Sample records for recovery techniques nonconventional

  1. ADVANCED TECHNIQUES FOR RESERVOIR SIMULATION AND MODELING OF NONCONVENTIONAL WELLS

    SciTech Connect (OSTI)

    Louis J. Durlofsky; Khalid Aziz

    2004-08-20T23:59:59.000Z

    Nonconventional wells, which include horizontal, deviated, multilateral and ''smart'' wells, offer great potential for the efficient management of oil and gas reservoirs. These wells are able to contact larger regions of the reservoir than conventional wells and can also be used to target isolated hydrocarbon accumulations. The use of nonconventional wells instrumented with downhole inflow control devices allows for even greater flexibility in production. Because nonconventional wells can be very expensive to drill, complete and instrument, it is important to be able to optimize their deployment, which requires the accurate prediction of their performance. However, predictions of nonconventional well performance are often inaccurate. This is likely due to inadequacies in some of the reservoir engineering and reservoir simulation tools used to model and optimize nonconventional well performance. A number of new issues arise in the modeling and optimization of nonconventional wells. For example, the optimal use of downhole inflow control devices has not been addressed for practical problems. In addition, the impact of geological and engineering uncertainty (e.g., valve reliability) has not been previously considered. In order to model and optimize nonconventional wells in different settings, it is essential that the tools be implemented into a general reservoir simulator. This simulator must be sufficiently general and robust and must in addition be linked to a sophisticated well model. Our research under this five year project addressed all of the key areas indicated above. The overall project was divided into three main categories: (1) advanced reservoir simulation techniques for modeling nonconventional wells; (2) improved techniques for computing well productivity (for use in reservoir engineering calculations) and for coupling the well to the simulator (which includes the accurate calculation of well index and the modeling of multiphase flow in the wellbore); and (3) accurate approaches to account for the effects of reservoir heterogeneity and for the optimization of nonconventional well deployment. An overview of our progress in each of these main areas is as follows. A general purpose object-oriented research simulator (GPRS) was developed under this project. The GPRS code is managed using modern software management techniques and has been deployed to many companies and research institutions. The simulator includes general black-oil and compositional modeling modules. The formulation is general in that it allows for the selection of a wide variety of primary and secondary variables and accommodates varying degrees of solution implicitness. Specifically, we developed and implemented an IMPSAT procedure (implicit in pressure and saturation, explicit in all other variables) for compositional modeling as well as an adaptive implicit procedure. Both of these capabilities allow for efficiency gains through selective implicitness. The code treats cell connections through a general connection list, which allows it to accommodate both structured and unstructured grids. The GPRS code was written to be easily extendable so new modeling techniques can be readily incorporated. Along these lines, we developed a new dual porosity module compatible with the GPRS framework, as well as a new discrete fracture model applicable for fractured or faulted reservoirs. Both of these methods display substantial advantages over previous implementations. Further, we assessed the performance of different preconditioners in an attempt to improve the efficiency of the linear solver. As a result of this investigation, substantial improvements in solver performance were achieved.

  2. Advanced Techniques for Reservoir Simulation and Modeling of Non-Conventional Wells

    SciTech Connect (OSTI)

    Durlofsky, Louis J.; Aziz, Khalid

    2001-08-23T23:59:59.000Z

    Research results for the second year of this project on the development of improved modeling techniques for non-conventional (e.g., horizontal, deviated or multilateral) wells were presented. The overall program entails the development of enhanced well modeling and general simulation capabilities. A general formulation for black-oil and compositional reservoir simulation was presented.

  3. Nonconventional Liquid Fuels (released in AEO2006)

    Reports and Publications (EIA)

    2006-01-01T23:59:59.000Z

    Higher prices for crude oil and refined petroleum products are opening the door for nonconventional liquids to displace petroleum in the traditional fuel supply mix. Growing world demand for diesel fuel is helping to jump-start the trend toward increasing production of nonconventional liquids, and technological advances are making the nonconventional alternatives more viable commercially. Those trends are reflected in the Annual Energy Outlook 2006 projections.

  4. Conventional and Non-Conventional Nuclear Material Signatures

    SciTech Connect (OSTI)

    Gozani, Tsahi [Rapiscan Laboratories, Inc., 520 Almanor Ave., Sunnyvale, CA 94085 (United States)

    2009-03-10T23:59:59.000Z

    The detection and interdiction of concealed special nuclear material (SNM) in all modes of transport is one of the most critical security issues facing the United States and the rest of the world. In principle, detection of nuclear materials is relatively easy because of their unique properties: all of them are radioactive and all emit some characteristic gamma rays. A few emit neutrons as well. These signatures are the basis for passive non-intrusive detection of nuclear materials. The low energy of the radiations necessitates additional means of detection and validation. These are provided by high-energy x-ray radiography and by active inspection based on inducing nuclear reactions in the nuclear materials. Positive confirmation that a nuclear material is present or absent can be provided by interrogation of the inspected object with penetrating probing radiation, such as neutrons and photons. The radiation induces specific reactions in the nuclear material yielding, in turn, penetrating signatures which can be detected outside the inspected object. The 'conventional' signatures are first and foremost fission signatures: prompt and delayed neutrons and gamma rays. Their intensity (number per fission) and the fact that they have broad energy (non-discrete, though unique) distributions and certain temporal behaviors are key to their use. The 'non-conventional' signatures are not related to the fission process but to the unique nuclear structure of each element or isotope in nature. This can be accessed through the excitation of isotopic nuclear levels (discrete and continuum) by neutron inelastic scattering or gamma resonance fluorescence. Finally there is an atomic signature, namely the high atomic number (Z>74), which obviously includes all the nuclear materials and their possible shielding. The presence of such high-Z elements can be inferred by techniques using high-energy x rays. The conventional signatures have been addressed in another article. Non-conventional signatures and some of their current or potential uses will be discussed here.

  5. Transformation of Resources to Reserves: Next Generation Heavy-Oil Recovery Techniques

    SciTech Connect (OSTI)

    Stanford University; Department of Energy Resources Engineering Green Earth Sciences

    2007-09-30T23:59:59.000Z

    This final report and technical progress report describes work performed from October 1, 2004 through September 30, 2007 for the project 'Transformation of Resources to Reserves: Next Generation Heavy Oil Recovery Techniques', DE-FC26-04NT15526. Critical year 3 activities of this project were not undertaken because of reduced funding to the DOE Oil Program despite timely submission of a continuation package and progress on year 1 and 2 subtasks. A small amount of carried-over funds were used during June-August 2007 to complete some work in the area of foamed-gas mobility control. Completion of Year 3 activities and tasks would have led to a more thorough completion of the project and attainment of project goals. This progress report serves as a summary of activities and accomplishments for years 1 and 2. Experiments, theory development, and numerical modeling were employed to elucidate heavy-oil production mechanisms that provide the technical foundations for producing efficiently the abundant, discovered heavy-oil resources of the U.S. that are not accessible with current technology and recovery techniques. Work fell into two task areas: cold production of heavy oils and thermal recovery. Despite the emerging critical importance of the waterflooding of viscous oil in cold environments, work in this area was never sanctioned under this project. It is envisioned that heavy oil production is impacted by development of an understanding of the reservoir and reservoir fluid conditions leading to so-called foamy oil behavior, i.e, heavy-oil solution gas drive. This understanding should allow primary, cold production of heavy and viscous oils to be optimized. Accordingly, we evaluated the oil-phase chemistry of crude oil samples from Venezuela that give effective production by the heavy-oil solution gas drive mechanism. Laboratory-scale experiments show that recovery correlates with asphaltene contents as well as the so-called acid number (AN) and base number (BN) of the crude oil. A significant number of laboratory-scale tests were made to evaluate the solution gas drive potential of West Sak (AK) viscous oil. The West Sak sample has a low acid number, low asphaltene content, and does not appear foamy under laboratory conditions. Tests show primary recovery of about 22% of the original oil in place under a variety of conditions. The acid number of other Alaskan North Slope samples tests is greater, indicating a greater potential for recovery by heavy-oil solution gas drive. Effective cold production leads to reservoir pressure depletion that eases the implementation of thermal recovery processes. When viewed from a reservoir perspective, thermal recovery is the enhanced recovery method of choice for viscous and heavy oils because of the significant viscosity reduction that accompanies the heating of oil. One significant issue accompanying thermal recovery in cold environments is wellbore heat losses. Initial work on thermal recovery found that a technology base for delivering steam, other hot fluids, and electrical heat through cold subsurface environments, such as permafrost, was in place. No commercially available technologies are available, however. Nevertheless, the enabling technology of superinsulated wells appears to be realized. Thermal subtasks focused on a suite of enhanced recovery options tailored to various reservoir conditions. Generally, electrothermal, conventional steam-based, and thermal gravity drainage enhanced oil recovery techniques appear to be applicable to 'prime' Ugnu reservoir conditions to the extent that reservoir architecture and fluid conditions are modeled faithfully here. The extent of reservoir layering, vertical communication, and subsurface steam distribution are important factors affecting recovery. Distribution of steam throughout reservoir volume is a significant issue facing thermal recovery. Various activities addressed aspects of steam emplacement. Notably, hydraulic fracturing of horizontal steam injection wells and implementation of steam trap control that limits steam entry into hor

  6. Augmenting a Microbial Selective Plugging Technique with Polymer Flooding to Increase the Efficiency of Oil Recovery - A Search for Synergy

    SciTech Connect (OSTI)

    Brown, Lewis R.; Pittman Jr., Charles U.; Lynch, F. Leo; Vadie, A. Alex

    2003-02-10T23:59:59.000Z

    The overall objective of this project was to improve the effectiveness of a microbial selective plugging technique of improving oil recovery through the use of polymer floods. More specifically, the intent was to increase the total amount of oil recovered and to reduce the cost per barrel of incremental oil.

  7. HEAVY AND THERMAL OIL RECOVERY PRODUCTION MECHANISMS

    SciTech Connect (OSTI)

    Anthony R. Kovscek; Louis M. Castanier

    2002-09-30T23:59:59.000Z

    The Stanford University Petroleum Research Institute (SUPRI-A) conducts a broad spectrum of research intended to help improve the recovery efficiency from difficult to produce reservoirs including heavy oil and fractured low permeability systems. Our scope of work is relevant across near-, mid-, and long-term time frames. The primary functions of the group are to conduct direction-setting research, transfer research results to industry, and educate and train students for careers in industry. Presently, research in SUPRI-A is divided into 5 main project areas. These projects and their goals include: (1) Multiphase flow and rock properties--to develop better understanding of the physics of displacement in porous media through experiment and theory. This category includes work on imbibition, flow in fractured media, and the effect of temperature on relative permeability and capillary pressure. (2) Hot fluid injection--to improve the application of nonconventional wells for enhanced oil recovery and elucidate the mechanisms of steamdrive in low permeability, fractured porous media. (3) Mechanisms of primary heavy oil recovery--to develop a mechanistic understanding of so-called ''foamy oil'' and its associated physical chemistry. (4) In-situ combustion--to evaluate the effect of different reservoir parameters on the insitu combustion process. (5) Reservoir definition--to develop and improve techniques for evaluating formation properties from production information. What follows is a report on activities for the past year. Significant progress was made in all areas.

  8. Generalized Ginzburg-Landau models for non-conventional superconductors

    E-Print Network [OSTI]

    S. Esposito; G. Salesi

    2009-06-20T23:59:59.000Z

    We review some recent extensions of the Ginzburg-Landau model able to describe several properties of non-conventional superconductors. In the first extension, s-wave superconductors endowed with two different critical temperatures are considered, their main thermodynamical and magnetic properties being calculated and discussed. Instead in the second extension we describe spin-triplet superconductivity (with a single critical temperature), studying in detail the main predicted physical properties. A thorough discussion of the peculiar predictions of our models and their physical consequences is as well performed.

  9. Increased Oil Production and Reserves Utilizing Secondary/Tertiary Recovery Techniques on Small Reservoirs in the Paradox Basin, Utah

    SciTech Connect (OSTI)

    Jr., Chidsey, Thomas C.; Allison, M. Lee

    1999-11-02T23:59:59.000Z

    The primary objective of this project is to enhance domestic petroleum production by field demonstration and technology transfer of an advanced- oil-recovery technology in the Paradox basin, southeastern Utah. If this project can demonstrate technical and economic feasibility, the technique can be applied to approximately 100 additional small fields in the Paradox basin alone, and result in increased recovery of 150 to 200 million barrels (23,850,000-31,800,000 m3) of oil. This project is designed to characterize five shallow-shelf carbonate reservoirs in the Pennsylvanian (Desmoinesian) Paradox Formation and choose the best candidate for a pilot demonstration project for either a waterflood or carbon-dioxide-(CO2-) miscible flood project. The field demonstration, monitoring of field performance, and associated validation activities will take place within the Navajo Nation, San Juan County, Utah.

  10. Increased Oil Production and Reserves Utilizing Secondary/Tertiary Recovery Techniques on Small Reservoirs in the Paradox Basin, Utah

    SciTech Connect (OSTI)

    Chidsey Jr., Thomas C.

    2003-02-06T23:59:59.000Z

    The primary objective of this project was to enhance domestic petroleum production by field demonstration and technology transfer of an advanced-oil-recovery technology in the Paradox Basin, southeastern Utah. If this project can demonstrate technical and economic feasibility, the technique can be applied to approximately 100 additional small fields in the Paradox Basin alone, and result in increased recovery of 150 to 200 million barrels (23,850,000-31,800,000 m3) of oil. This project was designed to characterize five shallow-shelf carbonate reservoirs in the Pennsylvanian (Desmoinesian) Paradox Formation and choose the best candidate for a pilot demonstration project for either a waterflood or carbon-dioxide-(CO2-) miscible flood project. The field demonstration, monitoring of field performance, and associated validation activities will take place within the Navajo Nation, San Juan County, Utah.

  11. Increased Oil Production and Reserves Utilizing Secondary/Terriary Recovery Techniques on Small Reservoirs in the Paradox Basin, Utah

    SciTech Connect (OSTI)

    David E. Eby; Thomas C. Chidsey, Jr.

    1998-04-08T23:59:59.000Z

    The primary objective of this project is to enhance domestic petroleum production by demonstration and technology transfer of an advanced oil recovery technology in the Paradox basin, southeastern Utah. If this project can demonstrate technical and economic feasibility, the technique can be applied to about 100 additional small fields in the Paradox basin alone, and result in increased recovery of 150 to 200 million barrels of oil. This project is designed to characterize five shallow-shelf carbonate reservoirs in the Pennsylvanian (Desmoinesian) Paradox Formation and choose the best candidate for a pilot demonstration project for either a waterflood or carbon dioxide-(CO -) 2 flood project. The field demonstration, monitoring of field performance, and associated validation activities will take place in the Paradox basin within the Navajo Nation. Two activities continued this quarter as part of the geological and reservoir characterization of productive carbonate buildups in the Paradox basin: (1) diagenetic characterization of project field reservoirs, and (2) technology transfer.

  12. Calibration and data reduction algorithms for non-conventional multi-hole pressure probes 

    E-Print Network [OSTI]

    Ramakrishnan, Vijay

    2004-09-30T23:59:59.000Z

    This thesis presents the development of calibration and data-reduction algorithms for non-conventional multi-hole pressure probes. The algorithms that have been developed for conventional 5- and 7-hole probes are not optimal ...

  13. Increased Oil Production and Reserves Utilizing Secondary/Tertiary Recovery Techniques on Small Reservoirs in the Paradox Basin, Utah.

    SciTech Connect (OSTI)

    Chidsey, T.C. Jr.; Lorenz, D.M.; Culham, W.E.

    1997-10-15T23:59:59.000Z

    The primary objective of this project is to enhance domestic petroleum production by demonstration and technology transfer of an advanced oil recovery technology in the Paradox basin, southeastern Utah. If this project can demonstrate technical and economic feasibility, the technique can be applied to approximately 100 additional small fields in the Paradox basin alone, and result in increased recovery of 150 to 200 million barrels of oil. This project is designed to characterize five shallow-shelf carbonate reservoirs in the Pennsylvanian (Desmoinesian) Paradox Formation and choose the best candidate for a pilot demonstration project for either a waterflood or carbon dioxide- (CO{sub 2}-) flood project. The field demonstration, monitoring of field performance, and associated validation activities will take place in the Paradox basin within the Navajo Nation. The results of this project will be transferred to industry and other researchers through a petroleum extension service, creation of digital databases for distribution, technical workshops and seminars, field trips, technical presentations at national and regional professional meetings, and publication in newsletters and various technical or trade journals.

  14. Increased Oil Production and Reserves Utilizing Secondary/Tertiary Recovery Techniques on Small Reservoirs in the Paradox Basin, Utah

    SciTech Connect (OSTI)

    Allison, M. Lee; Chidsey, Jr., Thomas

    1999-11-03T23:59:59.000Z

    The primary objective of this project is to enhance domestic petroleum production by demonstration and technology transfer of an advanced oil recovery technology in the Paradox basin, southeastern Utah. If this project can demonstrate technical and economic feasibility, the technique can be applied to about 100 additional small fields in the Paradox basin alone, and result in increased recovery of 150 to 200 million bbl of oil. This project is designed to characterize five shallow-shelf carbonate reservoirs in the Pennsylvanian (Desmoinesian) Paradox Formation and choose the best candidate for a pilot demonstration project for either a waterflood or carbon dioxide-(CO-) flood 2 project. The field demonstration, monitoring of field performance, and associated validation activities will take place in the Paradox basin within the Navajo Nation. The results of this project will be transferred to industry and other researchers through a petroleum extension service, creation of digital databases for distribution, technical workshops and seminars, field trips, technical presentations at national and regional professional meetings, and publication in newsletters and various technical or trade journals.

  15. [Dynamic enhanced recovery techniques]. Quarterly technical report, April 1994--June 1994

    SciTech Connect (OSTI)

    Anderson, R.N.

    1994-07-15T23:59:59.000Z

    Global Basins Research Network will perform a field demonstration of their ``Dynamic Enhanced Recovery Technology`` to test the concept that the growth of faults in Eugene Island Block 330 (EI-330 field) are conduits through which producing reservoirs are charged and that enhanced production can be developed by producing directly from the fault zone. The site, operated by Penzoil, is located in 250 feet of water and the productive depth intervals include 4000 to 9000 feet. The field demonstration will be accomplished by drilling and production testing of growth fault systems associated with the EI-330 field. The project utilizes advanced 3-D seismic analysis, geochemical studies, structural and stratigraphic reservoir characterization, reservoir simulation, and compact visualization systems. In this quarterly report, progress reports are presented for the following tasks: Task one--management start-up; Task two--database management; Task three--field demonstration experiment; Task four--reservoir characterization; Task five--modeling; Task six--geochemistry; and Task seven--data integration.

  16. Abstract --The growth of non-conventional renewable energies involves a new challenge for optimal network expansion. A better

    E-Print Network [OSTI]

    Catholic University of Chile (Universidad Católica de Chile)

    1 Abstract -- The growth of non-conventional renewable energies involves a new challenge and implementation of policies to develop Non-Conventional Renewable Energies (NCRE), they can be seen as a mechanism for optimal network expansion. A better integration of renewables will be allowed by determining transmission

  17. Inter American Conference on Non-Conventional Materials and Technologies in Ecological and Sustainable Construction

    E-Print Network [OSTI]

    Zornberg, Jorge G.

    draining soils for reinforced soil construction have been [2]: · Build up of pore pressure may reduceInter American Conference on Non-Conventional Materials and Technologies in Ecological and Sustainable Construction IAC-NOCMAT 2005 - Rio Rio de Janeiro - Brazil, November 11 ­ 15th, 2005 GEOSYNTHETIC

  18. Technological impact of Non-Conventional Renewable Energy in the Chilean Electricity System

    E-Print Network [OSTI]

    Catholic University of Chile (Universidad Católica de Chile)

    and determine the evolution of technological diversity variables, costs, CO2 emissions and energy injection mix), investment and operating costs, technological diversity, CO2 emissions and the injected powerTechnological impact of Non-Conventional Renewable Energy in the Chilean Electricity System Juan D

  19. Increased oil production and reserves utilizing secondary/tertiary recovery techniques on small reservoirs in the Paradox Basin, Utah, Class II

    SciTech Connect (OSTI)

    Chidsey, Thomas C.

    2000-07-28T23:59:59.000Z

    The primary objective of this project is to enhance domestic petroleum production by field demonstration and technology transfer of an advanced-oil-recovery technology in the Paradox basin, southeastern Utah. If this project can demonstrate technical and economic feasibility, the technique can be applied to approximately 100 additional small fields in the Paradox basin alone, and result in increased recovery of 150 to 200 million barrels (23,850,000-31,800,000 m{sup 3}) of oil. This project is designed to characterize five shallow-shelf carbonate reservoirs in the Pennsylvanian (Desmoinesian) Paradox Formation and choose the best candidate for a pilot demonstration project for either a waterflood or carbon-dioxide-miscible flood project. The field demonstration, monitoring of field performance, and associated validation activities will take place within the Navajo Nation, San Juan County, Utah.

  20. Survey and assessment of the effects of nonconventional gases on gas distribution equipment

    SciTech Connect (OSTI)

    Jasionowski, W.J.; Scott, M.I.; Gracey, W.C.

    1982-10-01T23:59:59.000Z

    A literature search and a survey of the gas industry were conducted to assess potential problems in the distribution of nonconventional gases. Available literature did not uncover data that would describe potential problems or substantiate the presence of harmful trace elements in final gas compositions produced from various SNG processes. Information from the survey indicates that some companies have encountered problems with nonconventional gases and extraneous additives such as landfill gas, refinery off-gases, oil gas, carbureted water gas, coke-oven gas, propane-air, and compressor lubricant oils. These nonconventional gases and compressor oils may 1) cause pipeline corrosion, 2) degrade some elastomeric materials and greases and affect the integrity of seals, gaskets, O-rings, and meter and regulator diaphragms, and 3) cause operational and safety problems. The survey indicated that 62% of the responding companies plan to use supplemental gas, with most planning on more than one type. Distribution companies intend to significantly increase their use of polyethylene piping from 11.6% in 1980 to 22.4% in 2000 for gas mains and from 33.4% to 50.3% in 2000 for gas service lines.

  1. Augmenting a Microbial Selective Plugging Technique with Polymer Flooding to Increase the Efficiency of Oil Recovery - A Search for Synergy

    SciTech Connect (OSTI)

    Brown, Lewis R.; Pittman Jr., Charles U.; Lynch, F. Leo; Vadie, A. Alex; French, W. Todd

    2003-02-10T23:59:59.000Z

    The objective of this project was to determine if the effectiveness of a microbial permeability profile modification technique can be improved through polymer flooding.

  2. Environmentally-assisted technique for transferring devices onto non-conventional substrates

    DOE Patents [OSTI]

    Lee, Chi-Hwan; Kim, Dong Rip; Zheng, Xiaolin

    2014-08-26T23:59:59.000Z

    A device fabrication method includes: (1) providing a growth substrate including a base and an oxide layer disposed over the base; (2) forming a metal layer over the oxide layer; (3) forming a stack of device layers over the metal layer; (4) performing interfacial debonding of the metal layer to separate the stack of device layers and the metal layer from the growth substrate; and (5) affixing the stack of device layers to a target substrate.

  3. INCREASED OIL PRODUCTION AND RESERVES UTILIZING SECONDARY/TERTIARY RECOVERY TECHNIQUES ON SMALL RESERVOIRS IN THE PARADOX BASIN, UTAH

    SciTech Connect (OSTI)

    Thomas C. Chidsey, Jr.

    2002-11-01T23:59:59.000Z

    The Paradox Basin of Utah, Colorado, and Arizona contains nearly 100 small oil fields producing from shallow-shelf carbonate buildups or mounds within the Desert Creek zone of the Pennsylvanian (Desmoinesian) Paradox Formation. These fields typically have one to four wells with primary production ranging from 700,000 to 2,000,000 barrels (111,300-318,000 m{sup 3}) of oil per field at a 15 to 20 percent recovery rate. Five fields in southeastern Utah were evaluated for waterflood or carbon-dioxide (CO{sub 2})-miscible flood projects based upon geological characterization and reservoir modeling. Geological characterization on a local scale focused on reservoir heterogeneity, quality, and lateral continuity as well as possible compartmentalization within each of the five project fields. The Desert Creek zone includes three generalized facies belts: (1) open-marine, (2) shallow-shelf and shelf-margin, and (3) intra-shelf, salinity-restricted facies. These deposits have modern analogs near the coasts of the Bahamas, Florida, and Australia, respectively, and outcrop analogs along the San Juan River of southeastern Utah. The analogs display reservoir heterogeneity, flow barriers and baffles, and lithofacies geometry observed in the fields; thus, these properties were incorporated in the reservoir simulation models. Productive carbonate buildups consist of three types: (1) phylloid algal, (2) coralline algal, and (3) bryozoan. Phylloid-algal buildups have a mound-core interval and a supra-mound interval. Hydrocarbons are stratigraphically trapped in porous and permeable lithotypes within the mound-core intervals of the lower part of the buildups and the more heterogeneous supramound intervals. To adequately represent the observed spatial heterogeneities in reservoir properties, the phylloid-algal bafflestones of the mound-core interval and the dolomites of the overlying supra-mound interval were subdivided into ten architecturally distinct lithotypes, each of which exhibits a characteristic set of reservoir properties obtained from outcrop analogs, cores, and geophysical logs. The Anasazi and Runway fields were selected for geostatistical modeling and reservoir compositional simulations. Models and simulations incorporated variations in carbonate lithotypes, porosity, and permeability to accurately predict reservoir responses. History matches tied previous production and reservoir pressure histories so that future reservoir performances could be confidently predicted. The simulation studies showed that despite most of the production being from the mound-core intervals, there were no corresponding decreases in the oil in place in these intervals. This behavior indicates gravity drainage of oil from the supra-mound intervals into the lower mound-core intervals from which the producing wells' major share of production arises. The key to increasing ultimate recovery from these fields (and similar fields in the basin) is to design either waterflood or CO{sub 2}-miscible flood projects capable of forcing oil from high-storage-capacity but low-recovery supra-mound units into the high-recovery mound-core units. Simulation of Anasazi field shows that a CO{sub 2} flood is technically superior to a waterflood and economically feasible. For Anasazi field, an optimized CO{sub 2} flood is predicted to recover a total 4.21 million barrels (0.67 million m3) of oil representing in excess of 89 percent of the original oil in place. For Runway field, the best CO{sub 2} flood is predicted to recover a total of 2.4 million barrels (0.38 million m3) of oil representing 71 percent of the original oil in place. If the CO{sub 2} flood performed as predicted, it is a financially robust process for increasing the reserves in the many small fields in the Paradox Basin. The results can be applied to other fields in the Rocky Mountain region, the Michigan and Illinois Basins, and the Midcontinent.

  4. An investigation of wind loads on conventional and nonconventional highway signs

    E-Print Network [OSTI]

    Ross, Hayes Ellis

    1967-01-01T23:59:59.000Z

    ) With the flanged connection at the base of the tubular support the sign could be rotated. in 22. 5-degree increments allowing for a semi-controlled environment. (d) The wind loads on a sign with a single tubular support are believed to be of the same order...AN INVESTIGATION OF WIND LOADS ON CONVENTIONAL AND NONCONVENTIONAL HIGHWAY SIGNS A Thesis By Hayes Ellis Ross, Jr. Submitted to the Graduate College of the Texas A&M University in partial fulfillment of the requirements for the degree...

  5. Protein folding and non-conventional drug design: a primer for nuclear structure physicists

    SciTech Connect (OSTI)

    Broglia, R.A. [Dipartimento di Fisica, Universita di Milano, Via Celoria 16, I-20133 Milan (Italy); INFN, Sezione di Milano, Via Celoria 16, I-20133 Milan (Italy); Niels Bohr Institute, University of Copenhagen, 2100 Copenhagen (Denmark); Tiana, G.; Provasi, D. [Dipartimento di Fisica, Universita di Milano, Via Celoria 16, I-20133 Milan (Italy); INFN, Sezione di Milano, Via Celoria 16, I-20133 Milan (Italy)

    2004-02-27T23:59:59.000Z

    Some of the paradigms emerging from the study of the phenomena of phase transitions in finite many-body systems, like e.g. the atomic nucleus can be used at profit to solve the protein folding problem within the framework of simple (although not oversimplified) models. From this solution a paradigm emerges for the design of non-conventional drugs, which inhibit enzymatic action without inducing resistance (mutations). The application of these concepts to the design of an inhibitor to the HIV-protease central in the life cycle of the HIV virus is discussed.

  6. Increased oil production and reserves utilizing secondary/tertiary recovery techniques on small reservoirs in the Paradox basin, Utah. Technical progress report, January 1, 1995--March 31, 1995

    SciTech Connect (OSTI)

    Allison, M.L.

    1995-05-30T23:59:59.000Z

    The primary objective of this project is to enhance domestic petroleum production by demonstration and technology transfer of an advanced oil recovery technology in the Paradox basin, southeastern Utah. If this project can demonstrate technical and economic feasibility, the technique can be applied to approximately 100 additional small fields in the Paradox basin alone, and result in increased recovery of 150 to 200 million barrels of oil. This project is designed to characterize five shallow-shelf carbonate reservoirs in the Pennsylvanian Paradox Formation and choose the best candidate for a pilot demonstration project for either a waterflood or carbon dioxide-flood project. The field demonstration, monitoring of field performance, and associated validation activities will take place in the Paradox basin within the Navajo Nation. The results of this project will be transferred to industry and other researchers through a petroleum extension service, creation of digital databases for distribution, technical workshops and seminars, field trips, technical presentations at national and regional professional meetings, and publication in newsletters and various technical or trade journals.

  7. Flash Steam Recovery Project 

    E-Print Network [OSTI]

    Bronhold, C. J.

    2000-01-01T23:59:59.000Z

    /condensate recovery system, resulting in condensate flash steam losses to the atmosphere. Using computer simulation models and pinch analysis techniques, the Operational Excellence Group (Six Sigma) was able to identify a project to recover the flash steam losses as a...

  8. Recovery Boiler Modeling 

    E-Print Network [OSTI]

    Abdullah, Z.; Salcudean, M.; Nowak, P.

    1994-01-01T23:59:59.000Z

    Preliminary computations of the cold flow in a simplified geometry of a recovery boiler are presented. The computations have been carried out using a new code containing multigrid methods and segmentation techniques. This approach is shown...

  9. Recovery Boiler Modeling

    E-Print Network [OSTI]

    Abdullah, Z.; Salcudean, M.; Nowak, P.

    Preliminary computations of the cold flow in a simplified geometry of a recovery boiler are presented. The computations have been carried out using a new code containing multigrid methods and segmentation techniques. This approach is shown...

  10. Improved techniques for fluid diversion in oil recovery. Second annual report, October 1, 1993--September 30, 1994

    SciTech Connect (OSTI)

    Seright, R.S.

    1995-03-01T23:59:59.000Z

    This project is directed at reducing water production and increasing oil recovery efficiency. Today, the cost of water disposal is typically between $0.25 and $0.50 per bbl. Therefore, there is a tremendous economic incentive to reduce water production if that can be accomplished without sacrificing hydrocarbon production. Environmental considerations also provide a significant incentive to reduce water production during oilfield operations. This three-year project has two technical objectives. The first objective is to compare the effectiveness of gels in fluid diversion (water shutoff) with those of other types of processes. Several different types of fluid-diversion processes are being compared, including those using gels, foams, emulsions, and particulates. The ultimate goals of these comparisons are to (1) establish which of these processes are most effective in a given application and (2) determine whether aspects of one process can be combined with those of other processes to improve performance. Analyses and experiments are being performed to verify which materials are the most effective in entering and blocking high-permeability zones. The second objective of the project is to identify the mechanisms by which materials (particularly gels) selectively reduce permeability to water more than to oil. Topics covered in this report include (1) comparisons of the use of gels, foams, emulsions, and particulates as blocking agents; (2) propagation of aluminum-citrate-HPAM gels through porous rock; (3) gel properties in fractured systems; (4) gel placement in unfractured anisotropic flow systems; and (5) an investigation of why some gels can reduce water permeability more than oil permeability.

  11. ENI Renewable and Non-conventional Energy Prize 2012 High-efficiency solar cells based on nanophotonic design

    E-Print Network [OSTI]

    Polman, Albert

    new solar cell designs that enable both a higher photovoltaic conversion efficiency and reduced) Photonic design principles for ultrahigh-efficiency photovoltaics, A. Polman and H.A. Atwater, Nature MaterENI Renewable and Non-conventional Energy Prize 2012 High-efficiency solar cells based

  12. Recovery Act

    Broader source: Energy.gov [DOE]

    Recovery Act and Energy Department programs were designed to stimulate the economy while creating new power sources, conserving resources and aligning the nation to once again lead the global energy economy.

  13. Recovery Act: State Assistance for Recovery Act Related Electricity...

    Energy Savers [EERE]

    Information Center Recovery Act Recovery Act: State Assistance for Recovery Act Related Electricity Policies Recovery Act: State Assistance for Recovery Act Related...

  14. Increased oil production and reserves utilizing secondary/tertiary recovery techniques on small reservoirs in the Paradox basin, Utah. Annual report

    SciTech Connect (OSTI)

    Chidsey, T.C. Jr.

    1997-02-01T23:59:59.000Z

    The Paradox basin of Utah, Colorado, and Arizona contains nearly 100 small oil fields producing from carbonate buildups or mounds within the Pennsylvanian (Desmoinesian) Paradox Formation. These fields typically have one to four wells with primary production ranging from 700,000 to 2,000,000 barrels of oil per field at a 15 to 20% recovery rate. At least 200 million barrels of oil is at risk of being unrecovered in these small fields because of inefficient recovery practices and undrained heterogeneous reservoirs. Five fields (Anasazi, mule, Blue Hogan, heron North, and Runway) within the Navajo Nation of southeastern utah are being evaluated for waterflood or carbon-dioxide-miscible flood projects based upon geological characterization and reservoir modeling. The results can be applied to other fields in the Paradox basin and the Rocky Mountain region, the Michigan and Illinois basins, and the Midcontinent. The reservoir engineering component of the work completed to date included analysis of production data and well tests, comprehensive laboratory programs, and preliminary mechanistic reservoir simulation studies. A comprehensive fluid property characterization program was completed. Mechanistic reservoir production performance simulation studies were also completed.

  15. Industrial Waste Heat Recovery

    E-Print Network [OSTI]

    Ward, M. E.; Solomon, N. G.; Tabb, E. S.

    1980-01-01T23:59:59.000Z

    INDUSTRIAL WASTE HEAT RECOVREY M. E. Ward and N. G. Solomon E. S. Tabb Solar Turbines International and Gas Research Institute San Diego, California Chicago, Illinois ABSTRACT i I One hundred fifty reports were reviewed along with interviews... tests, promising low temperature heat exchanger tube alloys and coated surfaces were identified. 1INTROUCTION of advanced technology heat recovery techniques 1_ Recovering waste heat from the flue gases of the pr~ary objective. Specific objectives...

  16. Increased oil production and reserves utilizing secondary/tertiary recovery techniques on small reservoirs in the Paradox basin, Utah. Annual report, February 9, 1996--February 8, 1997

    SciTech Connect (OSTI)

    Chidsey, T.C. Jr.

