Powered by Deep Web Technologies
Note: This page contains sample records for the topic "recoverable wet natural" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

Table 3. Wet natural gas production and resources (trillion cubic ...  

U.S. Energy Information Administration (EIA)

2013 EIA/ARI unproved wet shale gas technically recoverable resources (TRR) 2012 USGS conventional unproved wet natural gas TRR, including reserve

2

NETL: News Release - New Report Indicates More Recoverable Natural...  

NLE Websites -- All DOE Office Websites (Extended Search)

April 30, 2003 New Report Indicates More Recoverable Natural Gas in Wyoming Basins Than Previously Reported More Evidence that Technology Development Could Radically Enhance...

3

Technically Recoverable Shale Oil and Shale Gas Resources  

U.S. Energy Information Administration (EIA)

proved natural gas reserves (3) 2013 EIA/ARI unproved wet shale gas technically recoverable resources (TRR) 2012 USGS conventional unproved wet natural gas TRR,

4

,"California Federal Offshore Nonassociated Natural Gas, Wet...  

U.S. Energy Information Administration (EIA) Indexed Site

Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","California Federal Offshore Nonassociated Natural Gas, Wet After Lease Separation, Proved...

5

Utah Nonassociated Natural Gas, Wet After Lease Separation, Proved...  

Gasoline and Diesel Fuel Update (EIA)

Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Utah Nonassociated Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic...

6

Texas State Offshore Associated-Dissolved Natural Gas, Wet After...  

Annual Energy Outlook 2012 (EIA)

Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Texas State Offshore Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved...

7

Texas State Offshore Nonassociated Natural Gas, Wet After Lease...  

U.S. Energy Information Administration (EIA) Indexed Site

Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Texas State Offshore Nonassociated Natural Gas, Wet After Lease Separation, Proved Reserves...

8

Texas - RRC District 10 Nonassociated Natural Gas, Wet After...  

Annual Energy Outlook 2012 (EIA)

Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Texas - RRC District 10 Nonassociated Natural Gas, Wet After Lease Separation, Proved Reserves...

9

Texas - RRC District 5 Associated-Dissolved Natural Gas, Wet...  

Gasoline and Diesel Fuel Update (EIA)

Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Texas - RRC District 5 Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved...

10

Texas - RRC District 8 Associated-Dissolved Natural Gas, Wet...  

U.S. Energy Information Administration (EIA) Indexed Site

Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Texas - RRC District 8 Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved...

11

Texas - RRC District 8A Nonassociated Natural Gas, Wet After...  

Gasoline and Diesel Fuel Update (EIA)

Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Texas - RRC District 8A Nonassociated Natural Gas, Wet After Lease Separation, Proved Reserves...

12

Texas - RRC District 9 Associated-Dissolved Natural Gas, Wet...  

Gasoline and Diesel Fuel Update (EIA)

Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Texas - RRC District 9 Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved...

13

Texas - RRC District 6 Associated-Dissolved Natural Gas, Wet...  

U.S. Energy Information Administration (EIA) Indexed Site

Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Texas - RRC District 6 Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved...

14

New Mexico - East Natural Gas, Wet After Lease Separation Proved...  

U.S. Energy Information Administration (EIA) Indexed Site

Natural Gas, Wet After Lease Separation Proved Reserves (Billion Cubic Feet) New Mexico - East Natural Gas, Wet After Lease Separation Proved Reserves (Billion Cubic Feet) Decade...

15

Gulf of Mexico Federal Offshore - Texas Natural Gas, Wet After...  

U.S. Energy Information Administration (EIA) Indexed Site

Natural Gas, Wet After Lease Separation Proved Reserves (Billion Cubic Feet) Gulf of Mexico Federal Offshore - Texas Natural Gas, Wet After Lease Separation Proved Reserves...

16

Texas - RRC District 3 Onshore Nonassociated Natural Gas, Wet...  

Gasoline and Diesel Fuel Update (EIA)

Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Texas - RRC District 3 Onshore Nonassociated Natural Gas, Wet After Lease Separation, Proved...

17

California - Coastal Region Onshore Natural Gas, Wet After Lease ...  

U.S. Energy Information Administration (EIA)

California - Coastal Region Onshore Natural Gas, Wet After Lease Separation Reserves Sales (Billion Cubic Feet)

18

Utah Natural Gas Wet After Lease Separation, Reserves in Nonproducing...  

U.S. Energy Information Administration (EIA) Indexed Site

Wet After Lease Separation, Reserves in Nonproducing Reservoirs (Billion Cubic Feet) Utah Natural Gas Wet After Lease Separation, Reserves in Nonproducing Reservoirs (Billion Cubic...

19

Colorado Natural Gas, Wet After Lease Separation Proved Reserves...  

Annual Energy Outlook 2012 (EIA)

Gas, Wet After Lease Separation Proved Reserves (Billion Cubic Feet) Colorado Natural Gas, Wet After Lease Separation Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1...

20

Texas - RRC District 1 Natural Gas, Wet After Lease Separation...  

Gasoline and Diesel Fuel Update (EIA)

Gas, Wet After Lease Separation Proved Reserves (Billion Cubic Feet) Texas - RRC District 1 Natural Gas, Wet After Lease Separation Proved Reserves (Billion Cubic Feet) Decade...

Note: This page contains sample records for the topic "recoverable wet natural" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

Texas - RRC District 6 Natural Gas, Wet After Lease Separation...  

Annual Energy Outlook 2012 (EIA)

Gas, Wet After Lease Separation Proved Reserves (Billion Cubic Feet) Texas - RRC District 6 Natural Gas, Wet After Lease Separation Proved Reserves (Billion Cubic Feet) Decade...

22

Texas - RRC District 5 Natural Gas, Wet After Lease Separation ...  

U.S. Energy Information Administration (EIA)

Texas - RRC District 5 Natural Gas, Wet After Lease Separation Reserves New Field Discoveries (Billion Cubic Feet)

23

Texas - RRC District 4 Onshore Natural Gas, Wet After Lease ...  

U.S. Energy Information Administration (EIA)

Texas - RRC District 4 Onshore Natural Gas, Wet After Lease Separation New Reservoir Discoveries in Old Fields (Billion Cubic Feet)

24

Table 4.1 Technically Recoverable Crude Oil and Natural Gas ...  

U.S. Energy Information Administration (EIA)

Sources: Proved Reserves: U.S. Energy Information Administration (EIA), U.S. Crude Oil, Natural Gas, and Natural Gas Liquids Proved Reserves, 2010 (August 2012).

25

Table 4.1 Technically Recoverable Crude Oil and Natural Gas ...  

U.S. Energy Information Administration (EIA)

1 See "Proved Reserves, Crude Oil," "Proved Reserves, Lease Condensate," and "Proved Reserves, Natural Gas" in Glossary. 7 Includes Federal offshore and State ...

26

Utah Associated-Dissolved Natural Gas, Wet After Lease Separation...  

U.S. Energy Information Administration (EIA) Indexed Site

Adjustments (Billion Cubic Feet) Utah Associated-Dissolved Natural Gas, Wet After Lease Separation, Reserves Adjustments (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3...

27

Utah Associated-Dissolved Natural Gas, Wet After Lease Separation...  

U.S. Energy Information Administration (EIA) Indexed Site

Acquisitions (Billion Cubic Feet) Utah Associated-Dissolved Natural Gas, Wet After Lease Separation, Reserves Acquisitions (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3...

28

Utah Natural Gas, Wet After Lease Separation New Reservoir Discoveries...  

U.S. Energy Information Administration (EIA) Indexed Site

New Reservoir Discoveries in Old Fields (Billion Cubic Feet) Utah Natural Gas, Wet After Lease Separation New Reservoir Discoveries in Old Fields (Billion Cubic Feet) Decade Year-0...

29

Utah Associated-Dissolved Natural Gas, Wet After Lease Separation...  

U.S. Energy Information Administration (EIA) Indexed Site

Extensions (Billion Cubic Feet) Utah Associated-Dissolved Natural Gas, Wet After Lease Separation, Reserves Extensions (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3...

30

Utah Nonassociated Natural Gas, Wet After Lease Separation, Reserves...  

U.S. Energy Information Administration (EIA) Indexed Site

Decreases (Billion Cubic Feet) Utah Nonassociated Natural Gas, Wet After Lease Separation, Reserves Revision Decreases (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3...

31

Utah Associated-Dissolved Natural Gas, Wet After Lease Separation...  

U.S. Energy Information Administration (EIA) Indexed Site

Increases (Billion Cubic Feet) Utah Associated-Dissolved Natural Gas, Wet After Lease Separation, Reserves Revision Increases (Billion Cubic Feet) Decade Year-0 Year-1 Year-2...

32

,"Utah Natural Gas, Wet After Lease Separation Proved Reserves...  

U.S. Energy Information Administration (EIA) Indexed Site

,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Utah Natural Gas, Wet After Lease Separation Proved Reserves (Billion Cubic...

33

Utah Nonassociated Natural Gas, Wet After Lease Separation, Estimated...  

U.S. Energy Information Administration (EIA) Indexed Site

Estimated Production from Reserves (Billion Cubic Feet) Utah Nonassociated Natural Gas, Wet After Lease Separation, Estimated Production from Reserves (Billion Cubic Feet) Decade...

34

Utah Nonassociated Natural Gas, Wet After Lease Separation, Reserves...  

U.S. Energy Information Administration (EIA) Indexed Site

Increases (Billion Cubic Feet) Utah Nonassociated Natural Gas, Wet After Lease Separation, Reserves Revision Increases (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3...

35

Utah Associated-Dissolved Natural Gas, Wet After Lease Separation...  

U.S. Energy Information Administration (EIA) Indexed Site

Reservoir Discoveries in Old Fields (Billion Cubic Feet) Utah Associated-Dissolved Natural Gas, Wet After Lease Separation, New Reservoir Discoveries in Old Fields (Billion Cubic...

36

Utah Associated-Dissolved Natural Gas, Wet After Lease Separation...  

U.S. Energy Information Administration (EIA) Indexed Site

Decreases (Billion Cubic Feet) Utah Associated-Dissolved Natural Gas, Wet After Lease Separation, Reserves Revision Decreases (Billion Cubic Feet) Decade Year-0 Year-1 Year-2...

37

,"Utah Associated-Dissolved Natural Gas Proved Reserves, Wet...  

U.S. Energy Information Administration (EIA) Indexed Site

,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Utah Associated-Dissolved Natural Gas Proved Reserves, Wet After Lease Separation",10,"Annua...

38

,"Utah Nonassociated Natural Gas, Wet After Lease Separation...  

U.S. Energy Information Administration (EIA) Indexed Site

,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Utah Nonassociated Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic...

39

Utah Nonassociated Natural Gas, Wet After Lease Separation, Reserves...  

U.S. Energy Information Administration (EIA) Indexed Site

Acquisitions (Billion Cubic Feet) Utah Nonassociated Natural Gas, Wet After Lease Separation, Reserves Acquisitions (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4...

40

Utah Associated-Dissolved Natural Gas, Wet After Lease Separation...  

U.S. Energy Information Administration (EIA) Indexed Site

Field Discoveries (Billion Cubic Feet) Utah Associated-Dissolved Natural Gas, Wet After Lease Separation, New Field Discoveries (Billion Cubic Feet) Decade Year-0 Year-1 Year-2...

Note: This page contains sample records for the topic "recoverable wet natural" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

Utah Associated-Dissolved Natural Gas, Wet After Lease Separation...  

U.S. Energy Information Administration (EIA) Indexed Site

Estimated Production from Reserves (Billion Cubic Feet) Utah Associated-Dissolved Natural Gas, Wet After Lease Separation, Estimated Production from Reserves (Billion Cubic Feet)...

42

Utah Nonassociated Natural Gas, Wet After Lease Separation, New...  

U.S. Energy Information Administration (EIA) Indexed Site

Reservoir Discoveries in Old Fields (Billion Cubic Feet) Utah Nonassociated Natural Gas, Wet After Lease Separation, New Reservoir Discoveries in Old Fields (Billion Cubic Feet)...

43

,"Utah Associated-Dissolved Natural Gas, Wet After Lease Separation...  

U.S. Energy Information Administration (EIA) Indexed Site

,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Utah Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion...

44

,"Utah Nonassociated Natural Gas Proved Reserves, Wet After Lease...  

U.S. Energy Information Administration (EIA) Indexed Site

,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Utah Nonassociated Natural Gas Proved Reserves, Wet After Lease Separation",10,"Annual",2011...

45

Utah Nonassociated Natural Gas, Wet After Lease Separation, Reserves...  

U.S. Energy Information Administration (EIA) Indexed Site

Adjustments (Billion Cubic Feet) Utah Nonassociated Natural Gas, Wet After Lease Separation, Reserves Adjustments (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4...

46

Utah Nonassociated Natural Gas, Wet After Lease Separation, Reserves...  

U.S. Energy Information Administration (EIA) Indexed Site

Extensions (Billion Cubic Feet) Utah Nonassociated Natural Gas, Wet After Lease Separation, Reserves Extensions (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4...

47

,"Ohio Associated-Dissolved Natural Gas Proved Reserves, Wet...  

U.S. Energy Information Administration (EIA) Indexed Site

,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Ohio Associated-Dissolved Natural Gas Proved Reserves, Wet After Lease...

48

,"Ohio Nonassociated Natural Gas Proved Reserves, Wet After Lease...  

U.S. Energy Information Administration (EIA) Indexed Site

,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Ohio Nonassociated Natural Gas Proved Reserves, Wet After Lease Separation",10,"Annual",20...

49

,"Louisiana State Offshore Nonassociated Natural Gas, Wet After...  

U.S. Energy Information Administration (EIA) Indexed Site

Of Series","Frequency","Latest Data for" ,"Data 1","Louisiana State Offshore Nonassociated Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic...

50

,"Louisiana State Offshore Natural Gas, Wet After Lease Separation...  

U.S. Energy Information Administration (EIA) Indexed Site

Of Series","Frequency","Latest Data for" ,"Data 1","Louisiana State Offshore Natural Gas, Wet After Lease Separation Proved Reserves (Billion Cubic...

51

,"U.S. Federal Offshore Nonassociated Natural Gas, Wet After...  

U.S. Energy Information Administration (EIA) Indexed Site

Of Series","Frequency","Latest Data for" ,"Data 1","U.S. Federal Offshore Nonassociated Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic...

52

,"California - Los Angeles Basin Onshore Natural Gas, Wet After...  

U.S. Energy Information Administration (EIA) Indexed Site

Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","California - Los Angeles Basin Onshore Natural Gas, Wet After Lease Separation Proved Reserves...

53

,"California Nonassociated Natural Gas, Wet After Lease Separation...  

U.S. Energy Information Administration (EIA) Indexed Site

Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","California Nonassociated Natural Gas, Wet After Lease Separation, Proved Reserves (Billion...

54

,"California State Offshore Natural Gas, Wet After Lease Separation...  

U.S. Energy Information Administration (EIA) Indexed Site

Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","California State Offshore Natural Gas, Wet After Lease Separation Proved Reserves (Billion...

55

,"California State Offshore Nonassociated Natural Gas, Wet After...  

U.S. Energy Information Administration (EIA) Indexed Site

Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","California State Offshore Nonassociated Natural Gas, Wet After Lease Separation, Proved...

56

,"California - Coastal Region Onshore Natural Gas, Wet After...  

U.S. Energy Information Administration (EIA) Indexed Site

Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","California - Coastal Region Onshore Natural Gas, Wet After Lease Separation Proved Reserves...

57

,"California Associated-Dissolved Natural Gas, Wet After Lease...  

U.S. Energy Information Administration (EIA) Indexed Site

Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","California Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves...

58

,"California - San Joaquin Basin Onshore Natural Gas, Wet After...  

U.S. Energy Information Administration (EIA) Indexed Site

Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","California - San Joaquin Basin Onshore Natural Gas, Wet After Lease Separation Proved Reserves...

59

,"California Federal Offshore Natural Gas, Wet After Lease Separation...  

U.S. Energy Information Administration (EIA) Indexed Site

Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","California Federal Offshore Natural Gas, Wet After Lease Separation Proved Reserves (Billion...

60

,"California Natural Gas, Wet After Lease Separation Proved Reserves...  

U.S. Energy Information Administration (EIA) Indexed Site

Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","California Natural Gas, Wet After Lease Separation Proved Reserves (Billion Cubic...

Note: This page contains sample records for the topic "recoverable wet natural" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

,"Ohio Nonassociated Natural Gas, Wet After Lease Separation...  

U.S. Energy Information Administration (EIA) Indexed Site

,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Ohio Nonassociated Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic...

62

,"Ohio Associated-Dissolved Natural Gas, Wet After Lease Separation...  

U.S. Energy Information Administration (EIA) Indexed Site

,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Ohio Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion...

63

,"Ohio Natural Gas, Wet After Lease Separation Proved Reserves...  

U.S. Energy Information Administration (EIA) Indexed Site

,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Ohio Natural Gas, Wet After Lease Separation Proved Reserves (Billion Cubic...

64

,"Estimated Production of Natural Gas, Wet After Lease Separation...  

U.S. Energy Information Administration (EIA) Indexed Site

Estimated Production of Natural Gas, Wet After Lease Separation " ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Lates...

65

,"Colorado Natural Gas, Wet After Lease Separation Proved Reserves...  

U.S. Energy Information Administration (EIA) Indexed Site

Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Colorado Natural Gas, Wet After Lease Separation Proved Reserves (Billion Cubic...

66

,"Colorado Associated-Dissolved Natural Gas, Wet After Lease...  

U.S. Energy Information Administration (EIA) Indexed Site

Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Colorado Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves...

67

,"Colorado Nonassociated Natural Gas, Wet After Lease Separation...  

U.S. Energy Information Administration (EIA) Indexed Site

Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Colorado Nonassociated Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic...

68

,"North Dakota Nonassociated Natural Gas, Wet After Lease Separation...  

U.S. Energy Information Administration (EIA) Indexed Site

Nonassociated Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of...

69

Gulf of Mexico Federal Offshore Percentage of Natural Gas, Wet...  

Gasoline and Diesel Fuel Update (EIA)

Reserves from Greater than 200 Meters Deep (Percent) Gulf of Mexico Federal Offshore Percentage of Natural Gas, Wet After Lease Separation, Proved Reserves from Greater than 200...

70

Gulf of Mexico Federal Offshore Percentage of Natural Gas, Wet...  

Annual Energy Outlook 2012 (EIA)

from Greater than 200 Meters Deep (Percent) Gulf of Mexico Federal Offshore Percentage of Natural Gas, Wet After Lease Separation, Production from Greater than 200 Meters...

71

,"Michigan Associated-Dissolved Natural Gas, Wet After Lease...  

U.S. Energy Information Administration (EIA) Indexed Site

Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Michigan Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves...

72

,"Michigan Nonassociated Natural Gas, Wet After Lease Separation...  

U.S. Energy Information Administration (EIA) Indexed Site

Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Michigan Nonassociated Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic...

73

,"Michigan Natural Gas, Wet After Lease Separation Proved Reserves...  

U.S. Energy Information Administration (EIA) Indexed Site

Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Michigan Natural Gas, Wet After Lease Separation Proved Reserves (Billion Cubic...

74

Gulf of Mexico Federal Offshore Natural Gas, Wet After Lease...  

Annual Energy Outlook 2012 (EIA)

Greater than 200 Meters Deep (Billion Cubic Feet) Gulf of Mexico Federal Offshore Natural Gas, Wet After Lease Separation, Proved Reserves from Greater than 200 Meters Deep...

75

Gulf of Mexico Federal Offshore Natural Gas, Wet After Lease...  

Annual Energy Outlook 2012 (EIA)

Greater than 200 Meters Deep (Billion Cubic Feet) Gulf of Mexico Federal Offshore Natural Gas, Wet After Lease Separation, Production from Greater than 200 Meters Deep (Billion...

76

Gulf of Mexico Federal Offshore Natural Gas, Wet After Lease...  

Gasoline and Diesel Fuel Update (EIA)

Less than 200 Meters Deep (Billion Cubic Feet) Gulf of Mexico Federal Offshore Natural Gas, Wet After Lease Separation, Production from Less than 200 Meters Deep (Billion Cubic...

77

Gulf of Mexico Federal Offshore Natural Gas, Wet After Lease...  

Annual Energy Outlook 2012 (EIA)

Less than 200 Meters Deep (Billion Cubic Feet) Gulf of Mexico Federal Offshore Natural Gas, Wet After Lease Separation, Proved Reserves from Less than 200 Meters Deep (Billion...

78

,"Texas - RRC District 5 Natural Gas, Wet After Lease Separation...  

U.S. Energy Information Administration (EIA) Indexed Site

,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Texas - RRC District 5 Natural Gas, Wet After Lease Separation Proved Reserves (Billion...

79

,"Texas - RRC District 3 Onshore Nonassociated Natural Gas, Wet...  

U.S. Energy Information Administration (EIA) Indexed Site

,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Texas - RRC District 3 Onshore Nonassociated Natural Gas, Wet After Lease Separation, Proved...

80

,"Texas - RRC District 9 Natural Gas, Wet After Lease Separation...  

U.S. Energy Information Administration (EIA) Indexed Site

,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Texas - RRC District 9 Natural Gas, Wet After Lease Separation Proved Reserves (Billion...

Note: This page contains sample records for the topic "recoverable wet natural" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

,"Texas - RRC District 5 Nonassociated Natural Gas, Wet After...  

U.S. Energy Information Administration (EIA) Indexed Site

,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Texas - RRC District 5 Nonassociated Natural Gas, Wet After Lease Separation, Proved...

82

,"Texas - RRC District 8 Nonassociated Natural Gas, Wet After...  

U.S. Energy Information Administration (EIA) Indexed Site

,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Texas - RRC District 8 Nonassociated Natural Gas, Wet After Lease Separation, Proved...

83

,"Texas Nonassociated Natural Gas, Wet After Lease Separation...  

U.S. Energy Information Administration (EIA) Indexed Site

,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Texas Nonassociated Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic...

84

,"Texas Natural Gas, Wet After Lease Separation Proved Reserves...  

U.S. Energy Information Administration (EIA) Indexed Site

,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Texas Natural Gas, Wet After Lease Separation Proved Reserves (Billion Cubic...

85

,"Texas Associated-Dissolved Natural Gas, Wet After Lease Separation...  

U.S. Energy Information Administration (EIA) Indexed Site

,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Texas Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion...

86

,"Texas - RRC District 6 Nonassociated Natural Gas, Wet After...  

U.S. Energy Information Administration (EIA) Indexed Site

,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Texas - RRC District 6 Nonassociated Natural Gas, Wet After Lease Separation, Proved...

87

,"Texas State Offshore Natural Gas, Wet After Lease Separation...  

U.S. Energy Information Administration (EIA) Indexed Site

,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Texas State Offshore Natural Gas, Wet After Lease Separation Proved Reserves (Billion Cubic...

88

,"Texas - RRC District 2 Onshore Natural Gas, Wet After Lease...  

U.S. Energy Information Administration (EIA) Indexed Site

,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Texas - RRC District 2 Onshore Natural Gas, Wet After Lease Separation Proved Reserves...

89

,"Texas - RRC District 10 Natural Gas, Wet After Lease Separation...  

U.S. Energy Information Administration (EIA) Indexed Site

,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Texas - RRC District 10 Natural Gas, Wet After Lease Separation Proved Reserves (Billion...

90

,"Texas - RRC District 3 Onshore Natural Gas, Wet After Lease...  

U.S. Energy Information Administration (EIA) Indexed Site

,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Texas - RRC District 3 Onshore Natural Gas, Wet After Lease Separation Proved Reserves...

91

,"Texas State Offshore Associated-Dissolved Natural Gas, Wet...  

U.S. Energy Information Administration (EIA) Indexed Site

,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Texas State Offshore Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved...

92

,"Texas - RRC District 8A Nonassociated Natural Gas, Wet After...  

U.S. Energy Information Administration (EIA) Indexed Site

,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Texas - RRC District 8A Nonassociated Natural Gas, Wet After Lease Separation, Proved...

93

,"Texas - RRC District 1 Natural Gas, Wet After Lease Separation...  

U.S. Energy Information Administration (EIA) Indexed Site

,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Texas - RRC District 1 Natural Gas, Wet After Lease Separation Proved Reserves (Billion...

94

,"Texas - RRC District 4 Onshore Nonassociated Natural Gas, Wet...  

U.S. Energy Information Administration (EIA) Indexed Site

,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Texas - RRC District 4 Onshore Nonassociated Natural Gas, Wet After Lease Separation, Proved...

95

,"Texas - RRC District 5 Associated-Dissolved Natural Gas, Wet...  

U.S. Energy Information Administration (EIA) Indexed Site

,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Texas - RRC District 5 Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved...

96

,"Texas - RRC District 10 Associated-Dissolved Natural Gas, Wet...  

U.S. Energy Information Administration (EIA) Indexed Site

,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Texas - RRC District 10 Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved...

97

,"Texas - RRC District 7B Nonassociated Natural Gas, Wet After...  

U.S. Energy Information Administration (EIA) Indexed Site

,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Texas - RRC District 7B Nonassociated Natural Gas, Wet After Lease Separation, Proved...

98

,"Texas - RRC District 4 Onshore Natural Gas, Wet After Lease...  

U.S. Energy Information Administration (EIA) Indexed Site

,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Texas - RRC District 4 Onshore Natural Gas, Wet After Lease Separation Proved Reserves...

99

,"Texas State Offshore Nonassociated Natural Gas, Wet After Lease...  

U.S. Energy Information Administration (EIA) Indexed Site

,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Texas State Offshore Nonassociated Natural Gas, Wet After Lease Separation, Proved Reserves...

100

,"Texas - RRC District 9 Associated-Dissolved Natural Gas, Wet...  

U.S. Energy Information Administration (EIA) Indexed Site

,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Texas - RRC District 9 Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved...

Note: This page contains sample records for the topic "recoverable wet natural" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

,"Texas - RRC District 6 Natural Gas, Wet After Lease Separation...  

U.S. Energy Information Administration (EIA) Indexed Site

,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Texas - RRC District 6 Natural Gas, Wet After Lease Separation Proved Reserves (Billion...

102

,"Texas - RRC District 2 Onshore Nonassociated Natural Gas, Wet...  

U.S. Energy Information Administration (EIA) Indexed Site

,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Texas - RRC District 2 Onshore Nonassociated Natural Gas, Wet After Lease Separation, Proved...

103

,"Texas - RRC District 1 Associated-Dissolved Natural Gas, Wet...  

U.S. Energy Information Administration (EIA) Indexed Site

,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Texas - RRC District 1 Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved...

104

,"Texas - RRC District 7C Nonassociated Natural Gas, Wet After...  

U.S. Energy Information Administration (EIA) Indexed Site

,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Texas - RRC District 7C Nonassociated Natural Gas, Wet After Lease Separation, Proved...

105

,"Texas - RRC District 8 Associated-Dissolved Natural Gas, Wet...  

U.S. Energy Information Administration (EIA) Indexed Site

,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Texas - RRC District 8 Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved...

106

,"Texas - RRC District 8 Natural Gas, Wet After Lease Separation...  

U.S. Energy Information Administration (EIA) Indexed Site

,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Texas - RRC District 8 Natural Gas, Wet After Lease Separation Proved Reserves (Billion...

107

,"Texas - RRC District 6 Associated-Dissolved Natural Gas, Wet...  

U.S. Energy Information Administration (EIA) Indexed Site

,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Texas - RRC District 6 Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved...

108

,"Texas - RRC District 9 Nonassociated Natural Gas, Wet After...  

U.S. Energy Information Administration (EIA) Indexed Site

,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Texas - RRC District 9 Nonassociated Natural Gas, Wet After Lease Separation, Proved...

109

,"Texas - RRC District 1 Nonassociated Natural Gas, Wet After...  

U.S. Energy Information Administration (EIA) Indexed Site

,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Texas - RRC District 1 Nonassociated Natural Gas, Wet After Lease Separation, Proved...

110

,"Texas - RRC District 10 Nonassociated Natural Gas, Wet After...  

U.S. Energy Information Administration (EIA) Indexed Site

,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Texas - RRC District 10 Nonassociated Natural Gas, Wet After Lease Separation, Proved...

111

Alabama Associated-Dissolved Natural Gas, Wet After Lease Separation,  

Gasoline and Diesel Fuel Update (EIA)

Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Alabama Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 13 1980's 23 25 1990's 25 23 30 46 56 44 38 30 28 27 2000's 29 26 31 32 32 29 18 20 19 29 2010's 38 48 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 8/1/2013 Next Release Date: 8/1/2014 Referring Pages: Associated-Dissolved Natural Gas Proved Reserves, Wet After Lease Separation, as of Dec. 31 Alabama Associated-Dissolved Natural Gas Proved Reserves, Wet After

112

Florida Nonassociated Natural Gas, Wet After Lease Separation, Proved  

Gasoline and Diesel Fuel Update (EIA)

Nonassociated Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Nonassociated Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Florida Nonassociated Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 0 1980's 0 0 0 0 0 0 0 0 0 0 1990's 0 0 0 0 0 0 0 0 0 0 2000's 0 0 0 0 0 0 0 0 0 0 2010's 26 4 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 8/1/2013 Next Release Date: 8/1/2014 Referring Pages: Nonassociated Natural Gas Proved Reserves, Wet After Lease Separation, as of Dec. 31 Florida Nonassociated Natural Gas Proved Reserves, Wet After Lease

113

California Nonassociated Natural Gas, Wet After Lease Separation, Proved  

Gasoline and Diesel Fuel Update (EIA)

Nonassociated Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Nonassociated Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) California Nonassociated Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 1,881 1980's 1,792 1,424 1,230 1,120 1,006 1990's 911 901 799 817 808 736 610 570 453 355 2000's 754 842 796 759 767 799 780 686 621 612 2010's 503 510 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 8/1/2013 Next Release Date: 8/1/2014 Referring Pages: Nonassociated Natural Gas Proved Reserves, Wet After Lease Separation, as of Dec. 31 California Nonassociated Natural Gas Proved Reserves, Wet After

114

Louisiana State Offshore Nonassociated Natural Gas, Wet After Lease  

Gasoline and Diesel Fuel Update (EIA)

Nonassociated Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Nonassociated Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Louisiana State Offshore Nonassociated Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 2,820 1,100 1,218 1,002 1,042 1990's 812 875 691 789 820 714 626 613 473 541 2000's 592 627 428 448 333 370 386 327 248 215 2010's 279 468 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 8/1/2013 Next Release Date: 8/1/2014 Referring Pages: Nonassociated Natural Gas Proved Reserves, Wet After Lease Separation, as of Dec. 31 LA, State Offshore Nonassociated Natural Gas Proved Reserves, Wet

115

California State Offshore Nonassociated Natural Gas, Wet After Lease  

Gasoline and Diesel Fuel Update (EIA)

Nonassociated Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Nonassociated Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) California State Offshore Nonassociated Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 8 1980's 6 12 22 22 29 1990's 6 5 4 2 4 3 2 2 5 19 2000's 5 5 6 7 2 1 5 4 3 4 2010's 3 3 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 8/1/2013 Next Release Date: 8/1/2014 Referring Pages: Nonassociated Natural Gas Proved Reserves, Wet After Lease Separation, as of Dec. 31 CA, State Offshore Nonassociated Natural Gas Proved Reserves, Wet

116

Miscellaneous States Nonassociated Natural Gas, Wet After Lease Separation,  

Gasoline and Diesel Fuel Update (EIA)

Nonassociated Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Nonassociated Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Miscellaneous States Nonassociated Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 142 1980's 146 181 47 50 63 52 95 53 56 48 1990's 50 62 82 87 56 37 40 13 22 13 2000's 23 64 80 120 98 118 120 226 263 271 2010's 353 270 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 8/1/2013 Next Release Date: 8/1/2014 Referring Pages: Nonassociated Natural Gas Proved Reserves, Wet After Lease Separation, as of Dec. 31 Miscellaneous Nonassociated Natural Gas Proved Reserves, Wet After

117

Ohio Nonassociated Natural Gas, Wet After Lease Separation, Proved Reserves  

Gasoline and Diesel Fuel Update (EIA)

Nonassociated Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Nonassociated Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Ohio Nonassociated Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 432 1980's 282 165 158 396 364 395 522 477 749 686 1990's 844 805 780 763 780 699 715 594 548 777 2000's 717 631 772 823 767 714 801 926 886 799 2010's 742 684 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 8/1/2013 Next Release Date: 8/1/2014 Referring Pages: Nonassociated Natural Gas Proved Reserves, Wet After Lease Separation, as of Dec. 31 Ohio Nonassociated Natural Gas Proved Reserves, Wet After Lease

118

California State Offshore Natural Gas, Wet After Lease Separation Proved  

Gasoline and Diesel Fuel Update (EIA)

Gas, Wet After Lease Separation Proved Reserves (Billion Cubic Feet) Gas, Wet After Lease Separation Proved Reserves (Billion Cubic Feet) California State Offshore Natural Gas, Wet After Lease Separation Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 234 1980's 166 256 254 243 235 1990's 194 60 63 65 63 59 49 56 44 77 2000's 91 85 91 83 87 90 90 83 57 57 2010's 66 82 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 8/1/2013 Next Release Date: 8/1/2014 Referring Pages: Natural Gas Proved Reserves, Wet After Lease Separation, as of Dec. 31 CA, State Offshore Natural Gas Reserves Summary as of Dec. 31 Natural Gas Proved Reserves, Wet After Lease Separation, as of Dec.

119

Texas State Offshore Natural Gas, Wet After Lease Separation Proved  

Gasoline and Diesel Fuel Update (EIA)

Gas, Wet After Lease Separation Proved Reserves (Billion Cubic Feet) Gas, Wet After Lease Separation Proved Reserves (Billion Cubic Feet) Texas State Offshore Natural Gas, Wet After Lease Separation Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 1,112 1,073 739 634 564 610 1990's 461 477 350 337 230 313 293 290 350 419 2000's 400 468 436 456 321 265 305 261 220 164 2010's 131 118 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 8/1/2013 Next Release Date: 8/1/2014 Referring Pages: Natural Gas Proved Reserves, Wet After Lease Separation, as of Dec. 31 TX, State Offshore Natural Gas Reserves Summary as of Dec. 31 Natural Gas Proved Reserves, Wet After Lease Separation, as of Dec.

