Powered by Deep Web Technologies
Note: This page contains sample records for the topic "recovery steam generator" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

Heat Recovery Steam Generator Simulation  

E-Print Network (OSTI)

The paper discusses the applications of Heat Recovery Steam Generator Simulation. Consultants, plant engineers and plant developers can evaluate the steam side performance of HRSGs and arrive at the optimum system which matches the needs...

Ganapathy, V.

2

Issues in heat recovery steam generator system noise  

Science Journals Connector (OSTI)

A heat recovery steam generator (HRSG) is a fundamental component of all combustion turbine?based combined cycle power plants. While its primary purpose is to convert exhaust gas heat to steam an important secondary function is to reduce noise emissions from the combustion turbine exhaust. This source at about 155 dB (overall) re: 1 pW for a 100?MW turbine is the highest noise emission source in any combustion turbine plant. Therefore the residual exhaust noise emissions leaving the HRSG walls and stack exit must be predicted with acceptable accuracy to determine the total plant noise level. The sources involved in this prediction methodology will be discussed. The issues include source power levels wall and duct transmission loss and the noise reduction characteristics through the HRSG flow path. Special measurement techniques required to quantify HRSG noise emissions are described. Whereas the HRSG is mainly a passive device that attenuates combustion turbine exhaust noise two HRSG generated sources steam venting and supplemental duct firing will also be discussed. [See NOISE?CON Proceedings for full paper.

George F. Hessler Jr.

1997-01-01T23:59:59.000Z

3

Options for Generating Steam Efficiently  

E-Print Network (OSTI)

This paper describes how plant engineers can efficiently generate steam when there are steam generators and Heat Recovery Steam Generators in their plant. The process consists of understanding the performance characteristics of the various equipment...

Ganapathy, V.

4

Waste Steam Recovery  

E-Print Network (OSTI)

An examination has been made of the recovery of waste steam by three techniques: direct heat exchange to process, mechanical compression, and thermocompression. Near atmospheric steam sources were considered, but the techniques developed are equally...

Kleinfeld, J. M.

1979-01-01T23:59:59.000Z

5

Economizer recirculation for low-load stability in heat recovery steam generator  

SciTech Connect

An economizer system is described for heating feedwater in a heat recovery steam generator which consists of: at least first and second economizer tube planes; each of the economizer tube planes including a plurality of generally parallel tubes; the tubes being generally vertically disposed; each of the economizer tube planes including a top header and a bottom header; all of the plurality of tubes in each economizer tube plane being connected in parallel to their top and bottom headers whereby parallel feedwater flow through the plurality of tubes between the top and bottom headers is enabled; one of the top and bottom headers being an inlet header; a second of the top and bottom headers being an outlet header; a boiler feed pump; the boiler feed pump being effective for applying a flow of feedwater to the inlet header; means for serially interconnecting the economizer tube planes; the means for serially interconnecting including means for flowing the feedwater upward and downward in tubes of alternating ones of the economizer tube planes between the inlet header and the outlet header; means for conveying heated feedwater from the outlet header to a using process; means for recirculating at least a portion of the heated feedwater from the outlet header to an inlet of the boiler feed pump; and the means for recirculating including means for relating the portion to a steam load in the using process whereby an increased flow is produced through all of the economizer tube planes at values of the steam load below a predetermined value and a condition permitting initiation of reverse flow in any of the tubes is substantially reduced.

Cuscino, R.T.; Shade, R.L. Jr.

1986-04-15T23:59:59.000Z

6

Steam generator support system  

DOE Patents (OSTI)

A support system for connection to an outer surface of a J-shaped steam generator for use with a nuclear reactor or other liquid metal cooled power source. The J-shaped steam generator is mounted with the bent portion at the bottom. An arrangement of elongated rod members provides both horizontal and vertical support for the steam generator. The rod members are interconnected to the steam generator assembly and a support structure in a manner which provides for thermal distortion of the steam generator without the transfer of bending moments to the support structure and in a like manner substantially minimizes forces being transferred between the support structure and the steam generator as a result of seismic disturbances.

Moldenhauer, James E. (Simi Valley, CA)

1987-01-01T23:59:59.000Z

7

Steam generator support system  

DOE Patents (OSTI)

A support system for connection to an outer surface of a J-shaped steam generator for use with a nuclear reactor or other liquid metal cooled power source is disclosed. The J-shaped steam generator is mounted with the bent portion at the bottom. An arrangement of elongated rod members provides both horizontal and vertical support for the steam generator. The rod members are interconnected to the steam generator assembly and a support structure in a manner which provides for thermal distortion of the steam generator without the transfer of bending moments to the support structure and in a like manner substantially minimizes forces being transferred between the support structure and the steam generator as a result of seismic disturbances. 4 figs.

Moldenhauer, J.E.

1987-08-25T23:59:59.000Z

8

In situ generation of steam and alkaline surfactant for enhanced oil recovery using an exothermic water reactant (EWR)  

DOE Patents (OSTI)

A method for oil recovery whereby an exothermic water reactant (EWR) encapsulated in a water soluble coating is placed in water and pumped into one or more oil wells in contact with an oil bearing formation. After the water carries the EWR to the bottom of the injection well, the water soluble coating dissolves and the EWR reacts with the water to produce heat, an alkali solution, and hydrogen. The heat from the EWR reaction generates steam, which is forced into the oil bearing formation where it condenses and transfers heat to the oil, elevating its temperature and decreasing the viscosity of the oil. The aqueous alkali solution mixes with the oil in the oil bearing formation and forms a surfactant that reduces the interfacial tension between the oil and water. The hydrogen may be used to react with the oil at these elevated temperatures to form lighter molecules, thus upgrading to a certain extent the oil in situ. As a result, the oil can flow more efficiently and easily through the oil bearing formation towards and into one or more production wells.

Robertson, Eric P

2011-05-24T23:59:59.000Z

9

Efficiently generate steam from cogeneration plants  

SciTech Connect

As cogeneration gets more popular, some plants have two choices of equipment for generating steam. Plant engineers need to have a decision chart to split the duty efficiently between (oil-fired or gas-fired) steam generators (SGs) and heat recovery steam generators (HRSGs) using the exhaust from gas turbines. Underlying the dilemma is that the load-versus-efficiency characteristics of both types of equipment are different. When the limitations of each type of equipment and its capability are considered, analysis can come up with several selection possibilities. It is almost always more efficient to generate steam in an HRSG (designed for firing) as compared with conventional steam generators. However, other aspects, such as maintenance, availability of personnel, equipment limitations and operating costs, should also be considered before making a final decision. Loading each type of equipment differently also affects the overall efficiency or the fuel consumption. This article describes the performance aspects of representative steam generators and gas turbine HRSGs and suggests how plant engineers can generate steam efficiently. It also illustrates how to construct a decision chart for a typical installation. The equipment was picked arbitrarily to show the method. The natural gas fired steam generator has a maximum capacity of 100,000 lb/h, 400-psig saturated steam, and the gas-turbine-exhaust HRSG has the same capacity. It is designed for supplementary firing with natural gas.

Ganapathy, V. [ABCO Industries, Abilene, TX (United States)

1997-05-01T23:59:59.000Z

10

GCFR steam generator conceptual design  

SciTech Connect

The gas-cooled fast reactor (GCFR) steam generators are large once-through heat exchangers with helically coiled tube bundles. In the GCFR demonstration plant, hot helium from the reactor core is passed through these units to produce superheated steam, which is used by the turbine generators to produce electrical power. The paper describes the conceptual design of the steam generator. The major components and functions of the design are addressed. The topics discussed are the configuration, operating conditions, design criteria, and the design verification and support programs.

Holm, R.A.; Elliott, J.P.

1980-01-01T23:59:59.000Z

11

Apparatus and methods of reheating gas turbine cooling steam and high pressure steam turbine exhaust in a combined cycle power generating system  

DOE Patents (OSTI)

In a combined cycle system having a multi-pressure heat recovery steam generator, a gas turbine and steam turbine, steam for cooling gas turbine components is supplied from the intermediate pressure section of the heat recovery steam generator supplemented by a portion of the steam exhausting from the HP section of the steam turbine, steam from the gas turbine cooling cycle and the exhaust from the HP section of the steam turbine are combined for flow through a reheat section of the HRSG. The reheated steam is supplied to the IP section inlet of the steam turbine. Thus, where gas turbine cooling steam temperature is lower than optimum, a net improvement in performance is achieved by flowing the cooling steam exhausting from the gas turbine and the exhaust steam from the high pressure section of the steam turbine in series through the reheater of the HRSG for applying steam at optimum temperature to the IP section of the steam turbine.

Tomlinson, Leroy Omar (Niskayuna, NY); Smith, Raub Warfield (Ballston Lake, NY)

2002-01-01T23:59:59.000Z

12

Low pressure combustor for generating steam downhole  

SciTech Connect

A compact catalytic combustor for generating steam downhole in an oil reservoir has steam generating tubes that are attached to a metal catalyst support. The metal support comprises sheets of metal that are spaced apart and transverse to the tubes. Heat from combustion is generated on the metal sheets and is conducted to the steam generating tubes. The steam is injected into the oil reservoir. The combustion gas is vented to ground level.

Retallick, W.B.

1983-03-22T23:59:59.000Z

13

Downhole steam generator with improved preheating, combustion, and protection features  

DOE Patents (OSTI)

For tertiary oil recovery, a downhole steam generator is designed which provides for efficient counterflow cooling of the combustion chamber walls and preheating of the fuel and water. Pressure-responsive doors are provided for closing and opening the outlet in response to flameout, thereby preventing flooding of the combustion chamber. (DLC)

Fox, R.L.

1981-01-07T23:59:59.000Z

14

Control system for fluid heated steam generator  

DOE Patents (OSTI)

A control system for controlling the location of the nucleate-boiling region in a fluid heated steam generator comprises means for measuring the temperature gradient (change in temperature per unit length) of the heating fluid along the steam generator; means for determining a control variable in accordance with a predetermined function of temperature gradients and for generating a control signal in response thereto; and means for adjusting the feedwater flow rate in accordance with the control signal.

Boland, J.F.; Koenig, J.F.

1984-05-29T23:59:59.000Z

15

"Greening" Industrial Steam Generation via On-demand Steam Systems  

E-Print Network (OSTI)

boiler technology currently in service in the U.S., it is critical to raise awareness and examine the role of emerging new technologies to address the energy and environmental challenges inherent with steam generation. In the same way that tank...

Smith, J. P.

2010-01-01T23:59:59.000Z

16

Generating Steam by Waste Incineration  

E-Print Network (OSTI)

Combustible waste is a significant source of steam at the new John Deere Tractor Works assembly plant in Waterloo, Iowa. The incinerators, each rated to consume two tons of solid waste per hour, are expected to provide up to 100 percent of the full...

Williams, D. R.; Darrow, L. A.

1981-01-01T23:59:59.000Z

17

Waste Heat Recovery Opportunities for Thermoelectric Generators...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Waste Heat Recovery Opportunities for Thermoelectric Generators Waste Heat Recovery Opportunities for Thermoelectric Generators Thermoelectrics have unique advantages for...

18

Solving chemical and mechanical problems of PWR steam generators  

SciTech Connect

Steam generators in power plants, based on pressurized water reactors (PWRs), transfer heat from a primary coolant system (pressurized water) to a secondary coolant system. Primary coolant water is heated in the core and passes through the steam generator that transfers heat to the secondary coolant water to make steam. The steam then drives a turbine that turns an electric generator. Steam is condensed and returned to the steam generator as feedwater. Two types of PWR steam generators are in use: recirculating steam generators (RSGs) and once-through steam generators (OTSGs). Since most of the units are vertical, only vertical units are discussed in this article. Some vertical units have operated with a minimum of problems, while others have experienced a variety of corrosion and mechanically-induced problems that have caused unscheduled outages and expensive repairs.

Green, S.J.

1987-07-01T23:59:59.000Z

19

The Economics of Steam Electric Generation  

E-Print Network (OSTI)

by manufacturers, data available from past installations and recent installations. 7) Labor costs were based on labor rates in ~he Lansing, Michigan area. 8) Power plant labor and supervision costs were based on manning data supplied by the Board of Water...-service. No other figures, including labor, fuel cost, outside services and other costs have been escalated. 12) Operating costs were established, based on steam generation. Credit has been allotted to any program for the electric power generated during...

Ophaug, R. A.; Birget, C. D.

1980-01-01T23:59:59.000Z

20

COMPUTATION OF TWO-PHASE FLOW IN STEAM GENERATOR  

E-Print Network (OSTI)

COMPUTATION OF TWO-PHASE FLOW IN STEAM GENERATOR USING DOMAIN DECOMPOSITION AND LOCAL ZOOM METHODS Abstract We present ow simulations in the Steam Generator of a pressurized water nuclear reactor using coherence between the zoom and the full domain. Key words: Steam Generator, Zoom, Domain Decomposition

Paris-Sud XI, Université de

Note: This page contains sample records for the topic "recovery steam generator" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

Towards model-based control of a steam Rankine process for engine waste heat recovery  

E-Print Network (OSTI)

Towards model-based control of a steam Rankine process for engine waste heat recovery Johan Peralez steam process for exhaust gas heat recovery from a spark-ignition engine, focusing in particular results on a steam process for SI engines, [3] on generic control issues and [4] which provides a comp

Paris-Sud XI, Université de

22

Enhanced Oil Recovery through Steam Assisted Gravity Drainage January 22, 2014  

E-Print Network (OSTI)

Enhanced Oil Recovery through Steam Assisted Gravity Drainage January 22, 2014 A Comparative Study Of Continuous And Cyclic Steam Injection With Trapping Of Oil Phase Muhammad Adil Javed Summary of Thesis Enhanced oil recovery (EOR) through steam-assisted gravity drainage (SAGD) has become an important in

Cirpka, Olaf Arie

23

Steam turbine/generator NDE workshop  

SciTech Connect

On September 12--15, 1989, EPRI sponsored a workshop in Charlotte, North Carolina on steam turbine/generator rotating components. The approximate 185 attendees represented a broad spectrum of utilities, equipment manufactures, forging suppliers, service organizations, universities, insurance carriers, and consultants from the United States and abroad. Canada, England, Finland, France, Germany, Japan, Korea, Italy, Spain, and Sweden were represented at the workshop, and 81 of the attendees represented 44 domestic utilities. Nondestructive examination equipment demonstrations by 16 vendors and 2 utilities at the EPRI NDE Center complemented the technical presentation. In addition to 23 formal, technical presentations of prepared papers of specific topics, 8 tutorial presentations, plus various opening and closing remarks and addresses, were given at the workshop. Presentations were organized under the following general topics: bucket blades and/or attachment regions; retaining rings; wheels/disks; steam turbine/generator testing and evaluation; and tutorials. Each individual paper has been cataloged separately.

Nottingham, L.D.; Sabourin, P.F. (Jones (J.A.) Applied Research Co., Charlotte, NC (USA))

1990-11-01T23:59:59.000Z

24

Laser removal of sludge from steam generators  

DOE Patents (OSTI)

A method of removing unwanted chemical deposits known as sludge from the metal surfaces of steam generators with laser energy is provided. Laser energy of a certain power density, of a critical wavelength and frequency, is intermittently focused on the sludge deposits to vaporize them so that the surfaces are cleaned without affecting the metal surface (sludge substrate). Fiberoptic tubes are utilized for laser beam transmission and beam direction. Fiberoptics are also utilized to monitor laser operation and sludge removal.

Nachbar, Henry D. (Ballston Lake, NY)

1990-01-01T23:59:59.000Z

25

Numerical Simulation of a Natural Circulation Steam Generator  

E-Print Network (OSTI)

Numerical Simulation of a Natural Circulation Steam Generator W. Linzer \\Lambda , K. Ponweiser circulation steam generator. We focus on a model with a simple geometry consisting of two vertical pipes properties of water and steam. We present a numerical algorithm based on an explicit upwind discretization

Weinmüller, Ewa B.

26

Project Recap Humanitarian Engineering Biodiesel Boiler System for Steam Generator  

E-Print Network (OSTI)

Project Recap Humanitarian Engineering ­ Biodiesel Boiler System for Steam Generator Currently 70 biodiesel boiler system to drive a steam engine generator. This system is to provide electricity the customer needs, a boiler fueled by biodiesel and outputting to a steam engine was decided upon. The system

Demirel, Melik C.

27

Benchmark the Fuel Cost of Steam Generation  

Energy.gov (U.S. Department of Energy (DOE))

This tip sheet on benchmarking the fuel cost of steam provides how-to advice for improving industrial steam systems using low-cost, proven practices and technologies.

28

Locating hot and cold-legs in a nuclear powered steam generation system  

DOE Patents (OSTI)

A nuclear reactor steam generator includes a reactor vessel for heating water and a steam generator with a pump casing at the lowest point on the steam generator. A cold-leg pipe extends horizontally between the steam generator and the reactor vessel to return water from the steam generator to the reactor vessel. The bottom of the cold-leg pipe is at a first height above the bottom of the reactor vessel. A hot-leg pipe with one end connected to the steam generator and a second end connected to the reactor vessel has a first pipe region extending downwardly from the steam generator to a location between the steam generator and the reactor vessel at which a bottom of the hot-leg pipe is at a second height above the bottom of the reactor vessel. A second region extends from that location in a horizontal direction at the second height to the point at which the hot-leg pipe connects to the reactor vessel. A pump is attached to the casing at a location below the first and second heights and returns water from the steam generator to the reactor vessel over the cold-leg. The first height is greater than the second height and the bottom of the steam generator is at a height above the bottom of the reactor vessel that is greater than the first and second heights. A residual heat recovery pump is below the hot-leg and has an inlet line from the hot-leg that slopes down continuously to the pump inlet. 2 figures.

Ekeroth, D.E.; Corletti, M.M.

1993-11-16T23:59:59.000Z

29

Waste heat recovery steam curves with unfired HRSGs  

SciTech Connect

A compilation of waste heat recovery steam curves for a sampling of gas turbines ranging in output from around 1 MW to more than 200 MW is presented. The gas turbine output data shown with each set of curves differs from the values given in the Performance Specifications section of the Handbook. That's because the values have been calculated to reflect the effects of a 4 inch inlet and 10 inch outlet pressure drop on power output (lower), heat rate (higher), mass flow (higher), and exhaust temperature (higher).

Not Available

1993-01-01T23:59:59.000Z

30

Steam generator for liquid metal fast breeder reactor  

DOE Patents (OSTI)

Improvements in the design of internal components of J-shaped steam generators for liquid metal fast breeder reactors. Complex design improvements have been made to the internals of J-shaped steam generators which improvements are intended to reduce tube vibration, tube jamming, flow problems in the upper portion of the steam generator, manufacturing complexities in tube spacer attachments, thermal stripping potentials and difficulties in the weld fabrication of certain components.

Gillett, James E. (Greensburg, PA); Garner, Daniel C. (Murrysville, PA); Wineman, Arthur L. (Greensburg, PA); Robey, Robert M. (North Huntingdon, PA)

1985-01-01T23:59:59.000Z

31

Further experimental studies of steam-propane injection to enhance recovery of Morichal oil  

E-Print Network (OSTI)

In 1998-1999, experimental research was conducted by Goite at Texas A&M University into steam-propane injection to enhance oil recovery from the Morichal field, Venezuela. Goite's results showed that, compared with steam injection alone, steam-propane...

Ferguson,Mark Anthony

2012-06-07T23:59:59.000Z

32

Benchmark the Fuel Cost of Steam Generation  

SciTech Connect

This revised ITP tip sheet on benchmarking the fuel cost of steam provides how-to advice for improving industrial steam systems using low-cost, proven practices and technologies.

Not Available

2006-01-01T23:59:59.000Z

33

Save Energy Now in Your Steam Systems  

Energy.gov (U.S. Department of Energy (DOE))

This brief outlines typical ways to increase steam system efficiency through changes in distribution, generation, and recovery.

34

Comments on US LMFBR steam generator base technology  

SciTech Connect

The development of steam generators for the LMFBR was recognized from the onset by the AEC, now DOE, as a difficult, challenging, and high-priority task. The highly reactive nature of sodium with water/steam requires that the sodium-water/steam boundaries of LMFBR steam generators possess a degree of leak-tightness reliability not normally attempted on a commercial scale. In addition, the LMFBR steam generator is subjected to high fluid temperatures and severe thermal transients. These requirements place great demand on materials, fabrication processes, and inspection methods; and even greater demands on the designer to provide steam generators that can meet these demanding requirements, be fabricated without unreasonable shop requirements, and tolerate off-normal effects.

Simmons, W.R.

1984-01-01T23:59:59.000Z

35

Energy Tips: Benchmark the Fuel Cost of Steam Generation  

NLE Websites -- All DOE Office Websites (Extended Search)

Type (sales unit) Type (sales unit) Energy Content Combustion (Btu/sales unit) Efficiency (%) Natural Gas (therm) 100,000 81.7 Natural Gas (cubic foot) 1,030 81.7 Distillate/No. 2 Oil (gallon) 138,700 84.6 Residual/No. 6 Oil (gallon) 149,700 86.1 Coal (ton) 27,000,000 87.6 Benchmark the Fuel Cost of Steam Generation Benchmarking the fuel cost of steam generation ($/1000 lbs of steam) is an effective way to assess the efficiency of your steam system. This cost is dependent upon fuel type, unit fuel cost, boiler efficiency, feedwater temperature, and steam pressure. This calculation provides a good first approximation for the cost of generating steam and serves as a tracking device to allow for boiler performance monitoring. Table 1 shows the heat input required to produce one pound of saturated

36

Supervision and control prototyping for an engine exhaust gas heat recovery system based on a steam Rankine cycle  

E-Print Network (OSTI)

Supervision and control prototyping for an engine exhaust gas heat recovery system based on a steam Rankine steam process for exhaust gas heat recovery from a spark-ignition (SI) engine, from a prototyping of a practical supervi- sion and control system for a pilot Rankine steam process for exhaust gas heat recovery

Paris-Sud XI, Université de

37

Suez SNC-Lavalin Nuclear to replace US steam generator  

Science Journals Connector (OSTI)

SNC-Lavalin Nuclear (USA) has signed a contract with Xcel Energy to replace the Unit #2 steam generators at the Prairie Island Nuclear Generating Plant (PINGP) in Welch, Minnesota.

2010-01-01T23:59:59.000Z

38

The Ringhals 2 steam generator replacement  

SciTech Connect

Righals 2, located on the west coast of Sweden and operated by Vattenfall (Swedish State Power), is a Westinghouse 800-MW three-loop pressurized water reactor that started commercial operation in 1975. In 1983, a task force was assigned to make a study of the steam generator (SG) tube corrosion problems, mainly stress corrosion cracking in the tubesheet area, which caused between two and three unscheduled outages each year. The task force study concluded that replacement was clearly the best of the three alternatives considered. Late in 1984, a decision was made to replace the SG in the summer of 1989. It was also decided to take advantage of existing margins in the plant by increasing the heat transfer area of the new SG. A power increase of 9% would then be possible by fairly moderate modifications of the turbine plant. The SG replacement project was on time, below budget, and much below dose budget. As a consequence of the 9% uprating, the cost of the SG replacement will be recovered after 3 to 4 yr.

Looft, H.

1990-06-01T23:59:59.000Z

39

Experience in the repair of steam generator auxiliary feedwater nozzle  

SciTech Connect

The auxiliary feedwater nozzle is quite often subjected to more thermal stress cycles and other loading mechanisms during their service life than the material was designed and fabricated for at the nozzle of the earlier steam generators in many nuclear plants. During plant operation, the auxiliary feedwater nozzle outlet is exposed to the hot steam from the generator side, while the auxiliary feedwater piping which contains subcooled water from the inlet often induces water hammer as a result of the steam-water mixing phenomena. The thermal cycles and the steam bubble collapse at the nozzle may cause cracking in the nozzle liner and interior surface of the nozzle, and subsequently results in structural damage to the steam generator. This presentation is intended to share the lessons learned from the evaluation of the nozzle condition and the subsequent modification and repair made to the auxiliary feedwater nozzle at the Palisades Nuclear Plant. Other nuclear plant owners may benefit from this experience.

Chao, K.K.N. [Consumers Power Co., Jackson, MI (United States)

1996-12-01T23:59:59.000Z

40

Use Feedwater Economizers for Waste Heat Recovery: Office of Industrial Technologies (OIT) Steam Energy Tips No.3  

SciTech Connect

A feedwater economizer reduces steam boiler fuel requirements by transferring heat from the flue gas to incoming feedwater. Boiler flue gases are often rejected to the stack at temperatures more than 100 F to 150 F higher than the temperature of the generated steam. Generally, boiler efficiency can be increased by 1% for every 40 F reduction in flue gas temperature. By recovering waste heat, an economizer can often reduce fuel requirements by 5% to 10% and pay for itself in less than 2 years. The table provides examples of the potential for heat recovery.

Not Available

2002-03-01T23:59:59.000Z

Note: This page contains sample records for the topic "recovery steam generator" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

Further experimental studies of steam-propane injection to enhance recovery of Morichal oil.  

E-Print Network (OSTI)

??In 1998-1999, experimental research was conducted by Goite at Texas A&M University into steam-propane injection to enhance oil recovery from the Morichal field, Venezuela. Goite's (more)

Ferguson,Mark Anthony

2012-01-01T23:59:59.000Z

42

Experimental studies of steam-propane injection to enhance recovery of an intermediate crude oil.  

E-Print Network (OSTI)

??In the past few years, research has been conducted at Texas A&M University on steam-propane injection to enhance oil recovery from the Morichal field, Venezuela, (more)

Tinss, Judicael Christopher

2012-01-01T23:59:59.000Z

43

Experimental Study of Steam Surfactant Flood for Enhancing Heavy Oil Recovery After Waterflooding  

E-Print Network (OSTI)

surfactant flow due to the reduced steam override effect as well as reduced interfacial tension between oil and water in the formation. To investigate the ability to improve recovery of 20.5oAPI California heavy oil with steam surfactant injection, several...

Sunnatov, Dinmukhamed

2010-07-14T23:59:59.000Z

44

Steam Generator Tube Integrity Program [Corrosion and Mechanics of  

NLE Websites -- All DOE Office Websites (Extended Search)

Steam Generator Tube Steam Generator Tube Integrity Program Capabilities Materials Testing Environmentally Assisted Cracking (EAC) of Reactor Materials Corrosion Performance/Metal Dusting Overview Light Water Reactors Fatigue Testing of Carbon Steels and Low-Alloy Steels Environmentally Assisted Cracking of Ni-Base Alloys Irradiation-Induced Stress Corrosion Cracking of Austenitic Stainless Steels Steam Generator Tube Integrity Program Air Oxidation Kinetics for Zr-based Alloys Fossil Energy Fusion Energy Metal Dusting Publications List Irradiated Materials Steam Generator Tube Integrity Other Facilities Work with Argonne Contact us For Employees Site Map Help Join us on Facebook Follow us on Twitter NE on Flickr Corrosion and Mechanics of Materials Light Water Reactors Bookmark and Share

45

Thermohydraulic analysis of U-tube steam generators  

E-Print Network (OSTI)

Recent trends in plant safety analysis reveal a need for benchmark analytical representations of the steam generators to aid in the improvement of system codes and of fast codes for operator assistance. A model for such ...

da Silva, Hugo Cardoso

1984-01-01T23:59:59.000Z

46

Energy Savings By Recovery of Condensate From Steam Heating System  

E-Print Network (OSTI)

and reduces steam supply, saving 4061 tons of industrial water per year. The total saved steam amounts to 25.~ of the total amount of steM supply. The total saved cost is 39616 yuan per year; the total saved amount of coal is 329.9 tons per year... and reduces steam supply, saving 4061 tons of industrial water per year. The total saved steam amounts to 25.~ of the total amount of steM supply. The total saved cost is 39616 yuan per year; the total saved amount of coal is 329.9 tons per year...

Cheng, W. S.; Zhi, C. S.

47

Solar's combined-cycle system utilizes novel steam-generator concept  

SciTech Connect

As escalating fuel costs force equipment users to seek more efficient prime movers, the combined-cycle system will become increasingly attractive because it retains the advantages of simple-cycle gas turbines - low installation costs, high availability, low maintenance, and low emission levels - while adding 40% power output from the steam-based system operated on the turbine exhaust. Solar Turbines International has sought to develop an automated, remote-control combined-cycle system that can be easily retrofitted to existing simple-cycle power stations. The key component giving the system its advantages over the hazardous, complex steam-drum-type boiler systems is a once-through dual-pressure steam-generator device that eliminates the need for drums and elaborate control mechanisms. Forty identical parallel tube circuits suspended from a single frame are connected to common inlet and discharge manifolds; the individual circuits are made of dual high- and low-pressure bundles, with each bundle having economizer, vaporizer, and superheating sections. The 40 circuits comprise one complete steam-generator module core matrix. By injecting the superheated low-pressure steam into the latter stages of the steam turbine, the dual-pressure feature improves the heat recovery by more than 12% over conventional devices. The only water treatment that the corrosion-resistant tube material requires is the removal of dissolved solids.

Not Available

1980-06-01T23:59:59.000Z

48

Process for generating steam in a fuel cell powerplant  

SciTech Connect

The steam for a steam reforming reactor of a fuel cell powerplant is generated by humidifying the reactor feed gas in a saturator by evaporating a small portion of a mass of liquid water which circulates in a loop passing through the saturator. The water is reheated in each pass through the loop by waste heat from the fuel cell, but is not boiled. In the saturator the relatively dry feed gas passes in direct contact with the liquid water over and through a bed a high surface area material to cause evaporation of some of the water in the loop. All the steam requirements for the reactor can be generated in this manner without the need for a boiler; and steam can be raised at a higher total pressure than in a boiler heated by the same source.

Sederquist, R. A.

1985-09-03T23:59:59.000Z

49

Graphite dust resuspension in an HTR-10 steam generator  

Science Journals Connector (OSTI)

Abstract Graphite dust has an important effect on the safety of high-temperature gas-cooled reactors (HTR). The flow field in the steam generator was studied by the computational fluid dynamics (CFD) method, with the results indicating that the friction velocity in the windward and the leeward of the heat transfer tubes is relatively low and is higher at the sides. Further analysis of the resuspension of graphite dust indicates that the resuspension fraction reaches nearly zero for particles with a diameter less than 1?m, whereas it will increases as the helium velocity in the steam generator increases for particle size larger than 1?m. Moreover, the resuspension fraction increases as the particle size increases. The results also indicate that resuspension of the particles with sizes larger than 1?m exhibited obvious differences in different parts of the steam generator.

Wei Peng; Tianqi Zhang; Yanan Zhen; Suyuan Yu

2014-01-01T23:59:59.000Z

50

Steam injection method and apparatus for recovery of oil  

SciTech Connect

A method and apparatus for recovering oil from an oil bearing formation utilizing steam injected into the formation. A working fluid is heated at the surface to produce a reversible, chemical reaction, particularly a reforming reaction in a reforming/methanation reaction cycle. The products of the reforming reaction are transported at near ambient temperatures to a downhole heat exchanger through which water is circulated. There a catalyst triggers the methanation reaction, liberating heat energy to convert the water to steam. The products of the methanation reaction are recirculated to the surface to repeat the cycle. In one embodiment the products of the methanation reaction are injected into the formation along with the steam. Various catalysts, and various systems for heating the working fluid are disclosed.

Meeks, T.; Rhoades, C.A.

1983-02-08T23:59:59.000Z

51

Enviro-Friendly Hydrogen Generation From Steel Mill-Scale via Metal-Steam Reforming  

E-Print Network (OSTI)

Enviro-Friendly Hydrogen Generation From Steel Mill-Scale via Metal-Steam Reforming Abdul of certain metals with steam, called metal- steam reforming (MSR). This technique does not gen- erate any: hydrogen generation; metal-steam reform- ing; mill-scale; nanoscale iron; electron microscopy Hydrogen

Azad, Abdul-Majeed

52

Hydrodynamic analysis of direct steam generation solar collectors  

SciTech Connect

Direct steam generation collectors are considered with the aim to improve the performance of a parabolic trough collector leading to a reduction of operating costs of solar electric generation systems. In this study a hydrodynamic steady state model is developed and linked with a thermal model to optimize the performance of once-through direct steam generation solar collectors. The hydrodynamic model includes flow pattern classification and a pressure drop model. Flow pattern maps for typical DSG collectors with horizontal and inclined absorber tubes are generated to investigate the variation of flow conditions with radiation level, tube diameter, tube length and flow rate. Two-phase flow frictional pressure drop correlations for the range of operating conditions in a DSG collector are selected from the wide range of published correlations by comparison with experimental data for typical steam-water flow conditions in a DSG collector. Pressure drop is calculated for different operating conditions for both horizontal and inclined solar absorber tubes. Alternative operational strategies are evaluated to achieve optimum performance of a direct steam generation collector at different radiation levels.

Odeh, S.D.; Behnia, M.; Morrison, G.L.

2000-02-01T23:59:59.000Z

53

Downhole steam generator with improved preheating, combustion and protection features  

DOE Patents (OSTI)

An apparatus for generation of steam in a borehole for penetration into an earth formation wherein feedback preheater means are provided for the fuel and water before entering the combustor assembly. First, combustion gases are conducted from the combustion chamber to locations in proximity to the water and fuel supplies. Secondly, both hot combustion gases and steam are conducted from the borehole back to the water and fuel supply. The water used for conversion to steam is passed in a countercurrent manner through a plurality of annular water flow channels surrounding the combustion chamber. In this manner, the water is preheated, and the combustion chamber is cooled simultaneously, thereby minimizing thermal stresses and deterioration of the walls of the combustion chamber. The water is injected through slotted inlets along the combustion chamber wall to provide an unstable boundary layer and stripping of the water from the wall for efficient steam generation. Pressure responsive doors are provided at the steam outlet of the combustor assembly. The outlet doors and fluid flow functions may be controlled by a diagnostic/control module. The module is positioned in the water flow channel to maintain a relatively constant, controlled temperature.

Fox, Ronald L. (Albuquerque, NM)

1983-01-01T23:59:59.000Z

54

Effect of surface treatments on radiation buildup in steam generators  

SciTech Connect

A study of the effect of surface preparation on the radiation buildup of steam generator materials of construction was conducted. The tests consisted of exposing treated manway seal plates to primary reactor coolant during the second through the fifth fuel cycle of the Chinon B1 pressurized water reactor. The pretreatments included: mechanical polishing, electropolishing (either on the as received surface or on a surface which had been previously mechanically polished), and passivation via the RCT (laboratory) process or the Framatome (in situ) process. Radioactivity buildup was determined at the end of each fuel cycle. A selected number of the seal plates were removed from the steam generators after each exposure cycle for destructive examinations. The electropolished surfaces exhibited a significantly lower radioactive buildup rate; an average factor of five less buildup compared to an as-received surface. Passivation of the electropolished surface, especially via the RCT process, reduced the buildup rate still further by a factor of two over the electropolished-only surface. Examination of the surfaces by profilometry, scanning electron microscopy, etc., after exposure indicated no detrimental effects on the surface characteristics attributable to the surface treatments. A program has now been instituted to electropolish the steam generator channel heads of all new reactors in France, as well as the steam generators intended for replacement in existing plants. 1 ref., 5 figs., 10 tabs.

Not Available

1991-11-01T23:59:59.000Z

55

RELIABILITY OF SAMPLING INSPECTION SCHEMES APPLIED TO REPLACEMENT STEAM GENERATORS  

E-Print Network (OSTI)

RELIABILITY OF SAMPLING INSPECTION SCHEMES APPLIED TO REPLACEMENT STEAM GENERATORS Guy Roussel on the uninspected part of the tubing. 1 INTRODUCTION In Pressurized Water Reactors, a program of periodic in for determining the percentage of tubes sampled is to provide, by means of a statistical analysis, an equation

Cizelj, Leon

56

Downhole steam generator having a downhole oxidant compressor  

DOE Patents (OSTI)

Apparatus and method for generation of steam in a borehole for penetration into an earth formation wherein a downhole oxidant compressor is used to compress relatively low pressure (atmospheric) oxidant, such as air, to a relatively high pressure prior to mixing with fuel for combustion. The multi-stage compressor receives motive power through a shaft driven by a gas turbine powered by the hot expanding combustion gases. The main flow of compressed oxidant passes through a velocity increasing nozzle formed by a reduced central section of the compressor housing. An oxidant bypass feedpipe leading to peripheral oxidant injection nozzles of the combustion chamber are also provided. The downhole compressor allows effective steam generation in deep wells without need for high pressure surface compressors. Feedback preheater means are provided for preheating fuel in a preheat chamber. Preheating of the water occurs in both a water feed line running from aboveground and in a countercurrent water flow channel surrounding the combustor assembly. The countercurrent water flow channels advantageously serve to cool the combustion chamber wall. The water is injected through slotted inlets along the combustion chamber wall to provide an unstable boundary layer and stripping of the water from the wall for efficient steam generation. Pressure responsive doors are provided at the steam outlet for closing and sealing the combustion chamber from entry of reservoir fluids in the event of a flameout.

Fox, Ronald L. (Albuquerque, NM)

1983-01-01T23:59:59.000Z

57

Plugging of steam generator tubes and consequences for plant operation  

SciTech Connect

The simulation of pressurized water reactor (SIROP) code was created using the SICLE software developed by the study and research department at Electricite de France. It is the largest computer code with this software (260 tubes, 1800 computation points, 19 water-steam cavities, 9 pumps, 6 turbines, 32 control system elements). It simulates the general operating conditions of a 900-MW(electric) CP2 power plant by computing the main physical parameters from the reactor core to the condenser. The study was performed by the study and research department (Reactor Physics Division) with the help of SEPTEN following an SPT (power operation department) request. It consisted of identifying the change in margins with respect to emergency shutdown protections (especially for ..delta..T protections) as a function of the number of plugged steam generators (1, 2, or 3) and the degree of plugging (10, 20, and 30%) under the following operating conditions: (1) steady state at 100% full power; and (2) main transients: manual load rejection, load rejection induced by grid fault, turbine tripping. The purpose was to assess the effect of a large number of steam generator plugged tubes on the behavior of the plant to secure a long-term prediction for the date of replacement of these steam generators.

Agnoux, D.; Chenal, J.C.

1987-01-01T23:59:59.000Z

58

Experimental studies of steam-propane injection to enhance recovery of an intermediate crude oil  

E-Print Network (OSTI)

In the past few years, research has been conducted at Texas A&M University on steam-propane injection to enhance oil recovery from the Morichal field, Venezuela, which contains 13.5 ?API gravity oil. Experimental results show that a 5:100 propane...

Tinss, Judicael Christopher

2001-01-01T23:59:59.000Z

59

Modelling of a Coil Steam Generator for Concentrated Solar Power Applications.  

E-Print Network (OSTI)

??The project investigates a new design for a CSP plant steam generation system, the Coil Steam Generator(CSG). This system allows faster start-ups and therefore higher (more)

PELAGOTTI, LEONARDO

2014-01-01T23:59:59.000Z

60

Waste Heat Recovery Power Generation with WOWGen  

E-Print Network (OSTI)

Waste Heat Recovery Power Generation with WOWGen? Business Overview WOW operates in the energy efficiency field - one of the fastest growing energy sectors in the world today. The two key products - WOWGen? and WOWClean? provide more... energy at cheaper cost and lower emissions. ? WOWGen? - Power Generation from Industrial Waste Heat ? WOWClean? - Multi Pollutant emission control system Current power generation technology uses only 35% of the energy in a fossil fuel...

Romero, M.

Note: This page contains sample records for the topic "recovery steam generator" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

DYNAMIC SIMULATION OF MONO-TUBE CAVITY RECEIVERS FOR DIRECT STEAM GENERATION  

E-Print Network (OSTI)

that includes a 4 cylinder steam engine coupled with a 3 phase generator. This paper describes ongoing research cavity receiver [2] mounted to the 500 m2 dish receiver supports, a modified steam engine coupled transports superheated steam via rotary joints to the ground and then to a 4 cylinder steam engine

62

Steam generators two phase flows numerical simulation with liquid and gas momentum equations  

E-Print Network (OSTI)

Steam generators two phase flows numerical simulation with liquid and gas momentum equations M Abstract This work takes place in steam generators flow studies and we consider here steady state three words: Steam Generator, Two-phase Flow, Finite element Email address: Marc.Grandotto@cea.fr (M

Paris-Sud XI, Université de

63

Electric power generating plant having direct-coupled steam and compressed-air cycles  

DOE Patents (OSTI)

An electric power generating plant is provided with a Compressed Air Energy Storage (CAES) system which is directly coupled to the steam cycle of the generating plant. The CAES system is charged by the steam boiler during off peak hours, and drives a separate generator during peak load hours. The steam boiler load is thereby levelized throughout an operating day.

Drost, M.K.

1981-01-07T23:59:59.000Z

64

Electric power generating plant having direct coupled steam and compressed air cycles  

DOE Patents (OSTI)

An electric power generating plant is provided with a Compressed Air Energy Storage (CAES) system which is directly coupled to the steam cycle of the generating plant. The CAES system is charged by the steam boiler during off peak hours, and drives a separate generator during peak load hours. The steam boiler load is thereby levelized throughout an operating day.

Drost, Monte K. (Richland, WA)

1982-01-01T23:59:59.000Z

65

Combined Heat and Power Plant Steam Turbine  

E-Print Network (OSTI)

Combined Heat and Power Plant Steam Turbine Steam Turbine Chiller Campus Heat Load Steam (recovered waste heat) Gas Turbine University Substation High Pressure Natural Gas Campus Electric Load Southern Generator Heat Recovery Alternative Uses: 1. Campus heating load 2. Steam turbine chiller to campus cooling

Rose, Michael R.

66

Steam turbine-generator outage interval extension  

SciTech Connect

In the industry`s growing competitive climate, utilities are seeking ways to tap the economic benefits to be derived from maximizing intervals between major turbine-generator (T-G) inspections and overhauls--while ensuring protection of these assets. EPRI and others have developed a substantial body of technology which addresses many of the condition assessment issues that underlie T-G inspection and overhaul decisions. Examples include remaining life determination of critical components such as rotors and blades. While the initial focus of this technology had previously been to support T-G run-repair-replace decision making, this technology can also serve as a basis for run-inspect decisions. This paper describes EPRI`s initiative to develop and implement a T-G Health Management System. By providing key status reports reflecting the on-line health of critical components, in terms of life consumption, performance degradation and probability of failure, this system will provide a means to justify extending T-G operations between inspections and overhauls.

McCloskey, T.H. [Electric Power Research Institute, Palo Alto, CA (United States); Pollard, M. [Carolina Power & Light Company, Raleigh, NC (United States); Dewey, R.; Roemer, M. [Stress Technology Inc., Rochester, NY (United States)

1996-07-01T23:59:59.000Z

67

Investigation of thermal storage and steam generator issues  

SciTech Connect

A review and evaluation of steam generator and thermal storage tank designs for commercial nitrate salt technology showed that the potential exists to procure both on a competitive basis from a number of qualified vendors. The report outlines the criteria for review and the results of the review, which was intended only to assess the feasibility of each design, not to make a comparison or select the best concept.

Not Available

1993-08-01T23:59:59.000Z

68

The case for endurance testing of sodium-heated steam generators  

SciTech Connect

After operating pressurized water reactor (PWR) steam generators in U.S. nuclear plants during the past 33 years and plugging thousands of tubes and replacing numerous steam generators at immense costs, utility and steam generator designers are now confident that they can design, build, and operate PWR steam generators successfully. Deployment of liquid-metal fast breeder reactors (LMFBRs) will likely follow the same scenario if long-term testing is not performed and development completed prior to commercial deployment. A case is made for endurance testing of steam generators to be used in future LMFBRs.

Onesto, A.T.; Zweig, H.R.; Gibbs, D.C. (Rockwell International Corp., Canoga Park, CA (United States). Rocketdyne Division.); Carlson, R.D. (Argonne National Lab., IL (United States)); Rodwell, E. (Electric Power Research Inst., Palo Alto, CA (United States)); Kakarala, C.R. (Babcock and Wilcox Co., Barberton, OH (United States))

1993-08-01T23:59:59.000Z

69

Removal of deposited copper from nuclear steam generators  

SciTech Connect

A review of the copper-removal process implemented during the cleaning of the NPD nuclear steam generator in Ontario revealed that major shortcomings in the process were depletion of the strong ammonia solution and relatively poor copper removal. Tests have shown that the concentration of the ammonia solution can be preserved close to its initial value, and high concentrations of complexed copper obtained, by sparging the ammonia solution with oxygen recirculating through a gas recirculation loop. Using recirculating oxygen for sparging at ambient air temperature, approximately 11 g/l of copper were dissolved by 100 g/l ammonia solution while the gaseous ammonia content of the recirculating gas remained well below the lower flammability limit. The corrosion rates of mild steel and commonly used nuclear steam generator tube materials in oxygenated ammonia solution were less than 30 mil/yr and no intergranular attack of samples was observed during tests. A second technique studied for the removal of copper is to ammoniate the spent iron-removal solvent to approximately pH 9.5 and sparge with recirculating oxygen. Complexed ferric iron in the spent iron-removal solvent was found to be the major oxidizing agent for metallic copper. The ferric iron can be derived from oxidation of dissolved ferrous iron to the ferric state or from dissolved oxides of iron directly. To extract copper from the secondary sides of nuclear steam generators, strong ammonia solution sparged with recirculating oxygen is recommended as the first stage, while ammoniated spent iron-removal solvent sparged with recirculating oxygen may be used to remove the copper freshly exposed during the removal of iron.

McSweeney, P.

