National Library of Energy BETA

Sample records for recovery act enhanced

  1. Recovery Act

    Broader source: Energy.gov [DOE]

    Recovery Act and Energy Department programs were designed to stimulate the economy while creating new power sources, conserving resources and aligning the nation to once again lead the global energy economy.

  2. Recovery Act: Enhancing State Energy Assurance | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative FuelsofProgram: Report Appendices |ProjectKnow YourDepartment ofAugustPastRecovery

  3. Recovery Act Milestones

    ScienceCinema (OSTI)

    Rogers, Matt

    2013-05-29

    Every 100 days, the Department of Energy is held accountable for a progress report on the American Recovery and Reinvestment Act. Update at 200 days, hosted by Matt Rogers, Senior Advisor to Secretary Steven Chu for Recovery Act Implementation.

  4. ARM - Recovery Act

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of NaturalDukeWakefieldSulfateSciTechtail.Theory of raregovAboutRecovery Act Recovery Act Logo Subscribe FAQs Recovery Act

  5. Recovery Act State Memos Virginia

    Energy Savers [EERE]

    * VIRGINIA RECOVERY ACT SNAPSHOT Virginia has substantial natural resources, including coal and natural gas. The American Recovery & Reinvestment Act (ARRA) is making a...

  6. New York Recovery Act Snapshot

    Broader source: Energy.gov [DOE]

    The American Recovery & Reinvestment Act (ARRA) is making a meaningful down payment on the nation's energy and environmental future. The Recovery Act investments in New York are supporting a...

  7. ARM - Recovery Act Instruments

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Comments?govInstrumentsnoaacrnBarrow, Alaska OutreachCalendarPress Releases Related2ActRecovery Act Instruments

  8. Recovery Act Workforce Development | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Announces Nearly 100 Million for Smart Grid Workforce Training and Development. Congressional Testimony Recovery Act Recovery Act Interoperability Recovery Act SGIG...

  9. Biomass Program Recovery Act Factsheet

    SciTech Connect (OSTI)

    2010-03-01

    The Biomass Program has awarded about $718 million in American Recovery and Reinvestment Act (Recovery Act) funds. The projects the Program is supporting are intended to: Accelerate advanced biofuels research, development, and demonstration; Speed the deployment and commercialization of advanced biofuels and bioproducts; Further the U.S. bioindustry through market transformation and creating or saving a range of jobs.

  10. Wyoming Recovery Act State Memo

    Broader source: Energy.gov [DOE]

    Wyoming has substantial natural resources including coal, natural gas, oil, and wind power. The American Recovery & Reinvestment Act (ARRA) is making a meaningful down payment on the nation’s...

  11. Wisconsin Recovery Act State Memo

    Office of Energy Efficiency and Renewable Energy (EERE)

    Wisconsin has substantial natural resources, including biomass and hydroelectric power. The American Recovery & Reinvestment Act (ARRA)is making a meaningful down payment on the nation’s energy...

  12. Recovery Act | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data CenterFinancialInvesting inServicesRecovery Act » Recovery Act

  13. Recovery Act. Development and Validation of an Advanced Stimulation Prediction Model for Enhanced Geothermal Systems

    SciTech Connect (OSTI)

    Gutierrez, Marte

    2013-12-31

    This research project aims to develop and validate an advanced computer model that can be used in the planning and design of stimulation techniques to create engineered reservoirs for Enhanced Geothermal Systems. The specific objectives of the proposal are to; Develop a true three-dimensional hydro-thermal fracturing simulator that is particularly suited for EGS reservoir creation; Perform laboratory scale model tests of hydraulic fracturing and proppant flow/transport using a polyaxial loading device, and use the laboratory results to test and validate the 3D simulator; Perform discrete element/particulate modeling of proppant transport in hydraulic fractures, and use the results to improve understand of proppant flow and transport; Test and validate the 3D hydro-thermal fracturing simulator against case histories of EGS energy production; and Develop a plan to commercialize the 3D fracturing and proppant flow/transport simulator. The project is expected to yield several specific results and benefits. Major technical products from the proposal include; A true-3D hydro-thermal fracturing computer code that is particularly suited to EGS; Documented results of scale model tests on hydro-thermal fracturing and fracture propping in an analogue crystalline rock; Documented procedures and results of discrete element/particulate modeling of flow and transport of proppants for EGS applications; and Database of monitoring data, with focus of Acoustic Emissions (AE) from lab scale modeling and field case histories of EGS reservoir creation.

  14. Recovery Act milestone: Excavation

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration wouldMassR&D100 Winners * Impacts onReal-TimeRecord-SettingAct Workforcemilestone:

  15. Enhanced coalbed methane recovery

    SciTech Connect (OSTI)

    Mazzotti, M.; Pini, R.; Storti, G. [ETH, Zurich (Switzerland). Inst. of Process Engineering

    2009-01-15

    The recovery of coalbed methane can be enhanced by injecting CO{sub 2} in the coal seam at supercritical conditions. Through an in situ adsorption/desorption process the displaced methane is produced and the adsorbed CO{sub 2} is permanently stored. This is called enhanced coalbed methane recovery (ECBM) and it is a technique under investigation as a possible approach to the geological storage of CO{sub 2} in a carbon dioxide capture and storage system. This work reviews the state of the art on fundamental and practical aspects of the technology and summarizes the results of ECBM field tests. These prove the feasibility of ECBM recovery and highlight substantial opportunities for interdisciplinary research at the interface between earth sciences and chemical engineering.

  16. District of Columbia Recovery Act State Memo

    Broader source: Energy.gov [DOE]

    The American Recovery & Reinvestment Act (ARRA) is making a meaningful down payment on the nation’s energy and environmental future. The Recovery Act investments in the District of Columbia...

  17. Recovery Act State Memos Tennessee

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:Financing Tool FitsProject Developsfor UCNIEnvironmental Impact StatementRecovery Act Smart

  18. Recovery Act State Memos California

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankADVANCED MANUFACTURINGEnergy BillsNo. 195 - Oct. 7,DOERTI | Department8Recovery ActCalifornia For

  19. Recovery Act Federal Register Notices | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    a grant from the Department of Energy's Smart Grid Investment Grant (SGIG) Program. More Congressional Testimony Recovery Act Recovery Act Interoperability Recovery Act SGIG...

  20. Connecticut Recovery Act State Memo | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Connecticut Recovery Act State Memo Connecticut Recovery Act State Memo The American Recovery & Reinvestment Act (ARRA) is making a meaningful downpayment on the nation's energy...

  1. Recovery Act State Memos Nevada

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankADVANCED MANUFACTURINGEnergy BillsNo. 195 - Oct. 7,DOERTI | Department8Recovery ActCalifornia ForNevada

  2. Recovery Act | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative FuelsofProgram: Report Appendices |ProjectKnow YourDepartment ofAugustPastRecovery Act

  3. Microsoft Word - Attachment 3 Recovery Act notification | Department...

    Energy Savers [EERE]

    Microsoft Word - Attachment 3 Recovery Act notification Microsoft Word - Attachment 3 Recovery Act notification More Documents & Publications Microsoft Word - Attachment 3 Recovery...

  4. Recovery Act Progress Update: Reactor Closure Feature

    SciTech Connect (OSTI)

    Cody, Tom

    2010-01-01

    A Recovery Act Progress Update. Decommissioning of two nuclear reactor sites at the Department of Energy's facilities has been approved and is underway.

  5. Faces of the Recovery Act: 1366 Technologies

    Broader source: Energy.gov [DOE]

    LEXINGTON, MA - At 1366 Technologies, Ely Sachs and Frank van Mierlo are using ARPA-E Recovery Act funding to dramatically reduce the costs of solar panel production.

  6. Faces of the Recovery Act: Sun Catalytix

    Broader source: Energy.gov [DOE]

    At the Massachusetts Institute of Technology, Dan Nocera talks about Sun Catalytix, the next generation of solar energy, and ARPA-E funding through the Recovery Act.

  7. Recovery Act Progress Update: Reactor Closure Feature

    ScienceCinema (OSTI)

    Cody, Tom

    2012-06-14

    A Recovery Act Progress Update. Decommissioning of two nuclear reactor sites at the Department of Energy's facilities has been approved and is underway.

  8. Enhanced oil recovery system

    DOE Patents [OSTI]

    Goldsberry, Fred L. (Spring, TX)

    1989-01-01

    All energy resources available from a geopressured geothermal reservoir are used for the production of pipeline quality gas using a high pressure separator/heat exchanger and a membrane separator, and recovering waste gas from both the membrane separator and a low pressure separator in tandem with the high pressure separator for use in enhanced oil recovery, or in powering a gas engine and turbine set. Liquid hydrocarbons are skimmed off the top of geothermal brine in the low pressure separator. High pressure brine from the geothermal well is used to drive a turbine/generator set before recovering waste gas in the first separator. Another turbine/generator set is provided in a supercritical binary power plant that uses propane as a working fluid in a closed cycle, and uses exhaust heat from the combustion engine and geothermal energy of the brine in the separator/heat exchanger to heat the propane.

  9. Recovery Act: Develop a Modular Curriculum for Training University Students in Industry Standard CO{sub 2} Sequestration and Enhanced Oil Recovery Methodologies

    SciTech Connect (OSTI)

    Trentham, R. C.; Stoudt, E. L.

    2013-05-31

    CO{sub 2} Enhanced Oil Recovery, Sequestration, & Monitoring Measuring & Verification are topics that are not typically covered in Geoscience, Land Management, and Petroleum Engineering curriculum. Students are not typically exposed to the level of training that would prepare them for CO{sub 2} reservoir and aquifer sequestration related projects when they begin assignments in industry. As a result, industry training, schools & conferences are essential training venues for new & experienced personnel working on CO{sub 2} projects for the first time. This project collected and/or generated industry level CO{sub 2} training to create modules which faculties can utilize as presentations, projects, field trips and site visits for undergrad and grad students and prepare them to "hit the ground running" & be contributing participants in CO{sub 2} projects with minimal additional training. In order to create the modules, UTPB/CEED utilized a variety of sources. Data & presentations from industry CO{sub 2} Flooding Schools & Conferences, Carbon Management Workshops, UTPB Classes, and other venues was tailored to provide introductory reservoir & aquifer training, state-of-the-art methodologies, field seminars and road logs, site visits, and case studies for students. After discussions with faculty at UTPB, Sul Ross, Midland College, other universities, and petroleum industry professionals, it was decided to base the module sets on a series of road logs from Midland to, and through, a number of Permian Basin CO{sub 2} Enhanced Oil Recovery (EOR) projects, CO{sub 2} Carbon Capture and Storage (CCUS) projects and outcrop equivalents of the formations where CO{sub 2} is being utilized or will be utilized, in EOR projects in the Permian Basin. Although road logs to and through these projects exist, none of them included CO{sub 2} specific information. Over 1400 miles of road logs were created, or revised specifically to highlight CO{sub 2} EOR projects. After testing a number of different entry points into the data set with students and faculty form a number of different universities, it was clear that a standard website presentation with a list of available power point presentations, excel spreadsheets, word documents and pdf's would not entice faculty, staff, and students at universities to delve deeper into the website http://www.utpb.edu/ceed/student modules.

  10. Faces of the Recovery Act: Sun Catalytix

    ScienceCinema (OSTI)

    Nocera, Dave

    2013-05-29

    BOSTON- At the Massachusetts Institute of Technology, Dan Nocera talks about Sun Catalytix, the next generation of solar energy, and ARPA-E funding through the Recovery Act. To learn about more ARPA-E projects through the Recovery Act: http://arpa-e.energy.gov/FundedProjects.aspx

  11. Optimize carbon dioxide sequestration, enhance oil recovery

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Optimize carbon dioxide sequestration, enhance oil recovery Optimize carbon dioxide sequestration, enhance oil recovery The simulation provides an important approach to estimate...

  12. RECOVERY ACT: TAPOCO PROJECT: CHEOAH UPGRADE

    SciTech Connect (OSTI)

    Tran, Paul

    2013-02-28

    Under Funding Opportunity Announcement Number: DE-FOA-0000120, Recovery Act: Hydroelectric Facility Modernization, Alcoa Power Generating Inc. (APGI), a fully owned subsidiary of Alcoa Inc., implemented major upgrades at its Cheoah hydroelectric facility near Robbinsville, North Carolina.

  13. The Economic Recovery Tax Act of 1981. 

    E-Print Network [OSTI]

    Pena, Jose G.; Lovell, Ashley C.; Kensing, Robert H.

    1983-01-01

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 Considerations for Estate Planning under ERTA ............................................... 8 2 The Economic Recovery Tax Act of 1981 Jose G. Pena, Ashley C. Lovell and Robert H. Kensing* Major changes in the gift and estate tax laws were...

  14. American Recovery and Reinvestment Act of 2009: Biomass Program Investments

    SciTech Connect (OSTI)

    2012-06-01

    This fact sheet discusses the Biomass Program's investments using Recovery Act funding, as well as make note of how Recovery Act projects are currently doing.

  15. Recovery Act Selections for Smart Grid Invesment Grant Awards...

    Energy Savers [EERE]

    Recovery Act Selections for Smart Grid Invesment Grant Awards- By Category Updated July 2010 Recovery Act Selections for Smart Grid Invesment Grant Awards- By Category Updated July...

  16. Recovery Act Selections for Smart Grid Investment Grant Awards...

    Energy Savers [EERE]

    Recovery Act Selections for Smart Grid Investment Grant Awards- By Category Updated July 2010 Recovery Act Selections for Smart Grid Investment Grant Awards- By Category Updated...

  17. President Obama Announces Over $467 Million in Recovery Act Funding...

    Energy Savers [EERE]

    President Obama Announces Over 467 Million in Recovery Act Funding for Geothermal and Solar Energy Projects President Obama Announces Over 467 Million in Recovery Act Funding for...

  18. President Obama Announces Over $467 Million in Recovery Act Funding...

    Energy Savers [EERE]

    Over 467 Million in Recovery Act Funding for Geothermal and Solar Energy Projects President Obama Announces Over 467 Million in Recovery Act Funding for Geothermal and Solar...

  19. Study Shows Significant Economic Impact from Recovery Act | Department...

    Office of Environmental Management (EM)

    Study Shows Significant Economic Impact from Recovery Act Study Shows Significant Economic Impact from Recovery Act A study recently released shows the 1.6 billion the Savannah...

  20. Recovery Act: Clean Coal Power Initiative | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    A report detailling the Clean Coal Power initiative funded under the American Recovery and Renewal Act of 2009. Recovery Act: Clean Coal Power Initiative More Documents &...

  1. Faces of the Recovery Act: 1366 Technologies

    SciTech Connect (OSTI)

    Sachs, Ely; Mierlo, Frank van; Obama, Barack

    2010-01-01

    LEXINGTON, MA - At 1366 Technologies, Ely Sachs and Frank van Mierlo are using ARPA-E Recovery Act funding to dramatically reduce the costs of solar panel production. To read more about the project: http://arpa-e.energy.gov/FundedProjects.aspx#1366 To see more projects funded by the Recovery Act through ARPA-E: http://arpa-e.energy.gov/FundedProjects.aspx

  2. Faces of the Recovery Act: 1366 Technologies

    ScienceCinema (OSTI)

    Sachs, Ely; Mierlo, Frank van; Obama, Barack

    2013-05-29

    LEXINGTON, MA - At 1366 Technologies, Ely Sachs and Frank van Mierlo are using ARPA-E Recovery Act funding to dramatically reduce the costs of solar panel production. To read more about the project: http://arpa-e.energy.gov/FundedProjects.aspx#1366 To see more projects funded by the Recovery Act through ARPA-E: http://arpa-e.energy.gov/FundedProjects.aspx

  3. Recovery Act Reports | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data CenterFinancialInvesting inServicesRecovery Act » Recovery Act Reports

  4. Enhancing Heat Recovery for Thermoelectric Devices | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Heat Recovery for Thermoelectric Devices Enhancing Heat Recovery for Thermoelectric Devices Presentation given at the 16th Directions in Engine-Efficiency and Emissions Research...

  5. American Recovery and Reinvestment Act

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 OutreachProductswsicloudwsiclouddenDVA N C E D B L O O D S TAPropaneand Los Alamos NationalAmerican Recovery

  6. Recovery Act Recipient Data | Department of Energy

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on DeliciousMathematicsEnergyInterested PartiesBuildingBudget ||DepartmentReadoutReviewRecordRecoveryRecovery Act

  7. Biosurfactant and enhanced oil recovery

    DOE Patents [OSTI]

    McInerney, Michael J. (Norman, OK); Jenneman, Gary E. (Norman, OK); Knapp, Roy M. (Norman, OK); Menzie, Donald E. (Norman, OK)

    1985-06-11

    A pure culture of Bacillus licheniformis strain JF-2 (ATCC No. 39307) and a process for using said culture and the surfactant lichenysin produced thereby for the enhancement of oil recovery from subterranean formations. Lichenysin is an effective surfactant over a wide range of temperatures, pH's, salt and calcium concentrations.

  8. Recovery Act Weekly Video: 200 West Drilling

    ScienceCinema (OSTI)

    None

    2012-06-14

    President of Cascade Drilling, Bruce, talks about his contract with the Department of Energy and what his team is doing to improve water treatment and environmental cleanup. The small business owner hits on how the Recovery Act saved him from downsizing and helped him stay competitive and safe on site.

  9. Steelmaker Matches Recovery Act Funds to Save Energy & Reduce...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Reduce Steel Production Costs ArcelorMittal Indiana Harbor Energy Recovery & Reuse 504 Boiler constructed and installed with DOE Recovery Act Funding The Advanced Manufacturing...

  10. Steelmaker Matches Recovery Act Funds to Save Energy & Reduce...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    factsheet describing how ArcelorMittal Indiana Harbor Energy Recovery & Reuse 504 Boiler was constructed and installed with DOE Recovery Act Funding. Blast Furnace Gas...

  11. Treasury, Energy Announce More Than $3 Billion in Recovery Act...

    Energy Savers [EERE]

    More Than 3 Billion in Recovery Act Funds for Renewable Energy Projects Treasury, Energy Announce More Than 3 Billion in Recovery Act Funds for Renewable Energy Projects July 9,...

  12. Economic Impact of Recovery Act Investments in the Smart Grid...

    Energy Savers [EERE]

    Economic Impact of Recovery Act Investments in the Smart Grid Report Now Available Economic Impact of Recovery Act Investments in the Smart Grid Report Now Available April 25, 2013...

  13. Recovery Act Workers Accomplish Cleanup of Second Cold War Coal...

    Office of Environmental Management (EM)

    June 21, 2011 Recovery Act Workers Accomplish Cleanup of Second Cold War Coal Ash Basin AIKEN, S.C. - American Recovery and Reinvestment Act workers re- cently cleaned up a second...

  14. WIPP Uses Recovery Act Funding to Reduce Nuclear Waste Footprint...

    Office of Environmental Management (EM)

    WIPP Uses Recovery Act Funding to Reduce Nuclear Waste Footprint WIPP Uses Recovery Act Funding to Reduce Nuclear Waste Footprint August 1, 2011 - 12:00pm Addthis Media Contact Deb...

  15. California Recovery Act State Memo | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Act State Memo California Recovery Act State Memo California has substantial natural resources, including oil, gas, solar, wind, geothermal, and hydroelectric power. The...

  16. Recovery Act: Demonstrating The Commercial Feasibility Of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:Financing Tool FitsProject Developsfor UCNIEnvironmental Impact StatementRecovery ActDepartment

  17. 200,000 homes weatherized under the Recovery Act

    Broader source: Energy.gov [DOE]

    Today Vice President Biden announced that the Weatherization Assistance Program has weatherized 200,000 homes under the Recovery Act.

  18. Method for enhanced oil recovery

    DOE Patents [OSTI]

    Comberiati, Joseph R. (Morgantown, WV); Locke, Charles D. (Morgantown, WV); Kamath, Krishna I. (Chicago, IL)

    1980-01-01

    The present invention is directed to an improved method for enhanced recovery of oil from relatively "cold" reservoirs by carbon dioxide flooding. In oil reservoirs at a temperature less than the critical temperature of 87.7.degree. F. and at a pore pressure greater than the saturation pressure of carbon dioxide at the temperature of the reservoir, the carbon dioxide remains in the liquid state which does not satisfactorily mix with the oil. However, applicants have found that carbon dioxide can be vaporized in situ in the reservoir by selectively reducing the pore pressure in the reservoir to a value less than the particular saturated vapor pressure so as to greatly enhance the mixing of the carbon dioxide with the oil.

  19. RECOVERY ACT: Geologic Sequestration Training and Research

    Office of Scientific and Technical Information (OSTI)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of NaturalDukeWakefield MunicipalTechnical Report:Speeding accessby aLEDSpeeding FINAL Progress Report ProjectRECOVERY ACT:

  20. Laboratory awards final Recovery Act demolition contracts

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach Home Room NewsInformationJesse Bergkamp Graduate studentScience (SC)Planning ProcessRecovery Act

  1. Optimize carbon dioxide sequestration, enhance oil recovery

    E-Print Network [OSTI]

    - 1 - Optimize carbon dioxide sequestration, enhance oil recovery January 8, 2014 Los Alamos simulation to optimize carbon dioxide (CO2) sequestration and enhance oil recovery (CO2-EOR) based on known production. Due to carbon capture and storage technology advances, prolonged high oil prices

  2. National Weatherization Assistance Program Characterization Describing the Recovery Act Period

    SciTech Connect (OSTI)

    Tonn, Bruce Edward; Rose, Erin M.; Hawkins, Beth A.

    2015-10-01

    This report characterizes the U.S. Department of Energy s Weatherization Assistance Program (WAP) during the American Recovery and Reinvestment Act of 2009 (Recovery Act) period. This research was one component of the Recovery Act evaluation of WAP. The report presents the results of surveys administered to Grantees (i.e., state weatherization offices) and Subgrantees (i.e., local weatherization agencies). The report also documents the ramp up and ramp down of weatherization production and direct employment during the Recovery Act period and other challenges faced by the Grantees and Subgrantees during this period. Program operations during the Recovery Act (Program Year 2010) are compared to operations during the year previous to the Recovery Act (Program Year 2008).

  3. Recovery Act Funds at Work: Smart Grid Investment Grant Profiles...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    the country, visit OE's Recovery Act page. Additional information is available on SmartGrid.gov, including impact metrics, tracking data, and specifics on all projects. Case...

  4. Federal Energy Management Program Recovery Act Project Stories

    Broader source: Energy.gov [DOE]

    Funded by the American Recovery and Reinvestment Act, these Federal Energy Management Program (FEMP) projects exemplify the range of technical assistance provided to federal agencies.

  5. Recovery Act ? An Interdisciplinary Program for Education and...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Program for Education and Outreach in Transportation Electrification Recovery ActTransportation Electrification Education Partnership for Green Jobs and Sustainable Mobility...

  6. Idaho Operations Office: American Recovery and Reinvestment Act Update

    ScienceCinema (OSTI)

    Provencher, Rick

    2012-06-14

    An update from Idaho National Laboratory, Rick Provencher addresses the progress that has been made due to the American Recovery and Reinvestment Act.

  7. Treasury, Energy Surpass $1 Billion Milestone in Recovery Act...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    than 1 billion awarded to date to companies committed to investing in domestic renewable energy production. "This Recovery Act program is an example of a true federal partnership...

  8. American Recovery and Reinvestment Act of 2009 | Department of...

    Office of Environmental Management (EM)

    More Documents & Publications This taskcontract modification is for applying funding from the American Recovery Reinvestment Act FY 2008 & FY 2009 Annual Uncosted Balances Report...

  9. Recovery Act Project Clears Portsmouth Switchyard, Benefits Community through Recycling

    Broader source: Energy.gov [DOE]

    American Recovery and Reinvestment Act workers recently completed the demolition of structures in an electrical switchyard used to help power the Portsmouth Site's uranium enrichment processes for...

  10. RECOVERY ACT -- CLEAN ENERGY COALITION MICHIGAN GREEN FLEETS...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Ann Arbor, Michigan: Solar in Action (Brochure), Solar America Cities, Energy Efficiency & Renewable Energy (EERE) RECOVERY ACT -- CLEAN ENERGY COALITION MICHIGAN GREEN FLEETS...

  11. Recovery Act Supports Construction of Site's Largest Groundwater Treatment Facility

    Broader source: Energy.gov [DOE]

    Construction of the largest groundwater treatment facility at the Hanford Site – a major American Recovery and Reinvestment Act project – is on schedule and more than 70 percent...

  12. American Recovery and Reinvestment Act of 2009: Bioenergy Technologies...

    Broader source: Energy.gov (indexed) [DOE]

    The Bioenergy Technologies Office rewarded about 178 million in American Recovery and Reinvestment Act of 2009 funds; the projects accelerate advanced biofuels RD&D, speed the...

  13. Recovery Act Investment Moves EM Past Milestone of 100 Project...

    Office of Environmental Management (EM)

    achievement: completion of more than 100 projects in its 6 billion cleanup of the Manhattan Project and Cold War legacy. Recovery Act Investment Moves EM Past Milestone of...

  14. Celebrating Successes of Environmental Management Recovery Act Projects

    Broader source: Energy.gov [DOE]

    The Office of Environmental Management marked a milestone at the end of last month as they completed 84 American Recovery and Reinvestment Act-funded projects across America.

  15. Successful Sequestration and Enhanced Oil Recovery Project Could...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Successful Sequestration and Enhanced Oil Recovery Project Could Mean More Oil and Less CO2 Emissions Successful Sequestration and Enhanced Oil Recovery Project Could Mean More Oil...

  16. Department of Energy Recovery Act Investment in Biomass Technologies

    SciTech Connect (OSTI)

    2010-11-01

    The American Recovery and Reinvestment Act of 2009 (Recovery Act) provided more than $36 billion to the Department of Energy (DOE) to accelerate work on existing projects, undertake new and transformative research, and deploy clean energy technologies across the nation. Of this funding, $1029 million is supporting innovative work to advance biomass research, development, demonstration, and deployment.

  17. Biochemically enhanced oil recovery and oil treatment

    DOE Patents [OSTI]

    Premuzic, Eugene T. (East Moriches, NY); Lin, Mow (Rocky Point, NY)

    1994-01-01

    This invention relates to the preparation of new, modified organisms, through challenge growth processes, that are viable in the extreme temperature, pressure and pH conditions and salt concentrations of an oil reservoir and that are suitable for use in microbial enhanced oil recovery. The modified microorganisms of the present invention are used to enhance oil recovery and remove sulfur compounds and metals from the crude oil.

  18. Biochemically enhanced oil recovery and oil treatment

    DOE Patents [OSTI]

    Premuzic, E.T.; Lin, M.

    1994-03-29

    This invention relates to the preparation of new, modified organisms, through challenge growth processes, that are viable in the extreme temperature, pressure and pH conditions and salt concentrations of an oil reservoir and that are suitable for use in microbial enhanced oil recovery. The modified microorganisms of the present invention are used to enhance oil recovery and remove sulfur compounds and metals from the crude oil. 62 figures.

  19. NASA ACTS SATELLITE: A DISASTER RECOVERY TEST Dr. Hans Kruse

    E-Print Network [OSTI]

    Kruse, Hans

    NASA ACTS SATELLITE: A DISASTER RECOVERY TEST Dr. Hans Kruse School of Communications Systems In September 1993, NASA launched its long- awaited Advanced Communication Technology (ACTS) satellite. ACTS and opening of the Ka frequency band. Among the earliest of the tests on the new satellite was a NASA

  20. American Recovery and Reinvestment Act Accelerated Milestones

    Office of Environmental Management (EM)

    RECOVERY PROJECT OR ACTIVITY ACCELERATED MILESTONE TITLE MILESTONE DUE DATE EXPECTED ACCELERATED COMPLETION DATE WITH ARRA FUNDING STATUS INL - Cleanup of Surplus Nuclear...

  1. Highlights from U.S. Department of Energy's Fuel Cell Recovery Act Projects

    SciTech Connect (OSTI)

    Fuel Cell Technologies Office

    2012-05-01

    This fact sheets highlights U.S. Department of Energy fuel cell projects funded by the American Recovery and Reinvestment Act of 2009 (Recovery Act). More than 1,000 fuel cell systems have been deployed through Recovery Act funding.

  2. Steelmaker Matches Recovery Act Funds to Save Energy & Reduce Steel Production Costs

    Broader source: Energy.gov [DOE]

    ArcelorMittal Indiana Harbor Energy Recovery & Reuse 504 Boiler constructed and installed with DOE Recovery Act Funding

  3. Know Your Rights Under the Recovery Act!

    E-Print Network [OSTI]

    Rock, Chris

    by the employee to the Recovery Accountability and Transparency Board, an Inspector General, the Comptroller General, a member of Congress, a state or federal regulatory or law enforcement agency, a person rights and details on how to report at www.recovery.gov. 1 Section 1553 of Division A, Title XV

  4. Faces of the Recovery Act: Johnson Controls Inc.

    SciTech Connect (OSTI)

    Rolinski, Elizabeth

    2010-01-01

    Thanks in part to a $300 million grant through the Recovery Act, Johnson Controls is re-opening a plant that is now being retrofitted to produce batteries that will power tomorrow's electric cars.

  5. Faces of the Recovery Act: Johnson Controls Inc.

    Broader source: Energy.gov [DOE]

    Thanks in part to a $300 million grant through the Recovery Act, Johnson Controls is re-opening a plant in Holland, Michigan that is now being retrofitted to produce batteries that will power...

  6. Faces of the Recovery Act: Jobs at Savannah River Site

    ScienceCinema (OSTI)

    Skila Harris

    2010-09-01

    The Savannah River Site in Aiken, SC has been able to create/save thousands of jobs through the Recovery Act. These are the stories of just a few of the new hires.

  7. Faces of the Recovery Act: The Impact of Smart Grid

    Broader source: Energy.gov [DOE]

    On October 27th, 2009, Baltimore Gas & Electric was selected to receive $200 million for Smart Grid innovation projects under the Recovery Act. Watch as members of their team, along with...

  8. Recovery Act Workers Clear Reactor Shields from Brookhaven Lab

    Broader source: Energy.gov [DOE]

    American Recovery and Reinvestment Act workers are in the final stage of decommissioning a nuclear reactor after they recently removed thick steel shields once used to absorb neutrons produced for...

  9. Smart Grid Data from the American Recovery and Reinvestment Act...

    Open Energy Info (EERE)

    Smart Grid Data from the American Recovery and Reinvestment Act (ARRA) Projects The data provided in this Excel spreadsheet is the final data that was collected through the Smart...

  10. American Recovery and Reinvestment Act of 2009 CSP Awards

    Broader source: Energy.gov [DOE]

    In 2009, DOE announced six concentrating solar power (CSP) projects funded under the American Recovery and Reinvestment Act (ARRA) of 2009. The following projects were selected under this competitive solicitation, managed by the SunShot Initiative.

  11. Progress Continues Post-Recovery Act Award at Hanford Site

    Broader source: Energy.gov [DOE]

    American Recovery and Reinvestment Act work at the Hanford site continues with several projects intended to reduce the Cold War cleanup footprint, from decommissioning a plant once associated with...

  12. American Recovery and Reinvestment Act of 2009 & NEPA

    Broader source: Energy.gov [DOE]

    Section 1609(c) requires a report to Congress on the status and progress of NEPA reviews for Recovery Act funded projects and activities. The President has assigned reporting responsibility to CEQ

  13. Two Recovery Act Funding Case Studies Now Available

    Broader source: Energy.gov [DOE]

    Utilities across America are using Recovery Act funds and smart grid technologies to deliver more reliable and affordable power, recover from major storms, and improve operations. Two case studies are now available.

  14. Recovery Act's HWCTR Project Empty of Equipment, Ready for Grouting...

    Office of Environmental Management (EM)

    Recovery and Reinvestment Act Project Progress The liner installer heat-welds a sand anchor closed. The sand anchors are installed under the liner and across the length of...

  15. Faces of the Recovery Act: Johnson Controls Inc.

    ScienceCinema (OSTI)

    Rolinski, Elizabeth

    2013-05-29

    Thanks in part to a $300 million grant through the Recovery Act, Johnson Controls is re-opening a plant that is now being retrofitted to produce batteries that will power tomorrow's electric cars.

  16. Faces of the Recovery Act: Jobs at Savannah River Site

    Office of Energy Efficiency and Renewable Energy (EERE)

    The Savannah River Site in Aiken, SC has been able to create/save thousands of jobs through the Recovery Act. These are the stories of just a few of the new hires.

  17. Recovery Act-Funded Geothermal Heat Pump projects

    Office of Energy Efficiency and Renewable Energy (EERE)

    The U.S. Department of Energy (DOE) was allocated funding from the American Recovery and Reinvestment Act to conduct research into ground source heat pump technologies and applications. Projects...

  18. Faces of the Recovery Act: Jobs at Savannah River Site

    ScienceCinema (OSTI)

    Clark, Doug; Picciano, Bill; Culpepper, Kelli; Cole, Nancy; Oliver, Rahmel;

    2013-05-29

    The Savannah River Site in Aiken, SC has been able to create/save thousands of jobs through the Recovery Act. These are the stories of just a few of the new hires.

  19. Recovery Act Monthly Reporting Spreadsheet | Department of Energy

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on DeliciousMathematicsEnergyInterested PartiesBuildingBudget ||DepartmentReadoutReviewRecordRecovery ActRecovery Act

  20. Buckley, J.S. 02 PETROLEUM; PETROLEUM; ENHANCED RECOVERY; ASPHALTENES...

    Office of Scientific and Technical Information (OSTI)

    Reservoir Wettability and its Effect on Oil Recovery. Buckley, J.S. 02 PETROLEUM; PETROLEUM; ENHANCED RECOVERY; ASPHALTENES; MINERALS; SURFACES; MICA; WETTABILITY We report on the...

  1. Recovery Act Recipient Data | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustmentsShirleyEnergyTher i nAandSummary From: JuliaDepartment-8-2008RSSa WebcastA listing of all Recovery

  2. Development of More Effective Biosurfactants for Enhanced Oil Recovery

    SciTech Connect (OSTI)

    McInerney, M.J.; Mouttaki, H.; Folmsbee, M.; Knapp, R.; Nagle, D.

    2003-01-24

    The overall goal of this research was to develop effective biosurfactant production for enhanced oil recovery in the United States.

  3. Recovery Act milestone: Excavation begins at Manhattan Project landfill

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach Home RoomPreservation of Fe(II) by Carbon-RichProtonAbout Us Hanford SiteRecovery Act » RecoveryRecovery

  4. Recovery Act | U.S. DOE Office of Science (SC)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach Home RoomPreservation of Fe(II) by Carbon-RichProtonAbout Us Hanford SiteRecovery Act »Recovery Act News

  5. American Reinvestment and Recovery Act of 2009

    E-Print Network [OSTI]

    Grishok, Alla

    by the ARRA also carries enhanced accountability and transparency. ­ Grantees must fulfill detailed quarterly unique "P" accounts for all grantees receiving ARRA funds. (Regular NIH appropriation $$$ flows to "G" accounts for all grantees) · "P" accounts do not permit cash pooling · Grantees will be required to request

  6. ARM - ARM Recovery Act Project FAQs

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of NaturalDukeWakefieldSulfateSciTechtail.TheoryTuesday, August 10, 20102016 NewsUsers'Organization andYear RelatedActARM

  7. recovery act | OpenEI Community

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX ECoop IncIowa (UtilityMichigan)data book Homefuelleasingoutagesrecovery act Home

  8. LANL sponsors Recovery Act Job Fair

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration would likeUniverseIMPACTThousand CubicResource and Job Event InLANLRecovery Act Job Fair October

  9. FAQs Related to the Recovery Act | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuelsof Energy Services » Program ManagementAct FAQs Related to the Recovery Act

  10. an Recovery and Reinvestment Act of 20091 (Recovery Act) provides protections for cert

    E-Print Network [OSTI]

    Tam, Tin-Yau

    ors, subcontractors, grantees, or professional membership organizations acting in the interest ry Act vernmen ctors, sububbbbbcoonttraactctorors,s,s,s,s grantees, or proofofofofofesesesessisisis

  11. Faces of the Recovery Act: The Impact of Smart Grid

    SciTech Connect (OSTI)

    President Obama

    2009-11-24

    On October 27th, Baltimore Gas & Electric was selected to receive $200 million for Smart Grid innovation projects under the Recovery Act. Watch as members of their team, along with President Obama, explain how building a smarter grid will help consumers cut their utility bills, battle climate change and create jobs.

  12. Recovery Act Energy Jobs Bring New Era of Opportunity

    Broader source: Energy.gov [DOE]

    Hundreds of thousands of people found work in the past few years thanks to Recovery Act and Energy Department programs designed to stimulate the economy while creating new power sources, conserving resources and aligning the nation to once again lead the global energy economy.

  13. The Recovery Act: Cutting Costs and Upping Capacity

    Broader source: Energy.gov [DOE]

    Secretary Chu joined Vice President Joe Biden at the White House to help unveil a new report on how investments made through the Recovery Act have been impacting innovation. While the report analyzed several major sectors, its most striking findings centered on energy.

  14. Recovery Act Weekly Video: Upper ALE Building Demolition

    ScienceCinema (OSTI)

    None

    2012-06-14

    CH2MHILL Plateau Remediation Company demolition of 6652C Space Science Laboratory. The largest building atop Rattlesnake Mountain, the laboratory served as a nightly radar patrol center as well as a barracks. The Recovery Act funded project is helping reduce the site footprint.

  15. Faces of the Recovery Act: The Impact of Smart Grid

    ScienceCinema (OSTI)

    President Obama

    2010-09-01

    On October 27th, Baltimore Gas & Electric was selected to receive $200 million for Smart Grid innovation projects under the Recovery Act. Watch as members of their team, along with President Obama, explain how building a smarter grid will help consumers cut their utility bills, battle climate change and create jobs.

  16. 200,000 homes weatherized under the Recovery Act

    ScienceCinema (OSTI)

    Zoi, Cathy

    2013-05-29

    Today Vice President Biden announced that the Weatherization Assistance Program has weatherized 200,000 homes under the Recovery Act. We're taking your questions and comments right now on weatherization. Join in the conversation! *Facebook -- http://www.facebook.com/energygov *Twitter -- http://www.twitter.com/energy

  17. Recovery Act Begins Box Remediation Operations at F Canyon

    Broader source: Energy.gov [DOE]

    AIKEN, S.C. – The F Canyon box remediation program, an American Recovery and Reinvestment Act project at Savannah River Site (SRS), has come online to process legacy transuranic (TRU) waste for off-site shipment and permanent disposal at the Waste Isolation Pilot Plant (WIPP), a geological repository in New Mexico.

  18. Recovery Act update from Sr. Advisor Matt Rogers -- End of Obligations

    ScienceCinema (OSTI)

    Rogers, Matt

    2013-05-29

    Senior Advisor to the Secretary for Recovery Act Implementation Matt Rogers shares his thoughts as the Recovery Act reaches a critical milestone -- the end of the 2010 fiscal year and the last day to obligation contract and grant funding under the Recovery Act. For more information about the Recovery Act at the Department of Energy: http://www.energy.gov/recovery Follow the Department of Energy! http://facebook.com/energygov http://twitter.com/energy

  19. Microbial enhancement of oil recovery: Recent advances

    SciTech Connect (OSTI)

    Premuzic, E.T.; Woodhead, A.D.; Vivirito, K.J.

    1992-01-01

    During recent years, systematic, scientific, and engineering effort by researchers in the United States and abroad, has established the scientific basis for Microbial Enhanced Oil Recovery (MEOR) technology. The successful application of MEOR technology as an oil recovery process is a goal of the Department of Energy (DOE). Research efforts involving aspects of MEOR in the microbiological, biochemical, and engineering fields led DOE to sponsor an International Conference at Brookhaven National Laboratory in 1992, to facilitate the exchange of information and a discussion of ideas for the future research emphasis. At this, the Fourth International MEOR Conference, where international attendees from 12 countries presented a total of 35 papers, participants saw an equal distribution between research'' and field applications.'' In addition, several modeling and state-of-the-art'' presentations summed up the present status of MEOR science and engineering. Individual papers in this proceedings have been process separately for inclusion in the Energy Science and Technology Database.

  20. Microbial enhanced oil recovery and compositions therefor

    DOE Patents [OSTI]

    Bryant, Rebecca S. (Bartlesville, OK)

    1990-01-01

    A method is provided for microbial enhanced oil recovery, wherein a combination of microorganisms is empirically formulated based on survivability under reservoir conditions and oil recovery efficiency, such that injection of the microbial combination may be made, in the presence of essentially only nutrient solution, directly into an injection well of an oil bearing reservoir having oil present at waterflood residual oil saturation concentration. The microbial combination is capable of displacing residual oil from reservoir rock, which oil may be recovered by waterflooding without causing plugging of the reservoir rock. Further, the microorganisms are capable of being transported through the pores of the reservoir rock between said injection well and associated production wells, during waterflooding, which results in a larger area of the reservoir being covered by the oil-mobilizing microorganisms.

  1. Enhanced oil recovery projects data base

    SciTech Connect (OSTI)

    Pautz, J.F.; Sellers, C.A.; Nautiyal, C.; Allison, E.

    1992-04-01

    A comprehensive enhanced oil recovery (EOR) project data base is maintained and updated at the Bartlesville Project Office of the Department of Energy. This data base provides an information resource that is used to analyze the advancement and application of EOR technology. The data base has extensive information on 1,388 EOR projects in 569 different oil fields from 1949 until the present, and over 90% of that information is contained in tables and graphs of this report. The projects are presented by EOR process, and an index by location is provided.

