Sample records for recovery technologies residential

  1. Building Technologies Residential Survey

    SciTech Connect (OSTI)

    Secrest, Thomas J.

    2005-11-07T23:59:59.000Z

    Introduction A telephone survey of 1,025 residential occupants was administered in late October for the Building Technologies Program (BT) to gather information on residential occupant attitudes, behaviors, knowledge, and perceptions. The next section, Survey Results, provides an overview of the responses, with major implications and caveats. Additional information is provided in three appendices as follows: - Appendix A -- Summary Response: Provides summary tabular data for the 13 questions that, with subparts, comprise a total of 25 questions. - Appendix B -- Benchmark Data: Provides a benchmark by six categories to the 2001 Residential Energy Consumption Survey administered by EIA. These were ownership, heating fuel, geographic location, race, household size and income. - Appendix C -- Background on Survey Method: Provides the reader with an understanding of the survey process and interpretation of the results.

  2. Illinois Institute of Technology Housing & Residential Services

    E-Print Network [OSTI]

    Heller, Barbara

    Illinois Institute of Technology Housing & Residential Services Student Guide to 20102011 Room and Board Contract Cancellation The Housing & Residential Services 20102011 Room and Board, if applicable, within two business days by email. Upon MoveOut, Housing & Residential Services will update

  3. Residential gas-fired sorption heat Test and technology evaluation

    E-Print Network [OSTI]

    Residential gas-fired sorption heat pumps Test and technology evaluation Energiforskningsprogram EFP05 Journal nr: 33031-0054 December 2008 #12;Residential gas-fired sorption heat pumps Test.............................................................................................................................................5 1 Residential gas-fired thermally driven heat pumps

  4. Residential Lighting: Title 24 and Technology Update

    E-Print Network [OSTI]

    California at Davis, University of

    Residential Lighting: Title 24 and Technology Update Best practices in lighting design to comply with California's Title 24 energy code Kelly Cunningham, Outreach Director California Lighting Technology Center AS AN IMPLIED ENDORSEMENT. #12;INTRODUCTION California Lighting Technology Center, UC Davis To accelerate

  5. Residential Cold Climate Heat Pump with Variable-Speed Technology...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Cold Climate Heat Pump with Variable-Speed Technology Residential Cold Climate Heat Pump with Variable-Speed Technology Purdue prototype system Purdue prototype system Unico...

  6. Summary Review of Advanced Inverter Technologies for Residential PV Systems

    E-Print Network [OSTI]

    Summary Review of Advanced Inverter Technologies for Residential PV Systems This report summarizes current and emerging standards for residential PV systems and identifies the status of emerging inverter................................................................................................ 7 3. Grid-Connected PV inverters available in US

  7. Low Level Heat Recovery Technology

    E-Print Network [OSTI]

    O'Brien, W. J.

    1982-01-01T23:59:59.000Z

    level heat recovery technology. This paper discusses heat distribution systems, latest developments in absorption refrigeration and organic Rankine cycles, and pressure, minimization possibilities. The relative merits and economics of the various...

  8. Summary - Caustic Recovery Technology

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 1112011 Strategic2Uranium Transferon the Passing of AdmiraltheOil and Less CO2Caustic Recovery

  9. Faces of the Recovery Act: 1366 Technologies

    Broader source: Energy.gov [DOE]

    LEXINGTON, MA - At 1366 Technologies, Ely Sachs and Frank van Mierlo are using ARPA-E Recovery Act funding to dramatically reduce the costs of solar panel production.

  10. Synchrophasor Technologies and their Deployment in the Recovery...

    Broader source: Energy.gov (indexed) [DOE]

    Synchrophasor Technologies and their Deployment in the Recovery Act Smart Grid Programs (August 2013) Synchrophasor Technologies and their Deployment in the Recovery Act Smart Grid...

  11. Post-Shred Materials Recovery Technology Development and Demonstration...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Shred Materials Recovery Technology Development and Demonstration Post-Shred Materials Recovery Technology Development and Demonstration 2009 DOE Hydrogen Program and Vehicle...

  12. Post-Shred Materials Recovery Technology Development and Demonstration...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Post-Shred Materials Recovery Technology Development and Demonstration Post-Shred Materials Recovery Technology Development and Demonstration Presentation from the U.S. DOE Office...

  13. Solar Energy and Residential Building Integration Technology and Application

    E-Print Network [OSTI]

    Ding Ma; Yi-bing Xue

    Building energy saving needs solar energy, but the promotion of solar energy has to be integrated with the constructions. Through analyzing the energy-saving significance of solar energy, and the status and features of it, this paper has discussed the solar energy and building integration technology and application in the residential building, and explored a new way and thinking for the close combination of the solar technology and residence.

  14. Estimating the Market Penetration of Residential Cool Storage Technology Using Economic Cost Modeling 

    E-Print Network [OSTI]

    Weijo, R. O.; and Brown, D. R.

    1988-01-01T23:59:59.000Z

    This study estimated the market penetration for residential cool storage technology using economic cost modeling. Residential cool storage units produce and store chill during off-peak periods of the day to be used during times of peak electric...

  15. Key Residential Building Equipment Technologies for Control and Grid Support PART I (Residential)

    SciTech Connect (OSTI)

    Starke, Michael R [ORNL; Onar, Omer C [ORNL; DeVault, Robert C [ORNL

    2011-09-01T23:59:59.000Z

    Electrical energy consumption of the residential sector is a crucial area of research that has in the past primarily focused on increasing the efficiency of household devices such as water heaters, dishwashers, air conditioners, and clothes washer and dryer units. However, the focus of this research is shifting as objectives such as developing the smart grid and ensuring that the power system remains reliable come to the fore, along with the increasing need to reduce energy use and costs. Load research has started to focus on mechanisms to support the power system through demand reduction and/or reliability services. The power system relies on matching generation and load, and day-ahead and real-time energy markets capture most of this need. However, a separate set of grid services exist to address the discrepancies in load and generation arising from contingencies and operational mismatches, and to ensure that the transmission system is available for delivery of power from generation to load. Currently, these grid services are mostly provided by generation resources. The addition of renewable resources with their inherent variability can complicate the issue of power system reliability and lead to the increased need for grid services. Using load as a resource, through demand response programs, can fill the additional need for flexible resources and even reduce costly energy peaks. Loads have been shown to have response that is equal to or better than generation in some cases. Furthermore, price-incentivized demand response programs have been shown to reduce the peak energy requirements, thereby affecting the wholesale market efficiency and overall energy prices. The residential sector is not only the largest consumer of electrical energy in the United States, but also has the highest potential to provide demand reduction and power system support, as technological advancements in load control, sensor technologies, and communication are made. The prevailing loads based on the largest electrical energy consumers in the residential sector are space heating and cooling, washer and dryer, water heating, lighting, computers and electronics, dishwasher and range, and refrigeration. As the largest loads, these loads provide the highest potential for delivering demand response and reliability services. Many residential loads have inherent flexibility that is related to the purpose of the load. Depending on the load type, electric power consumption levels can either be ramped, changed in a step-change fashion, or completely removed. Loads with only on-off capability (such as clothes washers and dryers) provide less flexibility than resources that can be ramped or step-changed. Add-on devices may be able to provide extra demand response capabilities. Still, operating residential loads effectively requires awareness of the delicate balance of occupants health and comfort and electrical energy consumption. This report is Phase I of a series of reports aimed at identifying gaps in automated home energy management systems for incorporation of building appliances, vehicles, and renewable adoption into a smart grid, specifically with the intent of examining demand response and load factor control for power system support. The objective is to capture existing gaps in load control, energy management systems, and sensor technology with consideration of PHEV and renewable technologies to establish areas of research for the Department of Energy. In this report, (1) data is collected and examined from state of the art homes to characterize the primary residential loads as well as PHEVs and photovoltaic for potential adoption into energy management control strategies; and (2) demand response rules and requirements across the various demand response programs are examined for potential participation of residential loads. This report will be followed by a Phase II report aimed at identifying the current state of technology of energy management systems, sensors, and communication technologies for demand response and load factor control applications

  16. Evaluation of advanced technologies for residential appliances and residential and commercial lighting

    SciTech Connect (OSTI)

    Turiel, I.; Atkinson, B.; Boghosian, S.; Chan, P.; Jennings, J.; Lutz, J.; McMahon, J.; Rosenquist, G.

    1995-01-01T23:59:59.000Z

    Section 127 of the Energy Policy Act requires that the Department of Energy (DOE) prepare a report to Congress on the potential for the development and commercialization of appliances that substantially exceed the present federal or state efficiency standards. Candidate high-efficiency appliances must meet several criteria including: the potential exists for substantial improvement (beyond the minimum established in law) of the appliance`s energy efficiency; electric, water, or gas utilities are prepared to support and promote the commercialization of such appliances; manufacturers are unlikely to undertake development and commercialization of such appliances on their own, or development and production would be substantially accelerated by support to manufacturers. This report describes options to improve the efficiency of residential appliances, including water heaters, clothes washers and dryers, refrigerator/freezers, dishwashers, space heating and cooling devices, as well as residential and commercial lighting products. Data from this report (particularly Appendix 1)were used to prepare the report to Congress mentioned previously. For the residential sector, national energy savings are calculated using the LBL Residential Energy Model. This model projects the number of households and appliance saturations over time. First, end-use consumption is calculated for a base case where models that only meet the standard replace existing models as these reach the end of their lifetime. Second, models with efficiencies equal to the technology under consideration replace existing models that reach the end of their lifetime. For the commercial sector, the COMMEND model was utilized to project national energy savings from new technologies. In this report, energy savings are shown for the period 1988 to 2015.

  17. Develop Thermoelectric Technology for Automotive Waste Heat Recovery...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    More Documents & Publications Development of Thermoelectric Technology for Automotive Waste Heat Recovery Development of Thermoelectric Technology for Automotive Waste Heat...

  18. Technology diffusion of energy-related products in residential markets

    SciTech Connect (OSTI)

    Davis, L.J.; Bruneau, C.L.

    1987-05-01T23:59:59.000Z

    Acceptance of energy-related technologies by end residential consumers, manufacturers of energy-related products, and other influential intermediate markets such as builders will influence the potential for market penetration of innovative energy-related technologies developed by the Department of Energy, Office of Building and Community Systems (OBCS). In this report, Pacific Northwest Laboratory reviewed the available information on technology adoption, diffusion, and decision-making processes to provide OBCS with a background and understanding of the type of research that has previously been conducted on this topic. Insight was gained as to the potential decision-making criteria and motivating factors that influence the decision-maker(s) selection of new technologies, and some of the barriers to technology adoption faced by potential markets for OBCS technologies.

  19. Faces of the Recovery Act: 1366 Technologies

    SciTech Connect (OSTI)

    Sachs, Ely; Mierlo, Frank van; Obama, Barack

    2010-01-01T23:59:59.000Z

    LEXINGTON, MA - At 1366 Technologies, Ely Sachs and Frank van Mierlo are using ARPA-E Recovery Act funding to dramatically reduce the costs of solar panel production. To read more about the project: http://arpa-e.energy.gov/FundedProjects.aspx#1366 To see more projects funded by the Recovery Act through ARPA-E: http://arpa-e.energy.gov/FundedProjects.aspx

  20. Faces of the Recovery Act: 1366 Technologies

    ScienceCinema (OSTI)

    Sachs, Ely; Mierlo, Frank van; Obama, Barack

    2013-05-29T23:59:59.000Z

    LEXINGTON, MA - At 1366 Technologies, Ely Sachs and Frank van Mierlo are using ARPA-E Recovery Act funding to dramatically reduce the costs of solar panel production. To read more about the project: http://arpa-e.energy.gov/FundedProjects.aspx#1366 To see more projects funded by the Recovery Act through ARPA-E: http://arpa-e.energy.gov/FundedProjects.aspx

  1. Exhaust Gas Energy Recovery Technology Applications

    SciTech Connect (OSTI)

    Wagner, Robert M [ORNL] [ORNL; Szybist, James P [ORNL] [ORNL

    2014-01-01T23:59:59.000Z

    Exhaust waste heat recovery systems have the potential to significantly improve vehicle fuel economy for conventional and hybrid electric powertrains spanning passenger to heavy truck applications. This chapter discusses thermodynamic considerations and three classes of energy recovery technologies which are under development for vehicle applications. More specifically, this chapter describes the state-of-the-art in exhaust WHR as well as challenges and opportunities for thermodynamic power cycles, thermoelectric devices, and turbo-compounding systems.

  2. Develop Thermoelectric Technology for Automotive Waste Heat Recovery...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    More Documents & Publications Develop Thermoelectric Technology for Automotive Waste Heat Recovery Engineering and Materials for Automotive Thermoelectric Applications...

  3. Develop Thermoelectric Technology for Automotive Waste Heat Recovery...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    More Documents & Publications Develop Thermoelectric Technology for Automotive Waste Heat Recovery Cost-Competitive Advanced Thermoelectric Generators for Direct...

  4. Estimating the Market Penetration of Residential Cool Storage Technology Using Economic Cost Modeling

    E-Print Network [OSTI]

    Weijo, R. O.; and Brown, D. R.

    1988-01-01T23:59:59.000Z

    use, which occur on hot summer days for summer peaking utilities. Cool storage technology, developed for both commercial and residential applications, is one solution to meeting peak power needs. Demand for this technology is derived from... utilities' hesitancy to pay the extremely high-capacity costs (per kW) required to generate electricity for use at peak periods. This technology does not save energy--it merely shifts its use to a time when residential, commercial, and industrial demand...

  5. Develop Thermoelectric Technology for Automotive Waste Heat Recovery...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Develop thermoelectric technology for waste heat recovery with a 10% fuel economy improvement without increasing emissions. deer09yang2.pdf More Documents & Publications...

  6. Energy-saving technology adoption under uncertainty in the residential sector

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    Energy-saving technology adoption under uncertainty in the residential sector Dorothée Charlier in the energy-saving technology, to save or to consume energy goods and non-energy goods. Resolution to be a highly effective means for households to lower expenditures on energy. In this sense, home renova- tion

  7. Volunteers hope ORNL technology will speed Haiti's long quake recovery

    E-Print Network [OSTI]

    Pennycook, Steve

    SCIENCE Volunteers hope ORNL technology will speed Haiti's long quake recovery The multi to speed Haiti's recovery from its devastating 2010 earthquake and improve the Haitian population's overall public health by allowing quick, in-the-field diagnoses of diseases. A team of Haiti volunteers

  8. Improved screen-bowl centrifuge recovery using polymer injection technology

    SciTech Connect (OSTI)

    Burchett, R.T.; McGough, K.M.; Luttrell, G.H.

    2006-08-15T23:59:59.000Z

    The paper reports the improved screen-bowl centrifuge recovery process using polymer injection technology. Field test and economic analysis are also included in the paper. 3 refs., 3 figs., 1 tab.

  9. Chemical Emissions of Residential Materials and Products: Review of Available Information Environmental Energy Technologies Division

    E-Print Network [OSTI]

    -up approach of collecting and evaluating emissions data from construction and interior materials and commonChemical Emissions of Residential Materials and Products: Review of Available Information Building Technologies Program, Office of Energy Efficiency and Renewable Energy under DOE Contract No. DE

  10. Residential Energy-Efficient Technology Adoption, Energy Conservation, Knowledge, and Attitudes: An Analysis of European Countries

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    1 Residential Energy-Efficient Technology Adoption, Energy Conservation, Knowledge, and Attitudes: An Analysis of European Countries Bradford Millsa * and Joachim Schleicha,b,c a Virginia Polytechnic Institute of measures of household energy use behavior are estimated using a unique dataset of approximately 5

  11. National Residential Efficiency Measures Database Webinar Slides...

    Energy Savers [EERE]

    National Residential Efficiency Measures Database Webinar Slides National Residential Efficiency Measures Database Webinar Slides Presentation slides for the Building Technologies...

  12. Approaches for Identifying Consumer Preferences for the Design of Technology Products: A Case Study of Residential Solar Panels

    E-Print Network [OSTI]

    Chen, Heidi Q.

    This paper investigates ways to obtain consumer preferences for technology products to help designers identify the key attributes that contribute to a product's market success. A case study of residential photovoltaic ...

  13. Approaches for identifying consumer preferences for the design of technology products : a case study of residential solar panels

    E-Print Network [OSTI]

    Chen, Heidi Qianyi

    2012-01-01T23:59:59.000Z

    This thesis investigates ways to obtain consumer preferences for technology products to help designers identify the key attributes that contribute to a product's market success. A case study of residential solar PV panels ...

  14. Brayton Solvent Recovery Heat Pump Technology Update

    E-Print Network [OSTI]

    Enneking, J. C.

    The Brayton cycle technology was developed to reduce the temperature of gas streams containing solvents in order to condense and recover them. While the use of turbo compressor/expander machinery in conjunction with an energy recuperator...

  15. Grid-Competitive Residential and Commercial Fully Automated PV Systems Technology: Final technical Report, August 2011

    SciTech Connect (OSTI)

    Brown, Katie E.; Cousins, Peter; Culligan, Matt; Jonathan Botkin; DeGraaff, David; Bunea, Gabriella; Rose, Douglas; Bourne, Ben; Koehler, Oliver

    2011-08-26T23:59:59.000Z

    Under DOE's Technology Pathway Partnership program, SunPower Corporation developed turn-key, high-efficiency residential and commercial systems that are cost effective. Key program objectives include a reduction in LCOE values to 9-12 cents/kWh and 13-18 cents/kWh respectively for the commercial and residential markets. Target LCOE values for the commercial ground, commercial roof, and residential markets are 10, 11, and 13 cents/kWh. For this effort, SunPower collaborated with a variety of suppliers and partners to complete the tasks below. Subcontractors included: Solaicx, SiGen, Ribbon Technology, Dow Corning, Xantrex, Tigo Energy, and Solar Bridge. SunPower's TPP addressed nearly the complete PV value chain: from ingot growth through system deployment. Throughout the award period of performance, SunPower has made progress toward achieving these reduced costs through the development of 20%+ efficient modules, increased cell efficiency through the understanding of loss mechanisms and improved manufacturing technologies, novel module development, automated design tools and techniques, and reduced system development and installation time. Based on an LCOE assessment using NREL's Solar Advisor Model, SunPower achieved the 2010 target range, as well as progress toward 2015 targets.

  16. Future Technologies to Enhance Geothermal Energy Recovery

    SciTech Connect (OSTI)

    Roberts, J J; Kaahaaina, N; Aines, R; Zucca, J; Foxall, B; Atkins-Duffin, C

    2008-07-25T23:59:59.000Z

    Geothermal power is a renewable, low-carbon option for producing base-load (i.e., low-intermittency) electricity. Improved technologies have the potential to access untapped geothermal energy sources, which experts estimate to be greater than 100,000 MWe. However, many technical challenges in areas such as exploration, drilling, reservoir engineering, and energy conversion must be addressed if the United States is to unlock the full potential of Earth's geothermal energy and displace fossil fuels. (For example, see Tester et al., 2006; Green and Nix, 2006; and Western Governors Association, 2006.) Achieving next-generation geothermal power requires both basic science and applied technology to identify prospective resources and effective extraction strategies. Lawrence Livermore National Laboratory (LLNL) has a long history of research and development work in support of geothermal power. Key technologies include advances in scaling and brine chemistry, economic and resource assessment, direct use, exploration, geophysics, and geochemistry. For example, a high temperature, multi-spacing, multi-frequency downhole EM induction logging tool (GeoBILT) was developed jointly by LLNL and EMI to enable the detection and orientation of fractures and conductive zones within the reservoir (Figure 1). Livermore researchers also conducted studies to determine how best to stave off increased salinity in the Salton Sea, an important aquatic ecosystem in California. Since 1995, funding for LLNL's geothermal research has decreased, but the program continues to make important contributions to sustain the nation's energy future. The current efforts, which are highlighted in this report, focus on developing an Engineered Geothermal System (EGS) and on improving technologies for exploration, monitoring, characterization, and geochemistry. Future research will also focus on these areas.

  17. Incorporating Energy Efficiency into Disaster Recovery Efforts...

    Energy Savers [EERE]

    Incorporating Energy Efficiency into Disaster Recovery Efforts Incorporating Energy Efficiency into Disaster Recovery Efforts Better Buildings Residential Network Program...

  18. Meeting Residential Ventilation Standards Through Dynamic Control of Ventilation Systems

    E-Print Network [OSTI]

    Sherman, Max H.

    2011-01-01T23:59:59.000Z

    Rudd. 2007. Review of residential ventilation technologies.2009. EISG Final Report: Residential Integrated VentilationDesign and Operation of Residential Cooling Systems. Proc.

  19. Heat Pump Water Heater Technology: Experiences of Residential Consumers and Utilities

    SciTech Connect (OSTI)

    Ashdown, BG

    2004-08-04T23:59:59.000Z

    This paper presents a case study of the residential heat pump water heater (HPWH) market. Its principal purpose is to evaluate the extent to which the HPWH will penetrate the residential market sector, given current market trends, producer and consumer attributes, and technical parameters. The report's secondary purpose is to gather background information leading to a generic framework for conducting market analyses of technologies. This framework can be used to compare readiness and to factor attributes of market demand back into product design. This study is a rapid prototype analysis rather than a detailed case analysis. For this reason, primary data collection was limited and reliance on secondary sources was extensive. Despite having met its technical goals and having been on the market for twenty years, the HPWH has had virtually no impact on contributing to the nation's water heating. In some cases, HPWH reliability and quality control are well below market expectations, and early units developed a reputation for unreliability, especially when measured against conventional water heaters. In addition to reliability problems, first costs of HPWH units can be three to five times higher than conventional units. Without a solid, well-managed business plan, most consumers will not be drawn to this product. This is unfortunate. Despite its higher first costs, efficiency of an HPWH is double that of a conventional water heater. The HPWH also offers an attractive payback period of two to five years, depending on hot water usage. On a strict life-cycle basis it supplies hot water very cost effectively. Water heating accounts for 17% of the nation's residential consumption of electricity (see chart at left)--water heating is second only to space heating in total residential energy use. Simple arithmetic suggests that this figure could be reduced to the extent HPWH technology displaces conventional water heating. In addition, the HPWH offers other benefits. Because it produces hot water by extracting heat from the air it tends to dehumidify and cool the room in which it is placed. Moreover, it tends to spread the water heating load across utility non-peak periods. Thus, electric utilities with peak load issues could justify internal programs to promote this technology to residential and commercial customers. For practical purposes, consumers are indifferent to the manner in which water is heated but are very interested in product attributes such as initial first cost, operating cost, performance, serviceability, product size, and installation costs. Thus, the principal drivers for penetrating markets are demonstrating reliability, leveraging the dehumidification attributes of the HPWH, and creating programs that embrace life-cycle cost principles. To supplement this, a product warranty with scrupulous quality control should be implemented; first-price reduction through engineering, perhaps by reducing level of energy efficiency, should be pursued; and niche markets should be courted. The first step toward market penetration is to address the HPWH's performance reliability. Next, the manufacturers could engage select utilities to aggressively market the HPWH. A good approach would be to target distinct segments of the market with the potential for the highest benefits from the technology. Communications media that address performance issues should be developed. When marketing to new home builders, the HPWH could be introduced as part of an energy-efficient package offered as a standard feature by builders of new homes within a community. Conducting focus groups across the United States to gather input on HPWH consumer values will feed useful data back to the manufacturers. ''Renaming'' and ''repackaging'' the HPWH to improve consumer perception, appliance aesthetics, and name recognition should be considered. Once an increased sales volume is achieved, the manufacturers should reinvest in R&D to lower the price of the units. The manufacturers should work with ''do-it-yourself'' (DIY) stores to facilitate introduction of th

  20. Evaluation of Waste Heat Recovery and Utilization from Residential Appliances and Fixtures

    SciTech Connect (OSTI)

    Tomlinson, John J [ORNL; Christian, Jeff [Oak Ridge National Laboratory (ORNL); Gehl, Anthony C [ORNL

    2012-09-01T23:59:59.000Z

    Executive Summary In every home irrespective of its size, location, age, or efficiency, heat in the form of drainwater or dryer exhaust is wasted. Although from a waste stream, this energy has the potential for being captured, possibly stored, and then reused for preheating hot water or air thereby saving operating costs to the homeowner. In applications such as a shower and possibly a dryer, waste heat is produced at the same time as energy is used, so that a heat exchanger to capture the waste energy and return it to the supply is all that is needed. In other applications such as capturing the energy in drainwater from a tub, dishwasher, or washing machine, the availability of waste heat might not coincide with an immediate use for energy, and consequently a heat exchanger system with heat storage capacity (i.e. a regenerator) would be necessary. This study describes a two-house experimental evaluation of a system designed to capture waste heat from the shower, dishwasher clothes washer and dryer, and to use this waste heat to offset some of the hot water energy needs of the house. Although each house was unoccupied, they were fitted with equipment that would completely simulate the heat loads and behavior of human occupants including operating the appliances and fixtures on a demand schedule identical to Building American protocol (Hendron, 2009). The heat recovery system combined (1) a gravity-film heat exchanger (GFX) installed in a vertical section of drainline, (2) a heat exchanger for capturing dryer exhaust heat, (3) a preheat tank for storing the captured heat, and (4) a small recirculation pump and controls, so that the system could be operated anytime that waste heat from the shower, dishwasher, clothes washer and dryer, and in any combination was produced. The study found capturing energy from the dishwasher and clothes washer to be a challenge since those two appliances dump waste water over a short time interval. Controls based on the status of the dump valve on these two appliances would have eliminated uncertainty in knowing when waste water was flowing and the recovery system operated. The study also suggested that capture of dryer exhaust heat to heat incoming air to the dryer should be examined as an alternative to using drying exhaust energy for water heating. The study found that over a 6-week test period, the system in each house was able to recover on average approximately 3000 W-h of waste heat daily from these appliance and showers with slightly less on simulated weekdays and slightly more on simulated weekends which were heavy wash/dry days. Most of these energy savings were due to the shower/GFX operation, and the least savings were for the dishwasher/GFX operation. Overall, the value of the 3000 W-h of displaced energy would have been $0.27/day based on an electricity price of $.09/kWh. Although small for today s convention house, these savings are significant for a home designed to approach maximum affordable efficiency where daily operating costs for the whole house are less than a dollar per day. In 2010 the actual measured cost of energy in one of the simulated occupancy houses which waste heat recovery testing was undertaken was $0.77/day.

  1. PROGRESS IN RESIDENTIAL ENERGY CONSERVATION - A MULTI COUNTRY PERSPECTIVE -

    E-Print Network [OSTI]

    Schipper, Lee

    2013-01-01T23:59:59.000Z

    Conference, "New Energy Conservation Technologies", Berlin,IN RESIDENTIAL ENERGY CONSERVATION - A MULTI COUNTRYIN RESIDENTIAL ENERGY CONSERVATION - A MULTI COUNTRY

  2. Discussion on Energy-Efficient Technology for the Reconstruction of Residential Buildings in Cold Areas 

    E-Print Network [OSTI]

    Zhao, J.; Wang, S.; Chen, H.; Shi, Y.; Li, D.

    2006-01-01T23:59:59.000Z

    : Based on the existing residential buildings in cold areas, this paper takes the existing residential buildings in a certain district in Beijing to provide an analysis of the thermal characteristics of envelope and energy consumption in winter...

  3. Immediate Deployment of Waste Energy Recovery Technologies at Multi Sites

    SciTech Connect (OSTI)

    Dennis Castonguay

    2012-06-29T23:59:59.000Z

    Verso Paper Corp. implemented a portfolio of 13 commercially available proven industrial technologies each exceeding 30% minimum threshold efficiency and at least 25% efficiency increase. These sub-projects are a direct result of a grant received from the Department of Energy (DOE) through its FOA 0000044 (Deployment of Combined Heat and Power (CHP) Systems, District Energy Systems, Waste Energy Recovery Systems, and Efficient Industrial Equipment), which was funded by the American Recovery Act. These were installed at 3 sites in 2 states and are helping to reduce Verso costs, making the facilities more competitive. This created approximately 100 construction jobs (FTE's) and reduced impacted Verso facilities' expense budgets. These sub-projects were deployed at Verso paper mills located in Jay, Maine, Bucksport, Maine, and Sartell, Minnesota. The paper mills are the economic engines of the rural communities in which these mills are located. Reinvestment in waste energy recovery capital improvements is providing a stimulus to help maintain domestic jobs and to competitively position the US pulp and paper industry with rising energy costs. Energy efficiency improvements are also providing a positive environmental impact by reducing greenhouse gas emissions, the quantity of wastewater treated and discharged, and fossil fuel demand. As a result of these projects, when fully operating, Verso realized a total of approximately 1.5 TBtu/Year reduction in overall energy consumption, which is 119% of the project objectives. Note that three paper machines have since been permanently curtailed. However even with these shutdowns, the company still met its energy objectives. Note also that the Sartell mill's paper machine is down due to a recent fire which damaged the mill's electrical infrastructure (the company has not decided on the mill's future).

  4. OPTICAL FIBER SENSOR TECHNOLOGIES FOR EFFICIENT AND ECONOMICAL OIL RECOVERY

    SciTech Connect (OSTI)

    A. Wang; H. Xiao; R. May

    1999-10-29T23:59:59.000Z

    Efficient and complete recovery of petroleum reserves from existing oil wells has proven difficult due to a lack of robust instrumentation that can monitor processes in the downhole environment. Commercially available sensors for measurement of pressure, temperature, and fluid flow exhibit shortened lifetimes in the harsh downhole conditions, which are characterized by high pressures (up to 20 kpsi), temperatures up to 250 C, and exposure to chemically reactive fluids. Development of robust sensors that deliver continuous, real-time data on reservoir performance and petroleum flow pathways will facilitate application of advanced recovery technologies, including horizontal and multi-lateral wells. The main objective of the research program is to develop cost-effective, reliable fiber sensor instrumentation for real-time monitoring and /or control of various key parameters crucial to efficient and economical oil production. This report presents the detailed research work and technical progress from October 1, 1998 to September 30, 1999. The research performed over the first year of the program has followed the schedule as proposed, and solid research progress has been made in specification of the technical requirements, design and fabrication of the SCIIB sensor probes, development of the sensor systems, development of DSP-based signal processing techniques, and construction of the test systems. These technical achievements will significantly help to advance continued research on sensor tests and evaluation during the second year of the program.

  5. OPTICAL FIBER SENSOR TECHNOLOGIES FOR EFFICIENT AND ECONOMICAL OIL RECOVERY

    SciTech Connect (OSTI)

    Kristie Cooper; Gary Pickrell; Anbo Wang

    2003-04-01T23:59:59.000Z

    This report summarizes technical progress over the fourth year of the ''Optical Fiber Sensor Technologies for Efficient and Economical Oil Recovery'' program, funded by the Federal Energy Technology Center of the U.S. Department of Energy, and performed by the Center for Photonics Technology of the Bradley Department of Electrical and Computer Engineering at Virginia Tech. During the reporting period, research efforts under the program were focused on the development and evaluation of the fiber optic flow sensor system, and field testing in Tulsa, OK and the second field test of the pressure and temperature sensors in Coalinga, CA. The feasibility of a self-compensating fiber optic flow sensor based on a cantilever beam and interferometer for real-time flow rate measurements in the fluid filled pipes of oil field was clearly demonstrated. In addition, field testing of the pressure and temperature sensors deployed downhole continued. These accomplishments are summarized here: (1) Theoretical analysis and simulations were performed to ensure performance of the design. (2) The sensor fabrication and packaging techniques were investigated and improved. (3) Prototype flow sensors were fabricated based on the fabrication experience of hundreds of test sensors. (4) A lab-scale flow testing system was constructed and used for sensor evaluation. (5) Field-testing was performed in both the indoor and outdoor flow testing facility at the University of Tulsa, OK. (6) Testing of a multimode white light pressure and temperature sensor system continued at the oil site of Chevron/Texaco Company (Coalinga CA).

  6. California DREAMing: the design of residential demand responsive technology with people in mind

    E-Print Network [OSTI]

    Peffer, Therese E.

    2009-01-01T23:59:59.000Z

    Energy Consumption Survey (RECS) (EIA, 2005), and otherEnergy Consumption Survey (RECS) (EIA, 2005), and otherEIA). (2005). Residential Energy Consumption Survey. from

  7. Develop Thermoelectric Technology for Automotive Waste Heat Recovery...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    More Documents & Publications Skutterudite Thermoelectric Generator For Automotive Waste Heat Recovery Thermoelectric Conversion of Exhaust Gas Waste Heat into Usable...

  8. Gas miscible displacement enhanced oil recovery: Technology status report

    SciTech Connect (OSTI)

    Not Available

    1986-10-01T23:59:59.000Z

    Gas miscible displacement enhanced oil recovery research is conducted by the US Department of Energy's Morgantown Energy Technology Center to advance the application of miscible carbon dioxide flooding. This research is an integral part of a multidisciplinary effort to improve the technology for producing additional oil from US resources. This report summarizes the problems of the technology and the 1986 results of the ongoing research that was conducted to solve those problems. Poor reservoir volumetric sweep efficiency is the major problem associated with gas flooding and all miscible displacements. This problem results from the channeling and viscous fingering that occur due to the large differences between viscosity or density of the displacing and displaced fluids (i.e., carbon dioxide and oil, respectively). Simple modeling and core flooding studies indicate that, because of differences in fluid viscosities, breakthrough can occur after only 30% of the total pore volume (PV) of the rock has been injected with gas, while field tests have shown breakthrough occurring much earlier. The differences in fluid densities lead to gravity segregation. The lower density carbon dioxide tends to override the residual fluids in the reservoir. This process would be considerably more efficient if a larger area of the reservoir could be contacted by the gas. Current research has focused on the mobility control, computer simulation, and reservoir heterogeneity studies. Three mobility control methods have been investigated: (1) the use of polymers for direct thickening of high-density carbon dioxide, (2) mobile ''foam-like dispersions'' of carbon dioxide and an aqueous surfactant, and (3) in situ deposition of chemical precipitates. 22 refs., 14 figs., 6 tabs.

  9. Vehicle Technologies Office: Materials for Energy Recovery Systems...

    Energy Savers [EERE]

    for Energy Recovery Systems and Controlling Exhaust Gases The typical internal combustion engine wastes about 30 percent of its chemical energy in the form of hot exhaust...

  10. American Recovery and Reinvestment Act of 2009: Bioenergy Technologies...

    Energy Savers [EERE]

    Recovery and Reinvestment Act of 2009 funds; the projects accelerate advanced biofuels RD&D, speed the deployment of commercialization of biofuels, and further the U.S....

  11. End-use electrification in the residential sector : a general equilibrium analysis of technology advancements

    E-Print Network [OSTI]

    Madan, Tanvir Singh

    2012-01-01T23:59:59.000Z

    The residential sector in the U.S. is responsible for about 20% of the country's primary energy use (EIA, 2011). Studies estimate that efficiency improvements in this sector can reduce household energy consumption by over ...