1982-05-01T23:59:59.000Z

70

SIMULTANEOUS DEMULTIPLEXING, ELECTRICAL CLOCK RECOVERY, AND OPTICAL CLOCK GENERATION USING  

E-Print Network (OSTI)

SIMULTANEOUS DEMULTIPLEXING, ELECTRICAL CLOCK RECOVERY, AND OPTICAL CLOCK GENERATION USING of the PLL. As a result, simultaneous demultiplexing, electrical clock recovery and optical clock generation), and Masashi Usami (2) 1 : Department of Electrical and Computer Engineering, University of California Santa

Bowers, John

71

Dynamic stability experiments in sodium-heated steam generators. [LMFBR  

SciTech Connect

Seventy-two dynamic stability tests were performed in the sodium-heated boiling-water test facility at Argonne National Laboratory. A full-scale LMFBR steam generator tube was employed as the test section operating over the water parameter ranges of 6.9 to 15.9 MPa pressure and 170 to 800 kg/m/sup 2/.s mass flux. The stability thresholds from the test compared well to the predictions of a modified version of a correlation equation recently published by other investigators. Typical experimental data and the modified correlation equation are presented.

France, D.M.; Roy, R.; Carlson, R.D.; Chiang, T.

1984-01-01T23:59:59.000Z

72

Transformation of Resources to Reserves: Next Generation Heavy-Oil Recovery Techniques  

SciTech Connect

This final report and technical progress report describes work performed from October 1, 2004 through September 30, 2007 for the project 'Transformation of Resources to Reserves: Next Generation Heavy Oil Recovery Techniques', DE-FC26-04NT15526. Critical year 3 activities of this project were not undertaken because of reduced funding to the DOE Oil Program despite timely submission of a continuation package and progress on year 1 and 2 subtasks. A small amount of carried-over funds were used during June-August 2007 to complete some work in the area of foamed-gas mobility control. Completion of Year 3 activities and tasks would have led to a more thorough completion of the project and attainment of project goals. This progress report serves as a summary of activities and accomplishments for years 1 and 2. Experiments, theory development, and numerical modeling were employed to elucidate heavy-oil production mechanisms that provide the technical foundations for producing efficiently the abundant, discovered heavy-oil resources of the U.S. that are not accessible with current technology and recovery techniques. Work fell into two task areas: cold production of heavy oils and thermal recovery. Despite the emerging critical importance of the waterflooding of viscous oil in cold environments, work in this area was never sanctioned under this project. It is envisioned that heavy oil production is impacted by development of an understanding of the reservoir and reservoir fluid conditions leading to so-called foamy oil behavior, i.e, heavy-oil solution gas drive. This understanding should allow primary, cold production of heavy and viscous oils to be optimized. Accordingly, we evaluated the oil-phase chemistry of crude oil samples from Venezuela that give effective production by the heavy-oil solution gas drive mechanism. Laboratory-scale experiments show that recovery correlates with asphaltene contents as well as the so-called acid number (AN) and base number (BN) of the crude oil. A significant number of laboratory-scale tests were made to evaluate the solution gas drive potential of West Sak (AK) viscous oil. The West Sak sample has a low acid number, low asphaltene content, and does not appear foamy under laboratory conditions. Tests show primary recovery of about 22% of the original oil in place under a variety of conditions. The acid number of other Alaskan North Slope samples tests is greater, indicating a greater potential for recovery by heavy-oil solution gas drive. Effective cold production leads to reservoir pressure depletion that eases the implementation of thermal recovery processes. When viewed from a reservoir perspective, thermal recovery is the enhanced recovery method of choice for viscous and heavy oils because of the significant viscosity reduction that accompanies the heating of oil. One significant issue accompanying thermal recovery in cold environments is wellbore heat losses. Initial work on thermal recovery found that a technology base for delivering steam, other hot fluids, and electrical heat through cold subsurface environments, such as permafrost, was in place. No commercially available technologies are available, however. Nevertheless, the enabling technology of superinsulated wells appears to be realized. Thermal subtasks focused on a suite of enhanced recovery options tailored to various reservoir conditions. Generally, electrothermal, conventional steam-based, and thermal gravity drainage enhanced oil recovery techniques appear to be applicable to 'prime' Ugnu reservoir conditions to the extent that reservoir architecture and fluid conditions are modeled faithfully here. The extent of reservoir layering, vertical communication, and subsurface steam distribution are important factors affecting recovery. Distribution of steam throughout reservoir volume is a significant issue facing thermal recovery. Various activities addressed aspects of steam emplacement. Notably, hydraulic fracturing of horizontal steam injection wells and implementation of steam trap control that limits steam entry into hor

Stanford University; Department of Energy Resources Engineering Green Earth Sciences

2007-09-30T23:59:59.000Z

73

Method and apparatus for steam mixing a nuclear fueled electricity generation system  

DOE Patents (OSTI)

A method and apparatus for improving the efficiency and performance of a nuclear electrical generation system that comprises the addition of steam handling equipment to an existing plant that results in a surprising increase in plant performance. More particularly, a gas turbine electrical generation system with heat recovery boiler is installed along with a micro-jet high pressure and a low pressure mixer superheater. Depending upon plant characteristics, the existing moisture separator reheater (MSR) can be either augmented or done away with. The instant invention enables a reduction in T.sub.hot without a derating of the reactor unit, and improves efficiency of the plant's electrical conversion cycle. Coupled with this advantage is a possible extension of the plant's fuel cycle length due to an increased electrical conversion efficiency. The reduction in T.sub.hot further allows for a surprising extension of steam generator life. An additional advantage is the reduction in erosion/corrosion of secondary system components including turbine blades and diaphragms. The gas turbine generator used in the instant invention can also replace or augment existing peak or emergency power needs. Another benefit of the instant invention is the extension of plant life and the reduction of downtime due to refueling.

Tsiklauri, Georgi V. (Richland, WA); Durst, Bruce M. (Kennewick, WA)

1996-01-01T23:59:59.000Z

74

DIRECT STEAM GENERATION USING THE SG4 500m2 PARABOLOIDAL DISH CONCENTRATOR  

E-Print Network (OSTI)

conveyed the steam to our 50 kWe steam turbine; the new dish is oversized for the current engine, so someDIRECT STEAM GENERATION USING THE SG4 500m2 PARABOLOIDAL DISH CONCENTRATOR Greg Burgess 1 , Keith School of Engineering (RSE), Australian National University (ANU), Canberra, ACT, 0200, Australia, Phone

75

Blow-down tests in a sodium-heated steam generator tube. [LMFBR  

SciTech Connect

The design of steam generators for liquid metal fast breeder reactor (LMFBR) electric power plants is based on both normal load operation and plant transient conditions. Perhaps the most severe transient to which an LMFBR steam generator may be subjected is known as the water-side isolation and dump transient, often called the blow-down transient. LMFBR steam generators must be designed to accommodate a small but finite number of the blow-down transients. The purpose of this investigation was to perform a blow-down experiment in a well instrumented, full scale, single tube model of an LMFBR steam generator. The data may be used directly in steam generator design and as a validation point for steam generator mathematical models in plant transient computer codes.

France, D.M.; Carlson, R.D.; Chiang, T.

1983-01-01T23:59:59.000Z

76

Development and Transient Analysis of a Helical-coil Steam Generator for High Temperature Reactors  

SciTech Connect

A high temperature gas-cooled reactor (HTGR) is under development by the Next Generation Nuclear Plant (NGNP) Project at the Idaho National Laboratory (INL). Its design emphasizes electrical power production which may potentially be coupled with process heat for hydrogen production and other industrial applications. NGNP is considering a helical-coil steam generator for the primary heat transport loop heat exchanger based on its increased heat transfer and compactness when compared to other steam generators. The safety and reliability of the helical-coil steam generator is currently under evaluation as part of the development of NGNP. Transients, such as loss of coolant accidents (LOCA), are of interest in evaluating the safety of steam generators. In this study, a complete steam generator inlet pipe break (double ended pipe break) LOCA was simulated by an exponential loss of primary side pressure. For this analysis, a model of the helical-coil steam generator was developed using RELAP5-3D, an INL inhouse systems analysis code. The steam generator model behaved normally during the transient simulating the complete steam generator inlet pipe break LOCA. Further analysis is required to comprehensively evaluate the safety and reliability of the helical-coil steam generator design in the NGNP setting.

Nathan V. Hoffer; Nolan A. Anderson; Piyush Sabharwall

2011-08-01T23:59:59.000Z

77

Advances in steam turbine technology for the power generation industry. PWR-Volume 26  

SciTech Connect

This is a collection of the papers on advances in steam turbine technology for the power generation industry presented at the 1994 International Joint Power Generation Conference. The topics include advances in steam turbine design, application of computational fluid dynamics to turbine aerodynamic design, life extension of fossil and nuclear powered steam turbine generators, solid particle erosion control technologies, and artificial intelligence, monitoring and diagnostics.

Moore, W.G. [ed.

1994-12-31T23:59:59.000Z

78

Steam generator design considerations for modular HTGR plant  

SciTech Connect

Studies are in progress to develop a standard High Temperature Gas-Cooled Reactor (HTGR) plant design that is amenable to serial production and is licensable. Based on the results of trade studies performed in the DOE-funded HTGR program, activities are being focused to emphasize a modular concept based on a 350 MW(t) annular reactor core with prismatic fuel elements. Utilization of a multiplicity of the standard module affords flexibility in power rating for utility electricity generation. The selected modular HTGR concept has the reactor core and heat transport systems housed in separate steel vessels. This paper highlights the steam generator design considerations for the reference plant, and includes a discussion of the major features of the heat exchanger concept and the technology base existing in the US.

McDonald, C.F.; DeFur, D.D.

1986-05-01T23:59:59.000Z

79

SWAAM-code development and verification and application to steam generator designs  

SciTech Connect

This paper describes the family of SWAAM codes which were developed by Argonne National Laboratory to analyze the effects of sodium-water reactions on LMR steam generators. The SWAAM codes were developed as design tools for analyzing various phenomena related to steam generator leaks and the resulting thermal and hydraulic effects on the steam generator and the intermediate heat transport system (IHTS). The paper discusses the theoretical foundations and numerical treatments on which the codes are based, followed by a description of code capabilities and limitations, verification of the codes and applications to steam generator and IHTS designs. 25 refs., 14 figs.

Shin, Y.W.; Valentin, R.A.

1990-01-01T23:59:59.000Z

80

A review of the secondary plant modifications on steam generator performance  

SciTech Connect

This paper provides recommendations for modifications in the secondary system of existing pressurized water reactor (PWR) plants for the purpose of arresting the problem of steam generator corrosion.

Asarpota, A.; Snaith, R.

1983-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "recovery steam generator" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

Chemical recovery process using break up steam control to prevent smelt explosions  

DOE Patents (OSTI)

An improvement in a chemical recovery process in which a hot liquid smelt is introduced into a dissolving tank containing a pool of green liquor. The improvement comprises preventing smelt explosions in the dissolving tank by maintaining a first selected superatmospheric pressure in the tank during normal operation of the furnace; sensing the pressure in the tank; and further impinging a high velocity stream of steam upon the stream of smelt whenever the pressure in the tank decreases below a second selected superatmospheric pressure which is lower than said first pressure.

Kohl, Arthur L. (Woodland Hills, CA); Stewart, Albert E. (Eagle Rock, CA)

1988-08-02T23:59:59.000Z

82

Steam generator conceptual design for the modular HTGR - Dissimilar metal weld considerations  

SciTech Connect

The steam generator for the current Modular High Temperature Gas-Cooled Reactor (MHTGR) has evolved from a technology basis developed in U.S. and European gas-cooled reactor programs. The MHTGR steam generator is a vertically-oriented, counterflow, shell-and-tube, once-through, non-reheat, helical heat exchanger with helium on the shell side and water/steam in the tubes. In the MHTGR applications, the normal operating temperatures of the steam generator tubes can be as high as 638/sup 0/C (1180/sup 0/F). Concerns such as cost, creep strength, steam side scaling and stress corrosion cracking often lead to a design decision to use two different tube materials, one for the evaporating portion and another for the superheating portion of the steam generator. The current MHTGR steam generator design utilizes 2 1/4 CR - 1 Mo material for the economizer/evaporator/initial superheater tube section and Alloy 800H material for the finishing superheat tube section. Therefore, a dissimilar metal weld (DMW) is incorporated in each tube circuit. This feature of the design imposes certain important constraints on the steam generator designer. This paper presents an overview of the MHTGR steam generator conceptual design, and then focuses on the DMW considerations and how these have influenced the design configuration.

Spring, A.H.; Basol, M.

1987-01-01T23:59:59.000Z

83

Water chemistry of breeder reactor steam generators. [LMFBR  

SciTech Connect

The water quality requirements will be described for breeder reactor steam generators, as well as specifications for balance of plant protection. Water chemistry details will be discussed for the following power plant conditions: feedwater and recirculation water at above and below 5% plant power, refueling or standby, makeup water, and wet layup. Experimental data will be presented from tests which included a departure from nucleate boiling experiment, the Few Tube Test, with a seven tube evaporator and three tube superheater, and a verification of control and on-line measurement of sodium ion in the ppB range. Sampling and instrumentation requirements to insure adherence to the specified water quality will be described. Evaporator cleaning criteria and data from laboratory testing of chemical cleaning solutions with emphasis on flow, chemical composition, and temperature will be discussed.

Simpson, J.L.; Robles, M.N.; Spalaris, C.N.; Moss, S.A.

1980-08-01T23:59:59.000Z

84

Steam generator sludge pile model boiler testing: sludge characterization. [PWR  

SciTech Connect

As part of a program to understand the thermal and hydraulic transport process that can lead to chemical concentration in sludge piles on the tubesheet in a steam generator, the chemical composition and physical properties of eight sludges and several simulants were determined. Analyses performed by emission and x-ray fluorescence spectroscopy indicated that most of the sludges were mainly composed of iron oxides, copper, and other elements at trace levels. X-ray diffraction measurements identified iron to exist in the form of magnetite and copper to exist in the form of a metal. The densities, porosity, particle size, surface area, pore size distribution, and hydrodynamic permeabilities were determined on all plant sludges and selected simulants. Wide variations were observed in the physical measurements of the different plant sludges.

Becker, L.F. Jr.; Esposito, J.N.

1981-09-01T23:59:59.000Z

85

Waste Heat Recovery Opportunities for Thermoelectric Generators  

Energy.gov (U.S. Department of Energy (DOE))

Thermoelectrics have unique advantages for integration into selected waste heat recovery applications.

86

Pressure drops for direct steam generation in line-focus solar thermal systems  

E-Print Network (OSTI)

the focus of the solar collector, and then generate steam outside the collector in a large heat exchanger applicable to DSG in long horizontal pipes as required for the current work with a line-focus collector. #12Pressure drops for direct steam generation in line-focus solar thermal systems John Pye1 , Graham

87

Mitigation of steam generator tube rupture in a pressurized water reactor with passive safety systems  

DOE Patents (OSTI)

The effects of steam generator tube ruptures in a pressurized water reactor are mitigated by reducing the pressure in the primary loop by diverting reactor coolant through the heat exchanger of a passive heat removal system immersed in the in containment refueling water storage tank in response to a high feed water level in the steam generator. Reactor coolant inventory is maintained by also in response to high steam generator level introducing coolant into the primary loop from core make-up tanks at the pressure in the reactor coolant system pressurizer. The high steam generator level is also used to isolate the start-up feed water system and the chemical and volume control system to prevent flooding into the steam header. 2 figures.

McDermott, D.J.; Schrader, K.J.; Schulz, T.L.

1994-05-03T23:59:59.000Z

88

Mitigation of steam generator tube rupture in a pressurized water reactor with passive safety systems  

DOE Patents (OSTI)

The effects of steam generator tube ruptures in a pressurized water reactor are mitigated by reducing the pressure in the primary loop by diverting reactor coolant through the heat exchanger of a passive heat removal system immersed in the in containment refueling water storage tank in response to a high feed water level in the steam generator. Reactor coolant inventory is maintained by also in response to high steam generator level introducing coolant into the primary loop from core make-up tanks at the pressure in the reactor coolant system pressurizer. The high steam generator level is also used to isolate the start-up feed water system and the chemical and volume control system to prevent flooding into the steam header. 2 figures.

McDermott, Daniel J. (Export, PA); Schrader, Kenneth J. (Penn Hills, PA); Schulz, Terry L. (Murrysville Boro, PA)

1994-01-01T23:59:59.000Z

89

Nickel electroplating of steam generator tubes (kiss sleeving process)  

SciTech Connect

This process, the nickel electroplating of steam generator tubes, has been jointly developed under a Belgatom (Laborelec) and Framatome agreement with shared experience gained by both companies, industrial applications being under the responsibility of Framatome. Application of the coating in zones where residual stresses or cracks are present prevents contact between the primary water and the tube, which stops the stress corrosion process. In the Doel 2 plant, 91 tubes have been plated since 1985, and different sets of parameters have been used for comparison purposes. Among these tubes, 9 have been preventively plugged because of defective plating, 9 have been pulled out for laboratory examinations, 2 just after plating and 7 after 1 or 2 yr of service. There are 73 plated tubes still in service. From the tests that were performed, it was possible to select an optimized set of parameters guaranteeing the following properties: bridging of existing cracks and good behavior of the coating in relevant zones, good adhesion to the Inconel tube, high ductility, low residual stresses, thermal shock resistance, corrosion resistance, erosion resistance, and low cobalt content. The licensability of this process is being completed. It is based first on the leak-before-break concept to determine the characteristics of the nickel plating, thickness in particular, and second on the inspectability of ultrasonic testing methods.

Michaut, B.

1988-01-01T23:59:59.000Z

90

Incentive Cost Recovery Rule for Nuclear Power Generation (Louisiana) |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

You are here You are here Home » Incentive Cost Recovery Rule for Nuclear Power Generation (Louisiana) Incentive Cost Recovery Rule for Nuclear Power Generation (Louisiana) < Back Eligibility Commercial Construction Industrial Utility Program Info State Louisiana Program Type Fees Generating Facility Rate-Making Provider Louisiana Public Service Commission The Incentive Cost Recovery Rule for Nuclear Power Generation establishes guidelines for any utility seeking to develop a nuclear power plant in Louisiana. The rule clarifies, as well as supplements the Louisiana Public Service Commission's 1983 General Order for the acquisition of nuclear generation resources. The goal of the rule is to provide a transparent process that identifies the responsibilities parties in the regulatory

91

Revisiting the Steam-Boiler Case Study with LUTESS : Modeling for Automatic Test Generation  

E-Print Network (OSTI)

model and to assess the difficulty of such a process in a realistic case study. The steam boiler caseRevisiting the Steam-Boiler Case Study with LUTESS : Modeling for Automatic Test Generation Grenoble, 2Laboratoire de Conception et d'Intégration des Systèmes Abstract LUTESS is a testing tool

Boyer, Edmond

92

Field test of two high-pressure, direct-contact downhole steam generators. Volume I. Air/diesel system  

SciTech Connect

As a part of the Project DEEP STEAM to develop technology to more efficiently utilize steam for the recovery of heavy oil from deep reservoirs, a field test of a downhole steam generator (DSG) was performed. The DSG burned No. 2 diesel fuel in air and was a direct-contact, high pressure device which mixed the steam with the combustion products and injected the resulting mixture directly into the oil reservoir. The objectives of the test program included demonstration of long-term operation of a DSG, development of operational methods, assessment of the effects of the steam/combustion gases on the reservoir and comparison of this air/diesel DSG with an adjacent oxygen/diesel direct contact generator. Downhole operation of the air/diesel DSG was started in June 1981 and was terminated in late February 1982. During this period two units were placed downhole with the first operating for about 20 days. It was removed, the support systems were slightly modified, and the second one was operated for 106 days. During this latter interval the generator operated for 70% of the time with surface air compressor problems the primary source of the down time. Thermal contact, as evidenced by a temperature increase in the production well casing gases, and an oil production increase were measured in one of the four wells in the air/diesel pattern. Reservoir scrubbing of carbon monoxide was observed, but no conclusive data on scrubbing of SO/sub x/ and NO/sub x/ were obtained. Corrosion of the DSG combustor walls and some other parts of the downhole package were noted. Metallurgical studies have been completed and recommendations made for other materials that are expected to better withstand the downhole combustion environment. 39 figures, 8 tables.

Marshall, B.W.

1983-05-01T23:59:59.000Z

93

In vivo recovery and half-life time of a steam-treated factor IX concentrate in hemophilia B patients  

Science Journals Connector (OSTI)

Factor IX (FIX) recovery and half-life was measured in ten hemophilia B patients under standardized conditions. Each patient received a steam-treated high-purity factor IX concentrate at a dose of 1939 U/kg b...

M. Khler; E. Seifried; P. Hellstern; G. Pindur; C. Miyashita; S. Mrsdorf

1988-12-01T23:59:59.000Z

94

MHTGR steam generator on-line heat balance, instrumentation and function  

SciTech Connect

Instrumentation is used to measure the Modular High Temperature Gas-Cooled Reactor (MHTGR) steam generator dissimilar metal weld temperature during start-up testing. Additional instrumentation is used to determine an on-line heat balance which is maintained during the 40 year module life. In the process of calibrating the on-line heat balance, the helium flow is adjusted to yield the optimum boiling level in the steam generator relative to the dissimilar metal weld. After calibration is complete the weld temperature measurement is non longer required. The reduced boiling level range results in less restrictive steam generator design constraints.

Klapka, R.E.; Howard, W.W.; Etzel, K.T. (General Atomics, San Diego, CA (United States)); Basol, M.; Karim, N.U. (ABB-CENP, Chattanooga, TN (United States))

1991-09-01T23:59:59.000Z

95

Distributed Generation with Heat Recovery and Storage  

E-Print Network (OSTI)

selection of on-site power generation with combined heat andTotal Electricity Generation Figure 13. Small MercantileWeekday Total Electricity Generation (No Storage Adoption

Siddiqui, Afzal S.; Marnay, Chris; Firestone, Ryan M.; Zhou, Nan

2008-01-01T23:59:59.000Z

96

Pilot scale study on steam explosion and mass balance for higher sugar recovery from rice straw  

Science Journals Connector (OSTI)

Abstract Pretreatment of rice straw on pilot scale steam explosion has been attempted to achieve maximum sugar recovery. Three different reaction media viz. water, sulfuric acid and phosphoric acid (0.5%, w/w) were explored for pretreatment by varying operating temperature (160, 180 and 200C) and reaction time (5 and 10min). Using water and 0.5% SA showed almost similar sugar recovery (?87%) at 200 and 180C respectively. However, detailed studies showed that the former caused higher production of oligomeric sugars (13.56g/L) than the later (3.34g/L). Monomeric sugar, followed the reverse trend (7.83 and 11.62g/L respectively). Higher oligomers have a pronounced effect in reducing enzymatic sugar yield as observed in case of water. Mass balance studies for water and SA assisted SE gave total saccharification yield as 81.8% and 77.1% respectively. However, techno-economical viability will have a trade-off between these advantages and disadvantages offered by the pretreatment medium.

Sandeep Sharma; Ravindra Kumar; Ruchi Gaur; Ruchi Agrawal; Ravi P. Gupta; Deepak K. Tuli; Biswapriya Das

2015-01-01T23:59:59.000Z

97

An Analytical Model for Simulating Heavy-Oil Recovery by Cyclic Steam Injection Using Horizontal Wells, SUPRI TR-118  

SciTech Connect

In this investigation, existing analytical models for cyclic steam injection and oil recovery are reviewed and a new model is proposed that is applicable to horizontal wells. A new flow equation is developed for oil production during cyclic steaming of horizontal wells. The model accounts for the gravity-drainage of oil along the steam-oil interface and through the steam zone. Oil viscosity, effective permeability, geometry of the heated zone, porosity, mobile oil saturation, and thermal diffusivity of the reservoir influence the flow rate of oil in the model. The change in reservoir temperature with time is also modeled, and it results in the expected decline in oil production rate during the production cycle as the reservoir cools. Wherever appropriate, correlations and incorporated to minimize data requirements. A limited comparison to numerical simulation results agrees well, indicating that essential physics are successfully captured. Cyclic steaming appears to be a systematic met hod for heating a cold reservoir provided that a relatively uniform distribution of steam is obtained along the horizontal well during injection. A sensitivity analysis shows that the process is robust over the range of expected physical parameters.

Diwan, Utpal; Kovscek, Anthony R.

1999-08-09T23:59:59.000Z

98

Influence of steam injection through exhaust heat recovery on the design performance of solid oxide fuel cell gas turbine hybrid systems  

Science Journals Connector (OSTI)

This study analyzed the influence of steam injection on the performance of hybrid systems combining a solid oxide fuel cell and a gas turbine. Two different ... the effects of injecting steam, generated by recovering

Sung Ku Park; Tong Seop Kim; Jeong L. Sohn

2009-02-01T23:59:59.000Z

99

Microsoft Word - Seattle Steam Draft EA for concurrence-6-16...  

NLE Websites -- All DOE Office Websites (Extended Search)

The exhaust gas from the turbine would be routed to a once-through (heat recovery) steam generator, which would be equipped with natural gas-fired duct burners to increase steam...

100

Thermoelectric Generators for Automotive Waste Heat Recovery Systems Part II: Parametric Evaluation  

E-Print Network (OSTI)

Thermoelectric Generators for Automotive Waste Heat Recovery Systems Part II: Parametric Evaluation been proposed to model thermoelectric generators (TEGs) for automotive waste heat recovery. Details: Thermoelectric generators, waste heat recovery, automotive exhaust, skutterudites INTRODUCTION In part I

Xu, Xianfan

Note: This page contains sample records for the topic "recovery steam generator" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

Distributed Generation with Heat Recovery and Storage  

E-Print Network (OSTI)

of fossil fuel sources of waste heat and other lossesthat this is only the waste heat from fossil generation,an estimate of the total waste heat from fossil generation

Siddiqui, Afzal S.; Marnay, Chris; Firestone, Ryan M.; Zhou, Nan

2008-01-01T23:59:59.000Z

102

Distributed Generation with Heat Recovery and Storage  

E-Print Network (OSTI)

most commercial buildings, electricity costs far exceed heatoffset by lower electricity costs from on- site generation (as much from lower electricity costs as it does from lower

Siddiqui, Afzal S.; Marnay, Chris; Firestone, Ryan M.; Zhou, Nan

2008-01-01T23:59:59.000Z

103

Quantitative description of steam channels after steam flooding  

Science Journals Connector (OSTI)

Steam channeling is one of the main barriers for EOR after steam flooding. In order to enhance the oil recovery in steam flooded reservoirs, steam channel volumes should be precisely known. In ... methods has bee...

Qiang Zheng; HuiQing Liu; Fang Li; Qing Wang

2013-05-01T23:59:59.000Z

104

Reliability Improvement Programs in Steam Distribution and Power Generation Systems  

E-Print Network (OSTI)

In the reliability and efficiency of the system. Recent studies have shownt hat more than 40% of all In stalled steam traps and 20% of certain types of valves need some form of corrective action. The majority of all high backpressure problems In condensate return... of the early 80's, energ~ I conservation was a buzzword. Excess funds were avall,8ble for high ROI projects and capital improvements were rpade to gain production efficiency. The increase in energy tosts and consumer spending triggered a moderate Increase...

Petto, S.

105

Analysis of potential for jet-impingement erosion from leaking steam generator tubes during severe accidents.  

SciTech Connect

This report summarizes analytical evaluation of crack-opening areas and leak rates of superheated steam through flaws in steam generator tubes and erosion of neighboring tubes due to jet impingement of superheated steam with entrained particles from core debris created during severe accidents. An analytical model for calculating crack-opening area as a function of time and temperature was validated with tests on tubes with machined flaws. A three-dimensional computational fluid dynamics code was used to calculate the jet velocity impinging on neighboring tubes as a function of tube spacing and crack-opening area. Erosion tests were conducted in a high-temperature, high-velocity erosion rig at the University of Cincinnati, using micrometer-sized nickel particles mixed in with high-temperature gas from a burner. The erosion results, together with analytical models, were used to estimate the erosive effects of superheated steam with entrained aerosols from the core during severe accidents.

Majumdar, S.; Diercks, D. R.; Shack, W. J.; Energy Technology

2002-05-01T23:59:59.000Z

106

Air Pollution Control Regulations: No. 13- Particulate Emissions from Fossil Fuel Fired Steam or Hot Water Generating Units (Rhode Island)  

Energy.gov (U.S. Department of Energy (DOE))

The purpose of this regulation is to limit emissions of particulate matter from fossil fuel fired and wood-fired steam or hot water generating units.

107

Distributed Generation with Heat Recovery and Storage  

E-Print Network (OSTI)

power generation with combined heat and power applications,of carbon tax on combined heat and power adoption by a131(1), 2-25. US Combined Heat and Power Association (

Siddiqui, Afzal S.; Marnay, Chris; Firestone, Ryan M.; Zhou, Nan

2008-01-01T23:59:59.000Z

108

Next Generation Engineered Materials for Ultra Supercritical Steam Turbines  

SciTech Connect

To reduce the effect of global warming on our climate, the levels of CO{sub 2} emissions should be reduced. One way to do this is to increase the efficiency of electricity production from fossil fuels. This will in turn reduce the amount of CO{sub 2} emissions for a given power output. Using US practice for efficiency calculations, then a move from a typical US plant running at 37% efficiency to a 760 C /38.5 MPa (1400 F/5580 psi) plant running at 48% efficiency would reduce CO2 emissions by 170kg/MW.hr or 25%. This report presents a literature review and roadmap for the materials development required to produce a 760 C (1400 F) / 38.5MPa (5580 psi) steam turbine without use of cooling steam to reduce the material temperature. The report reviews the materials solutions available for operation in components exposed to temperatures in the range of 600 to 760 C, i.e. above the current range of operating conditions for today's turbines. A roadmap of the timescale and approximate cost for carrying out the required development is also included. The nano-structured austenitic alloy CF8C+ was investigated during the program, and the mechanical behavior of this alloy is presented and discussed as an illustration of the potential benefits available from nano-control of the material structure.

Douglas Arrell

2006-05-31T23:59:59.000Z

109

New technology for purging the steam generators of nuclear power plants  

SciTech Connect

A technology for removal of undissolved impurities from a horizontal steam generator using purge water is developed on the basis of a theoretical analysis. A purge with a maximal flow rate is drawn off from the zone with the highest accumulation of sludge in the lower part of the steam generator after the main circulation pump of the corresponding loop is shut off and the temperatures of the heat transfer medium at the inlet and outlet of the steam generator have equilibrated. An improved purge configuration is used for this technology; it employs shutoff and regulator valves, periodic purge lines separated by a cutoff fixture, and a D{sub y} 100 drain union as a connector for the periodic purge. Field tests show that the efficiency of this technology for sludge removal by purge water is several times that for the standard method.

Budko, I. O.; Kutdjusov, Yu. F.; Gorburov, V. I. [Scientific-Research Center for Energy Technology 'NICE Centrenergo' (Russian Federation); Rjasnyj, S. I. [JSC 'The All-Rissia Nuklear Power Engineering Research and Development Institute' (VNIIAM) (Russian Federation)

2011-07-15T23:59:59.000Z

110

Evaluation of steam-generator fluid mixing during layup. Final report. [PWR  

SciTech Connect

The objective of this project was to develop practical methods of achieving an adequately mixed chemical environment on the secondary side of PWR steam generators during periods of shutdown, cold shutdown (layup), and startup. Layup chemicals introduced into the steam generator could then be evenly dispersed to minimize corrosion processes which may occur if the chemical environment was not properly maintained. Systems for chemical feed, mixing, sampling, and removal of contaminant chemicals in the steam generator secondary side were also evaluated and recommendations have been made. Test results from a plexiglass model indicated that forced circulation and turbulent mixing were the most effective methods of achieving a rapid, homogeneous chemical environment. Natural convection and diffusion, on the other hand, were found to be less effective in achieving a thorough mixing.

MacArthur, A.D.

1983-05-01T23:59:59.000Z

111

Steam generator steady-state model for on-line data validation. [LMFBR  

SciTech Connect

To develop an efficient algorithm for on-line plant-wide data validation and fault identification fast running computer models that adequately describe the different plant processes are required. For example, if the data validation interval is of the order of one second, these models must be running faster than one second. This paper presents a fast running model for steady-state analysis of a once-through LMFBR steam generator. In computer codes like DSNP and SASSYS, the computation time for steady-state analysis of a typical once-through LMFBR steam generator is approx. 5 to 7 seconds. This time imposes excessively long validation intervals.

Tzanos, C.P.

1984-01-01T23:59:59.000Z

112

Nodalization study of the Westinghouse Model E steam generator secondary side  

E-Print Network (OSTI)

. This relationship suggests a need to accurately predict the behavior of a steam generator on both the primary and secondary sides. A pressurized Hater zeactor (PWR) consists of three major components: 1) the primary system core, 2) the steam generators and, 3...: Base Case Liquid Level for Turbine Trip 35 lD CL e ~ EO W I? w + C4 L3 gl 20 40 60 TINE ( SECONDS ) BO LOO Figure 8: Base Case Primary Cold Leg Temperature for Turbine Trip capabilities decrease because of the reduction in two-phase heat...

Montgomery, Robert Orval

1987-01-01T23:59:59.000Z

113

Multi-physics modeling of thermoelectric generators for waste heat recovery applications  

Energy.gov (U.S. Department of Energy (DOE))

Model developed provides effective guidelines to designing thermoelectric generation systems for automotive waste heat recovery applications

114

Steam Turbine Cogeneration  

E-Print Network (OSTI)

Steam turbines are widely used in most industrial facilities because steam is readily available and steam turbine is easy to operate and maintain. If designed properly, a steam turbine co-generation (producing heat and power simultaneously) system...

Quach, K.; Robb, A. G.

2008-01-01T23:59:59.000Z

115

Modelling a feed-water control system of a steam generator in the framework of the dynamic reliability  

E-Print Network (OSTI)

Modelling a feed-water control system of a steam generator in the framework of the dynamic with the exploration of an industrial complex system behaviour and its prob- abilistic safety assessment (PSA critical systems), the feed-water control system of a steam generator of a pressurised water nuclear

Paris-Sud XI, Université de

116

The case for endurance testing of sodium-heated steam generators  

SciTech Connect

It is generally believed that a nuclear power comeback before the end of the century will be through the vehicle of the light water reactor (LWR). The newer designs, with their important technical and economic advances, should attract wide interest and result in commercial success for the manufacturers and their utility customers. To develop the liquid-metal fast breeder reactor (LMFBR), approximately $30 billion has been spent worldwide, a third of which has been spent in the US. As a result of this considerable investment, most of the technical obstacles to deployment of the LMFBR have been removed with a few exceptions, one of which is the long-term performance of sodium-heated steam generators. Of the difficulties that have beset the current vintage of nuclear power plants, the performance of steam generators in pressurized water reactors (PWRs) was the most egregious. There was very little development testing and no model testing of PWR steam generators. Development occurred in the plants themselves resulting in many outages and more than $5 billion in lost revenue and replacement power costs. As a result, the electric utility industry is certain to exercise caution regarding acquisition of the LMFBR and will demand strong objective evidence of steam generator reliability. Only long-term endurance testing of prototypic models under prototypic conditions will satisfy this demand.

Onesto, A.T.; Zweig, H.R.; Gibbs, D.C. (Energy Technology Engineering Center, Canoga Park, CA (United States))

1992-01-01T23:59:59.000Z

117

Review of the data bases for making decisions regarding Trojan steam generator replacement options  

SciTech Connect

The central focus for this assessment has been to compare the corrosion behavior of two steam generator (SG) tube materials: Inconel 600 TT and Inconel 690 TT from (a) SG operating experience, and (b) laboratory data. The scope and results of the comparisons are summarized in this section. They provide the basis for projecting SG longevity.

Johnson, A.B. Jr.; Gilbert, E.R.

1992-03-01T23:59:59.000Z

118

Experimental investment of a pulse combustion steam generator and assessment of its environmental characteristics  

SciTech Connect

The design of a steam generator constructed on the basis of a pulse combustion apparatus equipped with a swirl combustion chamber and an aerodynamic vale is described, and results of its experimenta; investment are presented. The quantity of nitrogen oxide emissions is estimated. A schematic arrangement for practical application of such an apparatus is proposed.

Tereshchenko, M.A.; Bychenok, V.I.; Mozgovoi, N.V. [Voronezh State Technical University, Voronezh (Russian Federation)

2009-07-01T23:59:59.000Z

119

Thermochemically recuperated and steam cooled gas turbine system  

DOE Patents (OSTI)

A gas turbine system in which the expanded gas from the turbine section is used to generate the steam in a heat recovery steam generator and to heat a mixture of gaseous hydrocarbon fuel and the steam in a reformer. The reformer converts the hydrocarbon gas to hydrogen and carbon monoxide for combustion in a combustor. A portion of the steam from the heat recovery steam generator is used to cool components, such as the stationary vanes, in the turbine section, thereby superheating the steam. The superheated steam is mixed into the hydrocarbon gas upstream of the reformer, thereby eliminating the need to raise the temperature of the expanded gas discharged from the turbine section in order to achieve effective conversion of the hydrocarbon gas.

Viscovich, Paul W. (Longwood, FL); Bannister, Ronald L. (Winter Springs, FL)

1995-01-01T23:59:59.000Z

120

Thermochemically recuperated and steam cooled gas turbine system  

DOE Patents (OSTI)

A gas turbine system is described in which the expanded gas from the turbine section is used to generate the steam in a heat recovery steam generator and to heat a mixture of gaseous hydrocarbon fuel and the steam in a reformer. The reformer converts the hydrocarbon gas to hydrogen and carbon monoxide for combustion in a combustor. A portion of the steam from the heat recovery steam generator is used to cool components, such as the stationary vanes, in the turbine section, thereby superheating the steam. The superheated steam is mixed into the hydrocarbon gas upstream of the reformer, thereby eliminating the need to raise the temperature of the expanded gas discharged from the turbine section in order to achieve effective conversion of the hydrocarbon gas. 4 figs.

Viscovich, P.W.; Bannister, R.L.

1995-07-11T23:59:59.000Z

Note: This page contains sample records for the topic "recovery steam generator" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

Boiler and steam generator corrosion. (Latest citations from the NTIS Bibliographic database). Published Search  

SciTech Connect

The bibliography contains citations concerning corrosion effects, mechanisms, detection, and inhibition in fossil fuel fired boilers and nuclear powered steam generators. Corrosion studies performed on the water side and hot gas side of heat exchanger tubes and support structures are presented. Water treatment, chemical cleaning, and descaling methods are considered. Although emphasis is placed on large-scale power generation systems, residential and commercial heating systems are also discussed. (Contains 250 citations and includes a subject term index and title list.)

Not Available

1994-11-01T23:59:59.000Z

122

Boiler and steam generator corrosion. (Latest citations from the NTIS bibliographic database). Published Search  

SciTech Connect

The bibliography contains citations concerning corrosion effects, mechanisms, detection, and inhibition in fossil fuel fired boilers and nuclear powered steam generators. Corrosion studies performed on the water side and hot gas side of heat exchanger tubes and support structures are presented. Water treatment, chemical cleaning, and descaling methods are considered. Although emphasis is placed on large-scale power generation systems, residential and commercial heating systems are also discussed. (Contains 250 citations and includes a subject term index and title list.)

Not Available

1994-01-01T23:59:59.000Z

123

E-Print Network 3.0 - advanced steam generators Sample Search...  

NLE Websites -- All DOE Office Websites (Extended Search)

THEORY AND IN PRACTICE. BY R... OF A HISTORY OF THE STEAM-EN- GINE, A MANUAL OF THE STEAM-ENGINE, A MANUAL OF STEAM-BOILERS, ETC., ETC., ETC... treatise on Steam-Boiler Explosions...

124

Experimental study of Morichal heavy oil recovery using combined steam and propane injection.  

E-Print Network (OSTI)

??Considerable research and testing have been conducted for the improvement of basic thermal recovery processes and for the development and application of other methods of (more)

Goite Marcano, Jose Gregorio

2012-01-01T23:59:59.000Z

125

A Systematic Comparison on Power Block Efficiencies for CSP Plants with Direct Steam Generation  

Science Journals Connector (OSTI)

Abstract The increase of the process temperature of concentrating solar power plants above the degradation temperature of thermal oil (400C) opens the way for increased power block efficiency and thus reduced cost of electricity production. Direct solar steam generation is one technical option to follow this path. The paper presents different power block designs for direct steam generation parabolic trough and linear Fresnel power plants. Based on a systematic modelling approach, results for efficiency gains are derived and compared against a reference case of an oil-based plant. The results show that different reheat configurations are feasible and that efficiency gains in the range from 4 to 6% can be expected based on todays or near future solar collector technology.

T. Hirsch; A. Khenissi

2014-01-01T23:59:59.000Z

126

Model of sludge behavior in nuclear plant steam generators. Final report  

SciTech Connect

The accumulation of large amounts of sludge in pressurized water reactor steam generators is thought to be a cause of accelerated corrosion by trace impurities which concentrate in such deposits. Based on fundamental principles, this study develops a mathematical model for predicting the behavior (e.g., deposition and reentrainment) of sludge in steam generators. The calculated sludge behavior shows good agreement with the limited amount of experimental data available. The results suggest that the continued accumulation of sludge on the tubesheet might be preventable, and that if it could be, the incoming sludge would be removed by blowdown. An analysis of the uncertainties in the model led to suggested priorities for further analytical and experimental work to gain a better understanding of sludge behavior. 29 refs., 12 figs., 15 tabs.

Beal, S.K.; Chen, J.H.

1986-06-01T23:59:59.000Z

127

New tube bundle heat transfer correlations and flow regime maps for a Once Through Steam Generator  

E-Print Network (OSTI)

? hydraulic behavior of a, nuclear reactor coolant system. Therefore, extensive analytical and experimental research has been performed to investigate the thermal ? hydraulic behavior of the steam generators dur- ing operational and accident transients... light water reactor system transient analysis code for use in rule making, licensing audit calcula- tions, evaluation of operator guidelines, and as a basis for a, nuclear plant analyzer . The code is used extensively at the Idaho National Engineering...

Blanchat, Thomas Kevin

2012-06-07T23:59:59.000Z

128

Proceedings: 20th Steam Generator NDE Workshop: Orlando, Florida, July 9-11, 2001  

SciTech Connect

The 2001 workshop took place in Orlando, Florida, from July 9 to 11, 2001. It covered one full day and two half-days of presentations. Attendees included representatives from domestic and overseas nuclear utilities, NSSS vendors, NDE service and equipment organizations, research laboratories, and regulatory bodies. This annual workshop serves as a forum for NDE specialists to gather and discuss current steam generator NDE issues and means for their resolution.

None

2003-02-01T23:59:59.000Z

129

Thermoelectric Generators for Automotive Waste Heat Recovery Systems Part I: Numerical Modeling  

E-Print Network (OSTI)

Thermoelectric Generators for Automotive Waste Heat Recovery Systems Part I: Numerical Modeling telluride TEMs. Key words: Thermoelectric generators, waste heat recovery, automotive exhaust, skutterudites bismuth telluride are considered for thermoelectric modules (TEMs) for conversion of waste heat from

Xu, Xianfan

130

Low and high Temperature Dual Thermoelectric Generation Waste Heat Recovery System for Light-Duty Vehicles  

Energy.gov (U.S. Department of Energy (DOE))

Developing a low and high temperature dual thermoelectric generation waste heat recovery system for light-duty vehicles.

131

Pyrolysis, combustion and steam gasification of various types of scrap tires for energy recovery  

Science Journals Connector (OSTI)

The energy recovery from carbonaceous materials is considered as reliable energy source. In this context, pyrolysis, combustion and gasification characteristics of scrap truck and car tire samples were investigated using a thermo-gravimetric analyzer ...

Jayaraman KANDASAMY; Iskender Gkalp

2014-12-05T23:59:59.000Z

132

Connectionist Model to Estimate Performance of Steam-Assisted Gravity Drainage in Fractured and Unfractured Petroleum Reservoirs: Enhanced Oil Recovery Implications  

Science Journals Connector (OSTI)

Connectionist Model to Estimate Performance of Steam-Assisted Gravity Drainage in Fractured and Unfractured Petroleum Reservoirs: Enhanced Oil Recovery Implications ... The oil gravity ranges of the oils of current EOR methods have been compiled and the results are presented graphically. ...

Sohrab Zendehboudi; Amin Reza Rajabzadeh; Alireza Bahadori; Ioannis Chatzis; Maurice B. Dusseault; Ali Elkamel; Ali Lohi; Michael Fowler

2013-12-02T23:59:59.000Z

133

Coal-gasification/MHD/steam-turbine combined-cycle (GMS) power generation  

SciTech Connect

The coal-gasification/MHD/steam-turbine combined cycle (GMS) refers to magnetohydrodynamic (MHD) systems in which coal gasification is used to supply a clean fuel (free of mineral matter and sulfur) for combustion in an MHD electrical power plant. Advantages of a clean-fuel system include the elimination of mineral matter or slag from all components other than the coal gasifier and gas cleanup system; reduced wear and corrosion on components; and increased seed recovery resulting from reduced exposure of seed to mineral matter or slag. Efficiencies in some specific GMS power plants are shown to be higher than for a comparably sized coal-burning MHD power plant. The use of energy from the MHD exhaust gas to gasify coal (rather than the typical approach of burning part of the coal) results in these higher efficiencies.

Lytle, J.M.; Marchant, D.D.