  2. Environmental regulations handbook for enhanced oil recovery

    SciTech Connect (OSTI)

    Madden, M.P. [National Inst. for Petroleum and Energy Research, Bartlesville, OK (United States); Blatchford, R.P.; Spears, R.B. [Spears and Associates, Inc., Tulsa, OK (United States)

    1991-12-01

    This handbook is intended to assist owners and operators of enhanced oil recovery (EOR) operations in acquiring some introductory knowledge of the various state agencies, the US Environmental Protection Agency, and the many environmental laws, rules and regulations which can have jurisdiction over their permitting and compliance activities. It is a compendium of summarizations of environmental rules. It is not intended to give readers specific working details of what is required from them, nor can it be used in that manner. Readers of this handbook are encouraged to contact environmental control offices nearest to locations of interest for current regulations affecting them.

  3. The Recovery Act is "Lighting Up" the streets of Philadelphia

    ScienceCinema (OSTI)

    Nutter, Michael; Gajewski, Katherine; Russell, Toby; Williams, Doug; Best, DeLain;

    2013-05-29

    The Philadelphia Streets Department is converting 58,000 yellow and green traffic signals and will replace approximately 27,000 red LED lights that have come to the end of their useful life. The project will use approximately $3 million in EECBG funds, matched with $3 million in PECO funding, and will save the city approximately $1 million in electric costs each year. For more information on Recovery Act projects funded by the Department of Energy in Pennsylvania: http://www.energy.gov/recovery/pa.htm

  4. The Recovery Act is "Lighting Up" the streets of Philadelphia

    SciTech Connect (OSTI)

    Nutter, Michael; Gajewski, Katherine; Russell, Toby; Williams, Doug; Best, DeLain;

    2010-01-01

    The Philadelphia Streets Department is converting 58,000 yellow and green traffic signals and will replace approximately 27,000 red LED lights that have come to the end of their useful life. The project will use approximately $3 million in EECBG funds, matched with $3 million in PECO funding, and will save the city approximately $1 million in electric costs each year. For more information on Recovery Act projects funded by the Department of Energy in Pennsylvania: http://www.energy.gov/recovery/pa.htm

  5. Recovery Act funds advance cleanup efforts at Cold War site

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach Home RoomPreservation of Fe(II) by Carbon-RichProtonAbout Us Hanford SiteRecovery Act » Recovery

  6. Highlights from U.S. Department of Energy's Fuel Cell Recovery Act Projects

    Fuel Cell Technologies Publication and Product Library (EERE)

    This fact sheets highlights U.S. Department of Energy fuel cell projects funded by the American Recovery and Reinvestment Act of 2009 (Recovery Act). More than 1,000 fuel cell systems have been deploy

  7. Recovery Act update from Sr. Advisor Matt Rogers-- End of Obligations

    Broader source: Energy.gov [DOE]

    Matt Rogers, Senior Advisor to the Secretary for Recovery Act Implementation, shares his thoughts as the Recovery Act reaches a critical milestone -- the end of the 2010 fiscal year and the last...

  8. American Recovery and Reinvestment Act of 2009 and NEPA: CEQ Reports to Congress

    Broader source: Energy.gov [DOE]

    Section 1609(c) of the American Recovery and Reinvestment Act of 2009 (ARRA) requires a report to Congress on the status and progress of NEPA reviews for Recovery Act funded projects and activities...

  9. Early-Stage Market Change and Effects of the Recovery Act Fuel...

    Energy Savers [EERE]

    Early-Stage Market Change and Effects of the Recovery Act Fuel Cell Program Early-Stage Market Change and Effects of the Recovery Act Fuel Cell Program On April 15, 2009, the U.S....

  10. Early Stage Market Change and Effects of the Recovery Act Fuel...

    Energy Savers [EERE]

    Early Stage Market Change and Effects of the Recovery Act Fuel Cell Program -- 2015 Update Early Stage Market Change and Effects of the Recovery Act Fuel Cell Program -- 2015...

  11. Recovery Act Investment Accelerates Cleanup Work at DOE's Paducah Site |

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on DeliciousMathematicsEnergyInterested PartiesBuildingBudget ||DepartmentReadoutReviewRecordRecovery Act Helps

  12. Recovery Act Local Energy Assurance Planning (LEAP) Initiative Funding

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on DeliciousMathematicsEnergyInterested PartiesBuildingBudget ||DepartmentReadoutReviewRecordRecovery Act

  13. Enhanced oil recovery. Progress review, October--December 1993

    SciTech Connect (OSTI)

    Not Available

    1993-12-31

    This document details current research in the area of enhanced recovery of petroleum as sponsored by the DOE. Progress reports are provided for over thirty projects.

  14. Successful Sequestration and Enhanced Oil Recovery Project Could...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    the energy industry, and the general public with reliable information about industrial carbon sequestration and enhanced oil recovery." In the first phase of the research...

  15. "Smart" Multifunctional Polymers for Enhanced Oil Recovery

    SciTech Connect (OSTI)

    Charles McCormick; Andrew Lowe

    2007-03-20

    Recent recommendations made by the Department of Energy, in conjunction with ongoing research at the University of Southern Mississippi, have signified a need for the development of 'smart' multi-functional polymers (SMFPs) for Enhanced Oil Recovery (EOR) processes. Herein we summarize research from the period of September 2003 through March 2007 focusing on both Type I and Type II SMFPs. We have demonstrated the synthesis and behavior of materials that can respond in situ to stimuli (ionic strength, pH, temperature, and shear stress). In particular, Type I SMFPs reversibly form micelles in water and have the potential to be utilized in applications that serve to lower interfacial tension at the oil/water interface, resulting in emulsification of oil. Type II SMFPs, which consist of high molecular weight polymers, have been synthesized and have prospective applications related to the modification of fluid viscosity during the recovery process. Through the utilization of these advanced 'smart' polymers, the ability to recover more of the original oil in place and a larger portion of that by-passed or deemed 'unrecoverable' by conventional chemical flooding should be possible.

  16. Enhanced Oil Recovery: Aqueous Flow Tracer Measurement

    SciTech Connect (OSTI)

    Joseph Rovani; John Schabron

    2009-02-01

    A low detection limit analytical method was developed to measure a suite of benzoic acid and fluorinated benzoic acid compounds intended for use as tracers for enhanced oil recovery operations. Although the new high performance liquid chromatography separation successfully measured the tracers in an aqueous matrix at low part per billion levels, the low detection limits could not be achieved in oil field water due to interference problems with the hydrocarbon-saturated water using the system's UV detector. Commercial instrument vendors were contacted in an effort to determine if mass spectrometry could be used as an alternate detection technique. The results of their work demonstrate that low part per billion analysis of the tracer compounds in oil field water could be achieved using ultra performance liquid chromatography mass spectrometry.

  17. Resource Conservation and Recovery Act (RCRA) facility assessment guidance

    SciTech Connect (OSTI)

    Rastatter, C.; Fagan, D.; Foss, D.

    1986-10-01

    Facilities that manage hazardous wastes are required to obtain permits under the Resource Conservation and Recovery Act (RCRA) of 1976. This guidance document informs RCRA permit writers and enforcement officials of procedures to be used in conducting RCRA Facility Assessments. The RCRA corrective-action program was established to investigate and require clean up of releases of hazardous wastes or constituents to the environment at facilities subject to RCRA permits. Releases to ground water, surface water, air, soil, and subsurface strata may be addressed.

  18. Nevada Recovery Act State Memo | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:Financing Tool Fits the BillDepartmentSites KDFNationalNavy 1 Geothermal AreaNevada Recovery Act

  19. Overview of Recovery Act FAR Clauses | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankADVANCED MANUFACTURINGEnergy Bills andOrder 422.1, CONDUCT OFER-B-00-020Overview of Recovery Act FAR

  20. Subcontractors complete recovery act-funded demolition under budget

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power AdministrationRobust,Field-effect PhotovoltaicsStructure andChallenge |StudyingRecovery act-funded demolition

  1. Solar enhanced oil recovery: a potential early market for industrial solar energy

    SciTech Connect (OSTI)

    Bergeron, K.D.; Dugan, V.L.

    1980-01-01

    Enhanced oil recovery and the possibility of using solar energy to replace current methods are discussed. The market potential for solar enhanced oil recovery is explored. (MHR)

  2. AVTA: ChargePoint America Recovery Act Charging Infrastructure Reports

    Broader source: Energy.gov [DOE]

    The Vehicle Technologies Office's Advanced Vehicle Testing Activity carries out testing on a wide range of advanced vehicles and technologies on dynamometers, closed test tracks, and on-the-road. These results provide benchmark data that researchers can use to develop technology models and guide future research and development. The American Recovery and Reinvestment Act supported a number of projects that together made up the largest ever deployment of plug-in electric vehicles and charging infrastructure in the U.S. The following reports describe results of data collected through the Chargepoint America project, which deployed 4,600 public and home charging stations throughout the U.S. This research was conducted by Idaho National Laboratory.

  3. Recovery Act Expanding the First Significant U.S. ? Based Manufacturi...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Publications Recovery Act Expanding the First Significant U.S. Based Manufacturing EA-1710: Final Environmental Assessment Expanding U.S.-based Lithium-ion Battery Manufacturing...

  4. Recovery Act Expanding the First Significant U.S. ? Based Manufacturi...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Publications Recovery Act Expanding the First Significant U.S. Based Manufacturing Expanding U.S.-based Lithium-ion Battery Manufacturing EA-1710: Final Environmental Assessment...

  5. State Energy Program Formula Grants- American Recovery and Reinvestment Act (ARRA)

    Broader source: Energy.gov [DOE]

    U.S. Department of Energy State Energy Program Formula Grants, funding for the states, energy efficiency and renewable energy, American Recovery and Reinvestment Act of 2009.

  6. Idaho Workers Complete Last of Transuranic Waste Transfers Funded by Recovery Act

    Broader source: Energy.gov [DOE]

    American Recovery and Reinvestment Act workers successfully transferred 130 containers of remote-handled transuranic waste – each weighing up to 15 tons – to a facility for...

  7. 240 Jobs Later: The Recovery Act's Impact at the Paducah Site...

    Office of Environmental Management (EM)

    Enrichment Corp. Recovery Act Creates Jobs, Accelerates Cleanup at DOE's Paducah Site UF6 piping deactivation The black inlet hose is attached to a negative air machine that...

  8. ASCR Recovery Act Projects | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    Recovery Act Projects Advanced Scientific Computing Research (ASCR) ASCR Home About Research Facilities Science Highlights Benefits of ASCR Funding Opportunities Advanced...

  9. Weatherization Assistance Program- The American Recovery and Reinvestment Act of 2009

    Broader source: Energy.gov [DOE]

    DOE Weatherization Assistance Program, energy efficiency in low-income homes, eligibility, American Recovery and Reinvestment Act of 2009, State Allocations of Funding

  10. Enhanced Oil Recovery Affects the Future Energy Mix | GE Global...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Enhanced Oil Recovery Affects the Future Energy Mix Click to email this to a friend (Opens in new window) Share on Facebook (Opens in new window) Click to share (Opens in new...

  11. Seismic stimulation for enhanced oil recovery

    E-Print Network [OSTI]

    Pride, S.R.

    2008-01-01

    aims to enhance oil production by sending seismic wavesbe expected to enhance oil production. INTRODUCTION The hopethe reservoir can cause oil production to increase. Quite

  12. Protecting Recovery Act Cleanup Site During Massive Wildfire

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Recovery NEWS FLASH RECOVERY.GOV U.S. Depar tment of Energy | Office of Environmental Management ENVIRONMENTAL MANAGEMENT OFFICE OF ENVIRONMENTAL MANAGEMENT OFFICE OF ENVIRONMENTAL...

  13. New surfactant classes for enhanced oil recovery and their tertiary oil recovery potential

    E-Print Network [OSTI]

    Goddard III, William A.

    esters sorbitan ester ultra-low interfacial tension enhanced oil recovery surfactant flood chemical flood sandstones. In addition to the corefloods, one sandpack surfactant flood was performed. The porous media were by polymer drive slug injection, and incremental oil recovery was measured against time. The tested

  14. Recovery Act: Regional Technology Training Centers | netl.doe.gov

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration wouldMassR&D100 Winners * Impacts onReal-TimeRecord-SettingActEnhancing

  15. Recovery Act Special Provisions DOE Inter-Contractor UT-B Contracts Div Page 1 of 1

    E-Print Network [OSTI]

    Recovery Act ­ Special Provisions ­ DOE Inter-Contractor UT-B Contracts Div Aug 2010 Page 1 of 1 recovery-special-prov-doe-inter-contractor-ext-aug10.doc RECOVERY ACT SPECIAL PROVISIONS RELATED TO WORK FUNDED UNDER AMERICAN RECOVERY AND REINVESTMENT ACT OF 2009 DOE INTER-CONTRACTOR PURCHASE (Aug 2010) (a

  16. Weatherization and Intergovernmental Program - The State Energy Program and the American Recovery and Reinvestment Act

    SciTech Connect (OSTI)

    2010-06-01

    To help the nation weather the ongoing economic downturn and meet key energy goals, the State Energy Program (SEP) will invest $3.1 billion from the American Recovery and Reinvestment Act of 2009 (Recovery Act) for additional grants. These grants do not require matching state funds.

  17. SURFACTANT BASED ENHANCED OIL RECOVERY AND FOAM MOBILITY CONTROL

    SciTech Connect (OSTI)

    George J. Hirasaki; Clarence A. Miller; Gary A. Pope; Richard E. Jackson

    2004-02-01

    Surfactant flooding has the potential to significantly increase recovery over that of conventional waterflooding. The availability of a large number of surfactant structures makes it possible to conduct a systematic study of the relation between surfactant structure and its efficacy for oil recovery. Also, the addition of an alkali such as sodium carbonate makes possible in situ generation of surfactant and significant reduction of surfactant adsorption. In addition to reduction of interfacial tension to ultra-low values, surfactants and alkali can be designed to alter wettability to enhance oil recovery. An alkaline surfactant process is designed to enhance spontaneous imbibition in fractured, oil-wet, carbonate formations. It is able to recover oil from dolomite core samples from which there was no oil recovery when placed in formation brine.

  18. Enhanced Heavy Oil Recovery by Emulsification With Injected Nanoparticles 

    E-Print Network [OSTI]

    Martinez Cedillo, Arturo Rey

    2013-11-26

    by investing early in methods and techniques to enhance recovery. Primary heavy oil recovery methods are being applied widely in Canada and Venezuela. For example, cold heavy oil production with sand (CHOPS) in Canada 2 currently contributes to more... these methods have been applied to heavy oil reservoirs with different levels of success (Shah et al. 2010). Poor conformance is the principal factor of unsuccessful heavy oil waterflooding projects. Emulsifying the injected water with crude oil...

  19. Enhanced Oil Recovery | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:FinancingPetroleum12, 2015 Infographiclighbulbs - high-resolution2 DOEHighEnhancedMaterialsEnhanced

  20. Special Report on The Department of Energy's Acquisition Workforce and its Impact on Implementation of the American Recovery and Reinvestment Act of 2009

    SciTech Connect (OSTI)

    2009-03-01

    Signed by the President on February 17, 2009, the American Recovery and Reinvestment Act of 2009 (Recovery Act) seeks to strengthen the U.S. economy through the creation of new jobs, aiding State and local governments with budget shortfalls, and investing in the long-term health of the Nation's economic prosperity. Under the Recovery Act, the Department of Energy will receive approximately $40 billion for various energy, environmental, and science programs and initiatives. To have an immediate stimulative impact on the U.S. economy, the Department's stated goal is to ensure that these funds are spent as expeditiously as possible, without risking transparency and accountability. Given the Department's almost total reliance on the acquisition process (contracts, grants, cooperative agreements, etc.) to carry out its mission, enhanced focus on contract administration and, specifically, the work performed by Federal acquisition officials is of vital importance as the unprecedented flow of funds begins under the Recovery Act.

  1. Enhanced Oil Recovery | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels DataEnergyInformationVulnerabilitiesEnergyPlus Logo DebutsEnhanced Oil

  2. Early-Stage Market Change and Effects of the Recovery Act Fuel...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Early-Stage Market Change and Effects of the Recovery Act Fuel Cell Program Submitted to: Lawrence Berkeley National Laboratory Prepared by: EnerSys Innovation, LLC Under contract...

  3. Moab Project Disposes 2 Million Tons of Uranium Mill Tailings with Recovery Act Funds

    Broader source: Energy.gov [DOE]

    The Moab Uranium Mill Tailings Remedial Action Project reached its primary American Recovery and Reinvestment Act milestone ahead of schedule on Wednesday with the disposal of 2 million tons of...

  4. Recovery Act-Funded Study Assesses Contamination at Former Test Site in California

    Broader source: Energy.gov [DOE]

    Workers in a study funded by $38 million from the American Recovery and Reinvestment Act to assess radiological contamination have collected more than 600 soil samples and surveyed 120 acres of...

  5. Recovery Act Funding Leads to Record Year for Transuranic Waste Shipments

    Broader source: Energy.gov [DOE]

    With the help of American Recovery and Reinvestment Act funding, the Waste Isolation Pilot Plant (WIPP) received the most transuranic waste shipments in a single year since waste operations began...

  6. Dual mandates or dueling mandates : federal energy efficiency programs and the Recovery Act

    E-Print Network [OSTI]

    Sklarsky, Joshua (Joshua Lee)

    2010-01-01

    In February 2009, President Barack Obama signed the American Recovery and Reinvestment Act (ARRA) into law, providing billions of dollars in funding for federal energy efficiency programs. ARRA represented different things ...

  7. Recovery Act Invests in Cleanup, Preservation of Hanford Site Locomotives, Railcars

    Broader source: Energy.gov [DOE]

    With the help of the American Recovery and Reinvestment Act, the Hanford Site is preserving the history of its locomotives and railcars as workers clean up the legacy of the Cold War.

  8. Audit Report on "The Department of Energy's American Recovery and Reinvestment Act -- Florida State Energy Program"

    SciTech Connect (OSTI)

    2010-06-01

    The Department of Energy's Office of Energy Efficiency and Renewable Energy (EERE) provides grants to states, territories, and the District of Columbia to support their energy priorities through the State Energy Program (SEP). The SEP provides Federal financial assistance to carry out energy efficiency and renewable energy projects that meet each state's unique energy needs while also addressing national goals such as energy security. Federal funding is based on a grant formula that takes into account population and energy consumption. The SEP emphasizes the state's role as the decision maker and administrator for the program. The American Recovery and Reinvestment Act of 2009 (Recovery Act) expanded the SEP, authorizing $3.1 billion in grants. Based on existing grant formulas and after reviewing state-level plans, EERE made awards to states. The State of Florida's Energy Office (Florida) was allocated $126 million - a 90-fold increase over Florida's average annual SEP grant of $1.4 million. Per the Recovery Act, this funding must be obligated by September 30, 2010, and spent by April 30, 2012. As of March 10, 2010, Florida had expended $13.2 million of the SEP Recovery Act funds. Florida planned to use its grant funds to undertake activities that would preserve and create jobs; save energy; increase renewable energy sources; and, reduce greenhouse gas emissions. To accomplish Recovery Act objectives, states could either fund new or expand existing projects. As a condition of the awards, EERE required states to develop and implement sound internal controls over the use of Recovery Act funds. Based on the significant increase in funding from the Recovery Act, we initiated this review to determine whether Florida had internal controls in place to provide assurance that the goals of the SEP and Recovery Act will be met and accomplished efficiently and effectively. We identified weaknesses in the implementation of SEP Recovery Act projects that have adversely impacted Florida's ability to meet the goals of the SEP and the Recovery Act. Specifically: (1) Florida used about $8.3 million to pay for activities that did not meet the intent of the Recovery Act to create new or save existing jobs. With the approval of the Department, Florida used these funds to pay for rebates related to solar energy projects that had been completed prior to passage of the Recovery Act; (2) State officials did not meet Florida's program goals to obligate all Recovery Act funds by January 1, 2010, thus delaying projects and preventing them from achieving the desired stimulative economic impact. Obligations were delayed because Florida officials selected a number of projects that either required a lengthy review and approval process or were specifically prohibited. In June 2009, the Department notified Florida that a number of projects would not be approved; however, as of April 1, 2010, the State had not acted to name replacement projects or move funds to other projects; (3) Florida officials had not ensured that 7 of the 18 award requirements for Recovery Act funding promulgated by the Department had been passed down to sub-recipients of the award, as required; and, (4) Certain internal control weaknesses that could jeopardize the program and increase the risk of fraud, waste and abuse were identified in the Solar Energy System Incentives Program during our September 2009 visit to Florida. These included a lack of separation of duties related to the processing of rebates and deficiencies in the written procedures for grant managers to review and approve rebates. From a forward looking perspective, absent aggressive corrective action, these weaknesses threaten Florida's efforts to meet future Recovery Act goals. In response to our review, Florida took corrective action to incorporate the additional award requirements in sub-recipient documents. It also instituted additional controls to correct the internal control weaknesses we identified. More, however, needs to be done with respect to Department oversight. This report details the circumstances sur

  9. Aerobic enhanced oil recovery: analysis of the mechanisms and a pilot study 

    E-Print Network [OSTI]

    Eide, Karen

    1998-01-01

    The technique that uses microorganisms to improve oil production in petroleum reservoirs is known as microbial enhanced oil recovery (MEOR). Aerobic microbial enhanced oil recovery is a method which is based on stimulating indigenous oil degrading...

  10. Michigan Recovery Act State Memo | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Act investments in Michigan are supporting abroad range of clean energy projects from battery manufacturing to energy efficiency and the smart grid, renewable energy, and...

  11. President Obama Announces Over $467 Million in Recovery Act Funding...

    Broader source: Energy.gov (indexed) [DOE]

    Act to expand and accelerate the development, deployment, and use of geothermal and solar energy throughout the United States. The funding announced today represents a...

  12. Uncertainty quantification for CO2 sequestration and enhanced oil recovery

    E-Print Network [OSTI]

    Dai, Zhenxue; Fessenden-Rahn, Julianna; Middleton, Richard; Pan, Feng; Jia, Wei; Lee, Si-Yong; McPherson, Brian; Ampomah, William; Grigg, Reid

    2014-01-01

    This study develops a statistical method to perform uncertainty quantification for understanding CO2 storage potential within an enhanced oil recovery (EOR) environment at the Farnsworth Unit of the Anadarko Basin in northern Texas. A set of geostatistical-based Monte Carlo simulations of CO2-oil-water flow and reactive transport in the Morrow formation are conducted for global sensitivity and statistical analysis of the major uncertainty metrics: net CO2 injection, cumulative oil production, cumulative gas (CH4) production, and net water injection. A global sensitivity and response surface analysis indicates that reservoir permeability, porosity, and thickness are the major intrinsic reservoir parameters that control net CO2 injection/storage and oil/gas recovery rates. The well spacing and the initial water saturation also have large impact on the oil/gas recovery rates. Further, this study has revealed key insights into the potential behavior and the operational parameters of CO2 sequestration at CO2-EOR s...

  13. Recovery Act: Advanced Direct Methanol Fuel Cell for Mobile Computing

    SciTech Connect (OSTI)

    Fletcher, James H.; Cox, Philip; Harrington, William J; Campbell, Joseph L

    2013-09-03

    ABSTRACT Project Title: Recovery Act: Advanced Direct Methanol Fuel Cell for Mobile Computing PROJECT OBJECTIVE The objective of the project was to advance portable fuel cell system technology towards the commercial targets of power density, energy density and lifetime. These targets were laid out in the DOE’s R&D roadmap to develop an advanced direct methanol fuel cell power supply that meets commercial entry requirements. Such a power supply will enable mobile computers to operate non-stop, unplugged from the wall power outlet, by using the high energy density of methanol fuel contained in a replaceable fuel cartridge. Specifically this project focused on balance-of-plant component integration and miniaturization, as well as extensive component, subassembly and integrated system durability and validation testing. This design has resulted in a pre-production power supply design and a prototype that meet the rigorous demands of consumer electronic applications. PROJECT TASKS The proposed work plan was designed to meet the project objectives, which corresponded directly with the objectives outlined in the Funding Opportunity Announcement: To engineer the fuel cell balance-of-plant and packaging to meet the needs of consumer electronic systems, specifically at power levels required for mobile computing. UNF used existing balance-of-plant component technologies developed under its current US Army CERDEC project, as well as a previous DOE project completed by PolyFuel, to further refine them to both miniaturize and integrate their functionality to increase the system power density and energy density. Benefits of UNF’s novel passive water recycling MEA (membrane electrode assembly) and the simplified system architecture it enabled formed the foundation of the design approach. The package design was hardened to address orientation independence, shock, vibration, and environmental requirements. Fuel cartridge and fuel subsystems were improved to ensure effective fuel containment. PROJECT OVERVIEW The University of North Florida (UNF), with project partner the University of Florida, recently completed the Department of Energy (DOE) project entitled “Advanced Direct Methanol Fuel Cell for Mobile Computing”. The primary objective of the project was to advance portable fuel cell system technology towards the commercial targets as laid out in the DOE R&D roadmap by developing a 20-watt, direct methanol fuel cell (DMFC), portable power supply based on the UNF innovative “passive water recovery” MEA. Extensive component, sub-system, and system development and testing was undertaken to meet the rigorous demands of the consumer electronic application. Numerous brassboard (nonpackaged) systems were developed to optimize the integration process and facilitating control algorithm development. The culmination of the development effort was a fully-integrated, DMFC, power supply (referred to as DP4). The project goals were 40 W/kg for specific power, 55 W/l for power density, and 575 Whr/l for energy density. It should be noted that the specific power and power density were for the power section only, and did not include the hybrid battery. The energy density is based on three, 200 ml, fuel cartridges, and also did not include the hybrid battery. The results show that the DP4 system configured without the methanol concentration sensor exceeded all performance goals, achieving 41.5 W/kg for specific power, 55.3 W/l for power density, and 623 Whr/l for energy density. During the project, the DOE revised its technical targets, and the definition of many of these targets, for the portable power application. With this revision, specific power, power density, specific energy (Whr/kg), and energy density are based on the total system, including fuel tank, fuel, and hybridization battery. Fuel capacity is not defined, but the same value is required for all calculations. Test data showed that the DP4 exceeded all 2011 Technical Status values; for example, the DP4 energy density was 373 Whr/l versus the DOE 2011 status of 200 Whr/l. For the

  14. Treasury, Energy Surpass $1 Billion Milestone in Recovery Act...

    Energy Savers [EERE]

    Energy Projects Geothermal Home About the Geothermal Technologies Office Enhanced Geothermal Systems Hydrothermal Resources Low-Temperature & Coproduced Resources Systems...

  15. Secretary Chu Announces Nearly $50 Million of Recovery Act Funding...

    Energy Savers [EERE]

    State Capitol Geothermal Home About the Geothermal Technologies Office Enhanced Geothermal Systems Hydrothermal Resources Low-Temperature & Coproduced Resources Systems...

  16. Carbon sequestration with enhanced gas recovery: Identifying candidate sites for pilot study

    E-Print Network [OSTI]

    Oldenburg, C.M.; Benson, S.M.

    2001-01-01

    Process modeling of carbon sequestration with enhanced gas2001. Reichle, D. et al.. Carbon sequestration research andCarbon Sequestration with Enhanced Gas Recovery: Identifying

  17. SURFACTANT BASED ENHANCED OIL RECOVERY AND FOAM MOBILITY CONTROL

    SciTech Connect (OSTI)

    George J. Hirasaki; Clarence A. Miller; Gary A. Pope; Richard E. Jackson

    2004-07-01

    Surfactant flooding has the potential to significantly increase recovery over that of conventional waterflooding. The availability of a large number of surfactants makes it possible to conduct a systematic study of the relation between surfactant structure and its efficacy for oil recovery. Also, the addition of an alkali such as sodium carbonate makes possible in situ generation of surfactant and significant reduction of surfactant adsorption. In addition to reduction of interfacial tension to ultra-low values, surfactants and alkali can be designed to alter wettability to enhance oil recovery. An alkaline surfactant process is designed to enhance spontaneous imbibition in fractured, oil-wet, carbonate formations. It is able to recover oil from dolomite core samples from which there was no oil recovery when placed in formation brine. Mobility control is essential for surfactant EOR. Foam is evaluted to improve the sweep efficiency of surfactant injected into fractured reservoirs. UTCHEM is a reservoir simulator specially designed for surfactant EOR. A dual-porosity version is demonstrated as a potential scale-up tool for fractured reservoirs.

  18. Assessment of central receiver solar thermal enhanced oil recovery systems

    SciTech Connect (OSTI)

    Gorman, D.N.

    1987-07-01

    In November 1982, ARCO Solar, Incorporated, with the cooperation of ARCO Oil and Gas Company, completed installation and began operation of a central receiver solar thermal pilot plant to produce steam for enhanced oil recovery. The highly automated plant can produce approximately one megawtt of thermal power in the form of 80% quality steam, which is delivered to a distribution header for injection into heavy oil formations. An engineering evaluation of data from the ARCO plant has been performed, with the conclusion that central receiver solar systems can be very effective sources of power to generate steam for the enhanced recovery of heavy oil. The highly automated pilot plant exhibited outstanding reliability of the solar power conversion components while operating routinely with a single attendant, demonstrating the capability for very low operating and maintenance costs for these systems relative to the use of conventional oil-burning steam generators. This document reports the operating and performance characteristics of the ARCO solar thermal enhanced oil recovery (STEOR) system over a full year of operation. System sizing and performance projection for a much larger commercial plant is also presented.

  19. "TRU" Success: SRS Recovery Act Prepares to Complete Shipment...

    Broader source: Energy.gov (indexed) [DOE]

    Act Prepares to Complete Shipment of More Than 5,000 Cubic Meters of Nuclear Waste to WIPP More Documents & Publications TRUPACT-III Quick Facts EIS-0026-SA-06: Supplement...

  20. Davis-Bacon Act - Under the American Recovery and Reinvestment...

    Energy Savers [EERE]

    NOTICE 10-003A Geothermal Home About the Geothermal Technologies Office Enhanced Geothermal Systems Hydrothermal Resources Low-Temperature & Coproduced Resources Systems...

  1. Surfactant Based Enhanced Oil Recovery and Foam Mobility Control

    SciTech Connect (OSTI)

    George J. Hirasaki; Clarence A. Miller; Gary A. Pope

    2005-07-01

    Surfactant flooding has the potential to significantly increase recovery over that of conventional waterflooding. The availability of a large number of surfactant structures makes it possible to conduct a systematic study of the relation between surfactant structure and its efficacy for oil recovery. A combination of two surfactants was found to be particularly effective for application in carbonate formations at low temperature. A formulation has been designed for a particular field application. The addition of an alkali such as sodium carbonate makes possible in situ generation of surfactant and significant reduction of surfactant adsorption. In addition to reduction of interfacial tension to ultra-low values, surfactants and alkali can be designed to alter wettability to enhance oil recovery. The design of the process to maximize the region of ultra-low IFT is more challenging since the ratio of soap to synthetic surfactant is a parameter in the conditions for optimal salinity. Compositional simulation of the displacement process demonstrates the interdependence of the various components for oil recovery. An alkaline surfactant process is designed to enhance spontaneous imbibition in fractured, oil-wet, carbonate formations. It is able to recover oil from dolomite core samples from which there was no oil recovery when placed in formation brine. Mobility control is essential for surfactant EOR. Foam is evaluated to improve the sweep efficiency of surfactant injected into fractured reservoirs. UTCHEM is a reservoir simulator specially designed for surfactant EOR. It has been modified to represent the effects of a change in wettability. Simulated case studies demonstrate the effects of wettability.

  2. American Recovery & Reinvestment Act Newsletter - Issue 29

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (BillionProvedTravel TravelChallenges | DepartmentPower - Great NorthernWith all ofRECOVERY.GOV U.S.

  3. American Recovery & Reinvestment Act Newsletter - Issue 3

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (BillionProvedTravel TravelChallenges | DepartmentPower - Great NorthernWith all ofRECOVERY.GOV U.S.3

  4. American Recovery & Reinvestment Act Newsletter - Issue 4

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (BillionProvedTravel TravelChallenges | DepartmentPower - Great NorthernWith all ofRECOVERY.GOV

  5. American Recovery & Reinvestment Act Newsletter - Issue 5

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (BillionProvedTravel TravelChallenges | DepartmentPower - Great NorthernWith all ofRECOVERY.GOV5 5 5

  6. American Recovery & Reinvestment Act Newsletter - Issue 6

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (BillionProvedTravel TravelChallenges | DepartmentPower - Great NorthernWith all ofRECOVERY.GOV5 5 56

  7. American Recovery & Reinvestment Act Newsletter - Issue 7

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (BillionProvedTravel TravelChallenges | DepartmentPower - Great NorthernWith all ofRECOVERY.GOV5 5

  8. American Recovery & Reinvestment Act Newsletter - Issue 8

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (BillionProvedTravel TravelChallenges | DepartmentPower - Great NorthernWith all ofRECOVERY.GOV5 5 A

  9. American Recovery & Reinvestment Act Newsletter - Issue 9

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (BillionProvedTravel TravelChallenges | DepartmentPower - Great NorthernWith all ofRECOVERY.GOV5 5 A9

  10. American Recovery and Reinvestment Act Payments Surge Past $4 Billion |

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (BillionProvedTravel TravelChallenges | DepartmentPower - Great NorthernWith all ofRECOVERY.GOV5 5

  11. American Recovery and Reinvestment Act Payments Surge Past $5 Billion |

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (BillionProvedTravel TravelChallenges | DepartmentPower - Great NorthernWith all ofRECOVERY.GOV5

  12. US Recovery Act Smart Grid Investment Grant Projects | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX E LIST OFAMERICA'SHeavyAgencyTendo New EnergyWind Power CoInformation US Recovery

  13. American Recovery and Reinvestment Act | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION JEnvironmental Jump to:EAand DaltonSolarOpen5AllEnergyAmeriPower LLCAmerican Recovery and

  14. Recovery Act Project at Y-12 Meets Another Milestone | Department of Energy

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on DeliciousMathematicsEnergyInterested PartiesBuildingBudget ||DepartmentReadoutReviewRecordRecovery ActRecovery

  15. Microbial enhancement of oil recovery: Recent advances. Proceedings

    SciTech Connect (OSTI)

    Premuzic, E.T.; Woodhead, A.D.; Vivirito, K.J.

    1992-12-31

    During recent years, systematic, scientific, and engineering effort by researchers in the United States and abroad, has established the scientific basis for Microbial Enhanced Oil Recovery (MEOR) technology. The successful application of MEOR technology as an oil recovery process is a goal of the Department of Energy (DOE). Research efforts involving aspects of MEOR in the microbiological, biochemical, and engineering fields led DOE to sponsor an International Conference at Brookhaven National Laboratory in 1992, to facilitate the exchange of information and a discussion of ideas for the future research emphasis. At this, the Fourth International MEOR Conference, where international attendees from 12 countries presented a total of 35 papers, participants saw an equal distribution between ``research`` and ``field applications.`` In addition, several modeling and ``state-of-the-art`` presentations summed up the present status of MEOR science and engineering. Individual papers in this proceedings have been process separately for inclusion in the Energy Science and Technology Database.

  16. Special Report "The American Recovery and Reinvestment Act and the Department of Energy"

    SciTech Connect (OSTI)

    None

    2009-03-01

    The American Recovery and Reinvestment Act of 2009 (Recovery Act) was signed into law on February 17, 2009, as a way to jumpstart the U.S. economy, create or save millions of jobs, spur technological advances in science and health, and invest in the Nation's energy future. This national effort will require an unprecedented level of transparency and accountability to ensure that U.S. citizens know where their tax dollars are going and how they are being spent. As part of the Recovery Act, the Department of Energy will receive more than $38 billion to support a number of science, energy, and environmental initiatives. Additionally, the Department's authority to make or guarantee energy-related loans has increased to about $127 billion. The Department plans to disburse the vast majority of the funds it receives through grants, cooperative agreements, contracts, and other financial instruments. The supplemental funding provided to the Department of Energy under the Recovery Act dwarfs the Department's annual budget of about $27 billion. The infusion of these funds and the corresponding increase in effort required to ensure that they are properly controlled and disbursed in a timely manner will, without doubt, strain existing resources. It will also have an equally challenging impact on the inherent risks associated with operating the Department's sizable portfolio of missions and activities and, this is complicated by the fact that, in many respects, the Recovery Act requirements represent a fundamental transformation of the Department's mission. If these challenges are to be met successfully, all levels of the Department's structure and its many constituents, including the existing contractor community; the national laboratory system; state and local governments; community action groups and literally thousands of other contract, grant, loan and cooperative agreement recipients throughout the Nation will have to strengthen existing or design new controls to safeguard Recovery Act funds.

  17. FY 2011 OIG Recovery Act Plan Overview | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuelsof Energy Services » Program ManagementAct FAQsAnnualAnnualHawaii 1 |

  18. Microbial enhanced oil recovery and wettability research program

    SciTech Connect (OSTI)

    Thomas, C.P.; Bala, G.A.; Duvall, M.L.

    1991-07-01

    This report covers research results for the microbial enhanced oil recovery (MEOR) and wettability research program conducted by EG G Idaho, Inc. at the Idaho National Engineering Laboratory (INEL). The isolation and characterization of microbial species collected from various locations including target oil field environments is underway to develop more effective oil recovery systems for specific applications. The wettability research is a multi-year collaborative effort with the New Mexico Petroleum Recovery Research Center (NMPRRC), to evaluate reservoir wettability and its effects on oil recovery. Results from the wettability research will be applied to determine if alteration of wettability is a significant contributing mechanism for MEOR systems. Eight facultatively anaerobic surfactant producing isolates able to function in the reservoir conditions of the Minnelusa A Sands of the Powder River Basin in Wyoming were isolated from naturally occurring oil-laden environments. Isolates were characterized according to morphology, thermostability, halotolerance, growth substrates, affinity to crude oil/brine interfaces, degradative effects on crude oils, and biochemical profiles. Research at the INEL has focused on the elucidation of microbial mechanisms by which crude oil may be recovered from a reservoir and the chemical and physical properties of the reservoir that may impact the effectiveness of MEOR. Bacillus licheniformis JF-2 (ATCC 39307) has been used as a benchmark organism to quantify MEOR of medium weight crude oils (17.5 to 38.1{degrees}API) the capacity for oil recovery of Bacillus licheniformis JF-2 utilizing a sucrose-based nutrient has been elucidated using Berea sandstone cores. Spacial distribution of cells after microbial flooding has been analyzed with scanning electron microscopy. Also the effect of microbial surfactants on the interfacial tensions (IFT) of aqueous/crude oil systems has been measured. 87 refs., 60 figs., 15 tabs.

  19. Evaluation of the National Weatherization Assistance Program during Program Years 2009-2011 (American Recovery and Reinvestment Act Period)

    SciTech Connect (OSTI)

    Tonn, Bruce Edward; Rose, Erin M.; Schmoyer, Richard L.; Eisenberg, Joel Fred; Ternes, Mark P.; Schweitzer, Martin; Hendrick, Timothy P.

    2011-12-29

    This report presents the plan that was developed to evaluate the Department of Energy's Weatherization Assistance Program during the American Recovery and Reinvestment Act period.

  20. Effect of fluid rheology on enhanced oil recovery in a microfluidic sandstone device

    E-Print Network [OSTI]

    Rothstein, Jonathan

    Effect of fluid rheology on enhanced oil recovery in a microfluidic sandstone device Michael A 2013 Keywords: Microfluidics Enhanced oil recovery Shear-thickening Viscoelastic Sandstone Interfacial tension a b s t r a c t As global energy usage increases, maximizing oil recovery from known reserves

  1. enhanced_oil_recovery | netl.doe.gov

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach Home RoomPreservationBio-Inspired SolarAboutXu Named| Princetondefault Sign InEnhanced Oil Recovery

  2. Experimental Study of Solvent Based Emulsion Injection to Enhance Heavy Oil Recovery 

    E-Print Network [OSTI]

    Qiu, Fangda

    2011-08-08

    (enhanced oil recovery) process for some heavy oil reservoirs in Alaska, Canada and Venezuela after primary production. Heavy oil lacks mobility under reservoir conditions and is not suitable for the application of the thermal recovery method because...

  3. US Recovery Act Smart Grid Energy Storage Demonstration Projects | Open

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page| Open Energy Information Serbia-EnhancingEt Al.,Turin, New York: EnergyU.S. EPA RegionforUS Forest ServiceFuelEnergy

  4. US Recovery Act Smart Grid Projects - Advanced Metering Infrastructure |

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page| Open Energy Information Serbia-EnhancingEt Al.,Turin, New York: EnergyU.S. EPA RegionforUS Forest

  5. Finishing Strong in 2011: The Recovery Act at Work at Savannah River Site

    ScienceCinema (OSTI)

    None

    2012-06-14

    American Recovery and Reinvestment Act's highlights and accomplishments for 2011 projects. Covers the latest technology and robotics used for waste management. This video is an overview of the success ARRA brought to the Savannah River Site, the environment, the econonmy, and the surrounding communities.

  6. Grantee Performance Required to Release the Hold on Remaining 50% of Obligated Recovery Act Funds

    Broader source: Energy.gov [DOE]

    U.S. Department of Energy (DOE) Office of Energy Efficiency and Renewable Energy (EERE) Weatherization Assistance Program Notice 10-05 deals with performance requirements for program grantees?states and U.S. territories?to receive the remaining 50% of obligated funds under the 2009 American Reinvestment and Recovery Act.

  7. Finishing Strong in 2011: The Recovery Act at Work at Savannah River Site

    SciTech Connect (OSTI)

    None

    2011-01-01

    American Recovery and Reinvestment Act's highlights and accomplishments for 2011 projects. Covers the latest technology and robotics used for waste management. This video is an overview of the success ARRA brought to the Savannah River Site, the environment, the econonmy, and the surrounding communities.

