categorical Exclusion Determination SmartRam Piston Pump CX(s) Applied: B3.6 Date: 09/09/2010 Location(s): Houston, Texas Office(s): Fossil Energy, National Energy Technology Laboratory

278

Categorical Exclusion Determinations: National Energy Technology Laboratory  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

May 10, 2013 May 10, 2013 CX-010285: Categorical Exclusion Determination Advancing Low Temperature Combustion and Lean Burning Engines for Light-and Heavy-Duty Vehicles CX(s) Applied: A9, B3.6 Date: 05/10/2013 Location(s): CX: none Offices(s): National Energy Technology Laboratory May 10, 2013 CX-010284: Categorical Exclusion Determination Construction of an Autogas Refueling Network CX(s) Applied: B5.22 Date: 05/10/2013 Location(s): West Virginia Offices(s): National Energy Technology Laboratory May 8, 2013 CX-010287: Categorical Exclusion Determination Understanding Nitrous Oxide Selective Catalytic Reduction Mechanism and Activity on Copper/Chabazite Structures throughout the Catalyst Life CX(s) Applied: A9, B3.6 Date: 05/08/2013 Location(s): CX: none Offices(s): National Energy Technology Laboratory

279

Categorical Exclusion Determinations: National Energy Technology Laboratory  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

August 14, 2013 August 14, 2013 CX-010791: Categorical Exclusion Determination Gulf of Mexico Miocene Carbon Dioxide (CO2) Site Characterization Mega Transect CX(s) Applied: A9, A11 Date: 08/14/2013 Location(s): Texas Offices(s): National Energy Technology Laboratory August 13, 2013 CX-010799: Categorical Exclusion Determination Building 4 Lead Paint Abatement & Repainting CX(s) Applied: B2.1, B2.5 Date: 08/13/2013 Location(s): Oregon Offices(s): National Energy Technology Laboratory August 13, 2013 CX-010800: Categorical Exclusion Determination Hybrid Membrane/Absorption Process for Post-Combustion Carbon Dioxide (CO2) Capture CX(s) Applied: A1, A9, A11, B3.6 Date: 08/13/2013 Location(s): Illinois Offices(s): National Energy Technology Laboratory August 12, 2013 CX-010802: Categorical Exclusion Determination

280

Categorical Exclusion Determinations: National Energy Technology Laboratory  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

3, 2010 3, 2010 CX-002242: Categorical Exclusion Determination Micro-X-Ray Diffraction Laboratory CX(s) Applied: B3.6 Date: 05/13/2010 Location(s): Pittsburgh, Pennsylvania Office(s): Fossil Energy, National Energy Technology Laboratory May 13, 2010 CX-002241: Categorical Exclusion Determination Maximizing Alternative Fuel Use and Distribution in Colorado CX(s) Applied: B5.1 Date: 05/13/2010 Location(s): Aurora, Colorado Office(s): Energy Efficiency and Renewable Energy, National Energy Technology Laboratory May 13, 2010 CX-002240: Categorical Exclusion Determination Heavy Oil Viscous Pressure-Volume Temperature (PVT) - Houston CX(s) Applied: B3.6 Date: 05/13/2010 Location(s): Houston, Texas Office(s): Fossil Energy, National Energy Technology Laboratory May 13, 2010 CX-002238: Categorical Exclusion Determination

Note: This page contains sample records for the topic "recovery technology cxs" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

Categorical Exclusion Determinations: National Energy Technology Laboratory  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

6, 2012 6, 2012 CX-007948: Categorical Exclusion Determination Clean Start - Development of a National Liquid Propane Refueling Network CX(s) Applied: B5.22 Date: 02/06/2012 Location(s): California, Arizona Offices(s): National Energy Technology Laboratory February 1, 2012 CX-007952: Categorical Exclusion Determination Esperanza Roof Replacement CX(s) Applied: A1, B2.1, B5.1 Date: 02/01/2012 Location(s): Pennsylvania Offices(s): National Energy Technology Laboratory February 1, 2012 CX-007951: Categorical Exclusion Determination Puget Sound Clean Cities Petroleum Reduction Project CX(s) Applied: B5.23 Date: 02/01/2012 Location(s): Washington Offices(s): National Energy Technology Laboratory February 1, 2012 CX-007950: Categorical Exclusion Determination Environmental Protection Agency - 5th International Environmentally

282

Categorical Exclusion Determinations: National Energy Technology Laboratory  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

21, 2013 21, 2013 CX-010780: Categorical Exclusion Determination Advanced Analytical Methods for Air and Stray Gas Emissions and Produced Brine Characterization CX(s) Applied: A9, A11, B3.6 Date: 08/21/2013 Location(s): Oklahoma Offices(s): National Energy Technology Laboratory August 21, 2013 CX-010782: Categorical Exclusion Determination A Geomechanical Model for Gas Shales Based on Integration of Stress CX(s) Applied: A9 Date: 08/21/2013 Location(s): Texas Offices(s): National Energy Technology Laboratory August 20, 2013 CX-010783: Categorical Exclusion Determination Isothermal Compressed Air Energy Storage (ICAES) to Support Renewable Energy Integration - Phase Three CX(s) Applied: B3.6, B5.1 Date: 08/20/2013 Location(s): New Hampshire Offices(s): National Energy Technology Laboratory

283

Categorical Exclusion Determinations: National Energy Technology Laboratory  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

16, 2011 16, 2011 CX-006772: Categorical Exclusion Determination Coal-Based Integrated Gasification Fuel Cell Project: Phase II CX(s) Applied: B3.6 Date: 09/16/2011 Location(s): Fenton Township, Michigan Office(s): Fossil Energy, National Energy Technology Laboratory September 16, 2011 CX-006771: Categorical Exclusion Determination Coal-Based Integrated Gasification Fuel Cell Project: Phase II CX(s) Applied: B3.6 Date: 09/16/2011 Location(s): Brighton, New York Office(s): Fossil Energy, National Energy Technology Laboratory September 16, 2011 CX-006770: Categorical Exclusion Determination Coal-Based Integrated Gasification Fuel Cell Project: Phase II CX(s) Applied: B3.6 Date: 09/16/2011 Location(s): South Windsor, Connecticut Office(s): Fossil Energy, National Energy Technology Laboratory

284

Categorical Exclusion Determinations: National Energy Technology Laboratory  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

19, 2010 19, 2010 CX-004491: Categorical Exclusion Determination Site Characterization for Carbon Dioxide Storage from Coal-fired Power Facilities in the Black Warrior Basin of Alabama CX(s) Applied: A9, B3.1 Date: 11/19/2010 Location(s): Alabama Office(s): Fossil Energy, National Energy Technology Laboratory November 19, 2010 CX-004490: Categorical Exclusion Determination Utah Expansion Compressed Natural Gas Refueling Sites CX(s) Applied: B5.1 Date: 11/19/2010 Location(s): Salt Lake City, Utah Office(s): Energy Efficiency and Renewable Energy, National Energy Technology Laboratory November 19, 2010 CX-004489: Categorical Exclusion Determination Thai Process for Heavy Oil CX(s) Applied: B3.6 Date: 11/19/2010 Location(s): Laramie, Wyoming Office(s): Fossil Energy, National Energy Technology Laboratory

285

Categorical Exclusion Determinations: National Energy Technology Laboratory  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

18, 2010 18, 2010 CX-004473: Categorical Exclusion Determination Deepwater Subsea Test Tree and Intervention Riser System CX(s) Applied: A9, A11 Date: 11/18/2010 Location(s): Houston, Texas Office(s): Fossil Energy, National Energy Technology Laboratory November 18, 2010 CX-004472: Categorical Exclusion Determination Creating Fractures Past Damage More Effectively With Less Environmental Damage CX(s) Applied: A9, B3.6 Date: 11/18/2010 Location(s): Houston, Texas Office(s): Fossil Energy, National Energy Technology Laboratory November 18, 2010 CX-004471: Categorical Exclusion Determination Creating Fractures Past Damage More Effectively With Less Environmental Damage CX(s) Applied: A9, B3.6 Date: 11/18/2010 Location(s): Bainbridge, Georgia Office(s): Fossil Energy, National Energy Technology Laboratory

286

Categorical Exclusion Determinations: National Energy Technology Laboratory  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

7, 2009 7, 2009 CX-000411: Categorical Exclusion Determination Fiber Containing Sweep Fluids for Ultra Deepwater Drilling Applications CX(s) Applied: A1, A9, B3.6 Date: 12/17/2009 Location(s): Norman, Oklahoma Office(s): Fossil Energy, National Energy Technology Laboratory December 17, 2009 CX-000410: Categorical Exclusion Determination Deepwater Riserless Intervention System CX(s) Applied: A1, A9 Date: 12/17/2009 Location(s): Houston, Texas Office(s): Fossil Energy, National Energy Technology Laboratory December 16, 2009 CX-000375: Categorical Exclusion Determination Hydrogen Separation for Clean Coal CX(s) Applied: A9, B3.6 Date: 12/16/2009 Location(s): Laramie, Wyoming Office(s): Fossil Energy, National Energy Technology Laboratory December 15, 2009 CX-000464: Categorical Exclusion Determination

287

Categorical Exclusion Determinations: National Energy Technology Laboratory  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

May 17, 2013 May 17, 2013 CX-010279: Categorical Exclusion Determination Clemson University's Synchrophasor Education Engineering Program CX(s) Applied: A9 Date: 05/17/2013 Location(s): South Carolina Offices(s): National Energy Technology Laboratory May 17, 2013 CX-010278: Categorical Exclusion Determination Collaborative Industry-Academic Synchrophasor Engineering Program CX(s) Applied: A9 Date: 05/17/2013 Location(s): Texas Offices(s): National Energy Technology Laboratory May 14, 2013 CX-010282: Categorical Exclusion Determination Low Temperature Nitrous Oxide Storage and Reduction Using Engineered Materials CX(s) Applied: B3.6 Date: 05/14/2013 Location(s): New Jersey Offices(s): National Energy Technology Laboratory May 14, 2013 CX-010281: Categorical Exclusion Determination

288

Categorical Exclusion Determinations: National Energy Technology Laboratory  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

0, 2012 0, 2012 CX-009271: Categorical Exclusion Determination National Governors Association Energy Project - Phase II CX(s) Applied: A9, A11 Date: 09/10/2012 Location(s): CX: none Offices(s): National Energy Technology Laboratory September 10, 2012 CX-009270: Categorical Exclusion Determination Basin-Scale Produced Water Management Tools and Options CX(s) Applied: A9 Date: 09/10/2012 Location(s): Utah Offices(s): National Energy Technology Laboratory September 7, 2012 CX-009290: Categorical Exclusion Determination Interagency Study on the Implementation of Integrated Computational Materials Engineering... CX(s) Applied: A9, A11 Date: 09/07/2012 Location(s): Pennsylvania Offices(s): National Energy Technology Laboratory September 7, 2012 CX-009289: Categorical Exclusion Determination

289

Categorical Exclusion Determinations: National Energy Technology Laboratory  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

June 28, 2010 June 28, 2010 CX-002841: Categorical Exclusion Determination Texas Propane Fleet Pilot Program (Summary Categorical Exclusion) CX(s) Applied: A7, B5.1 Date: 06/28/2010 Location(s): Texas Office(s): Energy Efficiency and Renewable Energy, National Energy Technology Laboratory June 25, 2010 CX-002795: Categorical Exclusion Determination Market Transformation and Technology Deployment - Renewable Energy Projects CX(s) Applied: B5.1 Date: 06/25/2010 Location(s): Perkinston, Mississippi Office(s): Energy Efficiency and Renewable Energy, National Energy Technology Laboratory June 25, 2010 CX-002794: Categorical Exclusion Determination Advanced Implementation of A123's Community Energy Storage (CES) System for Grid Support CX(s) Applied: B4.6, B5.1 Date: 06/25/2010 Location(s): Detroit, Michigan

290

Categorical Exclusion Determinations: National Energy Technology Laboratory  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

25, 2012 25, 2012 CX-008305: Categorical Exclusion Determination Carolina Blue Skies Initiative CX(s) Applied: B5.22 Date: 04/25/2012 Location(s): North Carolina Offices(s): National Energy Technology Laboratory April 25, 2012 CX-008304: Categorical Exclusion Determination Installation of Retail Biofuel Infrastructure Supporting I-75 Green Corridor Project CX(s) Applied: A1, B5.22 Date: 04/25/2012 Location(s): Michigan Offices(s): National Energy Technology Laboratory April 25, 2012 CX-008303: Categorical Exclusion Determination Interstate Electrification Improvement CX(s) Applied: B5.1, B5.23 Date: 04/25/2012 Location(s): Ohio Offices(s): National Energy Technology Laboratory April 25, 2012 CX-008302: Categorical Exclusion Determination Interstate Electrification Improvement

291

Categorical Exclusion Determinations: National Energy Technology Laboratory  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

18, 2011 18, 2011 CX-005626: Categorical Exclusion Determination North Carolina Green Business Fund ? Kyma Technologies CX(s) Applied: A1, B1.4, B1.5, B5.1 Date: 04/18/2011 Location(s): North Carolina Office(s): Energy Efficiency and Renewable Energy, National Energy Technology Laboratory April 18, 2011 CX-005625: Categorical Exclusion Determination Grants for State-Sponsored Renewable Energy and Energy Efficiency Projects - New Jersey Transit Solar CX(s) Applied: A9, A11, B5.1 Date: 04/18/2011 Location(s): Kearny, New Jersey Office(s): Energy Efficiency and Renewable Energy, National Energy Technology Laboratory April 15, 2011 CX-005629: Categorical Exclusion Determination North Carolina Green Business Fund ? Storms Farms CX(s) Applied: A1, B1.15, B4.11, B5.1 Date: 04/15/2011

292

Categorical Exclusion Determinations: National Energy Technology Laboratory  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

8, 2010 8, 2010 CX-002514: Categorical Exclusion Determination State Energy Program - Clean Energy Property Rebate Program CX(s) Applied: A9, B5.1 Date: 05/28/2010 Location(s): Georgia Office(s): Energy Efficiency and Renewable Energy, National Energy Technology Laboratory May 28, 2010 CX-002513: Categorical Exclusion Determination Ohio Advanced Transportation Partnership CX(s) Applied: B5.1 Date: 05/28/2010 Location(s): Ohio Office(s): Energy Efficiency and Renewable Energy, National Energy Technology Laboratory May 28, 2010 CX-002511: Categorical Exclusion Determination Rhode Island Green Public Buildings Initiative CX(s) Applied: A9, B5.1 Date: 05/28/2010 Location(s): Rhode Island Office(s): Energy Efficiency and Renewable Energy, National Energy Technology Laboratory May 28, 2010

293

Categorical Exclusion Determinations: National Energy Technology Laboratory  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

29, 2011 29, 2011 CX-005666: Categorical Exclusion Determination DeKalb County/Metropolitan Atlanta Alternative Fuel and Advanced Technology Vehicle Project CX(s) Applied: A1, B5.1 Date: 04/29/2011 Location(s): Marrow, Georgia Office(s): Energy Efficiency and Renewable Energy, National Energy Technology Laboratory April 29, 2011 CX-005664: Categorical Exclusion Determination Development and Testing of Compact Heat Exchange Reactors (CHER) for Synthesis of Liquid Fuels CX(s) Applied: B3.6 Date: 04/29/2011 Location(s): Laramie, Wyoming Office(s): Fossil Energy, National Energy Technology Laboratory April 29, 2011 CX-005663: Categorical Exclusion Determination Vortex Tube Project Decommissioning Project CX(s) Applied: B3.6 Date: 04/29/2011 Location(s): Morgantown, West Virginia

294

Categorical Exclusion Determinations: National Energy Technology Laboratory  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

June 3, 2013 June 3, 2013 CX-010470: Categorical Exclusion Determination Boulder Smart Grid City - Plug-In Electric Hybrid CX(s) Applied: B5.1, B5.16 Date: 06/03/2013 Location(s): Colorado Offices(s): National Energy Technology Laboratory June 3, 2013 CX-010468: Categorical Exclusion Determination Evaluation of High Capacity Cells for Electric Vehicle Applications CX(s) Applied: B3.6 Date: 06/03/2013 Location(s): California Offices(s): National Energy Technology Laboratory June 3, 2013 CX-010467: Categorical Exclusion Determination Metal Oxide/Nitride Heterostructured Nanowire Arrays for Ultra-Sensitive and Selective Sensors CX(s) Applied: B3.6 Date: 06/03/2013 Location(s): Connecticut Offices(s): National Energy Technology Laboratory May 31, 2013 CX-010478: Categorical Exclusion Determination

295

Categorical Exclusion Determinations: National Energy Technology Laboratory  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

7, 2012 7, 2012 CX-008473: Categorical Exclusion Determination Effect of Climate Variability & Change in Hurricane Activity in the North Atlantic CX(s) Applied: A9 Date: 06/07/2012 Location(s): Colorado Offices(s): National Energy Technology Laboratory June 7, 2012 CX-008472: Categorical Exclusion Determination Midwest Region Alternative Fuels Project CX(s) Applied: B5.22 Date: 06/07/2012 Location(s): Kansas Offices(s): National Energy Technology Laboratory June 4, 2012 CX-008482: Categorical Exclusion Determination Composite Riser for Ultra-Deepwater High Pressure Wells CX(s) Applied: A9, A11 Date: 06/04/2012 Location(s): Texas Offices(s): National Energy Technology Laboratory June 4, 2012 CX-008480: Categorical Exclusion Determination Composite Riser for Ultra-Deepwater High Pressure Wells

296

Categorical Exclusion Determinations: National Energy Technology Laboratory  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

April 25, 2013 April 25, 2013 CX-010181: Categorical Exclusion Determination Building 26 Air Handlers and In-Line Return Fans Replacement CX(s) Applied: B1.3, B1.22, B.1.31 Date: 04/25/2013 Location(s): West Virginia Offices(s): National Energy Technology Laboratory April 25, 2013 CX-010180: Categorical Exclusion Determination A Universal Combustion Model to Predict Premixed and Non-Premixed Turbulent Flames in Compression CX(s) Applied: A9 Date: 04/25/2013 Location(s): Other Location Offices(s): National Energy Technology Laboratory April 25, 2013 CX-010179: Categorical Exclusion Determination Modeling and Experimental Studies of Controllable Cavity Turbulent Jet Ignition CX(s) Applied: B3.6 Date: 04/25/2013 Location(s): Michigan Offices(s): National Energy Technology Laboratory