1980-11-01T23:59:59.000Z

134

Investigations of Alternative Steam Generator Location and Flatter Core Geometry for Lead-Cooled Fast Reactors  

SciTech Connect

This paper concerns two independent safety investigations on critical and sub-critical heavy liquid metal cooled fast reactors using simple flow paths. The first investigation applies to locating the steam generators in the risers instead of the down-comers of a simple flow path designed sub-critical reactor of 600 MW{sub th} power. This was compared to a similar design, but with the steam generators located in the downcomers. The transients investigated were Total-Loss-of-Power and unprotected Loss-Of-Flow. It is shown that this reactor peaks at 1041 K after 29 hours during a Total-Loss-Of-Power accident. The difference between locating the steam generators in the risers and the downcomers is insignificant for this accident type. During an unprotected Loss-Of-Flow accident at full power, the core outlet temperature stabilizes at 1010 K, which is 337 K above nominal outlet temperature. The second investigation concerns a 1426 MW{sub th} critical reactor where the influence of the core height versus the core outlet temperature is studied during an unprotected Loss-Of-Flow and Total-Loss-Of-Power accident. A pancake type core geometry of 1.0 m height and 5.8 m diameter, is compared to a compact core of 2 m height and 4.5 m diameter. Moderators, like BeO and hydrides, and their influence on safety coefficients and burnup swings are also presented. Both cores incinerate transuranics from spent LWR fuel with minor actinide fraction of 5%. We show that LFRs can be designed both to breed and burn transuranics from LWRs. It is shown that the hydrides lead to the most favorable reactivity feedbacks, but the poorest reactivity swing. The computational fluid dynamics code STAR-CD was used for all thermal hydraulic calculations, and the MCNP and MCB for neutronics, and burn-up calculations. (authors)

Carlsson, Johan; Tucek, Kamil; Wider, Hartmut [Joint Research Centre, Institute for Energy, P.O. Box 2, NL-1755 ZG Petten (Netherlands)

2006-07-01T23:59:59.000Z

135

CHARACTERIZATION OF ELEVATED TEMPERATURE PROPERTIES OF HEAT EXCHANGER AND STEAM GENERATOR ALLOYS  

SciTech Connect

The Next Generation Nuclear Plant project is considering Alloy 800H and Alloy 617 for steam generator and intermediate heat exchangers. It is envisioned that a steam generator would operate with reactor outlet temperatures from 750 to 800 C, while an intermediate heat exchanger for primary to secondary helium would operate up to an outlet temperature of 950 C. Although both alloys are of interest due in part to their technical maturity, a number of specific properties require further characterization for design of nuclear components. Strain rate sensitivity of both alloys has been characterized and is found to be significant above 600 C. Both alloys also exhibit dynamic strain aging, characterized by serrated flow, over a wide range of temperatures and strain rates. High temperature tensile testing of Alloy 617 has been conducted over a range of temperatures. Dynamic strain aging is a concern for these materials since it is observed to result in reduced ductility for many solid solution alloys. Creep, fatigue, and creep-fatigue properties of Alloy 617 have been measured as well, with the goal of determining the influence of the temperature, strain rate and atmosphere on the creep fatigue life of Alloy 617. Elevated temperature properties and implications for codification of the alloys will be described.

J.K. Wright; L.J. Carroll; C.J. Cabet; T. Lillo; J.K. Benz; J.A. Simpson; A. Chapman; R.N. Wright

2012-10-01T23:59:59.000Z

136

SteamMaster: Steam System Analysis Software  

E-Print Network (OSTI)

STEAMMASTER: STEAM SYSTEM ANALYSIS SOFTW ARE Greg Wheeler Associate Professor Oregon State University Corvallis, OR 9733 I ABSTRACT As director of Oregon's ]ndustrial Assessment Center, [ have encountered many industrial steam systems during... plant visits. We analyze steam systems and make recommendations to improve system efficiency. [n nearly 400 industrial assessments, we have recommended 210 steam system improvements, excluding heat recovery, that would save $1.5 million/year with a...

Wheeler, G.

137

Health-hazard evaluation report HETA 89-270-2080, Harrisburg Steam Generation Facility, Harrisburg, Pennsylvania  

SciTech Connect

In response to a request from the City of Harrisburg, Pennsylvania, a health hazard evaluation was conducted at the Harrisburg Steam Generation Facility (HSGF)(SIC-4953) concerning possible exposure to fly ash, combustion products and asbestos (1332214). The facility was a waste to energy site where municipal refuse was incinerated at approximately 1400 degrees-F. The steam generated was either sold directly or converted to electricity via an on site turbine. Employees used hard hats, safety shoes and glasses, work clothes and single use disposable dust and mist respirators. There was a potential for exposure to fly ash for employees working in the boiler and basement areas. Total particulate exposures ranged from 5 to llmg/m3 for laborers. The concentration of lead (7439921) exceeded the standards set by OSHA permissible exposure level of 0.05mg/kg in three of the personal breathing zone air samples. Amosite (12172735) and chrysotile (12001295) asbestos were identified in bulk samples of insulation and asbestos taken from a settled dust sample in the boiler area. Surface wipe samples indicated the possibility of hand to mouth contact with fly ash, particularly in the break and locker rooms. The author concludes that there is a need for reducing worker exposure to fly ash particulate. The author recommends engineering and work practice controls to reduce particulate exposures, increased cleaning and maintenance activities; and further evaluation of asbestos contamination at the facility.

Seitz, T.A.

1990-11-01T23:59:59.000Z

138

A Reliable Steam Generator That Will Allow the Elimination of the Secondary Sodium Circuit in an LMFBR  

SciTech Connect

A particular weakness of the commercial liquid-metal fast breeder reactor is the design of the steam generator (SG). Any small leak in the SG allows the hot sodium (Na) to come into contact with the water/steam, and this results in a violent reaction and SG damage. A secondary circuit is normally used to prevent such reactions causing damage to the reactor core and primary vessel.NNC Ltd. has developed a copper (Cu)-bonded SG system, the objective of which is to provide three separate solid boundaries (two steel and one Cu) between the primary sodium coolant and the water/steam and hence eliminate the possibility of contact between Na and water/steam. The design uses a hot isostatic pressure method of construction to bond all three barriers to aid heat transfer. This highly reliable system allows the elimination of the secondary circuit, greatly reducing the cost of the reactor system and increasing availability.

Sherwood, D.V.; Chikazawa, Y

2005-04-15T23:59:59.000Z

139

Steam Path Audits on Industrial Steam Turbines  

E-Print Network (OSTI)

steam Path Audits on Industrial steam Turbines DOUGLAS R. MITCHELL. ENGINEER. ENCOTECH, INC., SCHENECTADY, NEW YORK ABSTRACT The electric utility industry has benefitted from steam path audits on steam turbines for several years. Benefits... not extend the turbine outage. To assure that all of the turbine audit data are available, the audit engineer must be at the turbine site the day the steam path is first exposed. A report of the opening audit findings is generated to describe the as...

Mitchell, D. R.

140

E-Print Network 3.0 - analyzing steam generator Sample Search...  

NLE Websites -- All DOE Office Websites (Extended Search)

the early develop- ment of high-pressure steam... A History of the Growth of the Steam Engine (1883) Hero of Alexandria, who lived around 60 AD, con- ducted Source: Leveson,...

Note: This page contains sample records for the topic "recovery steam generator" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

Downhole steam-generator study. Volume I. Conception and feasibility evaluation. Final report, September 1978-September 1980  

SciTech Connect

A feasibility evaluation of a downhole steam generator was performed by the Rocketdyne Division of Rockwell International, under contract to Sandia National Laboratories, from September 1978 to September 1980. The study was conducted in four phases: (1) selection of a preliminary system design, (2) parametric analysis of the selected system, (3) experimental studies to demonstrate feasibility and develop design data, and (4) development of a final system design based on the parametric and experimental results. The feasibility of a low pressure combustion, indirect contact, downhole steam generator system was demonstrated. Key results from all phases of the study are presented herein.

Not Available

1982-06-01T23:59:59.000Z

142

Decommissioning of Large Components as an Example of Steam Generator from PWR Nuclear Power Plants  

SciTech Connect

This paper describes the procedure for the qualification of large components (Steam Generators) as an IP-2 package, the ship transport abroad to Sweden and the external treatment of this components to disburden the Nuclear Power Plant from this task, to assure an accelerated the deconstruction phase and to minimize the amount of waste. In conclusion: The transport of large components to an external treatment facility is linked with many advantages for a Nuclear Power Plant: - Disburden of the Nuclear Power Plant from the treatment of such components, - no timely influence on the deconstruction phase of the power reactor and therewith an accelerated deconstruction phase and - minimization of the waste to be returned and therewith less demand of required waste storage capacity. (authors)

Beverungen, M. [GNS Gesellschaft fur Nuklear-Service mbH, Hollestrabe 7A (Germany)

2008-07-01T23:59:59.000Z

143

Evaluation of cracking in steam generator feedwater piping in pressurized water reactor plants  

SciTech Connect

Cracking in feedwater piping was detected near the inlet to steam generators in 15 pressurized water reactor plants. Sections with cracks from nine plants are examined with the objective of identifying the cracking mechanism and assessing various factors that might contribute to this cracking. Using transmission electron microscopy, fatigue striations are observed on replicas of cleaned crack surfaces. Calculations based on the observed striation spacings gave a cyclic stress value of 150 MPa (22 ksi) for one of the major cracks. The direction of crack propagation was invariably related to the piping surface and not to the piping axis. These two factors are consistent with the proposed concept of thermally induced, cyclic, tensile surface stresses and it is concluded that the overriding factor in the cracking problem was the presence of such undocumented cyclic loads.

Goldberg, A.; Streit, R.D.

1981-05-01T23:59:59.000Z

144

A Review of Some Degradation Mechanisms in CANDU Steam Generator Tubing  

SciTech Connect

The first CANDU (Canadian Deuterium Uranium) pressurized heavy water reactor (PHWR) went into operation in July 1971. Today, there are several units in operation at the Pickering, Bruce, and Darlington sites in Ontario, Canada. The steam generator tubing materials were manufactured from Monel 400, Inconel 600, and Incoloy 800 for the Pickering, Bruce, and Darlington respectively and are subjected to different operating conditions. This paper presents a review of some of the various types of degradation mechanisms that have been observed on these tubing materials over the operating period of the respective plants. The results presented are based on the metallurgical examination of removed tubes. The mechanisms that have been observed include pitting, stress corrosion cracking, intergranular attack, fretting, and erosion corrosion. The nature of the flaws and causative factors (if known) are discussed. (authors)

Ogundele, G.; Clark, M.; Goszczynski, G.; Lloyd, A. [Kinectrics, Inc., 800 Kipling Avenue Toronto, Ontario M8Z 6C4 (Canada); Pagan, S. [Ontario Power Generation, 700 University Avenue Toronto, Ontario, M5G 1X6 (Canada); Sedman, K. [Bruce Power, P.O. Box 3000 177 Tie Rd., R.R. 2, Tiverton, Ontario N0G 2T0 (Canada); King, P. [Babcock and Wilcox (Canada)

2006-07-01T23:59:59.000Z

145

Use Steam Jet Ejectors or Thermocompressors to Reduce Venting of Low-Pressure Steam  

SciTech Connect

Industrial Technologies Program's BestPractices tip sheet on improving efficiency of industrial steam systems by recovery latent heat from low-pressure steam.

Not Available

2005-09-01T23:59:59.000Z

146

Field test of two high-pressure direct-contact downhole steam generators. Volume II. Oxygen/diesel system  

SciTech Connect

A field test of an oxygen/diesel fuel, direct contact steam generator has been completed. The field test, which was a part of Project DEEP STEAM and was sponsored by the US Department of Energy, involved the thermal stimulation of a well pattern in the Tar Zone of the Wilmington Oil Field. The activity was carried out in cooperation with the City of Long Beach and the Long Beach Oil Development Company. The steam generator was operated at ground level, with the steam and combustion products delivered to the reservoir through 2022 feet of calcium-silicate insulated tubing. The objectives of the test included demonstrations of safety, operational ease, reliability and lifetime; investigations of reservoir response, environmental impact, and economics; and comparison of those points with a second generator that used air rather than oxygen. The test was extensively instrumented to provide the required data. Excluding interruptions not attributable to the oxygen/diesel system, steam was injected 78% of the time. System lifetime was limited by the combustor, which required some parts replacement every 2 to 3 weeks. For the conditions of this particular test, the use of trucked-in LOX resulted in liess expense than did the production of the equivalent amount of high pressure air using on site compressors. No statistically significant production change in the eight-acre oxygen system well pattern occurred during the test, nor were any adverse effects on the reservoir character detected. Gas analyses during the field test showed very low levels of SOX (less than or equal to 1 ppM) in the generator gaseous effluent. The SOX and NOX data did not permit any conclusion to be drawn regarding reservoir scrubbing. Appreciable levels of CO (less than or equal to 5%) were measured at the generator, and in this case produced-gas analyses showed evidence of significant gas scrubbing. 64 figures, 10 tables.

Moreno, J.B.

1983-07-01T23:59:59.000Z

147

A Methodology for Estimating the Parameters of Steam Turbine Generator Shaft Systems for Subsynchronous Resonance Studies .  

E-Print Network (OSTI)

??The increase of coal and nuclear power steam turbines over the past few decades combined with transmission line series capacitors creates a potential drawback known (more)

Sambarapu, Krishna

2012-01-01T23:59:59.000Z

148

Steam Pressure Reduction: Opportunities and Issues; A BestPractices Steam Technical Brief  

SciTech Connect

A BestPractices Technical Brief describing industrial steam generation systems and opportunities for reducing steam system operating pressure.

Not Available

2005-11-01T23:59:59.000Z

149

Development of one-dimensional computer code DESOPT for thermal hydraulic design of sodium-heated once through steam generators  

Science Journals Connector (OSTI)

Once-through Steam Generator (SG) is a critical component of Liquid Metal Fast Breeder Reactor (LMFBR) plant. It is a counter current heat exchanger, in which heat is transferred from the hot sodium flowing on the shell side to water/steam in tube side. High pressure subcooled water enters the SG tube from bottom, gets heated up to saturation, goes through nucleate boiling, dry out and post dry out heat transfer, getting converted to saturated steam and finally gets superheated. For this the process design needs to be carried out accurately. A computer code DESOPT has been developed for the process design of straight vertical, serpentine and helical geometries and validated against reported designs in literature. Recently a test facility to test a 5.5 MWt sodium heated steam generator has been commissioned. The predictions of the code have been compared with the measurements and found satisfactory. This paper brings out different heat transfer mechanisms in SG and describes the one-dimensional code, its validation based on literature and in-house tests and presents the results of comparison between predicted and actual operation at different part loads.

G. Vaidyanathan; A.L. Kothandaraman; L.S. Siva Kumar; V. Vinod; I.B. Noushad; K.K. Rajan; P. Kalyanasundaram

2010-01-01T23:59:59.000Z

150

" "," ",,," Steam Turbines Supplied by Either Conventional or Fluidized Bed Boilers",,,"Conventional Combusion Turbines with Heat Recovery",,,"Combined-Cycle Combusion Turbines",,,"Internal Combusion Engines with Heat Recovery",,," Steam Turbines Supplied by Heat Recovered from High-Temperature Processes",,,," "  

U.S. Energy Information Administration (EIA) Indexed Site

3 Relative Standard Errors for Table 8.3;" 3 Relative Standard Errors for Table 8.3;" " Unit: Percents." " "," ",,," Steam Turbines Supplied by Either Conventional or Fluidized Bed Boilers",,,"Conventional Combusion Turbines with Heat Recovery",,,"Combined-Cycle Combusion Turbines",,,"Internal Combusion Engines with Heat Recovery",,," Steam Turbines Supplied by Heat Recovered from High-Temperature Processes",,,," " " "," " ," " "NAICS Code(a)","Subsector and Industry","Establishments(b)","Establishments with Any Cogeneration Technology in Use(c)","In Use(d)","Not in Use","Don't Know","In Use(d)","Not in Use","Don't Know","In Use(d)","Not in Use","Don't Know","In Use(d)","Not in Use","Don't Know","In Use(d)","Not in Use","Don't Know"

151

Design, construction and operation of lab scale cylindrical steam assisted gravity drainage model for heavy oil recovery  

Science Journals Connector (OSTI)

Based on a theoretical background [1,2], a lab scale cylindrical SAGD (steam assisted gravity drainage) model was designed, constructed and operated. There are six different parts in the apparatus: (1) water s...

Nansuk You; Songhun Yoon; Wonkyu Lee

2010-11-01T23:59:59.000Z

152

Practical aspects of steam injection processes: A handbook for independent operators  

SciTech Connect

More than 80% of the total steam injection process operating costs are for the production of steam and the operation of surface and subsurface equipment. The proper design and operation of the surface equipment is of critical importance to the success of any steam injection operation. However, the published monographs on thermal recovery have attached very little importance to this aspect of thermal oil recovery; hence, a definite need exists for a comprehensive manual that places emphasis on steam injection field practices and problems. This handbook is an attempt to fulfill this need. This handbook explores the concept behind steam injection processes and discusses the information required to evaluate, design, and implement these processes in the field. The emphasis is on operational aspects and those factors that affect the technology and economics of oil recovery by steam. The first four chapters describe the screening criteria, engineering, and economics of steam injection operation as well as discussion of the steam injection fundamentals. The next four chapters begin by considering the treatment of the water used to generate steam and discuss in considerable detail the design, operation and problems of steam generations, distribution and steam quality determination. The subsurface aspects of steamflood operations are addressed in chapters 9 through 12. These include thermal well completion and cementing practices, insulated tubulars, and lifting equipment. The next two chapters are devoted to subsurface operational problems encountered with the use of steam. Briefly described in chapters 15 and 16 are the steam injection process surface production facilities, problems and practices. Chapter 17 discusses the importance of monitoring in a steam injection project. The environmental laws and issues of importance to steam injection operation are outlined in chapter 18.

Sarathi, P.S.; Olsen, D.K.

1992-10-01T23:59:59.000Z

153

Neutron measurements of the fuel remaining in the TMI II once-through steam generators (OTSG'S)  

SciTech Connect

Polypropylene tubes containing a string of 18 copper rods were inserted into the lower head region and each J-leg of the two once-through steam generators (OTSG) of the unit two reactor at Three Mile Island. The object was to measure the neutron flux present in those regions and estimate the amount of residual fuel remaining in each OTSG. The neutron flux from any residual fuel induces a radioisotope, /sup 64/Cu, in the copper coupons. The /sup 64/Cu activity is detected by coincidence counting the two 511-keV gamma rays produced by the annihilation of the positron emitted in the decay of /sup 64/Cu. The copper coupons were placed between two 6-inch diameter, 6-inch long NaI(Tl) crystals and the electronics produced a coincidence count whenever the two gamma rays were uniquely detected. The net coincidence count is proportional to the amount of /sup 64/Cu activity in the coupon. This document discusses calculation methods, statistical methods, and results of this research. 3 figs., 30 tabs.

Geelhood, B.D.; Abel, K.H.

1989-02-01T23:59:59.000Z

154

Downhole steam quality measurement  

DOE Patents (OSTI)

The present invention relates to an empirical electrical method for remote sensing of steam quality utilizing flow-through grids which allow measurement of the electrical properties of a flowing two-phase mixture. The measurement of steam quality in the oil field is important to the efficient application of steam assisted recovery of oil. Because of the increased energy content in higher quality steam it is important to maintain the highest possible steam quality at the injection sandface. The effectiveness of a steaming operation without a measure of steam quality downhole close to the point of injection would be difficult to determine. Therefore, a need exists for the remote sensing of steam quality.

Lee, D.O.; Montoya, P.C.; Muir, J.F.; Wayland, J.R. Jr.

1985-06-19T23:59:59.000Z

155

New EOR system being tested. [Enhanced oil recovery  

SciTech Connect

Oil and gas operators - and drilling contractors, if they own production - are watching with a great deal of interest an innovative enhanced oil recovery system now being tested in Missouri and Canada which, if present results prove to be the rule, will help gain recovery rates of double current oil production using conventional means. The new system, vapor therm, is being offered to oil and gas operators who either are now engaged in steam injection projects or plan to in the near future. The vapor therm system is designed for use in specific heavy oil reservoirs. What's more, existing steam generating equipment in field use need not be eliminated, since the system has been designed to be retrofitted to such steam generating facilities with little or no downtime involved. The system combines inert gases with injected steam to produced greatly enhanced recovery of oil for the same amount of steam injected in conventional steamflood operations.

Not Available

1982-04-01T23:59:59.000Z

156

Development of Design Criteria for Fluid Induced Structural Vibration in Steam Generators and Heat Exchangers  

SciTech Connect

OAK-B135 Flow-induced vibration in heat exchangers has been a major cause of concern in the nuclear industry for several decades. Many incidents of failure of heat exchangers due to apparent flow-induced vibration have been reported through the USNRC incident reporting system. Almost all heat exchangers have to deal with this problem during their operation. The phenomenon has been studied since the 1970s and the database of experimental studies on flow-induced vibration is constantly updated with new findings and improved design criteria for heat exchangers. In the nuclear industry, steam generators are often affected by this problem. However, flow-induced vibration is not limited to nuclear power plants, but to any type of heat exchanger used in many industrial applications such as chemical processing, refrigeration and air conditioning. Specifically, shell and tube type heat exchangers experience flow-induced vibration due to the high velocity flow over the tube banks. Flow-induced vibration in these heat exchangers leads to equipment breakdown and hence expensive repair and process shutdown. The goal of this research is to provide accurate measurements that can help modelers to validate their models using the measured experimental parameters and thereby develop better design criteria for avoiding fluid-elastic instability in heat exchangers. The research is divided between two primary experimental efforts, the first conducted using water alone (single phase) and the second using a mixture of air or steam and water as the working fluid (two phase). The outline of this report is as follows: After the introduction to fluid-elastic instability, the experimental apparatus constructed to conduct the experiments is described in Chapter 2 along with the measurement procedures. Chapter 3 presents results obtained on the tube array and the flow loop, as well as techniques used in data processing. The project performance is described and evaluated in Chapter 4 followed by a discussion of publications and presentations relevant to the project in Chapter 5, while the conclusions and recommendations for future work are presented in Chapter 6.

Catton, Ivan; Dhir, Vijay K.; Alquaddoomi, O.S.; Mitra, Deepanjan; Adinolfi, Pierangelo

2004-03-26T23:59:59.000Z

157

Evaluation of anticipatory signal to steam generator pressure control program for 700 MWe Indian pressurized heavy water reactor  

SciTech Connect

700 MWe Indian Pressurized Heavy Water Reactor (IPHWR) is horizontal channel type reactor with partial boiling at channel outlet. Due to boiling, it has a large volume of vapor present in the primary loops. It has two primary loops connected with the help of pressurizer surge line. The pressurizer has a large capacity and is partly filled by liquid and partly by vapor. Large vapor volume improves compressibility of the system. During turbine trip or load rejection, pressure builds up in Steam Generator (SG). This leads to pressurization of Primary Heat Transport System (PHTS). To control pressurization of SG and PHTS, around 70% of the steam generated in SG is dumped into the condenser by opening Condenser Steam Dump Valves (CSDVs) and rest of the steam is released to the atmosphere by opening Atmospheric Steam Discharge Valves (ASDVs) immediately after sensing the event. This is accomplished by adding anticipatory signal to the output of SG pressure controller. Anticipatory signal is proportional to the thermal power of reactor and the proportionality constant is set so that SG pressure controller's output jacks up to ASDV opening range when operating at 100% FP. To simulate this behavior for 700 MWe IPHWR, Primary and secondary heat transport system is modeled. SG pressure control and other process control program have also been modeled to capture overall plant dynamics. Analysis has been carried out with 3-D neutron kinetics coupled thermal hydraulic computer code ATMIKA.T to evaluate the effect of the anticipatory signal on PHT pressure and over all plant dynamics during turbine trip in 700 MWe IPHWR. This paper brings out the results of the analysis with and without considering anticipatory signal in SG pressure control program during turbine trip. (authors)

Pahari, S.; Hajela, S.; Rammohan, H. P.; Malhotra, P. K.; Ghadge, S. G. [Nuclear Power Corporation of India Limited, Nabhikiya Urja Bhavan, Anushakti Nagar, Mumbai, PIN-400094 (India)

2012-07-01T23:59:59.000Z

158

Proceedings: 21st Steam Generator NDE Workshop: Volumes I and II, Berkeley, California, July 15-17, 2002  

SciTech Connect

This year's workshop took place in Berkeley, California, from July 15 to 17, 2002. It covered one full day and two half-days of presentations. Attendees included representatives from domestic and overseas nuclear utilities, NSSS vendors, NDE service and equipment organizations, research laboratories, and regulatory bodies. This annual workshop serves as a forum for NDE specialists to gather and discuss current steam generator NDE issues and means for their resolution.

None

2003-02-01T23:59:59.000Z

159

An evaluation of the benefits of combined steam and fireflooding as a recovery process for heavy oils  

SciTech Connect

Lack of oil mobility is a major problem with in situ combustion field projects, since the combustion front displaces oil into an essentially unheated reservoir. One way of ensuring oil mobility is to utilize steam injection during the early life of the process, and then switch to combustion when heated communication paths have been developed. The in situ combustion characteristics of cores from the Primrose reservoir of Northeastern Alberta were investigated in a comprehensive series of 22 combustion tube tests. The program was carried out in order to evaluate the effectiveness of fireflooding in both cores that had been preheated to the extent that the oil was mobile and in those which were steam-flooded prior to dry combustion. Both normal- and 95% oxygen-enriched air were evaluated. Wet combustion tests were performed utilizing both liquid water and steam injection. The effects of parameters such as pressure, oxygen enrichment and injection flux on the combustion characteristics were examined. This paper will discuss the results of this study, which show that steam co-injection is more effective at lowering the oxygen requirement than was combustion following steam. Additionally, the cores which were preheated exhibited similar oxygen requirements to those which were presteamed to a near-residual saturation.

Moore, R.G.; Laureshen, C.J.; Belgrave, J.D.M.; Ursenbach, M.G. [Univ. of Calgary, Alberta (Canada); Jha, K.N. [Dept. of Natural Resources Canada, Ottawa (Canada)

1995-02-01T23:59:59.000Z

160

Recover heat from steam reforming  

SciTech Connect

Steam reforming is one of the most important chemical processes--it is used in the manufacture of ammonia, hydrogen, methanol, and many chemicals made from hydrogen and carbon monoxide. Furthermore, many current trends will increase its importance. For example, methanol for addition to gasoline is likely to be produced by steam reforming. Because steam reforming occurs at high temperatures--typically 750 C--900 C--it generates a large amount of waste heat. Clearly, heat recovery is crucial to process economics. A typical 50,000 Nm[sup 3]/h hydrogen plant using natural gas feed has a radiant heat duty of about 50 MW. At a radiant efficiency of 50% and fuel cost of $3/GJ, this means that the reformer fires $9 million worth of fuel per year. Obviously, this amount of fuel justifies a close loot at ways to reduce costs. This article first provides a brief overview of steam reforming. It then outlines the available heat-recovery options and explains how to select the best method.

Fleshman, J.D. (Foster Wheeler USA Corp., Livingston, NJ (United States))

1993-10-01T23:59:59.000Z

Note: This page contains sample records for the topic "recovery steam generator" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

The Impact of RELAP5 Pipe Break Flow Rates Associated With Reverse Flow Limiter Removal for Steam Generator Replacement  

SciTech Connect

Pipe break flow rates are calculated for a main feedwater line break (FWLB) in the main steam valve vault (MSVV) for a PWR Steam Generator Replacement (SGR). A reverse flow limiter is installed in the original steam generator (OSG) feedwater nozzle to limit the blowdown flowrate in the event of a postulated FWLB. This feature is not incorporated in the replacement steam generator (RSG) design. The change in RSG nozzle design in conjunction with new operating conditions results in increased FWLB mass and energy releases which can impact environmental temperatures and pressures and flooding levels. In the United States, benchmarking for safety related analyses is necessary in consideration of 10CFR50.59 requirements. RELAP5/MOD3 is used to model the pipe break flowrates for a FWLB at different break locations. The benchmark FWLB blowdown releases are larger than the OSG design basis blowdown releases due to differences in RELAP5/MOD3 versions which are found to have different algorithms for subcooled choked flow. The SGR FWLB blowdown release rates are determined to have minimal impact on the compartment temperature and pressure response. However, the flooding levels and associated equipment qualification are potentially impacted. Modeling techniques used to minimize the impact of the SGR blowdown releases on MSVV flooding levels include modeling flashing effects, more realistic RSG temperature distribution, inventory depletion and Auxiliary Feedwater (AFW) flow initiation time, and considering loss of offsite power scenarios. A detailed flooding hazard evaluation is needed, which considers the actual main feedwater isolation times to ensure that environmentally qualified safety related components, required to mitigate the effects of a FWLB inside the MSVV, can perform their safety function prior to being submerged. (authors)

Dong Zheng; Jarvis, Julie M.; Vieira, Allen T. [Bechtel Power Corporation, Frederick, Maryland (United States)

2006-07-01T23:59:59.000Z

162

Table 11.6 Installed Nameplate Capacity of Fossil-Fuel Steam-Electric Generators With Environmental Equipment, 1985-2010 (Megawatts)  

U.S. Energy Information Administration (EIA) Indexed Site

Installed Nameplate Capacity of Fossil-Fuel Steam-Electric Generators With Environmental Equipment," Installed Nameplate Capacity of Fossil-Fuel Steam-Electric Generators With Environmental Equipment," " 1985-2010 (Megawatts)" "Year","Coal",,,,"Petroleum and Natural Gas",,,,"Total 1" ,,,"Flue Gas","Total 2",,,"Flue Gas","Total 2",,,"Flue Gas","Total 2" ,"Particulate","Cooling","Desulfurization",,"Particulate","Cooling","Desulfurization",,"Particulate","Cooling","Desulfurization" ,"Collectors","Towers","(Scrubbers)",,"Collectors","Towers","(Scrubbers)",,"Collectors","Towers","(Scrubbers)"

163

Skutterudite Thermoelectric Generator For Automotive Waste Heat Recovery  

Energy.gov (U.S. Department of Energy (DOE))

Skutterudite TE modules were fabricated and assembled into prototype thermoelectric generators (TEGs), then installed on a standard GM production vehicle and tested for performance

164

Improvement design study on steam generator of MHR-50/100 aiming higher safety level after water ingress accident  

SciTech Connect

Mitsubishi Heavy Industries, Ltd. (MHI) has been studying on MHI original High Temperature Gas cooled Reactor (HTGR), namely MHR-50/100, for commercialization with supported by JAEA. In the heat transfer system, steam generator (SG) is one of the most important components because it should be imposed a function of heat transfer from reactor power to steam turbine system and maintaining a nuclear grade boundary. Then we especially focused an effort of a design study on the SG having robustness against water ingress accident based on our design experience of PWR, FBR and HTGR. In this study, we carried out a sensitivity analysis from the view point of economic and plant efficiency. As a result, the SG design parameter of helium inlet/outlet temperature of 750 deg. C/300 deg. C, a side-by-side layout and one unit of SG attached to a reactor were selected. In the next, a design improvement of SG was carried out from the view point of securing the level of inherent safety without reliance on active steam dump system during water ingress accident considering the situation of the Fukushima nuclear power plant disaster on March 11, 2011. Finally, according to above basic design requirement to SG, we performed a conceptual design on adapting themes of SG structure improvement. (authors)

Oyama, S. [Mitsubishi Heavy Industries, Ltd., 1-1 Wadasaki-cho 1-Chome, Hyogo-ku, Kobe (Japan); Minatsuki, I.; Shimizu, K. [Mitsubishi Heavy Industries, Ltd., 16-5, Konan 2-Chome, Minato-ku, Tokyo (Japan)

2012-07-01T23:59:59.000Z

165

Evaluation of the Effectiveness of a New Technology for Extraction of Insoluble Impurities from Nuclear Power Plant Steam Generators with Purge Water  

SciTech Connect

An experimental technology for the removal of insoluble impurities from a horizontal steam generator with purge water during planned shutdowns of the power generating unit is improved through a more representative determination of the concentration of impurities in the purge water ahead of the water cleanup facility and a more precise effective time for the duration of the purge process. Tests with the improved technique at power generating unit No. 1 of the Rostov Nuclear Power Plant show that the efficiency with which insoluble impurities are removed from the steam generator volume was more than two orders of magnitude greater than under the standard regulations.

Bud'ko, I. O. [JSC NIITsE 'Tsentrenergo' (Russian Federation)] [JSC NIITsE 'Tsentrenergo' (Russian Federation); Zhukov, A. G. [Rostov Nuclear Power Plant (Russian Federation)] [Rostov Nuclear Power Plant (Russian Federation)

2013-11-15T23:59:59.000Z

166

Reactivation of an idle lease to increase heavy oil recovery through application of conventional steam drive technology in a low dip slope and basin reservoir in the Midway-Sunset Field, San Jaoquin Basin, California  

SciTech Connect

This project reactivates ARCO`s idle Pru Fee lease in the Midway- Sunset field, California and conducts a continuous steamflood enhanced oil recovery demonstration aided by an integration of modern reservoir characterization and simulation methods. Cyclic steaming is being used to reestablish baseline production within the reservoir characterization phase of the project. During the demonstration phase scheduled to begin in January 1997, a continuous steamflood enhanced oil recovery will be initiated to test the incremental value of this method as an alternative to cyclic steaming. Other economically marginal Class III reservoirs having similar producibility problems will benefit from insight gained in this project. The objectives of the project are: (1) to return the shut-in portion of the reservoir to optimal commercial production; (2) to accurately describe the reservoir and recovery process; and (3) to convey the details of this activity to the domestic petroleum industry, especially to other producers in California, through an aggressive technology transfer program. One of the main objectives of Budget Period I was to return the Pru Fee property to economic production and establish a baseline productivity with cyclic steaming. By the end of the second quarter 1996, all Pru producers except well 101 had been cyclic steamed two times. Each steam cycle was around 10,000 barrels of steam (BS) per well. No mechanical problems were found in the existing old wellbores. Conclusion is after several years of being shut-in, the existing producers on the Pru lease are in reasonable mechanical condition, and can therefore be utilized as viable producers in whatever development plan we determine is optimum. Production response to cyclic steam is very encouraging in the new producer, however productivity in the old producers appears to be limited in comparison.

Schamel, S.

1996-11-01T23:59:59.000Z

167

Boiler and steam generator corrosion: Fossil fuel power plants. (Latest citations from the NTIS Bibliographic database). Published Search  

SciTech Connect

The bibliography contains citations concerning corrosion effects, mechanisms, detection, and inhibition in fossil fuel fired boilers. Fluidized bed combustors and coal gasification are included in the applications. The citations examine hot corrosion, thermal mechanical degradation, and intergranular oxidation corrosion studies performed on the water side and hot gas side of heat exchanger tubes and support structures. Coatings and treatment of material to inhibit corrosion are discussed. Corrosion affecting nuclear powered steam generators is examined in a separate bibliography. (Contains a minimum of 119 citations and includes a subject term index and title list.)

Not Available

1994-11-01T23:59:59.000Z

168

Steam Oxidation of Advanced Steam Turbine Alloys  

SciTech Connect

Power generation from coal using ultra supercritical steam results in improved fuel efficiency and decreased greenhouse gas emissions. Results of ongoing research into the oxidation of candidate nickel-base alloys for ultra supercritical steam turbines are presented. Exposure conditions range from moist air at atmospheric pressure (650C to 800C) to steam at 34.5 MPa (650C to 760C). Parabolic scale growth coupled with internal oxidation and reactive evaporation of chromia are the primary corrosion mechanisms.

Holcomb, Gordon R.

2008-01-01T23:59:59.000Z

169

Steam generator air-cooling and ways to increase its effectiveness  

SciTech Connect

To shorten the downtime for repair of steam turbines, various methods for rapid cooling of the turbine can be used. One method is to cool the turbine with free air whose movement is controlled by a standard ejector through the flow passage in sequence of the high-, medium-, and low-pressure zones of the turbine. The effectiveness of air cooling the turbine through use of a counterflow system for controlling air flow through the turbine is discussed.

Kulichikhin, V.V.; Tazhiev, E.I.; Leshchinskii, A.M.; Zubov, P.A.

1982-10-01T23:59:59.000Z

170

Review of Dissimilar Metal Welding for the NGNP Helical-Coil Steam Generator  

SciTech Connect

The U.S. Department of Energy (DOE) is currently funding research and development of a new high temperature gas cooled reactor (HTGR) that is capable of providing high temperature process heat for industry. The steam generator of the HTGR will consist of an evaporator economizer section in the lower portion and a finishing superheater section in the upper portion. Alloy 800H is expected to be used for the superheater section, and 2.25Cr 1Mo steel is expected to be used for the evaporator economizer section. Dissimilar metal welds (DMW) will be needed to join these two materials. It is well known that failure of DMWs can occur well below the expected creep life of either base metal and well below the design life of the plant. The failure time depends on a wide range of factors related to service conditions, welding parameters, and alloys involved in the DMW. The overall objective of this report is to review factors associated with premature failure of DMWs operating at elevated temperatures and identify methods for extending the life of the 2.25Cr 1Mo steel to alloy 800H welds required in the new HTGR. Information is provided on a variety of topics pertinent to DMW failures, including microstructural evolution, failure mechanisms, creep rupture properties, aging behavior, remaining life estimation techniques, effect of environment on creep rupture properties, best practices, and research in progress to improve DMW performance. The microstructure of DMWs in the as welded condition consists of a sharp chemical concentration gradient across the fusion line that separates the ferritic and austenitic alloys. Upon cooling from the weld thermal cycle, a band of martensite forms within this concentration gradient due to high hardenability and the relatively rapid cooling rates associated with welding. Upon aging, during post weld heat treatment (PWHT), and/or during high temperature service, C diffuses down the chemical potential gradient from the ferritic 2.25Cr 1Mo steel toward the austenitic alloy. This can lead to formation of a soft C denuded zone near the interface on the ferritic steel, and nucleation and growth of carbides on the austenitic side that are associated with very high hardness. These large differences in microstructure and hardness occur over very short distances across the fusion line (~ 50 100 ?m). A band of carbides also forms along the fusion line in the ferritic side of the joint. The difference in hardness across the fusion line increases with increasing aging time due to nucleation and growth of the interfacial carbides. Premature failure of DMWs is generally attributed to several primary factors, including: the sharp change in microstructure and mechanical properties across the fusion line, the large difference in coefficient of thermal expansion (CTE) between the ferritic and austenitic alloys, formation of interfacial carbides that lead to creep cavity formation, and preferential oxidation of the ferritic steel near the fusion line. In general, the large gradient in mechanical properties and CTE serve to significantly concentrate the stress along the fusion where a creep susceptible microstructure has evolved during aging. Presence of an oxide notch can concentrate the stress even further. Details of the failure mechanism and the relative importance of each factor varies.

John N. DuPont

2010-03-01T23:59:59.000Z

171

Steam thermolysis of discarded tires: testing and analysis of the specific fuel consumption with tail gas burning, steam generation, and secondary waste slime processing  

Science Journals Connector (OSTI)

This paper presents the process of steam thermolysis of shredded used tires for obtaining from them liquid fuel and technical carbon carried out in a screw reactor with heating due to the partial burning of obtai...

V. A. Kalitko; Morgan Chun Yao Wu

2009-03-01T23:59:59.000Z

172

90-MW single-shaft power generating steam-gas unit based on the GT-65 gas turbine and K-30-60 steam turbine  

Science Journals Connector (OSTI)

This is an examination of a variant of the monoblock PGU-90 steam-gas unit developed at the Leningradskii Metallicheskii Zavod (LMZ) branch of Silovye mashiny based on a GT-65 gas turbine unit and a K-30-...

A. S. Lebedev; O. V. Antonyuk; V. A. Martyanov

2011-01-01T23:59:59.000Z

173

Recativation of an Idle Lease to Increase Heavy Oil Recovery Through Application of Conventional Steam Drive Technology in a Low Dip Slope and Basin Reservoir in the Midway-Sunset Field, San Jaoquin Basin, California  

SciTech Connect

This project reactivates ARCO`s idle Pru Fee lease in the Midway- Sunset field, California and conducts a continuous steamflood enhanced oil recovery demonstration aided by an integration of modem reservoir characterization and simulation methods. Cyclic steaming is being used to reestablish baseline production within the reservoir characterization phase of the project. During the demonstration phase scheduled to begin in January 1997, a continuous steamflood enhanced oil recovery will be initiated to test the incremental value of this method as an alternative to cyclic steaming. Other economically marginal Class III reservoirs having similar producibility problems will benefit from insight gained in this project. The objectives of the project are: (1) to return the shut-in portion of the reservoir to optimal commercial production; (2) to accurately describe the reservoir and recovery process; and (3) to convey the details of this activity to the domestic petroleum industry, especially to other producers in California, through an aggressive technology transfer program.

Schamel, Steven

1997-03-24T23:59:59.000Z

174

Reactivation of an Idle Lease to Increase Heavy Oil Recovery through Application of Conventional Steam Drive Technology in a Low Dip Slope and Reservoir in the Midway-Sunset Field, San Jaoquin Basin, California  

SciTech Connect

This project reactivates ARCO's idle Pru Fee lease in the Midway-Sunset field, California and conducts a continuous steamflood enhanced oil recovery demonstration aided by an integration of modern reservoir characterization and simulation methods. Cyclic steam was used to reestablish baseline production within the reservoir characterization phase of the project completed in December 1996. During the demonstration phase begun in January 1997, a continuous steamflood enhanced oil recovery is testing the incremental value of this method as an alternative to cyclic steaming. Other economically marginal Class III reservoirs having similar producibility problems will benefit from insight gained in this project. The objective of the project are: (1) to return the shut-in portion of the reservoir to optimal commercial production; (2) to accurately describe the reservoir and recovery process; and (3) to convey the details of this activity to the domestic petroleum industry, especially to other producers in California, through an aggressive technology transfer program.

Schamel, Steven

1999-07-08T23:59:59.000Z

175

Reactivation of an Idle Lease to Increase Heavy Oil Recovery Through Application of Conventional Steam Drive Technology in a Low Dip Slope and Basin Reservoir in the Midway-Sunset Field, San Jaoquin Basin, California  

SciTech Connect

This project reactivates ARCO?s idle Pru Fee property in the Midway-Sunset field, California and conducts a continuous steamflood enhanced oil recovery demonstration aided by an integration of modern reservoir characterization and simulation methods. Cyclic steaming was used to reestablish baseline production within the reservoir characterization phase of the project. During the demonstration phase begun in January 1997, a continuous steamflood enhanced oil recovery was initiated to test the incremental value of this method as an alternative to cyclic steaming. Other economically marginal Class III reservoirs having similar producibility problems will benefit from insight gained in this project. The objectives of the project are: (1) to return the shut-in portion of the reservoir to optimal commercial production; (2) to accurately describe the reservoir and the recovery process; and (3) to convey the details of this activity to the domestic petroleum industry, especially to other producers in California, through an aggressive technology transfer program.

Steven Schamel

1997-07-29T23:59:59.000Z

176

Reactivation of an Idle Lease to Increase Heavy Oil Recovery through Application of Conventional Steam Drive Technology in a Low Dip Slope and Basin Reservoir in the Midway-Sunset Field, San Jaoquin Basin, California  

SciTech Connect

This project reactivates ARCO's idle Pru Fee lease in the Midway-Sunset field, California and conducts a continuous steamflood enhanced oil recovery demonstration aided by an integration of modern reservoir characterization and simulation methods. Cyclic steaming was used to reestablish baseline production within the reservoir characterization phase of the project completed in December 1996. During the demonstration phase begun in January 1997, a continuous steamflood enhanced oil recovery is testing the incremental value of this method as an alternative to cyclic steaming. Other economically marginal Class III reservoirs having simular producibility problems will benefit from insight gained in this project. The objectives of the project are: (1) to return the shut-in portion of the reservoir to optimal commercial production; (2) to accurately describe the reservoir and recovery process; and (3) to convey the details of this activity to the domestic petroleum industry, especially t o other producers in California, through an aggressive technology transfer program.

Deo, M.; Forster, C.; Jenkins, C.; Schamel, S.; Sprinkel, D.; and Swain, R.

1999-02-01T23:59:59.000Z

177

Reactivation of an Idle Lease to Increase Heavy Oil Recovery Through Application of Conventional Steam Drive Technology in a Low Dip Slope and Basin Resrvoir in the Midway-Sunset Field, San Jaoquin Basin, California  

SciTech Connect

This project reactivates ARCO?s idle Pru Fee lease in the Midway-Sunset field, California and conducts a continuous steamflood enhanced oil recovery demonstration aided by an integration of modern reservoir characterization and simulation methods. Cyclic steaming is being used to reestablish baseline production within the reservoir characterization phase of the project. During the demonstration phase scheduled to begin in January 1997, a continuous steamflood enhanced oil recovery will be initiated to test the incremental value of this method as an alternative to cyclic steaming. Other economically marginal Class III reservoirs having similar producibility problems will benefit from insight gained in this project. The objectives of the project are: (1) to return the shut-in portion of the reservoir to optimal commercial production; (2) to accurately describe the reservoir and recovery process; and (3) to convey the details of this activity to the domestic petroleum industry, especially to other producers in California, through an aggressive technology transfer program.

Creties Jenkins; Doug Sprinkel; Milind Deo; Ray Wydrinski; Robert Swain

1997-10-21T23:59:59.000Z

178

Hydrocarbon steam reforming using series steam superheaters  

SciTech Connect

In a process for steam reforming of a hydrocarbon gas feedstream wherein: the hydrocarbon gas feedstream is partially reformed at elevated temperatures in indirect heat exchange with hot combustion gases in a direct fired primary reforming furnace provided with a convection section for recovery of excess heat from said combustion gases; and the partially reformed feedstream is then further reformed in the presence of an oxygen-containing gas and steam in a secondary reformer to form a secondary reformer gaseous effluent; the improvement which comprises recovering waste heat from said secondary reformer effluent gas and from said primary reforming combustion products by heating a high pressure saturated steam in a first steam superheating zone by indirect heat exchange with at least a portion of said secondary reformer effluent gas to form a first superheated steam stream; and further heating said first superheated steam in a second steam superheating zone by indirect heat exchange with at least a portion of said primary reformer hot combustion gases for form a second superheated steam stream.