  8. Recovery Act Special Provisions UT-B Contracts Div Page 1 of 3

    E-Print Network [OSTI]

    ; and Requiring prompt referral of evidence of a false claim to the Inspector General. (1) Definitions, but tracking and reporting must be separate to meet the reporting requirements of the Recovery Act and related the how and where for the new reporting requirements. The Seller will be provided these details

  9. Recovery Act Special Provisions Leased Subcontract UT-B Contracts Div Page 1 of 3

    E-Print Network [OSTI]

    of evidence of a false claim to the Inspector General. (1) Definitions For purposes of this clause, "Covered funding as necessary to complete projects, but tracking and reporting must be separate to meet the reporting requirements of the Recovery Act and related Guidance. For projects funded by sources other than

  10. Evidence of recovery of Juniperus virginiana trees from sulfur pollution after the Clean Air Act

    E-Print Network [OSTI]

    Nippert, Jesse

    Evidence of recovery of Juniperus virginiana trees from sulfur pollution after the Clean Air Act decades of acidic pollution. Acid deposition over much of the 20th century reduced stomatal conductance and temporal gradients in natural systems. For over a century, the combustion of fossil fuels resulted

  11. Recovery Act: Enhancing State Energy Assurance | Department of...

    Broader source: Energy.gov (indexed) [DOE]

    States are using these funds to plan for energy supply disruption risks and vulnerabilities to lessen the devastating impact that such incidents can have on the economy and the...

  12. Recovery Act: SeaMicro Volume Server Power Reduction Research Development

    SciTech Connect (OSTI)

    Gary Lauterbach

    2012-03-22

    Cloud data centers are projected to be the fastest growing segment of the server market through 2015, according to IDC. Increasingly people and businesses rely on the Cloud to deliver digital content quickly and efficiently. Recovery Act funding from the Department of Energy has helped SeaMicro's technologies enhance the total cost of operation, performance and energy efficiency in large data center and Cloud environments. SeaMicro's innovative supercomputer fabric connects thousands of processor cores, memory, storage and input/output traffic. The company's fabric supports multiple processor instruction sets. Current systems featuring SeaMicro technology typically use one quarter the power and take one sixth the space of traditional servers with the same compute performance, yet deliver up to 12 times the bandwidth per core. Mozilla and eHarmony are two customers successfully using SeaMicro's technology. Numerous non-public customers have been successfully using the SeaMicro product in test and production facilities. As a result of the Recovery Act funding from the U.S. Department of Energy, more than 50 direct jobs were created at SeaMicro. To date, they primarily have been high-value, engineering jobs. Hardware, software and manufacturing engineering positions have been created, as well as sales and sales engineering. The positions have allowed SeaMicro to significantly accelerate engineering development and accelerate commercialization. As a result, commercialization and delivery to market are months ahead of initial schedule. Additional jobs were indirectly created through the development of the SeaMicro product. Through many years of research and hard work prior to receipt of public funding, SeaMicro was awarded 2 patents for its work. SeaMicro's product led the way for industry leaders to reconsider the market for low power servers and create new product lines. With valuable support of the U.S. Department of Energy and through SeaMicro's product, the market has been reshaped by the company's unique approach and ground breaking technology.

  13. American Recovery and Reinvestment Act (ARRA) FEMP Technical Assistance

    SciTech Connect (OSTI)

    Robert P. Breckenridge; Thomas R. Wood

    2010-08-01

    The purpose of this document is to evaluate the opportunity for Letterkenny Army Depot (LEAD or the Depot) to utilize biogenic methane, which may be available in shale formations under the Depot, to provide a supplemental source of natural gas that could allow the Depot to increase energy independence. Both the Director and Deputy of Public Works at the Depot are supportive in general of a methane production project, but wanted to better understand the challenges prior to embarking on such a project. This report will cover many of these issues. A similar project has been successfully developed by the U. S. Army at Ft. Knox, KY, which will be explained and referred to throughout this report as a backdrop to discussing the challenges and opportunities at LEAD, because the geologic formations and possibilities at both sites are similar. Prior to discussing the opportunity at LEAD, it is important to briefly discuss the successful methane recovery operation at Ft. Knox, because it is applicable to the projected approach for the LEAD methane system. The Ft. Knox project is an excellent example of how the U. S. Army can use an onsite renewable resource to provide a secure energy source that is not dependent on regional energy networks and foreign oil. At Ft. Knox, the U. S. Army contracted (through a utility co-op) with an energy production company to drill wells, establish a distribution infrastructure, and provide the equipment needed to prepare and compress the produced methane gas for use by base operations. The energy production company agreed to conduct the exploratory investigation at Ft. Knox with no cost to the government, as long as they could be granted a long-term contract if a reliable energy resource was established. The Depot is located, in part, over an Ordovician Age shale formation that may have the potential for producing biogenic methane, similar to the Devonian Age shale found beneath Ft. Knox. However, the Ordovician Age Shale beneath the Letterkenny Depot is not known to have any currently producing gas wells.

  14. Recovery Act - Sustainable Transportation: Advanced Electric Drive Vehicle Education Program

    SciTech Connect (OSTI)

    Caille, Gary

    2013-12-13

    The collective goals of this effort include: 1) reach all facets of this society with education regarding electric vehicles (EV) and plug–in hybrid electric vehicles (PHEV), 2) prepare a workforce to service these advanced vehicles, 3) create web–based learning at an unparalleled level, 4) educate secondary school students to prepare for their future and 5) train the next generation of professional engineers regarding electric vehicles. The Team provided an integrated approach combining secondary schools, community colleges, four–year colleges and community outreach to provide a consistent message (Figure 1). Colorado State University Ventures (CSUV), as the prime contractor, plays a key program management and co–ordination role. CSUV is an affiliate of Colorado State University (CSU) and is a separate 501(c)(3) company. The Team consists of CSUV acting as the prime contractor subcontracted to Arapahoe Community College (ACC), CSU, Motion Reality Inc. (MRI), Georgia Institute of Technology (Georgia Tech) and Ricardo. Collaborators are Douglas County Educational Foundation/School District and Gooru (www.goorulearning.org), a nonprofit web–based learning resource and Google spin–off.

  15. Savannah River Site Footprint Reduction Results under the American Recovery and Reinvestment Act - 13302

    SciTech Connect (OSTI)

    Flora, Mary [Savannah River Nuclear Solutions Bldg. 730-4B, Aiken, SC 29808 (United States)] [Savannah River Nuclear Solutions Bldg. 730-4B, Aiken, SC 29808 (United States); Adams, Angelia [United States Department of Energy Bldg. 730-B, Aiken, SC 29808 (United States)] [United States Department of Energy Bldg. 730-B, Aiken, SC 29808 (United States); Pope, Robert [United States Environmental Protection Agency Region IV Atlanta, GA 30303 (United States)] [United States Environmental Protection Agency Region IV Atlanta, GA 30303 (United States)

    2013-07-01

    The Savannah River Site (SRS) is an 802 square-kilometer United States Department of Energy (US DOE) nuclear facility located along the Savannah River near Aiken, South Carolina, managed and operated by Savannah River Nuclear Solutions. Construction of SRS began in the early 1950's to enhance the nation's nuclear weapons capability. Nuclear weapons material production began in the early 1950's, eventually utilizing five production reactors constructed to support the national defense mission. Past operations have resulted in releases of hazardous constituents and substances to soil and groundwater, resulting in 515 waste sites with contamination exceeding regulatory thresholds. More than 1,000 facilities were constructed onsite with approximately 300 of them considered radiological, nuclear or industrial in nature. In 2003, SRS entered into a Memorandum of Agreement with its regulators to accelerate the cleanup using an Area Completion strategy. The strategy was designed to focus cleanup efforts on the 14 large industrial areas of the site to realize efficiencies of scale in the characterization, assessment, and remediation activities. This strategy focuses on addressing the contaminated surface units and the vadose zone and addressing groundwater plumes subsequently. This approach streamlines characterization and remediation efforts as well as the required regulatory documentation, while enhancing the ability to make large-scale cleanup decisions. In February 2009, Congress approved the American Reinvestment and Recovery Act (ARRA) to create jobs and promote economic recovery. At SRS, ARRA funding was established in part to accelerate the completion of environmental remediation and facility deactivation and decommissioning (D and D). By late 2012, SRS achieved 85 percent footprint reduction utilizing ARRA funding by accelerating and coupling waste unit remediation with D and D of remnant facilities. Facility D and D activities were sequenced and permitted with waste unit remediation activities to streamline regulatory approval and execution. Achieving footprint reduction fulfills the Government's responsibility to address legacy contamination; allows earlier completion of legally enforceable compliance agreement milestones; and enables future potential reuse of DOE resources, including land and infrastructure for other missions. Over the last 3.5 years significant achievements were met that contributed to footprint reduction, including the closure of 41 waste units (including 20 miles of radiologically contaminated stream) and decommissioning of 30 facilities (including the precedent setting in situ closure of two former production reactors, the first in the DOE Complex). Other notable achievements included the removal of over 39,750 cubic meters of debris and 68,810 cubic meters of contaminated soils, including 9175 cubic meters of lead-contaminated soil from a former site small arms testing range and treatment of 1,262 cubic meters of tritium-laden soils and concrete using a thermal treatment system. (authors)

  16. Recovery Act: Low Cost Integrated Substrate for OLED Lighting Development

    SciTech Connect (OSTI)

    Scott Benton; Abhinav Bhandari

    2012-09-30

    PPG pursued the development of an integrated substrate, including the anode, external, and internal extraction layers. The objective of PPGâ??s program was to achieve cost reductions by displacing the existing expensive borosilicate or double-side polished float glass substrates and developing alternative electrodes and scalable light extraction layer technologies through focused and short-term applied research. One of the key highlights of the project was proving the feasibility of using PPGâ??s high transmission Solarphire® float glass as a substrate to consistently achieve organic lightemitting diode (OLED) devices with good performance and high yields. Under this program, four low-cost alternatives to the Indium Tin Oxide (ITO) anode were investigated using pilot-scale magnetron sputtered vacuum deposition (MSVD) and chemical vapor deposition (CVD) technologies. The anodes were evaluated by fabricating small and large phosphorescent organic lightemitting diode (PHOLED) devices at Universal Display Corporation (UDC). The device performance and life-times comparable to commercially available ITO anodes were demonstrated. A cost-benefit analysis was performed to down-select two anodes for further low-cost process development. Additionally, PPG developed and evaluated a number of scalable and compatible internal and external extraction layer concepts such as scattering layers on the outside of the glass substrate or between the transparent anode and the glass interface. In one external extraction layer (EEL) approach, sol-gel sprayed pyrolytic coatings were deposited using lab scale equipment by hand or automated spraying of sol-gel solutions on hot glass, followed by optimizing of scattering with minimal absorption. In another EEL approach, PPG tested large-area glass texturing by scratching a glass surface with an abrasive roller and acid etching. Efficacy enhancements of 1.27x were demonstrated using white PHOLED devices for 2.0mm substrates which are at par with the standard diffuser sheets used by OLED manufacturers. For an internal extraction layer (IEL), PPG tested two concepts combining nanoparticles either in a solgel coating inserted between the anode and OLED or anode and glass interface, or incorporated into the internal surface of the glass. Efficacy enhancements of 1.31x were demonstrated using white PHOLED devices for the IEL by itself and factors of 1.73x were attained for an IEL in combination of thick acrylic block as an EEL. Recent offline measurements indicate that, with further optimization, factors over 2.0x could be achieved through an IEL alone.

  17. New CO2 Enhanced Recovery Technology Could Greatly Boost U.S...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    enhanced recovery in discovered fields - 90 billion in light oil, 20 billion in heavy oil; up to 179 billion barrels from undiscovered oil - 119 billion from conventional...

  18. Recovery Act. Advanced Load Identification and Management for Buildings

    SciTech Connect (OSTI)

    Yang, Yi; Casey, Patrick; Du, Liang; He, Dawei

    2014-02-12

    In response to the U.S. Department of Energy (DoE)’s goal of achieving market ready, net-zero energy residential and commercial buildings by 2020 and 2025, Eaton partnered with the Department of Energy’s National Renewable Energy Laboratory (NREL) and Georgia Institute of Technology to develop an intelligent load identification and management technology enabled by a novel “smart power strip” to provide critical intelligence and information to improve the capability and functionality of building load analysis and building power management systems. Buildings account for 41% of the energy consumption in the United States, significantly more than either transportation or industrial. Within the building sector, plug loads account for a significant portion of energy consumption. Plug load consumes 15-20% of building energy on average. As building managers implement aggressive energy conservation measures, the proportion of plug load energy can increase to as much as 50% of building energy leaving plug loads as the largest remaining single source of energy consumption. This project focused on addressing plug-in load control and management to further improve building energy efficiency accomplished through effective load identification. The execution of the project falls into the following three major aspects; An intelligent load modeling, identification and prediction technology was developed to automatically determine the type, energy consumption, power quality, operation status and performance status of plug-in loads, using electric waveforms at a power outlet level. This project demonstrated the effectiveness of the developed technology through a large set of plug-in loads measurements and testing; A novel “Smart Power Strip (SPS) / Receptacle” prototype was developed to act as a vehicle to demonstrate the feasibility of load identification technology as a low-cost, embedded solution; and Market environment for plug-in load control and management solutions, in particular, advanced power strips (APSs) was studied. The project evaluated the market potential for Smart Power Strips (SPSs) with load identification and the likely impact of a load identification feature on APS adoption and effectiveness. The project also identified other success factors required for widespread APS adoption and market acceptance. Even though the developed technology is applicable for both residential and commercial buildings, this project is focused on effective plug-in load control and management for commercial buildings, accomplished through effective load identification. The project has completed Smart Receptacle (SR) prototype development with integration of Load ID, Control/Management, WiFi communication, and Web Service. Twenty SR units were built, tested, and demonstrated in the Eaton lab; eight SR units were tested in the National Renewable Energy Lab (NREL) for one-month of field testing. Load ID algorithm testing for extended load sets was conducted within the Eaton facility and at local university campuses. This report is to summarize the major achievements, activities, and outcomes under the execution of the project.

  19. Methods for enhancing mapping of thermal fronts in oil recovery

    DOE Patents [OSTI]

    Lee, D.O.; Montoya, P.C.; Wayland, J.R. Jr.

    1984-03-30

    A method for enhancing the resistivity contrasts of a thermal front in an oil recovery production field as measured by the controlled source audio frequency magnetotelluric (CSAMT) technique is disclosed. This method includes the steps of: (1) preparing a CSAMT-determined topological resistivity map of the production field; (2) introducing a solution of a dopant material into the production field at a concentration effective to alter the resistivity associated with the thermal front; said dopant material having a high cation exchange capacity which might be selected from the group consisting of montmorillonite, illite, and chlorite clays; said material being soluble in the conate water of the production field; (3) preparing a CSAMT-determined topological resistivity map of the production field while said dopant material is moving therethrough; and (4) mathematically comparing the maps from step (1) and step (3) to determine the location of the thermal front. This method is effective with the steam flood, fire flood and water flood techniques.

  20. Methods for enhancing mapping of thermal fronts in oil recovery

    DOE Patents [OSTI]

    Lee, David O. (Albuquerque, NM); Montoya, Paul C. (Albuquerque, NM); Wayland, Jr., James R. (Albuquerque, NM)

    1987-01-01

    A method for enhancing the resistivity contrasts of a thermal front in an oil recovery production field as measured by the CSAMT technique is disclosed. This method includes the steps of: (a) preparing a CSAMT-determined topological resistivity map of the production field; (b) introducing a solution of a dopant material into the production field at a concentration effective to alter the resistivity associated with the thermal front; said dopant material having a high cation exchange capacity which might be selected from the group consisting of montmorillonite, illite, and chlorite clays; said material being soluble in the connate water of the production field; (c) preparing a CSAMT-determined topological resistivity map of the production field while said dopant material is moving therethrough; and (d) mathematically comparing the maps from step (a) and step (c) to determine the location of the thermal front. This method is effective with the steam flood, fire flood and water flood techniques.

  1. Recovery Act: Electrochromic Glazing Technology: Improved Performance, Lower Price

    SciTech Connect (OSTI)

    Burdis, Mark; Sbar, Neil

    2012-06-30

    The growing dependency of the US on energy imports and anticipated further increases in energy prices reinforce the concerns about meeting the energy demand in the future and one element of a secure energy future is conservation. It is estimated that the buildings sector represents 40% of the US's total energy consumption. And buildings produce as much as one third of the greenhouse gas emissions primarily through fossil fuel usage during their operational phase. A significant fraction of this energy usage is simply due to inefficient window technology. Electrochromic (EC) windows allow electronic control of their optical properties so that the transparency to light can be adjusted from clear to dark. This ability to control the amount of solar energy allowed into the building can be advantageously used to minimize lighting, heating and air conditioning costs. Currently, the penetration of EC windows into the marketplace is extremely small, and consequently there is a huge opportunity for energy savings if this market can be expanded. In order to increase the potential energy savings it is necessary to increase the quantity of EC windows in operation. Additionally, any incremental improvement in the energy performance of each window will add to the potential energy savings. The overall goals of this project were therefore to improve the energy performance and lower the cost of dynamic (EC) smart windows for residential and commercial building applications. This project is obviously of benefit to the public by addressing two major areas: lowering the cost and improving the energy performance of EC glazings. The high level goals for these activities were: (i) to improve the range between the clear and the tinted state, (ii) reduce the price of EC windows by utilizing lower cost materials, (iii) lowering the U-Value1 SAGE Electrochromics Inc. is the only company in the US which has a track record of producing EC windows, and presently has a small operational factory in Faribault MN which is shipping products throughout the world. There is a much larger factory currently under construction close by. This project was targeted specifically to address the issues outlined above, with a view to implementation on the new high volume manufacturing facility. Each of the Tasks which were addressed in this project is relatively straightforward to implement in this new facility and so the benefits of the work will be realized quickly. , and (iv) ensure the proposed changes have no detrimental effect to the proven durability of the window. The research described here has helped to understand and provide solutions to several interesting and previously unresolved issues of the technology as well as make progress in areas which will have a significant impact on energy saving. In particular several materials improvements have been made, and tasks related to throughput and yield improvements have been completed. All of this has been accomplished without any detrimental effect on the proven durability of the SageGlass EC device. The project was divided into four main areas: 1. Improvement of the Properties of the EC device by material enhancements (Task 2); 2. Reduce the cost of production by improving the efficiency and yields of some key manufacturing processes (Task 3); 3. Further reduce the cost by significant modifications to the structure of the device (Task 4); 4. Ensure the durability of the EC device is not affected by any of the changes resulting from these activities (Task 5). A detailed description of the activities carried out in these areas is given in the following report, along with the aims and goals of the work. We will see that we have completed Tasks 2 and 3 fully, and the durability of the resulting device structure has been unaffected. Some of Task 4 was not carried out because of difficulties with integrating the installation of the required targets into the production coater due to external constraints not related to this project. We will also see that the durability of the devices produced as a result of this work was

  2. Materials and Fuels Complex Hazardous Waste Management Act/Resource Conservation and Recovery Act Storage and Treatment Permit Reapplication, Environmental Protection Agency Number ID4890008952

    SciTech Connect (OSTI)

    Holzemer, Michael J.; Hart, Edward

    2015-04-01

    Hazardous Waste Management Act/Resource Conservation and Recovery Act Storage and Treatment Permit Reapplication for the Idaho National Laboratory Materials and Fuels Complex Hazardous Waste Management Act/Resource Conservation and Recovery Act Partial Permit, PER-116. This Permit Reapplication is required by the PER-116 Permit Conditions I.G. and I.H., and must be submitted to the Idaho Department of Environmental Quality in accordance with IDAPA 58.01.05.012 [40 CFR §§ 270.10 and 270.13 through 270.29].

  3. Supporting technology for enhanced oil recovery: Sixth amendment and extension to Annex IV enhanced oil recovery thermal processes

    SciTech Connect (OSTI)

    Reid, T.B. (USDOE Bartlesville Project Office, OK (United States)); Rivas, O. (INTEVEP, Filial de Petroleos de Venezuela, SA, Caracas (Venezuela))

    1991-10-01

    This report contains the results of efforts under the six tasks of the Sixth Amendment and Extension of Annex 4, Enhanced Oil Recovery Thermal Processes of the Venezuela/USA Agreement. The report is presented in sections (for each of the 6 tasks) and each section contains one or more reports prepared by various individuals or groups describing the results of efforts under each of the tasks. A statement of each task, taken from the agreement, is presented on the first page of each section. The tasks are numbered 44 through 49. Tasks are: DOE-SUPRI-laboratory research on steam foam, CAT-SCAN, and in-situ combustion; INTEVEP-laboratory research and field projects on steam foam; DOE-NIPER-laboratory research and field projects light oil steam flooding; INTEVEP-laboratory research and field studies on wellbore heat losses; DOE-LLNL-laboratory research and field projects on electromagnetic induction tomography; INTEVEP-laoboratory research on mechanistic studies.

  4. Enhanced Oil Recovery through Steam Assisted Gravity Drainage January 22, 2014

    E-Print Network [OSTI]

    Cirpka, Olaf Arie

    Enhanced Oil Recovery through Steam Assisted Gravity Drainage January 22, 2014 A Comparative Study Of Continuous And Cyclic Steam Injection With Trapping Of Oil Phase Muhammad Adil Javed Summary of Thesis Enhanced oil recovery (EOR) through steam-assisted gravity drainage (SAGD) has become an important in

  5. Effect of Gas Diffusion on Mobility of Foam for Enhanced Oil Recovery Lars E. Nonnekes1

    E-Print Network [OSTI]

    Cox, Simon

    as one reason why CO2 foams for enhanced oil recovery (EOR) are less resistant to flow than N2 foams weakness of CO2 foam therefore evidently lies in factors other than CO2's large diffusion rate through foam. Keywords Foam ·Diffusion · Enhanced oil recovery · Foam stability ·CO2 foam · Steam foam 1 Introduction

  6. ANALYSIS OF ENHANCED COALBED METHANE RECOVERY THROUGH CARBON SEQUESTRATION IN THE CENTRAL

    E-Print Network [OSTI]

    potential of coalbed methane production using carbon dioxide sequestration in the Central Appalachian BasinANALYSIS OF ENHANCED COALBED METHANE RECOVERY THROUGH CARBON SEQUESTRATION IN THE CENTRAL dioxide emissions from power plants, while enhancing the recovery of coalbed methane. Injected carbon

  7. An optimal viscosity profile in enhanced oil recovery by polymer flooding

    E-Print Network [OSTI]

    Daripa, Prabir

    An optimal viscosity profile in enhanced oil recovery by polymer flooding Prabir Daripa a,*, G; accepted 3 July 2004 (Communicated by L. DEBNATH) Abstract Forced displacement of oil by polymer flooding reserved. Keywords: Enhanced oil recovery; Polymer flooding; Linear stability 0020-7225/$ - see front

  8. American Recovery and Reinvestment Act of 2009: Summary of Provisions (released in AEO2010)

    Reports and Publications (EIA)

    2010-01-01

    The American Recovery and Reinvestment Act of 2009 (ARRA), signed into law in mid-February 2009, provides significant new federal funding, loan guarantees, and tax credits to stimulate investments in energy efficiency and renewable energy. The provisions of ARRA were incorporated initially as part of a revision to the Annual Energy Outlook 2009 Reference case that was released in April 2009, and they also are included in Annual Energy Outlook 2010.

  9. Recovery Act-Funded 90-m Blade Test Facility Commissioned May 18, 2011 |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:Financing Tool FitsProject Developsfor UCNIEnvironmental Impact StatementRecovery ActDepartment of

  10. Recovery Act Helps Y-12 Exceed Cleanup Goal at Manhattan Project-Era

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankADVANCED MANUFACTURINGEnergy BillsNo. 195 - Oct. 7,DOERTI | Department8Recovery Act Helps GE

  11. Recovery Act Workers at Y-12 Reach Two Years of Work with No Injuries |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankADVANCED MANUFACTURINGEnergy BillsNo. 195 - Oct. 7,DOERTI | Department8Recovery ActCalifornia

  12. Recovery Act Helps GE in-source Manufacturing | Department of Energy

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on DeliciousMathematicsEnergyInterested PartiesBuildingBudget ||DepartmentReadoutReviewRecordRecovery Act Helps GE

  13. RECOVERY ACT SELECTIONS FOR SMART GRID INVESTMENT GRANT AWARDS - BY CATEGORY

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on DeliciousMathematicsEnergyInterested PartiesBuildingBudget ||Department of Energy52Building1 RECOVERY ACT

  14. Recovery Act: ArcelorMittal USA Blast Furnace Gas Flare Capture

    SciTech Connect (OSTI)

    Seaman, John

    2013-01-14

    The U.S. Department of Energy (DOE) awarded a financial assistance grant under the American Recovery and Reinvestment Act of 2009 (Recovery Act) to ArcelorMittal USA, Inc. (ArcelorMittal) for a project to construct and operate a blast furnace gas recovery boiler and supporting infrastructure at ArcelorMittal’s Indiana Harbor Steel Mill in East Chicago, Indiana. Blast furnace gas (BFG) is a by-product of blast furnaces that is generated when iron ore is reduced with coke to create metallic iron. BFG has a very low heating value, about 1/10th the heating value of natural gas. BFG is commonly used as a boiler fuel; however, before installation of the gas recovery boiler, ArcelorMittal flared 22 percent of the blast furnace gas produced at the No. 7 Blast Furnace at Indiana Harbor. The project uses the previously flared BFG to power a new high efficiency boiler which produces 350,000 pounds of steam per hour. The steam produced is used to drive existing turbines to generate electricity and for other requirements at the facility. The goals of the project included job creation and preservation, reduced energy consumption, reduced energy costs, environmental improvement, and sustainability.

  15. Recovery Act Weekly Video: 200 Area Asbestos Removal, U-Ancillary Demolition, 200 West Transfer Building Footings

    ScienceCinema (OSTI)

    None

    2012-06-14

    A weekly update of the Recovery Act at work. Demolition of U-Ancillary that was contaminated with uranium and asbestos as well as removing asbestos from the Steam Generation Plant in the 200 East Area.

  16. Recovery Act Weekly Video: 200 Area Asbestos Removal, U-Ancillary Demolition, 200 West Transfer Building Footings

    SciTech Connect (OSTI)

    None

    2010-01-01

    A weekly update of the Recovery Act at work. Demolition of U-Ancillary that was contaminated with uranium and asbestos as well as removing asbestos from the Steam Generation Plant in the 200 East Area.

  17. Enhanced oil recovery using flash-driven steamflooding

    DOE Patents [OSTI]

    Roark, Steven D. (Bartlesville, OK)

    1990-01-01

    The present invention is directed to a novel steamflooding process which utilizes three specific stages of steam injection for enhanced oil recovery. The three stages are as follows: As steam is being injected into an oil-bearing reservoir through an injection well, the production rate of a production well located at a distance from the injection well is gradually restricted to a point that the pressure in the reservoir increases at a predetermined rate to a predetermined maximum value. After the maximum pressure has been reached, the production rate is increased to a value such that the predetermined maximum pressure value is maintained. Production at maximum pressure is continued for a length of time that will be unique for each individual reservoir. In some cases, this step of the steamflooding process of the invention may be omitted entirely. In the third stage of the steamflooding process of the invention, production rates at the producing well are increased gradually to allow the pressure to decrease down from the maximum pressure value to the original pressure value at the producing well. The rate of pressure reduction will be unique for each reservoir. After completing stage three, the three stages can be repeated or the steamflood may be terminated as considered desirable.

  18. Thermally-enhanced oil recovery method and apparatus

    DOE Patents [OSTI]

    Stahl, Charles R. (Scotia, NY); Gibson, Michael A. (Houston, TX); Knudsen, Christian W. (Houston, TX)

    1987-01-01

    A thermally-enhanced oil recovery method and apparatus for exploiting deep well reservoirs utilizes electric downhole steam generators to provide supplemental heat to generate high quality steam from hot pressurized water which is heated at the surface. A downhole electric heater placed within a well bore for local heating of the pressurized liquid water into steam is powered by electricity from the above-ground gas turbine-driven electric generators fueled by any clean fuel such as natural gas, distillate or some crude oils, or may come from the field being stimulated. Heat recovered from the turbine exhaust is used to provide the hot pressurized water. Electrical power may be cogenerated and sold to an electric utility to provide immediate cash flow and improved economics. During the cogeneration period (no electrical power to some or all of the downhole units), the oil field can continue to be stimulated by injecting hot pressurized water, which will flash into lower quality steam at reservoir conditions. The heater includes electrical heating elements supplied with three-phase alternating current or direct current. The injection fluid flows through the heater elements to generate high quality steam to exit at the bottom of the heater assembly into the reservoir. The injection tube is closed at the bottom and has radial orifices for expanding the injection fluid to reservoir pressure.

  19. Supporting technology for enhanced oil recovery for thermal processes

    SciTech Connect (OSTI)

    Reid, T.B.; Bolivar, J.

    1997-12-01

    This report contains the results of efforts under the six tasks of the Ninth Amendment and Extension of Annex IV, Enhanced Oil Recovery Thermal Processes of the Venezuela/USA Agreement. The report is presented in sections (for each of the 6 tasks) and each section contains one or more reports prepared by various individuals or groups describing the results of efforts under each of the tasks. A statement of each task, taken from the agreement, is presented on the first page of each section. The tasks are numbered 62 through 67. The first, second, third, fourth fifth, sixth, seventh, eighth, and ninth reports on Annex IV, [Venezuela MEM/USA-DOE Fossil Energy Report IV-1, IV-2, IV-3, IV-4, IV-5, IV-6, IV-7, and IV-8 (DOE/BETC/SP-83/15, DOE/BC-84/6/SP, DOE/BC-86/2/SP, DOE/BC-87/2/SP, DOE/BC-90/1/SP, DOE/BC-90/1/SP) (DOE/BC-92/1/SP, DOE/BC-93/3/SP, and DOE/BC-95/3/SP)] contain the results from the first 61 tasks. Those reports are dated April 1983, August 1984, March 1986, July 1987, November 1988, October 1991, February 1993, and March 1995 respectively.

  20. Recovery Act Special Provisions DOE Inter-Contractor Purchase -Leased Subcontract UT-B Contracts Div Page 1 of 1

    E-Print Network [OSTI]

    Recovery Act ­ Special Provisions ­ DOE Inter-Contractor Purchase - Leased Subcontract UT-B Contracts Div Oct 2009 Page 1 of 1 recovery-special-prov-doe-inter-contractor-leased-sub-ext-oct09.doc OF 2009 ­ DOE INTER-CONTRACTOR PURCHASE ­ LEASED SUBCONTRACT (Oct 2009) PREAMBLE Work performed under

  1. Monitoring of thermal enhanced oil recovery processes with electromagnetic methods

    SciTech Connect (OSTI)

    Wilt, M.

    1992-09-01

    Research in applying electromagnetic methods for imaging thermal enhanced oil recovery has progressed significantly during the past eighteen months. Working together with researchers at Lawrence Berkeley Laboratory (LBL) and supported by a group of industrial sponsors we have focused our effort on field system development and doing field surveys connected with EOR operations. Field surveys were recently completed at the Lost Hills No.3 oil field and at UC Richmond Field station. At Lost Hills, crosshole EM data sets were collected before a new phase of steam injection for EOR and again four months after the onset of steaming. The two data sets were nearly identical suggesting that very little steam had been injected into this borehole. This is in accord with the operators records which indicate injectivity problems with this particular well. At Richmond we conducted a salt water injection monitoring experiment where 50,000 gallons of salt water were injected in a shallow aquifer and crosshole EM data were collected using the injection well and several observation wells. We applied the imaging code to some of the collected data and produced an image showing that the salt water slug has propagated 8--10 m from the injector into the aquifer. This result is partially confirmed by prior calculations and well logging data. Applying the EM methods to the problem of oil field characterization essentially means extending the borehole resistivity log into the region between wells. Since the resistivity of a sedimentary environment is often directly dependent on the fluids in the rock the knowledge of the resistivity distribution within an oil field can be invaluable for finding missed or bypassed oil or for mapping the overall structure. With small modification the same methods used for mapping EOR process can be readily applied to determining the insitu resistivity structure.

  2. Resource Conservation and Recovery Act (RCRA) closure sumamry for the Uranium Treatment Unit

    SciTech Connect (OSTI)

    1996-05-01

    This closure summary has been prepared for the Uranium Treatment Unit (UTU) located at the Y-12 Plant in Oak Ridge, Tennessee. The actions required to achieve closure of the UTU area are outlined in the Closure Plan, submitted to and approved by the Tennessee Department of Environmental and Conservation staff, respectively. The UTU was used to store and treat waste materials that are regulated by the Resource Conservation and Recovery Act. This closure summary details all steps that were performed to close the UTU in accordance with the approved plan.

  3. THEORY OF THREE-PHASE FLOW APPLIED TO WATER-ALTERNATING-GAS ENHANCED OIL RECOVERY

    E-Print Network [OSTI]

    THEORY OF THREE-PHASE FLOW APPLIED TO WATER-ALTERNATING-GAS ENHANCED OIL RECOVERY D. MARCHESIN is the key to this improvement. 1. Introduction In secondary oil recovery, water or gas is injected in three-phase ow in a porous medium, we consider the idealized ow of water, oil, and gas

  4. CO2 Enhanced Oil Recovery Feasibility Evaluation for East Texas Oil Field

    E-Print Network [OSTI]

    Lu, Ping

    2012-08-31

    Carbon dioxide enhanced oil recovery (CO2-EOR) has been undergoing for four decades and is now a proven technology. CO2-EOR increases oil recovery, and in the meantime reduces the greenhouse gas emissions by capture CO2 underground. The objectives...

  5. FLUID DYNAMICAL AND MODELING ISSUES OF CHEMICAL FLOODING FOR ENHANCED OIL RECOVERY

    E-Print Network [OSTI]

    Daripa, Prabir

    of the objective functions in tertiary oil recovery by polymer flooding is the "op- timal" viscous profileFLUID DYNAMICAL AND MODELING ISSUES OF CHEMICAL FLOODING FOR ENHANCED OIL RECOVERY Prabir Daripa are succinctly summarized including characteri- zation of the optimal flooding scheme that leads to maximum oil

  6. Contracts for field projects and supporting research on enhanced oil recovery. Progress review number 87

    SciTech Connect (OSTI)

    1997-10-01

    Approximately 30 research projects are summarized in this report. Title of the project, contract number, company or university, award amount, principal investigators, objectives, and summary of technical progress are given for each project. Enhanced oil recovery projects include chemical flooding, gas displacement, and thermal recovery. Most of the research projects though are related to geoscience technology and reservoir characterization.

  7. www.energy.ca.gov/recovery/documents/funding_summary.pdf 8 HR 1 American Recovery And Reinvestment Act of 2009

    E-Print Network [OSTI]

    www.energy.ca.gov/recovery/documents/funding_summary.pdf 8 HR 1 American Recovery And Reinvestment current law, facilities that produce electricity from solar resources are eligible to take a 30-efficient property and recoup the costs of that property over an extended period of time. #12;www.energy.ca.gov/recovery/documents/funding

  8. Audit Report on "Management Controls over the Department of Energy's American Recovery and Reinvestment Act - Louisiana State Energy Program"

    SciTech Connect (OSTI)

    2010-05-01

    The Department of Energy's (Department) Office of Energy Efficiency and Renewable Energy (EERE) provides grants to states, territories and the District of Columbia (states) to support their energy priorities through the State Energy Program (SEP). Federal funding is based on a grant formula that considers the population and energy consumption in each state, and amounted to $25 million for Fiscal Year (FY) 2009. The American Recovery and Reinvestment Act of 2009 (Recovery Act) expanded the SEP by authorizing an additional $3.1 billion to states using the existing grant formula. EERE made grant awards to states after reviewing plans that summarize the activities states will undertake to achieve SEP Recovery Act objectives, including preserving and creating jobs; saving energy; increasing renewable energy sources; and, reducing greenhouse gas emissions. EERE program guidance emphasizes that states are responsible for administering SEP within each state, and requires each state to implement internal controls over the use of Recovery Act funds. The State of Louisiana received $71.6 million in SEP Recovery Act funds; a 164-fold increase over its FY 2009 SEP grant of $437,000. As part of the Office of Inspector General's strategy for reviewing the Department's implementation of the Recovery Act, we initiated this review to determine whether the Louisiana State Energy Office had internal controls in place to efficiently and effectively administer Recovery Act funds provided for its SEP program. Louisiana developed a strategy for SEP Recovery Act funding that focused on improving energy efficiency in state buildings, housing and small businesses; increasing Energy Star appliance rebates; and, expanding the use of alternative fuels and renewable energy. Due to a statewide hiring freeze, Louisiana outsourced management of the majority of its projects ($63.3 million) to one general contractor. Louisiana plans to internally manage one project, Education and Outreach ($2.6 million). The remaining funds are allocated to program specific management expenses, including the contractor's fee, a monitoring contract, and Louisiana's payroll expenses ($5.7 million). Louisiana formally approved the general contractor in February 2010. State officials plan to initiate a separate consulting contract for monitoring, verifying and auditing expenditures, energy savings and other metrics as required by EERE for Recovery Act funding.

  9. Contracts for field projects and supporting research on enhanced oil recovery. Quarterly technical progress report, July 1, 1995--September 30, 1995

    SciTech Connect (OSTI)

    1996-10-01

    This document presents brief descriptions of research programs concerned with enhanced oil recovery.

  10. INFORMATION: Special Report on "Selected Department of Energy Program Efforts to Implement the American Recovery and Reinvestment Act"

    SciTech Connect (OSTI)

    2009-12-01

    The American Recovery and Reinvestment Act of 2009 (Recovery Act) was enacted on February 17, 2009, to jumpstart the economy by creating or saving millions of jobs, spurring technological advances in health and science, and investing in the Nation's energy future. The Department of Energy received over $32.7 billion in Recovery Act funding for various science, energy, and environmental programs and initiatives. As of November 2009, the Department had obligated $18.3 billion of the Recovery Act funding, but only $1.4 billion had been spent. The Department's Offices of Energy Efficiency and Renewable Energy, Fossil Energy, Environmental Management, Science, and Electricity Delivery and Energy Reliability received the majority of funding allocated to the Department, about $32.3 billion. Obligating these funds by the end of Fiscal Year 2010, as required by the Recovery Act, and overseeing their effective use in succeeding years, represents a massive workload increase for the Department's programs. The effort to date has strained existing resources. As has been widely acknowledged, any effort to disburse massive additional funding and to expeditiously initiate and complete projects increases the risk of fraud, waste and abuse. It is, therefore, important for the Department's program offices to assess and mitigate these risks to the maximum extent practicable. In this light, we initiated this review as an initial step in the Office of Inspector General's charge to determine whether the Department's major program offices had developed an effective approach for identifying and mitigating risks related to achieving the goals and objectives of the Recovery Act. The Department's program offices included in our review identified risks and planned mitigation strategies that, if successfully implemented and executed, should help achieve the goals and objectives of the Recovery Act. While each office identified risks unique to its respective areas of responsibility, there were a number of risks shared in common. These included the mechanical and substantive requirements related to the award and distribution of funds; program and project performance monitoring; and, program and project execution activities. In particular, the offices self-identified common risks such as: (1) The inability to award and distribute funds in a timely manner to achieve the goals of the Recovery Act; (2) The sufficiency of monitoring procedures and resources to, among other things, prevent and detect fraud, waste and abuse throughout the performance period of financial assistance awards and contracts; and (3) The inherent cost, schedule and performance risks associated with first-of-a-kind, innovative research and demonstration projects. Our review confirmed that the Department had begun to implement a number of strategies designed to mitigate these and other program-specific risks. Our testing, however, identified challenges to the effective implementation of these mitigation strategies that need to be addressed if the Department is to meet the goals and objectives established by the Recovery Act. At the time of our review: (1) Program staffing resources, critical to the success of all other mitigation strategies, remained inadequate both in numbers and qualifications (certifications and training) for positions in procurement and acquisition, project management, and monitoring and oversight functions; (2) Performance measures for achieving Recovery Act goals such as distributing funds in an expeditious manner had not always been established and included in performance plans, and, in financial assistance and contract documents; and (3) Programs had not consistently demonstrated that previously reported deficiencies, identified through audits, inspections, investigations and other oversight activities, had been considered in designing mitigation strategies for the Recovery Act related risks. As we noted in our Special Report on the American Recovery and Reinvestment Act at the Department of Energy (OAS-RA-09-01, March 2009) these sorts of deficiencies, which w

  11. The American Recovery and Reinvestment Act Includes $4.5 billion for the Office of Electricity Delivery and Energy Reliability

    Broader source: Energy.gov [DOE]

    President Barack Obama signed into law the American Recovery and Reinvestment Act of 2009 (P.L.111-5). The $787 billion economic recovery package represents the largest and most ambitious effort to stimulate the economy in United States history. The Department of Energy (DOE) will be responsible for implementing over $38 billion of the $787 billion package. Of the DOE total, $4.5 Billion is allotted to the Office of Electricity Delivery and Energy Reliability.

  12. Disruption of cell walls for enhanced lipid recovery

    DOE Patents [OSTI]

    Knoshaug, Eric P; Donohoe, Bryon S; Gerken, Henri; Laurens, Lieve; Van Wychen, Stefanie Rose

    2015-03-24

    Presented herein are methods of using cell wall degrading enzymes for recovery of internal lipid bodies from biomass sources such as algae. Also provided are algal cells that express at least one exogenous gene encoding a cell wall degrading enzyme and methods for recovering lipids from the cells.

  13. AVTA: ChargePoint America Recovery Act project map of charging units

    Broader source: Energy.gov [DOE]

    The Vehicle Technologies Office's Advanced Vehicle Testing Activity carries out testing on a wide range of advanced vehicles and technologies on dynamometers, closed test tracks, and on-the-road. These results provide benchmark data that researchers can use to develop technology models and guide future research and development. The American Recovery and Reinvestment Act supported a number of projects that together made up the largest ever deployment of plug-in electric vehicles and charging infrastructure in the U.S. The following reports describe the distribution of charging infrastructure through the Chargepoint America project, which deployed 4,600 public and home charging stations throughout the U.S. This research was conducted by Idaho National Laboratory.