  12. Sustainability and residential development : a guide to cost-efficient green building technologies

    E-Print Network [OSTI]

    Determan, Kelley Victoria

    2014-01-01T23:59:59.000Z

    Given the upward trend of global energy consumption in recent decades, it has become imperative that countries reduce the amount of energy used on an annual basis. In America, the residential sector is one of the primary ...

  13. Department of Energy Recovery Act Investment in Biomass Technologies...

    Energy Savers [EERE]

    and deployment. arrasummaryfactsheetweb.pdf More Documents & Publications Algae Biofuels Technology Bioenergy Technologies Office Overview Growing America's Energy...

  14. Vehicle Technologies Office Merit Review 2014: Thermoelectric Waste Heat Recovery Program for Passenger Vehicles

    Broader source: Energy.gov [DOE]

    Presentation given by GenTherm at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about thermoelectric waste heat recovery...

  15. Indirect Heat Transfer Technology For Waste Heat Recovery Can Save You Money

    E-Print Network [OSTI]

    Beyrau, J. A.; Bogel, N. G.; Seifert, W. F.; Wuelpern, L. E.

    1984-01-01T23:59:59.000Z

    constraints of an existing installation makes the conventional flue gas to air energy recovery technology impractical to employ. A successful alternative is the transfer of waste heat to an intermediate heat transfer fluid (i.e., DOWTHERM Heat Transfer Fluid...

  16. Identification of existing waste heat recovery and process improvement technologies

    SciTech Connect (OSTI)

    Watts, R.L.; Dodge, R.E.; Smith, S.A.; Ames, K.R.

    1984-03-01T23:59:59.000Z

    General information is provided on waste heat recovery opportunities. The currently available equipment for high- and low-temperature applications are described. Other equipment related to wasteheat recovery equipment such as components, instruments and controls, and cleaning equipment is discussed briefly. A description of the microcomputer data base is included. Suppliers of waste heat equipment are mentioned throughout the report, with specific contacts, addresses, and telephone numbers provided in an Appendix.

  17. Recovery Act: Electrochromic Glazing Technology: Improved Performance, Lower Price

    SciTech Connect (OSTI)

    Burdis, Mark; Sbar, Neil

    2012-06-30T23:59:59.000Z

    The growing dependency of the US on energy imports and anticipated further increases in energy prices reinforce the concerns about meeting the energy demand in the future and one element of a secure energy future is conservation. It is estimated that the buildings sector represents 40% of the US's total energy consumption. And buildings produce as much as one third of the greenhouse gas emissions primarily through fossil fuel usage during their operational phase. A significant fraction of this energy usage is simply due to inefficient window technology. Electrochromic (EC) windows allow electronic control of their optical properties so that the transparency to light can be adjusted from clear to dark. This ability to control the amount of solar energy allowed into the building can be advantageously used to minimize lighting, heating and air conditioning costs. Currently, the penetration of EC windows into the marketplace is extremely small, and consequently there is a huge opportunity for energy savings if this market can be expanded. In order to increase the potential energy savings it is necessary to increase the quantity of EC windows in operation. Additionally, any incremental improvement in the energy performance of each window will add to the potential energy savings. The overall goals of this project were therefore to improve the energy performance and lower the cost of dynamic (EC) smart windows for residential and commercial building applications. This project is obviously of benefit to the public by addressing two major areas: lowering the cost and improving the energy performance of EC glazings. The high level goals for these activities were: (i) to improve the range between the clear and the tinted state, (ii) reduce the price of EC windows by utilizing lower cost materials, (iii) lowering the U-Value1 SAGE Electrochromics Inc. is the only company in the US which has a track record of producing EC windows, and presently has a small operational factory in Faribault MN which is shipping products throughout the world. There is a much larger factory currently under construction close by. This project was targeted specifically to address the issues outlined above, with a view to implementation on the new high volume manufacturing facility. Each of the Tasks which were addressed in this project is relatively straightforward to implement in this new facility and so the benefits of the work will be realized quickly. , and (iv) ensure the proposed changes have no detrimental effect to the proven durability of the window. The research described here has helped to understand and provide solutions to several interesting and previously unresolved issues of the technology as well as make progress in areas which will have a significant impact on energy saving. In particular several materials improvements have been made, and tasks related to throughput and yield improvements have been completed. All of this has been accomplished without any detrimental effect on the proven durability of the SageGlass EC device. The project was divided into four main areas: 1. Improvement of the Properties of the EC device by material enhancements (Task 2); 2. Reduce the cost of production by improving the efficiency and yields of some key manufacturing processes (Task 3); 3. Further reduce the cost by significant modifications to the structure of the device (Task 4); 4. Ensure the durability of the EC device is not affected by any of the changes resulting from these activities (Task 5). A detailed description of the activities carried out in these areas is given in the following report, along with the aims and goals of the work. We will see that we have completed Tasks 2 and 3 fully, and the durability of the resulting device structure has been unaffected. Some of Task 4 was not carried out because of difficulties with integrating the installation of the required targets into the production coater due to external constraints not related to this project. We will also see that the durability of the devices produced as a result of this work was

  18. Potential Impact of Adopting Maximum Technologies as Minimum Efficiency Performance Standards in the U.S. Residential Sector

    SciTech Connect (OSTI)

    Letschert, Virginie; Desroches, Louis-Benoit; McNeil, Michael; Saheb, Yamina

    2010-05-03T23:59:59.000Z

    The US Department of Energy (US DOE) has placed lighting and appliance standards at a very high priority of the U.S. energy policy. However, the maximum energy savings and CO2 emissions reduction achievable via minimum efficiency performance standards (MEPS) has not yet been fully characterized. The Bottom Up Energy Analysis System (BUENAS), first developed in 2007, is a global, generic, and modular tool designed to provide policy makers with estimates of potential impacts resulting from MEPS for a variety of products, at the international and/or regional level. Using the BUENAS framework, we estimated potential national energy savings and CO2 emissions mitigation in the US residential sector that would result from the most aggressive policy foreseeable: standards effective in 2014 set at the current maximum technology (Max Tech) available on the market. This represents the most likely characterization of what can be maximally achieved through MEPS in the US. The authors rely on the latest Technical Support Documents and Analytical Tools published by the U.S. Department of Energy as a source to determine appliance stock turnover and projected efficiency scenarios of what would occur in the absence of policy. In our analysis, national impacts are determined for the following end uses: lighting, television, refrigerator-freezers, central air conditioning, room air conditioning, residential furnaces, and water heating. The analyzed end uses cover approximately 65percent of site energy consumption in the residential sector (50percent of the electricity consumption and 80percent of the natural gas and LPG consumption). This paper uses this BUENAS methodology to calculate that energy savings from Max Tech for the U.S. residential sector products covered in this paper will reach an 18percent reduction in electricity demand compared to the base case and 11percent in Natural Gas and LPG consumption by 2030 The methodology results in reductions in CO2 emissions of a similar magnitude.

  19. USDOE Innovative Clean Coal Technology Demonstration Project: Passamaquoddy Technology Recovery Scrubber{trademark}. Final report: Volume 1

    SciTech Connect (OSTI)

    Not Available

    1994-02-01T23:59:59.000Z

    This Final Report provides available design, operational, and maintenance information, and marketing plans, on the Passamaquoddy Technology Recovery Scrubber{trademark} demonstration Project at the Dragon Products company`s cement plant at Thomaston, Maine. In addition, data on pollutant removal efficiencies and system economics are reviewed. The Recovery Scrubber was developed to simultaneously address the emission of acid gas pollutants and the disposal of alkaline solid waste at a cement plant. The process, however, has general application to other combustion processes including waste or fossil fuel fired boilers. Selected chemistry of the exhaust gas, (before and after treatment by the Recovery Scrubber), selected chemistry of the cement plant kiln baghouse dust catch (before and after treatment by the Recovery Scrubber), and Dragon cement plant economics are presented. current marketing efforts and potential markets for the Recovery Scrubber in several industries are discussed.

  20. Industrial Waste Heat Recovery - Potential Applications, Available Technologies and Crosscutting R&D Opportunities

    SciTech Connect (OSTI)

    Thekdi, Arvind [E3M Inc; Nimbalkar, Sachin U [ORNL

    2015-01-01T23:59:59.000Z

    The purpose of this report was to explore key areas and characteristics of industrial waste heat and its generation, barriers to waste heat recovery and use, and potential research and development (R&D) opportunities. The report also provides an overview of technologies and systems currently available for waste heat recovery and discusses the issues or barriers for each. Also included is information on emerging technologies under development or at various stages of demonstrations, and R&D opportunities cross-walked by various temperature ranges, technology areas, and energy-intensive process industries.

  1. Efficient Residential Water Heaters Webinar

    Broader source: Energy.gov [DOE]

    A webinar by Jerone Gagliano, director of Energy Engineering Performance Systems Development, about residential water heating technology and how to choose the right water heater.

  2. Recovery Act: Regional Technology Training Centers | netl.doe.gov

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's PossibleRadiation Protection RadiationRecord-Setting MicroscopyJune 2011Recovery Act: Regional

  3. Meeting Residential Ventilation Standards Through Dynamic Control of Ventilation Systems

    E-Print Network [OSTI]

    Sherman, Max H.

    2011-01-01T23:59:59.000Z

    2007. Review of residential ventilation technologies. HVAC&Rof intermittent ventilation for providing acceptable indoorResidential Integrated Ventilation Controller. Energy

  4. On The Valuation of Infiltration towards Meeting Residential Ventilation Needs

    E-Print Network [OSTI]

    Sherman, Max H.

    2008-01-01T23:59:59.000Z

    Related to Residential Ventilation Requirements”. LBNLP.N. and M.H. Sherman "Ventilation Behavior and HouseholdReview of Residential Ventilation Technologies”, LBNL 57730.

  5. TES for Residential Settings

    SciTech Connect (OSTI)

    Rutberg, Michael; Hastbacka, Mildred; Bouza, Antonio

    2013-07-31T23:59:59.000Z

    The article discusses thermal energy storage approaches for residential buildings. This article addresses both brick bank storage and phase change material technologies. The energy savings and market potential of these thermal energy storage methods are reviewed as well.

  6. Discussion on Energy-Efficient Technology for the Reconstruction of Residential Buildings in Cold Areas

    E-Print Network [OSTI]

    Zhao, J.; Wang, S.; Chen, H.; Shi, Y.; Li, D.

    2006-01-01T23:59:59.000Z

    , and provides the technical and economic analysis, which may provide reference of the suitable plans for the energy efficient reconstruction of buildings in cold area. 2. ANALYSIS ON HEATING ENERGY CONSUMPTION 2.1 Building Situation Based... on the existing residential building in Beijing, the paper discusses the reconstruction plan of energy saving. The outside air temperature for heating in Beijing is -9 , and the outside mean temperature is -1.6 during the heating period of 125 days...

  7. sttesuhcassa RESIDENTIAL

    E-Print Network [OSTI]

    Schweik, Charles M.

    University Apartments To Amherst Center RON TNASAELPHT TS CENTRAL RESIDENTIAL AREA To Tillson Farm RESIDENTIAL AREA Lorden Field ATHLETIC FIELDS To Telecom, UMass Outreach & UMass Extension at 101 University Drive NORTHEAST RESIDENTIAL AREA ORCHARD HILL RESIDENTIAL AREA Chabad House HAIGIS MALL Newman Center

  8. sttesuhcassa RESIDENTIAL

    E-Print Network [OSTI]

    Mountziaris, T. J.

    Gordon To Amherst Center RON TNASAELPHT TS CENTRAL RESIDENTIAL AREA To Tillson Farm & Intermediate ORCHARD HILL DR. Track & Field ACO SDT KKG SK ADP IGU ZBT BUTTERFIELDTERRACE DZ SOUTHWEST RESIDENTIAL AREA NORTHEAST RESIDENTIAL AREA ORCHARD HILL RESIDENTIAL AREA Chabad House HAIGIS MALL Newman Center Textbook

  9. Energy Data Sourcebook for the U.S. Residential Sector

    E-Print Network [OSTI]

    Wenzel, T.P.

    2010-01-01T23:59:59.000Z

    of Residential Source Heat Pump Gas Furnace HeatingResidential Heating Equipment (1) Database Year Minimum Type Code Fuel Effective (2) Efficiency (3) Heat Pumpheating technology of choice for almost 40% of the residential sector. Heat pumps

  10. Potential Impact of Adopting Maximum Technologies as Minimum Efficiency Performance Standards in the U.S. Residential Sector

    E-Print Network [OSTI]

    Letschert, Virginie

    2010-01-01T23:59:59.000Z

    Energy Consumption Survey (RECS) 2005 (EIA, 2009), whichEIA-0383(2010)) Energy Information Administration, Residential Energy Consumption Survey:

  11. Diesel Engine Waste Heat Recovery Utilizing Electric Turbocompound Technology

    SciTech Connect (OSTI)

    Gerke, Frank G.

    2001-08-05T23:59:59.000Z

    This cooperative program between the DOE Office of Heavy Vehicle Technology and Caterpillar, Inc. is aimed at demonstrating electric turbocompound technology on a Class 8 truck engine. This is a lab demonstration program, with no provision for on-truck testing of the system. The goal is to demonstrate the level of fuel efficiency improvement attainable with the electric turbocompound system. Also, electric turbocompounding adds an additional level of control to the air supply which could be a component in an emissions control strategy.

  12. Supporting technology for enhanced oil recovery for thermal processes

    SciTech Connect (OSTI)

    Reid, T.B.; Bolivar, J.

    1997-12-01T23:59:59.000Z

    This report contains the results of efforts under the six tasks of the Ninth Amendment and Extension of Annex IV, Enhanced Oil Recovery Thermal Processes of the Venezuela/USA Agreement. The report is presented in sections (for each of the 6 tasks) and each section contains one or more reports prepared by various individuals or groups describing the results of efforts under each of the tasks. A statement of each task, taken from the agreement, is presented on the first page of each section. The tasks are numbered 62 through 67. The first, second, third, fourth fifth, sixth, seventh, eighth, and ninth reports on Annex IV, [Venezuela MEM/USA-DOE Fossil Energy Report IV-1, IV-2, IV-3, IV-4, IV-5, IV-6, IV-7, and IV-8 (DOE/BETC/SP-83/15, DOE/BC-84/6/SP, DOE/BC-86/2/SP, DOE/BC-87/2/SP, DOE/BC-90/1/SP, DOE/BC-90/1/SP) (DOE/BC-92/1/SP, DOE/BC-93/3/SP, and DOE/BC-95/3/SP)] contain the results from the first 61 tasks. Those reports are dated April 1983, August 1984, March 1986, July 1987, November 1988, October 1991, February 1993, and March 1995 respectively.

  13. Review of technology for Arctic offshore oil and gas recovery

    SciTech Connect (OSTI)

    Sackinger, W. M.

    1980-08-01T23:59:59.000Z

    The technical background briefing report is the first step in the preparation of a plan for engineering research oriented toward Arctic offshore oil and gas recovery. A five-year leasing schedule for the ice-prone waters of the Arctic offshore is presented, which also shows the projected dates of the lease sale for each area. The estimated peak production rates for these areas are given. There is considerable uncertainty for all these production estimates, since no exploratory drilling has yet taken place. A flow chart is presented which relates the special Arctic factors, such as ice and permafrost, to the normal petroleum production sequence. Some highlights from the chart and from the technical review are: (1) in many Arctic offshore locations the movement of sea ice causes major lateral forces on offshore structures, which are much greater than wave forces; (2) spray ice buildup on structures, ships and aircraft will be considerable, and must be prevented or accommodated with special designs; (3) the time available for summer exploratory drilling, and for deployment of permanent production structures, is limited by the return of the pack ice. This time may be extended by ice-breaking vessels in some cases; (4) during production, icebreaking workboats will service the offshore platforms in most areas throughout the year; (5) transportation of petroleum by icebreaking tankers from offshore tanker loading points is a highly probable situation, except in the Alaskan Beaufort; and (6) Arctic pipelines must contend with permafrost, making instrumentation necessary to detect subtle changes of the pipe before rupture occurs.

  14. Residential audits: A key element in customer acceptance of energy-efficiency technologies

    SciTech Connect (OSTI)

    Coles, M.

    1994-12-31T23:59:59.000Z

    Ontario Hydro is a 30,000 MW electric utility serving the entire Province of Ontario. It was created as a publicly-owned corporation in 1906 by a special statute of the Province of Ontario. With a total of 80 hydraulic, fossil, and nuclear generating stations. Ontario Hydro delivers power through a network of 312 Municipal Utilities, and 46 direct Retail Areas. Overall, Ontario Hydro serves a total of 3.5 million customers across all Commercial, Industrial, and Residential sectors. XENERGY, Inc. provides software and support services to Ontario Hydro, and is a full-service energy management firm specializing in custom software design. DSM research planning and evaluation, irnplementation services, industrial energy management services, and DSM engineering services.

  15. Thermally Activated Desiccant Technology for Heat Recovery and Comfort

    SciTech Connect (OSTI)

    Jalalzadeh, A. A.

    2005-11-01T23:59:59.000Z

    Desiccant cooling is an important part of the diverse portfolio of Thermally Activated Technologies (TAT) designed for conversion of heat for the purpose of indoor air quality control. Thermally activated desiccant cooling incorporates a desiccant material that undergoes a cyclic process involving direct dehumidification of moist air and thermal regeneration. Desiccants fall into two categories: liquid and solid desiccants. Regardless of the type, solid or liquid, the governing principles of desiccant dehumidification systems are the same. In the dehumidification process, the vapor pressure of the moist air is higher than that of the desiccant, leading to transfer of moisture from the air to the desiccant material. By heating the desiccant, the vapor pressure differential is reversed in the regeneration process that drives the moisture from the desiccant. Figure 1 illustrates a rotary solid-desiccant dehumidifier. A burner or a thermally compatible source of waste heat can provide the required heat for regeneration.

  16. Diesel Engine Waste Heat Recovery Utilizing Electric Turbocompound Technology

    SciTech Connect (OSTI)

    Hopman, Ulrich,; Kruiswyk, Richard W.

    2005-07-05T23:59:59.000Z

    Caterpillar's Technology & Solutions Division conceived, designed, built and tested an electric turbocompound system for an on-highway heavy-duty truck engine. The heart of the system is a unique turbochargerr with an electric motor/generator mounted on the shaft between turbine and compressor wheels. When the power produced by the turbocharger turbine exceeds the power of the compressor, the excess power is converted to electrical power by the generator on the turbo shaft; that power is then used to help turn the crankshaft via an electric motor mounted in the engine flywheel housing. The net result is an improvement in engine fuel economy. The electric turbocompound system provides added control flexibility because it is capable of varying the amount of power extracted from the exhaust gases, thus allowing for control of engine boost. The system configuration and design, turbocharger features, control system development, and test results are presented.

  17. Advanced Oil Recovery Technologies for Improved Recovery from Slope Basin Clastic Reservoirs, Nash Draw Brushy Canyon Pool, Eddy County, NM

    SciTech Connect (OSTI)

    Mark B. Murphy

    2005-09-30T23:59:59.000Z

    The Nash Draw Brushy Canyon Pool in Eddy County New Mexico was a cost-shared field demonstration project in the U.S. Department of Energy Class III Program. A major goal of the Class III Program was to stimulate the use of advanced technologies to increase ultimate recovery from slope-basin clastic reservoirs. Advanced characterization techniques were used at the Nash Draw Pool (NDP) project to develop reservoir management strategies for optimizing oil recovery from this Delaware reservoir. The objective of the project was to demonstrate that a development program, which was based on advanced reservoir management methods, could significantly improve oil recovery at the NDP. Initial goals were (1) to demonstrate that an advanced development drilling and pressure maintenance program can significantly improve oil recovery compared to existing technology applications and (2) to transfer these advanced methodologies to other oil and gas producers. Analysis, interpretation, and integration of recently acquired geological, geophysical, and engineering data revealed that the initial reservoir characterization was too simplistic to capture the critical features of this complex formation. Contrary to the initial characterization, a new reservoir description evolved that provided sufficient detail regarding the complexity of the Brushy Canyon interval at Nash Draw. This new reservoir description was used as a risk reduction tool to identify 'sweet spots' for a development drilling program as well as to evaluate pressure maintenance strategies. The reservoir characterization, geological modeling, 3-D seismic interpretation, and simulation studies have provided a detailed model of the Brushy Canyon zones. This model was used to predict the success of different reservoir management scenarios and to aid in determining the most favorable combination of targeted drilling, pressure maintenance, well stimulation, and well spacing to improve recovery from this reservoir. An Advanced Log Analysis technique developed from the NDP project has proven useful in defining additional productive zones and refining completion techniques. This program proved to be especially helpful in locating and evaluating potential recompletion intervals, which has resulted in low development costs with only small incremental increases in lifting costs. To develop additional reserves at lower costs, zones behind pipe in existing wells were evaluated using techniques developed for the Brushy Canyon interval. These techniques were used to complete uphole zones in thirteen of the NDP wells. A total of 14 recompletions were done: four during 1999, four during 2000, two during 2001, and four during 2002-2003. These workovers added reserves of 332,304 barrels of oil (BO) and 640,363 MCFG (thousand cubic feet of gas) at an overall weighted average development cost of $1.87 per BOE (barrel of oil equivalent). A pressure maintenance pilot project in a developed area of the field was not conducted because the pilot area was pressure depleted, and the reservoir in that area was found to be compartmentalized and discontinuous. Economic analyses and simulation studies indicated that immiscible injection of lean hydrocarbon gas for pressure maintenance was not warranted at the NDP and would need to be considered for implementation in similar fields very soon after production has started. Simulation studies suggested that the injection of miscible carbon dioxide (CO{sub 2}) could recover significant quantities of oil at the NDP, but a source of low-cost CO{sub 2} was not available in the area. Results from the project indicated that further development will be under playa lakes and potash areas that were beyond the regions covered by well control and are not accessible with vertical wells. These areas, covered by 3-D seismic surveys that were obtained as part of the project, were accessed with combinations of deviated/horizontal wells. Three directional/horizontal wells have been drilled and completed to develop reserves under surface-restricted areas and potash mines. The third

  18. California DREAMing: the design of residential demand responsive technology with people in mind

    E-Print Network [OSTI]

    Peffer, Therese E.

    2009-01-01T23:59:59.000Z

    energy consumption feedback? Technological devices will not by themselves produce residentialresidential energy conservation (Bell et al. , 1996). Withdrawal of feedback

  19. Effect of Fuel Wobbe Number on Pollutant Emissions from Advanced Technology Residential Water Heaters: Results of Controlled Experiments

    E-Print Network [OSTI]

    Rapp, VH

    2014-01-01T23:59:59.000Z

    Emissions from Residential Water Heaters Table of Contents46 Table 10. Storage water heaters evaluated experimentally50 Table 11. Published information for water heater

  20. Advanced Energy and Water Recovery Technology from Low Grade Waste Heat

    SciTech Connect (OSTI)

    Dexin Wang

    2011-12-19T23:59:59.000Z

    The project has developed a nanoporous membrane based water vapor separation technology that can be used for recovering energy and water from low-temperature industrial waste gas streams with high moisture contents. This kind of exhaust stream is widely present in many industrial processes including the forest products and paper industry, food industry, chemical industry, cement industry, metal industry, and petroleum industry. The technology can recover not only the sensible heat but also high-purity water along with its considerable latent heat. Waste heats from such streams are considered very difficult to recover by conventional technology because of poor heat transfer performance of heat-exchanger type equipment at low temperature and moisture-related corrosion issues. During the one-year Concept Definition stage of the project, the goal was to prove the concept and technology in the laboratory and identify any issues that need to be addressed in future development of this technology. In this project, computational modeling and simulation have been conducted to investigate the performance of a nanoporous material based technology, transport membrane condenser (TMC), for waste heat and water recovery from low grade industrial flue gases. A series of theoretical and computational analyses have provided insight and support in advanced TMC design and experiments. Experimental study revealed condensation and convection through the porous membrane bundle was greatly improved over an impermeable tube bundle, because of the membrane capillary condensation mechanism and the continuous evacuation of the condensate film or droplets through the membrane pores. Convection Nusselt number in flue gas side for the porous membrane tube bundle is 50% to 80% higher than those for the impermeable stainless steel tube bundle. The condensation rates for the porous membrane tube bundle also increase 60% to 80%. Parametric study for the porous membrane tube bundle heat transfer performance was also done, which shows this heat transfer enhancement approach works well in a wide parameters range for typical flue gas conditions. Better understanding of condensing heat transfer mechanism for porous membrane heat transfer surfaces, shows higher condensation and heat transfer rates than non-permeable tubes, due to existence of the porous membrane walls. Laboratory testing has documented increased TMC performance with increased exhaust gas moisture content levels, which has exponentially increased potential markets for the product. The TMC technology can uniquely enhance waste heat recovery in tandem with water vapor recovery for many other industrial processes such as drying, wet and dry scrubber exhaust gases, dewatering, and water chilling. A new metallic substrate membrane tube development and molded TMC part fabrication method, provides an economical way to expand this technology for scaled up applications with less than 3 year payback expectation. A detailed market study shows a broad application area for this advanced waste heat and water recovery technology. A commercialization partner has been lined up to expand this technology to this big market. This research work led to new findings on the TMC working mechanism to improve its performance, better scale up design approaches, and economical part fabrication methods. Field evaluation work needs to be done to verify the TMC real world performance, and get acceptance from the industry, and pave the way for our commercial partner to put it into a much larger waste heat and waste water recovery market. This project is addressing the priority areas specified for DOE Industrial Technologies Program's (ITP's): Energy Intensive Processes (EIP) Portfolio - Waste Heat Minimization and Recovery platform.

  1. Maximizing Residential Energy Savings: Net Zero Energy House (ZEH) Technology Pathways

    SciTech Connect (OSTI)

    Anderson, R.; Roberts, D.

    2008-11-01T23:59:59.000Z

    To meet current U.S. Department of Energy zero-energy home performance goals, new technologies and solutions must increase whole-house efficiency savings by an additional 40% relative to those provided by best available components and systems.

  2. Status report on energy recovery from municipal solid waste: technologies, lessons and issues. Information bulletin of the energy task force of the urban consortium

    SciTech Connect (OSTI)

    None

    1980-01-01T23:59:59.000Z

    A review is presented of the lessons learned and issues raised regarding the recovery of energy from solid wastes. The review focuses on technologies and issues significant to currently operating energy recovery systems in the US - waterwall incineration, modular incineration, refuse derived fuels systems, landfill gas recovery systems. Chapters are: Energy Recovery and Solid Waste Disposal; Energy Recovery Systems; Lessons in Energy Recovery; Issues in Energy Recovery. Some basic conclusions are presented concerning the state of the art of energy from waste. Plants in shakedown or under construction, along with technologies in the development stages, are briefly described. Sources of additional information and a bibliography are included. (MCW)

  3. Residential Energy Efficiency Demonstration: Hawaii and Guam Energy Improvement Technology Demonstration Project

    SciTech Connect (OSTI)

    Earle, L.; Sparn, B.; Rutter, A.; Briggs, D.

    2014-03-01T23:59:59.000Z

    In order to meet its energy goals, the Department of Defense (DOD) has partnered with the Department of Energy (DOE) to rapidly demonstrate and deploy cost-effective renewable energy and energy-efficiency technologies. The scope of this project was to demonstrate tools and technologies to reduce energy use in military housing, with particular emphasis on measuring and reducing loads related to consumer electronics (commonly referred to as 'plug loads'), hot water, and whole-house cooling.

  4. Residential Mail Procedures Residential Mail Services

    E-Print Network [OSTI]

    Buehrer, R. Michael

    Residential Mail Procedures Residential Mail Services 23 Owens Hall Blacksburg, VA 24061 Phone.mailservices.vt.edu #12;Residential Mail Procedures Table of Contents General information.................................................................................8 #12;Residential Mail Procedures The following procedures have been establishes by the University

  5. Life cycle assessment of buildings technologies: High-efficiency commercial lighting and residential water heaters

    SciTech Connect (OSTI)

    Freeman, S.L.

    1997-01-01T23:59:59.000Z

    In this study the life cycle emissions and energy use are estimated for two types of energy technologies. The first technology evaluated is the sulfur lamp, a high-efficiency lighting system under development by the US Department of Energy (DOE) and Fusion Lighting, the inventor of the technology. The sulfur lamp is compared with conventional metal halide high-intensity discharge lighting systems. The second technology comparison is between standard-efficiency and high-efficiency gas and electric water heaters. In both cases the life cycle energy use and emissions are presented for the production of an equivalent level of service by each of the technologies. For both analyses, the energy use and emissions from the operation of the equipment are found to dominate the life cycle profile. The life cycle emissions for the water heating systems are much more complicated. The four systems compared include standard- and high-efficiency gas water heaters, standard electric resistance water heaters, and heat pump water heaters.

  6. Building America Technology Solutions for New and Existing Homes: Optimizing Hydronic System Performance in Residential Applications (Fact Sheet)

    Broader source: Energy.gov [DOE]

    In this project, researchers from the Consortium for Advanced Residential Buildings team worked with industry partners to develop hydronic system designs that would address performance issues and result in higher overall system efficiencies and improved response times.

  7. Residential Buildings Integration Program Overview - 2014 BTO...

    Broader source: Energy.gov (indexed) [DOE]

    provided an overview of the Building Technologies Office's Residential Buildings Integration Program. Through robust feedback, the BTO Program Peer Review enhances existing...

  8. Advanced Oil Recovery Technologies for Improved Recovery from Slope Basin Clastic Reservoirs, Nash Draw Brushy Canyon Pool, Eddy County, New Mexico, Class III

    SciTech Connect (OSTI)

    Murphy, Michael B.

    2002-02-21T23:59:59.000Z

    The overall objective of this project is to demonstrate that a development program based on advanced reservoir management methods can significantly improve oil recovery at the Nash Draw Pool (NDP). The plan includes developing a control area using standard reservoir management techniques and comparing its performance to an area developed using advanced reservoir management methods. Specific goals are (1) to demonstrate that an advanced development drilling and pressure maintenance program can significantly improve oil recovery compared to existing technology applications and (2) to transfer these advanced methodologies to oil and gas producers in the Permian Basin and elsewhere throughout the U.S. oil and gas industry.

  9. Applications of EOR (enhanced oil recovery) technology in field projects--1990 update

    SciTech Connect (OSTI)

    Pautz, J.F.; Thomas, R.D.

    1991-01-01T23:59:59.000Z

    Trends in the type and number of US enhanced oil recovery (EOR) projects are analyzed for the period from 1980 through 1989. The analysis is based on current literature and news media and the Department of Energy (DOE) EOR Project Data Base, which contains information on over 1,348 projects. The characteristics of the EOR projects are grouped by starting date and process type to identify trends in reservoir statistics and applications of process technologies. Twenty-two EOR projects starts were identified for 1989 and ten project starts for 1988. An obvious trend over recent years has been the decline in the number of project starts since 1981 until 1988 which corresponds to the oil price decline during that period. There was a modest recovery in 1989 of project starts, which lags the modest recovery of oil prices in 1987 that was reconfirmed in 1989. During the time frame of 1980 to 1989, there has been a gradual improvement in costs of operation for EOR technology. The perceived average cost of EOR has gone down from a $30/bbl range to low $20/bbl. These costs of operation seems to stay just at the price of oil or slightly above to result in marginal profitability. The use of polymer flooding has drastically decreased both in actual and relative numbers of project starts since the oil price drop in 1986. Production from polymer flooding is down more than 50%. Long-term plans for large, high-cost projects such as CO{sub 2} flooding in West Texas, steamflooding in California, and hydrocarbon flooding on the North Slope have continued to be implemented. EOR process technologies have been refined to be more cost effective as shown by the continued application and rising production attributable to EOR. 8 refs., 6 figs., 13 tabs.

  10. Characterization of oil and gas reservoirs and recovery technology deployment on Texas State Lands

    SciTech Connect (OSTI)

    Tyler, R.; Major, R.P.; Holtz, M.H. [Univ. of Texas, Austin, TX (United States)] [and others

    1997-08-01T23:59:59.000Z

    Texas State Lands oil and gas resources are estimated at 1.6 BSTB of remaining mobile oil, 2.1 BSTB, or residual oil, and nearly 10 Tcf of remaining gas. An integrated, detailed geologic and engineering characterization of Texas State Lands has created quantitative descriptions of the oil and gas reservoirs, resulting in delineation of untapped, bypassed compartments and zones of remaining oil and gas. On Texas State Lands, the knowledge gained from such interpretative, quantitative reservoir descriptions has been the basis for designing optimized recovery strategies, including well deepening, recompletions, workovers, targeted infill drilling, injection profile modification, and waterflood optimization. The State of Texas Advanced Resource Recovery program is currently evaluating oil and gas fields along the Gulf Coast (South Copano Bay and Umbrella Point fields) and in the Permian Basin (Keystone East, Ozona, Geraldine Ford and Ford West fields). The program is grounded in advanced reservoir characterization techniques that define the residence of unrecovered oil and gas remaining in select State Land reservoirs. Integral to the program is collaboration with operators in order to deploy advanced reservoir exploitation and management plans. These plans are made on the basis of a thorough understanding of internal reservoir architecture and its controls on remaining oil and gas distribution. Continued accurate, detailed Texas State Lands reservoir description and characterization will ensure deployment of the most current and economically viable recovery technologies and strategies available.

  11. Combined Heat and Power for Saving Energy and Carbon in Residential Buildings

    E-Print Network [OSTI]

    2000-01-01T23:59:59.000Z

    the potential for CHP in residential homes at the case ofless than 10 kW) CHP for residential buildings. This isstates. Comparison of residential micro CHP technologies to

  12. Advanced Oil Recovery Technologies for Improved Recovery from Slope Basin Clastic Reservoirs, Nash Draw Brushy Canyon Pool, Eddy County, NM

    SciTech Connect (OSTI)

    Murphy, M.B.

    1999-02-01T23:59:59.000Z

    Advanced reservoir characterization techniques are being used at the Nash Draw Brushy Canyon Pool project to develop reservoir management strategies for optimizing oil recovery from this Delaware reservoir. The reservoir characterization, geologic modeling, 3-D seismic interpretation, and simulation studies have provided a detailed model of the Brushy Canyon zones. This model was used to predict the success of different reservoir management scenarios and to aid in determining the most favorable combination of targeted drilling, pressure maintenance, well stimulation, and well spacing to improve recovery from this reservoir.

  13. Energy Savings Potential and RD&D Opportunities for Residential...

    Broader source: Energy.gov (indexed) [DOE]

    assesses 135 different heating, ventilation, and air-conditioning (HVAC) technologies for U.S. residential buildings to identify and provide analysis on 19 priority technology...