297

Categorical Exclusion Determinations: National Energy Technology Laboratory  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

January 10, 2012 January 10, 2012 CX-007615: Categorical Exclusion Determination Henderson Family Young Mens Christian Association CX(s) Applied: B5.1, B5.2 Date: 01/10/2012 Location(s): North Carolina Offices(s): National Energy Technology Laboratory January 10, 2012 CX-007614: Categorical Exclusion Determination Next Generation Ultra Lean Burn Powertrain CX(s) Applied: B3.6 Date: 01/10/2012 Location(s): Michigan Offices(s): National Energy Technology Laboratory January 10, 2012 CX-007613: Categorical Exclusion Determination Next Generation Ultra Lean Burn Powertrain CX(s) Applied: A9 Date: 01/10/2012 Location(s): California Offices(s): National Energy Technology Laboratory January 10, 2012 CX-007612: Categorical Exclusion Determination Geological Characterization of the South Georgia Rift Basin for Source

298

Categorical Exclusion Determinations: National Energy Technology Laboratory  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

11, 2011 11, 2011 CX-005223: Categorical Exclusion Determination Carolina Blue Skies Initiative CX(s) Applied: A1, B5.1 Date: 02/11/2011 Location(s): Raleigh, North Carolina Office(s): Energy Efficiency and Renewable Energy, National Energy Technology Laboratory February 11, 2011 CX-005222: Categorical Exclusion Determination Carolina Blue Skies Initiative CX(s) Applied: A1, B5.1 Date: 02/11/2011 Location(s): Youngsville, North Carolina Office(s): Energy Efficiency and Renewable Energy, National Energy Technology Laboratory February 11, 2011 CX-005229: Categorical Exclusion Determination Field Testing and Diagnostics of Radial-Jet Well-Stimulation for Enhanced Oil Reserve from Marginal Reserves CX(s) Applied: B3.6 Date: 02/11/2011 Location(s): Socorro, New Mexico Office(s): Fossil Energy, National Energy Technology Laboratory

299

Categorical Exclusion Determinations: National Energy Technology Laboratory  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

8, 2010 8, 2010 CX-004409: Categorical Exclusion Determination Petroleum Processing Efficiency Improvement CX(s) Applied: B3.6 Date: 11/08/2010 Location(s): Laramie, Wyoming Office(s): Fossil Energy, National Energy Technology Laboratory November 8, 2010 CX-004408: Categorical Exclusion Determination ArmorBelt Single Point Gas Lift System for Stripper Wells CX(s) Applied: B3.7 Date: 11/08/2010 Location(s): Haskell County, Oklahoma Office(s): Fossil Energy, National Energy Technology Laboratory November 8, 2010 CX-004407: Categorical Exclusion Determination ArmorBelt Single Point Gas Lift System for Stripper Wells CX(s) Applied: B3.7 Date: 11/08/2010 Location(s): Pittsburg County, Oklahoma Office(s): Fossil Energy, National Energy Technology Laboratory November 8, 2010 CX-004406: Categorical Exclusion Determination

300

Categorical Exclusion Determinations: National Energy Technology Laboratory  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

7, 2011 7, 2011 CX-006051: Categorical Exclusion Determination Midwest Region Alternative Fuels Project CX(s) Applied: A1 Date: 06/07/2011 Location(s): Omaha, Nebraska Office(s): Energy Efficiency and Renewable Energy, National Energy Technology Laboratory June 6, 2011 CX-006055: Categorical Exclusion Determination Installation and Abandonment of Monitoring Wells CX(s) Applied: B3.1, B6.1 Date: 06/06/2011 Location(s): Albany, Oregon Office(s): Fossil Energy, National Energy Technology Laboratory June 4, 2011 CX-005949: Categorical Exclusion Determination Characterization of Most Promising Sequestration Formations in the Rocky Mountain Region- TerraTek CX(s) Applied: B3.6 Date: 06/04/2011 Location(s): Salt Lake City, Utah Office(s): Fossil Energy, National Energy Technology Laboratory

Note: This page contains sample records for the topic "recovery technology cxs" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

Categorical Exclusion Determinations: National Energy Technology Laboratory  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

, 2013 , 2013 CX-010816: Categorical Exclusion Determination Effects of Exhaust Gas Recirculation (EGR) on Turbulent Combustion and Emissions in Advanced Gas... CX(s) Applied: A9, B3.6 Date: 08/01/2013 Location(s): New Jersey Offices(s): National Energy Technology Laboratory August 1, 2013 CX-010815: Categorical Exclusion Determination Effects of Exhaust Gas Recirculation (EGR) on Turbulent Combustion and Emissions in Advanced Gas... CX(s) Applied: A9, B3.6 Date: 08/01/2013 Location(s): Indiana Offices(s): National Energy Technology Laboratory July 30, 2013 CX-010826: Categorical Exclusion Determination Evaluation of Flow and Heat Transfer Inside Lean Pre-Mixed Combustor Systems under Reacting Flow Conditions CX(s) Applied: B3.6 Date: 07/30/2013 Location(s): Virginia Offices(s): National Energy Technology Laboratory

302

Categorical Exclusion Determinations: National Energy Technology Laboratory  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

28, 2013 28, 2013 CX-010899: Categorical Exclusion Determination Pittsburgh Building 65 and Building 74 Loading Dock Railing Project CX(s) Applied: B2.1, B2.3 Date: 06/28/2013 Location(s): Pennsylvania Offices(s): National Energy Technology Laboratory June 27, 2013 CX-010897: Categorical Exclusion Determination Data Mining and Playback of Hybrid Synchrophasor Data for Research and Education CX(s) Applied: A9 Date: 06/27/2013 Location(s): Virginia Offices(s): National Energy Technology Laboratory June 27, 2013 CX-010896: Categorical Exclusion Determination California Low Carbon Fuels Infrastructure Investment Initiative (SUMMARY Categorical Exclusion) CX(s) Applied: B5.22 Date: 06/27/2013 Location(s): California Offices(s): National Energy Technology Laboratory June 27, 2013

303

Categorical Exclusion Determinations: National Energy Technology Laboratory  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

28, 2011 28, 2011 CX-006119: Categorical Exclusion Determination Autonomous Inspection of Subsea Facilities (Phase II) CX(s) Applied: B3.6 Date: 06/28/2011 Location(s): Port Fourchon, Louisiana Office(s): Fossil Energy, National Energy Technology Laboratory June 28, 2011 CX-006117: Categorical Exclusion Determination Flooring Improvements CX(s) Applied: B2.1, B2.5 Date: 06/28/2011 Location(s): Morgantown, West Virginia Office(s): Fossil Energy, National Energy Technology Laboratory June 23, 2011 CX-006129: Categorical Exclusion Determination Optical Sensors Laboratory CX(s) Applied: B3.6 Date: 06/23/2011 Location(s): Morgantown, West Virginia Office(s): Fossil Energy, National Energy Technology Laboratory June 23, 2011 CX-006127: Categorical Exclusion Determination Wisconsin Biofuels Retail Availability Improvement Network (BRAIN) -

304

Categorical Exclusion Determinations: National Energy Technology Laboratory  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

4, 2010 4, 2010 CX-002648: Categorical Exclusion Determination Surface Force Measurements Between Hydrophobic Surfaces CX(s) Applied: B3.6 Date: 06/04/2010 Location(s): Blacksburg, Virginia Office(s): Fossil Energy, National Energy Technology Laboratory June 4, 2010 CX-002647: Categorical Exclusion Determination Development of Biochemical Techniques for the Extraction of Mercury from Waste Streams Containing Coal CX(s) Applied: B3.6 Date: 06/04/2010 Location(s): Morgantown, West Virginia Office(s): Fossil Energy, National Energy Technology Laboratory June 4, 2010 CX-002646: Categorical Exclusion Determination Polymer Nanocomposites for Carbon Dioxide Capture CX(s) Applied: B3.6 Date: 06/04/2010 Location(s): Morgantown, West Virginia Office(s): Fossil Energy, National Energy Technology Laboratory

305

Recovery Newsletters  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

newsletters Office of Environmental newsletters Office of Environmental Management 1000 Independence Ave., SW Washington, DC 20585 202-586-7709 en 2011 ARRA Newsletters http://energy.gov/em/downloads/2011-arra-newsletters 2011 ARRA Newsletters

306

Power Recovery  

E-Print Network (OSTI)

) - 2,870,000 x 0.8 6 W - 3414 = 70 kw (or 900 hp). When recovering power from an expanding gas, consideration should be given to the final gas temperature. This tem;:>f'rature can be estimated by the formula: T 2 Final temperature, oR. Other... with the requirements make generation fqr more useful. Presently a recovery level of around 500 kw (or 657 hp) appears to be the minimum level which will support an in stallation. In order to achieve reasonable effi ciency, quality equipment with good control...

Murray, F.

307

RMOTC - Testing - Enhanced Oil Recovery  

NLE Websites -- All DOE Office Websites (Extended Search)

Enhanced Oil Recovery Enhanced Oil Recovery Notice: As of July 15th 2013, the Department of Energy announced the intent to sell Naval Petroleum Reserve Number 3 (NPR3). The sale of NPR-3 will also include the sale of all equipment and materials onsite. A decision has been made by the Department of Energy to complete testing at RMOTC by July 1st, 2014. RMOTC will complete testing in the coming year with the currently scheduled testing partners. For more information on the sale of NPR-3 and sale of RMOTC equipment and materials please join our mailing list here. RMOTC will play a significant role in continued enhanced oil recovery (EOR) technology development and field demonstration. A scoping engineering study on Naval Petroleum Reserve No. 3's (NPR-3) enhanced oil recovery

308

Drain Water Heat Recovery | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Drain Water Heat Recovery Drain Water Heat Recovery Drain Water Heat Recovery June 15, 2012 - 6:20pm Addthis Diagram of a drain water heat recovery system. Diagram of a drain water heat recovery system. How does it work? Use heat from water you've already used to preheat more hot water, reducing your water heating costs. Any hot water that goes down the drain carries away energy with it. That's typically 80%-90% of the energy used to heat water in a home. Drain-water (or greywater) heat recovery systems capture this energy from water you've already used (for example, to shower, wash dishes, or wash clothing) to preheat cold water entering the water heater or going to other water fixtures. This reduces the amount of energy needed for water heating. How It Works Drain-water heat recovery technology works well with all types of water

309

Drain Water Heat Recovery | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Drain Water Heat Recovery Drain Water Heat Recovery Drain Water Heat Recovery June 15, 2012 - 6:20pm Addthis Diagram of a drain water heat recovery system. Diagram of a drain water heat recovery system. How does it work? Use heat from water you've already used to preheat more hot water, reducing your water heating costs. Any hot water that goes down the drain carries away energy with it. That's typically 80%-90% of the energy used to heat water in a home. Drain-water (or greywater) heat recovery systems capture this energy from water you've already used (for example, to shower, wash dishes, or wash clothing) to preheat cold water entering the water heater or going to other water fixtures. This reduces the amount of energy needed for water heating. How It Works Drain-water heat recovery technology works well with all types of water

310

Supporting technology for enhanced recovery, Annex V: evaluate application of recently developed techniques in the areas of drilling, coring, and telemetry. Venezuela-MEM/USA-DOE fossil-energy report V-1  

SciTech Connect

The Agreement between the United States and Venezuela was designed to further energy research and development in six areas. This report focuses on Annex V - Drilling, Coring, and Telemetry as supporting technology for enhanced oil recovery projects in the United States and Venezuela. Annex V consists of 18 tasks to perform these three projects. This report completes the work for Annex V. Energy research and development in the area of Enhanced Oil Recovery has as its goal the more efficient and complete production of the third crop of oil. Methods and techniques must be developed to assist in the implementation of EOR projects. Technology development that reduces costs and provides better reservoir information often has a direct impact on the economic viability of EOR projects and Annex V addresses these areas. Each of the three areas covered by Annex V are separate entities and are presented in this report as different sections. Each has its own Abstract. The drilling and coring tests were highly successful but only a limited amount of work was necessary in the Telemetry area because a field test was not feasible.

Williams, C.R.; Lichaa, P.; Van Domselaar, H.

1983-04-01T23:59:59.000Z

311

Optimize carbon dioxide sequestration, enhance oil recovery  

E-Print Network (OSTI)

- 1 - Optimize carbon dioxide sequestration, enhance oil recovery January 8, 2014 Los Alamos simulation to optimize carbon dioxide (CO2) sequestration and enhance oil recovery (CO2-EOR) based on known production. Due to carbon capture and storage technology advances, prolonged high oil prices

312

Faces of the Recovery Act: Sun Catalytix  

ScienceCinema (OSTI)

BOSTON- At the Massachusetts Institute of Technology, Dan Nocera talks about Sun Catalytix, the next generation of solar energy, and ARPA-E funding through the Recovery Act. To learn about more ARPA-E projects through the Recovery Act: http://arpa-e.energy.gov/FundedProjects.aspx

Nocera, Dave

2013-05-29T23:59:59.000Z

313

Use Feedwater Economizers for Waste Heat Recovery  

SciTech Connect

This revised ITP tip sheet on feedwater economizers for waste heat recovery provides how-to advice for improving industrial steam systems using low-cost, proven practices and technologies.

Not Available

2006-01-01T23:59:59.000Z

314

Recovery Act-Funded HVAC projects  

Energy.gov (U.S. Department of Energy (DOE))

The U.S. Department of Energy was allocated funding from the American Recovery and Reinvestment Act to conduct research into heating, ventilation, and air conditioning (HVAC) technologies and...

315

ITP Energy Intensive Processes: Improved Heat Recovery in Biomass...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

INDUSTRIAL TECHNOLOGIES PROGRAM Improved Heat Recovery in Biomass-Fired Boilers Reducing Superheater Corrosion to Enable Maximum Energy Effi ciency This project will develop...

316

Geothermal: Sponsored by OSTI -- Recovery Act: Finite Volume...  

Office of Scientific and Technical Information (OSTI)

Recovery Act: Finite Volume Based Computer Program for Ground Source Heat Pump Systems Geothermal Technologies Legacy Collection HelpFAQ | Site Map | Contact Us | Admin Log On...

317

Categorical Exclusion Determinations: National Energy Technology Laboratory  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

6, 2010 6, 2010 CX-001813: Categorical Exclusion Determination Lean Gasoline System Development for Fuel Efficient Small Cars (Milford) CX(s) Applied: B3.6, A9 Date: 04/26/2010 Location(s): Milford, Michigan Office(s): Energy Efficiency and Renewable Energy, National Energy Technology Laboratory April 26, 2010 CX-001819: Categorical Exclusion Determination Lean Gasoline System Development for Fuel Efficient Small Cars (Pontiac) CX(s) Applied: B3.6, A9 Date: 04/26/2010 Location(s): Pontiac, Michigan Office(s): Energy Efficiency and Renewable Energy, National Energy Technology Laboratory April 26, 2010 CX-001817: Categorical Exclusion Determination Lean Gasoline System Development for Fuel Efficient Small Cars (Warren) CX(s) Applied: B3.6, A9 Date: 04/26/2010 Location(s): Warren, Michigan

318

Categorical Exclusion Determinations: National Energy Technology Laboratory  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

1, 2010 1, 2010 CX-002341: Categorical Exclusion Determination Connecticut Clean Cities Future Fuels Project - Bloomfield CX(s) Applied: B5.1 Date: 05/11/2010 Location(s): Bloomfield, Connecticut Office(s): Energy Efficiency and Renewable Energy, National Energy Technology Laboratory May 11, 2010 CX-002340: Categorical Exclusion Determination Connecticut Clean Cities Future Fuels Project - Bridgeport CX(s) Applied: B5.1 Date: 05/11/2010 Location(s): Bridgeport, Connecticut Office(s): Energy Efficiency and Renewable Energy, National Energy Technology Laboratory May 11, 2010 CX-002338: Categorical Exclusion Determination Connecticut Clean Cities Future Fuels Project - Hartford CX(s) Applied: B5.1 Date: 05/11/2010 Location(s): Hartford, Connecticut Office(s): Energy Efficiency and Renewable Energy, National Energy

319

Categorical Exclusion Determinations: National Energy Technology Laboratory  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

March 31, 2011 March 31, 2011 CX-005483: Categorical Exclusion Determination National Biodiesel Foundation: Biodiesel Terminal Installation Project CX(s) Applied: B5.1 Date: 03/31/2011 Location(s): Port Chester, New York Office(s): Energy Efficiency and Renewable Energy, National Energy Technology Laboratory March 31, 2011 CX-005482: Categorical Exclusion Determination Portable Raman Gas Composition Monitor CX(s) Applied: B3.6 Date: 03/31/2011 Location(s): Morgantown, West Virginia Office(s): Fossil Energy, National Energy Technology Laboratory March 29, 2011 CX-005481: Categorical Exclusion Determination Grant for State Sponsored Renewable Energy and Energy Efficiency Projects - Montclair State University Solar Farm CX(s) Applied: B5.1 Date: 03/29/2011 Location(s): Montclair, New Jersey

320

Categorical Exclusion Determinations: National Energy Technology Laboratory  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

14, 2011 14, 2011 CX-005037: Categorical Exclusion Determination Field Test of Carbon Dioxide-Methane Method for Production of Gas Hydrate CX(s) Applied: B3.7 Date: 01/14/2011 Location(s): North Slope Borough, Alaska Office(s): Fossil Energy, National Energy Technology Laboratory January 13, 2011 CX-004991: Categorical Exclusion Determination Ohio Advanced Transportation Partnership (OATP) - Electric Vehicle Charging Infrastructure Installation CX(s) Applied: B5.1 Date: 01/13/2011 Location(s): Hamilton, Ohio Office(s): Energy Efficiency and Renewable Energy, National Energy Technology Laboratory January 13, 2011 CX-004990: Categorical Exclusion Determination City of Cerritos, Photovoltaic System at the Cerritos Corporate Yard CX(s) Applied: B5.1 Date: 01/13/2011 Location(s): Cerritos, California

Note: This page contains sample records for the topic "recovery technology cxs" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

Categorical Exclusion Determinations: National Energy Technology Laboratory  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