120

California - Los Angeles Basin Onshore Natural Gas, Wet After Lease  

U.S. Energy Information Administration (EIA) Indexed Site

Natural Gas, Wet After Lease Separation Proved Reserves (Billion Cubic Feet) Natural Gas, Wet After Lease Separation Proved Reserves (Billion Cubic Feet) California - Los Angeles Basin Onshore Natural Gas, Wet After Lease Separation Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 176 1980's 207 163 104 115 163 188 149 155 158 141 1990's 110 120 103 108 108 115 112 146 154 174 2000's 204 195 218 196 184 186 161 154 81 91 2010's 92 102 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 8/1/2013 Next Release Date: 8/1/2014 Referring Pages: Natural Gas Proved Reserves, Wet After Lease Separation, as of Dec. 31 CA, Los Angeles Basin Onshore Natural Gas Reserves Summary as of

Note: This page contains sample records for the topic "recoverable wet natural" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

California - Los Angeles Basin Onshore Nonassociated Natural Gas, Wet After  

U.S. Energy Information Administration (EIA) Indexed Site

Nonassociated Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Nonassociated Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) California - Los Angeles Basin Onshore Nonassociated Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 1 1980's 0 1 1 1 1 3 0 0 0 0 1990's 0 0 3 0 0 0 0 3 1 0 2000's 1 1 0 0 0 0 0 0 0 0 2010's 0 0 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 8/1/2013 Next Release Date: 8/1/2014 Referring Pages: Nonassociated Natural Gas Proved Reserves, Wet After Lease Separation, as of Dec. 31 CA, Los Angeles Basin Onshore Nonassociated Natural Gas Proved

122

California Federal Offshore Nonassociated Natural Gas, Wet After Lease  

U.S. Energy Information Administration (EIA) Indexed Site

Nonassociated Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Nonassociated Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) California Federal Offshore Nonassociated Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 73 1980's 107 227 217 258 267 1990's 240 179 149 147 110 94 115 58 52 48 2000's 76 50 56 55 47 49 55 53 3 9 2010's 3 0 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 8/1/2013 Next Release Date: 8/1/2014 Referring Pages: Nonassociated Natural Gas Proved Reserves, Wet After Lease Separation, as of Dec. 31 Federal Offshore California Nonassociated Natural Gas Proved

123

California Federal Offshore Associated-Dissolved Natural Gas, Wet After  

U.S. Energy Information Administration (EIA) Indexed Site

Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) California Federal Offshore Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 249 1980's 307 1,110 1,249 1,312 1,252 1990's 1,229 995 987 976 1,077 1,195 1,151 498 437 488 2000's 500 490 459 456 412 776 756 752 702 731 2010's 722 711 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 8/1/2013 Next Release Date: 8/1/2014 Referring Pages: Associated-Dissolved Natural Gas Proved Reserves, Wet After Lease

124

Michigan Associated-Dissolved Natural Gas, Wet After Lease Separation,  

Gasoline and Diesel Fuel Update (EIA)

Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Michigan Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 733 1980's 883 758 719 824 774 689 577 569 491 432 1990's 408 437 352 328 357 326 347 281 228 227 2000's 214 159 214 269 193 153 192 179 148 77 2010's 72 77 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 8/1/2013 Next Release Date: 8/1/2014 Referring Pages: Associated-Dissolved Natural Gas Proved Reserves, Wet After Lease Separation, as of Dec. 31

125

Wyoming Associated-Dissolved Natural Gas, Wet After Lease Separation,  

Gasoline and Diesel Fuel Update (EIA)

Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Wyoming Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 1,038 1980's 1,374 1,228 1,060 959 867 710 691 691 616 581 1990's 573 572 624 502 611 879 824 850 794 713 2000's 652 488 561 450 362 384 347 365 223 362 2010's 334 318 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 8/1/2013 Next Release Date: 8/1/2014 Referring Pages: Associated-Dissolved Natural Gas Proved Reserves, Wet After Lease

126

Arkansas Associated-Dissolved Natural Gas, Wet After Lease Separation,  

Gasoline and Diesel Fuel Update (EIA)

Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Arkansas Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 166 1980's 194 184 174 194 189 157 150 145 157 145 1990's 67 136 133 93 85 104 89 56 38 41 2000's 39 30 38 37 40 46 44 37 12 20 2010's 29 46 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 8/1/2013 Next Release Date: 8/1/2014 Referring Pages: Associated-Dissolved Natural Gas Proved Reserves, Wet After Lease Separation, as of Dec. 31

127

California - Coastal Region Onshore Associated-Dissolved Natural Gas, Wet  

Gasoline and Diesel Fuel Update (EIA)

Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) California - Coastal Region Onshore Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 307 1980's 265 265 325 344 256 254 261 243 220 233 1990's 228 220 196 135 145 109 120 129 116 233 2000's 244 185 197 173 188 269 208 211 150 168 2010's 178 172 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 8/1/2013 Next Release Date: 8/1/2014 Referring Pages: Associated-Dissolved Natural Gas Proved Reserves, Wet After Lease

128

Montana Associated-Dissolved Natural Gas, Wet After Lease Separation,  

Gasoline and Diesel Fuel Update (EIA)

Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Montana Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 51 1980's 122 89 81 108 77 91 98 97 101 68 1990's 86 66 61 53 55 53 51 42 52 67 2000's 70 85 94 112 130 161 195 219 197 312 2010's 302 270 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 8/1/2013 Next Release Date: 8/1/2014 Referring Pages: Associated-Dissolved Natural Gas Proved Reserves, Wet After Lease Separation, as of Dec. 31

129

Louisiana - North Associated-Dissolved Natural Gas, Wet After Lease  

Gasoline and Diesel Fuel Update (EIA)

Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Louisiana - North Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 765 1980's 916 1,040 832 775 690 632 567 488 249 237 1990's 241 192 160 120 134 133 255 287 183 260 2000's 186 168 159 139 107 98 90 73 78 53 2010's 73 98 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 8/1/2013 Next Release Date: 8/1/2014 Referring Pages: Associated-Dissolved Natural Gas Proved Reserves, Wet After Lease

130

New York Nonassociated Natural Gas, Wet After Lease Separation, Proved  

Gasoline and Diesel Fuel Update (EIA)

Nonassociated Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Nonassociated Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) New York Nonassociated Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 211 1980's 208 262 226 295 387 367 457 410 351 364 1990's 354 331 329 264 240 195 229 223 217 212 2000's 320 311 315 365 324 346 361 365 360 196 2010's 271 245 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 8/1/2013 Next Release Date: 8/1/2014 Referring Pages: Nonassociated Natural Gas Proved Reserves, Wet After Lease Separation, as of Dec. 31

131

Montana Nonassociated Natural Gas, Wet After Lease Separation, Proved  

Gasoline and Diesel Fuel Update (EIA)

Nonassociated Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Nonassociated Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Montana Nonassociated Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 786 1980's 1,186 1,247 789 813 748 793 725 704 733 821 1990's 834 782 814 631 672 739 755 727 737 784 2000's 822 822 820 956 872 837 874 848 817 681 2010's 657 522 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 8/1/2013 Next Release Date: 8/1/2014 Referring Pages: Nonassociated Natural Gas Proved Reserves, Wet After Lease Separation, as of Dec. 31

132

Utah Natural Gas, Wet After Lease Separation Reserves Sales ...  

U.S. Energy Information Administration (EIA) Indexed Site

Sales (Billion Cubic Feet) Utah Natural Gas, Wet After Lease Separation Reserves Sales (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8...

133

Utah Nonassociated Natural Gas, Wet After Lease Separation, Reserves...  

U.S. Energy Information Administration (EIA) Indexed Site

Sales (Billion Cubic Feet) Utah Nonassociated Natural Gas, Wet After Lease Separation, Reserves Sales (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6...

134

Utah Natural Gas, Wet After Lease Separation Reserves Acquisitions...  

U.S. Energy Information Administration (EIA) Indexed Site

Acquisitions (Billion Cubic Feet) Utah Natural Gas, Wet After Lease Separation Reserves Acquisitions (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6...

135

Utah Nonassociated Natural Gas, Wet After Lease Separation, New...  

U.S. Energy Information Administration (EIA) Indexed Site

New Field Discoveries (Billion Cubic Feet) Utah Nonassociated Natural Gas, Wet After Lease Separation, New Field Discoveries (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3...

136

Utah Natural Gas, Wet After Lease Separation Reserves Adjustments...  

U.S. Energy Information Administration (EIA) Indexed Site

Adjustments (Billion Cubic Feet) Utah Natural Gas, Wet After Lease Separation Reserves Adjustments (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6...

137

Utah Natural Gas, Wet After Lease Separation Reserves Revision...  

U.S. Energy Information Administration (EIA) Indexed Site

Decreases (Billion Cubic Feet) Utah Natural Gas, Wet After Lease Separation Reserves Revision Decreases (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6...

138

Utah Natural Gas, Wet After Lease Separation Reserves Revision...  

U.S. Energy Information Administration (EIA) Indexed Site

Increases (Billion Cubic Feet) Utah Natural Gas, Wet After Lease Separation Reserves Revision Increases (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6...

139

Utah Natural Gas, Wet After Lease Separation Reserves Extensions...  

U.S. Energy Information Administration (EIA) Indexed Site

Extensions (Billion Cubic Feet) Utah Natural Gas, Wet After Lease Separation Reserves Extensions (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7...

140

Utah Natural Gas, Wet After Lease Separation Reserves New Field...  

U.S. Energy Information Administration (EIA) Indexed Site

New Field Discoveries (Billion Cubic Feet) Utah Natural Gas, Wet After Lease Separation Reserves New Field Discoveries (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3...

Note: This page contains sample records for the topic "recoverable wet natural" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

Utah Associated-Dissolved Natural Gas, Wet After Lease Separation...  

U.S. Energy Information Administration (EIA) Indexed Site

Sales (Billion Cubic Feet) Utah Associated-Dissolved Natural Gas, Wet After Lease Separation, Reserves Sales (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5...

142

Utah Natural Gas, Wet After Lease Separation Reserves Estimated...  

U.S. Energy Information Administration (EIA) Indexed Site

Estimated Production (Billion Cubic Feet) Utah Natural Gas, Wet After Lease Separation Reserves Estimated Production (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4...

143

Gulf of Mexico Federal Offshore Natural Gas, Wet After Lease...  

Gasoline and Diesel Fuel Update (EIA)

(Billion Cubic Feet) Gulf of Mexico Federal Offshore Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5...

144

North Dakota Nonassociated Natural Gas, Wet After Lease Separation, Proved  

Gasoline and Diesel Fuel Update (EIA)

Nonassociated Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Nonassociated Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) North Dakota Nonassociated Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 284 1980's 355 401 448 416 376 319 317 302 327 312 1990's 316 290 301 311 293 255 257 274 240 225 2000's 223 225 209 181 145 165 182 155 119 143 2010's 152 141 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 8/1/2013 Next Release Date: 8/1/2014 Referring Pages: Nonassociated Natural Gas Proved Reserves, Wet After Lease Separation, as of Dec. 31

145

Miscellaneous States Associated-Dissolved Natural Gas, Wet After Lease  

Gasoline and Diesel Fuel Update (EIA)

Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Miscellaneous States Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 14 1980's 34 12 27 31 14 25 41 13 28 39 1990's 22 14 11 9 11 32 28 31 17 54 2000's 19 19 20 14 12 14 19 15 9 78 2010's 10 104 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 8/1/2013 Next Release Date: 8/1/2014 Referring Pages: Associated-Dissolved Natural Gas Proved Reserves, Wet After Lease Separation, as of Dec. 31

146

Gulf of Mexico Federal Offshore Natural Gas, Wet After Lease...  

Annual Energy Outlook 2012 (EIA)

(Billion Cubic Feet) Gulf of Mexico Federal Offshore Natural Gas, Wet After Lease Separation, Production (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5...

147

Louisiana State Offshore Natural Gas, Wet After Lease Separation Proved  

Gasoline and Diesel Fuel Update (EIA)

Gas, Wet After Lease Separation Proved Reserves (Billion Cubic Feet) Gas, Wet After Lease Separation Proved Reserves (Billion Cubic Feet) Louisiana State Offshore Natural Gas, Wet After Lease Separation Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 3,269 1,351 1,478 1,209 1,273 1990's 1,019 1,082 845 946 988 862 783 743 571 661 2000's 721 772 512 527 394 433 442 392 934 728 2010's 386 519 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 8/1/2013 Next Release Date: 8/1/2014 Referring Pages: Natural Gas Proved Reserves, Wet After Lease Separation, as of Dec. 31 LA, State Offshore Natural Gas Reserves Summary as of Dec. 31

148

Miscellaneous States Natural Gas, Wet After Lease Separation Proved  

Gasoline and Diesel Fuel Update (EIA)

Gas, Wet After Lease Separation Proved Reserves (Billion Cubic Feet) Gas, Wet After Lease Separation Proved Reserves (Billion Cubic Feet) Miscellaneous States Natural Gas, Wet After Lease Separation Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 156 1980's 180 193 74 81 77 77 136 66 84 87 1990's 72 76 93 96 67 69 68 44 39 67 2000's 42 83 100 134 110 132 139 241 272 349 2010's 363 393 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 8/1/2013 Next Release Date: 8/1/2014 Referring Pages: Natural Gas Proved Reserves, Wet After Lease Separation, as of Dec. 31 Miscellaneous Natural Gas Reserves Summary as of Dec. 31

149

North Dakota Natural Gas, Wet After Lease Separation Proved Reserves  

Gasoline and Diesel Fuel Update (EIA)

Gas, Wet After Lease Separation Proved Reserves (Billion Cubic Feet) Gas, Wet After Lease Separation Proved Reserves (Billion Cubic Feet) North Dakota Natural Gas, Wet After Lease Separation Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 485 1980's 594 654 696 673 643 650 610 578 593 625 1990's 650 533 567 585 568 518 512 531 501 475 2000's 487 495 524 497 465 508 539 572 603 1,213 2010's 1,869 2,652 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 8/1/2013 Next Release Date: 8/1/2014 Referring Pages: Natural Gas Proved Reserves, Wet After Lease Separation, as of Dec. 31 North Dakota Natural Gas Reserves Summary as of Dec. 31

150

Montana Natural Gas, Wet After Lease Separation Proved Reserves (Billion  

Gasoline and Diesel Fuel Update (EIA)

Gas, Wet After Lease Separation Proved Reserves (Billion Cubic Feet) Gas, Wet After Lease Separation Proved Reserves (Billion Cubic Feet) Montana Natural Gas, Wet After Lease Separation Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 837 1980's 1,308 1,336 870 921 825 884 823 801 834 889 1990's 920 848 875 684 727 792 806 769 789 851 2000's 892 907 914 1,068 1,002 998 1,069 1,067 1,014 993 2010's 959 792 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 8/1/2013 Next Release Date: 8/1/2014 Referring Pages: Natural Gas Proved Reserves, Wet After Lease Separation, as of Dec. 31 Montana Natural Gas Reserves Summary as of Dec. 31

151

California - Coastal Region Onshore Natural Gas, Wet After Lease Separation  

Gasoline and Diesel Fuel Update (EIA)

Gas, Wet After Lease Separation Proved Reserves (Billion Cubic Feet) Gas, Wet After Lease Separation Proved Reserves (Billion Cubic Feet) California - Coastal Region Onshore Natural Gas, Wet After Lease Separation Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 395 1980's 330 325 384 405 284 277 275 255 232 238 1990's 232 231 215 201 205 163 168 176 118 233 2000's 244 185 197 174 196 277 214 212 151 169 2010's 180 173 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 8/1/2013 Next Release Date: 8/1/2014 Referring Pages: Natural Gas Proved Reserves, Wet After Lease Separation, as of Dec. 31 CA, Coastal Region Onshore Natural Gas Reserves Summary as of Dec.

152

Texas - RRC District 7B Associated-Dissolved Natural Gas, Wet...  

U.S. Energy Information Administration (EIA) Indexed Site

Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Texas - RRC District 7B Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved...

153

Texas - RRC District 8A Associated-Dissolved Natural Gas, Wet...  

U.S. Energy Information Administration (EIA) Indexed Site

Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Texas - RRC District 8A Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved...

154

Texas - RRC District 7C Associated-Dissolved Natural Gas, Wet...  

U.S. Energy Information Administration (EIA) Indexed Site

Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Texas - RRC District 7C Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved...

155

Florida Associated-Dissolved Natural Gas, Wet After Lease Separation,  

Gasoline and Diesel Fuel Update (EIA)

Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Florida Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 108 1980's 122 99 86 64 90 81 69 62 69 57 1990's 53 45 55 59 117 110 119 112 106 100 2000's 93 96 102 92 88 87 50 110 1 7 2010's 30 2 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 8/1/2013 Next Release Date: 8/1/2014 Referring Pages: Associated-Dissolved Natural Gas Proved Reserves, Wet After Lease Separation, as of Dec. 31 Florida Associated-Dissolved Natural Gas Proved Reserves, Wet After

156

Kentucky Associated-Dissolved Natural Gas, Wet After Lease Separation,  

Gasoline and Diesel Fuel Update (EIA)

Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Kentucky Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 2 1980's 11 14 12 19 17 13 17 19 19 22 1990's 8 10 8 6 47 27 24 26 20 29 2000's 27 25 25 25 19 30 36 34 34 32 2010's 111 98 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 8/1/2013 Next Release Date: 8/1/2014 Referring Pages: Associated-Dissolved Natural Gas Proved Reserves, Wet After Lease Separation, as of Dec. 31 Kentucky Associated-Dissolved Natural Gas Proved Reserves, Wet After

157

California Federal Offshore Natural Gas, Wet After Lease Separation Proved  

U.S. Energy Information Administration (EIA) Indexed Site

Natural Gas, Wet After Lease Separation Proved Reserves (Billion Cubic Feet) Natural Gas, Wet After Lease Separation Proved Reserves (Billion Cubic Feet) California Federal Offshore Natural Gas, Wet After Lease Separation Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 322 1980's 414 1,337 1,466 1,570 1,519 1990's 1,469 1,174 1,136 1,123 1,187 1,289 1,266 556 489 536 2000's 576 540 515 511 459 825 811 805 705 740 2010's 725 711 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 8/1/2013 Next Release Date: 8/1/2014 Referring Pages: Natural Gas Proved Reserves, Wet After Lease Separation, as of Dec. 31 Federal Offshore, Pacific (California) Natural Gas Reserves Summary

158

Texas - RRC District 3 Onshore Natural Gas, Wet After Lease Separation...  

Annual Energy Outlook 2012 (EIA)

Gas, Wet After Lease Separation Proved Reserves (Billion Cubic Feet) Texas - RRC District 3 Onshore Natural Gas, Wet After Lease Separation Proved Reserves (Billion Cubic Feet)...

159

Texas - RRC District 9 Nonassociated Natural Gas, Wet After Lease  

U.S. Energy Information Administration (EIA) Indexed Site

Nonassociated Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Nonassociated Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Texas - RRC District 9 Nonassociated Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 633 1980's 502 796 965 845 786 753 761 717 686 617 1990's 703 674 613 636 715 730 749 785 665 1,180 2000's 1,645 2,428 3,070 3,514 4,445 4,608 6,660 7,846 9,390 11,100 2010's 12,587 9,963 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 8/1/2013 Next Release Date: 8/1/2014 Referring Pages: Nonassociated Natural Gas Proved Reserves, Wet After Lease

160

Gulf of Mexico Federal Offshore - Texas Nonassociated Natural Gas, Wet  

U.S. Energy Information Administration (EIA) Indexed Site

Nonassociated Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Nonassociated Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Gulf of Mexico Federal Offshore - Texas Nonassociated Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 6,411 6,191 6,956 6,739 6,745 6,504 1990's 6,884 6,305 6,353 6,138 5,739 5,674 5,240 4,799 4,452 4,507 2000's 5,030 5,404 4,967 4,235 3,258 2,807 2,360 2,173 1,937 1,822 2010's 1,456 1,015 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 8/1/2013 Next Release Date: 8/1/2014 Referring Pages: Nonassociated Natural Gas Proved Reserves, Wet After Lease

Note: This page contains sample records for the topic "recoverable wet natural" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

West Virginia Nonassociated Natural Gas, Wet After Lease Separation, Proved  

Gasoline and Diesel Fuel Update (EIA)

Nonassociated Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Nonassociated Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) West Virginia Nonassociated Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 1,593 1980's 2,437 1,881 2,169 2,238 2,173 2,104 2,207 2,210 2,299 2,244 1990's 2,243 2,513 2,293 2,408 2,569 2,514 2,722 2,887 2,925 2,952 2000's 2,929 2,777 3,477 3,376 3,489 4,553 4,638 4,865 5,243 6,066 2010's 7,134 10,480 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 8/1/2013 Next Release Date: 8/1/2014 Referring Pages: Nonassociated Natural Gas Proved Reserves, Wet After Lease

162

Colorado Nonassociated Natural Gas, Wet After Lease Separation, Proved  

Gasoline and Diesel Fuel Update (EIA)

Nonassociated Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Nonassociated Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Colorado Nonassociated Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 2,657 1980's 2,970 2,969 3,345 3,200 2,932 2,928 3,008 2,912 3,572 4,290 1990's 4,249 5,329 5,701 5,817 5,948 6,520 7,009 6,627 7,436 8,591 2000's 9,877 11,924 13,251 14,707 13,956 15,796 16,141 20,642 22,159 22,199 2010's 23,001 23,633 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 8/1/2013 Next Release Date: 8/1/2014 Referring Pages: Nonassociated Natural Gas Proved Reserves, Wet After Lease

163

Colorado Associated-Dissolved Natural Gas, Wet After Lease Separation,  

Gasoline and Diesel Fuel Update (EIA)

Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Colorado Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 181 1980's 200 259 206 173 208 167 190 219 177 236 1990's 510 682 762 1,162 1,088 1,072 1,055 533 772 781 2000's 960 1,025 1,097 1,186 1,293 1,326 1,541 1,838 2,010 1,882 2010's 2,371 2,518 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 8/1/2013 Next Release Date: 8/1/2014 Referring Pages: Associated-Dissolved Natural Gas Proved Reserves, Wet After Lease

164

Arkansas Nonassociated Natural Gas, Wet After Lease Separation, Proved  

Gasoline and Diesel Fuel Update (EIA)

Nonassociated Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Nonassociated Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Arkansas Nonassociated Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 1,559 1980's 1,602 1,637 1,800 1,887 2,051 1,875 1,861 1,873 1,843 1,637 1990's 1,672 1,536 1,619 1,462 1,525 1,462 1,383 1,423 1,294 1,505 2000's 1,545 1,589 1,616 1,629 1,797 1,921 2,227 3,269 5,616 10,852 2010's 14,152 16,328 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 8/1/2013 Next Release Date: 8/1/2014 Referring Pages: Nonassociated Natural Gas Proved Reserves, Wet After Lease

165

Texas Nonassociated Natural Gas, Wet After Lease Separation, Proved  

Gasoline and Diesel Fuel Update (EIA)

Nonassociated Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Nonassociated Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Texas Nonassociated Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 35,971 35,867 34,584 32,852 32,309 32,349 1990's 32,412 30,729 29,474 29,967 31,071 31,949 33,432 33,322 33,429 35,470 2000's 38,585 40,376 41,104 42,280 46,728 53,175 58,736 68,827 74,284 76,272 2010's 84,157 90,947 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 8/1/2013 Next Release Date: 8/1/2014 Referring Pages: Nonassociated Natural Gas Proved Reserves, Wet After Lease

166

California Associated-Dissolved Natural Gas, Wet After Lease Separation,  

Gasoline and Diesel Fuel Update (EIA)

Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) California Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 2,961 1980's 3,345 2,660 2,663 2,546 2,507 1990's 2,400 2,213 2,093 1,982 1,698 1,619 1,583 1,820 1,879 2,150 2000's 2,198 1,922 1,900 1,810 2,006 2,585 2,155 2,193 1,917 2,314 2010's 2,282 2,532 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 8/1/2013 Next Release Date: 8/1/2014 Referring Pages: Associated-Dissolved Natural Gas Proved Reserves, Wet After Lease

167

Kentucky Nonassociated Natural Gas, Wet After Lease Separation, Proved  

Gasoline and Diesel Fuel Update (EIA)

Nonassociated Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Nonassociated Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Kentucky Nonassociated Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 502 1980's 525 547 580 581 630 793 866 921 938 993 1990's 1,039 1,177 1,118 1,030 978 1,075 1,022 1,403 1,275 1,501 2000's 1,810 1,925 1,974 1,946 1,963 2,210 2,333 2,554 2,812 2,887 2010's 2,674 2,030 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 8/1/2013 Next Release Date: 8/1/2014 Referring Pages: Nonassociated Natural Gas Proved Reserves, Wet After Lease

168

Louisiana Nonassociated Natural Gas, Wet After Lease Separation, Proved  

Gasoline and Diesel Fuel Update (EIA)

Nonassociated Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Nonassociated Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Louisiana Nonassociated Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 16,316 10,943 10,724 10,826 11,171 1990's 10,597 9,969 9,060 8,615 9,165 8,890 9,038 9,020 8,569 8,667 2000's 8,704 9,245 8,520 8,952 9,235 10,091 10,149 9,651 10,581 19,898 2010's 28,838 29,906 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 8/1/2013 Next Release Date: 8/1/2014 Referring Pages: Nonassociated Natural Gas Proved Reserves, Wet After Lease

169

Texas - RRC District 1 Nonassociated Natural Gas, Wet After Lease  

U.S. Energy Information Administration (EIA) Indexed Site

Nonassociated Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Nonassociated Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Texas - RRC District 1 Nonassociated Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 732 1980's 683 870 708 960 714 754 716 639 1,002 1,037 1990's 744 660 606 540 586 498 523 950 1,101 1,165 2000's 1,037 1,024 1,047 1,047 1,184 1,148 1,048 1,029 987 1,456 2010's 2,332 5,227 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 8/1/2013 Next Release Date: 8/1/2014 Referring Pages: Nonassociated Natural Gas Proved Reserves, Wet After Lease

170

Alabama Nonassociated Natural Gas, Wet After Lease Separation, Proved  

Gasoline and Diesel Fuel Update (EIA)

Nonassociated Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Nonassociated Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Alabama Nonassociated Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 680 1980's 659 658 1990's 4,159 5,437 5,840 5,166 4,842 4,886 5,062 4,983 4,615 4,338 2000's 4,241 3,931 3,891 4,313 4,127 3,977 3,945 4,016 3,360 2,919 2010's 2,686 2,522 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 8/1/2013 Next Release Date: 8/1/2014 Referring Pages: Nonassociated Natural Gas Proved Reserves, Wet After Lease Separation, as of Dec. 31

171

Alaska Nonassociated Natural Gas, Wet After Lease Separation, Proved  

Gasoline and Diesel Fuel Update (EIA)

Nonassociated Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Nonassociated Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Alaska Nonassociated Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 5,058 1980's 4,828 4,373 4,188 3,883 4,120 3,131 2,462 2,983 2,910 2,821 1990's 2,466 2,924 3,002 3,492 3,326 3,310 3,216 2,957 2,768 2,646 2000's 2,564 2,309 2,157 2,081 2,004 1,875 1,447 1,270 1,139 1,090 2010's 1,021 976 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 8/1/2013 Next Release Date: 8/1/2014 Referring Pages: Nonassociated Natural Gas Proved Reserves, Wet After Lease

172

Louisiana Associated-Dissolved Natural Gas, Wet After Lease Separation,  

Gasoline and Diesel Fuel Update (EIA)

Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Louisiana Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 3,360 2,391 2,128 1,794 1,741 1990's 1,554 1,394 1,167 926 980 1,001 1,039 1,016 911 979 2000's 807 796 670 586 557 588 561 641 1,235 1,072 2010's 679 639 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 8/1/2013 Next Release Date: 8/1/2014 Referring Pages: Associated-Dissolved Natural Gas Proved Reserves, Wet After Lease Separation, as of Dec. 31

173

Michigan Nonassociated Natural Gas, Wet After Lease Separation, Proved  

Gasoline and Diesel Fuel Update (EIA)

Nonassociated Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Nonassociated Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Michigan Nonassociated Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 601 1980's 668 494 481 529 419 375 665 1,002 943 1,011 1990's 922 967 938 890 1,022 1,018 1,778 1,975 2,158 2,086 2000's 2,558 2,873 3,097 3,219 2,961 2,808 2,925 3,512 3,105 2,728 2010's 2,903 2,472 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 8/1/2013 Next Release Date: 8/1/2014 Referring Pages: Nonassociated Natural Gas Proved Reserves, Wet After Lease

174

Virginia Nonassociated Natural Gas, Wet After Lease Separation, Proved  

Gasoline and Diesel Fuel Update (EIA)

Nonassociated Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Nonassociated Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Virginia Nonassociated Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 122 175 216 235 253 248 230 217 1990's 138 225 904 1,322 1,833 1,836 1,930 1,923 1,973 2,017 2000's 1,704 1,752 1,673 1,717 1,742 2,018 2,302 2,529 2,378 3,091 2010's 3,215 2,832 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 8/1/2013 Next Release Date: 8/1/2014 Referring Pages: Nonassociated Natural Gas Proved Reserves, Wet After Lease Separation, as of Dec. 31

175

Louisiana - South Onshore Natural Gas, Wet After Lease Separation Proved  

U.S. Energy Information Administration (EIA) Indexed Site

Natural Gas, Wet After Lease Separation Proved Reserves (Billion Cubic Feet) Natural Gas, Wet After Lease Separation Proved Reserves (Billion Cubic Feet) Louisiana - South Onshore Natural Gas, Wet After Lease Separation Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 14,580 1980's 13,407 13,049 12,153 11,553 10,650 10,120 9,416 9,024 8,969 8,934 1990's 8,492 7,846 7,019 6,219 6,558 6,166 6,105 6,137 5,966 5,858 2000's 5,447 5,341 4,395 3,874 3,557 3,478 3,473 3,463 2,916 2,969 2010's 2,995 2,615 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 8/1/2013 Next Release Date: 8/1/2014 Referring Pages: Natural Gas Proved Reserves, Wet After Lease Separation, as of Dec.

176

Resource Assessment of the In-Place and Potentially Recoverable Deep Natural Gas Resource of the Onshore Interior Salt Basins, North Central and Northeastern Gulf of Mexico  

SciTech Connect

The objectives of the study are: to perform resource assessment of the in-place deep (>15,000 ft) natural gas resource of the onshore interior salt basins of the North Central and Northeastern Gulf of Mexico areas through petroleum system identification, characterization and modeling and to use the petroleum system based resource assessment to estimate the volume of the in-place deep gas resource that is potentially recoverable and to identify those areas in the interior salt basins with high potential to recover commercial quantities of the deep gas resource. The principal research effort for Year 1 of the project is data compilation and petroleum system identification. The research focus for the first nine (9) months of Year 1 is on data compilation and for the remainder of the year the emphasis is on petroleum system identification.

Ernest A. Mancini; Donald A. Goddard

2004-10-28T23:59:59.000Z

177

California Natural Gas, Wet After Lease Separation Proved Reserves (Billion  

Gasoline and Diesel Fuel Update (EIA)

Gas, Wet After Lease Separation Proved Reserves (Billion Cubic Feet) Gas, Wet After Lease Separation Proved Reserves (Billion Cubic Feet) California Natural Gas, Wet After Lease Separation Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 4,842 1980's 5,137 4,084 3,893 3,666 3,513 1990's 3,311 3,114 2,892 2,799 2,506 2,355 2,193 2,390 2,332 2,505 2000's 2,952 2,763 2,696 2,569 2,773 3,384 2,935 2,879 2,538 2,926 2010's 2,785 3,042 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 8/1/2013 Next Release Date: 8/1/2014 Referring Pages: Natural Gas Proved Reserves, Wet After Lease Separation, as of Dec. 31 California Natural Gas Reserves Summary as of Dec. 31

178

Texas Natural Gas, Wet After Lease Separation Proved Reserves (Billion  

Gasoline and Diesel Fuel Update (EIA)

Gas, Wet After Lease Separation Proved Reserves (Billion Cubic Feet) Gas, Wet After Lease Separation Proved Reserves (Billion Cubic Feet) Texas Natural Gas, Wet After Lease Separation Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 46,803 46,620 44,319 42,192 41,404 41,554 1990's 41,411 39,288 38,141 37,847 39,020 39,736 41,592 41,108 40,793 43,350 2000's 45,419 46,462 47,491 48,717 53,275 60,178 65,805 76,357 81,843 85,034 2010's 94,287 104,454 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 8/1/2013 Next Release Date: 8/1/2014 Referring Pages: Natural Gas Proved Reserves, Wet After Lease Separation, as of Dec. 31 Texas Natural Gas Reserves Summary as of Dec. 31

179

Mississippi Natural Gas, Wet After Lease Separation Proved Reserves  

Gasoline and Diesel Fuel Update (EIA)

Gas, Wet After Lease Separation Proved Reserves (Billion Cubic Feet) Gas, Wet After Lease Separation Proved Reserves (Billion Cubic Feet) Mississippi Natural Gas, Wet After Lease Separation Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 1,511 1980's 1,776 2,042 1,803 1,603 1,496 1,364 1,304 1,223 1,146 1,108 1990's 1,129 1,061 873 800 653 667 634 583 662 681 2000's 620 663 746 748 692 758 816 958 1,035 922 2010's 858 868 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 8/1/2013 Next Release Date: 8/1/2014 Referring Pages: Natural Gas Proved Reserves, Wet After Lease Separation, as of Dec. 31 Mississippi Natural Gas Reserves Summary as of Dec. 31

180

Kentucky Natural Gas, Wet After Lease Separation Proved Reserves (Billion  

Gasoline and Diesel Fuel Update (EIA)

Gas, Wet After Lease Separation Proved Reserves (Billion Cubic Feet) Gas, Wet After Lease Separation Proved Reserves (Billion Cubic Feet) Kentucky Natural Gas, Wet After Lease Separation Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 504 1980's 536 561 592 600 647 806 883 940 957 1,015 1990's 1,047 1,187 1,126 1,036 1,025 1,102 1,046 1,429 1,295 1,530 2000's 1,837 1,950 1,999 1,971 1,982 2,240 2,369 2,588 2,846 2,919 2010's 2,785 2,128 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 8/1/2013 Next Release Date: 8/1/2014 Referring Pages: Natural Gas Proved Reserves, Wet After Lease Separation, as of Dec. 31 Kentucky Natural Gas Reserves Summary as of Dec. 31

Note: This page contains sample records for the topic "recoverable wet natural" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

Alabama Natural Gas, Wet After Lease Separation Proved Reserves (Billion  

Gasoline and Diesel Fuel Update (EIA)

Gas, Wet After Lease Separation Proved Reserves (Billion Cubic Feet) Gas, Wet After Lease Separation Proved Reserves (Billion Cubic Feet) Alabama Natural Gas, Wet After Lease Separation Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 693 1980's 682 683 1990's 4,184 5,460 5,870 5,212 4,898 4,930 5,100 5,013 4,643 4,365 2000's 4,269 3,958 3,922 4,345 4,159 4,006 3,963 4,036 3,379 2,948 2010's 2,724 2,570 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 8/1/2013 Next Release Date: 8/1/2014 Referring Pages: Natural Gas Proved Reserves, Wet After Lease Separation, as of Dec. 31 Alabama Natural Gas Reserves Summary as of Dec. 31

182

Louisiana Natural Gas, Wet After Lease Separation Proved Reserves (Billion  

Gasoline and Diesel Fuel Update (EIA)

Gas, Wet After Lease Separation Proved Reserves (Billion Cubic Feet) Gas, Wet After Lease Separation Proved Reserves (Billion Cubic Feet) Louisiana Natural Gas, Wet After Lease Separation Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 19,676 13,334 12,852 12,620 12,912 1990's 12,151 11,363 10,227 9,541 10,145 9,891 10,077 10,036 9,480 9,646 2000's 9,512 10,040 9,190 9,538 9,792 10,679 10,710 10,292 11,816 20,970 2010's 29,517 30,545 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 8/1/2013 Next Release Date: 8/1/2014 Referring Pages: Natural Gas Proved Reserves, Wet After Lease Separation, as of Dec. 31 Louisiana Natural Gas Reserves Summary as of Dec. 31

183

Virginia Natural Gas, Wet After Lease Separation Proved Reserves (Billion  

Gasoline and Diesel Fuel Update (EIA)

Gas, Wet After Lease Separation Proved Reserves (Billion Cubic Feet) Gas, Wet After Lease Separation Proved Reserves (Billion Cubic Feet) Virginia Natural Gas, Wet After Lease Separation Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 122 175 216 235 253 248 230 217 1990's 138 225 904 1,322 1,833 1,836 1,930 2,446 1,973 2,017 2000's 1,704 1,752 1,673 1,717 1,742 2,018 2,302 2,529 2,378 3,091 2010's 3,215 2,832 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 8/1/2013 Next Release Date: 8/1/2014 Referring Pages: Natural Gas Proved Reserves, Wet After Lease Separation, as of Dec. 31 Virginia Natural Gas Reserves Summary as of Dec. 31

184

Michigan Natural Gas, Wet After Lease Separation Proved Reserves (Billion  

Gasoline and Diesel Fuel Update (EIA)

Gas, Wet After Lease Separation Proved Reserves (Billion Cubic Feet) Gas, Wet After Lease Separation Proved Reserves (Billion Cubic Feet) Michigan Natural Gas, Wet After Lease Separation Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 1,334 1980's 1,551 1,252 1,200 1,353 1,193 1,064 1,242 1,571 1,434 1,443 1990's 1,330 1,404 1,290 1,218 1,379 1,344 2,125 2,256 2,386 2,313 2000's 2,772 3,032 3,311 3,488 3,154 2,961 3,117 3,691 3,253 2,805 2010's 2,975 2,549 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 8/1/2013 Next Release Date: 8/1/2014 Referring Pages: Natural Gas Proved Reserves, Wet After Lease Separation, as of Dec.

185

Arkansas Natural Gas, Wet After Lease Separation Proved Reserves (Billion  

Gasoline and Diesel Fuel Update (EIA)

Gas, Wet After Lease Separation Proved Reserves (Billion Cubic Feet) Gas, Wet After Lease Separation Proved Reserves (Billion Cubic Feet) Arkansas Natural Gas, Wet After Lease Separation Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 1,725 1980's 1,796 1,821 1,974 2,081 2,240 2,032 2,011 2,018 2,000 1,782 1990's 1,739 1,672 1,752 1,555 1,610 1,566 1,472 1,479 1,332 1,546 2000's 1,584 1,619 1,654 1,666 1,837 1,967 2,271 3,306 5,628 10,872 2010's 14,181 16,374 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 8/1/2013 Next Release Date: 8/1/2014 Referring Pages: Natural Gas Proved Reserves, Wet After Lease Separation, as of Dec.

186

Kansas Natural Gas, Wet After Lease Separation Proved Reserves (Billion  

Gasoline and Diesel Fuel Update (EIA)

Gas, Wet After Lease Separation Proved Reserves (Billion Cubic Feet) Gas, Wet After Lease Separation Proved Reserves (Billion Cubic Feet) Kansas Natural Gas, Wet After Lease Separation Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 10,824 1980's 10,065 10,443 10,128 10,183 9,981 9,844 11,093 11,089 10,530 10,509 1990's 10,004 9,946 10,302 9,872 9,705 9,093 8,145 7,328 6,862 6,248 2000's 5,682 5,460 5,329 5,143 5,003 4,598 4,197 4,248 3,795 3,500 2010's 3,937 3,747 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 8/1/2013 Next Release Date: 8/1/2014 Referring Pages: Natural Gas Proved Reserves, Wet After Lease Separation, as of Dec.

187

Wyoming Natural Gas, Wet After Lease Separation Proved Reserves (Billion  

Gasoline and Diesel Fuel Update (EIA)

Gas, Wet After Lease Separation Proved Reserves (Billion Cubic Feet) Gas, Wet After Lease Separation Proved Reserves (Billion Cubic Feet) Wyoming Natural Gas, Wet After Lease Separation Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 7,834 1980's 9,413 9,659 10,155 10,728 11,014 11,229 10,393 10,572 10,903 11,276 1990's 10,433 10,433 11,305 11,387 11,351 12,712 13,084 14,321 14,371 14,809 2000's 17,211 19,399 21,531 22,716 23,640 24,722 24,463 30,896 32,399 36,748 2010's 36,526 36,930 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 8/1/2013 Next Release Date: 8/1/2014 Referring Pages: Natural Gas Proved Reserves, Wet After Lease Separation, as of Dec.