  14. Guidelines for residential commissioning

    E-Print Network [OSTI]

    Wray, Craig P.; Walker, Iain S.; Sherman, Max H.

    2003-01-01T23:59:59.000Z

    Potential Benefits of Commissioning California Homes”.Delp. 2000. “Residential Commissioning: A Review of Relatedfor Evaluating Residential Commissioning Metrics” Lawrence

  15. Characterization of high molecular weight compounds -- Implications for advanced-recovery technologies

    SciTech Connect (OSTI)

    Wavrek, D.A.; Dahdah, N.F. [Univ. of South Carolina, Columbia, SC (United States); [Univ. of Utah, Salt Lake City, UT (United States)

    1995-11-01T23:59:59.000Z

    Crude oils with high pour points and undesired flow properties commonly contain a diverse assemblage of high molecular weight (HMW) compounds. The negative economic impact these compounds impose is manifested by the requisite for expensive well treatments to alleviate the impact from increased equipment failure, reduced well productivity, and lower ultimate recoveries. The failure of traditional methods to predict the precipitation of solid phases can be partially attributed to an inaccurate understanding of the molecular composition of the HMW components. This paper reports the authors progress in developing analytical techniques for direct determination of compounds up to C{sub 90} with readily available instrumentation. They believe this technology will help lead to production strategies that are more efficient and allow better estimates of production costs by more accurate forecasting of production problems.

  16. Advanced Membrane Separation Technologies for Energy Recovery from Industrial Process Streams

    SciTech Connect (OSTI)

    Keiser, J.R.; Wang, D. (Gas Technology Institute); Bischoff, B.; Ciora (Media and Process Technology); Radhakrishnan, B.; Gorti, S.B.

    2013-01-14T23:59:59.000Z

    Recovery of energy from relatively low-temperature waste streams is a goal that has not been achieved on any large scale. Heat exchangers do not operate efficiently with low-temperature streams and thus require such large heat exchanger surface areas that they are not practical. Condensing economizers offer one option for heat recovery from such streams, but they have not been widely implemented by industry. A promising alternative to these heat exchangers and economizers is a prototype ceramic membrane system using transport membrane technology for separation of water vapor and recovery of heat. This system was successfully tested by the Gas Technology Institute (GTI) on a natural gas fired boiler where the flue gas is relatively clean and free of contaminants. However, since the tubes of the prototype system were constructed of aluminum oxide, the brittle nature of the tubes limited the robustness of the system and even limited the length of tubes that could be used. In order to improve the robustness of the membrane tubes and make the system more suitable for industrial applications, this project was initiated with the objective of developing a system with materials that would permit the system to function successfully on a larger scale and in contaminated and potentially corrosive industrial environments. This required identifying likely industrial environments and the hazards associated with those environments. Based on the hazardous components in these environments, candidate metallic materials were identified that are expected to have sufficient strength, thermal conductivity and corrosion resistance to permit production of longer tubes that could function in the industrial environments identified. Tests were conducted to determine the corrosion resistance of these candidate alloys, and the feasibility of forming these materials into porous substrates was assessed. Once the most promising metallic materials were identified, the ability to form an alumina membrane layer on the surface of the metallic tubes was evaluated. Evaluation of this new style of membrane tube involved exposure to SO{sub 2} containing gases as well as to materials with a potential for fouling. Once the choice of substrate and membrane materials and design were confirmed, about 150 tubes were fabricated and assembled into three modules. These modules were mounted on an industrial size boiler and their performance carefully monitored during a limited testing period. The positive results of this performance test confirm the feasibility of utilizing such a system for recovery of heat and water from industrial waste streams. The improved module design along with use of long metallic substrate tubes with a ceramic membrane on the outer surface resulted in the successful, limited scale demonstration of the Transport Membrane Condenser (TMC) technology in the GTI test facility. This test showed this technology can successfully recover a significant amount of heat and water from gaseous waste streams. However, before industry will make the investment to install a full scale TMC, a full scale system will need to be constructed, installed and successfully operated at a few industrial sites. Companies were identified that had an interest in serving as a host site for a demonstration system.

  17. Advanced Oil Recovery Technologies for Improved Recovery From Slope Clastic Reservoirs, Nash Draw Brushy Canyon Pool, Eddy County, New Mexico

    SciTech Connect (OSTI)

    Mark B. Murphy

    1998-01-30T23:59:59.000Z

    The overall goal of this project is to demonstrate that an advanced development drilling and pressure maintenance program based on advanced reservoir management methods can significantly improve oil recovery. The plan included developing a control area using standard reservoir management techniques and comparing its performance to an area developed using advanced methods. A key goal is to transfer advanced methodologies to oil and gas producers in the Permian Basin and elsewhere, and throughout the US oil and gas industry.

  18. American Recovery and Reinvestment Act of 2009 (ARRA) Cost Share: Alternative and Renewable Fuel and Vehicle Technology Program.

    E-Print Network [OSTI]

    and other matching funds instead of federal dollars, does this exclude us from the process? Will the Energy and Renewable Fuel and Vehicle Technology Program. Questions and Answers as of 4/27/09 1 1) Our county is working on a joint proposal for American Recovery and Reinvestment Act (ARRA) funds with other agencies

  19. User data package for implementation of electrolytic recovery technology in Navy electroplating shops. Final report, March 1993-January 1995

    SciTech Connect (OSTI)

    Ford, K.; Koff, J.

    1995-10-01T23:59:59.000Z

    In FY94 the Naval Facilities Engineering Service Center (NFESC) completed tests on three electrolytic recovery systems used for the recovery of metals and destruction of cyanide from electroplating wastewaters. Field testing and evaluation was conducted at NSY Norfolk, NAWC Indianapolis, and NADEP Cherry Pt. for five metal recovery applications: silver cyanide, copper cyanide, acid copper, electroless nickel, and tin-lead fluoborate. Advanced design features for metal recovery, including enhanced fluidized circulation, specialized oxidizing anodes, and high porous surface area cathodes were evaluated to optimize performance. NFESC demonstrated that electrolytic recovery systems can be adapted for effective use in the Navy plating operations where production is often sporadic as contrasted to industrial plating processes. The electrolytic recovery units removed metal ions from the rinsewater to below 1 ppm for each application. Electrowinning, as an alternative technology, can reduce industrial waste treatment costs and hazardous sludge generated from conventional treatment This User Data Package (UDP) covers the design, operational and maintenance requirements for these electrolytic systems. This UDP will be applicable to small Navy plating shops where closed-loop waste recycling and point source minimization is necessary for environmental compliance and cost competitiveness.

  20. Development of an In Situ Biosurfactant Production Technology for Enhanced Oil Recovery

    SciTech Connect (OSTI)

    M.J. McInerney; R.M. Knapp; Kathleen Duncan; D.R. Simpson; N. Youssef; N. Ravi; M.J. Folmsbee; T.Fincher; S. Maudgalya; Jim Davis; Sandra Weiland

    2007-09-30T23:59:59.000Z

    The long-term economic potential for enhanced oil recovery (EOR) is large with more than 300 billion barrels of oil remaining in domestic reservoirs after conventional technologies reach their economic limit. Actual EOR production in the United States has never been very large, less than 10% of the total U. S. production even though a number of economic incentives have been used to stimulate the development and application of EOR processes. The U.S. DOE Reservoir Data Base contains more than 600 reservoirs with over 12 billion barrels of unrecoverable oil that are potential targets for microbially enhanced oil recovery (MEOR). If MEOR could be successfully applied to reduce the residual oil saturation by 10% in a quarter of these reservoirs, more than 300 million barrels of oil could be added to the U.S. oil reserve. This would stimulate oil production from domestic reservoirs and reduce our nation's dependence on foreign imports. Laboratory studies have shown that detergent-like molecules called biosurfactants, which are produced by microorganisms, are very effective in mobilizing entrapped oil from model test systems. The biosurfactants are effective at very low concentrations. Given the promising laboratory results, it is important to determine the efficacy of using biosurfactants in actual field applications. The goal of this project is to move biosurfactant-mediated oil recovery from laboratory investigations to actual field applications. In order to meet this goal, several important questions must be answered. First, it is critical to know whether biosurfactant-producing microbes are present in oil formations. If they are present, then it will be important to know whether a nutrient regime can be devised to stimulate their growth and activity in the reservoir. If biosurfactant producers are not present, then a suitable strain must be obtained that can be injected into oil reservoirs. We were successful in answering all three questions. The specific objectives of the project were (1) to determine the prevalence of biosurfactant producers in oil reservoirs, and (2) to develop a nutrient regime that would stimulate biosurfactant production in the oil reservoir.

  1. Supporting technology for enhanced oil recovery: Sixth amendment and extension to Annex IV enhanced oil recovery thermal processes

    SciTech Connect (OSTI)

    Reid, T.B. (USDOE Bartlesville Project Office, OK (United States)); Rivas, O. (INTEVEP, Filial de Petroleos de Venezuela, SA, Caracas (Venezuela))

    1991-10-01T23:59:59.000Z

    This report contains the results of efforts under the six tasks of the Sixth Amendment and Extension of Annex 4, Enhanced Oil Recovery Thermal Processes of the Venezuela/USA Agreement. The report is presented in sections (for each of the 6 tasks) and each section contains one or more reports prepared by various individuals or groups describing the results of efforts under each of the tasks. A statement of each task, taken from the agreement, is presented on the first page of each section. The tasks are numbered 44 through 49. Tasks are: DOE-SUPRI-laboratory research on steam foam, CAT-SCAN, and in-situ combustion; INTEVEP-laboratory research and field projects on steam foam; DOE-NIPER-laboratory research and field projects light oil steam flooding; INTEVEP-laboratory research and field studies on wellbore heat losses; DOE-LLNL-laboratory research and field projects on electromagnetic induction tomography; INTEVEP-laoboratory research on mechanistic studies.

  2. Residential Services Headlease residents

    E-Print Network [OSTI]

    Sussex, University of

    Residential Services Headlease residents handbook 2013-2014 #12;Map of Brighton inside front cover packs Rent 5 Residential Advisor (RA) network 6 Senior residential advisors Residential Student Support Contents Contents Brighton 1 #12;Welcome Congratulations on securing your place at Sussex. Residential

  3. The potential environmental gains from recycling waste plastics: Simulation of transferring recycling and recovery technologies to Shenyang, China

    SciTech Connect (OSTI)

    Chen Xudong, E-mail: chen.xudong@nies.go.jp [Institute of Applied Ecology, Chinese Academy of Sciences, No. 72 Wenhua Road, Shenyang 110016 (China); National Institute for Environmental Studies, 16-2 Onogawa, Tsukuba, Ibaraki 305-8506 (Japan); Graduate School of Environmental Studies, Nagoya University, Furo-cho, Chikusa-ku, Nagoya City 464-8601 (Japan); Xi Fengming [Institute of Applied Ecology, Chinese Academy of Sciences, No. 72 Wenhua Road, Shenyang 110016 (China); Geng Yong, E-mail: gengyong@iae.ac.cn [Institute of Applied Ecology, Chinese Academy of Sciences, No. 72 Wenhua Road, Shenyang 110016 (China); Fujita, Tsuyoshi [National Institute for Environmental Studies, 16-2 Onogawa, Tsukuba, Ibaraki 305-8506 (Japan); Graduate School of Environmental Studies, Nagoya University, Furo-cho, Chikusa-ku, Nagoya City 464-8601 (Japan)

    2011-01-15T23:59:59.000Z

    Research highlights: {yields} Urban symbiosis creates compatibility of industrial development and waste management. {yields} Mechanical technology leads to more CO{sub 2} emission reduction. {yields} Energy recovery technology leads to more fossil fuel saving. {yields} Clean energy makes recycling technologies cleaner. {yields} Demand management is crucial for realizing potential environmental gains of recycling. - Abstract: With the increasing attention on developing a low-carbon economy, it is necessary to seek appropriate ways on reducing greenhouse gas (GHG) emissions through innovative municipal solid waste management (MSWM), such as urban symbiosis. However, quantitative assessments on the environmental benefits of urban symbiosis, especially in developing countries, are limited because only a limited number of planned synergistic activities have been successful and it is difficult to acquire detailed inventory data from private companies. This paper modifies and applies a two-step simulation system and used it to assess the potential environmental benefits, including the reduction of GHG emissions and saving of fossil fuels, by employing various Japanese plastics recycling/energy-recovery technologies in Shenyang, China. The results showed that among various recycling/energy-recovery technologies, the mechanical waste plastics recycling technology, which produces concrete formwork boards (NF boards), has the greatest potential in terms of reducing GHG emissions (1.66 kg CO{sub 2}e/kg plastics), whereas the technology for the production of refuse plastic fuel (RPF) has the greatest potential on saving fossil fuel consumption (0.77 kgce/kg-plastics). Additional benefits can be gained by applying combined technologies that cascade the utilization of waste plastics. Moreover, the development of clean energy in conjunction with the promotion of new waste plastics recycling programs could contribute to additional reductions in GHG emissions and fossil fuel consumption.

  4. GBRN/DOE Project: Dynamic enhanced recovery technologies. Quarterly technical report, January 1994--March 1994

    SciTech Connect (OSTI)

    Anderson, R.N.

    1994-04-15T23:59:59.000Z

    Global Basins Research Network will perform a field demonstration of their ``Dynamic Enhanced Recovery Technology`` to test the concept that the growth faults in EI-330 field are conduits through which producing reservoirs are charged and that enhanced production can be developed by producing directly from the fault zone. The site, operated by Penzoil, is located in 250 feet of water the productive depth intervals include 4000 to 9000 feet. Previous work, which incorporated pressure, temperature, fluid flow, heat flow, seismic, production, and well log data, indicated active fluid flow along fault zones. The field demonstration will be accomplished by drilling and production test of growth fault systems associated with the EI-330 field. The project utilizes advanced 3-D seismic analysis, geochemical studies, structural and stratigraphic reservoir characterization, reservoir simulation, and compact visualization systems. The quarterly progress reports contains accomplishments to date for the following tasks: Management start-up; database management; field and demonstration equipment; reservoir characterization, modeling; geochemistry; and data integration.

  5. Application of Reservoir Characterization and Advanced Technology to Improve Recovery and Economics in a Lower Quality Shallow Shelf Carbonate Reservoir

    SciTech Connect (OSTI)

    Taylor, Archie R.

    1996-07-01T23:59:59.000Z

    The Class 2 Project at West Welch was designed to demonstrate the use of advanced technologies to enhance the economics of improved oil recovery (IOR) projects in lower quality Shallow Shelf Carbonate (SSC) reservoirs, resulting in recovery of additional oil that would otherwise be left in the reservoir at project abandonment. Accurate reservoir description is critical to the effective evaluation and efficient design of IOR projects in the heterogeneous SSC reservoirs. Therefore, the majority of Budget Period 1 was devoted to reservoir characterization. Technologies being demonstrated include: (1) Advanced petrophysics; (2) Three dimensional (3-D) seismic; (3) Cross-well bore tomography; (4) Advanced reservoir simulation; (5) Carbon dioxide (CO{sub 2}) stimulation treatments; (6) Hydraulic fracturing design and monitoring; and (7) Mobility control agents.

  6. APPLICATION OF RESERVOIR CHARACTERIZATION AND ADVANCED TECHNOLOGY TO IMPROVE RECOVERY AND ECONOMICS IN A LOWER QUALITY SHALLOW SHELF SANANDRES RESERVOIR

    SciTech Connect (OSTI)

    Unknown

    2003-01-15T23:59:59.000Z

    The Class 2 Project at West Welch was designed to demonstrate the use of advanced technologies to enhance the economics of improved oil recovery (IOR) projects in lower quality Shallow Shelf Carbonate (SSC) reservoirs, resulting in recovery of additional oil that would otherwise be left in the reservoir at project abandonment. Accurate reservoir description is critical to the effective evaluation and efficient design of IOR projects in the heterogeneous SSC reservoirs. Therefore, the majority of Budget Period 1 was devoted to reservoir characterization. Technologies being demonstrated include: (1) Advanced petrophysics; (2) Three-dimensional (3-D) seismic; (3) Crosswell bore tomography; (4) Advanced reservoir simulation; (5) Carbon dioxide (CO{sub 2}) stimulation treatments; (6) Hydraulic fracturing design and monitoring; (7) Mobility control agents.

  7. Energy for 500 Million Homes: Drivers and Outlook for Residential Energy Consumption in China

    E-Print Network [OSTI]

    Zhou, Nan

    2010-01-01T23:59:59.000Z

    Heat Pump Air Conditioner District Heating Boiler Gas Boiler Electricity Figure 11 Space Heating Technology Shift in Residential

  8. Residential Solar Valuation Rates

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Residential Solar Valuation Rates Karl R. Rbago Rbago Energy LLC 1 The Ideal Residential Solar Tariff Fair to the utility and non-solar customers Fair compensation to...

  9. Waste Heat Recovery

    Office of Environmental Management (EM)

    DRAFT - PRE-DECISIONAL - DRAFT 1 Waste Heat Recovery 1 Technology Assessment 2 Contents 3 1. Introduction to the TechnologySystem ......

  10. Xcel Energy- Residential Energy Efficiency Rebate Programs

    Broader source: Energy.gov [DOE]

    In addition to home energy audits, Xcel Energy offers rebates to North Dakota residential customers for the purchase of energy efficient heating and water heating technologies. Xcel offers rebates...

  11. Recovery of uranium from seawater-status of technology and needed future research and development

    SciTech Connect (OSTI)

    Kelmers, A. D.

    1980-01-01T23:59:59.000Z

    A survey of recent publications concerning uranium recovery from seawater shows that considerable experimental work in this area is currently under way in Japan, less in European countries. Repeated screening programs have identified hydrous titanium oxide as the most promising candidate adsorbent; however, many of its properties, such as distribution coefficient, selectivity, loading, and possibly stability, appear to fall far short of those required for a practical recovery system. In addition, various evaluations of the energy efficiency of pumped or tidal power schemes for contacting the sorbent and seawater are in serious disagreement. Needed future research and development tasks have been identified. A fundamental development program to achieve significantly improved adsorbent properties would be required to permit economical recovery of uranium from seawater. Unresolved engineering aspects of such recovery systems are also identified and discussed. 63 references.

  12. Constrained Optimization Technology Based on Synthesis Concepts for Solving Complex Heat Recovery Problems

    E-Print Network [OSTI]

    Fuller, T. R.

    1979-01-01T23:59:59.000Z

    Simulation of complex heat recovery systems such as crude preheat trains using computer tools is now widely practiced. ChemDesign, Inc. has developed a computer tool which can perform this calculation but is also capable of synthesizing an optimum...

  13. Robotic technology to aid and assess recovery and learning in stroke patients

    E-Print Network [OSTI]

    Palazzolo, Jerome J

    2005-01-01T23:59:59.000Z

    Each year, about 700,000 people in the United States have a stroke, making it a leading cause of serious, long-term disability. Modalities of therapy often assume the processes underlying motor recovery and motor learning ...

  14. Constrained Optimization Technology Based on Synthesis Concepts for Solving Complex Heat Recovery Problems 

    E-Print Network [OSTI]

    Fuller, T. R.

    1979-01-01T23:59:59.000Z

    Simulation of complex heat recovery systems such as crude preheat trains using computer tools is now widely practiced. ChemDesign, Inc. has developed a computer tool which can perform this calculation but is also capable of synthesizing an optimum...

  15. Residential Learning University Housing

    E-Print Network [OSTI]

    Rusu, Adrian

    Residential Learning & University Housing Handbook 2008 - 2009 A Guide for Residential Living on the Campus of Rowan University #12;Welcome to Residential Learning & University Housing! The primary purpose of the Office of Residential Life & University Housing is to assist and support students in the pursuit

  16. RESIDENTIAL COLLEGES NORTHWESTERN

    E-Print Network [OSTI]

    Apkarian, A. Vania

    c RESIDENTIAL COLLEGES NORTHWESTERN #12;#12;Dear Northwestern Student: I hope you will review residential colleges. A residential college is a place where you can grow emotionally and intellectually, get and residential college fellows. More than a third of the first-year students living on campus choose to live

  17. Residential Colleges NORTHWESTERN

    E-Print Network [OSTI]

    Shull, Kenneth R.

    Residential Colleges NORTHWESTERN #12;#12;Dear Northwestern Student: I hope you will review residential colleges. A residential college is a place where you can grow emotionally and intellectually, get and residential college fellows. More than a third of the first-year students living on campus choose to live

  18. Program Final Report - Develop Thermoelectric Technology for Automotive Waste Heat Recovery

    SciTech Connect (OSTI)

    Gregory Meisner

    2011-08-31T23:59:59.000Z

    We conducted a vehicle analysis to assess the feasibility of thermoelectric technology for waste heat recovery and conversion to useful electrical power and found that eliminating the 500 W of electrical power generated by the alternator corresponded to about a 7% increase in fuel economy (FE) for a small car and about 6% for a full size truck. Electric power targets of 300 W were established for city and highway driving cycles for this project. We obtained critical vehicle level information for these driving cycles that enabled a high-level design and performance analysis of radiator and exhaust gas thermoelectric subsystems for several potential vehicle platforms, and we identified the location and geometric envelopes of the radiator and exhaust gas thermoelectric subsystems. Based on this analysis, we selected the Chevrolet Suburban as the most suitable demonstration vehicle for this project. Our modeling and thermal analysis assessment of a radiator-based thermoelectric generator (TEG), however, revealed severe practical limitations. Specifically the small temperature difference of 100°C or less between the engine coolant and ambient air results in a low Carnot conversion efficiency, and thermal resistance associated with air convection would reduce this conversion efficiency even further. We therefore decided not to pursue a radiator-based waste heat recovery system and focused only on the exhaust gas. Our overall approach was to combine science and engineering: (1) existing and newly developed TE materials were carefully selected and characterized by the material researcher members of our team, and most of the material property results were validated by our research partners, and (2) system engineers worked closely with vehicle engineers to ensure that accurate vehicle-level information was used for developing subsystem models and designs, and the subsystem output was analyzed for potential fuel economy gains. We incorporated material, module, subsystem, and integration costs into the material selection criteria in order to balance various materials, module and subsystem design, and vehicle integration options. Our work on advanced TE materials development and on TEG system design, assembly, vehicle integration, and testing proceeded in parallel efforts. Results from our two preliminary prototype TEGs using only Bi-Te TE modules allowed us to solve various mechanical challenges and to finalize and fine tune aspects of the design and implementation. Our materials research effort led us to quickly abandon work on PbTe and focus on the skutterudite materials due to their superior mechanical performance and suitability at automotive exhaust gas operating temperatures. We synthesized a sufficiently large quantity of skutterudite material for module fabrication for our third and final prototype. Our TEG#3 is the first of its kind to contain state-of-the-art skutterudite-based TE modules to be installed and tested on a production vehicle. The design, which consisted of 24 skutterudite modules and 18 Bi-Te modules, attempted to optimize electrical power generation by using these two kinds of TE modules that have their peak performance temperatures matched to the actual temperature profile of the TEG during operation. The performance of TEG#3 was limited by the maximum temperature allowable for the Bi-Te TE modules located in the colder end of the TEG, resulting in the operating temperature for the skutterudite modules to be considerably below optimum. We measured the power output for (1) the complete TEG (25 Watts) and (2) an individual TE module series string (1/3 of the TEG) operated at a 60°C higher temperature (19 Watts). We estimate that under optimum operating temperature conditions, TEG#3 will generate about 235 Watts. With additional improvements in thermal and electrical interfaces, temperature homogeneity, and power conditioning, we estimate TEG#3 could deliver a power output of about 425 Watts.

  19. Effect of Fuel Wobbe Number on Pollutant Emissions from Advanced Technology Residential Water Heaters: Results of Controlled Experiments

    SciTech Connect (OSTI)

    Rapp, VH; Singer, BC

    2014-03-01T23:59:59.000Z

    The research summarized in this report is part of a larger effort to evaluate the potential air quality impacts of using liquefied natural gas in California. A difference of potential importance between many liquefied natural gas blends and the natural gas blends that have been distributed in California in recent years is the higher Wobbe number of liquefied natural gas. Wobbe number is a measure of the energy delivery rate for appliances that use orifice- or pressure-based fuel metering. The effect of Wobbe number on pollutant emissions from residential water heaters was evaluated in controlled experiments. Experiments were conducted on eight storage water heaters, including five with “ultra low-NO{sub X}” burners, and four on-demand (tankless) water heaters, all of which featured ultra low-NO{sub X} burners. Pollutant emissions were quantified as air-free concentrations in the appliance flue and fuel-based emission factors in units of nanogram of pollutant emitter per joule of fuel energy consumed. Emissions were measured for carbon monoxide (CO), nitrogen oxides (NO{sub X}), nitrogen oxide (NO), formaldehyde and acetaldehyde as the water heaters were operated through defined operating cycles using fuels with varying Wobbe number. The reference fuel was Northern California line gas with Wobbe number ranging from 1344 to 1365. Test fuels had Wobbe numbers of 1360, 1390 and 1420. The most prominent finding was an increase in NO{sub X} emissions with increasing Wobbe number: all five of the ultra low-NO{sub X} storage water heaters and two of the four ultra low-NO{sub X} on-demand water heaters had statistically discernible (p<0.10) increases in NO{sub X} with fuel Wobbe number. The largest percentage increases occurred for the ultra low-NO{sub X} water heaters. There was a discernible change in CO emissions with Wobbe number for all four of the on-demand devices tested. The on-demand water heater with the highest CO emissions also had the largest CO increase with increasing fuel Wobbe number.

  20. Comparative sugar recovery data from laboratory scale application of leading pretreatment technologies to corn stover

    E-Print Network [OSTI]

    California at Riverside, University of

    Comparative sugar recovery data from laboratory scale application of leading pretreatment societal benefits, but pretreatment operations essential to economically viable yields have a major impact on costs and per- formance of the entire system. However, little comparative data is available on promising

  1. A critical review of single fuel and interfuel substitution residential energy demand models

    E-Print Network [OSTI]

    Hartman, Raymond Steve

    1978-01-01T23:59:59.000Z

    The overall purpose of this paper is to formulate a model of residential energy demand that adequately analyzes all aspects of residential consumer energy demand behavior and properly treats the penetration of new technologies, ...

  2. Supporting technology for enhanced oil recovery: EOR thermal processes. Seventh Amendment and Extension to Annex 4, Enhanced oil recovery thermal processes

    SciTech Connect (OSTI)

    Reid, T B [USDOE Bartlesville Project Office, OK (United States)] [USDOE Bartlesville Project Office, OK (United States); Colonomos, P [INTEVEP, Filial de Petroleos de Venezuela, SA, Caracas (Venezuela)] [INTEVEP, Filial de Petroleos de Venezuela, SA, Caracas (Venezuela)

    1993-02-01T23:59:59.000Z

    This report contains the results of efforts under the six tasks of the Seventh Amendment and Extension of Annex IV, Enhanced Oil Recovery Thermal Processes of the Venezuela/USA Agreement. The report is presented in sections (for each of the 6 tasks) and each section contains one or more reports prepared by various individuals or groups describing the results of efforts under each of the tasks. A statement of each task, taken from the agreement, is presented on the first page of each section. The tasks are numbered 50 through 55. The first, second, third, fourth, fifth, sixth and seventh reports on Annex IV, Venezuela MEM/USA-DOE Fossil Energy Report IV-1, IV-2, IV-3, IV-4, IV-5 and IV-6 (DOE/BETC/SP-83/15, DOE/BC-84/6/SP, DOE/BC-86/2/SP, DOE/BC-87/2/SP, DOE/BC-89/l/SP, DOE/BC-90/l/SP, and DOE/BC-92/l/SP) contain the results for the first 49 tasks. Those reports are dated April 1983, August 1984, March 1986, July 1987, November 1988, December 1989, and October 1991, respectively. Each task report has been processed separately for inclusion in the Energy Science and Technology Database.

  3. Sampling, preservation, and analytical methods research plan - liquid redox sulfur recovery technologies: Stretford process. Topical report

    SciTech Connect (OSTI)

    Trofe, T.W.

    1986-11-01T23:59:59.000Z

    GRI has developed a sampling, preservation, and analytical (SPandA) methods research plan for developing and validating analytical methodologies for liquid redox sulfur recovery processes (e.g., Stretford process). The document describes the technical approach which will be used to direct research activities to develop SPandA methodologies to analyze gaseous, aqueous, and solid process streams from the Stretford sulfur recovery process. The primary emphasis is on developing and validating methodologies for analyzing vanadium (IV) and vanadium (V), anthraquinone disulphonic acids (ADA), polysulfide-sulfur, sulfide-sulfur, thiosulfate, sulfate, thiocyanate, total soluble sulfur, alkalinity, pH, total dissolved solids, total suspended solids, and dissolved oxygen in aqueous process streams. The document includes descriptions of the process streams and chemical species, selection of candidate analytical methods, and technical approach for methods development and validation.

  4. Residential market transformation: National and regional indicators

    SciTech Connect (OSTI)

    Van Wie McGrory, Laura L.; McNamara, Maureen; Suozzo, Margaret

    2000-06-01T23:59:59.000Z

    A variety of programs are underway to address market barriers to the adoption of energy-efficient residential technologies and practices. Most are administered by utilities, states, or regions that rely on the Energy Star as a consistent platform for program marketing and messaging. This paper reviews regional and national market transformation activities for three key residential end-uses -- air conditioning, clothes washing, and lighting -- characterizing current and ongoing programs; reporting on progress; identifying market indicators; and discussing implications.

  5. Technologies for the separation and recovery of hydrogen from refinery streams

    SciTech Connect (OSTI)

    Wilcher, F.P.; Miller, G.Q.; Mitariten, M.J. [UOP, Des Plaines, IL (United States)

    1995-12-31T23:59:59.000Z

    The effective use and recovery of hydrogen from the major hydrogen-containing streams in the refinery is an important strategy to meet the refining demands of the 1990`s. Hydrogen upgrading in refinery applications can be achieved by pressure swing adsorption (PSA), selective permeation using polymer membranes, and cryogenic separation. Each of these processes has different characteristics which are of advantage in different situations. Process selection and specific application examples are discussed.

  6. Residential Solar Investment Program

    Broader source: Energy.gov [DOE]

    In March 2012, the CT Green Bank* unveiled its solar photovoltaic residential investment program with the ultimate goal to support 30 megawatts of residential solar photovoltaics (PV). HB 6838...

  7. Residential Energy Audits

    E-Print Network [OSTI]

    Brown, W.

    1985-01-01T23:59:59.000Z

    A series of events coupled with the last five years experience performing Residential Conservation Service (RCS) audits have resulted in renewed efforts by utilities to evaluate the role of residential energy audits. There are utilities where...

  8. Leasing Residential PV Systems

    SciTech Connect (OSTI)

    Rutberg, Michael; Bouza, Antonio

    2013-11-01T23:59:59.000Z

    The article discusses the adoption, consequences and current market status of the leasing of residential photovoltaic systems. It addresses attributed energy savings and market potential of residential system leasing.

  9. Presentation: Better Buildings Residential Program Solution Center...

    Office of Environmental Management (EM)

    Presentation: Better Buildings Residential Program Solution Center Presentation: Better Buildings Residential Program Solution Center Presentation: Better Buildings Residential...

  10. Collaborating With Utilities on Residential Energy Efficiency...

    Office of Environmental Management (EM)

    on Residential Energy Efficiency Better Buildings Residential Network Program Sustainability Peer Exchange Call Series: Collaborating With Utilities on Residential Energy...

  11. Better Buildings Residential Program Solution Center Demonstration...

    Energy Savers [EERE]

    Better Buildings Residential Program Solution Center Demonstration Better Buildings Residential Program Solution Center Demonstration Better Buildings Residential Program Solution...

  12. Membership Criteria: Better Buildings Residential Network | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Membership Criteria: Better Buildings Residential Network Membership Criteria: Better Buildings Residential Network Membership Criteria: Better Buildings Residential Network...

  13. Housing and Residential Life

    E-Print Network [OSTI]

    Fernandez, Eduardo

    1 Housing and Residential Life Guidebook 2014-2015 LivingCampus #12;2 fau.edu/housing Welcome! The Housing & Residential Life staff is excited that you've moved home! Florida Atlantic University residence halls and apartments are your home for the 2014-2015 school year. The Housing & Residential Life staff

  14. AREA COORDINATOR RESIDENTIAL EDUCATION

    E-Print Network [OSTI]

    Bordenstein, Seth

    AREA COORDINATOR RESIDENTIAL EDUCATION VANDERBILT UNIVERSITY, NASHVILLE, TENNESSEE The Office of Housing and Residential Education at Vanderbilt University is seeking applicants for an Area Coordinator. The Area Coordinator is responsible for assisting in the management and operation of a residential area

  15. PROPOSED RESIDENTIAL ALTERNATIVE CALCULATION

    E-Print Network [OSTI]

    PROPOSED RESIDENTIAL ALTERNATIVE CALCULATION MANUAL (ACM) APPROVAL METHOD for the 2013 2012 CEC400201200715DAY #12;201308 Residential ACM Approval Manual 2-2 1. Overview Minimum Modeling Capabilities 1. Overview This Manual explains the requirements for approval of residential Alternative

  16. Residential Wood Residential wood combustion (RWC) is

    E-Print Network [OSTI]

    Residential Wood Combustion Residential wood combustion (RWC) is increasing in Europe because PM2.5. Furthermore, other combustion- related sources of OA in Europe may need to be reassessed. Will it affect global OA emission estimates? Combustion of biofuels is globally one of the major OA sources

  17. Sustainable Retrofit of Residential Roofs Using Metal Roofing Panels, Thin-Film Photovoltaic Laminates, and PCM Heat Sink Technology

    SciTech Connect (OSTI)

    Kosny, Jan [ORNL] [ORNL; Miller, William A [ORNL] [ORNL; Childs, Phillip W [ORNL] [ORNL; Biswas, Kaushik [ORNL] [ORNL

    2011-01-01T23:59:59.000Z

    During September-October 2009, research teams representing Metal Construction Association (the largest North American trade association representing metal building manufacturers, builders, and material suppliers), CertainTeed (one of the largest U.S. manufacturers of thermal insulation and building envelope materials), Unisolar (largest U.S. producer of amorphous silicone photo-voltaic (PV) laminates), Phase Change Energy (manufacturer of bio-based PCM), and Oak Ridge National Laboratory (ORNL) installed three experimental attics utilizing different roof retrofit strategies in the ORNL campus. The main goal of this project was experimental evaluation of a newly-developed sustainable re-roofing technology utilizing amorphous silicone PV laminates integrated with metal roof and PCM heat sink. The experimental attic with PV laminate was expected to work during the winter time as a passive solar collector with PCM storing solar heat, absorbed during the day, and increasing overall attic air temperature during the night.