Osman, R. M.

1985-10-08T23:59:59.000Z

179

Geothermal Steam Power Plant | Open Energy Information  

Open Energy Info (EERE)

(Redirected from Dry Steam) (Redirected from Dry Steam) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home General List of Dry Steam Plants List of Flash Steam Plants Steam Power Plants Dry Steam Power Plants Simple Dry Steam Powerplant process description - DOE EERE 2012 Dry steam plants use hydrothermal fluids that are primarily steam. The steam travels directly to a turbine, which drives a generator that produces electricity. The steam eliminates the need to burn fossil fuels to run the turbine (also eliminating the need to transport and store fuels). These plants emit only excess steam and very minor amounts of gases.[1] Dry steam power plants systems were the first type of geothermal power generation plants built (they were first used at Lardarello in Italy in 1904). Steam technology is still effective today at currently in use at The

180

Recovery Act Weekly Video: 200 Area Asbestos Removal, U-Ancillary Demolition, 200 West Transfer Building Footings  

ScienceCinema (OSTI)

A weekly update of the Recovery Act at work. Demolition of U-Ancillary that was contaminated with uranium and asbestos as well as removing asbestos from the Steam Generation Plant in the 200 East Area.

None

2012-06-14T23:59:59.000Z

Note: This page contains sample records for the topic "recovery steam generator" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

Solar Steam Nanobubbles  

Science Journals Connector (OSTI)

Solar Steam Nanobubbles ... The generated steam may also be used to drive a turbine directly for electricity generation. ... Furthermore, sputtering at gassolid and gasliquid interfaces may occur, and thermal desorption at the metalwater interface may affect the heat transfer as well. ...

Albert Polman

2013-01-02T23:59:59.000Z

182

Air-cooled vacuum steam condenser  

SciTech Connect

This patent describes a steam powered system. It comprises: a turbine for converting steam energy into mechanical energy upon expansion of steam therein, a boiler for generating steam to be fed to the turbine, and a conduit arrangement coupling the boiler to the turbine and then recoupling the turbine exhaust to the boiler through steam condensing mechanisms.

Larinoff, M.W.

1990-02-27T23:59:59.000Z

183

A Numerical Model Without Truncation Error for a Steady-State Analysis of a Once-Through Steam Generator  

SciTech Connect

To overcome the drawbacks of conventional schemes for a numerical analysis of a steam generator (SG), an efficient numerical model has been developed to analyze the steady state of a once-through-type SG where the feedwater is heated to superheated steam. In the developed model, the temperature and enthalpy are defined at the boundary of a calculation cell, and the exact solutions for the temperature distribution in a calculation cell are utilized. This feature of the developed model frees calculation from the undesirable effects of numerical diffusion, and only a small number of nodes are required. Also, the developed model removes the ambiguity from the parameter values at the inlet and exit of a calculation.The BoSupSG-SS computer code was developed by using the analysis model, and it performed well with only three calculation nodes to analyze a superheated SG. The developed model can be effectively used for the cases where a fast one-dimensional calculation is required such as an SG or system design analysis.

Sim, Yoon Sub; Kim, Eui Kwang; Eoh, Jae Hyuk [Korea Atomic Energy Research Institute (Korea, Republic of)

2005-06-15T23:59:59.000Z

184

Electromagnetic Induction Heat Generation of Nano?ferrofluid and Other Stimulants for Heavy Oil Recovery  

Science Journals Connector (OSTI)

Nano?ferrofluid and graphite?fluid are proposed to be used as stimulants for heavy oil recovery processes using electromagnetic induction. The heat generation in the stimulants will be used for reducing the viscosity of heavy oil. The temperature increase of the stimulants are observed with the presence of electromagnetic induction. These increments are better compared to those of the varying concentration of salt water (brine) usually exist in the oil reservoir.

A. A. Pramana; D. Abdassah; S. Rachmat; A. Mikrajuddin

2010-01-01T23:59:59.000Z

185

Reactivation of an Idle Lease to Increase Heavy Oil Recovery through Application of Conventional Steam Drive Technology in a Low Dip Slope & Reservoir in the Midway-Sunset Field, San Jaoquin Basin, California  

SciTech Connect

In January 1997 the project entered its second and main phase with the purpose of demonstrating whether steamflood can be a more effective mode of production of the heavy, viscous oils from the Monarch Sand reservoir than the more conventional cyclic steaming. The objective is not just to produce the pilot site within the Pru Fee property south of Taft (Figure 1), but to test which production parameters optimize total oil recovery at economically acceptable rates of production and production costs.

Schamel, Steven

1999-11-09T23:59:59.000Z

186

Reactivation of an Idle Lease to Increase Heavy Oil Recovery through Application of Conventional Steam Drive Technology in a Low Dip Slope and Basin Reservoir in the Midway-Sunset Field, San Jaoquin Basin, California  

SciTech Connect

A previously idle portion of the Midway-Sunset field, the ARCO Western Energy Pru Fee property, is being brought back into commercial production through tight integration of geologic characterization, geostatistical modeling, reservoir simulation, and petroleum engineering. This property, shut-in over a decade ago as economically marginal using conventional cyclic steaming methods, has a 200-300 foot thick oil column in the Monarch Sand. However, the sand lacks effective steam barriers and has a thick water-saturation zone above the oil-water contact. These factors require an innovative approach to steam flood production design that will balance optimal total oil production against economically viable steam-oil ratios and production rates. The methods used in the Class III demonstration are accessible to most operators in the Midway-Sunset field and could be used to revitalize properties with declining production of heavy oils throughout the region. In January 1997 the project entered its second and main phase with the purpose of demonstrating whether steamflood can be a more effective mode of production of the heavy, viscous oils from the Monarch Sand reservoir than the more conventional cyclic steaming. The objective is not just to produce the pilot site within the Pru Fee property south of Taft, but to test which production parameters optimize total oil recovery at economically acceptable rates of production and production costs.

Steven Schamel

1998-02-27T23:59:59.000Z

187

Geothermal Steam Power Plant | Open Energy Information  

Open Energy Info (EERE)

Jump to: navigation, search Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home General List of Dry Steam Plants List of Flash Steam Plants Steam Power Plants Dry Steam Power Plants Simple Dry Steam Powerplant process description - DOE EERE 2012 Dry steam plants use hydrothermal fluids that are primarily steam. The steam travels directly to a turbine, which drives a generator that produces electricity. The steam eliminates the need to burn fossil fuels to run the turbine (also eliminating the need to transport and store fuels). These plants emit only excess steam and very minor amounts of gases.[1] Dry steam power plants systems were the first type of geothermal power generation plants built (they were first used at Lardarello in Italy in 1904). Steam technology is still effective today at currently in use at The

188

Improving the Capacity or Output of a Steam Turbine Generator at XYZ Power Plant in Illinois  

E-Print Network (OSTI)

and capacitance mapping ? Performed wedge tightness check by means of manual tap test ? Performed RTD functioning test ? Cleaned generator brush rigging ? Inspected generator brush rigging for signs of heating, arcing or other damage... turbine with a net generating rating of 366MW. The unit began commercial operation in 1976. Coal is received by rail and limestone by rail by rail or truck. Rail cars are unloaded in a rotary car dumper at a rate of 20-25 cars per hour. A 30 day...

Amoo-Otoo, John Kweku

2006-05-19T23:59:59.000Z

189

Use of third-generation biofuels in self-contained power generation systems based on contemporary steam piston engines  

Science Journals Connector (OSTI)

An alternative concept is studied for third-generation biofuel production and use in low capacity self-contained cogeneration installations, making it possible to optimize the whole production cycle for conver...

V. G. Sister; E. M. Ivannikova; A. I. Yamchuk

2013-07-01T23:59:59.000Z

190

Improving steam turbine efficiency  

SciTech Connect

This paper describes the condition of a significant number of fossil steam turbines operating in the United States and the maintenance practices used to improve their performance. Through the use of steam path audits conducted by the authors` company and by several utilities, a large data base of information on turbine heat rate, casing efficiency, and maintenance practices is available to help the power generation industry understand how different maintenance practices and steam path damage impact turbine performance. The data base reveals that turbine cycle heat rate is typically 5.23% poorer than design just prior to major outages. The degraded condition of steam turbines presents an opportunity for utilities to improve heat rate and reduce emissions without increasing fuel costs. The paper describes what losses typically contribute to the 5.23% heat rate degradation and how utilities can recover steam turbine performance through maintenance actions aimed at improving steam path efficiency.

Cioffi, D.H.; Mitchell, D.R.; Whitecar, S.C. [Encotech, Inc., Schenectady, NY (United States)

1995-06-01T23:59:59.000Z

191

On-Line Monitoring and Diagnostics of the Integrity of Nuclear Plant Steam Generators and Heat Exchangers, Volumes 1, 2.  

SciTech Connect

The overall purpose of this Nuclear Engineering Education Research (NEER) project was to integrate new, innovative, and existing technologies to develop a fault diagnostics and characterization system for nuclear plant steam generators (SG) and heat exchangers (HX). Issues related to system level degradation of SG and HX tubing, including tube fouling, performance under reduced heat transfer area, and the damage caused by stress corrosion cracking, are the important factors that influence overall plant operation, maintenance, and economic viability of nuclear power systems. The research at The University of Tennessee focused on the development of techniques for monitoring process and structural integrity of steam generators and heat exchangers. The objectives of the project were accomplished by the completion of the following tasks. All the objectives were accomplished during the project period. This report summarizes the research and development activities, results, and accomplishments during June 2001 ???????????????????????????????? September 2004. ???????????????????????????????· Development and testing of a high-fidelity nodal model of a U-tube steam generator (UTSG) to simulate the effects of fouling and to generate a database representing normal and degraded process conditions. Application of the group method of data handling (GMDH) method for process variable prediction. ???????????????????????????????· Development of a laboratory test module to simulate particulate fouling of HX tubes and its effect on overall thermal resistance. Application of the GMDH technique to predict HX fluid temperatures, and to compare with the calculated thermal resistance. ???????????????????????????????· Development of a hybrid modeling technique for process diagnosis and its evaluation using laboratory heat exchanger test data. ???????????????????????????????· Development and testing of a sensor suite using piezo-electric devices for monitoring structural integrity of both flat plates (beams) and tubing. Experiments were performed in air, and in water with and without bubbly flow. ???????????????????????????????· Development of advanced signal processing methods using wavelet transforms and image processing techniques for isolating flaw types. ???????????????????????????????· Development and implementation of a new nonlinear and non-stationary signal processing method, called the Hilbert-Huang transform (HHT), for flaw detection and location. This is a more robust and adaptive approach compared to the wavelet transform

Upadhyaya, Belle R.; Hines, J. Wesley; Lu, Baofu; Huang, Xuedong; Penha, Rosani, L.; Perillo, Sergio, R.; Zhao, Ke

2005-06-03T23:59:59.000Z

192

On-Line Monitoring and Diagnostics of the Integrity of Nuclear Plant Steam Generators and Heat Exchangers.  

SciTech Connect

The overall purpose of this Nuclear Engineering Education Research (NEER) project was to integrate new, innovative, and existing technologies to develop a fault diagnostics and characterization system for nuclear plant steam generators (SG) and heat exchangers (HX). Issues related to system level degradation of SG and HX tubing, including tube fouling, performance under reduced heat transfer area, and the damage caused by stress corrosion cracking, are the important factors that influence overall plant operation, maintenance, and economic viability of nuclear power systems. The research at The University of Tennessee focused on the development of techniques for monitoring process and structural integrity of steam generators and heat exchangers. The objectives of the project were accomplished by the completion of the following tasks. All the objectives were accomplished during the project period. This report summarizes the research and development activities, results, and accomplishments during June 2001-September 2004. (1) Development and testing of a high-fidelity nodal model of a U-tube steam generator (UTSG) to simulate the effects of fouling and to generate a database representing normal and degraded process conditions. Application of the group method of data handling (GMDH) method for process variable prediction. (2) Development of a laboratory test module to simulate particulate fouling of HX tubes and its effect on overall thermal resistance. Application of the GMDH technique to predict HX fluid temperatures, and to compare with the calculated thermal resistance. (3) Development of a hybrid modeling technique for process diagnosis and its evaluation using laboratory heat exchanger test data. (4) Development and testing of a sensor suite using piezo-electric devices for monitoring structural integrity of both flat plates (beams) and tubing. Experiments were performed in air, and in water with and without bubbly flow. (5) Development of advanced signal processing methods using wavelet transforms and image processing techniques for isolating flaw types. (6) Development and implementation of a new nonlinear and non-stationary signal processing method, called the Hilbert-Huang transform (HHT), for flaw detection and location. This is a more robust and adaptive approach compared to the wavelet transform. (7) Implementation of a moving-window technique in the time domain for detecting and quantifying flaw types in tubular structures. A window zooming technique was also developed for flaw location in tubes. (8) Theoretical study of elastic wave propagation (longitudinal and shear waves) in metallic flat plates and tubing with and without flaws. (9) Simulation of the Lamb wave propagation using the finite-element code ABAQUS. This enabled the verification of the experimental results. The research tasks included both analytical research and experimental studies. The experimental results helped to enhance the robustness of fault monitoring methods and to provide a systematic verification of the analytical results. The results of this research were disseminated in scientific meetings. A journal manuscript was submitted for publication. The new findings of this research have potential applications in aerospace and civil structures. The report contains a complete bibliography that was developed during the course of the project.

Belle R. Upadhyaya; J. Wesley Hines

2004-09-27T23:59:59.000Z

193

Backgrounder: Geothermal resource production, steam gathering, and power generation at Salton Sea Unit 3, Calipatria, California  

SciTech Connect

The 10,000-kilowatt Salton Sea Unit 1 power plant was designed to demonstrate that electrical power generation, using the highly saline brines from the Salton Sea geothermal reservoir, was technically and economically feasible. Unit 1, owned by Earth Energy, a Unocal subsidiary, began operating in 1982, initiating an intensive testing program which established the design criteria necessary to construct the larger 47,500-kilowatt Unit 3 power plant, unit 3 contains many of the proprietary or patented technological innovations developed during this program. Design, construction and start-up of the Unit 3 power generating facility began in December, 1986, and was completed in 26 months. By the end of 1988, the brine handling system was in full operation, and the turbine had been tested at design speed. Desert Power Company, a Unocal subsidiary, owns the power generating facility. Unocal owns the brine resource production facility. Power is transmitted by the Imperial Irrigation District to Southern California Edison Company.

None

1989-04-01T23:59:59.000Z

194

Candu 6 severe core damage accident consequence analysis for steam generator tube rupture scenario using MAAP4-CANDU V4.0.5A: preliminary results  

SciTech Connect

This paper describes the preliminary results of the consequence analysis for a generic AECL CANDU 6 station, when it undergoes a postulated, low probability Steam Generator multiple Tube Rupture (SGTR) severe accident with assumed unavailability of several critical plant safety systems. The Modular Accident Analysis Program for CANDU (MAAP4-CANDU) code was used for this analysis. The SGTR accident is assumed to begin with the guillotine rupture of 10 steam generator tubes in one steam generator in Primary Heat Transport System (PHTS) loop 1. For the reference case, the following systems were assumed unavailable: moderator and shield cooling, emergency core cooling, crash cool-down, and main and auxiliary feed water. Two additional cases were analyzed, one with the crash cool-down system available, and another with the crash cool-down and the auxiliary feed water systems available. The three scenarios considered in this study show that most of the initial fission product inventory would be retained within the containment by various fission product retention mechanisms. For the case where the crash cool-down system was credited but the auxiliary feed water systems were not credited, the total mass of volatile fission products released to the environment including stable and radioactive isotopes was about four times more than in the reference case, because fission products could be released directly from the PHTS to the environment through the Main Steam Safety Valves (MSSVs), bypassing the containment. For the case where the crash cool-down and auxiliary feed water systems were credited, the volatile fission product release to the environment was insignificant, because the fission product release was substantially mitigated by scrubbing in the water pool in the secondary side of the steam generator (SG). (authors)

Petoukhov, S.M.; Awadh, B.; Mathew, P.M. [Chalk River Laboratories, Atomic Energy of Canada Limited, Chalk River, Ontario, K0J 1J0 (Canada)

2006-07-01T23:59:59.000Z

195

EXERGY ANALYSIS AND ENTROPY GENERATION MINIMIZATION OF THERMOELECTRIC WASTE HEAT RECOVERY FOR ELECTRONICS  

E-Print Network (OSTI)

Energy recovery from waste heat is attracting more and more attention. All electronic systems consume electricity but only a fraction of it is used for information processing and for human interfaces, such as displays. Lots of energy is dissipated as heat. There are some discussions on waste heat recovery from the electronic systems such as laptop computers. However the efficiency of energy conversion for such utilization is not very attractive due to the maximum allowable temperature of the heat source devices. This leads to very low limits of Carnot efficiency. In contrast to thermodynamic heat engines, Brayton cycle, free piston Stirling engines, etc., authors previously reported that thermoelectric (TE) can be a cost-effective device if the TE and the heat sink are co-optimized, and if some parasitic effects could be reduced. Since the heat already exists and it is free, the additional cost and energy payback time are the key measures to evaluate the value of the energy recovery system. In this report, we will start with the optimum model of the TE power generation system. Then, theoretical maximum output, cost impact and energy payback are evaluated in the examples of electronics system. Entropy Generation Minimization (EGM) is a method already familiar in thermal management of electronics. The optimum thermoelectric waste heat recovery design is compared with the EGM approach. Exergy analysis evaluates the useful energy flow in the optimum TE system. This comprehensive analysis is used to predict the potential future impact of the TE material development, as the dimensionless figure-ofmerit (ZT) is improved.

Kazuaki Yazawa; Ali Shakouri

196

ESTIMATION OF OUTLET MASS FLOW FOR A MONO-TUBE CAVITY RECEIVER FOR DIRECT STEAM GENERATION  

E-Print Network (OSTI)

University (ANU). Solar thermal power plants using this technology are intended to be deployed in large generation with large scale parabolic dishes. Simulations of the model show that it is possible to assume pressure and modelled fluid properties. Simulations show that this approach produces good agreement between

197

High performance steam development. Final report, Phase No. 3: 1500{degree}F steam plant for industrial cogeneration prototype development tests  

SciTech Connect

As a key part of DOE`s and industry`s R&D efforts to improve the efficiency, cost, and emissions of power generation, a prototype High Performance Steam System (HPSS) has been designed, built, and demonstrated. The world`s highest temperature ASME Section I coded power plant successfully completed over 100 hours of development tests at 1500{degrees}F and 1500 psig on a 56,000 pound per hour steam generator, control valve and topping turbine at an output power of 5500 hp. This development advances the HPSS to 400{degrees}F higher steam temperature than the current best technology being installed around the world. Higher cycle temperatures produce higher conversion efficiencies and since steam is used to produce the large majority of the world`s power, the authors expect HPSS developments will have a major impact on electric power production and cogeneration in the twenty-first century. Coal fueled steam plants now produce the majority of the United States electric power. Cogeneration and reduced costs and availability of natural gas have now made gas turbines using Heat Recovery Steam Generators (HRSG`s) and combined cycles for cogeneration and power generation the lowest cost producer of electric power in the United States. These gas fueled combined cycles also have major benefits in reducing emissions while reducing the cost of electricity. Development of HPSS technology can significantly improve the efficiency of cogeneration, steam plants, and combined cycles. Figure 2 is a TS diagram that shows the HPSS has twice the energy available from each pound of steam when expanding from 1500{degrees}F and 1500 psia to 165 psia (150 psig, a common cogeneration process steam pressure). This report describes the prototype component and system design, and results of the 100-hour laboratory tests. The next phase of the program consists of building up the steam turbine into a generator set, and installing the power plant at an industrial site for extended operation.

Duffy, T.; Schneider, P.

1996-01-01T23:59:59.000Z

198

A new emergency lubricating-oil system for steam turbine generators: Final report  

SciTech Connect

A positive-displacement pump, powered by a turbine-shaft driven permanent magnet generator (PMG) can be used to provide lubricating oil over nearly the entire turbine generator speed range. The concept offers high reliability through its simplicity; switchgear, batteries and other auxiliaries are eliminated by hard-wiring the PMG to the pump induction drive motor. In this study, an existing PMG supplying power to the electrohydraulic control (EHC) system was evaluated as the power supply for an induction motor-driven screw pump running in a ''wafting'' mode as a backup to a conventional dc emergency oil system. The screw pump rotates all the time that the turbine shaft turns; check valves allow it to deliver oil instantly if the system pressure falls. It was found that the pump drive motor would start and run reliably with no adverse effects on the PMG or the electrohydraulic control (EHC) system. 6 refs., 23 figs., 11 tabs.

Kalan, G.L.; Oney, W.R.; Steenburgh, J.H.; Elwell, R.C.

1987-04-01T23:59:59.000Z

199

Integration of a sludge deposition model into the ATHOS3 computer program and application to a sample U-tube steam generator  

SciTech Connect

This study pursues a approach to sludge deposition prediction, similar to that published by Keefer, et al.. Starting with the same basic model as Beal and Chen, Keefer, et al. made several simplifying assumptions so that a closed form solution to the equations describing deposition and reentrainment could be obtained. Using a similar approach, this study shows how the physics of the sludge model can be integrated directly into a steady-state thermal-hydraulic analysis computer program such as ATHOS3 to provide an estimate of the relative amounts of sludge expected to accumulate in various regions of a steam generator. This allows sludge deposition and reentrainment rates (i.e. rate coefficients) to be calculated at every node used to model the steam generator (which can be many thousands), so that sludge deposition patterns can readily be examined along with thermal-hydraulic parameters.

Keeton, L.W.; Keefer, R.H.; Clark, P.R.

1993-11-01T23:59:59.000Z

200

Evaluation of cracking in feedwater piping adjacent to the steam generators in Nine Pressurized Water Reactor Plants  

SciTech Connect

Cracking in ASTM A106-B and A106-C feedwater piping was detected near the inlet to the steam generators in a number of pressurized water reactor plants. We received sections with cracks from nine of the plants with the objective of identifying the cracking mechanism and assessing various factors that might contribute to this cracking. Variations were observed in piping surface irregularities, corrosion-product, pit, and crack morphology, surface elmental and crystal structure analyses, and steel microstructures and mechanical properties. However, with but two exceptions, namely, arrest bands and major surface irregularities, we were unable to relate the extent of cracking to any of these factors. Tensile and fracture toughness (J/sub Ic/ and tearing modulus) properties were measured over a range of temperatures and strain rates. No unusual properties or microstructures were observed that could be related to the cracking problem. All crack surfaces contained thick oxide deposits and showed evidence of cyclic events in the form of arrest bands. Transmission electron microscopy revealed fatigue striations on replicas of cleaned crack surfaces from one plant and possibly from three others. Calculations based on the observed striation spacings gave a value of ..delta..sigma = 150 MPa (22 ksi) for one of the major cracks. The direction of crack propagation was invariably related to the piping surface and not to the piping axis. These two factors are consistent with the proposed concept of thermally induced, cyclic, tensile surface stresses. Although surface irregularities and corrosion pits were sources for crack initiation and corrosion may have contributed to crack propagation, it is proposed that the overriding factor in the cracking problem is the presence of unforeseen cyclic loads.

Goldberg, A.; Streit, R.D.; Scott, R.G.

1980-06-25T23:59:59.000Z

Note: This page contains sample records for the topic "recovery steam generator" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

Alternate Materials for Recovery Boiler Superheater Tubes  

SciTech Connect

The ever escalating demands for increased efficiency of all types of boilers would most sensibly be realized by an increase in the steam parameters of temperature and pressure. However, materials and corrosion limitations in the steam generating components, particularly the superheater tubes, present major obstacles to boiler designers in achieving systems that can operate under the more severe conditions. This paper will address the issues associated with superheater tube selection for many types of boilers; particularly chemical recovery boilers, but also addressing the similarities in issues for biomass and coal fired boilers. It will also review our recent study of materials for recovery boiler superheaters. Additional, more extensive studies, both laboratory and field, are needed to gain a better understanding of the variables that affect superheater tube corrosion and to better determine the best means to control this corrosion to ultimately permit operation of recovery boilers at higher temperatures and pressures.

Keiser, James R [ORNL; Kish, Joseph [McMaster University; Singbeil, Douglas [FPInnovations

2009-01-01T23:59:59.000Z

202

Waste heat recovery from the exhaust of a diesel generator using Rankine Cycle  

Science Journals Connector (OSTI)

Abstract Exhaust heat from diesel engines can be an important heat source to provide additional power using a separate Rankine Cycle (RC). In this research, experiments were conducted to measure the available exhaust heat from a 40kW diesel generator using two off-the-shelf heat exchangers. The effectiveness of the heat exchangers using water as the working fluid was found to be 0.44 which seems to be lower than a standard one. This lower performance of the existing heat exchangers indicates the necessity of optimization of the design of the heat exchangers for this particular application. With the available experimental data, computer simulations were carried out to optimize the design of the heat exchangers. Two heat exchangers were used to generate super-heated steam to expand in the turbine using two orientations: series and parallel. The optimized heat exchangers were then used to estimate additional power considering actual turbine isentropic efficiency. The proposed heat exchanger was able to produce 11% additional power using water as the working fluid at a pressure of 15bar at rated engine load. This additional power resulted into 12% improvement in brake-specific fuel consumption (bsfc). The effects of the working fluid pressure were also investigated to maximize the additional power production. The pressure was limited to 15bar which was constrained by the exhaust gas temperature. However, higher pressure is possible for higher exhaust gas temperatures from higher capacity engines. This would yield more additional power with further improvements in bsfc. At 40% part load, the additional power developed was 3.4% which resulted in 3.3% reduction in bsfc.

Shekh Nisar Hossain; Saiful Bari

2013-01-01T23:59:59.000Z

203

Generating Resources Combined Cycle Combustion Turbine  

E-Print Network (OSTI)

turbine (s) Heat recovery steam generator (s) - HRSG with or without duct firing Natural gas supply11/17/2014 1 Generating Resources Combined Cycle Combustion Turbine Utility Scale Solar PV Steven doing recently around two key supply-side resource technologies 1. Combined Cycle Combustion Turbine

204

Permanent magnet steam generator  

SciTech Connect

This patent describes a system for magnetic heating of a fluid by motor rotation of a permanent magnet rotor adjacent an assembly of ferro-magnetic condensing plate and of copper heat absorber plate with protrusions through the ferro-magnetic condensing plate into an enclosure with the fluid therein and having fluid inlet and fluid outlet. The assembly has a first shaft and a second shaft coaxially spaced therefrom, a respective the motor connected to the outer end of each shaft, and a respective the permanent magnet rotor connected to the inner end of each shaft, adjacent a the heat absorber plate. The improvement described here comprises: the enclosure including a steel boiler with a first the ferro-magnetic condensing plate closing off a first end thereof and a second the ferro-magnetic condensing plate closing off a second end thereof, a the copper heat absorbing plate affixed on each ferro-magnetic plate; means, free of pockets, for promoting turbulent flow of the fluid with uniformly good heat transfer including the protrusion being a plurality of heat sinks, each heat sink of the plurality of heat sinks comprising an integral elongate member with an alternately large diameter and smaller diameter portions regularly spaced therealong. The elongate members through the first the ferro-magnetic condensing plate are coaxially aligned with the elongate members through the second the ferro-magnetic condensing plate.

Gerard, F.; Gerard, F.J.

1986-09-30T23:59:59.000Z

205

The concept of new-generation steam turbines for the coal power engineering of Russia. Part 2. Substantiating the long-term strength of the steam turbines high-temperature rotors  

Science Journals Connector (OSTI)

The possibility of constructing a K-660-30 two-cylinder steam turbine for ultrasupercritical steam conditions with reheating, the ... is substantiated. It is shown that this turbine can be constructed using the a...

A. G. Kostyuk; V. G. Gribin; A. D. Trukhnii

2011-01-01T23:59:59.000Z

206

Proceedings of design, repair, and refurbishment of steam turbines  

SciTech Connect

This book reports on the proceedings of design, repair and refurbishment of steam engines. Topics covered include: Advisor/Expert Systems for Steam Turbines; Moisture Effects on the Operating and Performance of Steam Turbines; Turbine Steam Path Development; Repair and Refurbishment of the Electric Generator Components; and Advanced Steam Turbine Designs.

Warnock, A.S. (Lehigh Univ., PA (United States))

1991-01-01T23:59:59.000Z

207

Feasibility of Steam Hydrogasification of Microalgae for Production of Synthetic Fuels  

E-Print Network (OSTI)

and is followed by steam methane reforming ( SMR). The finalReaction: Steam Methane Reforming: FischerTropsch Reaction:methane and steam in steam methane reforming generates the

Suemanotham, Amornrat

2014-01-01T23:59:59.000Z

208

Weight and power optimization of steam bottoming cycle for offshore oil and gas installations  

Science Journals Connector (OSTI)

Abstract Offshore oil and gas installations are mostly powered by simple cycle gas turbines. To increase the efficiency, a steam bottoming cycle could be added to the gas turbine. One of the keys to the implementation of combined cycles on offshore oil and gas installations is for the steam cycle to have a low weight-to-power ratio. In this work, a detailed combined cycle model and numerical optimization tools were used to develop designs with minimum weight-to-power ratio. Within the work, single-objective optimization was first used to determine the solution with minimum weight-to-power ratio, then multi-objective optimization was applied to identify the Pareto frontier of solutions with maximum power and minimum weight. The optimized solution had process variables leading to a lower weight of the heat recovery steam generator while allowing for a larger steam turbine and condenser to achieve a higher steam cycle power output than the reference cycle. For the multi-objective optimization, the designs on the Pareto front with a weight-to-power ratio lower than in the reference cycle showed a high heat recovery steam generator gas-side pressure drop and a low condenser pressure.

Lars O. Nord; Emanuele Martelli; Olav Bolland

2014-01-01T23:59:59.000Z

209

Power conversion unit studies for the next generation nuclear plant coupled to a high-temperature steam electrolysis facility  

E-Print Network (OSTI)

turbines and 4 compressors, a combined cycle with a Brayton top cycle and a Rankine bottoming cycle, and a reheated cycle with 3 stages of reheat were investigated. A high temperature steam electrolysis hydrogen production plant was coupled to the reactor...

Barner, Robert Buckner

2007-04-25T23:59:59.000Z

210

Superheated steam power plant with steam to steam reheater. [LMFBR  

SciTech Connect

A desuperheater is disposed in a steam supply line supplying superheated steam to a shell and tube reheater.

Silvestri, G.J.

1981-06-23T23:59:59.000Z

211

Boiler and steam generator corrosion: Fossil-fuel power plants. March 1977-December 1989 (A Bibliography from the NTIS data base). Report for March 1977-December 1989  

SciTech Connect

This bibliography contains citations concerning corrosion effects, mechanisms, detection, and inhibition in fossil fuel fired boilers. Fluidized bed combustors and coal gasification are included in the applications. Hot corrosion, thermal mechanical degradation, and intergranular oxidation corrosion studies performed on the water side and hot gas side of heat exchanger tubes and support structures are presented. Coatings and treatment of material to inhibit corrosion are discussed. Corrosion affecting nuclear powered steam generators is examined in a separate bibliography. (Contains 88 citations fully indexed and including a title list.)

Not Available

1990-05-01T23:59:59.000Z

212

Cylinder wall waste heat recovery from liquid-cooled internal combustion engines utilizing thermoelectric generators.  

E-Print Network (OSTI)

?? This report is a dissertation proposal that focuses on the energy balance within an internal combustion engine with a unique coolant-based waste heat recovery (more)

Armstead, John Randall

2012-01-01T23:59:59.000Z

213

Steam System Improvement: A Case Study  

E-Print Network (OSTI)

usage) where steam generation accounts for 85% of the total energy used. Therefore, optimization of the steam system has the biggest energy saving potential. This paper mill produces 40,000 pounds of steam at 600 psig and distributes it to the paper...

Leigh, N.; Venkatesan, V. V.

214

Analysis of Tube Failure Propagation due to Overheating in a Prototype LMFBR Steam-Generator Geometry by Using QUARK-LP Ver.4  

SciTech Connect

A computer code QUARK-LP had been developed to analyze a leak propagation due to overheating in steam generator (SG) heat-transfer tubes of a liquid-metal cooled fast breeder reactor (LMFBR). In Version 4, the reaction zone was divided into three parts; (1) the steam rich zone, (2) the mixing zone and (3) the sodium rich zone, depending on the location from the failed tub. This version includes RELAP5/MOD3 to analyze thermal hydraulics of water/steam in detail. In the analysis using this computer code it was confirmed that leak propagation due to overheating does not happen in the Japanese prototype LMFBRs' SG as was revealed in the analysis of another organization. From the viewpoint of probabilistic safety assessment (PSA) for RIR (risk informed regulation), the applicability of QUARK-LP Version 4 to the analysis of leak propagation due to overheating was examined on a hypothetically severe situation. In order to simulate hypothetical leak propagation due to overheating under the rated power operation, the cover gas pressure detectors were assumed to lose their function in the analysis thereby causing a secondary tube failure intentionally. A series of leak propagation from the initial leak to the secondary leak were simulated, and the possibility of a new tube failure was examined. Based on the analyses, it has been confirmed that this code is able to be applied to the analysis of the tube failure propagation phenomena in a real plant system, and a tertiary leak does not happen even when a secondary leak was introduced intentionally as an application example. (authors)

Yoshihisa, Shindo; Kazuo, Haga [Incorporated Administrative Agency Japan Nuclear Energy Safety Organization (JNES), 4-3-20 Toranomon, Minato-ku, Tokyo 105-0001 (Japan)

2004-07-01T23:59:59.000Z

215

Performance and emission characteristics of natural gas combined cycle power generation system with steam injection and oxyfuel combustion.  

E-Print Network (OSTI)

??Natural gas combined cycle power generation systems are gaining popularity due to their high power generation efficiency and reduced emission. In the present work, combined (more)

Varia, Nitin

2014-01-01T23:59:59.000Z

216

The New Generation of Uranium In Situ Recovery Facilities: Design Improvements Should Reduce Radiological Impacts Relative to First Generation Uranium Solution Mining Plants  

SciTech Connect

In the last few years, there has been a significant increase in the demand for Uranium as historical inventories have been consumed and new reactor orders are being placed. Numerous mineralized properties around the world are being evaluated for Uranium recovery and new mining / milling projects are being evaluated and developed. Ore bodies which are considered uneconomical to mine by conventional methods such as tunneling or open pits, can be candidates for non-conventional recovery techniques, involving considerably less capital expenditure. Technologies such as Uranium In Situ Leaching / In Situ Recovery (ISL / ISR - also referred to as 'solution mining'), have enabled commercial scale mining and milling of relatively small ore pockets of lower grade, and are expected to make a significant contribution to overall world wide uranium supplies over the next ten years. Commercial size solution mining production facilities have operated in the US since the mid 1970's. However, current designs are expected to result in less radiological wastes and emissions relative to these 'first' generation plants (which were designed, constructed and operated through the 1980's). These early designs typically used alkaline leach chemistries in situ including use of ammonium carbonate which resulted in groundwater restoration challenges, open to air recovery vessels and high temperature calcining systems for final product drying vs the 'zero emissions' vacuum dryers as typically used today. Improved containment, automation and instrumentation control and use of vacuum dryers in the design of current generation plants are expected to reduce production of secondary waste byproduct material, reduce Radon emissions and reduce potential for employee exposure to uranium concentrate aerosols at the back end of the milling process. In Situ Recovery in the U.S. typically involves the circulation of groundwater, fortified with oxidizing (gaseous oxygen e.g) and complexing agents (carbon dioxide, e.g) into an ore body, solubilizing the uranium in situ, and then pumping the solutions to the surface where they are fed to a processing plant ( mill). Processing involves ion exchange and may also include precipitation, drying or calcining and packaging operations depending on facility specifics. This paper presents an overview of the ISR process and the health physics monitoring programs developed at a number of commercial scale ISL / ISR Uranium recovery and production facilities as a result of the radiological character of these processes. Although many radiological aspects of the process are similar to that of conventional mills, conventional-type tailings as such are not generated. However, liquid and solid byproduct materials may be generated and impounded. The quantity and radiological character of these by products are related to facility specifics. Some special monitoring considerations are presented which are required due to the manner in which radon gas is evolved in the process and the unique aspects of controlling solution flow patterns underground. The radiological character of these processes are described using empirical data collected from many operating facilities. Additionally, the major aspects of the health physics and radiation protection programs that were developed at these first generation facilities are discussed and contrasted to circumstances of the current generation and state of the art of uranium ISR technologies and facilities. In summary: This paper has presented an overview of in situ Uranium recovery processes and associated major radiological aspects and monitoring considerations. Admittedly, the purpose was to present an overview of those special health physics considerations dictated by the in situ Uranium recovery technology, to point out similarities and differences to conventional mill programs and to contrast these alkaline leach facilities to modern day ISR designs. As evidenced by the large number of ISR projects currently under development in the U.S. and worldwide, non conventional Uranium recovery techniques

Brown, S.H. [CHP, SHB INC., Centennial, Colorado (United States)

2008-07-01T23:59:59.000Z

217

Steam Pressure Reduction, Opportunities, and Issues  

SciTech Connect

Steam pressure reduction has the potential to reduce fuel consumption for a minimum capital investment. When the pressure at the boiler is reduced, fuel and steam are saved as a result of changes in the high-pressure side of the steam system from the boiler through the condensate return system. In the boiler plant, losses from combustion, boiler blowdown, radiation, and steam venting from condensate receivers would be reduced by reducing steam pressure. Similarly, in the steam distribution system, losses from radiation, flash steam vented from condensate receivers, and component and steam trap leakage would also be reduced. There are potential problems associated with steam pressure reduction, however. These may include increased boiler carryover, boiler water circulation problems in watertube boilers, increased steam velocity in piping, loss of power in steam turbines, and issues with pressure reducing valves. This paper is based a Steam Technical Brief sponsored by the U.S. Department of Energy (DOE) Office of Energy Efficiency and Renewable Energy and Enbridge Gas Distribution, Inc. (5). An example illustrates the use of DOE BestPractices Steam System Assessment Tool to model changes in steam, fuel, electricity generation, and makeup water and to estimate resulting economic benefits.

Berry, Jan [ORNL; Griffin, Mr. Bob [Enbridge Gas Distribution, Inc.; Wright, Anthony L [ORNL

2006-01-01T23:59:59.000Z

218

The concept of new-generation steam turbines for coal power engineering of Russia. Part 1. Economic and technical substantiation of the concept  

Science Journals Connector (OSTI)

Development of the concept of designing modern steam turbines and its application to turbines for ultrasupercritical steam conditions are considered. The results from predraft designing of a turbine for ultras...

A. G. Kostyuk; V. G. Gribin; A. D. Trukhnii

2010-12-01T23:59:59.000Z

219

Reactivation of an idle lease to increase heavy oil recovery through application of conventional steam drive technology in a low dip slope and basin reservoir in the Midway-Sunset field, San Jaoquin Basin, California. Annual report, June 13, 1995--June 13, 1996  

SciTech Connect

This project reactivates ARCO`s idle Pru Fee lease in the Midway-Sunset field, California and conducts a continuous steamflood enhanced oil recovery demonstration aided by an integration of modern reservoir characterization and simulation methods. Cyclic steaming is being used to reestablish baseline production within the reservoir characterization phase of the project. During the demonstration phase scheduled to begin in January 1997, a continuous steamflood enhanced oil recovery will be initiated to test the incremental value of this method as an alternative to cyclic steaming. Other economically marginal Class III reservoirs having similar producibility problems will benefit from insight gained in this project. The objectives of the project are: (1) to return the shut-in portion of the reservoir to optimal commercial production; (2) to accurately describe the reservoir and recovery process; and (3) to convey the details of this activity to the domestic petroleum industry, especially to other producers in California, through an aggressive technology transfer program.

Deo, M.; Jenkins, C.; Sprinkel, D.; Swain, R.; Wydrinski, R.; Schamel, S.

1998-09-01T23:59:59.000Z

220

Sliding discharges in steam: effects of dielectric surface and hydrocarbon additives on hydrogen, oxygen and hydrogen peroxide generation  

Science Journals Connector (OSTI)

A sliding surface discharge was formed on a dielectric layer in steam at ~100C and atmospheric pressure. The material properties and the thickness of the dielectric layer were found to strongly affect the energy deposition into the plasma. With a 0.32cm thick dielectric the energy deposition was 1.4 times greater than with a 0.48cm thick dielectric, and with window glass it was 1.3 times greater than with Macor of the same thickness. Product gases were H2 (734%) and O2 (271%), and H2O2 accumulated in the condensed water up to 0.4gl?1. The energy yield for hydrogen was 1.20.1g H2kWh?1 and independent of the input power and thickness or material of the dielectric. However, for hydrogen peroxide the energy yield, which varied between 0.61 and 3.2g H2O2kWh?1, was found to depend strongly on the thickness and material of the dielectric. The addition of benzene to the steam increased the energy efficiency of hydrogen to 2.3gkWh?1, and decreased oxygen and hydrogen peroxide by about 3 and 6 times, respectively. It also caused the deposition of phenol and polymer-like layers on the dielectric. The results are explained on the basis of reactions of H and OH radicals adsorbed on the surface and/or in gas phase.

Muhammad Arif Malik; Karl H Schoenbach

2013-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "recovery steam generator" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

Tsiklauri-Durst combined cycle (T-D Cycle{trademark}) application for nuclear and fossil-fueled power generating plants  

SciTech Connect

The Tsiklauri-Durst combined cycle is a combination of the best attributes of both nuclear power and combined cycle gas power plants. A technology patented in 1994 by Battelle Memorial Institute offers a synergistic approach to power generation. A typical combined cycle is defined as the combination of gas turbine Brayton Cycle, topping steam turbine Rankine Cycle. Exhaust from the gas turbine is used in heat recovery steam generators to produce steam for a steam turbine. In a standard combined cycle gas turbine-steam turbine application, the gas turbine generates about 65 to 70 percent of system power. The thermal efficiency for such an installation is typically about 45 to 50 percent. A T-D combined cycle takes a new, creative approach to combined cycle design by directly mixing high enthalpy steam from the heat recovery steam generator, involving the steam generator at more than one pressure. Direct mixing of superheated and saturated steam eliminates the requirement for a large heat exchanger, making plant modification simple and economical.

Tsiklauri, B.; Korolev, V.N.; Durst, B.M.; Shen, P.K.

1998-07-01T23:59:59.000Z

222

Flash Steam Power Plant | Open Energy Information  

Open Energy Info (EERE)

Flash Steam Power Plant Flash Steam Power Plant (Redirected from Flash Steam Power Plants) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Flash Steam Power Plants General List of Flash Steam Plants Flash Steam power plant process diagram - DOE EERE 2012 Flash steam plants are the most common type of geothermal power generation plants in operation in the world today. Fluid at temperatures greater than 360°F (182°C) is pumped under high pressure into a tank at the surface held at a much lower pressure, causing some of the fluid to rapidly vaporize, or "flash." The vapor then drives a turbine, which drives a generator. If any liquid remains in the tank, it can be flashed again in a second tank to extract even more energy.[1] Facility Name Owner Capacity (MW) Facility

223

Achieve Steam System Excellence- Steam Overview  

Energy.gov (U.S. Department of Energy (DOE))

This fact sheet describes a steam systems approach to help companies operate and maintain their industrial steam plants and thermal manufacturing processes more efficiently.

224

Thermally-enhanced oil recovery method and apparatus  

DOE Patents (OSTI)

A thermally-enhanced oil recovery method and apparatus for exploiting deep well reservoirs utilizes electric downhole steam generators to provide supplemental heat to generate high quality steam from hot pressurized water which is heated at the surface. A downhole electric heater placed within a well bore for local heating of the pressurized liquid water into steam is powered by electricity from the above-ground gas turbine-driven electric generators fueled by any clean fuel such as natural gas, distillate or some crude oils, or may come from the field being stimulated. Heat recovered from the turbine exhaust is used to provide the hot pressurized water. Electrical power may be cogenerated and sold to an electric utility to provide immediate cash flow and improved economics. During the cogeneration period (no electrical power to some or all of the downhole units), the oil field can continue to be stimulated by injecting hot pressurized water, which will flash into lower quality steam at reservoir conditions. The heater includes electrical heating elements supplied with three-phase alternating current or direct current. The injection fluid flows through the heater elements to generate high quality steam to exit at the bottom of the heater assembly into the reservoir. The injection tube is closed at the bottom and has radial orifices for expanding the injection fluid to reservoir pressure.

Stahl, Charles R. (Scotia, NY); Gibson, Michael A. (Houston, TX); Knudsen, Christian W. (Houston, TX)

1987-01-01T23:59:59.000Z

225

HP Steam Trap Monitoring  

E-Print Network (OSTI)

Consumption Peak Demand Mgt Peak Demand Mgt Similar Weather Day Analysis Metering and Verafication Steam Meter Monitoring ? Peak Demand Management ? Steam Consumption Management ? Steam Bill Verification ? Measurement and Verification ... Consumption Peak Demand Mgt Peak Demand Mgt Similar Weather Day Analysis Metering and Verafication Steam Meter Monitoring ? Peak Demand Management ? Steam Consumption Management ? Steam Bill Verification ? Measurement and Verification ...

Pascone, S.

2011-01-01T23:59:59.000Z

226

Energy Savings Through Steam Trap Management  

E-Print Network (OSTI)

Energy Savings through Steam Trap Management Chris Gibbs, Account Manager, Armstrong International, Inc., Three Rivers, MI ESL-IE-08-05-08 Proceedings from theThirtieth Industrial Energy Technology Conference...-based steam trap management application developed by Armstrong International. The application calculates steam loss, fuel loss, dollar loss and CO 2 emission generation. The database allows for trend analysis, automatic energy report generation...