188

Pennsylvania Natural Gas, Wet After Lease Separation Proved Reserves  

Gasoline and Diesel Fuel Update (EIA)

Gas, Wet After Lease Separation Proved Reserves (Billion Cubic Feet) Gas, Wet After Lease Separation Proved Reserves (Billion Cubic Feet) Pennsylvania Natural Gas, Wet After Lease Separation Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 1,516 1980's 951 1,265 1,430 1,882 1,576 1,618 1,562 1,650 2,074 1,644 1990's 1,722 1,631 1,533 1,722 1,806 1,488 1,702 1,861 1,848 1,780 2000's 1,740 1,782 2,225 2,497 2,371 2,793 3,064 3,377 3,594 7,018 2010's 14,068 26,719 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 8/1/2013 Next Release Date: 8/1/2014 Referring Pages: Natural Gas Proved Reserves, Wet After Lease Separation, as of Dec.

189

California - San Joaquin Basin Onshore Natural Gas, Wet After Lease  

Gasoline and Diesel Fuel Update (EIA)

Gas, Wet After Lease Separation Proved Reserves (Billion Cubic Feet) Gas, Wet After Lease Separation Proved Reserves (Billion Cubic Feet) California - San Joaquin Basin Onshore Natural Gas, Wet After Lease Separation Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 4,037 1980's 4,434 4,230 4,058 3,964 3,808 3,716 3,404 3,229 3,033 2,899 1990's 2,775 2,703 2,511 2,425 2,130 2,018 1,864 2,012 2,016 2,021 2000's 2,413 2,298 2,190 2,116 2,306 2,831 2,470 2,430 2,249 2,609 2010's 2,447 2,685 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 8/1/2013 Next Release Date: 8/1/2014 Referring Pages: Natural Gas Proved Reserves, Wet After Lease Separation, as of Dec.

190

West Virginia Natural Gas, Wet After Lease Separation Proved Reserves  

Gasoline and Diesel Fuel Update (EIA)

Gas, Wet After Lease Separation Proved Reserves (Billion Cubic Feet) Gas, Wet After Lease Separation Proved Reserves (Billion Cubic Feet) West Virginia Natural Gas, Wet After Lease Separation Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 1,669 1980's 2,559 1,944 2,252 2,324 2,246 2,177 2,272 2,360 2,440 2,342 1990's 2,329 2,672 2,491 2,598 2,702 2,588 2,793 2,946 2,968 3,040 2000's 3,062 2,825 3,498 3,399 3,509 4,572 4,654 4,881 5,266 6,090 2010's 7,163 10,532 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 8/1/2013 Next Release Date: 8/1/2014 Referring Pages: Natural Gas Proved Reserves, Wet After Lease Separation, as of Dec.

191

Louisiana - South Onshore Nonassociated Natural Gas, Wet After Lease  

U.S. Energy Information Administration (EIA) Indexed Site

Nonassociated Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Nonassociated Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Louisiana - South Onshore Nonassociated Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 12,276 1980's 11,273 11,178 10,364 9,971 9,162 8,328 7,843 7,644 7,631 7,661 1990's 7,386 6,851 6,166 5,570 5,880 5,446 5,478 5,538 5,336 5,259 2000's 4,954 4,859 3,968 3,506 3,168 3,051 3,058 2,960 2,445 2,463 2010's 2,496 2,125 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 8/1/2013 Next Release Date: 8/1/2014 Referring Pages:

192

Texas - RRC District 5 Nonassociated Natural Gas, Wet After Lease  

U.S. Energy Information Administration (EIA) Indexed Site

5 Nonassociated Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) 5 Nonassociated Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Texas - RRC District 5 Nonassociated Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 1,127 1980's 1,117 1,265 1,322 1,477 1,911 2,100 2,169 2,106 1,989 1,789 1990's 1,835 1,841 1,692 1,790 1,926 1,876 2,088 1,681 1,906 2,301 2000's 3,089 4,206 4,588 5,398 6,525 9,560 12,591 17,224 20,420 22,602 2010's 24,686 28,147 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 8/1/2013 Next Release Date: 8/1/2014 Referring Pages:

193

Texas - RRC District 8 Nonassociated Natural Gas, Wet After Lease  

U.S. Energy Information Administration (EIA) Indexed Site

Nonassociated Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Nonassociated Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Texas - RRC District 8 Nonassociated Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 8,073 1980's 7,216 6,620 6,084 6,064 5,362 5,246 5,254 4,973 4,738 4,403 1990's 4,323 4,023 3,792 3,569 3,267 3,218 3,069 2,886 2,727 2,947 2000's 3,345 3,405 3,284 3,032 3,266 3,829 3,891 4,267 4,506 3,950 2010's 3,777 3,006 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 8/1/2013 Next Release Date: 8/1/2014 Referring Pages:

194

Wyoming Nonassociated Natural Gas, Wet After Lease Separation, Proved  

Gasoline and Diesel Fuel Update (EIA)

Nonassociated Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Nonassociated Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Wyoming Nonassociated Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 6,796 1980's 8,039 8,431 9,095 9,769 10,147 10,519 9,702 9,881 10,287 10,695 1990's 9,860 9,861 10,681 10,885 10,740 11,833 12,260 13,471 13,577 14,096 2000's 16,559 18,911 20,970 22,266 23,278 24,338 24,116 30,531 32,176 36,386 2010's 36,192 36,612 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 8/1/2013 Next Release Date: 8/1/2014 Referring Pages:

195

Oklahoma Nonassociated Natural Gas, Wet After Lease Separation, Proved  

Gasoline and Diesel Fuel Update (EIA)

Nonassociated Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Nonassociated Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Oklahoma Nonassociated Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 12,299 1980's 11,656 13,066 14,714 14,992 14,858 14,929 15,588 15,686 15,556 14,948 1990's 15,147 14,112 13,249 12,549 12,981 13,067 12,929 13,296 13,321 12,252 2000's 13,430 13,256 14,576 15,176 16,301 17,337 17,735 19,225 21,155 23,115 2010's 26,873 27,683 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 8/1/2013 Next Release Date: 8/1/2014

196

New Mexico - East Nonassociated Natural Gas, Wet After Lease Separation,  

Gasoline and Diesel Fuel Update (EIA)

East Nonassociated Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) East Nonassociated Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) New Mexico - East Nonassociated Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 2,634 1980's 2,266 2,377 2,331 2,214 2,117 2,001 1,750 1,901 2,030 2,131 1990's 2,290 2,073 1,948 1,860 1,791 1,648 1,612 1,694 1,694 1,880 2000's 2,526 2,571 2,632 2,205 2,477 2,569 2,605 2,633 2,737 2,658 2010's 2,612 2,475 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 8/1/2013 Next Release Date: 8/1/2014 Referring Pages:

197

New Mexico Nonassociated Natural Gas, Wet After Lease Separation, Proved  

Gasoline and Diesel Fuel Update (EIA)

Nonassociated Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Nonassociated Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) New Mexico Nonassociated Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 12,568 1980's 12,267 12,913 11,562 10,868 10,458 9,948 11,094 11,176 17,030 15,219 1990's 17,094 18,204 18,802 18,354 16,947 17,069 16,232 15,280 14,816 15,172 2000's 16,922 17,112 16,971 16,681 18,109 17,683 17,332 16,556 15,592 14,662 2010's 14,316 13,586 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 8/1/2013 Next Release Date: 8/1/2014

198

Texas - RRC District 6 Nonassociated Natural Gas, Wet After Lease  

U.S. Energy Information Administration (EIA) Indexed Site

6 Nonassociated Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) 6 Nonassociated Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Texas - RRC District 6 Nonassociated Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 2,710 1980's 3,622 3,653 3,749 4,279 4,087 4,274 4,324 4,151 4,506 5,201 1990's 5,345 4,856 4,987 5,170 5,131 5,425 5,690 5,616 5,691 5,562 2000's 5,901 6,016 6,161 6,572 7,564 8,999 9,205 11,468 12,207 12,806 2010's 14,958 15,524 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 8/1/2013 Next Release Date: 8/1/2014 Referring Pages:

199

New Mexico - West Nonassociated Natural Gas, Wet After Lease Separation,  

Gasoline and Diesel Fuel Update (EIA)

- West Nonassociated Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) - West Nonassociated Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) New Mexico - West Nonassociated Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 9,934 1980's 10,001 10,536 9,231 8,654 8,341 7,947 9,344 9,275 15,000 13,088 1990's 14,804 16,131 16,854 16,494 15,156 15,421 14,620 13,586 13,122 13,292 2000's 14,396 14,541 14,339 14,476 15,632 15,114 14,727 13,923 12,855 12,004 2010's 11,704 11,111 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 8/1/2013 Next Release Date: 8/1/2014

200

Lower 48 States Nonassociated Natural Gas, Wet After Lease Separation,  

U.S. Energy Information Administration (EIA) Indexed Site

Nonassociated Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Nonassociated Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Lower 48 States Nonassociated Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 143,852 1980's 139,421 143,515 142,984 143,469 141,226 138,464 139,070 135,256 141,211 139,798 1990's 141,941 140,584 138,883 136,953 138,213 139,369 141,136 140,382 139,015 142,098 2000's 154,113 159,612 163,863 166,512 171,547 183,197 189,329 213,851 224,873 249,406 2010's 280,880 305,010 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 8/1/2013

Note: This page contains sample records for the topic "recoverable wet natural" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

,"U.S. Federal Offshore Natural Gas, Wet After Lease Separation...  

U.S. Energy Information Administration (EIA) Indexed Site

Of Series","Frequency","Latest Data for" ,"Data 1","U.S. Federal Offshore Natural Gas, Wet After Lease Separation Proved Reserves (Billion Cubic...

202

,"U.S. Federal Offshore Associated-Dissolved Natural Gas, Wet...  

U.S. Energy Information Administration (EIA) Indexed Site

Of Series","Frequency","Latest Data for" ,"Data 1","U.S. Federal Offshore Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves...

203

,"U.S. Nonassociated Natural Gas Proved Reserves, Wet After Lease...  

U.S. Energy Information Administration (EIA) Indexed Site

,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","U.S. Nonassociated Natural Gas Proved Reserves, Wet After Lease Separation",10,"Annual",20...

204

,"U.S. Associated-Dissolved Natural Gas Proved Reserves, Wet...  

U.S. Energy Information Administration (EIA) Indexed Site

,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","U.S. Associated-Dissolved Natural Gas Proved Reserves, Wet After Lease...

205

Numerical modelling of heat and mass transfer and optimisation of a natural draft wet cooling tower.  

E-Print Network (OSTI)

??The main contribution of this work is to answer several important questions relating to natural draft wet cooling tower (NDWCT) modelling, design and optimisation. Specifically,… (more)

Williamson, Nicholas J

2007-01-01T23:59:59.000Z

206

,"Texas - RRC District 7B Associated-Dissolved Natural Gas, Wet...  

U.S. Energy Information Administration (EIA) Indexed Site

,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Texas - RRC District 7B Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved...

207

,"Texas - RRC District 8A Natural Gas, Wet After Lease Separation...  

U.S. Energy Information Administration (EIA) Indexed Site

,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Texas - RRC District 8A Natural Gas, Wet After Lease Separation Proved Reserves (Billion...

208

,"Texas - RRC District 8A Associated-Dissolved Natural Gas, Wet...  

U.S. Energy Information Administration (EIA) Indexed Site

,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Texas - RRC District 8A Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved...

209

,"Texas - RRC District 7B Natural Gas, Wet After Lease Separation...  

U.S. Energy Information Administration (EIA) Indexed Site

,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Texas - RRC District 7B Natural Gas, Wet After Lease Separation Proved Reserves (Billion...

210

,"Texas - RRC District 7C Natural Gas, Wet After Lease Separation...  

U.S. Energy Information Administration (EIA) Indexed Site

,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Texas - RRC District 7C Natural Gas, Wet After Lease Separation Proved Reserves (Billion...

211

,"Texas - RRC District 7C Associated-Dissolved Natural Gas, Wet...  

U.S. Energy Information Administration (EIA) Indexed Site

,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Texas - RRC District 7C Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved...

212

RESOURCE ASSESSMENT OF THE IN-PLACE AND POTENTIALLY RECOVERABLE DEEP NATURAL GAS RESOURCE OF THE ONSHORE INTERIOR SALT BASINS, NORTH CENTRAL AND NORTHEASTERN GULF OF MEXICO  

Science Conference Proceedings (OSTI)

The University of Alabama and Louisiana State University have undertaken a cooperative 3-year, advanced subsurface methodology resource assessment project, involving petroleum system identification, characterization and modeling, to facilitate exploration for a potential major source of natural gas that is deeply buried (below 15,000 feet) in the onshore interior salt basins of the North Central and Northeastern Gulf of Mexico areas. The project is designed to assist in the formulation of advanced exploration strategies for funding and maximizing the recovery from deep natural gas domestic resources at reduced costs and risks and with minimum impact. The results of the project should serve to enhance exploration efforts by domestic companies in their search for new petroleum resources, especially those deeply buried (below 15,000 feet) natural gas resources, and should support the domestic industry's endeavor to provide an increase in reliable and affordable supplies of fossil fuels. The principal research effort for Year 1 of the project is data compilation and petroleum system identification. The research focus for the first nine (9) months of Year 1 is on data compilation and for the remainder of the year the emphasis is on petroleum system identification. The objectives of the study are: to perform resource assessment of the in-place deep (>15,000 ft) natural gas resource of the onshore interior salt basins of the North Central and Northeastern Gulf of Mexico areas through petroleum system identification, characterization and modeling and to use the petroleum system based resource assessment to estimate the volume of the in-place deep gas resource that is potentially recoverable and to identify those areas in the interior salt basins with high potential to recover commercial quantities of the deep gas resource. The project objectives will be achieved through a 3-year effort. First, emphasis is on petroleum system identification and characterization in the North Louisiana Salt Basin, the Mississippi Interior Salt Basin, the Manila Sub-basin and the Conecuh Sub-basin of Louisiana, Mississippi, Alabama and Florida panhandle. This task includes identification of the petroleum systems in these basins and the characterization of the overburden, source, reservoir and seal rocks of the petroleum systems and of the associated petroleum traps. Second, emphasis is on petroleum system modeling. This task includes the assessment of the timing of deep (>15,000 ft) gas generation, expulsion, migration, entrapment and alteration (thermal cracking of oil to gas). Third, emphasis is on resource assessment. This task includes the volumetric calculation of the total in-place hydrocarbon resource generated, the determination of the volume of the generated hydrocarbon resource that is classified as deep (>15,000 ft) gas, the estimation of the volume of deep gas that was expelled, migrated and entrapped, and the calculation of the potential volume of gas in deeply buried (>15,000 ft) reservoirs resulting from the process of thermal cracking of liquid hydrocarbons and their transformation to gas in the reservoir. Fourth, emphasis is on identifying those areas in the onshore interior salt basins with high potential to recover commercial quantities of the deep gas resource.

Ernest A. Mancini

2004-04-16T23:59:59.000Z

213

Louisiana State Offshore Associated-Dissolved Natural Gas, Wet After Lease  

Gasoline and Diesel Fuel Update (EIA)

Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Louisiana State Offshore Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 449 251 260 207 231 1990's 207 207 154 157 168 148 157 130 98 120 2000's 129 145 84 79 61 63 56 65 686 513 2010's 107 51 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 8/1/2013 Next Release Date: 8/1/2014 Referring Pages: Associated-Dissolved Natural Gas Proved Reserves, Wet After Lease Separation, as of Dec. 31 LA, State Offshore Associated-Dissolved Natural Gas Proved Reserves,

214

Texas - RRC District 2 Onshore Associated-Dissolved Natural Gas, Wet After  

U.S. Energy Information Administration (EIA) Indexed Site

2 Onshore Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) 2 Onshore Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Texas - RRC District 2 Onshore Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 955 1980's 921 806 780 747 661 570 517 512 428 430 1990's 407 352 308 288 299 245 252 235 204 202 2000's 115 65 70 81 76 109 118 137 72 72 2010's 134 924 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 8/1/2013 Next Release Date: 8/1/2014 Referring Pages: Associated-Dissolved Natural Gas Proved Reserves, Wet After Lease

215

New Mexico - West Associated-Dissolved Natural Gas, Wet After Lease  

Gasoline and Diesel Fuel Update (EIA)

West Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) West Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) New Mexico - West Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 151 1980's 156 150 146 180 194 181 214 213 259 178 1990's 184 156 127 107 97 119 108 106 98 92 2000's 115 99 103 89 90 98 82 87 86 82 2010's 105 143 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 8/1/2013 Next Release Date: 8/1/2014 Referring Pages: Associated-Dissolved Natural Gas Proved Reserves, Wet After Lease

216

Utah Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved  

Gasoline and Diesel Fuel Update (EIA)

Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Utah Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 367 1980's 414 335 325 360 341 391 410 471 475 442 1990's 455 469 309 289 286 277 301 310 209 321 2000's 348 303 359 299 290 308 317 368 321 601 2010's 631 909 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 8/1/2013 Next Release Date: 8/1/2014 Referring Pages: Associated-Dissolved Natural Gas Proved Reserves, Wet After Lease Separation, as of Dec. 31

217

Kansas Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved  

Gasoline and Diesel Fuel Update (EIA)

Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Kansas Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 167 1980's 185 139 112 132 110 115 132 115 103 101 1990's 114 115 94 93 75 67 82 51 60 52 2000's 40 105 66 85 80 83 82 83 85 83 2010's 79 127 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 8/1/2013 Next Release Date: 8/1/2014 Referring Pages: Associated-Dissolved Natural Gas Proved Reserves, Wet After Lease Separation, as of Dec. 31

218

North Dakota Associated-Dissolved Natural Gas, Wet After Lease Separation,  

Gasoline and Diesel Fuel Update (EIA)

Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) North Dakota Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 201 1980's 239 253 248 257 267 331 293 276 266 313 1990's 334 243 266 274 275 263 255 257 261 250 2000's 264 270 315 316 320 343 357 417 484 1,070 2010's 1,717 2,511 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 8/1/2013 Next Release Date: 8/1/2014 Referring Pages: Associated-Dissolved Natural Gas Proved Reserves, Wet After Lease

219

Ohio Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved  

Gasoline and Diesel Fuel Update (EIA)

Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Ohio Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 1,047 1980's 1,417 800 984 1,635 1,178 938 898 594 480 589 1990's 371 376 381 343 315 355 399 391 342 402 2000's 469 340 346 304 208 184 174 101 99 97 2010's 90 74 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 8/1/2013 Next Release Date: 8/1/2014 Referring Pages: Associated-Dissolved Natural Gas Proved Reserves, Wet After Lease Separation, as of Dec. 31

220

Texas - RRC District 4 Onshore Associated-Dissolved Natural Gas, Wet After  

Gasoline and Diesel Fuel Update (EIA)

4 Onshore Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) 4 Onshore Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Texas - RRC District 4 Onshore Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 1,416 1980's 1,292 1,005 890 765 702 684 596 451 393 371 1990's 301 243 228 215 191 209 246 368 394 182 2000's 176 140 150 136 165 148 110 117 127 96 2010's 91 61 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 8/1/2013 Next Release Date: 8/1/2014 Referring Pages: Associated-Dissolved Natural Gas Proved Reserves, Wet After Lease

Note: This page contains sample records for the topic "recoverable wet natural" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

California State Offshore Associated-Dissolved Natural Gas, Wet After Lease  

Gasoline and Diesel Fuel Update (EIA)

Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) California State Offshore Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 226 1980's 160 244 232 221 206 1990's 188 55 59 63 59 56 47 54 39 58 2000's 86 80 85 76 85 89 85 79 54 53 2010's 63 79 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 8/1/2013 Next Release Date: 8/1/2014 Referring Pages: Associated-Dissolved Natural Gas Proved Reserves, Wet After Lease Separation, as of Dec. 31

222

Texas - RRC District 1 Associated-Dissolved Natural Gas, Wet After Lease  

U.S. Energy Information Administration (EIA) Indexed Site

Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Texas - RRC District 1 Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 209 1980's 172 180 216 175 170 260 241 205 204 251 1990's 333 401 361 191 151 248 446 68 51 67 2000's 69 43 47 48 45 57 61 72 60 67 2010's 267 900 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 8/1/2013 Next Release Date: 8/1/2014 Referring Pages: Associated-Dissolved Natural Gas Proved Reserves, Wet After Lease

223

West Virginia Associated-Dissolved Natural Gas, Wet After Lease Separation,  

Gasoline and Diesel Fuel Update (EIA)

Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) West Virginia Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 76 1980's 122 63 83 86 73 73 65 150 141 98 1990's 86 159 198 190 133 74 71 59 43 88 2000's 98 48 21 23 20 19 16 16 23 24 2010's 29 52 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 8/1/2013 Next Release Date: 8/1/2014 Referring Pages: Associated-Dissolved Natural Gas Proved Reserves, Wet After Lease Separation, as of Dec. 31

224

,"U.S. Natural Gas Proved Reserves, Wet After Lease Separation...  

U.S. Energy Information Administration (EIA) Indexed Site

,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","U.S. Natural Gas Proved Reserves, Wet After Lease Separation",10,"Annual",2011,"6301979"...

225

Texas - RRC District 7B Nonassociated Natural Gas, Wet After Lease  

U.S. Energy Information Administration (EIA) Indexed Site

B Nonassociated Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) B Nonassociated Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Texas - RRC District 7B Nonassociated Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 608 1980's 530 655 733 872 645 574 589 546 576 364 1990's 413 379 380 393 332 263 378 299 306 275 2000's 242 203 237 314 288 859 1,589 2,350 2,682 2,322 2010's 2,504 3,754 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 8/1/2013 Next Release Date: 8/1/2014 Referring Pages: Nonassociated Natural Gas Proved Reserves, Wet After Lease

226

New York Natural Gas, Wet After Lease Separation Proved Reserves (Billion  

Gasoline and Diesel Fuel Update (EIA)

Gas, Wet After Lease Separation Proved Reserves (Billion Cubic Feet) Gas, Wet After Lease Separation Proved Reserves (Billion Cubic Feet) New York Natural Gas, Wet After Lease Separation Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 211 1980's 208 264 229 295 389 369 457 410 351 368 1990's 354 331 329 264 242 197 232 224 218 221 2000's 322 318 315 365 324 349 363 375 389 196 2010's 281 253 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 8/1/2013 Next Release Date: 8/1/2014 Referring Pages: Natural Gas Proved Reserves, Wet After Lease Separation, as of Dec. 31 New York Natural Gas Reserves Summary as of Dec. 31

227

Texas - RRC District 7B Natural Gas, Wet After Lease Separation Proved  

U.S. Energy Information Administration (EIA) Indexed Site

Natural Gas, Wet After Lease Separation Proved Reserves (Billion Cubic Feet) Natural Gas, Wet After Lease Separation Proved Reserves (Billion Cubic Feet) Texas - RRC District 7B Natural Gas, Wet After Lease Separation Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 842 1980's 862 947 947 1,210 937 850 833 828 840 560 1990's 627 536 550 580 513 539 610 559 510 465 2000's 356 290 294 383 364 932 1,663 2,412 2,750 2,424 2010's 2,625 3,887 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 8/1/2013 Next Release Date: 8/1/2014 Referring Pages: Natural Gas Proved Reserves, Wet After Lease Separation, as of Dec. 31 TX, RRC District 7B Natural Gas Reserves Summary as of Dec. 31

228

U.S. Federal Offshore Natural Gas, Wet After Lease Separation Proved  

U.S. Energy Information Administration (EIA) Indexed Site

Natural Gas, Wet After Lease Separation Proved Reserves (Billion Cubic Feet) Natural Gas, Wet After Lease Separation Proved Reserves (Billion Cubic Feet) U.S. Federal Offshore Natural Gas, Wet After Lease Separation Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 31,849 29,914 28,186 27,586 28,813 29,518 29,419 29,011 27,426 26,598 2000's 27,467 27,640 25,862 23,033 19,747 18,252 15,750 14,813 13,892 12,856 2010's 12,120 10,820 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 8/1/2013 Next Release Date: 8/1/2014 Referring Pages: Natural Gas Proved Reserves, Wet After Lease Separation, as of Dec. 31 Federal Offshore U.S. Natural Gas Reserves Summary as of Dec. 31

229

U.S. Federal Offshore Associated-Dissolved Natural Gas, Wet After Lease  

U.S. Energy Information Administration (EIA) Indexed Site

Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) U.S. Federal Offshore Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 6,773 6,487 6,315 6,120 6,738 7,471 7,437 7,913 7,495 7,093 2000's 7,010 8,649 8,090 7,417 6,361 5,904 4,835 4,780 5,106 5,223 2010's 5,204 5,446 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 8/1/2013 Next Release Date: 8/1/2014 Referring Pages: Associated-Dissolved Natural Gas Proved Reserves, Wet After Lease Separation, as of Dec. 31

230

U.S. Federal Offshore Nonassociated Natural Gas, Wet After Lease  

U.S. Energy Information Administration (EIA) Indexed Site

Nonassociated Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Nonassociated Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) U.S. Federal Offshore Nonassociated Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 25,076 23,427 21,871 21,466 22,075 22,047 21,982 21,098 19,931 19,505 2000's 20,456 18,990 17,772 15,616 13,386 12,348 10,915 10,033 8,786 7,633 2010's 6,916 5,374 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 8/1/2013 Next Release Date: 8/1/2014 Referring Pages: Nonassociated Natural Gas Proved Reserves, Wet After Lease Separation, as of Dec. 31

231

Texas - RRC District 2 Onshore Natural Gas, Wet After Lease Separation  

U.S. Energy Information Administration (EIA) Indexed Site

Natural Gas, Wet After Lease Separation Proved Reserves (Billion Cubic Feet) Natural Gas, Wet After Lease Separation Proved Reserves (Billion Cubic Feet) Texas - RRC District 2 Onshore Natural Gas, Wet After Lease Separation Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 3,034 1980's 2,566 2,726 2,565 2,637 2,626 2,465 2,277 2,373 2,131 1,849 1990's 1,825 1,479 1,484 1,425 1,468 1,371 1,430 1,732 1,720 1,974 2000's 2,045 1,863 1,867 1,849 1,934 2,175 2,166 2,386 2,364 1,909 2010's 2,235 3,690 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 8/1/2013 Next Release Date: 8/1/2014 Referring Pages: Natural Gas Proved Reserves, Wet After Lease Separation, as of Dec.

232

Louisiana - South Onshore Associated-Dissolved Natural Gas, Wet After Lease  

U.S. Energy Information Administration (EIA) Indexed Site

South Onshore Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) South Onshore Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Louisiana - South Onshore Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 2,304 1980's 2,134 1,871 1,789 1,582 1,488 1,792 1,573 1,380 1,338 1,273 1990's 1,106 995 853 649 678 720 627 599 630 599 2000's 492 483 427 368 389 427 415 503 471 506 2010's 499 490 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 8/1/2013 Next Release Date: 8/1/2014 Referring Pages: Associated-Dissolved Natural Gas Proved Reserves, Wet After Lease

233

Gulf of Mexico Federal Offshore - Louisiana and Alabama Natural Gas, Wet  

U.S. Energy Information Administration (EIA) Indexed Site

Natural Gas, Wet After Lease Separation Proved Reserves (Billion Cubic Feet) Natural Gas, Wet After Lease Separation Proved Reserves (Billion Cubic Feet) Gulf of Mexico Federal Offshore - Louisiana and Alabama Natural Gas, Wet After Lease Separation Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 28,772 1990's 23,050 22,028 20,006 19,751 21,208 21,664 22,119 22,428 21,261 20,172 2000's 20,466 20,290 19,113 17,168 15,144 14,073 12,201 11,458 10,785 9,665 2010's 9,250 8,555 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 8/1/2013 Next Release Date: 8/1/2014 Referring Pages: Natural Gas Proved Reserves, Wet After Lease Separation, as of Dec.

234

Texas - RRC District 5 Natural Gas, Wet After Lease Separation Proved  

U.S. Energy Information Administration (EIA) Indexed Site

Natural Gas, Wet After Lease Separation Proved Reserves (Billion Cubic Feet) Natural Gas, Wet After Lease Separation Proved Reserves (Billion Cubic Feet) Texas - RRC District 5 Natural Gas, Wet After Lease Separation Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 1,189 1980's 1,192 1,309 1,369 1,529 1,955 2,140 2,238 2,224 2,090 1,925 1990's 1,951 1,930 1,818 1,931 2,074 1,923 2,141 1,749 1,995 2,350 2000's 3,217 4,289 4,653 5,460 6,583 9,611 12,648 17,274 20,460 22,623 2010's 24,694 28,187 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 8/1/2013 Next Release Date: 8/1/2014 Referring Pages: Natural Gas Proved Reserves, Wet After Lease Separation, as of Dec.

235

Texas - RRC District 9 Natural Gas, Wet After Lease Separation Proved  

U.S. Energy Information Administration (EIA) Indexed Site

Natural Gas, Wet After Lease Separation Proved Reserves (Billion Cubic Feet) Natural Gas, Wet After Lease Separation Proved Reserves (Billion Cubic Feet) Texas - RRC District 9 Natural Gas, Wet After Lease Separation Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 808 1980's 751 1,070 1,264 1,100 1,060 1,043 1,024 984 927 829 1990's 917 874 797 814 863 868 870 932 864 1,360 2000's 1,854 2,552 3,210 3,639 4,555 4,734 6,765 7,985 9,548 11,522 2010's 13,172 10,920 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 8/1/2013 Next Release Date: 8/1/2014 Referring Pages: Natural Gas Proved Reserves, Wet After Lease Separation, as of Dec.

236

Texas - RRC District 4 Onshore Natural Gas, Wet After Lease Separation  

U.S. Energy Information Administration (EIA) Indexed Site

Natural Gas, Wet After Lease Separation Proved Reserves (Billion Cubic Feet) Natural Gas, Wet After Lease Separation Proved Reserves (Billion Cubic Feet) Texas - RRC District 4 Onshore Natural Gas, Wet After Lease Separation Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 8,559 1980's 8,366 8,256 8,692 8,612 8,796 8,509 8,560 7,768 7,284 7,380 1990's 7,774 7,339 7,041 7,351 7,870 8,021 8,123 8,483 8,824 9,351 2000's 10,118 10,345 9,861 9,055 9,067 9,104 8,474 8,327 7,930 7,057 2010's 7,392 10,054 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 8/1/2013 Next Release Date: 8/1/2014 Referring Pages: Natural Gas Proved Reserves, Wet After Lease Separation, as of Dec.

237

Texas - RRC District 8 Natural Gas, Wet After Lease Separation Proved  

U.S. Energy Information Administration (EIA) Indexed Site

Natural Gas, Wet After Lease Separation Proved Reserves (Billion Cubic Feet) Natural Gas, Wet After Lease Separation Proved Reserves (Billion Cubic Feet) Texas - RRC District 8 Natural Gas, Wet After Lease Separation Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 10,718 1980's 9,785 9,250 8,992 9,078 8,294 8,250 8,330 7,871 7,810 7,531 1990's 7,391 6,793 6,534 6,131 6,018 6,052 6,050 6,030 5,547 6,122 2000's 6,136 6,007 6,056 5,835 6,002 6,800 6,855 7,303 7,586 7,440 2010's 8,105 8,088 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 8/1/2013 Next Release Date: 8/1/2014 Referring Pages: Natural Gas Proved Reserves, Wet After Lease Separation, as of Dec.

238

Texas Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved  

Gasoline and Diesel Fuel Update (EIA)

Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Texas Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 10,832 10,753 9,735 9,340 9,095 9,205 1990's 8,999 8,559 8,667 7,880 7,949 7,787 8,160 7,786 7,364 7,880 2000's 6,833 6,089 6,387 6,437 6,547 7,003 7,069 7,530 7,559 8,762 2010's 10,130 13,507 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 8/1/2013 Next Release Date: 8/1/2014 Referring Pages: Associated-Dissolved Natural Gas Proved Reserves, Wet After Lease

239

Texas - RRC District 8A Natural Gas, Wet After Lease Separation Proved  

U.S. Energy Information Administration (EIA) Indexed Site

Natural Gas, Wet After Lease Separation Proved Reserves (Billion Cubic Feet) Natural Gas, Wet After Lease Separation Proved Reserves (Billion Cubic Feet) Texas - RRC District 8A Natural Gas, Wet After Lease Separation Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 1,556 1980's 1,465 1,545 1,457 1,345 1,315 1,353 1,309 1,301 1,291 1,550 1990's 1,547 1,542 1,598 1,463 1,587 1,333 1,294 1,247 1,115 1,557 2000's 1,215 1,190 1,167 1,137 1,281 1,471 1,384 1,531 1,257 1,289 2010's 1,228 1,289 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 8/1/2013 Next Release Date: 8/1/2014 Referring Pages: Natural Gas Proved Reserves, Wet After Lease Separation, as of Dec.

240

Texas - RRC District 7C Natural Gas, Wet After Lease Separation Proved  

U.S. Energy Information Administration (EIA) Indexed Site

Natural Gas, Wet After Lease Separation Proved Reserves (Billion Cubic Feet) Natural Gas, Wet After Lease Separation Proved Reserves (Billion Cubic Feet) Texas - RRC District 7C Natural Gas, Wet After Lease Separation Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 3,080 1980's 2,543 2,750 2,928 2,855 3,169 3,255 3,039 3,032 3,101 3,497 1990's 3,829 3,592 3,621 3,578 3,660 3,468 4,063 3,843 3,496 3,593 2000's 4,132 3,757 4,167 4,791 5,190 5,702 5,727 6,028 5,529 5,430 2010's 5,432 5,236 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 8/1/2013 Next Release Date: 8/1/2014 Referring Pages: Natural Gas Proved Reserves, Wet After Lease Separation, as of Dec.

Note: This page contains sample records for the topic "recoverable wet natural" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

Texas - RRC District 10 Natural Gas, Wet After Lease Separation Proved  

U.S. Energy Information Administration (EIA) Indexed Site

Natural Gas, Wet After Lease Separation Proved Reserves (Billion Cubic Feet) Natural Gas, Wet After Lease Separation Proved Reserves (Billion Cubic Feet) Texas - RRC District 10 Natural Gas, Wet After Lease Separation Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 7,289 1980's 6,927 6,720 6,731 6,485 6,060 6,044 5,857 5,512 5,300 5,213 1990's 4,919 5,061 4,859 4,478 4,669 4,910 4,845 4,613 4,744 4,688 2000's 4,433 4,263 4,299 4,510 5,383 5,430 5,950 6,932 7,601 7,594 2010's 8,484 8,373 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 8/1/2013 Next Release Date: 8/1/2014 Referring Pages: Natural Gas Proved Reserves, Wet After Lease Separation, as of Dec.

242

Ohio Natural Gas, Wet After Lease Separation Proved Reserves (Billion Cubic  

Gasoline and Diesel Fuel Update (EIA)

Gas, Wet After Lease Separation Proved Reserves (Billion Cubic Feet) Gas, Wet After Lease Separation Proved Reserves (Billion Cubic Feet) Ohio Natural Gas, Wet After Lease Separation Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 1,479 1980's 1,699 965 1,142 2,031 1,542 1,333 1,420 1,071 1,229 1,275 1990's 1,215 1,181 1,161 1,106 1,095 1,054 1,114 985 890 1,179 2000's 1,186 971 1,118 1,127 975 898 975 1,027 985 896 2010's 832 758 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 8/1/2013 Next Release Date: 8/1/2014 Referring Pages: Natural Gas Proved Reserves, Wet After Lease Separation, as of Dec. 31 Ohio Natural Gas Reserves Summary as of Dec. 31

243

,"Crude Oil and Lease Condensate","Wet Natural Gas"  

U.S. Energy Information Administration (EIA) Indexed Site

Changes to proved reserves, 2011" Changes to proved reserves, 2011" ,"Crude Oil and Lease Condensate","Wet Natural Gas" ,"(billion barrels)","(trillion cubic feet)" "U.S. proved reserves at December 31, 2011",25.18,317.647 " Total discoveries",3.68,49.9 " Net revisions",1.41,-0.1 " Net Adjustments, Sales, Acquisitions",0.74,6 " Production",-2.06,-24.6 "Net additions to U.S. proved reserves",3.77,31.2 "Reserves at December 31, 2011",28.95,348.8 "Percentage change in proved reserves",0.15,0.098 "Notes: Wet natural gas includes natural gas plant liquids. Columns may not add to total due to independent rounding." "Percent change calculated from unrounded numbers."

244

Utah Natural Gas, Wet After Lease Separation Proved Reserves (Billion Cubic  

Gasoline and Diesel Fuel Update (EIA)

Gas, Wet After Lease Separation Proved Reserves (Billion Cubic Feet) Gas, Wet After Lease Separation Proved Reserves (Billion Cubic Feet) Utah Natural Gas, Wet After Lease Separation Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 1,017 1980's 1,284 2,057 2,253 2,472 2,325 2,288 2,205 2,341 1,984 1,940 1990's 1,887 2,001 2,018 2,198 1,917 1,701 1,747 2,005 2,502 3,371 2000's 4,472 4,753 4,274 3,617 3,951 4,359 5,211 6,463 6,714 7,411 2010's 7,146 8,108 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 8/1/2013 Next Release Date: 8/1/2014 Referring Pages: Natural Gas Proved Reserves, Wet After Lease Separation, as of Dec.