  14. AVTA: Chrysler RAM Experimental PHEV Pickup Truck Recovery Act Project Testing Results Phase 1

    Broader source: Energy.gov [DOE]

    The Vehicle Technologies Office's Advanced Vehicle Testing Activity carries out testing on a wide range of advanced vehicles and technologies on dynamometers, closed test tracks, and on-the-road. These results provide benchmark data that researchers can use to develop technology models and guide future research and development. The American Recovery and Reinvestment Act supported a number of projects that together made up the largest ever deployment of plug-in electric vehicles and charging infrastructure in the U.S. The following reports describe results of testing done on a 2011 Chrysler RAM PHEV, a demonstration vehicle not currently available for sale. The baseline performance testing provides a point of comparison for the other test results. Taken together, these reports give an overall view of how this vehicle functions under extensive testing. This research was conducted by Idaho National Laboratory.

  15. AVTA: Chrysler RAM Experimental PHEV Pickup Truck Recovery Act project map

    Broader source: Energy.gov [DOE]

    The Vehicle Technologies Office's Advanced Vehicle Testing Activity carries out testing on a wide range of advanced vehicles and technologies on dynamometers, closed test tracks, and on-the-road. These results provide benchmark data that researchers can use to develop technology models and guide future research and development. The American Recovery and Reinvestment Act supported a number of projects that together made up the largest ever deployment of plug-in electric vehicles and charging infrastructure in the U.S. The following map describes the distribution of vehicles for a project with the 2011 Chrysler RAM PHEV, a demonstration vehicle not currently available for sale. This research was conducted by Idaho National Laboratory.

  16. Exsolution Enhanced Oil Recovery with Concurrent CO2 Sequestration

    SciTech Connect (OSTI)

    Zuo, Lin; Benson, Sally M.

    2013-01-01

    A novel EOR method using carbonated water injection followed by depressurization is introduced. Results from micromodel experiments are presented to demonstrate the fundamental principles of this oil recovery method. A depressurization process (1 MPa/hr) was applied to a micromodel following carbonated water injection (Ca ? 10-5). The exsolved CO2 in water-filled pores blocked water flow in swiped portions and displaced water into oil-filled pores. Trapped oil after the carbonated water injection was mobilized by sequentially invading water. This method's self-distributed mobility control and local clogging was tested in a sandstone sample under reservoir conditions. A 10% incremental oil recovery was achieved by lowering the pressure 2 MPa below the CO2 liberation pressure. Additionally, exsolved CO2 resides in the pores of a reservoir as an immobile phase with a high residual saturation after oil production, exhibiting a potential synergy opportunity between CO2 EOR and CO2 sequestration

  17. HANFORD TANK FARM RESOURCE CONVERVATION & RECOVERY ACT (RCRA) CORRECTIVE ACTION PROGRAM

    SciTech Connect (OSTI)

    KRISTOFZSKI, J.G.

    2007-01-15

    As a consequence of producing special nuclear material for the nation's defense, large amounts of extremely hazardous radioactive waste was created at the US Department of Energy's (DOE) Hanford Site in south central Washington State. A little over 50 million gallons of this waste is now stored in 177 large, underground tanks on Hanford's Central Plateau in tank farms regulated under the Atomic Energy Act and the Resource, Conservation, and Recovery Act (RCRA). Over 60 tanks and associated infrastructure have released or are presumed to have released waste in the vadose zone. In 1998, DOE's Office of River Protection established the Hanford Tank Farm RCRA Corrective Action Program (RCAP) to: (1) characterize the distribution and extent of the existing vadose zone contamination; (2) determine how the contamination will move in the future; (3) estimate the impacts of this contamination on groundwater and other media; (4) develop and implement mitigative measures; and (5) develop corrective measures to be implemented as part of the final closure of the tank farm facilities. Since its creation, RCAP has made major advances in each of these areas, which will be discussed in this paper.

  18. Final Scientific/Technical Report [Recovery Act: Districtwide Geothermal Heating Conversion

    SciTech Connect (OSTI)

    Chatterton, Mike

    2014-02-12

    The Recovery Act: Districtwide Geothermal Heating Conversion project performed by the Blaine County School District was part of a larger effort by the District to reduce operating costs, address deferred maintenance items, and to improve the learning environment of the students. This project evaluated three options for the ground source which were Open-Loop Extraction/Re-injection wells, Closed-Loop Vertical Boreholes, and Closed-Loop Horizontal Slinky approaches. In the end the Closed-Loop Horizontal Slinky approach had the lowest total cost of ownership but the majority of the sites associated with this project did not have enough available ground area to install the system so the second lowest option was used (Open-Loop). In addition to the ground source, this project looked at ways to retrofit existing HVAC systems with new high efficiency systems. The end result was the installation of distributed waterto- air heat pumps with water-to-water heat pumps installed to act as boilers/chillers for areas with a high ventilation demand such as they gymnasiums. A number of options were evaluated and the lowest total cost of ownership approach was implemented in the majority of the facilities. The facilities where the lowest total cost of ownership approaches was not selected were done to maintain consistency of the systems from facility to facility. This project had a number of other benefits to the Blaine County public. The project utilizes guaranteed energy savings to justify the levy funds expended. The project also developed an educational dashboard that can be used in the classrooms and to educate the community on the project and its performance. In addition, the majority of the installation work was performed by contractors local to Blaine County which acted as an economic stimulus to the area during a period of recession.

  19. Contracts for field projects and supporting research on enhanced oil recovery. Reporting period July--September 1996

    SciTech Connect (OSTI)

    NONE

    1997-12-01

    This report contains information on accomplishments completed during July through September 1997 on contracts for field projects and supporting research on Enhanced Oil Recovery.

  20. Performance evaluation of starch based polymer for enhanced oil recovery 

    E-Print Network [OSTI]

    Skurner, James Andrew

    1997-01-01

    Ever since the first petroleum well was drilled, water production has been a deterring force in maximizing an oilfield's hydrocarbon reserves. To satisfy the ever increasing global demand for petroleum, many different techniques for enhancing oil...

  1. Procedural guidance for reviewing exposure information under RCRA (Resource Conservation and Recovery Act) section 3019. Final report

    SciTech Connect (OSTI)

    Grogan, T.; Kayser, R.

    1986-09-26

    This guidance manual describes the procedures for permit writers in evaluating exposure information submitted under Resource Conservation and Recovery Act (RCRA) Section 3019. The integration of the review with existing RCRA permitting activities is also discussed. The document outlines procedures to follow in referring sites to the Agency for Toxic Substances and Disease Registry (ATSDR) for health evaluations.

  2. Permit applicants' guidance manual for exposure information requirements under RCRA (Resource Conservation and Recovery Act) Section 3019. Final report

    SciTech Connect (OSTI)

    Not Available

    1985-07-03

    The purpose of this document is to provide owners and operators of hazardous-waste landfills and surface impoundments that are subject to permitting under the Resource Conservation and Recovery Act (RCRA) with guidance for submitting information on the potential for public exposure to hazardous wastes, as required by Section 3019 of RCRA.

  3. Surfactant Based Enhanced Oil Recovery and Foam Mobility Control

    SciTech Connect (OSTI)

    George J. Hirasaki; Clarence A. Miller

    2006-09-09

    Surfactant flooding has the potential to significantly increase recovery over that of conventional waterflooding. The availability of a large number of surfactant structures makes it possible to conduct a systematic study of the relation between surfactant structure and its efficacy for oil recovery. A mixture of two surfactants was found to be particularly effective for application in carbonate formations at low temperature. The mixture is single phase for higher salinity or calcium concentrations than that for either surfactant used alone. This makes it possible to inject the surfactant slug with polymer close to optimal conditions and yet be single phase. A formulation has been designed for a particular field application. It uses partially hydrolyzed polyacrylamide for mobility control. The addition of an alkali such as sodium carbonate makes possible in situ generation of naphthenic soap and significant reduction of synthetic surfactant adsorption. The design of the process to maximize the region of ultra-low IFT takes advantage of the observation that the ratio of soap to synthetic surfactant is a parameter in the conditions for optimal salinity. Even for a fixed ratio of soap to surfactant, the range of salinity for low IFT was wider than that reported for surfactant systems in the literature. Low temperature, forced displacement experiments in dolomite and silica sandpacks demonstrate that greater than 95% recovery of the waterflood remaining oil is possible with 0.2% surfactant concentration, 0.5 PV surfactant slug, with no alcohol. Compositional simulation of the displacement process demonstrates the role of soap/surfactant ratio on passage of the profile through the ultralow IFT region, the importance of a wide salinity range of low IFT, and the importance of the viscosity of the surfactant slug. Mobility control is essential for surfactant EOR. Foam is evaluated to improve the sweep efficiency of surfactant injected into fractured reservoirs as well as a drive fluid for ASP flooding. UTCHEM is a reservoir simulator specially designed for surfactant EOR. It has been modified to represent the effects of a change in wettability produced by surfactant injection.

  4. Improving hydroturbine pressures to enhance salmon passage survival and recovery

    SciTech Connect (OSTI)

    Trumbo, Bradly A.; Ahmann, Martin L.; Renholods, Jon F.; Brown, Richard S.; Colotelo, Alison HA; Deng, Zhiqun

    2014-09-12

    This paper provides an overview of turbine pressure data collection and barotrauma studies relative to fish passage through large Kaplan turbines and how this information may be applied to safer fish passage through turbines. The specific objectives are to 1) discuss turbine pressures defined by Sensor Fish releases; 2) discuss what has been learned about pressure effects on fish and the factors influencing barotrauma associated with simulated turbine passage; 3) elucidate data gaps associated with fish behavior and passage that influence barotrauma during turbine passage; 4) discuss how the results of these studies have led to turbine design criteria for safer fish passage; and 5) relate this information to salmon recovery efforts and safer fish passage for Atlantic and Pacific salmonids.

  5. Resource Conservation and Recovery Act Industrial Sites quality assurance project plan: Nevada Test Site, Nevada

    SciTech Connect (OSTI)

    Not Available

    1994-06-01

    This quality assurance project plan (QAPjP) describes the measures that shall be taken to ensure that the environmental data collected during characterization and closure activities of Resource Conservation and Recovery Act (RCRA) Industrial Sites at the Nevada Test Site (NTS) are meaningful, valid, defensible, and can be used to achieve project objectives. These activities are conducted by the US Department of Energy Nevada Operations Office (DOE/NV) under the Nevada Environmental Restoration (ER) Project. The Nevada ER Project consists of environmental restoration activities on the NTS, Tonopah Test Range, Nellis Air Force Range, and eight sites in five other states. The RCRA Industrial Sites subproject constitutes a component of the Nevada ER Project. Currently, this QAPjP is limited to the seven RCRA Industrial Sites identified within this document that are to be closed under an interim status and pertains to all field-investigation, analytical-laboratory, and data-review activities in support of these closures. The information presented here supplements the RCRA Industrial Sites Project Management Plan and is to be used in conjunction with the site-specific subproject sampling and analysis plans.

  6. Enhancing Low-Grade Thermal Energy Recovery in a Thermally Regenerative Ammonia Battery Using

    E-Print Network [OSTI]

    Enhancing Low-Grade Thermal Energy Recovery in a Thermally Regenerative Ammonia Battery Using of renewable energy that is carbon neutral and sustainable.[1] Low-grade thermal energy from either industrial processes or natural solar or geothermal pro- cesses becomes attractive as a possible energy source because

  7. Further experimental studies of steam-propane injection to enhance recovery of Morichal oil 

    E-Print Network [OSTI]

    Ferguson,Mark Anthony

    2000-01-01

    In 1998-1999, experimental research was conducted by Goite at Texas A&M University into steam-propane injection to enhance oil recovery from the Morichal field, Venezuela. Goite's results showed that, compared with steam injection alone, steam-propane...

  8. Research on improved and enhanced oil recovery in Illinois through reservoir characterization

    SciTech Connect (OSTI)

    Not Available

    1990-06-25

    The Illinois Department of Energy and Natural Resources through a Memorandum of Understanding with the US Department of Energy has commenced a research program in Improved and Enhanced Oil Recovery from Illinois Reservoirs Through Reservoir Characterization.'' The program will include studies on mineralogy, petrography of reservoir rock, database management, engineering assessment, seismic studies and acoustic logs, and mapping. 8 figs. (CBS)

  9. An optimal viscosity profile in enhanced oil recovery by polymer Prabir Daripa1,

    E-Print Network [OSTI]

    Daripa, Prabir

    An optimal viscosity profile in enhanced oil recovery by polymer flooding Prabir Daripa1, and G. Pa. 2029-2039, 2004 (Nov. Issue) Abstract Forced displacement of oil by polymer flooding in oil reservoir, polymer flooding, linear stability. Author for correspondence (e-mail: prabir.daripa@math.tamu.edu) 1 #12;

  10. CO2-Driven Enhanced Gas Recovery and Storage in Depleted Shale Reservoir-A Numerical Simulation Study

    E-Print Network [OSTI]

    Mohaghegh, Shahab

    1 CO2-Driven Enhanced Gas Recovery and Storage in Depleted Shale Reservoir- A Numerical Simulation for storage and enhanced gas recovery may be organic-rich shales, which CO2 is preferentially adsorbed comprehensive simulation studies to better understand CO2 injection process in shale gas reservoir. This paper

  11. Oil recovery enhancement from fractured, low permeability reservoirs. Annual report 1990--1991, Part 1

    SciTech Connect (OSTI)

    Poston, S.W.

    1991-12-31

    Joint funding by the Department of Energy and the State of Texas has Permitted a three year, multi-disciplinary investigation to enhance oil recovery from a dual porosity, fractured, low matrix permeability oil reservoir to be initiated. The Austin Chalk producing horizon trending thru the median of Texas has been identified as the candidate for analysis. Ultimate primary recovery of oil from the Austin Chalk is very low because of two major technological problems. The commercial oil producing rate is based on the wellbore encountering a significant number of natural fractures. The prediction of the location and frequency of natural fractures at any particular region in the subsurface is problematical at this time, unless extensive and expensive seismic work is conducted. A major portion of the oil remains in the low permeability matrix blocks after depletion because there are no methods currently available to the industry to mobilize this bypassed oil. The following multi-faceted study is aimed to develop new methods to increase oil and gas recovery from the Austin Chalk producing trend. These methods may involve new geological and geophysical interpretation methods, improved ways to study production decline curves or the application of a new enhanced oil recovery technique. The efforts for the second year may be summarized as one of coalescing the initial concepts developed during the initial phase to more in depth analyses. Accomplishments are predicting natural fractures; relating recovery to well-log signatures; development of the EOR imbibition process; mathematical modeling; and field test.

  12. Using Carbon Dioxide to Enhance Recovery of Methane from Gas Hydrate Reservoirs: Final Summary Report

    SciTech Connect (OSTI)

    McGrail, B. Peter; Schaef, Herbert T.; White, Mark D.; Zhu, Tao; Kulkarni, Abhijeet S.; Hunter, Robert B.; Patil, Shirish L.; Owen, Antionette T.; Martin, P F.

    2007-09-01

    Carbon dioxide sequestration coupled with hydrocarbon resource recovery is often economically attractive. Use of CO2 for enhanced recovery of oil, conventional natural gas, and coal-bed methane are in various stages of common practice. In this report, we discuss a new technique utilizing CO2 for enhanced recovery of an unconventional but potentially very important source of natural gas, gas hydrate. We have focused our attention on the Alaska North Slope where approximately 640 Tcf of natural gas reserves in the form of gas hydrate have been identified. Alaska is also unique in that potential future CO2 sources are nearby, and petroleum infrastructure exists or is being planned that could bring the produced gas to market or for use locally. The EGHR (Enhanced Gas Hydrate Recovery) concept takes advantage of the physical and thermodynamic properties of mixtures in the H2O-CO2 system combined with controlled multiphase flow, heat, and mass transport processes in hydrate-bearing porous media. A chemical-free method is used to deliver a LCO2-Lw microemulsion into the gas hydrate bearing porous medium. The microemulsion is injected at a temperature higher than the stability point of methane hydrate, which upon contacting the methane hydrate decomposes its crystalline lattice and releases the enclathrated gas. Small scale column experiments show injection of the emulsion into a CH4 hydrate rich sand results in the release of CH4 gas and the formation of CO2 hydrate

  13. Recovery Act: Hydroelectric Facility Improvement Project - Replacement of Current Mechanical Seal System with Rope Packing System

    SciTech Connect (OSTI)

    Stephens, Jessica D.

    2013-05-29

    On January 27, 2010 the City of North Little Rock, Arkansas received notification of the awarding of a Department of Energy (DOE) grant totaling $450,000 in funding from the American Recovery and Reinvestment Act (ARRA) under the Project Title: Recovery Act: Hydroelectric Facility Improvement Project – Automated Intake Clearing Equipment and Materials Management. The purpose of the grant was for improvements to be made at the City’s hydroelectric generating facility located on the Arkansas River. Improvements were to be made through the installation of an intake maintenance device (IMD) and the purchase of a large capacity wood grinder. The wood grinder was purchased in order to receive the tree limbs, tree trunks, and other organic debris that collects at the intake of the plant during high flow. The wood grinder eliminates the periodic burning of the waste material that is cleared from the intake and reduces any additional air pollution to the area. The resulting organic mulch has been made available to the public at no charge. Design discussion and planning began immediately and the wood grinder was purchased in July of 2010 and immediately put to work mulching debris that was gathered regularly from the intake of the facility. The mulch is currently available to the public for free. A large majority of the design process was spent in discussion with the Corps of Engineers to obtain approval for drawings, documents, and permits that were required in order to make changes to the structure of the powerhouse. In April of 2011, the City’s Project Engineer, who had overseen the application, resigned and left the City’s employ. A new Systems Mechanical Engineer was hired and tasked with overseeing the project. The transfer of responsibility led to a re-examination of the original assumptions and research upon which the grant proposal was based. At that point, the project went under review and a trip was booked for July 2011 to visit facilities that currently had an IMD installed. This further study of facilities revealed that the implementation of the project as originally described, while proving the benefits described in the original grant application, would likely intensify sand intake. Increased sand intake would lead to an increase in required shutdowns for maintenance and more rapid depreciation of key equipment which would result in a loss of generation capacity. A better solution to the problem, one that continued to meet the criteria for the original grant and ARRA standards, was developed. A supporting day trip was planned to visit other facilities located on the Arkansas River to determine how they were coping with the same strong amounts of sand, silt, and debris. Upon returning from the trip to other Arkansas River facilities it was extremely clear what direction to go in order to most efficiently address the issue of generator capacity and efficiency. Of the plants visited on the Arkansas River, every one of them was running what is called a rope packing shaft sealing system as opposed to mechanical shaft seals, which the facility was running. Rope packing is a time proven sealing method that has been around for centuries. It has proved to perform very well in dirty water situations just like that of the Arkansas River. In April of 2012 a scope change proposal was submitted to the DOE for approval. In August of 2012 the City received word that the change of scope had been approved. Plans were immediately set in motion to begin the conversion from mechanical seals to a packing box at the facility. Contractors arrived on October 1st, 2012 and the project team began unwatering the unit for disassembly. The seal conversion was completed on February 29th, 2013 with start-up of the unit. Further testing and adjusting was done throughout the first two weeks of March.

  14. Solid waste landfills under the Resource Conservation and Recovery Act Subtitle D

    SciTech Connect (OSTI)

    1995-11-01

    This document provides guidance for meeting: (1) Guidelines for the Land Disposal of Solid Waste (40 CFR 241); (2) Criteria for Classification of Solid Waste Disposal Facilities and Practices (40 CFR 257); and (3) Criteria for Municipal Solid Waste Landfills (MSWLFs) (40 CFR Part 258). Revisions to 40 CFR 257 and a new Part 258 were published in the Federal Register (56 FR 50978, 10/9/91). The Guidelines for the Land Disposal of Solid Waste set requirements and recommended procedures to ensure that the design, construction, and operation of land disposal sites is done in a manner that will protect human health and the environment. These regulations are applicable to MSWLFs and non-MSWLFs (e.g., landfills used only for the disposal of demolition debris, commercial waste, and/or industrial waste). These guidelines are not applicable to the, land disposal of hazardous, agricultural, and/or mining wastes. These criteria are to be used under the Resource Conservation and Recovery Act (RCRA) in determining which solid waste disposal facilities pose a reasonable possibility of adversely affecting human health or the environment. Facilities failing to satisfy these criteria will be considered to be open dumps which are prohibited under Section 4005 of RCRA. The Criteria for MSWLFs are applicable only to MSWLFs, including those MSWLFs in which sewage sludge is co-disposed with household waste. Based on specific criteria, certain MSWLFs are exempt from some, or all, of the regulations of 40 CFR 258. MSWLFs that fail to satisfy the criteria specified in 40 CFR 258 are also considered open dumps for the purposes of Section 4005 of RCRA. Through the use of a series of interrelated flow diagrams, this guidance document directs the reader to each design, operation, maintenance, and closure activity that must be performed for MSWLFs and non-MSWLFs.

  15. Contracts for field projects and supporting research on enhanced oil recovery. Quarterly technical progress report, October 1994--December 1994. Progress review No. 81

    SciTech Connect (OSTI)

    1996-03-01

    This document consists of a publications list for field projects and brief descriptions of research projects on enhanced petroleum recovery.

  16. Technical constraints limiting application of enhanced oil recovery techniques to petroleum production in the United States

    SciTech Connect (OSTI)

    Not Available

    1984-01-01

    In the interval since the publication in September 1980 of the technical constraints that inhibit the application of enhanced oil recovery techniques in the United States, there has been a large number of successful field trials of enhanced oil recovery (EOR) techniques. The Department of Energy has shared the costs of 28 field demonstrations of EOR with industry, and the results have been made available to the public through DOE documents, symposiums and the technical literature. This report reexamines the constraints listed in 1980, evaluates the state-of-the-art and outlines the areas where more research is needed. Comparison of the 1980 constraints with the present state-of-the-art indicates that most of the constraints have remained the same; however, the constraints have become more specific. 26 references, 6 tables.

  17. Phase behavior and oil recovery investigations using mixed and alkaline-enhanced surfactant systems

    SciTech Connect (OSTI)

    Llave, F.M.; Gall, B.L.; French, T.R.; Noll, L.A.; Munden, S.A.

    1992-03-01

    The results of an evaluation of different mixed surfactant and alkaline-enhanced surfactant systems for enhanced oil recovery are described. Several mixed surfactant systems have been studies to evaluate their oil recovery potential as well as improved adaptability to different ranges of salinity, divalent ion concentrations, and temperature. Several combinations of screening methods were used to help identify potential chemical formulations and determine conditions where particular chemical systems can be applied. The effects of different parameters on the behavior of the overall surfactant system were also studied. Several commercially available surfactants were tested as primary components in the mixtures used in the study. These surfactants were formulated with different secondary as well as tertiary components, including ethoxylated and non-ethoxylated sulfonates and sulfates. Improved salinity and hardness tolerance was achieved for some of these chemical systems. The salinity tolerance of these systems were found to be dependent on the molecular weight, surfactant type, and concentration of the surfactant components.

  18. BIOTIGER, A NATURAL MICROBIAL PRODUCT FOR ENHANCED HYDROCARBON RECOVERY FROM OIL SANDS.

    SciTech Connect (OSTI)

    Brigmon, R; Topher Berry, T; Whitney Jones, W; Charles Milliken, C

    2008-05-27

    BioTiger{trademark} is a unique microbial consortia that resulted from over 8 years of extensive microbiology screening and characterization of samples collected from a century-old Polish waste lagoon. BioTiger{trademark} shows rapid and complete degradation of aliphatic and aromatic hydrocarbons, produces novel surfactants, is tolerant of both chemical and metal toxicity and shows good activity at temperature and pH extremes. Although originally developed and used by the U.S. Department of Energy for bioremediation of oil-contaminated soils, recent efforts have proven that BioTiger{trademark} can also be used to increase hydrocarbon recovery from oil sands. This enhanced ex situ oil recovery process utilizes BioTiger{trademark} to optimize bitumen separation. A floatation test protocol with oil sands from Ft. McMurray, Canada was used for the BioTiger{trademark} evaluation. A comparison of hot water extraction/floatation test of the oil sands performed with BioTiger{trademark} demonstrated a 50% improvement in separation as measured by gravimetric analysis in 4 h and a five-fold increase at 25 hr. Since BioTiger{trademark} performs well at high temperatures and process engineering can enhance and sustain metabolic activity, it can be applied to enhance recovery of hydrocarbons from oil sands or other complex recalcitrant matrices.

  19. Proposed Guideline Clarifications for American Recovery and Reinvestment Act of 2009

    E-Print Network [OSTI]

    Wilde, Erik; Kansa, Eric C; Yee, Raymond

    2009-01-01

    APIs for HTML and XHTML. World Wide Web Consortium, Workingfor the recovery Web sites; essentially pre-de?ned HTML codeJacobs. HTML 4.01 Speci?cation. World Wide Web Consortium,

  20. Special Report on the "Department of Energy's Efforts to Meet Accountability and Performance Reporting Objectives of the American Recovery and Reinvestment Act"

    SciTech Connect (OSTI)

    None

    2009-09-01

    The purpose of the American Recovery and Reinvestment Act of 2009 (Recovery Act) was to jumpstart the U.S. economy, create or save millions of jobs, spur technological advances in health and science, and invest in the Nation's energy future. The Department of Energy will receive an unprecedented $38 billion in Recovery Act funding to support a variety of science, energy, and environmental initiatives. The Recovery Act requires transparency and accountability over these funds. To this end, the Office of Management and Budget (OMB) issued guidance requiring the Department to compile and report a wide variety of funding, accounting, and performance information. The Department plans to leverage existing information systems to develop accounting and performance information that will be used by program managers and ultimately reported to Recovery.gov, the government-wide source of Recovery Act information, and to OMB. The Department's iManage iPortal, a system that aggregates information from a number of corporate systems, will serve as the main reporting gateway for accounting information. In addition, the Department plans to implement a methodology or system that will permit it to monitor information reported directly to OMB by prime funding recipients. Furthermore, performance measures or metrics that outline expected outcomes are being developed, with results ultimately to be reported in a recently developed Department-wide system. Because of the significance of funds provided and their importance to strengthening the Nation's economy, we initiated this review to determine whether the Department had taken the steps necessary to ensure that Recovery Act funds can be appropriately tracked and are transparent to the public, and whether the benefits of the expenditures can be properly measured and reported clearly, accurately, and in a timely manner. Although not yet fully mature, we found that the Department's efforts to develop, refine, and apply the control structure needed to ensure accurate, timely, and reliable reporting to be both proactive and positive. We did, however, identify certain issues relating to Recovery Act performance management, accounting and reporting accuracy, and timeliness that should be addressed and resolved. In particular, at the time of our review: (1) Program officials had not yet determined whether existing information systems will be able to process anticipated transaction increases associated with the Recovery Act; (2) System modifications made to the Department's performance management system to accommodate Recovery Act performance measures had not yet been fully tested and verified; (3) The ability of prime and sub-recipients to properly segregate and report both accounting and performance information had not been determined; (4) There was a lack of coordination between Headquarters organizations related to aspects of Recovery Act reporting. For example, we observed that the Offices of Fossil Energy and Program, Analysis and Evaluation were both involved in developing job creation estimates that could yield significantly different results; and, (5) A significant portion (91 of 142, or 64 percent) of the performance measures developed for the Recovery Act activities were not quantifiable. In some instances, Project Operating Plans had not been finalized and we were not able to verify that all needed performance measures had been developed. Furthermore, the Department had not developed specific metrics to measure federal and contractor jobs creation and retention, an essential Recovery Act objective. The Department had devoted a great deal of time and resources to identifying and mitigating Recovery Act-related risks. For example, the Department developed a risk assessment tool that is intended to assist programs in identifying risks that can prevent its Recovery Act projects from meeting their intended goals. We also found that program staff and management officials at multiple levels were actively engaged in designing Recovery Act-related control and accountability programs. These efforts ra

  1. Recovery Act Selections for Smart Grid Invesment Grant Awards- By Category

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on DeliciousMathematicsEnergyInterested PartiesBuildingBudget ||DepartmentReadoutReviewRecordRecoveryRecovery

  2. Recovery Act Selections for Smart Grid Investment Grant Awards - By State -

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on DeliciousMathematicsEnergyInterested PartiesBuildingBudget ||DepartmentReadoutReviewRecordRecoveryRecoveryUpdated

  3. Contracts for field projects and supporting research on enhanced oil recovery. Progress review No. 78, quarter ending March 31, 1994

    SciTech Connect (OSTI)

    1995-05-01

    This report presents descriptions of various research projects and field projects concerned with the enhanced recovery of petroleum. Contract numbers, principal investigators, company names, and project management information is included.

  4. The economic feasibility of enhanced coalbed methane recovery using CO2 sequestration in the San Juan Basin 

    E-Print Network [OSTI]

    Agrawal, Angeni

    2007-09-17

    , due to the chemical and physical properties of carbon dioxide, CO2 sequestration is a potential option for substantially enhancing coal bed methane recovery (ECBM). The San Juan Fruitland coal has the most prolific coal seams in the United States...

  5. Carbon Dioxide-Water Emulsions for Enhanced Oil Recovery and Permanent Sequestration of Carbon Dioxide

    SciTech Connect (OSTI)

    Ryan, David; Golomb, Dan; Shi, Guang; Shih, Cherry; Lewczuk, Rob; Miksch, Joshua; Manmode, Rahul; Mulagapati, Srihariraju; Malepati, Chetankurmar

    2011-09-30

    This project involves the use of an innovative new invention ? Particle Stabilized Emulsions (PSEs) of Carbon Dioxide-in-Water and Water-in-Carbon Dioxide for Enhanced Oil Recovery (EOR) and Permanent Sequestration of Carbon Dioxide. The EOR emulsion would be injected into a semi-depleted oil reservoir such as Dover 33 in Otsego County, Michigan. It is expected that the emulsion would dislocate the stranded heavy crude oil from the rock granule surfaces, reduce its viscosity, and increase its mobility. The advancing emulsion front should provide viscosity control which drives the reduced-viscosity oil toward the production wells. The make-up of the emulsion would be subsequently changed so it interacts with the surrounding rock minerals in order to enhance mineralization, thereby providing permanent sequestration of the injected CO{sub 2}. In Phase 1 of the project, the following tasks were accomplished: 1. Perform laboratory scale (mL/min) refinements on existing procedures for producing liquid carbon dioxide-in-water (C/W) and water-in-liquid carbon dioxide (W/C) emulsion stabilized by hydrophilic and hydrophobic fine particles, respectively, using a Kenics-type static mixer. 2. Design and cost evaluate scaled up (gal/min) C/W and W/C emulsification systems to be deployed in Phase 2 at the Otsego County semi-depleted oil field. 3. Design the modifications necessary to the present CO{sub 2} flooding system at Otsego County for emulsion injection. 4. Design monitoring and verification systems to be deployed in Phase 2 for measuring potential leakage of CO{sub 2} after emulsion injection. 5. Design production protocol to assess enhanced oil recovery with emulsion injection compared to present recovery with neat CO{sub 2} flooding. 6. Obtain Federal and State permits for emulsion injection. Initial research focused on creating particle stabilized emulsions with the smallest possible globule size so that the emulsion can penetrate even low-permeability crude oilcontaining formations or saline aquifers. The term ?globule? refers to the water or liquid carbon dioxide droplets sheathed with ultrafine particles dispersed in the continuous external medium, liquid CO{sub 2} or H{sub 2}O, respectively. The key to obtaining very small globules is the shear force acting on the two intermixing fluids, and the use of ultrafine stabilizing particles or nanoparticles. We found that using Kenics-type static mixers with a shear rate in the range of 2700 to 9800 s{sup -1} and nanoparticles between 100-300 nm produced globule sizes in the 10 to 20 ?m range. Particle stabilized emulsions with that kind of globule size should easily penetrate oil-bearing formations or saline aquifers where the pore and throat size can be on the order of 50 ?m or larger. Subsequent research focused on creating particle stabilized emulsions that are deemed particularly suitable for Permanent Sequestration of Carbon Dioxide. Based on a survey of the literature an emulsion consisting of 70% by volume of water, 30% by volume of liquid or supercritical carbon dioxide, and 2% by weight of finely pulverized limestone (CaCO{sub 3}) was selected as the most promising agent for permanent sequestration of CO{sub 2}. In order to assure penetration of the emulsion into tight formations of sandstone or other silicate rocks and carbonate or dolomite rock, it is necessary to use an emulsion consisting of the smallest possible globule size. In previous reports we described a high shear static mixer that can create such small globules. In addition to the high shear mixer, it is also necessary that the emulsion stabilizing particles be in the submicron size, preferably in the range of 0.1 to 0.2 ?m (100 to 200 nm) size. We found a commercial source of such pulverized limestone particles, in addition we purchased under this DOE Project a particle grinding apparatus that can provide particles in the desired size range. Additional work focused on attempts to generate particle stabilized emulsions with a flow through, static mixer based apparatus under a variety

  6. FINAL TECHNICAL REPORT AMERICAN RECOVERY AND REINVESTMENT ACT NORTH FORK SKOKOMISH POWERHOUSE AT CUSHMAN NO. 2 DAM

    SciTech Connect (OSTI)

    Fischer, Steve; Wilson, Matthew

    2013-09-30

    The objective of this project was to add generating capacity on an in-stream flow release at Tacoma Power's Cushman hydroelectric project, Cushman No. 2 Dam, FERC Project P-460. The flow that is being used to generate additional electricity was being discharged from a valve at the base of the dam without recovery of the energy. A second objective to the project was to incorporate upstream fish passage by use of a fish collection structure attached to the draft tubes of the hydroelectric units. This will enable reintroduction of native anadromous fish above the dams which have blocked fish passage since the late 1920's. The project was funded in part by the American Recovery and Reinvestment Act through the Department of Energy, Office of Energy, Efficiency and Renewable Energy, Wind and Water Power Program.

  7. Annex III-evaluation of past and ongoing enhanced oil recovery projects

    SciTech Connect (OSTI)

    Not Available

    1995-02-01

    The Infill Drilling Predictive Model (IDPM) was developed by Scientific Software-Intercomp (SSI) for the Bartlesville Project Office (BPO) of the United States Department of Energy (DOE). The model and certain adaptations thereof were used in conjunction with other models to support the Interstate Oil and Gas Compact Commission`s (IOGCC) 1993 state-by-state assessment of the potential domestic reserves achievable through the application of Advanced Secondary Recovery (ASR) and Enhanced Oil Recovery (EOR) techniques. Funding for this study was provided by the DOE/BPO, which additionally provided technical support. The IDPM is a three-dimensional (stratified, five-spot), two-phase (oil and water) model which uses a minimal amount of reservoir and geologic data to generate production and recovery forecasts for ongoing waterflood and infill drilling projects. The model computes water-oil displacement and oil recovery using finite difference solutions within streamtubes. It calculates the streamtube geometries and uses a two-dimensional reservoir simulation to track fluid movement in each streamtube slice. Thus the model represents a hybrid of streamtube and numerical simulators.

  8. Comprehensive Municipal Solid Waste Management, Resource Recovery, and Conservation Act (Texas)

    Broader source: Energy.gov [DOE]

    This Act encourages the establishment of regional waste management facilities and the cooperation of local waste management entities in order to streamline the management of municipal solid waste...

  9. Audit Report on "Waste Processing and Recovery Act Acceleration Efforts for Contact-Handled Transuranic Waste at the Hanford Site"

    SciTech Connect (OSTI)

    None

    2010-05-01

    The Department of Energy's Office of Environmental Management's (EM), Richland Operations Office (Richland), is responsible for disposing of the Hanford Site's (Hanford) transuranic (TRU) waste, including nearly 12,000 cubic meters of radioactive contact-handled TRU wastes. Prior to disposing of this waste at the Department's Waste Isolation Pilot Plant (WIPP), Richland must certify that it meets WIPP's waste acceptance criteria. To be certified, the waste must be characterized, screened for prohibited items, treated (if necessary) and placed into a satisfactory disposal container. In a February 2008 amendment to an existing Record of Decision (Decision), the Department announced its plan to ship up to 8,764 cubic meters of contact-handled TRU waste from Hanford and other waste generator sites to the Advanced Mixed Waste Treatment Project (AMWTP) at Idaho's National Laboratory (INL) for processing and certification prior to disposal at WIPP. The Department decided to maximize the use of the AMWTP's automated waste processing capabilities to compact and, thereby, reduce the volume of contact-handled TRU waste. Compaction reduces the number of shipments and permits WIPP to more efficiently use its limited TRU waste disposal capacity. The Decision noted that the use of AMWTP would avoid the time and expense of establishing a processing capability at other sites. In May 2009, EM allocated $229 million of American Recovery and Reinvestment Act of 2009 (Recovery Act) funds to support Hanford's Solid Waste Program, including Hanford's contact-handled TRU waste. Besides providing jobs, these funds were intended to accelerate cleanup in the short term. We initiated this audit to determine whether the Department was effectively using Recovery Act funds to accelerate processing of Hanford's contact-handled TRU waste. Relying on the availability of Recovery Act funds, the Department changed course and approved an alternative plan that could increase costs by about $25 million by processing Hanford TRU-waste on-site rather than at AMWTP. Further, under the newly adopted alternative approach, the Department would fail to achieve the previously anticipated reductions in volume associated with the use of existing AMWTP waste compaction capabilities.

  10. Sacrificial adsorbate for surfactants utilized in chemical floods of enhanced oil recovery operations

    DOE Patents [OSTI]

    Johnson, J.S. Jr.; Westmoreland, C.G.

    1980-08-20

    The present invention is directed to a sacrificial or competitive adsorbate for surfactants contained in chemical flooding emulsions for enhanced oil recovery operations. The adsorbate to be utilized in the method of the present invention is a caustic effluent from the bleach stage or the weak black liquor from the digesters and pulp washers of the kraft pulping process. This effluent or weak black liquor is injected into an oil-bearing subterranean earth formation prior to or concurrent with the chemical flood emulsion and is adsorbed on the active mineral surfaces of the formation matrix so as to effectively reduce adsorption of surfactant in the chemical flood. Alternatively, the effluent or liquor can be injected into the subterranean earth formation subsequent to a chemical flood to displace the surfactant from the mineral surfaces for the recovery thereof.

  11. Sacrificial adsorbate for surfactants utilized in chemical floods of enhanced oil recovery operations

    DOE Patents [OSTI]

    Johnson, Jr., James S. (Oak Ridge, TN); Westmoreland, Clyde G. (Rockwood, TN)

    1982-01-01

    The present invention is directed to a sacrificial or competitive adsorbate for surfactants contained in chemical flooding emulsions for enhanced oil recovery operations. The adsorbate to be utilized in the method of the present invention is a caustic effluent from the bleach stage or the weak black liquor from the digesters and pulp washers of the kraft pulping process. This effluent or weak black liquor is injected into an oil-bearing subterranean earth formation prior to or concurrent with the chemical flood emulsion and is adsorbed on the active mineral surfaces of the formation matrix so as to effectively reduce adsorption of surfactant in the chemical flood. Alternatively, the effluent or liquor can be injected into the subterranean earth formation subsequent to a chemical flood to displace the surfactant from the mineral surfaces for the recovery thereof.

  12. Recovery Act-Information for Special Reporting DOE Inter-Contractor Purchase UT-B Contracts Div Page 1 of 1

    E-Print Network [OSTI]

    Recovery Act- Information for Special Reporting ­ DOE Inter-Contractor Purchase UT- B Contracts Div REQUIRED FROM OTHER DOE INTEGRATED CONTRACTORS FOR SPECIAL REPORTING (Aug 2010) THE INFORMATION PROVIDED Act of 2009 ­ DOE Inter-Contractor Purchase." For definition of jobs created and jobs retained, see

  13. STIMULI-RESPONSIVE POLYMERS WITH ENHANCED EFFICIENCY IN RESERVOIR RECOVERY PROCESSES

    SciTech Connect (OSTI)

    Charles McCormick; Roger Hester

    2004-09-30

    This sixth and final progress report for DOE Award Number DE-FC26-01BC15317 describes research during the period March 01, 2004 through August 31, 2004 performed at the University of Southern Mississippi on ''Stimuli Responsive Polymers with Enhanced Efficiency in Reservoir Recovery'' processes. Significantly, terpolymers that are responsive to changes in pH and ionic strength have been synthesized, characterized, and their solution properties have been extensively examined. Terpolymers composed of acrylamide, a carboxylated acrylamido monomer (AMBA), and a quaternary ammonium monomer (AMBATAC) with balanced compositions of the latter two, exhibit increases in aqueous solution viscosity as NaCl concentration is increased. This increase in polymer coil size can be expected upon injection of this type of polymer into oil reservoirs of moderate-to-high salinity, leading to better mobility control. The opposite effect (loss of viscosity) is observed for conventional polymer systems. Additionally polymer mobility characteristics have been conducted for a number of hydrophilic copolymers utilizing an extensional flow apparatus and size exclusion chromatography. This study reveled that oil recovery enhancement through use of polymers in a water flood is due to the polymer's resistance to deformation as it flows through the reservoir. Individual polymers when in aqueous solution form coils. The larger the polymer's coil size, the greater the polymer's resistance to extensional flow and the more effective the polymer is in enhancing oil recovery. Large coil sizes are obtained by increasing the polymer molecular weight and having macromolecular structures that favor greater swelling of the coil by the aqueous solvent conditions (temperature, pH and electrolyte concentration) existing in the reservoir.