Gibbs, C.

2008-01-01T23:59:59.000Z

227

Status of Segmented Element Thermoelectric Generator for Vehicle Waste Heat Recovery  

Energy.gov (U.S. Department of Energy (DOE))

Discusses progress of thermoelectric generator development at BSST and assessment of potential to enter commercial operation in vehicles

228

Recovery of strontium activity from a strontium-82/rubidium-82 generator  

DOE Patents (OSTI)

Strontium-82 is recovered from spent strontium-82/rubidium-82 generators to provide a source of strontium-82 for additional strontium-82/rubidium-82 generators. The process involves stripping of the strontium-82 from used strontium-82/rubidium-82 generators followed by purification of the strontium-82 material to remove additional metal contaminants to desired levels.

Taylor, Wayne A. (Los Alamos, NM); Phillips, Dennis R. (Los Alamos, NM); Sosnowski, Kenneth M. (Freehold Township, NJ)

1999-10-12T23:59:59.000Z

229

Thermal Recovery Methods  

SciTech Connect

Thermal Recovery Methods describes the basic concepts of thermal recovery and explains the injection patterns used to exploit reservoir conditions. Basic reservoir engineering is reviewed with an emphasis on changes in flow characteristics caused by temperature. The authors discuss an energy balance for steam and combustion drive, and they explain in situ reactions. Heat loss, combustion drive, and steam displacement also are examined in detail, as well as cyclic steam injection, downhole ignition, well heating, and low-temperature oxidation. Contents: Thermal processes; Formation and reservoir evaluations; Well patterns and spacing; Flow and process equations; Laboratory simulation of thermal recovery; Heat loss and transmission; Displacement and production; Equipment; Basic data for field selection; Laboratory evaluation of combustion characteristics; Thermal properties of reservoirs and fluids.

White, P.D.; Moss, J.T.

1983-01-01T23:59:59.000Z

230

EPRI steam turbine and generator NDE, life assessment, and maintenance workshop. [Electric Power Research Institute (EPRI), NonDestructive Evaluation (NDE)  

SciTech Connect

On July 16--19, 1991, the EPRI NDE Center hosted the second EPRI Steam Turbine and Generator NDE, Life Assessment and Maintenance Workshop. This workshop was co-sponsored by the Nuclear Power and the Generation and Storage Divisions of EPRI. Attendees represented all sectors of the industry including utilities, equipment manufacturers, forging suppliers, service organizations, government organizations, insurancecarriers, and consultants from the United States and abroad. Domestic utility presence was again strong, with 105 representatives from 44 utilities in attendance. Australia, Canada, England, Finland, France, Germany, Italy, Japan, Korea, New Zealand, Spain, Sweden and Switzerland were represented in the international contingent. A key and integral part of the workshop was a vendor equipment fair, in which some 23 organizations displayed and demonstrated equipment and services that they offer. Formal presentation of 53 technical papers made up the technical portion of the agenda, which also included two breakout discussion sessions on topical subjects. To provide optimum opportunity for participants to hear all presentations on closely related topics, the sessions were set such that a NDE session ran parallel to the life assessment session. The first NDE session included turbine related topics while the first life assessment session addressed generator issues. The last sessions of the workshop were just reversed with turbine topics being addressed in the life assessment session while generator issues were presented in the NDE session. Presentations on maintenance topics and on monitoring and diagnostics topics were also presented in parallel sessions. These proceedings contain the texts of the papers presented at the workshop. Individual papers in indexed separately.

Nottingham, L.D.; Sabourin, P.F.

1992-10-01T23:59:59.000Z

231

Steam System Survey Guide  

Energy.gov (U.S. Department of Energy (DOE))

This guide provides technical information for steam system operational personnel and plant energy managers on some of the major opportunities available to improve the energy efficiency and productivity of industrial steam systems. The guide covers five main areas of investigation: (1) profiling a steam system, (2) identifying steam properties for the steam system, (3) improving boiler operations, (4) improving resource utilization in the steam system, and (5) investigating energy losses in the steam distribution system.

232

Air-cooled vacuum steam condenser  

SciTech Connect

This patent describes a steam powered system. It comprises: a turbine for converting steam energy into mechanical energy upon expansion of steam therein, a boiler for generating steam to be fed to the turbine, and a conduit arrangement coupling the boiler to the turbine and then recoupling the turbine exhaust to the boiler through steam condensing mechanisms. The condensing mechanisms including: a plurality of finned tubes through which the expanded exhaust steam flows and is condensed; a plurality of bundle from headers at the lower ends of the condensing tubes for receiving exhaust steam from the turbine; a plurality of bundle divided rear headers, one for each tube row in the bundle, at the higher ends of the condensing tubes for receiving non-condensible gases; and means in the rear and last headers to remove non-condensible gasses from the rear headers along their full length.

Larinoff, M.W.

1990-03-06T23:59:59.000Z

233

Case Study- Steam System Improvements at Dupont Automotive Marshall Laboratory  

E-Print Network (OSTI)

and implement small scale cogeneration. These recommendations included reducing the medium pressure steam distribution to low pressure, eliminating the medium pressure to low pressure reducing stations, installing a back pressure steam turbine generator...

Larkin, A.

234

Thomas Reddinger Director, Steam  

E-Print Network (OSTI)

Thomas Reddinger Director, Steam Operations Steven Richards Assistant Manager of Maintenance Supervisor (Distribution) Deborah Moorhead Office Coordinator III Martin Bower Steam Plant Operator Richard Redfield Steam Plant Operator SU Steam Station/Chilled Water Plant Bohdan Sawa Steam Plant Operator Robert

McConnell, Terry

235

Flash Steam Power Plant | Open Energy Information  

Open Energy Info (EERE)

Flash Steam Power Plant Flash Steam Power Plant Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Flash Steam Power Plants General List of Flash Steam Plants Flash Steam power plant process diagram - DOE EERE 2012 Flash steam plants are the most common type of geothermal power generation plants in operation in the world today. Fluid at temperatures greater than 360°F (182°C) is pumped under high pressure into a tank at the surface held at a much lower pressure, causing some of the fluid to rapidly vaporize, or "flash." The vapor then drives a turbine, which drives a generator. If any liquid remains in the tank, it can be flashed again in a second tank to extract even more energy.[1] Facility Name Owner Capacity (MW) Facility Type Commercial Online Date Geothermal Area

236

Characterization of the oxide formed in the presence of poly acrylic acid over the steam generator structural materials of nuclear power plants  

Science Journals Connector (OSTI)

On-line addition of polymeric dispersants, such as poly acrylic acid (PAA), to the steam generator (SG) results in the formation of a better protective inner oxide layer that reduces subsequent corrosion of structural materials. Its dispersive action inhibits the growth of a secondary oxide layer thereby facilitating their easy removal. This paper discusses the effect of PAA on the nature of oxides formed over the surfaces of SG. In the case of carbon steel, the inner oxide layer (magnetite) formed in the presence of PAA was protective. Electrochemical studies showed a minimum concentration of 350ppb of PAA was found to be optimum. On the monel surface, in the absence of PAA, nickel ferrite was formed while in the presence of PAA, the oxide formed was a mixture of oxides of copper and nickel. A concentration of 700ppb of PAA was found to be optimum for monel. In the case of incoloy, the effect of PAA was not discernible except for the size and morphology of the crystallites formed.

Akhilesh C. Joshi; Appadurai L. Rufus; Sumathi Suresh; Palogi Chandramohan; Srinivasan Rangarajan; Sankaralingam Velmurugan

2013-01-01T23:59:59.000Z

237

Electrical Cost Reduction Via Steam Turbine Cogeneration  

E-Print Network (OSTI)

ELECTRICAL COST REDUCTION VIA STEAM TURBINE COGENERATION LYNN B. DI TULLIO, P.E. Project Engineer Ewing Power Systems, Inc. South Deerfield, Mass. ABSTRACT Steam turbine cogeneration is a well established technology which is widely used... mature technology. Steam turbines and engines have been used by industry to cogen erate power since before there were electric utilities. While the technology for turbines, generators and controls has continued to develop there is very little about...

Ewing, T. S.; Di Tullio, L. B.

238

E-Print Network 3.0 - advanced steam systems Sample Search Results  

NLE Websites -- All DOE Office Websites (Extended Search)

Conference Summary: recovery. As stable steam supply to the paper mill and the district heating system needs to be assured... conditions. In second instance, the control...

239

dist_steam.pdf  

U.S. Energy Information Administration (EIA) Indexed Site

District Steam Usage Form District Steam Usage Form 1999 Commercial Buildings Energy Consumption Survey (CBECS) 1. Timely submission of this report is mandatory under Public Law 93-275, as amended. 2. This completed questionnaire is due by 3. Data reported on this questionnaire are for the entire building identified in the label to the right. 4. Data may be submitted directly on this questionnaire or in any other format, such as a computer-generated listing, which provides the same i nformation and is conve nient for y our company. a. You may submit a single report for the entire building, or if it i s easier, a separate report for each of several accounts in the building. These will then be aggregated by the survey contractor. b. If you are concerned about your individual account information, you may c

240

On-Line Monitoring and Diagnostics of the Integrity of Nuclear Plant Steam Generators and Heat Exchangers  

SciTech Connect

Integrity monitoring and flaw diagnostics of flat beams and tubular structures was investigated in this research task using guided acoustic signals. A piezo-sensor suite was deployed to activate and collect Lamb wave signals that propagate along metallic specimens. The dispersion curves of Lamb waves along plate and tubular structures are generated through numerical analysis. Several advanced techniques were explored to extract representative features from acoustic time series. Among them, the Hilbert-Huang transform (HHT) is a recently developed technique for the analysis of non-linear and transient signals. A moving window method was introduced to generate the local peak characters from acoustic time series, and a zooming window technique was developed to localize the structural flaws. The time-frequency analysis and pattern recognition techniques were combined for classifying structural defects in brass tubes. Several types of flaws in brass tubes were tested, both in the air and in water. The techniques also proved to be effective under background/process noise. A detailed theoretical analysis of Lamb wave propagation was performed and simulations were carried out using the finite element software system ABAQUS. This analytical study confirmed the behavior of the acoustic signals acquired from the experimental studies. The report presents the background the analysis of acoustic signals acquired from piezo-electric transducers for structural defect monitoring. A comparison of the use of time-frequency techniques, including the Hilbert-Huang transform, is presented. The report presents the theoretical study of Lamb wave propagation in flat beams and tubular structures, and the need for mode separation in order to effectively perform defect diagnosis. The results of an extensive experimental study of detection, location, and isolation of structural defects in flat aluminum beams and brass tubes are presented. The results of this research show the feasibility of on-line monitoring of small structural flaws by the use of transient and nonlinear acoustic signal analysis, and its implementation by the proper design of a piezo-electric transducer suite.

Belle R. Upadhyaya; J. Wesley Hines

2004-09-27T23:59:59.000Z

Note: This page contains sample records for the topic "recovery steam generator" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

EA-1769: Battleground Energy Recovery Project, Harris County, Texas |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

69: Battleground Energy Recovery Project, Harris County, Texas 69: Battleground Energy Recovery Project, Harris County, Texas EA-1769: Battleground Energy Recovery Project, Harris County, Texas Summary This EA evaluates the environmental impacts of a proposal to provide $1.94 million in cost-shared funding to the Houston Advanced Research Center for the Battleground Energy Recovery Project, which would produce 8 megawatts of electricity from high pressure steam generated by capturing heat that is currently lost at the Clean Harbors Deer Park facility. The proposed project was selected by the DOE's Office of Energy Efficiency and Renewable Energy to advance research and demonstration of energy efficiency and renewable energy technologies. Public Comment Opportunities No public comment opportunities available at this time.

242

Recovery Act: Brea California Combined Cycle Electric Generating Plant Fueled by Waste Landfill Gas  

SciTech Connect

The primary objective of the Project was to maximize the productive use of the substantial quantities of waste landfill gas generated and collected at the Olinda Landfill near Brea, California. An extensive analysis was conducted and it was determined that utilization of the waste gas for power generation in a combustion turbine combined cycle facility was the highest and best use. The resulting Project reflected a cost effective balance of the following specific sub-objectives: Meeting the environmental and regulatory requirements, particularly the compliance obligations imposed on the landfill to collect, process and destroy landfill gas Utilizing proven and reliable technology and equipment Maximizing electrical efficiency Maximizing electric generating capacity, consistent with the anticipated quantities of landfill gas generated and collected at the Olinda Landfill Maximizing equipment uptime Minimizing water consumption Minimizing post-combustion emissions The Project produced and will produce a myriad of beneficial impacts. o The Project created 360 FTE construction and manufacturing jobs and 15 FTE permanent jobs associated with the operation and maintenance of the plant and equipment. o By combining state-of-the-art gas clean up systems with post combustion emissions control systems, the Project established new national standards for best available control technology (BACT). o The Project will annually produce 280,320 MWhs of clean energy o By destroying the methane in the landfill gas, the Project will generate CO2 equivalent reductions of 164,938 tons annually. The completed facility produces 27.4 MWnet and operates 24 hours a day, seven days a week.

Galowitz, Stephen

2012-12-31T23:59:59.000Z

243

Effect of steam injection location on syngas obtained from an airsteam gasifier  

Science Journals Connector (OSTI)

Abstract For a fluidized-bed gasifier, reaction conditions vary along the height of the reactor. Hence, the steam injection location may have a considerable effect on the syngas quality. The objective of this study was to investigate the effects of steam injection location and steam-to-biomass ratio (SBR) on the syngas quality generated from an airsteam gasification of switchgrass in a 25kg/h autothermal fluidized-bed gasifier. Steam injection locations of 51, 152, and 254mm above the distributor plate and \\{SBRs\\} of 0.1, 0.2, and 0.3 were selected. Results showed that the syngas H2 and CO yields were significantly influenced by the steam injection location (pgasifier efficiencies (cold gas efficiency of 67%, hot gas efficiency of 72%, and carbon conversion efficiency of 96%) were at the steam injection location of 254mm and SBR of 0.2.

Ashokkumar M. Sharma; Ajay Kumar; Raymond L. Huhnke

2014-01-01T23:59:59.000Z

244

Evaluation of steam path audits  

SciTech Connect

Tri-State Generation and Transmission association is the operating agent for the 1350 megawatt Craig Generating Station, located in northwestern Colorado. Tri-State has recently incorporated turbine steam path audits into their aggressive performance improvement program. The intent of the audits are to quantify and attain the most cost effective increase in turbine performance as a result of a major outage. Valuable information about performance losses in the turbine has been obtained from steam path audits conducted on the three Craig Units. However, accurate audit results often depend on the quality of measurements and the experience of the auditor. Without a second method to verify the results of a steam path audit, repairs might be performed on a non-cost effective basis, or significant performance degradations might be overlooked. In addition, an inaccurate audit may lead to erroneous expectations for performance improvements resulting from the maintenance performed during the outage.

Caudill, M.B. [Tri-State Generation and Transmission Association, Inc., Montrose, CO (United States); Griebenow, R.D. [SAIC, Huntersville, NC (United States)

1995-06-01T23:59:59.000Z

245

Resin Liner Recovery and Over-Packing at Ontario Power Generation's Western Waste Management Facility  

SciTech Connect

Spent resins generated from Ontario Power Generation (OPG)'s and Bruce Power's Candu reactor operations are stored at OPG's Western Waste Management Facility in Kincardine, Ontario, Canada. The older resins are contained in 3 m{sup 3} epoxy-coated cylindrical carbon steel containers known as resin liners. The liners are stored in a stacked configuration within cylindrical in-ground containers. Previous studies indicated evidence of unacceptable liner wall corrosion and the potential for eventual leakage of resin from the liners. Based on this, OPG elected to re-package the majority of the resin liners into stainless steel over-packs. A contract for this work was awarded to a project team consisting of Duratek of Canada, Kinectrics, Inc. and E.S. Fox. This paper provides an overall summary of project activities focusing on the effectiveness of the equipment utilized and the soundness of the developed programs, plans and procedures. Specific information is provided on key aspects of the project and the overall achievement of project goals. (authors)

Pearson, S.D. [EnergySolutions, Columbia, SC (Colombia); Husain, A. [Kinectrics, Toronto, Ontario (Canada)

2008-07-01T23:59:59.000Z

246

Best Management Practice: Boiler/Steam Systems | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Best Management Practice: Boiler/Steam Systems Best Management Practice: Boiler/Steam Systems Best Management Practice: Boiler/Steam Systems October 7, 2013 - 3:17pm Addthis Boilers and steam generators are commonly used in large heating systems, institutional kitchens, or in facilities where large amounts of process steam are used. This equipment consumes varying amounts of water depending on system size, the amount of steam used, and the amount of condensate returned. Operation and Maintenance Options To maintain water efficiency in operations and maintenance, Federal agencies should: Develop and implement a routine inspection and maintenance program to check steam traps and steam lines for leaks. Repair leaks and replace faulty steam traps as soon as possible. Develop and implement a boiler tuning program to be completed a minimum of

247

Steam systems in industry: Energy use and energy efficiency improvement potentials  

SciTech Connect

Steam systems are a part of almost every major industrial process today. Thirty-seven percent of the fossil fuel burned in US industry is burned to produce steam. In this paper we will establish baseline energy consumption for steam systems. Based on a detailed analysis of boiler energy use we estimate current energy use in boilers in U.S. industry at 6.1 Quads (6.4 EJ), emitting almost 66 MtC in CO{sub 2} emissions. We will discuss fuels used and boiler size distribution. We also describe potential savings measures, and estimate the economic energy savings potential in U.S. industry (i.e. having payback period of 3 years or less). We estimate the nationwide economic potential, based on the evaluation of 16 individual measures in steam generation and distribution. The analysis excludes the efficient use of steam and increased heat recovery. Based on the analysis we estimate the economic potential at 18-20% of total boiler energy use, resulting in energy savings approximately 1120-1190 TBtu ( 1180-1260 PJ). This results in a reduction of CO{sub 2} emissions equivalent to 12-13 MtC.

Einstein, Dan; Worrell, Ernst; Khrushch, Marta

2001-07-22T23:59:59.000Z

248

Best Management Practice #8: Boiler and Steam Systems  

Energy.gov (U.S. Department of Energy (DOE))

Boilers and steam generators are commonly used in large heating systems, institutional kitchens, or in facilities where large amounts of process steam are used. This equipment consumes varying amounts of water depending on system size, the amount of steam used, and the amount of condensate returned.

249

Methane-steam reforming  

SciTech Connect

A discussion covers steam reforming developments to the 1950's; the kinetics of methane-steam reforming, of the water-gas shift during methane-steam reforming, and of the carbon formation during methane-steam reforming, as approached by Akers and Camp.

Van Hook, J.P.

1980-01-01T23:59:59.000Z

250

RESEARCH ARTICLE OPEN ACCESS Optimization of Boiler Blowdown and Blowdown Heat Recovery in Textile Sector  

E-Print Network (OSTI)

Boilers are widely used in most of the processing industries like textile, for the heating applications. Surat is the one of the largest textile processing area in India. In textile industries coal is mainly used for the steam generation. In a textile industry normally a 4 % of heat energy is wasted through blowdown. In the study conducted in steam boilers in textile industries in surat location, 1.5 % of coal of total coal consumption is wasted in an industry by improper blowdwon. This thesis work aims to prevent the wastage in the coal use by optimizing the blowdown in the boiler and maximizing the recovery of heat wasting through blowdown.

Sunudas T; M G Prince

251

Thermoelectric generators incorporating phase-change materials for waste heat recovery from engine exhaust  

DOE Patents (OSTI)

Thermoelectric devices, intended for placement in the exhaust of a hydrocarbon fuelled combustion device and particularly suited for use in the exhaust gas stream of an internal combustion engine propelling a vehicle, are described. Exhaust gas passing through the device is in thermal communication with one side of a thermoelectric module while the other side of the thermoelectric module is in thermal communication with a lower temperature environment. The heat extracted from the exhaust gasses is converted to electrical energy by the thermoelectric module. The performance of the generator is enhanced by thermally coupling the hot and cold junctions of the thermoelectric modules to phase-change materials which transform at a temperature compatible with the preferred operating temperatures of the thermoelectric modules. In a second embodiment, a plurality of thermoelectric modules, each with a preferred operating temperature and each with a uniquely-matched phase-change material may be used to compensate for the progressive lowering of the exhaust gas temperature as it traverses the length of the exhaust pipe.

Meisner, Gregory P; Yang, Jihui

2014-02-11T23:59:59.000Z

252

Combined heat recovery and make-up water heating system  

SciTech Connect

A cogeneration plant is described comprising in combination: a first stage source of hot gas; a duct having an inlet for receiving the hot gas and an outlet stack open to the atmosphere; a second stage recovery heat steam generator including an evaporator situated in the duct, and economizer in the duct downstream of the evaporator, and steam drum fluidly connected to the evaporator and the economizer; feedwater supply means including a deaerator heater and feedwater pump for supplying deaerated feedwater to the steam drum through the economizer; makeup water supply means including a makeup pump for delivering makeup water to the deaerator heater; means fluidly connected to the steam drum for supplying auxiliary steam to the deaerator heater; and heat exchanger means located between the deaerator and the economizer, for transferring heat from the feedwater to the makeup water, thereby increasing the temperature of the makeup water delivered to the deaerator and decreasing the temperature of the feedwater delivered to the economizer, without fluid exchange.

Kim, S.Y.

1988-05-24T23:59:59.000Z

253

Optimization and the effect of steam turbine outlet quality on the output power of a combined cycle power plant  

Science Journals Connector (OSTI)

Abstract A narrow path exists to a sustainable solution which passes through careful steps of efficiency improvement (resource management) and provides environmental friendly energies. Thermal power plants are more common in many power production sites around the world. Therefore, in this current research study a comprehensive thermodynamic modeling of a combined cycle power plant with dual pressure heat recovery steam generator is presented. Since the steam turbine outlet quality is a restrictive parameter, optimization of three cases with different steam quality are conducted and discussed. In other hand, energy and exergy analysis of each components for these three different cases estimated and compared. Obtained results show that it is really important to keep the quality of the vapor at turbine outlet constant in 88% for the results to be more realistic and also optimization and data are more technically feasible and applicable.

A. Ganjehkaviri; M.N. Mohd Jaafar; S.E. Hosseini

2015-01-01T23:59:59.000Z

254

Steam System Optimization : A Case Study  

E-Print Network (OSTI)

The steam system optimization (generation, distribution, use and condensate return) offers a large opportunity for action to comply with the new levels of energy efficiency standards. Superior design and improved maintenance practices are the two...

Iordanova, N.; Venkatesan, V. V.; Calogero, M.

255

Reactivation of an Idle Lease to Increase Heavy Oil Recovery Through Application of Conventional Steam Drive Technology in a Low Dip Slope and Basin Reservoir in the Midway-Sunset Field, San Jaoquin Basin, California  

SciTech Connect

A previously idle portion of the Midway-Sunset field, the ARCO Western Energy Pru Fee property, is being brought back into commercial production through tight integration of geologic characterization, geostatistical modeling, reservoir simulation, and petroleum engineering. This property, shut-in over a decade ago as economically marginal using conventional cyclic steaming methods, has a 200-300 foot thick oil column in the Monarch Sand. However, the sand lacks effective steam barriers and has a thick water-saturation zone above the oil-water contact. These factors require an innovative approach to steam flood production design that will balance optimal total oil production against economically viable steam-oil ratios and production rates. The methods used in the Class III demonstration are accessible to most operators in the Midway-Sunset field and could be used to revitalize properties with declining production of heavy oils throughout the region.

Steven Schamel

1998-03-20T23:59:59.000Z

256

Reactivation of an Idle Lease to Increase Heavy Oil Recovery Through Application of Conventional Steam Drive Technology in a Low Dip Slope and Basin Reservoir in the Midway-Sunset Field, San Jaoquin Basin, California  

SciTech Connect

A previously idle portion of the Midway-Sunset field, the ARCO Western Energy Pru Fee property, is being brought back into commercial production through tight integration of geologic characterization, geostatistical modeling, reservoir simulation, and petroleum engineering. This property, shut-in over a decade ago as economically marginal using conventional cyclic steaming methods, has a 200-300 foot thick oil column in the Monarch Sand. However, the sand lacks effective steam barriers and has a thick water-saturation zone above the oil-water contact. These factors require an innovative approach to steam flood production design that will balance optimal total oil production against economically viable steam-oil ratios and production rates. The methods used in the Class III demonstration are accessible to most operators in the Midway-Sunset field and could be used to revitalize properties with declining production of heavy oils throughout the region.

Steven Schamel

1998-08-31T23:59:59.000Z

257

Steam Systems | Department of Energy  

Office of Environmental Management (EM)

Reduction: Opportunities and Issues How to Calculate the True Cost of Steam Industrial Heat Pumps for Steam and Fuel Savings Industrial Steam System Heat-Transfer Solutions...

258

Steam atmosphere drying exhaust steam recompression system  

DOE Patents (OSTI)

This invention relates to a heated steam atmosphere drying system comprising dryer in combination with an exhaust recompression system which is extremely energy efficient and eliminates dangers known to air dryers. The system uses superheated steam as the drying medium, which recirculates through the system where its heat of evaporation and heat of compression is recovered, thereby providing a constant source of heat to the drying chamber. The dryer has inlets whereby feedstock and superheated steam are fed therein. High heat transfer and drying rates are achieved by intimate contact of the superheated steam with the particles being dried. The dryer comprises a vessel which enables the feedstock and steam to enter and recirculate together. When the feedstock becomes dry it will exit the dryer with the steam and become separated from the steam through the use of a curvilinear louver separator (CLS). The CLS enables removal of fine and ultrafine particles from the dryer. Water vapor separated from the particles in the CLS as superheated steam, may then be recovered and recirculated as steam through the use of a compressor to either directly or indirectly heat the dryer, and a heat exchanger or a heater to directly provide heat to the dryer. This system not only provides a very efficient heat transfer system but results in a minimum carry-over of ultrafine particles thereby eliminating any explosive hazard. 17 figures.

Becker, F.E.; Smolensky, L.A.; Doyle, E.F.; DiBella, F.A.

1994-03-08T23:59:59.000Z

259

Energy recovery from municipal solid waste and sewage sludge using multi-solid fluidized bed combustion technology  

SciTech Connect

This study was initiated to investigate the recovery of energy from municipal solid waste (MSW) and domestic sewage sludge (DSS) simultaneously by using Battelle's multi-solid fluidized-bed combustion (MS-FBC) technology. The concept was to recover energy as high and low pressure steam, simultaneously. High pressure steam would be generated from flue gas using a conventional tubular boiler. Low pressure steam would be generated by direct contact drying of DSS (as 4% solids) with hot sand in a fluidized bed that is an integral part of the MS-FBC process. It was proposed that high pressure steam could be used for district heating or electricity generation. The low pressure steam could be used for close proximity building heat. Alternatively, low pressure steam could be used to heat wastewater in a sewage treatment plant to enhance sedimentation and biological activity that would provide a captive market for this part of the recovered energy. The direct contact drying or tubeless steam generation eliminates fouling problems that are common during heat exchange with DSS. The MS-FBC process was originally developed for coal and was chosen for this investigation because its combustion rate is about three times that of conventional fluidized beds and it was projected to have the flexibility needed for accomplishing tubeless steam generation. The results of the investigation show that the MS-FBC process concept for the co-utilization of MSW and DSS is technically feasible and that the thermal efficiency of the process is 76 to 82% based on experiments conducted in a 70 to 85 lb/h pilot plant and calculations on three conceptual cases.

Not Available

1981-07-01T23:59:59.000Z

260

The 700°C steam turbine power plant ?? status of development and outlook  

Science Journals Connector (OSTI)

This paper appraises the current development status of the 700°C steam power plant under consideration of process optimisation as well as design aspects of the steam turbine and steam generator. The results for a compact arrangement of the steam turbine and steam generator are also presented. Based on a cycle analysis, a net efficiency between 49.3% and 51.4% can be achieved with the 700°C steam power plant ?? depending on the implementation and based on an inland plant site. No competing development activities for the 700°C steam power plant are known from the USA or Japan.

Heiner Edelmann; Martin Effert; Kai Wieghardt; Holger Kirchner

2007-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "recovery steam generator" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

Use Feedwater Economizers for Waste Heat Recovery  

SciTech Connect

This revised ITP tip sheet on feedwater economizers for waste heat recovery provides how-to advice for improving industrial steam systems using low-cost, proven practices and technologies.

Not Available

2006-01-01T23:59:59.000Z

262

Steam Digest 2001  

SciTech Connect

Steam Digest 2001 chronicles BestPractices Program's contributions to the industrial trade press for 2001, and presents articles that cover technical, financial and managerial aspects of steam optimization.

Not Available

2002-01-01T23:59:59.000Z

263

Sequential steam; An engineered cyclic steaming method  

SciTech Connect

Cyclic steam injection has been the most widely used EOR method in areas of the Potter sand in the Midway-Sunset field, Kern County, CA. This paper discusses the field pilot and the statistical and theoretical studies leading to the design of a sequential steaming process,plus the implementation of this process on three leases.

Jones, J. (Santa Fe Energy Resources Inc., Bakersfield, CA (US)); Cawthon, J. (Groundwater Resources Inc. (US))

1990-07-01T23:59:59.000Z

264

Modeling, Estimation, and Control of Waste Heat Recovery Systems  

E-Print Network (OSTI)

Expander Models The components that generate power from steam expansion can be classified into two categories: turbo-

Luong, David

2013-01-01T23:59:59.000Z

265

Reactivation of an idle lease to increase heavy oil recovery through application of conventional steam drive technology in a low dip slope and basin reservoir in the Midway-Sunset field, San Joaquin Basin, California. Quarterly report, June 14--September 30, 1995  

SciTech Connect

This project will reactivate ARCO`s idle Pru Fee lease in the Midway-Sunset field, California and conduct a continuous steamflood enhanced oil recovery demonstration aided by an integration of modern reservoir characterization and simulation methods. Cyclic steaming will be used to reestablish baseline production within the reservoir characterization phase of the project. During the demonstration phase, a continuous steamflood enhanced oil recover will be initiated to test the incremental value of this method as an alternative to cyclic steaming. Other economically marginal Class 3 reservoirs having similar producibility problems will benefit from insight gained in this project. The objectives of the project are: (1) to return the shut-in portion of the reservoir to commercial production; (2) to accurately describe the reservoir and recovery process; and (3) to convey the details of this activity to the domestic petroleum industry, especially to other producers in California, through an aggressive technology transfer program. A summary of technical progress discusses the literature compilation, assembly of digitized log suites, development of a stratigraphic framework, installation of lease production facilities, return wells to production, drill producer and observation wells, and reservoir characterization.

Schamel, S.

1995-12-19T23:59:59.000Z

266

Reactivation of an idle lease to increase heavy oil recovery through application of conventional steam drive technology in a low dip slope and basin reservoir in the Midway-Sunset field, San Joaquin Basin, California. [Quarterly report], June 14, 1995--September 30, 1995  

SciTech Connect

This project will reactivate ARCO`s idle Pru Fee lease in the Midway-Sunset field, California and conduct a continuous steamflood enhanced oil recovery demonstration aided by an integration of modern reservoir characterization and simulation methods. Cyclic steaming will be used to re-establish baseline production within the reservoir characterization phase of the project. During the demonstration phase, a continuous steamflood enhanced oil recover will be initiated to test the incremental value of this method as an alternative to cyclic steaming. Other economically marginal Class III reservoirs having similar producibility problems will benefit from insight gained in this project. The objectives of the project are: (1) to return the shut-in portion of the reservoir to commercial production; (2) to accurately describe the reservoir and recovery process; and (3) to convey the details of this activity to the domestic petroleum industry, especially to other producers in California, through an aggressive technology transfer program. A summary of technical progress covers: geological and reservoir characterization, and reservoir simulation.

Schamel, S.

1996-01-19T23:59:59.000Z

267

Technical and economic comparison of steam-injected versus combined- cycle retrofits on FT-4 engines  

SciTech Connect

The study discusses the findings of a conceptual site-specific investigation of the technical and economic aspects of converting the TPM FT4 simple cycle combustion turbines into either the steam injected gas turbine (SIGT) cycle or the combined cycle (CC). It describes the selection of the best retrofit alternatives through the evaluation and data analysis of a large number of sites and units at two utilities. Conceptual designs are performed on the best retrofit alternatives. Flow diagrams and general arrangement drawings are developed for various configurations utilizing drum type and once-through type multipressure heat recovery steam generators. Auxiliary power consumption and capital cost estimates are presented together with an economic evaluation and comparison of the retrofit alternatives. While the investigation is performed utilizing the FT4 combustion turbines, the steps presented in the report may be used as a guide for investigating the conversion of other gas turbines to either cycle at any utility site.

Silaghy, F.J. (Burns and Roe, Inc., Oradell, NJ (United States))

1992-01-01T23:59:59.000Z

268

Increasing Oil Productivity Through Electromagnetic Induction Heat Generation of Salt Water as a Stimulant for Heavy Oil Recovery  

Science Journals Connector (OSTI)

Brine is usually exist in the oil reservoir. Varying salinity brine are used as stimulants for heavy oil recovery processes using electromagnetic induction heating. The heated heavy oil is floating on top of the brine since it becomes less viscous and lighter. As the temperature increased more heavy oil is produced/recovered. An increasing salinity of brine will result in more recovery of heavy oil.

2010-01-01T23:59:59.000Z

269

Steam turbine upgrades: A utility based approach  

SciTech Connect

In the increasingly competitive power generation markets utilities must strive towards lower electricity generation costs, whilst relying on an aging steam turbine fleet. By the year 2000 more than 25% of the global steam turbine capacity will be older than 30 years. The heat rate of such units is generally considerably higher than that of equivalent new plant, and such equipment can be further disadvantaged by increased maintenance costs and forced outage rates. Over the past decade steam turbine conversion, modification, and upgrade packages have become an increasingly important part of the European steam turbine market. Furthermore, many utilities now realize that enhanced cost-effectiveness can often be obtained by moving away from the original equipment manufacturer (OEM), and the upgrading of other manufacturers' plant is now routine within the steam turbine industry. By working closely with customers, GE has developed a comprehensive range of steam turbine upgrade packages, including advanced design steampaths which can increase the performance of existing turbine installations to levels comparable with new plant. Such packages are tailor-made to the requirements of each customer, to ensure that the most cost-effective engineering solution is identified. This paper presents an overview of GE's state-of-the-art steam turbine technology, and continues to describe typical economic models for turbine upgrades.

Wakeley, G.R.

1998-07-01T23:59:59.000Z

270

Waste Heat Recovery from High Temperature Off-Gases from Electric Arc Furnace  

SciTech Connect

This article presents a study and review of available waste heat in high temperature Electric Arc Furnace (EAF) off gases and heat recovery techniques/methods from these gases. It gives details of the quality and quantity of the sensible and chemical waste heat in typical EAF off gases, energy savings potential by recovering part of this heat, a comprehensive review of currently used waste heat recovery methods and potential for use of advanced designs to achieve a much higher level of heat recovery including scrap preheating, steam production and electric power generation. Based on our preliminary analysis, currently, for all electric arc furnaces used in the US steel industry, the energy savings potential is equivalent to approximately 31 trillion Btu per year or 32.7 peta Joules per year (approximately $182 million US dollars/year). This article describes the EAF off-gas enthalpy model developed at Oak Ridge National Laboratory (ORNL) to calculate available and recoverable heat energy for a given stream of exhaust gases coming out of one or multiple EAF furnaces. This Excel based model calculates sensible and chemical enthalpy of the EAF off-gases during tap to tap time accounting for variation in quantity and quality of off gases. The model can be used to estimate energy saved through scrap preheating and other possible uses such as steam generation and electric power generation using off gas waste heat. This article includes a review of the historical development of existing waste heat recovery methods, their operations, and advantages/limitations of these methods. This paper also describes a program to develop and test advanced concepts for scrap preheating, steam production and electricity generation through use of waste heat recovery from the chemical and sensible heat contained in the EAF off gases with addition of minimum amount of dilution or cooling air upstream of pollution control equipment such as bag houses.

Nimbalkar, Sachin U [ORNL; Thekdi, Arvind [E3M Inc; Keiser, James R [ORNL; Storey, John Morse [ORNL

2014-01-01T23:59:59.000Z

271

ExxonMobile Beaumont Chemical Plant Steam Integration Project  

E-Print Network (OSTI)

and petrochemical manufacturing facility. ? Energy optimization across the Complex requires flexibility to accommodate variations in operations, seasonality, maintenance outages, etc. ? The steam system spans the Complex and is generated from various sources... and petrochemical manufacturing facility. ? Energy optimization across the Complex requires flexibility to accommodate variations in operations, seasonality, maintenance outages, etc. ? The steam system spans the Complex and is generated from various sources...

Long, T.

272

Oxidation of advanced steam turbine alloys  

SciTech Connect

Advanced or ultra supercritical (USC) steam power plants offer the promise of higher efficiencies and lower emissions. Current goals of the U.S. Department of Energys Advanced Power Systems Initiatives include coal generation at 60% efficiency, which would require steam temperatures of up to 760C. This research examines the steamside oxidation of advanced alloys for use in USC systems, with emphasis placed on alloys for high- and intermediate-pressure turbine sections.

Holcomb, G.R.; Covino, B.S., Jr.; Bullard, S.J.; Ziomek-Moroz, M.

2006-03-01T23:59:59.000Z

273

Skutterudite Thermoelectric Generator For Automotive Waste Heat...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Skutterudite Thermoelectric Generator For Automotive Waste Heat Recovery Skutterudite Thermoelectric Generator For Automotive Waste Heat Recovery Skutterudite TE modules were...

274

Steam Turbine Materials and Corrosion  

SciTech Connect

Ultra-supercritical (USC) power plants offer the promise of higher efficiencies and lower emissions. Current goals of the U.S. Department of Energys Advanced Power Systems Initiatives include coal generation at 60% efficiency, which would require steam temperatures of up to 760 C. In prior years this project examined the steamside oxidation of alloys for use in high- and intermediate-pressure USC turbines. This steamside oxidation research is continuing and progress is presented, with emphasis on chromia evaporation.

Holcomb, G.H.; Hsu, D.H.

2008-07-01T23:59:59.000Z

275

Potential benefits of a resource-recovery facility coupled with district heating in Detroit, Michigan  

SciTech Connect

The City of Detroit, Michigan, announced plans for a 2.7-Gg/d (3000-ton/d) Resource Recovery Facility to be located in the central part of the city. The facility will process and burn waste collected by the municipal forces. Steam generated in the facility's boilers will be used to produce electricity; the surplus electricity will be sold to the Detroit Edison Company. When needed by the Central Heating System (CHS), large portions of the steam can be extracted from the turbine and sold to the Detroit Edison Company. The facility will meet its primary purpose of greatly relieving Detroit's solid waste disposal problem. A second very important benefit is that it will be a source of reasonably priced steam for the CHS, which serves the downtown area. Detroit is now in a local depression, and the downtown areas have suffered urban decay. The city is focusing on the redevelopment of these areas, and a viable, cost-effective district heating system would be a major asset. Currently, the CHS is losing money, although it charges relatively high rates for steam, because it uses primarily natural gas to generate steam. The economic feasibility of converting the CHS's relatively oil boiler units to burn coal, a much cheaper fuel, is doubtful. The Resource Recovery Facility can provide CHS with a major part of its steam needs at competitive prices in the near future. This would do much to relieve the CHS's financial problems and help it to become a viable system. This, in turn, would assist the city in the redevelopment of the downtown areas. An overall strategy for district heating in Detroit is being developed. It is suggested that a comprehensive study of a regional district heating system in the city be made.

McLain, H.A.; Brinker, M.J.; Gatton, D.W.

1982-09-01T23:59:59.000Z

276

Materials Performance in USC Steam  

SciTech Connect

The proposed steam inlet temperature in the Advanced Ultra Supercritical (A-USC) steam turbine is high enough (760 C) that traditional turbine casing and valve body materials such as ferritic/martensitic steels will not suffice due to temperature limitations of this class of materials. Cast versions of several traditionally wrought Ni-based superalloys were evaluated for use as casing or valve components for the next generation of industrial steam turbines. The full size castings are substantial: 2-5,000 kg each half and on the order of 100 cm thick. Experimental castings were quite a bit smaller, but section size was retained and cooling rate controlled to produce equivalent microstructures. A multi-step homogenization heat treatment was developed to better deploy the alloy constituents. The most successful of these cast alloys in terms of creep strength (Haynes 263, Haynes 282, and Nimonic 105) were subsequently evaluated by characterizing their microstructure as well as their steam oxidation resistance (at 760 and 800 C).

G. R. Holcomb, P. Wang, P. D. Jablonski, and J. A. Hawk

2010-05-01T23:59:59.000Z

277

Research on oil recovery mechanisms in heavy oil reservoirs  

SciTech Connect

The research described here was directed toward improved understanding of thermal and heavy-oil production mechanisms and is categorized into: (1) flow and rock properties, (2) in-situ combustion, (3) additives to improve mobility control, (4) reservoir definition, and (5) support services. The scope of activities extended over a three-year period. Significant work was accomplished in the area of flow properties of steam, water, and oil in consolidated and unconsolidated porous media, transport in fractured porous media, foam generation and flow in homogeneous and heterogeneous porous media, the effects of displacement pattern geometry and mobility ratio on oil recovery, and analytical representation of water influx.

Kovscek, Anthony R.; Brigham, William E., Castanier, Louis M.

2000-03-16T23:59:59.000Z

278

Production of D-lactic acid from sugarcane bagasse using steam-explosion  

Science Journals Connector (OSTI)

This study investigated the production of D-lactic acid from unutilized sugarcane bagasse using steam explosion pretreatment. The optimal steam pressure for a steaming time of 5 min was determined. By enzymatic saccharification using Meicellase, the highest recovery of glucose from raw bagasse, 73.7%, was obtained at a steam pressure of 20 atm. For residue washed with water after steam explosion, the glucose recovery increased up to 94.9% at a steam pressure of 20 atm. These results showed that washing with water is effective in removing enzymatic reaction inhibitors. After steam pretreatment (steam pressure of 20 atm), D-lactic acid was produced by Lactobacillus delbrueckii NBRC 3534 from the enzymatic hydrolyzate of steam-exploded bagasse and washed residue. The conversion rate of D-lactic acid obtained from the initial glucose concentration was 66.6% for the hydrolyzate derived from steam-exploded bagasse and 90.0% for that derived from the washed residue after steam explosion. These results also demonstrated that the hydrolyzate of steam-exploded bagasse (without washing with water) contains fermentation inhibitors and washing with water can remove them.

Chizuru Sasaki; Ryosuke Okumura; Ai Asakawa; Chikako Asada; Yoshitoshi Nakamura

2012-01-01T23:59:59.000Z

279

Reactivation of an idle lease to increase heavy oil recovery through application of conventional steam drive technology in a low dip slope and basin reservoir in the Midway-Sunset field, San Joaquin basin, California. Quarterly report, January 1--March 31, 1996  

SciTech Connect

This project will reactivate ARCO`s idle Pru Fee lease in the Midway-Sunset field, California and conduct a continuous steamflood enhanced oil recovery demonstration aided by an integration of modern reservoir characterization and simulation methods. The objectives of the project are: (1) to return the shut-in portion of the reservoir to commercial production; (2) to accurately describe the reservoir and recovery process; and (3) convey the details of this activity to the domestic petroleum industry, especially to other producers in California, through an aggressive technology transfer program. The producibility problems initially thought to be responsible for the low recovery in the Pru Fee property are: (a) the shallow dip of the bedding; (b) complex reservoir structure, (c) thinning pay zone; and (d) the presence of bottom water. The project is using tight integration of reservoir characterization and simulation modeling to evaluate the magnitude of and alternative solutions to these problems. Two main activities were brought to completion during the first quarter of 1996: (1) lithologic and petrophysical description of the core taken form the new well Pru 101 near the center of the demonstration site and (2) development of a stratigraphic model for the Pru Fee project area. In addition, the first phase of baseline cyclic steaming of the Pru Fee demonstration site was continued with production tests and formation temperature monitoring.

Schamel, S.

1996-06-28T23:59:59.000Z

280

Geothermal steam quality testing  

SciTech Connect

Geothermal steam quality and purity have a significant effect on the operational efficiency and life of geothermal steam turbines and accessory equipment. Poor steam processing can result in scaled nozzles/blades, erosion, corrosion, reduced utilization efficiency, and early fatigue failures accelerated by stress corrosion cracking (SCC). Upsets formed by undetected slugs of liquid entering the turbine can cause catastrophic failure. The accurate monitoring and determination of geothermal steam quality/purity is intrinsically complex which often results in substantial errors. This paper will review steam quality and purity relationships, address some of the errors, complexities, calibration and focus on: thermodynamic techniques for evaluating and monitoring steam quality by use of the modified throttling calorimeters.

Jung, D.B. [Two-Phase Engineering & Research, Inc., Santa Rosa, CA (United States)

1995-12-31T23:59:59.000Z

Note: This page contains sample records for the topic "recovery steam generator" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

FLUIDIZABLE CATALYSTS FOR PRODUCING HYDROGEN BY STEAM REFORMING BIOMASS PYROLYSIS LIQUIDS  

E-Print Network (OSTI)

FLUIDIZABLE CATALYSTS FOR PRODUCING HYDROGEN BY STEAM REFORMING BIOMASS PYROLYSIS LIQUIDS Kimberly established that biomass pyrolysis oil could be steam-reformed to generate hydrogen using non pyrolysis oil could be almost stoichiometrically converted to hydrogen. However, process performance

282

E-Print Network 3.0 - area steam plants Sample Search Results  

NLE Websites -- All DOE Office Websites (Extended Search)

Renewables 79 copyright Summary: Figure 1: 50 kW prototype solar power plant using Steam Engine Induction Generator Paraboloid dish... Modelling of a 400m2 steam based...