    1997-08-01T23:59:59.000Z

    The Paradox basin of Utah, Colorado, and Arizona contains nearly 100 small oil fields producing from carbonate buildups or mounds within the Pennsylvanian (Desmoinesian) Paradox Formation. These fields typically have one to four wells with primary production ranging from 700,000 to 2,000,000 barrels of oil per field at a 15 to 20% recovery rate. At least 200 million barrels of oil is at risk of being unrecovered in these small fields because of inefficient recovery practices and undrained heterogeneous reservoirs. Five fields (Anasazi, Mule, Blue Hogan, Heron North, and Runway) within the Navajo Nation of southeastern Utah are being evaluated for waterflood or carbon-dioxide-miscible flood projects based upon geological characterization and reservoir modeling. The results can be applied to other fields in the Paradox basin and the Rocky Mountain region, the Michigan and Illinois basins, and the Midcontinent. The Anasazi field was selected for the initial geostatistical modeling and reservoir simulation. A compositional simulation approach is being used to model primary depletion, waterflood, and CO{sub 2}-flood processes. During this second year of the project, team members performed the following reservoir-engineering analysis of Anasazi field: (1) relative permeability measurements of the supra-mound and mound-core intervals, (2) completion of geologic model development of the Anasazi reservoir units for use in reservoir simulation studies including completion of a series of one-dimensional, carbon dioxide-displacement simulations to analyze the carbon dioxide-displacement mechanism that could operate in the Paradox basin system of reservoirs, and (3) completion of the first phase of the full-field, three-dimensional Anasazi reservoir simulation model, and the start of the history matching and reservoir performance prediction phase of the simulation study.

  17. Use of geostatistic techniques to describe a reservoir to be submitted into a secondary recovery process field case: {open_quotes}Eocene B-Inferior/VLG-3659, Ceuta, Venezuela{close_quotes}

    SciTech Connect (OSTI)

    Hernandez, T.; Poquioma, W. [Maraven, S.A., Caracas (Venezuela)

    1997-08-01T23:59:59.000Z

    This study presents the results of an integrated reservoir study of the Eocene B-Inferior/VLG-3659, Area 7, Ceuta filed. This field located in the Maracaibo Lake in the western side of Venezuela. The objective was to evaluating the feasibility to implement a secondary recovery project by means of water flooding. Core information was used for this study (194 ft), PVT analysis, RFI, build-up and statistic`s pressure analysis, modem logs and production history data. Using geostatistical techniques (Kriging) it was defined a low uncertainty geological model that was validated by means of a black oil simulator (Eclipse). The results showed a good comparison of historical pressure of the reservoir against those obtained from the model, without the need of {open_quotes}history matching{close_quotes}. It means without modifying neither the initial rock properties nor reservoir fluids. The results of this study recommended drilling in two new locations, also the reactivation of four producing wells and water flooding under peripherical array by means of four injection wells, with the recovery of an additional 30.2 MMSTB. The economical evaluation shows an internal return rate of 31.4%.

  18. Keywordscondensation tube, surface modification, waste heat and condensation water recovery system

    E-Print Network [OSTI]

    Leu, Tzong-Shyng "Jeremy"

    Keywordscondensation tube, surface modification, waste heat and condensation water recovery techniques is waste heat and condensation water recovery system. Waste heat and condensation water recovery system is one of the most important facilities in power plants. High efficiency waste heat

  19. Power Recovery

    E-Print Network [OSTI]

    Murray, F.

    , will be the use of the ASTM Theoretical Steam Rate Tables. In addition, the author's experience regarding the minimum size for power recovery units that are economic in a Culf Coast plant will be presented. INTROD\\Jr.'rION When surveying an operation... will be discussed in detail. Each term in the equation will be considered in English units. Secondly, the use of Mollier diagrams to estimate the enthalphy change between the initial and final conditions will be considered. The last method, specific to steam...

  20. The New Generation of Uranium In Situ Recovery Facilities: Design Improvements Should Reduce Radiological Impacts Relative to First Generation Uranium Solution Mining Plants

    SciTech Connect (OSTI)

    Brown, S.H. [CHP, SHB INC., Centennial, Colorado (United States)

    2008-07-01T23:59:59.000Z

    In the last few years, there has been a significant increase in the demand for Uranium as historical inventories have been consumed and new reactor orders are being placed. Numerous mineralized properties around the world are being evaluated for Uranium recovery and new mining / milling projects are being evaluated and developed. Ore bodies which are considered uneconomical to mine by conventional methods such as tunneling or open pits, can be candidates for non-conventional recovery techniques, involving considerably less capital expenditure. Technologies such as Uranium In Situ Leaching / In Situ Recovery (ISL / ISR - also referred to as 'solution mining'), have enabled commercial scale mining and milling of relatively small ore pockets of lower grade, and are expected to make a significant contribution to overall world wide uranium supplies over the next ten years. Commercial size solution mining production facilities have operated in the US since the mid 1970's. However, current designs are expected to result in less radiological wastes and emissions relative to these 'first' generation plants (which were designed, constructed and operated through the 1980's). These early designs typically used alkaline leach chemistries in situ including use of ammonium carbonate which resulted in groundwater restoration challenges, open to air recovery vessels and high temperature calcining systems for final product drying vs the 'zero emissions' vacuum dryers as typically used today. Improved containment, automation and instrumentation control and use of vacuum dryers in the design of current generation plants are expected to reduce production of secondary waste byproduct material, reduce Radon emissions and reduce potential for employee exposure to uranium concentrate aerosols at the back end of the milling process. In Situ Recovery in the U.S. typically involves the circulation of groundwater, fortified with oxidizing (gaseous oxygen e.g) and complexing agents (carbon dioxide, e.g) into an ore body, solubilizing the uranium in situ, and then pumping the solutions to the surface where they are fed to a processing plant ( mill). Processing involves ion exchange and may also include precipitation, drying or calcining and packaging operations depending on facility specifics. This paper presents an overview of the ISR process and the health physics monitoring programs developed at a number of commercial scale ISL / ISR Uranium recovery and production facilities as a result of the radiological character of these processes. Although many radiological aspects of the process are similar to that of conventional mills, conventional-type tailings as such are not generated. However, liquid and solid byproduct materials may be generated and impounded. The quantity and radiological character of these by products are related to facility specifics. Some special monitoring considerations are presented which are required due to the manner in which radon gas is evolved in the process and the unique aspects of controlling solution flow patterns underground. The radiological character of these processes are described using empirical data collected from many operating facilities. Additionally, the major aspects of the health physics and radiation protection programs that were developed at these first generation facilities are discussed and contrasted to circumstances of the current generation and state of the art of uranium ISR technologies and facilities. In summary: This paper has presented an overview of in situ Uranium recovery processes and associated major radiological aspects and monitoring considerations. Admittedly, the purpose was to present an overview of those special health physics considerations dictated by the in situ Uranium recovery technology, to point out similarities and differences to conventional mill programs and to contrast these alkaline leach facilities to modern day ISR designs. As evidenced by the large number of ISR projects currently under development in the U.S. and worldwide, non conventional Uranium recovery techniques

  1. Shock recovery experiments: An assessment

    SciTech Connect (OSTI)

    Gray, G.T. III

    1989-01-01T23:59:59.000Z

    Systematic shock recovery experiments, in which microstructural and mechanical property effects are characterized quantitatively, constitute an important means of increasing our understanding of shock processes. Through studies of the effects of variations in metallurgical and shock loading parameters on structure/property relationships, the micromechanisms of shock deformation, and how they differ from conventional strain rate processes, are beginning to emerge. This paper will highlight the state-of-the-art in shock recovery of metallic and ceramic materials. Techniques will be described which are utilized to ''soft'' recover shock-loaded metallic samples possessing low residual strain; crucial to accurate ''post-mortem'' metallurgical investigations of the influence of shock loading on material behavior. Illustrations of the influence of shock assembly design on the structure/property relationships in shock-recovered copper samples including such issues as residual strain and contact stresses, and their consequences are discussed. Shock recovery techniques used on brittle materials will be reviewed and discussed in light of recent experimental results. Finally, shock recovery structure/property results and VISAR data on the /alpha/--/omega/ shock-induced phase transition in titanium will be used to illustrate the beneficial link between shock recovery and ''real-time'' shock data. 26 refs., 3 figs.

  2. Definition of Non-Conventional Sulfur Utilization in Western Kazakhstan for Sulfur Concrete (Phase 1)

    SciTech Connect (OSTI)

    Kalb, Paul

    2007-05-31T23:59:59.000Z

    Battelle received a contract from Agip-KCO, on behalf a consortium of international oil and gas companies with exploration rights in the North Caspian Sea, Kazakhstan. The objective of the work was to identify and help develop new techniques for sulfur concrete products from waste, by-product sulfur that will be generated in large quantitites as drilling operations begin in the near future. BNL has significant expertise in the development and use of sulfur concrete products and has direct experience collaborating with the Russian and Kazakh partners that participated. Feasibility testing was successfully conducted for a new process to produce cost-effective sulfur polymer cement that has broad commerical applications.

  3. Mass and Heat Recovery

    E-Print Network [OSTI]

    Hindawai, S. M.

    2010-01-01T23:59:59.000Z

    - 1 - MASS AND HEAT RECOVERY SYSTEM SALAH MAHMOUD HINDAWI DIRECTOR HINDAWI FOR ENGINEERING SERVICES & CONTRACTING NEW DAMIETTA , EGYPT ABSTRACT : In the last few years heat recovery was under spot . and in air conditioning fields... ) as a heat recovery . and I use the water as a mass recovery . The source of mass and heat recovery is the condensate water which we were dispose and connect it to the drain lines . THE BENEFIT OF THIS SYSTEM ARE : 1) Using the heat energy from...

  4. Waste Steam Recovery

    E-Print Network [OSTI]

    Kleinfeld, J. M.

    1979-01-01T23:59:59.000Z

    .15 Jet Ejector - 165 p~ia Saturated Motive (965 psia/925?F) JO 2].22 2].]0 23.35 35 23. 22 23.]0 23.35 45 23.22 23.]0 23.35 ($2.l2/MM Btu fuel, 85% boiler efficiency,) 55 23.22 23.30 2].]5 ., 23. 22 23. )0 2].35 80 23. 22 23. JO 23. ]5 1243... technique, and the costs of fuel and electrical power. If turbine flows are unaffected so that no by-product power generation is lost, direct exchange to process and jet ejector compression will always yield an energy profit. Recovery via mechanical...

  5. Recovery Act State Summaries | Department of Energy

    Energy Savers [EERE]

    Act State Memo Virgin Islands Recovery Act State Memo Washington Recovery Act State Memo West Virginia Recovery Act State Memo Wisconsin Recovery Act State Memo Wyoming Recovery...

  6. Recovery News Flashes

    Broader source: Energy.gov (indexed) [DOE]

    SRS Recovery Act Prepares to Complete Shipment of More Than 5,000 Cubic Meters of Nuclear Waste to WIPP http:energy.govemdownloadstru-success-srs-recovery-act-prepares...

  7. Recovery Act Milestones

    ScienceCinema (OSTI)

    Rogers, Matt

    2013-05-29T23:59:59.000Z

    Every 100 days, the Department of Energy is held accountable for a progress report on the American Recovery and Reinvestment Act. Update at 200 days, hosted by Matt Rogers, Senior Advisor to Secretary Steven Chu for Recovery Act Implementation.

  8. Locating Heat Recovery Opportunities 

    E-Print Network [OSTI]

    Waterland, A. F.

    1981-01-01T23:59:59.000Z

    Basic concepts of heat recovery are defined as they apply to the industrial community. Methods for locating, ranking, and developing heat recovery opportunities are presented and explained. The needs for useful heat 'sinks' are emphasized as equal...

  9. Locating Heat Recovery Opportunities

    E-Print Network [OSTI]

    Waterland, A. F.

    1981-01-01T23:59:59.000Z

    Basic concepts of heat recovery are defined as they apply to the industrial community. Methods for locating, ranking, and developing heat recovery opportunities are presented and explained. The needs for useful heat 'sinks' are emphasized as equal...

  10. From the hills to the mountain. [Oil recovery in California

    SciTech Connect (OSTI)

    McDonald, J.

    1980-05-01T23:59:59.000Z

    The oil reserves at Elk Hills field, California, are listed as amounting to 835 million bbl. There is 12 times that amount lying in shallow sands in the San Joaquin Valley, although the oil is much heavier and requires more refining before use. Improved recovery techniques have enabled higher rates of recovery for heavy oil than in the past. Some of these techniques are described, including bottom-hole heating, steam injection, and oil mining. Bottom-hole heating alone raised recovery rates for heavy oil to 25%, and steam injection raised rates to 50%. It is predicted that oil mining may be able to accomplish 100% recovery of the heavy oil.

  11. Battleground Energy Recovery Project

    SciTech Connect (OSTI)

    Daniel Bullock

    2011-12-31T23:59:59.000Z

    In October 2009, the project partners began a 36-month effort to develop an innovative, commercial-scale demonstration project incorporating state-of-the-art waste heat recovery technology at Clean Harbors, Inc., a large hazardous waste incinerator site located in Deer Park, Texas. With financial support provided by the U.S. Department of Energy, the Battleground Energy Recovery Project was launched to advance waste heat recovery solutions into the hazardous waste incineration market, an area that has seen little adoption of heat recovery in the United States. The goal of the project was to accelerate the use of energy-efficient, waste heat recovery technology as an alternative means to produce steam for industrial processes. The project had three main engineering and business objectives: Prove Feasibility of Waste Heat Recovery Technology at a Hazardous Waste Incinerator Complex; Provide Low-cost Steam to a Major Polypropylene Plant Using Waste Heat; and ï?· Create a Showcase Waste Heat Recovery Demonstration Project.

  12. Aerobic enhanced oil recovery: analysis of the mechanisms and a pilot study

    E-Print Network [OSTI]

    Eide, Karen

    1998-01-01T23:59:59.000Z

    The technique that uses microorganisms to improve oil production in petroleum reservoirs is known as microbial enhanced oil recovery (MEOR). Aerobic microbial enhanced oil recovery is a method which is based on stimulating indigenous oil degrading...

  13. Recovery Act Project Stories

    Broader source: Energy.gov [DOE]

    Funded by the American Recovery and Reinvestment Act, these Federal Energy Management Program (FEMP) projects exemplify the range of technical assistance provided to federal agencies.

  14. Waste Heat Recovery

    Office of Environmental Management (EM)

    DRAFT - PRE-DECISIONAL - DRAFT 1 Waste Heat Recovery 1 Technology Assessment 2 Contents 3 1. Introduction to the TechnologySystem ......

  15. Small Business Administration Recovery Act Implementation | Department...

    Broader source: Energy.gov (indexed) [DOE]

    Small Business Administration Recovery Act Implementation Small Business Administration Recovery Act Implementation Small Business Administration Recovery Act Implementation Small...

  16. Recovery Boiler Corrosion Chemistry

    E-Print Network [OSTI]

    Das, Suman

    11/13/2014 1 Recovery Boiler Corrosion Chemistry Sandy Sharp and Honghi Tran Symposium on Corrosion of a recovery boiler each cause their own forms of corrosion and cracking Understanding the origin of the corrosive conditions enables us to operate a boiler so as to minimize corrosion and cracking select

  17. Mass and Heat Recovery 

    E-Print Network [OSTI]

    Hindawai, S. M.

    2010-01-01T23:59:59.000Z

    In the last few years heat recovery was under spot and in air conditioning fields usually we use heat recovery by different types of heat exchangers. The heat exchanging between the exhaust air from the building with the fresh air to the building...

  18. Recovery Act Funds at Work

    Broader source: Energy.gov [DOE]

    Funds from the American Recovery and Reinvestment Act of 2009 (Recovery Act) are being put to work to improve safety, reliability, and service in systems across the country. Here are case studies from a variety of Recovery Act programs.

  19. Recovery Act State Memos Kentucky

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    * KENTUCKY RECOVERY ACT SNAPSHOT Kentucky has substantial natural resources, including coal, oil, gas, and hydroelectric power. The American Recovery & Reinvestment Act (ARRA)...

  20. Effect of fluid rheology on enhanced oil recovery in a microfluidic sandstone device

    E-Print Network [OSTI]

    Rothstein, Jonathan

    recovery with that secondary fluid alone. These results clearly demonstrate that the microfluidic sandstone oil in the field will have been recov- ered [1]. The secondary stage of oil recovery is characterized of the oil being recovered [1]. After primary and secondary oil recovery techniques have been exhausted

  1. Solvent recycle/recovery

    SciTech Connect (OSTI)

    Paffhausen, M.W.; Smith, D.L.; Ugaki, S.N.

    1990-09-01T23:59:59.000Z

    This report describes Phase I of the Solvent Recycle/Recovery Task of the DOE Chlorinated Solvent Substitution Program for the US Air Force by the Idaho National Engineering Laboratory, EG G Idaho, Inc., through the US Department of Energy, Idaho Operations Office. The purpose of the task is to identify and test recovery and recycling technologies for proposed substitution solvents identified by the Biodegradable Solvent Substitution Program and the Alternative Solvents/Technologies for Paint Stripping Program with the overall objective of minimizing hazardous wastes. A literature search to identify recycle/recovery technologies and initial distillation studies has been conducted. 4 refs.

  2. Recovery Act State Memos Montana

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... 5 RECOVERY ACT SUCCESS STORIES - ENERGY EMPOWERS * Green power transmission line given new life ......

  3. ARM - Recovery Act

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOnItem NotEnergy,ARMForms About Become a UsergovAboutRecovery Act Recovery Act Logo

  4. Recovery Act Recipient Data | Department of Energy

    Office of Environmental Management (EM)

    Recovery Act Recipient Data Recovery Act Recipient Data A listing of all Recovery Act recipients and their allocations. Updated weekly. recoveryactfunding.xls More Documents &...

  5. Some Thoughts on Econometric Information Recovery

    E-Print Network [OSTI]

    Judge, George G.

    2013-01-01T23:59:59.000Z

    Paper 1135 Some Thoughts on Econometric Information Recoverys). Some Thoughts on Econometric Information Recovery GeorgeTheoretic Approach To Econometric Information Recovery

  6. Challenges in Industrial Heat Recovery

    E-Print Network [OSTI]

    Dafft, T.

    2007-01-01T23:59:59.000Z

    This presentation will address several completed and working projects involving waste heat recovery in a chemical plant. Specific examples will be shown and some of the challenges to successful implementation and operation of heat recovery projects...

  7. Sparse recovery and Fourier sampling

    E-Print Network [OSTI]

    Price, Eric C

    2013-01-01T23:59:59.000Z

    In the last decade a broad literature has arisen studying sparse recovery, the estimation of sparse vectors from low dimensional linear projections. Sparse recovery has a wide variety of applications such as streaming ...

  8. Challenges in Industrial Heat Recovery 

    E-Print Network [OSTI]

    Dafft, T.

    2007-01-01T23:59:59.000Z

    This presentation will address several completed and working projects involving waste heat recovery in a chemical plant. Specific examples will be shown and some of the challenges to successful implementation and operation of heat recovery projects...

  9. Recovery Act State Memos Nebraska

    Energy Savers [EERE]

    ... 6 RECOVERY ACT SUCCESS STORIES - ENERGY EMPOWERS * Biofuels company builds new facility in Nebraska ... 7 * Nebraska appliance rebate...

  10. Recovery Act State Memos Arkansas

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    6 RECOVERY ACT SUCCESS STORIES - ENERGY EMPOWERS * Program finds unique way to fund energy upgrades ... 7 * Green collar courses ......

  11. Guided wave acoustic monitoring of corrosion in recovery boiler tubing

    SciTech Connect (OSTI)

    Quarry, M J; Chinn, D J

    2004-02-19T23:59:59.000Z

    Corrosion of tubing used in black-liquor recovery boilers is a major concern in all pulp and paper mills. Extensive corrosion in recovery boiler tubes can result in a significant safety and environmental hazard. Considerable plant resources are expended to inspect recovery boiler tubing. Currently, visual and ultrasonic inspections are primarily used during the annual maintenance shutdown to monitor corrosion rates and cracking of tubing. This Department of Energy, Office of Industrial Technologies project is developing guided acoustic waves for use on recovery boiler tubing. The feature of this acoustic technique is its cost-effectiveness in inspecting long lengths of tubes from a single inspection point. A piezoelectric or electromagnetic transducer induces guided waves into the tubes. The transducer detects fireside defects from the coldside or fireside of the tube. Cracking and thinning on recovery boiler tubes have been detected with this technique in both laboratory and field applications. This technique appears very promising for recovery boiler tube application, potentially expediting annual inspection of tube integrity.

  12. Incorporating Energy Efficiency into Disaster Recovery Efforts...

    Energy Savers [EERE]

    Incorporating Energy Efficiency into Disaster Recovery Efforts Incorporating Energy Efficiency into Disaster Recovery Efforts Better Buildings Residential Network Program...

  13. Waste Heat Recovery Opportunities for Thermoelectric Generators...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Waste Heat Recovery Opportunities for Thermoelectric Generators Waste Heat Recovery Opportunities for Thermoelectric Generators Thermoelectrics have unique advantages for...

  14. Elemental sulfur recovery process

    DOE Patents [OSTI]

    Flytzani-Stephanopoulos, M.; Zhicheng Hu.

    1993-09-07T23:59:59.000Z

    An improved catalytic reduction process for the direct recovery of elemental sulfur from various SO[sub 2]-containing industrial gas streams. The catalytic process provides combined high activity and selectivity for the reduction of SO[sub 2] to elemental sulfur product with carbon monoxide or other reducing gases. The reaction of sulfur dioxide and reducing gas takes place over certain catalyst formulations based on cerium oxide. The process is a single-stage, catalytic sulfur recovery process in conjunction with regenerators, such as those used in dry, regenerative flue gas desulfurization or other processes, involving direct reduction of the SO[sub 2] in the regenerator off gas stream to elemental sulfur in the presence of a catalyst. 4 figures.

  15. Evaluation of enhanced recovery operations in Smackover fields of southwest Alabama. Draft topical report on Subtasks 5 and 6

    SciTech Connect (OSTI)

    Hall, D.R.

    1992-06-01T23:59:59.000Z

    This report contains detailed geologic and engineering information on enhanced-recovery techniques used in unitized Smackover fields in Alabama. The report also makes recommendations on the applicability of these enhanced-recovery techniques to fields that are not now undergoing enhanced recovery. Eleven Smackover fields in Alabama have been unitized. Three fields were unitized specifically to allow the drilling of a strategically placed well to recover uncontacted oil. Two fields in Alabama are undergoing waterflood projects. Five fields are undergoing gas-injection programs to increase the ultimate recovery of hydrocarbons. Silas and Choctaw Ridge fields were unitized but no enhanced-recovery operations have been implemented.

  16. Recovery Act Open House

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's PossibleRadiation Protection RadiationRecord-Setting Microscopy IlluminatesHandbookRODs Recovery

  17. An investigation of the effect of ammonia and amines on the recovery of oil

    E-Print Network [OSTI]

    Richardson, James Malone

    1958-01-01T23:59:59.000Z

    und/or techniques which will afford these desired results. The present work is an effort in this direction. Essentially all efforts to increase oil recovery by reducing the oil-retaining forces in the reservoir have iavclved waterflood ing... of Oil by Air' Drive with Amines ~ ~ ~ ~ e ~ o a e e 29 10. Comparison of Recovery by Air Drive with and Without Amines ~ aao ~ ~ ~ ~ e ~ ~ ~ o ~ ~ ~ ~ ~ ~ ~ ~ ~ o aors 31 11. Recovery oi' Oil by Waterflooding Following Air Drives. ~ ~ ~ ~ 0...

  18. Recovery of organic acids

    DOE Patents [OSTI]

    Verser, Dan W. (Menlo Park, CA); Eggeman, Timothy J. (Lakewood, CO)

    2011-11-01T23:59:59.000Z

    A method is disclosed for the recovery of an organic acid from a dilute salt solution in which the cation of the salt forms an insoluble carbonate salt. A tertiary amine and CO.sub.2 are introduced to the solution to form the insoluble carbonate salt and a complex between the acid and an amine. A water immiscible solvent, such as an alcohol, is added to extract the acid/amine complex from the dilute salt solution to a reaction phase. The reaction phase is continuously dried and a product between the acid and the solvent, such as an ester, is formed.

  19. Recovery of organic acids

    DOE Patents [OSTI]

    Verser, Dan W. (Golden, CO); Eggeman, Timothy J. (Lakewood, CO)

    2009-10-13T23:59:59.000Z

    A method is disclosed for the recovery of an organic acid from a dilute salt solution in which the cation of the salt forms an insoluble carbonate salt. A tertiary amine and CO.sub.2 are introduced to the solution to form the insoluble carbonate salt and a complex between the acid and an amine. A water immiscible solvent, such as an alcohol, is added to extract the acid/amine complex from the dilute salt solution to a reaction phase. The reaction phase is continuously dried and a product between the acid and the solvent, such as an ester, is formed.

  20. ARM - Recovery Act Instruments

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625govInstrumentstdmadap Documentation TDMADAP :ProductsVaisala CL51Instruments Related Links RHUBC-IIActRecovery Act

  1. Summary - Caustic Recovery Technology

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 1112011 Strategic2Uranium Transferon the Passing of AdmiraltheOil and Less CO2Caustic Recovery

  2. Recovery Act | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    three Recovery Act-funded Smart Grid Investment Grant (SGIG) projects. February 28, 2014 Smart Meter Investments Yield Positive Results in Maine Central Maine Power's (CMP) SGIG...

  3. Economic Recovery Loan Program (Maine)

    Broader source: Energy.gov [DOE]

    The Economic Recovery Loan Program provides subordinate financing to help businesses remain viable and improve productivity. Eligibility criteria are based on ability to repay, and the loan is...

  4. Register file soft error recovery

    DOE Patents [OSTI]

    Fleischer, Bruce M.; Fox, Thomas W.; Wait, Charles D.; Muff, Adam J.; Watson, III, Alfred T.

    2013-10-15T23:59:59.000Z

    Register file soft error recovery including a system that includes a first register file and a second register file that mirrors the first register file. The system also includes an arithmetic pipeline for receiving data read from the first register file, and error detection circuitry to detect whether the data read from the first register file includes corrupted data. The system further includes error recovery circuitry to insert an error recovery instruction into the arithmetic pipeline in response to detecting the corrupted data. The inserted error recovery instruction replaces the corrupted data in the first register file with a copy of the data from the second register file.

  5. Recovery Act State Memos Florida

    Energy Savers [EERE]

    of renewable energy. The Florida Energy and Climate Commission has awarded the Florida Solar Energy Center (FSEC) 10 million in Recovery Act money, enabling the center to set...

  6. Review of nonconventional bioreactor technology

    SciTech Connect (OSTI)

    Turick, C.E.; Mcllwain, M.E.

    1993-09-01T23:59:59.000Z

    Biotechnology will significantly affect many industrial sectors in the future. Industrial sectors that will be affected include pharmaceutical, chemical, fuel, agricultural, and environmental remediation. Future research is needed to improve bioprocessing efficiency and cost-effectiveness in order to compete with traditional technologies. This report describes recent advances in bioprocess technologies and bioreactor designs and relates them to problems encountered in many industrial bioprocessing operations. The primary focus is directed towards increasing gas and vapor transfer for enhanced bioprocess kinetics as well as unproved by-product separation and removal. The advantages and disadvantages of various conceptual designs such as hollow-fiber, gas-phase, hyperbaric/hypobaric, and electrochemical bioreactors are also discussed. Specific applications that are intended for improved bioprocesses include coal desulfurization, coal liquefaction, soil bioremediation, biomass conversion to marketable chemicals, biomining, and biohydrometallurgy as well as bioprocessing of gases and vapors.

  7. Architectural Support for Automated Software Attack Detection, Recovery, and Prevention

    E-Print Network [OSTI]

    Zambreno, Joseph A.

    Architectural Support for Automated Software Attack Detection, Recovery, and Prevention Jesse University Ames, IA 50011, USA Email: {jsathre, abaumgar, zambreno}@iastate.edu Abstract--Attacks on software systems architecture aimed at attack detection. Traditional techniques ignore the arguably more important

  8. ON THE RECOVERY OF TRANSPORT PARAMETERS IN GROUNDWATER MODELLING

    E-Print Network [OSTI]

    Knowles, Ian W.

    ON THE RECOVERY OF TRANSPORT PARAMETERS IN GROUNDWATER MODELLING IAN KNOWLES AND AIMIN YAN. Introduction Saturated flow and single phase solute transport in confined ground- water systems are modelled one has to resort to indirect, or inverse, techniques to populate the model. In a groundwater system

  9. ON THE RECOVERY OF TRANSPORT PARAMETERS IN GROUNDWATER MODELLING

    E-Print Network [OSTI]

    Knowles, Ian W.

    ON THE RECOVERY OF TRANSPORT PARAMETERS IN GROUNDWATER MODELLING IAN KNOWLES AND AIMIN YAN. Introduction Saturated flow and single phase solute transport in confined ground­ water systems are modelled to resort to indirect, or inverse, techniques to populate the model. In a groundwater system one

  10. Metal recovery from porous materials

    DOE Patents [OSTI]

    Sturcken, E.F.

    1991-01-01T23:59:59.000Z

    The present invention relates to recovery of metals. More specifically, the present invention relates to the recovery of plutonium and other metals from porous materials using microwaves. The United States Government has rights in this invention pursuant to Contract No. DE-AC09-89SR18035 between the US Department of Energy and Westinghouse Savannah River Company.

  11. Hydraulic waste energy recovery

    SciTech Connect (OSTI)

    Lederer, C.C.; Thomas, A.H.; McGuire, J.L. (Detroit Buildings and Safety Engineering Dept., MI (USA))

    1990-12-01T23:59:59.000Z

    Water distribution systems are typically a municipality's largest consumer of energy and greatest expense. The water distribution network has varying pressure requirements due to the age of the pipeline and topographical differences. Certain circumstances require installation of pressure reducing devices in the pipeline to lower the water pressure in the system. The consequence of this action is that the hydraulic energy supplied by the high lift or booster pumps is wasted in the process of reducing the pressure. A possible solution to capture the waste hydraulic energy is to install an in-line electricity generating turbine. Energy recovery using in-line turbine systems is an emerging technology. Due to the lack of technical and other relevant information on in-line turbine system installations, questions of constructability and legal issues over the power service contract have yet to be answered. This study seeks to resolve these questions and document the findings so that other communities may utilize this information. 10 figs.

  12. Speech recovery device

    DOE Patents [OSTI]

    Frankle, Christen M.

    2004-04-20T23:59:59.000Z

    There is provided an apparatus and method for assisting speech recovery in people with inability to speak due to aphasia, apraxia or another condition with similar effect. A hollow, rigid, thin-walled tube with semi-circular or semi-elliptical cut out shapes at each open end is positioned such that one end mates with the throat/voice box area of the neck of the assistor and the other end mates with the throat/voice box area of the assisted. The speaking person (assistor) makes sounds that produce standing wave vibrations at the same frequency in the vocal cords of the assisted person. Driving the assisted person's vocal cords with the assisted person being able to hear the correct tone enables the assisted person to speak by simply amplifying the vibration of membranes in their throat.

  13. Energy recovery system

    DOE Patents [OSTI]

    Moore, Albert S. (Morgantown, WV); Verhoff, Francis H. (Morgantown, WV)

    1980-01-01T23:59:59.000Z

    The present invention is directed to an improved wet air oxidation system and method for reducing the chemical oxygen demand (COD) of waste water used from scrubbers of coal gasification plants, with this COD reduction being sufficient to effectively eliminate waste water as an environmental pollutant. The improvement of the present invention is provided by heating the air used in the oxidation process to a temperature substantially equal to the temperature in the oxidation reactor before compressing or pressurizing the air. The compression of the already hot air further heats the air which is then passed in heat exchange with gaseous products of the oxidation reaction for "superheating" the gaseous products prior to the use thereof in turbines as the driving fluid. The superheating of the gaseous products significantly minimizes condensation of gaseous products in the turbine so as to provide a substantially greater recovery of mechanical energy from the process than heretofore achieved.

  14. Enhanced oil recovery system

    DOE Patents [OSTI]

    Goldsberry, Fred L. (Spring, TX)

    1989-01-01T23:59:59.000Z

    All energy resources available from a geopressured geothermal reservoir are used for the production of pipeline quality gas using a high pressure separator/heat exchanger and a membrane separator, and recovering waste gas from both the membrane separator and a low pressure separator in tandem with the high pressure separator for use in enhanced oil recovery, or in powering a gas engine and turbine set. Liquid hydrocarbons are skimmed off the top of geothermal brine in the low pressure separator. High pressure brine from the geothermal well is used to drive a turbine/generator set before recovering waste gas in the first separator. Another turbine/generator set is provided in a supercritical binary power plant that uses propane as a working fluid in a closed cycle, and uses exhaust heat from the combustion engine and geothermal energy of the brine in the separator/heat exchanger to heat the propane.

  15. Laboratory methods for enhanced oil recovery core floods

    SciTech Connect (OSTI)

    Robertson, E.P.; Bala, G.A.; Thomas, C.P.

    1994-03-01T23:59:59.000Z

    Current research at the Idaho National Engineering Laboratory (INEL) is investigating microbially enhanced oil recovery (MEOR) systems for application to oil reservoirs. Laboratory corefloods are invaluable in developing technology necessary for a field application of MEOR. Methods used to prepare sandstone cores for experimentation, coreflooding techniques, and quantification of coreflood effluent are discussed in detail. A technique to quantify the small volumes of oil associated with laboratory core floods is described.

  16. Heat Recovery in Distillation by Mechanical Vapor Recompression

    E-Print Network [OSTI]

    Becker, F. E.; Zakak, A. I.

    tower energy requirements can be achieved by mechanical vapor recompression. Three design approaches for heating a distillation tower reboiler by mechanical vapor recompression are presented. The advantages of using a screw compressor are discussed... for lowering energy consumption in the distillation process through various heat recovery techniques. (3-8) One such technique utilizes mechanical vapor recompression. (9-12) The principle of this ap proach involves the use of a compressor to recycle...

  17. Weatherization Formula Grants - American Recovery and Reinvestment...

    Energy Savers [EERE]

    Weatherization Formula Grants - American Recovery and Reinvestment Act (ARRA) Weatherization Formula Grants - American Recovery and Reinvestment Act (ARRA) U.S. Department of...

  18. CALIFORNIA RECOVERY ACT SNAPSHOT | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    RECOVERY ACT SNAPSHOT California has substantial natural resources, including oil, gas, solar, wind, geothermal, and hydroelectric power .The American Recovery & Reinvestment...

  19. Optimize carbon dioxide sequestration, enhance oil recovery

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Optimize carbon dioxide sequestration, enhance oil recovery Optimize carbon dioxide sequestration, enhance oil recovery The simulation provides an important approach to estimate...

  20. ARKANSAS RECOVERY ACT SNAPSHOT | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ARKANSAS RECOVERY ACT SNAPSHOT Arkansas has substantial natural resources, including gas, oil, wind, biomass, and hydroelectric power. The American Recovery & Reinvestment Act...

  1. IOWA RECOVERY ACT SNAPSHOT | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    IOWA RECOVERY ACT SNAPSHOT Iowa has substantial natural resources, including wind power and is the largest ethanol producer in the United States. The American Recovery &...

  2. Wastewater heat recovery apparatus

    DOE Patents [OSTI]

    Kronberg, James W. (108 Independent Blvd., Aiken, SC 29801)

    1992-01-01T23:59:59.000Z

    A heat recovery system with a heat exchanger and a mixing valve. A drain trap includes a heat exchanger with an inner coiled tube, baffle plate, wastewater inlet, wastewater outlet, cold water inlet, and preheated water outlet. Wastewater enters the drain trap through the wastewater inlet, is slowed and spread by the baffle plate, and passes downward to the wastewater outlet. Cold water enters the inner tube through the cold water inlet and flows generally upward, taking on heat from the wastewater. This preheated water is fed to the mixing valve, which includes a flexible yoke to which are attached an adjustable steel rod, two stationary zinc rods, and a pivoting arm. The free end of the arm forms a pad which rests against a valve seat. The rods and pivoting arm expand or contract as the temperature of the incoming preheated water changes. The zinc rods expand more than the steel rod, flexing the yoke and rotating the pivoting arm. The pad moves towards the valve seat as the temperature of the preheated water rises, and away as the temperature falls, admitting a variable amount of hot water to maintain a nearly constant average process water temperature.