  14. Recovery Act Â… An Interdisciplinary Program for Education and Outreach in

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankADVANCED MANUFACTURINGEnergy BillsNo. 195 - Oct. 7,DOERTI | Department8Recovery

  15. Recovery Act Â… An Interdisciplinary Program for Education and Outreach in

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankADVANCED MANUFACTURINGEnergy BillsNo. 195 - Oct. 7,DOERTI | Department8RecoveryTransportation

  16. Recovery Act Provides $9.6 Million for Transformational Energy Research

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on DeliciousMathematicsEnergyInterested PartiesBuildingBudget ||DepartmentReadoutReviewRecordRecovery

  17. Recovery Act Investment Wraps Up, Delivering Major Benefits to the Nation |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative FuelsofProgram: Report Appendices |ProjectKnow YourDepartment of Energy Recovery

  18. Microbial Enhanced Oil Recovery and Wettability Research Program. Annual report, FY 1991

    SciTech Connect (OSTI)

    Bala, G.A.; Barrett, K.B.; Eastman, S.L.; Herd, M.D.; Jackson, J.D.; Robertson, E.P.; Thomas, C.P.

    1993-09-01

    This report covers research results for fiscal year 1991 for the Microbial Enhanced Oil Recovery (MEOR) and Wettability Research Program conducted by EG&G Idaho, Inc. at the Idaho National Engineering Laboratory ONEL) for the US Department of Energy Idaho Field Office (DOE-ID). The program is funded by the Assistant Secretary of Fossil Energy, and managed by DOE-ID and the Bartlesville Project Office (BPO). The objectives of this multi-year program are to develop MEOR systems for application to reservoirs containing medium to heavy crude oils and to design and implement an industry cost-shared field demonstration project of the developed technology. An understanding of the controlling mechanisms will first be developed through the use of laboratory scale testing to determine the ability of microbially mediated processes to recover oil under reservoir conditions and to develop the design criteria for scale-up to the field. Concurrently with this work, the isolation and characterization of microbial species collected from various locations including target oil field environments is underway to develop more effective oil recovery systems for specific applications. Research focus includes the study of biogenic product and formation souring processes including mitigation and prevention. Souring research performed in FY 1991 also included the development of microsensor probe technology for the detection of total sulfide in collaboration with the Montana State University Center for Interfacial Microbial Process Engineering (CIMPE). Wettability research is a multi-year collaborative effort with the New Mexico Petroleum Recovery Research Center (NMPRRC) at the New Mexico institute of Mining and Technology, Socorro, NM to evaluate reservoir wettability and its effects on oil recovery. Results from the wettability research will be applied to determine if alteration of wettability is a significant contributing mechanism for MEOR systems.

  19. Integrated Mid-Continent Carbon Capture, Sequestration & Enhanced Oil Recovery Project

    SciTech Connect (OSTI)

    Brian McPherson

    2010-08-31

    A consortium of research partners led by the Southwest Regional Partnership on Carbon Sequestration and industry partners, including CAP CO2 LLC, Blue Source LLC, Coffeyville Resources, Nitrogen Fertilizers LLC, Ash Grove Cement Company, Kansas Ethanol LLC, Headwaters Clean Carbon Services, Black & Veatch, and Schlumberger Carbon Services, conducted a feasibility study of a large-scale CCS commercialization project that included large-scale CO{sub 2} sources. The overall objective of this project, entitled the 'Integrated Mid-Continent Carbon Capture, Sequestration and Enhanced Oil Recovery Project' was to design an integrated system of US mid-continent industrial CO{sub 2} sources with CO{sub 2} capture, and geologic sequestration in deep saline formations and in oil field reservoirs with concomitant EOR. Findings of this project suggest that deep saline sequestration in the mid-continent region is not feasible without major financial incentives, such as tax credits or otherwise, that do not exist at this time. However, results of the analysis suggest that enhanced oil recovery with carbon sequestration is indeed feasible and practical for specific types of geologic settings in the Midwestern U.S.

  20. SolarOil Project, Phase I preliminary design report. [Solar Thermal Enhanced Oil Recovery project

    SciTech Connect (OSTI)

    Baccaglini, G.; Bass, J.; Neill, J.; Nicolayeff, V.; Openshaw, F.

    1980-03-01

    The preliminary design of the Solar Thermal Enhanced Oil Recovery (SolarOil) Plant is described in this document. This plant is designed to demonstrate that using solar thermal energy is technically feasible and economically viable in enhanced oil recovery (EOR). The SolarOil Plant uses the fixed mirror solar concentrator (FMSC) to heat high thermal capacity oil (MCS-2046) to 322/sup 0/C (611/sup 0/F). The hot fluid is pumped from a hot oil storage tank (20 min capacity) through a once-through steam generator which produces 4.8 MPa (700 psi) steam at 80% quality. The plant net output, averaged over 24 hr/day for 365 days/yr, is equivalent to that of a 2.4 MW (8.33 x 10/sup 6/ Btu/hr) oil-fired steam generator having an 86% availability. The net plant efficiency is 57.3% at equinox noon, a 30%/yr average. The plant will be demonstrated at an oilfield site near Oildale, California.

  1. Electromagnetic Imaging of CO2 Sequestration at an Enhanced Oil Recovery Site

    SciTech Connect (OSTI)

    Kirkendall, B.; Roberts, J.

    2001-02-28

    Lawrence Livermore National Laboratory (LLNL) is currently involved in a long term study using time-lapse multiple frequency electromagnetic (EM) characterization at a waterflood enhanced oil recovery (EOR) site in California operated by Chevron Heavy Oil Division in Lost Hills, California (Figure 1). The petroleum industry's interest and the successful imaging results from this project suggest that this technique be extended to monitor CO{sub 2} sequestration at an EOR site also operated by Chevron. The impetus for this study is to develop the ability to image subsurface injected CO{sub 2} during EOR processes while simultaneously discriminating between pre-existing petroleum and water deposits. The goals of this study are to combine laboratory and field methods to image a pilot CO{sub 2} sequestration EOR site using the cross-borehole EM technique, improve the inversion process in CO{sub 2} studies by coupling results with petrophysical laboratory measurements, and focus on new gas interpretation techniques. In this study we primarily focus on how joint field and laboratory results can provide information on subsurface CO{sub 2} detection, CO{sub 2} migration tracking, and displacement of petroleum and water over time. This study directly addresses national energy issues in two ways: (1) the development of field and laboratory techniques to improve in-situ analysis of oil and gas enhanced recovery operations and, (2) this research provides a tool for in-situ analysis of CO{sub 2} sequestration, an international technical issue of growing importance.

  2. Supporting technology for enhanced oil recovery: EOR thermal processes. Seventh Amendment and Extension to Annex 4, Enhanced oil recovery thermal processes

    SciTech Connect (OSTI)

    Reid, T B [USDOE Bartlesville Project Office, OK (United States)] [USDOE Bartlesville Project Office, OK (United States); Colonomos, P [INTEVEP, Filial de Petroleos de Venezuela, SA, Caracas (Venezuela)] [INTEVEP, Filial de Petroleos de Venezuela, SA, Caracas (Venezuela)

    1993-02-01

    This report contains the results of efforts under the six tasks of the Seventh Amendment and Extension of Annex IV, Enhanced Oil Recovery Thermal Processes of the Venezuela/USA Agreement. The report is presented in sections (for each of the 6 tasks) and each section contains one or more reports prepared by various individuals or groups describing the results of efforts under each of the tasks. A statement of each task, taken from the agreement, is presented on the first page of each section. The tasks are numbered 50 through 55. The first, second, third, fourth, fifth, sixth and seventh reports on Annex IV, Venezuela MEM/USA-DOE Fossil Energy Report IV-1, IV-2, IV-3, IV-4, IV-5 and IV-6 (DOE/BETC/SP-83/15, DOE/BC-84/6/SP, DOE/BC-86/2/SP, DOE/BC-87/2/SP, DOE/BC-89/l/SP, DOE/BC-90/l/SP, and DOE/BC-92/l/SP) contain the results for the first 49 tasks. Those reports are dated April 1983, August 1984, March 1986, July 1987, November 1988, December 1989, and October 1991, respectively. Each task report has been processed separately for inclusion in the Energy Science and Technology Database.

  3. ASCR Recovery Act Projects | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power AdministrationRobust,Field-effectWorkingLosThe 26thI D- 6 0GrantsThe Life of Enrico'sBudgetASCRProgramRecovery

  4. INFORMATION: Audit Report on "Accounting and Reporting for the American Recovery and Reinvestment Act by the Department of Energy's Funding Recipients"

    SciTech Connect (OSTI)

    None

    2010-04-01

    The American Recovery and Reinvestment Act of 2009 (Recovery Act) was established to jumpstart the U.S. economy, create or save millions of jobs, and invest in the Nation's energy future. The Department of Energy received approximately $37 billion through the Recovery Act to support a variety of science, energy and environmental initiatives. The Office of Management and Budget (OMB) issued guidance for carrying out stimulus-related activities which requires, among other things, that recipients ensure funds provided by the Recovery Act are clearly distinguishable from non-Recovery Act funds in all reporting systems and that recipients' actions are transparent to the public. To meet these requirements, the Department's recipients must clearly and accurately track and report on 18 separate data elements. In addition, the Department was to develop and implement a process to ensure that recipient information reported to the public was free from material omissions and significant reporting errors. Our recent report (OAS-RA-10-01, October 2009) noted that the Department had developed a quality assurance process to facilitate the quarterly reviews of recipient data and planned to test it during the first quarterly reporting cycle. To determine whether the Department's quality assurance process was effective, we examined information reported by recipients of Departmental funding as of September 30, 2009. We also sought to determine whether the Department's prime contractors were prepared to track and report on Recovery Act activities. The Department had taken a number of actions designed to ensure the accuracy and transparency of reported Recovery Act results. This process identified potential anomalies with information reported by 1,113 of 2,038, or 55 percent of recipients. We view the Department's data quality assurance efforts as both timely and significant. As noted by our audit testing, however, opportunities exist to strengthen the process. In particular: (1) Site officials did not always ensure that anomalies, once identified during the quality assurance process, were actually resolved. For example, the Department's process identified that about 740 of the approximately 10,000 jobs reported in the first quarter of Fiscal Year 2010 as created/retained were for projects reported as having no funds spent. Although these problems were referred to site officials for follow-up and/or correction, the information was never actually changed; (2) The Department did not always utilize the correct basis when evaluating the accuracy of 'funds provided' data submitted by grant recipients. For example, in its analysis process, the Department used data reflecting 'funds obligated' rather than the correct amount of 'total grant awards'. This generated a number of potential false positives; and, (3) Duplicate reports by certain recipients, resulting in overstatements of as much as $137 million of the more than $18 billion obligated, were not corrected. We observed that the Department had taken prompt action to ensure that its prime facility management contractors could properly report Recovery Act information. Notably, the seven contractors in this category included in our review had modified their accounting systems, as necessary, to ensure that they could accurately track and report on Recovery Act activities. The systems at each of these entities had been restructured so that they: (i) could separate Recovery Act and non-Recovery Act funds; and, (ii) had adequate processing capacity to handle the projected increase in transactions. We found the Department's decision to limit its reviews to the four elements that it considered to be critical (award amount, invoiced amount, jobs created/retained, and project status) to be reasonable. We concluded, however, other elements or dependent relationships should not be completely excluded from review. Beyond its initial development and implementation of its quality assurance process, the Department had taken steps to improve its ability to ensure that Recovery Act information was both accurate an

  5. Contracts for field projects and supporting research on enhanced oil recovery. Progress review number 86, quarter ending March 31, 1996

    SciTech Connect (OSTI)

    NONE

    1997-05-01

    Summaries are presented for 37 enhanced oil recovery contracts being supported by the Department of Energy. The projects are grouped into gas displacement methods, thermal recovery methods, geoscience technology, reservoir characterization, and field demonstrations in high-priority reservoir classes. Each summary includes the objectives of the project and a summary of the technical progress, as well as information on contract dates, size of award, principal investigator, and company or facility doing the research.

  6. Contracts for field projects and supporting research on enhanced oil recovery. Progress review number 83, quarter ending June 30, 1995

    SciTech Connect (OSTI)

    1996-08-01

    Summaries of 41 research projects on enhanced recovery are presented under the following sections: (1) chemical flooding; (2) gas displacement; (3) thermal recovery; (4) geoscience technology; (5) resource assessment technology; and (6) reservoir classes. Each presentation gives the title of the project, contract number, research facility, contract date, expected completion data, amount of the award, principal investigator, and DOE program manager, and describes the objectives of the project and a summary of the technical progress.

  7. Enhanced Oil Recovery with Downhole Vibration Stimulation in Osage County, Oklahoma

    SciTech Connect (OSTI)

    J. Ford Brett; Robert V. Westermark

    2002-06-30

    This Technical Quarterly Report is for the reporting period March 31, 2002 to June 30, 2002. The report provides details of the work done on the project entitled ''Enhanced Oil Recovery with Downhole Vibration Stimulation in Osage County Oklahoma''. The project is divided into nine separate tasks. Several of the tasks are being worked on simultaneously, while other tasks are dependent on earlier tasks being completed. The vibration stimulation Well 111-W-27 is located in section 8 T26N R6E of the North Burbank Unit (NBU), Osage County Oklahoma. It was drilled to 3090-feet cored, logged, cased and cemented. The rig moved off August 6, 2001. Phillips Petroleum Co. has performed several core studies on the cores recovered from the test well. Standard porosity, permeability and saturation measurements have been conducted. In addition Phillips has prepared a Core Petrology Report, detailing the lithology, stratigraphy and sedimentology for Well 111-W27, NBU. Phillips has also conducted the sonic stimulation core tests, the final sonic stimulation report has not yet been released. Calumet Oil Company, the operator of the NBU, began collecting both production and injection wells information to establish a baseline for the project in the pilot field test area since May 2001. The original 7-inch Downhole Vibration Tool (DHVT) has been thoroughly tested and it has been concluded that it needs to be redesigned. An engineering firm from Fayetteville AR has been retained to assist in developing a new design for the DHVT. The project participants requested from the DOE, a no-cost extension for the project through December 31, 2002. The no-cost extension amendment to the contract was signed during this reporting period. A technical paper SPE 75254 ''Enhanced Oil Recovery with Downhole Vibration Stimulation, Osage County, Oklahoma'' was presented at the 2002 SPE/DOE Thirteenth Symposium on Improved Oil Recovery, in Tulsa OK, April 17, 2002. A one-day short course was conducted at the SPE/DOE Thirteenth Symposium on Improved Oil Recovery in Tulsa, OK, April 13-14, 2002. Dan Maloney, Phillips and Bob Westermark, OGCI, Brett Davidson and Tim Spanos, Prism Production Technologies, were the instructors. The sixteen attendees also participated in the half-day field trip to the test facility near Tulsa.

  8. Chemical and Microbial Characterization of North Slope Viscous Oils to Assess Viscosity Reduction and Enhanced Recovery

    SciTech Connect (OSTI)

    Shirish Patil; Abhijit Dandekar; Mary Beth Leigh

    2008-12-31

    A large proportion of Alaska North Slope (ANS) oil exists in the form of viscous deposits, which cannot be produced entirely using conventional methods. Microbially enhanced oil recovery (MEOR) is a promising approach for improving oil recovery for viscous deposits. MEOR can be achieved using either ex situ approaches such as flooding with microbial biosurfactants or injection of exogenous surfactant-producing microbes into the reservoir, or by in situ approaches such as biostimulation of indigenous surfactant-producing microbes in the oil. Experimental work was performed to analyze the potential application of MEOR to the ANS oil fields through both ex situ and in situ approaches. A microbial formulation containing a known biosurfactant-producing strain of Bacillus licheniformis was developed in order to simulate MEOR. Coreflooding experiments were performed to simulate MEOR and quantify the incremental oil recovery. Properties like viscosity, density, and chemical composition of oil were monitored to propose a mechanism for oil recovery. The microbial formulation significantly increased incremental oil recovery, and molecular biological analyses indicated that the strain survived during the shut-in period. The indigenous microflora of ANS heavy oils was investigated to characterize the microbial communities and test for surfactant producers that are potentially useful for biostimulation. Bacteria that reduce the surface tension of aqueous media were isolated from one of the five ANS oils (Milne Point) and from rock oiled by the Exxon Valdez oil spill (EVOS), and may prove valuable for ex situ MEOR strategies. The total bacterial community composition of the six different oils was evaluated using molecular genetic tools, which revealed that each oil tested possessed a unique fingerprint indicating a diverse bacterial community and varied assemblages. Collectively we have demonstrated that there is potential for in situ and ex situ MEOR of ANS oils. Future work should focus on lab and field-scale testing of ex situ MEOR using Bacillus licheniformis as well as the biosurfactant-producing strains we have newly isolated from the Milne Point reservoir and the EVOS environment.

  9. FOIA Frequently Requested Documents: DE-EE0002877 Recovery Act | Department

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuelsof Energy Services » Program ManagementAct FAQs RelatedInc. |Fees The

  10. High Recovery Desalination of Brackish Water by Chemically-Enhanced Seeded Precipitation

    E-Print Network [OSTI]

    McCool, Brian Carey

    2012-01-01

    CM 3559, 3 hp, 3450 rpm, Baldor Reliance Motor, Sea RecoveryCM 3559, 3 hp, 3450 rpm, Baldor Reliance Motor, Sea Recovery

  11. Contracts for field projects and supporting research on enhanced oil recovery. Progress review No. 80. Quarterly report, July--September, 1994

    SciTech Connect (OSTI)

    1995-11-01

    This report contains information on petroleum enhanced recovery projects. In addition to project descriptions, contract numbers, principal investigators and project management information is included.

  12. Contracts for field projects and supporting research on enhanced oil recovery. Quarterly progress review No. 85, October 1, 1995--December 31, 1995

    SciTech Connect (OSTI)

    Godley, P.; Waisley, S.

    1996-12-01

    This documents presents progress on enhanced oil recovery programs and reservoir characterization programs. Information is presented on contract numbers, awards, investigators, and project managers.

  13. Preliminary Audit Report on "Management Controls over the Commonwealth of Virginia's Efforts to Implement the American Recovery and Reinvestment Act Weatherization Assistance Program"

    SciTech Connect (OSTI)

    None

    2010-05-01

    The Department of Energy's (Department) Weatherization Assistance Program received $5 billion under the American Recovery and Reinvestment Act of 2009 (Recovery Act) to improve the energy efficiency of homes, multi-family rental units and mobile homes owned or occupied by low-income persons. Subsequently, the Department awarded a three-year Weatherization Assistance Program grant for $94 million to the Commonwealth of Virginia (Virginia). This grant provided more than a ten-fold increase in funds available to Virginia for weatherization over that authorized in Fiscal Year (FY) 2009. Corresponding to the increase in funding, the Recovery Act increased the limit on the average amount spent to weatherize a home (unit) from $2,500 to $6,500. Virginia's Department of Housing and Community Development (DHCD) administers the Recovery Act grant through 22 local community action agencies. These agencies (sub-grantees) are responsible for determining applicant eligibility, weatherizing homes, and conducting home assessments and inspections. Typical weatherization services include installing insulation; sealing ducts; tuning and repairing furnaces; and, mitigating heat loss through windows, doors and other infiltration points. Virginia plans to use its Recovery Act Weatherization funding to weatherize about 9,193 units over the life of the grant - a significant increase over the 1,475 housing units that were planned to be completed in FY 2009. Given the significant increase in funding and the demands associated with weatherizing thousands of homes, we initiated this audit to determine if Virginia had adequate safeguards in place to ensure that the Weatherization Program was managed efficiently and effectively. The State of Virginia's DHCD had not implemented financial and reporting controls needed to ensure Weatherization Program funds are spent effectively and efficiently. Specifically, DHCD had not: (1) Performed on-site financial monitoring of any of its sub-grantees under the Recovery Act; (2) Reviewed documentation supporting sub-grantee requests for reimbursements to verify the accuracy of amounts charged; (3) Periodically reconciled amounts paid to sub-grantees to the actual cost to weatherize units; (4) Maintained vehicle and equipment inventories as required by Federal regulations and state and Federal program directives; and (5) Accurately reported Weatherization Program results to the Department. Exacerbating weaknesses in DHCD's financial controls, the Department's most recent program monitoring visit to Virginia, made in 2008 before passage of the Recovery Act, did not include a required financial review. Hence, the financial control weaknesses discussed above were not detected and had not been addressed. As described in this report, these control and reporting weaknesses increase the risk that Recovery Act objectives may not be achieved and that fraud, waste or abuse can occur and not be detected in this critically important program.

  14. Solar thermal enhanced oil recovery (STEOR). Sections 2-8. Final report, October 1, 1979-June 30, 1980

    SciTech Connect (OSTI)

    Elzinga, E.; Arnold, C.; Allen, D.; Garman, R.; Joy, P.; Mitchell, P. Shaw, H.

    1980-11-01

    The program objectives were: (1) determine the technical, economic, operational, and environmental feasibility of solar thermal enhanced oil recovery using line focusing distributed collectors at Exxon's Edison Field, and (2) estimate the quantity of solar heat which might be applied to domestic enhanced oil recovery. This volume of the report summarizes all of the work done under the contract Statement of Work. Topics include the selection of the solar system, trade-off studies, preliminary design for steam raising, cost estimate for STEOR at Edison Field, the development plan, and a market and economics analysis. (WHK)

  15. Recovery Act funding accelerates cleanup of Idaho Site, Creates jobs in

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration wouldMassR&D100 Winners * Impacts onReal-TimeRecord-SettingAct Workforce

  16. FOIA Frequently Requested Documents: DE-EE0002867 Recovery Act | Department

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuelsof Energy Services » Program ManagementAct FAQs RelatedInc. |Fees The FOIAof

  17. FOIA Frequently Requested Documents: DE-EE0002884 Recovery Act - Integrated

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuelsof Energy Services » Program ManagementAct FAQs RelatedInc. |Fees TheAlgal

  18. Microbial Enhanced Oil Recovery in Fractional-Wet Systems: A Pore-Scale Investigation

    SciTech Connect (OSTI)

    Armstrong, Ryan T.; Wildenschild, Dorthe

    2012-10-24

    Microbial enhanced oil recovery (MEOR) is a technology that could potentially increase the tertiary recovery of oil from mature oil formations. However, the efficacy of this technology in fractional-wet systems is unknown, and the mechanisms involved in oil mobilization therefore need further investigation. Our MEOR strategy consists of the injection of ex situ produced metabolic byproducts produced by Bacillus mojavensis JF-2 (which lower interfacial tension (IFT) via biosurfactant production) into fractional-wet cores containing residual oil. Two different MEOR flooding solutions were tested; one solution contained both microbes and metabolic byproducts while the other contained only the metabolic byproducts. The columns were imaged with X-ray computed microtomography (CMT) after water flooding, and after MEOR, which allowed for the evaluation of the pore-scale processes taking place during MEOR. Results indicate that the larger residual oil blobs and residual oil held under relatively low capillary pressures were the main fractions recovered during MEOR. Residual oil saturation, interfacial curvatures, and oil blob sizes were measured from the CMT images and used to develop a conceptual model for MEOR in fractional-wet systems. Overall, results indicate that MEOR was effective at recovering oil from fractional-wet systems with reported additional oil recovered (AOR) values between 44 and 80%; the highest AOR values were observed in the most oil-wet system.

  19. TIME-LAPSE SEISMIC MODELING & INVERSION OF CO2 SATURATION FOR SEQUESTRATION AND ENHANCED OIL RECOVERY

    SciTech Connect (OSTI)

    Mark A. Meadows

    2006-03-31

    Injection of carbon dioxide (CO2) into subsurface aquifers for geologic storage/sequestration, and into subsurface hydrocarbon reservoirs for enhanced oil recovery, has become an important topic to the nation because of growing concerns related to global warming and energy security. In this project we developed new ways to predict and quantify the effects of CO2 on seismic data recorded over porous reservoir/aquifer rock systems. This effort involved the research and development of new technology to: (1) Quantitatively model the rock physics effects of CO2 injection in porous saline and oil/brine reservoirs (both miscible and immiscible). (2) Quantitatively model the seismic response to CO2 injection (both miscible and immiscible) from well logs (1D). (3) Perform quantitative inversions of time-lapse 4D seismic data to estimate injected CO2 distributions within subsurface reservoirs and aquifers. This work has resulted in an improved ability to remotely monitor the injected CO2 for safe storage and enhanced hydrocarbon recovery, predict the effects of CO2 on time-lapse seismic data, and estimate injected CO2 saturation distributions in subsurface aquifers/reservoirs. We applied our inversion methodology to a 3D time-lapse seismic dataset from the Sleipner CO2 sequestration project, Norwegian North Sea. We measured changes in the seismic amplitude and traveltime at the top of the Sleipner sandstone reservoir and used these time-lapse seismic attributes in the inversion. Maps of CO2 thickness and its standard deviation were generated for the topmost layer. From this information, we estimated that 7.4% of the total CO2 injected over a five-year period had reached the top of the reservoir. This inversion approach could also be applied to the remaining levels within the anomalous zone to obtain an estimate of the total CO2 injected.

  20. Application of reservoir geology of enhanced oil recovery from upper Devonian Nisku Reefs, Alberta, Canada

    SciTech Connect (OSTI)

    Watts, N.R. (AEC Oil and Gas Company, Calgary, Alberta (Canada)); Coppold, M.P. (Imperial Oil Resources Limited (Esso), Calgary, Alberta (Canada)); Douglas, J.L. (Saudi Aramco, Dhahran (Saudi Arabia))

    1994-01-01

    The Upper Devonian West Pembina reef trend of west-central Alberta contains recoverable reserves of over 79 x 10[sup 6] m[sup 3] (500 million bbl) of oil and 1.4 x 10[sup 10] m[sup 3] (500 billion ft[sup 3]) of gas within approximately 50 pinnacle reefs in the Nisku Formation. Although the oil is saturated with gas at original reservoir pressure, primary depletion would soon lower the reservoir pressure below the bubble point, decreasing recovery. Thus, pressure maintenance is applied early in the producing life of the pools through waterflood or miscible flood schemes. Selection of the appropriate enhanced recovery scheme depends upon the internal flow-unit geometry of the reefs. The Bigoray Nisku C pool and the Pembina Nisku L pool form end members of the reservoir spectrum. They can be used as flow-unit models in the geological input for reservoir simulation studies. The Bigoray Nisku C pool is dominantly limestone. The primary textures, well perserved in this reef, provide the key to interpreting the relict textures in fully dolomitized reefs. Due to the presence of horizontal permeability barriers associated with the limestone lithology, the pool is developed with a waterflood displacement scheme. Ultimate recovery is estimated to be on the order of 0.55 x 10[sup 6] m[sup 3] (3.5 million bbl) or 46% or original oil in place (OOIP). The Pembina Nisku L pool is a completely dolomitized reef. In contrast to the Bigoray Nisku C pool, the complete dolomitization reduces the number of generic reservoir flow units observed in the L pool reef from six to three. Due to the excellent reservoir quality and absence of horizontal permeability barriers, it is being exploited by a vertical miscible flood. The Nisku L pool is one of the largest pinnacle reefs discovered in the Nisku reef fairway and contains an estimated 5 x 10[sup 6] m[sup 3] (31 million bbl) OOIP. Ultimate recovery is estimated to be approximately 4.1 x 10[sup 6] m[sup 3] (25.8 million bbl) or 82% of OOIP.

  1. Development of an In Situ Biosurfactant Production Technology for Enhanced Oil Recovery

    SciTech Connect (OSTI)

    M.J. McInerney; R.M. Knapp; Kathleen Duncan; D.R. Simpson; N. Youssef; N. Ravi; M.J. Folmsbee; T.Fincher; S. Maudgalya; Jim Davis; Sandra Weiland

    2007-09-30

    The long-term economic potential for enhanced oil recovery (EOR) is large with more than 300 billion barrels of oil remaining in domestic reservoirs after conventional technologies reach their economic limit. Actual EOR production in the United States has never been very large, less than 10% of the total U. S. production even though a number of economic incentives have been used to stimulate the development and application of EOR processes. The U.S. DOE Reservoir Data Base contains more than 600 reservoirs with over 12 billion barrels of unrecoverable oil that are potential targets for microbially enhanced oil recovery (MEOR). If MEOR could be successfully applied to reduce the residual oil saturation by 10% in a quarter of these reservoirs, more than 300 million barrels of oil could be added to the U.S. oil reserve. This would stimulate oil production from domestic reservoirs and reduce our nation's dependence on foreign imports. Laboratory studies have shown that detergent-like molecules called biosurfactants, which are produced by microorganisms, are very effective in mobilizing entrapped oil from model test systems. The biosurfactants are effective at very low concentrations. Given the promising laboratory results, it is important to determine the efficacy of using biosurfactants in actual field applications. The goal of this project is to move biosurfactant-mediated oil recovery from laboratory investigations to actual field applications. In order to meet this goal, several important questions must be answered. First, it is critical to know whether biosurfactant-producing microbes are present in oil formations. If they are present, then it will be important to know whether a nutrient regime can be devised to stimulate their growth and activity in the reservoir. If biosurfactant producers are not present, then a suitable strain must be obtained that can be injected into oil reservoirs. We were successful in answering all three questions. The specific objectives of the project were (1) to determine the prevalence of biosurfactant producers in oil reservoirs, and (2) to develop a nutrient regime that would stimulate biosurfactant production in the oil reservoir.

  2. SRS Seals Access to P and R Reactors, Marking End to Nearly 60-Years of History: American Recovery and Reinvestment Act Project Progress

    Broader source: Energy.gov [DOE]

    AIKEN, S.C. — With investments from the American Recovery and Reinvestment Act, the U.S. Department of Energy and Savannah River Nuclear Solutions, LLC, (SRNS) today sealed the access to the historic P and R Reactors as part of footprint reduction and legacy cleanup at the Savannah River Site.

  3. Impact of Sorption Isotherms on the Simulation of CO2-Enhanced Gas Recovery and Storage Process in Marcellus Shale

    E-Print Network [OSTI]

    Mohaghegh, Shahab

    Continuous, low-permeability, fractured, organic-rich gas shale units are widespread and are possible, organic-rich rocks that are both the source and trap for natural gas (primarily methane). In shale gas1 Impact of Sorption Isotherms on the Simulation of CO2-Enhanced Gas Recovery and Storage Process

  4. Recovery Act: Johnston Rhode Island Combined Cycle Electric Generating Plant Fueled by Waste Landfill Gas

    SciTech Connect (OSTI)

    Galowitz, Stephen

    2013-06-30

    The primary objective of the Project was to maximize the productive use of the substantial quantities of waste landfill gas generated and collected at the Central Landfill in Johnston, Rhode Island. An extensive analysis was conducted and it was determined that utilization of the waste gas for power generation in a combustion turbine combined cycle facility was the highest and best use. The resulting project reflected a cost effective balance of the following specific sub-objectives. 1) Meet environmental and regulatory requirements, particularly the compliance obligations imposed on the landfill to collect, process and destroy landfill gas. 2) Utilize proven and reliable technology and equipment. 3) Maximize electrical efficiency. 4) Maximize electric generating capacity, consistent with the anticipated quantities of landfill gas generated and collected at the Central Landfill. 5) Maximize equipment uptime. 6) Minimize water consumption. 7) Minimize post-combustion emissions. To achieve the Project Objective the project consisted of several components. 1) The landfill gas collection system was modified and upgraded. 2) A State-of-the Art gas clean up and compression facility was constructed. 3) A high pressure pipeline was constructed to convey cleaned landfill gas from the clean-up and compression facility to the power plant. 4) A combined cycle electric generating facility was constructed consisting of combustion turbine generator sets, heat recovery steam generators and a steam turbine. 5) The voltage of the electricity produced was increased at a newly constructed transformer/substation and the electricity was delivered to the local transmission system. The Project produced a myriad of beneficial impacts. 1) The Project created 453 FTE construction and manufacturing jobs and 25 FTE permanent jobs associated with the operation and maintenance of the plant and equipment. 2) By combining state-of-the-art gas clean up systems with post combustion emissions control systems, the Project established new national standards for best available control technology (BACT). 3) The Project will annually produce 365,292 MWh?s of clean energy. 4) By destroying the methane in the landfill gas, the Project will generate CO{sub 2} equivalent reductions of 164,938 tons annually. The completed facility produces 28.3 MWnet and operates 24 hours a day, seven days a week.

  5. ENHANCED OIL RECOVERY WITH DOWNHOLE VIBRATION STIMULATION IN OSAGE COUNTY OKLAHOMA

    SciTech Connect (OSTI)

    Robert Westermark; J. Ford Brett

    2003-11-01

    This Final Report covers the entire project from July 13, 2000 to June 30, 2003. The report summarizes the details of the work done on the project entitled ''Enhanced Oil Recovery with Downhole Vibration Stimulation in Osage County Oklahoma'' under DOE Contract Number DE-FG26-00BC15191. The project was divided into nine separate tasks. This report is written in an effort to document the lessons learned during the completion of each task. Therefore each task will be discussed as the work evolved for that task throughout the duration of the project. Most of the tasks are being worked on simultaneously, but certain tasks were dependent on earlier tasks being completed. During the three years of project activities, twelve quarterly technical reports were submitted for the project. Many individual topic and task specific reports were included as appendices in the quarterly reports. Ten of these reports have been included as appendices to this final report. Two technical papers, which were written and accepted by the Society of Petroleum Engineers, have also been included as appendices. The three primary goals of the project were to build a downhole vibration tool (DHVT) to be installed in seven inch casing, conduct a field test of vibration stimulation in a mature waterflooded field and evaluate the effects of the vibration on both the produced fluid characteristics and injection well performance. The field test results are as follows: In Phase I of the field test the DHVT performed exceeding well, generating strong clean signals on command and as designed. During this phase Lawrence Berkeley National Laboratory had installed downhole geophones and hydrophones to monitor the signal generated by the downhole vibrator. The signals recorded were strong and clear. Phase II was planned to be ninety-day reservoir stimulation field test. This portion of the field tests was abruptly ended after one week of operations, when the DHVT became stuck in the well during a routine removal activity. The tool cannot operate in this condition and remains in the well. There was no response measured during or afterwards to either the produced fluids from the five production wells or in the injection characteristics of the two injection wells in the pilot test area. Monitoring the pilot area injection and production wells ceased when the field test was terminated March 14, 2003. Thus, a key goal of this project, which was to determine the effects of vibration stimulation on improving oil recovery from a mature waterflood, was not obtained. While there was no improved oil recovery effect measured, there was insufficient vibration stimulation time to expect a change to occur. No conclusion can be drawn about the effectiveness of vibration stimulation in this test.

  6. Enhanced Oil Recovery with Downhole Vibration Stimulation in Osage County, Oklahoma

    SciTech Connect (OSTI)

    J. Ford Brett; Robert V. Westermark

    2001-12-31

    This Technical Quarterly Report is for the reporting period September 30, 2001 to December 31, 2001. The report provides details of the work done on the project entitled ''Enhanced Oil Recovery with Downhole Vibration Stimulation in Osage County Oklahoma''. The project is divided into nine separate tasks. Several of the tasks are being worked on simultaneously, while other tasks are dependent on earlier tasks being completed. The vibration stimulation well was permitted as Well 111-W-27, section 8 T26N R6E Osage County Oklahoma. It was spud July 28, 2001 with Goober Drilling Rig No. 3. The well was drilled to 3090-feet cored, logged, cased and cemented. The Rig No.3 moved off August 6, 2001. Phillips Petroleum Co. has performed standard core analysis on the cores recovered from the test well. Standard porosity, permeability and saturation measurements have been conducted. Phillips has begun the sonic stimulation core tests. Calumet Oil Company, the operator of the NBU, has been to collecting both production and injection wells information to establish a baseline for the project in the pilot field test area since May 2001. The 7-inch Downhole Vibration Tool (DHVT) has been built and has been run in a shallow well for initial power source testing. This testing was done in a temporarily abandoned well, Wynona Waterflood Unit, Well No.20-12 operated by Calumet Oil Co both in October and December 2001. The data acquisition system, and rod rotating equipment performed as designed. However, the DHVT experienced two internal failures during vibration operations. The DHVT has been repaired with modifications to improve its functionality. A proposed technical paper abstract has been accepted by the SPE to be presented at the 2002 SPE/DOE Thirteenth Symposium on Improved Oil Recovery, in Tulsa OK, 13-17 April 2002. A one-day SPE sponsored short course which is planned to cover seismic stimulation efforts around the world, will be offered at the SPE/DOE Thirteenth Symposium on Improved Oil Recovery in Tulsa, OK, April 13-17, 2002. Dan Maloney, Phillips and Bob Westermark, OGCI will be the instructors.

  7. Activities of the Oil Implementation Task Force, reporting period March--August 1991; Contracts for field projects and supporting research on enhanced oil recovery, reporting period October--December 1990

    SciTech Connect (OSTI)

    Not Available

    1991-10-01

    Activities of DOE's Oil Implementation Task Force for the period March--August 1991 are reviewed. Contracts for fields projects and supporting research on enhanced oil recovery are discussed, with a list of related publications given. Enhanced recovery processes covered include chemical flooding, gas displacement, thermal recovery, and microbial recovery.

  8. Supporting Technology for Enhanced Oil Recovery-EOR Thermal Processes Report IV-12

    SciTech Connect (OSTI)

    Izequeido, Alexandor

    2001-04-01

    This report contains the results of efforts under the six tasks of the Ninth Amendment and Extension of Annex IV, Enhanced Oil Recovery Thermal Processes of the Venezuela/USA Agreement. The report is presented in sections (for each of the 6 tasks) and each section contains one or more reports prepared by various individuals or groups describing the results of efforts under each of the tasks. A statement of each task, taken from the agreement, is presented on the first page of each section. The tasks are numbered 62 through 67. The first, second, third, fourth, fifth, sixth, seventh, eight, and ninth reports on Annex IV, [Venezuela MEM/USA-DOE Fossil Energy Report IV-1, IV-2, IV-3, IV-4, IV-5, IV-6, IV-7, and IV-8 (DOE/BETC/SP-83/15, DOE/BC-84/6/SP, DOE/BC-86/2/SP, DOE/BC-87/2/SP, DOE/BC-89/1/SP, DOE/BC-90/1/SP) DOE/BC-92/1/SP, DOE/BC-93/3/SP, and DOE/BC-95/3/SP] contain the results from the first 61 tasks. Those reports are dated April 1983, August 1984, March 1986, July 1! 987, November 1988, December 1989, October 1991, February 1993, and March 1995 respectively.

  9. RISKIND: An enhanced computer code for National Environmental Policy Act transportation consequence analysis

    SciTech Connect (OSTI)

    Biwer, B.M.; LePoire, D.J.; Chen, S.Y.

    1996-03-01

    The RISKIND computer program was developed for the analysis of radiological consequences and health risks to individuals and the collective population from exposures associated with the transportation of spent nuclear fuel (SNF) or other radioactive materials. The code is intended to provide scenario-specific analyses when evaluating alternatives for environmental assessment activities, including those for major federal actions involving radioactive material transport as required by the National Environmental Policy Act (NEPA). As such, rigorous procedures have been implemented to enhance the code`s credibility and strenuous efforts have been made to enhance ease of use of the code. To increase the code`s reliability and credibility, a new version of RISKIND was produced under a quality assurance plan that covered code development and testing, and a peer review process was conducted. During development of the new version, the flexibility and ease of use of RISKIND were enhanced through several major changes: (1) a Windows{sup {trademark}} point-and-click interface replaced the old DOS menu system, (2) the remaining model input parameters were added to the interface, (3) databases were updated, (4) the program output was revised, and (5) on-line help has been added. RISKIND has been well received by users and has been established as a key component in radiological transportation risk assessments through its acceptance by the U.S. Department of Energy community in recent environmental impact statements (EISs) and its continued use in the current preparation of several EISs.

  10. Enhanced Oil Recovery with Downhole Vibrations Stimulation in Osage County, Oklahoma

    SciTech Connect (OSTI)

    J. Ford Brett; Robert V. Westermark

    2001-09-30

    This Technical Quarterly Report is for the reporting period July 1, 2001 to September 30, 2001. The report provides details of the work done on the project entitled ''Enhanced Oil Recovery with Downhole Vibration Stimulation in Osage County Oklahoma''. The project is divided into nine separate tasks. Several of the tasks are being worked on simultaneously, while other tasks are dependent on earlier tasks being completed. The vibration stimulation well is permitted as Well 111-W-27, section 8 T26N R6E Osage County Oklahoma. It was spud July 28, 2001 with Goober Drilling Rig No. 3. The well was drilled to 3090-feet cored, logged, cased and cemented. The Rig No.3 moved off August 6, 2001. Phillips Petroleum Co. has begun analyzing the cores recovered from the test well. Standard porosity, permeability and saturation measurements will be conducted. They will then begin the sonic stimulation core tests Calumet Oil Company, the operator of the NBU, has begun to collect both production and injection wells information to establish a baseline for the project in the pilot field test area. Green Country Submersible Pump Company, a subsidiary of Calumet Oil Company, will provide both the surface equipment and downhole tools to allow the Downhole Vibration Tool to be operated by a surface rod rotating system. The 7-inch Downhole Vibration Tool (DHVT) has been built and is ready for initial shallow testing. The shallow testing will be done in a temporarily abandoned well operated by Calumet Oil Co. in the Wynona waterflood unit. The data acquisition doghouse and rod rotating equipment have been placed on location in anticipation of the shallow test in Well No.20-12 Wynona Waterflood Unit. A notice of invention disclosure was submitted to the DOE Chicago Operations Office. DOE Case No.S-98,124 has been assigned to follow the documentation following the invention disclosure. A paper covering the material presented to the Oklahoma Geologic Survey (OGS)/DOE Annual Workshop in Oklahoma City May 8,9 2001 has been submitted for publication to the OGS. A technical paper draft has been submitted for the ASME/ETCE conference (Feb 2002) Production Technology Symposium. A one-day SPE sponsored short course which is planned to cover seismic stimulation efforts around the world, will be offered at the SPE/DOE Thirteenth Symposium on Improved Oil Recovery in Tulsa, OK, April 13-17, 2002. Dan Maloney, Phillips and Bob Westermark, OGCI will be the instructors. In addition, a proposed technical paper has been submitted for this meeting.