283

Steam System Opportunity Assessment for the Pulp and Paper, Chemical Manufacturing, and Petroleum Refining Industries  

Energy.gov (U.S. Department of Energy (DOE))

This report assesses steam generation and use in the pulp and paper, chemical manufacturing, and the petroleum refining industries. The report also estimates the energy savings potential available from implementing steam system performance and efficiency improvements.

284

From Basic Control to Optimized Systems-Applying Digital Control Systems to Steam Boilers  

E-Print Network (OSTI)

This presentation examines the application of Distributed Digital Controls in order to review the application of this recent control technology towards Steam Boilers in a step-by-step manner. The main purpose of a steam generating boiler...

Hockenbury, W. D.

1982-01-01T23:59:59.000Z

285

The Invisibility of Steam  

Science Journals Connector (OSTI)

Almost everyone knows that steam is visible. After all one can see the cloud of white issuing from the spout of a boiling tea kettle. In reality steam is the gaseous phase of water and is invisible. What you see is light scattered from the tiny droplets of water that are the result of the condensation of the steam as its temperature falls below 100 C (under standard conditions).

Thomas B. Greenslade Jr.

2014-01-01T23:59:59.000Z

286

Steam reforming analyzed  

SciTech Connect

This paper reports that maximum steam reformer operation without excessive coking reactions requires careful control of thermodynamic and kinetic conditions. Regardless of the syngas-based feedstock composition, carbon formation problems can be avoided while increasing reformer CO or H{sub 2} production. Steam reforming technology is best understood via: Primary steam reformer developments, Kinetics of methane steam reforming, Simulation of an industrial steam/CO{sub 2} reformer, Example conditions (steam/CO{sub 2} reforming), Thermodynamic approach (minimum to steam ratio). Hydrogen and carbon monoxide are two of the most important building blocks in the chemical industry. Hydrogen is mainly used in ammonia and methanol synthesis and petroleum refining. Carbon monoxide is used to produce pains, plastics, foams, pesticides and insecticides, to name a few. Production of H{sub 2} and CO is usually carried out by the following processes: Steam reforming (primary and secondary) of hydrocarbons, Partial oxidation of hydrocarbons, Coal gasification. Coal gasification and partial oxidation do not use catalysts and depend on partial combustion of the feedstock to internally supply reaction heat. Secondary (autothermal) reforming is a type of steam reforming that also uses the heat of partial combustion but afterwards uses a catalyst of promote the production of hydrogen and CO.

Wagner, E.S. (KTI Corp., San Dimas, CA (US)); Froment, G.F. (Ghent Rijksuniversiteit (Belgium))

1992-07-01T23:59:59.000Z

287

Reactivation of an Idle Lease to Increase Heavy Oil Recovery through Application of Conventional Steam Drive Technology in a Low-Dip Slope and Reservoir in the Midway-Sunset Field, San Jaoquin Basin, California, Class III  

SciTech Connect

The objective of this project is not just to produce oil from the Pru Fee property, but rather to test which operational strategies best optimize total oil recovery at economically acceptable rates of production and production costs.

Schamel, S.

2001-01-09T23:59:59.000Z

288

Reactivation of an Idle Lease to Increase Heavy Oil Recovery through Application of Conventional Steam Drive Technology in a Low-Dip Slope and Reservoir in the Midway-Sunset Field, San Jaoquin Basin, California, Class III  

SciTech Connect

The objective of the project is not just to commercially produce oil from the Pru Fee property, but rather to test which operational strategies best optimize total oil recovery at economically acceptable rates of production volumes and costs.

Schamel, Steven; Deo, Milind; Deets, Mike

2002-02-21T23:59:59.000Z

289

RESEARCH OIL RECOVERY MECHANISMS IN HEAVY OIL RESERVOIRS  

SciTech Connect

The United States continues to rely heavily on petroleum fossil fuels as a primary energy source, while domestic reserves dwindle. However, so-called heavy oil (10 to 20{sup o}API) remains an underutilized resource of tremendous potential. Heavy oils are much more viscous than conventional oils. As a result, they are difficult to produce with conventional recovery methods such as pressure depletion and water injection. Thermal recovery is especially important for this class of reservoirs because adding heat, usually via steam injection, generally reduces oil viscosity dramatically. This improves displacement efficiency. The research described here was directed toward improved understanding of thermal and heavy-oil production mechanisms and is categorized into: (1) flow and rock properties; (2) in-situ combustion; (3) additives to improve mobility control; (4) reservoir definition; and (5) support services. The scope of activities extended over a three-year period. Significant work was accomplished in the area of flow properties of steam, water, and oil in consolidated and unconsolidated porous media, transport in fractured porous media, foam generation and flow in homogeneous and heterogeneous porous media, the effects of displacement pattern geometry and mobility ratio on oil recovery, and analytical representation of water influx. Significant results are described.

Anthony R. Kovscek; William E. Brigham

1999-06-01T23:59:59.000Z

290

Catalytic steam gasification of coals  

Science Journals Connector (OSTI)

Catalytic steam gasification of coals ... SteamCoal Gasification Using CaO and KOH for in Situ Carbon and Sulfur Capture ... SteamCoal Gasification Using CaO and KOH for in Situ Carbon and Sulfur Capture ...

P. Pereira; G. A. Somorjai; H. Heinemann

1992-07-01T23:59:59.000Z

291

POWER PLANT RELIABILITY-AVAILABILITY AND STATE REGULATION. VOLUME 7 OF THE FINAL REPORT ON HEALTH AND SAFETY IMPACTS OF NUCLEAR, GEOTHERMAL, AND FOSSIL-FUEL ELECTRIC GENERATION IN CALIFORNIA  

E-Print Network (OSTI)

generate steam to drive a steam turbine, giving rise to theValves and Pi~ing STEAM TURBINE COMPONENT OUTAGE CAUSESbasically of a steam-driven turbine, an electric generator

Nero, A.V.

2010-01-01T23:59:59.000Z

292

Energy recovery and cogeneration from an existing municipal incinerator: Phase IIA progress report on final design  

SciTech Connect

A feasibility study was prepared on energy recovery and cogeneration from and existing municipal incinerator in Wayne County, Michigan. The mechanical, electrical, structural, and instruments an controls equipment designs were established in sufficient depth to arrive at a construction cost estimate. The designs are described. All of the flue gas generated from each incinerator is directed into a waste heat boiler that will generate steam. A waste heat boiler will be provided for each of the three incinerators. Steam from these waste heat boilers will supply energy to two turbine-generators, which, in turn, will supply auxiliary power to the incinerator plant; the balance of the power will be sold to Detroit Edison Company (DEC). Exhaust steam from each turbine will be directed into a surface condenser operating under vacuum. The water to be supplied to each condenser will be recirculated water that has been cooled by means of a cooling tower. Other cooling water that could be subjected to oil contamination will be supplied from a separate recirculating water system. The water in this system will be cooled by an evaporative condenser. The main steam, boiler feedwater, and condensate systems will be similar to those used in central power stations. Flow diagrams for all systems, together with heat balances, electrical one-line diagrams, and plant layouts, are included in the Appendix. Also included in the Appendix are instruments and controls logic diagrams. (MCW)

Not Available

1982-02-01T23:59:59.000Z

293

Inspect and Repair Steam Traps  

Energy.gov (U.S. Department of Energy (DOE))

This tip sheet on inspecting and repairing steam traps provides how-to advice for improving industrial steam systems using low-cost, proven practices and technologies.

294

Recovery Act: ArcelorMittal USA Blast Furnace Gas Flare Capture  

SciTech Connect

The U.S. Department of Energy (DOE) awarded a financial assistance grant under the American Recovery and Reinvestment Act of 2009 (Recovery Act) to ArcelorMittal USA, Inc. (ArcelorMittal) for a project to construct and operate a blast furnace gas recovery boiler and supporting infrastructure at ArcelorMittals Indiana Harbor Steel Mill in East Chicago, Indiana. Blast furnace gas (BFG) is a by-product of blast furnaces that is generated when iron ore is reduced with coke to create metallic iron. BFG has a very low heating value, about 1/10th the heating value of natural gas. BFG is commonly used as a boiler fuel; however, before installation of the gas recovery boiler, ArcelorMittal flared 22 percent of the blast furnace gas produced at the No. 7 Blast Furnace at Indiana Harbor. The project uses the previously flared BFG to power a new high efficiency boiler which produces 350,000 pounds of steam per hour. The steam produced is used to drive existing turbines to generate electricity and for other requirements at the facility. The goals of the project included job creation and preservation, reduced energy consumption, reduced energy costs, environmental improvement, and sustainability.

Seaman, John

2013-01-14T23:59:59.000Z

295

Power Recovery  

E-Print Network (OSTI)

) - 2,870,000 x 0.8 6 W - 3414 = 70 kw (or 900 hp). When recovering power from an expanding gas, consideration should be given to the final gas temperature. This tem;:>f'rature can be estimated by the formula: T 2 Final temperature, oR. Other... with the requirements make generation fqr more useful. Presently a recovery level of around 500 kw (or 657 hp) appears to be the minimum level which will support an in stallation. In order to achieve reasonable effi ciency, quality equipment with good control...

Murray, F.

296

How to Calculate the True Cost of Steam  

Energy.gov (U.S. Department of Energy (DOE))

This brief details how to calculate the true cost of steam, which is important for monitoring and managing energy use in a plant, evaluating proposed design changes to the generation or distribution infrastructure and the process itself, and for continuing to identify competitive advantages through steam system and plant efficiency improvements.

297

E-Print Network 3.0 - area steam line Sample Search Results  

NLE Websites -- All DOE Office Websites (Extended Search)

with an automatic crane... recovery. As stable steam supply to the paper mill and the district heating system needs to be assured Source: Columbia University - Waste-to-Energy...

298

Reactivation of an Idle Lease to Increase Heavy Oil Recovery through Application of Conventional Steam Drive Technology in a Low Dip Slope and Basin Reservoir in the Midway-Sunset Field, San Jaoquin Basin, California, Class III  

SciTech Connect

During the initial phase of the project a multifaceted feasibility study was carried out to examine whether the pilot project could be justified technically and economically at this site. This study included: (1) Recompletion of 9 shut-in wells and drilling of a additional producer and a new temperature observation well. A core was taken from the reservoir interval in the new producer, Pru-101. The wells were produced by conventional cyclic steaming over a period of 15 months to establish a production baseline for the site, (2) Characterization of the stratigraphy and petrophysical properties of the Monarch Sand reservoir using existing well logs and analyses on samples in the core taken from Pru-101. The resulting data were used to develop a geostatistical model of the reservoir at the Pru Fee property and a specific reservoir simulator for the pilot test site on the property, and (3) Use of the reservoir simulator to test various steamflood and cyclic steaming production options leading to design of a production strategy for the pilot steamflood based on a four pattern, 9-spot array covering 8 ac near the center of the 40 ac Pru Fee property. The array chosen required drilling additional producers and injectors to supplement the existing wells recompleted in the initial phase of the project.

Schamel, Steven; Deo, Milind; Deets, Mike; Olsen, Keven

2000-04-20T23:59:59.000Z

299

Streams of Steam The Steam Boiler Specification Case Study  

E-Print Network (OSTI)

Streams of Steam ­ The Steam Boiler Specification Case Study Manfred Broy, Franz Regensburger-tuned con- cepts of FOCUS by its application of the requirements specification of a steam boiler, see [Abr96-studies. In this context, applying FOCUS to the steam boiler case study ([Abr96]) led us to a couple of questions re- #12

300

Enhanced-oil-recovery thermal processes, annex IV. Venezuela-MEM/USA-DOE fossil-energy report IV-1  

SciTech Connect

The Agreement between the United States and Venezuela was designed to further energy research and development in six areas. This report focuses on Annex IV - Enhanced-Oil-Recovery Thermal Processes which was divided into seven tasks. This report will discuss the information developed within Task I related to the Department of Energy providing data on the performance of insulated oil-well tubulars. Surface generated steam has been traditionally used in thermal enhanced oil recovery processes. In past years the tubing through which the steam is injected into the reservoir has been bare with relatively high heat losses. In recent years however various materials and designs for insulating the tubing to reduce heat losses have been developed. Evaluation of several of these designs in an instrumented test tower and in an oil field test environment was undertaken. These tests and the resulting data are presented.

Peterson, G.; Schwartz, E.

1983-04-01T23:59:59.000Z

Note: This page contains sample records for the topic "recovery steam generator" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

Refurbishing steam turbines  

SciTech Connect

Power-plant operators are reducing maintenance costs of their aging steam turbines by using wire-arc spray coating and shot peening to prolong the service life of components, and by replacing outmoded bearings and seals with newer designs. Steam-turbine operators are pressed with the challenge of keeping their aging machines functioning in the face of wear problems that are exacerbated by the demand for higher efficiencies. These problems include intense thermal cycling during both start-up and shutdown, water particles in steam and solid particles in the air that pit smooth surfaces, and load changes that cause metal fatigue.

Valenti, M.

1997-12-01T23:59:59.000Z

302

Evaluating Steam Trap Performance  

E-Print Network (OSTI)

~LmT " TRIf' 1 TRIf' 2 Figure 2 It has become common practice for engineers to oversize steam traps and place more emphasis on first cost than on maintenance cost and operating 766 3 4 ESL-IE-86-06-126 Proceedings from the Eighth Annual Industrial...EVALUATING STEAM TRAP PERFORMANCE Noel Y Fuller, P.E. Holston Defense Corporation Kingsport, Tennessee ABSTRACT Laboratory tests were conducted on several types of steam traps at Holston Defense Corporation in Kingsport, Tennessee. Data...

Fuller, N. Y.

303

Opportunities and IssuesBestPractices Technical Brief Steam Pressure Reduction: Opportunities and Issues  

E-Print Network (OSTI)

Steam generation systems are found in industry and in the commercial and institutional sectors. Some of these plants employ large watertube boilers to produce saturated steam at pressures of 250 pounds per square inch (psig) or lower. They distribute steam for use in process applications, building heating, humidification, domestic hot water, sterilization autoclaves, and air makeup coils.

A Bestpractices

304

Performance investigation of a cogeneration plant with the efficient and compact heat recovery system  

Science Journals Connector (OSTI)

This paper presents the performance investigation of a cogeneration plant equipped with an efficient waste heat recovery system. The proposed cogeneration system produces four types of useful energy namely: (i) electricity (ii) steam (iii) cooling and (iv) dehumidification. The proposed plant comprises a Capstone C30 micro-turbine which generates 24 kW of electricity a compact and efficient waste heat recovery system and a host of waste heat activated devices namely (i) a steam generator (ii) an absorption chiller (iii) an adsorption chiller and (iv) a multi-bed desiccant dehumidifier. The numerical analysis for the host of waste heat recovery system and thermally activated devices using FORTRAN power station linked to powerful IMSL library is performed to investigate the performance of the overall system. A set of experiments both part load and full load of micro-turbine is conducted to examine the electricity generation and the exhaust gas temperature. It is observed that energy utilization factor (EUF) could achieve as high as 70% while Fuel Energy Saving Ratio (FESR) is found to be 28%.

2012-01-01T23:59:59.000Z

305

SolarOil Project, Phase I preliminary design report. [Solar Thermal Enhanced Oil Recovery project  

SciTech Connect

The preliminary design of the Solar Thermal Enhanced Oil Recovery (SolarOil) Plant is described in this document. This plant is designed to demonstrate that using solar thermal energy is technically feasible and economically viable in enhanced oil recovery (EOR). The SolarOil Plant uses the fixed mirror solar concentrator (FMSC) to heat high thermal capacity oil (MCS-2046) to 322/sup 0/C (611/sup 0/F). The hot fluid is pumped from a hot oil storage tank (20 min capacity) through a once-through steam generator which produces 4.8 MPa (700 psi) steam at 80% quality. The plant net output, averaged over 24 hr/day for 365 days/yr, is equivalent to that of a 2.4 MW (8.33 x 10/sup 6/ Btu/hr) oil-fired steam generator having an 86% availability. The net plant efficiency is 57.3% at equinox noon, a 30%/yr average. The plant will be demonstrated at an oilfield site near Oildale, California.

Baccaglini, G.; Bass, J.; Neill, J.; Nicolayeff, V.; Openshaw, F.

1980-03-01T23:59:59.000Z

306

Steam Champions in Manufacturing  

E-Print Network (OSTI)

into equivalent corporate rewards, such as increased profitability, reliability, workplace safety, and other benefits. The prerequisites for becoming a true steam champion will include engineering, business, and management skills....

Russell, C.

307

Evaluation of target oil in 50 major reservoirs in the Texas Gulf Coast for enhanced oil recovery. [Steam injection, in-situ combustion, CO/sub 2/ flood, surfactant flood, and polymer flood  

SciTech Connect

This investigation determines the target oil available for enhanced oil recovery (EOR) from 50 major oil reservoirs in the Texas Gulf Coast. A preliminary screening process was used to determine which of five EOR methods, if any, were suitable for each of these reservoirs. Target oil in the 50 reservoirs is estimated to be 4.4 billion barrels of oil unrecoverable under present operating conditions, with about 1.5 billion barrels susceptible to EOR processes. None of the reservoirs have an outstanding potential for thermal recovery; however, seven reservoirs have carbon dioxide miscible flood potential, seven haven surfactant flood potential, and nine have polymer flood potential. None of the five methods was considered suitable for the remaining 27 reservoirs.

Hicks, J.N.; Foster, R.S.

1980-02-01T23:59:59.000Z

308

Steam Trap Application  

E-Print Network (OSTI)

characteristics. 2. Understand advantages and limitations of various checking methods. 3. Use more than one checking method. 4. Understand flash condensate. 5. Condensate makes more noise than steam. 6. Trouble shoot the system. 7. Review trap... or failed steam and condensate flow~' H closed to be undetected -Not always insensitive to back ground or ambient noise -Noise in electrical system if volume too high -Head set quality important -Location of probe on trap, contact force, pressure drop...

Murphy, J. J.

1982-01-01T23:59:59.000Z

309

Improved plant performance through evaporative steam condensing  

SciTech Connect

Combining an open cooling tower and a steam condenser into one common unit is a proven technology with many advantages in power generation application, including reduced first cost of equipment, reduced parasitic energy consumption, simplified design, reduced maintenance, and simplified water treatment, Performance of the steam turbine benefits from the direct approach to wet bulb temperature, and operating flexibility and reliability improve compared to a system with a cooling tower and surface condenser. System comparisons and case histories will be presented to substantiate improved systems economies.

Hutton, D.

1998-07-01T23:59:59.000Z

310

Ultra supercritical turbines--steam oxidation  

SciTech Connect

Ultra supercritical (USC) power plants offer the promise of higher efficiencies and lower emissions, which are goals of the U.S. Department of Energy?s Advanced Power Systems Initiatives. Most current coal power plants in the U.S. operate at a maximum steam temperature of 538?C. However, new supercritical plants worldwide are being brought into service with steam temperatures of up to 620?C. Current Advanced Power Systems goals include coal generation at 60% efficiency, which would require steam temperatures of up to 760?C. This research examines the steamside oxidation of advanced alloys for use in USC systems, with emphasis placed on alloys for high- and intermediate-pressure turbine sections. Initial results of this research are presented.

Holcomb, Gordon R.; Covino, Bernard S., Jr.; Bullard, Sophie J.; Cramer, Stephen D.; Ziomek-Moroz, Margaret; Alman, David E.

2004-01-01T23:59:59.000Z

311

DOE's BestPractices Steam End User Training Steam End User Training  

E-Print Network (OSTI)

DOE's BestPractices Steam End User Training Steam End User Training Steam Distribution Losses Module 1 June 29, 2010 Steam EndUser Training Steam Distribution System Losses Module Slide 1 pressure. #12;DOE's BestPractices Steam End User Training Steam End User Training Steam Distribution

Oak Ridge National Laboratory

312

ARM - ARM Recovery Act Project FAQs  

NLE Websites -- All DOE Office Websites (Extended Search)

ActARM Recovery Act Project FAQs ActARM Recovery Act Project FAQs Recovery Act Logo Subscribe FAQs Recovery Act Instruments Recovery Act Fact Sheet March 2010 Poster (PDF, 10MB) External Resources Recovery Act - Federal Recovery Act - DOE Recovery Act - ANL Recovery Act - BNL Recovery Act - LANL Recovery Act - PNNL Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send ARM Recovery Act Project FAQs Why is ARM buying new instruments and equipment? The ARM Climate Research Facility (ARM) is receiving $60 million dollars in Recovery Act funding from the U.S. Department of Energy Office of Science to build the next generation facility for climate change research. Using input from past ARM user workshops and ARM working group discussion, ARM has planned for the purchase and deployment of an expansive array of new

313

A parametric study of steam injected gas turbine with steam injector  

SciTech Connect

The interest in the STIG concept has arisen from the fact that the application shows high flexibility in power output, and therefore can serve well as a peak load unit. A new addition to the STIG-cycle is proposed and investigated in this paper. The introduction of steam injectors at the injection point of the steam is proposed to lightly raise the pressure of the gas flow entering the expander. The injector reduces the thermodynamic irreversibilities associated with the throttling nature of injecting a high pressure steam into a lower pressure region. A thermodynamic study has been conducted on the STIG with steam injectors for power generation. Steam pressure and superheating temperature are the main parameters for the system. The impact and usefulness of supplementary firing before the HRSG has also been investigated. The results are compared with a STIG with throttling valves instead of injectors. The efficiency and power output proves to increase somewhat upon introducing the steam injectors. This modification can be of commercial interest since the injectors are of low installation cost and need virtually no maintenance.

Aagren, N.D.; Svedberg, G. [Royal Inst. of Technology, Stockholm (Sweden); Frutschi, H.U. [ABB Power Generation Ltd., Baden (Switzerland)

1994-12-31T23:59:59.000Z

314

Methane-steam reforming  

SciTech Connect

The literature relating to the kinetics of methane-steam reforming involving integral and differential reactor data, porous nickel catalysts and nickel foil, and data over large ranges of temperature (500 to 1700/sup 0/F), pressure (0.01 to 50 atm), and intrinsic catalyst activities (200,000-fold) was reviewed. A simple reversible first-order kinetic expression for the steam-methane reaction appears to be applicable throughout the operable region of steam-to-carbon ratios. Internal pore diffusion limitation on the conversion rate, due to catalyst size and/or intrinsic catalyst activity and total operating pressure was underlined. S-shaped Arrhenium plots (changing activation energy) are obtained when steam reforming is conducted over a temperature range sufficient to produce intrinsic kinetics (low temperature, inactive catalyst, or small catalyst size), pore diffusional limitations, and reaction on the outside surface. Homogeneous gas-phase kinetics appear to contribute only at relatively high temperature (1400/sup 0/F). In steam reforming, the water-gas shift reaction departs from its equilibrium position, especially at low methane conversion level. A general correlation of approach to water-gas shift equilibration as a function of conversion level only was indicated. (DP) 18 figures, 6 tables.

Van Hook, J.P.

1980-01-01T23:59:59.000Z

315

Efficient gas stream cooling in Second-Generation PFBC plants  

SciTech Connect

The coal-fueled Advanced or Second-Generation Pressurized Fluidized Bed Combustor concept (APFBC) is an efficient combined cycle in which coal is carbonized (partially gasified) to fuel a gas turbine, gas turbine exhaust heats feedwater for the steam cycle, and carbonizer char is used to generate steam for a steam turbine while heating combustion air for the gas turbine. The system can be described as an energy cascade in which chemical energy in solid coal is converted to gaseous form and flows to the gas turbine followed by the steam turbine, where it is converted to electrical power. Likewise, chemical energy in the char flows to both turbines generating electrical power in parallel. The fuel gas and vitiated air (PFBC exhaust) streams must be cleaned of entrained particulates by high-temperature equipment representing significant extensions of current technology. The energy recovery in the APFBC cycle allows these streams to be cooled to lower temperatures without significantly reducing the efficiency of the plant. Cooling these streams would allow the use of lower-temperature gas cleanup equipment that more closely approaches commercially available equipment, reducing cost and technological risk, and providing an earlier path to commercialization. This paper describes the performance effects of cooling the two hottest APFBC process gas streams: carbonizer fuel gas and vitiated air. Each cooling variation is described in terms of energy utilization, cycle efficiency, and cost implications.

White, J.S.; Horazak, D.A. [Foster Wheeler Development Corp., Livingston, NJ (United States); Robertson, A. [Foster Wheeler Development Corp., Livingston, NJ (United States)

1994-07-01T23:59:59.000Z

316

Steam Basics: Use Available Data to Lower Steam System Cost  

E-Print Network (OSTI)

Industrial steam users recognize the need to reduce system cost in order to remain internationally competitive. Steam systems are a key utility that influence cost significantly, and represent a high value opportunity target. However, the quality...

Risko, J. R.

2011-01-01T23:59:59.000Z

317

Steam System Improvements at a Manufacturing Plant  

E-Print Network (OSTI)

BWX Technologies, Naval Nuclear Fuel Division (NNFD) is a manufacturing company with a steam system consisting of two Babcock & Wilcox boilers and approximately 350 steam traps. The steam system is used to produce and distribute steam for space...

Compher, J.; Morcom, B.

318

Steam Power Partnership: Improving Steam System Efficiency Through Marketplace Partnerships  

E-Print Network (OSTI)

to support the steam efficiency program. Today, the Steam Team includes, the North American Insulation Manufacturers Association (NAIMA), the American Gas Association (AGA), the Council of Industrial Boiler Owners (ClBO), Armstrong International... pinch technology, and high performance steam. ? Armstrong International - Three worldwide factory seminar facilities, 13 North American sales representative facilities, 4 international sales representative facilities, 8 co-sponsored facilities, 2...

Jones, T.

319

Reduction in Unit Steam Production  

E-Print Network (OSTI)

In 2001 the company's Arch-Brandenburg facility faced increased steam costs due to high natural gas prices and decreased production due to shutdown of a process. The facility was challenged to reduce unit steam consumption to minimize the effects...

Gombos, R.

2004-01-01T23:59:59.000Z

320

Belgrade Lot Steam Plant Lot  

E-Print Network (OSTI)

2 2A 2A Belgrade Lot Steam Plant Lot Alfond Lot Satellite Lot North Gym Lot Corbett Lot Dunn Lot Hamlin Steam Plant Crosby Machine Tool Lab Children's Center Rogers N S Estabrooke Memorial Gym Stevens

Thomas, Andrew

Note: This page contains sample records for the topic "recovery steam generator" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

Recovery Act  

Energy.gov (U.S. Department of Energy (DOE))

The American Recovery and Reinvestment Act of 2009 (Recovery Act) presents opportunities with potential for hydrogen and fuel cell technologies. Signed into law by President Obama on February 17,...

322

Consider Steam Turbine Drives for Rotating Equipment  

Energy.gov (U.S. Department of Energy (DOE))

This tip sheet outlines the benefits of steam turbine drives for rotating equipment as part of optimized steam systems.

323

Implementing a neuro fuzzy expert system for optimising the performance of chemical recovery boiler  

Science Journals Connector (OSTI)

In chemical recovery boilers of paper mills, main steam outlet temperature control cannot be solved by straight forward automation control. As prior knowledge of the mechanism to maximise steam generation without affecting steam main temperature is unknown, a backpropogation supervisory neural network has been designed which exhibits a good degree of reinforcement learning. Various parameters considered encompassing concentration, composition and firing load of black liquor solids may not have ideal fixed values. Hence, a type 2 fuzzy logic model has been designed which in turn monitors the parameters and predicts the results. Errors are fed back iteratively through the backpropogation network, until the network learns the model. Fuzzy C-means clustering technique has been used to find coherent clusters. Then sensitivity analysis has been done to identify the parameters playing a significant role in obtaining the results. As it can be observed that the behaviour is stochastic, particle swarm optimisation has been implemented to optimise the combined effect of all parameters. Through this tool connecting steam attemperation control and smart soot blowing, clean heating surface is ensured resulting in enhanced green energy output and availability.

S. Krishna Anand; T.G. Sundara Raman; S. Subramanian

2014-01-01T23:59:59.000Z

324

Steam turbine materials and corrosion  

SciTech Connect

Ultra supercritical (USC) power plants offer the promise of higher efficiencies and lower emissions. Current goals of the U.S. Department of Energys Advanced Power Systems Initiatives include coal generation at 60% efficiency, which would require steam temperatures of up to 760C. This research examines the steamside oxidation of alloys for use in USC systems, with emphasis placed on applications in high- and intermediate-pressure turbines. The list of alloys being examined is discussed, including the addition of new alloys to the study. These include alloy 625, selected because of its use as one of the two alloys used for turbine rotors, valves, casings, blading and bolts in the European AD700 full-scale demonstration plant (Scholven Unit F). The other alloy, alloy 617, is already one of the alloys currently being examined by this project. Other new alloys to the study are the three round robin alloys in the UK-US collaboration: alloys 740, TP347HFG, and T92. Progress on the project is presented on cyclic oxidation in 50% air 50% water vapor, furnace exposures in moist air, and thermogravimetric analysis in argon with oxygen saturated steam. An update on the progress towards obtaining an apparatus for high pressure exposures is given.

Holcomb, G.R.; Ziomek-Moroz, M.

2007-01-01T23:59:59.000Z

325

Steam Turbine Control Valve Noise  

Science Journals Connector (OSTI)

Although noise problems with steam turbine control valves have existed before they have become more prominent with nuclear turbines whose valves range to 20 in. in diameter. Our first?generation nuclear control valves were unacceptably noisy when operating under chocked conditions. These noise levels have been ameliorated by incorporation of a valve cage with numerous small holes. Rational design rules for this dispersive muffler have been developed from published multiple?jet noise data and improved through our own tests. However we are also evaluating other low?noise valve configurations which are consistent with turbine requirements. The approach we are developing is to investigate the internal aerodynamic noisegeneration in small air model tests and to combine this with measurements of pipe?wall transmission characteristics (being reported separately) to predict externally radiated noise. These predictions will be checked in a new steam test facility for complete scale?model valves. The small air tests show that acoustic efficiencies of throttling valve flows tend to vary with third power of Mach number when exhausting into space and with a lesser power when enclosed in a downstream pipe. At some pressure ratios narrow?band spikes appear in the spectrum and for some configurations step changes in sound power are associated with transitions in flow regimes.

Frank J. Heymann; Michael A. Staiano

1973-01-01T23:59:59.000Z

326

Recycling of automobile shredder residue with a microwave pyrolysis combined with high temperature steam gasification  

Science Journals Connector (OSTI)

Presently, there is a growing need for handling automobile shredder residues ASR or car fluff. One of the most promising methods of treatment ASR is pyrolysis. Apart of obvious benefits of pyrolysis: energy and metals recovery, there is serious concern about the residues generated from that process needing to be recycled. Unfortunately, not much work has been reported providing a solution for treatment the wastes after pyrolysis. This work proposes a new system based on a two-staged process. The ASR was primarily treated by microwave pyrolysis and later the liquid and solid products become the feedstock for the high temperature gasification process. The system development is supported within experimental results conducted in a lab-scale, batch-type reactor at the Royal Institute of Technology (KTH). The heating rate, mass loss, gas composition, LHV and gas yield of producer gas vs. residence time are reported for the steam temperature of 1173K. The sample input was 10g and the steam flow rate was 0.65kg/h. The conversion reached 99% for liquids and 4555% for solids, dependently from the fraction. The H2:CO mol/mol ratio varied from 1.72 solids and 1.4 for liquid, respectively. The average LHV of generated gas was 15.8MJ/Nm3 for liquids and 15MJ/Nm3 for solids fuels.

Pawel Donaj; Weihong Yang; W?odzimierz B?asiak; Christer Forsgren

2010-01-01T23:59:59.000Z

327

DOE's BestPractices Steam End User Training Steam End User Training  

E-Print Network (OSTI)

generation efficiency and the primary factors that affect it. . The general concepts of boiler efficiency. As a result, water-tube boilers were developed. These boilers contain hundreds of tubes that hold the high the exhaust gases. The pressure vessel holds all of the stress of the high-pressure steam. Water-tube boilers

Oak Ridge National Laboratory

328

Watt steam governor  

Science Journals Connector (OSTI)

The physics of the fly-ball governor, introduced to regulate the speed of steam engines, is here analysed anew. The original analysis is generalized to arbitrary governor geometry. The well-known stability criterion for the linearized system breaks down for large excursions from equilibrium; we show approximately how this criterion changes.

Mark Denny

2002-01-01T23:59:59.000Z

329

Steamed dinosaur eggs  

Science Journals Connector (OSTI)

... a Cretaceous hatchery shows that some dinosaurs liked their nesting sites steam-heated by geothermal vents. A paper in Nature Communications today says that certain dinosaurs regularly returned to ... vents. A paper in Nature Communications today says that certain dinosaurs regularly returned to geothermal fields to shape nests and deposit eggs more than 100 million years ago. ...

Rex Dalton

2010-06-29T23:59:59.000Z

330

Steam management in composite mature steam floods, Midway Sunset field  

SciTech Connect

Vogel noted that oil production rates in many steam floods are not predictable from steam injection rates and must be estimated on some other basis. He presented a conservative method, based on simple models assuming instantaneous steam overlay, to calculate heat requirements once the oil rate is known. By more accurately describing the reservoir being flooded and the steam flood process, Vogel`s method was refined resulting in significant steam savings for SWEPI`s leasehold in the northern part of the Midway Sunset field. Analytical expressions are presented for (1) the heat required to support a steam chest descending into an oil column, (2) the heating of a cap or base rock already partially heated by an adjacent steam flood and (3) the heating of a cap or base rock which is exposed to a uniformly growing steam zone. A method is also described to operate a mature steam flood at a constant oil steam ratio while scavenging some heat stored in the steam zone.

Dorp, J.J. van; Roach, R.H.

1995-12-31T23:59:59.000Z

331

Extending the useful life of industrial steam turbines  

SciTech Connect

This paper reports that technology, uprating, and steam-path degradation reversal can extend the life and boost the efficiency of aging turbines. With the advent of modern machine tool technology, plus extensive R and D efforts, designers could apply improved bucket designs like the laminar flow design. Today's technology is represented by the Schlict design, which minimizes flow separations and boundary layer losses. Schlict buckets can be retrofitted in most designs as long as the diaphragm is also replaced. Adoption of steam-path design advance developed for new units and degradation reversal are the two areas of greatest opportunity in efficiency improvement of aging steam turbine-generators.

O'Connor, M.F.; Timmerman, D.C. (GE Power Generation, Schenectady, NY (US))

1990-05-01T23:59:59.000Z

332

Steam System Balancing and Tuning  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Steam System Balancing and Steam System Balancing and Tuning Building America Stakeholder Meeting Austin, TX Jayne Choi, Energy Analyst, CNT Energy March 2, 2012 PARR Current collaboration with GTI as a part of the PARR Building America team - Steam Systems Balancing and Tuning Study - Heating season 2011-2012 Background In Chicago, heating is the focus of residential energy use Of the 470,000 multifamily units in the Chicago region, at least 70,000 of those are steam heated Old steam systems invariably suffer from imbalance - Tenants must use supplemental heat or open their windows to cool their apartments during the heating season Buildings are often overheated Problem Statement (CNT Energy) Steam Heating Steam heat was the best option for buildings constructed between 1900 and 1930

333

Task 1Steam Oxidation (NETL-US)  

SciTech Connect

The proposed steam in let temperature in the Advanced Ultra Supercritical (AUSC) steam turbine is high enough (760C) Ihat traditional turbine casing and valve body materials such as ferr;tic/manensitic steels will not suffice due to temperature lim itations of this class of materials. Cast versions of three traditionally wrought Ni-based superalloys (Haynes 263. Haynes 282, and Nimonic 105) were evaluated for use as casing or valve components for the next generation of industrial steam turbines. The full size castings are substantia l: 2-5,000 kg each half and on the order of 100 nun thick. Experimental castings were quite a bit smaller, but section size was retained and cooling rate controlled to produce equi valem microslruclUre . A multi_step homogenization heat treatment was d~ve loped to better disperse the al loy constituents. These castings were subsequently evaluated by characterizing their microstructure as well as their steam oxidation resistance (al 760 and 800 "C).

G. R. Holcomb

2010-05-01T23:59:59.000Z

334

Field measurement of solid particle erosion in utility steam turbines  

SciTech Connect

For the first time, extensive field testing has characterized solid particle erosion (SPE) in terms of size and frequency. This is particularly important because SPE damage to large steam turbine components can degrade plant efficiency, increasing operating costs by up to $3 million/yr per unit for a total of $150 million nationwide. The objective was to characterize under various operating conditions the level and distribution of magnetite particles in turbine steam and the resulting SPE. The project team developed a field test program to characterize the solid particles in turbine steam and measure the erosion resistance of various coatings. At Dayton Power Light, a 600-MW turbine generator unit with a coal-fired once-through supercritical boiler was fitted with two steam sampling systems, the first for isokinetic sampling and the second for erosion evaluation. The team took roughly 300 isokinetic steam samples from the main steam line during both startup and full-load operation. They condensed and filtered each steam sample, then determined the level and distribution of magnetite particles.

Duncan, D.; Vohr, J.H.; Shalvoy, R.S. (General Electric Co., Schenectady, NY (United States). Turbine Technology Dept.)

1992-01-01T23:59:59.000Z

335

Savannah River Site Removes Dome, Opening Reactor for Recovery Act Decommissioning  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

American Recovery and Reinvestment American Recovery and Reinvestment Act workers achieved a significant milestone in the decommissioning of a Cold War reactor at the Sa- vannah River Site this month after they safely re- moved its rusty, orange, 75-foot-tall dome. With the help of a 660-ton crane and lifting lugs, the work- ers pulled the 174,000-pound dome off the Heavy Water Components Test Reactor, capping more than 16 months of preparations. Workers will cut the dome into smaller pieces for disposal. Removal of the dome allows workers to access the 219,000-pound reactor vessel and two steam generators so they can remove and permanently dispose them onsite. Re- maining equipment will be moved to the cavity vacated by the vessel, and below-grade portions of the reactor will be

336

Energy recovery from biosolids: The City of Los Angeles experience  

SciTech Connect

The City of Los Angeles` Hyperion Treatment Plant serves an area of 1,500 sq km (600 sq mi) with a contributory population of nearly 4 million. The plant currently produces more than 250 dry tonnes per day (dtpd) of digested, dewatered biosolids and is being expanded and upgraded to provide pure oxygen, full secondary treatment by 1998. The modern Hyperion Plant began operating in 1951. Since that time, Hyperion has provided anaerobic digestion for its biosolids and has used the produced biogas for power generation. In the 1980`s the City completed a major expansion of its power generation and biosolids handling facilities at Hyperion. These facilities became known as the Hyperion Energy Recovery System (HERS) and their objective is to maximize the recovery of energy from the renewable biosolids. Today, these facilities are operational and continue to be modified to optimize performance and expanded to meet the increased loadings from full secondary treatment. Biogas produced by the anaerobic digestion process is compressed, scrubbed to remove H{sub 2}S, and used to power a gas turbine, combined cycle cogeneration system. Emergency flares are provided in the event of a power plant outage. A portion of the biosolids are transported offsite for beneficial reuse, such as composting and direct land application. The remaining solids are centrifugally dewatered and dried by indirect rotary dryers to produce about 50 dtpd of dried biofuel. Biofuel produced from the drying processes is fired in a fluidized bed gasification and staged combustion process (FBC) designed to recover energy and reduce air emissions. Superheated steam is produced in a waste heat boiler and converted to electrical power is a condensing steam turbine. Bioash from the FBC`s is contracted for off-site reuse, primarily as a fluxing agent in copper smelting and as a source of silica, aluminum, iron and calcium for manufacture of portland cement.

Haug, R.T.; Moore, G.L. [Bureau of Engineering, Los Angeles, CA (United States); Harrison, D.S. [Montgomery Watson Americas, Inc., Pasadena, CA (United States)

1995-11-01T23:59:59.000Z

337

Steam Cracker Furnace Energy Improvements  

E-Print Network (OSTI)

Channel, ~ 25 mi. east of Houston ? Includes 4 manufacturing sites, 2 technology/engineering offices ?Significant community involvement Baytown Refinery Page 4 Steam Cracking to Olefins ? Process 60+ years old; ExxonMobil one of pioneers... Steam Cracker Furnace Energy Improvements Tim Gandler Energy Coordinator Baytown Olefins Plant, Baytown Tx 2010 Industrial Energy Technology Conference May, 2010 Page 2 ? Baytown Complex ? Steam Cracking to Olefins ? Furnace overview...

Gandler, T.

338

Steam System Forecasting and Management  

E-Print Network (OSTI)

by manipulation of operating schedules to avoid steam balances that result in steam venting, off gas-flaring, excessive condensing on extraction/condensing turbines, and ineffective use of extraction turbines. For example, during the fourth quarter of 1981... minimum turndown levels. Several boilers would have oeen shut down; by-product fuel gas would have been flared; and surplus low level steam would have been vented to the atmosphere. Several scenarios were studied with SFC and evaluated based...

Mongrue, D. M.; Wittke, D. O.

1982-01-01T23:59:59.000Z

339

EA-1741: Seattle Steam Company Combined Heat and Power at Post Street in  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

741: Seattle Steam Company Combined Heat and Power at Post 741: Seattle Steam Company Combined Heat and Power at Post Street in Downtown Seattle, Washington EA-1741: Seattle Steam Company Combined Heat and Power at Post Street in Downtown Seattle, Washington Summary This EA evaluates the environmental impacts of a proposal to provide an American Recovery Act and Reinvestment Act of 2009 financial assistance grant to Seattle Steam Company to facilitate the installation of a combined heat and power plant in downtown Seattle, Washington. NOTE: This project has been cancelled. Public Comment Opportunities No public comment opportunities available at this time. Documents Available for Download June 16, 2010 EA-1741: Draft Environmental Assessment Seattle Steam Company Combined Heat and Power at Post Street in Downtown Seattle, Washington (June 2010)

340

Deaerators in Industrial Steam Systems  

Energy.gov (U.S. Department of Energy (DOE))

This tip sheet on deaerators provides how-to advice for improving industrial steam systems using low-cost, proven practices and technologies.

Note: This page contains sample records for the topic "recovery steam generator" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

System study on partial gasification combined cycle with CO{sub 2} recovery - article no. 051801  

SciTech Connect

S partial gasification combined cycle with CO{sub 2} recovery is proposed in this paper. Partial gasification adopts cascade conversion of the composition of coal. Active composition of coal is simply gasified, while inactive composition, that is char, is burnt in a boiler. Oxy-fuel combustion of syngas produces only CO{sub 2} and H{sub 2}O, so the CO{sub 2} can be separated through cooling the working fluid. This decreases the amount of energy consumption to separate CO{sub 2} compared with conventional methods. The novel system integrates the above two key technologies by injecting steam from a steam turbine into the combustion chamber of a gas turbine to combine the Rankine cycle with the Brayton cycle. The thermal efficiency of this system will be higher based on the cascade utilization of energy level. Compared with the conventional integrated gasification combined cycle (IGCC), the compressor of the gas turbine, heat recovery steam generator (HRSG) and gasifier are substituted for a pump, reheater, and partial gasifier, so the system is simplified. Furthermore, the novel system is investigated by means of energy-utilization diagram methodology and provides a simple analysis of their economic and environmental performance. As a result, the thermal efficiency of this system may be expected to be 45%, with CO{sub 2} recovery of 41.2%, which is 1.5-3.5% higher than that of an IGCC system. At the same time, the total investment cost of the new system is about 16% lower than that of an IGCC. The comparison between the partial gasification technology and the IGCC technology is based on the two representative cases to identify the specific feature of the proposed system.

Xu, Y.J.; Jin, H.G.; Lin, R.M.; Han, W. [Chinese Academy of Science, Beijing (China)

2008-09-15T23:59:59.000Z

342

Large-dimension, high-ZT Thermoelectric Nanocomposites for High-Power High-efficiency Waste Heat Recovery for Electricity Generation  

Energy.gov (U.S. Department of Energy (DOE))

Large-dimension, high-ZT BiTe and Pb-based nanocomposites produced with a low-cost scalable process were used for development and testing of TE module prototypes, and demonstration of a waste heat recovery system

343

Effect of steam on supported metal catalysts  

SciTech Connect

In order to examine the effect of steam on supported metal catalysts, model supported metal catalysts of Ni, Co, or Fe on alumina have been heated in steam at 700/sup 0/C. The transmission electron micrographs show that for all these metals, patches of film extend from the crystallites. Prolonged heating results in the disappearance of the patches which probably spread as a contiguous film over the entire surface of the substrate. The degree of spreading is in the order: C0 > Ni > Fe. On subsequent heating in H/sub 2/, small crystallites were generated, probably via the rupture of the contiguous film. The contraction of the patches of film bridging two or several particles caused the coalescence of the latter. This subsequent heating in H/sub 2/ favors redispersion only when the heating time is sufficiently short. Prolonged heating in H/sub 2/ leads to the disappearance of the small particles.

Ruckenstein, E.; Hu, X.D.

1986-07-01T23:59:59.000Z

344

Analysis of design variables for an efficient natural gas steam reforming process comprised in a small scale hydrogen fueling station  

Science Journals Connector (OSTI)

Natural gas steam reforming process comprised in a small scale H2-fueling station for on-site hydrogen production was simulated and analyzed. The effects of process variables on the process efficiency of hydrogen production were investigated, and their optimum set point values were suggested to minimize the sizes of the process sub-units and to secure a stable operability of the reforming process. Steam to carbon (S/C) ratio of the reforming reactants was found to be a crucial parameter mostly governing both the hydrogen production efficiency and the stable operability of the process. In this study, a process run was assumed stable if feed water (WR) as a reforming reactant could have been completely evaporated into dry steam through a heat recovery steam generator (HRSG). The optimum S/C ratio was 3.0 where the process efficiency of hydrogen production was maximized and the stable operability of the process was secured. The optimum feed rates of natural gas (NGR) and WR as reforming reactants and of natural gas (NGB) as a burner fuel were also determined for a target rate of hydrogen production, 27Nm3/h. Set point temperatures of the combustion flue gas (CFG) and the reformed gas (RFG) from the reformer had no effects on the hydrogen production efficiency, however, they were important parameters affecting the stable operability of the process. The effect of the set point temperatures of the RFG from cooler and the CFG from HRSG on the hydrogen production efficiency was not much significant as compared to the S/C ratio, but needed to be adjusted because of their considerable effects on the stable operability of the process and the required heat transfer areas in cooler and HRSG.