24, 2010 24, 2010 CX-001214: Categorical Exclusion Determination Kilby Correctional Facility Boiler Replacement CX(s) Applied: B5.1 Date: 03/24/2010 Location(s): Mount Meigs, Alabama Office(s): Energy Efficiency and Renewable Energy, National Energy Technology Laboratory March 24, 2010 CX-001213: Categorical Exclusion Determination Decatur Work Release 10 Kilowatt Photovoltaic Array CX(s) Applied: B5.1 Date: 03/24/2010 Location(s): Decatur, Alabama Office(s): Energy Efficiency and Renewable Energy, National Energy Technology Laboratory March 24, 2010 CX-001206: Categorical Exclusion Determination Tehachapi Wind Energy Storage CX(s) Applied: A9, B1.13, B3.6, B4.4, B4.6, B5.1 Date: 03/24/2010 Location(s): Kern County, California Office(s): Electricity Delivery and Energy Reliability, National Energy

322

Categorical Exclusion Determinations: National Energy Technology Laboratory  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

, 2010 , 2010 CX-001506: Categorical Exclusion Determination State Energy Program - Renewable Energy Grants CX(s) Applied: A11, B5.1 Date: 04/01/2010 Location(s): Conley, Georgia Office(s): Energy Efficiency and Renewable Energy, National Energy Technology Laboratory April 1, 2010 CX-001510: Categorical Exclusion Determination State Energy Program - Clean Energy Property Rebate CX(s) Applied: A11, B5.1 Date: 04/01/2010 Location(s): Valdosta, Georgia Office(s): Energy Efficiency and Renewable Energy, National Energy Technology Laboratory April 1, 2010 CX-001504: Categorical Exclusion Determination Ocean Wind Energy Analysis CX(s) Applied: B3.1, A9, A11 Date: 04/01/2010 Location(s): Chapel Hill, North Carolina Office(s): Energy Efficiency and Renewable Energy, National Energy

323

Categorical Exclusion Determinations: National Energy Technology Laboratory  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

22, 2010 22, 2010 CX-000743: Categorical Exclusion Determination Site Characterization for Carbon Dioxide Storage from Coal-fired Power Facilities in the Black Warrior Basin of Alabama CX(s) Applied: A9, B3.1 Date: 01/22/2010 Location(s): Tuscaloosa, Alabama Office(s): Fossil Energy, National Energy Technology Laboratory January 21, 2010 CX-000708: Categorical Exclusion Determination Utah All Inclusive Statewide Alternative Fuels Transportation and Education Outreach Project CX(s) Applied: B5.1 Date: 01/21/2010 Location(s): Murray, Utah Office(s): Energy Efficiency and Renewable Energy, National Energy Technology Laboratory January 18, 2010 CX-000705: Categorical Exclusion Determination Florida - Sunshine State Buildings Parking Lot Canopies - State Energy Program CX(s) Applied: B1.15, B1.24, B2.1, B5.1

324

Categorical Exclusion Determinations: National Energy Technology Laboratory  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

13, 2011 13, 2011 CX-005817: Categorical Exclusion Determination Economic Development Program CX(s) Applied: A1, A9, A11, B2.2, B5.1 Date: 05/13/2011 Location(s): Virginia Office(s): Energy Efficiency and Renewable Energy, National Energy Technology Laboratory May 11, 2011 CX-005821: Categorical Exclusion Determination Clean Energy Economic Development Initiative - Maryland Environmental Service II CX(s) Applied: A9, A11, B3.1 Date: 05/11/2011 Location(s): Millersville, Maryland Office(s): Energy Efficiency and Renewable Energy, National Energy Technology Laboratory May 11, 2011 CX-005820: Categorical Exclusion Determination Clean Energy Economic Development Initiative - Maryland Environmental Service I CX(s) Applied: A9 Date: 05/11/2011 Location(s): Millersville, Maryland

325

Categorical Exclusion Determinations: National Energy Technology Laboratory  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

2, 2010 2, 2010 CX-001022: Categorical Exclusion Determination Development of an Autogas Network (Lithia Springs) CX(s) Applied: A9, B2.5, B3.6, B5.1 Date: 03/02/2010 Location(s): Lithia Springs, Georgia Office(s): Energy Efficiency and Renewable Energy, National Energy Technology Laboratory March 1, 2010 CX-000957: Categorical Exclusion Determination New Jersey Compressed Natural Gas Refuse Trucks, Shuttle Buses and Infrastructure CX(s) Applied: B5.1 Date: 03/01/2010 Location(s): Trenton, New Jersey Office(s): Energy Efficiency and Renewable Energy, National Energy Technology Laboratory March 1, 2010 CX-001038: Categorical Exclusion Determination Idaho Petroleum Reduction Leadership Project CX(s) Applied: A1, A7, B5.1 Date: 03/01/2010 Location(s): Idaho Office(s): Energy Efficiency and Renewable Energy, National Energy

326

Categorical Exclusion Determinations: National Energy Technology Laboratory  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

8, 2010 8, 2010 CX-004665: Categorical Exclusion Determination On-Site Controlled Environment Agriculture Production of Biomass and Biofuels CX(s) Applied: A9, A11 Date: 12/08/2010 Location(s): Columbia, South Carolina Office(s): Energy Efficiency and Renewable Energy, National Energy Technology Laboratory December 8, 2010 CX-004664: Categorical Exclusion Determination On-Site Controlled Environment Agriculture Production of Biomass and Biofuels CX(s) Applied: B3.6 Date: 12/08/2010 Location(s): Tucson, Arizona Office(s): Energy Efficiency and Renewable Energy, National Energy Technology Laboratory December 7, 2010 CX-004687: Categorical Exclusion Determination Centralized Cryptographic Key Management (CKMS) CX(s) Applied: A1, A9, A11, B1.2 Date: 12/07/2010 Location(s): Oak Ridge, Tennessee

327

Categorical Exclusion Determinations: National Energy Technology Laboratory  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

6, 2010 6, 2010 CX-002907: Categorical Exclusion Determination Clean Start Propane Refueling, Vehicle Incentive and Outreach (Summary Categorical Exclusion) CX(s) Applied: B5.1 Date: 07/06/2010 Location(s): Texas Office(s): Energy Efficiency and Renewable Energy, National Energy Technology Laboratory July 1, 2010 CX-002833: Categorical Exclusion Determination Pacific Northwest Smart Grid Demonstration CX(s) Applied: B3.6, B4.4, A1, A9, A11, B1.7, B5.1 Date: 07/01/2010 Location(s): Salem, Oregon Office(s): Electricity Delivery and Energy Reliability, National Energy Technology Laboratory July 1, 2010 CX-002835: Categorical Exclusion Determination Pennsylvania Energy Harvest Mined Project Grants - Mains Dairy Farm Biogas Project CX(s) Applied: A9, A11, B5.1 Date: 07/01/2010

328

Categorical Exclusion Determinations: National Energy Technology Laboratory  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

8, 2011 8, 2011 CX-006042: Categorical Exclusion Determination Conversion of Low-Rank Wyoming Coals into Gasoline by Direct Liquefaction CX(s) Applied: B3.6 Date: 06/08/2011 Location(s): Laramie, Wyoming Office(s): Fossil Energy, National Energy Technology Laboratory June 7, 2011 CX-006050: Categorical Exclusion Determination Midwest Region Alternative Fuels Project CX(s) Applied: B3.6, B5.1 Date: 06/07/2011 Location(s): Kansas City, Missouri Office(s): Energy Efficiency and Renewable Energy, National Energy Technology Laboratory June 7, 2011 CX-006054: Categorical Exclusion Determination San Diego Gas & Electric Borrego Springs Microgrid Demo (Utility Integration of Distributed Energy Storage Systems) CX(s) Applied: A1, A9, B3.11, B4.4 Date: 06/07/2011 Location(s): Borrego Springs, California

329

Categorical Exclusion Determinations: National Energy Technology Laboratory  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

0, 2010 0, 2010 CX-002626: Categorical Exclusion Determination Midwest Region Alternative Fuels Project CX(s) Applied: A7, B5.1 Date: 06/10/2010 Location(s): Kansas City, Kansas Office(s): Energy Efficiency and Renewable Energy, National Energy Technology Laboratory June 10, 2010 CX-002625: Categorical Exclusion Determination Pennsylvania E85 Corridor Project - Sheetz Gas Station/Store #191 CX(s) Applied: B5.1 Date: 06/10/2010 Location(s): Carlisle, Pennsylvania Office(s): Energy Efficiency and Renewable Energy, National Energy Technology Laboratory June 10, 2010 CX-002622: Categorical Exclusion Determination Pennsylvania E85 Corridor Project - Sheetz Gas Station/Store #426 CX(s) Applied: B5.1 Date: 06/10/2010 Location(s): Carlisle, Pennsylvania Office(s): Energy Efficiency and Renewable Energy, National Energy

330

Categorical Exclusion Determinations: National Energy Technology Laboratory  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

8, 2010 8, 2010 CX-002510: Categorical Exclusion Determination Rhode Island Non-Utility Scale Renewable Energy Loan, Grants Initiative CX(s) Applied: B5.1 Date: 05/28/2010 Location(s): Rhode Island Office(s): Energy Efficiency and Renewable Energy, National Energy Technology Laboratory May 28, 2010 CX-002515: Categorical Exclusion Determination State Energy Program - Clean Energy Property Rebate Program CX(s) Applied: A9, B5.1 Date: 05/28/2010 Location(s): Georgia Office(s): Energy Efficiency and Renewable Energy, National Energy Technology Laboratory May 27, 2010 CX-002522: Categorical Exclusion Determination Danada Solar Energy and Lighting Project CX(s) Applied: B5.1 Date: 05/27/2010 Location(s): Wheaton, Illinois Office(s): Energy Efficiency and Renewable Energy, National Energy

331

Categorical Exclusion Determinations: National Energy Technology Laboratory  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

16, 2010 16, 2010 CX-004689: Categorical Exclusion Determination Single-Molecule Imaging System Combined with Nano-Fluidic Chip to Understand Fluid Flow in Shale Gas CX(s) Applied: B3.6 Date: 12/16/2010 Location(s): Golden, Colorado Office(s): Fossil Energy, National Energy Technology Laboratory December 16, 2010 CX-004688: Categorical Exclusion Determination Single-Molecule Imaging System Combined with Nano-Fluidic Chip to Understand Fluid Flow in Shale Gas CX(s) Applied: B3.6 Date: 12/16/2010 Location(s): Rolla, Missouri Office(s): Fossil Energy, National Energy Technology Laboratory December 16, 2010 CX-004755: Categorical Exclusion Determination State Energy Program: Program Support/Administration CX(s) Applied: A1, A9, A11, B5.1 Date: 12/16/2010 Location(s): Maine Office(s): Energy Efficiency and Renewable Energy, National Energy

332

Categorical Exclusion Determinations: National Energy Technology Laboratory  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

362: Categorical Exclusion Determination 362: Categorical Exclusion Determination Heavy-Duty Liquified Natural Gas Drayage Truck Project CX(s) Applied: A9 Date: 12/11/2009 Location(s): California Office(s): Energy Efficiency and Renewable Energy, National Energy Technology Laboratory December 11, 2009 CX-000363: Categorical Exclusion Determination United Parcel Service (UPS) Ontario-Las Vegas Liquified Natural Gas Corridor CX(s) Applied: A9 Date: 12/11/2009 Location(s): Diamond Bar, California Office(s): Energy Efficiency and Renewable Energy, National Energy Technology Laboratory December 11, 2009 CX-000415: Categorical Exclusion Determination Characterization of Most Promising Carbon Capture and Sequestration Formations in the Central Rocky Mountain Region CX(s) Applied: A9, A11 Date: 12/11/2009 Location(s): Socorro, New Mexico

333

Categorical Exclusion Determinations: National Energy Technology Laboratory  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

10, 2009 10, 2009 CX-000336: Categorical Exclusion Determination Carolinas Blue Skies & Green Jobs Initiative CX(s) Applied: A1, A9 Date: 12/10/2009 Location(s): Durham, North Carolina Office(s): Energy Efficiency and Renewable Energy, National Energy Technology Laboratory December 10, 2009 CX-000335: Categorical Exclusion Determination Carolinas Blue Skies & Green Jobs Initiative CX(s) Applied: A1, A9 Date: 12/10/2009 Location(s): Asheville, North Carolina Office(s): Energy Efficiency and Renewable Energy, National Energy Technology Laboratory December 10, 2009 CX-000334: Categorical Exclusion Determination Carolinas Blue Skies & Green Jobs Initiative CX(s) Applied: A1, A9 Date: 12/10/2009 Location(s): Raleigh, North Carolina Office(s): Energy Efficiency and Renewable Energy, National Energy

334

Categorical Exclusion Determinations: National Energy Technology Laboratory  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

January 27, 2010 January 27, 2010 CX-000997: Categorical Exclusion Determination Biodiesel Infrastructure Project (PrairieFire) CX(s) Applied: A1, A9, B5.1 Date: 01/27/2010 Location(s): Monona, Wisconsin Office(s): Energy Efficiency and Renewable Energy, National Energy Technology Laboratory January 27, 2010 CX-000998: Categorical Exclusion Determination Biodiesel Infrastructure Project (Coulee) CX(s) Applied: A1, A9, B5.1 Date: 01/27/2010 Location(s): Blair, Wisconsin Office(s): Energy Efficiency and Renewable Energy, National Energy Technology Laboratory January 27, 2010 CX-000999: Categorical Exclusion Determination Biodiesel In-line Blending Project (Innovation) CX(s) Applied: A1, A9, B5.1 Date: 01/27/2010 Location(s): Milwaukee, Wisconsin Office(s): Energy Efficiency and Renewable Energy, National Energy

335

Categorical Exclusion Determinations: National Energy Technology Laboratory  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

September 1, 2010 September 1, 2010 CX-003669: Categorical Exclusion Determination Green Energy Works! Targeted Grants - Ecogy Pennsylvania Systems LLC- Longwood Garden Solar CX(s) Applied: A9, A11, B5.1 Date: 09/01/2010 Location(s): Chester County, Pennsylvania Office(s): Energy Efficiency and Renewable Energy, National Energy Technology Laboratory August 31, 2010 CX-003665: Categorical Exclusion Determination High Performance Buildings Program - Hawthorne Hotel CX(s) Applied: B5.1 Date: 08/31/2010 Location(s): Salem, Massachusetts Office(s): Energy Efficiency and Renewable Energy, National Energy Technology Laboratory August 30, 2010 CX-003664: Categorical Exclusion Determination High Performance Sustainable Energy Research Laboratory CX(s) Applied: A11, B5.1 Date: 08/30/2010 Location(s): Lexington, Kentucky

336

Categorical Exclusion Determinations: National Energy Technology Laboratory  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

16, 2010 16, 2010 CX-003449: Categorical Exclusion Determination Energy Efficiency through Clean Combined Heat and Power (CHP) CX(s) Applied: A9, A11, B1.24, B2.2, B5.1 Date: 08/16/2010 Location(s): New Jersey Office(s): Energy Efficiency and Renewable Energy, National Energy Technology Laboratory August 16, 2010 CX-003448: Categorical Exclusion Determination Curriculum for Commissioning Energy Efficient Buildings CX(s) Applied: A1, A11 Date: 08/16/2010 Location(s): Portland, Oregon Office(s): Energy Efficiency and Renewable Energy, National Energy Technology Laboratory August 16, 2010 CX-003443: Categorical Exclusion Determination Post-Combustion Carbon Dioxide Capture for Existing Post-Combustion Boilers by Self-Concentrating Amine Absorbent CX(s) Applied: A9, A11, A14

337

Categorical Exclusion Determinations: National Energy Technology Laboratory  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

10, 2009 10, 2009 CX-000369: Categorical Exclusion Determination New Jersey Compressed Natural Gas Refuse Trucks, Shuttle Buses and Infrastructure CX(s) Applied: A9, A11 Date: 12/10/2009 Location(s): Rockaway, New Jersey Office(s): Energy Efficiency and Renewable Energy, National Energy Technology Laboratory December 10, 2009 CX-000368: Categorical Exclusion Determination New York State Alternative Fuel Vehicle & Infrastructure Deployment CX(s) Applied: A9, A11 Date: 12/10/2009 Location(s): Albany, New York Office(s): Energy Efficiency and Renewable Energy, National Energy Technology Laboratory December 10, 2009 CX-000367: Categorical Exclusion Determination Long Island Regional Energy Collaborative CX(s) Applied: A9, A11 Date: 12/10/2009 Location(s): Bay Shore, New York

338

Categorical Exclusion Determinations: National Energy Technology Laboratory  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

29, 2010 29, 2010 CX-003327: Categorical Exclusion Determination Geological and Geotechnical Site Investigations for the Design of a Carbon Dioxide Rich Flue Gas Direct Injection CX(s) Applied: A8, A9, B3.1, B3.6 Date: 07/29/2010 Location(s): Fairbanks, Alaska Office(s): Fossil Energy, National Energy Technology Laboratory July 29, 2010 CX-003326: Categorical Exclusion Determination Advanced Sequential Dual Evaporator Cycle for Refrigerators CX(s) Applied: B3.6 Date: 07/29/2010 Location(s): Evansville, Indiana Office(s): Energy Efficiency and Renewable Energy, National Energy Technology Laboratory July 29, 2010 CX-003325: Categorical Exclusion Determination Advanced Sequential Dual Evaporator Cycle for Refrigerators CX(s) Applied: B3.6 Date: 07/29/2010 Location(s): Benton Harbor, Michigan

339

Categorical Exclusion Determinations: National Energy Technology Laboratory  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

January 18, 2010 January 18, 2010 CX-000707: Categorical Exclusion Determination Florida - Clean Fuel LLC (Shovel Ready Grant project) State Energy Program CX(s) Applied: B1.24, B1.31, B2.2, B2.5, B5.1 Date: 01/18/2010 Location(s): Lakeland, Florida Office(s): Energy Efficiency and Renewable Energy, National Energy Technology Laboratory January 18, 2010 CX-000731: Categorical Exclusion Determination Building 4 Equipment Decommissioning CX(s) Applied: B3.6 Date: 01/18/2010 Location(s): Albany, Oregon Office(s): Fossil Energy, National Energy Technology Laboratory January 15, 2010 CX-000704: Categorical Exclusion Determination Electric Drive Semiconductor Manufacturing Center - Advanced Battery Program CX(s) Applied: B1.24, B1.31 Date: 01/15/2010 Location(s): Youngwood, Pennsylvania

340

Categorical Exclusion Determinations: National Energy Technology Laboratory  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