  18. Supporting technology for enhanced oil recovery: CO/sub 2/ miscible flood predictive model

    SciTech Connect (OSTI)

    Ray, R.M.; Munoz, J.D.

    1986-12-01T23:59:59.000Z

    The CO/sub 2/ Miscible Flood Predictive Model (CO2PM) was developed by Scientific Software-Intercomp for the US Department of Energy and was used in the National Petroleum Council's (NPC) 1984 survey of US enhanced oil recovery potential (NPC, 1984). The CO2PM is applicable to both secondary (mobile oil) and tertiary (residual oil) floods, and to either continuous CO/sub 2/ injection or water-alternating-gas (WAG) processes. In the CO2PM, an oil rate versus time function for a single pattern is computed, the results of which are passed to the economic calculations. To estimate multi-pattern project behavior a pattern development schedule is required. After-tax cash flow is computed by combining revenues with costs for drilling, conversion and well workovers, CO/sub 2/ compression and recycle, fixed and variable operating costs, water treating and disposal costs, depreciation, royalties, severance, state, federal and windfall profit taxes, cost and price inflation rates, and the discount rate. A lumped parameter uncertainty model is used to estimate risk, allowing for variation in computed project performance within an 80% confidence interval. The CO2PM is a three-dimensional (layered, five-spot), two-phase (aqueous and oleic), three component (oil, water, and CO/sub 2/) model. It computes oil and CO/sub 2/ breakthrough and recovery from fractional theory modified for the effects of viscous fingering, areal sweep, vertical heterogeneity and gravity segregation. 23 refs., 19 figs., 57 tabs.

  19. Vehicle Technologies Office Merit Review 2014: Heavy Duty Roots Expander Heat Energy Recovery (HD-REHER)

    Broader source: Energy.gov [DOE]

    Presentation given by Eaton Corporation at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about heavy duty roots expander...

  20. Formaldehyde Transfer in Residential Energy Recovery Ventilators

    E-Print Network [OSTI]

    ;1. INTRODUCTION Mechanical ventilation systems were once considered unnecessary for single-family, US homes

  1. DEPARTMENT OF RESIDENTIAL LIFE Residential Life Staff Manual.

    E-Print Network [OSTI]

    Missouri-Rolla, University of

    1 Appendix A DEPARTMENT OF RESIDENTIAL LIFE Residential Life Staff Manual. Residential Life Program Listing #12;2 MISSOURI S&T RESIDENTIAL LIFE DEPARTMENT Staff Resource Manual 2010--2012 Department of Residential Life Mission: To create educational environments emphasizing learning and development. Service

  2. Battleground Energy Recovery Project

    SciTech Connect (OSTI)

    Daniel Bullock

    2011-12-31T23:59:59.000Z

    In October 2009, the project partners began a 36-month effort to develop an innovative, commercial-scale demonstration project incorporating state-of-the-art waste heat recovery technology at Clean Harbors, Inc., a large hazardous waste incinerator site located in Deer Park, Texas. With financial support provided by the U.S. Department of Energy, the Battleground Energy Recovery Project was launched to advance waste heat recovery solutions into the hazardous waste incineration market, an area that has seen little adoption of heat recovery in the United States. The goal of the project was to accelerate the use of energy-efficient, waste heat recovery technology as an alternative means to produce steam for industrial processes. The project had three main engineering and business objectives: Prove Feasibility of Waste Heat Recovery Technology at a Hazardous Waste Incinerator Complex; Provide Low-cost Steam to a Major Polypropylene Plant Using Waste Heat; and ï?· Create a Showcase Waste Heat Recovery Demonstration Project.

  3. Advanced oil recovery technologies for improved recovery from slope basin clastic reservoirs, Nash Draw Brushy Canyon Pool, Eddy County, NM. Quarterly technical progress report, July 1--September 30, 1996 (fourth quarter)

    SciTech Connect (OSTI)

    NONE

    1996-10-31T23:59:59.000Z

    The overall objective of this project is to demonstrate that a development program based on advanced reservoir management methods can significantly improve oil recovery. The demonstration plan includes developing a control area using standard reservoir management techniques and comparing the performance of the control area with an area developed using advanced reservoir management methods. Specific goals to attain the objective are: (1) to demonstrate that a development drilling program and pressure maintenance program, based on advanced reservoir management methods, can significantly improve oil recovery compared with existing technology applications, and (2) to transfer the advanced methodologies to oil and gas producers in the Permian Basin and elsewhere in the US oil and gas industry. Results obtained to date are summarized on the following: geology, engineering, 3-D seismic, reservoir characterization and simulation, and technology transfer.

  4. Supporting Technology for Enhanced Oil Recovery-EOR Thermal Processes Report IV-12

    SciTech Connect (OSTI)

    Izequeido, Alexandor

    2001-04-01T23:59:59.000Z

    This report contains the results of efforts under the six tasks of the Ninth Amendment and Extension of Annex IV, Enhanced Oil Recovery Thermal Processes of the Venezuela/USA Agreement. The report is presented in sections (for each of the 6 tasks) and each section contains one or more reports prepared by various individuals or groups describing the results of efforts under each of the tasks. A statement of each task, taken from the agreement, is presented on the first page of each section. The tasks are numbered 62 through 67. The first, second, third, fourth, fifth, sixth, seventh, eight, and ninth reports on Annex IV, [Venezuela MEM/USA-DOE Fossil Energy Report IV-1, IV-2, IV-3, IV-4, IV-5, IV-6, IV-7, and IV-8 (DOE/BETC/SP-83/15, DOE/BC-84/6/SP, DOE/BC-86/2/SP, DOE/BC-87/2/SP, DOE/BC-89/1/SP, DOE/BC-90/1/SP) DOE/BC-92/1/SP, DOE/BC-93/3/SP, and DOE/BC-95/3/SP] contain the results from the first 61 tasks. Those reports are dated April 1983, August 1984, March 1986, July 1! 987, November 1988, December 1989, October 1991, February 1993, and March 1995 respectively.

  5. Data summary of municipal solid waste management alternatives. Volume 7, Appendix E -- Material recovery/material recycling technologies

    SciTech Connect (OSTI)

    none,

    1992-10-01T23:59:59.000Z

    The enthusiasm for and commitment to recycling of municipal solid wastes is based on several intuitive benefits: Conservation of landfill capacity; Conservation of non-renewable natural resources and energy sources; Minimization of the perceived potential environmental impacts of MSW combustion and landfilling; Minimization of disposal costs, both directly and through material resale credits. In this discussion, ``recycling`` refers to materials recovered from the waste stream. It excludes scrap materials that are recovered and reused during industrial manufacturing processes and prompt industrial scrap. Materials recycling is an integral part of several solid waste management options. For example, in the preparation of refuse-derived fuel (RDF), ferrous metals are typically removed from the waste stream both before and after shredding. Similarly, composting facilities, often include processes for recovering inert recyclable materials such as ferrous and nonferrous metals, glass, Plastics, and paper. While these two technologies have as their primary objectives the production of RDF and compost, respectively, the demonstrated recovery of recyclables emphasizes the inherent compatibility of recycling with these MSW management strategies. This appendix discusses several technology options with regard to separating recyclables at the source of generation, the methods available for collecting and transporting these materials to a MRF, the market requirements for post-consumer recycled materials, and the process unit operations. Mixed waste MRFs associated with mass bum plants are also presented.

  6. Review of technology for Arctic offshore oil and gas recovery. Appendices

    SciTech Connect (OSTI)

    Sackinger, W. M.

    1980-06-06T23:59:59.000Z

    This volume contains appendices of the following: US Geological Survey Arctic operating orders, 1979; Det Noske Vertas', rules for the design, construction and inspection of offshore technology, 1977; Alaska Oil and Gas Association, industry research projects, March 1980; Arctic Petroleum Operator's Association, industry research projects, January 1980; selected additional Arctic offshore bibliography on sea ice, icebreakers, Arctic seafloor conditions, ice-structures, frost heave and structure icing.

  7. RESIDENTIAL SERVICES STUDENT CHARTER Introduction

    E-Print Network [OSTI]

    Oakley, Jeremy

    RESIDENTIAL SERVICES STUDENT CHARTER Introduction This Charter sets out the standards of provision. Residential Services are committed to encouraging diversity and inclusiveness within University residences via the Residential Services Annual Report and the internet. Consultation This Charter was developed

  8. Essays on residential desegregation

    E-Print Network [OSTI]

    Wong, Maisy

    2008-01-01T23:59:59.000Z

    Many ethnically diverse countries have policies that encourage integration across ethnic groups. This dissertation investigates the impact and welfare implications of a residential desegregation policy in Singapore, the ...

  9. Residential Solar Rights

    Broader source: Energy.gov [DOE]

    In 2007, New Jersey enacted legislation preventing homeowners associations from prohibiting the installation of solar collectors on certain types of residential properties. The term "solar...

  10. American Recovery and Reinvestment Act of 2009: Bioenergy Technologies Office Investments

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't Your Destiny: The Future of1Albuquerque, NM -AliciaBioenergy Technologies Office has awarded

  11. Citizens Gas- Residential Efficiency Rebates

    Broader source: Energy.gov [DOE]

    Citizens Gas of Indiana offers rebates to its residential customers for the installation of several types of efficient natural gas appliances. Rebates are generally available for residential homes...

  12. Economics of Condensing Gas Furnaces and Water Heaters Potential in Residential Single Family Homes

    E-Print Network [OSTI]

    Lekov, Alex

    2011-01-01T23:59:59.000Z

    Star Residential Water Heaters: Final criteria analysis.2004. Heat pump water heater technology: Experiences ofmarket research on solar water heaters. National Renewable

  13. Economics of residential gas furnaces and water heaters in United States new construction market

    E-Print Network [OSTI]

    Lekov, Alex B.

    2010-01-01T23:59:59.000Z

    2004). Heat pump water heater technology: Experiences ofStar Residential Water Heaters: Final criteria analysis.market research on solar water heaters. National Renewable

  14. Economics of residential gas furnaces and water heaters in US new construction market

    E-Print Network [OSTI]

    Lekov, Alex B.; Franco, Victor H.; Wong-Parodi, Gabrielle; McMahon, James E.; Chan, Peter

    2010-01-01T23:59:59.000Z

    al. (2004). Heat pump water heater technology: Experiencesstar residential water heaters: Final criteria analysis.market research on solar water heaters. National Renew- able

  15. Demand response-enabled autonomous control for interior space conditioning in residential buildings.

    E-Print Network [OSTI]

    Chen, Xue

    2008-01-01T23:59:59.000Z

    Demand Response Autonomous Controlssystem under the context of demand response for residential10] E. Arens et al. , Demand response enabling technology

  16. Alliant Energy Interstate Power and Light (Electric)- Residential Energy Efficiency Rebate Programs

    Broader source: Energy.gov [DOE]

    Interstate Power and Light (Alliant Energy) offers residential energy efficiency rebates for Iowa customers for a variety of technologies. Rebates are available for certain HVAC equipment,...

  17. New technology for sulfide reduction and increased oil recovery. Third quarter progress report

    SciTech Connect (OSTI)

    NONE

    1998-03-20T23:59:59.000Z

    Project work was initiated by Geo-Microbial Technologies, Inc. (GMT), Ochelata, Oklahoma for Contract Number DE-FG01-97EE15659 on June 18, 1997. The purpose of this project is to demonstrate reduction of sulfide contamination, as well as possible improvement of production in oil and gas production systems. This will be accomplished by application of the BioCompetitive Exclusion (BCX) process developed by GMT. A broad spectrum of well types and geographical locations is anticipated. The BCX process is designed to manipulate indigenous reservoir bacteria with the addition of synergistic inorganic chemical formulae. These treatments will stimulate growth of beneficial microbes, while suppressing metabolic activity of sulfate reducing bacteria (SRB), the primary source of harmful sulfide production.

  18. Advanced Oil Recovery Technologies for Improved Recovery From Slope Basin Clastic reservoirs, Nash Draw Brushy Canyon Pool, Eddy County, New Mexico

    SciTech Connect (OSTI)

    Mark B. Murphy

    1998-04-30T23:59:59.000Z

    The overall goal of this project is to demonstrate that an advanced development drilling and pressure maintenance program based on advanced reservoir management methods can significantly improve oil recovery. The plan included developing a control area using standard reservoir management techniques and comparing its performance to an area developed using advanced methods. A key goal is to transfer advanced methodologies to oil and gas producers in the Permian Basin and elsewhere, and throughout the US oil and gas industry.

  19. Residential GSHPs: Efficiency With Short Payback Periods

    SciTech Connect (OSTI)

    Cooperman, Alissa; Dieckmann, John; Brodrick, James

    2012-04-30T23:59:59.000Z

    This article discusses ground source heat pumps (GSHPs) for residential application as an alternative to conventional HVAC systems. A listing of current space heating energy sources are presented which are then followed by a technology overview as advances have made GSHPs more efficient. The article concludes with potential energy savings offered by GSHPs and a brief market overview.

  20. Renovating Residential HVAC Systems HVAC Systems

    E-Print Network [OSTI]

    - 1 - LBNL 57406 Renovating Residential HVAC Systems HVAC Systems J.A. McWilliams and I.S. Walker Environmental Energy Technologies Division April 2005 ERNEST ORLANDO LAWRENCE BERKELEY NATIONAL LABORATORY #12 Laboratory is an equal opportunity employer. This work was supported by the Assistant Secretary for Energy

  1. In situ recovery of oil from Utah tar sand: a summary of tar sand research at the Laramie Energy Technology Center

    SciTech Connect (OSTI)

    Marchant, L.C.; Westhoff, J.D.

    1985-10-01T23:59:59.000Z

    This report describes work done by the United States Department of Energy's Laramie Energy Technology Center from 1971 through 1982 to develop technology for future recovery of oil from US tar sands. Work was concentrated on major US tar sand deposits that are found in Utah. Major objectives of the program were as follows: determine the feasibility of in situ recovery methods applied to tar sand deposits; and establish a system for classifying tar sand deposits relative to those characteristics that would affect the design and operation of various in situ recovery processes. Contents of this report include: (1) characterization of Utah tar sand; (2) laboratory extraction studies relative to Utah tar sand in situ methods; (3) geological site evaluation; (4) environmental assessments and water availability; (5) reverse combustion field experiment, TS-1C; (6) a reverse combustion followed by forward combustion field experiment, TS-2C; (7) tar sand permeability enhancement studies; (8) two-well steam injection experiment; (9) in situ steam-flood experiment, TS-1S; (10) design of a tar sand field experiment for air-stream co-injection, TS-4; (11) wastewater treatment and oil analyses; (12) economic evaluation of an in situ tar sand recovery process; and (13) appendix I (extraction studies involving Utah tar sands, surface methods). 70 figs., 68 tabs.

  2. 2012 SG Peer Review - Recovery Act: Irvine Smart Grid Demonstration...

    Broader source: Energy.gov (indexed) [DOE]

    RD&D Needs Technical Challenges g Energy Smart Customer Devices * Impact of multiple Zero Net Energy technologies (grid and residential load) * PEV load management using...

  3. Strategy Guideline: High Performance Residential Lighting

    SciTech Connect (OSTI)

    Holton, J.

    2012-02-01T23:59:59.000Z

    The Strategy Guideline: High Performance Residential Lighting has been developed to provide a tool for the understanding and application of high performance lighting in the home. The high performance lighting strategies featured in this guide are drawn from recent advances in commercial lighting for application to typical spaces found in residential buildings. This guide offers strategies to greatly reduce lighting energy use through the application of high quality fluorescent and light emitting diode (LED) technologies. It is important to note that these strategies not only save energy in the home but also serve to satisfy the homeowner's expectations for high quality lighting.

  4. APPLICATION OF RESERVOIR CHARACTERIZATION AND ADVANCED TECHNOLOGY TO IMPROVE RECOVERY AND ECONOMICS IN A LOWER QUALITY SHALLOW SHELF SAN ANDRES RESERVOIR

    SciTech Connect (OSTI)

    T. Scott Hickman; James J. Justice

    2001-06-16T23:59:59.000Z

    The Class 2 Project at West Welch was designed to demonstrate the use of advanced technologies to enhance the economics of improved oil recovery (IOR) projects in lower quality Shallow Shelf Carbonate (SSC) reservoirs, resulting in recovery of additional oil that would otherwise be left in the reservoir at project abandonment. Accurate reservoir description is critical to the effective evaluation and efficient design of IOR projects in the heterogeneous SSC reservoirs. Therefore, the majority of Budget Period 1 was devoted to reservoir characterization. Technologies being demonstrated include: (1) Advanced petrophysics; (2) Three-dimensional (3-D) seismic; (3) Crosswell bore tomography; (4) Advanced reservoir simulation; (5) Carbon dioxide (CO{sub 2}) stimulation treatments; (6) Hydraulic fracturing design and monitoring; and (7) Mobility control agents.

  5. APPLICATION OF RESERVOIR CHARACTERIZATION AND ADVANCED TECHNOLOGY TO IMPROVE RECOVERY AND ECONOMICS IN A LOWER QUALITY SHALLOW SHELF SAN ANDRES RESERVOIR

    SciTech Connect (OSTI)

    T. Scott Hickman; James J. Justice

    2001-08-10T23:59:59.000Z

    The Class 2 Project at West Welch was designed to demonstrate the use of advanced technologies to enhance the economics of improved oil recovery (IOR) projects in lower quality Shallow Shelf Carbonate (SSC) reservoirs, resulting in recovery of additional oil that would otherwise be left in the reservoir at project abandonment. Accurate reservoir description is critical to the effective evaluation and efficient design of IOR projects in the heterogeneous SSC reservoirs. Therefore, the majority of Budget Period 1 was devoted to reservoir characterization. Technologies being demonstrated include: (1) Advanced petrophysics; (2) Three-dimensional (3-D) seismic; (3) Crosswell bore tomography; (4) Advanced reservoir simulation; (5) Carbon dioxide (CO{sub 2}) stimulation treatments; (6) Hydraulic fracturing design and monitoring; and (7) Mobility control agents.

  6. APPLICATION OF RESERVOIR CHARACTERIZATION AND ADVANCED TECHNOLOGY TO IMPROVE RECOVERY AND ECONOMICS IN A LOWER QUALITY SHALLOW SHELF SAN ANDRES RESERVOIR

    SciTech Connect (OSTI)

    T. Scott Hickman

    2003-01-17T23:59:59.000Z

    The Class 2 Project at West Welch was designed to demonstrate the use of advanced technologies to enhance the economics of improved oil recovery (IOR) projects in lower quality Shallow Shelf Carbonate (SSC) reservoirs, resulting in recovery of additional oil that would otherwise be left in the reservoir at project abandonment. Accurate reservoir description is critical to the effective evaluation and efficient design of IOR projects in the heterogeneous SSC reservoirs. Therefore, the majority of Budget Period 1 was devoted to reservoir characterization. Technologies being demonstrated include: (1) Advanced petrophysics; (2) Three-dimensional (3-D) seismic; (3) Crosswell bore tomography; (4) Advanced reservoir simulation; (5) Carbon dioxide (CO{sub 2}) stimulation treatments; (6) Hydraulic fracturing design and monitoring; and (7) Mobility control agents.

  7. APPLICATION OF RESERVOIR CHARACTERIZATION AND ADVANCED TECHNOLOGY TO IMPROVE RECOVERY AND ECONOMICS IN A LOWER QUALITY SHALLOW SHELF SAN ANDRES RESERVOIR

    SciTech Connect (OSTI)

    T. Scott Hickman; James J. Justice

    2001-12-11T23:59:59.000Z

    The Class 2 Project at West Welch was designed to demonstrate the use of advanced technologies to enhance the economics of improved oil recovery (IOR) projects in lower quality Shallow Shelf Carbonate (SSC) reservoirs, resulting in recovery of additional oil that would otherwise be left in the reservoir at project abandonment. Accurate reservoir description is critical to the effective evaluation and efficient design of IOR projects in the heterogeneous SSC reservoirs. Therefore, the majority of Budget Period 1 was devoted to reservoir characterization. Technologies being demonstrated include: (1) Advanced petrophysics; (2) Three-dimensional (3-D) seismic; (3) Crosswell bore tomography; (4) Advanced reservoir simulation; (5) Carbon dioxide (CO{sub 2}) stimulation treatments; (6) Hydraulic fracturing design and monitoring; and (7) Mobility control agents.

  8. APPLICATION OF RESERVOIR CHARACTERIZATION AND ADVANCED TECHNOLOGY TO IMPROVE RECOVERY AND ECONOMICS IN A LOWER QUALITY SHALLOW SHELF SAN ANDRES RESERVOIR

    SciTech Connect (OSTI)

    Raj. Kumar; Keith Brown; T. Scott Hickman; James J. Justice

    2000-04-27T23:59:59.000Z

    The Class 2 Project at West Welch was designed to demonstrate the use of advanced technologies to enhance the economics of improved oil recovery (IOR) projects in lower quality Shallow Shelf Carbonate (SSC) reservoirs, resulting in recovery of additional oil that would otherwise be left in the reservoir at project abandonment. Accurate reservoir description is critical to the effective evaluation and efficient design of IOR projects in the heterogeneous SSC reservoirs. Therefore, the majority of Budget Period 1 was devoted to reservoir characterization. Technologies being demonstrated include: (1) Advanced petrophysics; (2) Three-dimensional (3-D) seismic; (3) Crosswell bore tomography; (4) Advanced reservoir simulation; (5) Carbon dioxide (CO{sub 2}) stimulation treatments; (6) Hydraulic fracturing design and monitoring; and (7) Mobility control agents.

  9. Residential Energy Efficiency Customer Service Best Practices...

    Energy Savers [EERE]

    Residential Energy Efficiency Customer Service Best Practices Residential Energy Efficiency Customer Service Best Practices Better Buildings Residential Network Peer Exchange Call...

  10. Landholders, Residential Land Conversion, and Market Signals

    E-Print Network [OSTI]

    Margulis, Harry L.

    2006-01-01T23:59:59.000Z

    465– Margulis: Landholders, Residential Land Conversion, and1983. An Analysis of Residential Developer Location FactorsHow Regulation Affects New Residential Development. New

  11. Fact Sheet: Better Buildings Residential Network

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Fact Sheet BETTER BUILDINGS RESIDENTIAL NETWORK Learn more at betterbuildings.energy.govbbrn What Is the Residential Network? The Better Buildings Residential Network connects...

  12. RESIDENTIAL THERMOSTATS: COMFORT CONTROLS IN CALIFORNIA HOMES

    E-Print Network [OSTI]

    Meier, Alan K.

    2008-01-01T23:59:59.000Z

    Report on Applicability of Residential Ventilation StandardsCharacterization of Residential New Construction PracticesJ - Load Calculation for Residential Winter and Summer Air

  13. Solvent recycle/recovery

    SciTech Connect (OSTI)

    Paffhausen, M.W.; Smith, D.L.; Ugaki, S.N.

    1990-09-01T23:59:59.000Z

    This report describes Phase I of the Solvent Recycle/Recovery Task of the DOE Chlorinated Solvent Substitution Program for the US Air Force by the Idaho National Engineering Laboratory, EG G Idaho, Inc., through the US Department of Energy, Idaho Operations Office. The purpose of the task is to identify and test recovery and recycling technologies for proposed substitution solvents identified by the Biodegradable Solvent Substitution Program and the Alternative Solvents/Technologies for Paint Stripping Program with the overall objective of minimizing hazardous wastes. A literature search to identify recycle/recovery technologies and initial distillation studies has been conducted. 4 refs.

  14. Residential Wind Power

    E-Print Network [OSTI]

    Willis, Gary

    2011-12-16T23:59:59.000Z

    This research study will explore the use of residential wind power and associated engineering and environmental issues. There is various wind power generating devices available to the consumer. The study will discuss the dependencies of human...

  15. Residential New Construction Program

    Broader source: Energy.gov [DOE]

    The Residential New Construction Program includes three service tiers that can be achieved by completing various energy efficiency measures. The tiers are: Energy Code Plus (Bronze), Vermont ENER...

  16. Caustic Recovery Technology

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613PortsmouthBartlesville EnergyDepartment ofSystems AreStorageof Energy

  17. Targeted technology applications for infield reserve growth: A synopsis of the Secondary Natural Gas Recovery project, Gulf Coast Basin. Topical report, September 1988--April 1993

    SciTech Connect (OSTI)

    Levey, R.A.; Finley, R.J.; Hardage, B.A.

    1994-06-01T23:59:59.000Z

    The Secondary Natural Gas Recovery (SGR): Targeted Technology Applications for Infield Reserve Growth is a joint venture research project sponsored by the Gas Research Institute (GRI), the US Department of Energy (DOE), the State of Texas through the Bureau of Economic Geology at The University of Texas at Austin, with the cofunding and cooperation of the natural gas industry. The SGR project is a field-based program using an integrated multidisciplinary approach that integrates geology, geophysics, engineering, and petrophysics. A major objective of this research project is to develop, test, and verify those technologies and methodologies that have near- to mid-term potential for maximizing recovery of gas from conventional reservoirs in known fields. Natural gas reservoirs in the Gulf Coast Basin are targeted as data-rich, field-based models for evaluating infield development. The SGR research program focuses on sandstone-dominated reservoirs in fluvial-deltaic plays within the onshore Gulf Coast Basin of Texas. The primary project research objectives are: To establish how depositional and diagenetic heterogeneities cause, even in reservoirs of conventional permeability, reservoir compartmentalization and hence incomplete recovery of natural gas. To document examples of reserve growth occurrence and potential from fluvial and deltaic sandstones of the Texas Gulf Coast Basin as a natural laboratory for developing concepts and testing applications. To demonstrate how the integration of geology, reservoir engineering, geophysics, and well log analysis/petrophysics leads to strategic recompletion and well placement opportunities for reserve growth in mature fields.

  18. Conference Agenda: Residential Energy Efficiency Solutions 2012...

    Energy Savers [EERE]

    Conference Agenda: Residential Energy Efficiency Solutions 2012 Conference Agenda: Residential Energy Efficiency Solutions 2012 Presents conference agenda including a general...

  19. Diesel Engine Waste Heat Recovery Utilizing Electric Turbocompound...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Utilizing Electric Trubocompound Technology Diesel Engine Waste Heat Recovery Utilizing Electric Turbocompound Technology Advanced Natural Gas Reciprocating Engines (ARES) -...

  20. Bryant Residential Tutorship BRYANT RESIDENTIAL TUTORSHIP REGULATIONS FOR 2013

    E-Print Network [OSTI]

    Waikato, University of

    Bryant Residential Tutorship 1 BRYANT RESIDENTIAL TUTORSHIP REGULATIONS FOR 2013 BACKGROUND The D. V. Bryant Trust established Bryant Hall on land leased from the University of Waikato in 1971, Bryant Hall has provided a supportive residential environment for first-year students and has also

  1. RESIDENTIAL PROGRAM FOR LANGUAGE LEARNING

    E-Print Network [OSTI]

    Loudon, Catherine

    RESIDENTIAL PROGRAM FOR LANGUAGE LEARNING Live on-campus in 2014-15 and participate in a unique as part of a residential community in Arroyo Vista! Open to all undergraduate students with 2-3 years

  2. Residential Wood Heating Fuel Exemption

    Broader source: Energy.gov [DOE]

    The New York Department of Taxation and Finance publishes a variety of sales tax reports detailing local tax rates and exemptions, including those for residential energy services. The residential...

  3. Berkeley Program Offers New Option for Financing Residential PV Systems

    E-Print Network [OSTI]

    Bolinger, Mark A

    2009-01-01T23:59:59.000Z

    Vehicle for Residential PV Installations: Opportunities andfor Financing Residential PV Systems Mark Bolinger, Lawrencefor residential photovoltaic (PV) systems. Though financing

  4. Questions Asked during the Financing Residential Energy Efficiency...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Residential Energy Efficiency with Carbon Offsets Transcript Financing Residential Energy Efficiency with Carbon Offsets SERC Photovoltaics for Residential Buildings Webinar...

  5. IMPROVED OIL RECOVERY FROM UPPER JURASSIC SMACKOVER CARBONATES THROUGH THE APPLICATION OF ADVANCED TECHNOLOGIES AT WOMACK HILL OIL FIELD, CHOCTAW AND CLARKE COUNTIES, EASTERN GULF COASTAL PLAIN

    SciTech Connect (OSTI)

    Ernest A. Mancini

    2003-05-20T23:59:59.000Z

    Pruet Production Co. and the Center for Sedimentary Basin Studies at the University of Alabama, in cooperation with Texas A&M University, Mississippi State University, University of Mississippi, and Wayne Stafford and Associates are undertaking a focused, comprehensive, integrated and multidisciplinary study of Upper Jurassic Smackover carbonates (Class II Reservoir), involving reservoir characterization and 3-D modeling and an integrated field demonstration project at Womack Hill Oil Field Unit, Choctaw and Clarke Counties, Alabama, Eastern Gulf Coastal Plain. The principal objectives of the project are: increasing the productivity and profitability of the Womack Hill Field Unit, thereby extending the economic life of this Class II Reservoir and transferring effectively and in a timely manner the knowledge gained and technology developed from this project to producers who are operating other domestic fields with Class II Reservoirs. The principal research efforts for Year 3 of the project have been recovery technology analysis and recovery technology evaluation. The research focus has primarily been on well test analysis, 3-D reservoir simulation, microbial core experiments, and the decision to acquire new seismic data for the Womack Hill Field area. Although Geoscientific Reservoir Characterization and 3-D Geologic Modeling have been completed and Petrophysical and Engineering Characterization and Microbial Characterization are essentially on schedule, a no-cost extension until September 30, 2003, has been granted by DOE so that new seismic data for the Womack Hill Field can be acquired and interpreted to assist in the determination as to whether Phase II of the project should be implemented.

  6. OFFICE OF ELECTRICITY DELIVERY AND ENERGY RELIABILITY (OE) NATIONAL ENERGY TECHNOLOGY LABORATORY (NETL) AMERICAN RECOVERY AND REINVESTMENT ACT 2009 UNITED STATES DEPARTMENT OF ENERGY

    SciTech Connect (OSTI)

    Singh, Mohit; Grape, Ulrik

    2014-07-29T23:59:59.000Z

    The purpose of this project was for Seeo to deliver the first ever large-scale or grid-scale prototype of a new class of advanced lithium-ion rechargeable batteries. The technology combines unprecedented energy density, lifetime, safety, and cost. The goal was to demonstrate Seeo’s entirely new class of lithium-based batteries based on Seeo’s proprietary nanostructured polymer electrolyte. This technology can enable the widespread deployment in Smart Grid applications and was demonstrated through the development and testing of a 10 kilowatt-hour (kWh) prototype battery system. This development effort, supported by the United States Department of Energy (DOE) enabled Seeo to pursue and validate the transformational performance advantages of its technology for use in grid-tied energy storage applications. The focus of this project and Seeo’s goal as demonstrated through the efforts made under this project is to address the utility market needs for energy storage systems applications, especially for residential and commercial customers tied to solar photovoltaic installations. In addition to grid energy storage opportunities Seeo’s technology has been tested with automotive drive cycles and is seen as equally applicable for battery packs for electric vehicles. The goals of the project were outlined and achieved through a series of specific tasks, which encompassed materials development, scaling up of cells, demonstrating the performance of the cells, designing, building and demonstrating a pack prototype, and providing an economic and environmental assessment. Nearly all of the tasks were achieved over the duration of the program, with only the full demonstration of the battery system and a complete economic and environmental analysis not able to be fully completed. A timeline over the duration of the program is shown in figure 1.

  7. Residential ventilation standards scoping study

    SciTech Connect (OSTI)

    McKone, Thomas E.; Sherman, Max H.

    2003-10-01T23:59:59.000Z

    The goals of this scoping study are to identify research needed to develop improved ventilation standards for California's Title 24 Building Energy Efficiency Standards. The 2008 Title 24 Standards are the primary target for the outcome of this research, but this scoping study is not limited to that timeframe. We prepared this scoping study to provide the California Energy Commission with broad and flexible options for developing a research plan to advance the standards. This document presents the findings of a scoping study commissioned by the Public Interest Energy Research (PIER) program of the California Energy Commission to determine what research is necessary to develop new residential ventilation requirements for California. This study is one of three companion efforts needed to complete the job of determining the ventilation needs of California residences, determining the bases for setting residential ventilation requirements, and determining appropriate ventilation technologies to meet these needs and requirements in an energy efficient manner. Rather than providing research results, this scoping study identifies important research questions along with the level of effort necessary to address these questions and the costs, risks, and benefits of pursuing alternative research questions. In approaching these questions and corresponding levels of effort, feasibility and timing were important considerations. The Commission has specified Summer 2005 as the latest date for completing this research in time to update the 2008 version of California's Energy Code (Title 24).

  8. STATE OF CALIFORNIA RESIDENTIAL LIGHTING

    E-Print Network [OSTI]

    STATE OF CALIFORNIA RESIDENTIAL LIGHTING CEC-CF-6R-LTG-01 (Revised 08/09) CALIFORNIA ENERGY COMMISSION INSTALLATION CERTIFICATE CF-6R-LTG-01 Residential Lighting (Page 1 of 6) Site Address: Enforcement Agency: Permit Number: 2008 Residential Compliance Forms August 2009 1. Kitchen Lighting Does project

  9. Residential & Business Services Director's Office

    E-Print Network [OSTI]

    Brierley, Andrew

    Residential & Business Services Director's Office Butts Wynd, North Street, St Andrews, Fife, KY16 by students for students are an integral part of student life and intrinsic to the student residential the residential environment. However, experience tells us that events require careful planning and organisation

  10. Permanent Home Number: Residential Number

    E-Print Network [OSTI]

    Viglas, Anastasios

    Permanent Home Number: Residential Number: Mobile: Please update my contact details. Signature nominated correspondence address as indicated below. Permanent Home Adress Residential Address Other Address (Must not be a PO Box) Residential Address (Must not be a PO Box) Other - Postal/Optional Address

  11. Energy Impact of Residential Ventilation Norms in the United States

    E-Print Network [OSTI]

    in furniture, appliances, and building materials in houses have changed resulting in more indoor pollutants and sustainable technologies. Recent residential construction has created tighter, energy-saving building by the Assistant Secretary for Energy Efficiency and Renewable Energy, Building Technologies Program, of the U

  12. Residential solar home resale analysis

    SciTech Connect (OSTI)

    Noll, S.A.

    1980-01-01T23:59:59.000Z

    One of the determinants of the market acceptance of solar technologies in the residential housing sector is the value placed upon the solar property at the time of resale. The resale factor is shown to be an important economic parameter when net benefits of the solar design are considered over a typical ownership cycle rather than the life cycle of the system. Although a study of solar resale in Davis, Ca, indicates that those particular homes have been appreciating in value faster than nonsolar market comparables, no study has been made that would confirm this conclusion for markets in other geograhical locations with supporting tests of statistical significance. The data to undertake such an analysis is available through numerous local sources; however, case by case data collection is prohibitively expensive. A recommended alternative approach is to make use of real estate market data firms who compile large data bases and provide multi-variate statistical analysis packages.