  3. Wastewater heat recovery apparatus

    DOE Patents [OSTI]

    Kronberg, J.W.

    1992-09-01T23:59:59.000Z

    A heat recovery system is described with a heat exchanger and a mixing valve. A drain trap includes a heat exchanger with an inner coiled tube, baffle plate, wastewater inlet, wastewater outlet, cold water inlet, and preheated water outlet. Wastewater enters the drain trap through the wastewater inlet, is slowed and spread by the baffle plate, and passes downward to the wastewater outlet. Cold water enters the inner tube through the cold water inlet and flows generally upward, taking on heat from the wastewater. This preheated water is fed to the mixing valve, which includes a flexible yoke to which are attached an adjustable steel rod, two stationary zinc rods, and a pivoting arm. The free end of the arm forms a pad which rests against a valve seat. The rods and pivoting arm expand or contract as the temperature of the incoming preheated water changes. The zinc rods expand more than the steel rod, flexing the yoke and rotating the pivoting arm. The pad moves towards the valve seat as the temperature of the preheated water rises, and away as the temperature falls, admitting a variable amount of hot water to maintain a nearly constant average process water temperature. 6 figs.

  4. Advanced Oil Recovery Technologies for Improved Recovery from Slope Basin Clastic Reservoirs, Nash Draw Brushy Canyon Pool, Eddy County, NM

    SciTech Connect (OSTI)

    Murphy, M.B.

    1999-02-01T23:59:59.000Z

    Advanced reservoir characterization techniques are being used at the Nash Draw Brushy Canyon Pool project to develop reservoir management strategies for optimizing oil recovery from this Delaware reservoir. The reservoir characterization, geologic modeling, 3-D seismic interpretation, and simulation studies have provided a detailed model of the Brushy Canyon zones. This model was used to predict the success of different reservoir management scenarios and to aid in determining the most favorable combination of targeted drilling, pressure maintenance, well stimulation, and well spacing to improve recovery from this reservoir.

  5. Heat Recovery from Coal Gasifiers

    E-Print Network [OSTI]

    Wen, H.; Lou, S. C.

    1981-01-01T23:59:59.000Z

    This paper deals with heat recovery from pressurized entrained and fixed bed coal gasifiers for steam generation. High temperature waste heat, from slagging entrained flow coal gasifier, can be recovered effectively in a series of radiant...

  6. Recovery and purification of ethylene

    DOE Patents [OSTI]

    Reyneke, Rian (Katy, TX); Foral, Michael J. (Aurora, IL); Lee, Guang-Chung (Houston, TX); Eng, Wayne W. Y. (League City, TX); Sinclair, Iain (Warrington, GB); Lodgson, Jeffery S. (Naperville, IL)

    2008-10-21T23:59:59.000Z

    A process for the recovery and purification of ethylene and optionally propylene from a stream containing lighter and heavier components that employs an ethylene distributor column and a partially thermally coupled distributed distillation system.

  7. RMOTC - Testing - Enhanced Oil Recovery

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Enhanced Oil Recovery Notice: As of July 1st, 2014, Testing at RMOTC has officially completed. We would like to thank all of our testing partners and everyone who helped make the...

  8. Low Level Heat Recovery Technology

    E-Print Network [OSTI]

    O'Brien, W. J.

    1982-01-01T23:59:59.000Z

    level heat recovery technology. This paper discusses heat distribution systems, latest developments in absorption refrigeration and organic Rankine cycles, and pressure, minimization possibilities. The relative merits and economics of the various...

  9. Waste Heat Recovery from Refrigeration

    E-Print Network [OSTI]

    Jackson, H. Z.

    1982-01-01T23:59:59.000Z

    heat recovery from refrigeration machines is a concept which has great potential for implementation in many businesses. If a parallel requirement for refrigeration and hot water exists, the installation of a system to provide hot water as a by...

  10. Developing a Regional Recovery Framework

    SciTech Connect (OSTI)

    Lesperance, Ann M.; Olson, Jarrod; Stein, Steven L.; Clark, Rebecca; Kelly, Heather; Sheline, Jim; Tietje, Grant; Williamson, Mark; Woodcock, Jody

    2011-09-01T23:59:59.000Z

    Abstract A biological attack would present an unprecedented challenge for local, state, and federal agencies; the military; the private sector; and individuals on many fronts ranging from vaccination and treatment to prioritization of cleanup actions to waste disposal. To prepare the Seattle region to recover from a biological attack, the Seattle Urban Area Security Initiative (UASI) partners collaborated with military and federal agencies to develop a Regional Recovery Framework for a Biological Attack in the Seattle Urban Area. The goal was to reduce the time and resources required to recover and restore wide urban areas, military installations, and other critical infrastructure following a biological incident by providing a coordinated systems approach. Based on discussions in small workshops, tabletop exercises, and interviews with emergency response agency staff, the partners identified concepts of operation for various areas to address critical issues the region will face as recovery progresses. Key to this recovery is the recovery of the economy. Although the Framework is specific to a catastrophic, wide-area biological attack using anthrax, it was designed to be flexible and scalable so it could also serve as the recovery framework for an all-hazards approach. The Framework also served to coalesce policy questions that must be addressed for long-term recovery. These questions cover such areas as safety and health, security, financial management, waste management, legal issues, and economic development.

  11. Thermal processes for heavy oil recovery

    SciTech Connect (OSTI)

    Sarkar, A.K.; Sarathi, P.S.

    1993-11-01T23:59:59.000Z

    This status report summarizes the project BE11B (Thermal Processes for Heavy Oil Recovery) research activities conducted in FY93 and completes milestone 7 of this project. A major portion of project research during FY93 was concentrated on modeling and reservoir studies to determine the applicability of steam injection oil recovery techniques in Texas Gulf Coast heavy oil reservoirs. In addition, an in-depth evaluation of a steamflood predictive model developed by Mobil Exploration and Production Co. (Mobil E&P) was performed. Details of these two studies are presented. A topical report (NIPER-675) assessing the NIPER Thermal EOR Research Program over the past 10 years was also written during this fiscal year and delivered to DOE. Results of the Gulf Coast heavy oil reservoir simulation studies indicated that though these reservoirs can be successfully steamflooded and could recover more than 50% of oil-in-place, steamflooding may not be economical at current heavy oil prices. Assessment of Mobil E&P`s steamflood predictive model capabilities indicate that the model in its present form gives reasonably good predictions of California steam projects, but fails to predict adequately the performance of non-California steam projects.

  12. CT imaging of enhanced oil recovery experiments

    SciTech Connect (OSTI)

    Gall, B.L.

    1992-12-01T23:59:59.000Z

    X-ray computerized tomography (Cr) has been used to study fluid distributions during chemical enhanced oil recovery experiments. Four CT-monitored corefloods were conducted, and oil saturation distributions were calculated at various stages of the experiments. Results suggested that this technique could add significant information toward interpretation and evaluation of surfactant/polymer EOR recovery methods. CT-monitored tracer tests provided information about flow properties in the core samples. Nonuniform fluid advance could be observed, even in core that appeared uniform by visual inspection. Porosity distribution maps based on CT density calculations also showed the presence of different porosity layers that affected fluid movement through the cores. Several types of CT-monitored corefloods were conducted. Comparisons were made for CT-monitored corefloods using chemical systems that were highly successful in reducing residual oil saturations in laboratory experiments and less successful systems. Changes were made in surfactant formulation and in concentration of the mobility control polymer. Use of a poor mobility control agent failed to move oil that was not initially displaced by the injected surfactant solution; even when a good'' surfactant system was used. Use of a less favorable surfactant system with adequate mobility control could produce as much oil as the use of a good surfactant system with inadequate mobility control. The role of mobility control, therefore, becomes a critical parameter for successful application of chemical EOR. Continuation of efforts to use CT imaging in connection with chemical EOR evaluations is recommended.

  13. CT imaging of enhanced oil recovery experiments

    SciTech Connect (OSTI)

    Gall, B.L.

    1992-12-01T23:59:59.000Z

    X-ray computerized tomography (Cr) has been used to study fluid distributions during chemical enhanced oil recovery experiments. Four CT-monitored corefloods were conducted, and oil saturation distributions were calculated at various stages of the experiments. Results suggested that this technique could add significant information toward interpretation and evaluation of surfactant/polymer EOR recovery methods. CT-monitored tracer tests provided information about flow properties in the core samples. Nonuniform fluid advance could be observed, even in core that appeared uniform by visual inspection. Porosity distribution maps based on CT density calculations also showed the presence of different porosity layers that affected fluid movement through the cores. Several types of CT-monitored corefloods were conducted. Comparisons were made for CT-monitored corefloods using chemical systems that were highly successful in reducing residual oil saturations in laboratory experiments and less successful systems. Changes were made in surfactant formulation and in concentration of the mobility control polymer. Use of a poor mobility control agent failed to move oil that was not initially displaced by the injected surfactant solution; even when a ``good`` surfactant system was used. Use of a less favorable surfactant system with adequate mobility control could produce as much oil as the use of a good surfactant system with inadequate mobility control. The role of mobility control, therefore, becomes a critical parameter for successful application of chemical EOR. Continuation of efforts to use CT imaging in connection with chemical EOR evaluations is recommended.

  14. A Flexural Mode Tuning Technique for Membraned Boiler Tubing

    SciTech Connect (OSTI)

    Quarry, M J; Chinn, D J; Rose, J L

    2005-03-21T23:59:59.000Z

    Corrosion of tubing used in black-liquor recovery boilers is a major concern in all pulp and paper mills. Extensive corrosion in recovery boiler tubes can result in a significant safety and environmental hazard. Considerable plant resources are expended to inspect recovery boiler tubing. Currently, visual and ultrasonic inspections are primarily used during the annual maintenance shutdown to monitor corrosion rates and cracking of tubing. This project is developing guided acoustic waves for use on recovery boiler tubing. The feature of this acoustic technique is its cost-effectiveness in inspecting long lengths of tubes from a single inspection point. A piezoelectric or electromagnetic transducer induces guided waves into the tubes. The transducer detects fireside defects from the cold side or fireside of the tube. Cracking and thinning on recovery boiler tubes have been detected with this technique in both laboratory and field applications.

  15. Enhanced Oil Recovery: Aqueous Flow Tracer Measurement

    SciTech Connect (OSTI)

    Joseph Rovani; John Schabron

    2009-02-01T23:59:59.000Z

    A low detection limit analytical method was developed to measure a suite of benzoic acid and fluorinated benzoic acid compounds intended for use as tracers for enhanced oil recovery operations. Although the new high performance liquid chromatography separation successfully measured the tracers in an aqueous matrix at low part per billion levels, the low detection limits could not be achieved in oil field water due to interference problems with the hydrocarbon-saturated water using the system's UV detector. Commercial instrument vendors were contacted in an effort to determine if mass spectrometry could be used as an alternate detection technique. The results of their work demonstrate that low part per billion analysis of the tracer compounds in oil field water could be achieved using ultra performance liquid chromatography mass spectrometry.

  16. DOE Policy Re Recovery Act Recipient Use of Recovery Act Logos on Signage

    Broader source: Energy.gov [DOE]

    U.S. Department of Energy (“DOE”) policy regarding use of the Recovery Act logo by Recovery Act recipients and subgrantees.

  17. Investigating Methods of Heat Recovery from Low-Temperature PEM Fuel Cells in CHP Applications

    SciTech Connect (OSTI)

    Jalalzadeh-Azar, A. A.

    2004-01-01T23:59:59.000Z

    Heat recovery from low-temperature proton exchange membrane (PEM) fuel cells poses a number of challenges. In response to these challenges, thermodynamic assessments of proposed heat recovery methods are studied in the context of combined heat and power (CHP) for building applications. Preheating combustion air in conjunction with desiccant dehumidification and absorption cooling technologies is one of the two strategies examined in this study. The other approach integrates the PEM fuel cell with a water-loop heat pump (WLHP) for direct heat recovery. As the primary objective, energy-saving potentials of the adopted heat recovery strategies are estimated with respect to various benchmarks. The quantified energy-saving potentials are translated into effective CHP performance indices and compared with those typically specified by the manufacturers for service hot water applications. The need for developing CHP performance protocols is also discussed in light of the proposed energy recovery techniques - thereby, accomplishing the secondary objective.

  18. Adsorption calorimetry in enhanced oil recovery

    SciTech Connect (OSTI)

    Noll, L.A.

    1988-05-01T23:59:59.000Z

    Adsorption calorimetry is a technique which has been used at the National Institute for Petroleum and Energy Reserch (NIPER) to help in the understanding of adsorption as it impacts enhanced oil recovery by chemical flooding. Abstraction of chemicals by reservoir minerals comprises a major obstacle to the technical and economic success of this process. Adsorption is also important in other fields such as catalysis, lubrication, ore flotation, and printing. Adsorption calorimetry is useful because it measures both the amount of adsorption and its enthalpy. The enthalpy helps to guide the extrapolation of adsorption to higher temperatures as well as acting as a probe of surface properties such as heterogeneity. Adsorption calorimetry helps to distinguish physical from chemisorption. It is also useful in distinguishing water-wet from oil-wet surfaces. This paper discusses flow adsorption calorimetry. The advantage of using a flowing system over the classic immersion technique is that it is fast and easy to use, and data for the entire isotherm are collected on a single sample of solid. In flow calorimetry the surface excess amount and the thermal data are obtained simultaneously on one and the same sample of solid, thus avoiding some sampling problems. Some disadvantages of the method are somewhat short equilibration times and the cumulative nature of the data. Aspects of adsorption of special interest to enhanced oil recovery such as the nature and charge of minerals, the structure and charge of surfactants, the effects of brine and temperature, and the effects of aqueous or hydrocarbon environment are important parameters of surfactant flooding; they are treated in this paper.

  19. New Impetus for resource recovery

    SciTech Connect (OSTI)

    Marier, D.

    1990-04-01T23:59:59.000Z

    Indications are that the resource recovery field is getting a renewed focus as communities again respond to continuing waste problems and as more companies offer recycling and waste-to-energy services. Recent entries to the field include new divisions of an Australian firm, a Finnish environmental services company, an Italian tire recycler. Two utility affiliates have entered the resource recovery field, and one major engineering and construction firm is entering the field at the same time another is leaving. These companies and their waste processes are briefly described.

  20. Recovery Act | Department of Energy

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 1112011 Strategic2 OPAM615_CostNSAR -Department of Energy Recovery ActCategoryRecovery Act

  1. Road to Recovery: Bringing Recovery to Small Town America

    ScienceCinema (OSTI)

    Nettamo, Paivi

    2012-06-14T23:59:59.000Z

    The Recovery Act hits the road to reach out to surrounding towns of the Savannah River Site that are struggling with soaring unemployment rates. This project helps recruit thousands of people to new jobs in environmental cleanup at the Savannah River Site.

  2. Road to Recovery: Bringing Recovery to Small Town America

    SciTech Connect (OSTI)

    Nettamo, Paivi

    2010-01-01T23:59:59.000Z

    The Recovery Act hits the road to reach out to surrounding towns of the Savannah River Site that are struggling with soaring unemployment rates. This project helps recruit thousands of people to new jobs in environmental cleanup at the Savannah River Site.

  3. Research on Oil Recovery Mechanisms in Heavy Oil Reservoirs

    SciTech Connect (OSTI)

    Louis M. Castanier; William E. Brigham

    1998-03-31T23:59:59.000Z

    The goal of this project is to increase recovery of heavy oils. Towards that goal studies are being conducted in how to assess the influence of temperature and pressure on the absolute and relative permeability to oil and water and on capillary pressure; to evaluate the effect of different reservoir parameters on the in site combustion process; to develop and understand mechanisms of surfactants on for the reduction of gravity override and channeling of steam; and to improve techniques of formation evaluation.

  4. Advanced Oil Recovery Technologies for Improved Recovery From Slope Clastic Reservoirs, Nash Draw Brushy Canyon Pool, Eddy County, New Mexico

    SciTech Connect (OSTI)

    Mark B. Murphy

    1998-01-30T23:59:59.000Z

    The overall goal of this project is to demonstrate that an advanced development drilling and pressure maintenance program based on advanced reservoir management methods can significantly improve oil recovery. The plan included developing a control area using standard reservoir management techniques and comparing its performance to an area developed using advanced methods. A key goal is to transfer advanced methodologies to oil and gas producers in the Permian Basin and elsewhere, and throughout the US oil and gas industry.

  5. September 2010 American Recovery and

    E-Print Network [OSTI]

    Oak Ridge National Laboratory

    September 2010 i American Recovery and Reinvestment Act (ARRA) FEMP Technical Assistance U.S. Naval by applying GSHP systems. The current HVAC system for the building is a conventional Air Handling Unit (AHU) system with chiller. The heating and the DHW are provided by district steam. The building is close

  6. Biosurfactant and enhanced oil recovery

    DOE Patents [OSTI]

    McInerney, Michael J. (Norman, OK); Jenneman, Gary E. (Norman, OK); Knapp, Roy M. (Norman, OK); Menzie, Donald E. (Norman, OK)

    1985-06-11T23:59:59.000Z

    A pure culture of Bacillus licheniformis strain JF-2 (ATCC No. 39307) and a process for using said culture and the surfactant lichenysin produced thereby for the enhancement of oil recovery from subterranean formations. Lichenysin is an effective surfactant over a wide range of temperatures, pH's, salt and calcium concentrations.

  7. Quantifying Vegetation Recovery on Santa Rosa Island

    E-Print Network [OSTI]

    Rentschlar, Elizabeth

    2014-12-09T23:59:59.000Z

    The rate of recovery on barrier islands after hurricanes is not well understood, because the majority of studies have focused on the geomorphic impact of storms on barrier islands. Dune vegetation recovery is a vital component of barrier island...

  8. District of Columbia Recovery Act State Memo

    Broader source: Energy.gov [DOE]

    The American Recovery & Reinvestment Act (ARRA) is making a meaningful down payment on the nation’s energy and environmental future. The Recovery Act investments in the District of Columbia...

  9. Sandia National Laboratories: Recovery Act (ARRA) Projects

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    with: ARRA * awardees * contractors * DOE * Energy * Grid Integration * Partnership * photovoltaic * Photovoltaics * PV * Recovery Act * reliability * Renewable Energy * SAND...

  10. Permeability enhancement using explosive techniques

    SciTech Connect (OSTI)

    Adams, T.F.; Schmidt, S.C.; Carter, W.J.

    1980-01-01T23:59:59.000Z

    In situ recovery methods for many of our hydrocarbon and mineral resources depend on the ability to create or enhance permeability in the resource bed to allow uniform and predictable flow. To meet this need, a new branch of geomechanics devoted to computer prediction of explosive rock breakage and permeability enhancement has developed. The computer is used to solve the nonlinear equations of compressible flow, with the explosive behavior and constitutive properties of the medium providing the initial/boundary conditions and material response. Once the resulting computational tool has been verified and calibrated with appropriate large-scale field tests, it can be used to develop and optimize commercially useful explosive techniques for in situ resource recovery.

  11. Final Report: Guided Acoustic Wave Monitoring of Corrosion in Recovery Boiler Tubing

    SciTech Connect (OSTI)

    Chinn, D J; Quarry, M J; Rose, J L

    2005-03-31T23:59:59.000Z

    Corrosion of tubing used in black-liquor recovery boilers is a major concern in all pulp and paper mills. Extensive corrosion in recovery boiler tubes can result in a significant safety and environmental hazard. Considerable plant resources are expended to inspect recovery boiler tubing. Currently, visual and ultrasonic inspections are primarily used during the annual maintenance shutdown to monitor corrosion rates and cracking of tubing. This Department of Energy, Office of Industrial Technologies project is developing guided acoustic waves for use on recovery boiler tubing. The feature of this acoustic technique is its cost-effectiveness in inspecting long lengths of tubes from a single inspection point. A piezoelectric or electromagnetic transducer induces guided waves into the tubes. The transducer detects fireside defects from the cold side or fireside of the tube. Cracking and thinning on recovery boiler tubes have been detected with this technique in both laboratory and field applications. This technique appears very promising for recovery boiler tube application, potentially expediting annual inspection of tube integrity.

  12. Recovery Act ? An Interdisciplinary Program for Education and...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    More Documents & Publications Recovery Act An Interdisciplinary Program for Education and Outreach in Transportation Electrification Recovery Act An Interdisciplinary...

  13. Engine breather oil recovery system

    SciTech Connect (OSTI)

    Speer, S.R.; Norton, J.G.; Wilson, J.D.

    1990-08-14T23:59:59.000Z

    This patent describes an engine breather oil recovery system, for use with reciprocating engines having an oil breather and an oil reservoir recovery system. It comprises:an engine breather outlet from the engine; a vapor and oil separator device in fluid flow connection with the engine breather outlet; a motive flow suction means in fluid flow connection between the separator device and the engine, so as to provide a substantially continuous pressure drop between the separator device and the engine oil reservoir; an engine fluid system in parallel with the separator device; and an engine driven pump in fluid flow connection with such other engine fluid system, wherein the motive force for the motive flow suction means is provided by the fluid from the engine pump.

  14. Counterpulse railgun energy recovery circuit

    DOE Patents [OSTI]

    Honig, Emanuel M. (Los Alamos, NM)

    1986-01-01T23:59:59.000Z

    In an electromagnetic launcher such as a railgun for propelling a projectile at high velocity, a counterpulse energy recovery circuit is employed to transfer stored inductive energy from a source inductor to the railgun inductance to propel the projectile down the railgun. Switching circuitry and an energy transfer capacitor are used to switch the energy back to the source inductor in readiness for a repetitive projectile propelling cycle.

  15. Overpulse railgun energy recovery circuit

    DOE Patents [OSTI]

    Honig, Emanuel M. (Los Alamos, NM)

    1989-01-01T23:59:59.000Z

    In an electromagnetic launcher such as a railgun for propelling a projectile at high velocity, an overpulse energy recovery circuit is employed to transfer stored inductive energy from a source inductor to the railgun inductance to propel the projectile down the railgun. Switching circuitry and an energy transfer capacitor are used to switch the energy back to the source inductor in readiness for a repetitive projectile propelling cycle.

  16. Kraft recovery boiler physical and chemical processes

    SciTech Connect (OSTI)

    Adams, T.N.; Frederick, W.J. (Adams (Terry N.), Tacoma, WA (USA); Oregon State Univ., Corvallis, OR (USA). Dept. of Chemical Engineering)

    1988-01-01T23:59:59.000Z

    The focus of this book is on the recent research into the physical and chemical processes occurring in and around a black liquor recovery boiler. Almost all of the detailed technical information in this book has previously appeared in the open literature. The purpose here is not to present research for the first time, but to present it in a context of the other processes occurring in recovery boilers. Topics covered include: general characteristics of recovery boilers; black liquor thermal and transport properties; black liquor droplet formation and combustion; recovery boiler char bed processes; flow and mixing in Kraft recovery boilers; entrainment and carryover in recovery furnaces; fume formation and dust chemistry; deposits and boiler plugging; and recovery boiler thermal performance. 257 refs., 102 figs., 38 tabs.

  17. Applied ALARA techniques

    SciTech Connect (OSTI)

    Waggoner, L.O.

    1998-02-05T23:59:59.000Z

    The presentation focuses on some of the time-proven and new technologies being used to accomplish radiological work. These techniques can be applied at nuclear facilities to reduce radiation doses and protect the environment. The last reactor plants and processing facilities were shutdown and Hanford was given a new mission to put the facilities in a safe condition, decontaminate, and prepare them for decommissioning. The skills that were necessary to operate these facilities were different than the skills needed today to clean up Hanford. Workers were not familiar with many of the tools, equipment, and materials needed to accomplish:the new mission, which includes clean up of contaminated areas in and around all the facilities, recovery of reactor fuel from spent fuel pools, and the removal of millions of gallons of highly radioactive waste from 177 underground tanks. In addition, this work has to be done with a reduced number of workers and a smaller budget. At Hanford, facilities contain a myriad of radioactive isotopes that are 2048 located inside plant systems, underground tanks, and the soil. As cleanup work at Hanford began, it became obvious early that in order to get workers to apply ALARA and use hew tools and equipment to accomplish the radiological work it was necessary to plan the work in advance and get radiological control and/or ALARA committee personnel involved early in the planning process. Emphasis was placed on applying,ALARA techniques to reduce dose, limit contamination spread and minimize the amount of radioactive waste generated. Progress on the cleanup has,b6en steady and Hanford workers have learned to use different types of engineered controls and ALARA techniques to perform radiological work. The purpose of this presentation is to share the lessons learned on how Hanford is accomplishing radiological work.

  18. Recovery from chemical, biological, and radiological incidents :

    SciTech Connect (OSTI)

    Franco, David Oliver; Yang, Lynn I.; Hammer, Ann E.

    2012-06-01T23:59:59.000Z

    To restore regional lifeline services and economic activity as quickly as possible after a chemical, biological or radiological incident, emergency planners and managers will need to prioritize critical infrastructure across many sectors for restoration. In parallel, state and local governments will need to identify and implement measures to promote reoccupation and economy recovery in the region. This document provides guidance on predisaster planning for two of the National Disaster Recovery Framework Recovery Support Functions: Infrastructure Systems and Economic Recovery. It identifies key considerations for infrastructure restoration, outlines a process for prioritizing critical infrastructure for restoration, and identifies critical considerations for promoting regional economic recovery following a widearea disaster. Its goal is to equip members of the emergency preparedness community to systematically prioritize critical infrastructure for restoration, and to develop effective economic recovery plans in preparation for a widearea CBR disaster.

  19. Counterpulse railgun energy recovery circuit

    DOE Patents [OSTI]

    Honig, E.M.

    1984-09-28T23:59:59.000Z

    The invention presented relates to a high-power pulsing circuit and more particularly to a repetitive pulse inductive energy storage and transfer circuit for an electromagnetic launcher. In an electromagnetic launcher such as a railgun for propelling a projectile at high velocity, a counterpulse energy recovery circuit is employed to transfer stored inductive energy from a source inductor to the railgun inductance to propel the projectile down the railgun. Switching circuitry and an energy transfer capacitor are used to switch the energy back to the source inductor in readiness for a repetitive projectile propelling cycle.

  20. Overpulse railgun energy recovery circuit

    DOE Patents [OSTI]

    Honig, E.M.

    1984-09-28T23:59:59.000Z

    The invention presented relates to a high-power pulsing circuit and more particularly to a repetitive pulse inductive energy storage and transfer circuit for an electromagnetic launcher. In an electromagnetic launcher such as a railgun for propelling a projectile at high velocity, an overpulse energy recovery circuit is employed to transfer stored inductive energy from a source inductor to the railgun inductance to propel the projectile down the railgun. Switching circuitry and an energy transfer capacitor are used to switch the energy back to the source inductor in readiness for a repetitive projectile propelling cycle.

  1. Recovery Act State Memos Tennessee

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page onYouTube YouTube Note: Since the.pdfBreakingMay 2015 < prevQuick Guide:U.N.June 8, 2015JuneDepartmentRecovery

  2. Recovery Act | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page onYouTube YouTube Note: Since the.pdfBreakingMay 2015 < prevQuick Guide:U.N.June 8,Past Opportunities » Recovery Act

  3. Electrochemical Techniques

    SciTech Connect (OSTI)

    Chen, Gang; Lin, Yuehe

    2008-07-20T23:59:59.000Z

    Sensitive and selective detection techniques are of crucial importance for capillary electrophoresis (CE), microfluidic chips, and other microfluidic systems. Electrochemical detectors have attracted considerable interest for microfluidic systems with features that include high sensitivity, inherent miniaturization of both the detection and control instrumentation, low cost and power demands, and high compatibility with microfabrication technology. The commonly used electrochemical detectors can be classified into three general modes: conductimetry, potentiometry, and amperometry.

  4. Recovery Act | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    to help catalyze the adoption of smart grid tools, technologies and techniques such as demand response that are designed to increase the electric grid's flexibility,...

  5. Development of Extraction Techniques for the Detection of Signature Lipids from Oil

    SciTech Connect (OSTI)

    Borglin, Sharon; Geller, Jil; Chakraborty, Romy; Hazen, Terry; Mason, Olivia

    2010-05-17T23:59:59.000Z

    Pure cultures, including Desulfovibrio vulgaris and Methanococcus maripaludus, were combined with model oil samples and oil/diesel mixtures to optimize extraction techniques of signature lipids from oil in support of investigation of microbial communities in oil deposit samples targets for microbial enhanced hydrocarbon recovery. Several techniques were evaluated, including standard phospholipid extraction, ether linked lipid for Archaeal bacterial detection, and high pressure extractiontechniques. Recovery of lipids ranged from 50-80percent as compared to extraction of the pure culture. Extraction efficiency was evaluated by the use of internal standards. Field samples will also be tested for recovery of signature lipids with optimized extraction techniques.

  6. IDAHO RECOVERY ACT SNAPSHOT | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    SNAPSHOT Idaho has substantial natural resources, including wind, geothermal, and hydroelectric power .The American Recovery & Reinvestment Act (ARRA) is making a meaningful down...

  7. GEORGIA RECOVERY ACT SNAPSHOT | Department of Energy

    Energy Savers [EERE]

    ACT SNAPSHOT Georgia has substantial natural resources, including biomass and hydroelectric power .The American Recovery & Reinvestment Act (ARRA) is making a meaningful down...

  8. Faces of the Recovery Act: Sun Catalytix

    Broader source: Energy.gov [DOE]

    At the Massachusetts Institute of Technology, Dan Nocera talks about Sun Catalytix, the next generation of solar energy, and ARPA-E funding through the Recovery Act.

  9. Combustion & Fuels Waste Heat Recovery & Utilization Project...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Combustion & Fuels Waste Heat Recovery & Utilization Project Project Technical Lead - Thermoelectric Analysis & Materials 27 February 2008 2008 DOE OVT Annual Merit Review 2008...

  10. American Recovery and Reinvestment Act, Financial Assistance...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    - ARRAAttachment3.rtf FOIA Frequently Requested Documents: DE-EE0002884 Recovery Act - Integrated Algal Biorefinery (IABR) Financial Assistance Funding Opportunity Announcement...

  11. Recovery Act Progress Update: Reactor Closure Feature

    SciTech Connect (OSTI)

    Cody, Tom

    2010-01-01T23:59:59.000Z

    A Recovery Act Progress Update. Decommissioning of two nuclear reactor sites at the Department of Energy's facilities has been approved and is underway.

  12. Faces of the Recovery Act: 1366 Technologies

    Broader source: Energy.gov [DOE]

    LEXINGTON, MA - At 1366 Technologies, Ely Sachs and Frank van Mierlo are using ARPA-E Recovery Act funding to dramatically reduce the costs of solar panel production.

  13. Recovery Act Progress Update: Reactor Closure Feature

    ScienceCinema (OSTI)

    Cody, Tom

    2012-06-14T23:59:59.000Z

    A Recovery Act Progress Update. Decommissioning of two nuclear reactor sites at the Department of Energy's facilities has been approved and is underway.

  14. Los Alamos plants willows for flood recovery

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    plants willows Los Alamos plants willows for flood recovery The Laboratory's Corrective Actions Program (CAP) planted nearly 10,000 willows to help preserve the Pueblo Canyon...

  15. ARIZONA RECOVERY ACT SNAPSHOT | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Arizona has substantial natural resources, including coal, solar, and hydroelectric resources. The American Recovery & Reinvestment Act (ARRA) is making a meaningful down payment...

  16. Recovery News Flashes | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Recovery and Reinvestment Act workers are in the final stage of decommissioning a nuclear reactor after they recently removed thick steel shields once used to absorb...

  17. American Recovery and Reinvestment Act | EMSL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    imaging as well as next-generation oxygen-plasma assisted molecular beam epitaxy Microfluidics manipulation and manufacturing. Learn more detail about Recovery Act Instruments...

  18. Cost Recovery Charge (CRC) Calculation Tables

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Cost Recovery Charge (CRC) Calculation Table Updated: March 20, 2015 FY 2016 February 2015 CRC Calculation Table (pdf) Final FY 2015 CRC Letter & Table (pdf) Note: The Cost...

  19. Industrial Heat Recovery with Organic Rankine Cycles

    E-Print Network [OSTI]

    Hnat, J. G.; Patten, J. S.; Cutting, J. C.; Bartone, L. M.

    1982-01-01T23:59:59.000Z

    to examine a specific application of the use of an ORC heat recovery system and compare it to a stear), Rankine cycle heat recovery system. The particular application ~ssumed is heat recovery from diesel engine exhaust gas at a temPErature of 700F. Figure...,vaporized and superheated ina flue gas heat recovery su bsystem. he super heated fluid is expanded through a turbine for power p oduction, condensed in a water cooled condenser and return d to the vaporizer via feed pu mps. In the steam cycle, a port n of the Figure 1...

  20. Bioelectrochemical Integration of Waste Heat Recovery, Waste...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Bioelectrochemical Integration of Waste Heat Recovery, Waste-to-Energy Conversion, and Waste-to-Chemical Conversion with Industrial Gas and Chemical Manufacturing Processes...

  1. Bioelectrochemical Integration of Waste Heat Recovery, Waste...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    MHRC System Concept ADVANCED MANUFACTURING OFFICE Bioelectrochemical Integration of Waste Heat Recovery, Waste-to-Energy Conversion, and Waste-to-Chemical Conversion with...

  2. Modified Accelerated Cost-Recovery System (MACRS)

    Broader source: Energy.gov [DOE]

    Under the federal Modified Accelerated Cost-Recovery System (MACRS), businesses may recover investments in certain property through depreciation deductions. The MACRS establishes a set of class l...

  3. Advanced Oil Recovery Technologies for Improved Recovery from Slope Basin Clastic Reservoirs, Nash Draw Brushy Canyon Pool, Eddy County, New Mexico, Class III

    SciTech Connect (OSTI)

    Murphy, Michael B.

    2002-02-21T23:59:59.000Z

    The overall objective of this project is to demonstrate that a development program based on advanced reservoir management methods can significantly improve oil recovery at the Nash Draw Pool (NDP). The plan includes developing a control area using standard reservoir management techniques and comparing its performance to an area developed using advanced reservoir management methods. Specific goals are (1) to demonstrate that an advanced development drilling and pressure maintenance program can significantly improve oil recovery compared to existing technology applications and (2) to transfer these advanced methodologies to oil and gas producers in the Permian Basin and elsewhere throughout the U.S. oil and gas industry.

  4. Virtual and Physical Prototyping, Vol. 5(3), September 2010, pp. 123 -137 A new muscle fatigue and recovery model and its ergonomics

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    and recovery model and its ergonomics application in human simulation Liang MA1, Damien CHABLAT1, Fouad BENNIS, those ergonomics analysis tools are mainly based on posture analysis techniques, and until now and recovery model, physical fatigue evaluation, objective work evaluation, ergonomics analysis 1 Introduction

  5. The Beckett System Recovery and Utilization of Low Grade Waste Heat From Flue Gas 

    E-Print Network [OSTI]

    Henderson, W. R.; DeBiase, J. F.

    1983-01-01T23:59:59.000Z

    The Beckett Heat Recovery is a series of techniques for recovering low-grade waste heat from flue gas. Until the cost of fossil fuels began rising rapidly, flue gas below 600 F was considered economically unworthy of reclaim. This paper...

  6. On an inverse problem: the recovery of non-smooth solutions to backward heat equation

    E-Print Network [OSTI]

    Daripa, Prabir

    On an inverse problem: the recovery of non-smooth solutions to backward heat equation Fabien Ternat solu- tions of backward heat equation. In this paper, we test the viability of using these techniques to recover non-smooth solutions of backward heat equation. In particular, we numerically integrate

  7. Analysis of hydraulic tomography using temporal moments of drawdown recovery data

    E-Print Network [OSTI]

    Daniels, Jeffrey J.