3, 2010 3, 2010 CX-003928: Categorical Exclusion Determination State Energy Program: Strengthening Building Retrofit Markets CX(s) Applied: A9, A11, B5.1 Date: 09/23/2010 Location(s): Virginia Office(s): Energy Efficiency and Renewable Energy, National Energy Technology Laboratory September 23, 2010 CX-003927: Categorical Exclusion Determination State Energy Program: Strengthening Building Retrofit Markets in Target Area (Kitsap County) CX(s) Applied: A9, A11, B5.1 Date: 09/23/2010 Location(s): Washington Office(s): Energy Efficiency and Renewable Energy, National Energy Technology Laboratory September 23, 2010 CX-003926: Categorical Exclusion Determination State Energy Program: Strengthening Building Retrofit Markets and Stimulating Energy Efficiency Action CX(s) Applied: A9, A11, B5.1

Note: This page contains sample records for the topic "recovery technology cxs" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

Categorical Exclusion Determinations: National Energy Technology Laboratory  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

0, 2011 0, 2011 CX-007030: Categorical Exclusion Determination Chemistry of Cathode Surfaces: Fundamental Investigation and Tailoring of Electronic Behavior CX(s) Applied: B3.6 Date: 09/20/2011 Location(s): Cambridge, Massachusetts Office(s): Fossil Energy, National Energy Technology Laboratory September 19, 2011 CX-007055: Categorical Exclusion Determination Silicon-Nanowire-Based Lithium-ion Batteries with Doubling Energy Density CX(s) Applied: B3.6 Date: 09/19/2011 Location(s): Pawcatuck, Connecticut Office(s): Energy Efficiency and Renewable Energy, National Energy Technology Laboratory September 19, 2011 CX-007052: Categorical Exclusion Determination Silicon-Nanowire-Based Lithium-Ion Batteries with Doubling Energy Density CX(s) Applied: B3.6 Date: 09/19/2011 Location(s): Menlo Park, California

342

Categorical Exclusion Determinations: National Energy Technology Laboratory  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

8, 2011 8, 2011 CX-006915: Categorical Exclusion Determination Compressed Natural Gas/Infrastructure Development CX(s) Applied: B5.1 Date: 09/28/2011 Location(s): Ogden, Utah Office(s): Energy Efficiency and Renewable Energy, National Energy Technology Laboratory September 28, 2011 CX-006914: Categorical Exclusion Determination Midwest Region Alternative Fuels Project CX(s) Applied: B5.1 Date: 09/28/2011 Location(s): Kansas City, Missouri Office(s): Energy Efficiency and Renewable Energy, National Energy Technology Laboratory September 28, 2011 CX-006912: Categorical Exclusion Determination Midwest Region Alternative Fuels Project CX(s) Applied: A7, B5.1 Date: 09/28/2011 Location(s): Kansas City, Kansas Office(s): Energy Efficiency and Renewable Energy September 28, 2011 CX-006967: Categorical Exclusion Determination

343

Categorical Exclusion Determinations: National Energy Technology Laboratory  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

2, 2010 2, 2010 CX-001674: Categorical Exclusion Determination Compressed Natural Gas Fueling Infrastructure Program (Veolia) CX(s) Applied: B1.24, B1.31, B2.5, A11, B5.1 Date: 04/22/2010 Location(s): Veolia, Florida Office(s): Energy Efficiency and Renewable Energy, National Energy Technology Laboratory April 22, 2010 CX-001672: Categorical Exclusion Determination Compressed Natural Gas Fueling Infrastructure Program (Miami) CX(s) Applied: B1.24, B1.31, B2.5, A11, B5.1 Date: 04/22/2010 Location(s): Miami, Florida Office(s): Energy Efficiency and Renewable Energy, National Energy Technology Laboratory April 22, 2010 CX-001670: Categorical Exclusion Determination Compressed Natural Gas Fueling Infrastructure Program (Florida) CX(s) Applied: B1.24, B1.31, B2.5, A11, B5.1

344

Categorical Exclusion Determinations: National Energy Technology Laboratory  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

23, 2012 23, 2012 CX-008493: Categorical Exclusion Determination Liquid Carbon Dioxide Slurry for Feeding Low Rank Coal (LRC) Gasifiers CX(s) Applied: A9 Date: 07/23/2012 Location(s): Texas, Oklahoma Offices(s): National Energy Technology Laboratory July 23, 2012 CX-008492: Categorical Exclusion Determination Carbon Dioxide Capture from Integrated Gasification Combined Cycle Gas Streams Using the Ammonium Carbonate-Ammonium Bicarbonate Process CX(s) Applied: A9 Date: 07/23/2012 Location(s): Texas Offices(s): National Energy Technology Laboratory July 23, 2012 CX-008491: Categorical Exclusion Determination Carbon Dioxide Capture from Integrated Gasification Combined Cycle Gas Streams Using the Ammonium Carbonate-Ammonium Bicarbonate Process CX(s) Applied: B3.6 Date: 07/23/2012

345

Categorical Exclusion Determinations: National Energy Technology Laboratory  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

18, 2010 18, 2010 CX-001313: Categorical Exclusion Determination Grants for State-Sponsored Renewable Energy and Energy Efficiency Projects - New Jersey Transit Solar CX(s) Applied: A9, A11, B5.1 Date: 03/18/2010 Location(s): Kearny, New Jersey Office(s): Energy Efficiency and Renewable Energy, National Energy Technology Laboratory March 18, 2010 CX-001312: Categorical Exclusion Determination State Facilities Retrofit Program: Commissioning/Re-Commissioning and Metering Projects CX(s) Applied: A9, A11, B5.1 Date: 03/18/2010 Location(s): Georgia Office(s): Energy Efficiency and Renewable Energy, National Energy Technology Laboratory March 18, 2010 CX-001315: Categorical Exclusion Determination Propane Truck Deployment CX(s) Applied: A1, A7, A9, B5.1 Date: 03/18/2010 Location(s): San Antonio, Texas

346

Categorical Exclusion Determinations: National Energy Technology Laboratory  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

22, 2010 22, 2010 CX-001294: Categorical Exclusion Determination Heavy-Duty Natural Gas Drainage Truck Replacement Program in the South Coast Air Basin CX(s) Applied: A7, A9, A11 Date: 03/22/2010 Location(s): Los Angeles, California Office(s): Energy Efficiency and Renewable Energy, National Energy Technology Laboratory March 22, 2010 CX-001297: Categorical Exclusion Determination Clean Start Propane Refueling, Vehicle Incentive and Outreach CX(s) Applied: A7 Date: 03/22/2010 Location(s): Los Angeles, California Office(s): Energy Efficiency and Renewable Energy, National Energy Technology Laboratory March 22, 2010 CX-001296: Categorical Exclusion Determination B2,3,5,17,19 and 36 Utility Meter Install CX(s) Applied: B1.15, B2.2 Date: 03/22/2010 Location(s): Morgantown, West Virginia

347

Categorical Exclusion Determinations: National Energy Technology Laboratory  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

8, 2010 8, 2010 CX-000995: Categorical Exclusion Determination Craftmaster Manufacturing Inc. Combined Heat and Power Project CX(s) Applied: A9, B1.31, B5.1 Date: 02/08/2010 Location(s): Towanda, Pennsylvania Office(s): Energy Efficiency and Renewable Energy, National Energy Technology Laboratory February 8, 2010 CX-000996: Categorical Exclusion Determination Divine Providence Hospital-Susquehanna Health Combined Heat and Power Project CX(s) Applied: A9, B1.31, B5.1 Date: 02/08/2010 Location(s): Pennsylvania Office(s): Energy Efficiency and Renewable Energy, National Energy Technology Laboratory February 7, 2010 CX-000766: Categorical Exclusion Determination New York State Alternative Fuel Vehicle and Infrastructure Deployment - New Vehicle Purchase CX(s) Applied: A7, A11

348

Categorical Exclusion Determinations: American Recovery and Reinvestment  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

7, 2009 7, 2009 CX-000315: Categorical Exclusion Determination New Jersey Revision 1 - Multifamily Energy Efficiency Improvement Pilot (MEEIP) CX(s) Applied: A1, A9, A11, B1.3, B1.4, B1.5, B1.7, B1.15, B1.23, B1.24, B1.31, B2.1, B2.2, B2.5, B5.1 Date: 11/17/2009 Location(s): New Jersey Office(s): Energy Efficiency and Renewable Energy, National Energy Technology Laboratory November 17, 2009 CX-000314: Categorical Exclusion Determination New Jersey Revision 1 - Low-Interest Loan Program for Residential Energy Efficiency CX(s) Applied: B1.24, B1.31, B2.1, B2.2, B2.3, B2.5, A1, A9, B1.3, B1.4, B1.5, B1.7, B5.1 Date: 11/17/2009 Location(s): New Jersey Office(s): Energy Efficiency and Renewable Energy, National Energy Technology Laboratory November 17, 2009 CX-000313: Categorical Exclusion Determination

349

Categorical Exclusion Determinations: American Recovery and Reinvestment  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

23, 2009 23, 2009 CX-000321: Categorical Exclusion Determination Kentucky Revision 2 - Green and Healthy Schools Program (GHS) CX(s) Applied: A1, A9, A11, B1.3, B1.4, B1.5, B1.7, B1.15, B1.24, B1.31, B2.1, B2.3, B2.5, B5.1 Date: 11/23/2009 Location(s): Kentucky Office(s): Energy Efficiency and Renewable Energy, National Energy Technology Laboratory November 23, 2009 CX-000320: Categorical Exclusion Determination Kentucky Revision 2 - Kentucky Farm Energy Efficiency and Renewable Energy Partnership CX(s) Applied: A1, A9, A11, B1.3, B1.4, B1.5, B1.7, B1.15, B1.22, B1.24, B1.31, B2.1, B2.2, B2.5, B5.1, B5.12 Date: 11/23/2009 Location(s): Kentucky Office(s): Energy Efficiency and Renewable Energy, National Energy Technology Laboratory November 23, 2009 CX-000319: Categorical Exclusion Determination

350

ARM - Recovery Act Instruments  

NLE Websites -- All DOE Office Websites (Extended Search)

ActRecovery Act Instruments ActRecovery Act Instruments Recovery Act Logo Subscribe FAQs Recovery Act Instruments Recovery Act Fact Sheet March 2010 Poster (PDF, 10MB) External Resources Recovery Act - Federal Recovery Act - DOE Recovery Act - ANL Recovery Act - BNL Recovery Act - LANL Recovery Act - PNNL Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Recovery Act Instruments These pages provide a breakdown of the new instruments planned for installation among the permanent and mobile ARM sites. In addition, several instruments will be purchased for use throughout the facility and deployed as needed. These are considered "facility spares" and are included in the table below. View All | Hide All ARM Aerial Facility Instrument Title Instrument Mentor Measurement Group Measurements

351

Reactivation of an idle lease to increase heavy oil recovery through application of conventional steam drive technology in a low dip slope and basin reservoir in the Midway-Sunset Field, San Jaoquin Basin, California  

SciTech Connect

This project reactivates ARCO`s idle Pru Fee lease in the Midway- Sunset field, California and conducts a continuous steamflood enhanced oil recovery demonstration aided by an integration of modern reservoir characterization and simulation methods. Cyclic steaming is being used to reestablish baseline production within the reservoir characterization phase of the project. During the demonstration phase scheduled to begin in January 1997, a continuous steamflood enhanced oil recovery will be initiated to test the incremental value of this method as an alternative to cyclic steaming. Other economically marginal Class III reservoirs having similar producibility problems will benefit from insight gained in this project. The objectives of the project are: (1) to return the shut-in portion of the reservoir to optimal commercial production; (2) to accurately describe the reservoir and recovery process; and (3) to convey the details of this activity to the domestic petroleum industry, especially to other producers in California, through an aggressive technology transfer program. One of the main objectives of Budget Period I was to return the Pru Fee property to economic production and establish a baseline productivity with cyclic steaming. By the end of the second quarter 1996, all Pru producers except well 101 had been cyclic steamed two times. Each steam cycle was around 10,000 barrels of steam (BS) per well. No mechanical problems were found in the existing old wellbores. Conclusion is after several years of being shut-in, the existing producers on the Pru lease are in reasonable mechanical condition, and can therefore be utilized as viable producers in whatever development plan we determine is optimum. Production response to cyclic steam is very encouraging in the new producer, however productivity in the old producers appears to be limited in comparison.

Schamel, S.

1996-11-01T23:59:59.000Z

352

Applications of advanced petroleum production technology and water alternating gas injection for enhanced oil recovery - Mattoon Oil Field, Illinois. Final report  

SciTech Connect

Phase I results of a C0{sub 2}-assisted oil recovery demonstration project in selected Cypress Sandstone reservoirs at Mattoon Field, Illinois are reported. The design and scope of this project included C0{sub 2} injectvity testing in the Pinnell and Sawyer units, well stimulaton treatments with C0{sub 2} in the Strong unit and infill well drilling, completion and oil production. The field activities were supported by extensive C0{sub 2}-oil-water coreflood experiments, CO{sub 2} oil-phase interaction experiments, and integrated geologic modeling and reservoir simulations. The progress of the project was made public through presentations at an industry meeting and a DOEs contractors` symposium, through quarterly reports and one-to-one consultations with interested operators. Phase II of this project was not implemented. It would have been a water-alternating-gas (WAG) project of longer duration.

Baroni, M. [American Oil Recovery, Inc., Decatur, IL (United States)

1995-09-01T23:59:59.000Z

353

Categorical Exclusion Determinations: National Energy Technology Laboratory  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

National Energy Technology National Energy Technology Laboratory Categorical Exclusion Determinations: National Energy Technology Laboratory Categorical Exclusion Determinations issued by National Energy Technology Laboratory. DOCUMENTS AVAILABLE FOR DOWNLOAD September 25, 2013 CX-010917: Categorical Exclusion Determination Fate of Methane Emitted from Dissociating Marine Hydrates: Modeling, Laboratory, and Field Constraints CX(s) Applied: A1, A9, B3.6 Date: 09/25/2013 Location(s): Massachusetts Offices(s): National Energy Technology Laboratory September 25, 2013 CX-010916: Categorical Exclusion Determination Fate of Methane Emitted from Dissociating Marine Hydrates: Modeling, Laboratory, and Field Constraints CX(s) Applied: A1, A9, B3.6 Date: 09/25/2013 Location(s): Massachusetts Offices(s): National Energy Technology Laboratory

354

Categorical Exclusion Determinations: Advanced Technology Vehicles  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Technology Vehicles Technology Vehicles Manufacturing Loan Program Categorical Exclusion Determinations: Advanced Technology Vehicles Manufacturing Loan Program Categorical Exclusion Determinations issued by Advanced Technology Vehicles Manufacturing Loan Program. DOCUMENTS AVAILABLE FOR DOWNLOAD May 29, 2012 CX-008810: Categorical Exclusion Determination One Nevada Optimization of Microwave Telecommunication System CX(s) Applied: B1.19, B4.6 Date: 05/29/2012 Location(s): Nevada, Nevada Offices(s): Advanced Technology Vehicles Manufacturing Loan Program January 24, 2012 CX-007677: Categorical Exclusion Determination Project Eagle Phase 1 Direct Wafer/Cell Solar Facility CX(s) Applied: B1.31 Date: 01/24/2012 Location(s): Massachusetts Offices(s): Advanced Technology Vehicles Manufacturing Loan Program

355

Recovery Act | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

August 12, 2010 August 12, 2010 Department of Energy Paves Way for Additional Clean Energy Projects and Jobs Through Manufacturing Solicitation Recovery Act Funds to Support New Renewable Energy Manufacturing Projects August 2, 2010 Department of Energy Announces $188 Million for Small Business Technology Commercialization Includes $73 million in Recovery Act Investments to Help Small Businesses Bring Clean Energy Ideas to the Marketplace July 22, 2010 Secretary Chu Announces Six Projects to Convert Captured CO2 Emissions from Industrial Sources into Useful Products $106 Million Recovery Act Investment will Reduce CO2 Emissions and Mitigate Climate Change July 21, 2010 DOE Hosts Workshop on Transition to Electric Vehicles Washington, DC - On Thursday, July 22, 2010, the Department of Energy will

356

Resource Recovery Opportunities at Americas Water Resource Recovery Facilities  

Energy.gov (U.S. Department of Energy (DOE))

Breakout Session 3AConversion Technologies III: Energy from Our WasteWill we Be Rich in Fuel or Knee Deep in Trash by 2025? Resource Recovery Opportunities at Americas Water Resource Recovery Facilities Todd Williams, Deputy Leader for Wastewater Infrastructure Practice, CH2M HILL

357

New surfactant classes for enhanced oil recovery and their tertiary oil recovery potential  

E-Print Network (OSTI)

commercial scale projects were also executed. Nowadays, because of the high oil price, this technology hasNew surfactant classes for enhanced oil recovery and their tertiary oil recovery potential Stefan States a b s t r a c ta r t i c l e i n f o Article history: Received 23 February 2009 Accepted 14

Goddard III, William A.

358

Demonstration of Air-Power-Assist (APA) Engine Technology for...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Combustion and Direct Energy Recovery in Heavy Duty Application Demonstration of Air-Power-Assist (APA) Engine Technology for Clean Combustion and Direct Energy Recovery in...