  11. RCRA Subtitle C TSD facilities and solvent recovery facilities: Section 313 of the Emergency Planning and Community Right-to-Know Act. Toxic chemical release inventory; Industry guidance

    SciTech Connect (OSTI)

    1999-01-01

    The purpose of this guidance document is to assist facilities in SIC code 4953 that are regulated under the Resource Conservation and Recovery Act (RCRA), Subtitle C and facilities in SIC code 7389 that are primarily engaged in solvent recovery services on a contract or fee basis. This document explains the EPCRA Section 313 and PPA Section 6607 reporting requirements (collectively referred to as the EPCRA Section 313) reporting requirements, and discusses specific release and other waste management activities encountered at many facilities in these industries. The objectives of this manual are to: clarify EPCRA Section 313 requirements for industry; increase the accuracy and completeness of the data being reported by RCRA Subtitle C TSD and solvent recovery facilities; and reduce the level of effort expended by those facilities that prepare an EPCRA Section 313 report.

  12. High Recovery Desalination of Brackish Water by Chemically-Enhanced Seeded Precipitation

    E-Print Network [OSTI]

    McCool, Brian Carey

    2012-01-01

    for quality water supply and waste water disposal.disposal. Management of agricultural drainage water quality,brine disposal) at the optimal recovery a . AD Water Quality

  13. High Recovery Desalination of Brackish Water by Chemically-Enhanced Seeded Precipitation

    E-Print Network [OSTI]

    McCool, Brian Carey

    2012-01-01

    water management: (1) direct disposal (no desalination), (2)recovery (62% for RO). Direct disposal of AD brackish watervarious methods for direct brine disposal such as thermal

  14. Carbon sequestration in natural gas reservoirs: Enhanced gas recovery and natural gas storage

    E-Print Network [OSTI]

    Oldenburg, Curtis M.

    2003-01-01

    cushion gas for natural gas storage, Energy and Fuels, 17(RECOVERY AND NATURAL GAS STORAGE Curtis M. Oldenburg Eartheffective cushion gas for gas storage reservoirs. Thus at

  15. Carbon sequestration in natural gas reservoirs: Enhanced gas recovery and natural gas storage

    E-Print Network [OSTI]

    Oldenburg, Curtis M.

    2003-01-01

    gas reservoirs for carbon sequestration and enhanced gasproduction and carbon sequestration, Society of Petroleumfeasibiilty of carbon sequestration with enhanced gas

  16. Special Report on Review of "The Department of Energy's Quality Assurance Process for Prime Recipients' Reporting for the American Recovery and Reinvestment Act"

    SciTech Connect (OSTI)

    None

    2009-10-01

    The American Recovery and Reinvestment Act of 2009 (Recovery Act) was established to jumpstart the U.S. economy, create or save millions of jobs, spur technological advances in health and science, and invest in the Nation's energy future. The Department of Energy (Department) will receive an unprecedented $37 billion in Recovery Act funding to support a variety of science, energy, and environmental initiatives. The majority of the funding received by the Department will be allocated to various recipients through grants, cooperative agreements, contracts, and other financial instruments. To ensure transparency and accountability, the Office of Management and Budget (OMB) requires that recipients report on their receipt and use of Recovery Act funds on a quarterly basis to FederalReporting.gov. OMB also specifies that Federal agencies should develop and implement formal procedures to help ensure the quality of recipient reported information. Data that must be reported by recipients includes total funding received; funds expended or obligated; projects or activities for which funds were obligated or expended; and the number of jobs created and/or retained. OMB requires that Federal agencies perform limited data quality reviews of recipient data to identify material omissions and/or significant reporting errors and notify the recipients of the need to make appropriate and timely changes to erroneous reports. As part of a larger audit of recipient Recovery Act reporting and performance measurement and in support of a Government-wide review sponsored by the Recovery Accountability and Transparency Board, we completed an interim review to determine whether the Department had established a process to ensure the quality and accuracy of recipient reports. Our review revealed that the Department had developed a quality assurance process to facilitate the quarterly reviews of recipient data. The process included procedures to compare existing information from the Department's financial information systems with that reported to FederalReporting.gov by recipients. In addition, plans were in place to notify recipients of anomalies and/or errors exposed by the quality assurance process. While the Department has made a good deal of progress in this area, we did, however, identify several issues which could, if not addressed, impact the effectiveness of the quality assurance process.

  17. Interactions between Energy Efficiency Programs funded under the Recovery Act and Utility Customer-Funded Energy Efficiency Programs

    SciTech Connect (OSTI)

    Goldman, Charles A.; Stuart, Elizabeth; Hoffman, Ian; Fuller, Merrian C.; Billingsley, Megan A.

    2011-02-25

    Since the spring of 2009, billions of federal dollars have been allocated to state and local governments as grants for energy efficiency and renewable energy projects and programs. The scale of this American Reinvestment and Recovery Act (ARRA) funding, focused on 'shovel-ready' projects to create and retain jobs, is unprecedented. Thousands of newly funded players - cities, counties, states, and tribes - and thousands of programs and projects are entering the existing landscape of energy efficiency programs for the first time or expanding their reach. The nation's experience base with energy efficiency is growing enormously, fed by federal dollars and driven by broader objectives than saving energy alone. State and local officials made countless choices in developing portfolios of ARRA-funded energy efficiency programs and deciding how their programs would relate to existing efficiency programs funded by utility customers. Those choices are worth examining as bellwethers of a future world where there may be multiple program administrators and funding sources in many states. What are the opportunities and challenges of this new environment? What short- and long-term impacts will this large, infusion of funds have on utility customer-funded programs; for example, on infrastructure for delivering energy efficiency services or on customer willingness to invest in energy efficiency? To what extent has the attribution of energy savings been a critical issue, especially where administrators of utility customer-funded energy efficiency programs have performance or shareholder incentives? Do the new ARRA-funded energy efficiency programs provide insights on roles or activities that are particularly well-suited to state and local program administrators vs. administrators or implementers of utility customer-funded programs? The answers could have important implications for the future of U.S. energy efficiency. This report focuses on a selected set of ARRA-funded energy efficiency programs administered by state energy offices: the State Energy Program (SEP) formula grants, the portion of Energy Efficiency and Conservation Block Grant (EECBG) formula funds administered directly by states, and the State Energy Efficient Appliance Rebate Program (SEEARP). Since these ARRA programs devote significant monies to energy efficiency and serve similar markets as utility customer-funded programs, there are frequent interactions between programs. We exclude the DOE low-income weatherization program and EECBG funding awarded directly to the over 2,200 cities, counties and tribes from our study to keep its scope manageable. We summarize the energy efficiency program design and funding choices made by the 50 state energy offices, 5 territories and the District of Columbia. We then focus on the specific choices made in 12 case study states. These states were selected based on the level of utility customer program funding, diversity of program administrator models, and geographic diversity. Based on interviews with more than 80 energy efficiency actors in those 12 states, we draw observations about states strategies for use of Recovery Act funds. We examine interactions between ARRA programs and utility customer-funded energy efficiency programs in terms of program planning, program design and implementation, policy issues, and potential long-term impacts. We consider how the existing regulatory policy framework and energy efficiency programs in these 12 states may have impacted development of these selected ARRA programs. Finally, we summarize key trends and highlight issues that evaluators of these ARRA programs may want to examine in more depth in their process and impact evaluations.

  18. Recovery Act Summary

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    transfer line upgrades near completion Testing begins on field-deployable tank waste vacuum system Testing began on an RA-funded system that uses a vacuum mounted on the end of a...

  19. Recovery Act Summary

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    milestone by completing the design of an in-tank mixer pump that will be used to stir the waste stored in Hanford's double-shell tanks before it is transferred to the WTP. The team...

  20. Recovery Act Summary

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    six-inch encasement pipes and have a total combined length of nearly two and a half football fields. To accomplish their task, crews need a pipe-cutting tool that will be able to...

  1. Recovery Act – Transportation Electrification

    SciTech Connect (OSTI)

    Gogineni, Kumar

    2013-12-31

    ChargePoint America demonstrated the viability, economic and environmental benefits of an electric vehicle-charging infrastructure. Electric vehicles (EVs) and plug-in electric vehicles (PHEVs) arrived in late 2010, there was a substantial lack of infrastructure to support these vehicles. ChargePoint America deployed charging infrastructure in ten (10) metropolitan regions in coordination with vehicle deliveries targeting those same regions by our OEM partners: General Motors, Nissan, Fisker Automotive, Ford, smart USA, and BMW. The metropolitan regions include Central Texas (Austin/San Antonio), Bellevue/Redmond (WA), Southern Michigan, Los Angeles area (CA), New York Metro (NY), Central Florida (Orlando/Tampa), Sacramento (CA), San Francisco/San Jose (CA), Washington DC and Boston (MA). ChargePoint America installed more than 4,600 Level 2 (220v) SAE J1772™ UL listed networked charging ports in home, public and commercial locations to support approximately 2000 program vehicles. ChargePoint collected data to analyze how individuals, businesses and local governments used their vehicles. Understanding driver charging behavior patterns will provide the DoE with critical information as EV adoption increases in the United States.

  2. OE Recovery Act Blog

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustmentsShirleyEnergy AEnergy Managing853926 News enDepartment ofProgramSeptember 5,May 23,blog Office

  3. Recovery Act Open House

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration wouldMassR&D100 Winners * Impacts onReal-TimeRecord-Setting MicroscopyRecordsRODsDepartment

  4. OE Recovery Act News

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustmentsShirleyEnergyTher i nAand DOEDepartmentNew2008Group, Inc. Order(National4, 2014 FY 2015news Office

  5. Sustainable operation of membrane distillation for enhancement of mineral recovery from hypersaline solutions

    E-Print Network [OSTI]

    high water recovery, but they are limited by high- energy consumption needed to heat the feed stream [3. In the current study MD was investigated for sustained water recovery and concentration of hypersaline brines and treated as a waste stream, whereas in mineral production water is considered a byproduct and, as common

  6. CO2-driven Enhanced Oil Recovery as a Stepping Stone to What?

    SciTech Connect (OSTI)

    Dooley, James J.; Dahowski, Robert T.; Davidson, Casie L.

    2010-07-14

    This paper draws heavily on the authors’ previously published research to explore the extent to which near term carbon dioxide-driven enhanced oil recovery (CO2-EOR) can be “a stepping stone to a long term sequestration program of a scale to be material in climate change risk mitigation.” The paper examines the historical evolution of CO2-EOR in the United States and concludes that estimates of the cost of CO2-EOR production or the extent of CO2 pipeline networks based upon this energy security-driven promotion of CO2-EOR do not provide a robust platform for spurring the commercial deployment of carbon dioxide capture and storage technologies (CCS) as a means of reducing greenhouse gas emissions. The paper notes that the evolving regulatory framework for CCS makes a clear distinction between CO2-EOR and CCS and the authors examine arguments in the technical literature about the ability for CO2-EOR to generate offsetting revenue to accelerate the commercial deployment of CCS systems in the electric power and industrial sectors of the economy. The authors conclude that the past 35 years of CO2-EOR in the U.S. have been important for boosting domestic oil production and delivering proven system components for future CCS systems. However, though there is no reason to suggest that CO2-EOR will cease to deliver these benefits, there is also little to suggest that CO2-EOR is a necessary or significantly beneficial step towards the commercial deployment of CCS as a means of addressing climate change.

  7. Enhanced Coal Bed Methane Recovery and CO2 Sequestration in the Powder River Basin

    SciTech Connect (OSTI)

    Eric P. Robertson

    2010-06-01

    Unminable coal beds are potentially large storage reservoirs for the sequestration of anthropogenic CO2 and offer the benefit of enhanced methane production, which can offset some of the costs associated with CO2 sequestration. The objective of this report is to provide a final topical report on enhanced coal bed methane recovery and CO2 sequestration to the U.S. Department of Energy in fulfillment of a Big Sky Carbon Sequestration Partnership milestone. This report summarizes work done at Idaho National Laboratory in support of Phase II of the Big Sky Carbon Sequestration Partnership. Research that elucidates the interaction of CO2 and coal is discussed with work centering on the Powder River Basin of Wyoming and Montana. Sorption-induced strain, also referred to as coal swelling/shrinkage, was investigated. A new method of obtaining sorption-induced strain was developed that greatly decreases the time necessary for data collection and increases the reliability of the strain data. As coal permeability is a strong function of sorption-induced strain, common permeability models were used to fit measured permeability data, but were found inadequate. A new permeability model was developed that can be directly applied to coal permeability data obtained under laboratory stress conditions, which are different than field stress conditions. The coal permeability model can be used to obtain critical coal parameters that can be applied in field models. An economic feasibility study of CO2 sequestration in unminable coal seams in the Powder River Basin of Wyoming was done. Economic analyses of CO2 injection options are compared. Results show that injecting flue gas to recover methane from CBM fields is marginally economical; however, this method will not significantly contribute to the need to sequester large quantities of CO2. Separating CO2 from flue gas and injecting it into the unminable coal zones of the Powder River Basin seam is currently uneconomical, but can effectively sequester over 86,000 tons (78,200 Mg) of CO2 per acre while recovering methane to offset costs. The cost to separate CO2 from flue gas was identified as the major cost driver associated with CO2 sequestration in unminable coal seams. Improvements in separations technology alone are unlikely to drive costs low enough for CO2 sequestration in unminable coal seams in the Powder River Basin to become economically viable. Breakthroughs in separations technology could aid the economics, but in the Powder River Basin, they cannot achieve the necessary cost reductions for breakeven economics without incentives.

  8. Oil recovery enhancement from fractured, low permeability reservoirs. Part 2, Annual report, October 1, 1990--September 31, 1991

    SciTech Connect (OSTI)

    Poston, S.W.

    1991-12-31

    The results of the investigative efforts for this jointly funded DOE-State of Texas research project achieved during the 1990--1991 year may be summarized as follows: Geological Characterization -- Detailed maps of the development and hierarchical nature the fracture system exhibited by Austin Chalk outcrops were prepared. These results of these efforts were directly applied to the development of production decline type curves applicable to a dual fracture-matrix flow system. Analysis of production records obtained from Austin Chalk operators illustrated the utility of these type curves to determine relative fracture/matrix contributions and extent. Well-log response in Austin Chalk wells has been shown to be a reliable indicator of organic maturity. (VSP) Vertical-Seismic Profile data was used to use shear-wave splitting concepts to estimate fracture orientations. Several programs were to be written to facilitate analysis of the data. The results of these efforts indicated fractures could be detected with VSP seismic methods. Development of the (EOR) Enhanced Oil Recovery Imbibition Process -- Laboratory displacement as well as MRI and CT imaging studies have shown the carbonated water-imbibition displacement process significantly accelerates and increases recovery of an oil saturated, low permeability core material, when compared to that of a normal brine imbibition displacement process. A study of oil recovery by the application of a cyclic carbonated water imbibition process, followed by reducing the pressure below the bubble point of the CO{sub 2}-water solution, indicated the possibility of alternate and new enhanced recovery method. The installation of an artificial solution gas drive significantly increased oil recovery. The extent and arrangement of micro-fractures in Austin Chalk horizontal cores was mapped with CT scanning techniques. The degree of interconnection of the micro-fractures was easily visualized.

  9. Weatherization Formula Grants - American Recovery and Reinvestment...

    Energy Savers [EERE]

    Weatherization Formula Grants - American Recovery and Reinvestment Act (ARRA) Weatherization Formula Grants - American Recovery and Reinvestment Act (ARRA) U.S. Department of...

  10. Enhanced oil recovery through water imbibition in fractured reservoirs using Nuclear Magnetic Resonance 

    E-Print Network [OSTI]

    Hervas Ordonez, Rafael Alejandro

    1994-01-01

    Conventional waterflooding methods of oil recovery are difficult to apply when reservoirs show evidence of natural fractures, because injected water advances through paths of high permeability, and oil trapped in the rock matrix system...

  11. Activities of the Oil Implementation Task Force; Contracts for field projects and supporting research on enhanced oil recovery, July--September 1990

    SciTech Connect (OSTI)

    Tiedemann, H.A. )

    1991-05-01

    The report contains a general introduction and background to DOE's revised National Energy Strategy Advanced Oil Recovery Program and activities of the Oil Implementation Task Force; a detailed synopsis of the symposium, including technical presentations, comments and suggestions; a section of technical information on deltaic reservoirs; and appendices containing a comprehensive listing of references keyed to general deltaic and geological aspects of reservoirs and those relevant to six selected deltaic plays. Enhanced recovery processes include chemical floodings, gas displacement, thermal recovery, geoscience, and microbial recovery.

  12. An LCA model for waste incineration enhanced with new technologies for metal recovery and application to the case of Switzerland

    SciTech Connect (OSTI)

    Boesch, Michael E.; Vadenbo, Carl; Saner, Dominik; Huter, Christoph; Hellweg, Stefanie

    2014-02-15

    Highlights: • An enhanced process-based LCA model for MSWI is featured and applied in case study. • LCA modeling of recent technological developments for metal recovery from fly ash. • Net release from Swiss MSWI 133 kg CO{sub 2}-eq/tonne waste from attributional LCA perspective. • Net savings from a consequential LCA perspective reach up to 303 kg CO{sub 2}-eq/tonne waste. • Impacts according to ReCiPe and CExD show similar pattern to climate change. - Abstract: A process model of municipal solid waste incinerators (MSWIs) and new technologies for metal recovery from combustion residues was developed. The environmental impact is modeled as a function of waste composition as well as waste treatment and material recovery technologies. The model includes combustion with a grate incinerator, several flue gas treatment technologies, electricity and steam production from waste heat recovery, metal recovery from slag and fly ash, and landfilling of residues and can be tailored to specific plants and sites (software tools can be downloaded free of charge). Application of the model to Switzerland shows that the treatment of one tonne of municipal solid waste results on average in 425 kg CO{sub 2}-eq. generated in the incineration process, and 54 kg CO{sub 2}-eq. accrue in upstream processes such as waste transport and the production of operating materials. Downstream processes, i.e. residue disposal, generates 5 kg CO{sub 2}-eq. Savings from energy recovery are in the range of 67 to 752 kg CO{sub 2}-eq. depending on the assumptions regarding the substituted energy production, while the recovery of metals from slag and fly ash currently results in a net saving of approximately 35 kg CO{sub 2}-eq. A similar impact pattern is observed when assessing the MSWI model for aggregated environmental impacts (ReCiPe) and for non-renewable resource consumption (cumulative exergy demand), except that direct emissions have less and no relevance, respectively, on the total score. The study illustrates that MSWI plants can be an important element of industrial ecology as they provide waste disposal services and can help to close material and energetic cycles.

  13. DOE FY 2010 Budget Request and Recovery Act Funding for Energy Research, Development, Demonstration, and Deployment: Analysis and Recommendations

    SciTech Connect (OSTI)

    Anadon, Laura Diaz; Gallagher, Kelly Sims; Bunn, Matthew

    2009-06-01

    The combination of the FY 2010 budget request for the Department of Energy (DOE) and the portion of the American Recovery and Reinvestment Act of 2009 (ARRA) funds likely to be available in 2010 would (assuming that they would be split evenly between FY 2010 and FY 2011) result in a doubling in funding available for energy research, development, and deployment (ERD and D) from $3.6 billion in FY 2009 to $7.2 billion in FY 2010. Without the stimulus funds, DOE ERD and D investments in FY 2010 would decrease very slightly when compared to FY 2009. Excluding the $7.5 billion for the Advanced Technology Vehicles Manufacturing Loans in FY 2009, the FY 2010 budget request for deployment represents a 33 percent decrease from the FY 2009 levels from $520 million to $350 million. This decrease is largely due to the large amounts of funds appropriated in ARRA for DOE deployment programs, or $23.6 billion, which are three times greater than those appropriated in the FY 2009 budget. These very substantial funding amounts, coupled with the broad range of institutional innovations the administration is putting in place and movement toward putting a price on carbon emissions, will help accelerate innovation for a broad range of energy technologies. DOE's Advanced Research Projects Agency-Energy (ARPA-E) and the Energy Innovation Hubs are important initiatives that could contribute to two weak points of the government's energy innovation effort, namely funding high-risk projects in transformational technologies and in companies that have not traditionally worked with the government and strengthening the integration of basic and applied research in priority areas. Increasing the funding for different types of energy storage research, providing some support for exploring opportunities in coal-to-liquids with carbon capture and storage (CCS) and coal-and-biomass-to-liquids with CCS, and reducing funding for fission RD and D are other actions that Congress could take in the short-term. Energy storage may play a crucial role in the future of the power and transportation systems, which together consume two thirds of primary energy in the United States. A recent National Academy of Science report recommended carrying out detailed scenario assessments of the penetration of unconventional fuels from coal and coal and biomass with CCS. And the research plan provided for nuclear fission does not justify spending as many funds as were requested. The proposed funding for FY 2010 and the resources from ARRA, however, do not guarantee that the United States will finally enjoy the predictable and consistent publicly-funded energy technology innovation effort that it needs. The Obama administration must put in place a comprehensive energy technology innovation strategy that will ensure that an expanded ERD3 effort is both sustainable and efficient. This commission would be charged with, inter alia, developing a strategy that optimizes the integration of the various stages of innovation (research, development, demonstration, early deployment), as well as integrates efforts across technology areas. The database upon which this analysis is based may be downloaded in Excel format at: http://belfercenter.ksg.harvard.edu/publication/19119/ .

  14. Comprehensive Energy Assessment: EE and RE Project Optimization Modeling for United States Pacific Command (USPACOM) American Recovery and Reinvestment Act (ARRA) FEMP Technical Assistance

    SciTech Connect (OSTI)

    Brigantic, Robert T.; Papatyi, Anthony F.; Perkins, Casey J.

    2010-09-30

    This report summarizes a study and corresponding model development conducted in support of the United States Pacific Command (USPACOM) as part of the Federal Energy Management Program (FEMP) American Reinvestment and Recovery Act (ARRA). This research was aimed at developing a mathematical programming framework and accompanying optimization methodology in order to simultaneously evaluate energy efficiency (EE) and renewable energy (RE) opportunities. Once developed, this research then demonstrated this methodology at a USPACOM installation - Camp H.M. Smith, Hawaii. We believe this is the first time such an integrated, joint EE and RE optimization methodology has been constructed and demonstrated.

  15. American Recovery and Reinvestment Act (ARRA) Federal Energy Management Program Technical Assistance Project 282 Renewable Energy Opportunities at Fort Gordon, Georgia

    SciTech Connect (OSTI)

    Boyd, Brian K.; Gorrissen, Willy J.; Hand, James R.; Horner, Jacob A.; Orrell, Alice C.; Russo, Bryan J.; Weimar, Mark R.; Williamson, Jennifer L.; Nesse, Ronald J.

    2010-09-30

    This document provides an overview of renewable resource potential at Fort Gordon, based primarily upon analysis of secondary data sources supplemented with limited on-site evaluations. This effort focuses on grid-connected generation of electricity from renewable energy sources and also on ground source heat pumps for heating and cooling buildings. The effort was funded by the American Recovery and Reinvestment Act (ARRA) as follow-on to the 2005 Department of Defense (DoD) Renewables Assessment. The site visit to Fort Gordon took place on March 9, 2010.

  16. A study of the effects of enhanced oil recovery agents on the quality of Strategic Petroleum Reserves crude oil. [Physical and chemical interactions of Enhanced Oil Recovery reagents with hydrocarbons present in petroleum

    SciTech Connect (OSTI)

    Kabadi, V.N.

    1992-10-01

    The project was initiated on September 1, 1990. The objective of the project was to carry out a literature search to estimate the types and extents of long time interactions of enhanced oil recovery (EOR) agents, such as surfactants, caustics and polymers, with crude oil. This information is necessary to make recommendations about mixing EOR crude oil with crude oils from primary and secondary recovery processes in the Strategic Petroleum Reserve (SPR). Data were sought on both adverse and beneficial effects of EOR agents that would impact handling, transportation and refining of crude oil. An extensive literature search has been completed, and the following informations has been compiled: (1) a listing of existing EOR test and field projects; (2) a listing of currently used EOR agents; and (3) evidence of short and long term physical and chemical interactions of these EOR-agents with hydrocarbons, and their effects on the quality of crude oil at long times. This information is presented in this report. Finally some conclusions are derived and recommendations are made. Although the conclusions are based mostly on extrapolations because of lack of specific data, it is recommended that the enhancement of the rates of biodegradation of oil catalyzed by the EOR agents needs to be further studied. There is no evidence of substantial long term effects on crude oil because of other interactions. Some recommendations are also made regarding the types of studies that would be necessary to determine the effect of certain EOR agents on the rates of biodegradation of crude oil.

  17. Water alternating enriched gas injection to enhance oil production and recovery from San Francisco Field, Colombia 

    E-Print Network [OSTI]

    Rueda Silva, Carlos Fernando

    2003-01-01

    The main objectives of this study are to determine the most suitable type of gas for a water-alternating-gas (WAG) injection scheme, the WAG cycle time, and gas injection rate to increase oil production rate and recovery from the San Francisco field...

  18. Contracts for field projects and supporting research on enhanced oil recovery. Progress review No. 89

    SciTech Connect (OSTI)

    1998-04-01

    Summaries are presented for the DOE contracts related to supported research for thermal recovery of petroleum, geoscience technology, and field demonstrations in high-priority reservoir classes. Data included for each project are: title, contract number, principal investigator, research organization, beginning date, expected completion date, amount of award, objectives of the research, and summary of technical progress.

  19. High Recovery Desalination of Brackish Water by Chemically-Enhanced Seeded Precipitation

    E-Print Network [OSTI]

    McCool, Brian Carey

    2012-01-01

    Improved compact accelerated precipitation softening (CAPS).Using Interstage Calcium Precipitation. Desalination, 2012.Enhanced Seeded Precipitation,” Desalination, 264, 256-267 (

  20. Application of computed tomography to enhanced oil recovery studies in naturally fractured reservoirs 

    E-Print Network [OSTI]

    Fineout, James Mark

    1992-01-01

    , they developed both a single matrix block model and a dual matrix block model with variable fracture width. These tests related imbibition theory with regard to matrix block size, permeability and fluid viscosity affects on oil recovery. They also determined... in naturally fractured reservoirs have relied upon material balance calculations to determine saturation changes. Through the use of Computed Tomography scanning, we have developed a technique not only to determine saturation changes but also positional...

  1. Women as Stakeholders: A Gendered Analysis of the American Recovery and Reinvestment Act in New York City

    E-Print Network [OSTI]

    James, Heather

    2010-01-01

    and Reducing Poverty in New York City. New York: CommissionIt is important that New York City and other localitiesReinvestment Act in New York City Approximately 8,400,000

  2. Activities of the Oil Implementation Task Force, December 1990--February 1991; Contracts for field projects and supporting research on enhanced oil recovery, April--June 1990

    SciTech Connect (OSTI)

    Tiedemann, H.A. )

    1991-03-01

    The Oil Implementation Task Force was appointed to implement the US DOE's new oil research program directed toward increasing domestic oil production by expanded research on near- or mid-term enhanced oil recovery methods. An added priority is to preserve access to reservoirs that have the largest potential for oil recovery, but that are threatened by the large number of wells abandoned each year. This report describes the progress of research activities in the following areas: chemical flooding; gas displacement; thermal recovery; resource assessment; microbial technology; geoscience technology; and environmental technology. (CK)

  3. SOVENT BASED ENHANCED OIL RECOVERY FOR IN-SITU UPGRADING OF HEAVY OIL SANDS

    SciTech Connect (OSTI)

    Munroe, Norman

    2009-01-30

    With the depletion of conventional crude oil reserves in the world, heavy oil and bitumen resources have great potential to meet the future demand for petroleum products. However, oil recovery from heavy oil and bitumen reservoirs is much more difficult than that from conventional oil reservoirs. This is mainly because heavy oil or bitumen is partially or completely immobile under reservoir conditions due to its extremely high viscosity, which creates special production challenges. In order to overcome these challenges significant efforts were devoted by Applied Research Center (ARC) at Florida International University and The Center for Energy Economics (CEE) at the University of Texas. A simplified model was developed to assess the density of the upgraded crude depending on the ratio of solvent mass to crude oil mass, temperature, pressure and the properties of the crude oil. The simplified model incorporated the interaction dynamics into a homogeneous, porous heavy oil reservoir to simulate the dispersion and concentration of injected CO2. The model also incorporated the characteristic of a highly varying CO2 density near the critical point. Since the major challenge in heavy oil recovery is its high viscosity, most researchers have focused their investigations on this parameter in the laboratory as well as in the field resulting in disparaging results. This was attributed to oil being a complex poly-disperse blend of light and heavy paraffins, aromatics, resins and asphaltenes, which have diverse behaviors at reservoir temperature and pressures. The situation is exacerbated by a dearth of experimental data on gas diffusion coefficients in heavy oils due to the tedious nature of diffusivity measurements. Ultimately, the viscosity and thus oil recovery is regulated by pressure and its effect on the diffusion coefficient and oil swelling factors. The generation of a new phase within the crude and the differences in mobility between the new crude matrix and the precipitate readily enables removal of asphaltenes. Thus, an upgraded crude low in heavy metal, sulfur and nitrogen is more conducive for further purification.

  4. On a three-layer Hele-Shaw model of enhanced oil recovery with a linear viscous profile

    E-Print Network [OSTI]

    Daripa, Prabir; Meneses, Rodrigo

    2015-01-01

    We present a non-standard eigenvalue problem that arises in the linear stability of a three-layer Hele-Shaw model of enhanced oil recovery. A nonlinear transformation is introduced which allows reformulation of the non-standard eigenvalue problem as a boundary value problem for Kummer's equation when the viscous profile of the middle layer is linear. Using the existing body of works on Kummer's equation, we construct an exact solution of the eigenvalue problem and provide the dispersion relation implicitly through the existence criterion for the non-trivial solution. We also discuss the convergence of the series solution. It is shown that this solution reduces to the physically relevant solutions in two asymptotic limits: (i) when the linear viscous profile approaches a constant viscous profile; or (ii) when the length of the middle layer approaches zero.

  5. A mixed formulation for a modification to Darcy equation with applications to enhanced oil recovery and carbon-dioxide sequestration

    E-Print Network [OSTI]

    Nakshatrala, K B

    2011-01-01

    In this paper we consider a modification to Darcy equation by taking into account the dependence of viscosity on the pressure. We present a stabilized mixed formulation for the resulting governing equations. Equal-order interpolation for the velocity and pressure is considered, and shown to be stable (which is not the case under the classical mixed formulation). The proposed mixed formulation is tested using a wide variety of numerical examples. The proposed formulation is also implemented in a parallel setting, and the performance of the formulation for large-scale problems is illustrated using a representative problem. Two practical and technologically important problems, one each on enhanced oil recovery and carbon-dioxide sequestration, are solved using the proposed formulation. The numerical results clearly indicate the importance of considering the role of dependence of viscosity on the pressure.

  6. Method for enhancing selectivity and recovery in the fractional flotation of particles in a flotation column

    DOE Patents [OSTI]

    Klunder, Edgar B. (Bethel Park, PA)

    2011-08-09

    The method relates to particle separation from a feed stream. The feed stream is injected directly into the froth zone of a vertical flotation column in the presence of a counter-current reflux stream. A froth breaker generates a reflux stream and a concentrate stream, and the reflux stream is injected into the froth zone to mix with the interstitial liquid between bubbles in the froth zone. Counter-current flow between the plurality of bubbles and the interstitial liquid facilitates the attachment of higher hydrophobicity particles to bubble surfaces as lower hydrophobicity particles detach. The height of the feed stream injection and the reflux ratio may be varied in order to optimize the concentrate or tailing stream recoveries desired based on existing operating conditions.

  7. A top-injection bottom-production cyclic steam stimulation method for enhanced heavy oil recovery 

    E-Print Network [OSTI]

    Matus, Eric Robert

    2006-10-30

    A novel method to enhance oil production during cyclic steam injection has been developed. In the Top-Injection and Bottom-Production (TINBOP) method, the well contains two strings separated by two packers (a dual and a single packer): the short...

  8. Resource Conservation and Recovery Act (RCRA) Part B permit application for tank storage units at the Oak Ridge Y-12 Plant

    SciTech Connect (OSTI)

    Not Available

    1994-05-01

    In compliance with the Resource Conservation and Recovery Act (RCRA), this report discusses information relating to permit applications for three tank storage units at Y-12. The storage units are: Building 9811-1 RCRA Tank Storage Unit (OD-7); Waste Oil/Solvent Storage Unit (OD-9); and Liquid Organic Solvent Storage Unit (OD-10). Numerous sections discuss the following: Facility description; waste characteristics; process information; groundwater monitoring; procedures to prevent hazards; contingency plan; personnel training; closure plan, post closure plan, and financial requirements; record keeping; other federal laws; organic air emissions; solid waste management units; and certification. Sixteen appendices contain such items as maps, waste analyses and forms, inspection logs, equipment identification, etc.

  9. Contracts for field projects and supporting research on enhanced oil recovery and improved drilling technology. Progress review No. 34, quarter ending March 31, 1983

    SciTech Connect (OSTI)

    Linville, B.

    1983-07-01

    Progress achieved for the quarter ending March 1983 are presented for field projects and supporting research for the following: chemical flooding; carbon dioxide injection; and thermal/heavy oil. In addition, progress reports are presented for: resource assessment technology; extraction technology; environmental and safety; microbial enhanced oil recovery; oil recovered by gravity mining; improved drilling technology; and general supporting research. (ATT)

  10. Research on improved and enhanced oil recovery in Illinois through reservoir characterization

    SciTech Connect (OSTI)

    Oltz, D.F.

    1992-01-01

    This project will provide information that can maximize hydrocarbon production minimize formation damage and stimulate new production in Illinois. Such information includes definition of hydrocarbon resources, characterization of hydrocarbon reservoirs, and the implementation of methods that will improve hydrocarbon extractive technology. Increased understanding of reservoir heterogeneities that affect oil recovery can aid in identifying producible resources. The transfer of technology to industry and the general public is a significant component of the program. The project is designed to examine selected subsurface oil reservoirs in Illinois. Scientists use advanced scientific techniques to gain a better understanding of reservoir components and behavior and address ways of potentially increasing the amount of recoverable oil. Initial production rates for wells in the Illinois Basin commonly decline quite rapidly and as much as 60 percent of the oil in place can be unrecoverable using standard operating procedures. Heterogeneities (geological differences in reservoir make-up) affect a reservoir's capability to release fluids. By-passed mobile and immobile oil remain in the reservoir. To learn how to get more of the oil out of reservoirs, the ISGS is studying the nature of reservoir rock heterogeneities and their control on the distribution and production of by-passed, mobile oil.

  11. For Stimul-Responsive Polymers with Enhanced Efficiency in Reservoir Recovery Processes

    SciTech Connect (OSTI)

    Charles McCormick; Roger Hester

    2003-02-28

    Acrylamide-based hydrophobically modified (HM) polybetaines containing N-butylphenylacrylamide (BPAM) and varying amounts of either sulfobetaine (3-(2-acrylamido-2-methylpropanedimethylammonio)-1-propanesulfonate, AMPDAPS) or carboxybetaine (4-(2-acrylamido-2-methylpropyldimethylammonio) butanoate, AMPDAB) comonomers were synthesized via micellar copolymerization. The terpolymers were characterized via {sup 13}C NMR and UV spectroscopies, classical and dynamic light scattering, and potentiometric titration. The response of aqueous polymer solutions to various external stimuli, including changes in solution pH, electrolyte concentration, and the addition of small molecule surfactants, was investigated using surface tension and rheological measurements. Low charge density terpolymers were found to show greater viscosity enhancement upon the addition of surfactant compared to the high charge density terpolymers. The addition of sodium dodecyl sulfate (SDS) produced the largest maximum in solution viscosity, while N-dodecyl-N,N,N-trimethylammonium bromide (DTAB), N-dodecyl-N,N-dimethylammonio-1-propanesulfonate (SB3-12), and Triton X-100 tended to show reduced viscosity enhancement. In most cases, the high charge density carboxybetaine terpolymer exhibited diminished solution viscosities upon surfactant addition. In our last report, we discussed solution thermodynamic theory that described changes in polymer coil conformation as a function of solution temperature and polymer molecular weight. These polymers contained no ionic charges. In this report, we expand polymer solution theory to account for the electrostatic interactions present in solutions of charged polymers. Polymers with ionic charges are referred to as polyions or polyelectrolytes.

  12. FOR STIMUL-RESPONSIVE POLYMERS WITH ENHANCED EFFICIENCY IN RESERVOIR RECOVERY PROCESSES

    SciTech Connect (OSTI)

    Charles McCormick; Roger Hester

    2004-03-26

    This report contains a series of terpolymers containing acrylic acid, methacrylamide and a twin-tailed hydrophobic monomer that were synthesized using micellar polymerization methods. These polymer systems were characterized using light scattering, viscometry, and fluorescence methods. Viscosity studies indicate that increasing the nonpolar character of the hydrophobic monomer (longer chain length or twin tailed vs. single tailed) results in enhanced viscosity in aqueous solutions. The interactions of these polymers with surfactants were investigated. These surfactants include sodium dodecyl sulfate (SDS), cetyl trimethyl ammonium bromide (CTAB), Triton X-100. Viscosity measurements of DiC{sub 6}AM and DiC{sub 8}AM mixtures indicate little interaction with SDS, gelation with CTAB, and hemimicelle formation followed by polymer hydrophobe solubilization with Triton X-100. The DiC{sub 10}Am terpolymer shows similar interaction behavior with CTAB and Triton X-100. However, the enhanced hydrophobic nature of the DiC{sub 10} polymer allows complex formation with SDS as confirmed by surface tensiometry. Fluorescence measurements performed on a dansyl labeled DiC{sub 10}Am terpolymer in the presence of increasing amounts of each of the surfactant indicate relative interaction strengths to be CTAB>Triton X-100>SDS. A modified model based on Yamakawa-Fujii and Odjik-Skolnick-Fixman theories was found to describe the contribution of electrostatic forces to the excluded volume of a polyelectrolyte in solution. The model was found to be valid for flexible polymer coils in aqueous salt solutions where intermolecular interactions are minimal. The model suggested that a dimensionless group of parameters termed the dimensionless viscosity should be proportional to the dimensionless ratio of solution screening length to polyion charge spacing. Several sets of experimental data from the literature and from our laboratory have been analyzed according to the model and the results suggest that the two dimensionless groups are indeed related by a universal constant. This model has identified the parameters that are important to fluid mobility, thereby revealing methods to enhance solution performance when using polyions solutions as displacing fluids in oil reservoirs.

  13. Application of Time-Lapse Seismic Monitoring for the Control and Optimization of CO2 Enhanced Oil Recovery Operations

    SciTech Connect (OSTI)

    Brian Toelle

    2008-11-30

    This project, 'Application of Time-Lapse Seismic Monitoring for the Control and Optimization of CO{sub 2} Enhanced Oil Recovery Operations', investigated the potential for monitoring CO{sub 2} floods in carbonate reservoirs through the use of standard p-wave seismic data. This primarily involved the use of 4D seismic (time lapse seismic) in an attempt to observe and map the movement of the injected CO{sub 2} through a carbonate reservoir. The differences between certain seismic attributes, such as amplitude, were used for this purpose. This technique has recently been shown to be effective in CO{sub 2} monitoring in Enhanced Oil Recovery (EOR) projects, such as Weyborne. This study was conducted in the Charlton 30/31 field in the northern Michigan Basin, which is a Silurian pinnacle reef that completed its primary production in 1997 and was scheduled for enhanced oil recovery using injected CO{sub 2}. Prior to injection an initial 'Base' 3D survey was obtained over the field and was then processed and interpreted. CO{sub 2} injection within the main portion of the reef was conducted intermittently during 13 months starting in August 2005. During this time, 29,000 tons of CO{sub 2} was injected into the Guelph formation, historically known as the Niagaran Brown formation. By September 2006, the reservoir pressure within the reef had risen to approximately 2000 lbs and oil and water production from the one producing well within the field had increased significantly. The determination of the reservoir's porosity distribution, a critical aspect of reservoir characterization and simulation, proved to be a significant portion of this project. In order to relate the differences observed between the seismic attributes seen on the multiple 3D seismic surveys and the actual location of the CO{sub 2}, a predictive reservoir simulation model was developed based on seismic attributes obtained from the base 3D seismic survey and available well data. This simulation predicted that the CO{sub 2} injected into the reef would remain in the northern portion of the field. Two new wells, the State Charlton 4-30 and the Larsen 3-31, were drilled into the field in 2006 and 2008 respectively and supported this assessment. A second (or 'Monitor') 3D seismic survey was acquired during September 2007 over most of the field and duplicated the first (Base) survey, as much as possible. However, as the simulation and new well data available at that time indicated that the CO{sub 2} was concentrated in the northern portion of the field, the second seismic survey was not acquired over the extreme southern end of the area covered by the original (or Base) 3D survey. Basic processing was performed on the second 3D seismic survey and, finally, 4D processing methods were applied to both the Base and the Monitor surveys. In addition to this 3D data, a shear wave seismic data set was obtained at the same time. Interpretation of the 4D seismic data indicated that a significant amplitude change, not attributable to differences in acquisition or processing, existed at the locations within the reef predicted by the reservoir simulation. The reservoir simulation was based on the porosity distribution obtained from seismic attributes from the Base 3D survey. Using this validated reservoir simulation the location of oil within the reef at the time the Monitor survey was obtained and recommendations made for the drilling of additional EOR wells. The economic impact of this project has been estimated in terms of both enhanced oil recovery and CO{sub 2} sequestration potential. In the northern Michigan Basin alone, the Niagaran reef play is comprised of over 700 Niagaran reefs with reservoirs already depleted by primary production. Potentially there is over 1 billion bbls of oil (original oil in place minus primary recovery) remains in the reefs in Michigan, much of which could be more efficiently mobilized utilizing techniques similar to those employed in this study.