245

New Mexico Natural Gas, Wet After Lease Separation Proved Reserves (Billion  

Gasoline and Diesel Fuel Update (EIA)

Gas, Wet After Lease Separation Proved Reserves (Billion Cubic Feet) Gas, Wet After Lease Separation Proved Reserves (Billion Cubic Feet) New Mexico Natural Gas, Wet After Lease Separation Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 14,391 1980's 13,956 14,562 13,082 12,371 12,027 11,438 12,540 12,621 18,483 16,597 1990's 18,529 19,758 20,399 19,939 18,588 18,747 17,925 16,700 16,259 16,750 2000's 18,509 18,559 18,453 18,226 19,687 19,344 19,104 18,397 17,347 16,644 2010's 16,529 16,138 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 8/1/2013 Next Release Date: 8/1/2014 Referring Pages: Natural Gas Proved Reserves, Wet After Lease Separation, as of Dec.

246

New Mexico - West Natural Gas, Wet After Lease Separation Proved Reserves  

Gasoline and Diesel Fuel Update (EIA)

Gas, Wet After Lease Separation Proved Reserves (Billion Cubic Feet) Gas, Wet After Lease Separation Proved Reserves (Billion Cubic Feet) New Mexico - West Natural Gas, Wet After Lease Separation Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 10,085 1980's 10,157 10,686 9,377 8,834 8,535 8,128 9,558 9,488 15,259 13,266 1990's 14,988 16,287 16,981 16,601 15,253 15,540 14,728 13,692 13,220 13,384 2000's 14,511 14,640 14,442 14,565 15,722 15,212 14,809 14,010 12,941 12,086 2010's 11,809 11,254 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 8/1/2013 Next Release Date: 8/1/2014 Referring Pages: Natural Gas Proved Reserves, Wet After Lease Separation, as of Dec.

247

A Methodology to Determine both the Technically Recoverable Resource and the Economically Recoverable Resource in an Unconventional Gas Play  

E-Print Network (OSTI)

During the past decade, the worldwide demand for energy has continued to increase at a rapid rate. Natural gas has emerged as a primary source of US energy. The technically recoverable natural gas resources in the United States have increased from approximately 1,400 trillion cubic feet (Tcf) to approximately 2,100 trillion cubic feet (Tcf) in 2010. The recent declines in gas prices have created short-term uncertainties and increased the risk of developing natural gas fields, rendering a substantial portion of this resource uneconomical at current gas prices. This research quantifies the impact of changes in finding and development costs (FandDC), lease operating expenses (LOE), and gas prices, in the estimation of the economically recoverable gas for unconventional plays. To develop our methodology, we have performed an extensive economic analysis using data from the Barnett Shale, as a representative case study. We have used the cumulative distribution function (CDF) of the values of the Estimated Ultimate Recovery (EUR) for all the wells in a given gas play, to determine the values of the P10 (10th percentile), P50 (50th percentile), and P90 (90th percentile) from the CDF. We then use these probability values to calculate the technically recoverable resource (TRR) for the play, and determine the economically recoverable resource (ERR) as a function of FandDC, LOE, and gas price. Our selected investment hurdle for a development project is a 20 percent rate of return and a payout of 5 years or less. Using our methodology, we have developed software to solve the problem. For the Barnett Shale data, at a FandDC of 3 Million dollars, we have found that 90 percent of the Barnet shale gas is economically recoverable at a gas price of 46 dollars/Mcf, 50 percent of the Barnet shale gas is economically recoverable at a gas price of 9.2 dollars/Mcf, and 10 percent of the Barnet shale gas is economically recoverable at a gas price of 5.2 dollars/Mcf. The developed methodology and software can be used to analyze other unconventional gas plays to reduce short-term uncertainties and determine the values of FandDC and gas prices that are required to recover economically a certain percentage of TRR.

Almadani, Husameddin Saleh A.

2010-08-01T23:59:59.000Z

248

U.S. Associated-Dissolved Natural Gas, Wet After Lease Separation, New  

Gasoline and Diesel Fuel Update (EIA)

Reservoir Discoveries in Old Fields (Billion Cubic Feet) Reservoir Discoveries in Old Fields (Billion Cubic Feet) U.S. Associated-Dissolved Natural Gas, Wet After Lease Separation, New Reservoir Discoveries in Old Fields (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 264 1980's 369 271 365 326 296 341 189 155 339 174 1990's 250 334 292 163 202 634 338 187 218 424 2000's 249 477 331 124 97 79 65 73 820 169 2010's 186 160 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 8/1/2013 Next Release Date: 8/1/2014 Referring Pages: Associated-Dissolved Natural Gas New Reservoir Discoveries in Old Fields, Wet After Lease Separation

249

Table 3. Changes to proved reserves of wet natural gas by source, 2011  

U.S. Energy Information Administration (EIA) Indexed Site

Changes to proved reserves of wet natural gas by source, 2011" Changes to proved reserves of wet natural gas by source, 2011" "trillion cubic feet" ,"Proved",,"Revisions &",,"Proved" ,"Reserves","Discoveries","Other Changes","Production","Reserves" "Source of Gas","Year-End 2010",2011,2011,2011,"Year-End 2011" "Coalbed Methane",17.5,0.7,0.4,-1.8,16.8 "Shale",97.4,33.7,8.5,-8,131.6 "Other (Conventional & Tight)" " Lower 48 Onshore",181.7,14.7,-3.5,-12.8,180.1 " Lower 48 Offshore",12.1,0.8,-0.4,-1.7,10.8 " Alaska",8.9,0,0.9,-0.3,9.5 "TOTAL",317.6,49.9,5.9,-24.6,348.8 "Source: U.S. Energy Information Administration, Form EIA-23, "Annual Survey of Domestic Oil and Gas Reserves."

250

Texas - RRC District 2 Onshore Nonassociated Natural Gas, Wet After Lease  

U.S. Energy Information Administration (EIA) Indexed Site

2 Onshore Nonassociated Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) 2 Onshore Nonassociated Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Texas - RRC District 2 Onshore Nonassociated Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 2,079 1980's 1,645 1,920 1,785 1,890 1,965 1,895 1,760 1,861 1,703 1,419 1990's 1,418 1,127 1,176 1,137 1,169 1,126 1,178 1,497 1,516 1,772 2000's 1,930 1,798 1,797 1,768 1,858 2,066 2,048 2,249 2,292 1,837 2010's 2,101 2,766 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 8/1/2013 Next Release Date: 8/1/2014

251

Texas - RRC District 7C Nonassociated Natural Gas, Wet After Lease  

U.S. Energy Information Administration (EIA) Indexed Site

7C Nonassociated Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) 7C Nonassociated Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Texas - RRC District 7C Nonassociated Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 2,427 1980's 2,023 2,065 2,224 2,150 2,393 2,475 2,373 2,295 2,374 2,776 1990's 3,061 2,833 2,873 2,945 3,029 2,828 3,371 3,247 2,939 2,977 2000's 3,439 3,123 3,430 3,864 4,196 4,665 4,531 4,714 4,147 3,724 2010's 3,502 2,857 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 8/1/2013 Next Release Date: 8/1/2014 Referring Pages:

252

New Mexico Associated-Dissolved Natural Gas, Wet After Lease Separation,  

Gasoline and Diesel Fuel Update (EIA)

Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) New Mexico Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 1,823 1980's 1,689 1,649 1,520 1,503 1,569 1,490 1,446 1,445 1,453 1,378 1990's 1,435 1,554 1,597 1,585 1,641 1,678 1,693 1,420 1,443 1,578 2000's 1,588 1,447 1,482 1,545 1,578 1,661 1,772 1,841 1,755 1,982 2010's 2,213 2,552 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 8/1/2013 Next Release Date: 8/1/2014 Referring Pages:

253

Texas - RRC District 4 Onshore Nonassociated Natural Gas, Wet After Lease  

U.S. Energy Information Administration (EIA) Indexed Site

4 Onshore Nonassociated Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) 4 Onshore Nonassociated Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Texas - RRC District 4 Onshore Nonassociated Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 7,143 1980's 7,074 7,251 7,802 7,847 8,094 7,825 7,964 7,317 6,891 7,009 1990's 7,473 7,096 6,813 7,136 7,679 7,812 7,877 8,115 8,430 9,169 2000's 9,942 10,206 9,711 8,919 8,902 8,956 8,364 8,210 7,803 6,961 2010's 7,301 9,993 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 8/1/2013 Next Release Date: 8/1/2014

254

New Mexico - East Associated-Dissolved Natural Gas, Wet After Lease  

Gasoline and Diesel Fuel Update (EIA)

Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) New Mexico - East Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 1,672 1980's 1,533 1,499 1,374 1,323 1,375 1,309 1,232 1,232 1,194 1,200 1990's 1,251 1,398 1,470 1,478 1,544 1,559 1,585 1,314 1,345 1,486 2000's 1,473 1,348 1,379 1,456 1,488 1,563 1,690 1,754 1,669 1,900 2010's 2,108 2,409 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 8/1/2013 Next Release Date: 8/1/2014 Referring Pages:

255

Alaska Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved  

Gasoline and Diesel Fuel Update (EIA)

Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Alaska Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 27,217 1980's 28,567 28,676 30,814 30,408 30,356 31,092 30,893 30,732 6,269 6,198 1990's 6,927 6,729 6,723 6,494 6,487 6,265 6,080 7,716 7,275 7,209 2000's 6,768 6,592 6,376 6,267 6,469 6,362 8,886 10,752 6,627 8,093 2010's 7,896 8,535 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 8/1/2013 Next Release Date: 8/1/2014 Referring Pages:

256

Lower 48 States Associated-Dissolved Natural Gas, Wet After Lease  

U.S. Energy Information Administration (EIA) Indexed Site

Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Lower 48 States Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 32,208 1980's 33,443 32,870 31,268 31,286 30,282 29,515 28,684 27,457 26,609 26,611 1990's 26,242 25,088 24,701 23,551 23,913 24,532 24,715 24,666 23,385 24,206 2000's 23,065 23,232 23,165 22,285 21,180 21,874 20,754 21,916 22,396 25,290 2010's 27,850 34,288 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 8/1/2013 Next Release Date: 8/1/2014

257

Table 15. Recoverable Coal Reserves at Producing Mines, Estimated Recoverable Reserves, and Demonstrated Reserve by Mining Method,  

U.S. Energy Information Administration (EIA) Indexed Site

Recoverable Coal Reserves at Producing Mines, Estimated Recoverable Reserves, and Demonstrated Reserve by Mining Method, Recoverable Coal Reserves at Producing Mines, Estimated Recoverable Reserves, and Demonstrated Reserve by Mining Method, 2012 (million short tons) U.S. Energy Information Administration | Annual Coal Report 2012 Table 15. Recoverable Coal Reserves at Producing Mines, Estimated Recoverable Reserves, and Demonstrated Reserve by Mining Method, 2012 (million short tons) U.S. Energy Information Administration | Annual Coal Report 2012 Underground - Minable Coal Surface - Minable Coal Total Coal-Resource State Recoverable Reserves at Producing Mines Estimated Recoverable Reserves Demonstrated Reserve Base Recoverable Reserves at Producing Mines Estimated Recoverable Reserves Demonstrated Reserve Base Recoverable Reserves at Producing Mines Estimated Recoverable Reserves Demonstrated Reserve Base

258

Resource Assessment of the In-Place and Potentially Recoverable Deep Natural Gas Resource of the Onshore Interior Salt Basins, North Central and Northeastern Gulf of Mexico  

Science Conference Proceedings (OSTI)

The objectives of the study were: (1) to perform resource assessment of the thermogenic gas resources in deeply buried (>15,000 ft) natural gas reservoirs of the onshore interior salt basins of the north central and northeastern Gulf of Mexico areas through petroleum system identification, characterization and modeling; and (2) to use the petroleum system based resource assessment to estimate the volume of the deep thermogenic gas resource that is available for potential recovery and to identify those areas in the interior salt basins with high potential for this thermogenic gas resource. Petroleum source rock analysis and petroleum system characterization and modeling, including thermal maturation and hydrocarbon expulsion modeling, have shown that the Upper Jurassic Smackover Formation served as the regional petroleum source rock in the North Louisiana Salt Basin, Mississippi Interior Salt Basin, Manila Subbasin and Conecuh Subbasin. Thus, the estimates of the total hydrocarbons, oil, and gas generated and expelled are based on the assumption that the Smackover Formation is the main petroleum source rock in these basins and subbasins. The estimate of the total hydrocarbons generated for the North Louisiana Salt Basin in this study using a petroleum system approach compares favorably with the total volume of hydrocarbons generated published by Zimmermann (1999). In this study, the estimate is 2,870 billion barrels of total hydrocarbons generated using the method of Schmoker (1994), and the estimate is 2,640 billion barrels of total hydrocarbons generated using the Platte River software application. The estimate of Zimmermann (1999) is 2,000 to 2,500 billion barrels of total hydrocarbons generated. The estimate of gas generated for this basin is 6,400 TCF using the Platte River software application, and 12,800 TCF using the method of Schmoker (1994). Barnaby (2006) estimated that the total gas volume generated for this basin ranges from 4,000 to 8,000 TCF. Seventy-five percent of the gas is estimated to be from late cracking of oil in the source rock. Lewan (2002) concluded that much of the thermogenic gas produced in this basin is the result of cracking of oil to gas in deeply buried reservoirs. The efficiency of expulsion, migration and trapping has been estimated to range from 0.5 to 10 percent for certain basins (Schmoker, 1994: Zimmerman, 1999). The estimate of the total hydrocarbons generated for the Mississippi Interior Salt Basin is 910 billion barrels using the method of Schmoker (1994), and the estimate of the total hydrocarbons generated is 1,540 billion barrels using the Platte River software application. The estimate of gas generated for this basin is 3,130 TCF using the Platte River software application, and 4,050 TCF using the method of Schmoker (1994). Seventy-five percent of the gas is estimated to be from late cracking of oil in the source rock. Claypool and Mancini (1989) report that the conversion of oil to gas in reservoirs is a significant source of thermogenic gas in this basin. The Manila and Conecuh Subbasins are oil-prone. Although these subbasins are thermally mature for oil generation and expulsion, they are not thermally mature for secondary, non-associated gas generation and expulsion. The gas produced from the highly productive gas condensate fields (Big Escambia Creek and Flomaton fields) in these subbasins has been interpreted to be, in part, a product of the cracking of oil to gas and thermochemical reduction of evaporite sulfate in the reservoirs (Claypool and Mancini, 1989). The areas in the North Louisiana and Mississippi Interior Salt Basins with high potential for deeply buried gas reservoirs (>15,000 ft) have been identified. In the North Louisiana Salt Basin, these potential reservoirs include Upper Jurassic and Lower Cretaceous facies, especially the Smackover, Cotton Valley, Hosston, and Sligo units. The estimate of the secondary, non-associated gas generated from cracking of oil in the source rock from depths below 12,000 feet in this basin is 4,800 TCF. Assuming an expul

Ernest A. Mancini

2006-09-30T23:59:59.000Z

259

Figure 8. Technically Recoverable and Commercially Developable...  

Gasoline and Diesel Fuel Update (EIA)

Oil at 95 Percent, Mean, and 5 Percent Probabilities for Given Oil Prices as a Percentage of Technically Recoverable Oil for the ANWR 1002 Area of the Alaska North Slope...

260

Table 9. Total U.S. proved reserves of wet natural gas and dry natural gas, 2001-2011  

U.S. Energy Information Administration (EIA) Indexed Site

: Total U.S. proved reserves of wet natural gas and dry natural gas, 2001-2011 : Total U.S. proved reserves of wet natural gas and dry natural gas, 2001-2011 billion cubic feet Revisions a Net of Sales b New Reservoir Proved d Change Net and and New Field Discoveries Total c Estimated Reserves from Adjustments Revisions Adjustments Acquisitions Extensions Discoveries in Old Fields Discoveries Production 12/31 Prior Year Year (1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) Wet Natural Gas (billion cubic feet) 2001 1,849 -2,438 -589 2,715 17,183 3,668 2,898 23,749 20,642 191,743 5,233 2002 4,006 1,038 5,044 428 15,468 1,374 1,752 18,594 20,248 195,561 3,818 2003 2,323 -1,715 608 1,107 17,195 1,252 1,653 20,100 20,231 197,145 1,584 2004 170 825 995 1,975 19,068 790 1,244 21,102 20,017 201,200 4,055 2005 1,693 2,715 4,408 2,674 22,069 973 1,243 24,285 19,259 213,308 12,108 2006 946 -2,099 -1,153 3,178 22,834 425 1,197 24,456 19,373 220,416

Note: This page contains sample records for the topic "recoverable wet natural" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

Lower 48 States Natural Gas, Wet After Lease Separation Proved Reserves  

U.S. Energy Information Administration (EIA) Indexed Site

Gas, Wet After Lease Separation Proved Reserves (Billion Cubic Feet) Gas, Wet After Lease Separation Proved Reserves (Billion Cubic Feet) Lower 48 States Natural Gas, Wet After Lease Separation Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 176,060 1980's 172,864 176,385 174,252 174,755 171,508 167,979 167,754 162,713 167,820 166,409 1990's 168,183 165,672 163,584 160,504 162,126 163,901 165,851 165,048 162,400 166,304 2000's 177,179 182,842 187,028 188,797 192,727 205,071 210,083 235,767 247,269 274,696 2010's 308,730 339,298 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 8/1/2013 Next Release Date: 8/1/2014

262

Table 15. Shale natural gas proved reserves, reserves changes, and production, wet after lease separation, 2011  

U.S. Energy Information Administration (EIA) Indexed Site

: Shale natural gas proved reserves, reserves changes, and production, wet after lease separation, 2011 : Shale natural gas proved reserves, reserves changes, and production, wet after lease separation, 2011 billion cubic feet Published New Reservoir Proved Revision Revision New Field Discoveries Estimated Proved Reserves Adjustments Increases Decreases Sales Acquisitions Extensions Discoveries in Old FieldsProduction Reserves State and Subdivision 12/31/10 (+,-) (+) (-) (-) (+) (+) (+) (+) (-) 12/31/11 Alaska 0 0 0 0 0 0 0 0 0 0 0 Lower 48 States 97,449 1,584 25,993 23,455 22,694 27,038 32,764 232 699 7,994 131,616 Alabama 0 0 0 0 0 0 0 0 0 0 0 Arkansas 12,526 655 502 141 6,087 6,220 2,073 0 0 940 14,808 California 0 1 912 0 0 0 43 0 0 101 855 Colorado 4 0 4 0 0 0 5 0 0 3 10 Florida 0 0 0 0 0 0 0 0 0 0 0 Kansas 0 0 0 0 0 0 0 0 0 0 0 Kentucky 10 0 44 11 45 45 2 0 0 4 41 Louisiana 20,070 -172 2,002 3,882 3,782 4,291 5,367 0 140 2,084 21,950 North Onshore 20,070 -172 2,002 3,882 3,782 4,291 5,367

263

Table 10. Total natural gas proved reserves, reserves changes, and production, wet after lease separation, 2011  

U.S. Energy Information Administration (EIA) Indexed Site

: Total natural gas proved reserves, reserves changes, and production, wet after lease separation, 2011 : Total natural gas proved reserves, reserves changes, and production, wet after lease separation, 2011 billion cubic feet Published New Reservoir Proved Revision Revision New Field Discoveries Estimated Proved Reserves Adjustments Increases Decreases Sales Acquisitions Extensions Discoveries in Old Fields Production Reserves State and subdivision 12/31/10 (+,-) (+) (-) (-) (+) (+) (+) (+) (-) 12/31/11 Alaska 8,917 -2 938 207 36 222 4 0 3 328 9,511 Lower 48 States 308,730 2,717 55,077 55,920 44,539 47,651 47,631 987 1,257 24,293 339,298 Alabama 2,724 -45 472 163 595 398 3 2 0 226 2,570 Arkansas 14,181 729 631 324 6,762 6,882 2,094 0 23 1,080 16,374 California 2,785 917 1,542 1,959 49 55 75 0 0 324 3,042 Coastal Region Onshore 180 15 21 32 0 0 1 0 0 12 173 Los Angeles Basin Onshore 92 6 12 4 0 3 0 0 0 7 102 San Joaquin Basin Onshore 2,447 895 1,498

264

U.S. Natural Gas, Wet After Lease Separation New Reservoir Discoveries in  

Gasoline and Diesel Fuel Update (EIA)

New Reservoir Discoveries in Old Fields (Billion Cubic Feet) New Reservoir Discoveries in Old Fields (Billion Cubic Feet) U.S. Natural Gas, Wet After Lease Separation New Reservoir Discoveries in Old Fields (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 2,637 1980's 2,648 3,080 3,520 3,071 2,778 3,053 1,855 1,556 1,979 2,313 1990's 2,492 1,655 1,773 1,930 3,606 2,518 3,209 2,455 2,240 2,265 2000's 2,463 2,898 1,752 1,653 1,244 1,243 1,197 1,244 1,678 2,656 2010's 1,701 1,260 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 8/1/2013 Next Release Date: 8/1/2014 Referring Pages: New Reservoir Discoveries in Old Fields of Natural Gas, Wet After

265

Table 12. Nonassociated natural gas proved reserves, reserves changes, and production, wet after lease separation, 2011  

U.S. Energy Information Administration (EIA) Indexed Site

: Nonassociated natural gas proved reserves, reserves changes, and production, wet after lease separation, 2011 : Nonassociated natural gas proved reserves, reserves changes, and production, wet after lease separation, 2011 billion cubic feet Published New Reservoir Proved Revision Revision New Field Discoveries Estimated Proved Reserves Adjustments Increases Decreases SalesAcquisitions Extensions Discoveries in Old Fields Production Reserves State and Subdivision 12/31/10 (+,-) (+) (-) (-) (+) (+) (+) (+) (-) 12/31/11 Alaska 1,021 -1 95 128 34 171 1 0 3 152 976 Lower 48 States 280,880 2,326 47,832 50,046 43,203 45,818 41,677 376 1,097 21,747 305,010 Alabama 2,686 -48 470 163 586 378 3 0 0 218 2,522 Arkansas 14,152 705 581 311 6,724 6,882 2,094 0 23 1,074 16,328 California 503 -12 118 32 48 44 1 0 0 64 510 Coastal Region Onshore 2 0 0 1 0 0 0 0 0 0 1 Los Angeles Basin Onshore 0 0 0 0 0 0 0 0 0 0 0 San Joaquin Basin Onshore 498 -12 116 31 47 44 1 0 0 63 506 State Offshore

266

U.S. Nonassociated Natural Gas, Wet After Lease Separation, New Reservoir  

Gasoline and Diesel Fuel Update (EIA)

Reservoir Discoveries in Old Fields (Billion Cubic Feet) Reservoir Discoveries in Old Fields (Billion Cubic Feet) U.S. Nonassociated Natural Gas, Wet After Lease Separation, New Reservoir Discoveries in Old Fields (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 2,373 1980's 2,279 2,809 3,155 2,745 2,482 2,712 1,666 1,401 1,640 2,139 1990's 2,242 1,321 1,481 1,767 3,404 1,884 2,871 2,268 2,022 1,841 2000's 2,211 2,420 1,421 1,529 1,147 1,164 1,132 1,171 858 2,487 2010's 1,515 1,100 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 8/1/2013 Next Release Date: 8/1/2014 Referring Pages: Nonassociated Natural Gas New Reservoir Discoveries in Old Fields,

267

Quantitative analysis of the economically recoverable resource  

Science Conference Proceedings (OSTI)

The objective of this study is to obtain estimates of the economically recoverable gas in the Appalachian Basin. The estimates were obtained in terms of a probability distribution, which quantifies the inherent uncertainty associated with estimates where geologic and production uncertainties prevail. It is established that well productivity on a county and regional basis is lognormally distributed, and the total recoverable gas is Normally distributed. The expected (mean), total economically recoverable gas is 20.2 trillion cubic feet (TCF) with a standard deviation of 1.6 TCF, conditional on the use of shooting technology on 160-acre well-spacing. From properties of the Normal distribution, it is seen that a 95 percent probability exists for the total recoverable gas to lie between 17.06 and 23.34 TCF. The estimates are sensitive to well spacings and the technology applied to a particular geologic environment. It is observed that with smaller well spacings - for example, at 80 acres - the estimate is substantially increased, and that advanced technology, such as foam fracturing, has the potential of significantly increasing gas recovery. However, the threshold and optimum conditions governing advanced exploitation technology, based on well spacing and other parameters, were not analyzed in this study. Their technological impact on gas recovery is mentioned in the text where relevant; and on the basis of a rough projection an additional 10 TCF could be expected with the use of foam fracturing on wells with initial open flows lower than 300 MCFD. From the exploration point of view, the lognormal distribution of well productivity suggests that even in smaller areas, such as a county basis, intense exploration might be appropriate. This is evident from the small tail probabilities of the lognormal distribution, which represent the small number of wells with relatively very high productivity.

Pulle, C.V.; Seskus, A.P.

1981-05-01T23:59:59.000Z

268

Technically recoverable Devonian shale gas in Ohio  

SciTech Connect

The technically recoverable gas from Devonian shale (Lower and Middle Huron) in Ohio is estimated to range from 6.2 to 22.5 Tcf, depending on the stimulation method and pattern size selected. This estimate of recovery is based on the integration of the most recent data and research on the Devonian Age gas-bearing shales of Ohio. This includes: (1) a compilation of the latest geologic and reservoir data for the gas in-place; (2) analysis of the key productive mechanisms; and, (3) examination of alternative stimulation and production strategies for most efficiently recovering this gas. Beyond a comprehensive assembly of the data and calculation of the technically recoverable gas, the key findings of this report are as follows: a substantial volume of gas is technically recoverable, although advanced (larger scale) stimulation technology will be required to reach economically attractive gas production rates in much of the state; well spacing in certain of the areas can be reduced by half from the traditional 150 to 160 acres per well without severely impairing per-well gas recovery; and, due to the relatively high degree of permeability anisotropy in the Devonian shales, a rectangular, generally 3 by 1 well pattern leads to optimum recovery. Finally, although a consistent geological interpretation and model have been constructed for the Lower and Middle Huron intervals of the Ohio Devonian shale, this interpretation is founded on limited data currently available, along with numerous technical assumptions that need further verification. 11 references, 21 figures, 32 tables.

Kuushraa, V.A.; Wicks, D.E.; Sawyer, W.K.; Esposito, P.R.

1983-07-01T23:59:59.000Z

269

Moving zone Marangoni drying of wet objects using naturally evaporated solvent vapor  

DOE Patents (OSTI)

A surface tension gradient driven flow (a Marangoni flow) is used to remove the thin film of water remaining on the surface of an object following rinsing. The process passively introduces by natural evaporation and diffusion of minute amounts of alcohol (or other suitable material) vapor in the immediate vicinity of a continuously refreshed meniscus of deionized water or another aqueous-based, nonsurfactant rinsing agent. Used in conjunction with cleaning, developing or wet etching application, rinsing coupled with Marangoni drying provides a single-step process for (1) cleaning, developing or etching, (2) rinsing, and (3) drying objects such as flat substrates or coatings on flat substrates without necessarily using heat, forced air flow, contact wiping, centrifugation or large amounts of flammable solvents. This process is useful in one-step cleaning and drying of large flat optical substrates, one-step developing/rinsing and drying or etching/rinsing/drying of large flat patterned substrates and flat panel displays during lithographic processing, and room-temperature rinsing/drying of other large parts, sheets or continuous rolls of material. 5 figs.

Britten, J.A.

1997-08-26T23:59:59.000Z

270

Technically Recoverable Shale Oil and Shale Gas Resources  

U.S. Energy Information Administration (EIA)

Germany 51 254 700 ... June 2013 U.S. Energy Information Administration | Technically Recoverable Shale Oil and Shale Gas Resources 18

271

Technically Recoverable Shale Oil and Shale Gas Resources  

U.S. Energy Information Administration (EIA)

gas and billion barrels (Bbbl) of shale oil for each major shale formation. Risked Recoverable Gas and Oil, reported in trillion cubic feet (Tcf) of shale gas and

272

Figure 10. Annual change in U.S. wet natural gas proved reserves ...  

U.S. Energy Information Administration (EIA)

Figure 8 Bcf Shale Total Other Shale % Total Proved Reserves Change in Natural Gas Proved Reserves Tcf Natural Gas Proved Reserves shale other 2006.00 14182.00

273

Table 13. Associated-dissolved natural gas proved reserves, reserves changes, and production, wet after lease separation, 2011  

U.S. Energy Information Administration (EIA) Indexed Site

: Associated-dissolved natural gas proved reserves, reserves changes, and production, wet after lease separation, 2011 : Associated-dissolved natural gas proved reserves, reserves changes, and production, wet after lease separation, 2011 billion cubic feet Published New Reservoir Proved Revision Revision New Field Discoveries Estimated Proved Reserves Adjustments Increases Decreases Sales Acquisitions Extensions Discoveries in Old Fields Production Reserves State and Subdivision 12/31/10 (+,-) (+) (-) (-) (+) (+) (+) (+) (-) 12/31/11 Alaska 7,896 -1 843 79 2 51 3 0 0 176 8,535 Lower 48 States 27,850 391 7,245 5,874 1,336 1,833 5,954 611 160 2,546 34,288 Alabama 38 3 2 0 9 20 0 2 0 8 48 Arkansas 29 24 50 13 38 0 0 0 0 6 46 California 2,282 929 1,424 1,927 1 11 74 0 0 260 2,532 Coastal Region Onshore 178 15 21 31 0 0 1 0 0 12 172 Los Angeles Basin Onshore 92 6 12 4 0 3 0 0 0 7 102 San Joaquin Basin Onshore 1,949 907 1,382 1,892 0 0 70 0 0 237 2,179 State Offshore 63 1 9 0 1 8 3 0 0 4 79

274

Technically recoverable Devonian shale gas in West Virginia  

Science Conference Proceedings (OSTI)

This report evaluates the natural gas potential of the Devonian Age shales of West Virginia. For this, the study: (1) compiles the latest geological and reservoir data to establish the gas in-place; (2) analyzes and models the dominant gas production mechanisms; and (3) examines alternative well stimulation and production strategies for most efficiently recovering the in-place gas. The major findings of the study include the following: (1) The technically recoverable gas from Devonian shale (Huron, Rhinestreet, and Marcellus intervals) in West Virginia is estimated to range from 11 to 44 trillion cubic feet. (2) The Devonian shales in this state entail great geological diversity; the highly fractured, permeable shales in the southwest respond well to traditional development practices while the deep, tight shales in the eastern and northern parts of the state will require new, larger scale well stimulation technology. (3) Beyond the currently developed Huron and Rhinestreet shale intervals, the Marcellus shale offers a third attractive gas zone, particularly in the north central portion of the state. 21 references, 53 figures, 27 tables.

Kuuskraa, V.A.; Wicks, D.E.

1984-12-01T23:59:59.000Z

275

Technically Recoverable Shale Oil and Shale Gas Resources  

U.S. Energy Information Administration (EIA) Indexed Site

Technically Recoverable Shale Oil and Technically Recoverable Shale Oil and Shale Gas Resources: An Assessment of 137 Shale Formations in 41 Countries Outside the United States June 2013 Independent Statistics & Analysis www.eia.gov U.S. Department of Energy Washington, DC 20585 June 2013 U.S. Energy Information Administration | Technically Recoverable Shale Oil and Shale Gas Resources 1 This report was prepared by the U.S. Energy Information Administration (EIA), the statistical and analytical agency within the U.S. Department of Energy. By law, EIA's data, analyses, and forecasts are independent of approval by any other officer or employee of the United States Government. The views in this report therefore should not be construed as representing those of the Department of Energy or

276

A recoverable versatile photo-polymerization initiator catalyst  

E-Print Network (OSTI)

A photo-polymerization initiator based on an imidazolium and an oxometalate, viz., (BMIm)2(DMIm) PW12O40 (where, BMIm = 1-butyl-3-methylimizodium, DMIm = 3,3'-Dimethyl-1,1'-Diimidazolium) is reported. It polymerizes several industrially important monomers and is recoverable hence can be reused. The Mn and PDI are controlled and a reaction pathway is proposed.

Chen, Dianyu; Roy, Soumyajit

2012-01-01T23:59:59.000Z

277

Zipping Wetting  

E-Print Network (OSTI)

Water droplets can completely wet micro-structured superhydrophobic surfaces. The {\\it dynamics} of this rapid process is analyzed by ultra-high-speed imaging. Depending on the scales of the micro-structure, the wetting fronts propagate smoothly and circularly or -- more interestingly -- in a {\\it stepwise} manner, leading to a growing {\\it square-shaped} wetted area: entering a new row perpendicular to the direction of front propagation takes milliseconds, whereas once this has happened, the row itself fills in microseconds ({\\it ``zipping''}). Numerical simulations confirm this view and are in quantitative agreement with the experiments.

Sbragaglia, Mauro; Pirat, Christophe; Borkent, Bram M; Lammertink, Rob G H; Wessling, Matthias; Lohse, Detlef

2007-01-01T23:59:59.000Z

278

Table 16. Recoverable Coal Reserves and Average Recovery Percentage at Producing Underground Coal Mines by State and Mining Method,  

U.S. Energy Information Administration (EIA) Indexed Site

Recoverable Coal Reserves and Average Recovery Percentage at Producing Underground Coal Mines by State and Mining Method, Recoverable Coal Reserves and Average Recovery Percentage at Producing Underground Coal Mines by State and Mining Method, 2012 (million short tons) U.S. Energy Information Administration | Annual Coal Report 2012 Table 16. Recoverable Coal Reserves and Average Recovery Percentage at Producing Underground Coal Mines by State and Mining Method, 2012 (million short tons) U.S. Energy Information Administration | Annual Coal Report 2012 Continuous 1 Conventional and Other 2 Longwall 3 Total Coal-Producing State Recoverable Coal Reserves at Producing Mines Average Recovery Percentage Recoverable Coal Reserves at Producing Mines Average Recovery Percentage Recoverable Coal Reserves at Producing Mines Average Recovery Percentage Recoverable Coal Reserves at Producing Mines Average Recovery Percentage

279

Geopressured Geothermal Resource and Recoverable Energy Estimate for the Wilcox and Frio Formations, Texas (Presentation)  

DOE Green Energy (OSTI)

An estimate of the total and recoverable geopressured geothermal resource of the fairways in the Wilcox and Frio formations is made using the current data available. The flow rate of water and methane for wells located in the geopressured geothermal fairways is simulated over a 20-year period utilizing the TOUGH2 Reservoir Simulator and research data. The model incorporates relative permeability, capillary pressure, rock compressibility, and leakage from the bounding shale layers. The simulations show that permeability, porosity, pressure, sandstone thickness, well spacing, and gas saturation in the sandstone have a significant impact on the percent of energy recovered. The results also predict lower average well production flow rates and a significantly higher production of natural gas relative to water than in previous studies done from 1975 to 1980. Previous studies underestimate the amount of methane produced with hot brine. Based on the work completed in this study, multiphase flow processes and reservoir boundary conditions greatly influence the total quantity of the fluid produced as well as the ratio of gas and water in the produced fluid.

Esposito, A.; Augustine, C.

2011-10-01T23:59:59.000Z

280

Assessing the viability of compressed natural gas as a transportation fuel for light-duty vehicles in the United States.  

E-Print Network (OSTI)

??Recent optimistic revisions to projections for recoverable natural gas resources in the United States have generated renewed interest in the possibility of greater utilization of… (more)

Kennedy, Castlen Moore

2011-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "recoverable wet natural" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

Wet Stacks Design Guide  

Science Conference Proceedings (OSTI)

The expense of fluegas reheat has led to increased application of less expensive wet stacks downstream of wet FGD (flue gas desulfurization) systems. Good data is necessary to properly design the wet stack system or serious problems can occur. This design guide summarizes all the latest information and provides guidance on developing detailed design specifications.

1997-01-04T23:59:59.000Z

282

Recoverable Resource Estimate of Identified Onshore Geopressured Geothermal Energy in Texas and Louisiana (Presentation)  

Science Conference Proceedings (OSTI)

Geopressured geothermal reservoirs are characterized by high temperatures and high pressures with correspondingly large quantities of dissolved methane. Due to these characteristics, the reservoirs provide two sources of energy: chemical energy from the recovered methane, and thermal energy from the recovered fluid at temperatures high enough to operate a binary power plant for electricity production. Formations with the greatest potential for recoverable energy are located in the gulf coastal region of Texas and Louisiana where significantly overpressured and hot formations are abundant. This study estimates the total recoverable onshore geopressured geothermal resource for identified sites in Texas and Louisiana. In this study a geopressured geothermal resource is defined as a brine reservoir with fluid temperature greater than 212 degrees F and a pressure gradient greater than 0.7 psi/ft.

Esposito, A.; Augustine, C.

2012-04-01T23:59:59.000Z

283

California - Coastal Region Onshore Nonassociated Natural Gas...  

Gasoline and Diesel Fuel Update (EIA)

Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) California - Coastal Region Onshore Nonassociated Natural Gas, Wet After Lease Separation,...

284

California - San Joaquin Basin Onshore Nonassociated Natural...  