359

Categorical Exclusion Determinations: National Energy Technology Laboratory  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

13, 2011 13, 2011 CX-006752: Categorical Exclusion Determination Energy Efficiency Vehicles for Sustainable Mobility - Department of Energy Graduate Automotive Technology Education Center of Excellence CX(s) Applied: A9, A11, B3.6 Date: 09/13/2011 Location(s): Columbus, Ohio Office(s): Energy Efficiency and Renewable Energy, National Energy Technology Laboratory September 13, 2011 CX-006751: Categorical Exclusion Determination University of Alabama at Birmingham Graduate Automotive Technology Education Center for Lightweight Materials and Manufacturing for Automotive Technologies CX(s) Applied: A9, A11, B3.6 Date: 09/13/2011 Location(s): Birmingham, Alabama Office(s): Energy Efficiency and Renewable Energy, National Energy Technology Laboratory September 13, 2011 CX-006748: Categorical Exclusion Determination

360

Categorical Exclusion Determinations: National Energy Technology Laboratory  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

October 5, 2011 October 5, 2011 CX-007114: Categorical Exclusion Determination Compressed Natural Gas (CNG)/Infrastructure Development (Station Upgrade) CX(s) Applied: B5.1 Date: 10/05/2011 Location(s): West Jordan, Utah Office(s): Energy Efficiency and Renewable Energy, National Energy Technology Laboratory October 5, 2011 CX-007112: Categorical Exclusion Determination Geologic Characterization of the South Georgia Rift Basin - 3-Dimension Seismic Survey CX(s) Applied: A9, A11, B3.1 Date: 10/05/2011 Location(s): Colleton County, South Carolina Office(s): Fossil Energy October 5, 2011 CX-007111: Categorical Exclusion Determination Shallow Carbon Sequestration Demonstration Project (Iatan Generating Station) CX(s) Applied: B3.1 Date: 10/05/2011 Location(s): Platte County, Missouri

Note: This page contains sample records for the topic "recovery technology cxs" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

Categorical Exclusion Determinations: National Energy Technology Laboratory  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

8, 2011 8, 2011 CX-006926: Categorical Exclusion Determination Next Generation Inverter Design CX(s) Applied: B3.6 Date: 09/28/2011 Location(s): Golden, Colorado Office(s): Energy Efficiency and Renewable Energy, Savannah River Operations Office September 28, 2011 CX-006921: Categorical Exclusion Determination Development of High Energy Density Lithium-Sulfur Cells CX(s) Applied: B3.6 Date: 09/28/2011 Location(s): Milwaukee, Wisconsin Office(s): Energy Efficiency and Renewable Energy, National Energy Technology Laboratory September 28, 2011 CX-006919: Categorical Exclusion Determination Development of High Energy Density Lithium-Sulfur Cells CX(s) Applied: B3.6 Date: 09/28/2011 Location(s): University Park, Pennsylvania Office(s): Energy Efficiency and Renewable Energy, Savannah River

362

SECONDARY NATURAL GAS RECOVERY IN THE APPALACHIAN BASIN: APPLICATION OF ADVANCED TECHNOLOGIES IN A FIELD DEMONSTRATION SITE, HENDERSON DOME, WESTERN PENNSYLVANIA  

SciTech Connect

The principal objectives of this project were to test and evaluate technologies that would result in improved characterization of fractured natural-gas reservoirs in the Appalachian Basin. The Bureau of Economic Geology (Bureau) worked jointly with industry partner Atlas Resources, Inc. to design, execute, and evaluate several experimental tests toward this end. The experimental tests were of two types: (1) tests leading to a low-cost methodology whereby small-scale microfractures observed in matrix grains of sidewall cores can be used to deduce critical properties of large-scale fractures that control natural-gas production and (2) tests that verify methods whereby robust seismic shear (S) waves can be generated to detect and map fractured reservoir facies. The grain-scale microfracture approach to characterizing rock facies was developed in an ongoing Bureau research program that started before this Appalachian Basin study began. However, the method had not been tested in a wide variety of fracture systems, and the tectonic setting of rocks in the Appalachian Basin composed an ideal laboratory for perfecting the methodology. As a result of this Appalachian study, a low-cost commercial procedure now exists that will allow Appalachian operators to use scanning electron microscope (SEM) images of thin sections extracted from oriented sidewall cores to infer the spatial orientation, relative geologic timing, and population density of large-scale fracture systems in reservoir sandstones. These attributes are difficult to assess using conventional techniques. In the Henderson Dome area, large quartz-lined regional fractures having N20E strikes, and a subsidiary set of fractures having N70W strikes, are prevalent. An innovative method was also developed for obtaining the stratigraphic and geographic tops of sidewall cores. With currently deployed sidewall coring devices, no markings from which top orientation can be obtained are made on the sidewall core itself during drilling. The method developed in this study involves analysis of the surface morphology of the broken end of the core as a top indicator. Together with information on the working of the tool (rotation direction), fracture-surface features, such as arrest lines and plume structures, not only give a top direction for the cores but also indicate the direction of fracture propagation in the tough, fine-grained Cataract/Medina sandstones. The study determined that microresistivity logs or other image logs can be used to obtain accurate sidewall core azimuths and to determine the precise depths of the sidewall cores. Two seismic S-wave technologies were developed in this study. The first was a special explosive package that, when detonated in a conventional seismic shot hole, produces more robust S-waves than do standard seismic explosives. The importance of this source development is that it allows S-wave seismic data to be generated across all of the Appalachian Basin. Previously, Appalachian operators have not been able to use S-wave seismic technology to detect fractured reservoirs because the industry-standard S-wave energy source, the horizontal vibrator, is not a practical source option in the heavy timber cover that extends across most of the basin. The second S-wave seismic technology that was investigated was used to verify that standard P-wave seismic sources can create robust downgoing S-waves by P-to-S mode conversion in the shallow stratigraphic layering in the Appalachian Basin. This verification was done by recording and analyzing a 3-component vertical seismic profile (VSP) in the Atlas Montgomery No. 4 well at Henderson Dome, Mercer County, Pennsylvania. The VSP data confirmed that robust S-waves are generated by P-to-S mode conversion at the basinwide Onondaga stratigraphic level. Appalachian operators can thus use converted-mode seismic technology to create S-wave images of fractured and unfractured rock systems throughout the basin.

BOB A. HARDAGE; ELOISE DOHERTY; STEPHEN E. LAUBACH; TUCKER F. HENTZ

1998-08-14T23:59:59.000Z

363

of oil yields from enhanced oil recovery  

NLE Websites -- All DOE Office Websites (Extended Search)

oil yields from enhanced oil recovery (EOR) and CO oil yields from enhanced oil recovery (EOR) and CO 2 storage capacity in depleted oil reservoirs. The primary goal of the project is to demonstrate that remaining oil can be economically produced using CO 2 -EOR technology in untested areas of the United States. The Citronelle Field appears to be an ideal site for concurrent CO 2 storage and EOR because the field is composed of sandstone reservoirs

364

Recovery Act: Oxy-Combustion Technology Development for Industrial-Scale Boiler Applications Task 4 Testing in Alstoms 15 MWth Boiler Simulation Facility  

SciTech Connect

Alstom Power Inc. (Alstom), under U.S. DOE/NETL Cooperative Agreement No. DE-NT0005290, is conducting a development program to generate detailed technical information needed for application of oxy-combustion technology. The program is designed to provide the necessary information and understanding for the next step of large-scale commercial demonstration of oxy combustion in tangentially fired boilers and to accelerate the commercialization of this technology. The main project objectives include: Design and develop an innovative oxyfuel system for existing tangentially-fired boiler units that minimizes overall capital investment and operating costs. Evaluate performance of oxyfuel tangentially fired boiler systems in pilot scale tests at Alstoms 15 MWth tangentially fired Boiler Simulation Facility (BSF). Address technical gaps for the design of oxyfuel commercial utility boilers by focused testing and improvement of engineering and simulation tools. Develop the design, performance and costs for a demonstration scale oxyfuel boiler and auxiliary systems. Develop the design and costs for both industrial and utility commercial scale reference oxyfuel boilers and auxiliary systems that are optimized for overall plant performance and cost. Define key design considerations and develop general guidelines for application of results to utility and different industrial applications. The project was initiated in October 2008 and the scope extended in 2010 under an ARRA award. The project is scheduled for completion by April 30, 2014. Central to the project is 15 MWth testing in the BSF, which provided in-depth understanding of oxy-combustion under boiler conditions, detailed data for improvement of design tools, and key information for application to commercial scale oxy-fired boiler design. Eight comprehensive 15 MWth oxy-fired test campaigns were performed with different coals, providing detailed data on combustion, emissions, and thermal behavior over a matrix of fuels, oxy-process variables and boiler design parameters. Significant improvement of CFD modeling tools and validation against 15 MWth experimental data has been completed. Oxy-boiler demonstration and large reference designs have been developed, supported with the information and knowledge gained from the 15 MWth testing. This report addresses the results from the 15 MWth testing in the BSF.

Levasseur, Armand

2014-04-30T23:59:59.000Z

365

Recovery Act Milestones  

ScienceCinema (OSTI)

Every 100 days, the Department of Energy is held accountable for a progress report on the American Recovery and Reinvestment Act. Update at 200 days, hosted by Matt Rogers, Senior Advisor to Secretary Steven Chu for Recovery Act Implementation.

Rogers, Matt

2013-05-29T23:59:59.000Z

366

APPLICATION OF RESERVOIR CHARACTERIZATION AND ADVANCED TECHNOLOGY TO IMPROVE RECOVERY AND ECONOMICS IN A LOWER QUALITY SHALLOW SHELF SAN ANDRES RESERVOIR  

SciTech Connect

The OXY-operated Class 2 Project at West Welch is designed to demonstrate how the use of advanced technology can improve the economics of miscible CO{sub 2} injection projects in lower quality Shallow Shelf Carbonate reservoirs. The research and design phase (Budget Period 1) primarily involved advanced reservoir characterization. The current demonstration phase (Budget Period 2) is the implementation of the reservoir management plan for an optimum miscible CO{sub 2} flood design based on the reservoir characterization. Although Budget Period 1 for the Project officially ended 12/31/96, reservoir characterization and simulation work continued during the Budget Period 2. During the fifth and sixth annual reporting periods (8/3/98-8/2/00) covered by this report, work continued on interpretation of the cross well seismic data to create porosity and permeability profiles which were distributed into the reservoir geostatistically. The initial interwell seismic CO{sub 2} monitor survey was conducted, the acquired data processed and interpretation started. Only limited well work and facility construction was conducted in the project area. The CO{sub 2} injection initiated in October 1997 was continued, although the operator had to modify the operating plan in response to low injection rates, well performance and changes in CO{sub 2} supply. CO{sub 2} injection was focused in a smaller area to increase the reservoir processing rate. By the end of the reporting period three producers had shown sustained oil rate increases and ten wells had experienced gas (CO{sub 2}) breakthrough.

T. Scott Hickman; James J. Justice

2002-01-09T23:59:59.000Z

367

American Recovery and Reinvestment Act Information Services  

NLE Websites -- All DOE Office Websites (Extended Search)

Recovery and Reinvestment Act Recovery and Reinvestment Act Information Services American Recovery and Reinvestment Act American Recovery and Reinvestment Act Information Services American Recovery and Reinvestment Act American Recovery and Reinvestment Act Information Services American Recovery and Reinvestment Act American Recovery and Reinvestment Act American Recovery and Reinvestment Act American Recovery and Reinvestment Act American Recovery and Reinvestment Act American Recovery and Reinvestment Act American Recovery and Reinvestment Act American Recovery and Reinvestment Act American Recovery and Reinvestment Act American Recovery and Reinvestment Act American Recovery and Reinvestment Act American Recovery and Reinvestment Act American Recovery and Reinvestment Act American Recovery and Reinvestment Act

368

Reactivation of an idle lease to increase heavy oil recovery through application of conventional steam drive technology in a low dip slope and basin reservoir in the Midway-Sunset field, San Jaoquin Basin, California. Annual report, June 13, 1995--June 13, 1996  

SciTech Connect

This project reactivates ARCO`s idle Pru Fee lease in the Midway-Sunset field, California and conducts a continuous steamflood enhanced oil recovery demonstration aided by an integration of modern reservoir characterization and simulation methods. Cyclic steaming is being used to reestablish baseline production within the reservoir characterization phase of the project. During the demonstration phase scheduled to begin in January 1997, a continuous steamflood enhanced oil recovery will be initiated to test the incremental value of this method as an alternative to cyclic steaming. Other economically marginal Class III reservoirs having similar producibility problems will benefit from insight gained in this project. The objectives of the project are: (1) to return the shut-in portion of the reservoir to optimal commercial production; (2) to accurately describe the reservoir and recovery process; and (3) to convey the details of this activity to the domestic petroleum industry, especially to other producers in California, through an aggressive technology transfer program.

Deo, M.; Jenkins, C.; Sprinkel, D.; Swain, R.; Wydrinski, R.; Schamel, S.

1998-09-01T23:59:59.000Z

369

Recovery Act | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

February 7, 2011 February 7, 2011 Mechanics train with plasma arc cutting equipment at the Paducah Site | Courtesy of Paducah Gaseous Diffusion Plant 240 Jobs Later: The Recovery Act's Impact at the Paducah Site Workers at the Department of Energy's Paducah Site are doing great things with the training they've received as part of the Recovery Act. January 25, 2011 Watercolor print of the Aldo Leopold Nature Center (ALNC) with new facilities. How a Wisconsin Nature Center is Leading by Example With funding from the U.S. Department of Energy, this Wisconsin nature center will be at the forefront in demonstrating the latest energy efficiency and renewable energy technologies to thousands of visitors every year. January 24, 2011 Vids 4 Grids: Surge Arresters and Switchgears A new video series is increasing general public knowledge of the cutting

370

Recovery Act | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

21, 2011 21, 2011 Smart grid technology installations provided not only new work, but new customers for Narrows Electric owner Gary Miklethun, far l., and his team, from l. to r., Ken Dehart, Rodney Thomas and Dave Brosie. Smart Grid Technology Gives Small Business New Light Gary Miklethun, the owner of Narrows Electric, a small electrical contractor in Gig Harbor, Wash., that specializes in residential and small commercial projects, definitely felt it when the economy slowed down. But installing new smart grid technology in 500 homes not only gave his team new work, but new customers. September 21, 2011 Communications and Guidance Issued Guidance: Throughout the life of the Recovery Act, it has at times been necessary to issue guidance around certain policies or procedures.

371

Categorical Exclusion Determinations: National Energy Technology Laboratory  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

31, 2010 31, 2010 CX-001453: Categorical Exclusion Determination North Central Texas Alternative Fuel and Advanced Technology Investments CX(s) Applied: B5.1 Date: 03/31/2010 Location(s): Fort Worth, Texas Office(s): Energy Efficiency and Renewable Energy, National Energy Technology Laboratory March 31, 2010 CX-001452: Categorical Exclusion Determination Development of Advanced Reservoir Characterization Techniques Date: 03/31/2010 Location(s): Grand Forks, North Dakota Office(s): Fossil Energy, National Energy Technology Laboratory March 30, 2010 CX-001462: Categorical Exclusion Determination High Performance Buildings - United Teen Equality Center CX(s) Applied: B1.15, B1.24, B2.5, A9, A11, B5.1 Date: 03/30/2010 Location(s): Lowell, Massachusetts Office(s): Energy Efficiency and Renewable Energy, National Energy

372

OE Recovery Act Blog | Department of Energy  

NLE Websites -- All DOE Office Websites (Extended Search)

Recovery Recovery Act Blog OE Recovery Act Blog RSS September 20, 2013 Electrical transmission lines cross a snow-covered field in Dallas Dam, Oregon. | Energy Department photo. Top 9 Things You Didn't Know About America's Power Grid Ever wonder how electricity gets to your home? Test your knowledge with these top power grid facts. July 11, 2013 Demand Response: Lessons Learned with an Eye to the Future Under the Recovery Act, the Energy Department awarded $3.5 billion in funds to the electricity industry, including OG&E, to help catalyze the adoption of smart grid tools, technologies and techniques such as demand response that are designed to increase the electric grid's flexibility, reliability, efficiency, affordability, and resiliency. Understanding lessons learned from these projects is vital.

373

EM American Recovery and Reinvestment Act Update  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Recovery Act Program Recovery Act Program www.em.doe.gov 1 Thomas Johnson, Jr. Recovery Act Program Director PRESENTED TO: Environmental Management Advisory Board (EMAB) December 5, 2011 EM's Mission "Complete the safe cleanup of the environmental legacy brought about from five decades of nuclear weapons www.em.doe.gov 2 nuclear weapons development, production, and Government- sponsored nuclear energy research." EM's Recovery Act Program $6 Billion at 17 sites (12 states) Accelerated existing scope › Soil and groundwater remediation › Radioactive solid waste disposition › Facility decontamination & decommissioning www.em.doe.gov 3 Selected projects were "shovel-ready" › Fully-defined cost, scope, and schedule › Established regulatory framework › Proven technology

374

Overview of Thermoelectric Power Generation Technologies in Japan  

Energy.gov (U.S. Department of Energy (DOE))

Discusses thermoelectric power generation technologies as applied to waste heat recovery, renewable thermal energy sources, and energy harvesting

375

Pillars of Recovery | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Pillars of Recovery Pillars of Recovery Pillars of Recovery July 29, 2010 - 4:00pm Addthis Energy Efficiency - $12.0 billion Helping millions of American families cut utility bills by making homes and appliances more energy efficient. $5 billion for the Weatherization Assistance Program $3.1 billion for the State Energy Program $2.73 billion for Energy Efficiency and Conservation Block Grants $454 million for Retrofit ramp-ups in energy efficiency $346 million for Energy efficient building technologies $300 million for Energy Efficient Appliance Rebates / ENERGY STAR® $256 million for the Industrial Technologies Program $104 million for National Laboratory Facilities $18 million for Small Business Clean Energy Innovation Projects Environmental Cleanup - $6.0 billion Creating jobs and reducing the legacy cold war footprint of the Department

376

Recovery Act Project Stories  

Energy.gov (U.S. Department of Energy (DOE))

Funded by the American Recovery and Reinvestment Act, these Federal Energy Management Program (FEMP) projects exemplify the range of technical assistance provided to federal agencies.

377

Recovery Act State Summaries | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Recovery Act State Summaries Recovery Act State Summaries Recovery Act State Summaries Alabama Recovery Act State Memo Alaska Recovery Act State Memo American Samoa Recovery Act State Memo Arizona Recovery Act State Memo Arkansas Recovery Act State Memo California Recovery Act State Memo Colorado Recovery Act State Memo Connecticut Recovery Act State Memo Delaware Recovery Act State Memo District of Columbia Recovery Act State Memo Florida Recovery Act State Memo Georgia Recovery Act State Memo Guam Recovery Act State Memo Hawaii Recovery Act State Memo Idaho Recovery Act State Memo Illinois Recovery Act State Memo Indiana Recovery Act State Memo Iowa Recovery Act State Memo Kansas Recovery Act State Memo Kentucky Recovery Act State Memo Louisiana Recovery Act State Memo Maine Recovery Act State Memo

378

Shape Recovery of Viscoelastic Deployable Structures and Sergio Pellegrino  

E-Print Network (OSTI)

and opposite sense folding. I. Introduction Deployable structures made of thin carbon fiber reinforced polymerShape Recovery of Viscoelastic Deployable Structures Kawai Kwok and Sergio Pellegrino California Institute of Technology, Pasadena, CA 91125 The paper investigates the shape recovery behavior of a simple

Pellegrino, Sergio

379

NREL: Technology Deployment - Disaster Resiliency and Recovery...  

NLE Websites -- All DOE Office Websites (Extended Search)

Jersey and New York Image of a pile of debris in front of a house with one wall missing. Houses in New York and New Jersey were severely damaged during Hurricane Sandy. On Oct. 29,...

380

NREL: Technology Deployment - Disaster Resiliency and Recovery...  