  14. Venezuela-MEM/USA-DOE Fossil Energy Report IV-11: Supporting technology for enhanced oil recovery - EOR thermal processes

    SciTech Connect (OSTI)

    Venezuela

    2000-04-06

    This report contains the results of efforts under the six tasks of the Tenth Amendment anti Extension of Annex IV, Enhanced Oil Recovery Thermal Processes of the Venezuela/USA Energy Agreement. This report is presented in sections (for each of the six Tasks) and each section contains one or more reports that were prepared to describe the results of the effort under each of the Tasks. A statement of each Task, taken from the Agreement Between Project Managers, is presented on the first page of each section. The Tasks are numbered 68 through 73. The first through tenth report on research performed under Annex IV Venezuela MEM/USA-DOE Fossil Energy Report Number IV-1, IV-2, IV-3, IV-4, IV-5, IV-6, IV-7, IV-8, IV-9, IV-10 contain the results of the first 67 Tasks. These reports are dated April 1983, August 1984, March 1986, July 1987, November 1988, December 1989, October 1991, February 1993, March 1995, and December 1997, respectively.

  15. Visual display of reservoir parameters affecting enhanced oil recovery. Annual report, October 1, 1994--September 30, 1995

    SciTech Connect (OSTI)

    Wood, J.R.

    1996-03-01

    The purpose of this project is to provide a detailed example, based on a field trial, of how to evaluate a field for enhanced oil recovery (EOR) operations utilizing data typically available in a field that has undergone primary development. The approach will utilize readily available, affordable computer software and analytical services. For example, the GeoGraphix Exploration System software package was acquired, installed on a PC in the Subsurface Laboratory at Michigan Technological University, and is currently in use. The USGS Digital Land Grid and National Geophysical Data Center`s Gravity Data CDROM were acquired and installed on GeoGraphix. Microsoft Access databases are being developed to archive analytical data and digitized log traces. Data tables for geochemical and petrographic data, well logs, well header information, well production data, formation tops, and fault trace data have been completed. A new effort was initiated during the last quarter of 1995. The surface geological maps of the southern San Joaquin Valley were digitized and loaded into the computer drafting program Canvas where they were edited combined into one large map and colored. When completed, the integrated map will be printed in large format on the HP650C color plotter.

  16. Flow in porous media, phase behavior and ultralow interfacial tensions: mechanisms of enhanced petroleum recovery. Final technical report

    SciTech Connect (OSTI)

    Davis, H.T.; Scriven, L.E.

    1982-01-01

    A major program of university research, longer-ranged and more fundamental in approach than industrial research, into basic mechanisms of enhancing petroleum recovery and into underlying physics, chemistry, geology, applied mathematics, computation, and engineering science has been built at Minnesota. The 1982 outputs of the interdisciplinary team of investigators were again ideas, instruments, techniques, data, understanding and skilled people: forty-one scientific and engineering papers in leading journals; four pioneering Ph.D. theses; numerous presentations to scientific and technical meetings, and to industrial, governmental and university laboratories; vigorous program of research visits to and from Minnesota; and two outstanding Ph.D.'s to research positions in the petroleum industry, one to a university faculty position, one to research leadership in a governmental institute. This report summarizes the 1982 papers and theses and features sixteen major accomplishments of the program during that year. Abstracts of all forty-five publications in the permanent literature are appended. Further details of information transfer and personnel exchange with industrial, governmental and university laboratories appear in 1982 Quarterly Reports available from the Department of Energy and are not reproduced here. The Minnesota program continues in 1983, notwithstanding earlier uncertainty about the DOE funding which finally materialized and is the bulk of support. Supplemental grants-in-aid from nine companies in the petroleum industry are important, as are the limited University and departmental contributions. 839 references, 172 figures, 29 tables.

  17. Jumpstarting commercial-scale CO2 capture and storage with ethylene production and enhanced oil recovery in the US Gulf

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Middleton, Richard S.; Levine, Jonathan S.; Bielicki, Jeffrey M.; Viswanathan, Hari S.; Carey, J. William; Stauffer, Philip H.

    2015-04-27

    CO2 capture, utilization, and storage (CCUS) technology has yet to be widely deployed at a commercial scale despite multiple high-profile demonstration projects. We suggest that developing a large-scale, visible, and financially viable CCUS network could potentially overcome many barriers to deployment and jumpstart commercial-scale CCUS. To date, substantial effort has focused on technology development to reduce the costs of CO2 capture from coal-fired power plants. Here, we propose that near-term investment could focus on implementing CO2 capture on facilities that produce high-value chemicals/products. These facilities can absorb the expected impact of the marginal increase in the cost of production onmore »the price of their product, due to the addition of CO2 capture, more than coal-fired power plants. A financially viable demonstration of a large-scale CCUS network requires offsetting the costs of CO2 capture by using the CO2 as an input to the production of market-viable products. As a result, we demonstrate this alternative development path with the example of an integrated CCUS system where CO2 is captured from ethylene producers and used for enhanced oil recovery in the U.S. Gulf Coast region.« less

  18. The Use of High Pressure CO2-Facilitated pH Swings to Enhance in situ Product Recovery of

    E-Print Network [OSTI]

    Daugulis, Andrew J.

    bioreactors (TPPBs), improved pH dependent partitioning of butyric acid was observed which achieved in situ product recovery (ISPR), alleviating end-product inhibition (EPI) during the production of butyric acid of butyric acid to produce a total of 213 g compared to 121 g generated in a control reactor. This recovery

  19. Recovery Act: State Assistance for Recovery Act Related Electricity...

    Energy Savers [EERE]

    energy, carbon capture and storage, transmission lines, energy storage, smart grid, demand response equipment, and electric and hybrid-electric vehicles. View a full list of...

  20. Recovery Act: State Assistance for Recovery Act Related Electricity

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative FuelsofProgram: Report Appendices |ProjectKnow YourDepartmentDepartment ofPolicies |

  1. RECOVERY ACT UPDATE C H

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Contracts Awards As of September 2010 5,298 Lives touched 1 596M Contracts awarded 55% Contracts awarded to small businesses As of September 2010 As of June 2010 Radio tower...

  2. RECOVERY ACT UPDATE C H

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Contracts Awards As of November 2010 5,298 Lives touched 1 642M Contracts awarded 55% Contracts awarded to small businesses As of November 2010 As of June 2010 In the 3A burial...

  3. RECOVERY ACT UPDATE C H

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Contracts Awards As of July 2010 4,547 Lives touched 1 523M Contracts awarded 56% Contracts awarded to small businesses As of July 2010 As of March 2010 Fuel storage vaults...

  4. RECOVERY ACT UPDATE C H

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Contracts Awards As of November 2010 5,298 Lives touched 1 642M Contracts awarded 55% Contracts awarded to small businesses As of November 2010 As of June 2010 CH2M HILL...

  5. RECOVERY ACT UPDATE C H

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    systems, and the 1706KER Water Studies Recirculation Building housed water treatment, heat exchange, pumping and other equipment. Later this summer, CH2M HILL is also planning...

  6. EM Recovery Act Press Releases

    Broader source: Energy.gov (indexed) [DOE]

  7. Recovery Act State Memos Connecticut

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Clean Cities. These Clean Cities coalitions support efforts to facilitate the adoption of alternate fuels and petroleum-reducing technologies in Connecticut. Connecticut is also...

  8. Recovery Act | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustmentsShirleyEnergyTher i nAandSummary From: JuliaDepartment-8-2008RSSa WebcastA listing ofNovember 29,

  9. Recovery Act | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustmentsShirleyEnergyTher i nAandSummary From: JuliaDepartment-8-2008RSSa WebcastA listing ofNovember

  10. Recovery Act | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustmentsShirleyEnergyTher i nAandSummary From: JuliaDepartment-8-2008RSSa WebcastA listing ofNovemberApril

  11. Recovery Act | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustmentsShirleyEnergyTher i nAandSummary From: JuliaDepartment-8-2008RSSa WebcastA listing

  12. ARM and the Recovery Act

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach Home Room News Publications Traditional Knowledge Kiosks Barrow, AlaskaDatabaseSearchTipsWith

  13. Department of Energy - Recovery Act

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustmentsShirleyEnergy A plug-in electricLaboratory | version ofEnergy

  14. Recovery Act | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustmentsShirleyEnergy AEnergyPresidentialThis 3-DMarch 9, 2015 Cumulative Federal Payments to OE

  15. Recovery Act | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustmentsShirleyEnergy AEnergyPresidentialThis 3-DMarch 9, 2015 Cumulative Federal Payments to OEJuly

  16. Recovery Act | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustmentsShirleyEnergy AEnergyPresidentialThis 3-DMarch 9, 2015 Cumulative Federal Payments to

  17. Recovery Act | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustmentsShirleyEnergy AEnergyPresidentialThis 3-DMarch 9, 2015 Cumulative Federal Payments toOctober

  18. Recovery Act | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustmentsShirleyEnergy AEnergyPresidentialThis 3-DMarch 9, 2015 Cumulative Federal Payments

  19. Recovery Act | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustmentsShirleyEnergy AEnergyPresidentialThis 3-DMarch 9, 2015 Cumulative Federal Payments20, 2014

  20. Recovery Act | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustmentsShirleyEnergy AEnergyPresidentialThis 3-DMarch 9, 2015 Cumulative Federal Payments20,

  1. Recovery Act | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustmentsShirleyEnergy AEnergyPresidentialThis 3-DMarch 9, 2015 Cumulative Federal Payments20,April 16,

  2. Recovery Act | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustmentsShirleyEnergy AEnergyPresidentialThis 3-DMarch 9, 2015 Cumulative Federal Payments20,April

  3. Microsoft Word - Recovery Act Cover

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustmentsShirleyEnergyTher i nAand DOE SafetyofDepartment. " 21 ranDay: Tuesday Date: December 1

  4. State Agency Recovery Act Funding

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX E LIST OF APPLICABLE DIRECTIVESDepartmentSpecialCode of RecordTech to the MarketAgency

  5. Recovery Act | Department of Energy

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on DeliciousMathematicsEnergyInterested PartiesBuildingBudgetFinancial Opportunities » Past Opportunities »

  6. Recovery Act | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustmentsShirley Ann JacksonDepartment ofOffice|inWestMay 13, 2015 The new technology repelsExamination5 View3,

  7. Recovery Act | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative FuelsofProgram: Report Appendices |ProjectKnow YourDepartment ofAugustPast

  8. Highlights from U.S. Department of Energy's Fuel Cell Recovery...

    Broader source: Energy.gov (indexed) [DOE]

    sheets highlights fuel cell projects funded by the American Recovery and Reinvestment Act of 2009 (Recovery Act). A total of 41.6 million in Recovery Act funding supported the...

  9. Advanced Reservoir Characterization in the Antelope Shale to Establish the Viability of C02 Enhanced Oil Recovery in California's Monterey Formation Siliceous Shales

    SciTech Connect (OSTI)

    Michael F. Morea

    1997-04-25

    The primary objective of this research is to conduct advanced reservoir characterization and modeling studies in the Antelope Shale reservoir. Characterization studies will be used to determine the technical feasibility of implementing a CO2 enhanced oil recovery project in the Antelope Shale in Buena Vista Hills Field. The Buena Vista Hills pilot CO2 project will demonstrate the economic viability and widespread applicability of CO2 flooding in fractured siliceous shale reservoirs of the San Joaquin Valley. The research consists of four primary work processes: Reservoir Matrix and Fluid Characterization; Fracture Characterization; Reservoir Modeling and Simulation; and CO2 Pilot Flood and Evaluation. Work done in these areas is subdivided into two phases or budget periods. The first phase of the project will focus on the application of a variety of advanced reservoir characterization techniques to determine the production characteristics of the Antelope Shale reservoir. Reservoir models based on the results of the characterization work will be used to evaluate how the reservoir will respond to secondary recovery and EOR processes. The second phase of the project will include the implementation and evaluation of an advanced enhanced oil recovery (EOR) pilot in the West Dome of the Buena Vista Hills Field.

  10. Advanced Reservoir Characterization in the Antelope Shale to Establish the Viability of CO2 Enhanced Oil Recovery in California's Monterey Formation Siliceous Shales

    SciTech Connect (OSTI)

    Morea, Michael F.

    1999-11-01

    The primary objective of this research is to conduct advanced reservoir characterization and modeling studies in the Antelope Shale reservoir. Characterization studies will be used to determine the technical feasibility of implementing a CO2 enhanced oil recovery project in the Antelope Shale in Buena Vista Hills Field. The Buena Vista Hills pilot CO2 project will demonstrate the economic viability and widespread applicability of CO2 flooding in fractured siliceous shale reservoirs of the San Joaquin Valley. The research consists of four primary work processes: (1) Reservoir Matrix and Fluid Characterization; (2) Fracture characterization; (3) reservoir Modeling and Simulation; and (4) CO2 Pilot Flood and Evaluation. Work done in these areas is subdivided into two phases or budget periods. The first phase of the project will focus on the application of a variety of advanced reservoir characterization techniques to determine the production characteristics of the Antelope Shale reservoir. Reservoir models based on the results of the characterization work will be used to evaluate how the reservoir will respond to secondary recovery and EOR processes. The second phase of the project will include the implementation and evaluation of an advanced enhanced oil recovery (EOR) pilot in the United Anticline (West Dome) of the Buena Vista Hills Field.

  11. Advanced Reservoir Characterization in the Antelope Shale to Establish the Viability of C02 Enhanced Oil Recovery in California's Monterey Formation Siliceous Shales

    SciTech Connect (OSTI)

    Michael F. Morea.

    1998-04-23

    The primary objective of this research is to conduct advanced reservoir characterization and modeling studies in the Antelope Shale reservoir. Characterization studies will be used to determine the technical feasibility of implementing a CO2 enhanced oil recovery project in the Antelope Shale in Buena Vista Hills Field. The Buena Vista Hills pilot CO2 project will demonstrate the economic viability and widespread applicability of CO2 flooding in fractured siliceous shale reservoirs of the San Joaquin Valley. The research consists of four primary work processes: Reservoir Matrix and Fluid Characterization; Fracture Characterization; Reservoir Modeling and Simulation; and CO2 Pilot Flood and Evaluation. Work done in these areas is subdivided into two phases or budget periods. The first phase of the project will focus on the application of a variety of advanced reservoir characterization techniques to determine the production characteristics of the Antelope Shale reservoir. Reservoir models based on the results of the characterization work will be used to evaluate how the reservoir will respond to secondary recovery and EOR processes. The second phase of the project will include the implementation and evaluation of an advanced enhanced oil recovery (EOR) pilot in the United Anticline (West Dome) of the Buena Vista Hills Field.

  12. Advanced Reservoir Characterization in the Antelope Shale to Establish the Viability of CO2 Enhanced Oil Recovery in California's Monterey Formation Siliceous Shales

    SciTech Connect (OSTI)

    Morea, Michael F.

    1999-11-08

    The primary objective of this research is to conduct advanced reservoir characterization and modeling studies in the Antelope Shale reservoir. Characterization studies will be used to determine the technical feasibility of implementing a CO2 enhanced oil recovery project in the Antelope Shale in Buena Vista Hills Field. The Buena Vista Hills pilot CO2 project will demonstrate the economic viability and widespread applicability of CO2 flooding in fractured siliceous shale reservoirs of the San Joaquin Valley. The research consists of four primary work processes: (1) Reservoir Matrix and Fluid Characterization; (2) Fracture characterization; (3) reservoir Modeling and Simulation; and (4) CO2 Pilot Flood and Evaluation. Work done in these areas is subdivided into two phases or budget periods. The first phase of the project will focus on the application of a variety of advanced reservoir characterization techniques to determine the production characteristics of the Antelope Shale reservoir. Reservoir models based on the results of the characterization work will be used to evaluate how the reservoir will respond to secondary recovery and EOR processes. The second phase of the project will include the implementation and evaluation of an advanced enhanced oil recovery (EOR) pilot in the United Anticline (West Dome) of the Buena Vista Hills Field.

  13. Policy Flash 2014-35 Rescission of American Recovery and Reinvestment...

    Energy Savers [EERE]

    Policy Flash 2014-35 Rescission of American Recovery and Reinvestment Act Reporting Requirements. Policy Flash 2014-35 Rescission of American Recovery and Reinvestment Act...

  14. Statement of Patricia Hoffman Acting Assistant Secretary for...

    Energy Savers [EERE]

    U.S. House of Representatives, July 23, 2009. The Energy Independence and Security Act of 2007 (EISA) and the American Recovery and Reinvestment Act of 2009 (Recovery Act)...

  15. Post-Closure Report for Closed Resource Conservation and Recovery Act Corrective Action Units, Nevada National Security Site, Nevada for Fiscal Year 2011 (October 2010-September 2011)

    SciTech Connect (OSTI)

    NSTec Environmental Restoration

    2012-01-18

    This report serves as the combined annual report for post-closure activities for the following closed Corrective Action Units (CAUs): (1) CAU 90, Area 2 Bitcutter Containment; (2) CAU 91, Area 3 U-3fi Injection Well; (3) CAU 92, Area 6 Decon Pond Facility; (4) CAU 110, Area 3 WMD U-3ax/bl Crater; and (5) CAU 112, Area 23 Hazardous Waste Trenches. This report covers fiscal year 2011 (October 2010-September 2011). The post-closure requirements for these sites are described in Resource Conservation and Recovery Act Permit Number NEV HW0101 and summarized in each CAU-specific section in Section 1.0 of this report. Site inspections are conducted semiannually at CAUs 90 and 91 and quarterly at CAUs 92, 110, and 112. Additional inspections are conducted at CAU 92 if precipitation occurs in excess of 0.50 inches in a 24-hour period. Inspections include an evaluation of the condition of the units and identification of any deficiencies that may compromise the integrity of the units. The condition of covers, fencing, signs, gates, and locks is documented. In addition, soil moisture monitoring and subsidence surveys are conducted at CAU 110. The results of the inspections, summary of maintenance activities, results of vegetations surveys, and analysis of monitoring data are presented in this report. Copies of the inspection checklists are included as Appendix A. Field notes completed during each inspection are included in Appendix B. Photographs taken during the inspections are included in Appendix C. It is recommended to continue semiannual inspections at CAUs 90 and 91; quarterly inspections at CAUs 92, 110, and 112; and additional inspections at CAU 92 if precipitation occurs in excess of 0.50 inches in a 24-hour period. At CAU 92, it is recommended to remove the wave barriers, as they have not proven to be necessary to protect the cover. At CAU 110, it is recommended to continue annual vegetation monitoring and soil moisture monitoring, and to reduce the frequency of subsidence surveys from twice per year to once every other year (biennially).

  16. Post-Closure Report for Closed Resource Conservation and Recovery Act Corrective Action Units, Nevada National Security Site, Nevada, for Fiscal Year 2014

    SciTech Connect (OSTI)

    Silvas, Alissa J.

    2015-01-14

    This report serves as the combined annual report for post-closure activities for the following closed Corrective Action Units (CAUs): • CAU 90, Area 2 Bitcutter Containment • CAU 91, Area 3 U-3fi Injection Well • CAU 92, Area 6 Decon Pond Facility • CAU 110, Area 3 WMD U-3ax/bl Crater • CAU 111, Area 5 WMD Retired Mixed Waste Pits • CAU 112, Area 23 Hazardous Waste Trenches This report covers fiscal year 2014 (October 2013–September 2014). The post-closure requirements for these sites are described in Resource Conservation and Recovery Act Permit Number NEV HW0101 and summarized in each CAU-specific section in Section 1.0 of this report. The results of the inspections, a summary of maintenance activities, and an evaluation of monitoring data are presented in this report. Site inspections are conducted semiannually at CAUs 90 and 91 and quarterly at CAUs 92, 110, 111, and 112. Additional inspections are conducted at CAU 92 if precipitation occurs in excess of 0.50 inches (in.) in a 24-hour period and at CAU 111 if precipitation occurs in excess of 1.0 in. in a 24-hour period. Inspections include an evaluation of the condition of the units, including covers, fences, signs, gates, and locks. In addition to visual inspections, soil moisture monitoring, vegetation evaluations, and subsidence surveys are conducted at CAU 110. At CAU 111, soil moisture monitoring, vegetation evaluations, subsidence surveys, direct radiation monitoring, air monitoring, radon flux monitoring, and groundwater monitoring are conducted. The results of the vegetation surveys and an analysis of the soil moisture monitoring data at CAU 110 are presented in this report. Results of additional monitoring at CAU 111 are documented annually in the Nevada National Security Site Waste Management Monitoring Report Area 3 and Area 5 Radioactive Waste Management Sites and in the Nevada National Security Site Data Report: Groundwater Monitoring Program Area 5 Radioactive Waste Management Site, which will be prepared in approximately June 2015. All required inspections, maintenance, and monitoring were conducted in accordance with the post-closure requirements of the permit. It is recommended to continue inspections and monitoring as scheduled.

  17. CO2 Storage and Enhanced Oil Recovery: Bald Unit Test Site, Mumford Hills Oil Field, Posey County, Indiana

    SciTech Connect (OSTI)

    Frailey, Scott M.; Krapac, Ivan G.; Damico, James R.; Okwen, Roland T.; McKaskle, Ray W.

    2012-03-30

    The Midwest Geological Sequestration Consortium (MGSC) carried out a small-scale carbon dioxide (CO2) injection test in a sandstone within the Clore Formation (Mississippian System, Chesterian Series) in order to gauge the large-scale CO2 storage that might be realized from enhanced oil recovery (EOR) of mature Illinois Basin oil fields via miscible liquid CO2 flooding. As part of the MGSC�������¢����������������s Validation Phase (Phase II) studies, the small injection pilot test was conducted at the Bald Unit site within the Mumford Hills Field in Posey County, southwestern Indiana, which was chosen for the project on the basis of site infrastructure and reservoir conditions. Geologic data on the target formation were extensive. Core analyses, porosity and permeability data, and geophysical logs from 40 wells were used to construct cross sections and structure contour and isopach maps in order to characterize and define the reservoir architecture of the target formation. A geocellular model of the reservoir was constructed to improve understanding of CO2 behavior in the subsurface. At the time of site selection, the Field was under secondary recovery through edge-water injection, but the wells selected for the pilot in the Bald Unit had been temporarily shut-in for several years. The most recently shut-in production well, which was surrounded by four nearby shut-in production wells in a five-spot pattern, was converted to CO2 injection for this pilot. Two additional wells outside the immediate five-spot pattern, one of which was an active producer, were instrumented to measure surface temperature and pressure. The CO2 injection period lasted from September 3, 2009, through December 14, 2010, with one three-month interruption caused by cessation of CO2 deliveries due to winter weather. Water was injected into the CO2 injection well during this period. A total of 6,300 tonnes (6,950 tons) of CO2 were injected into the reservoir at rates that generally ranged from 18 to 32 tonnes (20 to 35 tons) per day. The CO2 injection bottomhole pressure generally remained at 8.3 to 9.0 MPag (1,200 to 1,300 psig). The CO2 injection was followed by continued monitoring for nine months during post-CO2 water injection. A monitoring, verification, and accounting (MVA) program was designed to determine the fate of injected CO2. Extensive periodic sampling and analysis of brine, groundwater, and produced gases began before CO2 injection and continued through the monitored waterflood periods. Samples were gathered from production wells and three newly installed groundwater monitoring wells. Samples underwent geochemical and isotopic analyses to reveal any CO2-related changes. Groundwater and kinetic modeling and mineralogical analysis were also employed to better understand the long-term dynamics of CO2 in the reservoir. No CO2 leakage into groundwater was detected, and analysis of brine and gas chemistry made it possible to track the path of plume migration and infer geochemical reactions and trapping of CO2. Cased-hole logging did not detect any CO2 in the near-wellbore region. An increase in CO2 concentration was first detected in February 2010 from the gas present in the carboy during brine sampling; however, there was no appreciable gas volume associated with the detection of CO2. The first indication of elevated gas rates from the commingled gas of the pilot�������¢����������������s production wells occurred in July 2010 and reached a maximum of 0.36 tonnes/day (0.41 tons/day) in September 2010. An estimated 27 tonnes (30 tons) of CO2 were produced at the surface from the gas separator at the tank battery from September 3, 2009, through September 11, 2011, representing 0.5% of the injected CO2. Consequently, 99.5%

  18. Carbon Capture and Sequestration (via Enhanced Oil Recovery) from a Hydrogen Production Facility in an Oil Refinery

    SciTech Connect (OSTI)

    Stewart Mehlman

    2010-06-16

    The project proposed a commercial demonstration of advanced technologies that would capture and sequester CO2 emissions from an existing hydrogen production facility in an oil refinery into underground formations in combination with Enhanced Oil Recovery (EOR). The project is led by Praxair, Inc., with other project participants: BP Products North America Inc., Denbury Onshore, LLC (Denbury), and Gulf Coast Carbon Center (GCCC) at the Bureau of Economic Geology of The University of Texas at Austin. The project is located at the BP Refinery at Texas City, Texas. Praxair owns and operates a large hydrogen production facility within the refinery. As part of the project, Praxair would construct a CO2 capture and compression facility. The project aimed at demonstrating a novel vacuum pressure swing adsorption (VPSA) based technology to remove CO2 from the Steam Methane Reformers (SMR) process gas. The captured CO2 would be purified using refrigerated partial condensation separation (i.e., cold box). Denbury would purchase the CO2 from the project and inject the CO2 as part of its independent commercial EOR projects. The Gulf Coast Carbon Center at the Bureau of Economic Geology, a unit of University of Texas at Austin, would manage the research monitoring, verification and accounting (MVA) project for the sequestered CO2, in conjunction with Denbury. The sequestration and associated MVA activities would be carried out in the Hastings field at Brazoria County, TX. The project would exceed DOE’s target of capturing one million tons of CO2 per year (MTPY) by 2015. Phase 1 of the project (Project Definition) is being completed. The key objective of Phase 1 is to define the project in sufficient detail to enable an economic decision with regard to proceeding with Phase 2. This topical report summarizes the administrative, programmatic and technical accomplishments completed in Phase 1 of the project. It describes the work relative to project technical and design activities (associated with CO2 capture technologies and geologic sequestration MVA), and Environmental Information Volume. Specific accomplishments of this Phase include: 1. Finalization of the Project Management Plan 2. Development of engineering designs in sufficient detail for defining project performance and costs 3. Preparation of Environmental Information Volume 4. Completion of Hazard Identification Studies 5. Completion of control cost estimates and preparation of business plan During the Phase 1 detailed cost estimate, project costs increased substantially from the previous estimate. Furthermore, the detailed risk assessment identified integration risks associated with potentially impacting the steam methane reformer operation. While the Phase 1 work identified ways to mitigate these integration risks satisfactorily from an operational perspective, the associated costs and potential schedule impacts contributed to the decision not to proceed to Phase 2. We have concluded that the project costs and integration risks at Texas City are not commensurate with the potential benefits of the project at this time.

  19. Improved Mobility Control for Carbon Dioxide (CO{sub 2}) Enhanced Oil Recovery Using Silica-Polymer-Initiator (SPI) Gels

    SciTech Connect (OSTI)

    Oglesby, Kenneth

    2014-01-31

    SPI gels are multi-component silicate based gels for improving (areal and vertical) conformance in oilfield enhanced recovery operations, including water-floods and carbon dioxide (CO{sub 2}) floods, as well as other applications. SPI mixtures are like-water when pumped, but form light up to very thick, paste-like gels in contact with CO{sub 2}. When formed they are 3 to 10 times stronger than any gelled polyacrylamide gel now available, however, they are not as strong as cement or epoxy, allowing them to be washed / jetted out of the wellbore without drilling. This DOE funded project allowed 8 SPI field treatments to be performed in 6 wells (5 injection wells and 1 production well) in 2 different fields with different operators, in 2 different basins (Gulf Coast and Permian) and in 2 different rock types (sandstone and dolomite). Field A was in a central Mississippi sandstone that injected CO{sub 2} as an immiscible process. Field B was in the west Texas San Andres dolomite formation with a mature water-alternating-gas miscible CO{sub 2} flood. Field A treatments are now over 1 year old while Field B treatments have only 4 months data available under variable WAG conditions. Both fields had other operational events and well work occurring before/ during / after the treatments making definitive evaluation difficult. Laboratory static beaker and dynamic sand pack tests were performed with Ottawa sand and both fields’ core material, brines and crude oils to improve SPI chemistry, optimize SPI formulations, ensure SPI mix compatibility with field rocks and fluids, optimize SPI treatment field treatment volumes and methods, and ensure that strong gels set in the reservoir. Field quality control procedures were designed and utilized. Pre-treatment well (surface) injectivities ranged from 0.39 to 7.9 MMCF/psi. The SPI treatment volumes ranged from 20.7 cubic meters (m{sup 3}, 5460 gallons/ 130 bbls) to 691 m{sup 3} (182,658 gallons/ 4349 bbls). Various size and types of chemical/ water buffers before and after the SPI mix ensured that pre-gelled SPI mix got out into the formation before setting into a gel. SPI gels were found to be 3 to 10 times stronger than any commercially available cross-linked polyacrylamide gels based on Penetrometer and Bulk Gel Shear Testing. Because of SPI’s unique chemistry with CO{sub 2}, both laboratory and later field tests demonstrated that multiple, smaller volume SPI treatments maybe more effective than one single large SPI treatment. CO{sub 2} injectivities in injection well in both fields were reduced by 33 to 70% indicating that injected CO{sub 2} is now going into new zones. This reduction has lasted 1+ year in Field A. Oil production increased and CO{sub 2} production decreased in 5 Field A production wells, offsets to Well #1 injector, for a total of about 2,250 m{sup 3} (600,000 gallons/ 14,250 bbls) of incremental oil production- a $140 / SPI bbl return. Treated marginal production well, Field A Well #2, immediately began showing increased oil production totaling 238 m{sup 3} (63,000 gallons/ 1500 BBLs) over 1 year and an immediate 81% reduced gas-oil ratio.

  20. Contracts for field projects and supporting research on enhanced oil recovery. Progress review quarter ending September 30, 1993

    SciTech Connect (OSTI)

    Not Available

    1994-08-01

    Progress reports are presented for the following tasks: chemical flooding--supporting research; gas displacement--supporting research; thermal recovery--supporting research; geoscience technology; resource assessment technology; and field demonstrations in high-priority reservoir classes. A list of available publications is also included.

  1. Contracts for field projects and supporting research on enhanced oil recovery. Progress review No. 71, quarter ending June 30, 1992

    SciTech Connect (OSTI)

    Not Available

    1993-06-01

    Progress reports are presented for the following tasks: chemical flooding--supporting research; gas displacement--supporting research; thermal recovery--supporting research; geoscience technology; resource assessment technology; microbial technology; and novel technology. A list of available publication is also provided.

  2. Contracts for field projects and supporting research on enhanced oil recovery: Progress review No. 74, Quarter ending March 31, 1993

    SciTech Connect (OSTI)

    Not Available

    1994-03-01

    Accomplishments for the past quarter are presented for the following tasks: chemical flooding--supporting research; gas displacement--supporting research; thermal recovery--supporting research; geoscience technology; resource assessment technology; microbial technology; field demonstrations in high-priority reservoir classes; and novel technology. A list of available publication is also provided.

  3. Department of Earth and Mineral Sciences Spring 2012 Magnetically Enhanced Hydro Cyclone for Magnetite Recovery During Coal

    E-Print Network [OSTI]

    Demirel, Melik C.

    for Magnetite Recovery During Coal Beneficiation Overview Magnetite is employed in a water slurry during the coal beneficiation process. The slurry has a density in between that of coal and that of unwanted material so that only coal floats and can be scraped off. Magnetite has tripled in price so recovering

  4. A study of the effects of enhanced oil recovery agents on the quality of Strategic Petroleum Reserves crude oil. Final technical report

    SciTech Connect (OSTI)

    Kabadi, V.N.

    1992-10-01

    The project was initiated on September 1, 1990. The objective of the project was to carry out a literature search to estimate the types and extents of long time interactions of enhanced oil recovery (EOR) agents, such as surfactants, caustics and polymers, with crude oil. This information is necessary to make recommendations about mixing EOR crude oil with crude oils from primary and secondary recovery processes in the Strategic Petroleum Reserve (SPR). Data were sought on both adverse and beneficial effects of EOR agents that would impact handling, transportation and refining of crude oil. An extensive literature search has been completed, and the following informations has been compiled: (1) a listing of existing EOR test and field projects; (2) a listing of currently used EOR agents; and (3) evidence of short and long term physical and chemical interactions of these EOR-agents with hydrocarbons, and their effects on the quality of crude oil at long times. This information is presented in this report. Finally some conclusions are derived and recommendations are made. Although the conclusions are based mostly on extrapolations because of lack of specific data, it is recommended that the enhancement of the rates of biodegradation of oil catalyzed by the EOR agents needs to be further studied. There is no evidence of substantial long term effects on crude oil because of other interactions. Some recommendations are also made regarding the types of studies that would be necessary to determine the effect of certain EOR agents on the rates of biodegradation of crude oil.

  5. RECOVERY ACT: DYNAMIC ENERGY CONSUMPTION MANAGEMENT OF ROUTING TELECOM AND DATA CENTERS THROUGH REAL-TIME OPTIMAL CONTROL (RTOC): Final Scientific/Technical Report

    SciTech Connect (OSTI)

    Ron Moon

    2011-06-30

    This final scientific report documents the Industrial Technology Program (ITP) Stage 2 Concept Development effort on Data Center Energy Reduction and Management Through Real-Time Optimal Control (RTOC). Society is becoming increasingly dependent on information technology systems, driving exponential growth in demand for data center processing and an insatiable appetite for energy. David Raths noted, 'A 50,000-square-foot data center uses approximately 4 megawatts of power, or the equivalent of 57 barrels of oil a day1.' The problem has become so severe that in some cases, users are giving up raw performance for a better balance between performance and energy efficiency. Historically, power systems for data centers were crudely sized to meet maximum demand. Since many servers operate at 60%-90% of maximum power while only utilizing an average of 5% to 15% of their capability, there are huge inefficiencies in the consumption and delivery of power in these data centers. The goal of the 'Recovery Act: Decreasing Data Center Energy Use through Network and Infrastructure Control' is to develop a state of the art approach for autonomously and intelligently reducing and managing data center power through real-time optimal control. Advances in microelectronics and software are enabling the opportunity to realize significant data center power savings through the implementation of autonomous power management control algorithms. The first step to realizing these savings was addressed in this study through the successful creation of a flexible and scalable mathematical model (equation) for data center behavior and the formulation of an acceptable low technical risk market introduction strategy leveraging commercial hardware and software familiar to the data center market. Follow-on Stage 3 Concept Development efforts include predictive modeling and simulation of algorithm performance, prototype demonstrations with representative data center equipment to verify requisite performance and continued commercial partnering agreement formation to ensure uninterrupted development, and deployment of the real-time optimal control algorithm. As a software implementable technique for reducing power consumption, the RTOC has two very desirable traits supporting rapid prototyping and ultimately widespread dissemination. First, very little capital is required for implementation. No major infrastructure modifications are required and there is no need to purchase expensive capital equipment. Second, the RTOC can be rolled out incrementally. Therefore, the effectiveness can be proven without a large scale initial roll out. Through the use of the Impact Projections Model provided by the DOE, monetary savings in excess of $100M in 2020 and billions by 2040 are predicted. In terms of energy savings, the model predicts a primary energy displacement of 260 trillion BTUs (33 trillion kWh), or a 50% reduction in server power consumption. The model also predicts a corresponding reduction of pollutants such as SO2 and NOx in excess of 100,000 metric tonnes assuming the RTOC is fully deployed. While additional development and prototyping is required to validate these predictions, the relative low cost and ease of implementation compared to large capital projects makes it an ideal candidate for further investigation.

  6. X-231A demonstration of in-situ remediation of DNAPL compounds in low permeability media by soil fracturing with thermally enhanced mass recovery or reactive barrier destruction

    SciTech Connect (OSTI)

    Siegrist, R.L.; Lowe, K.S.; Murdoch, L.D.; Slack, W.W.; Houk, T.C.

    1998-03-01

    The overall goal of the program of activities is to demonstrate robust and cost-effective technologies for in situ remediation of DNAPL compounds in low permeability media (LPM), including adaptations and enhancements of conventional technologies to achieve improved performance for DNAPLs in LPM. The technologies sought should be potential for application at simple, small sites (e.g., gasoline underground storage tanks) as well as at complex, larger sites (e.g., DOE land treatment units). The technologies involved in the X-231A demonstration at Portsmouth Gaseous Diffusion Plant (PORTS) utilized subsurface manipulation of the LPM through soil fracturing with thermally enhanced mass recovery or horizontal barrier in place destruction. To enable field evaluation of these approaches, a set of four test cells was established at the X-231A land treatment unit at the DOE PORTS plant in August 1996 and a series of demonstration field activities occurred through December 1997. The principal objectives of the PORTS X-231A demonstration were to: determine and compare the operational features of hydraulic fractures as an enabling technology for steam and hot air enhanced soil vapor extraction and mass recovery, in situ interception and reductive destruction by zero valent iron, and in situ interception and oxidative destruction by potassium permanganate; determine the interaction of the delivered agents with the LPM matrix adjacent to the fracture and within the fractured zone and assess the beneficial modifications to the transport and/or reaction properties of the LPM deposit; and determine the remediation efficiency achieved by each of the technology strategies.

  7. Phase Behavior, Solid Organic Precipitation, and Mobility Characterization Studies in Support of Enhanced Heavy Oil Recovery on the Alaska North Slope

    SciTech Connect (OSTI)

    Shirish Patil; Abhijit Dandekar; Santanu Khataniar

    2008-12-31

    The medium-heavy oil (viscous oil) resources in the Alaska North Slope are estimated at 20 to 25 billion barrels. These oils are viscous, flow sluggishly in the formations, and are difficult to recover. Recovery of this viscous oil requires carefully designed enhanced oil recovery processes. Success of these recovery processes is critically dependent on accurate knowledge of the phase behavior and fluid properties, especially viscosity, of these oils under variety of pressure and temperature conditions. This project focused on predicting phase behavior and viscosity of viscous oils using equations of state and semi-empirical correlations. An experimental study was conducted to quantify the phase behavior and physical properties of viscous oils from the Alaska North Slope oil field. The oil samples were compositionally characterized by the simulated distillation technique. Constant composition expansion and differential liberation tests were conducted on viscous oil samples. Experiment results for phase behavior and reservoir fluid properties were used to tune the Peng-Robinson equation of state and predict the phase behavior accurately. A comprehensive literature search was carried out to compile available compositional viscosity models and their modifications, for application to heavy or viscous oils. With the help of meticulously amassed new medium-heavy oil viscosity data from experiments, a comparative study was conducted to evaluate the potential of various models. The widely used corresponding state viscosity model predictions deteriorate when applied to heavy oil systems. Hence, a semi-empirical approach (the Lindeloff model) was adopted for modeling the viscosity behavior. Based on the analysis, appropriate adjustments have been suggested: the major one is the division of the pressure-viscosity profile into three distinct regions. New modifications have improved the overall fit, including the saturated viscosities at low pressures. However, with the limited amount of geographically diverse data, it is not possible to develop a comprehensive predictive model. Based on the comprehensive phase behavior analysis of Alaska North Slope crude oil, a reservoir simulation study was carried out to evaluate the performance of a gas injection enhanced oil recovery technique for the West Sak reservoir. It was found that a definite increase in viscous oil production can be obtained by selecting the proper injectant gas and by optimizing reservoir operating parameters. A comparative analysis is provided, which helps in the decision-making process.

  8. Reuse of Produced Water from CO2 Enhanced Oil Recovery, Coal-Bed Methane, and Mine Pool Water by Coal-Based Power Plants

    SciTech Connect (OSTI)

    Chad Knutson; Seyed Dastgheib; Yaning Yang; Ali Ashraf; Cole Duckworth; Priscilla Sinata; Ivan Sugiyono; Mark Shannon; Charles Werth

    2012-04-30

    Power generation in the Illinois Basin is expected to increase by as much as 30% by the year 2030, and this would increase the cooling water consumption in the region by approximately 40%. This project investigated the potential use of produced water from CO{sub 2} enhanced oil recovery (CO{sub 2}-EOR) operations; coal-bed methane (CBM) recovery; and active and abandoned underground coal mines for power plant cooling in the Illinois Basin. Specific objectives of this project were: (1) to characterize the quantity, quality, and geographic distribution of produced water in the Illinois Basin; (2) to evaluate treatment options so that produced water may be used beneficially at power plants; and (3) to perform a techno-economic analysis of the treatment and transportation of produced water to thermoelectric power plants in the Illinois Basin. Current produced water availability within the basin is not large, but potential flow rates up to 257 million liters per day (68 million gallons per day (MGD)) are possible if CO{sub 2}-enhanced oil recovery and coal bed methane recovery are implemented on a large scale. Produced water samples taken during the project tend to have dissolved solids concentrations between 10 and 100 g/L, and water from coal beds tends to have lower TDS values than water from oil fields. Current pretreatment and desalination technologies including filtration, adsorption, reverse osmosis (RO), and distillation can be used to treat produced water to a high quality level, with estimated costs ranging from $2.6 to $10.5 per cubic meter ($10 to $40 per 1000 gallons). Because of the distances between produced water sources and power plants, transportation costs tend to be greater than treatment costs. An optimization algorithm was developed to determine the lowest cost pipe network connecting sources and sinks. Total water costs increased with flow rate up to 26 million liters per day (7 MGD), and the range was from $4 to $16 per cubic meter ($15 to $60 per 1000 gallons), with treatment costs accounting for 13 â?? 23% of the overall cost. Results from this project suggest that produced water is a potential large source of cooling water, but treatment and transportation costs for this water are large.