    Analysis of hydraulic tomography using temporal moments of drawdown recovery data Junfeng Zhu 2006. [1] Transient hydraulic tomography (THT) is a potentially cost-effective and high- resolution technique for mapping spatial distributions of the hydraulic conductivity and specific storage in aquifers

  8. BER Estimation for Serial Links Based on Jitter Spectrum and Clock Recovery Characteristics

    E-Print Network [OSTI]

    BER Estimation for Serial Links Based on Jitter Spectrum and Clock Recovery Characteristics Dongwoo technique estimates the BER based on the spectral information of jitter and the characteristics of the clock-volume production testing [1]. One of the major contributors to the BER is jitter. Jitter is defined

  9. Faces of the Recovery Act: Sun Catalytix

    ScienceCinema (OSTI)

    Nocera, Dave

    2013-05-29T23:59:59.000Z

    BOSTON- At the Massachusetts Institute of Technology, Dan Nocera talks about Sun Catalytix, the next generation of solar energy, and ARPA-E funding through the Recovery Act. To learn about more ARPA-E projects through the Recovery Act: http://arpa-e.energy.gov/FundedProjects.aspx

  10. Optimize carbon dioxide sequestration, enhance oil recovery

    E-Print Network [OSTI]

    - 1 - Optimize carbon dioxide sequestration, enhance oil recovery January 8, 2014 Los Alamos simulation to optimize carbon dioxide (CO2) sequestration and enhance oil recovery (CO2-EOR) based on known production. Due to carbon capture and storage technology advances, prolonged high oil prices

  11. Managing Manure with Biogas Recovery Systems

    E-Print Network [OSTI]

    Mukhtar, Saqib

    emissions and capture biogas--a useful source of energy. About Anaerobic Digestion Biogas recovery systems manure in an oxygen-free environment. One of the natural prod- ucts of anaerobic digestion is biogas Digestion Biogas recovery systems are a proven technology. Currently, more than 30 digester systems

  12. Thermal recovery of oil and bitumen

    SciTech Connect (OSTI)

    Butler, R.M. (Dept. of Chemical and Petroleum Engineering, Univ. of Calgary, Calgary, Alberta (CA))

    1991-01-01T23:59:59.000Z

    This book is organized into the following chapters: Introduction to Thermal Recovery; Conduction of Heat Within Solids; Convective Heating within Reservoirs; Steamfloodings; The Displacement of Heavy Oil; Cyclic Steam Simulation; Steam-Assisted Gravity Drainage; Steam Recovery Equipment and Facilities; and In Situ Combustion.

  13. Recovery in aluminium Ph.D. thesis

    E-Print Network [OSTI]

    to be superior. iii #12;The first use of the method was a study of recovery of a deformed aluminium alloy (AA1050). The aluminium alloy was deformed by cold rolling to a thickness reduction of 38%. The sample was annealed at 300Recovery in aluminium Ph.D. thesis by Carsten Gundlach Supervisors: Henning Friis Poulsen Wolfgang

  14. Recovery of uranium from seawater

    SciTech Connect (OSTI)

    Sugasaka, K. (Government Industrial Research Inst., Shikoku, Japan); Katoh, S.; Takai, N.; Takahashi, H.; Umezawa, Y.

    1981-01-01T23:59:59.000Z

    Seawater contains various elements in solution. Deuterium, lithium, and uranium are the important ingredients for energy application at present and in the future. This paper deals with the recovery of uranium from seawater, with emphasis on the development of an adsorbent with high selectivity and rate of adsorption for uranium. Polyacrylamidoxime chelating resins were synthesized from various co-polymers of acrylonitrile and cross-linking agents. The resulting resins with the chelating amidoxime group showed selective adsorption for uranium in seawater. The amount of uranium adsorbed from seawater at room temperature reached 3.2 mg/g resin after 180 days. Polyacrylamidoxime fiber, which was prepared from polyacrylonitrile fiber and hydroxylamine, showed a high rate of adsorption for uranium. The polyacrylamidoxime fiber conditioned with 1 M HC1 and 1 M NaOH adsorbed 4 mg U/g fiber from seawater in ten days. 9 figures, 6 tables.

  15. Method for enhanced oil recovery

    DOE Patents [OSTI]

    Comberiati, Joseph R. (Morgantown, WV); Locke, Charles D. (Morgantown, WV); Kamath, Krishna I. (Chicago, IL)

    1980-01-01T23:59:59.000Z

    The present invention is directed to an improved method for enhanced recovery of oil from relatively "cold" reservoirs by carbon dioxide flooding. In oil reservoirs at a temperature less than the critical temperature of 87.7.degree. F. and at a pore pressure greater than the saturation pressure of carbon dioxide at the temperature of the reservoir, the carbon dioxide remains in the liquid state which does not satisfactorily mix with the oil. However, applicants have found that carbon dioxide can be vaporized in situ in the reservoir by selectively reducing the pore pressure in the reservoir to a value less than the particular saturated vapor pressure so as to greatly enhance the mixing of the carbon dioxide with the oil.

  16. Aromatics Extraction Plant Design Using Synthesis Techniques

    E-Print Network [OSTI]

    Wilcox, R. J.; Nedwick, R.

    were changed. The process modified design has process conditions altered to create opportunities for heat integration. Distillation column pressure changes were the primary modifications. In this design the plant was also divided into two sections... the aid of modern synthesis techniques. The only heat integration in the Extraction Section is the Recovery Column bottoms preheating the Regenerator feed then the Stripper feed. The Distillation Section has no heat integration. This design uses 73...

  17. Assessment of environmental health and safety issues associated with the commercialization of unconventional gas recovery: Tight Western Sands

    SciTech Connect (OSTI)

    Riedel, E.F.; Cowan, C.E.; McLaughlin, T.J.

    1980-02-01T23:59:59.000Z

    Results of a study to identify and evaluate potential public health and safety problems and the potential environmental impacts from recovery of natural gas from Tight Western Sands are reported. A brief discussion of economic and technical constraints to development of this resource is also presented to place the environmental and safety issues in perspective. A description of the resource base, recovery techniques, and possible environmental effects associated with tight gas sands is presented.

  18. Office of Electricity Delivery and Energy Reliability Recovery...

    Energy Savers [EERE]

    Electricity Delivery and Energy Reliability Recovery Program Plan Office of Electricity Delivery and Energy Reliability Recovery Program Plan Microsoft Word - OE PSRP June 5 2009...

  19. Supporting Statement: OE Recovery Act Financial Assistance Grants...

    Energy Savers [EERE]

    Supporting Statement: OE Recovery Act Financial Assistance Grants OMB Control Number 1910-5149 Supporting Statement: OE Recovery Act Financial Assistance Grants OMB Control Number...

  20. South Carolina Recovery Act State Memo | Department of Energy

    Energy Savers [EERE]

    South Carolina Recovery Act State Memo South Carolina has substantial nuclear and hydroelectric resources. The American Recovery & Reinvestment Act (ARRA) is making a meaningful...

  1. Washington Recovery Act State Memo | Department of Energy

    Energy Savers [EERE]

    Recovery Act State Memo Washington State has substantial natural resources, including biomass, wind, geothermal, and hydroelectric power. The American Recovery & Reinvestment Act...

  2. Recovery Act, Office of the Biomass Program,Funding Opportunity...

    Broader source: Energy.gov (indexed) [DOE]

    Recovery Act, Office of the Biomass Program,Funding Opportunity Announcements Special Notice Recovery Act, Office of the Biomass Program,Funding Opportunity Announcements Special...

  3. advanced oil recovery: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    simulation to optimize carbon dioxide (CO2) sequestration and enhance oil recovery (CO2-EOR) based on known 4 Enhanced oil recovery through water imbibition in fractured...

  4. actinides recovery rar: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    simulation to optimize carbon dioxide (CO2) sequestration and enhance oil recovery (CO2-EOR) based on known 111 Key recovery in a business environment Computer Technologies...

  5. abnormal metabolic recovery: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    simulation to optimize carbon dioxide (CO2) sequestration and enhance oil recovery (CO2-EOR) based on known 140 Key recovery in a business environment Computer Technologies...

  6. advanced secondary recovery: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    simulation to optimize carbon dioxide (CO2) sequestration and enhance oil recovery (CO2-EOR) based on known 116 Key recovery in a business environment Computer Technologies...

  7. FOIA Frequently Requested Documents: DE-EE0002884 Recovery Act...

    Energy Savers [EERE]

    FOIA Frequently Requested Documents: DE-EE0002884 Recovery Act - Integrated Algal Biorefinery (IABR) FOIA Frequently Requested Documents: DE-EE0002884 Recovery Act - Integrated...

  8. Synchrophasor Technologies and their Deployment in the Recovery...

    Broader source: Energy.gov (indexed) [DOE]

    Synchrophasor Technologies and their Deployment in the Recovery Act Smart Grid Programs (August 2013) Synchrophasor Technologies and their Deployment in the Recovery Act Smart Grid...

  9. Recovery Act Selections for Smart Grid Invesment Grant Awards...

    Broader source: Energy.gov (indexed) [DOE]

    Recovery Act Selections for Smart Grid Invesment Grant Awards- By Category Updated July 2010 Recovery Act Selections for Smart Grid Invesment Grant Awards- By Category Updated July...

  10. American Recovery & Reinvestment Act, ARRA, clean energy projects...

    Energy Savers [EERE]

    American Recovery & Reinvestment Act, ARRA, clean energy projects, energy efficiency, smart grid, alternative fuels, geothermal energy American Recovery & Reinvestment Act, ARRA,...

  11. Cumulative Federal Payments to OE Recovery Act Recipients, through...

    Broader source: Energy.gov (indexed) [DOE]

    September 30, 2014 Cumulative Federal Payments to OE Recovery Act Recipients, through September 30, 2014 Cumulative Federal Payments to OE Recovery Act Recipients, through...

  12. Cumulative Federal Payments to OE Recovery Act Recipients, through...

    Broader source: Energy.gov (indexed) [DOE]

    3 Cumulative Federal Payments to OE Recovery Act Recipients, through June 30, 2013 Graph of cumulative Federal Payments to OE Recovery Act Recipients, through June 30, 2013. OE...

  13. Cumulative Federal Payments to OE Recovery Act Recipients, through...

    Broader source: Energy.gov (indexed) [DOE]

    4 Cumulative Federal Payments to OE Recovery Act Recipients, through June 30, 2014 Cumulative Federal Payments to OE Recovery Act Recipients, through June 30, 2014. OE ARRA...

  14. Energy Secretary Chu Announces $384 Million in Recovery Act Funding...

    Energy Savers [EERE]

    384 Million in Recovery Act Funding for Environmental Cleanup in New Mexico Energy Secretary Chu Announces 384 Million in Recovery Act Funding for Environmental Cleanup in New...

  15. New Mexico Recovery Act State Memo | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Mexico Recovery Act State Memo New Mexico Recovery Act State Memo New Mexico has substantial natural resources, including oil, gas, solar, wind, geothermal, and hydroelectric...

  16. Recovery Act Workers Demolish Facility Tied to Project Pluto...

    Office of Environmental Management (EM)

    Recovery and Rein- vestment Act accomplishment helping clean up traces of past nuclear testing at the Nevada National Security Site (NNSS). Recovery Act workers safely hauled...

  17. Arizona Recovery Act State Memo | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Recovery Act State Memo Arizona has substantial natural resources, including coal, solar, and hydroelectric resources. The American Recovery & Reinvestment Act (ARRA) is...

  18. Oklahoma Recovery Act State Memo | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Recovery Act State Memo Oklahoma has substantial natural resources, including oil, gas, solar, wind, and hydroelectric power. The American Recovery & Reinvestment Act (ARRA) is...

  19. Texas Recovery Act State Memo | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Recovery Act State Memo Texas has substantial natural resources, including oil, gas, solar, biomass, and wind power. The American Recovery & Reinvestment Act (ARRA) is making...

  20. Alabama Recovery Act State Memo | Department of Energy

    Energy Savers [EERE]

    Alabama Recovery Act State Memo Alabama has substantial natural resources, including gas, coal, biomass, geothermal, and hydroelectric power. The American Recovery &...

  1. Exsolution Enhanced Oil Recovery with Concurrent CO2 Sequestration...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Exsolution Enhanced Oil Recovery with Concurrent CO2 Sequestration. Exsolution Enhanced Oil Recovery with Concurrent CO2 Sequestration. Abstract: A novel EOR method using...

  2. Wyoming Recovery Act State Memo | Department of Energy

    Energy Savers [EERE]

    Wyoming Recovery Act State Memo Wyoming has substantial natural resources including coal, natural gas, oil, and wind power. The American Recovery & Reinvestment Act (ARRA) is...

  3. Post-Shred Materials Recovery Technology Development and Demonstration...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Shred Materials Recovery Technology Development and Demonstration Post-Shred Materials Recovery Technology Development and Demonstration 2009 DOE Hydrogen Program and Vehicle...

  4. Post-Shred Materials Recovery Technology Development and Demonstration...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Post-Shred Materials Recovery Technology Development and Demonstration Post-Shred Materials Recovery Technology Development and Demonstration Presentation from the U.S. DOE Office...

  5. Department of Energy Issues Loan Guarantee Supported by Recovery...

    Office of Environmental Management (EM)

    Loan Guarantee Supported by Recovery Act for Nevada Geothermal Project Department of Energy Issues Loan Guarantee Supported by Recovery Act for Nevada Geothermal Project September...

  6. Department of Energy Issues Loan Guarantee Supported by Recovery...

    Energy Savers [EERE]

    Department of Energy Issues Loan Guarantee Supported by Recovery Act for Nevada Geothermal Project Department of Energy Issues Loan Guarantee Supported by Recovery Act for Nevada...

  7. Dynamic Recovery in Silicate-Apatite Structures Under Irradiation...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Recovery in Silicate-Apatite Structures Under Irradiation and Implications for Long-Term Immobilization of Actinides. Dynamic Recovery in Silicate-Apatite Structures Under...

  8. President Obama Announces Over $467 Million in Recovery Act Funding...

    Office of Environmental Management (EM)

    Over 467 Million in Recovery Act Funding for Geothermal and Solar Energy Projects President Obama Announces Over 467 Million in Recovery Act Funding for Geothermal and Solar...

  9. President Obama Announces Over $467 Million in Recovery Act Funding...

    Energy Savers [EERE]

    President Obama Announces Over 467 Million in Recovery Act Funding for Geothermal and Solar Energy Projects President Obama Announces Over 467 Million in Recovery Act Funding for...

  10. DOE Offers $15 Million Geothermal Heat Recovery Opportunity ...

    Office of Environmental Management (EM)

    15 Million Geothermal Heat Recovery Opportunity DOE Offers 15 Million Geothermal Heat Recovery Opportunity August 25, 2010 - 11:11am Addthis Photo of geothermal power plant....

  11. ITP Energy Intensive Processes: Improved Heat Recovery in Biomass...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Improved Heat Recovery in Biomass-Fired Boilers ITP Energy Intensive Processes: Improved Heat Recovery in Biomass-Fired Boilers biomass-firedboilers.pdf More Documents &...

  12. Kentucky Recovery Act State Memo | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Recovery Act State Memo Kentucky has substantial natural resources, including coal, oil, gas, and hydroelectric power. The American Recovery & Reinvestment Act (ARRA) is...

  13. Montana Recovery Act State Memo | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Recovery Act State Memo Montana has substantial natural resources, including coal, oil, natural gas, hydroelectric, and wind power. The American Recovery & Reinvestment Act...

  14. Alaska Recovery Act State Memo | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Memo Alaska Recovery Act State Memo Alaska has substantial natural resources, including oil, gas, coal, solar, wind, geothermal, and hydroelectric power. The American Recovery &...

  15. Kansas Recovery Act State Memo | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Memo Kansas Recovery Act State Memo Kansas has substantial natural resources, including oil, gas, biomass and wind power.The American Recovery & Reinvestment Act (ARRA) is making...

  16. Louisiana Recovery Act State Memo | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Recovery Act State Memo Louisiana has substantial natural resources, including abundant oil, gas, coal, biomass, and hydroelectric power. The American Recovery & Reinvestment Act...

  17. Arkansas Recovery Act State Memo | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Arkansas Recovery Act State Memo Arkansas has substantial natural resources, including gas, oil, wind, biomass, and hydroelectric power. The American Recovery & Reinvestment Act...

  18. addiction recovery principles: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    management, and recovery coaching helped, or are now helping, transform addiction treatment into a more person-centered, holistic, family-centered, and recovery-focused system...

  19. Thermoelectric Waste Heat Recovery Program for Passenger Vehicles...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Waste Heat Recovery Program for Passenger Vehicles Thermoelectric Waste Heat Recovery Program for Passenger Vehicles 2012 DOE Hydrogen and Fuel Cells Program and Vehicle...

  20. An Overview of Thermoelectric Waste Heat Recovery Activities...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    An Overview of Thermoelectric Waste Heat Recovery Activities in Europe An Overview of Thermoelectric Waste Heat Recovery Activities in Europe An overview presentation of R&D...

  1. Opportunities and Challenges of Thermoelectrlic Waste Heat Recovery...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    and Challenges of Thermoelectrlic Waste Heat Recovery in the Automotive Industry Opportunities and Challenges of Thermoelectrlic Waste Heat Recovery in the Automotive Industry 2005...

  2. Performance of an Organic Rankine Cycle Waste Heat Recovery System...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Performance of an Organic Rankine Cycle Waste Heat Recovery System for Light Duty Diesel Engines Performance of an Organic Rankine Cycle Waste Heat Recovery System for Light Duty...

  3. Overview of Fords Thermoelectric Programs: Waste Heat Recovery...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Fords Thermoelectric Programs: Waste Heat Recovery and Climate Control Overview of Fords Thermoelectric Programs: Waste Heat Recovery and Climate Control Overview of progress...

  4. Recovery Act Workers Remediate and Restore Former Waste Sites...

    Office of Environmental Management (EM)

    Recovery Act Workers Remediate and Restore Former Waste Sites, Help Reduce Cold War Footprint Recovery Act Workers Remediate and Restore Former Waste Sites, Help Reduce Cold War...

  5. Recovery Act: Wind Energy Consortia between Institutions of Higher...

    Broader source: Energy.gov (indexed) [DOE]

    Recovery Act: Wind Energy Consortia between Institutions of Higher Learning and Industry Recovery Act: Wind Energy Consortia between Institutions of Higher Learning and Industry A...

  6. High Efficiency Microturbine with Integral Heat Recovery - Presentatio...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    High Efficiency Microturbine with Integral Heat Recovery - Presentation by Capstone Turbine Corporation, June 2011 High Efficiency Microturbine with Integral Heat Recovery -...

  7. Recovery Act Selections for Smart Grid Investment Grant Awards...

    Office of Environmental Management (EM)

    Recovery Act Selections for Smart Grid Investment Grant Awards- By Category Updated July 2010 Recovery Act Selections for Smart Grid Investment Grant Awards- By Category Updated...

  8. Steelmaker Matches Recovery Act Funds to Save Energy & Reduce...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    and installed with DOE Recovery Act Funding. Blast Furnace Gas Recovery Boiler Provides Steam and Power at Steel Mill More Documents & Publications Capturing Waste Gas: Saves...

  9. americium recovery service: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    25 Next Page Last Page Topic Index 1 Asynchronous intrusion recovery for interconnected web services Biology and Medicine Websites Summary: Asynchronous intrusion recovery for...

  10. Audit Report: The Department of Energy's American Recovery and...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    of Energy's American Recovery and Reinvestment Act - California State Energy Program Audit Report: The Department of Energy's American Recovery and Reinvestment Act - California...

  11. Methods for enhancing mapping of thermal fronts in oil recovery

    DOE Patents [OSTI]

    Lee, David O. (Albuquerque, NM); Montoya, Paul C. (Albuquerque, NM); Wayland, Jr., James R. (Albuquerque, NM)

    1987-01-01T23:59:59.000Z

    A method for enhancing the resistivity contrasts of a thermal front in an oil recovery production field as measured by the CSAMT technique is disclosed. This method includes the steps of: (a) preparing a CSAMT-determined topological resistivity map of the production field; (b) introducing a solution of a dopant material into the production field at a concentration effective to alter the resistivity associated with the thermal front; said dopant material having a high cation exchange capacity which might be selected from the group consisting of montmorillonite, illite, and chlorite clays; said material being soluble in the connate water of the production field; (c) preparing a CSAMT-determined topological resistivity map of the production field while said dopant material is moving therethrough; and (d) mathematically comparing the maps from step (a) and step (c) to determine the location of the thermal front. This method is effective with the steam flood, fire flood and water flood techniques.

  12. Methods for enhancing mapping of thermal fronts in oil recovery

    DOE Patents [OSTI]

    Lee, D.O.; Montoya, P.C.; Wayland, J.R. Jr.

    1984-03-30T23:59:59.000Z

    A method for enhancing the resistivity contrasts of a thermal front in an oil recovery production field as measured by the controlled source audio frequency magnetotelluric (CSAMT) technique is disclosed. This method includes the steps of: (1) preparing a CSAMT-determined topological resistivity map of the production field; (2) introducing a solution of a dopant material into the production field at a concentration effective to alter the resistivity associated with the thermal front; said dopant material having a high cation exchange capacity which might be selected from the group consisting of montmorillonite, illite, and chlorite clays; said material being soluble in the conate water of the production field; (3) preparing a CSAMT-determined topological resistivity map of the production field while said dopant material is moving therethrough; and (4) mathematically comparing the maps from step (1) and step (3) to determine the location of the thermal front. This method is effective with the steam flood, fire flood and water flood techniques.

  13. Strontium-90 and promethium-147 recovery

    SciTech Connect (OSTI)

    Hoisington, J.E.; McDonell, W.R.

    1982-08-30T23:59:59.000Z

    Strontium-90 and promethium-147 are fission product radionuclides with potential for use as heat source materials in high reliability, non-interruptible power supplies. Interest has recently been expressed in their utilization for Department of Defense (DOD) applications. This memorandum summarizes the current inventories, the annual production rates, and the possible recovery of Sr-90 and Pm-147 from nuclear materials production operations at Hanford and Savannah River. Recovery of these isotopes from LWR spend fuel utilizing the Barnwell Nuclear Fuels Plant (BNFP) is also considered. Unit recovery costs at each site are provided.

  14. Energy Recovery from Solid Waste for Small Cities - Has the Time Really Come?

    E-Print Network [OSTI]

    Winn, W. T., Jr.; Paxton, W.

    1980-01-01T23:59:59.000Z

    to consider energy recovery from solid waste using modular, two stage incinerations with waste heat recovery....

  15. Advanced Oil Recovery Technologies for Improved Recovery from Slope Basin Clastic Reservoirs, Nash Draw Brushy Canyon Pool, Eddy County, NM

    SciTech Connect (OSTI)

    Mark B. Murphy

    2005-09-30T23:59:59.000Z

    The Nash Draw Brushy Canyon Pool in Eddy County New Mexico was a cost-shared field demonstration project in the U.S. Department of Energy Class III Program. A major goal of the Class III Program was to stimulate the use of advanced technologies to increase ultimate recovery from slope-basin clastic reservoirs. Advanced characterization techniques were used at the Nash Draw Pool (NDP) project to develop reservoir management strategies for optimizing oil recovery from this Delaware reservoir. The objective of the project was to demonstrate that a development program, which was based on advanced reservoir management methods, could significantly improve oil recovery at the NDP. Initial goals were (1) to demonstrate that an advanced development drilling and pressure maintenance program can significantly improve oil recovery compared to existing technology applications and (2) to transfer these advanced methodologies to other oil and gas producers. Analysis, interpretation, and integration of recently acquired geological, geophysical, and engineering data revealed that the initial reservoir characterization was too simplistic to capture the critical features of this complex formation. Contrary to the initial characterization, a new reservoir description evolved that provided sufficient detail regarding the complexity of the Brushy Canyon interval at Nash Draw. This new reservoir description was used as a risk reduction tool to identify 'sweet spots' for a development drilling program as well as to evaluate pressure maintenance strategies. The reservoir characterization, geological modeling, 3-D seismic interpretation, and simulation studies have provided a detailed model of the Brushy Canyon zones. This model was used to predict the success of different reservoir management scenarios and to aid in determining the most favorable combination of targeted drilling, pressure maintenance, well stimulation, and well spacing to improve recovery from this reservoir. An Advanced Log Analysis technique developed from the NDP project has proven useful in defining additional productive zones and refining completion techniques. This program proved to be especially helpful in locating and evaluating potential recompletion intervals, which has resulted in low development costs with only small incremental increases in lifting costs. To develop additional reserves at lower costs, zones behind pipe in existing wells were evaluated using techniques developed for the Brushy Canyon interval. These techniques were used to complete uphole zones in thirteen of the NDP wells. A total of 14 recompletions were done: four during 1999, four during 2000, two during 2001, and four during 2002-2003. These workovers added reserves of 332,304 barrels of oil (BO) and 640,363 MCFG (thousand cubic feet of gas) at an overall weighted average development cost of $1.87 per BOE (barrel of oil equivalent). A pressure maintenance pilot project in a developed area of the field was not conducted because the pilot area was pressure depleted, and the reservoir in that area was found to be compartmentalized and discontinuous. Economic analyses and simulation studies indicated that immiscible injection of lean hydrocarbon gas for pressure maintenance was not warranted at the NDP and would need to be considered for implementation in similar fields very soon after production has started. Simulation studies suggested that the injection of miscible carbon dioxide (CO{sub 2}) could recover significant quantities of oil at the NDP, but a source of low-cost CO{sub 2} was not available in the area. Results from the project indicated that further development will be under playa lakes and potash areas that were beyond the regions covered by well control and are not accessible with vertical wells. These areas, covered by 3-D seismic surveys that were obtained as part of the project, were accessed with combinations of deviated/horizontal wells. Three directional/horizontal wells have been drilled and completed to develop reserves under surface-restricted areas and potash mines. The third

  16. Waste Heat Recovery Power Generation with WOWGen

    E-Print Network [OSTI]

    Romero, M.

    applications of heat recovery power generation can be found in Industry (e.g. steel, glass, cement, lime, pulp and paper, refining and petrochemicals), Power Generation (CHP, biomass, biofuel, traditional fuels, gasifiers, diesel engines) and Natural Gas...

  17. Lab completes Recovery Act-funded demolition

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    demolished under the Recovery Act program at Los Alamos National Laboratory is now a pile of rubble. Built in 1965, the 34,000-square foot High Temperature Chemistry Facility...

  18. Use Feedwater Economizers for Waste Heat Recovery

    SciTech Connect (OSTI)

    Not Available

    2006-01-01T23:59:59.000Z

    This revised ITP tip sheet on feedwater economizers for waste heat recovery provides how-to advice for improving industrial steam systems using low-cost, proven practices and technologies.

  19. Design Considerations for Industrial Heat Recovery Systems 

    E-Print Network [OSTI]

    Bywaters, R. P.

    1979-01-01T23:59:59.000Z

    recovery design considerations as well as a summary of typical "waste heat" sources and application sites. A procedure for conducting industrial waste heat surveys is presented. Thermodynamic and heat transfer factors are discussed. Problems associated...

  20. Unconventional gas recovery: state of knowledge document

    SciTech Connect (OSTI)

    Geffen, C.A.

    1982-01-01T23:59:59.000Z

    This report is a synthesis of environmental data and information relevant to the four areas of unconventional gas recovery (UGR) resource recovery: methane from coal, tight western sands, Devonian shales and geopressurized aquifers. Where appropriate, it provides details of work reviewed; while in other cases, it refers the reader to relevant sources of information. This report consists of three main sections, 2, 3, and 4. Section 2 describes the energy resource base involved and characteristics of the technology and introduces the environmental concerns of implementing the technology. Section 3 reviews the concerns related to unconventional gas recovery systems which are of significance to the environment. The potential health and safety concerns of the recovery of natural gas from these resources are outlined in Section 4.

  1. Heat Recovery Design Considerations for Cogeneration Systems 

    E-Print Network [OSTI]

    Pasquinelli, D. M.; Burns, E. D.

    1985-01-01T23:59:59.000Z

    The design and integration of the heat recovery section, which includes the steam generation, auxiliary firing, and steam turbine modules, is critical to the overall performance and economics of cogeneration, systems. In gas turbine topping...

  2. Fluid Catalytic Cracking Power Recovery Computer Simulation

    E-Print Network [OSTI]

    Samurin, N. A.

    1979-01-01T23:59:59.000Z

    operating conditions. The digital computer model simulates the performance of the axial compressor, power recovery expander, regenerator section, and system pressure drops. The program can simulate the process system design conditions for compatibility...

  3. Accuracy guarantees for l1-recovery ?

    E-Print Network [OSTI]

    2010-11-05T23:59:59.000Z

    Nov 5, 2010 ... entries in the signal x (of norm x1 = 5s). On Figure 3 we present the recovery error as a function of s. We run the same simulations in the ...

  4. RECOVERY ACT: TAPOCO PROJECT: CHEOAH UPGRADE

    SciTech Connect (OSTI)

    Tran, Paul; 740, 293 Highway; Baden, NC 28009

    2013-02-28T23:59:59.000Z

    Under Funding Opportunity Announcement Number: DE-FOA-0000120, Recovery Act: Hydroelectric Facility Modernization, Alcoa Power Generating Inc. (APGI), a fully owned subsidiary of Alcoa Inc., implemented major upgrades at its Cheoah hydroelectric facility near Robbinsville, North Carolina.

  5. Recovery News Flashes | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    and radioactive waste landfill. MDA-B was used from 1944 to 1948. April 14, 2011 Idaho Site Advances Recovery Act Cleanup after Inventing Effective Treatment For the first...

  6. Asset Management Equipment Disposal Form -Refrigerant Recovery

    E-Print Network [OSTI]

    Sin, Peter

    Asset Management Equipment Disposal Form - Refrigerant Recovery Safe Disposal Requirements Under refrigeration, cold storage warehouse refrigeration, chillers, and industrial process refrigeration) has to have the refrigerant recovered in accordance with EPA's requirements for servicing. However, equipment that typically

  7. Autonomous Thruster Failure Recovery for Underactuated Spacecraft

    E-Print Network [OSTI]

    . Miller September 2010 SSL #13­10 #12;2 #12;Autonomous Thruster Failure Recovery for Underactuated Spacecraft Christopher Masaru Pong, David W. Miller September 2010 SSL #12­11 This work is based

  8. Recovery Act State Memos South Dakota

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    solar-wind generates savings for S.D. city ... 6 Clean energy tax credits and grants: 1 For total Recovery Act jobs numbers in South Dakota go to...

  9. Heat Recovery Design Considerations for Cogeneration Systems

    E-Print Network [OSTI]

    Pasquinelli, D. M.; Burns, E. D.

    The design and integration of the heat recovery section, which includes the steam generation, auxiliary firing, and steam turbine modules, is critical to the overall performance and economics of cogeneration, systems. In gas turbine topping...

  10. Autonomous thruster failure recovery for underactuated spacecraft

    E-Print Network [OSTI]

    Pong, Christopher Masaru

    2010-01-01T23:59:59.000Z

    Thruster failures historically account for a large percentage of failures that have occurred on orbit. Therefore, autonomous thruster failure detection, isolation, and recovery (FDIR) is an essential component to any robust ...

  11. Recovery Act-Funded HVAC projects

    Broader source: Energy.gov [DOE]

    The U.S. Department of Energy was allocated funding from the American Recovery and Reinvestment Act to conduct research into heating, ventilation, and air conditioning (HVAC) technologies and...

  12. Pennsylvania Solid Waste- Resource Recovery Development Act

    Broader source: Energy.gov [DOE]

    This act promotes the construction and the application of solid waste disposal/processing and resource recovery systems that preserve and enhance the quality of air, water, and land resources. The...

  13. An Introduction to Waste Heat Recovery

    E-Print Network [OSTI]

    Darby, D. F.

    our dependence on petroleum-based fuels, paper, glass, and agricultural and automotive and hence improve our merchandise .trade balance. equipment industries have all had proven success with heat recovery projects. Solar, wind, geothermal, oil shale...

  14. Recovery Plan Scots Pine Blister Rust

    E-Print Network [OSTI]

    . Monitoring and Detection 7 V. Response 8 VI. USDA Pathogens Permits 9 VII. Economic Impact and Compensation Recovery System (NPDRS) called for in Homeland Security Presidential Directive Number 9 (HSPD-9

  15. Gravity Recovery and Interior Laboratory (GRAIL) Launch

    E-Print Network [OSTI]

    Gravity Recovery and Interior Laboratory (GRAIL) Launch Press Kit/AUGUst 2011 #12;http of its four channels to AC-3, making each channel's secondary audio MPEG 1 Layer II. For digital downlink

  16. Fluid Catalytic Cracking Power Recovery Computer Simulation 

    E-Print Network [OSTI]

    Samurin, N. A.

    1979-01-01T23:59:59.000Z

    operating conditions. The digital computer model simulates the performance of the axial compressor, power recovery expander, regenerator section, and system pressure drops. The program can simulate the process system design conditions for compatibility...

  17. Recovery Act Worker Update: Mike Gunnels

    SciTech Connect (OSTI)

    Tire, Brian

    2010-01-01T23:59:59.000Z

    Mike Gunnels at the Savannah River Site tells how the Recovery Act got him out of unemployment and the benefits of training and teamwork in his new job with the Department of Energy.

  18. Recovery Act Worker Update: Mike Gunnels

    ScienceCinema (OSTI)

    Tire, Brian

    2012-06-14T23:59:59.000Z

    Mike Gunnels at the Savannah River Site tells how the Recovery Act got him out of unemployment and the benefits of training and teamwork in his new job with the Department of Energy.

  19. Recovery Act-Funded Working Fluid Projects

    Broader source: Energy.gov [DOE]

    The U.S. Department of Energy was allocated funding from the American Recovery and Reinvestment Act to conduct research into working fluid technologies and applications. Projects funded by the...

  20. Energy Recovery from Potato Chip Fryers

    E-Print Network [OSTI]

    McKee, H. B.; Kympton, H. W.; Arnold, J. W.; Paisan, J. J.

    1980-01-01T23:59:59.000Z

    The design, operating characteristics, and energy savings from an energy recovery system employed on a potato chip fryer which became operational in December, 1979, is discussed. The design incorporates a modification to an odor control system which...

  1. An Introduction to Waste Heat Recovery 

    E-Print Network [OSTI]

    Darby, D. F.

    1985-01-01T23:59:59.000Z

    The recovery of waste heat energy is one element of a complete energy conservation plan. In addition to contributing to the goal of saving energy, utilization of waste heat is also an important source of cost savings. This presentation details...

  2. Recovery Act-Funded Water Heating Projects

    Broader source: Energy.gov [DOE]

    The U.S. Department of Energy was allocated funding from the American Recovery and Reinvestment Act to conduct research into water heating technologies and applications. Projects funded by the...

  3. Recovery Act State Memos American Samoa

    Energy Savers [EERE]

    Recovery Act funds to set up eight anemometers to measure and quantify the territory's wind potential. Award(s): 9.6 million, Energy Efficiency and Conservation Block Grant...

  4. Design Considerations for Industrial Heat Recovery Systems

    E-Print Network [OSTI]

    Bywaters, R. P.

    1979-01-01T23:59:59.000Z

    recovery design considerations as well as a summary of typical "waste heat" sources and application sites. A procedure for conducting industrial waste heat surveys is presented. Thermodynamic and heat transfer factors are discussed. Problems associated...

  5. Waste Heat Recovery – Submerged Arc Furnaces (SAF)

    E-Print Network [OSTI]

    O'Brien, T.

    2008-01-01T23:59:59.000Z

    Waste Heat Recovery- Submerged Arc Furnaces (SAF) Thomas O?Brien Recycled Energy Development, LLC tobrien@recycled-energy.com Submerged Arc Furnaces are used to produce high temperature alloys. These furnaces typically run at 3000oF using...