NLE Websites -- All DOE Office Websites (Extended Search)

with water and ballistic ice, severely damaging 90% of the homes and businesses in the remote Alaskan community of Galena. To help the community recover effectively and prepare for...

Note: This page contains sample records for the topic "recovery technology cxs" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

NREL: Technology Deployment - Disaster Resiliency and Recovery...  

NLE Websites -- All DOE Office Websites (Extended Search)

was flooded again by Hurricane Rita. NREL, with funding from the U.S. Department of Energy (DOE), provided technical assistance to help the city incorporate energy efficiency...

382

Oil recovery; Technology that tames large spills  

SciTech Connect

This paper reports that the threat of oil spills is growing with the increasing use of larger tankers, the expansion of offshore oil exploration, and-as was demonstrated recently in the Persian Gulf-the dangers of war and terrorism. Aware of the environmental havoc that massive spills can cause, engineers are working hard to devise effective methods of scooping oil from the water's surface and cleaning contaminated shorelines. Techniques are being developed, which combine mechanical, chemical, and biological processes to contain spills.

Valenti, M.

1991-05-01T23:59:59.000Z

383

NREL: Technology Deployment - Disaster Resiliency and Recovery...  

NLE Websites -- All DOE Office Websites (Extended Search)

locally generated wind power. The Greensburg Wind Farm consists of 10 1.25-megawatt (MW) wind turbines that supply 12.5 MW of renewable power to the town-enough to power every...

384

Pinch Technology Without Tears  

E-Print Network (OSTI)

is significant, Pinch Technology, when properly applied. results in the design of plants that are more efficient in terms of energy, cheaper in terms of capital cost. simpler in terms of construction and more reliable in terms of operation than plants...]. The result is the design of simpler heat recovery systems and resultant capital cost savings. ? The technology provides a 'larget' for the capital cost of the heat recovery network [4]. This has two benefits. First, the engineer is able to determine...

Polley, G. T.

385

Energy Recovery Potential from Wastewater Utilities through Innovation  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Recovery Potential from Wastewater Utilities through Innovation Conversion Technologies III: Energy from Our Waste-Will we Be Rich in Fuel or Knee Deep in Trash by 2025? July 30,...

386

Energy Recovery System for Fluid Catalytic Cracking Units  

E-Print Network (OSTI)

This paper describes the power and heat recovery processes and equipment for modern fluid catalytic cracking (FCC) units made possible by improvements in catalyst fines removal technology and the availability of erosion resistant high temperature...

Wen, H.; Lou, S. C.

1982-01-01T23:59:59.000Z

387

Two Recovery Act Funding Case Studies Now Available  

Energy.gov (U.S. Department of Energy (DOE))

Utilities across America are using Recovery Act funds and smart grid technologies to deliver more reliable and affordable power, recover from major storms, and improve operations. Two case studies are now available.

388

Engineering of microorganisms towards recovery of rare metal ions  

Science Journals Connector (OSTI)

The bioadsorption of metal ions using microorganisms is an attractive technology for the recovery of rare metal ions as well as removal of toxic heavy metal ions from aqueous solution. In initial attempts, microo...

Kouichi Kuroda; Mitsuyoshi Ueda

2010-06-01T23:59:59.000Z

389

Overview of Thermoelectric Power Generation Technologies in Japan...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

of Thermoelectric Power Generation Technologies in Japan Discusses thermoelectric power generation technologies as applied to waste heat recovery, renewable thermal energy...

390

Recovery Boiler Corrosion Chemistry  

E-Print Network (OSTI)

11/13/2014 1 Recovery Boiler Corrosion Chemistry Sandy Sharp and Honghi Tran Symposium on Corrosion of a recovery boiler each cause their own forms of corrosion and cracking Understanding the origin of the corrosive conditions enables us to operate a boiler so as to minimize corrosion and cracking select

Das, Suman

391

Jobs Creation Economic Recovery  

E-Print Network (OSTI)

Commission (Energy Commission) collects the American Recovery and Reinvestment Act of 2009 (ARRA) jobs creation and retention data (jobs data) from its subrecipients through the Energy Commission's ARRAJobs Creation and Economic Recovery Prompt, Fair, and Reasonable Use of ARRA Funds Subrecipient

392

Reactivation of an Idle Lease to Increase Heavy Oil Recovery through Application of Conventional Steam Drive Technology in a Low-Dip Slope and Reservoir in the Midway-Sunset Field, San Jaoquin Basin, California, Class III  

SciTech Connect

The objective of this project is not just to produce oil from the Pru Fee property, but rather to test which operational strategies best optimize total oil recovery at economically acceptable rates of production and production costs.

Schamel, S.

2001-01-09T23:59:59.000Z

393

Reactivation of an Idle Lease to Increase Heavy Oil Recovery through Application of Conventional Steam Drive Technology in a Low-Dip Slope and Reservoir in the Midway-Sunset Field, San Jaoquin Basin, California, Class III  

SciTech Connect

The objective of the project is not just to commercially produce oil from the Pru Fee property, but rather to test which operational strategies best optimize total oil recovery at economically acceptable rates of production volumes and costs.

Schamel, Steven; Deo, Milind; Deets, Mike

2002-02-21T23:59:59.000Z

394

Feasibility of Aquifer Storage Recovery for the Mustang, Oklahoma Well Field.  

E-Print Network (OSTI)

??The purpose of this study was to determine the economic and geochemical feasibility of utilizing aquifer storage recovery (ASR) technology to store water in the (more)

Wright, Krishna E.

2007-01-01T23:59:59.000Z

395

On Earth Day Vice President Biden Announces $300 Million in Recovery...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

pollution and create the jobs that will drive our economic recovery." The Clean Cities Alternative Fuel and Advanced Technology Vehicles Pilot Program will speed the...

396

American Reinvestment Recovery Act | Department of Energy  

Energy Savers (EERE)

American Reinvestment Recovery Act American Reinvestment Recovery Act Federal Energy Regulatory Commission Loan Program American Reinvestment Recovery Act More Documents &...

397

Recovery Act Recipient Reporting  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Smart Grid Investment Grant Recipients Smart Grid Investment Grant Recipients November 19, 2009 1 Outline of Presentation * OMB Reporting Requirements * Jobs Guidance * FR.gov 2 Section 1512 of American Reinvestment and Recovery Act Outlines Recipient Reporting Requirements "Recipient reports required by Section 1512 of the Recovery Act will answer important questions, such as: ▪ Who is receiving Recovery Act dollars and in what amounts? ▪ What projects or activities are being funded with Recovery Act dollars? ▪ What is the completion status of such projects or activities and what impact have they had on job creation and retention?" "When published on www.Recovery.gov, these reports will provide the public with an unprecedented level of transparency into how Federal dollars are being spent and will help drive accountability for the timely,

398

List of Heat recovery Incentives | Open Energy Information  

Open Energy Info (EERE)

recovery Incentives recovery Incentives Jump to: navigation, search The following contains the list of 174 Heat recovery Incentives. CSV (rows 1 - 174) Incentive Incentive Type Place Applicable Sector Eligible Technologies Active AEP Ohio - Commercial Custom Project Rebate Program (Ohio) Utility Rebate Program Ohio Commercial Fed. Government Industrial Institutional Local Government Nonprofit Schools State Government Tribal Government Boilers Central Air conditioners Chillers Custom/Others pending approval Furnaces Heat pumps Heat recovery Lighting Lighting Controls/Sensors Processing and Manufacturing Equipment Refrigerators Yes AEP Ohio - Commercial Self Direct Rebate Program (Ohio) Utility Rebate Program Ohio Commercial Fed. Government Industrial Institutional Local Government

399

Categorical Exclusion Determinations: National Energy Technology Laboratory  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

1, 2010 1, 2010 CX-001158: Categorical Exclusion Determination An Evaluation of the Carbon Sequestration Potential of the Cambro-Ordovician Strata of the Illinois and Michigan Basins CX(s) Applied: A9 Date: 03/11/2010 Location(s): Bloomington, Indiana Office(s): Fossil Energy, National Energy Technology Laboratory March 11, 2010 CX-001153: Categorical Exclusion Determination Roll-to-Roll Solution-Processable Small-Molecule Organic Light-Emitting Diodes (Wilmington) Date: 03/11/2010 Location(s): Wilmington, Delaware Office(s): Energy Efficiency and Renewable Energy, National Energy Technology Laboratory March 11, 2010 CX-001152: Categorical Exclusion Determination Roll-to-Roll Solution-Processable Small-Molecule Organic Light-Emitting Diodes (Niskayuna) CX(s) Applied: B3.6

400

Categorical Exclusion Determinations: National Energy Technology Laboratory  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

421: Categorical Exclusion Determination 421: Categorical Exclusion Determination Characterization of the Triassic Newark Basin of New York and New Jersey for Geologic Storage of Carbon Dioxide CX(s) Applied: B3.1, A9 Date: 12/11/2009 Location(s): Houston, Texas Office(s): Fossil Energy, National Energy Technology Laboratory December 11, 2009 CX-000420: Categorical Exclusion Determination Characterization of the Triassic Newark Basin of New York and New Jersey for Geologic Storage of Carbon Dioxide CX(s) Applied: B3.1, A9 Date: 12/11/2009 Location(s): Houston, Texas Office(s): Fossil Energy, National Energy Technology Laboratory December 11, 2009 CX-000419: Categorical Exclusion Determination Characterization of the Triassic Newark Basin of New York and New Jersey for Geologic Storage of Carbon Dioxide

Note: This page contains sample records for the topic "recovery technology cxs" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

Categorical Exclusion Determinations: National Energy Technology Laboratory  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

3, 2010 3, 2010 CX-002486: Categorical Exclusion Determination Flow Battery Solution for Smart Grid Renewable Energy Applications CX(s) Applied: B3.6, B4.6, A1, B4.11 Date: 06/03/2010 Location(s): Sunnyvale, California Office(s): Electricity Delivery and Energy Reliability, National Energy Technology Laboratory June 2, 2010 CX-002945: Categorical Exclusion Determination Pennsylvania Green Energy Works Targeted Grant - Native Energy Biogas Project CX(s) Applied: B1.15, B1.24, B1.31, A9, B5.1 Date: 06/02/2010 Location(s): Franklin County, Pennsylvania Office(s): Energy Efficiency and Renewable Energy, National Energy Technology Laboratory June 2, 2010 CX-002505: Categorical Exclusion Determination Energy Efficiency Program for Municipalities, Schools, Hospitals, Public Colleges

402

Categorical Exclusion Determinations: National Energy Technology Laboratory  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

9, 2010 9, 2010 CX-003053: Categorical Exclusion Determination Irvine Smart Grid Demonstration Project (Only for University of Southern California's Portion of the Work) CX(s) Applied: A11, B3.6 Date: 07/19/2010 Location(s): Marina del Ray, California Office(s): Electricity Delivery and Energy Reliability, National Energy Technology Laboratory July 19, 2010 CX-003054: Categorical Exclusion Determination Energy Efficient/Comfortable Buildings through Multivariate Integrated Controls (ECoMIC) CX(s) Applied: A9, B2.2, B5.1 Date: 07/19/2010 Location(s): Westchester, New York Office(s): Energy Efficiency and Renewable Energy, National Energy Technology Laboratory July 19, 2010 CX-003052: Categorical Exclusion Determination Irvine Smart Grid Demonstration Project (Only for General Electric Work in

403

Categorical Exclusion Determinations: National Energy Technology Laboratory  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

12, 2010 12, 2010 CX-000782: Categorical Exclusion Determination New Jersey Compressed Natural Gas Refuse Trucks, Shuttle Buses and Infrastructure CX(s) Applied: B5.1 Date: 02/12/2010 Location(s): Camden, New Jersey Office(s): Energy Efficiency and Renewable Energy, National Energy Technology Laboratory February 12, 2010 CX-000781: Categorical Exclusion Determination New Jersey Compressed Natural Gas Refuse Trucks, Shuttle Buses and Infrastructure CX(s) Applied: A7 Date: 02/12/2010 Location(s): New Jersey Office(s): Energy Efficiency and Renewable Energy, National Energy Technology Laboratory February 10, 2010 CX-000775: Categorical Exclusion Determination Site Characterization for Carbon Dioxide Storage from Coal-fired Power Facilities in the Black Warrior Basin of Alabama (Drill)

404

Categorical Exclusion Determinations: National Energy Technology Laboratory  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

September 18, 2013 September 18, 2013 CX-010933: Categorical Exclusion Determination High Energy Density Lithium (Li)-ion Cells for Electric Vehicles (EV) Based on Novel, High Voltage Cathode Material Systems CX(s) Applied: B3.6 Date: 09/18/2013 Location(s): California Offices(s): National Energy Technology Laboratory September 18, 2013 CX-010932: Categorical Exclusion Determination High Energy Density Lithium (Li)-ion Cells for Electric Vehicles (EV) Based on Novel, High Voltage Cathode Material Systems CX(s) Applied: B3.6 Date: 09/18/2013 Location(s): California Offices(s): National Energy Technology Laboratory August 23, 2013 CX-010779: Categorical Exclusion Determination Predictive Large Eddy Simulation (LES) Modeling and Validation for High-Pressure Turbulent Flames and Flashback in Hydrogen-Enriched Gas

405

Categorical Exclusion Determinations: National Energy Technology Laboratory  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

19, 2011 19, 2011 CX-005634: Categorical Exclusion Determination Characterization of Hydrocarbon Samples and/or Qualitative/Quantitative Analysis of Hydrocarbon Mixtures CX(s) Applied: B3.6 Date: 04/19/2011 Location(s): Pittsburgh, Pennsylvania Office(s): Fossil Energy, National Energy Technology Laboratory April 19, 2011 CX-005633: Categorical Exclusion Determination Fast Responding Voltage Regulator and Dynamic VAR Compensator with Direct Medium Voltage Connection CX(s) Applied: A1, A11, B3.6, B4.4, B5.1 Date: 04/19/2011 Location(s): San Jose, California Office(s): Electricity Delivery and Energy Reliability, National Energy Technology Laboratory April 19, 2011 CX-005632: Categorical Exclusion Determination Fast Responding Voltage Regulator and Dynamic VAR Compensator with Direct

406

Categorical Exclusion Determinations: National Energy Technology Laboratory  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

3, 2011 3, 2011 CX-006170: Categorical Exclusion Determination United Way Energy Efficient Buildings Project for Non-Profit Facilities Date: 07/13/2011 Location(s): Huntington Woods, Michigan Office(s): Energy Efficiency and Renewable Energy, National Energy Technology Laboratory July 13, 2011 CX-006169: Categorical Exclusion Determination United Way Energy Efficient Buildings Project for Non-Profit Facilities CX(s) Applied: B2.5, B5.1 Date: 07/13/2011 Location(s): Pontiac, Michigan Office(s): Energy Efficiency and Renewable Energy, National Energy Technology Laboratory July 13, 2011 CX-006168: Categorical Exclusion Determination United Way Energy Efficient Buildings Project for Non-Profit Facilities CX(s) Applied: B2.5, B5.1 Date: 07/13/2011 Location(s): Wayne, Michigan

407

Microbial enhancement of oil recovery: Recent advances  

SciTech Connect

During recent years, systematic, scientific, and engineering effort by researchers in the United States and abroad, has established the scientific basis for Microbial Enhanced Oil Recovery (MEOR) technology. The successful application of MEOR technology as an oil recovery process is a goal of the Department of Energy (DOE). Research efforts involving aspects of MEOR in the microbiological, biochemical, and engineering fields led DOE to sponsor an International Conference at Brookhaven National Laboratory in 1992, to facilitate the exchange of information and a discussion of ideas for the future research emphasis. At this, the Fourth International MEOR Conference, where international attendees from 12 countries presented a total of 35 papers, participants saw an equal distribution between research'' and field applications.'' In addition, several modeling and state-of-the-art'' presentations summed up the present status of MEOR science and engineering. Individual papers in this proceedings have been process separately for inclusion in the Energy Science and Technology Database.

Premuzic, E.T.; Woodhead, A.D.; Vivirito, K.J. (eds.)

1992-01-01T23:59:59.000Z

408

West Virginia Recovery Act State Memo | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

West Virginia Recovery Act State Memo West Virginia Recovery Act State Memo West Virginia Recovery Act State Memo West Virginia has substantial natural resources, including coal and hydroelectric power. The American Recovery & Reinvestment Act (ARRA) is making a meaningful down payment on the nation's energy and environmental future. The Recovery Act investments in West Virginia are supporting a broad range of clean energy projects, from energy efficiency and the smart grid, to carbon capture and storage, transportation electrification, and the National Energy Technology Laboratory in Morgantown. Through these investments, West Virginia's businesses, West Virginia University, the National Energy Technology Laboratory, non-profits, and local governments are creating quality jobs today and positioning West Virginia to play an

409

Fossil Energy Research Benefits Enhanced Oil Recovery  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Energy Research Benefits Energy Research Benefits Enhanced Oil Recovery EOR helps increase domestic oil supplies while also providing a way to safely and permanently store CO 2 underground. Enhanced Oil Recovery (EOR) is a way to squeeze out additional, hard- to-recover barrels of oil remaining in older fields following conventional production operations. It can also be used to permanently store carbon dioxide (CO 2 ) underground. Thanks in part to innovations supported by the Office of Fossil Energy's National Energy Technology Laboratory (NETL) over the past 30 years, the United States is a world leader in the number of EOR projects (200) and volume of oil production (over

410

FE Implementation of the Recovery Act | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

FE Implementation of the Recovery Act FE Implementation of the Recovery Act FE Implementation of the Recovery Act The American Recovery and Reinvestment Act of 2009 (Recovery Act) was signed into law by President Obama on February 17th, 2009. It is an unprecedented effort to jumpstart our economy, create or save millions of jobs, and put a down payment on addressing long-neglected challenges so our country can thrive in the 21st century. As the centerpiece of the President's commitment to transparency and accountability, this site will feature projections for how, when, and where the Office of Fossil Energy funds will be spent. The Office of Fossil Energy has received $3.4 billion from the Recovery Act. Initiatives will focus on research, development and deployment of technologies to use coal more cleanly and efficiently. Investments will go

411

District Energy Technologies | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

through the centralized system. District energy systems often operate with combined heat and power (CHP) and waste heat recovery technologies. Learn more about district...

412

Vehicle Technologies Office Merit Review 2014: Nanostructured...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

2014: Nanostructured High-Temperature Bulk Thermoelectric Energy Conversion for Efficient Waste Heat Recovery Vehicle Technologies Office Merit Review 2014: Nanostructured...