Gasoline and Diesel Fuel Update (EIA)

Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) California - San Joaquin Basin Onshore Nonassociated Natural Gas, Wet After Lease Separation,...

285

Wetting of a Chemically Heterogeneous Surface  

Science Conference Proceedings (OSTI)

Theories for inhomogeneous fluids have focused in recent years on wetting, capillary conden- sation, and solvation forces for model systems where the surface(s) is(are) smooth homogeneous parallel plates, cylinders, or spherical drops. Unfortunately natural systems are more likely to be hetaogeneous both in surt%ce shape and surface chemistry. In this paper we discuss the conse- quences of chemical heterogeneity on wetting. Specifically, a 2-dimensional implementation of a nonlocal density functional theory is solved for a striped surface model. Both the strength and range of the heterogeneity are varied. Contact angles are calculated, and phase transitions (both the wetting transition and a local layering transition) are located. The wetting properties of the surface ase shown to be strongly dependent on the nature of the surface heterogeneity. In addition highly ordered nanoscopic phases are found, and the operational limits for formation of ordered or crystalline phases of nanoscopic extent are discussed.

Frink, L.J.D.; Salinger, A.G.

1998-11-20T23:59:59.000Z

286

Texas - RRC District 3 Onshore Associated-Dissolved Natural Gas...  

Gasoline and Diesel Fuel Update (EIA)

Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Texas - RRC District 3 Onshore Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved...

287

Spray type wet scrubber  

SciTech Connect

A spray type wet scrubber includes a plurality of spray nozzles installed in parallel banks across the path of gas stream within the scrubber body, and partition walls held upright in grating fashion to divide the path of gas stream into a plurality of passages, each of which accommodates one of the spray nozzles.

Atsukawa, M.; Tatani, A.

1978-01-10T23:59:59.000Z

288

Optical wet steam monitor  

DOE Patents (OSTI)

A wet steam monitor determines steam particle size by using laser doppler velocimeter (LDV) device to produce backscatter light. The backscatter light signal is processed with a spectrum analyzer to produce a visibility waveform in the frequency domain. The visibility waveform includes a primary peak and a plurality of sidebands. The bandwidth of at least the primary frequency peak is correlated to particle size by either visually comparing the bandwidth to those of known particle sizes, or by digitizing the waveform and comparing the waveforms electronically.

Maxey, Lonnie C. (Powell, TN); Simpson, Marc L. (Knoxville, TN)

1995-01-01T23:59:59.000Z

289

Optical wet steam monitor  

DOE Patents (OSTI)

A wet steam monitor determines steam particle size by using laser doppler velocimeter (LDV) device to produce backscatter light. The backscatter light signal is processed with a spectrum analyzer to produce a visibility waveform in the frequency domain. The visibility waveform includes a primary peak and a plurality of sidebands. The bandwidth of at least the primary frequency peak is correlated to particle size by either visually comparing the bandwidth to those of known particle sizes, or by digitizing the waveform and comparing the waveforms electronically. 4 figures.

Maxey, L.C.; Simpson, M.L.

1995-01-17T23:59:59.000Z

290

Recoverable Resource Estimate of Identified Onshore Geopressured Geothermal Energy in Texas and Louisiana (Presentation), NREL (National Renewable Energy Laboratory)  

NLE Websites -- All DOE Office Websites (Extended Search)

Recoverable Resource Estimate of Identified Recoverable Resource Estimate of Identified Onshore Geopressured Geothermal Energy in Texas and Louisiana AAPG 2012 Annual Convention and Exhibition Ariel Esposito and Chad Augustine April 24, 2012 NREL/PR-6A20-54999 2 * Geopressured Geothermal o Reservoirs characterized by pore fluids under high confining pressures and high temperatures with correspondingly large quantities of dissolved methane o Soft geopressure: Hydrostatic to 15.83 kPa/m o Hard geopressure: 15.83- 22.61 kPa/m (lithostatic pressure gradient) * Common Geopressured Geothermal Reservoir Structure o Upper thick low permeability shale o Thin sandstone layer o Lower thick low permeability shale * Three Potential Sources of Energy o Thermal energy (Temperature > 100°C - geothermal electricity generation)

291

Wet-limestone scrubbing fundamentals  

Science Conference Proceedings (OSTI)

The article examines important concepts of wet-limestone scrubbing. It also addresses the topic of by-product disposal. 3 refs., 1 fig.

Buecker, B.

2006-08-15T23:59:59.000Z

292

Utah Associated-Dissolved Natural Gas, Reserves in Nonproducing...  

U.S. Energy Information Administration (EIA) Indexed Site

Reserves in Nonproducing Reservoirs, Wet (Billion Cubic Feet) Utah Associated-Dissolved Natural Gas, Reserves in Nonproducing Reservoirs, Wet (Billion Cubic Feet) Decade Year-0...

293

Utah Nonassociated Natural Gas, Reserves in Nonproducing Reservoirs...  

U.S. Energy Information Administration (EIA) Indexed Site

Reserves in Nonproducing Reservoirs, Wet (Billion Cubic Feet) Utah Nonassociated Natural Gas, Reserves in Nonproducing Reservoirs, Wet (Billion Cubic Feet) Decade Year-0 Year-1...

294

Revised Wet Stack Design Guide  

Science Conference Proceedings (OSTI)

For the past 14 years, the design of wet stacks around the world has been guided by the original EPRI Wet Stacks Design Guide (1996). Since that time, the number of wet stack installations has grown considerably, and a wealth of practical real-world operating and maintenance experience has been obtained. The laws of physics have not changed, and most of the information presented in 1996 is just as valid today as it was when originally published. What has changed is the power-generation ...

2012-12-12T23:59:59.000Z

295

Survey of Wet Electrostatic Precipitators  

Science Conference Proceedings (OSTI)

Wet electrostatic precipitators (ESPs) have found application since they were first installed for sulfuric acid collection on a smelter and patented by Dr. Frederick Cottrell in 1907–1908. Power generation applications typically use dry ESPs for collection of coal fly ash in nonsaturated flue gas streams. This report summarizes the physical installations, specifications, operating environments, and operational experience of wet ESPs currently operating in the United States on power generation ...

2012-12-31T23:59:59.000Z

296

New project for Hot Wet Rock geothermal reservoir design concept  

SciTech Connect

This paper presents the outlines of a new Hot Wet Rock (HWR) geothermal project. The goal of the project is to develop a design methodology for combined artificial and natural crack geothermal reservoir systems with the objective of enhancing the thermal output of existing geothermal power plants. The proposed concept of HWR and the research tasks of the project are described.

Takahashi, Hideaki; Hashida, Toshiyuki

1992-01-01T23:59:59.000Z

297

Federal Offshore, Gulf of Mexico, Texas Natural Gas Reserves...  

U.S. Energy Information Administration (EIA) Indexed Site

Natural Gas Nonassociated, Wet After Lease Separation 2,360 2,173 1,937 1,822 1,456 1,015 1981-2011 Natural Gas Associated-Dissolved, Wet After Lease Separation 378 377...

298

Federal Offshore, Pacific (California) Natural Gas Reserves Summary...  

Annual Energy Outlook 2012 (EIA)

811 805 704 739 724 710 1977-2011 Natural Gas, Wet After Lease Separation 811 805 705 740 725 711 1979-2011 Natural Gas Nonassociated, Wet After Lease Separation 55 53 3 9 3 0...

299

Ohio Natural Gas Reserves Summary as of Dec. 31  

Annual Energy Outlook 2012 (EIA)

975 1,027 985 896 832 758 1977-2011 Natural Gas, Wet After Lease Separation 975 1,027 985 896 832 758 1979-2011 Natural Gas Nonassociated, Wet After Lease Separation 801 926 886...

300

Miscellaneous Natural Gas Reserves Summary as of Dec. 31  

Annual Energy Outlook 2012 (EIA)

138 239 270 349 350 379 1977-2011 Natural Gas, Wet After Lease Separation 139 241 272 349 363 393 1979-2011 Natural Gas Nonassociated, Wet After Lease Separation 120 226 263 271...

Note: This page contains sample records for the topic "recoverable wet natural" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

Natural  

Gasoline and Diesel Fuel Update (EIA)

Summary of U.S. Natural Gas Imports and Exports, 1992-1996 Table 1992 1993 1994 1995 1996 Imports Volume (million cubic feet) Pipeline Canada............................. 2,094,387 2,266,751 2,566,049 2,816,408 2,883,277 Mexico .............................. 0 1,678 7,013 6,722 13,862 Total Pipeline Imports....... 2,094,387 2,268,429 2,573,061 2,823,130 2,897,138 LNG Algeria .............................. 43,116 81,685 50,778 17,918 35,325 United Arab Emirates ....... 0 0 0 0 4,949 Total LNG Imports............. 43,116 81,685 50,778 17,918 40,274 Total Imports......................... 2,137,504 2,350,115 2,623,839 2,841,048 2,937,413 Average Price (dollars per thousand cubic feet) Pipeline Canada............................. 1.84 2.02 1.86 1.48 1.96 Mexico .............................. - 1.94 1.99 1.53 2.25 Total Pipeline Imports.......

302

Natural Gas as a Fuel for Heavy Trucks: Issues and Incentives (released in AEO2010)  

Reports and Publications (EIA)

Environmental and energy security concerns related to petroleum use for transportation fuels, together with recent growth in U.S. proved reserves and technically recoverable natural gas resources, including shale gas, have sparked interest in policy proposals aimed at stimulating increased use of natural gas as a vehicle fuel, particularly for heavy trucks.

Information Center

2010-05-11T23:59:59.000Z

303

Wet Corn Milling Energy Guide  

NLE Websites -- All DOE Office Websites (Extended Search)

307 307 ERNEST ORLANDO LAWRENCE BERKELEY NATIONAL LABORATORY Energy Efficiency Improvement and Cost Saving Opportunities for the Corn Wet Milling Industry An ENERGY STAR Guide for Energy and Plant Managers Christina Galitsky, Ernst Worrell and Michael Ruth Environmental Energy Technologies Division Sponsored by the U.S. Environmental Protection Agency July 2003 Disclaimer This document was prepared as an account of work sponsored by the United States Government. While this document is believed to contain correct information, neither the United States Government nor any agency thereof, nor The Regents of the University of California, nor any of their employees, makes any warranty, express or implied, or assumes any legal responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product,

304

Wet Corn Milling Plant EPI | ENERGY STAR  

NLE Websites -- All DOE Office Websites (Extended Search)

Wet Corn Milling Plant EPI Secondary menu About us Press room Contact Us Portfolio Manager Login Facility owners and managers Existing buildings Commercial new construction...

305

,"California - San Joaquin Basin Onshore Nonassociated Natural...  

U.S. Energy Information Administration (EIA) Indexed Site

Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","California - San Joaquin Basin Onshore Nonassociated Natural Gas, Wet After Lease Separation,...

306

,"California - Coastal Region Onshore Nonassociated Natural Gas...  

U.S. Energy Information Administration (EIA) Indexed Site

Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","California - Coastal Region Onshore Nonassociated Natural Gas, Wet After Lease Separation,...

307

,"California - Los Angeles Basin Onshore Nonassociated Natural...  

U.S. Energy Information Administration (EIA) Indexed Site

Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","California - Los Angeles Basin Onshore Nonassociated Natural Gas, Wet After Lease Separation,...

308

Recoverable Robust Knapsacks: ?-Scenarios  

E-Print Network (OSTI)

width capacity to be partitioned among the users in the area covered by the antenna. ..... instances were generated for 51 antennas with 15 to 221 traffic nodes ( ...

309

Asbestos/NESHAP adequately wet guidance  

SciTech Connect

The Asbestos NESHAP requires facility owners and/or operators involved in demolition and renovation activities to control emissions of particulate asbestos to the outside air because no safe concentration of airborne asbestos has ever been established. The primary method used to control asbestos emissions is to adequately wet the Asbestos Containing Material (ACM) with a wetting agent prior to, during and after demolition/renovation activities. The purpose of the document is to provide guidance to asbestos inspectors and the regulated community on how to determine if friable ACM is adequately wet as required by the Asbestos NESHAP.

Shafer, R.; Throwe, S.; Salgado, O.; Garlow, C.; Hoerath, E.

1990-12-01T23:59:59.000Z

310

Nonassociated Natural Gas Reserves Revision Decreases, Wet After Lease  

Gasoline and Diesel Fuel Update (EIA)

20,957 15,664 27,810 31,865 34,375 50,174 1979-2011 20,957 15,664 27,810 31,865 34,375 50,174 1979-2011 Federal Offshore U.S. 1,887 1,561 1,631 1,400 1,433 1,711 1990-2011 Pacific (California) 0 0 48 0 5 3 1979-2011 Louisiana & Alabama 1,445 1,172 1,073 1,021 1,000 1,219 1981-2011 Texas 442 389 510 379 428 489 1981-2011 Alaska 267 103 153 103 195 128 1979-2011 Lower 48 States 20,690 15,561 27,657 31,762 34,180 50,046 1979-2011 Alabama 205 35 747 336 176 163 1979-2011 Arkansas 112 139 161 621 301 311 1979-2011 California 49 186 129 60 87 32 1979-2011 Coastal Region Onshore 0 5 0 1 0 1 1979-2011 Los Angeles Basin Onshore 0 0 0 0 0 0 1979-2011 San Joaquin Basin Onshore 49 180 128 59 84 31 1979-2011 State Offshore 0 1 1 0 3 0 1979-2011

311

New Field Discoveries of Natural Gas, Wet After Lease Separation  

Gasoline and Diesel Fuel Update (EIA)

425 814 1,229 1,423 895 987 1979-2011 425 814 1,229 1,423 895 987 1979-2011 Federal Offshore U.S. 114 618 321 310 71 590 1990-2011 Pacific (California) 0 0 0 0 0 0 1979-2011 Louisiana & Alabama 85 313 288 50 71 590 1981-2011 Texas 29 305 33 260 0 0 1981-2011 Alaska 0 0 0 0 0 0 1979-2011 Lower 48 States 425 814 1,229 1,423 895 987 1979-2011 Alabama 0 0 2 0 3 2 1979-2011 Arkansas 7 0 0 0 0 0 1979-2011 California 0 0 0 1 1 0 1979-2011 Coastal Region Onshore 0 0 0 0 0 0 1979-2011 Los Angeles Basin Onshore 0 0 0 0 0 0 1979-2011 San Joaquin Basin Onshore 0 0 0 1 1 0 1979-2011 State Offshore 0 0 0 0 0 0 1979-2011 Colorado 15 15 18 8 23 19 1979-2011 Florida 0 0 0 0 0 0 1979-2011 Kansas 0 0 10 0 4 0 1979-2011 Kentucky

312

Associated-Dissolved Natural Gas Reserves Revision Increases, Wet After  

Gasoline and Diesel Fuel Update (EIA)

5,372 5,400 2,943 5,522 4,983 8,088 1979-2011 5,372 5,400 2,943 5,522 4,983 8,088 1979-2011 Federal Offshore U.S. 525 622 609 854 1,028 1,583 1990-2011 Pacific (California) 35 48 23 71 23 39 1979-2011 Louisiana & Alabama 384 514 383 693 907 1,410 1981-2011 Texas 106 60 203 90 98 134 1981-2011 Alaska 2,850 2,098 37 1,696 236 843 1979-2011 Lower 48 States 2,522 3,302 2,906 3,826 4,747 7,245 1979-2011 Alabama 4 12 1 11 6 2 1979-2011 Arkansas 2 11 3 5 12 50 1979-2011 California 96 292 164 177 525 1,424 1979-2011 Coastal Region Onshore 29 33 21 42 38 21 1979-2011 Los Angeles Basin Onshore 7 16 1 38 9 12 1979-2011 San Joaquin Basin Onshore 53 231 142 95 467 1,382 1979-2011 State Offshore 7 12 0 2 11 9 1979-2011 Colorado 234 214 211 11 142 122 1979-2011

313

Nonassociated Natural Gas New Field Discoveries, Wet After Lease Separation  

Gasoline and Diesel Fuel Update (EIA)

385 768 1,122 1,160 793 376 1979-2011 385 768 1,122 1,160 793 376 1979-2011 Federal Offshore U.S. 87 575 228 96 65 66 1990-2011 Pacific (California) 0 0 0 0 0 0 1979-2011 Louisiana & Alabama 58 309 195 25 65 66 1981-2011 Texas 29 266 33 71 0 0 1981-2011 Alaska 0 0 0 0 0 0 1979-2011 Lower 48 States 385 768 1,122 1,160 793 376 1979-2011 Alabama 0 0 2 0 1 0 1979-2011 Arkansas 7 0 0 0 0 0 1979-2011 California 0 0 0 1 1 0 1979-2011 Coastal Region Onshore 0 0 0 0 0 0 1979-2011 Los Angeles Basin Onshore 0 0 0 0 0 0 1979-2011 San Joaquin Basin Onshore 0 0 0 1 1 0 1979-2011 State Offshore 0 0 0 0 0 0 1979-2011 Colorado 15 15 18 8 23 19 1979-2011 Florida 0 0 0 0 0 0 1979-2011 Kansas 0 0 6 0 3 0 1979-2011 Kentucky 0 0 0 0 0 2 1979-2011

314

Nonassociated Natural Gas Reserves Sales, Wet After Lease Separation  

Gasoline and Diesel Fuel Update (EIA)

2,178 14,403 7,249 3,813 9,436 43,237 2000-2011 2,178 14,403 7,249 3,813 9,436 43,237 2000-2011 Federal Offshore U.S. 2,317 763 672 142 827 266 2000-2011 Pacific (California) 0 0 0 0 0 0 2000-2011 Louisiana & Alabama 1,261 674 587 108 697 243 2000-2011 Texas 1,056 89 85 34 130 23 2000-2011 Alaska 0 8 0 4 132 34 2000-2011 Lower 48 States 22,178 14,395 7,249 3,809 9,304 43,203 2000-2011 Alabama 188 303 11 2 270 586 2000-2011 Arkansas 4 298 19 49 393 6,724 2000-2011 California 154 165 1 0 2 48 2000-2011 Coastal Region Onshore 2 0 0 0 0 0 2000-2011 Los Angeles Basin Onshore 0 0 0 0 0 0 2000-2011 San Joaquin Basin Onshore 152 165 1 0 2 47 2000-2011 State Offshore 0 0 0 0 0 1 2000-2011 Colorado 1,009 769 774 382 253 1,292 2000-2011

315

Associated-Dissolved Natural Gas Reserves Acquisitions, Wet After Lease  

Gasoline and Diesel Fuel Update (EIA)

960 1,350 938 678 2,469 1,884 2000-2011 960 1,350 938 678 2,469 1,884 2000-2011 Federal Offshore U.S. 360 231 74 21 250 56 2000-2011 Pacific (California) 0 3 0 0 0 0 2000-2011 Louisiana & Alabama 234 219 68 12 222 49 2000-2011 Texas 126 9 6 9 28 7 2000-2011 Alaska 0 1 0 0 0 51 2000-2011 Lower 48 States 1,960 1,349 938 678 2,469 1,833 2000-2011 Alabama 0 1 1 0 0 20 2000-2011 Arkansas 0 0 0 0 0 0 2000-2011 California 219 9 8 58 0 11 2000-2011 Coastal Region Onshore 60 6 6 0 0 0 2000-2011 Los Angeles Basin Onshore 41 0 1 0 0 3 2000-2011 San Joaquin Basin Onshore 118 3 1 58 0 0 2000-2011 State Offshore 0 0 0 0 0 8 2000-2011 Colorado 579 15 14 10 160 5 2000-2011 Florida 0 0 0 0 0 0 2000-2011 Kansas 0 0 0 0 3 1 2000-2011

316

Nonassociated Natural Gas Estimated Production, Wet After Lease Separation  

Gasoline and Diesel Fuel Update (EIA)

7,092 18,022 19,066 19,981 20,779 21,899 1979-2011 7,092 18,022 19,066 19,981 20,779 21,899 1979-2011 Federal Offshore U.S. 2,206 2,178 1,745 1,779 1,660 1,210 1990-2011 Pacific (California) 2 2 2 1 1 0 1979-2011 Louisiana & Alabama 1,574 1,628 1,371 1,425 1,318 960 1981-2011 Texas 630 548 372 353 341 250 1981-2011 Alaska 192 164 149 136 145 152 1979-2011 Lower 48 States 16,900 17,858 18,917 19,845 20,634 21,747 1979-2011 Alabama 286 273 262 256 225 218 1979-2011 Arkansas 183 265 454 694 948 1,074 1979-2011 California 88 101 88 80 69 64 1979-2011 Coastal Region Onshore 0 0 0 0 0 0 1979-2011 Los Angeles Basin Onshore 0 0 0 0 0 0 1979-2011 San Joaquin Basin Onshore 87 99 86 78 68 63 1979-2011 State Offshore 1 2 2 2 1 1 1979-2011 Colorado

317

Associated-Dissolved Natural Gas Reserves Adjustments, Wet After Lease  

Gasoline and Diesel Fuel Update (EIA)

-54 276 455 877 -482 390 1979-2011 -54 276 455 877 -482 390 1979-2011 Federal Offshore U.S. 0 -4 7 12 -14 -22 1990-2011 Pacific (California) 1 -5 0 1 1 -1 1979-2011 Louisiana & Alabama 0 0 8 7 -14 -21 1981-2011 Texas -1 1 -1 4 -1 0 1981-2011 Alaska -1 1 -1 1 -1 -1 1979-2011 Lower 48 States -53 275 456 876 -481 391 1979-2011 Alabama 1 -1 0 5 13 3 1979-2011 Arkansas 3 -7 3 12 -3 24 1979-2011 California -62 6 1 6 7 929 1979-2011 Coastal Region Onshore -64 2 1 2 2 15 1979-2011 Los Angeles Basin Onshore -1 2 4 4 3 6 1979-2011 San Joaquin Basin Onshore 2 3 -4 -2 2 907 1979-2011 State Offshore 1 -1 0 2 0 1 1979-2011 Colorado -2 9 -4 14 68 -38 1979-2011 Florida 1 -1 78 6 31 -28 1979-2011 Kansas 3 8 4 -5 -2 -4 1979-2011

318

Estimated Production of Natural Gas, Wet After Lease Separation  

Gasoline and Diesel Fuel Update (EIA)

9,373 20,318 21,415 22,537 23,224 24,621 1979-2011 9,373 20,318 21,415 22,537 23,224 24,621 1979-2011 Federal Offshore U.S. 2,841 2,803 2,308 2,438 2,224 1,724 1990-2011 Pacific (California) 37 41 37 37 29 31 1979-2011 Louisiana & Alabama 2,036 2,135 1,807 1,947 1,786 1,375 1981-2011 Texas 768 627 464 454 409 318 1981-2011 Alaska 410 391 356 361 319 328 1979-2011 Lower 48 States 18,963 19,927 21,059 22,176 22,905 24,293 1979-2011 Alabama 290 277 265 261 231 226 1979-2011 Arkansas 188 269 457 698 952 1,080 1979-2011 California 268 264 251 251 255 324 1979-2011 Coastal Region Onshore 9 12 11 12 12 12 1979-2011 Los Angeles Basin Onshore 8 8 7 7 6 7 1979-2011 San Joaquin Basin Onshore 244 238 229 226 232 300 1979-2011 State Offshore 7 6 4 6 5 5 1979-2011

319

Natural Gas Reserves Acquisitions, Wet After Lease Separation  

Gasoline and Diesel Fuel Update (EIA)

7,082 15,970 8,848 4,155 13,348 47,873 2000-2011 7,082 15,970 8,848 4,155 13,348 47,873 2000-2011 Federal Offshore U.S. 2,624 1,218 632 186 1,034 474 2000-2011 Pacific (California) 0 3 0 0 0 0 2000-2011 Louisiana & Alabama 1,384 1,023 549 164 816 404 2000-2011 Texas 1,240 192 83 22 218 70 2000-2011 Alaska 0 6 0 0 0 222 2000-2011 Lower 48 States 27,082 15,964 8,848 4,155 13,348 47,651 2000-2011 Alabama 259 386 21 0 153 398 2000-2011 Arkansas 5 280 5 36 807 6,882 2000-2011 California 266 243 31 83 0 55 2000-2011 Coastal Region Onshore 60 6 6 0 0 0 2000-2011 Los Angeles Basin Onshore 41 0 1 0 0 3 2000-2011 San Joaquin Basin Onshore 165 237 24 83 0 44 2000-2011 State Offshore 0 0 0 0 0 8 2000-2011 Colorado 1,588 463 1,396 456 241 1,283 2000-2011

320

Nonassociated Natural Gas New Reservoir Discoveries in Old Fields, Wet  

Gasoline and Diesel Fuel Update (EIA)

1,132 1,171 858 2,487 1,515 1,100 1979-2011 1,132 1,171 858 2,487 1,515 1,100 1979-2011 Federal Offshore U.S. 388 325 248 186 95 38 1990-2011 Pacific (California) 0 0 0 0 0 0 1979-2011 Louisiana & Alabama 329 294 169 150 83 38 1981-2011 Texas 59 31 79 36 12 0 1981-2011 Alaska 2 0 5 0 0 3 1979-2011 Lower 48 States 1,130 1,171 853 2,487 1,515 1,097 1979-2011 Alabama 7 17 1 0 0 0 1979-2011 Arkansas 33 27 41 36 27 23 1979-2011 California 4 1 7 0 0 0 1979-2011 Coastal Region Onshore 0 0 0 0 0 0 1979-2011 Los Angeles Basin Onshore 0 0 0 0 0 0 1979-2011 San Joaquin Basin Onshore 1 1 7 0 0 0 1979-2011 State Offshore 3 0 0 0 0 0 1979-2011 Colorado 27 24 17 0 29 0 1979-2011 Florida 0 0 0 0 0 0 1979-2011 Kansas 3 0 2 0 1 1 1979-2011

Note: This page contains sample records for the topic "recoverable wet natural" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

Nonassociated Natural Gas Estimated Production, Wet After Lease Separation  

Gasoline and Diesel Fuel Update (EIA)

7,092 18,022 19,066 19,981 20,779 21,899 1979-2011 7,092 18,022 19,066 19,981 20,779 21,899 1979-2011 Federal Offshore U.S. 2,206 2,178 1,745 1,779 1,660 1,210 1990-2011 Pacific (California) 2 2 2 1 1 0 1979-2011 Louisiana & Alabama 1,574 1,628 1,371 1,425 1,318 960 1981-2011 Texas 630 548 372 353 341 250 1981-2011 Alaska 192 164 149 136 145 152 1979-2011 Lower 48 States 16,900 17,858 18,917 19,845 20,634 21,747 1979-2011 Alabama 286 273 262 256 225 218 1979-2011 Arkansas 183 265 454 694 948 1,074 1979-2011 California 88 101 88 80 69 64 1979-2011 Coastal Region Onshore 0 0 0 0 0 0 1979-2011 Los Angeles Basin Onshore 0 0 0 0 0 0 1979-2011 San Joaquin Basin Onshore 87 99 86 78 68 63 1979-2011 State Offshore 1 2 2 2 1 1 1979-2011 Colorado

322

Natural Gas Reserves Acquisitions, Wet After Lease Separation  

Gasoline and Diesel Fuel Update (EIA)

7,082 15,970 8,848 4,155 13,348 47,873 2000-2011 7,082 15,970 8,848 4,155 13,348 47,873 2000-2011 Federal Offshore U.S. 2,624 1,218 632 186 1,034 474 2000-2011 Pacific (California) 0 3 0 0 0 0 2000-2011 Louisiana & Alabama 1,384 1,023 549 164 816 404 2000-2011 Texas 1,240 192 83 22 218 70 2000-2011 Alaska 0 6 0 0 0 222 2000-2011 Lower 48 States 27,082 15,964 8,848 4,155 13,348 47,651 2000-2011 Alabama 259 386 21 0 153 398 2000-2011 Arkansas 5 280 5 36 807 6,882 2000-2011 California 266 243 31 83 0 55 2000-2011 Coastal Region Onshore 60 6 6 0 0 0 2000-2011 Los Angeles Basin Onshore 41 0 1 0 0 3 2000-2011 San Joaquin Basin Onshore 165 237 24 83 0 44 2000-2011 State Offshore 0 0 0 0 0 8 2000-2011 Colorado 1,588 463 1,396 456 241 1,283 2000-2011

323

Estimated Production of Natural Gas, Wet After Lease Separation  

Gasoline and Diesel Fuel Update (EIA)

9,373 20,318 21,415 22,537 23,224 24,621 1979-2011 9,373 20,318 21,415 22,537 23,224 24,621 1979-2011 Federal Offshore U.S. 2,841 2,803 2,308 2,438 2,224 1,724 1990-2011 Pacific (California) 37 41 37 37 29 31 1979-2011 Louisiana & Alabama 2,036 2,135 1,807 1,947 1,786 1,375 1981-2011 Texas 768 627 464 454 409 318 1981-2011 Alaska 410 391 356 361 319 328 1979-2011 Lower 48 States 18,963 19,927 21,059 22,176 22,905 24,293 1979-2011 Alabama 290 277 265 261 231 226 1979-2011 Arkansas 188 269 457 698 952 1,080 1979-2011 California 268 264 251 251 255 324 1979-2011 Coastal Region Onshore 9 12 11 12 12 12 1979-2011 Los Angeles Basin Onshore 8 8 7 7 6 7 1979-2011 San Joaquin Basin Onshore 244 238 229 226 232 300 1979-2011 State Offshore 7 6 4 6 5 5 1979-2011

324

Natural Gas Associated-Dissolved Proved Reserves, Wet After Lease  

Gasoline and Diesel Fuel Update (EIA)

29,640 32,668 29,023 33,383 35,746 42,823 1979-2011 29,640 32,668 29,023 33,383 35,746 42,823 1979-2011 Federal Offshore U.S. 4,835 4,780 5,106 5,223 5,204 5,446 1990-2011 Pacific (California) 756 752 702 731 722 711 1979-2011 Louisiana & Alabama 3,701 3,651 3,939 3,863 3,793 4,196 1981-2011 Texas 378 377 465 629 689 539 1981-2011 Alaska 8,886 10,752 6,627 8,093 7,896 8,535 1979-2011 Lower 48 States 20,754 21,916 22,396 25,290 27,850 34,288 1979-2011 Alabama 18 20 19 29 38 48 1979-2011 Arkansas 44 37 12 20 29 46 1979-2011 California 2,155 2,193 1,917 2,314 2,282 2,532 1979-2011 Coastal Region Onshore 208 211 150 168 178 172 1979-2011 Los Angeles Basin Onshore 161 154 81 91 92 102 1979-2011 San Joaquin Basin Onshore 1,701 1,749 1,632 2,002 1,949 2,179 1979-2011

325

Associated-Dissolved Natural Gas Reserves Extensions, Wet After Lease  

Gasoline and Diesel Fuel Update (EIA)

810 1,098 1,488 2,669 2,660 5,957 1979-2011 810 1,098 1,488 2,669 2,660 5,957 1979-2011 Federal Offshore U.S. 61 136 287 90 87 32 1990-2011 Pacific (California) 0 0 0 0 0 0 1979-2011 Louisiana & Alabama 60 133 280 90 54 32 1981-2011 Texas 1 3 7 0 33 0 1981-2011 Alaska 4 6 0 0 2 3 1979-2011 Lower 48 States 806 1,092 1,488 2,669 2,658 5,954 1979-2011 Alabama 0 0 0 0 0 0 1979-2011 Arkansas 0 0 0 0 4 0 1979-2011 California 21 4 100 470 12 74 1979-2011 Coastal Region Onshore 5 0 0 0 0 1 1979-2011 Los Angeles Basin Onshore 4 0 0 0 0 0 1979-2011 San Joaquin Basin Onshore 11 1 95 468 9 70 1979-2011 State Offshore 1 3 5 2 3 3 1979-2011 Colorado 113 180 127 165 318 506 1979-2011 Florida 0 0 0 0 0 0 1979-2011 Kansas 1 6 6 1 3 53 1979-2011

326

Natural Gas Reserves Revision Increases, Wet After Lease Separation  

Gasoline and Diesel Fuel Update (EIA)

1,640 33,404 31,941 32,664 42,394 56,015 1979-2011 1,640 33,404 31,941 32,664 42,394 56,015 1979-2011 Federal Offshore U.S. 2,084 1,862 1,740 2,365 3,082 2,567 1990-2011 Pacific (California) 43 48 23 79 23 39 1979-2011 Louisiana & Alabama 1,658 1,477 1,269 1,690 2,721 2,150 1981-2011 Texas 383 337 448 596 338 378 1981-2011 Alaska 2,882 2,168 186 1,887 628 938 1979-2011 Lower 48 States 18,758 31,236 31,755 30,777 41,766 55,077 1979-2011 Alabama 238 165 288 101 214 472 1979-2011 Arkansas 101 321 1,250 1,912 1,072 631 1979-2011 California 163 372 277 274 575 1,542 1979-2011 Coastal Region Onshore 29 33 21 42 39 21 1979-2011 Los Angeles Basin Onshore 7 16 1 38 9 12 1979-2011 San Joaquin Basin Onshore 118 311 253 191 514 1,498 1979-2011 State Offshore

327

Associated-Dissolved Natural Gas Estimated Production, Wet After Lease  

Gasoline and Diesel Fuel Update (EIA)

2,281 2,296 2,349 2,556 2,445 2,722 1979-2011 2,281 2,296 2,349 2,556 2,445 2,722 1979-2011 Federal Offshore U.S. 635 625 563 659 564 514 1990-2011 Pacific (California) 35 39 35 36 28 31 1979-2011 Louisiana & Alabama 462 507 436 522 468 415 1981-2011 Texas 138 79 92 101 68 68 1981-2011 Alaska 218 227 207 225 174 176 1979-2011 Lower 48 States 2,063 2,069 2,142 2,331 2,271 2,546 1979-2011 Alabama 4 4 3 5 6 8 1979-2011 Arkansas 5 4 3 4 4 6 1979-2011 California 180 163 163 171 186 260 1979-2011 Coastal Region Onshore 9 12 11 12 12 12 1979-2011 Los Angeles Basin Onshore 8 8 7 7 6 7 1979-2011 San Joaquin Basin Onshore 157 139 143 148 164 237 1979-2011 State Offshore 6 4 2 4 4 4 1979-2011 Colorado 96 104 125 134 126 160 1979-2011

328

Natural Gas Nonassociated Proved Reserves, Wet After Lease Separation  

Gasoline and Diesel Fuel Update (EIA)

190,776 215,121 226,012 250,496 281,901 305,986 1979-2011 190,776 215,121 226,012 250,496 281,901 305,986 1979-2011 Federal Offshore U.S. 10,915 10,033 8,786 7,633 6,916 5,374 1990-2011 Pacific (California) 55 53 3 9 3 0 1979-2011 Louisiana & Alabama 8,500 7,807 6,846 5,802 5,457 4,359 1981-2011 Texas 2,360 2,173 1,937 1,822 1,456 1,015 1981-2011 Alaska 1,447 1,270 1,139 1,090 1,021 976 1979-2011 Lower 48 States 189,329 213,851 224,873 249,406 280,880 305,010 1979-2011 Alabama 3,945 4,016 3,360 2,919 2,686 2,522 1979-2011 Arkansas 2,227 3,269 5,616 10,852 14,152 16,328 1979-2011 California 780 686 621 612 503 510 1979-2011 Coastal Region Onshore 6 1 1 1 2 1 1979-2011 Los Angeles Basin Onshore 0 0 0 0 0 0 1979-2011 San Joaquin Basin Onshore 769 681 617 607 498 506 1979-2011

329

Natural Gas Nonassociated Proved Reserves, Wet After Lease Separation  

Gasoline and Diesel Fuel Update (EIA)

190,776 215,121 226,012 250,496 281,901 305,986 1979-2011 190,776 215,121 226,012 250,496 281,901 305,986 1979-2011 Federal Offshore U.S. 10,915 10,033 8,786 7,633 6,916 5,374 1990-2011 Pacific (California) 55 53 3 9 3 0 1979-2011 Louisiana & Alabama 8,500 7,807 6,846 5,802 5,457 4,359 1981-2011 Texas 2,360 2,173 1,937 1,822 1,456 1,015 1981-2011 Alaska 1,447 1,270 1,139 1,090 1,021 976 1979-2011 Lower 48 States 189,329 213,851 224,873 249,406 280,880 305,010 1979-2011 Alabama 3,945 4,016 3,360 2,919 2,686 2,522 1979-2011 Arkansas 2,227 3,269 5,616 10,852 14,152 16,328 1979-2011 California 780 686 621 612 503 510 1979-2011 Coastal Region Onshore 6 1 1 1 2 1 1979-2011 Los Angeles Basin Onshore 0 0 0 0 0 0 1979-2011 San Joaquin Basin Onshore 769 681 617 607 498 506 1979-2011

330

Nonassociated Natural Gas Reserves Acquisitions, Wet After Lease Separation  

Gasoline and Diesel Fuel Update (EIA)