  6. Industrial Waste Heat Recovery Using Heat Pipes

    E-Print Network [OSTI]

    Ruch, M. A.

    1981-01-01T23:59:59.000Z

    -expanding variety of industrial processes. One notable application in recent years has been for combustion airs preheat of fired heaters in petroleum refineries and petrochemical plants. Another recent development has been a waste heat recovery boiler using heat...

  7. Catastrophic Incident Recovery: Long-Term Recovery from an Anthrax Event Symposium

    SciTech Connect (OSTI)

    Lesperance, Ann M.

    2008-06-30T23:59:59.000Z

    On March 19, 2008, policy makers, emergency managers, and medical and Public Health officials convened in Seattle, Washington, for a workshop on Catastrophic Incident Recovery: Long-Term Recovery from an Anthrax Event. The day-long symposium was aimed at generating a dialogue about restoration and recovery through a discussion of the associated challenges that impact entire communities, including people, infrastructure, and critical systems.

  8. Biochemically enhanced oil recovery and oil treatment

    DOE Patents [OSTI]

    Premuzic, E.T.; Lin, M.

    1994-03-29T23:59:59.000Z

    This invention relates to the preparation of new, modified organisms, through challenge growth processes, that are viable in the extreme temperature, pressure and pH conditions and salt concentrations of an oil reservoir and that are suitable for use in microbial enhanced oil recovery. The modified microorganisms of the present invention are used to enhance oil recovery and remove sulfur compounds and metals from the crude oil. 62 figures.

  9. Faces of the Recovery Act: 1366 Technologies

    SciTech Connect (OSTI)

    Sachs, Ely; Mierlo, Frank van; Obama, Barack

    2010-01-01T23:59:59.000Z

    LEXINGTON, MA - At 1366 Technologies, Ely Sachs and Frank van Mierlo are using ARPA-E Recovery Act funding to dramatically reduce the costs of solar panel production. To read more about the project: http://arpa-e.energy.gov/FundedProjects.aspx#1366 To see more projects funded by the Recovery Act through ARPA-E: http://arpa-e.energy.gov/FundedProjects.aspx

  10. Faces of the Recovery Act: 1366 Technologies

    ScienceCinema (OSTI)

    Sachs, Ely; Mierlo, Frank van; Obama, Barack

    2013-05-29T23:59:59.000Z

    LEXINGTON, MA - At 1366 Technologies, Ely Sachs and Frank van Mierlo are using ARPA-E Recovery Act funding to dramatically reduce the costs of solar panel production. To read more about the project: http://arpa-e.energy.gov/FundedProjects.aspx#1366 To see more projects funded by the Recovery Act through ARPA-E: http://arpa-e.energy.gov/FundedProjects.aspx

  11. Exhaust Gas Energy Recovery Technology Applications

    SciTech Connect (OSTI)

    Wagner, Robert M [ORNL] [ORNL; Szybist, James P [ORNL] [ORNL

    2014-01-01T23:59:59.000Z

    Exhaust waste heat recovery systems have the potential to significantly improve vehicle fuel economy for conventional and hybrid electric powertrains spanning passenger to heavy truck applications. This chapter discusses thermodynamic considerations and three classes of energy recovery technologies which are under development for vehicle applications. More specifically, this chapter describes the state-of-the-art in exhaust WHR as well as challenges and opportunities for thermodynamic power cycles, thermoelectric devices, and turbo-compounding systems.

  12. Biochemically enhanced oil recovery and oil treatment

    DOE Patents [OSTI]

    Premuzic, Eugene T. (East Moriches, NY); Lin, Mow (Rocky Point, NY)

    1994-01-01T23:59:59.000Z

    This invention relates to the preparation of new, modified organisms, through challenge growth processes, that are viable in the extreme temperature, pressure and pH conditions and salt concentrations of an oil reservoir and that are suitable for use in microbial enhanced oil recovery. The modified microorganisms of the present invention are used to enhance oil recovery and remove sulfur compounds and metals from the crude oil.

  13. Recovery of tritium from tritiated molecules

    DOE Patents [OSTI]

    Swansiger, W.A.

    1984-10-17T23:59:59.000Z

    This invention relates to the recovery of tritium from various tritiated molecules by reaction with uranium. More particularly, the invention relates to the recovery of tritium from tritiated molecules by reaction with uranium wherein the reaction is conducted in a reactor which permits the reaction to occur as a moving front reaction from the point where the tritium enters the reactor charged with uranium down the reactor until the uranium is exhausted.

  14. Advanced Fluidized Bed Waste Heat Recovery Systems

    E-Print Network [OSTI]

    Peterson, G. R.

    ADVANCED FLUIDIZED BED WASTE HEAT RECOVERY SYSTEMS G. R. PETERSON Project Manager U.S. Department of Energy, Idaho Operations Office Idaho Falls, Idaho ABSTRACT The U.S. Department of Energy, Office of Industri al Programs, has sponsored... the development of a Fluidized Bed Waste Heat Recovery System (FBWHRS) and a higher temperature variant, the Ceramic Tubular Distributor Plate (CTOP) Fluidized Bed Heat Exchanger (FBHX) system. Both systems recover energy from high-temperature flue gases...

  15. Advanced Oil Recovery Technologies for Improved Recovery From Slope Basin Clastic reservoirs, Nash Draw Brushy Canyon Pool, Eddy County, New Mexico

    SciTech Connect (OSTI)

    Mark B. Murphy

    1998-04-30T23:59:59.000Z

    The overall goal of this project is to demonstrate that an advanced development drilling and pressure maintenance program based on advanced reservoir management methods can significantly improve oil recovery. The plan included developing a control area using standard reservoir management techniques and comparing its performance to an area developed using advanced methods. A key goal is to transfer advanced methodologies to oil and gas producers in the Permian Basin and elsewhere, and throughout the US oil and gas industry.

  16. LOWER COLUMBIA SALMON RECOVERY & SUBBASIN PLAN December 2004 RECOVERY GOALS 5-1

    E-Print Network [OSTI]

    ." This vision for recovery encompasses ESA de-listing goals in the sense that ESA de-listing could be achieved

  17. Evaluate Supply and Recovery of Woody Biomass for Energy

    E-Print Network [OSTI]

    Gray, Matthew

    Biomass Recovery DataContrasting Woody Biomass Recovery Data Forest Biomass Supply in the Southeastern4/11/2011 1 Evaluate Supply and Recovery of Woody Biomass for Energy Production from Natural. Other studies of biomass supply have supply have assumedassumed a technical recovery rate

  18. Polycarbonate filter technique for collection of sorted cells

    SciTech Connect (OSTI)

    Folstad, L.; Look, M.; Pallavicini, M.

    1982-01-01T23:59:59.000Z

    We describe the application of polycarbonate filters to the collection of cells sorted by flow cytometry. Cells are sorted directly onto polycarbonate filters and transferred to microscope slides which are then processed to dissolve the filter and remove pore outlines. The technique results in cell preparations which retain cellular morphology and have highcell recovery of 82 to 100%.

  19. Oil recovery enhancement from fractured, low permeability reservoirs. Annual report 1990--1991, Part 1

    SciTech Connect (OSTI)

    Poston, S.W.

    1991-12-31T23:59:59.000Z

    Joint funding by the Department of Energy and the State of Texas has Permitted a three year, multi-disciplinary investigation to enhance oil recovery from a dual porosity, fractured, low matrix permeability oil reservoir to be initiated. The Austin Chalk producing horizon trending thru the median of Texas has been identified as the candidate for analysis. Ultimate primary recovery of oil from the Austin Chalk is very low because of two major technological problems. The commercial oil producing rate is based on the wellbore encountering a significant number of natural fractures. The prediction of the location and frequency of natural fractures at any particular region in the subsurface is problematical at this time, unless extensive and expensive seismic work is conducted. A major portion of the oil remains in the low permeability matrix blocks after depletion because there are no methods currently available to the industry to mobilize this bypassed oil. The following multi-faceted study is aimed to develop new methods to increase oil and gas recovery from the Austin Chalk producing trend. These methods may involve new geological and geophysical interpretation methods, improved ways to study production decline curves or the application of a new enhanced oil recovery technique. The efforts for the second year may be summarized as one of coalescing the initial concepts developed during the initial phase to more in depth analyses. Accomplishments are predicting natural fractures; relating recovery to well-log signatures; development of the EOR imbibition process; mathematical modeling; and field test.

  20. Resource Recovery Opportunities at America’s Water Resource Recovery Facilities

    Broader source: Energy.gov [DOE]

    Breakout Session 3A—Conversion Technologies III: Energy from Our Waste—Will we Be Rich in Fuel or Knee Deep in Trash by 2025? Resource Recovery Opportunities at America’s Water Resource Recovery Facilities Todd Williams, Deputy Leader for Wastewater Infrastructure Practice, CH2M HILL

  1. Surface process study for oil recovery using a thermal extraction process

    SciTech Connect (OSTI)

    Sethl, V.K.; Satchwell, R.M.; Johnson, L.A. Jr.

    1994-06-01T23:59:59.000Z

    Geological studies have shown that there are many surface or near-surface deposits in the United States that contain large quantities of petroleum. In the State of Wyoming, a high concentration of such deposits exists in the Wind River, Big Horn, and Powder River Basins. These shallow deposits typically occur as unconsolidated or friable formations that contain millions of barrels of oil. Conventional petroleum production techniques have been attempted in many of these deposits with little or no economic success. In an attempt to improve the production economics, the Western Research Institute was solicited to develop a technique for the recovery of oil from these deposits. WRI, with support from the Economic and Community Development Division of the State of Wyoming, and as a part of the WRI/US Department of Energy, Jointly Sponsored Research program, proposed to develop, test, and demonstrate a viable and economical technology for the recovery of oil using mining and surface recovery processes. Reneau Energy, Inc. of La Quinta, California, agreed to participate in the project in providing a test site and mined materials. The goal of the proposed project to be completed in two phases, was to develop existing energy resources which are not presently being utilized. Phase 1 of the project, consisting of six specific tasks, was conducted to evaluate the suitability of various surface processing schemes. Phase 1 also included gravity drainage tests to determine if recovery techniques such as horizontal drilling could be applied. Phase 1 work was completed, and a final report was prepared and submitted to the funding agencies. Based on the results obtained in Phase 1 of the project, fluidized-bed based thermal recovery appeared to be a viable option. A 100 tons per day pilot plant was designed, constructed, and operated in the field. This report describes the results and experiences of the Phase 2 testing.

  2. OPTICAL FIBER SENSOR TECHNOLOGIES FOR EFFICIENT AND ECONOMICAL OIL RECOVERY

    SciTech Connect (OSTI)

    A. Wang; H. Xiao; R. May

    1999-10-29T23:59:59.000Z

    Efficient and complete recovery of petroleum reserves from existing oil wells has proven difficult due to a lack of robust instrumentation that can monitor processes in the downhole environment. Commercially available sensors for measurement of pressure, temperature, and fluid flow exhibit shortened lifetimes in the harsh downhole conditions, which are characterized by high pressures (up to 20 kpsi), temperatures up to 250 C, and exposure to chemically reactive fluids. Development of robust sensors that deliver continuous, real-time data on reservoir performance and petroleum flow pathways will facilitate application of advanced recovery technologies, including horizontal and multi-lateral wells. The main objective of the research program is to develop cost-effective, reliable fiber sensor instrumentation for real-time monitoring and /or control of various key parameters crucial to efficient and economical oil production. This report presents the detailed research work and technical progress from October 1, 1998 to September 30, 1999. The research performed over the first year of the program has followed the schedule as proposed, and solid research progress has been made in specification of the technical requirements, design and fabrication of the SCIIB sensor probes, development of the sensor systems, development of DSP-based signal processing techniques, and construction of the test systems. These technical achievements will significantly help to advance continued research on sensor tests and evaluation during the second year of the program.

  3. Alternate Materials for Recovery Boiler Superheater Tubes

    SciTech Connect (OSTI)

    Keiser, James R [ORNL; Kish, Joseph [McMaster University; Singbeil, Douglas [FPInnovations

    2009-01-01T23:59:59.000Z

    The ever escalating demands for increased efficiency of all types of boilers would most sensibly be realized by an increase in the steam parameters of temperature and pressure. However, materials and corrosion limitations in the steam generating components, particularly the superheater tubes, present major obstacles to boiler designers in achieving systems that can operate under the more severe conditions. This paper will address the issues associated with superheater tube selection for many types of boilers; particularly chemical recovery boilers, but also addressing the similarities in issues for biomass and coal fired boilers. It will also review our recent study of materials for recovery boiler superheaters. Additional, more extensive studies, both laboratory and field, are needed to gain a better understanding of the variables that affect superheater tube corrosion and to better determine the best means to control this corrosion to ultimately permit operation of recovery boilers at higher temperatures and pressures.

  4. Inherently safe in situ uranium recovery

    DOE Patents [OSTI]

    Krumhansl, James L; Brady, Patrick V

    2014-04-29T23:59:59.000Z

    An in situ recovery of uranium operation involves circulating reactive fluids through an underground uranium deposit. These fluids contain chemicals that dissolve the uranium ore. Uranium is recovered from the fluids after they are pumped back to the surface. Chemicals used to accomplish this include complexing agents that are organic, readily degradable, and/or have a predictable lifetime in an aquifer. Efficiency is increased through development of organic agents targeted to complexing tetravalent uranium rather than hexavalent uranium. The operation provides for in situ immobilization of some oxy-anion pollutants under oxidizing conditions as well as reducing conditions. The operation also artificially reestablishes reducing conditions on the aquifer after uranium recovery is completed. With the ability to have the impacted aquifer reliably remediated, the uranium recovery operation can be considered inherently safe.

  5. Recovery of enriched stable isotopes in radionuclide production

    SciTech Connect (OSTI)

    Razbash, A.A.; Sevastyanov, Yu.G.; Polyakov, O.N.; Krasnov, N.N.; Konyakhin, N.A.; Tolstouhov, Yu.V.; Maklachkov, A.G. [Cyclotron Co. Ltd., Obninsk (Russian Federation)

    1994-12-31T23:59:59.000Z

    The wide application of radionuclides in different fields of science and industry demanded an increase of their production. One of the ways to increase the radionuclide production on present cyclotrons is the use of the targets from enriched stable isotopes. This allows one to raise the productivity in some cases by two or more times and to increase radionuclidic purity. It should be noted, however, that enriched stable isotopes are very expensive. Therefore it is advisable to use such raw materials more than once. In the last ten years, The authors have used stable isotopes extensively for making of targets. Zinc-67 and zinc-68, cadmium-111 and cadmium-112, nickel-58, silver-109, thallium-203 have been employed for the production of gallium-67, indium-111, cobalt-57, cadmium-109 and thallium-201, respectively. The technique for the recovery of enriched stable isotopes has been developed. In this report the schemes of the recovering processes are presented.

  6. Hydrogeophysical methods for analyzing aquifer storage and recovery systems

    SciTech Connect (OSTI)

    Minsley, B.J.; Ajo-Franklin, J.; Mukhopadhyay, A.; Morgan, F.D.

    2009-12-01T23:59:59.000Z

    Hydrogeophysical methods are presented that support the siting and monitoring of aquifer storage and recovery (ASR) systems. These methods are presented as numerical simulations in the context of a proposed ASR experiment in Kuwait, although the techniques are applicable to numerous ASR projects. Bulk geophysical properties are calculated directly from ASR flow and solute transport simulations using standard petrophysical relationships and are used to simulate the dynamic geophysical response to ASR. This strategy provides a quantitative framework for determining site-specific geophysical methods and data acquisition geometries that can provide the most useful information about the ASR implementation. An axisymmetric, coupled fluid flow and solute transport model simulates injection, storage, and withdrawal of fresh water (salinity {approx}500 ppm) into the Dammam aquifer, a tertiary carbonate formation with native salinity approximately 6000 ppm. Sensitivity of the flow simulations to the correlation length of aquifer heterogeneity, aquifer dispersivity, and hydraulic permeability of the confining layer are investigated. The geophysical response using electrical resistivity, time-domain electromagnetic (TEM), and seismic methods is computed at regular intervals during the ASR simulation to investigate the sensitivity of these different techniques to changes in subsurface properties. For the electrical and electromagnetic methods, fluid electric conductivity is derived from the modeled salinity and is combined with an assumed porosity model to compute a bulk electrical resistivity structure. The seismic response is computed from the porosity model and changes in effective stress due to fluid pressure variations during injection/recovery, while changes in fluid properties are introduced through Gassmann fluid substitution.

  7. A new muscle fatigue and recovery model and its ergonomics application in human simulation

    E-Print Network [OSTI]

    Ma, Liang; Bennis, Fouad; Zhang, Wei; Guillaume, François; 10.1080/17452759.2010.504056

    2010-01-01T23:59:59.000Z

    Although automatic techniques have been employed in manufacturing industries to increase productivity and efficiency, there are still lots of manual handling jobs, especially for assembly and maintenance jobs. In these jobs, musculoskeletal disorders (MSDs) are one of the major health problems due to overload and cumulative physical fatigue. With combination of conventional posture analysis techniques, digital human modelling and simulation (DHM) techniques have been developed and commercialized to evaluate the potential physical exposures. However, those ergonomics analysis tools are mainly based on posture analysis techniques, and until now there is still no fatigue index available in the commercial software to evaluate the physical fatigue easily and quickly. In this paper, a new muscle fatigue and recovery model is proposed and extended to evaluate joint fatigue level in manual handling jobs. A special application case is described and analyzed by digital human simulation technique.

  8. A new muscle fatigue and recovery model and its ergonomics application in human simulation

    E-Print Network [OSTI]

    Ma, Liang; Bennis, Fouad; Zhang, Wei; Guillaume, François

    2009-01-01T23:59:59.000Z

    Although automatic techniques have been employed in manufacturing industries to increase productivity and efficiency, there are still lots of manual handling jobs, especially for assembly and maintenance jobs. In these jobs, musculoskeletal disorders (MSDs) are one of the major health problems due to overload and cumulative physical fatigue. With combination of conventional posture analysis techniques, digital human modelling and simulation (DHM) techniques have been developed and commercialized to evaluate the potential physical exposures. However, those ergonomics analysis tools are mainly based on posture analysis techniques, and until now there is still no fatigue index available in the commercial software to evaluate the physical fatigue easily and quickly. In this paper, a new muscle fatigue and recovery model is proposed and extended to evaluate joint fatigue level in manual handling jobs. A special application case is described and analyzed by digital human simulation technique.

  9. Application of computed tomography to enhanced oil recovery studies in naturally fractured reservoirs 

    E-Print Network [OSTI]

    Fineout, James Mark

    1992-01-01T23:59:59.000Z

    , they developed both a single matrix block model and a dual matrix block model with variable fracture width. These tests related imbibition theory with regard to matrix block size, permeability and fluid viscosity affects on oil recovery. They also determined... in naturally fractured reservoirs have relied upon material balance calculations to determine saturation changes. Through the use of Computed Tomography scanning, we have developed a technique not only to determine saturation changes but also positional...

  10. Methane Digesters and Biogas Recovery - Masking the Environmental Consequences of Industrial Concentrated Livestock Production

    E-Print Network [OSTI]

    Di Camillo, Nicole G.

    2011-01-01T23:59:59.000Z

    Methane Digesters and Biogas Recovery-Masking theII. METHANE DIGESTERS AND BIOGAs RECOVERY- IN THE2011] METHANE DIGESTERS AND BIOGAS RECOVERY methane, and 64%

  11. Methane Digesters and Biogas Recovery - Masking the Environmental Consequences of Industrial Concentrated Livestock Production

    E-Print Network [OSTI]

    Di Camillo, Nicole G.

    2011-01-01T23:59:59.000Z

    DIGESTERS AND BIOGAS RECOVERY Digesters Do Not Address theMethane Digesters and Biogas Recovery-Masking theII. METHANE DIGESTERS AND BIOGAs RECOVERY- IN THE

  12. Proceedings: International Conference on Boiler Tube Failures and Heat Recovery Steam Generator (HRSG) Tube Failures and Inspections

    SciTech Connect (OSTI)

    None

    2002-10-01T23:59:59.000Z

    Tube failures remain the leading cause of availability loss in conventional fossil plants and combined cycle/heat recovery steam generator (HRSG) plants. These conference proceedings address state-of-the-art practices and techniques worldwide for understanding and reducing tube failures.

  13. Asynchronous intrusion recovery for interconnected web services

    E-Print Network [OSTI]

    Sabatini, David M.

    Asynchronous intrusion recovery for interconnected web services Ramesh Chandra, Taesoo Kim, and tracking down and recovering from such an attack re- quires significant manual effort. Web services for such web services. Aire addresses several challenges, such as propagating repair across services when some

  14. After a Disaster: Recovery Safety Tips (Spanish) 

    E-Print Network [OSTI]

    FCS Project Team - FDRM UNIT

    2007-10-08T23:59:59.000Z

    /recovery_assistance Producido por AgriLife Communications and Marketing, El Sistema Texas A&M Las publicaciones de Texas AgriLife Extension Service se pueden encontrar en Internet en: http://AgriLifebookstore.org Los programas educativos de Texas AgriLife Extension Service est...

  15. An Integrated Low Level Heat Recovery System

    E-Print Network [OSTI]

    Sierra, A. V., Jr.

    1981-01-01T23:59:59.000Z

    A large amount of low level thermal energy is lost to air or water in a typical petroleum refinery. This paper discusses a complex integrated low level heat recovery system that is being engineered for installation in a large petroleum refinery...

  16. After a Disaster: Recovery Safety Tips (Spanish)

    E-Print Network [OSTI]

    FCS Project Team - FDRM UNIT

    2007-10-08T23:59:59.000Z

    /recovery_assistance Producido por AgriLife Communications and Marketing, El Sistema Texas A&M Las publicaciones de Texas AgriLife Extension Service se pueden encontrar en Internet en: http://AgriLifebookstore.org Los programas educativos de Texas AgriLife Extension Service est...

  17. Heat Recovery Boilers for Process Applications

    E-Print Network [OSTI]

    Ganapathy, V.; Rentz, J.; Flanagan, D.

    of the use of heat recovery due primarily to process considerations. On the other hand, cost and payback are main considerations in the case of gas turbine and incineration plants, where large quantities of gases are exhausted at temperatures varying from 800...

  18. The Economic Recovery Tax Act of 1981.

    E-Print Network [OSTI]

    Pena, Jose G.; Lovell, Ashley C.; Kensing, Robert H.

    1983-01-01T23:59:59.000Z

    The Texas A&M University System Texas Agricultural Extension Service Zerle L. Carpenter, Director College Station B-1456 The Economic Recovery Tax Act of 1981 Better Estate Plannin CONTENTS Increase in Unified Credit... .................................................................... 7 Repeal of Orphans' Exclusion ............................................................. 7 Delay in the Imposition of New Generation-Skipping Tax .................................... 7 Technical Changes in Special Use Valuation Provisions...

  19. Disaster Resiliency and Recovery: Capabilities (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2012-11-01T23:59:59.000Z

    The National Renewable Energy Laboratory (NREL) is the nation's leader in energy efficient and renewable energy technologies, practices, and strategies. For the last 15 years, NREL has provided expertise, tools, and innovations to private industry; federal, state, and local governments; non-profit organizations; and communities during the planning, recovery, and rebuilding stages after disaster strikes.

  20. Rankine cycle waste heat recovery system

    DOE Patents [OSTI]

    Ernst, Timothy C.; Nelson, Christopher R.

    2014-08-12T23:59:59.000Z

    This disclosure relates to a waste heat recovery (WHR) system and to a system and method for regulation of a fluid inventory in a condenser and a receiver of a Rankine cycle WHR system. Such regulation includes the ability to regulate the pressure in a WHR system to control cavitation and energy conversion.

  1. Recovery Act Weekly Video: 200 West Drilling

    ScienceCinema (OSTI)

    None

    2012-06-14T23:59:59.000Z

    President of Cascade Drilling, Bruce, talks about his contract with the Department of Energy and what his team is doing to improve water treatment and environmental cleanup. The small business owner hits on how the Recovery Act saved him from downsizing and helped him stay competitive and safe on site.

  2. Energy Recovery from Potato Chip Fryers 

    E-Print Network [OSTI]

    McKee, H. B.; Kympton, H. W.; Arnold, J. W.; Paisan, J. J.

    1980-01-01T23:59:59.000Z

    permits heat recovery from the fryer cooking fumes. The fumes consist primarily of water vapor (11 psia) and air (3.7 psia) at a temperature of 275 F. About 10% of the available energy is dissipated in a scrubber which removes particulate material...

  3. Waste water treatment and metal recovery

    E-Print Network [OSTI]

    Braun, Paul

    Waste water treatment and metal recovery Nickel catalysts for hydrogen production Nickel and single versions of which contained cobalt, chromium, carbon, molybdenum, tungsten, and nickel. In 1911 and 1912% on their stainless steel production. The company paid sizable dividends to its owners until it was dissolved

  4. Avoided Gigawatts Through Utility Capital Recovery Fees

    E-Print Network [OSTI]

    Frosenfeld, A. N.; Verdict, M. E.

    1985-01-01T23:59:59.000Z

    structure is possible through the use of capital recovery fees for new electric meter hookups similar to those commonly used for new water and wastewater hookups where the developer/owner is required to capitalize the marginal cost of new demand. By giving...

  5. An experimental and theoretical study to relate uncommon rock/fluid properties to oil recovery. Final report

    SciTech Connect (OSTI)

    Watson, R.

    1995-07-01T23:59:59.000Z

    Waterflooding is the most commonly used secondary oil recovery technique. One of the requirements for understanding waterflood performance is a good knowledge of the basic properties of the reservoir rocks. This study is aimed at correlating rock-pore characteristics to oil recovery from various reservoir rock types and incorporating these properties into empirical models for Predicting oil recovery. For that reason, this report deals with the analyses and interpretation of experimental data collected from core floods and correlated against measurements of absolute permeability, porosity. wettability index, mercury porosimetry properties and irreducible water saturation. The results of the radial-core the radial-core and linear-core flow investigations and the other associated experimental analyses are presented and incorporated into empirical models to improve the predictions of oil recovery resulting from waterflooding, for sandstone and limestone reservoirs. For the radial-core case, the standardized regression model selected, based on a subset of the variables, predicted oil recovery by waterflooding with a standard deviation of 7%. For the linear-core case, separate models are developed using common, uncommon and combination of both types of rock properties. It was observed that residual oil saturation and oil recovery are better predicted with the inclusion of both common and uncommon rock/fluid properties into the predictive models.

  6. Recovery Act Workers Accomplish Cleanup of Second Cold War Coal...

    Office of Environmental Management (EM)

    June 21, 2011 Recovery Act Workers Accomplish Cleanup of Second Cold War Coal Ash Basin AIKEN, S.C. - American Recovery and Reinvestment Act workers re- cently cleaned up a second...

  7. Industrial HVAC Air-to-Air Energy Recovery Retrofit Economics

    E-Print Network [OSTI]

    Graham, E. L.

    1980-01-01T23:59:59.000Z

    Retrofitting air-to-air energy recovery equipment is relatively simply to design and easy to install. Additionally, HVAC energy recovery is almost risk free when compared to process retrofit. Life cycle cost analysis is the best way to illustrate...

  8. ADAPTIVE SENSING FOR SPARSE SIGNAL RECOVERY Jarvis Haupt, Robert Nowak

    E-Print Network [OSTI]

    Castro, Rui

    ADAPTIVE SENSING FOR SPARSE SIGNAL RECOVERY Jarvis Haupt, Robert Nowak University of Wisconsin remains stable in the presence of random noise; i.e., the recovery degrades gracefully, but markedly

  9. advanced heat recovery: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Generator Heat Recovery Alternative Uses: 1. Campus heating load 2. Steam turbine chiller to campus cooling,000 tons (Standby) (average) Heat Recovery 13.5 MW 5.6MW 1 MW...

  10. BRIEF REPORT Autonomic recovery and habituation in social anxiety

    E-Print Network [OSTI]

    Gross, James J.

    trait socially anxious (HTSA) and low trait socially anxious (LTSA) individuals show comparable between groups might emerge during recovery or habituation, 35 HTSA and LTSA participants gave two the LTSA participants, autonomic measures showed comparable reactivity, habituation, and recovery

  11. Mineral Nutrient Recovery from Pyrolysis Co-Products 

    E-Print Network [OSTI]

    Wise, Jatara Rob

    2012-07-16T23:59:59.000Z

    -bed reactors located in College Station, TX and Wyndmoor, PA. Nutrient recoveries, on a feedstock basis, were calculated for a comparison of reactor efficiencies. In addition to nutrient recoveries, physical and chemical properties of input biomass and of bio...

  12. Methane productivity and nutrient recovery from manure Henrik B. Mller

    E-Print Network [OSTI]

    Methane productivity and nutrient recovery from manure Henrik B. Møller Danish Institute This thesis, entitled "Methane productivity and nutrient recovery from manure" is presented in partial of digested and separated products.................... 13 3. Methane productivity and greenhouse gas emissions

  13. 2008 DOE FCVT Merit Review: BSST Waste Heat Recovery Program...

    Energy Savers [EERE]

    FCVT Merit Review: BSST Waste Heat Recovery Program 2008 DOE FCVT Merit Review: BSST Waste Heat Recovery Program Presentation from the U.S. DOE Office of Vehicle Technologies...

  14. Secretary Chu Announces $93 Million from Recovery Act to Support...

    Broader source: Energy.gov (indexed) [DOE]

    93 Million from Recovery Act to Support Wind Energy Projects Secretary Chu Announces 93 Million from Recovery Act to Support Wind Energy Projects April 29, 2009 - 12:00am Addthis...

  15. Energy Secretary Steven Chu to Attend Grand Opening of Recovery...

    Office of Environmental Management (EM)

    to Attend Grand Opening of Recovery Act-Funded A123 Systems Battery Plant Energy Secretary Steven Chu to Attend Grand Opening of Recovery Act-Funded A123 Systems Battery Plant...

  16. Development of More Effective Biosurfactants for Enhanced Oil Recovery

    SciTech Connect (OSTI)

    McInerney, M.J.; Mouttaki, H.; Folmsbee, M.; Knapp, R.; Nagle, D.

    2003-01-24T23:59:59.000Z

    The overall goal of this research was to develop effective biosurfactant production for enhanced oil recovery in the United States.

  17. Diesel Engine Waste Heat Recovery Utilizing Electric Turbocompound...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Utilizing Electric Trubocompound Technology Diesel Engine Waste Heat Recovery Utilizing Electric Turbocompound Technology Advanced Natural Gas Reciprocating Engines (ARES) -...

  18. Develop Thermoelectric Technology for Automotive Waste Heat Recovery...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    More Documents & Publications Develop Thermoelectric Technology for Automotive Waste Heat Recovery Engineering and Materials for Automotive Thermoelectric Applications...

  19. Develop Thermoelectric Technology for Automotive Waste Heat Recovery...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    More Documents & Publications Develop Thermoelectric Technology for Automotive Waste Heat Recovery Cost-Competitive Advanced Thermoelectric Generators for Direct...

  20. Develop Thermoelectric Technology for Automotive Waste Heat Recovery...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    More Documents & Publications Skutterudite Thermoelectric Generator For Automotive Waste Heat Recovery Thermoelectric Conversion of Exhaust Gas Waste Heat into Usable...

  1. Develop Thermoelectric Technology for Automotive Waste Heat Recovery...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    More Documents & Publications Development of Thermoelectric Technology for Automotive Waste Heat Recovery Development of Thermoelectric Technology for Automotive Waste Heat...

  2. Optimization Online - Sparse Recovery on Euclidean Jordan Algebras

    E-Print Network [OSTI]

    Lingchen Kong

    2013-02-03T23:59:59.000Z

    Feb 3, 2013 ... Keywords: Sparse recovery on Euclidean Jordan algebra, nuclear norm minimization, restricted isometry property, null space property, ...

  3. 200,000 homes weatherized under the Recovery Act

    Broader source: Energy.gov [DOE]

    Today Vice President Biden announced that the Weatherization Assistance Program has weatherized 200,000 homes under the Recovery Act.

  4. Kraft lignin recovery by ultrafiltration: economic feasibility and impact on the kraft recovery system

    SciTech Connect (OSTI)

    Kirkman, A.G.; Gratzl, J.S.; Edwards, L.L.

    1986-05-01T23:59:59.000Z

    The widespread use of the kraft pulping process could provide a ready supply of lignin materials for many uses. Simulation studies demonstrate that recovery of the high-molecular-weight kraft lignin by ultrafiltration of a fraction of the black liquor flow is attractive from both an economic and an operational standpoint. Benefits are derived from relief of a furnace-limited recovery system and from the marketing of the lignin or modified lignin products. 10 references.

  5. Determining the optimum nanofluid for enhanced oil recovery

    E-Print Network [OSTI]

    Determining the optimum nanofluid for enhanced oil recovery Presented by Katie Aurand katherine and size for EOR applications Determining the optimum nanofluid for enhanced oil recovery Presented = particle modification and testing 3 Determining the optimum nanofluid for enhanced oil recovery Presented

  6. Infiltration Heat Recovery in Building Walls: Computational Fluid Dynamics Investigations Results

    E-Print Network [OSTI]

    LBNL-51324 Infiltration Heat Recovery in Building Walls: Computational Fluid Dynamics leading to partial recovery of heat conducted through the wall. The Infiltration Heat Recovery (IHR) factor was introduced to quantify the heat recovery and correct the conventional calculations

  7. Annex III-evaluation of past and ongoing enhanced oil recovery projects

    SciTech Connect (OSTI)

    Not Available

    1995-02-01T23:59:59.000Z

    The Infill Drilling Predictive Model (IDPM) was developed by Scientific Software-Intercomp (SSI) for the Bartlesville Project Office (BPO) of the United States Department of Energy (DOE). The model and certain adaptations thereof were used in conjunction with other models to support the Interstate Oil and Gas Compact Commission`s (IOGCC) 1993 state-by-state assessment of the potential domestic reserves achievable through the application of Advanced Secondary Recovery (ASR) and Enhanced Oil Recovery (EOR) techniques. Funding for this study was provided by the DOE/BPO, which additionally provided technical support. The IDPM is a three-dimensional (stratified, five-spot), two-phase (oil and water) model which uses a minimal amount of reservoir and geologic data to generate production and recovery forecasts for ongoing waterflood and infill drilling projects. The model computes water-oil displacement and oil recovery using finite difference solutions within streamtubes. It calculates the streamtube geometries and uses a two-dimensional reservoir simulation to track fluid movement in each streamtube slice. Thus the model represents a hybrid of streamtube and numerical simulators.

  8. Using Carbon Dioxide to Enhance Recovery of Methane from Gas Hydrate Reservoirs: Final Summary Report

    SciTech Connect (OSTI)

    McGrail, B. Peter; Schaef, Herbert T.; White, Mark D.; Zhu, Tao; Kulkarni, Abhijeet S.; Hunter, Robert B.; Patil, Shirish L.; Owen, Antionette T.; Martin, P F.