  13. Indian Institute of Technology Bombay INDIAN INSTITUTE OF TECHNOLOGY BOMBAY

    E-Print Network [OSTI]

    Narayanan, H.

    Indian Institute of Technology Bombay INDIAN INSTITUTE OF TECHNOLOGY BOMBAY INVITATION Description of work Estimated cost (1) (2) (3) 1 Construction of Institutional/Residential buildings, external development, HVAC, Elevators etc. for Indian Institute of Technology Bombay, at the campus

  14. Current cost and performance requirements for residential cool storage systems

    SciTech Connect (OSTI)

    Brown, D.R.; Spanner, G.E.

    1988-08-01T23:59:59.000Z

    This study defines the current cost and performance requirements for residential cool storage technologies based on the characteristics of conventional air conditioning equipment and residential time-of-day (TOD) rate structures existing during the 1986--1987 time frame. Currently, rate structures are changing rapidly. Given the volatility of rate structures, the establishment of cost goal is challenging. The goals presented in this study are based on the utility rate structure as of 1986. This study serves to define residential cool storage cost and performance requirements in the current economic environment as well as the many issues affecting the requirements for residential cool storage systems both now and in the future. The same methodology can be employed to establish long-run goals once future rate structures are adequately defined. 12 refs., 6 figs., 18 tabs.

  15. actinides recovery rar: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    simulation to optimize carbon dioxide (CO2) sequestration and enhance oil recovery (CO2-EOR) based on known 111 Key recovery in a business environment Computer Technologies...

  16. abnormal metabolic recovery: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    simulation to optimize carbon dioxide (CO2) sequestration and enhance oil recovery (CO2-EOR) based on known 140 Key recovery in a business environment Computer Technologies...

  17. advanced secondary recovery: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    simulation to optimize carbon dioxide (CO2) sequestration and enhance oil recovery (CO2-EOR) based on known 116 Key recovery in a business environment Computer Technologies...

  18. High SEER Residential AC

    SciTech Connect (OSTI)

    Hastbacka, Mildred; Dieckmann, John; Brodrick, James

    2012-07-31T23:59:59.000Z

    This article discusses the new offerings of residential air conditioning systems with very high Seasonal Energy Efficiency Ratio (SEER) ratings, the two regional areas dictating operations standards ("hot, humid" and "hot, dry"), and the potential energy savings these new systems can provide. The article concludes with a brief review of current market potential.

  19. Meeting Residential Ventilation Standards

    E-Print Network [OSTI]

    ventilation standards, including American Society of Heating, Refrigerating, and Air-conditioning EngineersLBNL 4591E Meeting Residential Ventilation Standards Through Dynamic Control of Ventilation Systems (ASHRAE) Standard 62.2, specify continuous operation of a defined mechanical ventilation system to provide

  20. STORM WATER Residential

    E-Print Network [OSTI]

    California at Santa Cruz, University of

    STORM WATER QUALITY HOTLINE UCSC Residential Car Washing http THAT MAY CAUSE ENVIRONMENTAL HARM TO THE STORM WATER QUALITY HOTLINE: (831) 459-2553. LIKE US ON FACEBOOK AT UCSC STORM WATER MANAGEMENT PROGRAM! DID YOU KNOW? PRACTICAL SOLUTIONS > USE A COMMERCIAL CAR WASH

  1. Photovoltaics for residential applications

    SciTech Connect (OSTI)

    Not Available

    1984-02-01T23:59:59.000Z

    Information is given about the parts of a residential photovoltaic system and considerations relevant to photovoltaic power use in homes that are also tied to utility lines. In addition, factors are discussed that influence implementation, including legal and environmental factors such as solar access and building codes, insurance, utility buyback, and system longevity. (LEW)

  2. Agriculture Residential College

    E-Print Network [OSTI]

    Architecture Students Design Build Solar Pavilion in Old South Baton Rouge Louisiana Sustainable BuildingAgriculture Residential College LSU Sustainability Denise Newell LSU Planning, Design-year institutions Denise S. Newell, PE LEED AP Sustainability Manager scribner@lsu.edu Contact Info "If you had

  3. Residential Mechanical Precooling

    SciTech Connect (OSTI)

    German, A.; Hoeschele, M.

    2014-12-01T23:59:59.000Z

    This research conducted by the Alliance for Residential Building Innovation team evaluated mechanical air conditioner pre-cooling strategies in homes throughout the United States. EnergyPlus modeling evaluated two homes with different performance characteristics in seven climates. Results are applicable to new construction homes and most existing homes built in the last 10 years, as well as fairly efficient retrofitted homes.

  4. Residential Furnace Blower Performance

    E-Print Network [OSTI]

    conditioner performance1 , standby power, as well as igniter and combustion air blower power. Energy savings for a typical three-and-a-half ton air conditioner with typical California ducts are 45 kWh. Peak demand combinations of blowers and residential furnaces were tested for air moving performance. The laboratory test

  5. Improved Oil Recovery from Upper Jurassic Smackover Carbonates through the Application of Advanced Technologies at Womack Hill Oil Field, Choctaw and Clarke Counties, Eastern Gulf Coastal Plain

    SciTech Connect (OSTI)

    Ernest A. Mancini

    2003-12-31T23:59:59.000Z

    Pruet Production Co. and the Center for Sedimentary Basin Studies at the University of Alabama, in cooperation with Texas A&M University, Mississippi State University, University of Mississippi, and Wayne Stafford and Associates proposed a three-phase, focused, comprehensive, integrated and multidisciplinary study of Upper Jurassic Smackover carbonates (Class II Reservoir), involving reservoir characterization and 3-D modeling (Phase I) and a field demonstration project (Phases II and III) at Womack Hill Field Unit, Choctaw and Clarke Counties, Alabama, eastern Gulf Coastal Plain. Phase I of the project has been completed. The principal objectives of the project are: increasing the productivity and profitability of the Womack Hill Field Unit, thereby extending the economic life of this Class II Reservoir and transferring effectively and in a timely manner the knowledge gained and technology developed from this project to producers who are operating other domestic fields with Class II Reservoirs. The major tasks of the project included reservoir characterization, recovery technology analysis, recovery technology evaluation, and the decision to implement a demonstration project. Reservoir characterization consisted of geoscientific reservoir characterization, petrophysical and engineering property characterization, microbial characterization, and integration of the characterization data. Recovery technology analysis included 3-D geologic modeling, reservoir simulation, and microbial core experiments. Recovery technology evaluation consisted of acquiring and evaluating new high quality 2-D seismic data, evaluating the existing pressure maintenance project in the Womack Hill Field Unit, and evaluating the concept of an immobilized enzyme technology project for the Womack Hill Field Unit. The decision to implement a demonstration project essentially resulted in the decision on whether to conduct an infill drilling project in Womack Hill Field. Reservoir performance, multiwell productivity analysis, and reservoir simulation studies indicate that water injection continues to provide stable support to maintain production from wells in the western unitized area of the field and that the strong water drive present in the eastern area of the field is adequate to sustain production from this part of the field. Although the results from the microbial characterization and microbial core experiments are very promising, it is recommended that an immobilized enzyme technology project not be implemented in the Womack Hill Field Unit until live (freshly taken and properly preserved) cores from the Smackover reservoir in the field are acquired to confirm the microbial core experiments to date. From 3-D geologic modeling, reservoir performance analysis, and reservoir simulation, four areas in the Womack Hill Field were identified as prospective infill drilling sites to recover undrained oil from the field. It was determined that the two areas in the unit area probably can be effectively drained by perforating higher zones in the Smackover reservoir in currently producing wells. The two areas in the eastern (non-unitized) part of the field require the drilling of new wells. The successful drilling and testing of a well in 2003 by J. R. Pounds, Inc. has proven the oil potential of the easternmost site in the non-unitized part of the field. Pruet Production Co. acquired new 2-D seismic data to evaluate the oil potential of the westernmost site. Because of the effects of a fault shadow from the major fault bounding the southern border of the Womack Hill Field, it is difficult to evaluate conclusively this potential drill site. Pruet Production Co. has decided not to drill this new well at this time and to further evaluate the new 2-D seismic profiles after these data have been processed using a pre-stack migration technique. Pruet Production Co. has elected not to continue into Phase II of this project because they are not prepared to make a proposal to the other mineral interest owners regarding the drilling of new wells as part of an infil

  6. Improved Oil Recovery from Upper Jurassic Smackover Carbonates through the Application of Advanced Technologies at Womack Hill Oil Field, Choctaw and Clarke Counties, Eastern Gulf Costal Plain

    SciTech Connect (OSTI)

    Ernest A. Mancini

    2006-05-31T23:59:59.000Z

    Pruet Production Co. and the Center for Sedimentary Basin Studies at the University of Alabama, in cooperation with Texas A&M University, Mississippi State University, University of Mississippi, and Wayne Stafford and Associates proposed a three-phase, focused, comprehensive, integrated and multidisciplinary study of Upper Jurassic Smackover carbonates (Class II Reservoir), involving reservoir characterization and 3-D modeling (Phase I) and a field demonstration project (Phases II and III) at Womack Hill Field Unit, Choctaw and Clarke Counties, Alabama, eastern Gulf Coastal Plain. Phase I of the project has been completed. The principal objectives of the project are: increasing the productivity and profitability of the Womack Hill Field Unit, thereby extending the economic life of this Class II Reservoir and transferring effectively and in a timely manner the knowledge gained and technology developed from this project to producers who are operating other domestic fields with Class II Reservoirs. The major tasks of the project included reservoir characterization, recovery technology analysis, recovery technology evaluation, and the decision to implement a demonstration project. Reservoir characterization consisted of geoscientific reservoir characterization, petrophysical and engineering property characterization, microbial characterization, and integration of the characterization data. Recovery technology analysis included 3-D geologic modeling, reservoir simulation, and microbial core experiments. Recovery technology evaluation consisted of acquiring and evaluating new high quality 2-D seismic data, evaluating the existing pressure maintenance project in the Womack Hill Field Unit, and evaluating the concept of an immobilized enzyme technology project for the Womack Hill Field Unit. The decision to implement a demonstration project essentially resulted in the decision on whether to conduct an infill drilling project in Womack Hill Field. Reservoir performance, multiwell productivity analysis, and reservoir simulation studies indicate that water injection continues to provide stable support to maintain production from wells in the western unitized area of the field and that the strong water drive present in the eastern area of the field is adequate to sustain production from this part of the field. Although the results from the microbial characterization and microbial core experiments are very promising, it is recommended that an immobilized enzyme technology project not be implemented in the Womack Hill Field Unit until live (freshly taken and properly preserved) cores from the Smackover reservoir in the field are acquired to confirm the microbial core experiments to date. From 3-D geologic modeling, reservoir performance analysis, and reservoir simulation, four areas in the Womack Hill Field were identified as prospective infill drilling sites to recover undrained oil from the field. It was determined that the two areas in the unit area probably can be effectively drained by perforating higher zones in the Smackover reservoir in currently producing wells. The two areas in the eastern (non-unitized) part of the field require the drilling of new wells. The successful drilling and testing of a well in 2003 by J. R. Pounds, Inc. has proven the oil potential of the easternmost site in the non-unitized part of the field. Pruet Production Co. acquired new 2-D seismic data to evaluate the oil potential of the westernmost site. Because of the effects of a fault shadow from the major fault bounding the southern border of the Womack Hill Field, it is difficult to evaluate conclusively this potential drill site. Pruet Production Co. has decided not to drill this new well at this time and to further evaluate the new 2-D seismic profiles after these data have been processed using a pre-stack migration technique. Pruet Production Co. has elected not to continue into Phase II of this project because they are not prepared to make a proposal to the other mineral interest owners regarding the drilling of new wells as part of an infil

  7. A First-Generation Prototype Dynamic Residential Window Christian Kohler, Howdy Goudey, and Dariush Arasteh

    E-Print Network [OSTI]

    October 26, 2004 Abstract We present the concept for a "smart" highly efficient dynamic window in residential buildings. We describe a prototype dynamic window that relies on an internal shade, which deploys technology have significantly reduced window-related energy use and peak demand in residential buildings

  8. ICEPT Working Paper Comparison of Fuel Cell and Combustion Micro-CHP under Future Residential

    E-Print Network [OSTI]

    ICEPT Working Paper Comparison of Fuel Cell and Combustion Micro-CHP under Future Residential and Combustion Micro-CHP under Future Residential Energy Demand Scenarios A.D. Hawkes2 and M.A. Leach Centre heat and power (micro-CHP) - a technology to provide heat and some electricity to individual

  9. Vehicle Technologies Office Merit Review 2014: Nanostructured High-Temperature Bulk Thermoelectric Energy Conversion for Efficient Waste Heat Recovery

    Broader source: Energy.gov [DOE]

    Presentation given by GMZ Energy Inc. at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about nanostructured high...

  10. Making the most of residential photovoltaic systems

    SciTech Connect (OSTI)

    Moon, S.; Parker, D.; Hayter, S.

    1999-10-18T23:59:59.000Z

    Making the Most of Residential Photovoltaic Systems, was recently produced by NREL Communications and Public Affairs. It showcases a demonstration project in Florida that produced some remarkable results by incorporating both energy efficiency and photovoltaic systems into newly built housing. The brochure points up the benefits of making wise personal choices about energy use, and how large-scale use of advanced energy technologies can benefit the nation. This is one of a series of brochures that presents stimulating information about photovoltaics, with a goal of helping to push this technology into the power-generation mix in different utilities, communities, and states.

  11. Best practices guide for residential HVAC Retrofits

    SciTech Connect (OSTI)

    Walker, Iain S.

    2003-08-11T23:59:59.000Z

    This best practices guide for residential HVAC system retrofits is aimed at contractors who want guidance on delivering energy efficient, cost effective and innovative products. It has been developed around the idea of having packages of changes to the building HVAC system and building envelope that are climate and house construction dependent. These packages include materials, procedures and equipment and are designed to remove some of the guesswork from a builder, contractor, installer or homeowner decisions about how best to carry out HVAC changes. The packages are not meant to be taken as rigid requirements--instead they are systems engineered guidelines that form the basis for energy efficient retrofits. Similar approaches have been taken previously for new construction to develop extremely energy efficient homes that are comfortable safe and durable, and often cost less than standard construction. This is best epitomized by the Building America program whose partners have built thousands of residences throughout the U.S. using these principles. The differences between retrofitting and new construction tend to limit the changes one can make to a building, so these packages rely on relatively simple and non-intrusive technologies and techniques. The retrofits also focus on changes to a building that will give many years of service to the occupants. Another key aspect of these best practices is that we need to know how a house is working so that we know what parts have the potential for improvement. To do this we have put together a set of diagnostic tools that combine physical measurements and checklists/questionnaires. The measured test results, observations and homeowner answers to questions are used to direct us towards the best retrofits applicable to each individual house. The retrofits will depend on the current condition of the building envelope and HVAC system, the local climate, the construction methods used for the house, and the presence of various energy saving systems (e.g., a Heat Recovery Ventilator) and/or materials. This is just like a doctor referring a patient for blood tests or x-rays before actually performing surgery. This way the doctor can be sure that he does the right thing. To take this analogy further--we can borrow from the medical profession and say that the first thought when retrofitting a house is to do no harm, i.e., do not make changes that could make the house worse to live in.

  12. PowerChoice Residential Customer Response to TOU Rates

    E-Print Network [OSTI]

    Peters, Jane S.

    2010-01-01T23:59:59.000Z

    Savings from Residential Energy Demand Feedback Devices. ”residential energy consumption, load shifting, consumption feedback

  13. MICRO-CHP System for Residential Applications

    SciTech Connect (OSTI)

    Joseph Gerstmann

    2009-01-31T23:59:59.000Z

    This is the final report of progress under Phase I of a project to develop and commercialize a micro-CHP system for residential applications that provides electrical power, heating, and cooling for the home. This is the first phase of a three-phase effort in which the residential micro-CHP system will be designed (Phase I), developed and tested in the laboratory (Phase II); and further developed and field tested (Phase III). The project team consists of Advanced Mechanical Technology, Inc. (AMTI), responsible for system design and integration; Marathon Engine Systems, Inc. (MES), responsible for design of the engine-generator subsystem; AO Smith, responsible for design of the thermal storage and water heating subsystems; Trane, a business of American Standard Companies, responsible for design of the HVAC subsystem; and AirXchange, Inc., responsible for design of the mechanical ventilation and dehumidification subsystem.

  14. Lehigh University Office of Residential Services

    E-Print Network [OSTI]

    Napier, Terrence

    Lehigh University Office of Residential Services Resident Check-Out Form Students are expected and furniture of all personal property. Residential Services is not responsible for any personal items left and residential administration staff for billing purposes. Signature

  15. RESIDENTIAL BURGLARY DATE: November 25, 2014

    E-Print Network [OSTI]

    Rose, Michael R.

    RESIDENTIAL BURGLARY DATE: November 25, 2014 INCIDENT / LOCATION: Residential Burglary in Vista Del 22, 2014, at approximately 11:07 pm, the UCI Police Department received a report of a residential

  16. http://warren.ucsd.edu 1 Residential

    E-Print Network [OSTI]

    Tsien, Roger Y.

    http://warren.ucsd.edu 1 Warren Resources Residential Life Student Conduct University Resources Off and Employment 10 Section II: Residential Life Introduction 11 Residential Life Policies 13 Section III: Student

  17. Guidelines for residential commissioning

    SciTech Connect (OSTI)

    Wray, Craig P.; Walker, Iain S.; Sherman, Max H.

    2003-01-31T23:59:59.000Z

    Currently, houses do not perform optimally or even as many codes and forecasts predict, largely because they are field assembled and there is no consistent process to identify problems or to correct them. Residential commissioning is a solution to this problem. This guide is the culmination of a 30-month project that began in September 1999. The ultimate objective of the project is to increase the number of houses that undergo commissioning, which will improve the quality, comfort, and safety of homes for California citizens. The project goal is to lay the groundwork for a residential commissioning industry in California focused on end-use energy and non-energy issues. As such, we intend this guide to be a beginning and not an end. Our intent is that the guide will lead to the programmatic integration of commissioning with other building industry processes, which in turn will provide more value to a single site visit for people such as home energy auditors and raters, home inspectors, and building performance contractors. Project work to support the development of this guide includes: a literature review and annotated bibliography, which facilitates access to 469 documents related to residential commissioning published over the past 20 years (Wray et al. 2000), an analysis of the potential benefits one can realistically expect from commissioning new and existing California houses (Matson et al. 2002), and an assessment of 107 diagnostic tools for evaluating residential commissioning metrics (Wray et al. 2002). In this guide, we describe the issues that non-experts should consider in developing a commissioning program to achieve the benefits we have identified. We do this by providing specific recommendations about: how to structure the commissioning process, which diagnostics to use, and how to use them to commission new and existing houses. Using examples, we also demonstrate the potential benefits of applying the recommended whole-house commissioning approach to such houses.

  18. Residential Clean Energy Grant Program

    Broader source: Energy.gov [DOE]

    Maryland's Residential Clean Energy Grant Program, administered by the Maryland Energy Administration (MEA), provides financial incentives to homeowners that install solar water-heating systems or...

  19. NYSEG (Gas)- Residential Efficiency Program

    Broader source: Energy.gov [DOE]

    NYSEG is offering residential natural gas customers rebates for installing energy efficient equipment. Customers can complete one rebate application for multiple pieces of equipment as long as...

  20. Unitil- Residential Energy Efficiency Programs

    Broader source: Energy.gov [DOE]

    Unitil offers New Hampshire residential customers a number of programs to encourage more energy efficient homes. The Energy Star Appliance Program provides rebates for clothes washers, air...

  1. Residential Energy Efficiency Rebate Programs

    Broader source: Energy.gov [DOE]

    Efficiency Vermont provides financial incentives for its residential customers to install energy efficient equipment in their homes. Eligible Energy Star equipment includes dehumidifiers (seasonal...

  2. Passamaquoddy Technology Recovery Scrubber{trademark} at the Dragon Products, Inc. Cement Plant located in Thomaston, Maine. 1990 Annual technical report

    SciTech Connect (OSTI)

    Not Available

    1990-12-31T23:59:59.000Z

    The background and process of the Passamaquoddy Technology Recovery Scrubber{trademark} are described. The Scrubber was developed for Dragon Cement Plant in Thomaston, Maine and facilitates a number of process improvements. The exhaust gas is scrubbed of SO{sub 2} with better than 90% efficiency. The kiln dust is cleaned of alkalines and so can be returned to kiln feed instead of dumped to landfill. Potassium sulfate in commercial quantity and purity can be recovered. Distilled water is recovered which also has commercial potential. Thus, various benefits are accrued and no waste streams remain for disposal. The process is applicable to both wet and dry process cement kilns and appears to have potential in any industry which generates acidic gaseous exhausts and/or basic solid or liquid wastes.

  3. Flint Energies- Residential Energy Efficiency Loan Program

    Broader source: Energy.gov [DOE]

    Flint Energies has partnered with Robins Federal Credit Union to offer affordable financing options to residential customers who wish to upgrade the energy efficiency of homes and residential...

  4. Building America Residential Energy Efficiency Technical Update...

    Energy Savers [EERE]

    Residential Energy Efficiency Technical Update Meeting: August 2011 Building America Residential Energy Efficiency Technical Update Meeting: August 2011 On this page, you may link...

  5. Building America Residential Energy Efficiency Research Planning...

    Energy Savers [EERE]

    Building America Residential Energy Efficiency Research Planning Meeting: October 2011 Building America Residential Energy Efficiency Research Planning Meeting: October 2011 On...

  6. Covered Product Category: Residential Central Air Conditioners...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Central Air Conditioners Covered Product Category: Residential Central Air Conditioners The Federal Energy Management Program (FEMP) provides acquisition guidance for residential...

  7. Building America Residential Buildings Energy Efficiency Meeting...

    Energy Savers [EERE]

    Building America Residential Buildings Energy Efficiency Meeting: July 2010 Building America Residential Buildings Energy Efficiency Meeting: July 2010 On this page, you may link...

  8. Entergy Mississippi- Residential Energy Efficiency Program

    Broader source: Energy.gov [DOE]

    Entergy Mississippi offers residential energy efficiency programs to help residential customers save energy by providing rebates for lighting, heating and cooling equipment, A/C tune ups, and...

  9. Solar Now! Residential Brochure | Department of Energy

    Energy Savers [EERE]

    Information Resources Solar Now Residential Brochure Solar Now Residential Brochure Four Oregon organizations have teamed up to help Oregon homeowners learn about and install...

  10. Guide for Benchmarking Residential Energy Efficiency Program...

    Broader source: Energy.gov (indexed) [DOE]

    Guide for Benchmarking Residential Energy Efficiency Program Progress as part of the DOE Better Buildings Program. Guide for Benchmarking Residential Energy Efficiency Program...

  11. Sharyland Utilities- Residential Standard Offer Program

    Broader source: Energy.gov [DOE]

    Sharyland Utilities offers the Residential and "Hard-to-Reach" Standard Offer Programs, which encourage residential customers to pursue energy saving measures and equipment upgrades in their homes....

  12. Evaluation of evolving residential electricity tariffs

    E-Print Network [OSTI]

    Lai, Judy

    2011-01-01T23:59:59.000Z

    residential electricity tariffs Judy Lai, Nicholas DeForest,residential electricity tariffs Judy Lai – Senior Researchfrom the current 5-tiered tariff to time variable pricing,

  13. Residential Energy Efficiency Research Planning Meeting Summary...

    Energy Savers [EERE]

    Residential Energy Efficiency Research Planning Meeting Summary Report Residential Energy Efficiency Research Planning Meeting Summary Report This report summarizes key findings...

  14. Tacoma Power- Residential Weatherization Rebate Program

    Broader source: Energy.gov [DOE]

    Tacoma Power helps residential customers increase the energy efficiency of homes through the utility's residential weatherization program. Weatherization upgrades to windows are eligible for an...

  15. Better Buildings Residential Network Case Study: Partnerships...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Network Case Study: Partnerships Better Buildings Residential Network Case Study: Partnerships Better Buildings Residential Network Case Study: Partnerships, from the U.S....

  16. Better Buildings Residential Network Membership Form | Department...

    Energy Savers [EERE]

    Membership Form Better Buildings Residential Network Membership Form Membership form from the U.S. Department of Energy's Better Buildings Residential Network Recommended...

  17. Residential Energy Efficiency Customer Service Best Practices...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Residential Energy Efficiency Customer Service Best Practices Peer Exchange Call Residential Energy Efficiency Customer Service Best Practices Peer Exchange Call January 22, 2015...

  18. SRP- Residential Energy Efficiency Rebate Program

    Broader source: Energy.gov [DOE]

    SRP's Residential Energy Efficiency Rebate Program is designed to encourage residential SRP customers to utilize energy efficient appliances and measures at home. Rebates and discounts are...

  19. Residential Exchange History Fact Sheet - June 2007

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    history of BPA's Residential Exchange Program June 2007 F rom its start, the Residential Exchange Program (REP) has been a source of nearly continuous controversy. Its roots go...

  20. Horizontal oil well applications and oil recovery assessment. Volume 1: Success of horizontal well technology, Final report

    SciTech Connect (OSTI)

    Deskins, W.G.; McDonald, W.J.; Knoll, R.G.; Springer, S.J.

    1995-03-01T23:59:59.000Z

    Horizontal technology has been applied in over 110 formations in the USA. Volume I of this study addresses the overall success of horizontal technology, especially in less-publicized formations, i.e., other than the Austin Chalk, Bakken, and Niobrara. Operators in the USA. and Canada were surveyed on a formation-by-formation basis by means of a questionnaire. Response data were received describing horizontal well projects in 58 formations in the USA. and 88 in Canada. Operators responses were analyzed for trends in technical and economic success based on lithology (clastics and carbonates) and resource type (light oil, heavy oil, and gas). The potential impact of horizontal technology on reserves was also estimated. A forecast of horizontal drilling activity over the next decade was developed.

  1. Development of Thermoelectric Technology for Automotive Waste...

    Energy Savers [EERE]

    Development of Thermoelectric Technology for Automotive Waste Heat Recovery Development of Thermoelectric Technology for Automotive Waste Heat Recovery Presentation from the U.S....

  2. An investigation of preferences for product appearance : a case study of residential solar panels

    E-Print Network [OSTI]

    Bao, Qifang

    2014-01-01T23:59:59.000Z

    The importance of the styling and appearance of consumer products is widely understood. This paper evaluates the appearance of a technology-oriented product, the residential solar panel, using a quantitative approach known ...

  3. Modelling Urban scale Retrofit, Pathways to 2050 Low Carbon Residential Building Stock 

    E-Print Network [OSTI]

    Lannon, Simon; Georgakaki, Aliki; Macdonald, Stuart

    A bottom up engineering modelling approach has been used to investigate the pathways to 2050 low carbon residential building stock. The impact of housing retrofit, renewable technologies, occupant behaviour, and grid decarbonisation is measured at a...

  4. Global Economy and IT IT: Recovery and Growth Government and IT IT and Society Strengthening Economies Innovation in information technology (IT) has fueled unprecedented economic gains in the last 30

    E-Print Network [OSTI]

    Narasayya, Vivek

    Global Economy and IT IT: Recovery and Growth Government and IT IT and Society Strengthening Economies Innovation in information technology (IT) has fueled unprecedented economic gains in the last 30-term stimulus to local economies but also position both developed and developing economies to compete

  5. STATE OF CALIFORNIA RESIDENTIAL ADDITIONS

    E-Print Network [OSTI]

    STATE OF CALIFORNIA RESIDENTIAL ADDITIONS CEC- CF-1R ADD (Revised 03/10) CALIFORNIA ENERGY COMMISSION Prescriptive Certificate of Compliance: CF-1R ADD Residential Additions (Page 1 of 8) Site Address Orientation: N, E, S, W or Degrees ________ Conditioned Floor Area of Addition (CFA): New Addition Size: Less

  6. Achieving Energy Savings Through Residential Energy Use Behavior

    E-Print Network [OSTI]

    Office PIER Buildings End-use Energy Efficiency Research Program www.energy.ca.gov/research/buildings May and purchasing decisions, are important factors in achieving energy savings in buildings. However, little efficiency programs for the residential sector? Technologies such as smart meters and home area networks

  7. Laboratory Performance Evaluation of Residential Integrated Heat Pump Water Heaters

    SciTech Connect (OSTI)

    Sparn, B.; Hudon, K.; Christensen, D.

    2011-09-01T23:59:59.000Z

    This report discusses how a significant opportunity for energy savings is domestic hot water heating, where an emerging technology has recently arrived in the U.S. market: the residential integrated heat pump water heater. A laboratory evaluation is presented of the five integrated HPWHs available in the U.S. today.

  8. Audit Procedures for Improving Residential Building Energy Efficiency

    E-Print Network [OSTI]

    Efficiency April 2013 HAWAI`I NATURAL ENERGY INSTITUTE School of Ocean & Earth Science & TechnologyAudit Procedures for Improving Residential Building Energy Efficiency This report analyses in thermal envelopes. The report was submitted by HNEI to the U.S. Department of Energy Office of Electricity

  9. National Residential Efficiency Measures Database

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    The National Residential Efficiency Measures Database is a publicly available, centralized resource of residential building retrofit measures and costs for the U.S. building industry. With support from the U.S. Department of Energy, NREL developed this tool to help users determine the most cost-effective retrofit measures for improving energy efficiency of existing homes. Software developers who require residential retrofit performance and cost data for applications that evaluate residential efficiency measures are the primary audience for this database. In addition, home performance contractors and manufacturers of residential materials and equipment may find this information useful. The database offers the following types of retrofit measures: 1) Appliances, 2) Domestic Hot Water, 3) Enclosure, 4) Heating, Ventilating, and Air Conditioning (HVAC), 5) Lighting, 6) Miscellaneous.

  10. Venezuela-MEM/USA-DOE Fossil Energy Report XIII-1, Supporting Technology for Enhanced Oil Recovery, Microbial EOR

    SciTech Connect (OSTI)

    Ziritt, Jose Luis

    1999-11-03T23:59:59.000Z

    The results from Annex XIII of the Cooperative Agreement between the United States Department of Energy (DOE) and the Ministry of Energy and Mines of the Republic of Venezuela (MEMV) have been documented and published with many researchers involved. Integrate comprehensive research programs in the area of Microbial Enhanced Oil Recovery (MEOR) ranged from feasibility laboratory studies to full-scale multi-well field pilots. The objective, to cooperate in a technical exchange of ideas and information was fully met throughout the life of the Annex. Information has been exchanged between the two countries through published reports and technical meetings between experts in both country's research communities. The meetings occurred every two years in locations coincident with the International MEOR conferences & workshops sponsored by DOE (June 1990, University of Oklahoma, September 1992, Brookhaven, September 1995, National Institute of Petroleum and Energy Research). Reports and publications produced during these years are listed in Appendix B. Several Annex managers have guided the exchange through the years. They included Luis Vierma, Jose Luis Zirritt, representing MEMV and E. B. Nuckols, Edith Allison, and Rhonda Lindsey, representing the U.S. DOE. Funding for this area of research remained steady for a few years but decreased in recent years. Because both countries have reduced research programs in this area, future exchanges on this topic will occur through ANNEX XV. Informal networks established between researchers through the years should continue to function between individuals in the two countries.

  11. Venezuela-MEM/USA-DOE Fossil Energy Report IV-11: Supporting technology for enhanced oil recovery - EOR thermal processes

    SciTech Connect (OSTI)

    Venezuela

    2000-04-06T23:59:59.000Z

    This report contains the results of efforts under the six tasks of the Tenth Amendment anti Extension of Annex IV, Enhanced Oil Recovery Thermal Processes of the Venezuela/USA Energy Agreement. This report is presented in sections (for each of the six Tasks) and each section contains one or more reports that were prepared to describe the results of the effort under each of the Tasks. A statement of each Task, taken from the Agreement Between Project Managers, is presented on the first page of each section. The Tasks are numbered 68 through 73. The first through tenth report on research performed under Annex IV Venezuela MEM/USA-DOE Fossil Energy Report Number IV-1, IV-2, IV-3, IV-4, IV-5, IV-6, IV-7, IV-8, IV-9, IV-10 contain the results of the first 67 Tasks. These reports are dated April 1983, August 1984, March 1986, July 1987, November 1988, December 1989, October 1991, February 1993, March 1995, and December 1997, respectively.

  12. ASHRAE and residential ventilation

    SciTech Connect (OSTI)

    Sherman, Max H.

    2003-10-01T23:59:59.000Z

    In the last quarter of a century, the western world has become increasingly aware of environmental threats to health and safety. During this period, people psychologically retreated away from outdoors hazards such as pesticides, smog, lead, oil spills, and dioxin to the seeming security of their homes. However, the indoor environment may not be healthier than the outdoor environment, as has become more apparent over the past few years with issues such as mold, formaldehyde, and sick-building syndrome. While the built human environment has changed substantially over the past 10,000 years, human biology has not; poor indoor air quality creates health risks and can be uncomfortable. The human race has found, over time, that it is essential to manage the indoor environments of their homes. ASHRAE has long been in the business of ventilation, but most of the focus of that effort has been in the area of commercial and institutional buildings. Residential ventilation was traditionally not a major concern because it was felt that, between operable windows and envelope leakage, people were getting enough outside air in their homes. In the quarter of a century since the first oil shock, houses have gotten much more energy efficient. At the same time, the kinds of materials and functions in houses changed in character in response to people's needs. People became more environmentally conscious and aware not only about the resources they were consuming but about the environment in which they lived. All of these factors contributed to an increasing level of public concern about residential indoor air quality and ventilation. Where once there was an easy feeling about the residential indoor environment, there is now a desire to define levels of acceptability and performance. Many institutions--both public and private--have interests in Indoor Air Quality (IAQ), but ASHRAE, as the professional society that has had ventilation as part of its mission for over 100 years, is the logical place to provide leadership. This leadership has been demonstrated most recently by the publication of the first nationally recognized standard on ventilation in homes, ASHRAE Standard 62.2-2003, which builds on work that has been part of ASHRAE for many years and will presumably continue. Homeowners and occupants, which includes virtually all of us, will benefit from the application of Standard 62.2 and use of the top ten list. This activity is exactly the kind of benefit to society that the founders of ASHRAE envisioned and is consistent with ASHRAE's mission and vision. ASHRAE members should be proud of their Society for taking leadership in residential ventilation.