413

Exhaust Energy Recovery  

Energy.gov (U.S. Department of Energy (DOE))

Exhaust energy recovery proposed to achieve 10% fuel efficiency improvement and reduce or eliminate the need for increased heat rejectioncapacity for future heavy duty engines in Class 8 Tractors

414

Waste Steam Recovery  

E-Print Network (OSTI)

An examination has been made of the recovery of waste steam by three techniques: direct heat exchange to process, mechanical compression, and thermocompression. Near atmospheric steam sources were considered, but the techniques developed are equally...

Kleinfeld, J. M.

1979-01-01T23:59:59.000Z

415

Imbibition assisted oil recovery  

E-Print Network (OSTI)

analyzed in detail to investigate oil recovery during spontaneous imbibition with different types of boundary conditions. The results of these studies have been upscaled to the field dimensions. The validity of the new definition of characteristic length...

Pashayev, Orkhan H.

2004-11-15T23:59:59.000Z

416

On Partially Sparse Recovery  

E-Print Network (OSTI)

Apr 14, 2011 ... I ? P projects (orthogonally) onto the column space of A2 there must .... In Proceedings of the 13th International Conference on Approximation Theory, 2011. ... Foundations and Numerical Methods for Sparse Recovery, Radon...

2011-04-14T23:59:59.000Z

417

Recovery News Flashes  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

news-flashes Office of Environmental news-flashes Office of Environmental Management 1000 Independence Ave., SW Washington, DC 20585 202-586-7709 en "TRU" Success: SRS Recovery Act Prepares to Complete Shipment of More Than 5,000 Cubic Meters of Nuclear Waste to WIPP http://energy.gov/em/downloads/tru-success-srs-recovery-act-prepares-complete-shipment-more-5000-cubic-meters-nuclear recovery-act-prepares-complete-shipment-more-5000-cubic-meters-nuclear" class="title-link">"TRU" Success: SRS Recovery Act Prepares to Complete Shipment of More Than 5,000 Cubic Meters of Nuclear Waste to WIPP

418

OE Recovery Act News | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

News News OE Recovery Act News RSS December 18, 2013 BPA Wins Platts Global Energy Award for Grid Optimization Platts awarded the Bonneville Power Administration (BPA) a Global Energy Award for grid optimization on December 12 in New York City for its development of a synchrophasor network. BPA is part of the Recovery Act-funded Western Interconnection Synchrophasor Program. October 21, 2013 SGIG Program Progress Report II Now Available The Smart Grid Investment Grant (SGIG) Program Progress Report II, which updates the SGIG Progress Report published in July 2012, is now available for downloading. August 15, 2013 Report on Synchrophasor Technologies and Their Deployment in Recovery Act Projects Now Available The Office of Electricity Delivery and Energy Reliability has released a

419

OE Recovery Act Archive | Department of Energy  

NLE Websites -- All DOE Office Websites (Extended Search)

Act » OE Recovery Act Archive Act » OE Recovery Act Archive OE Recovery Act Archive 2011 July 26, 2011: BLOG Smart Meters Helping Oklahoma Consumers Save Hundreds During Summer Heat Smart meters -- just one of the advanced technologies being used to modernize the grid -- are helping Oklahoma businesses and home owners beat high electricity bills not only during these summer months, but year-round. July 26, 2011: PRESS RELEASE CenterPoint Energy has released survey results from a 500 participant smart meter In-Home Display pilot program showing that 71 percent of customers changed their electricity consumption behavior as a result of the energy use data they accessed on their in-home displays. The results were released while U.S. Deputy Secretary of Energy Daniel B. Poneman visited Houston to

420

Synchrophasor Technologies Page ii  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

August 2013 August 2013 Synchrophasor Technologies Page ii Table of Contents 1. Introduction ................................................................................................................... 1 2. Synchrophasor Technologies .......................................................................................... 1 3. Advanced Applications Software and their Benefits ........................................................ 4 3.1 Online (Near Real-Time Applications) ........................................................................... 5 3.2 Offline (Not real-time) Applications ............................................................................. 8 4. Recovery Act Synchrophasor Projects ............................................................................. 8

Note: This page contains sample records for the topic "recovery technology cxs" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

Recovery of Water from Boiler Flue Gas  

NLE Websites -- All DOE Office Websites (Extended Search)

RecoveRy of WateR fRom BoileR flue Gas RecoveRy of WateR fRom BoileR flue Gas Background Coal-fired power plants require large volumes of water for efficient operation, primarily for cooling purposes. Public concern over water use is increasing, particularly in water stressed areas of the country. Analyses conducted by the U.S. Department of Energy's National Energy Technology Laboratory predict significant increases in power plant freshwater consumption over the coming years, encouraging the development of technologies to reduce this water loss. Power plant freshwater consumption refers to the quantity of water withdrawn from a water body that is not returned to the source but is lost to evaporation, while water withdrawal refers to the total quantity of water removed from a water source.

422

Reactivation of an idle lease to increase heavy oil recovery through application of conventional steam drive technology in a low dip slope and basin reservoir in the Midway-Sunset field, San Joaquin basin, California. Quarterly report, January 1--March 31, 1996  

SciTech Connect

This project will reactivate ARCO`s idle Pru Fee lease in the Midway-Sunset field, California and conduct a continuous steamflood enhanced oil recovery demonstration aided by an integration of modern reservoir characterization and simulation methods. The objectives of the project are: (1) to return the shut-in portion of the reservoir to commercial production; (2) to accurately describe the reservoir and recovery process; and (3) convey the details of this activity to the domestic petroleum industry, especially to other producers in California, through an aggressive technology transfer program. The producibility problems initially thought to be responsible for the low recovery in the Pru Fee property are: (a) the shallow dip of the bedding; (b) complex reservoir structure, (c) thinning pay zone; and (d) the presence of bottom water. The project is using tight integration of reservoir characterization and simulation modeling to evaluate the magnitude of and alternative solutions to these problems. Two main activities were brought to completion during the first quarter of 1996: (1) lithologic and petrophysical description of the core taken form the new well Pru 101 near the center of the demonstration site and (2) development of a stratigraphic model for the Pru Fee project area. In addition, the first phase of baseline cyclic steaming of the Pru Fee demonstration site was continued with production tests and formation temperature monitoring.

Schamel, S.

1996-06-28T23:59:59.000Z

423

Waste Heat Recovery Power Generation with WOWGen  

E-Print Network (OSTI)

Waste Heat Recovery Power Generation with WOWGen? Business Overview WOW operates in the energy efficiency field - one of the fastest growing energy sectors in the world today. The two key products - WOWGen? and WOWClean? provide more... energy at cheaper cost and lower emissions. ? WOWGen? - Power Generation from Industrial Waste Heat ? WOWClean? - Multi Pollutant emission control system Current power generation technology uses only 35% of the energy in a fossil fuel...

Romero, M.

424

Thermal Recovery Methods  

SciTech Connect

Thermal Recovery Methods describes the basic concepts of thermal recovery and explains the injection patterns used to exploit reservoir conditions. Basic reservoir engineering is reviewed with an emphasis on changes in flow characteristics caused by temperature. The authors discuss an energy balance for steam and combustion drive, and they explain in situ reactions. Heat loss, combustion drive, and steam displacement also are examined in detail, as well as cyclic steam injection, downhole ignition, well heating, and low-temperature oxidation. Contents: Thermal processes; Formation and reservoir evaluations; Well patterns and spacing; Flow and process equations; Laboratory simulation of thermal recovery; Heat loss and transmission; Displacement and production; Equipment; Basic data for field selection; Laboratory evaluation of combustion characteristics; Thermal properties of reservoirs and fluids.

White, P.D.; Moss, J.T.

1983-01-01T23:59:59.000Z

425

Categorical Exclusion Determinations: National Energy Technology Laboratory  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

November 16, 2009 November 16, 2009 CX-000409: Categorical Exclusion Determination Wireless Subsea Communications System CX(s) Applied: B3.6 Date: 11/16/2009 Location(s): Boston, Massachusetts Office(s): Fossil Energy, National Energy Technology Laboratory November 16, 2009 CX-000308: Categorical Exclusion Determination Connecticut Revision 2 - Retrofit 9 State Buildings CX(s) Applied: A9, A11, B1.3, B1.4, B1.5, B1.15, B1.23, B1.24, B1.31, B2.1, B2.2, B2.5, B5.1 Date: 11/16/2009 Location(s): Connecticut Office(s): Energy Efficiency and Renewable Energy, National Energy Technology Laboratory November 16, 2009 CX-000435: Categorical Exclusion Determination Novel Oxygen Carriers for Coal-fueled Chemical Looping Combustion CX(s) Applied: A9, A11 Date: 11/16/2009 Location(s): Bowling Green, Kentucky

426

Savannah River Site: New Bubbler Technology  

ScienceCinema (OSTI)

A close look at new SRS Bubbler technology that processes liquid waste. A 7 million dollar project funded by the Recovery Act. Production nearly doubles with this new technology

None

2012-06-14T23:59:59.000Z

427

Heat recovery and seed recovery development project: preliminary design report (PDR)  

SciTech Connect

The preliminary design and performance characteristics are described of the 20 MWt heat recovery and seed recovery (HRSR) system to be fabricated, installed, and evaluated to provide a technological basis for the design of commercial size HRSR systems for coal-fired open-cycle MHD power plants. The system description and heat and material balances, equipment description and functional requirements, controls, interfacing systems, and operation and maintenance are detailed. Appendices include: (1) recommended environmental requirements for compliance with federal and state of Tennessee regulations, (2) channel and diffuser simulator, (3) equipment arrangement drawings, and (4) channel and diffuser simulator barrel drawings. (WHK)

Arkett, A. H.; Alexander, K. C.; Bolek, A. D.; Blackman, B. K.; Kurrle, P. E.; Tram, S. V.; Warren, A. M.; Ziobrowski, A. J.

1981-06-01T23:59:59.000Z

428

Implemntation of the Recovery Act at the Savannah River Site  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Implementation of the Recovery Act Implementation of the Recovery Act at the Savannah River Site OAS-RA-L-11-12 September 2011 Department of Energy Washington, DC 20585 September 29, 2011 MEMORANDUM FOR THE MANAGER, SAVANNAH RIVER OPERATIONS OFFICE FROM: Daniel M. Weeber, Director Environment, Technology, and Corporate Audits Division Office of Inspector General SUBJECT: INFORMATION: Audit Report on "Implementation of the Recovery Act at the Savannah River Site" Audit Report Number: OAS-RA-L-11-12 BACKGROUND The American Recovery and Reinvestment Act of 2009 (Recovery Act) provided the Department of Energy (Department) $5.1 billion for Defense Environmental Cleanup. These funds have afforded the Department's Office of Environmental Management (EM) the opportunity to reduce

429

New Recovery Act Funding Boosts Industrial Carbon Capture and Storage  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Recovery Act Funding Boosts Industrial Carbon Capture and Recovery Act Funding Boosts Industrial Carbon Capture and Storage Research and Development New Recovery Act Funding Boosts Industrial Carbon Capture and Storage Research and Development September 7, 2010 - 1:00pm Addthis Washington, DC - U.S. Energy Secretary Steven Chu today announced the selection of 22 projects that will accelerate carbon capture and storage research and development for industrial sources. Funded with more than $575 million from the American Recovery and Reinvestment Act, these R&D projects complement the industrial demonstration projects already being funded through the Recovery Act. Together, these projects represent an unprecedented investment in the development of clean coal technologies. This program supports the President's goal to overcome the barriers to

430

New Recovery Act Funding Boosts Industrial Carbon Capture and Storage  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Recovery Act Funding Boosts Industrial Carbon Capture and Recovery Act Funding Boosts Industrial Carbon Capture and Storage Research and Development New Recovery Act Funding Boosts Industrial Carbon Capture and Storage Research and Development September 7, 2010 - 12:00am Addthis Washington, D.C. - U.S. Energy Secretary Steven Chu today announced the selection of 22 projects that will accelerate carbon capture and storage research and development for industrial sources. Funded with more than $575 million from the American Recovery and Reinvestment Act, these R&D projects complement the industrial demonstration projects already being funded through the Recovery Act. Together, these projects represent an unprecedented investment in the development of clean coal technologies. This program supports the President's goal of overcoming the barriers to

431

DOE Hydrogen Analysis Repository: Evaluation of Energy Recovery Act Fuel  

NLE Websites -- All DOE Office Websites (Extended Search)

Evaluation of Energy Recovery Act Fuel Cell Initiative Evaluation of Energy Recovery Act Fuel Cell Initiative Project Summary Full Title: Evaluation of U.S. DOE Energy Recovery Act Fuel Cell (Technologies Program) Initiative (ARRA-FCI) Project ID: 284 Principal Investigator: Brian James Brief Description: An evaluation was conducted to assess the early stage "market change" impacts of the Fuel Cell (Technologies Program) Initiative of the American Recovery and Reinvestment Act (ARRA-FCI) to accelerate fuel cell deployment and commercialization. Performer Principal Investigator: Brian James Organization: Strategic Analysis, Inc. Address: 4075 Wilson Blvd. Suite 200 Arlington, VA 22203 Telephone: 703-778-7114 Email: bjames@sainc.com Sponsor(s) Name: Fred Joseck Organization: DOE/EERE/FCTO Telephone: 202-586-7932

432

Categorical Exclusion Determinations: American Recovery and Reinvestment  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

3107: Categorical Exclusion Determination 3107: Categorical Exclusion Determination Harvard Medical School, Wyss Institute - Engineering a Bacterial Reverse Fuel Cell CX(s) Applied: B3.6 Date: 06/02/2010 Location(s): Massachusetts Office(s): Advanced Research Projects Agency - Energy June 2, 2010 CX-003103: Categorical Exclusion Determination The Ohio State University - Bioconversion of Carbon Dioxide to Biofuels CX(s) Applied: B3.6 Date: 06/02/2010 Location(s): Ohio Office(s): Advanced Research Projects Agency - Energy June 1, 2010 CX-002717: Categorical Exclusion Determination Oklahoma Shawnee Tribe CX(s) Applied: B2.5, B5.1 Date: 06/01/2010 Location(s): Miami, Oklahoma Office(s): Energy Efficiency and Renewable Energy June 1, 2010 CX-002477: Categorical Exclusion Determination Demand Energy Networks CX(s) Applied: B3.6, B5.1

433

Reactivation of an Idle Lease to Increase Heavy Oil Recovery through Application of Conventional Steam Drive Technology in a Low Dip Slope & Reservoir in the Midway-Sunset Field, San Jaoquin Basin, California  

SciTech Connect

In January 1997 the project entered its second and main phase with the purpose of demonstrating whether steamflood can be a more effective mode of production of the heavy, viscous oils from the Monarch Sand reservoir than the more conventional cyclic steaming. The objective is not just to produce the pilot site within the Pru Fee property south of Taft (Figure 1), but to test which production parameters optimize total oil recovery at economically acceptable rates of production and production costs.

Schamel, Steven

1999-11-09T23:59:59.000Z

434

Recovery Act Smart Grid Projects | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Recovery Act Smart Grid Projects Recovery Act Smart Grid Projects Recovery Act Smart Grid Projects...

435

Landfill gas recovery  

Science Journals Connector (OSTI)

Landfill gas recovery ... However, by referring to landfills as dumps, the article creates a misimpression. ... The answers revolve around the relative emissions from composting facilities and landfills and the degree to which either finished compost or landfill gas is used beneficially. ...

Morton A. Barlaz

2009-04-29T23:59:59.000Z

436

Thermal energy recovery of low grade waste heat in hydrogenation process; tervinning av lgvrdig spillvrme frn en hydreringsprocess.  

E-Print Network (OSTI)

?? The waste heat recovery technologies have become very relevant since many industrial plants continuously reject large amounts of thermal energy during normal operation which (more)

Hedstrm, Sofia

2014-01-01T23:59:59.000Z

437

LANL exceeds Early Recovery Act recycling goals  

NLE Websites -- All DOE Office Websites (Extended Search)

LANL exceeds Early Recovery Act recycling goals LANL exceeds Early Recovery Act recycling goals Lab demolition projects under the American Recovery and Reinvestment Act have...

438

Recovery Act Recipient Data | Department of Energy  

Office of Environmental Management (EM)

Recovery Act Recipient Data Recovery Act Recipient Data A listing of all Recovery Act recipients and their allocations. Updated weekly. recoveryactfunding.xls More Documents &...

439

Recovery Act: Carbon Dioxide-Water Emulsion for Enhanced Oil Recovery and Permanent Sequestration of Carbon Dioxid  

NLE Websites -- All DOE Office Websites (Extended Search)

Carbon Dioxide-Water Carbon Dioxide-Water Emulsion for Enhanced Oil Recovery and Permanent Sequestration of Carbon Dioxide Background The U.S. Department of Energy (DOE) distributed a portion of American Recovery and Reinvestment Act (ARRA) funds to advance technologies for chemical conversion of carbon dioxide (CO 2 ) captured from industrial sources. The focus of the research projects is permanent sequestration of CO 2 through mineralization or development

440

Recovery Act | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Recovery Act Recovery Act Recovery Act Center Map PERFORMANCE The Department estimates the $6 billion Recovery Act investment will allow us to complete work now that would cost approximately $13 billion in future years, saving $7 billion. As Recovery Act work is completed through the cleanup of contaminated sites, facilities, and material disposition, these areas will becoming available for potential reuse by other entities. Recovery Act funding is helping the Department reach our cleanup goals faster. Through the end of December 2012, EM achieved a total footprint reduction of 74%, or 690 of 931 square miles. EM achieved its goal of 40% footprint reduction in April 2011, five months ahead of schedule. Recovery Act payments exceeded $5.9 billion in December 2012. Recovery Act

Note: This page contains sample records for the topic "recovery technology cxs" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

Recovery Act | OpenEI  

Open Energy Info (EERE)

Recovery Act Recovery Act Dataset Summary Description This dataset, updated quarterly by Recovery.org, contains a breakdown of state-by-state recovery act funds awarded and received, as well as the number of jobs created and saved. The shows two periods, February 17, 2009 to December 31, 2010, and January 1, 2011 to March 31, 2011. The jobs created and saved are displayed just for January 1, 2011 to March 31, 2011. The document was downloaded from Recovery.org. It is a simple document displaying 50 states, as well as American territories. Source Recovery.org Date Released June 08th, 2011 (3 years ago) Date Updated Unknown Keywords award funding jobs Recovery Act Recovery.org Data text/csv icon recipientfundingawardedbystate.csv (csv, 5.1 KiB) Quality Metrics Level of Review Some Review

442

Can You Afford Heat Recovery?  