    2007-09-01T23:59:59.000Z

    Carbon dioxide sequestration coupled with hydrocarbon resource recovery is often economically attractive. Use of CO2 for enhanced recovery of oil, conventional natural gas, and coal-bed methane are in various stages of common practice. In this report, we discuss a new technique utilizing CO2 for enhanced recovery of an unconventional but potentially very important source of natural gas, gas hydrate. We have focused our attention on the Alaska North Slope where approximately 640 Tcf of natural gas reserves in the form of gas hydrate have been identified. Alaska is also unique in that potential future CO2 sources are nearby, and petroleum infrastructure exists or is being planned that could bring the produced gas to market or for use locally. The EGHR (Enhanced Gas Hydrate Recovery) concept takes advantage of the physical and thermodynamic properties of mixtures in the H2O-CO2 system combined with controlled multiphase flow, heat, and mass transport processes in hydrate-bearing porous media. A chemical-free method is used to deliver a LCO2-Lw microemulsion into the gas hydrate bearing porous medium. The microemulsion is injected at a temperature higher than the stability point of methane hydrate, which upon contacting the methane hydrate decomposes its crystalline lattice and releases the enclathrated gas. Small scale column experiments show injection of the emulsion into a CH4 hydrate rich sand results in the release of CH4 gas and the formation of CO2 hydrate

  9. Proposed Guideline Clarifications for American Recovery and Reinvestment Act of 2009

    E-Print Network [OSTI]

    Wilde, Erik; Kansa, Eric C; Yee, Raymond

    2009-01-01T23:59:59.000Z

    th align="right" valign="top">CFDA: Design Recovery> 1642990396473 CFDA>2004031CFDA> CFDA-title>Design Recovery Transparency

  10. Imaging of CO2 injection during an enhanced-oil-recovery experiment

    E-Print Network [OSTI]

    Gritto, Roland; Daley, Thomas M.; Myer, Larry R.

    2003-01-01T23:59:59.000Z

    Injection during an Enhanced-Oil-Recovery Experiment RolandEnergy (DOE) as an enhanced oil recovery (EOR) project, was

  11. Microbial enhancement of oil recovery: Recent advances

    SciTech Connect (OSTI)

    Premuzic, E.T.; Woodhead, A.D.; Vivirito, K.J. (eds.)

    1992-01-01T23:59:59.000Z

    During recent years, systematic, scientific, and engineering effort by researchers in the United States and abroad, has established the scientific basis for Microbial Enhanced Oil Recovery (MEOR) technology. The successful application of MEOR technology as an oil recovery process is a goal of the Department of Energy (DOE). Research efforts involving aspects of MEOR in the microbiological, biochemical, and engineering fields led DOE to sponsor an International Conference at Brookhaven National Laboratory in 1992, to facilitate the exchange of information and a discussion of ideas for the future research emphasis. At this, the Fourth International MEOR Conference, where international attendees from 12 countries presented a total of 35 papers, participants saw an equal distribution between research'' and field applications.'' In addition, several modeling and state-of-the-art'' presentations summed up the present status of MEOR science and engineering. Individual papers in this proceedings have been process separately for inclusion in the Energy Science and Technology Database.

  12. Recovery Boiler Superheater Ash Corrosion Field Study

    SciTech Connect (OSTI)

    Keiser, James R [ORNL] [ORNL; Kish, Joseph [McMaster University] [McMaster University; Singbeil, Douglas [FPInnovations] [FPInnovations

    2010-01-01T23:59:59.000Z

    With the trend towards increasing the energy efficiency of black liquor recovery boilers operated in North America, there is a need to utilize superheater tubes with increased corrosion resistance that will permit operation at higher temperatures and pressures. In an effort to identify alloys with improved corrosion resistance under more harsh operating conditions, a field exposure was conducted that involved the insertion of an air-cooled probe, containing six candidate alloys, into the superheater section of an operating recovery boiler. A metallographic examination, complete with corrosion scale characterization using EMPA, was conducted after a 1,000 hour exposure period. Based on the results, a ranking of alloys based on corrosion performance was obtained.

  13. Microbial enhanced oil recovery and compositions therefor

    DOE Patents [OSTI]

    Bryant, Rebecca S. (Bartlesville, OK)

    1990-01-01T23:59:59.000Z

    A method is provided for microbial enhanced oil recovery, wherein a combination of microorganisms is empirically formulated based on survivability under reservoir conditions and oil recovery efficiency, such that injection of the microbial combination may be made, in the presence of essentially only nutrient solution, directly into an injection well of an oil bearing reservoir having oil present at waterflood residual oil saturation concentration. The microbial combination is capable of displacing residual oil from reservoir rock, which oil may be recovered by waterflooding without causing plugging of the reservoir rock. Further, the microorganisms are capable of being transported through the pores of the reservoir rock between said injection well and associated production wells, during waterflooding, which results in a larger area of the reservoir being covered by the oil-mobilizing microorganisms.

  14. Aqueous flooding methods for tertiary oil recovery

    DOE Patents [OSTI]

    Peru, Deborah A. (Bartlesville, OK)

    1989-01-01T23:59:59.000Z

    A method of aqueous flooding of subterranean oil bearing formation for tertiary oil recovery involves injecting through a well into the formation a low alkaline pH aqueous sodium bicarbonate flooding solution. The flooding solution's pH ranges from about 8.25 to 9.25 and comprises from 0.25 to 5 weight percent and preferably about 0.75 to 3.0 weight percent of sodium bicarbonate and includes a petroleum recovery surfactant of 0.05 to 1.0 weight percent and between 1 and 20 weight percent of sodium chloride. After flooding, an oil and water mixture is withdrawn from the well and the oil is separated from the oil and water mixture.

  15. Investigations of nonsurgical embryo recovery in swine

    E-Print Network [OSTI]

    Altenhof, Russell Lynn

    1982-01-01T23:59:59.000Z

    Major Subject. : Animal Science INVESTIGATIONS OF NONSURGICAL EMBRYO RECOVERY IN SWINE A Thesis by RUSSELL LYNN ALTENHOF Approved as to style and content by: D C. K ae er (Co-Chairman of Committee) T. D. Tanksle , Jr. (Co-Chairman of Committee... and Krall, 1977). Recent evidence indicates that beta adrenegic agonists stimulate cANP- + + dependent phosphorylation and Na /K transport that + + in turn stimulated Na /Ca exchange at the plasma membrane or in the sarcoplasmic reticulum (Scheid et al...

  16. Improved energy recovery from geothermal reservoirs

    SciTech Connect (OSTI)

    Bodvarsson, G.S.; Pruess, K.; Lippmann, M.J.

    1981-01-01T23:59:59.000Z

    The behavior of a liquid-dominated geothermal reservoir in response to production from different horizons is studied using numerical simulation methods. The Olkaria geothermal field in Kenya is used as an example where a two-phase vapor-dominated zone overlies the main liquid-dominated reservoir. The possibility of improving energy recovery from vapor-dominated reservoirs by tapping deeper horizons is considered.

  17. Flare Gas Recovery in Shell Canada Refineries

    E-Print Network [OSTI]

    Allen, G. D.; Wey, R. E.; Chan, H. H.

    1983-01-01T23:59:59.000Z

    the flow properties for compressor selection? What controls should be incorporated? How much operator and maintenance effort will be required for safe, efficient operation? What kind of process and hardware problems should be watched for? When...? This paper will touch on all these issues. SYSTEM CONFIGURATION A schematic of a typical refinery flare gas recovery facility is shown in Figure I. The facilities include the following pieces of equipment: - compressor suction drum - compressor set...

  18. HVAC Energy Recovery Design and Economic Evaluation

    E-Print Network [OSTI]

    Kinnier, R. J.

    1979-01-01T23:59:59.000Z

    . As shown in Chart 5, the power requirements to operate an energy recovery system are a significant factor in the economic evaluations of the project as well as the additional costs for auxiliary components. These extra costs must be included... in the overall feasibility analysis. Chart 5 - Auxiliary Components FAN TYPE SUPPLY EXHAUST STATIC PRESSURE EXCHANGER FAN FAN PUMP COMPRESSOR FILTERS CONTROLS REQUIREMENTS, IN WG SUPPLY EXHAUST STATIONARY ? ? ? 1 1.0- 2.0 l.0- 2.0 HEAT WHEEL HYGROSCOPIC...

  19. Financial Recovery: Homeowner's Property Insurance Issues

    E-Print Network [OSTI]

    Granovsky, Nancy L.

    2008-09-23T23:59:59.000Z

    - owner?s property insurance. Does my property insurance cover water damage? Basic property policies do not insure against flood damage. Homeown- ers have to rely on flood coverage purchased separately through FEMA?s National Flood Insurance Program (NFIP... ER-035 9-23 Financial Recovery: Homeowner?s Property Insurance Issues Nancy L. Granovsky, Professor and Extension Family Economics Specialist, The Texas A&M University System People affected by hurricanes have many questions about their home...

  20. Walk, Haydel Approach to Process Heat Recovery

    E-Print Network [OSTI]

    Waldsmith, R. W.; Hendrickson, M. J.

    1983-01-01T23:59:59.000Z

    velocities. In a grass roots design, equipment is designed for specific needs, but in a revamp there are usually several alter nate ways existing equipment can be utilized. A11 of the important alternates must be eva1 uated before selecting... bundles are encountered, methods balance costs against incremental heat recovery. Other logic re duces multiple parallel streams and adjusts arrangements considering both temperature level and overall coefficient. The log ic and eva1uat ion...

  1. SURFACTANT - POLYMER INTERACTION FOR IMPROVED OIL RECOVERY

    SciTech Connect (OSTI)

    Unknown

    1998-10-01T23:59:59.000Z

    The goal of this research is to use the interaction between a surfactant and a polymer for efficient displacement of tertiary oil by improving slug integrity, adsorption and mobility control. Surfactant--polymer flooding has been shown to be highly effective in laboratory-scale linear floods. The focus of this proposal is to design an inexpensive surfactant-polymer mixture that can efficiently recover tertiary oil by avoiding surfactant slug degradation high adsorption and viscous/heterogeneity fingering. A mixture comprising a ''pseudo oil'' with appropriate surfactant and polymer has been selected to study micellar-polymer chemical flooding. The physical properties and phase behavior of this system have been determined. A surfactant-polymer slug has been designed to achieve high efficiency recovery by improving phase behavior and mobility control. Recovery experiments have been performed on linear cores and a quarter 5-spot. The same recovery experiments have been simulated using a commercially available simulator (UTCHEM). Good agreement between experimental data and simulation results has been achieved.

  2. Doppler-resolved kinetics of saturation recovery

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Forthomme, Damien; Hause, Michael L.; Yu, Hua-Gen; Dagdigian, Paul J.; Sears, Trevor J.; Hall, Gregory E.

    2015-04-08T23:59:59.000Z

    Frequency modulated laser transient absorption has been used to monitor the ground state rotational energy transfer rates of CN radicals in a double-resonance, depletion recovery experiment. When a pulsed laser is used to burn a hole in the equilibrium ground state population of one rotational state without velocity selection, the population recovery rate is found to depend strongly on the Doppler detuning of a narrow-band probe laser. Similar effects should be apparent for any relaxation rate process that competes effectively with velocity randomization. Alternative methods of extracting thermal rate constants in the presence of these non-thermal conditions are evaluated. Totalmore »recovery rate constants, analogous to total removal rate constants in an experiment preparing a single initial rotational level, are in good agreement with quantum scattering calculations, but are slower than previously reported experiments and show qualitatively different rotational state dependence between Ar and He collision partners. Quasi-classical trajectory studies confirm that the differing rotational state dependence is primarily a kinematic effect.« less

  3. Doppler-resolved kinetics of saturation recovery

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Forthomme, Damien [Brookhaven National Lab. (BNL), Upton, NY (United States); Hause, Michael L. [Brookhaven National Lab. (BNL), Upton, NY (United States); Yu, Hua-Gen [Brookhaven National Lab. (BNL), Upton, NY (United States); Dagdigian, Paul J. [John Hopkins Univ., Baltimore, MD (United States); Sears, Trevor J. [Brookhaven National Lab. (BNL), Upton, NY (United States); Stony Brook Univ., Stony Brook, NY (United States); Hall, Gregory E. [Brookhaven National Lab. (BNL), Upton, NY (United States)

    2015-04-08T23:59:59.000Z

    Frequency modulated laser transient absorption has been used to monitor the ground state rotational energy transfer rates of CN radicals in a double-resonance, depletion recovery experiment. When a pulsed laser is used to burn a hole in the equilibrium ground state population of one rotational state without velocity selection, the population recovery rate is found to depend strongly on the Doppler detuning of a narrow-band probe laser. Similar effects should be apparent for any relaxation rate process that competes effectively with velocity randomization. Alternative methods of extracting thermal rate constants in the presence of these non-thermal conditions are evaluated. Total recovery rate constants, analogous to total removal rate constants in an experiment preparing a single initial rotational level, are in good agreement with quantum scattering calculations, but are slower than previously reported experiments and show qualitatively different rotational state dependence between Ar and He collision partners. Quasi-classical trajectory studies confirm that the differing rotational state dependence is primarily a kinematic effect.

  4. Neutral beamline with improved ion energy recovery

    DOE Patents [OSTI]

    Dagenhart, William K. (Oak Ridge, TN); Haselton, Halsey H. (Knoxville, TN); Stirling, William L. (Oak Ridge, TN); Whealton, John H. (Oak Ridge, TN)

    1984-01-01T23:59:59.000Z

    A neutral beamline generator with unneutralized ion energy recovery is provided which enhances the energy recovery of the full energy ion component of the beam exiting the neutralizer cell of the beamline. The unneutralized full energy ions exiting the neutralizer are deflected from the beam path and the electrons in the cell are blocked by a magnetic field applied transverse to the beamline in the cell exit region. The ions, which are generated at essentially ground potential and accelerated through the neutralizer cell by a negative acceleration voltage, are collected at ground potential. A neutralizer cell exit end region is provided which allows the magnetic and electric fields acting on the exiting ions to be closely coupled. As a result, the fractional energy ions exiting the cell with the full energy ions are reflected back into the gas cell. Thus, the fractional energy ions do not detract from the energy recovery efficiency of full energy ions exiting the cell which can reach the ground potential interior surfaces of the beamline housing.

  5. Waste Heat Recovery from High Temperature Off-Gases from Electric Arc Furnace

    SciTech Connect (OSTI)

    Nimbalkar, Sachin U [ORNL; Thekdi, Arvind [E3M Inc; Keiser, James R [ORNL; Storey, John Morse [ORNL

    2014-01-01T23:59:59.000Z

    This article presents a study and review of available waste heat in high temperature Electric Arc Furnace (EAF) off gases and heat recovery techniques/methods from these gases. It gives details of the quality and quantity of the sensible and chemical waste heat in typical EAF off gases, energy savings potential by recovering part of this heat, a comprehensive review of currently used waste heat recovery methods and potential for use of advanced designs to achieve a much higher level of heat recovery including scrap preheating, steam production and electric power generation. Based on our preliminary analysis, currently, for all electric arc furnaces used in the US steel industry, the energy savings potential is equivalent to approximately 31 trillion Btu per year or 32.7 peta Joules per year (approximately $182 million US dollars/year). This article describes the EAF off-gas enthalpy model developed at Oak Ridge National Laboratory (ORNL) to calculate available and recoverable heat energy for a given stream of exhaust gases coming out of one or multiple EAF furnaces. This Excel based model calculates sensible and chemical enthalpy of the EAF off-gases during tap to tap time accounting for variation in quantity and quality of off gases. The model can be used to estimate energy saved through scrap preheating and other possible uses such as steam generation and electric power generation using off gas waste heat. This article includes a review of the historical development of existing waste heat recovery methods, their operations, and advantages/limitations of these methods. This paper also describes a program to develop and test advanced concepts for scrap preheating, steam production and electricity generation through use of waste heat recovery from the chemical and sensible heat contained in the EAF off gases with addition of minimum amount of dilution or cooling air upstream of pollution control equipment such as bag houses.

  6. Environmental, economic, and energy impacts of material recovery facilities. A MITE Program evaluation

    SciTech Connect (OSTI)

    NONE

    1995-10-01T23:59:59.000Z

    This report documents an evaluation of the environmental, economic, and energy impacts of material recovery facilities (MRFs) conducted under the Municipal Solid Waste Innovative Technology Evaluation (MITE) Program. The MITE Program is sponsored by the US Environmental Protection Agency to foster the demonstration and development of innovative technologies for the management of municipal solid waste (MSW). This project was also funded by the National Renewable Energy Laboratory (NREL). Material recovery facilities are increasingly being used as one option for managing a significant portion of municipal solid waste (MSW). The owners and operators of these facilities employ a combination of manual and mechanical techniques to separate and sort the recyclable fraction of MSW and to transport the separated materials to recycling facilities.

  7. Assessor Training Assessment Techniques

    E-Print Network [OSTI]

    NVLAP Assessor Training Assessment Techniques: Communication Skills and Conducting an Assessment listener ·Knowledgeable Assessor Training 2009: Assessment Techniques: Communication Skills & Conducting, truthful, sincere, discrete · Diplomatic · Decisive · Selfreliant Assessor Training 2009: Assessment

  8. Heat recovery and seed recovery development project: preliminary design report (PDR)

    SciTech Connect (OSTI)

    Arkett, A. H.; Alexander, K. C.; Bolek, A. D.; Blackman, B. K.; Kurrle, P. E.; Tram, S. V.; Warren, A. M.; Ziobrowski, A. J.

    1981-06-01T23:59:59.000Z

    The preliminary design and performance characteristics are described of the 20 MWt heat recovery and seed recovery (HRSR) system to be fabricated, installed, and evaluated to provide a technological basis for the design of commercial size HRSR systems for coal-fired open-cycle MHD power plants. The system description and heat and material balances, equipment description and functional requirements, controls, interfacing systems, and operation and maintenance are detailed. Appendices include: (1) recommended environmental requirements for compliance with federal and state of Tennessee regulations, (2) channel and diffuser simulator, (3) equipment arrangement drawings, and (4) channel and diffuser simulator barrel drawings. (WHK)

  9. Uranium recovery research sponsored by the Nuclear Regulatory Commission at Pacific Northwest Laboratory. Annual progress report, May 1982-May 1983

    SciTech Connect (OSTI)

    Foley, M.G.; Opitz, B.E.; Deutsch, W.J.; Peterson, S.R.; Gee, G.W.; Serne, R.J.; Hartley, J.N.; Thomas, V.W.; Kalkwarf, D.R.; Walters, W.H.

    1983-06-01T23:59:59.000Z

    Pacific Northwest Laboratory (PNL) is currently conducting research for the US Nuclear Regulatory Commission (NRC) on uranium recovery process wastes for both active and inactive operations. NRC-sponsored uranium recovery research at PNL is focused on NRC regulatory responsibilities for uranium-recovery operations: license active milling and in situ extraction operations; concur on the acceptability of DOE remedial-action plans for inactive sites; and license DOE to maintain inactive sites following remedial actions. PNL's program consists of four coordinated projects comprised of a program management task and nine research tasks that address the critical technical and safety issues for uranium recovery. Specifically, the projects endeavor to find and evaluate methods to: prevent erosion of tailings piles and prevent radon release from tailings piles; evaluate the effectiveness of interim stabilization techniques to prevent wind erosion and transport of dry tailings from active piles; estimate the dewatering and consolidation behavior of slurried tailings to promote early cover placement; design a cover-protection system to prevent erosion of the cover by expected environmental stresses; reduce seepage into ground water and prevent ground-water degradation; control solution movement and reaction with ground water in in-situ extraction operations; evaluate natural and induced restoration of ground water in in-situ extraction operations; and monitor releases to the environment from uranium recovery facilities.

  10. Design of Hybrid Steam-In Situ Combustion Bitumen Recovery Processes

    SciTech Connect (OSTI)

    Yang Xiaomeng; Gates, Ian D. [University of Calgary, Department of Chemical and Petroleum Engineering (Canada)], E-mail: ian.gates@ucalgary.ca

    2009-09-15T23:59:59.000Z

    Given enormous capital costs, operating expenses, flue gas emissions, water treatment and handling costs of thermal in situ bitumen recovery processes, improving the overall efficiency by lowering energy requirements, environmental impact, and costs of these production techniques is a priority. Steam-assisted gravity drainage (SAGD) is the most widely used in situ recovery technique in Athabasca reservoirs. Steam generation is done on surface and consequently, because of heat losses, the energy efficiency of SAGD can never be ideal with respect to the energy delivered to the sandface. An alternative to surface steam generation is in situ combustion (ISC) where heat is generated within the formation through injection of oxygen at a sufficiently high pressure to initiate combustion of bitumen. In this manner, the heat from the combustion reactions can be used directly to mobilize the bitumen. As an alternative, the heat can be used to generate steam within the formation which then is the agent to move heat in the reservoir. In this research, alternative hybrid techniques with simultaneous and sequential steam-oxygen injection processes are examined to maximize the thermal efficiency of the recovery process. These hybrid processes have the advantage that during ISC, steam is generated within the reservoir from injected and formation water and as a product of oxidation. This implies that ex situ steam generation requirements are reduced and if there is in situ storage of combustion gases, that overall gas emissions are reduced. In this research, detailed reservoir simulations are done to examine the dynamics of hybrid processes to enable design of these processes. The results reveal that hybrid processes can lower emitted carbon dioxide-to-oil ratio by about 46%, decrease the consumed natural gas-to-oil ratio by about 73%, reduce the cumulative energy-to-oil ratio by between 40% and 70% compared to conventional SAGD, and drop water consumption per unit oil produced. However, oil recovery is between 25% and 40% below that of SAGD. Design of successful hybrid steam-oxygen processes must take into account the balance between injected steam and amount of injected oxygen and combustion gas products that dilute injected and in situ-generated steam in the depletion chamber by lowering its partial pressure, and thus its saturation temperature which in turn impacts production rates and recovery.

  11. Improved techniques for fluid diversion in oil recovery. First annual report

    SciTech Connect (OSTI)

    Seright, R.S.

    1993-12-01T23:59:59.000Z

    This three-year project has two general objectives. The first objective is to compare the effectiveness of gels in fluid diversion with those of other types of processes. Several different types of fluid-diversion processes are being compared, including those using gels, foams, emulsions, and particulates. The ultimate goals of these comparisons are to (1) establish which of these processes are most effective in a given application, and (2) determine whether aspects of one process can be combined with those of other processes to improve performance. Analyses and experiments are being performed to verify which materials are the most effective in entering and blocking high-permeability zones. Another objective of the project is to identify the mechanisms by which materials (particularly gels) selectively reduce permeability to water more than to oil. This report describes work performed during the first year of the project. Following the introduction, Chapters 2 through 5 present several surveys concerning field applications of gel treatments. Based on the results of the surveys, guidelines are proposed in Chapter 5 for the selection of candidates for gel treatments (both injection wells and production wells). Chapters 6, 7, 8, and 11 discuss theoretical work that was performed during the project. Chapter 6 examines whether Hall plots indicated selectivity during gelant placement. Chapter 7 discusses several important theoretical aspects of gel treatments in production wells with water-coning problems. Chapter 8 considers exploitation of density differences during gelant placement. Chapter 11 presents a preliminary consideration of the use of precipitates as blocking agents. Chapters 9 and 10 detail the experimental work for the project. Chapter 9 describes an experimental investigation of gelant placement in fractured systems. Chapter 10 describes experiments that probe the mechanisms for disproportionate permeability reduction by gels.

  12. NETL-RUA Scans for Improved Enhanced Oil Recovery Technique | Department of

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directed offOCHCO2:Introduction toManagement of theTechno-economicOctoberNETL TechnologiesCarbon

  13. Environmental regulations handbook for enhanced oil recovery

    SciTech Connect (OSTI)

    Madden, M.P. [National Inst. for Petroleum and Energy Research, Bartlesville, OK (United States); Blatchford, R.P.; Spears, R.B. [Spears and Associates, Inc., Tulsa, OK (United States)

    1991-12-01T23:59:59.000Z

    This handbook is intended to assist owners and operators of enhanced oil recovery (EOR) operations in acquiring some introductory knowledge of the various state agencies, the US Environmental Protection Agency, and the many environmental laws, rules and regulations which can have jurisdiction over their permitting and compliance activities. It is a compendium of summarizations of environmental rules. It is not intended to give readers specific working details of what is required from them, nor can it be used in that manner. Readers of this handbook are encouraged to contact environmental control offices nearest to locations of interest for current regulations affecting them.

  14. Industrial Plate Exchangers Heat Recovery and Fouling

    E-Print Network [OSTI]

    Cross, P. H.

    1981-01-01T23:59:59.000Z

    (still)for separation of light oil from the wash oil,which is then returned to absorber tower.The debenzolised wash 0 0 oil is cooled indirectly to 20 C/30 C before returning to the absorber tower. This is toprevent condensation of water from the gas... Industrial Energy Technology Conference Houston, TX, April 26-29, 1981 -- c.O.G. LIGHT OIL SCRUBBER COKE OVEN GAS(C.O.G,J BENZINE COOLING WATER BENZOLISED ~WASH OILSTRIPPER CONVENTIONAL LIGHT OIL RECOVERY PLANT DEBENZOLISED WASH OIL / COOLING WATER...

  15. Catalyst for elemental sulfur recovery process

    DOE Patents [OSTI]

    Flytzani-Stephanopoulos, M.; Liu, W.

    1995-01-24T23:59:59.000Z

    A catalytic reduction process is described for the direct recovery of elemental sulfur from various SO[sub 2]-containing industrial gas streams. The catalytic process provides high activity and selectivity, as well as stability in the reaction atmosphere, for the reduction of SO[sub 2] to elemental sulfur product with carbon monoxide or other reducing gases. The reaction of sulfur dioxide and reducing gas takes place over a metal oxide composite catalyst having one of the following empirical formulas: [(FO[sub 2])[sub 1[minus]n](RO)[sub n

  16. Plutonium recovery from carbonate wash solutions

    SciTech Connect (OSTI)

    Gray, J.H.; Reif, D.J.; Chostner, D.F.; Holcomb, H.P.

    1991-12-31T23:59:59.000Z

    Periodically higher than expected levels of plutonium are found in carbonate solutions used to wash second plutonium cycle solvent. The recent accumulation of plutonium in carbonate wash solutions has led to studies to determine the cause of that plutonium accumulation, to evaluate the quality of all canyon solvents, and to develop additional criteria needed to establish when solvent quality is acceptable. Solvent from three canyon solvent extraction cycles was used to evaluate technology required to measure tributyl phosphate (TBP) degradation products and was used to evaluate solvent quality criteria during the development of plutonium recovery processes. 1 fig.

  17. Enhanced oil recovery projects data base

    SciTech Connect (OSTI)

    Pautz, J.F.; Sellers, C.A.; Nautiyal, C.; Allison, E.

    1992-04-01T23:59:59.000Z

    A comprehensive enhanced oil recovery (EOR) project data base is maintained and updated at the Bartlesville Project Office of the Department of Energy. This data base provides an information resource that is used to analyze the advancement and application of EOR technology. The data base has extensive information on 1,388 EOR projects in 569 different oil fields from 1949 until the present, and over 90% of that information is contained in tables and graphs of this report. The projects are presented by EOR process, and an index by location is provided.

  18. material recovery | National Nuclear Security Administration

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron4 Self-Scrubbing:,, , (Energy9 EvaluationWHITE ROCK LOSmarit8recovery |

  19. Recovery Act Reports | Department of Energy

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directed off Energy.gov. Are you sure you wantJoin us for| Department ofRightsSmartManagement RecordsRecovery

  20. Laboratory awards final Recovery Act demolition contracts

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC)Integrated Codes |Is Your Home asLCLSLaboratory DirectorsRecovery Act demolition

  1. Lab completes Recovery Act-funded demolition

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville PowerCherries 82981-1cnHigh SchoolIn12electron 9 5 - -/e),,s -Lab SubcontractoractiveLabRecovery

  2. RECOVERY ACT: Geologic Sequestration Training and Research

    Office of Scientific and Technical Information (OSTI)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOnItem Not Found Item Not Foundenhancer activity than FINAL Progress ReportRECOVERY ACT:

  3. Recovery Act: Demonstrating The Commercial Feasibility Of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page onYouTube YouTube Note: Since the.pdfBreakingMay 2015 < prevQuick Guide:U.N.June 8,Past Opportunities » Recovery

  4. Supercritical Recovery Systems LLC | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro Industries PvtStratosolar Jump to:Holdings Co Ltd Place: Wuxi,Energy InformationRecovery

  5. The recovery of oil from carbonate reservoirs by fluid injection

    E-Print Network [OSTI]

    Coleman, Dwayne Marvin

    1954-01-01T23:59:59.000Z

    Hole 70 Neasured and Calculated Productivities Obtained on Wells Completed Through Perforations 39 Cumulative Oil Recovery Versus Total Water and Oil Throughf low for Stratified Reservoirs- lj. O Cumulative Oil Recovery Versus Total Water and Oil... index meas- ured on the wells is equal to ths productivity index estimated from cores, In reviewing the published work on the oil recovery by water in]ec- tion to be expected from non-oolitic carbonate formations, dependable methods of prediction...

  6. Disaster Response and Recovery Webinar | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Department of Health and Human Services to evaluate, assess, and mitigate the impacts of climate change on their disaster recovery and response programs. Under the Stafford Act,...

  7. Maine Recovery Act State Memo | Department of Energy

    Energy Savers [EERE]

    State Memo Maine has substantial natural resources, including wind, biomass, and hydroelectric power. The American Recovery & Reinvestment Act (ARRA) is making a meaningful down...

  8. Oregon Recovery Act State Memo | Department of Energy

    Energy Savers [EERE]

    Oregon has substantial natural resources, including wind, geothermal, biomass, and hydroelectric power. The American Recovery & Reinvestment Act (ARRA) is making a meaningful down...

  9. New Hampshire Recovery Act State Memo | Department of Energy

    Energy Savers [EERE]

    Memo New Hampshire has substantial natural resources, including wind, biomass, and hydroelectric power. The American Recovery & Reinvestment Act (ARRA) is making a meaningful down...

  10. Idaho Recovery Act State Memo | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    State Memo Idaho has substantial natural resources, including wind, geothermal, and hydroelectric power. The American Recovery & Reinvestment Act (ARRA) is making a meaningful down...

  11. Hawaii Recovery Act State Memo | Department of Energy

    Energy Savers [EERE]

    has substantial natural resources, including solar, biomass , geothermal, and hydroelectric power. The American Recovery & Reinvestment Act (ARRA) is making a meaningful down...

  12. Missouri Recovery Act State Memo | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Act State Memo Missouri has substantial natural resources, including wind and hydroelectric power. The American Recovery & Reinvestment Act (ARRA) is making a meaningful down...

  13. South Dakota Recovery Act State Memo | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Dakota has substantial natural resources, including biomass, wind, geothermal, and hydroelectric power. The American Recovery & Reinvestment Act (ARRA) is making a meaningful down...

  14. Georgia Recovery Act State Memo | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Act State Memo Georgia has substantial natural resources, including biomass and hydroelectric power. The American Recovery & Reinvestment Act (ARRA) is making a meaningful down...

  15. Wisconsin Recovery Act State Memo | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Act State Memo Wisconsin has substantial natural resources, including biomass and hydroelectric power. The American Recovery & Reinvestment Act (ARRA)is making a meaningful down...

  16. Recovery Act Supports Construction of Site's Largest Groundwater...

    Office of Environmental Management (EM)

    June 7, 2011 Recovery Act Supports Construction of Site's Largest Groundwater Treatment Facility RICHLAND, Wash. - Construction of the largest ground- water treatment facility at...

  17. RECOVERY ACT -- CLEAN ENERGY COALITION MICHIGAN GREEN FLEETS...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Ann Arbor, Michigan: Solar in Action (Brochure), Solar America Cities, Energy Efficiency & Renewable Energy (EERE) RECOVERY ACT -- CLEAN ENERGY COALITION MICHIGAN GREEN FLEETS...

  18. Vehicle Technologies Office: Materials for Energy Recovery Systems...

    Energy Savers [EERE]

    for Energy Recovery Systems and Controlling Exhaust Gases The typical internal combustion engine wastes about 30 percent of its chemical energy in the form of hot exhaust...

  19. Recovery Act Selections for Smart Grid Investment Grant Awards...

    Broader source: Energy.gov (indexed) [DOE]

    State - Updated November 2011 Recovery Act Selections for Smart Grid Investment Grant Awards - By State - Updated November 2011 List of selections for the Smart Grid Investment...

  20. Recovery Act Selections for Smart Grid Investment Grant Awards...

    Broader source: Energy.gov (indexed) [DOE]

    Category Updated November 2011 Recovery Act Selections for Smart Grid Investment Grant Awards - By Category Updated November 2011 List of selections for the Smart Grid Investment...

  1. West Virginia Recovery Act State Memo | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    West Virginia has substantial natural resources, including coal and hydroelectric power. The American Recovery & Reinvestment Act (ARRA) is making a meaningful down payment on the...

  2. Grant Guidance to Administer the American Recovery and Reinvestment...

    Broader source: Energy.gov (indexed) [DOE]

    PROGRAM NOTICE 10-10: REPROGRAMMING TRAINING AND TECHNICAL ASSISTANCE FUNDS TO PROGRAM OPERATIONS Weatherization Formula Grants - American Recovery and Reinvestment Act (ARRA)...

  3. Idaho Operations Office: American Recovery and Reinvestment Act Update

    ScienceCinema (OSTI)

    Provencher, Rick

    2012-06-14T23:59:59.000Z

    An update from Idaho National Laboratory, Rick Provencher addresses the progress that has been made due to the American Recovery and Reinvestment Act.

  4. American Recovery and Reinvestment Act of 2009: Bioenergy Technologies...

    Energy Savers [EERE]

    Recovery and Reinvestment Act of 2009 funds; the projects accelerate advanced biofuels RD&D, speed the deployment of commercialization of biofuels, and further the U.S....

  5. Nebraska Recovery Act State Memo | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    State Memo Nebraska has substantial natural resources, including oil, coal, wind, and hydro electric power. The American Recovery & Reinvestment Act (ARRA) is making a meaningful...

  6. Recovery Act: Enhancing State Energy Assurance | Department of...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Enhancing State Energy Assurance Recovery Act: Enhancing State Energy Assurance States are using these funds to plan for energy supply disruption risks and vulnerabilities to...

  7. Virginia Recovery Act State Memo | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Act State Memo Virginia has substantial natural resources, including coal and natural gas. The American Recovery & Reinvestment Act (ARRA) is making a meaningful down payment on...

  8. Utah Recovery Act State Memo | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Act State Memo Utah has substantial natural resources, including oil, coal, natural gas, wind, geothermal, and solar power. The American Recovery & Reinvestment Act (ARRA) is...

  9. Mississippi Recovery Act State Memo | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Mississippi has substantial natural resources, including biomass, oil, coal, and natural gas. The American Recovery & Reinvestment Act (ARRA) is making a meaningful down payment on...

  10. Study Shows Significant Economic Impact from Recovery Act

    Office of Environmental Management (EM)

    attended the meeting, where presenters commended the Recovery Act for accelerating Cold War cleanup at SRS and boosting employment and business in the local community. "I go out...

  11. Recovery Act Workers Remediate and Restore Former Waste Sites...

    Office of Environmental Management (EM)

    Recovery Act Workers Remediate and Restore Former Waste Sites, Help Reduce Cold War Footprint RICHLAND, Wash. - The Hanford Site is looking greener these days after American...

  12. Iowa Recovery Act State Memo | Department of Energy

    Energy Savers [EERE]

    Memo Iowa has substantial natural resources, including wind power and is the largest ethanol producer in the United States. The American Recovery & Reinvestment Act (ARRA) is...

  13. Minnesota Recovery Act State Memo | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    has substantial natural resources, including biomass, wind power, and is a large ethanol producer. The American Recovery & Reinvestment Act (ARRA) is making a meaningful down...

  14. Geothermal: Sponsored by OSTI -- Recovery Act: Geothermal Data...

    Office of Scientific and Technical Information (OSTI)

    Recovery Act: Geothermal Data Aggregation: Submission of Information into the National Geothermal Data System, Final Report DOE Project DE-EE0002852 June 24, 2014 Geothermal...

  15. Enhanced oil recovery. Progress review, October--December 1993

    SciTech Connect (OSTI)

    Not Available

    1993-12-31T23:59:59.000Z

    This document details current research in the area of enhanced recovery of petroleum as sponsored by the DOE. Progress reports are provided for over thirty projects.