  13. Better Buildings Residential

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't Your Destiny: The FutureCommentsEnergy Christopher|for1, 20114,Residential 2014 Building

  14. Residential propane price decreases

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for On-Highway4,1,50022,3,,,,6,1,9,1,50022,3,,,,6,1,Decade Year-0E (2001) -heating oil pricepropane price05, 2014 Residential

  15. Energy Optimization (Electric)- Residential Efficiency Program

    Broader source: Energy.gov [DOE]

    The Energy Optimization Programs, administered by WECC, provides residential electric incentives for the following Michigan utilities:

  16. Faces of the Recovery Act: Sun Catalytix

    Broader source: Energy.gov [DOE]

    At the Massachusetts Institute of Technology, Dan Nocera talks about Sun Catalytix, the next generation of solar energy, and ARPA-E funding through the Recovery Act.

  17. Demonstration of Air-Power-Assist Engine Technology for Clean Combustion and Direct Energy Recovery in Heavy Duty Application

    SciTech Connect (OSTI)

    Hyungsuk Kang; Chun Tai

    2010-05-01T23:59:59.000Z

    The first phase of the project consists of four months of applied research, starting from September 1, 2005 and was completed by December 31, 2005. During this time, the project team heavily relied on highly detailed numerical modeling techniques to evaluate the feasibility of the APA technology. Specifically, (i) A GT-Power{sup TM}engine simulation model was constructed to predict engine efficiency at various operating conditions. Efficiency was defined based on the second-law thermodynamic availability. (ii) The engine efficiency map generated by the engine simulation was then fed into a simplified vehicle model, which was constructed in the Matlab/Simulink environment, to predict fuel consumption of a refuse truck on a simple collection cycle. (iii) Design and analysis work supporting the concept of retrofitting an existing Sturman Industries Hydraulic Valve Actuation (HVA) system with the modifications that are required to run the HVA system with Air Power Assist functionality. A Matlab/Simulink model was used to calculate the dynamic response of the HVA system. Computer aided design (CAD) was done in Solidworks for mechanical design and hydraulic layout. At the end of Phase I, 11% fuel economy improvement was predicted. During Phase II, the engine simulation group completed the engine mapping work. The air handling group made substantial progress in identifying suppliers and conducting 3D modelling design. Sturman Industries completed design modification of the HVA system, which was reviewed and accepted by Volvo Powertrain. In Phase II, the possibility of 15% fuel economy improvement was shown with new EGR cooler design by reducing EGR cooler outlet temperature with APA engine technology from Air Handling Group. In addition, Vehicle Simulation with APA technology estimated 4 -21% fuel economy improvement over a wide range of driving cycles. During Phase III, the engine experimental setup was initiated at VPTNA, Hagerstown, MD. Air Handling system and HVA system were delivered to VPTNA and then assembly of APA engine was completed by June 2007. Functional testing of APA engine was performed and AC and AM modes testing were completed by October 2007. After completing testing, data analysis and post processing were performed. Especially, the models were instrumental in identifying some of the key issues with the experimental HVA system. Based upon the available engine test results during AC and AM modes, the projected fuel economy improvement over the NY composite cycle is 14.7%. This is close to but slightly lower than the originally estimated 18% from ADVISOR simulation. The APA project group demonstrated the concept of APA technology by using simulation and experimental testing. However, there are still exists of technical challenges to meet the original expectation of APA technology. The enabling technology of this concept, i.e. a fully flexible valve actuation system that can handle high back pressure from the exhaust manifold is identified as one of the major technical challenges for realizing the APA concept.

  18. Technology assessment: environmental, health, and safety impacts associated with oil recovery from US tar-sand deposits

    SciTech Connect (OSTI)

    Daniels, J.I.; Anspaugh, L.R.; Ricker, Y.E.

    1981-10-13T23:59:59.000Z

    The tar-sand resources of the US have the potential to yield as much as 36 billion barrels (bbls) of oil. The tar-sand petroleum-extraction technologies now being considered for commercialization in the United States include both surface (above ground) systems and in situ (underground) procedures. The surface systems currently receiving the most attention include: (1) thermal decomposition processes (retorting); (2) suspension methods (solvent extraction); and (3) washing techniques (water separation). Underground bitumen extraction techniques now being field tested are: (1) in situ combustion; and (2) in situ steam-injection procedures. At this time, any commercial tar-sand facility in the US will have to comply with at least 7 major federal regulations in addition to state regulations; building, electrical, and fire codes; and petroleum-industry construction standards. Pollution-control methods needed by tar-sand technologies to comply with regulatory standards and to protect air, land, and water quality will probably be similar to those already proposed for commercial oil-shale systems. The costs of these systems could range from about $1.20 to $2.45 per barrel of oil produced. Estimates of potential pollution-emisson levels affecting land, air, and water were calculated from available data related to current surface and in situ tar-sand field experiments in the US. These data were then extrapolated to determine pollutant levels expected from conceptual commercial surface and in situ facilities producing 20,000 bbl/d. The likelihood-of-occurrence of these impacts was then assessed. Experience from other industries, including information concerning health and ecosystem damage from air pollutants, measurements of ground-water transport of organic pollutants, and the effectiveness of environmental-control technologies was used to make this assessment.

  19. About the Better Buildings Residential Network | Department of...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Buildings Residential Network About the Better Buildings Residential Network The Better Buildings Residential Network connects energy efficiency programs and partners to share...

  20. What Explains Manhattan's Declining Share of Residential Construction?

    E-Print Network [OSTI]

    DAVIDOFF, THOMAS

    2007-01-01T23:59:59.000Z

    Share of Residential Construction? Thomas Davido? ? June 20,market. Residential construction in Manhattan has fallento total US residential construction over the last 45 years.

  1. Residential Forced Air System Cabinet Leakage and Blower Performance

    E-Print Network [OSTI]

    Walker, Iain S.

    2010-01-01T23:59:59.000Z

    CA.   CEC (2008b).  Residential Alternative Calculation Standard for Air Handlers in Residential Space Conditioning of Standards Options for Residential Air Handler Fans.   

  2. Guide to Benchmarking Residential Program Progress Webcast Slides...

    Energy Savers [EERE]

    Guide to Benchmarking Residential Program Progress Webcast Slides Guide to Benchmarking Residential Program Progress Webcast Slides Slides from "Guide to Benchmarking Residential...

  3. Financing Non-Residential Photovoltaic Projects: Options and Implications

    E-Print Network [OSTI]

    Bolinger, Mark

    2009-01-01T23:59:59.000Z

    of panel titled “Financing Residential and Small CommercialL ABORATORY Financing Non-Residential Photovoltaic Projects:1 2. Policy Support for Non-Residential PV

  4. Residential implementation of critical-peak pricing of electricity

    E-Print Network [OSTI]

    Herter, Karen

    2006-01-01T23:59:59.000Z

    L.R. Modeling alternative residential peak-load electricitydemand response to residential critical peak pricing (CPP)analysis of California residential customer response to

  5. Modeling diffusion of electrical appliances in the residential sector

    E-Print Network [OSTI]

    McNeil, Michael A.

    2010-01-01T23:59:59.000Z

    Efficiency Standards in the Residential Electricity Sector.France. USDOE (2001). Residential Energy Consumption Survey,long-term response of residential cooling energy demand to

  6. Conservation and renewable energy technologies for buildings

    SciTech Connect (OSTI)

    Not Available

    1991-05-01T23:59:59.000Z

    The Office of building Technologies (OBT) pursues advanced energy efficiency and renewable technologies and accelerates the rate of adoption of these technologies in the residential and commercial sectors through research, development, and demonstration.

  7. Application of Reservoir Characterization and Advanced Technology to Improve Recovery and Economics in a Lower Quality Shallow Shelf San Andres Reservoir.

    SciTech Connect (OSTI)

    Taylor, A.R.; Hickman, T.S. [T. SCOTT HICKMAN AND ASSOCIATES 550 WEST TEXAS STREET SUITE 950 MIDLAND, TX (United States) 79701; Justice, J.J. [ADVANCED RESERVOIR TECHNOLOGIES P. O. BOX 985 ADDISON, TX (United States) 75001-0985

    1997-07-30T23:59:59.000Z

    The Class 2 Project at West Welch was designed to demonstrate the use of advanced technologies to enhance the economics of improved oil recovery (IOR) projects in lower quality Shallow Shelf Carbonate (SSC) reservoirs, resulting in recovery of additional oil that would otherwise be left in the reservoir at project abandonment. Accurate reservoir description is critical to the effective evaluation and efficient design of IOR projects in the heterogeneous SSC reservoirs. Therefore, the majority of Budget Period 1 was devoted to reservoir characterization. Technologies being demonstrated include: l. Advanced petrophysics 2. Three-dimensional (3-D) seismic 3. Cross-well bore tomography 4. Advanced reservoir simulation 5. Carbon dioxide (CO{sub 2}) stimulation treatments 6. Hydraulic fracturing design and monitoring 7. Mobility control agents. West Welch Unit is one of four large waterflood units in the Welch Field in the northwestern portion of Dawson County, Texas. The Welch Field was discovered in the early 1940`s and produces oil under a solution gas drive mechanism from the San Andres formation at approximately 4800 ft. The field has been under waterflood for 30 years and a significant portion has been infill-drilled on 20-ac density. A 1982-86 Pilot C0{sub 2} injection project in the offsetting South Welch Unit yielded positive results. Recent installation of a C0{sub 2} pipeline near the field allowed the phased development of a miscible C0 injection project at the South Welch Unit. The reservoir quality at the West Welch Unit is poorer than other San Andres reservoirs due to its relative position to sea level during deposition. Because of the proximity of a C0{sub 2} source and the C0{sub 2} operating experience that would be available from the South Welch Unit, West Welch Unit is an ideal location for demonstrating methods for enhancing economics of IOR projects in lower quality SSC reservoirs. This Class 2 project concentrates on the efficient design of a miscible C0{sub 2} project based on detailed reservoir characterization from advanced petrophysics, 3- D seismic interpretations and cross wellbore tomography interpretations. During the quarter, the project area was expanded to include an area where the seismic attribute mapping indicated potential for step-out locations. Progress was made on interpreting the crosswell seismic data and the C0{sub 2} performance simulation was further improved. Construction of facilities required for C0{sub 2} injection were completed.

  8. Technology for the Recovery of Fuel and Adsorbent Carbons from Coal Burning Utility Ash Ponds and Landfills

    SciTech Connect (OSTI)

    J.G. Groppo; T.L. Robl

    2005-09-30T23:59:59.000Z

    Several sampling techniques were evaluated to recover representative core samples from the ash ponds at Western Kentucky Energy's Coleman Station. The most successful was a combination of continuous-flight augers and specially designed soft-sediment sampling tubes driven by a Hammerhead drill mounted on an amphibious ARGO vehicle. A total of 51 core samples were recovered and analyzed in 3 ft sections and it was determined that there are 1,354,974 tons of ash in Pond C. Of the over 1.35M tons of ash present, 14% or 190K tons can be considered as coarse (+100 mesh). Pond C contains approximately 88K tons of carbon, nearly half of which is coarse and potentially recoverable with spiral concentration while the fine carbon (-100 mesh) is recoverable with froth flotation. There are 1.27M tons of carbon-free ash, 12% of which is coarse and potentially usable as block sand. Spiral concentration testing on bulk samples showed that product grade of 30 to 38% C (4200 to 5500 Btu/lb) was obtainable. When this product was cleaned again in an additional stage of spiral concentration, the product grade was improved to 7200 to 8200 Btu/lb with an accompanying 13 to 29% decrease in yield. Release analysis of hydraulically classified pond ash showed that froth flotation could provide froth products with as high a grade as 9000 Btu/lb with a yield of 5%. Increasing yield to 10% reduced froth grade to 7000 Btu/lb. Batch flotation provided froth grades as high as 6500 Btu/lb with yields of 7% with 1.5 lb/ton SPP and 1 lb/ton frother. Column flotation test results were similar to those achieved in batch flotation in terms of both grade and yield, however, carbon recoveries were lower (<70%). High airflow rate was required to achieve >50% carbon recovery and using wash water improved froth grade. Bottom ash samples were recovered from each of the units at Coleman Station. Characterization confirmed that sufficient quantity and quality of material is generated to produce a marketable lightweight aggregate and recover a high-grade fuel product. Spiral concentration provided acceptable grade lightweight aggregate with yields of only 10 to 20%. Incorporating a sieve bend into the process to recover coarse, porous ash particles from the outside race of the spirals increased aggregate yield to as high as 75%, however, the carbon content of the aggregate also increased. An opening size of 28 mesh on the sieve bend appeared to be sufficient. Lightweight concrete blocks (28 to 32 lbs) were produced from bottom ash and results show that acceptable strength could be attained with a cement/concrete ratio as low as 1/4. A mobile Proof-of-Concept (POC) field unit was designed and fabricated to meet the processing objectives of the project. The POC plant consisted of two trailer-mounted modules and was completely self sufficient with respect to power and water requirements. The POC unit was hauled to Coleman Station and operated at a feed rate of 2 tph. Results showed that the spirals operated similarly to previous pilot-scale operations and a 500 lb composite sample of coarse carbon was collected with a grade of 51.7% C or 7279 Btu/lb. Flotation results compared favorably with release analysis and 500 lbs of composite froth product was collected with a grade of 35% C or 4925 Btu/lb. The froth product was dewatered to 39% moisture with vacuum filtration. Pan pelletization and briquetting were evaluated as a means of minimizing handling concerns. Rotary pan pelletization produced uniform pellets with a compressive strength of 4 lbf without the use of any binder. Briquettes were produced by blending the coarse and fine carbon products at a ratio of 1:10, which is the proportion that the two products would be produced in a commercial operation. Using 3% lime as a binder produced the most desirable briquettes with respect to strength, attrition and drop testing. Additionally, the POC carbon products compared favorably with commercial activated carbon when used for removal of mercury from simulated flue gas. A business model was generated to summarize anti

  9. INTERNATIONAL COMPARISON OF RESIDENTIAL ENERGY USE: INDICATORS OF RESIDENTIAL ENERGY USE AND EFFICIENCY PART ONE: THE DATA BASE

    E-Print Network [OSTI]

    Schipper, L.

    2013-01-01T23:59:59.000Z

    and Analysis of Swedish Residential Energy Use Data 1960-80.1980. International Residential Energy Use and ConservationInternational Comparison of Residential Energy ! Js~. Report

  10. Jasper County REMC- Residential Residential Energy Efficiency Rebate Program

    Broader source: Energy.gov [DOE]

    Jasper County REMC, in conjunction with Wabash Valley Power Association's Power Moves programs, offers a range of rebates to its residential customers for the purchase and installation of energy...

  11. New technology for sulfide reduction and increased oil recovery. Second quarter progress report, September 7, 1997--December 8, 1997

    SciTech Connect (OSTI)

    NONE

    1998-12-20T23:59:59.000Z

    Project work was initiated by Geo-Microbial Technologies, Inc. (GMT), Ochelata, Oklahoma for Contract Number DE-FG01-97EE15659 on June 18, 1997. The purpose of this project is to demonstrate reduction of sulfide contamination, as well as possible improvement of production in oil and gas production systems. This will be accomplished by application of the BioCompetitive Exclusion (BCX) process developed by GMT. A broad spectrum of well types and geographical locations is anticipated. The BCX process is designed to manipulate indigenous reservoir bacteria with the addition of synergistic inorganic chemical formulae. These treatments will stimulate growth of beneficial microbes, while suppressing metabolic activity of sulfate reducing bacteria (SRB), the primary source of harmful sulfide production.

  12. Diesel Engine Waste Heat Recovery Utilizing Electric Trubocompound...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Trubocompound Technology Diesel Engine Waste Heat Recovery Utilizing Electric Trubocompound Technology 2003 DEER Conference Presentation: Caterpillar Inc. 2003deeralgrain.pdf...

  13. FEASIBILITY OF WIND TO SERVE UPPER SKAGIT'S BOW HILL TRIBAL LANDS AND FEASIBILITY UPDATE FOR RESIDENTIAL RENEWABLE ENERGY.

    SciTech Connect (OSTI)

    RICH, LAUREN

    2013-09-30T23:59:59.000Z

    A two year wind resource assessment was conducted to determine the feasibility of developing a community scale wind generation system for the Upper Skagit Indian Tribe?s Bow Hill land base, and the project researched residential wind resource technologies to determine the feasibility of contributing renewable wind resource to the mix of energy options for our single and multi-family residential units.

  14. Reactivation of an Idle Lease to Increase Heavy Oil Recovery Through Application of Conventional Steam Drive Technology in a Low Dip Slope and Basin Resrvoir in the Midway-Sunset Field, San Jaoquin Basin, California

    SciTech Connect (OSTI)

    Creties Jenkins; Doug Sprinkel; Milind Deo; Ray Wydrinski; Robert Swain

    1997-10-21T23:59:59.000Z

    This project reactivates ARCO?s idle Pru Fee lease in the Midway-Sunset field, California and conducts a continuous steamflood enhanced oil recovery demonstration aided by an integration of modern reservoir characterization and simulation methods. Cyclic steaming is being used to reestablish baseline production within the reservoir characterization phase of the project. During the demonstration phase scheduled to begin in January 1997, a continuous steamflood enhanced oil recovery will be initiated to test the incremental value of this method as an alternative to cyclic steaming. Other economically marginal Class III reservoirs having similar producibility problems will benefit from insight gained in this project. The objectives of the project are: (1) to return the shut-in portion of the reservoir to optimal commercial production; (2) to accurately describe the reservoir and recovery process; and (3) to convey the details of this activity to the domestic petroleum industry, especially to other producers in California, through an aggressive technology transfer program.

  15. Reactivation of an Idle Lease to Increase Heavy Oil Recovery through Application of Conventional Steam Drive Technology in a Low Dip Slope and Basin Reservoir in the Midway-Sunset Field, San Jaoquin Basin, California

    SciTech Connect (OSTI)

    Deo, M.; Forster, C.; Jenkins, C.; Schamel, S.; Sprinkel, D.; and Swain, R.

    1999-02-01T23:59:59.000Z

    This project reactivates ARCO's idle Pru Fee lease in the Midway-Sunset field, California and conducts a continuous steamflood enhanced oil recovery demonstration aided by an integration of modern reservoir characterization and simulation methods. Cyclic steaming was used to reestablish baseline production within the reservoir characterization phase of the project completed in December 1996. During the demonstration phase begun in January 1997, a continuous steamflood enhanced oil recovery is testing the incremental value of this method as an alternative to cyclic steaming. Other economically marginal Class III reservoirs having simular producibility problems will benefit from insight gained in this project. The objectives of the project are: (1) to return the shut-in portion of the reservoir to optimal commercial production; (2) to accurately describe the reservoir and recovery process; and (3) to convey the details of this activity to the domestic petroleum industry, especially t o other producers in California, through an aggressive technology transfer program.

  16. ASSESSING AND FORECASTING, BY PLAY, NATURAL GAS ULTIMATE RECOVERY GROWTH AND QUANTIFYING THE ROLE OF TECHNOLOGY ADVANCEMENTS IN THE TEXAS GULF COAST BASIN AND EAST TEXAS

    SciTech Connect (OSTI)

    William L. Fisher; Eugene M. Kim

    2000-12-01T23:59:59.000Z

    A detailed natural gas ultimate recovery growth (URG) analysis of the Texas Gulf Coast Basin and East Texas has been undertaken. The key to such analysis was determined to be the disaggregation of the resource base to the play level. A play is defined as a conceptual geologic unit having one or more reservoirs that can be genetically related on the basis of depositional origin of the reservoir, structural or trap style, source rocks and hydrocarbon generation, migration mechanism, seals for entrapment, and type of hydrocarbon produced. Plays are the geologically homogeneous subdivision of the universe of petroleum pools within a basin. Therefore, individual plays have unique geological features that can be used as a conceptual model that incorporates geologic processes and depositional environments to explain the distribution of petroleum. Play disaggregation revealed important URG trends for the major natural gas fields in the Texas Gulf Coast Basin and East Texas. Although significant growth and future potential were observed for the major fields, important URG trends were masked by total, aggregated analysis based on a broad geological province. When disaggregated by plays, significant growth and future potential were displayed for plays that were associated with relatively recently discovered fields, deeper reservoir depths, high structural complexities due to fault compartmentalization, reservoirs designated as tight gas/low-permeability, and high initial reservoir pressures. Continued technology applications and advancements are crucial in achieving URG potential in these plays.

  17. CONSULTANT REPORT 2009 CALIFORNIA RESIDENTIAL

    E-Print Network [OSTI]

    . Data collection was completed in early 2010. The study yielded energy consumption estimates for 27 statistical methods to combine survey data, household energy consumption data and weather information Commission, conditional demand analysis, CDA, unit energy consumption, UEC, residential, appliance

  18. Residential Solar Water Heating Rebates

    Broader source: Energy.gov [DOE]

    New Hampshire offers a rebate for residential solar water-heating systems and solar space-heating systems. The rebate is equal to $1,500 for systems with an annual estimated output of 5.5 MMBTU to...

  19. Residential Solar Sales Tax Exemption

    Broader source: Energy.gov [DOE]

    New York enacted legislation in July 2005 exempting the sale and installation of residential solar-energy systems from the state's sales and compensating use taxes. The exemption was extended to...

  20. Residential Freezers | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    v1.7.xlsx More Documents & Publications Residential Freezers (Appendix B) Refrigerator-Freezer Appendix A1 Refrigerators and Refrigerator-Freezers (Appendix A1 after May 2, 2011)...

  1. Portland's Residential Solar Permitting Guide

    Broader source: Energy.gov [DOE]

    This program guide outlines the application and review procedures for obtaining the necessary permit(s) to install a solar energy system for a new or existing residential building. The guide also...

  2. Better Buildings Residential Network Reporting and Benefits Template

    Broader source: Energy.gov [DOE]

    Better Buildings Residential Network Reporting and Benefits Template, from the U.S. Department of Energy Better Buildings Residential Network.

  3. Better Buildings Residential Network Reporting and Benefits FAQ

    Broader source: Energy.gov [DOE]

    Better Buildings Residential Network Reporting and Benefits FAQ, from the U.S. Department of Energy Better Buildings Residential Network.

  4. Recovery Act

    Broader source: Energy.gov [DOE]

    Recovery Act and Energy Department programs were designed to stimulate the economy while creating new power sources, conserving resources and aligning the nation to once again lead the global energy economy.

  5. ERSC 230H 2008-09 Syllabus-1-Energy Science and Technology (ERSC 230H)

    E-Print Network [OSTI]

    Fox, Michael

    ) Group project (20%): Residential green energy plan. Assignment details to be provided later. #12;ERSC of solar photovoltaic technology · Social acceptance of green energy technology · Social friction

  6. Energy Efficiency Program for Residential Products: Energy Conservation Standards for Residential Dishwashers, Reopening of the Comment Period

    Broader source: Energy.gov [DOE]

    Energy Efficiency Program for Residential Products: Energy Conservation Standards for Residential Dishwashers, Reopening of the Comment Period

  7. National Institute of Standards and Technology

    E-Print Network [OSTI]

    National Institute of Standards and Technology NIST Campus Gaithersburg, MD NET ZERO ENERGY Campus Gaithersburg, MD NET ZERO ENERGY RESIDENTIAL TEST FACILITY PROJECT: CONSULTANT: SHEET TITLE: SCALE Institute of Standards and Technology NIST Campus Gaithersburg, MD NET ZERO ENERGY RESIDENTIAL TEST FACILITY

  8. 2008 Residential2008 Residential Energy Plan ReviewEnergy Plan Reviewe gy la eviewe gy la eview

    E-Print Network [OSTI]

    2008 Residential2008 Residential Energy Plan ReviewEnergy Plan Reviewe gy la eviewe gy la eview #12;2008 Residential Energy Plan2008 Residential Energy Plan Review ChecklistReview Checklist Simplification ChecklistsOther Available Checklists 2005 and 2008 Residential Energy Documentation2005 and 2008 Residential

  9. Similar effects of residential and non-residential vegetation on bird diversity in suburban neighbourhoods

    E-Print Network [OSTI]

    Dawson, Jeff W.

    Similar effects of residential and non-residential vegetation on bird diversity in suburban the Queen in Right of Canada 2013 Abstract Estimating the relative importance of vegetation on residential land (gardens, yards, and street-trees) and vegetation on non-residential land (parks and other large

  10. Wave Impact Study on a Residential Building Wave Impact Study on a Residential Building

    E-Print Network [OSTI]

    Cox, Dan

    Wave Impact Study on a Residential Building Paper: Wave Impact Study on a Residential Building John residential light- frame wood buildings and wave and surge loading be- cause often little is left residential structures and wave loading. To do this, one-sixth scale residen- tial building models typical

  11. RESIDENTIAL SOLAR “YIELDCO”

    Broader source: Energy.gov [DOE]

    This presentation summarizes the information given during the SunShot Grand Challenge: Summit and Technology Forum, June 13-14, 2012.

  12. Residential Transactive Control Demonstration

    SciTech Connect (OSTI)

    Widergren, Steven E.; Fuller, Jason C.; Marinovici, Maria C.; Somani, Abhishek

    2014-02-19T23:59:59.000Z

    Arguably the most exciting aspect of the smart grid vision is the full participation of end-use resources with all forms of generation and energy storage in the reliable and efficient operation of an electric power system. Engaging all of these resources in a collaborative manner that respects the objectives of each resource, is sensitive to the system and local constraints of electricity flow, and scales to the large number of devices and systems participating is a grand challenge. Distributed decision-making system approaches have been presented and experimentation is underway. This paper reports on the preliminary findings of a residential demand response demonstration that uses the bidding transactions of supply and end-use air conditioning resources communicating with a real-time, 5 minute market to balance the various needs of the participants on a distribution feeder. The nature of the demonstration, the value streams being explored, and the operational scenarios implemented to characterize the system response are summarized along with preliminary findings.

  13. Edmond Electric- Residential Heat Pump Rebate Program

    Broader source: Energy.gov [DOE]

    Edmond Electric offers rebates to residential customers who install energy-efficient heat pumps. This program applies to installations in both new and existing residential homes and complexes. Air...

  14. Low-rise Residential New Construction Program

    Broader source: Energy.gov [DOE]

     NYSERDA’s Low-rise Residential New Construction Programs are designed to encourage more industry involvement in the building of single-family homes and low-rise residential units that are more...

  15. CC: Security, Residential Life Evacuation Assistance Form

    E-Print Network [OSTI]

    Mahon, Bradford Z.

    CC: Security, Residential Life Evacuation Assistance Form Voluntary Self-Identification If you have will be kept confidential and used only by Environmental Health and Safety, Residential Life (if applicable

  16. Department of Residential Life University of Missouri

    E-Print Network [OSTI]

    Taylor, Jerry

    Department of Residential Life University of Missouri may 11 >> halls close, 5 p.m. summer to June 1). Sign up forms are available at 0780 Defoe-Graham in the Residential Life Administration Office

  17. BINGHAMTON UNIVERSITY OFFICE OF RESIDENTIAL LIFE

    E-Print Network [OSTI]

    Suzuki, Masatsugu

    BINGHAMTON UNIVERSITY OFFICE OF RESIDENTIAL LIFE PROCEDURES FOR THE USE OF HOLIDAY DECORATIONS by the Office of Residential Life. In these instances, candles and incense may never be left unattended and any

  18. Residential Properties 5100 South Dorchester Avenue

    E-Print Network [OSTI]

    He, Chuan

    Residential Properties 5100 South Dorchester Avenue Chicago, Illinois 60615 T 773.753-2200 F 733 for specific answers to: residential@uchicago.edu. Thank you, in advance, for your patience during this process

  19. BINGHAMTON UNIVERSITY OFFICE OF RESIDENTIAL LIFE

    E-Print Network [OSTI]

    Suzuki, Masatsugu

    BINGHAMTON UNIVERSITY OFFICE OF RESIDENTIAL LIFE PROCEDURES FOR THE USE OF HOLIDAY DECORATIONS in a location established by the Office of Residential Life. In these instances, candles and incense may never

  20. Charlotte Green Supply Chain: Residential Retrofitting | Department...

    Broader source: Energy.gov (indexed) [DOE]

    Charlotte Green Supply Chain: Residential Retrofitting Charlotte Green Supply Chain: Residential Retrofitting July 30, 2010 - 10:50am Addthis Joshua DeLung What does this mean for...

  1. Piedmont Natural Gas- Residential Equipment Efficiency Program

    Broader source: Energy.gov [DOE]

    Piedmont Natural Gas offers rebates on high-efficiency natural gas tankless water heaters, tank water heaters and furnaces. Customers on the 201-Residential Service Rate or 221-Residential Service...

  2. System design and dynamic signature identification for intelligent energy management in residential buildings.

    E-Print Network [OSTI]

    Jang, Jaehwi

    2008-01-01T23:59:59.000Z

    for Intelligent Energy Management in Residential Buildingsfor Intelligent Energy Management in Residential Buildingsthat can provide autonomous energy management to residential

  3. Industrial Waste Heat Recovery

    E-Print Network [OSTI]

    Ward, M. E.; Solomon, N. G.; Tabb, E. S.

    1980-01-01T23:59:59.000Z

    INDUSTRIAL WASTE HEAT RECOVREY M. E. Ward and N. G. Solomon E. S. Tabb Solar Turbines International and Gas Research Institute San Diego, California Chicago, Illinois ABSTRACT i I One hundred fifty reports were reviewed along with interviews... tests, promising low temperature heat exchanger tube alloys and coated surfaces were identified. 1INTROUCTION of advanced technology heat recovery techniques 1_ Recovering waste heat from the flue gases of the pr~ary objective. Specific objectives...

  4. Development of a Residential Integrated Ventilation Controller

    E-Print Network [OSTI]

    Walker, Iain

    2013-01-01T23:59:59.000Z

    Comparative Evaluation of Ventilation Systems. ” ASHRAEChimneys for Residential Ventilation. ” AIVC 25 Conference.1995. “Controlled Ventilation Options for Builders. ” Energy

  5. Presentation: Better Buildings Residential Program Solution Center...

    Energy Savers [EERE]

    bbrpscdemopresentation061814.pdf More Documents & Publications Better Buildings Residential Program Solution Center Demonstration Webinar Presentation: Better Buildings...

  6. Residential Clothes Dryers | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    dryerappendixdv1.1.xlsx More Documents & Publications Illuminated Exit Signs Beverage Vending Machines Residential Clothes Dryer (Appendix D2...

  7. Procedures and Standards for Residential Ventilation System

    E-Print Network [OSTI]

    1 Procedures and Standards for Residential Ventilation System Commissioning: An Annotated and by the California Energy Commission under Pier Contract 500-08-061. Key terms: residential, ventilation.C. and C.P. Wray. 2013. Procedures and Standards for Residential Ventilation System Commissioning

  8. Humidity Implications for Meeting Residential Ventilation Requirements

    E-Print Network [OSTI]

    1 LBNL-62182 Humidity Implications for Meeting Residential Ventilation Requirements Iain S. Walker for Meeting Residential Ventilation Requirements ABSTRACT In 2003 ASHRAE approved the nation's first residential ventilation standard, ASHRAE Standard 62.2. Because meeting this standard can significantly change

  9. Children in Residential Care: A wicked problem?

    E-Print Network [OSTI]

    #12;Children in Residential Care: A wicked problem? Mary McKenna Flinders Law School 29 Nov 11 Mary in residential care · At what level of the system should changes occur? · Numbers in residential care in SA-discovery of child abuse in 1970s · Legislation & policy changes · Reporting and investigation · Types of abuse #12

  10. Graduate Hall Director Office of Residential Programs

    E-Print Network [OSTI]

    Hone, James

    Page 1 Graduate Hall Director Office of Residential Programs Housing Guidelines #12;Page 2 Graduate Hall Director for Residential Programs Guidelines for Residence This document is intended for the Office of Residential Programs Graduate Hall Directors (GHDs) who obtain housing on campus as part

  11. Siena College Office of Residential Life

    E-Print Network [OSTI]

    Siena College Office of Residential Life New Student Housing Application Instructions #12;Welcome students who are admitted as "Residential" students. Commuters DO NOT need to complete the application for "Residential Life (My Housing)" is under the "Personal Information" Tab #12;Within the "Personal Information

  12. Residential Life Luggage Program Summer 2014

    E-Print Network [OSTI]

    Massachusetts at Amherst, University of

    Residential Life Luggage Program Summer 2014 International and out-of-state students who should be addressed as follows: Residential Life Luggage Program Physical Plant/CDS University. · Residential Life will not be held responsible for items lost or damaged in handling. We advise against sending

  13. CC: Security, Residential Life Evacuation Assistance Form

    E-Print Network [OSTI]

    Cantlon, Jessica F.

    CC: Security, Residential Life Evacuation Assistance Form Voluntary Self-Identification If you have will be kept confidential and used only by Environmental Health and Safety, Residential Life (if applicable:_______________________________________________________ ______________________________________________________________________________ ______________________________________________________________________________ #12;CC: Security, Residential Life If this is a temporary request, please provide a date when

  14. Characterizing Residential Broadband Networks Marcel Dischinger

    E-Print Network [OSTI]

    Saroiu, Stefan

    Characterizing Residential Broadband Networks Marcel Dischinger MPI for Software Systems mdischin and rapidly growing proportion of users connect to the Internet via residential broadband networks such as Dig- ital Subscriber Lines (DSL) and cable. Residential networks are often the bottleneck in the last mile

  15. living and learning Department of Residential Life

    E-Print Network [OSTI]

    Missouri-Columbia, University of

    living and learning Accessible housing at Mizzou Department of Residential Life University is important to us. The Department of Residential Life at MU is committed to providing and improving accessible spaces for students with disabilities. Residential Life will help provide appropriate housing

  16. WARREN RESIDENTIAL LIFE RESIDENT ASSISTANT POSITION DESCRIPTION

    E-Print Network [OSTI]

    Russell, Lynn

    WARREN RESIDENTIAL LIFE RESIDENT ASSISTANT POSITION DESCRIPTION The position of Resident Assistant for students living within the Warren College residential community. Resident Assistant's (RA's) are principle members of the Warren Residential Life staff. In accordance with the University of California's Personnel

  17. Recovery Act: State Assistance for Recovery Act Related Electricity...

    Energy Savers [EERE]

    Information Center Recovery Act Recovery Act: State Assistance for Recovery Act Related Electricity Policies Recovery Act: State Assistance for Recovery Act Related...

  18. Analysis of Residential System Strategies Targeting Least-Cost Solutions Leading to Net Zero Energy Homes: Preprint

    SciTech Connect (OSTI)

    Anderson, R.; Christensen, C.; Horowitz, S.