Deuk Ki Lee; Kee Young Koo; Dong Joo Seo; Wang Lai Yoon

2012-01-01T23:59:59.000Z

345

Vehicle Technologies Office: Recovery Act Funding Opportunities  

NLE Websites -- All DOE Office Websites (Extended Search)

Recovery Act Funding Recovery Act Funding Opportunities to someone by E-mail Share Vehicle Technologies Office: Recovery Act Funding Opportunities on Facebook Tweet about Vehicle Technologies Office: Recovery Act Funding Opportunities on Twitter Bookmark Vehicle Technologies Office: Recovery Act Funding Opportunities on Google Bookmark Vehicle Technologies Office: Recovery Act Funding Opportunities on Delicious Rank Vehicle Technologies Office: Recovery Act Funding Opportunities on Digg Find More places to share Vehicle Technologies Office: Recovery Act Funding Opportunities on AddThis.com... Recovery Act Funding Opportunities President Barack Obama announced on March 19 that the DOE is offering up to $2.4 billion in American Recovery and Reinvestment Act funds to support next-generation plug-in hybrid electric vehicles (PHEV) and their advanced

346

Steam System Improvement: A Case Study  

E-Print Network (OSTI)

. For industries, this will result in the reduction of production cost. In industry where steam is utilized, the steam production and distribution system consumes a significant portion of energy. Therefore, optimization of steam system is among the biggest energy...

Venkatesan, V. V.; Leigh, N.

347

PREDICTIVE MODELS. Enhanced Oil Recovery Model  

SciTech Connect

PREDICTIVE MODELS is a collection of five models - CFPM, CO2PM, ICPM, PFPM, and SFPM - used in the 1982-1984 National Petroleum Council study of enhanced oil recovery (EOR) potential. Each pertains to a specific EOR process designed to squeeze additional oil from aging or spent oil fields. The processes are: 1 chemical flooding; 2 carbon dioxide miscible flooding; 3 in-situ combustion; 4 polymer flooding; and 5 steamflood. CFPM, the Chemical Flood Predictive Model, models micellar (surfactant)-polymer floods in reservoirs, which have been previously waterflooded to residual oil saturation. Thus, only true tertiary floods are considered. An option allows a rough estimate of oil recovery by caustic or caustic-polymer processes. CO2PM, the Carbon Dioxide miscible flooding Predictive Model, is applicable to both secondary (mobile oil) and tertiary (residual oil) floods, and to either continuous CO2 injection or water-alternating gas processes. ICPM, the In-situ Combustion Predictive Model, computes the recovery and profitability of an in-situ combustion project from generalized performance predictive algorithms. PFPM, the Polymer Flood Predictive Model, is switch-selectable for either polymer or waterflooding, and an option allows the calculation of the incremental oil recovery and economics of polymer relative to waterflooding. SFPM, the Steamflood Predictive Model, is applicable to the steam drive process, but not to cyclic steam injection (steam soak) processes. The IBM PC/AT version includes a plotting capability to produces a graphic picture of the predictive model results.

Ray, R.M. [DOE Bartlesville Energy Technology Center, Bartlesville, OK (United States)

1992-02-26T23:59:59.000Z

348

Steelcase's Closed-Loop Energy Recovery System Results in $250,000 Savings Annually  

E-Print Network (OSTI)

Steelcase Inc. put a closed-loop energy recovery system into operation in August, 1980, with the installation of a $1.1 million waste incinerator. The system provides steam for process applications in the company's main complex. Processable waste...

Wege, P. M.

1981-01-01T23:59:59.000Z

349

Training: Steam Systems | Department of Energy  

Office of Environmental Management (EM)

required to register. Steam End User - 1 day workshop Availability: Onsite instructor-led and online self-paced workshop This course covers the operation of typical steam...

350

Steam System Modeler | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Efficiency (%) Isentropic Efficiency (%) Blowdown Rate (%) Deaerator Vent Rate (%) Heat Loss (%) Condensate Return (%) Steam Mass Flow Feedwater Mass Flow Initial HP Steam...

351

Recovery Act | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Energy Economy » Recovery Act Energy Economy » Recovery Act Recovery Act December 18, 2013 BPA Wins Platts Global Energy Award for Grid Optimization Platts awarded the Bonneville Power Administration (BPA) a Global Energy Award for grid optimization on December 12 in New York City for its development of a synchrophasor network. BPA is part of the Recovery Act-funded Western Interconnection Synchrophasor Program. December 13, 2013 Cumulative Federal Payments to OE Recovery Act Recipients, through November 30, 2013 Graph of cumulative Federal Payments to OE Recovery Act Recipients, through November 30, 2013. December 12, 2013 Energy Department Announces $150 Million in Tax Credits to Invest in U.S. Clean Energy Manufacturing Domestic Manufacturing Projects to Support Renewable Energy Generation as

352

Steam Oxidation of Fossil Power Plant Materials: Collaborative Research to Enable Advanced Steam Power Cycles  

Research into improved materials systems and associated manufacturing and reliability issues is a major part of initiatives to produce cleaner and cheaper energy systems in the UK and the USA. Under the auspices of a Memorandum of Understanding on Energy R&D, a work programme concerned with steam oxidation has been conducted. The focus was on the generation of definitive information regarding the oxidation behaviour in steam of current and developmental ferritic steels, austenitic steels, and nickelbased alloys required to enable advanced steam power cycles. The results were intended to provide a basis for quantifying the rate of metal loss expected under advanced steam cycle conditions, as well as understanding of the evolution of oxide scale morphologies with time and temperature to identify features that could influence scale exfoliation characteristics. This understanding and acquired data were used to develop and validate models of oxide growth and loss by exfoliation. This paper provides an overview of the activity and highlights a selection of the results coming from the programme.

A. T. Fry; I. G Wright; N. J Simms; B. McGhee; G. R. Holcomb

2013-11-19T23:59:59.000Z

353

Analysis of Steam Heating of a Two-Layer TBP/N-Paraffin/Nitric Acid Mixtures  

SciTech Connect

This report presents an analysis of steam heating of a two-layer tri-n-butyl phosphate (TBP)/n-paraffin-nitric acid mixture.The purpose of this study is to determine if the degree of mixing provided by the steam jet or by bubbles generated by the TBP/nitric acid reaction is sufficient to prevent a runaway reaction.

Laurinat, J.E. [Westinghouse Savannah River Company, AIKEN, SC (United States); Hassan, N.M.; Rudisill, T.S.; Askew, N.M.

1998-07-22T23:59:59.000Z

354

Thermoelectric Generator (TEG) Fuel Displacement Potential using...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

(TEG) Design Targets for Hybrid Vehicles Thermoelectric Generator Performance for Passenger Vehicles Skutterudite Thermoelectric Generator For Automotive Waste Heat Recovery...

355

Develop Thermoelectric Technology for Automotive Waste Heat Recovery...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

More Documents & Publications Skutterudite Thermoelectric Generator For Automotive Waste Heat Recovery Thermoelectric Conversion of Exhaust Gas Waste Heat into Usable...

356

Materials Performance in USC Steam Portland  

SciTech Connect

Goals of the U.S. Department of Energy's Advanced Power Systems Initiatives include power generation from coal at 60% efficiency, which requires steam conditions of up to 760 C and 340 atm, co-called advanced ultrasupercritical (A-USC) steam conditions. A limitation to achieving the goal is a lack of cost-effective metallic materials that can perform at these temperatures and pressures. Some of the more important performance limitations are high-temperature creep strength, fire-side corrosion resistance, and steam-side oxidation resistance. Nickel-base superalloys are expected to be the materials best suited for steam boiler and turbine applications above about 675 C. Specific alloys of interest include Haynes 230 and 282, Inconel 617, 625 and 740, and Nimonic 263. Further validation of a previously developed chromia evaporation model is shown by examining the reactive evaporation effects resulting from exposure of Haynes 230 and Haynes 282 to moist air environments as a function of flow rate and water content. These two alloys differ in Ti and Mn contents, which may form outer layers of TiO{sub 2} or Cr-Mn spinels. This would in theory decrease the evaporation of Cr{sub 2}O{sub 3} from the scale by decreasing the activity of chromia at the scale surface, and be somewhat self-correcting as chromia evaporation concentrates the Ti and Mn phases. The apparent approximate chromia activity was found for each condition and alloy that showed chromia evaporation kinetics. As expected, it was found that increasing the gas flow rate led to increased chromia evaporation and decreased chromia activity. However, increasing the water content in moist air increased the evaporation, but results were mixed with its effect on chromia activity.

G.R. Holcomb; J. Tylczak; R. Hu

2011-04-26T23:59:59.000Z

357

ULTRA-SUPERCRITICAL STEAM CORROSION  

SciTech Connect

Efficiency increases in fossil energy boilers and steam turbines are being achieved by increasing the temperature and pressure at the turbine inlets well beyond the critical point of water. To allow these increases, advanced materials are needed that are able to withstand the higher temperatures and pressures in terms of strength, creep, and oxidation resistance. As part of a larger collaborative effort, the Albany Research Center (ARC) is examining the steam-side oxidation behavior for ultrasupercritical (USC) steam turbine applications. Initial tests are being done on six alloys identified as candidates for USC steam boiler applications: ferritic alloy SAVE12, austenitic alloy Super 304H, the high Cr-high Ni alloy HR6W, and the nickel-base superalloys Inconel 617, Haynes 230, and Inconel 740. Each of these alloys has very high strength for its alloy type. Three types of experiments are planned: cyclic oxidation in air plus steam at atmospheric pressure, thermogravimetric ana lysis (TGA) in steam at atmospheric pressure, and exposure tests in supercritical steam up to 650 C (1202 F) and 34.5 MPa (5000 psi). The atmospheric pressure tests, combined with supercritical exposures at 13.8, 20.7, 24.6, and 34.5 MPa (2000, 3000, 4000, and 5000 psi) should allow the determination of the effect of pressure on the oxidation process.

Holcomb, G.R.; Alman, D.E.; Bullard, S.B.; Covino, B.S., Jr.; Cramer, S.D.; Ziomek-Moroz, M.

2003-04-22T23:59:59.000Z

358

Reliable steam: To cogenerate or not to cogenerate?  

SciTech Connect

Leading industrial companies and institutions are forever seeking new and better ways to reduce their expenses, reduce waste, meet environmental standards, and, in general, improve their bottom-line. One approach to achieving all of these goals is a 100 year-old concept, cogeneration. Many industrial and institutional plants need thermal energy, generally as steam, for manufacturing processes and heating. They also need electric power for motors, lighting, compressed air and air conditioning. Traditionally, these fundamental needs are met separately. Steam is produced with industrial boilers and electricity is purchased from a local utility company. However, these needs can be met at the same time with cogeneration, using the same heat source. Cogeneration is the concurrent production of electrical power and thermal energy from the same heat source. Large steam users commonly take advantage of cogeneration by using high pressure steam with a back pressure turbine to generate electricity, and extract lower pressure steam from the turbine exhaust for their process needs. This approach reduces their electric utility bills while still providing thermal energy for industrial processes. The result is also a more efficient process that uses less total heat and discharges less smoke up the stack. Newer technologies are making cogeneration opportunities available to smaller-sized thermal plants, and electric utility deregulation opportunities are causing many CEOs to seriously consider cogeneration in their manufacturing plants. Whether steam is created through cogeneration or separate generation, many opportunities exist to improve productivity in the distribution system, operation, and maintenance. These opportunities are captured by taking a systems approach, which is promoted by programs such as the Department of Energy's Steam Challenge.

Jaber, D.; Jones, T.; D'Anna, L.; Vetterick, R.

1999-07-01T23:59:59.000Z

359

Improving heat capture for power generation in coal gasification plants  

E-Print Network (OSTI)

Improving the steam cycle design to maximize power generation is demonstrated using pinch analysis targeting techniques. Previous work models the steam pressure level in composite curves based on its saturation temperature ...

Botros, Barbara Brenda

2011-01-01T23:59:59.000Z

360

Co-Generation at a Practical Plant Level  

E-Print Network (OSTI)

The Steam Turbine: A basic description of how a steam turbine converts available heat into mechanical energy to define the formulae used for the cost comparisons in the subsequent examples. Co-Generation: Comparison between condensing cycle...

Feuell, J.

1980-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "recovery steam generator" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

Task 1: Steam Oxidation,  

SciTech Connect

Need to improve efficiency, decrease emissions (esp. CO2) associated with the continued use of coal for power generation

I. G. Wright and G. R. Holcomb

2009-03-01T23:59:59.000Z

362

Recovery Act  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

3 3 Recovery Act Buy American Requirements for Information Needed from Financial Assistance Applicants/Recipients for Waiver Requests Based on Unreasonable Cost or Nonavailability Applicants for and recipients of financial assistance funded by the Recovery Act must comply with the requirement that all of the iron, steel, and manufactured goods used for a project for the construction, alteration, maintenance, or repair of a public building or public work be produced in the United States, unless the head of the agency makes a waiver, or determination of inapplicability of the Buy American Recovery Act provisions, based on one of the authorized exceptions. The authorized exceptions are unreasonable cost, nonavailability, and in furtherance of the public interest. This

363

The value of steam turbine upgrades  

SciTech Connect

Technological advances in mechanical and aerodynamic design of the turbine steam path are resulting in higher reliability and efficiency. A recent study conducted on a 390 MW pulverized coal-fired unit revealed just how much these new technological advancements can improve efficiency and output. The empirical study showed that the turbine upgrade raised high pressure (HP) turbine efficiency by 5%, intermediate pressure (IP) turbine efficiency by 4%, and low pressure (LP) turbine efficiency by 2.5%. In addition, the unit's highest achievable gross generation increased from 360 MW to 371 MW. 3 figs.

Potter, K.; Olear, D.; [General Physics Corp. (United States)

2005-11-01T23:59:59.000Z

364

Steam System Tool Suite Introduction Guide  

E-Print Network (OSTI)

)........................................................................................8 Steam System Assessment Tool (SSAT Tool, the Steam System Assessment Tool, and the 3E Plus Insulation Tool. Each one of these trainings.S.DOE Steam Tools are designed to aid in assessing steam systems by identifying areas to investigate

Oak Ridge National Laboratory

365

BOILER BLOW-DOWN FLASH RECOVERY  

E-Print Network (OSTI)

Malelanes boiler blow-down flash, which was previously rejected to atmosphere, is now recovered into the turbo-alternator exhaust steam range and used for process heating duty. Various flash vapour recovery options have been evaluated for operability, maintainability and cost effectiveness. The design considerations for the blow-down vessel and the valve and piping configuration, which resulted from a Hazop Study, are explained. The recovery of 1.6 tons per hour of boiler blowdown flash equates to R260 000 per annum in coal savings.

I Singh; F Weyers

366

Wet-steam erosion of steam turbine disks and shafts  

SciTech Connect

A study of wet-steam erosion of the disks and the rotor bosses or housings of turbines in thermal and nuclear power plants shows that the rate of wear does not depend on the diagrammed degree of moisture, but is determined by moisture condensing on the surfaces of the diaphragms and steam inlet components. Renovating the diaphragm seals as an assembly with condensate removal provides a manifold reduction in the erosion.

Averkina, N. V. [JSC 'NPO TsKTI' (Russian Federation); Zheleznyak, I. V. [Leningradskaya AES branch of JSC 'Kontsern Rosenergoatom' (Russian Federation); Kachuriner, Yu. Ya.; Nosovitskii, I. A.; Orlik, V. G., E-mail: orlikvg@mail.ru [JSC 'NPO TsKTI' (Russian Federation); Shishkin, V. I. [Leningradskaya AES branch of JSC 'Kontsern Rosenergoatom' (Russian Federation)

2011-01-15T23:59:59.000Z

367

PREDICTIVE MODELS. Enhanced Oil Recovery Model  

SciTech Connect

PREDICTIVE MODELS is a collection of five models - CFPM, CO2PM, ICPM, PFPM, and SFPM - used in the 1982-1984 National Petroleum Council study of enhanced oil recovery (EOR) potential. Each pertains to a specific EOR process designed to squeeze additional oil from aging or spent oil fields. The processes are: 1 chemical flooding, where soap-like surfactants are injected into the reservoir to wash out the oil; 2 carbon dioxide miscible flooding, where carbon dioxide mixes with the lighter hydrocarbons making the oil easier to displace; 3 in-situ combustion, which uses the heat from burning some of the underground oil to thin the product; 4 polymer flooding, where thick, cohesive material is pumped into a reservoir to push the oil through the underground rock; and 5 steamflood, where pressurized steam is injected underground to thin the oil. CFPM, the Chemical Flood Predictive Model, models micellar (surfactant)-polymer floods in reservoirs, which have been previously waterflooded to residual oil saturation. Thus, only true tertiary floods are considered. An option allows a rough estimate of oil recovery by caustic or caustic-polymer processes. CO2PM, the Carbon Dioxide miscible flooding Predictive Model, is applicable to both secondary (mobile oil) and tertiary (residual oil) floods, and to either continuous CO2 injection or water-alternating gas processes. ICPM, the In-situ Combustion Predictive Model, computes the recovery and profitability of an in-situ combustion project from generalized performance predictive algorithms. PFPM, the Polymer Flood Predictive Model, is switch-selectable for either polymer or waterflooding, and an option allows the calculation of the incremental oil recovery and economics of polymer relative to waterflooding. SFPM, the Steamflood Predictive Model, is applicable to the steam drive process, but not to cyclic steam injection (steam soak) processes.

Ray, R.M. [DOE Bartlesville Energy Technology Technology Center, Bartlesville, OK (United States)

1992-02-26T23:59:59.000Z

368

Analysis of energy recovery potential using innovative technologies of waste gasification  

SciTech Connect

Highlights: Black-Right-Pointing-Pointer Energy recovery from waste by gasification was simulated. Black-Right-Pointing-Pointer Two processes: high temperature gasification and gasification associated to plasma. Black-Right-Pointing-Pointer Two types of feeding waste: Refuse Derived Fuel (RDF) and pulper residues. Black-Right-Pointing-Pointer Different configurations for the energy cycles were considered. Black-Right-Pointing-Pointer Comparison with performances from conventional Waste-to-Energy process. - Abstract: In this paper, two alternative thermo-chemical processes for waste treatment were analysed: high temperature gasification and gasification associated to plasma process. The two processes were analysed from the thermodynamic point of view, trying to reconstruct two simplified models, using appropriate simulation tools and some support data from existing/planned plants, able to predict the energy recovery performances by process application. In order to carry out a comparative analysis, the same waste stream input was considered as input to the two models and the generated results were compared. The performances were compared with those that can be obtained from conventional combustion with energy recovery process by means of steam turbine cycle. Results are reported in terms of energy recovery performance indicators as overall energy efficiency, specific energy production per unit of mass of entering waste, primary energy source savings, specific carbon dioxide production.

Lombardi, Lidia, E-mail: lidia.lombardi@unifit.it [Dipartimento di Energetica, University of Florence, via Santa Marta 3, 50139 Florence (Italy); Carnevale, Ennio [Dipartimento di Energetica, University of Florence, via Santa Marta 3, 50139 Florence (Italy); Corti, Andrea [Dipartimento di Ingegneria dell'Informazione, University of Siena, via Roma 56, 56100 Siena (Italy)

2012-04-15T23:59:59.000Z

369

DOE's BestPractices Steam End User Training Steam End User Training  

E-Print Network (OSTI)

DOE's BestPractices Steam End User Training Steam End User Training Welcome Module - 1 8/27/2010 Steam End User Training Welcome Module Slide 1 ­ Steam End User Training Welcome to the Department of Energy's Industrial Technologies Program BestPractices Steam End-User Training. The Department of Energy

Oak Ridge National Laboratory

370

The Steam System Scoping Tool: Benchmarking Your Steam Operations Through Best Practices  

E-Print Network (OSTI)

system efficiency. The BestPractices Steam effort, a part of the DOE-OIT effort, has developed a new tool that steam energy managers and operations personnel can use to assess their steam operations and improve their steam energy usage -the Steam System...

Wright, A.; Hahn, G.

371

Progress in Thermoelectrical Energy Recovery from a Light Truck...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

of an Exhaust Thermoelectric Generator of a GM Sierra Pickup Truck Thermoelectrical Energy Recovery From the Exhaust of a Light Truck Automotive Thermoelectric Generators and HVAC...

372

Steam Field | Open Energy Information  

Open Energy Info (EERE)

Field Field Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Print PDF Sanyal Temperature Classification: Steam Field Dictionary.png Steam Field: No definition has been provided for this term. Add a Definition Sanyal Temp Classification This temperature scheme was developed by Sanyal in 2005 at the request of DOE and GEA, as reported in Classification of Geothermal Systems: A Possible Scheme. Extremely Low Temperature Very Low Temperature Low Temperature Moderate Temperature High Temperature Ultra High Temperature Steam Field Steam field reservoirs are special cases where the fluid is predominantly found in a gas phase between 230°C to 240°C. "This special class of resource needs to be recognized, its uniqueness being the remarkably consistent initial temperature and pressure

373

Steam in the Ring Discharge  

Science Journals Connector (OSTI)

The behaviour of steam and its decomposition products in the ring discharge has been examined. Dry hydrogen is not dissociated. The production of atomic hydrogen is dependent upon the presence of steam which dissociates into hydroxyl and atomic hydrogen. A secondary source of atomic hydrogen is then afforded by the interaction of hydroxyl with molecular hydrogen. The escape from the discharge of atomic hydrogen, a long-lived species, favours the dissociation of steam. Mercury vapour, on the other hand, inhibits the formation of atomic hydrogen and thus leads to a high equilibrium steam concentration. Unlike dry hydrogen, dry oxygen is dissociated into atoms, but these have a short life as such and recombine in the discharge to form molecular oxygen and ozone. The reaction mechanisms occurring in the discharge are discussed in the light of spectrographic results.

G I Finch

1949-01-01T23:59:59.000Z

374

Managing the Steam Trap Population  

E-Print Network (OSTI)

hundred steam traps installed only 58 were working effectively -- 42% needed attention! These programs had associated cost benefits of at least 100% return on investment, a maximum six month breakeven on cash flow, and an energy cost reduction amounting...

Atlas, R. D.

1983-01-01T23:59:59.000Z

375

Foam Cleaning of Steam Turbines  

E-Print Network (OSTI)

The efficiency and power output of a steam turbine can be dramatically reduced when deposits form on the turbine blades. Disassembly and mechanical cleaning of the turbine is very time consuming and costly. Deposits can be removed from the turbine...

Foster, C.; Curtis, G.; Horvath, J. W.

376

The steam engine and industrialization  

E-Print Network (OSTI)

Simon Schaffer in York Rail Museum talks to the camera about the relationship between the steam engine and industrialization and whatsteam meant; a regular supply of moving power for workshops and factories....

Dugan, David

2004-08-17T23:59:59.000Z

377

Capturing Energy Savings with Steam Traps  

E-Print Network (OSTI)

Capturing Energy Savings with Steam Traps Richard C; Bockwinkel General Manager Armstrong Service? A Division of Armstrong International, Inc. Orlando, Florida ABSTRACT This paper will discuss the energy savings potential of steam... Engineer Steam Traps Armstrong International, Inc. Three Rivers, Michigan basis. Finally, it's important to recognize that a steam trap program will reduce steam waste> which will reduce the amount of fuel burned> which will reduce pollutants...

Bockwinkel, R. G.; French, S. A.

378

Review of Orifice Plate Steam Traps  

Energy.gov (U.S. Department of Energy (DOE))

This guide was prepared to serve as a foundation for making informed decisions about when orifice plate steam traps should be considered for use in new or existing steam systems. It presents background information about different types of steam traps and defines their unique functional and operational characteristics. The advantages and disadvantages associated with using orifice plate steam traps are provided to highlight their capabilities and limitations. Finally, recommendations for using orifice plate steam traps are presented, and possible applications are identified.

379

Multi-physics modeling of thermoelectric generators for waste...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Multi-physics modeling of thermoelectric generators for waste heat recovery applications Multi-physics modeling of thermoelectric generators for waste heat recovery applications...

380

The Elimination of Steam Traps  

E-Print Network (OSTI)

claims and misinformation gener ated by over thirty-six steam trap manufacturers in the United States alone. A PARTIAL LIST OF STEAM TRAP MANUFACTURERS AAF GESTRA ANDERSON HIROSS ARMSTRONG HOFFMAN BARNES &JONES HONEYWELL BRAUKMANN BESTOBELL... removal had been devised and these same methods, with minor variations, are employed today. The inverted bucket trap was in vented in 1910 by Otto Arner, a friend of Adam Armstrong. Armstrong began his business career by making bicycle spokes...

Dickman, F.

Note: This page contains sample records for the topic "recovery steam generator" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

Steam Oxidation and Chromia Evaporation in Ultra-Supercritical Steam Boilers and Turbines  

SciTech Connect

U.S. Department of Energys goals include power generation from coal at 60% efficiency, which requires steam conditions of up to 760 C and 340 atm, so-called ultra-supercritical (USC) conditions. Evaporation of protective chromia scales is expected to be a primary corrosion mechanism. A methodology to calculate Cr evaporation rates from chromia scales was developed and combined with Cr diffusion calculations within the alloy (with a constant flux of Cr leaving the alloy from evaporation) to predict Cr concentration profiles and to predict the time until breakaway oxidation. At the highest temperatures and pressures, the time until breakaway oxidation was predicted to be quite short for the turbine blade, and of concern within the steam pipe and the higher temperature portions of the superheater tube. Alloy additions such as Ti may allow for a reduction in evaporation rate with time, mitigating the deleterious effects of chromia evaporation.

Gordon H. Holcomb

2009-01-01T23:59:59.000Z

382

Steam oxidation and chromia evaporation in ultrasupercritical steam boilers and turbines  

SciTech Connect

The U.S. Department of Energy's goals include power generation from coal at 60% efficiency, which requires steam conditions of up to 760 {sup o}C and 340 atm, so-called ultrasupercritical conditions. Evaporation of protective chromia scales is a primary corrosion mechanism. A methodology to calculate Cr evaporation rates from chromia scales was developed and combined with Cr diffusion calculations within the alloy (with a constant flux of Cr leaving the alloy from evaporation) to predict Cr concentration profiles and to predict the time until breakaway oxidation. At the highest temperatures and pressures, the time until breakaway oxidation was quite short for the turbine blade, and of concern within the steam pipe and the higher temperature portions of the superheater tube. Alloy additions such as Ti may allow for a reduction in evaporation rate with time, mitigating the deleterious effects of chromia evaporation.

Holcomb, G.R. [US DOE, Albany, OR (United States)

2009-07-01T23:59:59.000Z

383

Transport and Phase Equilibria Properties for Steam Flooding of Heavy Oils  

SciTech Connect

The objectives of this research included experimental determination and rigorous modeling and computation of phase equilibria, volumetric, and transport properties of hydrocarbon/CO2/water mixtures at pressures and temperatures typical of steam injection processes for thermal recovery of heavy oils.

Gabitto, Jorge; Barrufet, Maria

2001-12-18T23:59:59.000Z

384

Pilot test of steam with additives at Midway-Sunset field, California  

SciTech Connect

This work graphically illustrates the results of a pilot test by the CLD Group Inc., Santa Fe Energy, Conoco, Texaco, and the U.S. Department of Energy. The purpose of the pilot test was to improve efficiency of steam drive enhanced oil recovery with blocking foams in the Midway-Sunset field of California.

Hammershaimb, E.C.

1982-01-01T23:59:59.000Z

385

Transport and Phase Equilibria Properties for Steam Flooding of Heavy Oils  

SciTech Connect

The objectives of this research included experimental determination and rigorous modeling and computation of phase equilibrium diagrams, volumetric, and transport properties of hydrocarbon/CO2/water mixtures at pressures and temperatures typical of steam injection processes for thermal recovery of heavy oils.

Gabitto, Jorge; Barufet, Maria

2002-11-20T23:59:59.000Z

386

Development and Application of Advanced Models for Steam Hydrogasification: Process Design and Economic Evaluation  

E-Print Network (OSTI)

to make additional steam for the steam turbine cycle. Thein multi-pressure-level steam turbines to produce additionalthe superheated steam to the steam turbine cycle. The most

Lu, Xiaoming

2012-01-01T23:59:59.000Z

387

An environment friendly and efficient lignite-fired power generation process based on a boiler with an open pulverizing system and the recovery of water from mill-exhaust  

Science Journals Connector (OSTI)

Abstract This paper advances a novel lignite-fired power generation process based on a OPSB (boiler with an open pulverizing system) and the recovery of water from mill-exhaust after the comprehensive analysis of the open pulverizing system used for high-moisture coals and heat/water recovery from boiler exhaust. Then, the thermal calculation method that applies to OPSB is presented based on heat and mass balance analyses of the boiler. Finally, an efficient unit applying the OPSB process is compared with a conventional 600MW lignite-fired power unit, and the performance of the efficient unit is calculated and discussed in detail. The results show that the efficient unit not only yields a notable increase in the boiler's (2.6%) and the power plant's (1.3%) thermal efficiency but also provides a remarkable advantage in water recovery due to the mass of water vapor concentrated in mill-exhaust. In the efficient unit, the volume fraction of water vapor in mill-exhaust reaches 34%, the water reclaimed from mill-exhaust is so much that a lignite-fired power plant with zero water consumption can be expected, while the pollutant emissions can be reduced in proportion to the increase in boiler thermal efficiency.

Youfu Ma; Yichao Yuan; Jing Jin; Hua Zhang; Xiaohong Hu; Dengyu Shi

2013-01-01T23:59:59.000Z

388

Nanostructured Materials for Energy Generation and Storage  

E-Print Network (OSTI)

waste-heat recovery allowing for energy reuse. The limited use of thermoelectric generatorswaste-heat recovery allowing for en- ergy reuse. The limited use of thermoelectric generators

Khan, Javed Miller

2012-01-01T23:59:59.000Z

389

Steam-Modified-Gas-Solid- Chromatography: A Complementary Technique for Organic Pollutant Survey  

Science Journals Connector (OSTI)

......deter- mining either the water or atmospheric organic pollution on...preconcentration steps for atmospheric pollutants or pollutant removal from water, which both could be...diagram of the steam generator, which can be adapted......

C.L. Guillemin; F. Martinez; S. Thiault

1979-12-01T23:59:59.000Z

390

Midway-Sunset keeps producing oil with a little help from steam injection  

SciTech Connect

The largest field in the lower 48 states runs on steam injection and well-honed maintenance. The glory days of the Midway-Sunset field had been gone for more than four decades by the beginning of the 1960s. Production had peaked in 1914 with an average of 94,140 bo/d. The field, except for an occasional spike, had been in decline until steam-injection began. The advent of steam injection to increase recovery of the field`s heavy crude began on a pilot basis in 1963. If anyone had predicted the dramatic effect steam would have on Midway-Sunset as well as other California heavy crude fields, the prediction would have been met with total disbelief. The first steam project in California had been initiated by Shell Oil Co. in the Yorba Linda field in the Los Angeles Basin in 1960. Other pilot projects followed in the Coalinga and Kern River fields. Today, Berry Petroleum Co. continues as one of the field`s most successful steamers. The company`s ongoing steam efforts have played a major role in making Berry the top California-based independent producer in the field. Steam contributed to the posting by Berry of a 32% increase in this year`s second quarter earnings.

Rintoul, B.

1995-10-01T23:59:59.000Z

391

Pyrochemical recovery of actinides  

SciTech Connect

This report discusses an important advantage of the Integral Fast Reactor (IFR) which is its ability to recycle fuel in the process of power generation, extending fuel resources by a considerable amount and assuring the continued viability of nuclear power stations by reducing dependence on external fuel supplies. Pyroprocessing is the means whereby the recycle process is accomplished. It can also be applied to the recovery of fuel constituents from spent fuel generated in the process of operation of conventional light water reactor power plants, offering the means to recover the valuable fuel resources remaining in that material.

Laidler, J.J.

1993-03-01T23:59:59.000Z

392

Pyrochemical recovery of actinides  

SciTech Connect

This report discusses an important advantage of the Integral Fast Reactor (IFR) which is its ability to recycle fuel in the process of power generation, extending fuel resources by a considerable amount and assuring the continued viability of nuclear power stations by reducing dependence on external fuel supplies. Pyroprocessing is the means whereby the recycle process is accomplished. It can also be applied to the recovery of fuel constituents from spent fuel generated in the process of operation of conventional light water reactor power plants, offering the means to recover the valuable fuel resources remaining in that material.

Laidler, J.J.

1993-01-01T23:59:59.000Z

393

Best Management Practice #8: Boiler and Steam Systems | Department...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

implement a routine inspection and maintenance program to check steam traps and steam lines for leaks. Repair leaks and replace faulty steam traps as soon as possible. Develop...

394

An investigation into the feasibility of an external combustion, steam injected gas turbine  

E-Print Network (OSTI)

output of the turbine without increasing the work required for compression. Second, the steam may be generated with waste 15 heat from the combustion process. In an internal combustion gas turbine, this would result in an increased work output per... which are: 1. Gas Turbine Engine 2. Heat Exchanger Unit 3. Steam Generator Unit 4. Dynamometer 26 A detailed description of the equipment used in the experiment will be presented in the section entitled Ap- paratus since the purpose...

Ford, David Bruce

2012-06-07T23:59:59.000Z

395

Use Steam Jet Ejectors or Thermocompressors to Reduce Venting of Low-Pressure Steam  

Energy.gov (U.S. Department of Energy (DOE))

This tip sheet on steam jet ejectors and thermocompressors provides how-to advice for improving industrial steam systems using low-cost, proven practices and technologies.

396

Systematic Errors in Measuring the Energy of Wet Steam with Dry-Steam Meters  

Science Journals Connector (OSTI)

Systematic errors are considered in measuring mass flow rate, specific enthalpy, thermal power, and energy for wet steam by means of meters intended for dry saturated steam.

E. G. Abarinov; K. S. Sarelo

2002-03-01T23:59:59.000Z

397

Some Comments on James Watt's Published Account of His Work on Steam and Steam Engines  

Science Journals Connector (OSTI)

1 June 1971 research-article Some Comments on James Watt's Published Account of His Work on Steam and Steam Engines W. A. Smeaton

1971-01-01T23:59:59.000Z

398

Advanced steam parameters for pulverized coal fired boilers  

SciTech Connect

After the enormous efforts made in the eighties towards minimization of pollutant concentration in flue gases from power stations, public attention today has turned increasingly toward CO{sub 2} emissions from fossil fuel fired plants. This interest has, in turn, renewed interest in increasing the efficiency of thermal power plants, as this approach is by far the most practical means of reducing the specific CO{sub 2} emission rate. The Rankine steam cycle is the workhorse of the power industry. However, the steam power cycle is often regarded as having reached a maximum practical efficiency, and development effort has shifted to indirect fired cycles. In reality, Rankine cycle efficiencies equivalent to the combined Brayton/Rankine cycles are possible, and may be economically practical. The development work which would allow such steam cycle efficiencies to be realized has been limited in recent years, due to low growth rates, falling energy prices, and tying up of investment funds in environmental control equipment. This paper presents a short survey of the application for advanced steam parameters in power generation and discusses critical areas in more detail. A program undertaken by a consortium of European manufacturers and EC governments for the advancement of steam cycle efficiency is described.

Heiermann, G.; Husemann, R.U.; Kather, A.; Knizia, M.; Hougaard, P.

1996-12-31T23:59:59.000Z

399

Error Recovery for a Boiler System with OTS PID Controller Tom Anderson, Mei Feng, Steve Riddle, Alexander Romanovsky  

E-Print Network (OSTI)

1 Error Recovery for a Boiler System with OTS PID Controller Tom Anderson, Mei Feng, Steve Riddle employing an OTS (Off-The-Shelf) item. The case study used a Simulink model of a steam boiler system, employing software models of the PID controller and the steam boiler system rather than conducting

Newcastle upon Tyne, University of

400

Error Recovery for a Boiler System with OTS PID Controller Tom Anderson, Mei Feng, Steve Riddle, Alexander Romanovsky  

E-Print Network (OSTI)

Error Recovery for a Boiler System with OTS PID Controller Tom Anderson, Mei Feng, Steve Riddle-The-Shelf) item. The case study used a Simulink model of a steam boiler system together with an OTS PID in practice, employing software models of the PID controller and the steam boiler system rather than

Newcastle upon Tyne, University of

Note: This page contains sample records for the topic "recovery steam generator" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

Performance of Steam Production by Biomass Combustor for Agro-industry  

Science Journals Connector (OSTI)

Abstract This research paper aims to particularly raise the issue how optimization of steam production produced by a biomass combustor is regarded to agricultural industry, for the produced steam will consequently be applied to sterilization or even drying process. The most optimal level of steam production will be explored as to how to optimally achieve flow rate of air, rate of fuel input, the rate of steam production, and steam production in compliance with the given 100 kg/h capacity and the required temperature of between 90-100C . Biomass steam production incorporates 3 major parts: 1) biomass combustor, 2) heat exchanger system (coiled tube), and 3) control system, administered the whole process, located at the School of Renewable Energy Technology, Naresuan University, Phitsanulok. A combustion system was tested through the implementation of eucalyptus charcoal as the main source of energy. The research finding revealed that the combustion system could generate steam at 100 kg/h which consumed eucalyptus charcoal at the temperature value of Heating value of fuel (HHV) was 30.0 MJ/kg. This was conducted within the biomass combustor, engaged with a coil tube, at the flow rate of 172.8 kg/h, the value of feed rate of fuel at 15 kg/h, and a steam production rate at 100 kg/h respectively. The efficiency of steam production was at 58.25%. When the taken result was brought to compare with a mathematical model with experiment result of steam production, it was found out that the error value was 0.9997 which could usefully be used to predict steam production in the system. With reference to the economical benefit, when compared to steam production produced by LPG fuel at 100 kg/h production rate, it was obvious that steam production generated by biomass could redeem the spent investing cost with less than one year. This would greatly be interesting and applicable to industry particularly agriculture that steam production by biomass combustor with helical coiled boiler technique will be used to energy backup for drying system. However steam production will be supported drying system after utilization in another thermal process the temperature not more than 100C within industrial or industrial house hold.

B. Prasit; P. Maneechot

2014-01-01T23:59:59.000Z

402

Catalytic steam reforming of hydrocarbons  

SciTech Connect

The hot effluent from the catalytic steam reforming of a major portion of a fluid hydrocarbon feed stream in the reformer tubes of a primary reformer, or said effluent after secondary reforming thereof, is mixed with the hot effluent from the catalytic steam reforming of the remaining portion of the feed discharged from the reformer tubes of a primary reformer-exchanger. The combined gas steam is passed on the shell side of the reformer-exchanger countercurrently to the passage of feed in the reformer tubes thereof, thus supplying the heat for the reforming of the portion of the feed passed through the reformer tubes of the reformerexchanger. At least about 2/3 of the hydrocarbon feed stream is passed to the reformer tubes of said primary reformer, heated by radiant heat transfer and/or by contact with combustion gases, at a steam/hydrocarbon mole ratio of about 2-4/1. The remainder of said feed stream is passed to the reformer tubes of said reformer -exchanger at a steam/hydrocarbon mole ratio of about 3-6/1. The reformer shell of the reformer-exchanger is internally insulated by a refractory lining or by use of a double shell with passage of water or a portion of the feed material between the inner and outer shells. There is no significant difference between the pressure inside and outside of the reformer tubes of said primary reformer-exchanger.

Fuderer, A.

1982-06-29T23:59:59.000Z

403

Turbine Drive Gas Generator for Zero Emission Power Plants  

SciTech Connect

The Vision 21 Program seeks technology development that can reduce energy costs, reduce or eliminate atmospheric pollutants from power plants, provide choices of alternative fuels, and increase the efficiency of generating systems. Clean Energy Systems is developing a gas generator to replace the traditional boiler in steam driven power systems. The gas generator offers the prospects of lower electrical costs, pollution free plant operations, choices of alternative fuels, and eventual net plant efficiencies in excess of 60% with sequestration of carbon dioxide. The technology underlying the gas generator has been developed in the aerospace industry over the past 30 years and is mature in aerospace applications, but it is as yet unused in the power industry. This project modifies and repackages aerospace gas generator technology for power generation applications. The purposes of this project are: (1) design a 10 MW gas generator and ancillary hardware, (2) fabricate the gas generator and supporting equipment, (3) test the gas generator using methane as fuel, (4) submit a final report describing the project and test results. The principal test objectives are: (1) define start-up, shut down and post shutdown control sequences for safe, efficient operation; (2) demonstrate the production of turbine drive gas comprising steam and carbon dioxide in the temperature range 1500 F to 3000 F, at a nominal pressure of 1500 psia; (3) measure and verify the constituents of the drive gas; and (4) examine the critical hardware components for indications of life limitations. The 21 month program is in its 13th month. Design work is completed and fabrication is in process. The gas generator igniter is a torch igniter with sparkplug, which is currently under-going hot fire testing. Fabrication of the injector and body of the gas generator is expected to be completed by year-end, and testing of the full gas generator will begin in early 2002. Several months of testing are anticipated. When demonstrated, this gas generator will be the prototype for use in demonstration power plants planned to be built in Antioch, California and in southern California during 2002. In these plants the gas generator will demonstrate durability and its operational RAM characteristics. In 2003, it is expected that the gas generator will be employed in new operating plants primarily in clean air non-attainment areas, and in possible locations to provide large quantities of high quality carbon dioxide for use in enhanced oil recovery or coal bed methane recovery. Coupled with an emission free coal gasification system, the CES gas generator would enable the operation of high efficiency, non-polluting coal-fueled power plants.

Doyle, Stephen E.; Anderson, Roger E.

2001-11-06T23:59:59.000Z

404

Lowest Pressure Steam Saves More BTU's Than You Think  

E-Print Network (OSTI)

ABSTRACT Steam is the most transferring heat from But most steam systems LOWEST PRESSURE STEAM SAVES MORE BTU'S THAN YOU THINK Stafford J. Vallery Armstrong Machine Works Three Rivers, Michigan steam to do the process heating rather than...

Vallery, S. J.

405

Recovery Newsletters  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

newsletters Office of Environmental newsletters Office of Environmental Management 1000 Independence Ave., SW Washington, DC 20585 202-586-7709 en 2011 ARRA Newsletters http://energy.gov/em/downloads/2011-arra-newsletters 2011 ARRA Newsletters

406

Steam-foam mechanistic field trial in the Midway-Sunset field  

SciTech Connect

A one-pattern, steam-foam mechanistic field trial was conducted in Section 26C of the Midway-Sunset field (upper Monarch sand). The test objectives were (1) to understand the mechanisms of steam diversion caused by foam under reservoir conditions, (2) to establish whether foam can exist in-depth away from the injection well, and (3) to measure incremental oil that can be attributed to foam. Surfactant was injected with steam and nitrogen continuously, and bottom-hole injection pressure (BIHP) increased from 100 to 300 psig, indicating good foam generation. Better steam distribution across the injector's perforations occurred when foam was generated. Improvements in both vertical and areal sweep efficiency of steam were observed. Substantial temperature and gas saturation increases coincided with surfactant breakthrough and local reservoir pressure increases at observation wells. Complementary laboratory core-floods showed that foam generation could occur at low-pressure gradients, which are typical of in-depth conditions. Both laboratory and field data were interpreted as evidence that the in-depth presence of foam was the result of local generation wherever surfactant, steam, and nitrogen were present, rather than propagation of a foam bank generated near the injector. Some oil-production increase was also observed during the test; however, an accurate quantitative estimate of incremental oil owing to foam was difficult to establish.

Friedmann, F.; Smith, M.E.; Guice, W.R. (Chevron Petroleum Technology Co., La Habra, CA (United States)); Gump, J. (Chevron USA Production Co., Bakersfield, CA (United States)); Nelson, D.G. (Chevron USA Production Co., Coalinga, CA (United States))

1994-11-01T23:59:59.000Z

407

Flow Characteristics Analysis of Widows' Creek Type Control Valve for Steam Turbine Control  

SciTech Connect

The steam turbine converts the kinetic energy of steam to mechanical energy of rotor blades in the power conversion system of fossil and nuclear power plants. The electric output from the generator of which the rotor is coupled with that of the steam turbine depends on the rotation velocity of the steam turbine bucket. The rotation velocity is proportional to the mass flow rate of steam entering the steam turbine through valves and nozzles. Thus, it is very important to control the steam mass flow rate for the load following operation of power plants. Among various valves that control the steam turbine, the control valve is most significant. The steam flow rate is determined by the area formed by the stem disk and the seat of the control valve. While the ideal control valve linearly controls the steam mass flow rate with its stem lift, the real control valve has various flow characteristic curves pursuant to the stem lift type. Thus, flow characteristic curves are needed to precisely design the control valves manufactured for the operating conditions of nuclear power plants. OMEGA (Optimized Multidimensional Experiment Geometric Apparatus) was built to experimentally study the flow characteristics of steam flowing inside the control valve. The Widows' Creek type control valve was selected for reference. Air was selected as the working fluid in the OMEGA loop to exclude the condensation effect in this simplified approach. Flow characteristic curves were plotted by calculating the ratio of the measured mass flow rate versus the theoretical mass flow rate of the air. The flow characteristic curves are expected to be utilized to accurately design and operate the control valve for fossil as well as nuclear plants. (authors)

Yoo, Yong H.; Sohn, Myoung S.; Suh, Kune Y. [PHILOSOPHIA, Inc., Seoul National University, San 56-1 Sillim-dong, Gwanak-gu, Seoul, 151-742 (Korea, Republic of)

2006-07-01T23:59:59.000Z

408

The steam engine and what it needs  

E-Print Network (OSTI)

Simon Schaffer explains that to produce an effective steam engine you do not just need specific inventions, such as the separate condenser of James Watt, but also skills from clockworking, distillation, metal working and so on. Then the steam power...