  16. Recovery Act:Direct Confirmation of Commercial Geothermal Resources...

    Broader source: Energy.gov (indexed) [DOE]

    Recovery Act: Direct Confirmation of Commercial Geothermal Resources in Colorado using Remote Sensing and On- Site Exploration, Testing and Analysis F. Lee Robinson - PI Flint...

  17. Successful Sequestration and Enhanced Oil Recovery Project Could...

    Energy Savers [EERE]

    the energy industry, and the general public with reliable information about industrial carbon sequestration and enhanced oil recovery." In the first phase of the research...

  18. LOW TEMPERATURE GEOTHERMAL MINERAL RECOVERY PROGRAM 02/11/2014...

    Broader source: Energy.gov (indexed) [DOE]

    mineral-webinar.pdf More Documents & Publications LOW TEMPERATURE GEOTHERMAL MINERAL RECOVERY PROGRAM Geothermal Play Fairway Analysis Geothermal Play Fairway Analysis...

  19. High Efficiency Microturbine with Integral Heat Recovery - Fact...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    efficiency. The microturbine technology will maximize usable exhaust energy and achieve ultra-low emissions levels. High Efficiency Microturbine with Integral Heat Recovery More...

  20. EM Recovery Act Press Releases | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    July 1, 2011 DOE Completes Cleanup at New York, California Sites - Recovery Act funds accelerate cleanup; support job creation and footprint reduction WASHINGTON, D.C. - Last...

  1. Energy Secretary Chu Announces $6 Billion in Recovery Act Funding...

    Energy Savers [EERE]

    Addthis WASHINGTON, DC -- Energy Secretary Steven Chu today announced 6 billion in new funding under the American Recovery and Reinvestment Act to accelerate environmental...

  2. Sandia Energy - Upcoming Publication on Recovery Strategies for...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    disruptions during recovery periods instead of the minimizing makespan (time to repair completion) that traditional project scheduling approaches use. This alternative approach...

  3. arachnoid cyst recovery: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    R4-Recovery Fehlerklassifikation 12;3 Zweistufige Speicherhierarchie . . . C A D DBMS-Puffer A in der Datenbank (auf Platte) geschrieben werden force - genderte...

  4. affecting molybdenite recovery: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    R4-Recovery Fehlerklassifikation 12;3 Zweistufige Speicherhierarchie . . . C A D DBMS-Puffer A in der Datenbank (auf Platte) geschrieben werden force - genderte...

  5. aqueous scrap recovery: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    R4-Recovery Fehlerklassifikation 12;3 Zweistufige Speicherhierarchie . . . C A D DBMS-Puffer A in der Datenbank (auf Platte) geschrieben werden force - genderte...

  6. Recovery Act Project Clears Portsmouth Switchyard, Benefits Community...

    Office of Environmental Management (EM)

    million Recovery Act project completed safely and on schedule, workers demolished 160 towers as tall as 120 feet that were used to operate the X-533 Electrical Switchyard....

  7. Air Handler Condensate Recovery at the Environmental Protection...

    Broader source: Energy.gov (indexed) [DOE]

    Air Handler Condensate Recovery at the Environmental Protection Agency's Science and Ecosystem Support Division: Best Management Practice Case Study 14: Alternate Water Sources,...

  8. Diesel Engine Waste Heat Recovery Utilizing Electric Turbocompound...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Caterpillar Inc. 2002deerhopmann.pdf More Documents & Publications Diesel Engine Waste Heat Recovery Utilizing Electric Turbocompound Technology Diesel Engine Waste Heat...

  9. Diesel Engine Waste Heat Recovery Utilizing Electric Trubocompound...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Trubocompound Technology Diesel Engine Waste Heat Recovery Utilizing Electric Trubocompound Technology 2003 DEER Conference Presentation: Caterpillar Inc. 2003deeralgrain.pdf...

  10. Develop Thermoelectric Technology for Automotive Waste Heat Recovery...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Develop thermoelectric technology for waste heat recovery with a 10% fuel economy improvement without increasing emissions. deer09yang2.pdf More Documents & Publications...

  11. Waste Heat Reduction and Recovery for Improving Furnace Efficiency...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Productivity and Emissions Performance: A BestPractices Process Heating Technical Brief Waste Heat Reduction and Recovery for Improving Furnace Efficiency, Productivity and...

  12. Solid Waste Disposal Resource Recovery Facilities Act (South Carolina)

    Broader source: Energy.gov [DOE]

    This legislation authorizes local governing bodies to form joint agencies to advance the collection, transfer, processing of solid waste, recovery of resources, and sales of recovered resources in...

  13. natural gas+ condensing flue gas heat recovery+ water creation...

    Open Energy Info (EERE)

    natural gas+ condensing flue gas heat recovery+ water creation+ CO2 reduction+ cool exhaust gases+ Energy efficiency+ commercial building energy efficiency+ industrial energy...

  14. Willows Aid Flood Recovery in Los Alamos Desert

    Broader source: Energy.gov [DOE]

    LOS ALAMOS, N.M. – Los Alamos National Laboratory’s Associate Directorate of Environmental Programs (ADEP) has been busy with various flood recovery activities since last fall. 

  15. Final Report, Materials for Industrial Heat Recovery Systems, Tasks 3 and 4 Materials for Heat Recovery in Recovery Boilers

    SciTech Connect (OSTI)

    Keiser, James R.; Kish, Joseph R.; Singh, Preet M.; Sarma, Gorti B.; Yuan, Jerry; Gorog, J. Peter; Frederick, Laurie A.; Jette, Francois R.; Meisner, Roberta A.; Singbeil, Douglas L.

    2007-12-31T23:59:59.000Z

    The DOE-funded project on materials for industrial heat recovery systems included four research tasks: materials for aluminum melting furnace recuperator tubes, materials and operational changes to prevent cracking and corrosion of the co-extruded tubes that form primary air ports in black liquor recovery boilers, the cause of and means to prevent corrosion of carbon steel tubes in the mid-furnace area of recovery boilers, and materials and operational changes to prevent corrosion and cracking of recovery boiler superheater tubes. Results from studies on the latter two topics are given in this report while separate reports on results for the first two tasks have already been published. Accelerated, localized corrosion has been observed in the mid-furnace area of kraft recovery boilers. This corrosion of the carbon steel waterwall tubes is typically observed in the vicinity of the upper level of air ports where the stainless clad co-extruded wall tubes used in the lower portion of the boiler are welded to the carbon steel tubes that extend from this transition point or “cut line” to the top of the boiler. Corrosion patterns generally vary from one boiler to another depending on boiler design and operating parameters, but the corrosion is almost always found within a few meters of the cut line and often much closer than that. This localized corrosion results in tube wall thinning that can reach the level where the integrity of the tube is at risk. Collection and analysis of gas samples from various areas near the waterwall surface showed reducing and sulfidizing gases were present in the areas where corrosion was accelerated. However, collection of samples from the same areas at intervals over a two year period showed the gaseous environment in the mid-furnace section can cycle between oxidizing and reducing conditions. These fluctuations are thought to be due to gas flow instabilities and they result in an unstable or a less protective scale on the carbon steel tubes. Also, these fluctuating air flow patterns can result in deposition of black liquor on the wall tubes, and during periods when deposition is high, there is a noticeable increase in the concentrations of sulfur-bearing gases like hydrogen sulfide and methyl mercaptan. Laboratory studies have shown that chromized and aluminized surface treatments on carbon steel improve the resistance to sulfidation attack. Studies of superheater corrosion and cracking have included laboratory analyses of cracked tubes, laboratory corrosion studies designed to simulate the superheater environment and field tests to study the movement of superheater tubes and to expose a corrosion probe to assess the corrosion behavior of alternate superheater alloys, particularly alloys that would be used for superheaters operating at higher temperatures and higher pressures than most current boilers. In the laboratory corrosion studies, samples of six alternate materials were immersed in an aggressive, low melting point salt mixture and exposed for times up to 336 h, at temperatures of 510, 530 or 560°C in an inert or reactive cover gas. Using weight change and results of metallographic examination, the samples were graded on their resistance to the various environments. For the superheater corrosion probe studies, samples of the same six materials were exposed on an air-cooled corrosion probe exposed in the superheater section of a recovery boiler for 1000 h. Post exposure examination showed cracking and/or subsurface attack in the samples exposed at the higher temperatures with the attack being more severe for samples 13 exposed above the first melting temperature of the deposits that collected on the superheater tubes. From these superheater studies, a ranking was developed for the six materials tested. The task addressing cracking and corrosion of primary air port tubes that was part of this project produced results that have been extensively implemented in recovery boilers in North America, the Nordic countries and many other parts of the world. By utilizing these results, boilers ar

  16. Prospects for the recovery of uranium from seawater

    SciTech Connect (OSTI)

    Best, F.R.; Driscoll, M.

    1986-04-01T23:59:59.000Z

    A computer program entitled URPE (Uranium Recovery Performance and Economics) has been developed to simulate the engineering performance and provide an economic analysis of a plant recovering uranium from seawater. The conceptual system design used as the focal point for the more general analysis consists of a floating oil-rig type of platform single-point moored in an open ocean current, using either high-volume-low-head axial pumps or the velocity head of the ambient ocean current to force seawater through a mass transfer medium (hydrous titanium oxide (HTO) coated onto particle beds or stacked tubes). Uranium is recovered from the seawater by an adsorption process, and later eluted from the adsober by an ammonium carbonate solution. A multiproduct cogenerating plant on board the platform burns coal to raise steam for electricity generation, desalination, and process heat requirements. Scrubbed stack gas from the plant is processed to recover carbon dioxide for chemical make-up needs. The equilibrium isotherm and the diffusion constant for the uranyl-HTO system, which are needed for bed performance calculations, have been calculated based on the data reported in the literature. In addition, a technique for calculating the rate constant of a fixed-bed adsoorbing system has been developed for use with Thomas' solution for predicting fixed-bed performance.

  17. OPTICAL FIBER SENSOR TECHNOLOGIES FOR EFFICIENT AND ECONOMICAL OIL RECOVERY

    SciTech Connect (OSTI)

    Kristie Cooper; Gary Pickrell; Anbo Wang

    2003-04-01T23:59:59.000Z

    This report summarizes technical progress over the fourth year of the ''Optical Fiber Sensor Technologies for Efficient and Economical Oil Recovery'' program, funded by the Federal Energy Technology Center of the U.S. Department of Energy, and performed by the Center for Photonics Technology of the Bradley Department of Electrical and Computer Engineering at Virginia Tech. During the reporting period, research efforts under the program were focused on the development and evaluation of the fiber optic flow sensor system, and field testing in Tulsa, OK and the second field test of the pressure and temperature sensors in Coalinga, CA. The feasibility of a self-compensating fiber optic flow sensor based on a cantilever beam and interferometer for real-time flow rate measurements in the fluid filled pipes of oil field was clearly demonstrated. In addition, field testing of the pressure and temperature sensors deployed downhole continued. These accomplishments are summarized here: (1) Theoretical analysis and simulations were performed to ensure performance of the design. (2) The sensor fabrication and packaging techniques were investigated and improved. (3) Prototype flow sensors were fabricated based on the fabrication experience of hundreds of test sensors. (4) A lab-scale flow testing system was constructed and used for sensor evaluation. (5) Field-testing was performed in both the indoor and outdoor flow testing facility at the University of Tulsa, OK. (6) Testing of a multimode white light pressure and temperature sensor system continued at the oil site of Chevron/Texaco Company (Coalinga CA).

  18. "Smart" Multifunctional Polymers for Enhanced Oil Recovery

    SciTech Connect (OSTI)

    Charles McCormick; Andrew Lowe

    2007-03-20T23:59:59.000Z

    Recent recommendations made by the Department of Energy, in conjunction with ongoing research at the University of Southern Mississippi, have signified a need for the development of 'smart' multi-functional polymers (SMFPs) for Enhanced Oil Recovery (EOR) processes. Herein we summarize research from the period of September 2003 through March 2007 focusing on both Type I and Type II SMFPs. We have demonstrated the synthesis and behavior of materials that can respond in situ to stimuli (ionic strength, pH, temperature, and shear stress). In particular, Type I SMFPs reversibly form micelles in water and have the potential to be utilized in applications that serve to lower interfacial tension at the oil/water interface, resulting in emulsification of oil. Type II SMFPs, which consist of high molecular weight polymers, have been synthesized and have prospective applications related to the modification of fluid viscosity during the recovery process. Through the utilization of these advanced 'smart' polymers, the ability to recover more of the original oil in place and a larger portion of that by-passed or deemed 'unrecoverable' by conventional chemical flooding should be possible.

  19. Study seeks to boost Appalachian gas recovery

    SciTech Connect (OSTI)

    Not Available

    1992-07-20T23:59:59.000Z

    Ashland Exploration Inc. and the Gas Research Institute (GRI) are trying to find ways to increase gas recovery in the Appalachian basin. They are working together to investigate Mississippian Berea sandstone and Devonian shale in a program designed to achieve better understanding and improved performance of tight natural gas formations in the area. This paper reports that three wells on Ashland Exploration acreage in Pike County, Ky., are involved in the research program. Findings from the first two wells will be used to optimize evaluation and completion of the third well. The first two wells have been drilled. Drilling of the third well was under way at last report. Ashland Exploration has been involved with GRI's Devonian shale research since 1988. GRI's initial focus was on well stimulation because Devonian shale wells it reviewed had much lower recoveries than could be expected, based on estimated gas in place. Research during the past few years was designed to improve the execution and quality control of well stimulation.

  20. Leaching studies for tin recovery from waste e-scrap

    SciTech Connect (OSTI)

    Jha, Manis Kumar, E-mail: maniskrjha@gmail.com [Metal Extraction and Forming Division, National Metallurgical Laboratory (NML), Jamshedpur 831 007 (India); Choubey, Pankaj Kumar; Jha, Amrita Kumari; Kumari, Archana [Metal Extraction and Forming Division, National Metallurgical Laboratory (NML), Jamshedpur 831 007 (India); Lee, Jae-chun, E-mail: jclee@kigam.re.kr [Mineral Resources Research Division, Korea Institute of Geosciences and Mineral Resources, Daejeon 305-350 (Korea, Republic of); Kumar, Vinay [Metal Extraction and Forming Division, National Metallurgical Laboratory (NML), Jamshedpur 831 007 (India); Jeong, Jinki [Mineral Resources Research Division, Korea Institute of Geosciences and Mineral Resources, Daejeon 305-350 (Korea, Republic of)

    2012-10-15T23:59:59.000Z

    Printed circuit boards (PCBs) are the most essential components of all electrical and electronic equipments, which contain noteworthy quantity of metals, some of which are toxic to life and all of which are valuable resources. Therefore, recycling of PCBs is necessary for the safe disposal/utilization of these metals. Present paper is a part of developing Indo-Korean recycling technique consists of organic swelling pre-treatment technique for the liberation of thin layer of metallic sheet and the treatment of epoxy resin to remove/recover toxic soldering material. To optimize the parameters required for recovery of tin from waste PCBs, initially the bench scale studies were carried out using fresh solder (containing 52.6% Sn and 47.3% Pb) varying the acid concentration, temperature, mixing time and pulp density. The experimental data indicate that 95.79% of tin was leached out from solder material using 5.5 M HCl at fixed pulp density 50 g/L and temperature 90 Degree-Sign C in mixing time 165 min. Kinetic studies followed the chemical reaction controlled dense constant size cylindrical particles with activation energy of 117.68 kJ/mol. However, 97.79% of tin was found to be leached out from solder materials of liberated swelled epoxy resin using 4.5 M HCl at 90 Degree-Sign C, mixing time 60 min and pulp density 50 g/L. From the leach liquor of solder materials of epoxy resin, the precipitate of sodium stannate as value added product was obtained at pH 1.9. The Pb from the leach residue was removed by using 0.1 M nitric acid at 90 Degree-Sign C in mixing time 45 min and pulp density 10 g/L. The metal free epoxy resin could be disposed-of safely/used as filling material without affecting the environment.

  1. FTN4 OPTIMIZATION TECHNIQUES.

    E-Print Network [OSTI]

    Authors, Various

    2012-01-01T23:59:59.000Z

    3 1st Edition FTN4 OPTIMIZATION TECHNIQUES November 1979O. INTRODUCTION 1. COt1PILER OPTIMIZATIONS 2. SOURCE CODEcode. Most of these optimizations decrease central processor

  2. Optimization of Surfactant Mixtures and Their Interfacial Behavior for Advanced Oil Recovery

    SciTech Connect (OSTI)

    Somasundaran, Prof. P.

    2002-03-04T23:59:59.000Z

    The objective of this project was to develop a knowledge base that is helpful for the design of improved processes for mobilizing and producing oil left untapped using conventional techniques. The main goal was to develop and evaluate mixtures of new or modified surfactants for improved oil recovery. In this regard, interfacial properties of novel biodegradable n-alkyl pyrrolidones and sugar-based surfactants have been studied systematically. Emphasis was on designing cost-effective processes compatible with existing conditions and operations in addition to ensuring minimal reagent loss.

  3. Application of molten salt oxidation for the minimization and recovery of plutonium-238 contaminated wastes

    SciTech Connect (OSTI)

    Wishau, R.; Ramsey, K.B.; Montoya, A.

    1998-12-31T23:59:59.000Z

    This paper presents the technical and economic feasibility of molten salt oxidation technology as a volume reduction and recovery process for {sup 238}Pu contaminated waste. Combustible low-level waste material contaminated with {sup 238}Pu residue is destroyed by oxidation in a 900 C molten salt reaction vessel. The combustible waste is destroyed creating carbon dioxide and steam and a small amount of ash and insoluble {sup 2328}Pu in the spent salt. The valuable {sup 238}Pu is recycled using aqueous recovery techniques. Experimental test results for this technology indicate a plutonium recovery efficiency of 99%. Molten salt oxidation stabilizes the waste converting it to a non-combustible waste. Thus installation and use of molten salt oxidation technology will substantially reduce the volume of {sup 238}Pu contaminated waste. Cost-effectiveness evaluations of molten salt oxidation indicate a significant cost savings when compared to the present plans to package, or re-package, certify and transport these wastes to the Waste Isolation Pilot Plant for permanent disposal. Clear and distinct cost advantages exist for MSO when the monetary value of the recovered {sup 238}Pu is considered.

  4. Characterization of oil and gas reservoirs and recovery technology deployment on Texas State Lands

    SciTech Connect (OSTI)

    Tyler, R.; Major, R.P.; Holtz, M.H. [Univ. of Texas, Austin, TX (United States)] [and others

    1997-08-01T23:59:59.000Z

    Texas State Lands oil and gas resources are estimated at 1.6 BSTB of remaining mobile oil, 2.1 BSTB, or residual oil, and nearly 10 Tcf of remaining gas. An integrated, detailed geologic and engineering characterization of Texas State Lands has created quantitative descriptions of the oil and gas reservoirs, resulting in delineation of untapped, bypassed compartments and zones of remaining oil and gas. On Texas State Lands, the knowledge gained from such interpretative, quantitative reservoir descriptions has been the basis for designing optimized recovery strategies, including well deepening, recompletions, workovers, targeted infill drilling, injection profile modification, and waterflood optimization. The State of Texas Advanced Resource Recovery program is currently evaluating oil and gas fields along the Gulf Coast (South Copano Bay and Umbrella Point fields) and in the Permian Basin (Keystone East, Ozona, Geraldine Ford and Ford West fields). The program is grounded in advanced reservoir characterization techniques that define the residence of unrecovered oil and gas remaining in select State Land reservoirs. Integral to the program is collaboration with operators in order to deploy advanced reservoir exploitation and management plans. These plans are made on the basis of a thorough understanding of internal reservoir architecture and its controls on remaining oil and gas distribution. Continued accurate, detailed Texas State Lands reservoir description and characterization will ensure deployment of the most current and economically viable recovery technologies and strategies available.

  5. Advanced reservoir characterization for improved oil recovery in a New Mexico Delaware basin project

    SciTech Connect (OSTI)

    Martin, F.D.; Kendall, R.P.; Whitney, E.M. [Dave Martin and Associates, Inc., Socorro, NM (United States)] [and others

    1997-08-01T23:59:59.000Z

    The Nash Draw Brushy Canyon Pool in Eddy County, New Mexico is a field demonstration site in the Department of Energy Class III program. The basic problem at the Nash Draw Pool is the low recovery typically observed in similar Delaware fields. By comparing a control area using standard infill drilling techniques to a pilot area developed using advanced reservoir characterization methods, the goal of the project is to demonstrate that advanced technology can significantly improve oil recovery. During the first year of the project, four new producing wells were drilled, serving as data acquisition wells. Vertical seismic profiles and a 3-D seismic survey were acquired to assist in interwell correlations and facies prediction. Limited surface access at the Nash Draw Pool, caused by proximity of underground potash mining and surface playa lakes, limits development with conventional drilling. Combinations of vertical and horizontal wells combined with selective completions are being evaluated to optimize production performance. Based on the production response of similar Delaware fields, pressure maintenance is a likely requirement at the Nash Draw Pool. A detailed reservoir model of pilot area was developed, and enhanced recovery options, including waterflooding, lean gas, and carbon dioxide injection, are being evaluated.

  6. Black liquor combustion validated recovery boiler modeling: Final year report. Volume 4 (Appendix IV)

    SciTech Connect (OSTI)

    Grace, T.M.; Frederick, W.J.; Salcudean, M.; Wessel, R.A.

    1998-08-01T23:59:59.000Z

    This project was initiated in October 1990, with the objective of developing and validating a new computer model of a recovery boiler furnace using a computational fluid dynamics (CFD) code specifically tailored to the requirements for solving recovery boiler flows, and using improved submodels for black liquor combustion based on continued laboratory fundamental studies. The key tasks to be accomplished were as follows: (1) Complete the development of enhanced furnace models that have the capability to accurately predict carryover, emissions behavior, dust concentrations, gas temperatures, and wall heat fluxes. (2) Validate the enhanced furnace models, so that users can have confidence in the predicted results. (3) Obtain fundamental information on aerosol formation, deposition, and hardening so as to develop the knowledge base needed to relate furnace model outputs to plugging and fouling in the convective sections of the boiler. (4) Facilitate the transfer of codes, black liquid submodels, and fundamental knowledge to the US kraft pulp industry. Volume 4 contains the following appendix sections: Radiative heat transfer properties for black liquor combustion -- Facilities and techniques and Spectral absorbance and emittance data; and Radiate heat transfer determination of the optical constants of ash samples from kraft recovery boilers -- Calculation procedure; Computation program; Density determination; Particle diameter determination; Optical constant data; and Uncertainty analysis.

  7. Methane Recovery from Hydrate-bearing Sediments

    SciTech Connect (OSTI)

    J. Carlos Santamarina; Costas Tsouris

    2011-04-30T23:59:59.000Z

    Gas hydrates are crystalline compounds made of gas and water molecules. Methane hydrates are found in marine sediments and permafrost regions; extensive amounts of methane are trapped in the form of hydrates. Methane hydrate can be an energy resource, contribute to global warming, or cause seafloor instability. This study placed emphasis on gas recovery from hydrate bearing sediments and related phenomena. The unique behavior of hydrate-bearing sediments required the development of special research tools, including new numerical algorithms (tube- and pore-network models) and experimental devices (high pressure chambers and micromodels). Therefore, the research methodology combined experimental studies, particle-scale numerical simulations, and macro-scale analyses of coupled processes. Research conducted as part of this project started with hydrate formation in sediment pores and extended to production methods and emergent phenomena. In particular, the scope of the work addressed: (1) hydrate formation and growth in pores, the assessment of formation rate, tensile/adhesive strength and their impact on sediment-scale properties, including volume change during hydrate formation and dissociation; (2) the effect of physical properties such as gas solubility, salinity, pore size, and mixed gas conditions on hydrate formation and dissociation, and it implications such as oscillatory transient hydrate formation, dissolution within the hydrate stability field, initial hydrate lens formation, and phase boundary changes in real field situations; (3) fluid conductivity in relation to pore size distribution and spatial correlation and the emergence of phenomena such as flow focusing; (4) mixed fluid flow, with special emphasis on differences between invading gas and nucleating gas, implications on relative gas conductivity for reservoir simulations, and gas recovery efficiency; (5) identification of advantages and limitations in different gas production strategies with emphasis; (6) detailed study of CH4-CO2 exchange as a unique alternative to recover CH4 gas while sequestering CO2; (7) the relevance of fines in otherwise clean sand sediments on gas recovery and related phenomena such as fines migration and clogging, vuggy structure formation, and gas-driven fracture formation during gas production by depressurization.

  8. Development and Optimization of Gas-Assisted Gravity Drainage (GAGD) Process for Improved Light Oil Recovery

    SciTech Connect (OSTI)

    Dandina N. Rao; Subhash C. Ayirala; Madhav M. Kulkarni; Wagirin Ruiz Paidin; Thaer N. N. Mahmoud; Daryl S. Sequeira; Amit P. Sharma

    2006-09-30T23:59:59.000Z

    This is the final report describing the evolution of the project ''Development and Optimization of Gas-Assisted Gravity Drainage (GAGD) Process for Improved Light Oil Recovery'' from its conceptual stage in 2002 to the field implementation of the developed technology in 2006. This comprehensive report includes all the experimental research, models developments, analyses of results, salient conclusions and the technology transfer efforts. As planned in the original proposal, the project has been conducted in three separate and concurrent tasks: Task 1 involved a physical model study of the new GAGD process, Task 2 was aimed at further developing the vanishing interfacial tension (VIT) technique for gas-oil miscibility determination, and Task 3 was directed at determining multiphase gas-oil drainage and displacement characteristics in reservoir rocks at realistic pressures and temperatures. The project started with the task of recruiting well-qualified graduate research assistants. After collecting and reviewing the literature on different aspects of the project such gas injection EOR, gravity drainage, miscibility characterization, and gas-oil displacement characteristics in porous media, research plans were developed for the experimental work to be conducted under each of the three tasks. Based on the literature review and dimensional analysis, preliminary criteria were developed for the design of the partially-scaled physical model. Additionally, the need for a separate transparent model for visual observation and verification of the displacement and drainage behavior under gas-assisted gravity drainage was identified. Various materials and methods (ceramic porous material, Stucco, Portland cement, sintered glass beads) were attempted in order to fabricate a satisfactory visual model. In addition to proving the effectiveness of the GAGD process (through measured oil recoveries in the range of 65 to 87% IOIP), the visual models demonstrated three possible multiphase mechanisms at work, namely, Darcy-type displacement until gas breakthrough, gravity drainage after breakthrough and film-drainage in gas-invaded zones throughout the duration of the process. The partially-scaled physical model was used in a series of experiments to study the effects of wettability, gas-oil miscibility, secondary versus tertiary mode gas injection, and the presence of fractures on GAGD oil recovery. In addition to yielding recoveries of up to 80% IOIP, even in the immiscible gas injection mode, the partially-scaled physical model confirmed the positive influence of fractures and oil-wet characteristics in enhancing oil recoveries over those measured in the homogeneous (unfractured) water-wet models. An interesting observation was that a single logarithmic relationship between the oil recovery and the gravity number was obeyed by the physical model, the high-pressure corefloods and the field data.

  9. A Full Key Recovery Attack on HMAC-AURORA-512

    E-Print Network [OSTI]

    A Full Key Recovery Attack on HMAC-AURORA-512 Yu Sasaki NTT Information Sharing Platform.yu@lab.ntt.co.jp Abstract. In this note, we present a full key recovery attack on HMAC- AURORA-512 when 512-bit secret keys is 2259 AURORA-512 operations, which is significantly less than the complexity of the exhaustive search

  10. Model-Driven Business Process Recovery , Terence C. Lau2

    E-Print Network [OSTI]

    Zou, Ying

    Model-Driven Business Process Recovery Ying Zou1 , Terence C. Lau2 , Kostas Kontogiannis3 , Tack. In this paper, we propose a model-driven business process recovery framework that captures the essential-to-date linkage between business tasks and their implementation in source code, we propose a model-driven business

  11. Homology based algorithm for disaster recovery in wireless networks

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    Homology based algorithm for disaster recovery in wireless networks A. Vergne, I. Flint, L for disaster recovery of wireless networks. We consider a damaged wireless network presenting coverage holes the performances between each other and with known methods. I. INTRODUCTION Wireless networks are present

  12. One Classic and Two Classical The Recovery and Transmission

    E-Print Network [OSTI]

    Elman, Benjamin

    #12;One Classic and Two Classical Traditions The Recovery and Transmission of a Lost Edition primary and secondary sources in Japan. Wu Ge , curator of the rare books collection at Fudan University that various ironies attended the process of recovery and transmission. The text in question is Huang Kan

  13. Criticality & Recovery Preparedness: ePHI Systems Criticality Designation

    E-Print Network [OSTI]

    Criticality & Recovery Preparedness: ePHI Systems 5100 EX.A Criticality Designation 1. Primary source of PHI for pre-research; or secondary source of PHI for research/pre-research; secondary source of PHI for treatment, payment or healthcare operations; or teaching Criticality mapped to Recovery

  14. Volunteers hope ORNL technology will speed Haiti's long quake recovery

    E-Print Network [OSTI]

    Pennycook, Steve

    SCIENCE Volunteers hope ORNL technology will speed Haiti's long quake recovery The multi to speed Haiti's recovery from its devastating 2010 earthquake and improve the Haitian population's overall public health by allowing quick, in-the-field diagnoses of diseases. A team of Haiti volunteers

  15. Combined Flue Gas Heat Recovery and Pollution Control Systems

    E-Print Network [OSTI]

    Zbikowski, T.

    1979-01-01T23:59:59.000Z

    in the field of heat recovery now make it possible to recover a portion of the wasted heat and improve the working conditions of the air purification equipment. Proper design and selection of heat recovery and pollution control equipment as a combination...

  16. Contamination Control Techniques

    SciTech Connect (OSTI)

    EBY, J.L.

    2000-05-16T23:59:59.000Z

    Welcome to a workshop on contamination Control techniques. This work shop is designed for about two hours. Attendee participation is encouraged during the workshop. We will address different topics within contamination control techniques; present processes, products and equipment used here at Hanford and then open the floor to you, the attendees for your input on the topics.

  17. Reservoir characterization and enhanced oil recovery research

    SciTech Connect (OSTI)

    Lake, L.W.; Pope, G.A.; Schechter, R.S.

    1992-03-01T23:59:59.000Z

    The research in this annual report falls into three tasks each dealing with a different aspect of enhanced oil recovery. The first task strives to develop procedures for accurately modeling reservoirs for use as input to numerical simulation flow models. This action describes how we have used a detail characterization of an outcrop to provide insights into what features are important to fluid flow modeling. The second task deals with scaling-up and modeling chemical and solvent EOR processes. In a sense this task is the natural extension of task 1 and, in fact, one of the subtasks uses many of the same statistical procedures for insight into the effects of viscous fingering and heterogeneity. The final task involves surfactants and their interactions with carbon dioxide and reservoir minerals. This research deals primarily with phenomena observed when aqueous surfactant solutions are injected into oil reservoirs.

  18. Mixed surfactant systems for enhanced oil recovery

    SciTech Connect (OSTI)

    Llave, F.M.; Gall, B.L.; Noll, L.A.

    1990-12-01T23:59:59.000Z

    The results of an evaluation of mixed surfactant systems for enhanced oil recovery are described. Several surfactant combinations have been studied. These include alkyl aryl sulfonates as primary surfactants and carboxymethylated ethoxylated (CME) surfactants and ethoxylated sulfonates (ES) as secondary surfactants. The ethoxylated surfactants increase the salinity tolerance of the primary surfactants and, in theory, allow tailoring of the surfactant system to match selected reservoir conditions. The experiments conducted included interfacial tension (IFT) measurements, phase behavior measurements, adsorption and/or chromatographic separation of mixed surfactant systems, measurements of solution properties such as the critical micelle concentration (CMC) of surfactant mixtures, and crude oil displacement experiments. The effects of temperature, surfactant concentration, salinity, presence of divalent ions, hydrocarbon type, and component proportions in the mixed surfactant combinations, and injection strategies on the performance potential of the targeted surfactant/hydrocarbon systems were studied. 40 refs., 37 figs., 8 tabs.

  19. Recovery of uranium by immobilized polyhydroxyanthraquinone

    SciTech Connect (OSTI)

    Sakaguchi, T.; Nakajima, A.

    1986-01-01T23:59:59.000Z

    Nine species of polyhydroxyanthraquinone and two of polyhydroxynaphthoquinone were screened to determine which have the greatest ability to accumulate uranium. 1,2-Dihydroxyanthraquinone and 3-amino-1,2-dihydroxyanthraquinone have extremely high accumulation abilities. To improve the adsorbing characteristics of these compounds, the authors tried to immobilize these compounds by coupling with diazotized aminopolystyrene. The immobilized 1,2-dihydroxyanthraquinone has the most favorable features for uranium recovery; high selective adsorption ability to uranium, rapid adsorption rate, and applicability in both column and batch systems. This adsorbent can recover uranium almost quantitatively from natural seawater. Almost all uranium adsorbed is desorbed with a solution of 1 N HCl. Thus, immobilized 1,2-dihydroxyanthraquinone can be used repeatedly in the adsorption-desorption process.

  20. Recovery of gallium from aluminum industry residues

    SciTech Connect (OSTI)

    Carvalho, M.S.; Neto, K.C.M.; Nobrega, A.W.; Medeiros, J.A.

    2000-01-01T23:59:59.000Z

    A procedure is proposed to recover gallium from flue dust aluminum residues produced in plants by using solid-phase extraction with a commercial polyether-type polyurethane foam (PUF). Gallium can be separated from high concentrations of aluminum, iron, nickel, titanium, vanadium, copper, zinc, sulfate, fluoride, and chloride by extraction with PUF from 3 M sulfuric acid and 3 M sodium chloride concentration medium with at least a 92% efficiency. Gallium backextraction was fast and quantitative with ethanol solution. In all recovery steps commercial-grade reagents could be used, including tap water. The recovered gallium was precipitated with sodium hydroxide solution, purified by dissolution and precipitation, calcinated, and the final oxide was 98.6% pure.

  1. Energy Recovery Linacs for Light Source Applications

    SciTech Connect (OSTI)

    George Neil

    2011-04-01T23:59:59.000Z

    Energy Recovery Linacs are being considered for applications in present and future light sources. ERLs take advantage of the continuous operation of superconducting rf cavities to accelerate high average current beams with low losses. The electrons can be directed through bends, undulators, and wigglers for high brightness x ray production. They are then decelerated to low energy, recovering power so as to minimize the required rf drive and electrical draw. When this approach is coupled with advanced continuous wave injectors, very high power, ultra-short electron pulse trains of very high brightness can be achieved. This paper will review the status of worldwide programs and discuss the technology challenges to provide such beams for photon production.

  2. An energy recovery filter for HVDC systems

    SciTech Connect (OSTI)

    Jiang, X.; Gole, A.M. (Univ. of Manitoba, Winnipeg (Canada). Dept. of Electrical and Computer Engineering)

    1994-01-01T23:59:59.000Z

    The paper investigates the use of a novel filter arrangement for eliminating harmonic instability. The CIGRE benchmark model is selected as the base system. Presented in the paper is an example of harmonic instability which is first eliminated using a conventional low Q filter. Subsequently an energy recovery filter (ER-filter) replaces the conventional low Q filter. It is shown that the ER-filter provides similar performance with a fraction of the power loss when compared with a low Q filter. The dynamic performance of the ER-filter is also demonstrated via the simulations of system start-up and faults. The tool used for this investigation is an electromagnetic transient simulation program.