5,122 14,620 7,910 3,477 10,879 45,989 2000-2011 5,122 14,620 7,910 3,477 10,879 45,989 2000-2011 Federal Offshore U.S. 2,264 987 558 165 784 418 2000-2011 Pacific (California) 0 0 0 0 0 0 2000-2011 Louisiana & Alabama 1,150 804 481 152 594 355 2000-2011 Texas 1,114 183 77 13 190 63 2000-2011 Alaska 0 5 0 0 0 171 2000-2011 Lower 48 States 25,122 14,615 7,910 3,477 10,879 45,818 2000-2011 Alabama 259 385 20 0 153 378 2000-2011 Arkansas 5 280 5 36 807 6,882 2000-2011 California 47 234 23 25 0 44 2000-2011 Coastal Region Onshore 0 0 0 0 0 0 2000-2011 Los Angeles Basin Onshore 0 0 0 0 0 0 2000-2011 San Joaquin Basin Onshore 47 234 23 25 0 44 2000-2011 State Offshore 0 0 0 0 0 0 2000-2011 Colorado 1,009 448 1,382 446 81 1,278 2000-2011

331

Associated-Dissolved Natural Gas Reserves Acquisitions, Wet After Lease  

Gasoline and Diesel Fuel Update (EIA)

960 1,350 938 678 2,469 1,884 2000-2011 960 1,350 938 678 2,469 1,884 2000-2011 Federal Offshore U.S. 360 231 74 21 250 56 2000-2011 Pacific (California) 0 3 0 0 0 0 2000-2011 Louisiana & Alabama 234 219 68 12 222 49 2000-2011 Texas 126 9 6 9 28 7 2000-2011 Alaska 0 1 0 0 0 51 2000-2011 Lower 48 States 1,960 1,349 938 678 2,469 1,833 2000-2011 Alabama 0 1 1 0 0 20 2000-2011 Arkansas 0 0 0 0 0 0 2000-2011 California 219 9 8 58 0 11 2000-2011 Coastal Region Onshore 60 6 6 0 0 0 2000-2011 Los Angeles Basin Onshore 41 0 1 0 0 3 2000-2011 San Joaquin Basin Onshore 118 3 1 58 0 0 2000-2011 State Offshore 0 0 0 0 0 8 2000-2011 Colorado 579 15 14 10 160 5 2000-2011 Florida 0 0 0 0 0 0 2000-2011 Kansas 0 0 0 0 3 1 2000-2011

332

Associated-Dissolved Natural Gas Reserves Extensions, Wet After Lease  

Gasoline and Diesel Fuel Update (EIA)

810 1,098 1,488 2,669 2,660 5,957 1979-2011 810 1,098 1,488 2,669 2,660 5,957 1979-2011 Federal Offshore U.S. 61 136 287 90 87 32 1990-2011 Pacific (California) 0 0 0 0 0 0 1979-2011 Louisiana & Alabama 60 133 280 90 54 32 1981-2011 Texas 1 3 7 0 33 0 1981-2011 Alaska 4 6 0 0 2 3 1979-2011 Lower 48 States 806 1,092 1,488 2,669 2,658 5,954 1979-2011 Alabama 0 0 0 0 0 0 1979-2011 Arkansas 0 0 0 0 4 0 1979-2011 California 21 4 100 470 12 74 1979-2011 Coastal Region Onshore 5 0 0 0 0 1 1979-2011 Los Angeles Basin Onshore 4 0 0 0 0 0 1979-2011 San Joaquin Basin Onshore 11 1 95 468 9 70 1979-2011 State Offshore 1 3 5 2 3 3 1979-2011 Colorado 113 180 127 165 318 506 1979-2011 Florida 0 0 0 0 0 0 1979-2011 Kansas 1 6 6 1 3 53 1979-2011

333

Nonassociated Natural Gas Reserves Sales, Wet After Lease Separation  

Gasoline and Diesel Fuel Update (EIA)

2,178 14,403 7,249 3,813 9,436 43,237 2000-2011 2,178 14,403 7,249 3,813 9,436 43,237 2000-2011 Federal Offshore U.S. 2,317 763 672 142 827 266 2000-2011 Pacific (California) 0 0 0 0 0 0 2000-2011 Louisiana & Alabama 1,261 674 587 108 697 243 2000-2011 Texas 1,056 89 85 34 130 23 2000-2011 Alaska 0 8 0 4 132 34 2000-2011 Lower 48 States 22,178 14,395 7,249 3,809 9,304 43,203 2000-2011 Alabama 188 303 11 2 270 586 2000-2011 Arkansas 4 298 19 49 393 6,724 2000-2011 California 154 165 1 0 2 48 2000-2011 Coastal Region Onshore 2 0 0 0 0 0 2000-2011 Los Angeles Basin Onshore 0 0 0 0 0 0 2000-2011 San Joaquin Basin Onshore 152 165 1 0 2 47 2000-2011 State Offshore 0 0 0 0 0 1 2000-2011 Colorado 1,009 769 774 382 253 1,292 2000-2011

334

Associated-Dissolved Natural Gas Proved Reserves, Wet After Lease  

U.S. Energy Information Administration (EIA) Indexed Site

Data Series: Proved Reserves as of Dec. 31 Adjustments Revision Increases Revision Decreases Sales Acquisitions Extensions New Field Discoveries New Reservoir Discoveries in Old Fields Estimated Production Period: Data Series: Proved Reserves as of Dec. 31 Adjustments Revision Increases Revision Decreases Sales Acquisitions Extensions New Field Discoveries New Reservoir Discoveries in Old Fields Estimated Production Period: Annual Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes Show Data By: Data Series Area 2006 2007 2008 2009 2010 2011 View History U.S. 29,640 32,668 29,023 33,383 35,746 42,823 1979-2011 Federal Offshore U.S. 4,835 4,780 5,106 5,223 5,204 5,446 1990-2011 Pacific (California) 756 752 702 731 722 711 1979-2011 Louisiana & Alabama 3,701 3,651 3,939 3,863 3,793 4,196 1981-2011 Texas 378 377 465 629 689 539 1981-2011 Alaska 8,886 10,752 6,627 8,093 7,896 8,535 1979-2011

335

Associated-Dissolved Natural Gas Reserves Revision Decreases, Wet After  

Gasoline and Diesel Fuel Update (EIA)

2,782 1,804 7,385 2,698 3,964 5,953 1979-2011 2,782 1,804 7,385 2,698 3,964 5,953 1979-2011 Federal Offshore U.S. 984 351 430 517 879 1,393 1990-2011 Pacific (California) 22 10 38 7 5 18 1979-2011 Louisiana & Alabama 827 304 282 442 841 1,152 1981-2011 Texas 135 37 110 68 33 223 1981-2011 Alaska 111 10 3,954 5 260 79 1979-2011 Lower 48 States 2,671 1,794 3,431 2,693 3,704 5,874 1979-2011 Alabama 8 1 0 1 4 0 1979-2011 Arkansas 2 7 28 0 0 13 1979-2011 California 391 102 388 139 389 1,927 1979-2011 Coastal Region Onshore 12 22 72 14 17 31 1979-2011 Los Angeles Basin Onshore 31 17 71 25 5 4 1979-2011 San Joaquin Basin Onshore 341 49 217 97 367 1,892 1979-2011 State Offshore 7 14 28 3 0 0 1979-2011 Colorado 35 14 50 185 71 269 1979-2011

336

Nonassociated Natural Gas Reserves Revision Increases, Wet After Lease  

Gasoline and Diesel Fuel Update (EIA)

6,268 28,004 28,998 27,142 37,411 47,927 1979-2011 6,268 28,004 28,998 27,142 37,411 47,927 1979-2011 Federal Offshore U.S. 1,559 1,240 1,131 1,511 2,054 984 1990-2011 Pacific (California) 8 0 0 8 0 0 1979-2011 Louisiana & Alabama 1,274 963 886 997 1,814 740 1981-2011 Texas 277 277 245 506 240 244 1981-2011 Alaska 32 70 149 191 392 95 1979-2011 Lower 48 States 16,236 27,934 28,849 26,951 37,019 47,832 1979-2011 Alabama 234 153 287 90 208 470 1979-2011 Arkansas 99 310 1,247 1,907 1,060 581 1979-2011 California 67 80 113 97 50 118 1979-2011 Coastal Region Onshore 0 0 0 0 1 0 1979-2011 Los Angeles Basin Onshore 0 0 0 0 0 0 1979-2011 San Joaquin Basin Onshore 65 80 111 96 47 116 1979-2011 State Offshore 2 0 2 1 2 2 1979-2011 Colorado 981 3,823 3,154 1,661 2,985 2,522 1979-2011

337

Nonassociated Natural Gas New Reservoir Discoveries in Old Fields, Wet  

Gasoline and Diesel Fuel Update (EIA)

1,132 1,171 858 2,487 1,515 1,100 1979-2011 1,132 1,171 858 2,487 1,515 1,100 1979-2011 Federal Offshore U.S. 388 325 248 186 95 38 1990-2011 Pacific (California) 0 0 0 0 0 0 1979-2011 Louisiana & Alabama 329 294 169 150 83 38 1981-2011 Texas 59 31 79 36 12 0 1981-2011 Alaska 2 0 5 0 0 3 1979-2011 Lower 48 States 1,130 1,171 853 2,487 1,515 1,097 1979-2011 Alabama 7 17 1 0 0 0 1979-2011 Arkansas 33 27 41 36 27 23 1979-2011 California 4 1 7 0 0 0 1979-2011 Coastal Region Onshore 0 0 0 0 0 0 1979-2011 Los Angeles Basin Onshore 0 0 0 0 0 0 1979-2011 San Joaquin Basin Onshore 1 1 7 0 0 0 1979-2011 State Offshore 3 0 0 0 0 0 1979-2011 Colorado 27 24 17 0 29 0 1979-2011 Florida 0 0 0 0 0 0 1979-2011 Kansas 3 0 2 0 1 1 1979-2011

338

Nonassociated Natural Gas Proved Reserves, Wet After Lease Separation, as  

U.S. Energy Information Administration (EIA) Indexed Site

Data Series: Proved Reserves as of Dec. 31 Adjustments Revision Increases Revision Decreases Sales Acquisitions Extensions New Field Discoveries New Reservoir Discoveries in Old Fields Estimated Production Period: Data Series: Proved Reserves as of Dec. 31 Adjustments Revision Increases Revision Decreases Sales Acquisitions Extensions New Field Discoveries New Reservoir Discoveries in Old Fields Estimated Production Period: Annual Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes Show Data By: Data Series Area 2006 2007 2008 2009 2010 2011 View History U.S. 190,776 215,121 226,012 250,496 281,901 305,986 1979-2011 Federal Offshore U.S. 10,915 10,033 8,786 7,633 6,916 5,374 1990-2011 Pacific (California) 55 53 3 9 3 0 1979-2011 Louisiana & Alabama 8,500 7,807 6,846 5,802 5,457 4,359 1981-2011 Texas 2,360 2,173 1,937 1,822 1,456 1,015 1981-2011 Alaska 1,447 1,270 1,139 1,090 1,021 976 1979-2011

339

Nonassociated Natural Gas Reserves Revision Decreases, Wet After Lease  

Gasoline and Diesel Fuel Update (EIA)

20,957 15,664 27,810 31,865 34,375 50,174 1979-2011 20,957 15,664 27,810 31,865 34,375 50,174 1979-2011 Federal Offshore U.S. 1,887 1,561 1,631 1,400 1,433 1,711 1990-2011 Pacific (California) 0 0 48 0 5 3 1979-2011 Louisiana & Alabama 1,445 1,172 1,073 1,021 1,000 1,219 1981-2011 Texas 442 389 510 379 428 489 1981-2011 Alaska 267 103 153 103 195 128 1979-2011 Lower 48 States 20,690 15,561 27,657 31,762 34,180 50,046 1979-2011 Alabama 205 35 747 336 176 163 1979-2011 Arkansas 112 139 161 621 301 311 1979-2011 California 49 186 129 60 87 32 1979-2011 Coastal Region Onshore 0 5 0 1 0 1 1979-2011 Los Angeles Basin Onshore 0 0 0 0 0 0 1979-2011 San Joaquin Basin Onshore 49 180 128 59 84 31 1979-2011 State Offshore 0 1 1 0 3 0 1979-2011

340

Natural Gas Reserves Revision Decreases, Wet After Lease Separation  

Gasoline and Diesel Fuel Update (EIA)

3,739 17,468 35,195 34,563 38,339 56,127 1979-2011 3,739 17,468 35,195 34,563 38,339 56,127 1979-2011 Federal Offshore U.S. 2,871 1,912 2,061 1,917 2,312 3,104 1990-2011 Pacific (California) 22 10 86 7 10 21 1979-2011 Louisiana & Alabama 2,272 1,476 1,355 1,463 1,841 2,371 1981-2011 Texas 577 426 620 447 461 712 1981-2011 Alaska 378 113 4,107 108 455 207 1979-2011 Lower 48 States 23,361 17,355 31,088 34,455 37,884 55,920 1979-2011 Alabama 213 36 747 337 180 163 1979-2011 Arkansas 114 146 189 621 301 324 1979-2011 California 440 288 517 199 476 1,959 1979-2011 Coastal Region Onshore 12 27 72 15 17 32 1979-2011 Los Angeles Basin Onshore 31 17 71 25 5 4 1979-2011 San Joaquin Basin Onshore 390 229 345 156 451 1,923 1979-2011 State Offshore

Note: This page contains sample records for the topic "recoverable wet natural" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

Natural Gas Reserves Extensions, Wet After Lease Separation  

Gasoline and Diesel Fuel Update (EIA)

22,834 28,255 27,800 43,500 46,283 47,635 1979-2011 22,834 28,255 27,800 43,500 46,283 47,635 1979-2011 Federal Offshore U.S. 751 675 924 298 333 98 1990-2011 Pacific (California) 0 0 0 0 0 0 1979-2011 Louisiana & Alabama 547 543 630 279 193 85 1981-2011 Texas 204 132 294 19 140 13 1981-2011 Alaska 50 28 18 2 15 4 1979-2011 Lower 48 States 22,784 28,227 27,782 43,498 46,268 47,631 1979-2011 Alabama 150 125 61 21 29 3 1979-2011 Arkansas 492 1,149 1,755 4,629 3,083 2,094 1979-2011 California 186 18 107 476 13 75 1979-2011 Coastal Region Onshore 5 0 0 0 0 1 1979-2011 Los Angeles Basin Onshore 4 0 0 0 0 0 1979-2011 San Joaquin Basin Onshore 176 14 102 472 9 71 1979-2011 State Offshore 1 4 5 4 4 3 1979-2011 Colorado 2,042 2,893 2,379 3,495 2,986 2,123 1979-2011

342

Utah Nonassociated Natural Gas Proved Reserves, Wet After Lease...  

Annual Energy Outlook 2012 (EIA)

4,894 6,095 6,393 6,810 6,515 7,199 1979-2011 Adjustments -22 12 -11 67 -50 157 1979-2011 Revision Increases 184 1,085 376 1,181 776 649 1979-2011 Revision Decreases 472 326 491...

343

Utah Associated-Dissolved Natural Gas Proved Reserves, Wet After...  

Annual Energy Outlook 2012 (EIA)

317 368 321 601 631 909 1979-2011 Adjustments 1 0 5 4 -15 38 1979-2011 Revision Increases 36 40 7 190 117 190 1979-2011 Revision Decreases 37 3 80 2 61 48 1979-2011 Sales 16 0 0 4...

344

Texas - RRC District 10 Associated-Dissolved Natural Gas, Wet...  

U.S. Energy Information Administration (EIA) Indexed Site

Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 484 1980's 546 456 489 537 617 560 537 482 424 364 1990's 311 298 396 264 264 254 253 227 234 241 2000's...

345

Virginia Associated-Dissolved Natural Gas Proved Reserves, Wet...  

U.S. Energy Information Administration (EIA) Indexed Site

5 2006 2007 2008 2009 2010 View History Proved Reserves as of Dec. 31 0 0 0 0 0 0 1982-2010 Adjustments 0 0 0 0 0 0 1982-2010 Revision Increases 0 0 0 0 0 0 1982-2010 Revision...

346

,"New Mexico - East Nonassociated Natural Gas, Wet After Lease...  

U.S. Energy Information Administration (EIA) Indexed Site

29767,2377 30132,2331 30497,2214 30863,2117 31228,2001 31593,1750 31958,1901 32324,2030 32689,2131 33054,2290 33419,2073 33785,1948 34150,1860 34515,1791 34880,1648 35246,1612...

347

California Nonassociated Natural Gas Proved Reserves, Wet After...  

Annual Energy Outlook 2012 (EIA)

780 686 621 612 503 510 1979-2011 Adjustments -11 29 3 2 -3 -12 1979-2011 Revision Increases 67 80 113 97 50 118 1979-2011 Revision Decreases 49 186 129 60 87 32 1979-2011 Sales...

348

Ohio Associated-Dissolved Natural Gas Proved Reserves, Wet After...  

Annual Energy Outlook 2012 (EIA)

74 101 99 97 90 74 1979-2011 Adjustments 18 46 229 2 -57 -12 1979-2011 Revision Increases 17 22 6 13 5 4 1979-2011 Revision Decreases 31 133 228 8 1 0 1979-2011 Sales 0 0 0 0 0 0...

349

Ohio Nonassociated Natural Gas Proved Reserves, Wet After Lease...  

Gasoline and Diesel Fuel Update (EIA)

01 926 886 799 742 684 1979-2011 Adjustments 110 92 -19 68 184 -87 1979-2011 Revision Increases 32 122 129 57 63 13 1979-2011 Revision Decreases 81 65 105 35 58 38 1979-2011 Sales...

350

,"New Field Discoveries of Natural Gas, Wet After Lease Separation...  

U.S. Energy Information Administration (EIA) Indexed Site

from Web Page:","http:www.eia.govdnavngngenrwalsaepg0r28bcfa.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.gov" ,,"(202)...

351

,"New Reservoir Discoveries in Old Fields of Natural Gas, Wet...  

U.S. Energy Information Administration (EIA) Indexed Site

from Web Page:","http:www.eia.govdnavngngenrwalsaepg0r29bcfa.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.gov" ,,"(202)...

352

Colorado Associated-Dissolved Natural Gas Proved Reserves, Wet...  

U.S. Energy Information Administration (EIA) Indexed Site

1,541 1,838 2,010 1,882 2,371 2,518 1979-2011 Adjustments -2 9 -4 14 68 -38 1979-2011 Revision Increases 234 214 211 11 142 122 1979-2011 Revision Decreases 35 14 50 185 71 269...

353

Colorado Nonassociated Natural Gas Proved Reserves, Wet After...  

Gasoline and Diesel Fuel Update (EIA)

16,141 20,642 22,159 22,199 23,001 23,633 1979-2011 Adjustments 44 91 -70 474 578 921 1979-2011 Revision Increases 981 3,823 3,154 1,661 2,985 2,522 1979-2011 Revision Decreases...

354

Moving zone Marangoni drying of wet objects using naturally ...  

A surface tension gradient driven flow (a Marangoni flow) is used to remove the thin film of water remaining on the surface of an object following rinsing. The ...

355

NM, East Associated-Dissolved Natural Gas Proved Reserves, Wet...  

U.S. Energy Information Administration (EIA) Indexed Site

Revision Increases 334 229 270 298 198 323 1979-2011 Revision Decreases 135 146 157 285 241 180 1979-2011 Sales 205 113 118 64 57 101 2000-2011 Acquisitions 247 117 24 66 319 138...

356

Louisiana - South Onshore Natural Gas, Wet After Lease Separation...  

U.S. Energy Information Administration (EIA) Indexed Site

Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 1,428 1980's 1,241 1,568 1,576 1,258 1,027 1,402 1,117 1,318 1,076 1,596 1990's 1,119 1,364 888 958 969...

357

Oklahoma Associated-Dissolved Natural Gas Proved Reserves, Wet...  

U.S. Energy Information Administration (EIA) Indexed Site

361 177 237 1979-2011 Revision Decreases 102 86 210 158 103 221 1979-2011 Sales 13 125 6 241 70 274 2000-2011 Acquisitions 21 108 45 67 90 61 2000-2011 Extensions 41 103 88 52 398...

358

Louisiana - North Nonassociated Natural Gas, Wet After Lease...  

U.S. Energy Information Administration (EIA) Indexed Site

Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 250 1980's 241 160 205 218 177 194 287 213 518 318 1990's 324 421 463 392 407 503 449 597 774 930...

359

Louisiana - North Nonassociated Natural Gas, Wet After Lease...  

U.S. Energy Information Administration (EIA) Indexed Site

Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 279 134 247 241 284 141 190 1,259 1,157 51 2010's 564 5,009 - No Data Reported; -- Not Applicable;...

360

Kansas Natural Gas, Wet After Lease Separation Reserves Adjustments...  

U.S. Energy Information Administration (EIA) Indexed Site

Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 314 1980's -264 416 -87 312 -230 219 -241 265 -282 252 1990's -93 83 208 29 219 -296 340 -5 -120 -73 2000's 10 50 219 148 66 50...

Note: This page contains sample records for the topic "recoverable wet natural" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

Michigan Associated-Dissolved Natural Gas Proved Reserves, Wet...  

Annual Energy Outlook 2012 (EIA)

192 179 148 77 72 77 1979-2011 Adjustments 0 1 5 -28 4 2 1979-2011 Revision Increases 61 2 7 39 10 6 1979-2011 Revision Decreases 5 3 34 105 13 12 1979-2011 Sales 3 20 0 0 0 0...

362

Michigan Nonassociated Natural Gas Proved Reserves, Wet After...  

Gasoline and Diesel Fuel Update (EIA)

2,925 3,512 3,105 2,728 2,903 2,472 1979-2011 Adjustments 112 -48 -24 -286 254 3 1979-2011 Revision Increases 406 791 140 334 255 207 1979-2011 Revision Decreases 290 210 407 307...

363

Nonassociated Natural Gas Reserves Adjustments, Wet After Lease Separation  

Gasoline and Diesel Fuel Update (EIA)

,000 714 -184 5,046 1,774 2,325 1979-2011 ,000 714 -184 5,046 1,774 2,325 1979-2011 Federal Offshore U.S. -11 -46 -1 2 -41 73 1990-2011 Pacific (California) 0 0 0 -1 0 0 1979-2011 Louisiana & Alabama -10 1 -11 -3 -25 72 1981-2011 Texas -1 -47 10 6 -16 1 1981-2011 Alaska -49 1 -1 1 -2 -1 1979-2011 Lower 48 States 1,049 713 -183 5,045 1,776 2,326 1979-2011 Alabama -3 2 -7 42 47 -48 1979-2011 Arkansas -31 -22 -67 -8 -31 705 1979-2011 California -11 29 3 2 -3 -12 1979-2011 Coastal Region Onshore 0 0 0 1 0 0 1979-2011 Los Angeles Basin Onshore 0 0 0 0 0 0 1979-2011 San Joaquin Basin Onshore -11 28 3 1 -3 -12 1979-2011 State Offshore 0 1 0 0 0 0 1979-2011 Colorado 44 91 -70 474 578 921 1979-2011 Florida 0 0 0 0 33 -26 1979-2011

364

Natural Gas Reserves Extensions, Wet After Lease Separation  

Gasoline and Diesel Fuel Update (EIA)

22,834 28,255 27,800 43,500 46,283 47,635 1979-2011 22,834 28,255 27,800 43,500 46,283 47,635 1979-2011 Federal Offshore U.S. 751 675 924 298 333 98 1990-2011 Pacific (California) 0 0 0 0 0 0 1979-2011 Louisiana & Alabama 547 543 630 279 193 85 1981-2011 Texas 204 132 294 19 140 13 1981-2011 Alaska 50 28 18 2 15 4 1979-2011 Lower 48 States 22,784 28,227 27,782 43,498 46,268 47,631 1979-2011 Alabama 150 125 61 21 29 3 1979-2011 Arkansas 492 1,149 1,755 4,629 3,083 2,094 1979-2011 California 186 18 107 476 13 75 1979-2011 Coastal Region Onshore 5 0 0 0 0 1 1979-2011 Los Angeles Basin Onshore 4 0 0 0 0 0 1979-2011 San Joaquin Basin Onshore 176 14 102 472 9 71 1979-2011 State Offshore 1 4 5 4 4 3 1979-2011 Colorado 2,042 2,893 2,379 3,495 2,986 2,123 1979-2011

365

New Field Discoveries of Natural Gas, Wet After Lease Separation  

Gasoline and Diesel Fuel Update (EIA)

425 814 1,229 1,423 895 987 1979-2011 425 814 1,229 1,423 895 987 1979-2011 Federal Offshore U.S. 114 618 321 310 71 590 1990-2011 Pacific (California) 0 0 0 0 0 0 1979-2011 Louisiana & Alabama 85 313 288 50 71 590 1981-2011 Texas 29 305 33 260 0 0 1981-2011 Alaska 0 0 0 0 0 0 1979-2011 Lower 48 States 425 814 1,229 1,423 895 987 1979-2011 Alabama 0 0 2 0 3 2 1979-2011 Arkansas 7 0 0 0 0 0 1979-2011 California 0 0 0 1 1 0 1979-2011 Coastal Region Onshore 0 0 0 0 0 0 1979-2011 Los Angeles Basin Onshore 0 0 0 0 0 0 1979-2011 San Joaquin Basin Onshore 0 0 0 1 1 0 1979-2011 State Offshore 0 0 0 0 0 0 1979-2011 Colorado 15 15 18 8 23 19 1979-2011 Florida 0 0 0 0 0 0 1979-2011 Kansas 0 0 10 0 4 0 1979-2011 Kentucky

366

Associated-Dissolved Natural Gas Reserves Revision Decreases, Wet After  

Gasoline and Diesel Fuel Update (EIA)

2,782 1,804 7,385 2,698 3,964 5,953 1979-2011 2,782 1,804 7,385 2,698 3,964 5,953 1979-2011 Federal Offshore U.S. 984 351 430 517 879 1,393 1990-2011 Pacific (California) 22 10 38 7 5 18 1979-2011 Louisiana & Alabama 827 304 282 442 841 1,152 1981-2011 Texas 135 37 110 68 33 223 1981-2011 Alaska 111 10 3,954 5 260 79 1979-2011 Lower 48 States 2,671 1,794 3,431 2,693 3,704 5,874 1979-2011 Alabama 8 1 0 1 4 0 1979-2011 Arkansas 2 7 28 0 0 13 1979-2011 California 391 102 388 139 389 1,927 1979-2011 Coastal Region Onshore 12 22 72 14 17 31 1979-2011 Los Angeles Basin Onshore 31 17 71 25 5 4 1979-2011 San Joaquin Basin Onshore 341 49 217 97 367 1,892 1979-2011 State Offshore 7 14 28 3 0 0 1979-2011 Colorado 35 14 50 185 71 269 1979-2011

367

Natural Gas Reserves Sales, Wet After Lease Separation  

Gasoline and Diesel Fuel Update (EIA)

3,904 15,518 7,911 4,377 10,582 44,575 2000-2011 3,904 15,518 7,911 4,377 10,582 44,575 2000-2011 Federal Offshore U.S. 2,772 924 720 162 910 332 2000-2011 Pacific (California) 0 1 0 0 0 0 2000-2011 Louisiana & Alabama 1,581 830 635 128 771 309 2000-2011 Texas 1,191 93 85 34 139 23 2000-2011 Alaska 0 11 0 5 132 36 2000-2011 Lower 48 States 23,904 15,507 7,911 4,372 10,450 44,539 2000-2011 Alabama 192 308 11 2 272 595 2000-2011 Arkansas 4 298 19 54 393 6,762 2000-2011 California 287 173 8 4 3 49 2000-2011 Coastal Region Onshore 72 4 6 0 1 0 2000-2011 Los Angeles Basin Onshore 37 0 1 0 0 0 2000-2011 San Joaquin Basin Onshore 178 167 1 4 2 47 2000-2011 State Offshore 0 2 0 0 0 2 2000-2011 Colorado 1,587 772 775 391 255 1,311 2000-2011

368

Breakdown in the Wetting Transparency of Graphene  

E-Print Network (OSTI)

We develop a theory to model the van der Waals interactions between liquid and graphene, including quantifying the wetting behavior of a graphene-coated surface. Molecular dynamics simulations and contact angle measurements ...

Shih, Chih-Jen

369

Reducing the atmospheric impact of wet slaking  

SciTech Connect

Means of reducing the atmospheric emissions due to the wet slaking of coke are considered. One option, investigated here, is to remove residual active silt and organic compounds from the biologically purified wastewater sent for slaking, by coagulation and flocculation.

B.D. Zubitskii; G.V. Ushakov; B.G. Tryasunov; A.G.Ushakov [Kuznetsk Basin State Technical University, Kemerovo (Russian Federation)

2009-05-15T23:59:59.000Z

370

Wet/dry cooling tower and method  

DOE Patents (OSTI)

A wet/dry cooling tower wherein a liquid to-be-cooled is flowed along channels of a corrugated open surface or the like, which surface is swept by cooling air. The amount of the surface covered by the liquid is kept small compared to the dry part thereof so that said dry part acts as a fin for the wet part for heat dissipation.

Glicksman, Leon R. (Lynnfield, MA); Rohsenow, Warren R. (Waban, MA)

1981-01-01T23:59:59.000Z

371

Membrane-based wet electrostatic precipitation  

Science Conference Proceedings (OSTI)

Emissions of fine particulate matter, PM2.5, in both primary and secondary form, are difficult to capture in typical dry electrostatic precipitators (ESPs). Wet (or waterbased) ESPs are well suited for collection of acid aerosols and fine particulates because of greater corona power and virtually no re-entrainment. However, field disruptions because of spraying (misting) of water, formation of dry spots (channeling), and collector surface corrosion limit the applicability of current wet ESPs in the control of secondary PM2.5. Researchers at Ohio University have patented novel membrane collection surfaces to address these problems. Water-based cleaning in membrane collectors made of corrosion-resistant fibers is facilitated by capillary action between the fibers, maintaining an even distribution of water. This paper presents collection efficiency results of lab-scale and pilot-scale testing at First Energy's Bruce Mansfield Plant for the membrane-based wet ESP. The data indicate that a membrane wet ESP was more effective at collecting fine particulates, acid aerosols, and oxidized mercury than the metal-plate wet ESP, even with {approximately}15% less collecting area. 15 refs., 7 figs., 6 tabs.

David J. Bayless; Liming Shi; Gregory Kremer; Ben J. Stuart; James Reynolds; John Caine [Ohio University, Athens, OH (US). Ohio Coal Research Center

2005-06-01T23:59:59.000Z

372

Wet powder seal for gas containment  

DOE Patents (OSTI)

A gas seal is formed by a compact layer of an insoluble powder and liquid filling the fine interstices of that layer. The smaller the particle size of the selected powder, such as sand or talc, the finer will be the interstices or capillary spaces in the layer and the greater will be the resulting sealing capacity, i.e., the gas pressure differential which the wet powder layer can withstand. Such wet powder seal is useful in constructing underground gas reservoirs or storage cavities for nuclear wastes as well as stopping leaks in gas mains buried under ground or situated under water. The sealing capacity of the wet powder seal can be augmented by the hydrostatic head of a liquid body established over the seal.

Stang, L.G.

1979-08-29T23:59:59.000Z

373

Wet powder seal for gas containment  

DOE Patents (OSTI)

A gas seal is formed by a compact layer of an insoluble powder and liquid filling the fine interstices of that layer. The smaller the particle size of the selected powder, such as sand or talc, the finer will be the interstices or capillary spaces in the layer and the greater will be the resulting sealing capacity, i.e., the gas pressure differential which the wet powder layer can withstand. Such wet powder seal is useful in constructing underground gas reservoirs or storage cavities for nuclear wastes as well as stopping leaks in gas mains buried under ground or situated under water. The sealing capacity of the wet powder seal can be augmented by the hydrostatic head of a liquid body established over the seal.

Stang, Louis G. (Sayville, NY)

1982-01-01T23:59:59.000Z

374

Natural Gas Liquids Proved Reserves as of Dec. 31  

U.S. Energy Information Administration (EIA) Indexed Site

NG Wet Associated-Dissolved NG Natural Gas Liquids Period: Annual Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes...

375

,"Louisiana State Offshore Associated-Dissolved Natural Gas,...  

U.S. Energy Information Administration (EIA) Indexed Site

Of Series","Frequency","Latest Data for" ,"Data 1","Louisiana State Offshore Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves...

376

,"California Federal Offshore Associated-Dissolved Natural Gas...  

U.S. Energy Information Administration (EIA) Indexed Site

Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","California Federal Offshore Associated-Dissolved Natural Gas, Wet After Lease Separation,...

377

,"California - Coastal Region Onshore Associated-Dissolved Natural...  

U.S. Energy Information Administration (EIA) Indexed Site

Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","California - Coastal Region Onshore Associated-Dissolved Natural Gas, Wet After Lease...

378

,"California State Offshore Associated-Dissolved Natural Gas...  

U.S. Energy Information Administration (EIA) Indexed Site

Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","California State Offshore Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved...

379

Performance evaluation of natural draught cooling towers with anisotropic fills.  

E-Print Network (OSTI)

??ENGLISH ABSTRACT: In the design of a modern natural draught wet-cooling tower (NDWCT), structural and performance characteristics must be considered. Air flow distortions and resistances… (more)

Reuter, Hanno Carl Rudolf

2010-01-01T23:59:59.000Z

380

,"Texas - RRC District 2 Onshore Associated-Dissolved Natural...  

U.S. Energy Information Administration (EIA) Indexed Site

,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Texas - RRC District 2 Onshore Associated-Dissolved Natural Gas, Wet After Lease Separation,...

Note: This page contains sample records for the topic "recoverable wet natural" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

,"Texas - RRC District 4 Onshore Associated-Dissolved Natural...  

U.S. Energy Information Administration (EIA) Indexed Site

,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Texas - RRC District 4 Onshore Associated-Dissolved Natural Gas, Wet After Lease Separation,...

382

Geology and potential uses of the geopressure resources of the Gulf Coast. [6,000 MW-centuries of recoverable electric energy, 200 Tcf of methane  

DOE Green Energy (OSTI)

The US ERDA has supported efforts to evaluate the potential contribution to the national energy supply of geopressured geothermal resources in the Gulf Coast. Efforts include a program of resource assessment and programs to examine utilization of the resource for the production of electricity and as a source of industrial-process heat. Work on resource assessment has suggested the presence of perhaps as much as 6,000 MW-centuries of recoverable electric energy and of 200 Tcf of methane. This program has emphasized finding significantly large sand bodies within the geopressured stratigraphic section in addition to defining the distribution of abnormal fluid pressures and formation temperatures. Regional sand facies analyses conducted thus far indicate five locations in the Frio formation of Central and South Texas where adequately large geopressured geothermal resources may be present. Engineering studies of energy-conversion systems based on total-flow, flashed-steam, and binary-cycle concepts show that development of electric power from the Gulf Coast geopressure resource is technically feasible. Study of use of the resource as process heat in pulp and paper mills and new sugar refineries has shown that these uses also are technically sound. The thermal content of a barrel of geothermal brine can cost as little as 9 mills when credited for recoverable hydraulic energy and methane. The value of heat approaches 50 mills per bbl for certain applications. All programs have pointed out clearly the need for better specific understanding of the resource, especially its dissolved methane content and its ability to produce for tens of years.

Howard, J.H.; House, P.A.; Johnson, P.M.; Towse, D.F.; Bebout, D.G.; Dorfman, M.H.; Agagu, O.K.; Hornburg, C.D.; Morin, O.J.

1976-06-01T23:59:59.000Z

383

Natural Gas Weekly Update  

Gasoline and Diesel Fuel Update (EIA)

7, 2011 at 2:00 P.M. 7, 2011 at 2:00 P.M. Next Release: Thursday, April 14, 2011 Overview Prices Storage Other Market Trends Natural Gas Transportation Update Overview (For the Week Ending Wednesday, April 6, 2011) Continuing last weekÂ’s net decline, the Henry Hub price this week fell 8 cents from $4.25 per million Btu (MMBtu) on Wednesday, March 30, to $4.17 per MMBtu on Wednesday, April 6. At the New York Mercantile Exchange, the price of the near-month (May 2011) contract fell from $4.355 per MMBtu to $4.146 per MMBtu. Working natural gas in storage fell to 1,579 billion cubic feet (Bcf) as of Friday, April 1, according to EIAÂ’s Weekly Natural Gas Storage Report.The natural gas rotary rig count, as reported by Baker Hughes Incorporated, rose by 11 to 891. A new study released by EIA estimated technically recoverable shale

384

Enhanced Mercury Removal by Wet FGD Systems  

Science Conference Proceedings (OSTI)

This report provides results from testing conducted in 2005 as part of three EPRI co-funded projects that are aimed at enhancing the capture of mercury in flue gas from coal-fired power boilers when scrubbed by wet flue gas desulfurization (FGD) systems. The first project is co-sponsored by the U.S. Department of Energy's National Energy Technology Laboratory (DOE-NETL) under Cooperative Agreement DE-FC26-01NT41185, "Pilot Testing of Mercury Oxidation Catalysts for Upstream of Wet FGD," as well as by two...

2006-03-07T23:59:59.000Z

385

Chaoticity of the Wet Granular Gas  

E-Print Network (OSTI)

In this work we derive an analytic expression for the Kolmogorov-Sinai entropy of dilute wet granular matter, valid for any spatial dimension. The grains are modelled as hard spheres and the influence of the wetting liquid is described according to the Capillary Model, in which dissipation is due to the hysteretic cohesion force of capillary bridges. The Kolmogorov-Sinai entropy is expanded in a series with respect to density. We find a rapid increase of the leading term when liquid is added. This demonstrates the sensitivity of the granular dynamics to humidity, and shows that the liquid significantly increases the chaoticity of the granular gas.