    2006-04-01T23:59:59.000Z

    The U. S. Department of Energy's Building America residential systems research project uses an analysis-based system research approach to identify research priorities, identify technology gaps and opportunities, establish a consistent basis to track research progress, and identify system solutions that are most likely to succeed as the initial targets for residential system research projects. This report describes the analysis approach used by the program to determine the most cost-effective pathways to achieve whole-house energy-savings goals. This report also provides an overview of design/technology strategies leading to net zero energy buildings as the basis for analysis of future residential system performance.

  19. Building America Technology Solutions for New and Existing Homes...

    Energy Savers [EERE]

    Applications, Ithaca, New York (Fact Sheet) Building America Technology Solutions for New and Existing Homes: Optimizing Hydronic System Performance in Residential Applications,...

  20. Building America Technology Solutions for New and Existing Homes...

    Energy Savers [EERE]

    Applications (Fact Sheet) Building America Technology Solutions for New and Existing Homes: Optimizing Hydronic System Performance in Residential Applications (Fact Sheet) In this...

  1. Residential Lighting Usage Estimate Tool, v1.0

    Broader source: Energy.gov [DOE]

    By improving our understanding of residential lighting-energy usage and quantifying it across many different parameters, the new study will be of use to anyone doing energy estimates – such as utilities, market and investment analysts, and government agencies. It will also help manufacturers design products that not only better serve consumers' needs, but that maximize the energy savings that technologies like SSL make possible.

  2. Energy conservation in commercial and residential buildings

    SciTech Connect (OSTI)

    Chiogioji, M.H.; Oura, E.N.

    1982-01-01T23:59:59.000Z

    Energy experts have indicated that we can, by exploiting currently available technology, cut energy consumption by 30 to 50% in new buildings and 10 to 30% in existing buildings, with no significant loss in standard of living, comfort, or convenience. This book surveys the many architectural/engineering techniques for combating energy waste in residential and commercial buildings. The experts in these 10 chapters acquaint us with what is being done and with what can be done in the design, construction, and maintenance of buildings in order to foster energy efficiency; they emphasize life-cycle costing as the only sound approach toward energy conservation. A separate abstract was prepared for each chapter; all abstracts will appear in Energy Abstracts for Policy Analysis (EAPA), with 5 appearing in Energy Research Abstracts (ERA).

  3. 2008 DOE FCVT Merit Review: BSST Waste Heat Recovery Program...

    Energy Savers [EERE]

    FCVT Merit Review: BSST Waste Heat Recovery Program 2008 DOE FCVT Merit Review: BSST Waste Heat Recovery Program Presentation from the U.S. DOE Office of Vehicle Technologies...

  4. RESIDENTIAL VENTILATION AND ENERGY CHARACTERISTICS*

    E-Print Network [OSTI]

    RESIDENTIAL VENTILATION AND ENERGY CHARACTERISTICS* Max Sherman Nance Matson Energy Performance Berkeley, California The role of ventilation in the housing stock is to provide fresh air and to dilute to provide this ventilation service, either directly for moving the air or indirectly for conditioning

  5. Comparing Residential Furnace Blowers for

    E-Print Network [OSTI]

    of air conditioner performance, standby power, as well as igniter and combustion air blower power results in 10% lower air conditioner efficiency. For heating, the advantage of the BPM blower was to assess the performance of residential furnace blowers for both heating, cooling and air distribution

  6. Residential Energy Conservation Forum

    SciTech Connect (OSTI)

    2008-06-26T23:59:59.000Z

    A public forum for homeowners on how to reduce energy usage in the home. Representatives from Long Island Power Authority, Renewable Energy Long Island, and BNL explored alternative energy solutions for the home, analyzing energy efficiency, cost-effectiveness, and environmental-friendliness. Some of the technologies discussed include solar panels, Energy Star-certified products, and modern wood-burning stoves.

  7. Residential Services Area Missing Students living in University Managed Accommodation

    E-Print Network [OSTI]

    Sussex, University of

    Residential Services Area Missing Students living in University Managed Accommodation 1.0 Where then report to the Building Manager or to the Residential Student Support Team or the Residential Services issues Residential Student Support Manager or the Residential Services Manager should be contacted

  8. Do Photovoltaic Energy Systems Effect Residential Selling Prices? Results from a California Statewide Investigation.

    E-Print Network [OSTI]

    Hoen, Ben

    2012-01-01T23:59:59.000Z

    PHOTOVOLTAIC ENERGY SYSTEMS AFFECT RESIDENTIAL SELLING PRICES?PHOTOVOLTAIC ENERGY SYSTEMS AFFECT RESIDENTIAL SELLING PRICES?

  9. Faces of the Recovery Act: Sun Catalytix

    ScienceCinema (OSTI)

    Nocera, Dave

    2013-05-29T23:59:59.000Z

    BOSTON- At the Massachusetts Institute of Technology, Dan Nocera talks about Sun Catalytix, the next generation of solar energy, and ARPA-E funding through the Recovery Act. To learn about more ARPA-E projects through the Recovery Act: http://arpa-e.energy.gov/FundedProjects.aspx

  10. Optimize carbon dioxide sequestration, enhance oil recovery

    E-Print Network [OSTI]

    - 1 - Optimize carbon dioxide sequestration, enhance oil recovery January 8, 2014 Los Alamos simulation to optimize carbon dioxide (CO2) sequestration and enhance oil recovery (CO2-EOR) based on known production. Due to carbon capture and storage technology advances, prolonged high oil prices

  11. Managing Manure with Biogas Recovery Systems

    E-Print Network [OSTI]

    Mukhtar, Saqib

    emissions and capture biogas--a useful source of energy. About Anaerobic Digestion Biogas recovery systems manure in an oxygen-free environment. One of the natural prod- ucts of anaerobic digestion is biogas Digestion Biogas recovery systems are a proven technology. Currently, more than 30 digester systems

  12. EK101 Engineering Light Project: Evaluate Residential Lighting

    E-Print Network [OSTI]

    Bifano, Thomas

    EK101 Engineering Light Project: Evaluate Residential Lighting Compare technical and economic characteristics of three sources of residential light. Two teams of four complete the same project Engineering Light Project: Evaluate Residential Lighting Project Assignment: Evaluate current options

  13. Residential Landscapes Synthesis of the Literature and Preliminary Survey Results

    E-Print Network [OSTI]

    Hall, Sharon J.

    Residential Landscapes Synthesis of the Literature and Preliminary Survey Results Elizabeth M. Cook comprehensive understanding of residential landscapes in urban ecosystems. · Highlight the social, ecological and integrated socio- ecological themes and current findings about residential landscapes. · Identify gaps

  14. PowerChoice Residential Customer Response to TOU Rates

    E-Print Network [OSTI]

    Peters, Jane S.

    2010-01-01T23:59:59.000Z

    Dennis J. 1985. “The Residential Electricity Time-of-Use1989. “Self-Selection in Residential Electricity Time-of-UseAnalysis of California Residential Critical Peak Pricing of

  15. Energy Data Sourcebook for the U.S. Residential Sector

    E-Print Network [OSTI]

    Wenzel, T.P.

    2010-01-01T23:59:59.000Z

    J.E. 1986. The LBL Residential Energy Model. LawrenceInc. MEANS. 1992. Residential Cost Data: 11th Annual EditionInstitute. 1989. Residential End-Use Energy Consumption: A

  16. RESIDENTIAL LOCATION CHOICE AND TRAVEL BEHAVIOR: IMPLICATIONS FOR AIR QUALITY

    E-Print Network [OSTI]

    Levinson, David M.

    RESIDENTIAL LOCATION CHOICE AND TRAVEL BEHAVIOR: IMPLICATIONS FOR AIR QUALITY UC Davis-Caltrans Air control measure. #12;RESIDENTIAL LOCATION CHOICE AND TRAVEL BEHAVIOR: IMPLICATIONS FOR AIR QUALITY.......................................................... 3 2.2 The Role of Residential Location Choice

  17. Solar Adoption and Energy Consumption in the Residential Sector

    E-Print Network [OSTI]

    McAllister, Joseph Andrew

    2012-01-01T23:59:59.000Z

    38 3.2.1. SDG&E Residential Electric Rates and TheirFootprint of Single-Family Residential New Construction.Solar photovoltaic financing: residential sector deployment,

  18. Office for Residential Life & Housing Services University of Rochester

    E-Print Network [OSTI]

    Cantlon, Jessica F.

    Office for Residential Life & Housing Services University of Rochester RESIDENT ADVISOR POSITION DESCRIPTION Resident Advisors help build healthy and inclusive residential communities that complement and extend classroom learning. RAs are expected to create intellectually active residential environments

  19. Recovery and recycling practices in municipal solid waste management in Lagos, Nigeria

    SciTech Connect (OSTI)

    Kofoworola, O.F. [Environment Division, Joint Graduate School of Energy and Environment, King Mongkuts University of Technology Thonburi, 91 Prachauthit Road, Bangmod, Tungkru, Bangkok 10140 (Thailand)], E-mail: sholafemi28@yahoo.com

    2007-07-01T23:59:59.000Z

    The population of Lagos, the largest city in Nigeria, increased seven times from 1950 to 1980 with a current population of over 10 million inhabitants. The majority of the city's residents are poor. The residents make a heavy demand on resources and, at the same time, generate large quantities of solid waste. Approximately 4 million tonnes of municipal solid waste (MSW) is generated annually in the city, including approximately 0.5 million of untreated industrial waste. This is approximately 1.1 kg/cap/day. Efforts by the various waste management agencies set up by the state government to keep its streets and neighborhoods clean have achieved only minimal success. This is because more than half of these wastes are left uncollected from the streets and the various locations due to the inadequacy and inefficiency of the waste management system. Whilst the benefits of proper solid waste management (SWM), such as increased revenues for municipal bodies, higher productivity rate, improved sanitation standards and better health conditions, cannot be overemphasized, it is important that there is a reduction in the quantity of recoverable materials in residential and commercial waste streams to minimize the problem of MSW disposal. This paper examines the status of recovery and recycling in current waste management practice in Lagos, Nigeria. Existing recovery and recycling patterns, recovery and recycling technologies, approaches to materials recycling, and the types of materials recovered from MSW are reviewed. Based on these, strategies for improving recovery and recycling practices in the management of MSW in Lagos, Nigeria are suggested.

  20. Power Recovery

    E-Print Network [OSTI]

    Murray, F.

    , will be the use of the ASTM Theoretical Steam Rate Tables. In addition, the author's experience regarding the minimum size for power recovery units that are economic in a Culf Coast plant will be presented. INTROD\\Jr.'rION When surveying an operation... will be discussed in detail. Each term in the equation will be considered in English units. Secondly, the use of Mollier diagrams to estimate the enthalphy change between the initial and final conditions will be considered. The last method, specific to steam...

  1. Evaluation of evolving residential electricity tariffs

    SciTech Connect (OSTI)

    Lai, Judy; DeForest, Nicholas; Kiliccote, Sila; Stadler, Michael; Marnay, Chris; Donadee, Jon

    2011-05-15T23:59:59.000Z

    Residential customers in California's Pacific Gas and Electric (PG&E) territory have seen several electricity rate structure changes in the past decade. This poster: examines the history of the residential pricing structure and key milestones; summarizes and analyzes the usage between 2006 and 2009 for different baseline/climate areas; discusses the residential electricity Smart Meter roll out; and compares sample bills for customers in two climates under the current pricing structure and also the future time of use (TOU) structure.

  2. Online Marketplace for Residential Measures

    E-Print Network [OSTI]

    Ashe,J.; MBA; BEP

    2014-01-01T23:59:59.000Z

    We change the way people use energy™ Online Marketplace for Residential Measures 2014 Program Year ESL-KT-14-11-09 CATEE 2014: Clean Air Through Efficiency Conference, Dallas, Texas Nov. 18-20 Delivery Channels/Options ? Online Marketplace/ Drop... Ship Method 2© Copyright 2014 CLEAResult. All rights reserved. ESL-KT-14-11-09 CATEE 2014: Clean Air Through Efficiency Conference, Dallas, Texas Nov. 18-20 Advantages of Online Marketplace ? Target a different/convenience shopper to complement...

  3. About Residential | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels DataEnergyDepartment ofATVM Loan Program GoverningWINDPOWERAboutResidential

  4. Use Feedwater Economizers for Waste Heat Recovery

    SciTech Connect (OSTI)

    Not Available

    2006-01-01T23:59:59.000Z

    This revised ITP tip sheet on feedwater economizers for waste heat recovery provides how-to advice for improving industrial steam systems using low-cost, proven practices and technologies.

  5. Recovery Act-Funded HVAC projects

    Broader source: Energy.gov [DOE]

    The U.S. Department of Energy was allocated funding from the American Recovery and Reinvestment Act to conduct research into heating, ventilation, and air conditioning (HVAC) technologies and...

  6. Recovery Act-Funded Working Fluid Projects

    Broader source: Energy.gov [DOE]

    The U.S. Department of Energy was allocated funding from the American Recovery and Reinvestment Act to conduct research into working fluid technologies and applications. Projects funded by the...

  7. Recovery Act-Funded Water Heating Projects

    Broader source: Energy.gov [DOE]

    The U.S. Department of Energy was allocated funding from the American Recovery and Reinvestment Act to conduct research into water heating technologies and applications. Projects funded by the...

  8. Infiltration in ASHRAE's Residential Ventilation Standards

    E-Print Network [OSTI]

    Sherman, Max

    2008-01-01T23:59:59.000Z

    of  the effective natural ventilation rate with weather to  Residential  Ventilation  Requirements”.  LBNL  57236.  and  M.H.   Sherman  "Ventilation  Behavior  and  Household 

  9. EWEB- Residential Energy Efficiency Rebate Programs

    Broader source: Energy.gov [DOE]

    Eugene Water and Electric Board (EWEB) provides cash incentives to help residential customers increase the energy efficiency of homes through several different rebate programs. Rebates are provided...

  10. Entergy New Orleans- Residential Energy Efficiency Program

    Broader source: Energy.gov [DOE]

    Entergy New Orleans has designed an incentive program to help residential customers understand and make energy efficiency improvements in eligible homes. Incentives are geared towards both...

  11. Florida Keys Electric Cooperative- Residential Rebate Program

    Broader source: Energy.gov [DOE]

    Florida Keys Electric Cooperative offers residential members rebates for installing energy efficient measures. To qualify for rebates, members must first call FKEC and make an appointment for a...

  12. Better Buildings Residential Network | Department of Energy

    Energy Savers [EERE]

    Call summaries See the partnerships case study Read the February issue of the Better Buildings Network View Upcoming Peer Exchange Calls* Residential Energy Efficiency...

  13. Building America Residential Energy Efficiency Stakeholders Meeting...

    Energy Savers [EERE]

    Energy Efficiency Stakeholders Meeting: March 2011 Building America Residential Energy Efficiency Stakeholders Meeting: March 2011 On this page, you may link to the summary report...

  14. Idaho Falls Power- Residential Weatherization Loan Program

    Broader source: Energy.gov [DOE]

    Residential customers with permanently installed electric heat who receive service from the City of Idaho Falls, are eligible for 0% weatherization loans. City Energy Service will conduct an...

  15. Residential Buildings Historical Publications reports, data and...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    0 Average Fuel OilKerosene Residential Buildings Consumption Expenditures per Total per Square per per per Total Total Floorspace Building Foot per Household per Square per...

  16. Residential Buildings Historical Publications reports, data and...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    0 Average Electricity Residential Buildings Consumption Expenditures per Total per Square per per per Total Total Floorspace Building Foot per Household per Square per Household...

  17. Ameren Illinois (Gas)- Residential Energy Efficiency Rebates

    Broader source: Energy.gov [DOE]

    Ameren Illinois Utilities (AmerenIP, AmerenCIPS, and AmerenCILCO) offer residential customers incentives for certain energy efficiency upgrades and improvements. Incentives are currently available...

  18. Better Buildings Residential Network Program Sustainability Peer...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Residential Network Program Sustainability Peer Exchange Call: Operating as a Prime Contractor Call Slides and Discussion Summary Agenda - Operating as a Prime Contractor * Call...

  19. Residential Buildings Integration Program Overview - 2015 BTO...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Buildings Integration Program Overview - 2015 BTO Peer Review Residential Buildings Integration Program Overview - 2015 BTO Peer Review Presenter: David Lee, U.S. Department of...

  20. Pacific Power- Residential Energy Efficiency Rebate Programs

    Broader source: Energy.gov [DOE]

    Pacific Power offers incentives for residential customers to improve the energy efficiency of homes through the Home Energy Savings Program. Rebates are provided for various Energy Star rated...

  1. Pacific Power- Residential Energy Efficiency Rebate Programs

    Broader source: Energy.gov [DOE]

    Pacific Power offers the Home Energy Savings Program for their residential California customers to improve the efficiency of their homes. Incentives are also available for contractors and newly...

  2. Consumers Energy (Electric)- Residential Energy Efficiency Program

    Broader source: Energy.gov [DOE]

    Consumers Energy residential electric customers are eligible to apply for a variety of rebates on energy efficient equipment. Customers must install equipment in the Consumers Energy service area...

  3. Duke Energy- Residential Efficiency Rebate Program

    Broader source: Energy.gov [DOE]

    The Smart $aver® program offers incentives for residential customers to increase the energy efficiency of homes. Incentives are provided for qualifying heating and cooling equipment installation or...

  4. Farmers RECC- Residential Insulation Rebate Program

    Broader source: Energy.gov [DOE]

    The Farmers Rural Electric Cooperative (RECC) Button-Up Program provides free energy audits and rebates for insulation upgrades to its residential customers. Farmers RECC's energy advisor will...

  5. First Energy Ohio- Residential Efficiency Rebates

    Broader source: Energy.gov [DOE]

    Ohio subsidiaries of FirstEnergy (Ohio Edison, The Illuminating Company, Toledo Edison) offer rebates for the installation of certain energy efficiency improvements for residential and small...

  6. CPS Energy- Residential Energy Efficiency Rebate Program

    Broader source: Energy.gov [DOE]

    CPS Energy offers a variety of rebates for energy efficiency related improvements to residential homes, including: appliances, HVAC equipment, insulation, and equipment recycling.. Rebate...

  7. Does Mixing Make Residential Ventilation More Effective?

    E-Print Network [OSTI]

    Sherman, Max

    2011-01-01T23:59:59.000Z

    Mechanical Ventilation Systems. ” Int. J. Ventilation, 6(4),Residential Mechanical Ventilation Systems. ” ASHRAE HVAC&Rfor Extension of Ventilation System Tracer Gas Testing. ”

  8. Better Buildings Residential Network Program Sustainability Peer...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Ecolibrium3 (Duluth, MN) EnergyFit Nevada Gtech Strategies (Pittsburgh, PA) Midwest Energy Efficiency Alliance (MEEA) 3 Better Buildings Residential Network ...

  9. Columbia Water & Light- Residential HVAC Rebates

    Broader source: Energy.gov [DOE]

    Columbia Water & Light (CWL) provides residential customers with rebates on energy efficient HVAC equipment. Customers should submit the mechanical permit from a Protective Inspection, a copy...

  10. Presentation: Better Buildings Residential Program Solution Center

    Energy Savers [EERE]

    Solution Center Overview Purpose: No More Starting from Scratch 5 Help residential energy efficiency programs minimize trial and error to achieve success. Help programs and...

  11. El Paso Electric Company- Residential Solutions Program

    Broader source: Energy.gov [DOE]

    '''The El Paso Electric Residential Solutions Program funding has been expended in Texas for 2012. New funding will be available January 1, 2013. '''

  12. (Electric and Gas) Residential New Construction Program

    Broader source: Energy.gov [DOE]

    The Energize CT offers a program designed to encourage the construction of energy efficient homes. The Residential New Construction Program offers incentives targeted at increasing energy...

  13. Black Hills Power- Residential Customer Rebate Program

    Broader source: Energy.gov [DOE]

    Black Hills Power offers cash rebates to residential customers who purchase and install energy efficient equipment in their homes. Incentives exist for water heaters, demand control units, air...

  14. Entergy Arkansas- Residential Energy Efficiency Program (Arkansas)

    Broader source: Energy.gov [DOE]

    Entergy Arkansas offers the Home Energy Solutions Program to help residential customers understand and make energy efficiency improvements in participating homes. Customers can call a toll-free...

  15. Austin Energy- Residential Energy Efficiency Rebate Program

    Broader source: Energy.gov [DOE]

    Austin Energy offers incentives to its residential customers to encourage the use of energy efficient equipment and measures. Rebates are available for qualified HVAC equipment, water heating...

  16. Xcel Energy (Gas)- Residential Conservation Programs

    Broader source: Energy.gov [DOE]

    Xcel Energy offers its Wisconsin residential natural gas customers rebates for high efficiency heating equipment. Currently, rebates are available for tankless and storage water heaters, furnaces,...

  17. Covered Product Category: Residential Electric Resistance Water...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Electric Resistance Water Heaters Covered Product Category: Residential Electric Resistance Water Heaters The Federal Energy Management Program (FEMP) sets federal efficiency...

  18. Charlottesville Gas- Residential Energy Efficiency Rebate Program

    Broader source: Energy.gov [DOE]

    Charlottesville Gas offers rebates to residential customers for purchasing and installing specified energy efficient equipment. Rebates and utility bill credits of up to $100 are available for...

  19. Consumers Energy (Gas)- Residential Energy Efficiency Program

    Broader source: Energy.gov [DOE]

    Consumers Energy residential electric customers are eligible to apply for a variety of rebates on energy efficient equipment. Customers must install equipment in the Consumers Energy service area...

  20. Performance Criteria for Residential Zero Energy Windows

    E-Print Network [OSTI]

    Arasteh, Dariush; Goudey, Howdy; Huang, Joe; Kohler, Christian; Mitchell, Robin

    2006-01-01T23:59:59.000Z

    and Marc LaFrance. 2006. “Zero Energy Windows. ” ProceedingsFuture Advanced Windows for Zero-Energy Homes. ” ASHRAEfor Residential Zero Energy Windows Dariush Arasteh, Howdy

  1. Lumbee River EMC- Residential Energy Efficiency Program

    Broader source: Energy.gov [DOE]

    Lumbee River EMC (LREMC) offers rebates to its residential customers who purchase and install qualified energy efficient products or services. Rebates are available for water heaters, refrigerator...

  2. Chelan County PUD- Residential Weatherization Rebate Program

    Broader source: Energy.gov [DOE]

    Chelan County PUD offers cash rebates to residential customers who make energy efficient weatherization improvements to eligible homes. Eligible measures include efficient windows doors as well as...

  3. Better Buildings Residential Program Solution Center Demonstration...

    Broader source: Energy.gov (indexed) [DOE]

    The Better Buildings Residential Program Solution Center is a robust online collection of nearly 1,000 examples, strategies, and resources from Better Buildings Neighborhood...

  4. Better Buildings Residential Network Orientation | Department...

    Broader source: Energy.gov (indexed) [DOE]

    Summary More Documents & Publications How Can the Network Meet Your Needs? Better Buildings Residential Program - 2014 BTO Peer Review Outreach to Multifamily Landlords and Tenants...

  5. Better Buildings Residential Program Solution Center Demonstration...

    Broader source: Energy.gov (indexed) [DOE]

    Demonstration webinar slides for Better Buildings Residential Program Solution Center, November 19, 2014. Solution Center Demonstration Webinar Slides More Documents & Publications...

  6. Fact Sheet: Better Buildings Residential Network | Department...

    Broader source: Energy.gov (indexed) [DOE]

    Fact Sheet: Better Buildings Residential Network, increasing the number of American Homes that are energy efficient. doebbrnfactsheet.pdf More Documents & Publications Fact Sheet...

  7. Optional Residential Program Benchmarking | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Data and Evaluation Peer Exchange Call Series: Optional Residential Program Benchmarking, Call Slides and Discussion Summary, January 23, 2014. Call Slides and Discussion Summary...

  8. Better Buildings Residential Network Membership Form

    Energy Savers [EERE]

    Membership Form BETTER BUILDINGS RESIDENTIAL NETWORK Type of Organization (Check all that apply) ConsultantAdvisor Manufacturer ContractorTrade ally Nonprofit organization...

  9. Empire District Electric- Residential Energy Efficiency Rebate

    Broader source: Energy.gov [DOE]

    The Empire District Electric Company offers rebates for customers who construct highly efficient homes and purchase efficient central air conditioners. Eligible customers include residential...

  10. IID Energy- Residential Energy Efficiency Rebate Program

    Broader source: Energy.gov [DOE]

    Imperial Irrigation District Energy offers incentives to residential customers to encourage energy efficiency. This incentive takes the form of rebates offered for qualifying energy efficient...

  11. MassSAVE (Electric)- Residential Retrofit Programs

    Broader source: Energy.gov [DOE]

    MassSAVE organizes residential conservation services for programs administered by Massachusetts electric companies, gas companies and municipal aggregators. These utilities include Columbia Gas of...

  12. MassSAVE (Gas)- Residential Rebate Program

    Broader source: Energy.gov [DOE]

    MassSAVE, through Gas Networks, organizes residential conservation services for programs administered by Massachusetts electric companies, gas companies and municipal aggregators. These utilities...

  13. Sawnee EMC- Residential Energy Efficiency Rebate Program

    Broader source: Energy.gov [DOE]

    Sawnee EMC provides a variety of rebates for residential customers building new energy efficient homes or making energy efficiency improvements to existing homes....

  14. OTEC- Residential Energy Efficiency Rebate Program

    Broader source: Energy.gov [DOE]

    Oregon Trail Electric Cooperative (OTEC) assists residential members in reducing electric consumption by providing rebates for energy efficient equipment. Rebates are for appliances, heat pumps,...

  15. RESIDENTIAL THERMOSTATS: COMFORT CONTROLS IN CALIFORNIA HOMES

    E-Print Network [OSTI]

    Meier, Alan K.

    2008-01-01T23:59:59.000Z

    Measures on Residential Air Conditioner Loads. Proc. ACEEEDeterminants of Central Air Conditioner Duty Cycles. Proc.at the number of air conditioners that might actually

  16. East Central Electric Cooperative- Residential Rebate Program

    Broader source: Energy.gov [DOE]

    East Central Electric Cooperative offers rebates to residential customers to install energy-efficient ground source heat pumps, electric water heaters, and appliances. To qualify for the rebate...

  17. ASSOCIATED RESIDENTIAL COMMUNITY HOUSING (ARCH) PROGRAM UC San Diego's Associated Residential Community Housing (ARCH) is committed to supporting the academic

    E-Print Network [OSTI]

    California at San Diego, University of

    ASSOCIATED RESIDENTIAL COMMUNITY HOUSING (ARCH) PROGRAM I. MISSION UC San Diego's Associated Residential Community Housing (ARCH) is committed to supporting the academic mission of the university, Associated Residential Community Housing (ARCH) offers campus housing to graduate and professional students

  18. High Efficiency Microturbine with Integral Heat Recovery - Fact...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    efficiency. The microturbine technology will maximize usable exhaust energy and achieve ultra-low emissions levels. High Efficiency Microturbine with Integral Heat Recovery More...

  19. Diesel Engine Waste Heat Recovery Utilizing Electric Turbocompound...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Caterpillar Inc. 2002deerhopmann.pdf More Documents & Publications Diesel Engine Waste Heat Recovery Utilizing Electric Turbocompound Technology Diesel Engine Waste Heat...

  20. Application of reservoir characterization and advanced technologies to improve recovery and economics in a lower quality shallow shelf Sand Andreas Reservoir: Quarterly technical report, January 1, 1997--March 31, 1997

    SciTech Connect (OSTI)

    Taylor, A.R., Hickman, T.S., Justice, J.J.

    1997-04-30T23:59:59.000Z

    The Class 2 Project at West Welch was designed to demonstrate the use of advanced technologies to enhance the economics of improved oil recovery (IOR) projects in lower quality Shallow Shelf Carbonate (SSC) reservoirs, resulting in recovery of additional oil that would otherwise be left in the reservoir at project abandonment. Accurate reservoir description is critical to the effective evaluation and efficient design of IOR projects in the heterogeneous SSC reservoirs. Therefore, the majority of Budget Period 1 was devoted to reservoir characterization. Technologies being demonstrated include: l.Advanced petrophysics 1547 2.Three-dimensional (3-D) seismic 3.Cross-well bore tomography 4.Advanced reservoir simulation 5.Carbon dioxide (CO{sub 2}) stimulation treatments 6.Hydraulic fracturing design and monitoring 7. Mobility control agents SUMMARY OF TECHNICAL PROGRESS West Welch Unit is one of four large waterflood units in the Welch Field in the northwestern portion of Dawson County, Texas. The Welch Field was discovered in the early 1940`s and produces oil under a solution gas drive mechanism from the San Andres formation at approximately 4800 ft. The field has been under waterflood for 30 years and a significant portion has been infill-drilled on 20-ac density. A 1982- 86 Pilot C0{sub 2} injection project in the offsetting South Welch Unit yielded positive results. Recent installation of a C0{sub 2} pipeline near the field allowed the phased development of a miscible CO injection project at the South Welch Unit.

  1. Clean Energy Finance Guide for Residential and Commercial Building...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Finance Guide for Residential and Commercial Building Improvements - Chapter 6 Clean Energy Finance Guide for Residential and Commercial Building Improvements - Chapter 6 Clean...

  2. Preliminary/Sample Residential EE Loan Term Sheet and Underwriting...

    Broader source: Energy.gov (indexed) [DOE]

    sheet for single family residential energy efficiency loans. Author: Energy Efficiency Finance Corp. PreliminarySample Residential Energy Efficiency Loan Term Sheet & Underwriting...

  3. Better Buildings Summit Residential Sessions Engage Energy Pros...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Better Buildings Summit Residential Sessions Engage Energy Pros Better Buildings Summit Residential Sessions Engage Energy Pros This year's DOE Better Buildings Summit, taking...

  4. Advanced Controls and Sustainable Systems for Residential Ventilation

    E-Print Network [OSTI]

    1 Advanced Controls and Sustainable Systems for Residential Ventilation William J.N. Turner & Iain..................................................................................................................... 8 Residential Ventilation Standards..........................................................................................9 Passive and Hybrid Ventilation

  5. Energy Data Sourcebook for the U.S. Residential Sector

    E-Print Network [OSTI]

    Wenzel, T.P.

    2010-01-01T23:59:59.000Z

    Test Procedures for Water Heaters; Kitchen Ranges, Ovens,Use of Residential Water Heaters. Lawrence Berkeley NationalEnergy Use of Residential Water Heaters. Lawrence Berkeley

  6. Summary of Gaps and Barriers for Implementing Residential Building...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Gaps and Barriers for Implementing Residential Building Energy Efficiency Strategies Summary of Gaps and Barriers for Implementing Residential Building Energy Efficiency Strategies...

  7. Duke Energy (Electric)- Residential Energy Efficiency Rebate Program

    Broader source: Energy.gov [DOE]

    The Smart $aver® program offers incentives for residential customers to increase residential energy efficiency. Incentives are provided for qualifying heating and cooling equipment installation and...

  8. Energy Efficiency Trends in Residential and Commercial Buildings...

    Office of Environmental Management (EM)

    Efficiency Trends in Residential and Commercial Buildings - August 2010 Energy Efficiency Trends in Residential and Commercial Buildings - August 2010 Overview of building trends...

  9. Residential Energy Consumption Survey Results: Total Energy Consumptio...

    Open Energy Info (EERE)

    Residential Energy Consumption Survey Results: Total Energy Consumption, Expenditures, and Intensities (2005) The Residential Energy Consumption Survey (RECS) is a national survey...

  10. Regional Variation in Residential Heat Pump Water Heater Performance...

    Energy Savers [EERE]

    Regional Variation in Residential Heat Pump Water Heater Performance in the United States Regional Variation in Residential Heat Pump Water Heater Performance in the United States...

  11. 2014-04-11 Issuance: Test Procedures for Residential Clothes...

    Energy Savers [EERE]

    4-11 Issuance: Test Procedures for Residential Clothes Washers; Notice of Proposed Rulemaking 2014-04-11 Issuance: Test Procedures for Residential Clothes Washers; Notice of...

  12. awaiting residential aged: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    of human... Willis, Gary 2011-12-16 14 Meeting Residential Ventilation Standards Energy Storage, Conversion and Utilization Websites Summary: LBNL 4591E Meeting Residential...

  13. 2011 Residential Energy Efficiency Technical Update Meeting Summary...

    Energy Savers [EERE]

    2011 Residential Energy Efficiency Technical Update Meeting Summary Report: Denver, Colorado - August 9-11, 2011 2011 Residential Energy Efficiency Technical Update Meeting Summary...

  14. El Paso Electric Company- Residential Efficiency Program (New Mexico)

    Broader source: Energy.gov [DOE]

    EPE offers incentives to residential customers in its New Mexico service territory that purchase and install high efficiency equipment for residential use. Eligible equipment includes air...

  15. Laclede Gas Company- Residential High Efficiency Heating Rebate Program

    Broader source: Energy.gov [DOE]

    Laclede Gas Company offers various rebates to residential customers for investing in energy efficient equipment and appliances. Residential customers can qualify for rebates on boilers, furnaces,...

  16. Clean Energy Finance Guide for Residential and Commercial Building...

    Broader source: Energy.gov (indexed) [DOE]

    Clean Energy Finance Guide for Residential and Commercial Building Improvements - Chapter 8 Clean Energy Finance Guide for Residential and Commercial Building Improvements -...

  17. Clean Energy Finance Guide for Residential and Commercial Building...

    Broader source: Energy.gov (indexed) [DOE]

    Clean Energy Finance Guide for Residential and Commercial Building Improvements - Chapter 7 Clean Energy Finance Guide for Residential and Commercial Building Improvements -...

  18. Residential Windows and Window Coverings: A Detailed View of...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Residential Windows and Window Coverings: A Detailed View of the Installed Base and User Behavior Residential Windows and Window Coverings: A Detailed View of the Installed Base...

  19. WESLEYAN UNIVERSITY OFFICES OF PHYSICAL PLANT & RESIDENTIAL LIFE

    E-Print Network [OSTI]

    Royer, Dana

    WESLEYAN UNIVERSITY OFFICES OF PHYSICAL PLANT & RESIDENTIAL LIFE MURAL REQUEST FORM ***SMALL SCALE SIGNATURE: DATE: APPROVED BY: **Area Coordinator: DATE: Associate Director of Residential Life: DATE

  20. Sustainable Energy Resources for Consumers Webinar on Residential...

    Broader source: Energy.gov (indexed) [DOE]

    Sustainable Energy Resources for Consumers Webinar on Residential Geothermal Heat Pump Retrofit Transcript Sustainable Energy Resources for Consumers Webinar on Residential...

  1. Activity Stream - NREL EFM DATA: Disaggregated Residential Load...

    Open Energy Info (EERE)

    EFM DATA: Disaggregated Residential Load Cost Data 22 days ago harvest created the dataset NREL EFM DATA: Disaggregated Residential Load Cost Data 1 month ago harvest created...