  3. A comparison of reservoir heterogeneity and recovery efficiency of two offshore bar complexes in an intracratonic basin

    SciTech Connect (OSTI)

    Whitaker, S.T.; Leetaru, H.E. (Illinois State Geological Survey, Champaign (United States))

    1991-03-01T23:59:59.000Z

    The US Department of Energy is developing a nation-wide reservoir classification system to update and upgrade its TORIS database. This new information will allow targeting of key reservoir types for focused research on improved an/or enhanced recovery. A comparison of two shallow marine siliciclastic reservoirs from the intracratonic Illinois basin offers an example of the level to which reservoir types need to be differentiated in order to predict optimal recovery methods. The lateral homogeneity of offshore bars within the Mississippian Cypress Formation at Bartelso field is a major factor contributing to a relatively high primary and secondary recovery efficiency. On the other hand, the lateral heterogeneity of a partially dissected offshore bar complex within the Mississippian Aux Vases Formation at King field is the major factor adversely affecting the efficiency of primary and secondary recovery techniques there. Although both these fields produce from sandstones that were deposited in shallow marine environments, a classification system must further differentiate between the two in order to stress the different exploitation procedures required to optimize recovery. Significant quantities of remaining mobile reserves may be recovered in King field-type Aux Vases reservoirs by programs involving infill drilling and selective waterflooding. Infill drilling would not be effective in recovering additional reserves from the offshore bar sands of the Cypress Formation where compartments have been effectively drained by typical well spacing and waterflooding. Instead, tertiary methods will need to be applied. Reservoir studies from a variety of basins will be needed before it can be determined to what levels reservoir classification needs to be subdivided to enable prediction of optimal recovery methods.

  4. Seeking prospects for enhanced gas recovery

    SciTech Connect (OSTI)

    Doherty, M.G.; Randolph, P.L.

    1982-01-01T23:59:59.000Z

    As part of the Institute of Gas Technology's (IGT) ongoing research on unconventional natural gas sources, a methodology to locate gas wells that had watered-out under over-pressured conditions was developed and implemented. Each year several trillion cubic feet (Tcf) of gas are produced from reservoirs that are basically geopressured aquifers with large gas caps. As the gas is produced, the gas-water interface moves upward in the sandstone body trapping a portion of gas at the producing reservoir pressure. The methodology for identifying such formations consisted of a computer search of a large data base using a series of screening criteria to select or reject wells. The screening criteria consisted of depth cutoff, minimum production volume, minimum pressure gradient, and minimum water production. Wells chosen by the computer search were further screened manually to seek out those wells that exhibited rapid and large increases in water production with an associated quick decline in gas production indicating possible imbibition trapping of gas in the reservoir. The search was performed in an attempt to characterize the watered-out geopressured gas cap resource. Over 475 wells in the Gulf Coast area of Louisiana and Texas were identified as possible candidates representing an estimated potential of up to about 1 Tcf (2.83 x 10/sup 10/ m/sup 3/) of gas production through enhanced recovery operations. A process to determine the suitability of a watered-out geopressured gas cap reservoir for application of enhanced recovery is outlined. This paper addresses the identification of a potential gas source that is considered an unconventional resource. The methodology developed to identify watered-out geopressured gas cap wells can be utilized in seeking other types of watered-out gas reservoirs with the appropriate changes in the screening criteria. 12 references, 2 figures, 5 tables.

  5. Energy balance for uranium recovery from seawater

    SciTech Connect (OSTI)

    Schneider, E.; Lindner, H. [The University of Texas, 1 University Station C2200, Austin, TX 78712 (United States)

    2013-07-01T23:59:59.000Z

    The energy return on investment (EROI) of an energy resource is the ratio of the energy it ultimately produces to the energy used to recover it. EROI is a key viability measure for a new recovery technology, particularly in its early stages of development when financial cost assessment would be premature or highly uncertain. This paper estimates the EROI of uranium recovery from seawater via a braid adsorbent technology. In this paper, the energy cost of obtaining uranium from seawater is assessed by breaking the production chain into three processes: adsorbent production, adsorbent deployment and mooring, and uranium elution and purification. Both direct and embodied energy inputs are considered. Direct energy is the energy used by the processes themselves, while embodied energy is used to fabricate their material, equipment or chemical inputs. If the uranium is used in a once-through fuel cycle, the braid adsorbent technology EROI ranges from 12 to 27, depending on still-uncertain performance and system design parameters. It is highly sensitive to the adsorbent capacity in grams of U captured per kg of adsorbent as well as to potential economies in chemical use. This compares to an EROI of ca. 300 for contemporary terrestrial mining. It is important to note that these figures only consider the mineral extraction step in the fuel cycle. At a reference performance level of 2.76 g U recovered per kg adsorbent immersed, the largest energy consumers are the chemicals used in adsorbent production (63%), anchor chain mooring system fabrication and operations (17%), and unit processes in the adsorbent production step (12%). (authors)

  6. Material and energy recovery in integrated waste management systems: The potential for energy recovery

    SciTech Connect (OSTI)

    Consonni, Stefano [Department of Energy, Politecnico di Milano, Via Lambruschini 4, 20156 Milan (Italy); LEAP - Laboratorio Energia Ambiente Piacenza, Via Bixio 27, 29100 Piacenza (Italy); Vigano, Federico, E-mail: federico.vigano@polimi.it [Department of Energy, Politecnico di Milano, Via Lambruschini 4, 20156 Milan (Italy); LEAP -Laboratorio Energia Ambiente Piacenza, Via Bixio 27, 29100 Piacenza (Italy)

    2011-09-15T23:59:59.000Z

    Highlights: > The amount of waste available for energy recovery is significantly higher than the Unsorted Residual Waste (URW). > Its energy potential is always higher than the complement to 100% of the Source Separation Level (SSL). > Increasing SSL has marginal effects on the potential for energy recovery. > Variations in the composition of the waste fed to WtE plants affect only marginally their performances. > A large WtE plant with a treatment capacity some times higher than a small plant achieves electric efficiency appreciably higher. - Abstract: This article is part of a set of six coordinated papers reporting the main findings of a research project carried out by five Italian universities on 'Material and energy recovery in Integrated Waste Management Systems (IWMS)'. An overview of the project and a summary of the most relevant results can be found in the introductory article of the series. This paper describes the work related to the evaluation of mass and energy balances, which has consisted of three major efforts (i) development of a model for quantifying the energy content and the elemental compositions of the waste streams appearing in a IWMS; (ii) upgrade of an earlier model to predict the performances of Waste-to-Energy (WtE) plants; (iii) evaluation of mass and energy balances of all the scenarios and the recovery paths considered in the project. Results show that not only the amount of material available for energy recovery is significantly higher than the Unsorted Residual Waste (URW) left after Separate Collection (SC), because selection and recycling generate significant amounts of residues, but its heating value is higher than that of the original, gross waste. Therefore, the energy potential of what is left after recycling is always higher than the complement to 100% of the Source Separation Level (SSL). Also, increasing SSL has marginal effects on the potential for energy recovery: nearly doubling SSL (from 35% to 65%) reduces the energy potential only by one fourth. Consequently, even at high SSL energy recovery is a fundamental step of a sustainable waste management system. Variations of SSL do bring about variations of the composition, heating value and moisture content of the material fed to WtE plants, but these variations (i) are smaller than one can expect; (ii) have marginal effects on the performances of the WtE plant. These considerations suggest that the mere value of SSL is not a good indicator of the quality of the waste management system, nor of its energy and environmental outcome. Given the well-known dependence of the efficiency of steam power plants with their power output, the efficiency of energy recovery crucially depends on the size of the IWMS served by the WtE plant. A fivefold increase of the amount of gross waste handled in the IWMS (from 150,000 to 750,000 tons per year of gross waste) allows increasing the electric efficiencies of the WtE plant by about 6-7 percentage points (from 21-23% to 28.5% circa).

  7. Novel 125 I production and recovery system

    E-Print Network [OSTI]

    Kar, Adwitiya

    2009-05-15T23:59:59.000Z

    This research suggests ways of reducing contamination of iodine-126 in iodine-125 and lays out a simpler iodine-125 production technique to increase the yield. By using aluminum irradiation vessels the yield of iodine-125 produced by neutron...

  8. A Management Tool for Analyzing CHP Natural Gas Liquids Recovery System

    E-Print Network [OSTI]

    Olsen, C.; Kozman, T. A.; Lee, J.

    2008-01-01T23:59:59.000Z

    The objective of this research is to develop a management tool for analyzing combined heat and power (CHP) natural gas liquids (NGL) recovery systems. The methodology is developed around the central ideas of product recovery, possible recovery...

  9. Highlights from U.S. Department of Energy's Fuel Cell Recovery...

    Broader source: Energy.gov (indexed) [DOE]

    fact sheets highlights fuel cell projects funded by the American Recovery and Reinvestment Act of 2009 (Recovery Act). A total of 41.6 million in Recovery Act funding supported...

  10. A Management Tool for Analyzing CHP Natural Gas Liquids Recovery System 

    E-Print Network [OSTI]

    Olsen, C.; Kozman, T. A.; Lee, J.

    2008-01-01T23:59:59.000Z

    The objective of this research is to develop a management tool for analyzing combined heat and power (CHP) natural gas liquids (NGL) recovery systems. The methodology is developed around the central ideas of product recovery, possible recovery...

  11. Thermoelectric Generators for Automotive Waste Heat Recovery Systems Part II: Parametric Evaluation

    E-Print Network [OSTI]

    Xu, Xianfan

    Thermoelectric Generators for Automotive Waste Heat Recovery Systems Part II: Parametric Evaluation been proposed to model thermoelectric generators (TEGs) for automotive waste heat recovery. Details: Thermoelectric generators, waste heat recovery, automotive exhaust, skutterudites INTRODUCTION In part I

  12. ZAKKAROFF et al.: RECOVERY OF SLICE ROTATIONS IN CARDIAC MR SERIES 1 Recovery of Slice Rotations with the Stack

    E-Print Network [OSTI]

    Magee, Derek

    ZAKKAROFF et al.: RECOVERY OF SLICE ROTATIONS IN CARDIAC MR SERIES 1 Recovery of Slice Rotations with the Stack Alignment Transform in Cardiac MR Series Constantine Zakkaroff1 mnkz@leeds.ac.uk Aleksandra Radjenovic2 a.radjenovic@leeds.ac.uk John Greenwood3 j.greenwood@leeds.ac.uk Derek Magee1 d

  13. Policy Flash 2014-35 Rescission of American Recovery and Reinvestment...

    Office of Environmental Management (EM)

    4-35 Rescission of American Recovery and Reinvestment Act Reporting Requirements. Policy Flash 2014-35 Rescission of American Recovery and Reinvestment Act Reporting Requirements....

  14. Report from the Field: Nutrient and Energy Recovery at DC Water

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    NUTRIENT SOURCE Management Energy Recovery Reduced Fossil Fuel RENEWABLE SOLIDS SOURCE CO2 EMMISIONS REDUCTION RENEWABLE ENERGY SOURCE NUTRIENT & ENERGY RECOVERY 1937 2015...

  15. Methane Digesters and Biogas Recovery - Masking the Environmental Consequences of Industrial Concentrated Livestock Production

    E-Print Network [OSTI]

    Di Camillo, Nicole G.

    2011-01-01T23:59:59.000Z

    Methane Digesters and Biogas Recovery-Masking theII. METHANE DIGESTERS AND BIOGAs RECOVERY- IN THEA. Digesters Have Received Attention for Their Potential to

  16. Surfactant-enhanced alkaline flooding for light oil recovery. Annual report, 1992--1993

    SciTech Connect (OSTI)

    Wasan, D.T.

    1994-08-01T23:59:59.000Z

    In this report, the authors present the results of experimental and theoretical studies in surfactant-enhanced alkaline flooding for light oil recovery. The overall objective of this work is to develop a very cost-effective method for formulating a successful surfactant-enhanced alkaline flood by appropriately choosing mixed alkalis which form inexpensive buffers to obtain the desired pH (between 8.5 and 12.0) for ultimate spontaneous emulsification and ultralow interfacial tension. In addition, the authors have (1) developed a theoretical interfacial activity model for determining equilibrium interfacial tension, (2) investigated the mechanisms for spontaneous emulsification, (3) developed a technique to monitor low water content in oil, and (4) developed a technique to study water-in-oil emulsion film properties.

  17. An evaluation of known remaining oil resources in the United States. Appendix, Project on Advanced Oil Recovery and the States

    SciTech Connect (OSTI)

    Not Available

    1994-10-01T23:59:59.000Z

    This volume contains appendices for the following: Overview of improved oil recovery methods (enhanced oil recovery methods and advanced secondary recovery methods); Benefits of improved oil recovery, selected data for the analyzed states; and List of TORIS fields and reservoirs.

  18. Quality of Service of Crash-Recovery Failure Detectors 

    E-Print Network [OSTI]

    Ma, Tiejun

    2007-11-07T23:59:59.000Z

    problem when the monitored target is resilient and recovers after failure. To the best of our knowledge, this is the first work to provide an analysis of crash-recovery failure detection from the QoS perspective....We develop a probabilistic model of the behavior of a crash-recovery target, i.e. one which has the ability to recover from the crash state. We show that the fail-free run and the crash-stop run are special cases of the crash-recovery run with mean time to failure (MTTF) approaching to infinity and mean time to recovery (MTTR) approaching to infinity, respectively. We extend the previously published QoS metrics to allow the measurement of the recovery speed, and the definition of the completeness property of a failure detector. Then, the impact of the dependability of the crash-recovery target on the QoS bounds for such a crash-recovery failure detector is analyzed using general dependability metrics, such as MTTF and MTTR, based on an approximate probabilistic model of the two-process failure detection system. Then according to our approximate model, we show how to estimate the failure detector’s parameters to achieve a required QoS, based on Chen et al.’s NFD-S algorithm analytically, and how to execute the configuration procedure of this crash-recovery failure detector....In order to make the failure detector adaptive to the target’s crash-recovery behavior and enable the autonomy of the monitoring procedure, we propose two types of recovery detection protocols. One is a reliable recovery detection protocol, which can guarantee to detect each occurring failure and recovery by adopting persistent storage. The other is a lightweight recovery detection protocol, which does not guarantee to detect every failure and recovery but which reduces the system overhead. Both of these recovery detection protocols improve the completeness without reducing the other QoS aspects of a failure detector. In addition, we also demonstrate how to estimate the inputs, such as the dependability metrics, using the failure detector itself....In order to evaluate our analytical work, we simulate the following failure detection algorithms: the simple heartbeat timeout algorithm, the NFD-S algorithm and the NFDS algorithm with the lightweight recovery detection protocol, for various values of MTTF and MTTR. The simulation results show that the dependability of a recoverable monitored target could have significant impact on the QoS of such a failure detector. This conforms well to our models and analysis. We show that in the case of reasonable long MTTF, the NFD-S algorithm with the lightweight recovery detection protocol exhibits better QoS than the NFD-S algorithm for the completeness of a crash-recovery failure detector, and similarly for other QoS metrics....

  19. Optimizing Center Performance through Coordinated Data Staging, Scheduling and Recovery

    SciTech Connect (OSTI)

    Zhang, Zhe [ORNL; Wang, Chao [ORNL; Vazhkudai, Sudharshan S [ORNL; Ma, Xiaosong [ORNL; Pike, Gregory [ORNL; Cobb, John W [ORNL; Mueller, Frank [North Carolina State University

    2007-01-01T23:59:59.000Z

    Procurement and optimized utilization of Petascale supercomputers and centers is a renewed national priority. Sustained performance and availability of such large centers is a key technical challenge significantly impacting their usability. As recent research shows, storage systems can be a primary fault source leading to unavailability of even today's supercomputer. Due to data unavailability, jobs are frequently resubmitted resulting in reduced compute center performance as well as in a lack of coordination between I/O activities and job scheduling. In this work, we explore two mechanisms, namely the coordination of job scheduling and data staging/offloading and on-demand job input data reconstruction to address the availability of job input/output data and to improve center-wide performance. Fundamental to both mechanisms is the efficient management of transient data: in the way it is scheduled and recovered. Collectively, from a center standpoint, these techniques optimize resource usage and increase its data/service availability. From a user job standpoint, they reduce job turnaround time and optimize the usage of allocated time. We have implemented our approaches within commonly used supercomputer software tools such as the PBS scheduler and the Lustre parallel file system. We have gathered reconstruction data from a production supercomputer environment using multiple data sources. We conducted simulations based on the measured data recovery performance, the job traces and staged data logs from leadership-class supercomputer centers. Our results indicate that the average waiting time of jobs is reduced. This trend increases significantly for larger jobs and also as data is striped over more I/O nodes.

  20. Biological Kraft Chemical Recycle for Augmentation of Recovery Furnace Capacity

    SciTech Connect (OSTI)

    Stuart E. Strand

    2001-12-06T23:59:59.000Z

    The chemicals used in pulping of wood by the kraft process are recycled in the mill in the recovery furnace, which oxidizes organics while simultaneously reducing sulfate to sulfide. The recovery furnace is central to the economical operation of kraft pulp mills, but it also causes problems. The total pulp production of many mills is limited by the recovery furnace capacity, which cannot easily be increased. The furnace is one of the largest sources of air pollution (as reduced sulfur compounds) in the kraft pulp mill.

  1. Indentation and Recovery Tests of Common Resilient Floor Coverings.

    E-Print Network [OSTI]

    Stewart, B. R.; Kunze, O. R.; Hobgood, Price

    1960-01-01T23:59:59.000Z

    to the samples for 30 minutes, with indentation readings being made 15 seconds and 1, 2, 3, 5, 10, 15, 20 and 30 minutes after the load was applied. Recovery readings were made 15 seconds and 1, 2, 5, 10, 20 and 30 minutes after the test load was removed.... Residual indentation as referred to in this work is that indentation remain- ing at the end of the 30-minute recovery period. A final recovery reading was taken 72 hours after re- moval of the test load. Before the beginning of each test, the sample...

  2. Recovery of bitumen from oil sand by steam with chemicals

    SciTech Connect (OSTI)

    Yamazaki, T.

    1988-01-01T23:59:59.000Z

    Recently, oil sand bitumen has become the center of attention as a possible oil energy substitute for the future. Until now, the development of oil sand has been performed by surface miing and conventional steam injection, these methods are limited in respect to resource recovery. A more effective method needs to be developed utilizing in situ recovery. In this study, a new attempt is made for the purpose of enhancing the recovery of bitumen from oil sand by adopting the method of injecting high pressure steam and chemicals such as solvents, surfactants, and others.

  3. Waste water heat recovery appliance. Final report

    SciTech Connect (OSTI)

    Chapin, H.D.; Armstrong, P.R.; Chapin, F.A.W.

    1983-11-21T23:59:59.000Z

    An efficient convective waste heat recovery heat exchanger was designed and tested. The prototype appliance was designed for use in laundromats and other small commercial operations which use large amounts of hot water. Information on general characteristics of the coin-op laundry business, energy use in laundromats, energy saving resources already in use, and the potential market for energy saving devices in laundromats was collected through a literature search and interviews with local laundromat operators in Fort Collins, Colorado. A brief survey of time-use patterns in two local laundromats was conducted. The results were used, with additional information from interviews with owners, as the basis for the statistical model developed. Mathematical models for the advanced and conventional types were developed and the resulting computer program listed. Computer simulations were made using a variety of parameters; for example, different load profiles, hold-up volumes, wall resistances, and wall areas. The computer simulation results are discussed with regard to the overall conclusions. Various materials were explored for use in fabricating the appliance. Resistance to corrosion, workability, and overall suitability for laundromat installations were considered for each material.

  4. "Smart" Multifunctional Polymers for Enhanced Oil Recovery

    SciTech Connect (OSTI)

    Charles McCormick; Andrew Lowe

    2005-10-15T23:59:59.000Z

    Herein we report the synthesis and solution characterization of a novel series of AB diblock copolymers with neutral, water-soluble A blocks comprised of N,N-dimethylacrylamide (DMA) and pH-responsive B blocks of N,N-dimethylvinylbenzylamine (DMVBA). To our knowledge, this represents the first example of an acrylamido-styrenic block copolymer prepared directly in homogeneous aqueous solution. The best blocking order (using polyDMA as a macro-CTA) was shown to yield well-defined block copolymers with minimal homopolymer impurity. Reversible aggregation of these block copolymers in aqueous media was studied by {sup 1}H NMR spectroscopy and dynamic light scattering. Finally, an example of core-crosslinked micelles was demonstrated by the addition of a difunctional crosslinking agent to a micellar solution of the parent block copolymer. Our ability to form micelles directly in water that are responsive to pH represents an important milestone in developing ''smart'' multifunctional polymers that have potential for oil mobilization in Enhanced Oil Recovery Processes.

  5. Wastewater heat recovery method and apparatus

    DOE Patents [OSTI]

    Kronberg, J.W.

    1991-01-01T23:59:59.000Z

    This invention is comprised of a heat recovery system with a heat exchanger and a mixing valve. A drain trap includes a heat exchanger with an inner coiled tube, baffle plate, wastewater inlet, wastewater outlet, cold water inlet, and preheated water outlet. Wastewater enters the drain trap through the wastewater inlet, is slowed and spread by the baffle plate, and passes downward to the wastewater outlet. Cold water enters the inner tube through the cold water inlet and flows generally upward, taking on heat from the wastewater. This preheated water is fed to the mixing valve, which includes a flexible yoke to which are attached an adjustable steel rod, two stationary zinc rods, and a pivoting arm. The free end of the arm forms a pad which rests against a valve seat. The rods and pivoting arm expand or contract as the temperature of the incoming preheated water changes. The zinc rods expand more than the steel rod, flexing the yoke and rotating the pivoting arm. The pad moves towards the valve seat as the temperature of the preheated water rises, and away as the temperature falls, admitting a variable amount of hot water to maintain a nearly constant average process water temperature.

  6. Direct condensation refrigerant recovery and restoration system

    SciTech Connect (OSTI)

    Grant, D.C.H.

    1992-03-10T23:59:59.000Z

    This patent describes a refrigerant recovery and purification system for removing gaseous refrigerant from a disabled refrigeration unit, cleaning the refrigerant of contaminants, and converting the gaseous refrigerant to a liquid state for storage. It comprises a low pressure inlet section; a high pressure storage section; the low pressure inlet section comprising: an oil and refrigerant gas separator, including a separated oil removal means, first conduit means for connecting an inlet of the separator to the disabled refrigerant unit, a slack-sided accumulator, second conduit means connecting the separator to the slack-sided accumulator, a reclaim condenser, third conduit means connecting the separator and the reclaim condenser in series, an evaporator coil in the reclaim condenser connectable to a conventional operating refrigeration system for receiving a liquid refrigerant under pressure for expansion therein, the evaporator coil forming a condensing surface for condensing the refrigerant gas at near atmospheric pressure in the condenser, a liquid receiver, a reclaimed refrigerant storage tank, fourth conduit means further connecting the liquid receiver in series with the reclaim condenser, downstream thereof, means between the reclaim condenser and the liquid receiver.

  7. Catalyst for elemental sulfur recovery process

    DOE Patents [OSTI]

    Flytzani-Stephanopoulos, Maria (Winchester, MA); Liu, Wei (Cambridge, MA)

    1995-01-01T23:59:59.000Z

    A catalytic reduction process for the direct recovery of elemental sulfur from various SO.sub.2 -containing industrial gas streams. The catalytic process provides high activity and selectivity, as well as stability in the reaction atmosphere, for the reduction of SO.sub.2 to elemental sulfur product with carbon monoxide or other reducing gases. The reaction of sulfur dioxide and reducing gas takes place over a metal oxide composite catalyst having one of the following empirical formulas: [(OF.sub.2).sub.1-n (RO.sub.1)n].sub.1-k M.sub.k, [(FO.sub.2).sub.1-n (RO.sub.1.5).sub.n ].sub.1-k M.sub.k, or [Ln.sub.x Zr.sub.1-x O.sub.2-0.5x ].sub.1-k M.sub.k wherein FO.sub.2 is a fluorite-type oxide; RO represents an alkaline earth oxide; RO.sub.1.5 is a Group IIIB or rare earth oxide; Ln is a rare earth element having an atomic number from 57 to 65 or mixtures thereof; M is a transition metal or a mixture of transition metals; n is a number having a value from 0.0 to 0.35; k is a number having a value from 0.0 to about 0.5; and x is a number having a value from about 0.45 to about 0.55.

  8. New aspects of uranium recovery from seawater

    SciTech Connect (OSTI)

    Hetkamp, D.; Wagener, K.

    1982-10-01T23:59:59.000Z

    The properties of various adsorbents for uranium extraction from seawater are measured under standardized experimental conditions. It turns out that fractionated humic acids have exceptionally fast loading kinetics. This property leads to a substantial reduction of capital investments in conventional adsorbent bed techniques as well as in a procedure designed to avoid large adsorbent bed constructions by using carrier bodies in the open sea.

  9. Advanced Computer Control Concepts Facilitate Energy Recovery

    E-Print Network [OSTI]

    Cutler, C. R.

    1981-01-01T23:59:59.000Z

    Matrix Control that has been used successfully by Shell for several years. A brief description of the technique will be given and an illustration of its feed forward capabilities to compensate for load and soot blowing disturbances on a complex furnace...

  10. Recovery Act Workers Clear Reactor Shields from Brookhaven Lab

    Broader source: Energy.gov [DOE]

    American Recovery and Reinvestment Act workers are in the final stage of decommissioning a nuclear reactor after they recently removed thick steel shields once used to absorb neutrons produced for...

  11. Eubank Field, Kansas: a formation evaluation and secondary recovery project

    E-Print Network [OSTI]

    Dexheimer, Dominique

    1999-01-01T23:59:59.000Z

    recovery project in the Eubank Field, and this thesis was proposed to evaluate the Chester in terms of reservoir and fluids properties. The purpose of this thesis is to provide recommendations to implement a waterflood project at Eubank Field. All...

  12. Recovery algorithms for in-memory OLTP databases

    E-Print Network [OSTI]

    Malviya, Nirmesh

    2012-01-01T23:59:59.000Z

    Fine-grained, record-oriented write-ahead logging, as exemplified by systems like ARIES, has been the gold standard for relational database recovery. In this thesis, we show that in modern high-throughput transaction ...

  13. Driving Functional Behavioral Recovery Using Activity-Dependent Stimulation

    E-Print Network [OSTI]

    Guggenmos, David

    2012-12-31T23:59:59.000Z

    The purpose of this project was to determine if artificially linking spared motor and sensory areas following a cortical lesion would lead to increased behavioral recovery on a skilled reaching task. Sensory-motor integration is critical for skilled...

  14. SURFACTANT BASED ENHANCED OIL RECOVERY AND FOAM MOBILITY CONTROL

    SciTech Connect (OSTI)

    George J. Hirasaki; Clarence A. Miller; Gary A. Pope; Richard E. Jackson

    2004-02-01T23:59:59.000Z

    Surfactant flooding has the potential to significantly increase recovery over that of conventional waterflooding. The availability of a large number of surfactant structures makes it possible to conduct a systematic study of the relation between surfactant structure and its efficacy for oil recovery. Also, the addition of an alkali such as sodium carbonate makes possible in situ generation of surfactant and significant reduction of surfactant adsorption. In addition to reduction of interfacial tension to ultra-low values, surfactants and alkali can be designed to alter wettability to enhance oil recovery. An alkaline surfactant process is designed to enhance spontaneous imbibition in fractured, oil-wet, carbonate formations. It is able to recover oil from dolomite core samples from which there was no oil recovery when placed in formation brine.

  15. Colorado's Economic Recovery since the Great Recession Professor Martin Shields

    E-Print Network [OSTI]

    1 Colorado's Economic Recovery since the Great Recession Professor Martin Shields Regional Economics Institute Colorado State University csurei, economic performance has been mixed. The northern Front Range has fared best

  16. Protecting the Investment in Heat Recovery with Boiler Economizers 

    E-Print Network [OSTI]

    Roethe, L. A.

    1985-01-01T23:59:59.000Z

    Many people consider energy to be a crisis in remission -- even with continuing high fuel costs. Some voice concern over the long term security of an investment in flue gas heat recovery equipment. The concern generally involves the ability...

  17. Faces of the Recovery Act: The Impact of Smart Grid

    Broader source: Energy.gov [DOE]

    On October 27th, 2009, Baltimore Gas & Electric was selected to receive $200 million for Smart Grid innovation projects under the Recovery Act. Watch as members of their team, along with...

  18. Near Miscible CO2 Application to Improve Oil Recovery

    E-Print Network [OSTI]

    Bui, Ly H.

    2010-07-26T23:59:59.000Z

    Carbon dioxide (CO2) injection for enhanced oil recovery is a proven technology. CO2 injection is normally operated at a pressure above the minimum miscibility pressure (MMP), which is determined by crude oil composition and reservoir conditions...

  19. Faces of the Recovery Act: Jobs at Savannah River Site

    Broader source: Energy.gov [DOE]

    The Savannah River Site in Aiken, SC has been able to create/save thousands of jobs through the Recovery Act. These are the stories of just a few of the new hires.

  20. Faces of the Recovery Act: Johnson Controls Inc.

    Broader source: Energy.gov [DOE]

    Thanks in part to a $300 million grant through the Recovery Act, Johnson Controls is re-opening a plant in Holland, Michigan that is now being retrofitted to produce batteries that will power...

  1. Prospects for the recovery of uranium from seawater

    E-Print Network [OSTI]

    Best, F. R.

    1980-01-01T23:59:59.000Z

    A computer program entitled URPE (Uranium Recovery Performance and Economics) has been developed to simulate the engineering performance and provide an economic analysis O of a plant recovering uranium from seawater. The ...

  2. Outphasing Energy Recovery Amplifier With Resistance Compression for Improved Efficiency

    E-Print Network [OSTI]

    Godoy, Philip Andrew

    We describe a new outphasing energy recovery amplifier (OPERA) which replaces the isolation resistor in the conventional matched combiner with a resistance-compressed rectifier for improved efficiency. The rectifier recovers ...

  3. Recovery Act funds advance cleanup efforts at Cold War site

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Cleanup efforts at Cold War site Recovery Act funds advance cleanup efforts at Cold War site A local small business, ARSEC Environmental, LLC, of White Rock, NM, won a 2 million...

  4. The secondary recovery project at Ogharefe Field, Nigeria

    SciTech Connect (OSTI)

    Aron, D.; Ashbourne, T.J.; Oloketuyi, D.O.

    1984-04-01T23:59:59.000Z

    A secondary recovery project involving water injection and gas-lift facilities was installed in the Ogharefe field in 1979 following detailed reservoir simulation studies. Two years' operation provides the opportunity to discuss the progress of the project so far.

  5. Introduction of Heat Recovery Chiller Control and Water System Design

    E-Print Network [OSTI]

    Jia, J.

    2006-01-01T23:59:59.000Z

    The styles, feature and main concerns of heat recovery water system are discussed, and the entering condenser water temperature control is recommended for higher chiller efficiency and reliable operation. Three optimized water system designs...

  6. Recovery Act Project Clears Portsmouth Switchyard, Benefits Community...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    operate. At the X-533 Electrical Switchyard, Recovery Act workers also re- moved 18 transformers, two switchgear houses, and a two-sto- ry control room. With the help of a 600-ton...

  7. Introduction of Heat Recovery Chiller Control and Water System Design 

    E-Print Network [OSTI]

    Jia, J.

    2006-01-01T23:59:59.000Z

    The styles, feature and main concerns of heat recovery water system are discussed, and the entering condenser water temperature control is recommended for higher chiller efficiency and reliable operation. Three optimized water system designs...

  8. An Investigation Of The Potential For Geothermal-Energy Recovery...

    Open Energy Info (EERE)

    Geothermal-Energy Recovery In The Calgary Area In Southern Alberta, Canada, Using Petroleum-Exploration Data Jump to: navigation, search OpenEI Reference LibraryAdd to library...

  9. Improved screen-bowl centrifuge recovery using polymer injection technology

    SciTech Connect (OSTI)

    Burchett, R.T.; McGough, K.M.; Luttrell, G.H.

    2006-08-15T23:59:59.000Z

    The paper reports the improved screen-bowl centrifuge recovery process using polymer injection technology. Field test and economic analysis are also included in the paper. 3 refs., 3 figs., 1 tab.

  10. Multiple Attributes-based Data Recovery in Wireless Sensor Networks

    E-Print Network [OSTI]

    route is how to mine and exploit such correlations for the problem of missing data recovery. To address University of Technology and Design, Singapore University of New Mexico, USA {chengs, yanglet, linghe

  11. Enhanced Oil Recovery Using the Alkaline-Surfactant-Polymer (ASP) 

    E-Print Network [OSTI]

    Musharova, Darya

    2010-07-14T23:59:59.000Z

    Alkaline Surfactant Polymer (ASP) process is a tertiary method of oil recovery that has promising results for future development. It has already been implemented in different areas of the United States such as Wyoming, west Texas, also in Canada...

  12. Enhanced Heavy Oil Recovery by Emulsification With Injected Nanoparticles

    E-Print Network [OSTI]

    Martinez Cedillo, Arturo Rey

    2013-11-26T23:59:59.000Z

    In-situ oil-in-water emulsion generation, using modified silica hydrophilic nanoparticles as emulsifier, has been proposed as an enhanced oil recovery process. The nanoparticles are injected as an aqueous dispersion; its hydrophilic character allows...

  13. Two Recovery Act Funding Case Studies Now Available

    Broader source: Energy.gov [DOE]

    Utilities across America are using Recovery Act funds and smart grid technologies to deliver more reliable and affordable power, recover from major storms, and improve operations. Two case studies are now available.

  14. Faces of the Recovery Act: Jobs at Savannah River Site

    ScienceCinema (OSTI)

    Skila Harris

    2010-09-01T23:59:59.000Z

    The Savannah River Site in Aiken, SC has been able to create/save thousands of jobs through the Recovery Act. These are the stories of just a few of the new hires.

  15. Vice President Biden Announces Recovery Act Funding for 37 Transformat...

    Office of Environmental Management (EM)

    types of batteries to make electric vehicles more affordable; and remove the carbon pollution from coal-fired power plants in a more cost-effective way. "Thanks to the Recovery...

  16. Faces of the Recovery Act: Johnson Controls Inc.

    ScienceCinema (OSTI)

    Rolinski, Elizabeth

    2013-05-29T23:59:59.000Z

    Thanks in part to a $300 million grant through the Recovery Act, Johnson Controls is re-opening a plant that is now being retrofitted to produce batteries that will power tomorrow's electric cars.

  17. Incentive Cost Recovery Rule for Nuclear Power Generation (Louisiana)

    Broader source: Energy.gov [DOE]

    The Incentive Cost Recovery Rule for Nuclear Power Generation establishes guidelines for any utility seeking to develop a nuclear power plant in Louisiana. The rule clarifies, as well as...

  18. COLLIMATING TOUSCHEK PARTICLES IN AN ENERGY RECOVERY LINEAR ACCELERATOR

    E-Print Network [OSTI]

    Hoffstaetter, Georg

    COLLIMATING TOUSCHEK PARTICLES IN AN ENERGY RECOVERY LINEAR ACCELERATOR Michael P. Ehrlichman- tum would usually be inconsequential to the trajectory of the particles through the accelerator to longitudinal momentum significant to the trajec- tory of scattered particles through the accelerator

  19. The secondary recovery project at the Ogharefe Field, Nigeria

    SciTech Connect (OSTI)

    Aron, D.; Ashbourne, T.J.; Oloketuyi, D.O.

    1982-09-01T23:59:59.000Z

    A secondary recovery project involving water injection and gas lift facilities was installed in the Ogharefe Field in 1979 following detailed reservoir simulation studies. Two years of operation provide the opportunity to discuss the progress of the project so far.

  20. Energy Secretary Steven Chu to Attend Grand Opening of Recovery...

    Office of Environmental Management (EM)

    the Recovery Act, the A123 Systems battery plant is expected to create 3,000 jobs in Michigan by 2012 and help to establish the U.S. as a global leader in the manufacturing of...