  9. RECOVERY ACT CASE STUDY CHP and district energy serve Texas A&M's 5,200-acre campus, which includes 750 buildings.

    E-Print Network [OSTI]

    .S. Congressman Chet Edwards Texas A&M's CHP system includes a gas turbine generator, heat recovery steam generator, and steam turbine generator. Photo courtesy of Texas A&M University 3 Riley, Jim, "Combined Heat, 2010. Brush Generator 34 MW RO Water Dresser Rand Steam Turbine Ideal Generator 11 MW 12.47 kV EIT HRSG

  10. Potential use of California lignite and other alternate fuel for enhanced oil recovery. Phase I and II. Final report. [As alternative fuels for steam generation in thermal EOR

    SciTech Connect (OSTI)

    Shelton, R.; Shimizu, A.; Briggs, A.

    1980-02-01

    The Nation's continued reliance on liquid fossil fuels and decreasing reserves of light oils gives increased impetus to improving the recovery of heavy oil. Thermal enhanced oil recovery EOR techniques, such as steam injection, have generally been the most effective for increasing heavy oil production. However, conventional steam generation consumes a large fraction of the produced oil. The substitution of alternate (solid) fuels would release much of this consumed oil to market. This two-part report focuses on two solid fuels available in California, the site of most thermal EOR - petroleum coke and lignite. Phase I, entitled Economic Analysis, shows detailed cost comparisons between the two candidate fuels and also with Western coal. The analysis includes fuels characterizations, process designs for several combustion systems, and a thorough evaluation of the technical and economic uncertainties. In Phase II, many technical parameters of petroleum coke combustion were measured in a pilot-plant fluidized bed. The results of the study showed that petroleum coke combustion for EOR is feasible and cost effective in a fluidized bed combustor.

  11. Advanced Reservoir Characterization in the Antelope Shale to Establish the Viability of CO2 Enhanced Oil Recovery in California's Monterey Formation Siliceous Shales, Class III

    SciTech Connect (OSTI)

    Perri, Pasquale R.; Cooney, John; Fong, Bill; Julander, Dale; Marasigan, Aleks; Morea, Mike; Piceno, Deborah; Stone, Bill; Emanuele, Mark; Sheffield, Jon; Wells, Jeff; Westbrook, Bill; Karnes, Karl; Pearson, Matt; Heisler, Stuart

    2000-04-24

    The primary objective of this project was to conduct advanced reservoir characterization and modeling studies in the Antelope Shale of the Bureau Vista Hills Field. Work was subdivided into two phases or budget periods. The first phase of the project focused on a variety of advanced reservoir characterization techniques to determine the production characteristics of the Antelope Shale reservoir. Reservoir models based on the results of the characterization work would then be used to evaluate how the reservoir would respond to enhanced oil recovery (EOR) processes such as of CO2 flooding. The second phase of the project would be to implement and evaluate a CO2 in the Buena Vista Hills Field. A successful project would demonstrate the economic viability and widespread applicability of CO2 flooding in siliceous shale reservoirs of the San Joaquin Valley.

  12. The Department of Energy's American Recovery and Reinvestment Act-Missouri State Energy Program, OAS-RA-L-12-06

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankADVANCEDInstallers/ContractorsPhotovoltaics »TanklessResearchEnergy2FallDepartmentAmerican Recovery

  13. Support of enhanced oil recovery to independent producers in Texas. Quarterly report, July 1, 1996--September 30, 1996

    SciTech Connect (OSTI)

    Fotouh, K.H.

    1996-10-01

    To establish a Technology Transfer Resource Center (TRC) at Prairie View A&M University (PVAMU) to assist the Independent Oil Producers, in the state of Texas, (TIP) obtain and apply oil recovery technology to their operation. The University will conduct a field pilot project in cooperation with an Independent Producer to demonstrate how technology application improves the economic performance of a project. Experience gained from the project will be disseminated to other Independents. These activities will be coordinated with neighboring state Universities and private research entities active in technology transfer programs. The University`s goal is to stimulate Petroleum Engineering education and research at the university as a result of participating in these activities. The long term goal is to establish the first Petroleum Engineering Department at a Historically Black University.

  14. In situ generation of steam and alkaline surfactant for enhanced oil recovery using an exothermic water reactant (EWR)

    DOE Patents [OSTI]

    Robertson, Eric P

    2011-05-24

    A method for oil recovery whereby an exothermic water reactant (EWR) encapsulated in a water soluble coating is placed in water and pumped into one or more oil wells in contact with an oil bearing formation. After the water carries the EWR to the bottom of the injection well, the water soluble coating dissolves and the EWR reacts with the water to produce heat, an alkali solution, and hydrogen. The heat from the EWR reaction generates steam, which is forced into the oil bearing formation where it condenses and transfers heat to the oil, elevating its temperature and decreasing the viscosity of the oil. The aqueous alkali solution mixes with the oil in the oil bearing formation and forms a surfactant that reduces the interfacial tension between the oil and water. The hydrogen may be used to react with the oil at these elevated temperatures to form lighter molecules, thus upgrading to a certain extent the oil in situ. As a result, the oil can flow more efficiently and easily through the oil bearing formation towards and into one or more production wells.

  15. Research on improved and enhanced oil recovery in Illinois through reservoir characterization, March 28, 1992--June 28, 1992

    SciTech Connect (OSTI)

    Oltz, D.F.

    1992-01-01

    This project will provide information that can maximize hydrocarbon production, minimize formation damage and stimulate new production in Illinois. Such information includes definition of hydrocarbon resources, characterization of hydrocarbon reservoirs, and the implementation of methods that will improve hydrocarbon extractive technology. Increased understanding of reservoir heterogeneities that affect oil recovery can aid in identifying producible resources. The transfer of technology to industry and the general public is a significant component of the program. The project is designed to examine selected subsurface oil reservoirs in Illinois. Scientists use advanced scientific techniques to gain a better understanding of reservoir components and behavior and address ways of potentially increasing the amount of recoverable oil. Initial production rates for wells in the Illinois Basin commonly decline quite rapidly and as much as 60 percent of the oil in place can be unrecoverable using standard operating procedures. Heterogeneities (geological differences in reservoir make-up) affect a reservoir's capability to release fluids. By-passed mobile and immobile oil remain in the reservoir. To learn how to get more of the oil out of reservoirs, the ISGS is studying the nature of reservoir rock heterogeneities and their control on the distribution and production of bypassed, mobile oil. Accomplishment for this period are summarized for the following tasks: mapping, cross-sections; subsurface depo-systems; outcrop studies; oil and gas development maps; engineering work; SEM/EDX; and clay minerals.

  16. Research on improved and enhanced oil recovery in Illinois through reservoir characterization, March 28, 1992--June 28, 1992

    SciTech Connect (OSTI)

    Oltz, D.F.

    1992-09-01

    This project will provide information that can maximize hydrocarbon production, minimize formation damage and stimulate new production in Illinois. Such information includes definition of hydrocarbon resources, characterization of hydrocarbon reservoirs, and the implementation of methods that will improve hydrocarbon extractive technology. Increased understanding of reservoir heterogeneities that affect oil recovery can aid in identifying producible resources. The transfer of technology to industry and the general public is a significant component of the program. The project is designed to examine selected subsurface oil reservoirs in Illinois. Scientists use advanced scientific techniques to gain a better understanding of reservoir components and behavior and address ways of potentially increasing the amount of recoverable oil. Initial production rates for wells in the Illinois Basin commonly decline quite rapidly and as much as 60 percent of the oil in place can be unrecoverable using standard operating procedures. Heterogeneities (geological differences in reservoir make-up) affect a reservoir`s capability to release fluids. By-passed mobile and immobile oil remain in the reservoir. To learn how to get more of the oil out of reservoirs, the ISGS is studying the nature of reservoir rock heterogeneities and their control on the distribution and production of bypassed, mobile oil. Accomplishment for this period are summarized for the following tasks: mapping, cross-sections; subsurface depo-systems; outcrop studies; oil and gas development maps; engineering work; SEM/EDX; and clay minerals.

  17. Recovery News Flashes | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    June 7, 2011 Recovery Act Supports Construction of Site's Largest Groundwater Treatment Facility Construction of the largest groundwater treatment facility at the Hanford Site...

  18. Visual display of reservoir parameters affecting enhanced oil recovery. Final report, September 29, 1993--September 28, 1996

    SciTech Connect (OSTI)

    Wood, J.R.

    1997-05-01

    The Pioneer Anticline, 25 miles southwest of Bakersfield, California, which has yielded oil since 1926, was the subject of a three-year study aimed at recovering more oil. A team from Michigan Technological University of Houghton, Michigan (MTU), and Digital Petrophysics, Inc. of Bakersfield, California (DPI), undertook the study as part of the Department of Energy`s Advanced Extraction and Process Technology Program. The program provides support for projects which cross-cut geoscience and engineering research in order to develop innovative technologies for increasing the recovery of some of the estimated 340 billion barrels of in-place oil remaining in U.S. reservoirs. In recent years, low prices and declining production have increased the likelihood that oil fields will be prematurely abandoned, locking away large volumes of unrecovered oil. The major companies have sold many of their fields to smaller operators in an attempt to concentrate their efforts on fewer {open_quotes}core{close_quotes} properties and on overseas exploration. As a result, small companies with fewer resources at their disposal are becoming responsible for an ever-increasing share of U.S. production. The goal of the MTU-DPI project was to make small independent producers who are inheriting old fields from the majors aware that high technology computer software is now available at relatively low cost. In this project, a suite of relatively inexpensive, PC-based software packages, including a commercial database, a multimedia presentation manager, several well-log analysis program, a mapping and cross-section program, and 2-D and 3-D visualization programs, were tested and evaluated on Pioneer Anticline in the southern San Joaquin Valley of California. These relatively inexpensive, commercially available PC-based programs can be assembled into a compatible package for a fraction of the cost of a workstation program with similar capabilities.

  19. 3-D RESERVOIR AND STOCHASTIC FRACTURE NETWORK MODELING FOR ENHANCED OIL RECOVERY, CIRCLE RIDGE PHOSPHORIA/TENSLEEP RESERVOIR, WIND RIVER RESERVATION, ARAPAHO AND SHOSHONE TRIBES, WYOMING

    SciTech Connect (OSTI)

    Paul La Pointe; Jan Hermanson; Robert Parney; Thorsten Eiben; Mike Dunleavy; Ken Steele; John Whitney; Darrell Eubanks; Roger Straub

    2002-11-18

    This report describes the results made in fulfillment of contract DE-FG26-00BC15190, ''3-D Reservoir and Stochastic Fracture Network Modeling for Enhanced Oil Recovery, Circle Ridge Phosphoria/Tensleep Reservoir, Wind River Reservation, Arapaho and Shoshone Tribes, Wyoming''. The goal of this project is to improve the recovery of oil from the Tensleep and Phosphoria Formations in Circle Ridge Oilfield, located on the Wind River Reservation in Wyoming, through an innovative integration of matrix characterization, structural reconstruction, and the characterization of the fracturing in the reservoir through the use of discrete fracture network models. Fields in which natural fractures dominate reservoir permeability, such as the Circle Ridge Field, often experience sub-optimal recovery when recovery processes are designed and implemented that do not take advantage of the fracture systems. For example, a conventional waterflood in a main structural block of the Field was implemented and later suspended due to unattractive results. It is estimated that somewhere less than 20% of the OOIP in the Circle Ridge Field have been recovered after more than 50 years' production. Marathon Oil Company identified the Circle Ridge Field as an attractive candidate for several advanced IOR processes that explicitly take advantage of the natural fracture system. These processes require knowledge of the distribution of matrix porosity, permeability and oil saturations; and understanding of where fracturing is likely to be well-developed or poorly developed; how the fracturing may compartmentalize the reservoir; and how smaller, relatively untested subthrust fault blocks may be connected to the main overthrust block. For this reason, the project focused on improving knowledge of the matrix properties, the fault block architecture and to develop a model that could be used to predict fracture intensity, orientation and fluid flow/connectivity properties. Knowledge of matrix properties was greatly extended by calibrating wireline logs from 113 wells with incomplete or older-vintage logging suites to wells with a full suite of modern logs. The model for the fault block architecture was derived by 3D palinspastic reconstruction. This involved field work to construct three new cross-sections at key areas in the Field; creation of horizon and fault surface maps from well penetrations and tops; and numerical modeling to derive the geometry, chronology, fault movement and folding history of the Field through a 3D restoration of the reservoir units to their original undeformed state. The methodology for predicting fracture intensity and orientation variations throughout the Field was accomplished by gathering outcrop and subsurface image log fracture data, and comparing it to the strain field produced by the various folding and faulting events determined through the 3D palinspastic reconstruction. It was found that the strains produced during the initial folding of the Tensleep and Phosphoria Formations corresponded well without both the orientations and relative fracture intensity measured in outcrop and in the subsurface. The results have led to a 15% to 20% increase in estimated matrix pore volume, and to the plan to drill two horizontal drain holes located and oriented based on the modeling results. Marathon Oil is also evaluating alternative tertiary recovery processes based on the quantitative 3D integrated reservoir model.

  20. American Recovery and Reinvestment Act (ARRA) Federal Energy Management Program Technical Assistance Project 281 Solar Hot Water Application Assessment for U.S. Army IMCOM-Southeast Region

    SciTech Connect (OSTI)

    Russo, Bryan J.; Chvala, William D.

    2010-09-30

    The Energy Independence and Security Act of 2007 requires installations (EISA) to install solar systems of sufficient capacity to provide 30% of service hot water in new construction and renovations where cost-effective. However, installations are struggling with how to implement solar hot water, and while several installations are installing solar hot water on a limited basis, paybacks remain long. Pacific Northwest National Laboratory (PNNL) was tasked to address this issue to help determine how best to implement solar hot water projects. This documents discusses the results of that project.

  1. Integrated Solid Waste Management Act (Nebraska)

    Broader source: Energy.gov [DOE]

    This act affirms the state's support for alternative waste management practices, including waste reduction and resource recovery. Each county and municipality is required to file an integrated...

  2. Resource Conservation and Recovery Act, Part B Permit Application [for the Waste Isolation Pilot Plant (WIPP)]. Chapter E, Appendix E1, Chapter L, Appendix L1: Volume 12, Revision 3

    SciTech Connect (OSTI)

    Not Available

    1993-01-01

    The Waste Isolation Pilot Plant (WIPP) Project was authorized by the US Department of Energy 5 (DOE) National Security and Military Applications of the Nuclear Energy Authorization Act of 1980 (Public Law 96-164). Its legislative mandate is to provide a research and development facility to demonstrate the safe disposal of radioactive waste resulting from national defense programs and activities. To fulfill this mandate, the WIPP facility has been designed to perform scientific investigations of the behavior of bedded salt as a repository medium and the interactions between the soft and radioactive wastes. In 1991, DOE proposed to initiate a experimental Test Phase designed to demonstrate the performance of the repository. The Test Phase activities involve experiments using transuranic (TRU) waste typical of the waste planned for future disposal at the WIPP facility. Much of this TRU waste is co-contaminated with chemical constituents which are defined as hazardous under HWMR-7, Pt. II, sec. 261. This waste is TRU mixed waste and is the subject of this application. Because geologic repositories, such as the WIPP facility, are defined under the Resource Conservation and Recovery Act (RCRA) as land disposal facilities, the groundwater monitoring requirements of HWMR-7, PLV, Subpart X, must be addressed. HWMR-7, Pt. V, Subpart X, must be addressed. This appendix demonstrates that groundwater monitoring is not needed in order to demonstrate compliance with the performance standards; therefore, HWMR-7, Pt.V, Subpart F, will not apply to the WIPP facility.

  3. Jumpstarting commercial-scale CO2 capture and storage with ethylene production and enhanced oil recovery in the US Gulf

    SciTech Connect (OSTI)

    Middleton, Richard S.; Levine, Jonathan S.; Bielicki, Jeffrey M.; Viswanathan, Hari S.; Carey, J. William; Stauffer, Philip H.

    2015-04-27

    CO2 capture, utilization, and storage (CCUS) technology has yet to be widely deployed at a commercial scale despite multiple high-profile demonstration projects. We suggest that developing a large-scale, visible, and financially viable CCUS network could potentially overcome many barriers to deployment and jumpstart commercial-scale CCUS. To date, substantial effort has focused on technology development to reduce the costs of CO2 capture from coal-fired power plants. Here, we propose that near-term investment could focus on implementing CO2 capture on facilities that produce high-value chemicals/products. These facilities can absorb the expected impact of the marginal increase in the cost of production on the price of their product, due to the addition of CO2 capture, more than coal-fired power plants. A financially viable demonstration of a large-scale CCUS network requires offsetting the costs of CO2 capture by using the CO2 as an input to the production of market-viable products. As a result, we demonstrate this alternative development path with the example of an integrated CCUS system where CO2 is captured from ethylene producers and used for enhanced oil recovery in the U.S. Gulf Coast region.

  4. Enhanced geothermal systems (EGS) with CO2 as heat transmission fluid--A scheme for combining recovery of renewable energy with geologic storage of CO2

    E-Print Network [OSTI]

    Pruess, K.

    2010-01-01

    Interactions in Enhanced Geothermal Systems (EGS) with CO 2of Enhanced Geothermal Systems? , paper presented at Thirdfrom Enhanced Geothermal Systems, Proceedings, Paper

  5. Enhanced geothermal systems (EGS) with CO2 as heat transmission fluid--A scheme for combining recovery of renewable energy with geologic storage of CO2

    E-Print Network [OSTI]

    Pruess, K.

    2010-01-01

    Interactions in Enhanced Geothermal Systems (EGS) with CO 2with the Development of Enhanced Geothermal Systems? , paperProspects from Enhanced Geothermal Systems, Proceedings,

  6. Enhanced geothermal systems (EGS) with CO2 as heat transmission fluid--A scheme for combining recovery of renewable energy with geologic storage of CO2

    E-Print Network [OSTI]

    Pruess, K.

    2010-01-01

    The Future of Geothermal Energy, Massachusetts Institute ofD.W. A Hot Dry Rock Geothermal Energy Concept Utilizingcombine recovery of geothermal energy with simultaneous

  7. Picobubble enhanced fine coal flotation

    SciTech Connect (OSTI)

    Tao, Y.J.; Liu, J.T.; Yu, S.; Tao, D. [University of Kentucky, Lexington, KY (United States). Dept. of Mining Engineering

    2006-07-01

    Froth flotation is widely used in the coal industry to clean -28 mesh fine coal. A successful recovery of particles by flotation depends on efficient particle-bubble collision and attachment with minimal subsequent particle detachment from bubble. Flotation is effective in a narrow size range beyond which the flotation efficiency drops drastically. It is now known that the low flotation recovery of particles in the finest size fractions is mainly due to a low probability of bubble-particle collision while the main reason for poor coarse particle flotation recovery is the high probability of detachment. A fundamental analysis has shown that use of picobubbles can significantly improve the flotation recovery of particles in a wide range of size by increasing the probability of collision and attachment and reducing the probability of detachment. A specially designed column with a picobubble generator has been developed for enhanced recovery of fine coal particles. Picobubbles were produced based on the hydrodynamic cavitation principle. They are characterized by a size distribution that is mostly below 1 {mu}m and adhere preferentially to the hydrophobic surfaces. The presence of picobubbles increases the probability of collision and attachment and decreases the probability of detachment, thus enhancing flotation recovery. Experimental results with the Coalberg seam coal in West Virginia, U.S.A. have shown that the use of picobubbles in a 2 in. column flotation increased fine coal recovery by 10-30%, depending on the feed rate, collector dosage, and other flotation conditions. Picobubbles also acted as a secondary collector and reduced the collector dosage by one third to one half.

  8. Sandia Energy - Upcoming Publication on Recovery Strategies for...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Journal of Critical Infrastructures accepted "Optimal recovery sequencing for enhanced resilience and service restoration in transportation networks" for publication....

  9. Contracts for field projects and supporting research on enhanced oil recovery. Progress review No. 82, quarterly report, January--March 1995

    SciTech Connect (OSTI)

    1996-06-01

    This document consists of a list of projects supporting work on oil recovery programs. A publications list and index of companies and institutions is provided. The remaining portion of the document provides brief descriptions on projects in chemical flooding, gas displacement, thermal recovery, geoscience, resource assessment, and reservoir class field demonstrations.

  10. Recovery Act: Geothermal Data Aggregation: Submission of Information into the National Geothermal Data System, Final Report DOE Project DE-EE0002852 June 24, 2014

    SciTech Connect (OSTI)

    Blackwell, David D.; Chickering Pace, Cathy; Richards, Maria C.

    2014-06-24

    The National Geothermal Data System (NGDS) is a Department of Energy funded effort to create a single cataloged source for a variety of geothermal information through a distributed network of databases made available via web services. The NGDS will help identify regions suitable for potential development and further scientific data collection and analysis of geothermal resources as a source for clean, renewable energy. A key NGDS repository or ‘node’ is located at Southern Methodist University developed by a consortium made up of: • SMU Geothermal Laboratory • Siemens Corporate Technology, a division of Siemens Corporation • Bureau of Economic Geology at the University of Texas at Austin • Cornell Energy Institute, Cornell University • Geothermal Resources Council • MLKay Technologies • Texas Tech University • University of North Dakota. The focus of resources and research encompass the United States with particular emphasis on the Gulf Coast (on and off shore), the Great Plains, and the Eastern U.S. The data collection includes the thermal, geological and geophysical characteristics of these area resources. Types of data include, but are not limited to, temperature, heat flow, thermal conductivity, radiogenic heat production, porosity, permeability, geological structure, core geophysical logs, well tests, estimated reservoir volume, in situ stress, oil and gas well fluid chemistry, oil and gas well information, and conventional and enhanced geothermal system related resources. Libraries of publications and reports are combined into a unified, accessible, catalog with links for downloading non-copyrighted items. Field notes, individual temperature logs, site maps and related resources are included to increase data collection knowledge. Additional research based on legacy data to improve quality increases our understanding of the local and regional geology and geothermal characteristics. The software to enable the integration, analysis, and dissemination of this team’s NGDS contributions was developed by Siemens Corporate Technology. The SMU Node interactive application is accessible at http://geothermal.smu.edu. Additionally, files may be downloaded from either http://geothermal.smu.edu:9000/geoserver/web/ or through http://geothermal.smu.edu/static/DownloadFilesButtonPage.htm. The Geothermal Resources Council Library is available at https://www.geothermal-library.org/.

  11. Enhanced geothermal systems (EGS) with CO2 as heat transmission fluid--A scheme for combining recovery of renewable energy with geologic storage of CO2

    E-Print Network [OSTI]

    Pruess, K.

    2010-01-01

    in Enhanced Geothermal Systems (EGS) with CO 2 as WorkingTransmission Fluid in the EGS Integrating the Carbon Storageand F. Rummel. The Deep EGS (Enhanced Geothermal System)

  12. Advanced Reservoir Characterization in the Antelope Shale to Establish the Viability of CO(2) Enhanced Oil Recovery in California`s Monterey formation Siliceous Shales. Progress report, April 1-June 30, 1997

    SciTech Connect (OSTI)

    Morea, M.F.

    1997-07-25

    The primary objective of this research is to conduct advanced reservoir characterization and modeling studies in the Antelope Shale reservoir. Characterization studies will be used to determine the technical feasibility of implementing a C0{sub 2} enhanced oil recovery project in the Antelope Shale in Buena Vista Hills Field. The Buena Vista Hills Pilot C0{sub 2} project will demonstrate the economic viability and widespread applicability of C0{sub 2} flooding in fractured siliceous shale reservoirs of the San Joaquin Valley. The research consists of four primary work processes: Reservoir Matrix and Fluid Characterization; Fracture Characterization; Reservoir Modeling and Simulation; and C0{sub 2} Pilot Flood and Evaluation. Work done in these areas is subdivided into two phases or budget periods. The first phase of the project will focus on the application of a variety of advanced reservoir characterization techniques to determine the production characteristics of the Antelope Shale reservoir. Reservoir models based on the results of the characterization work will be used to evaluate how the reservoir will respond to secondary recovery and EOR processes. The second phase of the project will include the implementation and evaluation of an advanced enhanced oil recovery (EOR) pilot in the United Anticline (West Dome) of the Buena Vista Hills Field.

  13. Advanced reservoir characterization in the Antelope Shale to establish the viability of CO{sub 2} enhanced oil recovery in California`s Monterey Formation siliceous shales. Quarterly report, October 1, 1996--December 31, 1996

    SciTech Connect (OSTI)

    Toronyi, R.M.

    1996-12-31

    The primary objective of this research is to conduct advanced reservoir characterization and modeling studies in the Antelope Shale reservoir. Characterization studies will be used to determine the technical feasibility of implementing a CO{sub 2} enhanced oil recovery project in the Antelope Shale in Buena Vista Hills field. The Buena Vista Hills pilot CO{sub 2} project will demonstrate the economic viability and widespread applicability of CO{sub 2} flooding in fractured siliceous shales reservoirs of the San Joaquin Valley. The research consists of four primary work processes: reservoir matrix and fluid characterization: fracture characterization; reservoir modeling and simulation; and, CO{sub 2} pilot flood and evaluation. Work done in these areas is subdivided into two phases or budget periods. The first phase of the project will focus on the application of a variety of advanced reservoir characterization techniques to determine the production characteristics of the Antelope Shale reservoir. Reservoir models based on the results of the characterization work will be used to evaluate how the reservoir will respond to secondary recovery and EOR processes. The second phase of the project will include the implementation and evaluation of an advanced enhanced oil recovery pilot in the West Dome of the Buena Vista Hills field. In this report, accomplishments for this period are presented for: reservoir matrix and fluid characterization; fracture characterization; reservoir modeling and simulation; and technology transfer.

  14. Advanced reservoir characterization in the Antelope Shale to establish the viability of CO{sub 2} enhanced oil recovery in California`s Monterey formation siliceous shales. Quarterly report, April 1, 1997--June 30, 1997

    SciTech Connect (OSTI)

    Morea, M.F.

    1997-07-25

    The primary objective of this research is to conduct advanced reservoir characterization and modeling studies in the Antelope Shale reservoir. Characterization studies will be used to determine the technical feasibility of implementing a CO{sub 2} enhanced oil recovery project in the Antelope Shale in Buena Vista Hills Field. The Buena Vista Hills pilot CO{sub 2} project will demonstrate the economic viability and widespread applicability of CO{sub 2} flooding in fractured siliceous shale reservoirs of the San Joaquin Valley. The research consists of four primary work processes: Reservoir Matrix and Fluid Characterization; Fracture Characterization; Reservoir Modeling and Simulation; and CO{sub 2} Pilot Flood and Evaluation. Work done in these areas is subdivided into two phases or budget periods. The first phase of the project will focus on the application of a variety of advanced reservoir characterization techniques to determine the production characteristics of the Antelope Shale reservoir. Reservoir models based on the results of the characterization work will be used to evaluate how the reservoir will respond to secondary recovery and EOR processes. The second phase of the project will include the implementation and evaluation of an advanced enhanced oil recovery (EOR) pilot in the United Anticline (West Dome) of the Buena Vista Hills Field.

  15. An evaluation of known remaining oil resources in the United States. Appendix, Project on Advanced Oil Recovery and the States

    SciTech Connect (OSTI)

    Not Available

    1994-10-01

    This volume contains appendices for the following: Overview of improved oil recovery methods (enhanced oil recovery methods and advanced secondary recovery methods); Benefits of improved oil recovery, selected data for the analyzed states; and List of TORIS fields and reservoirs.

  16. Implementing the American Recovery and Reinvestment Act

    E-Print Network [OSTI]

    , universities, and other entities for research and development, and industrial energy efficiency projects · Loan and Project Management Golden Field Office Office of Energy Efficiency and Renewable Energy U. S. Department energy, electric power transmission systems, and certain leading-edge biofuel projects · Energy Grant

  17. ARRA521 Recovery Act - Project Daily Report

    Office of Environmental Management (EM)

    Unpaid Balance Argonne National Laboratory 79,000,000 79,000,000 79,000,000 0 Brookhaven National Laboratory 70,810,000 70,809,616 70,809,616 0 Energy Technology...

  18. Recovery Act?Transportation Electrification Education Partnership...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    0 DOE Vehicle Technologies and Hydrogen Programs Annual Merit Review and Peer Evaluation Meeting, June 7-11, 2010 -- Washington D.C. tiarravt038peng2010...

  19. Recovery Act?Transportation Electrification Education Partnership...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    2 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting arravt038tipeng2012...

  20. Recovery Act?Transportation Electrification Education Partnership...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    1 DOE Hydrogen and Fuel Cells Program, and Vehicle Technologies Program Annual Merit Review and Peer Evaluation arravt038tipeng2011p...

  1. Recovery Act Interconnection Transmission Planning | Department...

    Energy Savers [EERE]

    - are identifying transmission requirements under a broad range of alternative electricity futures (including intensive application of demand-side technologies), and...

  2. EM Recovery Act Lessons Learned (Sites)

    Broader source: Energy.gov [DOE]

    Presentation slides from EM ARRA Best Practices and Lessons Learned WorkshopWaste Management SymposiumPhoenix, AZMarch 1, 2012.

  3. Recovery Act Progress Update: HWCTR Tapping

    ScienceCinema (OSTI)

    Tire, Brian

    2012-06-14

    Closure activity at the half-century old heavy water components reactor. Decommissioning is kicked off with the grouting of the basin to further protect the environment from radioactive waste.

  4. Recovery Act Progress at Idaho National Lab

    Office of Energy Efficiency and Renewable Energy (EERE)

    North Wind Services will be constructing several new structures at the INL Radioactive Waste Management Complex -- facilities that will provide important protection from the elements and minimize the spread of contamination during buried waste excavation, retrieval and packaging operations.

  5. Recovery Act Workforce Development | Department of Energy

    Energy Savers [EERE]

    in communities across the country. WHAT'S NEW IN WORKFORCE DEVELOPMENT April 2012: Building the Next Generation of Smart Grid Workers Students in Connecticut participated in...

  6. Clean Cities Recovery Act: Vehicle & Infrastructure Deployment...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    (GA, AL, SC); Centralina Council of Governments (NC) EV Community Readiness projects: South Florida Regional Planning Council; Virginia Department of Mines, Minerals and Energy...

  7. Ohio Celebrates Recovery Act Weatherization Program Performance...

    Energy Savers [EERE]

    to work, but ... here in Ohio, we are positioning ourselves to be at the front of this wave of the new energy economy." The Carrs' home was weatherized by LEADS Community Action...

  8. EM American Recovery and Reinvestment Act Update

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (BillionProvedTravel TravelChallengesOhio andTechnologiesLand

  9. ARRA521 Recovery Act - Project Daily Report

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (BillionProvedTravel Travel ThePresidentialofSubsurfacetoDepartmentEnergy

  10. OE Recovery Act Blog | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustmentsShirleyEnergy AEnergy Managing853926 News enDepartment ofProgramSeptember 5,May 23,blog

  11. OE Recovery Act Blog | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustmentsShirleyEnergy AEnergy Managing853926 News enDepartment ofProgramSeptember 5,May 23,blog13,

  12. OE Recovery Act Blog | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustmentsShirleyEnergy AEnergy Managing853926 News enDepartment ofProgramSeptember 5,May 23,blog13,June

  13. OE Recovery Act Blog | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustmentsShirleyEnergy AEnergy Managing853926 News enDepartment ofProgramSeptember 5,May

  14. OE Recovery Act News | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustmentsShirleyEnergyTher i nAand DOEDepartmentNew2008Group, Inc. Order(National4, 2014 FY 2015news

  15. OE Recovery Act News | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustmentsShirleyEnergyTher i nAand DOEDepartmentNew2008Group, Inc. Order(National4, 2014 FY 2015newsApril

  16. OpenEI Community - recovery act

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIXsourceII JumpQuarterly Smart Grid Data available for downloadGRR 3rd Quarter -

  17. EM Recovery Act Performance | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:FinancingPetroleum Based|DepartmentStatementof EnergyQuality Assurance ProgramJohnson)EM

  18. State Energy Program Recovery Act Evaluation

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX E LIST OF APPLICABLE DIRECTIVESDepartmentSpecialCode ofDepartment of of a major national

  19. OE Recovery Act News | Department of Energy

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on DeliciousMathematicsEnergyInterested Parties -DepartmentAvailable forSite |n t78 I.(National RenewableElectric

  20. LANL exceeds Early Recovery Act recycling goals

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration would likeUniverseIMPACTThousand CubicResource and Job Event In Espanola CommunityExcavationLANL

  1. LANL sponsors Recovery Act Job Fair

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach Home Room NewsInformationJesse Bergkamp Graduate student Subtask2 J.N.open to badgeLANL

  2. Lab completes first Recovery Act cleanup project

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach Home Room NewsInformationJesse Bergkamp Graduate student Subtask22Background AboutVentureFive R&DLANL

  3. OE Recovery Act Blog | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuelsof EnergyApril 2014Department ofWind CareerEnergyOE Leadership

  4. Recovery Act Reports | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative FuelsofProgram: Report Appendices |ProjectKnow YourDepartment of EnergyFebruary

  5. Recovery Act Reports | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative FuelsofProgram: Report Appendices |ProjectKnow YourDepartment of

  6. Recovery Act Reports | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative FuelsofProgram: Report Appendices |ProjectKnow YourDepartment ofAugust 25, 2011 Audit

  7. Recovery Act Reports | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative FuelsofProgram: Report Appendices |ProjectKnow YourDepartment ofAugust 25, 2011

  8. Recovery Act Reports | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative FuelsofProgram: Report Appendices |ProjectKnow YourDepartment ofAugust 25,

  9. Recovery Act SGDP | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative FuelsofProgram: Report Appendices |ProjectKnow YourDepartment ofAugust 25,Information

  10. Recovery Act Workforce Development | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative FuelsofProgram: Report Appendices |ProjectKnow YourDepartment ofAugust

  11. Lab completes Recovery Act-funded demolition

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration would likeUniverseIMPACTThousand CubicResource andfirstDeviceLab captures five

  12. Characterization and Alteration of Wettability States of Alaskan Reserviors to Improve Oil Recovery Efficiency (including the within-scope expansion based on Cyclic Water Injection - a pulsed waterflood for Enhanced Oil Recovery)

    SciTech Connect (OSTI)

    Abhijit Dandekar; Shirish Patil; Santanu Khataniar

    2008-12-31

    Numerous early reports on experimental works relating to the role of wettability in various aspects of oil recovery have been published. Early examples of laboratory waterfloods show oil recovery increasing with increasing water-wetness. This result is consistent with the intuitive notion that strong wetting preference of the rock for water and associated strong capillary-imbibition forces gives the most efficient oil displacement. This report examines the effect of wettability on waterflooding and gasflooding processes respectively. Waterflood oil recoveries were examined for the dual cases of uniform and non-uniform wetting conditions. Based on the results of the literature review on effect of wettability and oil recovery, coreflooding experiments were designed to examine the effect of changing water chemistry (salinity) on residual oil saturation. Numerous corefloods were conducted on reservoir rock material from representative formations on the Alaska North Slope (ANS). The corefloods consisted of injecting water (reservoir water and ultra low-salinity ANS lake water) of different salinities in secondary as well as tertiary mode. Additionally, complete reservoir condition corefloods were also conducted using live oil. In all the tests, wettability indices, residual oil saturation, and oil recovery were measured. All results consistently lead to one conclusion; that is, a decrease in injection water salinity causes a reduction in residual oil saturation and a slight increase in water-wetness, both of which are comparable with literature observations. These observations have an intuitive appeal in that water easily imbibes into the core and displaces oil. Therefore, low-salinity waterfloods have the potential for improved oil recovery in the secondary recovery process, and ultra low-salinity ANS lake water is an attractive source of injection water or a source for diluting the high-salinity reservoir water. As part of the within-scope expansion of this project, cyclic water injection tests using high as well as low salinity were also conducted on several representative ANS core samples. These results indicate that less pore volume of water is required to recover the same amount of oil as compared with continuous water injection. Additionally, in cyclic water injection, oil is produced even during the idle time of water injection. It is understood that the injected brine front spreads/smears through the pores and displaces oil out uniformly rather than viscous fingering. The overall benefits of this project include increased oil production from existing Alaskan reservoirs. This conclusion is based on the performed experiments and results obtained on low-salinity water injection (including ANS lake water), vis-a-vis slightly altering the wetting conditions. Similarly, encouraging cyclic water-injection test results indicate that this method can help achieve residual oil saturation earlier than continuous water injection. If proved in field, this would be of great use, as more oil can be recovered through cyclic water injection for the same amount of water injected.

  13. Recovery | National Nuclear Security Administration

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach Home RoomPreservation of Fe(II) by Carbon-RichProtonAbout Us Hanford SiteRecovery Act »Recovery Act

  14. Grant Guidance to Administer the American Recovery and Reinvestment...

    Broader source: Energy.gov (indexed) [DOE]

    PROGRAM NOTICE 10-10: REPROGRAMMING TRAINING AND TECHNICAL ASSISTANCE FUNDS TO PROGRAM OPERATIONS Weatherization Formula Grants - American Recovery and Reinvestment Act (ARRA)...

  15. Contracts for field projects and supporting research on enhanced oil recovery, October--December 1992. Progress review No. 73, quarter ending December 31, 1992

    SciTech Connect (OSTI)

    Not Available

    1993-12-01

    Accomplishments for this quarter ending December 31, 1992 are presented for the following tasks: chemical flooding--supporting research; gas displacement--supporting research; thermal recovery--supporting research; geoscience technology; resource assessment technology; microbial technology; reservoir classes; and novel technology.

  16. 3-D Reservoir and Stochastic Fracture Network Modeling for Enhanced Oil Recovery, Circle Ridge Phosphoria/Tensleep Reservoir, and River Reservation, Arapaho and Shoshone Tribes, Wyoming

    SciTech Connect (OSTI)

    La Pointe, Paul R.; Hermanson, Jan

    2002-09-09

    The goal of this project is to improve the recovery of oil from the Circle Ridge Oilfield, located on the Wind River Reservation in Wyoming, through an innovative integration of matrix characterization, structural reconstruction, and the characterization of the fracturing in the reservoir through the use of discrete fracture network models.

  17. Contracts for field projects and supporting research on enhanced oil recovery, July--September 1992. Progress review No. 72, quarter ending September 30, 1992

    SciTech Connect (OSTI)

    Not Available

    1993-09-01

    Accomplishments for the past quarter are presented for the following tasks: Chemical flooding--supporting research; gas displacement--supporting research; thermal recovery--supporting research; geoscience technology; resource assessment technology; microbial technology; and novel technology. A list of available publication is also provided.

  18. Road to Recovery: Bringing Recovery to Small Town America

    ScienceCinema (OSTI)

    Nettamo, Paivi

    2012-06-14

    The Recovery Act hits the road to reach out to surrounding towns of the Savannah River Site that are struggling with soaring unemployment rates. This project helps recruit thousands of people to new jobs in environmental cleanup at the Savannah River Site.

  19. Enhanced geothermal systems (EGS) with CO2 as heat transmission fluid--A scheme for combining recovery of renewable energy with geologic storage of CO2

    E-Print Network [OSTI]

    Pruess, K.

    2010-01-01

    Interactions in Enhanced Geothermal Systems (EGS) with CO 2Fluid, Proceedings, World Geothermal Congress 2010, Bali,Remain? Transactions, Geothermal Resources Council, Vol. 17,

  20. Calendar Year 2007 Resource Conservation and Recovery Act Annual Monitoring Report for the U.S. Department of Energy Y-12 National Security Complex, Oak Ridge, Tennessee - RCRA Post-Closure Permit Nos. TNHW-113, TNHW-116, and TNHW-128

    SciTech Connect (OSTI)

    Elvado Environmental

    2008-02-01

    This report contains groundwater quality monitoring data obtained during calendar year (CY) 2007 at the following hazardous waste treatment, storage, and disposal (TSD) units located at the US Department of Energy (DOE) Y-12 National Security Complex (hereafter referenced as Y-12) in Oak Ridge, Tennessee; this S-3 Site, Oil Landfarm, Bear Creek Burial Grounds/Walk-In Pits (BCBG/WIP), Eastern S-3 Site Plume, Chestnut Ridge Security Pits (CRSP), Chestnut Ridge Sediment Disposal Baste (CRSDB), few Hollow Quarry (KHQ), and East Chestnut Ridge Waste Pile (ECRWP). Hit monitoring data were obtained in accordance with the applicable Resource Conservation and Recovery Act of 1976 (RCRA) hazardous waste post-closure permit (PCP). The Tennessee Department of Environment and Conservation (TDEC) - Division of Solid Waste Management issued the PCPs to define the requirements for RCRA post-closure inspection, maintenance, and groundwater monitoring at the specified TSD units located within the Bear Creek Hydrogeologic Regime (PCP no. TNHW-116), Upper East Fork Poplar Creek Hydrogeologic Regime (PCP no. TNHW-113), and Chestnut Ridge Hydrogeologic Regime (PCP no. TNHW-128). Each PCP requires the Submittal of an annual RCRA groundwater monitoring report containing the groundwater sampling information and analytical results obtained at each applicable TSD unit during the preceding CY, along with an evaluation of groundwater low rates and directions and the analytical results for specified RCRA groundwater target compounds; this report is the RCRA annual groundwater monitoring report for CY 2007. The RCRA post-closure groundwater monitoring requirements specified in the above-referenced PCP for the Chestnut Ridge Regime replace those defined in the previous PCP (permit no. TNHW-088), which expired on September 18, 2005, but remained effective until the TDEC issued the new PCP in September 2006. The new PCP defines site-specific groundwater sampling and analysis requirements for the CRSDB, CRSP, and KHQ that differ from those established under the expired PCP, including modified suites of laboratory analytes (RCRA groundwater target compounds) for each site and annual rather than semiannual sampling frequencies for the CRSDB and KHQ. The new PCP also specifies the RCRA post-closure groundwater monitoring requirements for the ECRWP, a closed TSD unit that was not addressed in the expired PCP.