A. Fingerle; S. Herminghaus; V. Yu. Zaburdaev

2007-05-22T23:59:59.000Z

386

Fate of Mercury in Wet FGD Systems  

Science Conference Proceedings (OSTI)

This report describes the results of a bench-scale, laboratory investigation of the fate of flue gas mercury species in wet flue gas desulfurization (FGD) scrubbers that are used for sulfur dioxide (SO2) control in coal-fired power plants. Data collected in the EPA mercury Information Collection Request (ICR), and in research projects sponsored by EPRI show that most wet scrubbers used for SO2 control achieve high removals of oxidized mercury and little or no elemental mercury removal. However, some scru...

2004-03-12T23:59:59.000Z

387

Resource Assessment of the In-Place and Potentially Recoverable Deep Natural Gas Resource of the Onshore Interior Salt Basins, North Central and Northeastern Gulf of Mexico  

SciTech Connect

The principal research effort for Year 2 of the project has been petroleum system characterization and modeling. Understanding the burial, thermal maturation, and hydrocarbon expulsion histories of the strata in the onshore interior salt basins of the North Central and Northeastern Gulf of Mexico areas is important in hydrocarbon resource assessment. The underburden and overburden rocks in these basins and subbasins are a product of their rift-related geohistory. Petroleum source rock analysis and initial thermal maturation and hydrocarbon expulsion modeling indicated that an effective regional petroleum source rock in the onshore interior salt basins and subbasins, the North Louisiana Salt Basin, Mississippi Interior Salt Basin, Manila Subbasin and Conecuh Subbasin, was Upper Jurassic Smackover lime mudstone. The initial modeling also indicated that hydrocarbon generation and expulsion were initiated in the Early Cretaceous and continued into the Tertiary in the North Louisiana Salt Basin and the Mississippi Interior Salt Basin and that hydrocarbon generation and expulsion were initiated in the Late Cretaceous and continued into the Tertiary in the Manila Subbasin and Conecuh Subbasin. Refined thermal maturation and hydrocarbon expulsion modeling and additional petroleum source rock analysis have confirmed that the major source rock in the onshore interior salt basins and subbasins is Upper Jurassic Smackover lime mudstone. Hydrocarbon generation and expulsion were initiated in the Early to Late Cretaceous and continued into the Tertiary.

Ernest A. Mancini; Paul Aharon; Donald A. Goddard; Roger Barnaby

2005-10-28T23:59:59.000Z

388

Resource Assessment of the In-Place and Potentially Recoverable Deep Natural Gas Resource of the Onshore Interior Salt Basins, North Central and Northeastern Gulf of Mexico  

Science Conference Proceedings (OSTI)

The principal research effort for the first six months of Year 2 of the project has been petroleum system characterization. Understanding the burial and thermal maturation histories of the strata in the onshore interior salt basins of the North Central and Northeastern Gulf of Mexico areas is important in petroleum system characterization. The underburden and overburden rocks in these basins and subbasins are a product of their rift-related geohistory. Petroleum source rock analysis and thermal maturation and hydrocarbon expulsion modeling indicate that an effective regional petroleum source rock in the onshore interior salt basins, the North Louisiana Salt Basin, Mississippi Interior Salt Basin, Manila Subbasin and Conecuh Subbasin, was the Upper Jurassic Smackover lime mudstone. The Upper Cretaceous Tuscaloosa shale was an effective local petroleum source rock in the Mississippi Interior Salt Basin and a possible local source bed in the North Louisiana Salt Basin. Hydrocarbon generation and expulsion was initiated in the Early Cretaceous and continued into the Tertiary in the North Louisiana Salt Basin and the Mississippi Interior Salt Basin. Hydrocarbon generation and expulsion was initiated in the Late Cretaceous and continued into the Tertiary in the Manila Subbasin and Conecuh Subbasin. Reservoir rocks include Jurassic, Cretaceous and Tertiary siliciclastic and carbonate strata. Seal rocks include Jurassic, Cretaceous and Tertiary anhydrite and shale beds. Petroleum traps include structural and combination traps.

Ernest A. Mancini; Donald A. Goddard

2005-04-15T23:59:59.000Z

389

Resource Assessment of the In-Place and Potentially Recoverable Deep Natural Gas Resource of the Onshore Interior Salt Basins, North Central and Northeastern Gulf of Mexico  

Science Conference Proceedings (OSTI)

The principal research effort for the first half of Year 3 of the project has been resource assessment. Emphasis has been on estimating the total volume of hydrocarbons generated and the potential amount of this resource that is classified as deep (>15,000 ft) gas in the North Louisiana Salt Basin, the Mississippi Interior Salt Basin, the Manila Subbasin and the Conecuh Subbasin. The amount of this resource that has been expelled, migrated and entrapped is also the focus of the first half of Year 3 of this study.

Ernest A. Mancini; Paul Aharon; Donald A. Goddard; Roger Barnaby

2006-04-26T23:59:59.000Z

390

Scaling of the normal coefficient of restitution for wet impacts  

E-Print Network (OSTI)

A thorough understanding of the energy dissipation in the dynamics of wet granular matter is essential for a continuum description of natural phenomena such as debris flow, and the development of various industrial applications such as the granulation process. The coefficient of restitution (COR), defined as the ratio between the relative rebound and impact velocities of a binary impact, is frequently used to characterize the amount of energy dissipation associated. We measure the COR by tracing a freely falling sphere bouncing on a wet surface with the liquid film thickness monitored optically. For fixed ratio between the film thickness and the particle size, the dependence of the COR on the impact velocity and various properties of the liquid film can be characterized with the Stokes number, defined as the ratio between the inertia of the particle and the viscosity of the liquid. Moreover, the COR for infinitely large impact velocities derived from the scaling can be analyzed by a model considering the energy dissipation from the inertia of the liquid film.

Thomas Mueller; Frank Gollwitzer; Christof Kruelle; Ingo Rehberg; Kai Huang

2013-01-23T23:59:59.000Z

391

A New Global Unconventional Natural Gas Resource Assessment  

E-Print Network (OSTI)

In 1997, Rogner published a paper containing an estimate of the natural gas in place in unconventional reservoirs for 11 world regions. Rogner's work was assessing the unconventional gas resource base, and is now considered to be very conservative. Very little is known publicly about technically recoverable unconventional gas resource potential on a global scale. Driven by a new understanding of the size of gas shale resources in the United States, we estimated original gas in place (OGIP) and technically recoverable resource (TRR) in highly uncertain unconventional gas reservoirs, worldwide. We evaluated global unconventional OGIP by (1) developing theoretical statistic relationships between conventional hydrocarbon and unconventional gas; (2) fitting these relationships to North America publically available data; and (3) applying North American theoretical statistical relationships to evaluate the volume of unconventional gas resource of the world. Estimated global unconventional OGIP ranges from 83,300 (P10) to 184,200 (P90) Tcf. To assess global TRR from unconventional gas reservoirs, we developed a computer program that we call Unconventional Gas Resource Assessment System (UGRAS). In the program, we integrated a Monte Carlo technique with an analytical reservoir simulator to estimate the original volume of gas in place and to predict production performance. We used UGRAS to evaluate the probabilistic distribution of OGIP, TRR and recovery factor (RF) for the most productive unconventional gas formations in the North America. The P50 of recovery factor for shale gas, tight sands gas and coalbed methane is 25%, 79% and 41%, respectively. Finally, we applied our global OGIP assessment and these distributions of recovery factor gained from our analyses of plays/formations in the United States to estimate global technically recoverable unconventional gas resource. Global technically recoverable unconventional gas resource is estimated from 43,000 (P10) to 112,000 (P90) Tcf.

Dong, Zhenzhen

2012-08-01T23:59:59.000Z

392

Indian Centre for Wind Energy Technology C WET | Open Energy...  

Open Energy Info (EERE)

Centre for Wind Energy Technology C WET Jump to: navigation, search Name Indian Centre for Wind Energy Technology (C-WET) Place Chennai, India Zip 601 302 Sector Wind energy...

393

Categorical Exclusion 4497: Lithium Wet Chemistry Project  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

8/2012 07:36 8/2012 07:36 8655749041 ENVIRONMENTAL COMPL U.S. Department of Energy Categorical Exclusion Detennination Form Proposed Action Tills: Lithium W@t Chemistry Project (4597) Program or Fi~ld Oftke: Y-12 Site Office L&cationfs) (CiWLCount:r/State): Oak Ridge, Anderson County; Tennessee Proposed Action Description: PAGE 03/04 r: :;: :: !: s .a : brnl, i ~ y. : $ ~-rtl~il : t·:~::;J The proposed action is to develop a small lithium wet chemistry operation for the following purposes: (1) to capture wet chemistry operations, (2) to provide processing path for Lithium materials such as machine dust, (3) to provide lithium based materials, and (4) to produce the littlium hydroxide needed to support production. CategQrj~l Exclusion(s) Applied

394

Utah Natural Gas Reserves Summary as of Dec. 31  

Gasoline and Diesel Fuel Update (EIA)

5,146 6,391 6,643 7,257 6,981 7,857 1977-2011 Natural Gas, Wet After Lease Separation 5,211 6,463 6,714 7,411 7,146 8,108 1979-2011 Natural Gas Nonassociated, Wet After Lease...

395

California Natural Gas Reserves Summary as of Dec. 31  

Gasoline and Diesel Fuel Update (EIA)

794 2,740 2,406 2,773 2,647 2,934 1977-2011 Natural Gas, Wet After Lease Separation 2,935 2,879 2,538 2,926 2,785 3,042 1979-2011 Natural Gas Nonassociated, Wet After Lease...

396

Federal Offshore, Gulf of Mexico, Louisiana & Alabama Natural...  

Gasoline and Diesel Fuel Update (EIA)

11,824 11,090 10,450 9,362 8,896 8,156 1981-2011 Natural Gas, Wet After Lease Separation 12,201 11,458 10,785 9,665 9,250 8,555 1981-2011 Natural Gas Nonassociated, Wet After Lease...

397

Federal Offshore, Gulf of Mexico, Texas Natural Gas Reserves...  

Annual Energy Outlook 2012 (EIA)

,725 2,544 2,392 2,451 2,145 1,554 1981-2011 Natural Gas, Wet After Lease Separation 2,738 2,550 2,402 2,451 2,145 1,554 1981-2011 Natural Gas Nonassociated, Wet After Lease...

398

California Natural Gas Reserves Summary as of Dec. 31  

Gasoline and Diesel Fuel Update (EIA)

2,794 2,740 2,406 2,773 2,647 2,934 1977-2011 Natural Gas, Wet After Lease Separation 2,935 2,879 2,538 2,926 2,785 3,042 1979-2011 Natural Gas Nonassociated, Wet After Lease...

399

Colorado Natural Gas Reserves Summary as of Dec. 31  

Annual Energy Outlook 2012 (EIA)

17,149 21,851 23,302 23,058 24,119 24,821 1977-2011 Natural Gas, Wet After Lease Separation 17,682 22,480 24,169 24,081 25,372 26,151 1979-2011 Natural Gas Nonassociated, Wet After...

400

Michigan Natural Gas Reserves Summary as of Dec. 31  

Annual Energy Outlook 2012 (EIA)

3,065 3,630 3,174 2,763 2,919 2,505 1977-2011 Natural Gas, Wet After Lease Separation 3,117 3,691 3,253 2,805 2,975 2,549 1979-2011 Natural Gas Nonassociated, Wet After Lease...

Note: This page contains sample records for the topic "recoverable wet natural" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

Natural Gas from Shale  

Energy.gov (U.S. Department of Energy (DOE))

Office of Fossil Energy research helped refine cost-effective horizontal drilling and hydraulic fracturing technologies, protective environmental practices and data development, making hundreds of trillions of cubic feet of gas technically recoverable where they once were not.

402

Wetting heterogeneity in mixed-wet porous media controls flow dissipation  

E-Print Network (OSTI)

Wettability is crucial for multiphase flow in porous media. However, the effect of spatial distribution of wetting domains has previously only been dealt with by averaging contact angles over several pores. By preparing tailored bead packings with the same average surface wettability, but differing in the typical spatial extension of the same-type wetting domains, we show that models based solely on averages do not capture the dynamics of two phase flow in such systems. Using X-ray tomography we measure the typical length scale xi of the wetting domains in our samples. In capillary pressure saturation (CPS) experiments we find that xi controls the width of the hysteresis loop for xi <= d, d being the bead diameter. X-Ray tomography of the samples during both water and oil invasion shows that the front morphology is smoothened at small values of xi. Both observations are consistent with an increase of dissipation for small correlation length.

Murison, Julie; Baret, Jean-Christophe; Herminghaus, Stephan; Schröter, Matthias; Brinkmann, Martin

2013-01-01T23:59:59.000Z

403

Wetting heterogeneity in mixed-wet porous media controls flow dissipation  

E-Print Network (OSTI)

Wettability is crucial for multiphase flow in porous media. However, the effect of spatial distribution of wetting domains has previously only been dealt with by averaging contact angles over several pores. By preparing tailored bead packings with the same average surface wettability, but differing in the typical spatial extension of the same-type wetting domains, we show that models based solely on averages do not capture the dynamics of two phase flow in such systems. Using X-ray tomography we measure the typical length scale xi of the wetting domains in our samples. In capillary pressure saturation (CPS) experiments we find that xi controls the width of the hysteresis loop for xi <= d, d being the bead diameter. X-Ray tomography of the samples during both water and oil invasion shows that the front morphology is smoothened at small values of xi. Both observations are consistent with an increase of dissipation for small correlation length.

Julie Murison; Benoît Semin; Jean-Christophe Baret; Stephan Herminghaus; Matthias Schröter; Martin Brinkmann

2013-10-11T23:59:59.000Z

404

Natural Gas  

Gasoline and Diesel Fuel Update (EIA)

68,747 68,747 34,577 0.39 0 0.00 34 1.16 14,941 0.29 0 0.00 11,506 0.36 61,058 0.31 I d a h o Idaho 60. Summary Statistics for Natural Gas Idaho, 1992-1996 Table 1992 1993 1994 1995 1996 Reserves (billion cubic feet) Estimated Proved Reserves (dry) as of December 31 ....................................... 0 0 0 0 0 Number of Gas and Gas Condensate Wells Producing at End of Year.............................. 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells ......................................... 0 0 0 0 0 From Oil Wells ........................................... 0 0 0 0 0 Total.............................................................. 0 0 0 0 0 Repressuring ................................................ 0 0 0 0 0 Nonhydrocarbon Gases Removed ............... 0 0 0 0 0 Wet After Lease Separation.......................... 0 0 0 0 0 Vented

405

Natural Gas  

Gasoline and Diesel Fuel Update (EIA)

0 0 0 0.00 0 0.00 0 0.00 540 0.01 0 0.00 2,132 0.07 2,672 0.01 H a w a i i Hawaii 59. Summary Statistics for Natural Gas Hawaii, 1992-1996 Table 1992 1993 1994 1995 1996 Reserves (billion cubic feet) Estimated Proved Reserves (dry) as of December 31 ....................................... 0 0 0 0 0 Number of Gas and Gas Condensate Wells Producing at End of Year.............................. 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells ......................................... 0 0 0 0 0 From Oil Wells ........................................... 0 0 0 0 0 Total.............................................................. 0 0 0 0 0 Repressuring ................................................ 0 0 0 0 0 Nonhydrocarbon Gases Removed ............... 0 0 0 0 0 Wet After Lease Separation.......................... 0 0 0 0 0 Vented and Flared

406

Natural Gas  

Gasoline and Diesel Fuel Update (EIA)

291,898 291,898 113,995 1.29 0 0.00 4 0.14 88,078 1.68 3,491 0.13 54,571 1.73 260,140 1.30 I o w a Iowa 63. Summary Statistics for Natural Gas Iowa, 1992-1996 Table 1992 1993 1994 1995 1996 Reserves (billion cubic feet) Estimated Proved Reserves (dry) as of December 31 ....................................... 0 0 0 0 0 Number of Gas and Gas Condensate Wells Producing at End of Year.............................. 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells ......................................... 0 0 0 0 0 From Oil Wells ........................................... 0 0 0 0 0 Total.............................................................. 0 0 0 0 0 Repressuring ................................................ 0 0 0 0 0 Nonhydrocarbon Gases Removed ............... 0 0 0 0 0 Wet After Lease Separation.......................... 0 0 0

407

Natural Gas  

Gasoline and Diesel Fuel Update (EIA)

42,980 42,980 14,164 0.16 0 0.00 1 0.03 9,791 0.19 23,370 0.86 6,694 0.21 54,020 0.27 D e l a w a r e Delaware 55. Summary Statistics for Natural Gas Delaware, 1992-1996 Table 1992 1993 1994 1995 1996 Reserves (billion cubic feet) Estimated Proved Reserves (dry) as of December 31 ....................................... 0 0 0 0 0 Number of Gas and Gas Condensate Wells Producing at End of Year.............................. 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells ......................................... 0 0 0 0 0 From Oil Wells ........................................... 0 0 0 0 0 Total.............................................................. 0 0 0 0 0 Repressuring ................................................ 0 0 0 0 0 Nonhydrocarbon Gases Removed ............... 0 0 0 0 0 Wet After Lease Separation..........................

408

Natural Gas  

Gasoline and Diesel Fuel Update (EIA)

21,547 21,547 4,916 0.06 0 0.00 0 0.00 7,012 0.13 3 0.00 7,099 0.22 19,031 0.10 N e w H a m p s h i r e New Hampshire 77. Summary Statistics for Natural Gas New Hampshire, 1992-1996 Table 1992 1993 1994 1995 1996 Reserves (billion cubic feet) Estimated Proved Reserves (dry) as of December 31 ....................................... 0 0 0 0 0 Number of Gas and Gas Condensate Wells Producing at End of Year.............................. 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells ......................................... 0 0 0 0 0 From Oil Wells ........................................... 0 0 0 0 0 Total.............................................................. 0 0 0 0 0 Repressuring ................................................ 0 0 0 0 0 Nonhydrocarbon Gases Removed ............... 0 0 0 0 0 Wet After Lease Separation..........................

409

Natural Gas  

Gasoline and Diesel Fuel Update (EIA)

139,881 139,881 26,979 0.30 463 0.00 115 3.92 27,709 0.53 19,248 0.70 28,987 0.92 103,037 0.52 A r i z o n a Arizona 50. Summary Statistics for Natural Gas Arizona, 1992-1996 Table 1992 1993 1994 1995 1996 Reserves (billion cubic feet) Estimated Proved Reserves (dry) as of December 31 ....................................... NA NA NA NA NA Number of Gas and Gas Condensate Wells Producing at End of Year.............................. 6 6 6 7 7 Production (million cubic feet) Gross Withdrawals From Gas Wells ......................................... 721 508 711 470 417 From Oil Wells ........................................... 72 110 48 88 47 Total.............................................................. 794 618 759 558 464 Repressuring ................................................ 0 0 0 0 0 Nonhydrocarbon Gases Removed ............... 0 0 0 0 0 Wet After Lease

410

Natural Gas  

Gasoline and Diesel Fuel Update (EIA)

386,690 386,690 102,471 1.16 0 0.00 43 1.47 142,319 2.72 5,301 0.19 98,537 3.12 348,671 1.74 M i n n e s o t a Minnesota 71. Summary Statistics for Natural Gas Minnesota, 1992-1996 Table 1992 1993 1994 1995 1996 Reserves (billion cubic feet) Estimated Proved Reserves (dry) as of December 31 ....................................... 0 0 0 0 0 Number of Gas and Gas Condensate Wells Producing at End of Year.............................. 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells ......................................... 0 0 0 0 0 From Oil Wells ........................................... 0 0 0 0 0 Total.............................................................. 0 0 0 0 0 Repressuring ................................................ 0 0 0 0 0 Nonhydrocarbon Gases Removed ............... 0 0 0 0 0 Wet After Lease Separation..........................

411

Natural Gas  

Gasoline and Diesel Fuel Update (EIA)

286,485 286,485 71,533 0.81 25 0.00 31 1.06 137,225 2.62 5,223 0.19 72,802 2.31 286,814 1.43 M i s s o u r i Missouri 73. Summary Statistics for Natural Gas Missouri, 1992-1996 Table 1992 1993 1994 1995 1996 Reserves (billion cubic feet) Estimated Proved Reserves (dry) as of December 31 ....................................... NA NA NA NA NA Number of Gas and Gas Condensate Wells Producing at End of Year.............................. 5 8 12 15 24 Production (million cubic feet) Gross Withdrawals From Gas Wells ......................................... 27 14 8 16 25 From Oil Wells ........................................... 0 0 0 0 0 Total.............................................................. 27 14 8 16 25 Repressuring ................................................ 0 0 0 0 0 Nonhydrocarbon Gases Removed ............... 0 0 0 0 0 Wet After Lease Separation..........................

412

Natural Gas  

Gasoline and Diesel Fuel Update (EIA)

411,951 411,951 100,015 1.13 0 0.00 5 0.17 114,365 2.18 45,037 1.65 96,187 3.05 355,609 1.78 Massachusetts Massachusetts 69. Summary Statistics for Natural Gas Massachusetts, 1992-1996 Table 1992 1993 1994 1995 1996 Reserves (billion cubic feet) Estimated Proved Reserves (dry) as of December 31 ....................................... 0 0 0 0 0 Number of Gas and Gas Condensate Wells Producing at End of Year.............................. 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells ......................................... 0 0 0 0 0 From Oil Wells ........................................... 0 0 0 0 0 Total.............................................................. 0 0 0 0 0 Repressuring ................................................ 0 0 0 0 0 Nonhydrocarbon Gases Removed ............... 0 0 0 0 0 Wet After Lease Separation..........................

413

Natural Gas  

Gasoline and Diesel Fuel Update (EIA)

226,798 226,798 104,124 1.17 0 0.00 0 0.00 58,812 1.12 2,381 0.09 40,467 1.28 205,783 1.03 North Carolina North Carolina 81. Summary Statistics for Natural Gas North Carolina, 1992-1996 Table 1992 1993 1994 1995 1996 Reserves (billion cubic feet) Estimated Proved Reserves (dry) as of December 31 ....................................... 0 0 0 0 0 Number of Gas and Gas Condensate Wells Producing at End of Year.............................. 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells ......................................... 0 0 0 0 0 From Oil Wells ........................................... 0 0 0 0 0 Total.............................................................. 0 0 0 0 0 Repressuring ................................................ 0 0 0 0 0 Nonhydrocarbon Gases Removed ............... 0 0 0 0 0 Wet After Lease Separation..........................

414

Natural Gas  

Gasoline and Diesel Fuel Update (EIA)

29,693 29,693 0 0.00 0 0.00 6 0.20 17,290 0.33 0 0.00 16,347 0.52 33,644 0.17 District of Columbia District of Columbia 56. Summary Statistics for Natural Gas District of Columbia, 1992-1996 Table 1992 1993 1994 1995 1996 Reserves (billion cubic feet) Estimated Proved Reserves (dry) as of December 31 ....................................... 0 0 0 0 0 Number of Gas and Gas Condensate Wells Producing at End of Year.............................. 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells ......................................... 0 0 0 0 0 From Oil Wells ........................................... 0 0 0 0 0 Total.............................................................. 0 0 0 0 0 Repressuring ................................................ 0 0 0 0 0 Nonhydrocarbon Gases Removed ............... 0 0 0 0 0 Wet After Lease Separation..........................

415

Method for the wet quenching of coke  

SciTech Connect

A method and apparatus for the wet quenching of coke is disclosed wherein hot coke is sprayed from above with quenching water, the steam generated by the heat of the coke is condensed by a spray of condensation water from the top of the quenching tower, and the hot condensate-water mixture is collected at the bottom of the quenching tower and recirculated to the top of the tower where it is sprayed between quenching operations to be cooled by a counterflowing stream of air. The cooled condensate water mixture is suitable for reuse as the condensation spray water.

Blase, M.; Flockenhaus, C.; Wagener, D.

1982-03-30T23:59:59.000Z

416

A round robin evaluation of the corrosiveness of wet residential insulation by electrochemical measurements  

SciTech Connect

The results of a round cabin evaluation of the use of an electrochemical method of calculating the corrosion rate of low carbon steel in environments related to cellulosic building insulations are reported. Environments included the leachate from a wet cellulosic insulation and solutions based on pure and commercial grades of borax, ammonium sulfate and aluminum sulfate. The pH values of these environments were in the range of 2.5 to 9.5. Electrochemical measurements were made using a direct reading corrosion rate instrument. The calculated corrosion rates were compared with those determined directly by weight loss measurements. Electrochemical measurements were made over a period of 48 hours and weight loss exposures were for two weeks. Poor agreement was observed for the corrosion rates determined electrochemically and the values were consistently larger than those based on weight loss. Reasons proposed for these results included the complex nature of the corrosion product deposits and the control these deposits have on oxygen diffusion to the metal interface. Both factors influence the validity of the calculation of the corrosion rate by the direct reading instrument. It was concluded that development of a viable electrochemical method of general applicability to the evaluation of the corrosiveness of wet residential building thermal insulations were doubtful. Because of the controlling influence of dissolved oxygen on the corrosion rate in the insulation leachate, an alternate evaluation method is proposed in which a thin steel specimen is partially immersed in wet insulation for three weeks. The corrosiveness of the wet insulation is evaluated in terms of the severity of attack near the metal-air-wet insulation interface. With thin metal specimens, complete penetration along the interface is proposed as a pass/fail criterion. An environment of sterile cotton wet with distilled water is proposed as a comparative standard. 9 refs., 2 figs., 3 tabs.

Stansbury, E.E. (Stansbury (E.E.), Knoxville, TN (United States))

1991-10-01T23:59:59.000Z

417

U.S. crude oil, natural gas, and natural gas liquids reserves 1997 annual report  

Science Conference Proceedings (OSTI)

This report presents estimates of proved reserves of crude oil, natural gas, and natural gas liquids as of December 31, 1997, as well as production volumes for the US and selected States and State subdivisions for the year 1997. Estimates are presented for the following four categories of natural gas: total gas (wet after lease separation), nonassociated gas and associated-dissolved gas (which are the two major types of wet natural gas), and total dry gas (wet gas adjusted for the removal of liquids at natural gas processing plants). In addition, reserve estimates for two types of natural gas liquids, lease condensate and natural gas plant liquids, are presented. Also included is information on indicated additional crude oil reserves and crude oil, natural gas, and lease condensate reserves in nonproducing reservoirs. A discussion of notable oil and gas exploration and development activities during 1997 is provided. 21 figs., 16 tabs.

NONE

1998-12-01T23:59:59.000Z

418

Ionizing wet scrubber for air pollution control  

Science Conference Proceedings (OSTI)

Air pollution control equipment manufacturers are continually developing sophisticated systems designed to dramatically reduce plant emissions. One such system, the ionizing wet scrubber (IWS), has demonstrated outstanding air pollution control characteristics while meeting the challenge of energy efficiency. The IWS system removes fine solid and liquid particulate down to 0.05 micron at high collection efficiencies and low energy comsumption. It also simultaneously removes noxious, corrosive and odor-bearing gases from flue gas streams as well as coarse particulate matter above 1 micron in diameter. Due to its simplified design and low pressure drop, operating energy costs of the IWS are only a fraction of those for alternative air pollution control equipment. Pressure drop through a single-stage IWS is only 0.5 to 1.5 in. Water (125 to 374 pa) column and is controlled primarily by pressure drop through the wet scrubber section. Total system energy usage is approximately 2.0-2.5 bhp/1,000 actual ft/sup 3//min (0.7-0.9 kw/m/sup 3//min) for a single-stage IWS and 4.0-5.0 bhp/1,000 actual ft/sup 3//min for a two-stage installation. These energy requirements represent a significant savings as opposed to other air pollution control systems such as Venturi scrubbers.

Sheppard, S.V.

1986-02-01T23:59:59.000Z

419

Summary: U.S. Crude Oil, Natural Gas, and Natural Gas Liquids ...  

U.S. Energy Information Administration (EIA)

Table 4. Total U.S. Proved Reserves of Wet Natural Gas, and Crude Oil plus Lease Condensate, 2001-2009 Revisionsa Net of Salesb New Reservoir Provedd Change

420

Water Treatment For Wet Electrostatic Precipitators: Conceptual Design  

Science Conference Proceedings (OSTI)

Pilot testing has shown that replacement of the last field of a small dry electrostatic precipitator (ESP) with a single wet field can significantly reduce outlet particulate emissions from coal-fired power plants. This report summarizes a pilot wet ESP performance test, cost projections from an economic study, and results from a study of the water use and chemistry issues that need to be resolved to make the wet ESP technology an attractive option for electric utilities.

1997-09-25T23:59:59.000Z

Note: This page contains sample records for the topic "recoverable wet natural" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

BERYLLIUM MEASUREMENT IN COMMERCIALLY AVAILABLE WET WIPES  

Science Conference Proceedings (OSTI)

Analysis for beryllium by fluorescence is now an established method which is used in many government-run laboratories and commercial facilities. This study investigates the use of this technique using commercially available wet wipes. The fluorescence method is widely documented and has been approved as a standard test method by ASTM International and the National Institute for Occupational Safety and Health (NIOSH). The procedure involves dissolution of samples in aqueous ammonium bifluoride solution and then adding a small aliquot to a basic hydroxybenzoquinoline sulfonate fluorescent dye (Berylliant{trademark} Inc. Detection Solution Part No. CH-2) , and measuring the fluorescence. This method is specific to beryllium. This work explores the use of three different commercial wipes spiked with beryllium, as beryllium acetate or as beryllium oxide and subsequent analysis by optical fluorescence. The effect of possible interfering metals such as Fe, Ti and Pu in the wipe medium is also examined.

Youmans-Mcdonald, L.

2011-02-18T23:59:59.000Z

422

Mercury Emissions Control in Wet FGD Systems  

E-Print Network (OSTI)

The Babcock & Wilcox Company (B&W) and McDermott Technology, Inc. (MTI) have had a continuing program over the past decade for characterizing and optimizing mercury control in flue gas desulfurization (FGD) systems. These efforts have led to the characterization of mercury emissions control at two utility installations and full-scale demonstration (55 MW and 1300 MW) of the effect of a mercury control performance enhancement additive for wet FGD systems. This paper presents the results of the mercury emissions control testing conducted at these two sites. The performance is related to EPA Information Collection Request (ICR) data from an FGD system supplier’s perspective, highlighting the need to consider the effects of system design and operation when evaluating mercury emissions control performance.

Paul S. Nolan; Babcock Wilcox; Kevin E. Redinger; Babcock Wilcox; Gerald T. Amrhein; Gregory A. Kudlac

2002-01-01T23:59:59.000Z

423

Self-oscillations on a partially wetted catalyst pellet in ? ...  

Science Conference Proceedings (OSTI)

and the vapor–gas phases on wetted and dry catalyst pellets, respectively. ... perature and flooding states of the catalyst pellet was first observed, which were ...

424

Wet Gasification of Ethanol Residue: A Preliminary Assessment  

DOE Green Energy (OSTI)

A preliminary technoeconomic assessment has been made of several options for the application of catalytic hydrothermal gasification (wet gasification) to ethanol processing residues.

Brown, Michael D.; Elliott, Douglas C.

2008-09-22T23:59:59.000Z

425

NETL: Control Technology - Field Testing of a Wet FGD Additive...  

NLE Websites -- All DOE Office Websites (Extended Search)

Enhanced Mercury Control URS Corporation will demonstrate the use of an additive in wet lime or limestone flue gas desulfurization (FGD) systems to prevent oxidized mercury that...

426

Wetting Properties of Molten Silicon with Graphite Materials  

Science Conference Proceedings (OSTI)

Abstract Scope, The wetting behavior of molten-silicon/refractory-materials system is important in ... Electrorefining of Metallurgical Grade Silicon in Molten Salts.

427

Gas supplies of interstate natural gas pipeline companies, 1986  

SciTech Connect

The publication provides information on the total reserves, production, and deliverability capabilities of the 90 interstate pipeline companies. The gas supplies of interstate pipeline companies consist of the certificated, dedicated, recoverable, salable natural gas available from domestic in-the-ground reserves; gas purchased under contracts with other interstate pipeline companies; domestically produced coal gas, liquefied natural gas (LNG), and synthetic natural gas (SNG); and imported natural gas and LNG. The domestic in-the-ground reserves consist of company-owned reserves including natural gas in underground storage, reserves dedicated to or warranted under contracts with independent producers, and supplemental or short-term supplies purchased from independent producers and intrastate pipeline companies. To avoid duplicate reporting of domestic in-the-ground reserves, the volumes of gas under contract agreement between jurisdictional pipelines have been excluded in summarizing State and national reserves. Volumes contracted under agreements with foreign suppliers include pipeline imports from Canada and Mexico. 7 figs., 18 tabs.

Not Available

1987-12-18T23:59:59.000Z

428

Method for wetting a boron alloy to graphite  

DOE Patents (OSTI)

A method is provided for wetting a graphite substrate and spreading a a boron alloy over the substrate. The wetted substrate may be in the form of a needle for an effective ion emission source. The method may also be used to wet a graphite substrate for subsequent joining with another graphite substrate or other metal, or to form a protective coating over a graphite substrate. A noneutectic alloy of boron is formed with a metal selected from the group consisting of nickel (Ni), palladium (Pd), and platinum (Pt) with excess boron, i.e., and atomic percentage of boron effective to precipitate boron at a wetting temperature of less than the liquid-phase boundary temperature of the alloy. The alloy is applied to the substrate and the graphite substrate is then heated to the wetting temperature and maintained at the wetting temperature for a time effective for the alloy to wet and spread over the substrate. The excess boron is evenly dispersed in the alloy and is readily available to promote the wetting and spreading action of the alloy. 1 fig.

Storms, E.K.

1987-08-21T23:59:59.000Z

429

Natural-gas liquids  

SciTech Connect

Casinghead gasoline or natural gasoline, now more suitably known as natural-gas liquids (NGL), was a nuisance when first found, but was developed into a major and profitable commodity. This part of the petroleum industry began at about the turn of the century, and more than 60 yr later the petroleum industry recovers approx. one million bbl of natural-gas liquids a day from 30 billion cu ft of natural gas processed in more than 600 gasoline plants. Although casinghead gasoline first was used for automobile fuel, natural-gas liquids now are used for fuel, industrial solvents, aviation blending stock, synthetic rubber, and many other petrochemical uses. Production from the individual plants is shipped by tank car, tank truck, pipeline, and tankers all over the world. Most of the natural-gas liquids come from wet natural gas which contains a considerable quantity of vapor, ranging from 0.5 to 6 gal/Mcf, and some particularly rich gases contain even more which can be liquefied. Nonassociated gas is generally clean, with a comparatively small quantity of gasoline, 0.1 to 0.5 gas/Mcf. The natural-gas liquids branch of the industry is build around the condensation of vapors in natural gas. Natural-gas liquids are processed either by the compression method or by adsorption processes.

Blackstock, W.B.; McCullough, G.W.; McCutchan, R.C.

1968-01-01T23:59:59.000Z

430

Guide to natural gas cogeneration  

Science Conference Proceedings (OSTI)

This user-oriented guide contains expert commentary and details on both the engineering and economic aspects of gas-fired cogeneration systems. In this completely undated second edition, is a thorough examination of equipment considerations and applications strategies for gas engines, gas turbines, steam engines, and electrical switch-gear. Clear guidelines show how to select the prime mover which is best suited for a specific type of application. It describes which methods have proven most effective for utilizing recoverable heat, how to determine total installed capacity, and how to calculate the required standby capacity. The second edition provides an assessment of recent technological developments. A variety of case studies guide through all types of natural gas cogeneration applications, including both commercial and industrial, as well as packaged systems for restaurants and hospitals. Drawing upon the expertise of numerous authorities from the American Gas Association, this fully illustrated guide will serve as a valuable reference for planning or implementing a natural gas-fired cogeneration project.

Hay, N.E. (ed.)

1992-01-01T23:59:59.000Z

431

TX, RRC District 1 Natural Gas Reserves Summary as of Dec. 31  

Gasoline and Diesel Fuel Update (EIA)

6,127 1979-2011 Natural Gas Nonassociated, Wet After Lease Separation 1,048 1,029 987 1,456 2,332 5,227 1979-2011 Natural Gas Associated-Dissolved, Wet After Lease Separation 61...

432

Federal Offshore U.S. Natural Gas Reserves Summary as of Dec...  

Annual Energy Outlook 2012 (EIA)

5,360 14,439 13,546 12,552 11,765 10,420 1990-2011 Natural Gas, Wet After Lease Separation 15,750 14,813 13,892 12,856 12,120 10,820 1990-2011 Natural Gas Nonassociated, Wet After...

433

Results of WetNet PIP-2 Project  

Science Conference Proceedings (OSTI)

The second WetNet Precipitation Intercomparison Project (PIP-2) evaluates the performance of 20 satellite precipitation retrieval algorithms, implemented for application with Special Sensor Microwave/Imager (SSM/I) passive microwave (PMW) ...