  2. Cape Light Compact- Residential Energy Efficiency Rebate Program

    Broader source: Energy.gov [DOE]

    Cape Light Compact (CLC) offers a variety of financial incentives to customers for purchasing energy efficient residential equipment. Residential customers can take advantage of incentives on...

  3. Summary of Workshop: Barriers to Energy Efficient Residential Ventilation

    E-Print Network [OSTI]

    Sherman, Max

    2008-01-01T23:59:59.000Z

    quality problems. Traditionally residential ventilation wasquality problems such as moisture. Residential ventilationventilation air is only one way of tackling the R H problem

  4. Colorado Springs Utilities- Residential Energy Efficiency Rebate Program

    Broader source: Energy.gov [DOE]

    Colorado Springs Utilities offers a variety of energy and water efficiency incentives to its residential customers through the Residential Rebate Program. Rebates are offered for single and multi...

  5. Financing Residential Energy Efficiency with Carbon Offsets Transcript...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Residential Energy Efficiency with Carbon Offsets Transcript Financing Residential Energy Efficiency with Carbon Offsets Transcript This document contains the transcript for the...

  6. New Energy Efficiency Standards for Residential Clothes Washers...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Commercial clothes washers February 2010 - Small electric motors March 2010 - Residential water heaters, direct heating equipment and pool heaters April 2011 - Residential clothes...

  7. Philadelphia Gas Works- Residential and Small Business Equipment Rebate Program

    Broader source: Energy.gov [DOE]

    Philadelphia Gas Works' (PGW) Residential Heating Equipment rebates are available to all PGW residential or small business customers installing high efficiency boilers and furnaces, and...

  8. Review of Residential Low-Load HVAC Systems

    SciTech Connect (OSTI)

    Brown, Scott A.; Thornton, Brian; Widder, Sarah H.

    2013-09-01T23:59:59.000Z

    In support of the U.S. Department of Energy’s (DOE’s) Building America Program, Pacific Northwest National Laboratory (PNNL) conducted an investigation to inventory commercially available HVAC technologies that are being installed in low-load homes. The first step in this investigation was to conduct a review of published literature to identify low-load HVAC technologies available in the United States and abroad, and document the findings of existing case studies that have evaluated the performance of the identified technologies. This report presents the findings of the literature review, identifies gaps in the literature or technical understanding that must be addressed before low-load HVAC technologies can be fully evaluated, and introduces PNNL’s planned research and analysis for this project to address identified gaps and potential future work on residential low-load HVAC systems.

  9. Improving the thermal performance of the US residential window stock

    SciTech Connect (OSTI)

    Brown, R.E.; Arasteh, D.K.; Eto, J.H.

    1992-05-01T23:59:59.000Z

    Windows have typically been the least efficient thermal component in the residential envelope, but technology advances over the past decade have helped to dramatically improve the energy efficiency of window products. While the thermal performance of these advanced technology windows can be easily characterized for a particular building application, few precise estimates exist of their aggregate impact on national or regional energy use. Policy-makers, utilities, researchers and the fenestration industry must better understand these products` ultimate conservation potential in order to determine the value of developing new products and initiating programs to accelerate their market acceptance. This paper presents a method to estimate the conservation potential of advanced window technologies, combining elements of two well-known modeling paradigms: supply curves of conserved energy and residential end-use forecasting. The unique features include: detailed descriptions of the housing stock by region and vintage, state-of-the-art thermal descriptions of window technologies, and incorporation of market effects to calculate achievable conservation potential and timing. We demonstrate the methodology by comparing, for all new houses built between 1990 and 2010, the conservation potential of very efficient, high R-value ``superwindows`` in the North Central federal region and spectrally-selective low-emissivity (moderate Revalue and solar transmittance) windows in California.

  10. Your Resource Guide to WVU's Residential

    E-Print Network [OSTI]

    Mohaghegh, Shahab

    are mandatory, so please continue to check back for updates and to explore additional events as they are added throughout the summer. welcomeweek.wvu.edu Residential Education Programming Opportunities Volleypalooza Scarehouse Rich's Fright Farm (Haunted House) Kennywood Fright Night Residential Education Octoberfest

  11. Tips For Residential Heating Oil Tank Owners

    E-Print Network [OSTI]

    Maroncelli, Mark

    · · · · · · · · · · · · · · · · · · · · · · Tips For Residential Heating Oil Tank Owners Source: DEP Fact Sheet Residential heating oil tanks are used to store fuel for furnaces or boilers to heat

  12. SIMULATION OF RESIDENTIAL HVAC SYSTEM PERFORMANCE

    E-Print Network [OSTI]

    1 LBNL-47622 SIMULATION OF RESIDENTIAL HVAC SYSTEM PERFORMANCE Walker, I., Siegel, J ..................................................... 9 #12;3 ABSTRACT In many parts of North America residential HVAC systems are installed outside of the simulations is that they are dynamic - which accounts for cyclic losses from the HVAC system and the effect

  13. Technology

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa del SolStrengthening a solidSynthesis of 2D AlloysTrails NewsTechnologyTechnology A

  14. Technology

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa del SolStrengthening a solidSynthesis of 2D AlloysTrails NewsTechnologyTechnology

  15. Demand-side Management Strategies and the Residential Sector: Lessons from International Experience

    E-Print Network [OSTI]

    Haney, Aoife Brophy; Jamasb, Tooraj; Platchkov, Laura M.; Pollitt, Michael G.

    technological progress are needed (see also Steinbucks, 2011 for more analysis). 21 Products targeted by standards in the residential sector include appliances, ICT, lighting, heating and cooling equipments... characteristics of the political, economic, energy system make EE investments difficult Differences in degree of liberalisation of the electricity market (Blumstein et al., 2005); differences in economic level across regions; lack of technical skills...

  16. Chapter 17: Residential Behavior Protocol

    SciTech Connect (OSTI)

    Stewart, J.; Todd, A.

    2015-01-01T23:59:59.000Z

    Residential behavior-based (BB) programs use strategies grounded in the behavioral social sciences to influence household energy use. Strategies may include providing households with real-time or delayed feedback about their energy use; supplying energy-efficiency education and tips; rewarding households for reducing their energy use; comparing households to their peers; and establishing games, tournaments, and competitions. BB programs often target multiple energy end uses and encourage energy savings, demand savings, or both. Savings from BB programs are usually a small percentage of energy use, typically less than 5%.

  17. NREL: Buildings Research - Residential Capabilities

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Saleshttp://www.fnal.gov/directorate/nalcal/nalcal02_07_05_files/nalcal.gifNREL NRELChemical andWhat Is aResidential Capabilities

  18. Resource Recovery Opportunities at America’s Water Resource Recovery Facilities

    Broader source: Energy.gov [DOE]

    Breakout Session 3A—Conversion Technologies III: Energy from Our Waste—Will we Be Rich in Fuel or Knee Deep in Trash by 2025? Resource Recovery Opportunities at America’s Water Resource Recovery Facilities Todd Williams, Deputy Leader for Wastewater Infrastructure Practice, CH2M HILL

  19. Energy Efficiency & On-Bill Financing for Samll Business & Residential

    Office of Energy Efficiency and Renewable Energy (EERE)

    Details on Connecticut Energy Efficiency Fund and its benefits to small businesses and residential customers.

  20. An energy standard for residential buildings in south China

    E-Print Network [OSTI]

    Huang, Yu Joe; Lang, Siwei; Hogan, John; Lin, Haiyan

    2003-01-01T23:59:59.000Z

    Code for Residential Buildings”, Third International Conference on Indoor Air Quality, Ventilation and Energy Conservation

  1. Low Temperature Waste Energy Recovery at Chemical Plants and Refineries

    E-Print Network [OSTI]

    Ferland, K.; papar, R.; Quinn, J.; Kumar, S.

    2013-01-01T23:59:59.000Z

    candidates of waste heat recovery technologies that might have an application in these industries. Four technologies that met the criteria of the Advisory Committee included: organic rankine cycle (ORC), absorption refrigeration and chilling, Kalina cycle...

  2. Strategies for Low Carbon Growth In India: Industry and Non Residential Sectors

    SciTech Connect (OSTI)

    Sathaye, Jayant; de la Rue du Can, Stephane; Iyer, Maithili; McNeil, Michael; Kramer, Klaas Jan; Roy, Joyashree; Roy, Moumita; Chowdhury, Shreya Roy

    2011-04-15T23:59:59.000Z

    This report analyzed the potential for increasing energy efficiency and reducing greenhouse gas emissions (GHGs) in the non-residential building and the industrial sectors in India. The first two sections describe the research and analysis supporting the establishment of baseline energy consumption using a bottom up approach for the non residential sector and for the industry sector respectively. The third section covers the explanation of a modeling framework where GHG emissions are projected according to a baseline scenario and alternative scenarios that account for the implementation of cleaner technology.

  3. Energy use and conservation in China`s residential and commercial sectors: Patterns, problems, and prospects

    SciTech Connect (OSTI)

    Liu, F.

    1993-07-01T23:59:59.000Z

    This report discusses the determinants of residential and commercial energy demand, profiles the patterns and problems of energy consumption, and evaluates popular energy conservation measures of the People`s Republic of China. It also discusses technological and institutional opportunities for realizing greater energy conservation. General characteristics related to energy use include: population growth, economic growth, residential and commercial energy, and improved standards of living. Specific end-use areas that are examined in detail are space heating, cooking and water heating, and lighting and appliances.

  4. DAYLIGHTING METRICS FOR RESIDENTIAL BUILDINGS

    E-Print Network [OSTI]

    unknown authors

    It is now widely accepted that the standard method for daylighting evaluation- the daylight factor- is due for replacement with metrics founded on absolute values for luminous quantities predicted over the course of a full year using sun and sky conditions derived from standardised climate files. The move to more realistic measures of daylighting introduces significant levels of additional complexity in both the simulation of the luminous quantities and the reduction of the simulation data to readily intelligible metrics. The simulation component, at least for buildings with standard glazing materials, is reasonably well understood. There is no consensus however on the composition of the metrics, and their formulation is an ongoing area of active research. Additionally, non-domestic and residential buildings present very different evaluation scenarios and it is not yet clear if a single metric would be applicable to both. This study uses a domestic dwelling as the setting to investigate and explore the applicability of daylighting metrics for residential buildings. In addition to daylighting provision for task and disclosing the potential for reducing electric lighting usage, we also investigate the formulation of metrics for non-visual effects such as entrainment of the circadian system.

  5. Residential Multi-Function Gas Heat Pump: Efficient Engine-Driven...

    Office of Environmental Management (EM)

    Residential Multi-Function Gas Heat Pump: Efficient Engine-Driven Heat Pump for the Residential Sector - Fact Sheet, 2013 Residential Multi-Function Gas Heat Pump: Efficient...

  6. Quantifying the Effect of the Principal-Agent Problem on US Residential Energy Use

    E-Print Network [OSTI]

    Murtishaw, Scott; Sathaye, Jayant

    2006-01-01T23:59:59.000Z

    of the Residential Water Heater Market in the Northwest. ”Residential Water Heaters. ” http://www.eere.energy.gov/for Residential Water Heaters, Final Letter. ” http://

  7. Optimizing Energy Savings from Direct-DC in U.S. Residential Buildings

    E-Print Network [OSTI]

    Garbesi, Karina

    2012-01-01T23:59:59.000Z

    average residential electricity consumption by end-use inaverage residential electricity consumption by end-use inU.S. residential electricity consumption for 2010 for 32

  8. Pollutant Emission Factors from Residential Natural Gas Appliances: A Literature Review

    E-Print Network [OSTI]

    Traynor, G.W.

    2011-01-01T23:59:59.000Z

    distributions from residential natural gas appliances. CH 4ng/J) distribution from residential natural gas appliances.from Residential Natural Gas Appliances: A Literature Review

  9. Water and Waste Water Tariffs for New Residential Construction in California

    E-Print Network [OSTI]

    Fisher, Diane; Lutz, James

    2006-01-01T23:59:59.000Z

    for New Residential Construction in California D.C. FisherTariffs for New Residential Construction in California 1.in new residential construction in California. These

  10. Economics of residential gas furnaces and water heaters in United States new construction market

    E-Print Network [OSTI]

    Lekov, Alex B.

    2010-01-01T23:59:59.000Z

    Experiences of residential consumers and utilities. OakStar (2008). Energy Star Residential Water Heaters: Finalefficiency improvements for residential gas furnaces in the

  11. Violent Crime, Residential Instability and Mobility: Does the Relationship Differ in Minority Neighborhoods?

    E-Print Network [OSTI]

    Boggess, Lyndsay N.; Hipp, John R.

    2010-01-01T23:59:59.000Z

    PAPER Violent Crime, Residential Instability and Mobility:violent crime and residential stability in neighborhoods. Wea traditional index of residential stability and a novel

  12. Economics of residential gas furnaces and water heaters in US new construction market

    E-Print Network [OSTI]

    Lekov, Alex B.; Franco, Victor H.; Wong-Parodi, Gabrielle; McMahon, James E.; Chan, Peter

    2010-01-01T23:59:59.000Z

    appliance_standards/residential/water_ pool_heaters_prelim_Star (2008). Energy star residential water heaters: Finalefficiency improvements for residential gas furnaces in the

  13. Shaking Up the Residential PV Market: Implications of Recent Changes to the ITC

    E-Print Network [OSTI]

    Bolinger, Mark

    2008-01-01T23:59:59.000Z

    E NERGY Shaking Up the Residential PV Market: Implicationsthe Revised Residential Credit ..ITC (capped at $2,000) for residential solar systems. Both

  14. Residential and Transport Energy Use in India: Past Trend and Future Outlook

    E-Print Network [OSTI]

    de la Rue du Can, Stephane

    2009-01-01T23:59:59.000Z

    16 Figure 10. Residential Primary Energy Use in 2000 and3. Fuel Consumption in the Residential Sector in 2005 in10 Table 6. Residential Activity

  15. The impact of residential density on vehicle usage and fuel consumption

    E-Print Network [OSTI]

    Kim, Jinwon; Brownstone, David

    2010-01-01T23:59:59.000Z

    characteristics on household residential choice and auto2009. The impact of residential density on vehicle usage and2010-05) The impact of residential density on vehicle usage

  16. Strategies for Low Carbon Growth In India: Industry and Non Residential Sectors

    E-Print Network [OSTI]

    Sathaye, Jayant

    2011-01-01T23:59:59.000Z

    Efficiency Scenario (non-residential sector only) – AssumesIndia: Industry and Non Residential Sectors Jayant Sathaye,and support. The Non Residential sector analysis benefited

  17. Residential mobility and location choice: a nested logit model with sampling of alternatives

    E-Print Network [OSTI]

    Lee, Brian H.; Waddell, Paul

    2010-01-01T23:59:59.000Z

    Waddell, P. : Modeling residential location in UrbanSim. In:D. (eds. ) Modelling Residential Location Choice. Springer,based model system and a residential location model. Urban

  18. Country Review of Energy-Efficiency Financial Incentives in the Residential Sector

    E-Print Network [OSTI]

    Can, Stephane de la Rue du

    2011-01-01T23:59:59.000Z

    Financial Incentives in the Residential Sector Stephane deFinancial Incentives in the Residential Sector Stephane desavings achieved in the residential sector. In contrast,

  19. Current Status and Future Scenarios of Residential Building Energy Consumption in China

    E-Print Network [OSTI]

    Zhou, Nan

    2010-01-01T23:59:59.000Z

    The China Residential Energy Consumption Survey, Human andof Residential Building Energy Consumption in China Nan ZhouResidential Building Energy Consumption in China Nan Zhou*,

  20. Application of reservoir characterization and advanced technology to improve recovery and economics in a lower quality shallow shelf San Andres reservoir. Quarterly progress report, October 1--December 31, 1997

    SciTech Connect (OSTI)

    Taylor, A.R.; Hickman, T.S.; Justice, J.J.

    1998-01-31T23:59:59.000Z

    West Welch Unit is one of four large waterflood units in the Welch Field in the northwestern portion of Dawson County, Texas. The Welch Field produces oil under a solution gas drive mechanism from the San Andres formation at approximately 4,800 ft. The field has been under waterflood for 30 years and a significant portion has been infill-drilled on 20-ac density. A 1982--86 pilot CO{sub 2} injection project in the offsetting South Welch Unit yielded positive results. Recent installation of a CO{sub 2} pipeline near the field allowed the phased development of a miscible CO{sub 2} injection project at the South Welch Unit. The Class 2 Project at West Welch was designed to demonstrate the use of advanced technologies to enhance the economics of improved oil recovery (IOR) projects in lower quality Shallow Shelf Carbonate (SSC) reservoirs, resulting in recovery of additional oil that would otherwise be left in the reservoir at project abandonment. Accurate reservoir description is critical to the effective evaluation and efficient design of IOR projects in the heterogeneous SSC reservoirs. Therefore, the majority of Budget Period 1 was devoted to reservoir characterization. Technologies being demonstrated include: advanced petrophysics; three-dimensional seismic; cross-well bore tomography; advanced reservoir simulation; CO{sub 2} stimulation treatments; hydraulic fracturing design and monitoring; and mobility control agents. During the quarter, development of the project`s south expansion area was undertaken, work was continued on interpreting the crosswell seismic data and CO{sub 2} injection into 11 wells was initiated.

  1. Japanese activities for introducing residential PV systems as a national energy supply

    SciTech Connect (OSTI)

    Kurokawa, Kosuke [Electrotechnical Lab., Tsukuba, Ibaraki (Japan)

    1994-12-31T23:59:59.000Z

    The paper summarizes Japanese activities concerning photovoltaic systems, specially for the residential use as a national energy supply. This year 1994 is just the 20th anniversary of the Sunshine Project, which started in July 1974. In the Project the utility-connected, residential applications mounted on roofs have been its major target from an early stage of R and D. Recently, it can be considered that technologies for the target have been fundamentally established and a series of new activities are being introduced to promote the commercialization and diffusion of PV systems. To review those activities, several condensed tables are presented, i.e., R and D history of residential applications, recent trends in regulation and code improvements, and new institutional activities to spread PV systems. Possible R and D items from now on are also reviewed and listed, which are necessary to support these efforts.

  2. Residential applliance data, assumptions and methodology for end-use forecasting with EPRI-REEPS 2.1

    SciTech Connect (OSTI)

    Hwang, R.J,; Johnson, F.X.; Brown, R.E.; Hanford, J.W.; Kommey, J.G.

    1994-05-01T23:59:59.000Z

    This report details the data, assumptions and methodology for end-use forecasting of appliance energy use in the US residential sector. Our analysis uses the modeling framework provided by the Appliance Model in the Residential End-Use Energy Planning System (REEPS), which was developed by the Electric Power Research Institute. In this modeling framework, appliances include essentially all residential end-uses other than space conditioning end-uses. We have defined a distinct appliance model for each end-use based on a common modeling framework provided in the REEPS software. This report details our development of the following appliance models: refrigerator, freezer, dryer, water heater, clothes washer, dishwasher, lighting, cooking and miscellaneous. Taken together, appliances account for approximately 70% of electricity consumption and 30% of natural gas consumption in the US residential sector. Appliances are thus important to those residential sector policies or programs aimed at improving the efficiency of electricity and natural gas consumption. This report is primarily methodological in nature, taking the reader through the entire process of developing the baseline for residential appliance end-uses. Analysis steps documented in this report include: gathering technology and market data for each appliance end-use and specific technologies within those end-uses, developing cost data for the various technologies, and specifying decision models to forecast future purchase decisions by households. Our implementation of the REEPS 2.1 modeling framework draws on the extensive technology, cost and market data assembled by LBL for the purpose of analyzing federal energy conservation standards. The resulting residential appliance forecasting model offers a flexible and accurate tool for analyzing the effect of policies at the national level.

  3. Mass and Heat Recovery

    E-Print Network [OSTI]

    Hindawai, S. M.

    2010-01-01T23:59:59.000Z

    - 1 - MASS AND HEAT RECOVERY SYSTEM SALAH MAHMOUD HINDAWI DIRECTOR HINDAWI FOR ENGINEERING SERVICES & CONTRACTING NEW DAMIETTA , EGYPT ABSTRACT : In the last few years heat recovery was under spot . and in air conditioning fields... ) as a heat recovery . and I use the water as a mass recovery . The source of mass and heat recovery is the condensate water which we were dispose and connect it to the drain lines . THE BENEFIT OF THIS SYSTEM ARE : 1) Using the heat energy from...

  4. Water-soluble metal-binding polymers with ultrafiltration: A technology for the removal, concentration, and recovery of metal ions from aqueous streams

    SciTech Connect (OSTI)

    Smith, B.F.; Robison, T.W.; Jarvinen, G.D.

    1997-12-31T23:59:59.000Z

    The use of water-soluble metal-binding polymers coupled with ultrafiltration (UF) is a technology under development to selectively concentrate and recover valuable or regulated metal-ions from dilute process or waste waters. The polymers have a sufficiently large molecular size that they can be separated and concentrated using commercially available UF technology. The polymers can then be reused by changing the solution conditions to release the metal-ions, which are recovered in a concentrated form for recycle or disposal. Pilot-scale demonstrations have been completed for a variety of waste streams containing low concentrations of metal ions including electroplating wastes (zinc and nickel) and nuclear waste streams (plutonium and americium). Many other potential commercial applications exist including remediation of contaminated solids. An overview of both the pilot-scale demonstrated applications and small scale testing of this technology are presented.

  5. Novel selective surface flow (SSF{trademark}) membranes for the recovery of hydrogen from waste gas streams. Phase 2: Technology development, final report

    SciTech Connect (OSTI)

    Anand, M.; Ludwig, K.A.

    1996-04-01T23:59:59.000Z

    The objective of Phase II of the Selective Surface Flow Membrane program was Technology Development. Issues addressed were: (i) to develop detailed performance characteristics on a 1 ft{sup 2} multi- tube module and develop design data, (ii) to build a field test rig and complete field evaluation with the 1 ft{sup 2} area membrane system, (iii) to implement membrane preparation technology and demonstrate membrane performance in 3.5 ft long tube, (iv) to complete detailed process design and economic analysis.

  6. Hydraulic waste energy recovery

    SciTech Connect (OSTI)

    Lederer, C.C.; Thomas, A.H.; McGuire, J.L. (Detroit Buildings and Safety Engineering Dept., MI (USA))

    1990-12-01T23:59:59.000Z

    Water distribution systems are typically a municipality's largest consumer of energy and greatest expense. The water distribution network has varying pressure requirements due to the age of the pipeline and topographical differences. Certain circumstances require installation of pressure reducing devices in the pipeline to lower the water pressure in the system. The consequence of this action is that the hydraulic energy supplied by the high lift or booster pumps is wasted in the process of reducing the pressure. A possible solution to capture the waste hydraulic energy is to install an in-line electricity generating turbine. Energy recovery using in-line turbine systems is an emerging technology. Due to the lack of technical and other relevant information on in-line turbine system installations, questions of constructability and legal issues over the power service contract have yet to be answered. This study seeks to resolve these questions and document the findings so that other communities may utilize this information. 10 figs.

  7. Residential

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Scienceand Requirements RecentlyElectronic Public ReadingResearch NuclearPowerdefault Sign In

  8. Residential

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's PossibleRadiation Protection Technical s OverviewB&W Y-12 LLC for theresidential Sign In About

  9. Unconventional gas recovery: state of knowledge document

    SciTech Connect (OSTI)

    Geffen, C.A.

    1982-01-01T23:59:59.000Z

    This report is a synthesis of environmental data and information relevant to the four areas of unconventional gas recovery (UGR) resource recovery: methane from coal, tight western sands, Devonian shales and geopressurized aquifers. Where appropriate, it provides details of work reviewed; while in other cases, it refers the reader to relevant sources of information. This report consists of three main sections, 2, 3, and 4. Section 2 describes the energy resource base involved and characteristics of the technology and introduces the environmental concerns of implementing the technology. Section 3 reviews the concerns related to unconventional gas recovery systems which are of significance to the environment. The potential health and safety concerns of the recovery of natural gas from these resources are outlined in Section 4.

  10. Residential Electricity Demand in China -- Can Efficiency Reverse the Growth?

    SciTech Connect (OSTI)

    Letschert, Virginie; McNeil, Michael A.; Zhou, Nan

    2009-05-18T23:59:59.000Z

    The time when energy-related carbon emissions come overwhelmingly from developed countries is coming to a close. China has already overtaken the United States as the world's leading emitter of greenhouse gas emissions. The economic growth that China has experienced is not expected to slow down significantly in the long term, which implies continued massive growth in energy demand. This paper draws on the extensive expertise from the China Energy Group at LBNL on forecasting energy consumption in China, but adds to it by exploring the dynamics of demand growth for electricity in the residential sector -- and the realistic potential for coping with it through efficiency. This paper forecasts ownership growth of each product using econometric modeling, in combination with historical trends in China. The products considered (refrigerators, air conditioners, fans, washing machines, lighting, standby power, space heaters, and water heating) account for 90percent of household electricity consumption in China. Using this method, we determine the trend and dynamics of demandgrowth and its dependence on macroeconomic drivers at a level of detail not accessible by models of a more aggregate nature. In addition, we present scenarios for reducing residential consumption through efficiency measures defined at the product level. The research takes advantage of an analytical framework developed by LBNL (BUENAS) which integrates end use technology parameters into demand forecasting and stock accounting to produce detailed efficiency scenarios, thus allowing for a technologically realistic assessment of efficiency opportunities specifically in the Chinese context.

  11. Residential gas heat pump assessment: A market-based approach

    SciTech Connect (OSTI)

    Hughes, P.J.

    1995-09-01T23:59:59.000Z

    There has been considerable activity in recent years to develop technologies that could reduce or levelize residential and light-commercial building space cooling electrical use and heating/cooling energy use. For example, variable or multi-speed electric heat pumps, electric ground-source heat pumps, dual-fuel heat pumps, multi-function heat pumps, and electric cool storage concepts have been developed; and several types of gas heat pumps are emerging. A residential gas heat pump (GHP) benefits assessment is performed to assist gas utility and equipment manufacturer decision making on level of commitment to this technology. The methodology and generic types of results that can be generated are described. National market share is estimated using a market segmentation approach. The assessment design requires dividing the 334 Metropolitan Statistical Areas (MSAS) of the US into 42 market segments of relatively homogeneous weather and gas/electric rates (14 climate groupings by 3 rate groupings). Gas and electric rates for each MSA are evaluated to arrive at population-weighted rates for the market segments. GHPs are competed against 14 conventional equipment options in each homogeneous segment.

  12. Evaluation of evolving residential electricity tariffs

    E-Print Network [OSTI]

    Lai, Judy

    2011-01-01T23:59:59.000Z

    its residential customers to Smart Meters and laying theencountered with its Smart Meter roll out, and evaluates the3 of 7 The introduction of Smart Meters One of the necessary

  13. Residential Air-Source Heat Pump Program

    Broader source: Energy.gov [DOE]

    Massachusetts offers rebates of up to $3,750 for the installation of high-efficiency, cold-climate air-source heat pumps (ASHPs) in residential buildings of one to four units. Heat pumps must be ...

  14. New Mexico Gas Company- Residential Efficiency Programs

    Broader source: Energy.gov [DOE]

    The New Mexico Gas Company provides incentives for energy saving measures and improvements to residential homes. Rebates are available for adding insulation and for homes which attain Energy Star...

  15. Ozone Reductions using Residential Building Envelopes

    E-Print Network [OSTI]

    Ozone Reductions using Residential Building Envelopes I.S. Walker, M.H. Sherman and W.W. Nazaroff or adequacy of the information in this report. #12;Arnold Schwarzenegger Governor Ozone Reductions Using

  16. Property Tax Exemption for Residential Solar Systems

    Broader source: Energy.gov [DOE]

    [http://www.nmlegis.gov/Sessions/10%20Regular/final/HB0233.pdf HB 233 of 2010] exempted residential solar energy systems from property tax assessments. According to state law, for the purposes of...

  17. Residential Refrigerator Recycling Ninth Year Retention Study

    E-Print Network [OSTI]

    Residential Refrigerator Recycling Ninth Year Retention Study Study ID Nos. 546B, 563 Prepared RECYCLING PROGRAMS Study ID Nos. 546B and 563 Prepared for Southern California Edison Rosemead, California

  18. The College Station Residential Energy Compliance Code

    E-Print Network [OSTI]

    Claridge, D. E.; Schrock, D.

    1988-01-01T23:59:59.000Z

    The City of College Station, Texas adopted a new residential Energy Compliance Code in January, 1988. The code, which strengthens compliance requirements in several areas, has received broadly based support and acceptance from all major constituent...

  19. Cedar Falls Utilities- Residential New Construction Program

    Broader source: Energy.gov [DOE]

    Cedar Falls Utilities offers incentives to residential customers who construct new energy efficient homes. A rate discount of 25% is available to customers who meet the 5 Star Home Program criteria...

  20. Lakeland Electric- Residential Conservation Rebate Program

    Broader source: Energy.gov [DOE]

    Lakeland Electric offers a conservation program for residential customers to save energy in homes. Rebates are available for Heat Pumps, HVAC tune-ups, attic insulation upgrades, and Energy Star...

  1. Clark Energy- Residential Energy Efficiency Rebate Programs

    Broader source: Energy.gov [DOE]

    Clark Energy offers a free energy audit to provide residential customers with suggestions on ways to improve the energy efficiency of participating homes. Rebates are available for customers who...

  2. Chicopee Electric Light- Residential Solar Rebate Program

    Broader source: Energy.gov [DOE]

    Chicopee Electric Light offered rebates to residential customers who install solar photovoltaic systems on their homes. Customer rebates are $0.50 per watt for a maximum of $2,500 per installation.

  3. Solar Energy Option Requirement for Residential Developments

    Broader source: Energy.gov [DOE]

    In March 2009 New Jersey enacted legislation ([http://www.njleg.state.nj.us/2008/Bills/PL09/33_.PDF A.B. 1558]) designed to support the integration of solar energy systems into new residential...

  4. Oklahoma Natural Gas- Residential Efficiency Rebates (Oklahoma)

    Broader source: Energy.gov [DOE]

    To encourage customers to install high-efficiency natural gas equipment in homes, Oklahoma Natural Gas offers rebates to residential customers and builders for furnace, water heating, or space...

  5. PNM- Residential Energy Efficiency Rebate Program

    Broader source: Energy.gov [DOE]

    PNM also offers the PNM Home Energy Checkup, which gives residential customers a snapshot of their home's electricity use and identifies opportunities to reduce electricity waste. The Home Energy...

  6. ,"New Mexico Natural Gas Residential Consumption (MMcf)"

    U.S. Energy Information Administration (EIA) Indexed Site

    ,,"(202) 586-8800",,,"3292015 10:01:29 PM" "Back to Contents","Data 1: New Mexico Natural Gas Residential Consumption (MMcf)" "Sourcekey","N3010NM2" "Date","New...

  7. Alameda Municipal Power- Residential Energy Efficiency Program

    Broader source: Energy.gov [DOE]

    Alameda Municipal Power (AMP) offers a grant to help its residential customers who have electric heat weatherize homes to increase efficiency. To participate, customers must complete and send in a...

  8. Residential Wood Heating Fuel Exemption (New York)

    Broader source: Energy.gov [DOE]

    New York exempts retail sales of wood used for residential heating purposes from the state sales tax. The law also permits local governments (municipalities and counties) to grant an exemption from...

  9. SMUD- PV Residential Retrofit Buy-Down

    Broader source: Energy.gov [DOE]

    SMUD offers an incentive of $0.20 per watt (W) AC to residential customers who install grid-connected photovoltaic (PV) systems. Customers do not have to contract directly with SMUD-approved...

  10. Austin Energy- Residential Solar PV Rebate Program

    Broader source: Energy.gov [DOE]

    Austin Energy's Solar Rebate Program offers a $1.50 per watt incentive to eligible residential who install photovoltaic (PV) systems on their homes. Rebates are limited to $15,000 per home...

  11. EWEB- Residential Solar Water Heating Loan Program

    Broader source: Energy.gov [DOE]

    Eugene Water & Electric Board (EWEB) offers residential customers a loan and cash discount program called, "The Bright Way To Heat Water." The program is designed to promote the installation of...

  12. CPS Energy- New Residential Construction Incentives

    Broader source: Energy.gov [DOE]

    CPS Energy offers incentives for new residential construction that is at least 15% more efficient than required by the [http://dsireusa.org/incentives/incentive.cfm?Incentive_Code=TX29R&re=1...

  13. Monmouth Power & Light- Residential Energy Efficiency Program

    Broader source: Energy.gov [DOE]

    Monmouth Power & Light offers a wide range of energy efficiency rebates that encourage residential customers to save energy in their homes. To qualify for these incentives electricity must be...

  14. Waverly Light & Power- Residential Energy Efficiency Rebates

    Broader source: Energy.gov [DOE]

    Waverly Light and Power (WL&P) offers rebates for the purchase and installation of energy efficient HVAC systems and appliances to residential customers. Rebates are available for central AC...

  15. Minnesota Power- Residential Energy Efficiency Rebate Program

    Broader source: Energy.gov [DOE]

    Minnesota Power offers a variety of appliance, lighting, and heating and cooling system rebates to its residential customers to help make homes more energy efficient. Rebates are available for...

  16. Washington Gas- Residential Energy Efficiency Rebate Program

    Broader source: Energy.gov [DOE]

    Washington Gas provides a number of rebates to residential customers who utilize energy efficient equipment and measures in the home. Rebate are available for tankless water heaters, storage (tank)...

  17. LBNL -47412 Residential Commissioning to Assess

    E-Print Network [OSTI]

    LBNL - 47412 Residential Commissioning to Assess Envelope and HVAC System Performance1 Craig P Scientist and Group Leader at LBNL in its Energy Performance of Buildings Group. #12;i TABLE OF CONTENTS

  18. May 1999 LBNL -42975 ASHRAE'S RESIDENTIAL VENTILATION

    E-Print Network [OSTI]

    May 1999 LBNL - 42975 ASHRAE'S RESIDENTIAL VENTILATION STANDARD: EXEGESIS OF PROPOSED STANDARD 62 standard. 1 Max Sherman is a Senior Scientist at LBNL and the group leader of its Energy Performance

  19. Guam- Solar-Ready Residential Building Requirement

    Broader source: Energy.gov [DOE]

    The Guam Energy Code, which became effective in October of 2000, requires that piping stub outs be provided for water heaters installed in low-rise residential buildings to enable the future inst...

  20. Turkish residential real estate investment analysis

    E-Print Network [OSTI]

    Ciller, Berk (Berk U.)

    2007-01-01T23:59:59.000Z

    This paper examines the investment potential for Turkish Residential Real Estate Market, focusing mainly on Istanbul. With a stable economy since 2002, dynamic population, geo-political location and the potential accession ...