E-Print Network (OSTI)

many companies to venture into heat recovery projects without due consideration of the many factors involved. Many of these efforts have rendered less desirable results than expected. Heat recovery in the form of recuperation should be considered...

Foust, L. T.

1983-01-01T23:59:59.000Z

443

High propane recovery process, Delpro{trademark} saves energy  

SciTech Connect

There are several technologies for recovering propane from natural gas. These include simple refrigeration which typically operate at {minus}10 F for dewpoint control operations or {minus}40 F for propane recovery. Turbo-expander systems are well established for levels of propane recovery. Other processes include lean oil systems (or hydrocarbon liquid as in the Mehra process) for recovering propane up to about the 95% recovery level. Delta Hudson has developed a new process which recovers propane from natural gas using a turbo-expander. This new process has the trade name DELPRO{trademark} and has been patented in the United States, Canada and several other countries. The advantages of the DELPRO{trademark} high recovery process are as follows: Propane recovery up to 99% is economically achievable; Simple flow scheme; Power consumption is reduced by up to 15% compared to competing processes for the same propane recovery level; For the same power consumption as used by competing processes, significantly higher propane recovery levels are achieved; and DELPRO{trademark} can be adapted to ethane recovery. In this mode, the process has the advantage that it rejects carbon dioxide to a greater extent than other processes. This reduces, or in some cases, eliminates subsequent treating requirements.

Sorensen, J. [Delta Hudson Engineering Ltd., Calgary, Alberta (Canada)

1998-12-31T23:59:59.000Z

444

[Waste water heat recovery system  

SciTech Connect

The production capabilities for and field testing of the heat recovery system are described briefly. Drawings are included.

Not Available

1993-04-28T23:59:59.000Z

445

Effects of Microwave Radiation on Oil Recovery  

Science Journals Connector (OSTI)

A variety of oil recovery methods have been developed and applied to mature and depleted reservoirs in order to improve the efficiency. Microwave radiation oil recovery method is a relatively new method and has been of great interest in the recent years. Crude oil is typically co?mingled with suspended solids and water. To increase oil recovery it is necessary to remove these components. The separation of oil from water and solids using gravitational settling methods is typically incomplete. Oil?in?water and oil?water?solid emulsions can be demulsified and separated into their individual layers by microwave radiation. The data also show that microwave separation is faster than gravity separation and can be faster than conventional heating at many conditions. After separation of emulsion into water and oil layers water can be discharged and oil is collected. High?frequency microwave recycling process can recover oil and gases from oil shale residual oil drill cuttings tar sands oil contaminated dredge/sediments tires and plastics with significantly greater yields and lower costs than are available utilizing existing known technologies. This process is environmentally friendly fuel?generating recycler to reduce waste cut emissions and save energy. This paper presents a critical review of Microwave radiation method for oil recovery.

2011-01-01T23:59:59.000Z

446

Recovery helps California company get ahead | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Recovery helps California company get ahead Recovery helps California company get ahead Recovery helps California company get ahead November 25, 2009 - 4:29pm Addthis Joshua DeLung The race is on to develop a new solar technology that would revolutionize the industry, creating jobs and making solar power more economically viable for many American homes and businesses. Now, because of almost $3 million in stimulus funding, one California company is poised to cross the finish line and take home the gold. The U.S. Department of Energy awarded XeroCoat Inc. a grant to develop a method for applying its patented anti-reflective coating technology directly onto assembled solar panels. This coating method - slated to be fully developed by November 2010 - will further lower the cost of solar energy technology, making it available to more Americans.

447

Fermilab | Recovery Act | Videos  

NLE Websites -- All DOE Office Websites (Extended Search)

Videos Videos Watch videos documenting progress on Fermilab projects funded by the American Recovery and Reinvestment Act. NOvA - Community Voices - September 2009 Residents of northern Minnesota and construction workers building the NOvA detector facility discuss the benefits the high-energy physics research project has brought their communities. Congressman Bill Foster at Fermilab Congressman Bill Foster speaks to Fermilab Technical Division employees and members of the media at a press conference on Wednesday, August 5 to announce an additional $60.2 million in Recovery Act funds for the lab. NOvA first blast On July 20, construction crews began blasting into the rock at the future site of the NOvA detector facility in northern Minnesota. NOvA groundbreaking ceremony

448

Fermilab | Recovery Act | Features  

NLE Websites -- All DOE Office Websites (Extended Search)

Features - Archive Features - Archive photo Industrial Building 3 addition Fermilab Today-November 5, 2010 IB3 addition nears completion The future site of Fermilab’s new materials laboratory space has evolved from a steel outline to a fully enclosed building over the past five months. Read full column photo Fermilab Today-October 22, 2010 Recovery Act gives LBNE team chance to grow Thanks to funding from the American Recovery and Reinvestment Act, the collaboration for the Long-Baseline Neutrino Experiment, LBNE, has expanded its project team. Read full column photo cooling units Fermilab Today-October 15, 2010 Local company completes FCC roof construction A local construction company recently completed work on the roof of the Feynman Computing Center, an important step in an ongoing project funded by

449

Elemental sulfur recovery process  

DOE Patents (OSTI)

An improved catalytic reduction process for the direct recovery of elemental sulfur from various SO[sub 2]-containing industrial gas streams. The catalytic process provides combined high activity and selectivity for the reduction of SO[sub 2] to elemental sulfur product with carbon monoxide or other reducing gases. The reaction of sulfur dioxide and reducing gas takes place over certain catalyst formulations based on cerium oxide. The process is a single-stage, catalytic sulfur recovery process in conjunction with regenerators, such as those used in dry, regenerative flue gas desulfurization or other processes, involving direct reduction of the SO[sub 2] in the regenerator off gas stream to elemental sulfur in the presence of a catalyst. 4 figures.

Flytzani-Stephanopoulos, M.; Zhicheng Hu.

1993-09-07T23:59:59.000Z

450

Recovery Boiler Modeling  

E-Print Network (OSTI)

, east, e, west, w, bot tom, b, and top, t, neighbors. The neighboring cou pling coefficients (an, a., .. , etc) express the magnitudes of the convection and diffusion which occur across the control volume boundaries. The variable b p represents... represents a model of one half of the recovery boiler. The boiler has three air levels. The North, South and East boundaries of the computational domain represent the water walls of the boiler. The West boundary represents a symmetry plane. It should...

Abdullah, Z.; Salcudean, M.; Nowak, P.

451

Selective olefin recovery  

SciTech Connect

This interim report has been prepared as a followup to the January 1996 JDAG meeting. The report presents the results of various studies which evaluate the impact of process design changes on the overall SOR economics for cracked gas olefin recovery. The changes were made to either complete portions of the design that were missing or overlooked, or to improve and/or optimize the SOR process. A grass-roots propane-feed 350,000 MTA plant with a conventional recovery system was adopted as the study basis, and was compared with SOR systems of various sizes up to 350,000 MTA. This approach was taken to determine if SOR plants could be competitive with larger plants utilizing conventional recovery systems. Second phase KG expansion by 50,000-150,000 MTA ethylene was reexamined in view of the SOR process optimization. As was done in Stone & Webster`s December 1995 study, an SOR system was compared with an ARS expansion.

NONE

1996-04-01T23:59:59.000Z

452

Waste Heat Recovery Opportunities for Thermoelectric Generators...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Waste Heat Recovery Opportunities for Thermoelectric Generators Waste Heat Recovery Opportunities for Thermoelectric Generators Thermoelectrics have unique advantages for...

453

Exhaust Energy Recovery  

Energy.gov (U.S. Department of Energy (DOE))

2009 DOE Hydrogen Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting, May 18-22, 2009 -- Washington D.C.

454

A field laboratory for improved oil recovery  

SciTech Connect

The purpose of Annex III of the Memorandum of Understanding, undertaken by the Houston Petroleum Research Center at the University of Houston, was to develop a field laboratory for research in improved oil recovery using a Gulf Coast reservoir in Texas. The participants: (1) make a field site selection and conducted a high resolution seismic survey in the demonstration field, (2) obtained characteristics of the reservoir (3) developed an evaluation of local flood efficiency in different parts of the demonstration reservoir, (4) used diverse methodology to evaluate the potential recovery of the remaining oil in the test reservoir, (5) developed cross-well seismic tomography, and (6) will transfer the learned technologies to oil operators through publication and workshops. This abstract is an overview of these tasks.

Hildebrandt, A.F.; McDonald, J.; Claridge, E.; Killough, J.

1992-09-01T23:59:59.000Z

455

Vehicle Technologies Office: Fact #811: January 6, 2014 Light Vehicle Sales  

NLE Websites -- All DOE Office Websites (Extended Search)

1: January 6, 1: January 6, 2014 Light Vehicle Sales Recoveries to someone by E-mail Share Vehicle Technologies Office: Fact #811: January 6, 2014 Light Vehicle Sales Recoveries on Facebook Tweet about Vehicle Technologies Office: Fact #811: January 6, 2014 Light Vehicle Sales Recoveries on Twitter Bookmark Vehicle Technologies Office: Fact #811: January 6, 2014 Light Vehicle Sales Recoveries on Google Bookmark Vehicle Technologies Office: Fact #811: January 6, 2014 Light Vehicle Sales Recoveries on Delicious Rank Vehicle Technologies Office: Fact #811: January 6, 2014 Light Vehicle Sales Recoveries on Digg Find More places to share Vehicle Technologies Office: Fact #811: January 6, 2014 Light Vehicle Sales Recoveries on AddThis.com... Fact #811: January 6, 2014 Light Vehicle Sales Recoveries

456

Reactivation of an idle lease to increase heavy oil recovery through application of conventional steam drive technology in a low dip slope and basin reservoir in the Midway-Sunset field, San Joaquin Basin, California. Quarterly report, June 14--September 30, 1995  

SciTech Connect

This project will reactivate ARCO`s idle Pru Fee lease in the Midway-Sunset field, California and conduct a continuous steamflood enhanced oil recovery demonstration aided by an integration of modern reservoir characterization and simulation methods. Cyclic steaming will be used to reestablish baseline production within the reservoir characterization phase of the project. During the demonstration phase, a continuous steamflood enhanced oil recover will be initiated to test the incremental value of this method as an alternative to cyclic steaming. Other economically marginal Class 3 reservoirs having similar producibility problems will benefit from insight gained in this project. The objectives of the project are: (1) to return the shut-in portion of the reservoir to commercial production; (2) to accurately describe the reservoir and recovery process; and (3) to convey the details of this activity to the domestic petroleum industry, especially to other producers in California, through an aggressive technology transfer program. A summary of technical progress discusses the literature compilation, assembly of digitized log suites, development of a stratigraphic framework, installation of lease production facilities, return wells to production, drill producer and observation wells, and reservoir characterization.

Schamel, S.

1995-12-19T23:59:59.000Z

457

Reactivation of an idle lease to increase heavy oil recovery through application of conventional steam drive technology in a low dip slope and basin reservoir in the Midway-Sunset field, San Joaquin Basin, California. [Quarterly report], June 14, 1995--September 30, 1995  

SciTech Connect

This project will reactivate ARCO`s idle Pru Fee lease in the Midway-Sunset field, California and conduct a continuous steamflood enhanced oil recovery demonstration aided by an integration of modern reservoir characterization and simulation methods. Cyclic steaming will be used to re-establish baseline production within the reservoir characterization phase of the project. During the demonstration phase, a continuous steamflood enhanced oil recover will be initiated to test the incremental value of this method as an alternative to cyclic steaming. Other economically marginal Class III reservoirs having similar producibility problems will benefit from insight gained in this project. The objectives of the project are: (1) to return the shut-in portion of the reservoir to commercial production; (2) to accurately describe the reservoir and recovery process; and (3) to convey the details of this activity to the domestic petroleum industry, especially to other producers in California, through an aggressive technology transfer program. A summary of technical progress covers: geological and reservoir characterization, and reservoir simulation.

Schamel, S.

1996-01-19T23:59:59.000Z

458

Selective olefin recovery  

SciTech Connect

This report presents the results of the outstanding studies on olefin product purities, pyridine recovery, and absorber offgas utilization. Other reports issued since the May 2 technical review meeting in Grangemouth evaluated the impact of the new VLE data on the solution stripping operation and the olefin loadings in the lean and rich solutions. This report completes the bulk of Stone & Webster`s engineering development of the absorber/stripper process for Phase I. The final feasibility study report (to be issued in August) will present an updated design and economics.

NONE

1996-07-01T23:59:59.000Z

459

Pyrochemical recovery of actinides  

SciTech Connect

This report discusses an important advantage of the Integral Fast Reactor (IFR) which is its ability to recycle fuel in the process of power generation, extending fuel resources by a considerable amount and assuring the continued viability of nuclear power stations by reducing dependence on external fuel supplies. Pyroprocessing is the means whereby the recycle process is accomplished. It can also be applied to the recovery of fuel constituents from spent fuel generated in the process of operation of conventional light water reactor power plants, offering the means to recover the valuable fuel resources remaining in that material.

Laidler, J.J.

1993-03-01T23:59:59.000Z

460

Pyrochemical recovery of actinides  

SciTech Connect

This report discusses an important advantage of the Integral Fast Reactor (IFR) which is its ability to recycle fuel in the process of power generation, extending fuel resources by a considerable amount and assuring the continued viability of nuclear power stations by reducing dependence on external fuel supplies. Pyroprocessing is the means whereby the recycle process is accomplished. It can also be applied to the recovery of fuel constituents from spent fuel generated in the process of operation of conventional light water reactor power plants, offering the means to recover the valuable fuel resources remaining in that material.

Laidler, J.J.

1993-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "recovery technology cxs" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

EA-1769: Battleground Energy Recovery Project, Harris County, Texas |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

69: Battleground Energy Recovery Project, Harris County, Texas 69: Battleground Energy Recovery Project, Harris County, Texas EA-1769: Battleground Energy Recovery Project, Harris County, Texas Summary This EA evaluates the environmental impacts of a proposal to provide $1.94 million in cost-shared funding to the Houston Advanced Research Center for the Battleground Energy Recovery Project, which would produce 8 megawatts of electricity from high pressure steam generated by capturing heat that is currently lost at the Clean Harbors Deer Park facility. The proposed project was selected by the DOE's Office of Energy Efficiency and Renewable Energy to advance research and demonstration of energy efficiency and renewable energy technologies. Public Comment Opportunities No public comment opportunities available at this time.

462

Recovery Act Supports Construction of Site's Largest Groundwater Treatment Facility  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

June 7, 2011 June 7, 2011 Recovery Act Supports Construction of Site's Largest Groundwater Treatment Facility RICHLAND, Wash. - Construction of the largest ground- water treatment facility at the Hanford Site - a major American Recovery and Reinvestment Act project - is on schedule and more than 70 percent complete. Recovery Act workers with DOE contractor CH2M HILL Plateau Remediation Company are on pace to finish con- struction of the 200 West Groundwater Treatment Facil- ity this year. Funding for the project comes from the $1.6 billion the Richland Operations Office received from the Recovery Act. The 52,000-square-foot facility will pump contaminated water from the ground, remove contaminants with a combination of treatment technologies, and return clean water to the aquifer. The system will have the capacity to

463

Discussion on a Code Comparison Effort for the Geothermal Technologies...  

Office of Environmental Management (EM)

gas hydrate accumulations * Suboceanic gas hydrate accumulations * Piceance Basin oil shale * Enhanced oil recovery technologies Experimental Links * CCl 4 Migration and...

464

Vice President Biden Releases Report on Recovery Act Impact on Innovation |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Releases Report on Recovery Act Impact on Releases Report on Recovery Act Impact on Innovation Vice President Biden Releases Report on Recovery Act Impact on Innovation August 24, 2010 - 12:00am Addthis WASHINGTON - Vice President Joe Biden today unveiled a new report, "The Recovery Act: Transforming the American Economy through Innovation," which finds that the Recovery Act's $100 billion investment in innovation is not only transforming the economy and creating new jobs, but helping accelerate significant advances in science and technology that cut costs for consumers, save lives and help keep America competitive in the 21st century economy. View the Recovery Act Report (pdf - 1.29 MB) "From the beginning, we have been a nation of discovery and innovation - and today we continue in that tradition as Recovery Act investments pave

465

Utilities across America are using Recovery Act funds and smart grid  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Utilities across America are using Recovery Act funds and smart Utilities across America are using Recovery Act funds and smart grid technologies to deliver more reliable and affordable power, recover from major storms, and improve operations. Utilities across America are using Recovery Act funds and smart grid technologies to deliver more reliable and affordable power, recover from major storms, and improve operations. July 29, 2011 - 4:22pm Addthis What does this mean for me? More reliable and affordable power Faster recovery from major storms Utilities across America are using Recovery Act funds and smart grid technologies to deliver more reliable and affordable power, recover from major storms, and improve operations. In the heart of "Tornado Alley," Oklahoma Gas & Electric Company is pursuing demand response strategies to lower peak demand and improve

466

Resource Conservation and Recovery Act  

NLE Websites -- All DOE Office Websites (Extended Search)

Resource Conservation and Recovery Act (RCRA) Resource Conservation and Recovery Act (RCRA) In 1965 the Solid Waste Disposal Act [Public Law (Pub. L.) 89-72] was enacted to improve solid waste disposal methods. It was amended in 1970 by the Resource Recovery Act (Pub. L. 91-512), which provided the Environmental Protection Agency (EPA) with funding for resource recovery programs. However, that Act had little impact on the management and ultimate disposal of hazardous waste. In 1976 Congress enacted the Resource Conservation and Recovery Act (RCRA, Pub. L. 94-580). RCRA established a system for managing non-hazardous and hazardous solid wastes in an environmentally sound manner. Specifically, it provides for the management of hazardous wastes from the point of origin to the point of final disposal (i.e., "cradle to grave"). RCRA also promotes resource recovery and waste minimization.

467

Recovery Act State Memos Ohio  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

20 20 For total Recovery Act jobs numbers in Ohio go to www.recovery.gov DOE Recovery Act projects in Ohio: 83 U.S. DEPARTMENT OF ENERGY * OHIO RECOVERY ACT SNAPSHOT The American Recovery & Reinvestment Act (ARRA) is making a meaningful down payment on the nation's energy and environmental future. The Recovery Act investments in Ohio are supporting a broad range of clean energy projects from the smart grid and energy efficiency to advanced bat