Dugan, David

2004-08-18T23:59:59.000Z

409

Insulate Steam Distribution and Condensate Return Lines  

Energy.gov (U.S. Department of Energy (DOE))

This tip sheet on insulating steam distribution and condensate return lines provides how-to advice for improving industrial steam systems using low-cost, proven practices and technologies.

410

The Future of Steam: A Preliminary Discussion  

E-Print Network (OSTI)

Steam production represents a significant proportion of today's industrial energy demand. But the evolution of process technologies, as well as turbulence in energy markets, suggests that steam's role may be subject to change in the next decade...

Russell, C.; Harrell, G.; Moore, J.; French, S.

411

Insulate Steam Distribution and Condensate Return Lines  

SciTech Connect

This revised ITP tip sheet on insulating steam distribution and condensate return lines provides how-to advice for improving industrial steam systems using low-cost, proven practices and technologies.

Not Available

2006-01-01T23:59:59.000Z

412

Steam System Assessment Tool (CD-ROM)  

SciTech Connect

The tool will help users determine the potential energy cost and emission savings of key steam-system improvements. The tool is designed for energy operations, production, project managers, and engineers who are responsible for steam systems.

Not Available

2002-12-01T23:59:59.000Z

413

FEMP-FTA--Steam Trap Performance Assessment  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Steam Trap Function Steam Trap Function Steam traps are automatic valves used in every steam system to remove conden- sate, air, and other non-condensable gases while preventing or minimizing the passing of steam. If condensate is allowed to collect, it reduces the flow capacity of steam lines and the thermal capacity of heat transfer equipment. In addition, excess condensate can lead to "water hammer," with potentially destructive and dangerous results. Air that remains after system startup reduces steam pressure and temperature and may also reduce the thermal capacity of heat transfer equipment. Non-condensable gases, such as oxygen and carbon dioxide, cause corrosion. Steam that passes through the trap provides no heating ser- vice. This effectively reduces the heating capacity

414

Warm or Steaming Ground | Open Energy Information  

Open Energy Info (EERE)

Warm or Steaming Ground Warm or Steaming Ground Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Print PDF Warm or Steaming Ground Dictionary.png Warm or Steaming Ground: An area where geothermal heat is conducted to the earth's surface, warming the ground and sometimes causing steam to form when water is present. Other definitions:Wikipedia Reegle Modern Geothermal Features Typical list of modern geothermal features Hot Springs Fumaroles Warm or Steaming Ground Mudpots, Mud Pools, or Mud Volcanoes Geysers Blind Geothermal System Steam rising from the ground at Eldvorp, a 10 km row of craters, in Southwestern Iceland. http://www.visiticeland.com/SearchResults/Attraction/eldvorp Warm or steaming ground is often an indicator of a geothermal system beneath the surface. In some cases a geothermal system may not show any

415

Improving Steam System Performance: A Sourcebook for Industry...  

Energy Savers (EERE)

in Industrial Steam Systems Insulate Steam Distribution and Condensate Return Lines Advanced Manufacturing Home Key Activities Research & Development Projects Facilities...

416

The Increased Expansion of Steam Attainable in Steam Trubines1  

Science Journals Connector (OSTI)

... of steam discovered by James Watt, and to endeavour to trace their application in the engines constructed by him and by the firm of Bolton and Watt, then in the ... and Watt, then in the more highly developed forms of compound, triple, and quadruple reciprocating ...

1909-02-25T23:59:59.000Z

417

DOE's BestPractices Steam End User Training Steam End User Training  

E-Print Network (OSTI)

DOE's BestPractices Steam End User Training Steam End User Training Navigational Tutorial - 1 8/27/2010 Steam End User Training Navigational Tutorial Module Slide 1 ­ Introduction Hello, and welcome to the Steam End User Training. I would like to take a few minutes to show you how to navigate through

Oak Ridge National Laboratory

418

DOE's BestPractices Steam End User Training Steam End User Training  

E-Print Network (OSTI)

DOE's BestPractices Steam End User Training Steam End User Training Introduction Module - 1 8/27/2010 Steam End User Training Introduction Module Slide 1 - Introduction Title Page Hello, and welcome to the Steam System End User training. In this training, we will investigate how to assess, evaluate

Oak Ridge National Laboratory

419

Recovery of Electrical Energy in Microbial Fuel Cells  

Science Journals Connector (OSTI)

Recovery of Electrical Energy in Microbial Fuel Cells ... Further improvement of energy recovery through optimizing configuration, operation, microbiology, and materials will make MFCs more attractive. ... This research indicates that microbial electricity generation offers perspectives for optimization. ...

Zheng Ge; Jian Li; Li Xiao; Yiran Tong; Zhen He

2013-09-04T23:59:59.000Z

420

Plant View On Reducing Steam Trap Energy Loss  

E-Print Network (OSTI)

of the steam traps are passing excess steam. This is caused by neglect of aged steam traps which have worn out and misapplication of steam traps by oversizing or using the 'wrong' type trap. Elimination of steam wastes by an effective well engineered steam trap...

Vallery, S. J.

1982-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "recovery steam generator" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

Steam reformer study proposed by Battelle  

Science Journals Connector (OSTI)

Steam reformer study proposed by Battelle ... At a meeting held at Battelle's Columbus, Ohio, laboratories, D. B. Roach told representatives of 24 firms involved in various aspects of steam reforming that, though production of hydrogen through steam reforming has been a highly successful process, "increased plant size and more severe operating conditions have given rise to serious problems." ...

1969-01-13T23:59:59.000Z

422

Superalloys for ultra supercritical steam turbines--oxidation behavior  

SciTech Connect

Goals of the U.S. Department of Energys Advanced Power Systems Initiatives include power generation from coal at 60% efficiency, which requires steam conditions of up to 760 C and 340 atm, so called ultra-supercritical (USC) steam conditions. One of the important materials performance considerations is steam-side oxidation resistance. Evaporation of protective chromia scales is expected to be a primary corrosion mechanism under USC conditions. A methodology to calculate Cr evaporation rates from chromia scales with cylindrical geometries was developed that allows for the effects of CrO2(OH)2 saturation within the gas phase. This approach was combined with Cr diffusion calculations within the alloy (with a constant flux of Cr leaving the alloy from evaporation) to predict Cr concentration profiles as a function of exposure time and to predict the time until the alloy surface concentration of Cr reaches zero. This time is a rough prediction of the time until breakaway oxidation. A hypothetical superheater tube, steam pipe, and high pressure turbine steam path was examined. At the highest temperatures and pressures, the time until breakaway oxidation was predicted to be quite short for the turbine blade, and of concern within the steam pipe and the higher temperature portions of the superheater tube. The predicted time until breakaway oxidation increases dramatically with decreases in temperature and total pressure. Possible mitigation techniques were discussed, including those used in solid oxide fuel cell metallic interconnects (lowering the activity of Cr in the oxide scale by adding Mn to the alloy), and thermal barrier coating use on high pressure turbine blades for both erosion and chromia evaporation protection.

Holcomb, G.R.

2008-09-01T23:59:59.000Z

423

Optimization of steam explosion pretreatment. Final report  

SciTech Connect

Different operating conditions are required to optimize the yield from each of the various fractions in the substrate. Xylose recovery is maximized at short cooking times whereas maximum lignin recovery requires much longer cooking times. Peak glucose yield and rumen digestibility occur at intermediate times. If process conditions are set for maximum glucose yield we have achieved a yield of 68% of the theoretical, based on an average of a dozen substrates tested. Individual results ranged from 46 to 87%. If the process is optimized for maximum total sugars (i.e. glucose plus xylose) we have obtained an average yield of 60%, with a range of 31 to 75%. With rumen microflora, the average value of the in-vitro cellulose digestibility was 82%, with a range of 41 to 90%. The optimum operating conditions for total sugars are a pressure of 500 to 550 psig with a cooking time of 40 to 50 seconds and 35% starting moisture content. Particle size is not a significant factor, nor is pre-steaming or use of a constricting die in the gun nozzle. High quality lignin can be extracted with 80% yield. The Iotech lignin is very soluble, has a low molecular weight and is reactive. The unique properties of the lignin derive from the explosion at the end of the pretreatment. A lignin formaldehyde resin has been successfully formulated and tested. It represents a high value utilization of the lignin byproduct with immediate market potential. A detailed engineering design of the process gives an estimated operating cost of $7.50/OD ton of biomass. At this low cost, the Iotech process achieves many important pretreatment goals in a single step. The substrate has been sterilized; it has been pulverized into a powder; the cellulose has been accessible; and a highly reactive lignin fraction can be recovered and utilized.

Foody, P.

1980-04-01T23:59:59.000Z

424

Solar hybrid steam injection gas turbine (STIG) cycle  

Science Journals Connector (OSTI)

Solar heat at moderate temperatures around 200C can be utilized for augmentation of conventional steam-injection gas turbine power plants. Solar concentrating collectors for such an application can be simpler and less expensive than collectors used for current solar power plants. We perform a thermodynamic analysis of this hybrid cycle. High levels of steam-to-air ratio are investigated, leading to high power augmentation compared to the simple cycle and to conventional STIG. The Solar Fraction can reach up to 50% at the highest augmentation levels. The overall conversion efficiency from heat to electricity (average over fuel and solar contributions) can be in the range of 4055% for typical candidate turbines. The incremental efficiency (corresponding to the added steam beyond conventional STIG) is in the range of 2237%, corresponding to solar-to-electricity efficiency of about 1524%, similar to and even exceeding current solar power plants using higher temperature collectors. The injected water can be recovered and recycled leading to very low water consumption of the cycle, but a very low cost condenser is required to make water recovery feasible.

Maya Livshits; Abraham Kribus

2012-01-01T23:59:59.000Z

425

Steam-foam pilot project in Dome-Tumbador, Midway-Sunset field  

SciTech Connect

This paper describes a steam-foam pilot project in the Potter sand, Midway-Sunset field. The pilot consists of four inverted five-spot patterns with a confined producer covering 5.2 acres (2.1 ha). Steam foam was generated by continuous injection of steam with NaCl, alpha olefin sodium sulfonate, and nitrogen. Production and subsurface data, obtained from two observation wells, were used as monitoring tools in the pilot. Overall, during the first 2 years of foam injection, 207,000 bbl (32 900 m/sup 3/) of incremental oil was produced.

Not Available

1989-02-01T23:59:59.000Z

426

Using Backup Generators  

Energy.gov (U.S. Department of Energy (DOE))

Power outages are commonplace during disasters, and they may last for several days. You can reduce losses and speed the recovery process by installing an emergency generator. Portable generators...

427

Faces of the Recovery Act: Sun Catalytix  

ScienceCinema (OSTI)

BOSTON- At the Massachusetts Institute of Technology, Dan Nocera talks about Sun Catalytix, the next generation of solar energy, and ARPA-E funding through the Recovery Act. To learn about more ARPA-E projects through the Recovery Act: http://arpa-e.energy.gov/FundedProjects.aspx

Nocera, Dave

2013-05-29T23:59:59.000Z

428

Modelling of a steam based paraboloidal dish concentrator using TRNSYS Siangsukone P. and Lovegrove K. Proceedings of Solar 2002 -Australian and New Zealand Solar Energy Society Paper 1 1  

E-Print Network (OSTI)

of a Paraboloidal dish concentrator system with a direct steam generating cavity receiver. The Dish concentrator system consists of a Paraboloidal dish with cavity receiver and a steam line and is modelled using also been developed. The SG3 400m2 dish system with steam receiver at the ANU has been chosen

429

ARM - Recovery Act Instruments  

NLE Websites -- All DOE Office Websites (Extended Search)

ActRecovery Act Instruments ActRecovery Act Instruments Recovery Act Logo Subscribe FAQs Recovery Act Instruments Recovery Act Fact Sheet March 2010 Poster (PDF, 10MB) External Resources Recovery Act - Federal Recovery Act - DOE Recovery Act - ANL Recovery Act - BNL Recovery Act - LANL Recovery Act - PNNL Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Recovery Act Instruments These pages provide a breakdown of the new instruments planned for installation among the permanent and mobile ARM sites. In addition, several instruments will be purchased for use throughout the facility and deployed as needed. These are considered "facility spares" and are included in the table below. View All | Hide All ARM Aerial Facility Instrument Title Instrument Mentor Measurement Group Measurements

430

Oxidation of alloys targeted for advanced steam turbines  

SciTech Connect

Ultra supercritical (USC) power plants offer the promise of higher efficiencies and lower emissions. Current goals of the U.S. Department of Energys Advanced Power Systems Initiatives include coal generation at 60% efficiency, which would require steam temperatures of up to 760C. This research examines the steamside oxidation of alloys for use in USC systems, with emphasis placed on applications in high- and intermediate-pressure turbines.

Holcomb, G.R.; Covino, B.S., Jr.; Bullard, S.J.; Ziomek-Moroz, M.; Alman, D.E.

2006-03-12T23:59:59.000Z

431

Cast Alloys for Advanced Ultra Supercritical Steam Turbines  

SciTech Connect

The proposed steam inlet temperature in the Advanced Ultra Supercritical (A-USC) steam turbine is high enough (760 C) that traditional turbine casing and valve body materials such as ferritic/martensitic steels will not suffice due to temperature limitations of this class of materials. Cast versions of several traditionally wrought Ni-based superalloys were evaluated for use as casing or valve components for the next generation of industrial steam turbines. The full size castings are substantial: 2-5,000 kg each half and on the order of 100 cm thick. Experimental castings were quite a bit smaller, but section size was retained and cooling rate controlled to produce equivalent microstructures. A multi-step homogenization heat treatment was developed to better deploy the alloy constituents. The most successful of these cast alloys in terms of creep strength (Haynes 263, Haynes 282, and Nimonic 105) were subsequently evaluated by characterizing their microstructure as well as their steam oxidation resistance (at 760 and 800 C).

G. R. Holcomb, P. Wang, P. D. Jablonski, and J. A. Hawk,

2010-05-01T23:59:59.000Z

432

EARLY ENTRANCE CO-PRODUCTION PLANT - DECENTRALIZED GASIFICATION COGENERATION TRANSPORTATION FUELS AND STEAM FROM AVAILABLE FEEDSTOCKS  

SciTech Connect

Waste Processors Management, Inc. (WMPI), along with its subcontractors Texaco Power & Gasification (now ChevronTexaco), SASOL Technology Ltd., and Nexant Inc. entered into a Cooperative Agreement DE-FC26-00NT40693 with the U. S. Department of Energy (DOE), National Energy Technology Laboratory (NETL) to assess the technoeconomic viability of building an Early Entrance Co-Production Plant (EECP) in the United States to produce ultra clean Fischer-Tropsch (FT) transportation fuels with either power or steam as the major co-product. The EECP design includes recovery and gasification of low-cost coal waste (culm) from physical coal cleaning operations and will assess blends of the culm with coal or petroleum coke. The project has three phases. Phase I is the concept definition and engineering feasibility study to identify areas of technical, environmental and financial risk. Phase II is an experimental testing program designed to validate the coal waste mixture gasification performance. Phase III updates the original EECP design based on results from Phase II, to prepare a preliminary engineering design package and financial plan for obtaining private funding to build a 5,000 barrel per day (BPD) coal gasification/liquefaction plant next to an existing co-generation plant in Gilberton, Schuylkill County, Pennsylvania. The current report covers the period performance from July 1, 2002 through September 30, 2002.

Unknown

2003-01-01T23:59:59.000Z

433

RECOVERY ACT: TAPOCO PROJECT: CHEOAH UPGRADE  

SciTech Connect

Under Funding Opportunity Announcement Number: DE-FOA-0000120, Recovery Act: Hydroelectric Facility Modernization, Alcoa Power Generating Inc. (APGI), a fully owned subsidiary of Alcoa Inc., implemented major upgrades at its Cheoah hydroelectric facility near Robbinsville, North Carolina.

Paul Tran; 293 Highway 740; Baden, NC 28009

2013-02-28T23:59:59.000Z

434

HEAVY AND THERMAL OIL RECOVERY PRODUCTION MECHANISMS  

SciTech Connect

This technical progress report describes work performed from April 1 through June 30, 2002, for the project ''Heavy and Thermal Oil Recovery Production Mechanisms.'' We investigate a broad spectrum of topics related to thermal and heavy-oil recovery. Significant results were obtained in the areas of multiphase flow and rock properties, hot-fluid injection, improved primary heavy oil recovery, and reservoir definition. The research tools and techniques used are varied and span from pore-level imaging of multiphase fluid flow to definition of reservoir-scale features through streamline-based history-matching techniques. Briefly, experiments were conducted to image at the pore level matrix-to-fracture production of oil from a fractured porous medium. This project is ongoing. A simulation studied was completed in the area of recovery processes during steam injection into fractured porous media. We continued to study experimentally heavy-oil production mechanisms from relatively low permeability rocks under conditions of high pressure and high temperature. High temperature significantly increased oil recovery rate and decreased residual oil saturation. Also in the area of imaging production processes in laboratory-scale cores, we use CT to study the process of gas-phase formation during solution gas drive in viscous oils. Results from recent experiments are reported here. Finally, a project was completed that uses the producing water-oil ratio to define reservoir heterogeneity and integrate production history into a reservoir model using streamline properties.

Anthony R. Kovscek

2002-07-01T23:59:59.000Z

435

Design and fabrication of an internal condensation loop for effectiveness and robustness testing of nanostructured superhydrophobic steam condenser  

E-Print Network (OSTI)

The Rankine cycle is at the heart of steam-electric power stations, which are responsible for generating about 90% of the world's electricity. Improving the efficiency of the cycle thus of great importance, and the greatest ...

Saranadhi, Dhananjai (Dhananjai V.)

2014-01-01T23:59:59.000Z

436

Recovery Act: Novel Kerf-Free PV Wafering that provides a low-cost approach to generate wafers from 150um to 50um in thickness  

SciTech Connect

The technical paper summarizes the project work conducted in the development of Kerf-Free silicon wafering equipment for silicon solar wafering. This new PolyMax technology uses a two step process of implantation and cleaving to exfoliate 50um to 120um wafers with thicknesses ranging from 50um to 120um from a 125mm or 156mm pseudo-squared silicon ingot. No kerf is generated using this method of wafering. This method of wafering contrasts with the current method of making silicon solar wafers using the industry standard wire saw equipment. The report summarizes the activity conducted by Silicon Genesis Corporation in working to develop this technology further and to define the roadmap specifications for the first commercial proto-type equipment for high volume solar wafer manufacturing using the PolyMax technology.

Fong, Theodore E.

2013-05-06T23:59:59.000Z

437

Hydraulic model and steam flow numerical simulation of the Cerro Prieto geothermal field, Mexico, pipeline network  

Science Journals Connector (OSTI)

Abstract The development of a hydraulic model and numerical simulation results of the Cerro Prieto geothermal field (CPGF) steam pipeline network are presented. Cerro Prieto is the largest water-dominant geothermal field in the world and its transportation network has 162 producing wells, connected through a network of pipelines that feeds 13 power-generating plants with an installed capacity of 720MWe. The network is about 125km long and has parallel high- and low-pressure networks. Prior to this study, it was suspected that steam flow stagnated or reversed from its planned direction in some segments of the network. Yet, the network complexity and extension complicated the analysis of steam transport for adequate delivery to the power plants. Thus, a hydraulic model of the steam transportation system was developed and implemented numerically using an existing simulator, which allowed the overall analysis of the network in order to quantify the pressure and energy losses as well as the steam flow direction in every part of the network. Numerical results of the high-pressure network were obtained which show that the mean relative differences between measured and simulated pressures and flowrates are less than 10%, which is considered satisfactory. Analysis of results led to the detection of areas of opportunity and to the recommendation of changes for improving steam transport. A main contribution of the present work is having simulated satisfactorily the longest (to our knowledge), and probably the most complex, steam pipeline network in the world.

A. Garca-Gutirrez; A.F. Hernndez; J.I. Martnez; M. Ceceas; R. Ovando; I. Canchola

2015-01-01T23:59:59.000Z

438

Thermoelectrical Energy Recovery From the Exhaust of a Light...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

More Documents & Publications The Effects of an Exhaust Thermoelectric Generator of a GM Sierra Pickup Truck Progress in Thermoelectrical Energy Recovery from a...

439

Develop Thermoelectric Technology for Automotive Waste Heat Recovery...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

for Automotive Waste Heat Recovery Cost-Competitive Advanced Thermoelectric Generators for Direct Conversion of Vehicle Waste Heat into Useful Electrical Power Development...

440

Development of Thermoelectric Technology for Automotive Waste Heat Recovery  

Energy.gov (U.S. Department of Energy (DOE))

Overview and status of project to develop thermoelectric generator for automotive waste heat recovery and achieve at least 10% fuel economy improvement.

Note: This page contains sample records for the topic "recovery steam generator" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

FLUIDIZED BED STEAM REFORMER MONOLITH FORMATION  

SciTech Connect

Fluidized Bed Steam Reforming (FBSR) is being considered as an alternative technology for the immobilization of a wide variety of aqueous high sodium containing radioactive wastes at various DOE facilities in the United States. The addition of clay, charcoal, and a catalyst as co-reactants converts aqueous Low Activity Wastes (LAW) to a granular or ''mineralized'' waste form while converting organic components to CO{sub 2} and steam, and nitrate/nitrite components, if any, to N{sub 2}. The waste form produced is a multiphase mineral assemblage of Na-Al-Si (NAS) feldspathoid minerals with cage-like structures that atomically bond radionuclides like Tc-99 and anions such as SO{sub 4}, I, F, and Cl. The granular product has been shown to be as durable as LAW glass. Shallow land burial requires that the mineralized waste form be able to sustain the weight of soil overburden and potential intrusion by future generations. The strength requirement necessitates binding the granular product into a monolith. FBSR mineral products were formulated into a variety of monoliths including various cements, Ceramicrete, and hydroceramics. All but one of the nine monoliths tested met the <2g/m{sup 2} durability specification for Na and Re (simulant for Tc-99) when tested using the Product Consistency Test (PCT; ASTM C1285). Of the nine monoliths tested the cements produced with 80-87 wt% FBSR product, the Ceramicrete, and the hydroceramic produced with 83.3 wt% FBSR product, met the compressive strength and durability requirements for an LAW waste form.

Jantzen, C

2006-12-22T23:59:59.000Z

442

The Steam System Assessment Tool (SSAT): Estimating Steam System Energy, Cost, and Emission Savings  

E-Print Network (OSTI)

The U. S. Department of Energy's (DOE) Industrial Technology Program BestPractices Steam effort is developing a number of software tools to assist industrial energy users to improve the efficiency of their steam system. A major new Best...

Wright, A.; Bealing, C.; Eastwood, A.; Tainsh, R.; Hahn, G.; Harrell, G.

443

Numerical study of primary steam superheating effects on steam ejector flow and its pumping performance  

Science Journals Connector (OSTI)

Abstract The effects of primary steam superheating on steam condensation in nozzle and the performance of steam ejector were investigated using CFD (computational fluid dynamics) method. Using a wet steam model being proposed in our previous study, simulations based on the primary steam with five superheated levels were performed, and the results demonstrate the superheating operation of the primary steam weakens the spontaneous condensation intensity and postpones its occurrence within the nozzle vicinity. Due to the droplets nucleation refinement for the condensation of superheated steam, the mixing process between the primary and the secondary fluids is improved. Consequently, a higher entrainment ratio is achieved. However, the superheating operation may not exceed 20K, as its contribution on entrainment ratio improvement is not as significant as 0K20K superheating, and too much superheating will requires more energy as input, which is not a practical solution to further improve the steam ejector pumping performance.

Xiaodong Wang; Jingliang Dong; Ao Li; Hongjian Lei; Jiyuan Tu

2014-01-01T23:59:59.000Z

444

Use Steam Jet Ejectors or Thermocompressors to Reduce Venting of Low-Pressure Steam  

SciTech Connect

This revised ITP tip sheet on steam jet ejectors and thermocompressors provides how-to advice for improving industrial steam systems using low-cost, proven practices and technologies.

Not Available

2006-01-01T23:59:59.000Z

445

Catastrophic Incident Recovery: Long-Term Recovery from an Anthrax Event Symposium  

SciTech Connect

On March 19, 2008, policy makers, emergency managers, and medical and Public Health officials convened in Seattle, Washington, for a workshop on Catastrophic Incident Recovery: Long-Term Recovery from an Anthrax Event. The day-long symposium was aimed at generating a dialogue about restoration and recovery through a discussion of the associated challenges that impact entire communities, including people, infrastructure, and critical systems.

Lesperance, Ann M.

2008-06-30T23:59:59.000Z

446

Heavy oil recovery process: Conceptual engineering of a downhole methanator and preliminary estimate of facilities cost for application to North Slope Alaska  

SciTech Connect

The West Sak (Upper Cretaceous) sands, overlaying the Kuparuk field, would rank among the largest known oil fields in the US, but technical difficulties have so far prevented its commercial exploitation. Steam injection is the most successful and the most commonly-used method of heavy oil recovery, but its application to the West Sak presents major problems. Such difficulties may be overcome by using a novel approach, in which steam is generated downhole in a catalytic Methanator, from Syngas made at the surface from endothermic reactions (Table 1). The Methanator effluent, containing steam and soluble gases resulting from exothermic reactions (Table 1), is cyclically injected into the reservoir by means of a horizontal drainhole while hot produced fluids flow form a second drainhole into a central production tubing. The downhole reactor feed and BFW flow downward to two concentric tubings. The large-diameter casing required to house the downhole reactor assembly is filled above it with Arctic Pack mud, or crude oil, to further reduce heat leaks. A quantitative analysis of this production scheme for the West Sak required a preliminary engineering of the downhole and surface facilities and a tentative forecast of well production rates. The results, based on published information on the West Sak, have been used to estimate the cost of these facilities, per daily barrel of oil produced. A preliminary economic analysis and conclusions are presented together with an outline of future work. Economic and regulatory conditions which would make this approach viable are discussed. 28 figs.

Gondouin, M.

1991-10-31T23:59:59.000Z

447

Steam reforming utilizing high activity catalyst  

SciTech Connect

High activity, sulfur tolerant steam reforming catalysts are described comprising rhodium or nickel supported on lanthanum stabilized alumina or magnesium promoted lanthanum stabilized alumina. The catalysts have improved activity over conventionally used catalysts in the presence of sulfur containing hydrocarbon fuel (such as No. 2 fuel oil) in a steam reforming environment. The material has particular utility in autothermal, tubular, cyclic and adiabatic steam reforming processes.

Setzer, H. J.

1985-03-05T23:59:59.000Z

448

Reduce Steam Trap Failures at Chambers Works  

E-Print Network (OSTI)

Ultrasonic Inspection At least 2 times per year Steam Trap Surveyor Submit reports to area management, energy team, and reliability engineers for each area every month Steam Trap Team Leader Control Plan ? Process Owner agrees...Reduce Steam Trap Failures at Chambers Works GB/BB Name: Cyndi Kouba Mentor/MBB: Andrew Degraff Team Members Michael Crowley(Site Energy Lead), (Charlie) Flanigan (Aramids-maintenance), Ben Snyder (Aramids-ATO), Michael Scruggs (Central...

Kouba, C.

449

Steam Conservation and Boiler Plant Efficiency Advancements  

E-Print Network (OSTI)

leakage is controlled by daily monitoring of make-up water volume. All recent heating water distribution projects have utilized above-ground, fiberglass insulated piping on elevated pipe support structures in order to avoid the potential corrosion...-insulated piping on elevated pipe support structures in order to avoid the potential corrosion and leakage issues associated with underground steam distribution. STEAM COST The remaining challenge was to minimize annual steam costs in order to enhance...

Fiorino, D. P.

450

Cogeneration from glass furnace waste heat recovery  

SciTech Connect

In glass manufacturing 70% of the total energy utilized is consumed in the melting process. Three basic furnaces are in use: regenerative, recuperative, and direct fired design. The present paper focuses on secondary heat recovery from regenerative furnaces. A diagram of a typical regenerative furnace is given. Three recovery bottoming cycles were evaluated as part of a comparative systems analysis: steam Rankine Cycle (SRC), Organic Rankine Cycle (ORC), and pressurized Brayton cycle. Each cycle is defined and schematicized. The net power capabilities of the three different systems are summarized. Cost comparisons and payback period comparisons are made. Organic Rankine cycle provides the best opportunity for cogeneration for all the flue gas mass flow rates considered. With high temperatures, the Brayton cycle has the shortest payback period potential, but site-specific economics need to be considered.

Hnat, J.G.; Cutting, J.C.; Patten, J.S.

1982-06-01T23:59:59.000Z

451

Final Environmental Assessment for the Y-12 Steam Plant Life Extenstion Project - Steam Plant Replacement Subproject  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

93 93 Final Environmental Assessment for the Y-12 Steam Plant Life Extension Project - Steam Plant Replacement Subproject U.S. Department of Energy National Nuclear Security Administration August 2007 Final Y-12 Steam Plant Life Extension Project - Steam Plant Replacement Subproject - August 2007 i TABLE OF CONTENTS List of Acronyms and Abbreviations............................................................................................. vi Chemicals and Units of Measure ................................................................................................. ix Conversion Chart ......................................................................................................................... xi Metric Prefixes .............................................................................................................................xii

452

The Bending of Wood With Steam.  

E-Print Network (OSTI)

??Based on experimentation with the steam bending of wood to curved shapes, this thesis describes my involvement with three basic aspects of the process. First (more)

Cottey Jr., James H.

2008-01-01T23:59:59.000Z

453

Coreflood experimental study of steam displacement.  

E-Print Network (OSTI)

??The main objective of this study was to verify experimentally whether or not a Buckley-Leverett shock front exists when steam displaces oil in a porous (more)

Cerutti, Andres Enrique

2012-01-01T23:59:59.000Z

454

Covered Product Category: Commercial Steam Cookers | Department...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

energy cost with an average commercial electric steam cooker life of 12 years. Future electricity price trends and a 3% discount rate are based on Federal guidelines (NISTIR...

455

Covered Product Category: Commercial Steam Cookers  

Energy.gov (U.S. Department of Energy (DOE))

The Federal Energy Management Program (FEMP) provides acquisition guidance for commercial steam cookers, which are covered by the ENERGY STAR program.

456

Industrial Steam System Heat-Transfer Solutions  

Energy.gov (U.S. Department of Energy (DOE))

This brief provides an overview of considerations for selecting the best heat-transfer equipment for various steam systems and applications.

457

Topping PCFB combustion plant with supercritical steam pressure  

SciTech Connect

Research is being conducted to develop a new type of coal fired plant for electric power generation. This new type of plant, called a second generation or topping pressurized circulating fluidized bed combustion (topping PCFB) plant, offers the promise of efficiencies greater than 46 percent (HHV), with both emissions and a cost of electricity that are significantly lower than conventional pulverized coal fired plants with scrubbers. The topping PCFB plant incorporates the partial gasification of coal in a carbonizer, the combustion of carbonizer char in a pressurized circulating fluidized bed combustor (PCFB), and the combustion of carbonizer fuel gas in a topping combustor to achieve gas turbine inlet temperatures of 2,300 F and higher. After completing pilot plant tests of a carbonizer, a PCFB, and a gas turbine topping combustor, all being developed for this new plant, the authors calculated a higher heating value efficiency of 46.2 percent for the plant. In that analysis, the plant operated with a conventional 2,400 psig steam cycle with 1,000 F superheat and reheat steam and a 2.5 inch mercury condenser back pressure. This paper identifies the efficiency gains that this plant will achieve by using supercritical pressure steam conditions.

Robertson, A. [Foster Wheeler Development Corp., Livingston, NJ (United States); White, J. [Parsons Power Group Inc., Reading, PA (United States)

1997-11-01T23:59:59.000Z

458

DOE's BestPractices Steam End User Training Steam End User Training  

E-Print Network (OSTI)

DOE's BestPractices Steam End User Training Steam End User Training Conclusion Module 1 June 28, 2010 Steam EndUser Training Conclusion Module Slide 1 Conclusions Let's briefly examine the major items we have covered in this training. [Slide Visual ­ Contents of Module Sections

Oak Ridge National Laboratory

459

Brady Power Plant steam quality and purity enhancement  

SciTech Connect

Brine carry-over from the high pressure and low pressure separators was causing heavy scale build-up on the turbine nozzles and components. This resulted in higher maintenance, reduced power generation and contributed to premature failures of a turbine rotor. Several options to mitigate the impurity laden steam problem, including conventional and experimental methods, were investigated. ESI, seeking cost-effective technology to improve the bottom line, chose a promising but unconventional low-cost, fast track alternative to revamp the facility. This commitment resulted in up to a 25 fold improvement in steam quality and purity; and was engineered and installed in one half (50%) the time, for one third (33%) the cost of a conventional geothermal design.

Hoffman, A. [ESI Energy, West Palm Beach, FL (United States); Jung, D. [Two-Phase Engineering & Research, Inc., Santa Rosa, CA (United States)

1997-12-31T23:59:59.000Z

460

Liquid Fuel Production from Biomass via High Temperature Steam Electrolysis  

SciTech Connect

A process model of syngas production using high temperature electrolysis and biomass gasification is presented. Process heat from the biomass gasifier is used to heat steam for the hydrogen production via the high temperature steam electrolysis process. Hydrogen from electrolysis allows a high utilization of the biomass carbon for syngas production. Oxygen produced form the electrolysis process is used to control the oxidation rate in the oxygen-fed biomass gasifier. Based on the gasifier temperature, 94% to 95% of the carbon in the biomass becomes carbon monoxide in the syngas (carbon monoxide and hydrogen). Assuming the thermal efficiency of the power cycle for electricity generation is 50%, (as expected from GEN IV nuclear reactors), the syngas production efficiency ranges from 70% to 73% as the gasifier temperature decreases from 1900 K to 1500 K. Parametric studies of system pressure, biomass moisture content and low temperature alkaline electrolysis are also presented.

Grant L. Hawkes; Michael G. McKellar

2009-11-01T23:59:59.000Z

Note: This page contains sample records for the topic "recovery steam generator" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

Produce synthesis gas by steam reforming natural gas  

SciTech Connect

For production of synthesis gas from natural gas the steam reforming process is still the most economical. It generates synthesis gas for ammonia and methanol production as well as hydrogen, oxo gas and town gas. After desulfurization, the natural gas is mixed with steam and fed to the reforming furnace where decomposition of hydrocarbons takes place in the presence of a nickel-containing catalyst. Synthesis gas that must be free of CO and CO/sub 2/ is further treated in a CO shift conversion, a CO/sub 2/ scrubbing unit and a methanation unit. The discussion covers the following topics - reforming furnace; the outlet manifold system; secondary reformer; reformed gas cooling. Many design details of equipment used are given.

Marsch, H.D.; Herbort, H.J.

1982-06-01T23:59:59.000Z

462

Use and recovery of ammonia in power plant cycles  

SciTech Connect

The paper presents some practical and theoretical aspects of the use of ammonia in power plant water/steam cycles. The plants considered are fully automated units with once-through boilers, which operate under complex conditions and are subject to frequent starts and load changes. The boilers are chemically conditioned with combined oxygen ammonia treatment and the condensate polishing plant is only operated during start-up, in the event of a condenser leak or to remove excess ammonia. The paper also covers the recovery of ammonia from the condensate polishing plant waste regenerants and reuse for conditioning the feedwater. In particular, the paper deals with the following points: theoretical analysis of the chemical equilibrium of ammonia and carbon dioxide in water, including calculation of the concentrations from the parameters normally measured, such as conductivities and pH; equipment for monitoring and controlling the amount of ammonia fed to the water/steam cycle, including the optimum positioning of the sampling and feed-points, the parameters suitable for feed control and their temperature dependence; the partial pressure and distribution coefficient of ammonia; the consumption and losses of ammonia through the water/steam cycle during operation; the recovery of ammonia from condensate polishing plant waste regenerants by steam stripping. The paper should be of interest to both planning engineers and plant operators.

Pflug, H.D.; Bettenworth, H.J.; Syring, H.A. [Preussen Elektra AG, Hanover (Germany)

1995-01-01T23:59:59.000Z

463

Designing an ultrasupercritical steam turbine  

SciTech Connect

Carbon emissions produced by the combustion of coal may be collected and stored in the future, but a better approach is to reduce the carbon produced through efficient combustion technologies. Increasing the efficiency of new plants using ultrasupercritical (USC) technology will net less carbon released per megawatt-hour using the world's abundant coal reserves while producing electricity at the lowest possible cost. The article shows how increasing the steam turbine operating conditions for a new USC project in the USA and quantify the potential CO{sub 2} reduction this advanced design makes possible. 7 figs., 3 tabs.

Klotz, H.; Davis, K.; Pickering, E. [Alstom (Germany)

2009-07-15T23:59:59.000Z

464

Geismar TDI Plant Steam Optimization  

E-Print Network (OSTI)

BASF North America 7 ESL-IE-13-05-19 Proceedings of the Thrity-Fifth Industrial Energy Technology Conference New Orleans, LA. May 21-24, 2013 BASF?s strategic principles A conscientious commitment to our investors, customers, employees...Geismar TDI Plant Steam Optimization May 23rd, 2013 IET Conference Meredith Bailey, PDP Engineer BASF Corporation (734) 324-5047 meredith.bailey@basf.com ESL-IE-13-05-19 Proceedings of the Thrity-Fifth Industrial Energy Technology...

Baily, M.

2013-01-01T23:59:59.000Z

465

Using the Biphase Turbine to Generate Useful Energy from Process Streams  

E-Print Network (OSTI)

devices' (steam or hydraulic turbines for example) have been demonstrated in its application to geothermal energy conversion. Its development and application to other areas such as waste-heat recovery, desalination, solar cooling, and now, two phase...

Helgeson, N. L.; Studhalter, W. R.

1981-01-01T23:59:59.000Z

466

Steam Plant Replaces Outdated Coal-Fired System | Department...  

Office of Environmental Management (EM)

Steam Plant Replaces Outdated Coal-Fired System September 1, 2012 - 12:00pm Addthis A new natural gas-fired steam plant will replace an older coal-fired steam plant shown here. The...

467

Effective Steam Trap Selection/Maintenance - Its Payback  

E-Print Network (OSTI)

In oil refineries and petrochemical plants large number of steam traps are used to discharge condensate from steam mains, tracers and process equipment. Early efforts on steam traps focused almost exclusively on their selection and sizing...

Garcia, E.

1984-01-01T23:59:59.000Z

468

Integration and operation of post-combustion capture system on coal-fired power generation: load following and peak power  

E-Print Network (OSTI)

Coal-fired power plants with post combustion capture and sequestration (CCS) systems have a variety of challenges to integrate the steam generation, air quality control, cooling water systems and steam turbine with the ...

Brasington, Robert David, S.M. Massachusetts Institute of Technology

2012-01-01T23:59:59.000Z

469

Research on Oil Recovery Mechanisms in Heavy Oil Reservoirs  

SciTech Connect

The goal of this project is to increase recovery of heavy oils. Towards that goal studies are being conducted in how to assess the influence of temperature and pressure on the absolute and relative permeability to oil and water and on capillary pressure; to evaluate the effect of different reservoir parameters on the in site combustion process; to develop and understand mechanisms of surfactants on for the reduction of gravity override and channeling of steam; and to improve techniques of formation evaluation.

Louis M. Castanier; William E. Brigham

1998-03-31T23:59:59.000Z

470

Investigation of Multiscale and Multiphase Flow, Transport and Reaction in Heavy Oil Recovery Processes  

SciTech Connect

The emphasis of this work was on investigating the mechanisms and factors that control the recovery of heavy oil with the objective to improve recovery efficiencies. For this purpose the interaction of flow transport and reaction at various scales from the pore network to the field scales were studied. Particular mechanisms to be investigated included the onset of gas flow in foamy oil production and in in-situ steam drive, gravity drainage in steam processes, the development of sustained combustion fronts and the propagation of foams in porous media. Analytical, computational and experimental methods were utilized to advance the state of the art in heavy oil recovery. Successful completion of this research was expected to lead to improvements in the Recovery efficiency of various heavy oil processes.

Yorstos, Yanis C.

2002-03-11T23:59:59.000Z

471

Investigation of Multiscale and Multiphase Flow, Transport and Reaction in Heavy Oil Recovery Process  

SciTech Connect

The emphasis of this work was on investigating the mechanisms and factors that control the recovery of heavy oil, with the objective to improve recovery efficiencies. For this purpose, the interaction of flow, transport and reaction at various scales (from the pore-network to the field scales) were studied. Particular mechanisms investigated included the onset of gas flow in foamy oil production and in in-situ steam drive, gravity drainage in steam process, the development of sustained combustion fronts and the propagation of foams in porous media. Analytical, computational and experimental methods were utilized to advance the state of the art in heavy oil recovery. Successful completion of this research was expected to lead to improvements in the recovery efficiency of various heavy oil processes.

Yortsos, Yanis C.; Akkutlu, Yucel; Amilik, Pouya; Kechagia, Persefoni; Lu, Chuan; Shariati, Maryam; Tsimpanogiannis, Ioannis; Zhan, Lang

2000-01-19T23:59:59.000Z

472

Steam engines on a microscopic scale  

SciTech Connect

This article describes the operation of a miniature steam engine that can develop 100 times more power than existing microsystems actuated by electrostatic forces. The topics of the article include current uses for electrostatic actuators and possible applications of the miniature steam engine, the design and operation of the engine, and problems associated with increasing the operating frequency of the engine.

O'Connor, L.

1994-01-01T23:59:59.000Z

473

Steam Plant Conversion Eliminating Campus Coal Use  

E-Print Network (OSTI)

high-efficiency NG/fuel oil boilers · Slight reduction in steam production capacity · Requires: Building heating Domestic hot water Lab sterilization UT's Steam Plant #12;· Powered by 5 boilers: 2 emissions standard (Boiler MACT): · For existing boilers w/ heat input capacity of 10 MMBtu/hr or greater

Dai, Pengcheng

474

Steam reforming utilizing sulfur tolerant catalyst  

SciTech Connect

This patent describes a steam reforming process for converting hydrocarbon material to hydrogen gas in the presence of sulfur which consists of: adding steam to the hydrocarbon material and passing the steam and hydrocarbon material over catalyst material at elevated temperatures. The improvement comprises utilizing as a catalyst material high activity, sulfur tolerant catalyst of platinum supported on lanthanum stabilized alumina or magnesium promoted lanthanum stabilized alumina. It also describes a steam process for converting hydrocarbon material to hydrogen gas in the presence of sulfur which consists of steam to the hydrocarbon material over catalyst material at elevated temperatures. The improvement comprises utilizing as a catalyst material high activity, sulfur tolerant catalysts consisting essentially of iridium supported on lanthanum stabilized alumina or magnesium promoted lanthanum stabilized alumina. In addition a steam reforming process is described for converting hydrocarbon material to hydrogen gas in the presence of sulfur comprising adding steam to the hydrocarbon material and passing the steam and hydrocarbon material over catalyst material at elevated temperatures. The improvement comprises utilizing as a catalyst material high activity sulfur tolerant catalysts consisting essentially of palladium supported on lanthanum stabilized alumina or magnesium promoted lanthanum stabilized alumina.

Setzer, H.J.; Karavolis, S.; Bett, J.A.S.

1987-09-15T23:59:59.000Z

475

Steam System Optimization: A Case Study  

E-Print Network (OSTI)

This paper highlights the study findings in a steam system in a plant from a multinational Petrochemical giant in an European country. The steam system operates with an annual budget of $8.9 million (local currency was converted to US Dollars...

Iordanova, N.; Venkatesan, V. V.

476

The Progress of the Steam Turbine  

Science Journals Connector (OSTI)

... in pressure, and the steam expands gradually by small increments. In a moderate-sized turbo-motor there may be from thirty to eighty successive rings, and when the steam ... and relieve end pressure on the thrust bearing. Fig. 3 shows a 350 kilowatt turbo-alternator, thirteen of which size are now at work in the London stations.

1897-09-30T23:59:59.000Z

477

Program assists steam drive design project  

SciTech Connect

A new program for the HP-41CV programmable calculator will compute all parameters required for a steam drive project design. The Marx and Langenheim model assumptions are used to solve a more advanced version of the Myhill and Stegemeier model. Also, the Mandl and Volek model assuptions are used to compute the size of the steam zone.

Mendez, A.A.

1984-08-27T23:59:59.000Z

478

Use Vapor Recompression to Recover Low-Pressure Waste Steam  

Energy.gov (U.S. Department of Energy (DOE))

This tip sheet on recovering low-pressure waste steam provides how-to advice for improving industrial steam systems using low-cost, proven practices and technologies.

479

An in-line microwave steam quality sensor.  

E-Print Network (OSTI)

??Saturated steam is a widely used industrial medium for the efficient transfer of energy. The proportion of saturated vapor steam to saturated condensate of the (more)

Faulkner, Christopher D.

2014-01-01T23:59:59.000Z

480

Savannah River's Biomass Steam Plant Success with Clean and Renewable...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Savannah River's Biomass Steam Plant Success with Clean and Renewable Energy Savannah River's Biomass Steam Plant Success with Clean and Renewable Energy In order to meet the...

Note: This page contains sample records for the topic "recovery steam generator" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


481