E. A. Smith; J. E. Lamm; R. Adler; J. Alishouse; K. Aonashi; E. Barrett; P. Bauer; W. Berg; A. Chang; R. Ferraro; J. Ferriday; S. Goodman; N. Grody; C. Kidd; D. Kniveton; C. Kummerow; G. Liu; F. Marzano; A. Mugnai; W. Olson; G. Petty; A. Shibata; R. Spencer; F. Wentz; T. Wilheit; E. Zipser

1998-05-01T23:59:59.000Z

434

Wet cooling towers: rule-of-thumb design and simulation  

DOE Green Energy (OSTI)

A survey of wet cooling tower literature was performed to develop a simplified method of cooling tower design and simulation for use in power plant cycle optimization. The theory of heat exchange in wet cooling towers is briefly summarized. The Merkel equation (the fundamental equation of heat transfer in wet cooling towers) is presented and discussed. The cooling tower fill constant (Ka) is defined and values derived. A rule-of-thumb method for the optimized design of cooling towers is presented. The rule-of-thumb design method provides information useful in power plant cycle optimization, including tower dimensions, water consumption rate, exit air temperature, power requirements and construction cost. In addition, a method for simulation of cooling tower performance at various operating conditions is presented. This information is also useful in power plant cycle evaluation. Using the information presented, it will be possible to incorporate wet cooling tower design and simulation into a procedure to evaluate and optimize power plant cycles.

Leeper, S.A.

1981-07-01T23:59:59.000Z

435

Source apportionment of wet sulfate deposition in eastern North America  

E-Print Network (OSTI)

An analytical model of long distance transport of air pollutants (Fay and Rosenzweig, 1980) has been adapted for the estimation of long term (e.g. annual) wet sulfate deposition in eastern N. America. The model parameters ...

Fay, James A.

1985-01-01T23:59:59.000Z

436

Impact of Initial Soil Wetness on Seasonal Atmospheric Prediction  

Science Conference Proceedings (OSTI)

This study investigates the importance of initial soil wetness in seasonal predictions with dynamical models. Two experiments are performed, each consisting of two ensembles of global climate model integrations initialized from early June ...

M. J. Fennessy; J. Shukla

1999-11-01T23:59:59.000Z

437

Spatial Coherence and Predictability of Indonesian Wet Season Rainfall  

Science Conference Proceedings (OSTI)

Rainfall from 63 stations across Indonesia is examined for the period 1950–98 to determine the spatial coherence of wet season anomalies. An example of almost unrelated anomalies at two neighboring stations is presented. Principal component ...

Malcolm Haylock; John McBride

2001-09-01T23:59:59.000Z

438

California - Los Angeles Basin Onshore Associated-Dissolved Natural Gas,  

U.S. Energy Information Administration (EIA) Indexed Site

Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) California - Los Angeles Basin Onshore Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 175 1980's 207 162 103 114 162 185 149 155 158 141 1990's 110 120 100 108 108 115 112 143 153 174 2000's 203 194 218 196 184 186 161 154 81 91 2010's 92 102 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 8/1/2013 Next Release Date: 8/1/2014 Referring Pages: Associated-Dissolved Natural Gas Proved Reserves, Wet After Lease

439

Air Toxics Control by Wet Flue Gas Desulfurization Systems  

Science Conference Proceedings (OSTI)

This report provides an update on three tasks associated with the EPRI project, Air Toxics Control by Wet Flue Gas Desulfurization (FGD) Systems. The first task is an investigation of the factors that influence and control the oxidation-reduction potential (ORP) at which a limestone forced oxidation FGD system operates. Both a literature review and a numerical analysis of full-scale wet FGD data were conducted. Results from this task are presented and discussed in Section 2 of the ...

2012-12-31T23:59:59.000Z

440

Demonstration of a Last Field Wet ESP Conversion -- Installation Summary  

Science Conference Proceedings (OSTI)

This report describes the conversion of the electrostatic precipitator (ESP) on Unit 3 at Mirant's (formerly Potomac Electric Power Company's) Dickerson Generating Station to hybrid, dry-wet operation. This Tailored Collaboration project was undertaken to determine, at full scale, if the conversion of a single field of a conventional dry ESP to wet operation could significantly reduce particulate emissions and provide reliable operation with an acceptable level of maintenance. Specifically, the performan...

2001-02-27T23:59:59.000Z

Note: This page contains sample records for the topic "recoverable wet natural" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

MHK Technologies/WET NZ | Open Energy Information  

Open Energy Info (EERE)

NZ NZ < MHK Technologies Jump to: navigation, search << Return to the MHK database homepage WET NZ.jpg Technology Profile Primary Organization Wave Energy Technology New Zealand WET NZ Technology Resource Click here Wave Technology Type Click here Point Absorber - Floating Technology Readiness Level Click here TRL 5 6 System Integration and Technology Laboratory Demonstration Technology Description The WET NZ device is planned to have a modular generation capability of up to 500 kW with onboard controls that will be able to accurately forecast incoming waves and adjust the response to changing wave patterns The device will be largely sub surface so that as much of the device as possible interacts directly with the wave energy Technology Dimensions

442

Electro-osmotic transport in wet processing of textiles  

DOE Patents (OSTI)

Electro-osmotic (or electrokinetic) transport is used to efficiently force a solution (or water) through the interior of the fibers or yarns of textile materials for wet processing of textiles. The textile material is passed between electrodes that apply an electric field across the fabric. Used alone or in parallel with conventional hydraulic washing (forced convection), electro-osmotic transport greatly reduces the amount of water used in wet processing. The amount of water required to achieve a fixed level of rinsing of tint can be reduced, for example, to 1--5 lbs water per pound of fabric from an industry benchmark of 20 lbs water/lb fabric. 5 figs.

Cooper, J.F.

1998-09-22T23:59:59.000Z

443

Electro-osmotic transport in wet processing of textiles  

DOE Patents (OSTI)

Electro-osmotic (or electrokinetic) transport is used to efficiently force a solution (or water) through the interior of the fibers or yarns of textile materials for wet processing of textiles. The textile material is passed between electrodes that apply an electric field across the fabric. Used alone or in parallel with conventional hydraulic washing (forced convection), electro-osmotic transport greatly reduces the amount of water used in wet processing. The amount of water required to achieve a fixed level of rinsing of tint can be reduced, for example, to 1-5 lbs water per pound of fabric from an industry benchmark of 20 lbs water/lb fabric.

Cooper, John F. (Oakland, CA)

1998-01-01T23:59:59.000Z

444

Future of natural gas supply  

E-Print Network (OSTI)

This paper provides many data for the web reader and only some graphs will be presented at the conference.-World-production of natural gas (NG) Reliable data s very difficult to get, as very often the data does not specify if it is gross or gross minus reinjected or marketed, wet or dry values. The loss is usually hidden. Nonhydrocarbons gases are important in some fields. Production data varies from sources for what is called marketed World Production marketed 2001 2002

Jean Laherrere

2003-01-01T23:59:59.000Z

445

US crude oil, natural gas, and natural gas liquids reserves 1996 annual report  

Science Conference Proceedings (OSTI)

The EIA annual reserves report series is the only source of comprehensive domestic proved reserves estimates. This publication is used by the Congress, Federal and State agencies, industry, and other interested parties to obtain accurate estimates of the Nation`s proved reserves of crude oil, natural gas, and natural gas liquids. These data are essential to the development, implementation, and evaluation of energy policy and legislation. This report presents estimates of proved reserves of crude oil, natural gas, and natural gas liquids as of December 31, 1996, as well as production volumes for the US and selected States and State subdivisions for the year 1996. Estimates are presented for the following four categories of natural gas: total gas (wet after lease separation), nonassociated gas and associated-dissolved gas (which are the two major types of wet natural gas), and total dry gas (wet gas adjusted for the removal of liquids at natural gas processing plants). In addition, reserve estimates for two types of natural gas liquids, lease condensate and natural gas plant liquids, are presented. Also included is information on indicated additional crude oil reserves and crude oil, natural gas, and lease condensate reserves in nonproducing reservoirs. A discussion of notable oil and gas exploration and development activities during 1996 is provided. 21 figs., 16 tabs.

NONE

1997-12-01T23:59:59.000Z

446

U.S. crude oil, natural gas, and natural gas liquids reserves 1995 annual report  

Science Conference Proceedings (OSTI)

The EIA annual reserves report series is the only source of comprehensive domestic proved reserves estimates. This publication is used by the Congress, Federal and State agencies, industry, and other interested parties to obtain accurate estimates of the Nation`s proved reserves of crude oil, natural gas, and natural gas liquids. These data are essential to the development, implementation, and evaluation of energy policy and legislation. This report presents estimates of proved reserves of crude oil, natural gas, and natural gas liquids as of December 31, 1995, as well as production volumes for the US and selected States and State subdivisions for the year 1995. Estimates are presented for the following four categories of natural gas: total gas (wet after lease separation), nonassociated gas and associated-dissolved gas (which are the two major types of wet natural gas), and total dry gas (wet gas adjusted for the removal of liquids at natural gas processing plants). In addition, reserve estimates for two types of natural gas liquids, lease condensate and natural gas plant liquids, are presented. Also included is information on indicated additional crude oil reserves and crude oil, natural gas, and lease condensate reserves in nonproducing reservoirs. A discussion of notable oil and gas exploration and development activities during 1995 is provided. 21 figs., 16 tabs.

NONE

1996-11-01T23:59:59.000Z

447

NATURAL GAS RESOURCES IN DEEP SEDIMENTARY BASINS  

SciTech Connect

From a geological perspective, deep natural gas resources are generally defined as resources occurring in reservoirs at or below 15,000 feet, whereas ultra-deep gas occurs below 25,000 feet. From an operational point of view, ''deep'' is often thought of in a relative sense based on the geologic and engineering knowledge of gas (and oil) resources in a particular area. Deep gas can be found in either conventionally-trapped or unconventional basin-center accumulations that are essentially large single fields having spatial dimensions often exceeding those of conventional fields. Exploration for deep conventional and unconventional basin-center natural gas resources deserves special attention because these resources are widespread and occur in diverse geologic environments. In 1995, the U.S. Geological Survey estimated that 939 TCF of technically recoverable natural gas remained to be discovered or was part of reserve appreciation from known fields in the onshore areas and State waters of the United. Of this USGS resource, nearly 114 trillion cubic feet (Tcf) of technically-recoverable gas remains to be discovered from deep sedimentary basins. Worldwide estimates of deep gas are also high. The U.S. Geological Survey World Petroleum Assessment 2000 Project recently estimated a world mean undiscovered conventional gas resource outside the U.S. of 844 Tcf below 4.5 km (about 15,000 feet). Less is known about the origins of deep gas than about the origins of gas at shallower depths because fewer wells have been drilled into the deeper portions of many basins. Some of the many factors contributing to the origin of deep gas include the thermal stability of methane, the role of water and non-hydrocarbon gases in natural gas generation, porosity loss with increasing thermal maturity, the kinetics of deep gas generation, thermal cracking of oil to gas, and source rock potential based on thermal maturity and kerogen type. Recent experimental simulations using laboratory pyrolysis methods have provided much information on the origins of deep gas. Technologic problems are one of the greatest challenges to deep drilling. Problems associated with overcoming hostile drilling environments (e.g. high temperatures and pressures, and acid gases such as CO{sub 2} and H{sub 2}S) for successful well completion, present the greatest obstacles to drilling, evaluating, and developing deep gas fields. Even though the overall success ratio for deep wells is about 50 percent, a lack of geological and geophysical information such as reservoir quality, trap development, and gas composition continues to be a major barrier to deep gas exploration. Results of recent finding-cost studies by depth interval for the onshore U.S. indicate that, on average, deep wells cost nearly 10 times more to drill than shallow wells, but well costs and gas recoveries vary widely among different gas plays in different basins. Based on an analysis of natural gas assessments, many topical areas hold significant promise for future exploration and development. One such area involves re-evaluating and assessing hypothetical unconventional basin-center gas plays. Poorly-understood basin-center gas plays could contain significant deep undiscovered technically-recoverable gas resources.

Thaddeus S. Dyman; Troy Cook; Robert A. Crovelli; Allison A. Henry; Timothy C. Hester; Ronald C. Johnson; Michael D. Lewan; Vito F. Nuccio; James W. Schmoker; Dennis B. Riggin; Christopher J. Schenk

2002-02-05T23:59:59.000Z

448

GPS Meteorology: Mapping Zenith Wet Delays onto Precipitable Water  

Science Conference Proceedings (OSTI)

Emerging networks of Global Positioning System (GPS) receivers can be used in the remote sensing of atmospheric water vapor. The time-varying zenith wet delay observed at each GPS receiver in a network can be transformed into an estimate of the ...

Michael Bevis; Steven Businger; Steven Chiswell; Thomas A. Herring; Richard A. Anthes; Christian Rocken; Randolph H. Ware

1994-03-01T23:59:59.000Z

449

Wet-Bulb Temperature from Relative Humidity and Air Temperature  

Science Conference Proceedings (OSTI)

An equation is presented for wet-bulb temperature as a function of air temperature and relative humidity at standard sea level pressure. It was found as an empirical fit using gene-expression programming. This equation is valid for relative ...

Roland Stull

2011-11-01T23:59:59.000Z

450

Preliminary Study of California Wintertime Model Wet Bias  

Science Conference Proceedings (OSTI)

The Weather Research and Forecasting (WRF) model version 3.0.1 is used in both short-range (days) and long-range (years) simulations to explore the California wintertime model wet bias. California is divided into four regions (the coast, central ...

Hung-Neng S. Chin; Peter M. Caldwell; David C. Bader

2010-09-01T23:59:59.000Z

451

NETL: News Release - Nation May Have Less Access To Natural Gas Than  

NLE Websites -- All DOE Office Websites (Extended Search)

June 6, 2001 June 6, 2001 Nation May Have Less Access To Natural Gas Than Thought Study of Rocky Mountain Region Continues Implementation of National Energy Policy; Reviews Restrictions to Energy Exploration on Federal Lands WASHINGTON, DC - Access to one of the nation's most promising natural gas-bearing regions in the Rocky Mountains may be much more restricted than previously thought, a U.S. Department of Energy study has concluded. - Greater Green River Basin Map Working virtually on a tract-by-tract basis, analysts studied federal lands in the Greater Green River Basin of Wyoming and Colorado and found that nearly 68 percent of the area's technically recoverable natural gas resource - as much as 79 trillion cubic feet of natural gas - is either closed to development or under significant access restrictions.

452

Comparison of Soil Wetness Indices for Inducing Functional Similarity of Hydrologic Response across Sites in Illinois  

Science Conference Proceedings (OSTI)

The comparative ability of four soil wetness indices to normalize soil moisture dependence of rootzone fluxes across a range of sites in Illinois is investigated. The soil wetness indices examined are various transformations of the water stored ...

Jennifer A. Saleem; Guido D. Salvucci

2002-02-01T23:59:59.000Z

453

The Impact of Wet Soil and Canopy Temperatures on Daytime Boundary–Layer Growth  

Science Conference Proceedings (OSTI)

The impact of very wet soil and canopy temperatures on the surface sensible heat flux, and on related daytime boundary-layer properties is evaluated. For very wet soils, two winter situations are considered, related to significant changes in soil ...

M. Segal; J. R. Garratt; G. Kallos; R. A. Pielke

1989-12-01T23:59:59.000Z

454

Reduction of Water Use in Wet FGD Systems  

NLE Websites -- All DOE Office Websites (Extended Search)

Reduction of WateR use in Wet fGd Reduction of WateR use in Wet fGd systems Background Coal-fired power plants require large volumes of water for efficient operation, primarily for cooling purposes. Public concern over water use is increasing, particularly in water stressed areas of the country. Analyses conducted by the U.S. Department of Energy's National Energy Technology Laboratory predict significant increases in power plant freshwater consumption over the coming years, encouraging the development of technologies to reduce this water loss. Power plant freshwater consumption refers to the quantity of water withdrawn from a water body that is not returned to the source but is lost to evaporation, while water withdrawal refers to the total quantity of water removed from a water source.

455

Wetting and free surface flow modeling for potting and encapsulation.  

Science Conference Proceedings (OSTI)

As part of an effort to reduce costs and improve quality control in encapsulation and potting processes the Technology Initiative Project ''Defect Free Manufacturing and Assembly'' has completed a computational modeling study of flows representative of those seen in these processes. Flow solutions are obtained using a coupled, finite-element-based, numerical method based on the GOMA/ARIA suite of Sandia flow solvers. The evolution of the free surface is solved with an advanced level set algorithm. This approach incorporates novel methods for representing surface tension and wetting forces that affect the evolution of the free surface. In addition, two commercially available codes, ProCAST and MOLDFLOW, are also used on geometries representing encapsulation processes at the Kansas City Plant. Visual observations of the flow in several geometries are recorded in the laboratory and compared to the models. Wetting properties for the materials in these experiments are measured using a unique flowthrough goniometer.

Brooks, Carlton, F.; Brooks, Michael J. (Los Alamos National Laboratory, Los Alamos, NM); Graham, Alan Lyman (Los Alamos National Laboratory, Los Alamos, NM); Noble, David F. (David Frederick) (.; )); Notz, Patrick K.; Hopkins, Matthew Morgan; Castaneda, Jaime N.; Mahoney, Leo James (Kansas City Plant, Kansas City, MO); Baer, Thomas A.; Berchtold, Kathryn (Los Alamos National Laboratory, Los Alamos, NM); Adolf, Douglas Brian; Wilkes, Edward Dean; Rao, Rekha Ranjana; Givler, Richard C.; Sun, Amy Cha-Tien; Cote, Raymond O.; Mondy, Lisa Ann; Grillet, Anne Mary; Kraynik, Andrew Michael

2007-06-01T23:59:59.000Z

456

Federal Offshore Gulf of Mexico Natural Gas Reserves Summary...  

Annual Energy Outlook 2012 (EIA)

2 2003 2004 2005 2006 2007 View History Dry Natural Gas 24,689 22,059 18,812 17,007 14,549 13,634 1992-2007 Natural Gas, Wet After Lease Separation 25,347 22,522 19,288 17,427...

457

2009 Update on Mercury Capture by Wet Flue Gas Desulfurization  

Science Conference Proceedings (OSTI)

This technical update presents results of four research and development projects focused on understanding and enhancing mercury emissions control associated with wet flue gas desulfurization (FGD) technology. The first project was directed at characterizing partitioning of elemental and oxidized mercury species in solid, liquid, and gas phases within process streams involved in an operating commercial system. The second project explored dewatering options with an objective of producing low-mercury-conten...

2009-12-15T23:59:59.000Z

458

Wet-steam erosion of steam turbine disks and shafts  

SciTech Connect

A study of wet-steam erosion of the disks and the rotor bosses or housings of turbines in thermal and nuclear power plants shows that the rate of wear does not depend on the diagrammed degree of moisture, but is determined by moisture condensing on the surfaces of the diaphragms and steam inlet components. Renovating the diaphragm seals as an assembly with condensate removal provides a manifold reduction in the erosion.

Averkina, N. V. [JSC 'NPO TsKTI' (Russian Federation); Zheleznyak, I. V. [Leningradskaya AES branch of JSC 'Kontsern Rosenergoatom' (Russian Federation); Kachuriner, Yu. Ya.; Nosovitskii, I. A.; Orlik, V. G., E-mail: orlikvg@mail.ru [JSC 'NPO TsKTI' (Russian Federation); Shishkin, V. I. [Leningradskaya AES branch of JSC 'Kontsern Rosenergoatom' (Russian Federation)

2011-01-15T23:59:59.000Z

459

Mercury removal in utility wet scrubber using a chelating agent  

DOE Patents (OSTI)

A method for capturing and reducing the mercury content of an industrial flue gas such as that produced in the combustion of a fossil fuel or solid waste adds a chelating agent, such as ethylenediaminetetraacetic acid (EDTA) or other similar compounds like HEDTA, DTPA and/or NTA, to the flue gas being scrubbed in a wet scrubber used in the industrial process. The chelating agent prevents the reduction of oxidized mercury to elemental mercury, thereby increasing the mercury removal efficiency of the wet scrubber. Exemplary tests on inlet and outlet mercury concentration in an industrial flue gas were performed without and with EDTA addition. Without EDTA, mercury removal totaled 42%. With EDTA, mercury removal increased to 71%. The invention may be readily adapted to known wet scrubber systems and it specifically provides for the removal of unwanted mercury both by supplying S.sup.2- ions to convert Hg.sup.2+ ions into mercuric sulfide (HgS) and by supplying a chelating agent to sequester other ions, including but not limited to Fe.sup.2+ ions, which could otherwise induce the unwanted reduction of Hg.sup.2+ to the form, Hg.sup.0.

Amrhein, Gerald T. (Louisville, OH)

2001-01-01T23:59:59.000Z

460

WETTING BEHAVIOR OF SELECTED CRUDE OIL/BRINE/ROCK SYSTEMS  

Science Conference Proceedings (OSTI)

The effect of aging and displacement temperatures, and brine and oil composition on wettability and the recovery of crude oil by spontaneous imbibition and waterflooding has been investigated. This study is based on displacement tests in Berea Sandstone using three distinctly different crude oils and three reservoir brines. Brine concentration was varied by changing the concentration of total dissolved solids of the synthetic brine in proportion to give brine of twice, one tenth, and one hundredth of the reservoir brine concentration. Aging and displacement temperatures were varied independently. For all crude oils, water-wetness and oil recovery increased with increase in displacement temperature. Tests on the effect of brine concentration showed that salinity of the connate and invading brines can have a major influence on wettability and oil recovery at reservoir temperature. Oil recovery increased over that for the reservoir brine with dilution of both the initial (connate) and invading brine or dilution of either. Removal of light components from the crude oil resulted in increased water-wetness. Addition of alkanes to the crude oil reduced the water-wetness, and increased oil recovery. Relationships between waterflood recovery and wettability are summarized.

G.Q. Tang; N.R. Morrow

1997-04-01T23:59:59.000Z

Note: This page contains sample records for the topic "recoverable wet natural" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

Catalytic gasification of wet biomass in supercritical water  

Science Conference Proceedings (OSTI)

Wet biomass (water hyacinth, banana trees, cattails, green algae, kelp, etc.) grows rapidly and abundantly around the world. As a biomass crop, aquatic species are particularly attractive because their cultivation does not compete with land-based agricultural activities designed to produce food for consumption or export. However, wet biomass is not regarded as a promising feed for conventional thermochemical conversion processes because the cost associated with drying it is too high. This research seeks to address this problem by employing water as the gasification medium. Prior work has shown that low concentrations of glucose (a model compound for whole biomass) can be completely gasified in supercritical water at 600{degrees}C and 34.5 Wa after a 30 s reaction time. Higher concentrations of glucose (up to 22% by weight in water) resulted in incomplete conversion under these conditions. The gas contained hydrogen, carbon dioxide, carbon monoxide, methane, ethane, propane, and traces of other hydrocarbons. The carbon monoxide and hydrocarbons are easily converted to hydrogen by commercial technology available in most refineries. This prior work utilized capillary tube reactors with no catalyst. A larger reactor system was fabricated and the heterogeneous catalytic gasification of glucose and wet biomass slurry of higher concentration was studied to attain higher conversions.

Antal, M.J. Jr.; Matsumura, Yukihiko; Xu, Xiaodong [Univ. of Hawaii, Honolulu, HI (United States)] [and others

1995-12-31T23:59:59.000Z

462

Modeling Wet Snow Accretion on Power Lines: Improvements to Previous Methods Using 50 Years of Observations  

Science Conference Proceedings (OSTI)

Methods to model wet snow accretion on structures are developed and improved, based on unique records of wet snow icing events as well as large datasets of observed and simulated weather. Hundreds of observed wet snow icing events are logged in ...

Bjørn Egil Kringlebotn Nygaard; Hálfdán Ágústsson; Katalin Somfalvi-Tóth

463

Modeling Wet Snow Accretion on Power Lines: Improvements to Previous Methods Using 50 Years of Observations  

Science Conference Proceedings (OSTI)

Methods to model wet snow accretion on structures are developed and improved, based on unique records of wet snow icing events as well as large datasets of observed and simulated weather. Hundreds of observed wet snow icing events are logged in ...

Bjørn Egil Kringlebotn Nygaard; Hálfdán Ágústsson; Katalin Somfalvi-Tóth

2013-10-01T23:59:59.000Z

464

U.S. Natural Gas Proved Reserves, Wet After Lease Separation  

U.S. Energy Information Administration (EIA) Indexed Site

Area: U.S. Federal Offshore U.S. Federal Offshore, Pacific (California) Federal Offshore, Gulf of Mexico, LA & AL Federal Offshore, Gulf of Mexico, TX Alaska Lower 48 States Alabama Arkansas California CA, Coastal Region Onshore CA, Los Angeles Basin Onshore CA, San Joaquin Basin Onshore CA, State Offshore Colorado Florida Kansas Kentucky Louisiana North Louisiana LA, South Onshore LA, State Offshore Michigan Mississippi Montana New Mexico NM, East NM, West New York North Dakota Ohio Oklahoma Pennsylvania Texas TX, RRC District 1 TX, RRC District 2 Onshore TX, RRC District 3 Onshore TX, RRC District 4 Onshore TX, RRC District 5 TX, RRC District 6 TX, RRC District 7B TX, RRC District 7C TX, RRC District 8 TX, RRC District 8A TX, RRC District 9 TX, RRC District 10 TX, State Offshore Utah Virginia West Virginia Wyoming Miscellaneous Period:

465

U.S. Nonassociated Natural Gas Proved Reserves, Wet After Lease Separation  

U.S. Energy Information Administration (EIA) Indexed Site

Area: U.S. Federal Offshore U.S. Federal Offshore, Pacific (California) Federal Offshore, Gulf of Mexico, LA & AL Federal Offshore, Gulf of Mexico, TX Alaska Lower 48 States Alabama Arkansas California CA, Coastal Region Onshore CA, Los Angeles Basin Onshore CA, San Joaquin Basin Onshore CA, State Offshore Colorado Florida Kansas Kentucky Louisiana North Louisiana LA, South Onshore LA, State Offshore Michigan Mississippi Montana Nebraska New Mexico NM, East NM, West New York North Dakota Ohio Oklahoma Pennsylvania Texas TX, RRC District 1 TX, RRC District 2 Onshore TX, RRC District 3 Onshore TX, RRC District 4 Onshore TX, RRC District 5 TX, RRC District 6 TX, RRC District 7B TX, RRC District 7C TX, RRC District 8 TX, RRC District 8A TX, RRC District 9 TX, RRC District 10 TX, State Offshore Utah Virginia West Virginia Wyoming Miscellaneous Period:

466

Natural Gas Proved Reserves, Wet After Lease Separation, as of Dec. 31  

Gasoline and Diesel Fuel Update (EIA)

220,416 247,789 255,035 283,879 317,647 348,809 1979-2011 220,416 247,789 255,035 283,879 317,647 348,809 1979-2011 Federal Offshore U.S. 15,750 14,813 13,892 12,856 12,120 10,820 1990-2011 Pacific (California) 811 805 705 740 725 711 1979-2011 Gulf of Mexico 14,938 14,008 1992-2007 Louisiana & Alabama 12,201 11,458 10,785 9,665 9,250 8,555 1981-2011 Texas 2,738 2,550 2,402 2,451 2,145 1,554 1981-2011 Alaska 10,333 12,022 7,766 9,183 8,917 9,511 1979-2011 Lower 48 States 210,083 235,767 247,269 274,696 308,730 339,298 1979-2011 Alabama 3,963 4,036 3,379 2,948 2,724 2,570 1979-2011 Arkansas 2,271 3,306 5,628 10,872 14,181 16,374 1979-2011 California 2,935 2,879 2,538 2,926 2,785 3,042 1979-2011 Coastal Region Onshore 214 212 151 169 180 173 1979-2011

467

U.S. Natural Gas Marketed Production (Wet) (Billion Cubic Feet)  

U.S. Energy Information Administration (EIA) Indexed Site

Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1973 1,948 1,962 1,907 1,814 1,898 1,839 1,880 1,896 1,840 1,875 1,863 1,926 1974 1,930 1,760 1,895 1,780 1,847 1,740 1,818 1,790 1,755 1,767 1,729 1,790 1975 1,779 1,645 1,738 1,672 1,689 1,634 1,677 1,677 1,603 1,646 1,618 1,730 1976 1,751 1,647 1,714 1,623 1,673 1,640 1,676 1,636 1,565 1,639 1,636 1,753 1977 1,740 1,674 1,751 1,644 1,692 1,649 1,674 1,645 1,599 1,628 1,606 1,726 1978 1,743 1,649 1,748 1,668 1,664 1,623 1,693 1,658 1,576 1,635 1,607 1,710 1979 1,772 1,656 1,755 1,693 1,716 1,643 1,662 1,689 1,635 1,705 1,724 1,823 1980 1,821 1,709 1,830 1,670 1,695 1,586 1,616 1,576 1,579 1,648 1,652 1,798

468

Associated-Dissolved Natural Gas New Field Discoveries, Wet After Lease  

Gasoline and Diesel Fuel Update (EIA)

40 46 107 263 102 611 1979-2011 40 46 107 263 102 611 1979-2011 Federal Offshore U.S. 27 43 93 214 6 524 1990-2011 Pacific (California) 0 0 0 0 0 0 1979-2011 Louisiana & Alabama 27 4 93 25 6 524 1981-2011 Texas 0 39 0 189 0 0 1981-2011 Alaska 0 0 0 0 0 0 1979-2011 Lower 48 States 40 46 107 263 102 611 1979-2011 Alabama 0 0 0 0 2 2 1979-2011 Arkansas 0 0 0 0 0 0 1979-2011 California 0 0 0 0 0 0 1979-2011 Coastal Region Onshore 0 0 0 0 0 0 1979-2011 Los Angeles Basin Onshore 0 0 0 0 0 0 1979-2011 San Joaquin Basin Onshore 0 0 0 0 0 0 1979-2011 State Offshore 0 0 0 0 0 0 1979-2011 Colorado 0 0 0 0 0 0 1979-2011 Florida 0 0 0 0 0 0 1979-2011 Kansas 0 0 4 0 1 0 1979-2011 Kentucky 0 0 0 0 0 0 1979-2011

469

U.S. Associated-Dissolved Natural Gas Proved Reserves, Wet After Lease  

U.S. Energy Information Administration (EIA) Indexed Site

Area: U.S. Federal Offshore U.S. Federal Offshore, Pacific (California) Federal Offshore, Gulf of Mexico, LA & AL Federal Offshore, Gulf of Mexico, TX Alaska Lower 48 States Alabama Arkansas California CA, Coastal Region Onshore CA, Los Angeles Basin Onshore CA, San Joaquin Basin Onshore CA, State Offshore Colorado Florida Kansas Kentucky Louisiana North Louisiana LA, South Onshore LA, State Offshore Michigan Mississippi Montana Nebraska New Mexico NM, East NM, West New York North Dakota Ohio Oklahoma Pennsylvania Texas TX, RRC District 1 TX, RRC District 2 Onshore TX, RRC District 3 Onshore TX, RRC District 4 Onshore TX, RRC District 5 TX, RRC District 6 TX, RRC District 7B TX, RRC District 7C TX, RRC District 8 TX, RRC District 8A TX, RRC District 9 TX, RRC District 10 TX, State Offshore Utah Virginia West Virginia Wyoming Miscellaneous Period:

470

Associated-Dissolved Natural Gas Reserves Sales, Wet After Lease Separation  

Gasoline and Diesel Fuel Update (EIA)

726 1,115 662 564 1,146 1,338 2000-2011 726 1,115 662 564 1,146 1,338 2000-2011 Federal Offshore U.S. 455 161 48 20 83 66 2000-2011 Pacific (California) 0 1 0 0 0 0 2000-2011 Louisiana & Alabama 320 156 48 20 74 66 2000-2011 Texas 135 4 0 0 9 0 2000-2011 Alaska 0 3 0 1 0 2 2000-2011 Lower 48 States 1,726 1,112 662 563 1,146 1,336 2000-2011 Alabama 4 5 0 0 2 9 2000-2011 Arkansas 0 0 0 5 0 38 2000-2011 California 133 8 7 4 1 1 2000-2011 Coastal Region Onshore 70 4 6 0 1 0 2000-2011 Los Angeles Basin Onshore 37 0 1 0 0 0 2000-2011 San Joaquin Basin Onshore 26 2 0 4 0 0 2000-2011 State Offshore 0 2 0 0 0 1 2000-2011 Colorado 578 3 1 9 2 19 2000-2011 Florida 0 48 0 0 0 0 2000-2011 Kansas 0 0 1 0 1 1 2000-2011 Kentucky

471

Table 3. Changes to proved reserves of wet natural gas by source, 2011  

U.S. Energy Information Administration (EIA)

Shale 97.4 33.7 8.5 -8.0 131.6 Other (Conventional & Tight) Lower 48 Onshore 181.7 14.7 -3.5 -12.8 180.1 Lower 48 Offshore 12.1 0.8 -0.4 -1.7 10.8

472

TX, RRC District 8 Natural Gas Proved Reserves, Wet After Lease ...  

U.S. Energy Information Administration (EIA)

-No Data Reported; --= Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Notes: Miscellaneous States ...

473

Condition-based monitoring of natural draught wet-cooling tower performance-related parameters.  

E-Print Network (OSTI)

??ENGLISH ABSTRACT: The meteorological conditions at Eskom’s Majuba Power Station are measured, evaluated and trended in this dissertation. The results are used to evaluate the… (more)

Ehlers, Frederik Coenrad

2011-01-01T23:59:59.000Z

474

Numerical modelling of heat and mass transfer and optimisation of a natural draft wet cooling tower.  

E-Print Network (OSTI)

??This thesis was digitised for the purposes of Document Delivery. It has been made available on open access by Sydney eScholarship and may only be… (more)

Williamson, Nicholas J

2008-01-01T23:59:59.000Z

475

New Reservoir Discoveries in Old Fields of Natural Gas, Wet After Lease  

Gasoline and Diesel Fuel Update (EIA)

1,197 1,244 1,678 2,656 1,701 1,260 1979-2011 1,197 1,244 1,678 2,656 1,701 1,260 1979-2011 Federal Offshore U.S. 420 379 545 308 245 80 1990-2011 Pacific (California) 1 0 0 0 0 0 1979-2011 Louisiana & Alabama 353 341 391 231 221 80 1981-2011 Texas 66 38 154 77 24 0 1981-2011 Alaska 2 0 5 0 0 3 1979-2011 Lower 48 States 1,195 1,244 1,673 2,656 1,701 1,257 1979-2011 Alabama 7 17 1 0 0 0 1979-2011 Arkansas 33 27 41 36 27 23 1979-2011 California 4 1 16 0 0 0 1979-2011 Coastal Region Onshore 0 0 0 0 0 0 1979-2011 Los Angeles Basin Onshore 0 0 0 0 0 0 1979-2011 San Joaquin Basin Onshore 1 1 16 0 0 0 1979-2011 State Offshore 3 0 0 0 0 0 1979-2011 Colorado 27 24 17 0 29 0 1979-2011 Florida 0 0 0 0 0 0 1979-2011 Kansas 3 0 3 0 1 1 1979-2011

476

Natural Gas Proved Reserves, Wet After Lease Separation, as of Dec. 31  

Gasoline and Diesel Fuel Update (EIA)

220,416 247,789 255,035 283,879 317,647 348,809 1979-2011 220,416 247,789 255,035 283,879 317,647 348,809 1979-2011 Federal Offshore U.S. 15,750 14,813 13,892 12,856 12,120 10,820 1990-2011 Pacific (California) 811 805 705 740 725 711 1979-2011 Gulf of Mexico 14,938 14,008 1992-2007 Louisiana & Alabama 12,201 11,458 10,785 9,665 9,250 8,555 1981-2011 Texas 2,738 2,550 2,402 2,451 2,145 1,554 1981-2011 Alaska 10,333 12,022 7,766 9,183 8,917 9,511 1979-2011 Lower 48 States 210,083 235,767 247,269 274,696 308,730 339,298 1979-2011 Alabama 3,963 4,036 3,379 2,948 2,724 2,570 1979-2011 Arkansas 2,271 3,306 5,628 10,872 14,181 16,374 1979-2011 California 2,935 2,879 2,538 2,926 2,785 3,042 1979-2011 Coastal Region Onshore 214 212 151 169 180 173 1979-2011

477

Natural Gas Proved Reserves, Wet After Lease Separation, as of Dec. 31  

U.S. Energy Information Administration (EIA) Indexed Site

Data Series: Proved Reserves as of Dec. 31 Adjustments Revision Increases Revision Decreases Sales Acquisitions Extensions New Field Discoveries New Reservoir Discoveries in Old Fields Estimated Production Period: Data Series: Proved Reserves as of Dec. 31 Adjustments Revision Increases Revision Decreases Sales Acquisitions Extensions New Field Discoveries New Reservoir Discoveries in Old Fields Estimated Production Period: Annual Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes Show Data By: Data Series Area 2006 2007 2008 2009 2010 2011 View History U.S. 220,416 247,789 255,035 283,879 317,647 348,809 1979-2011 Federal Offshore U.S. 15,750 14,813 13,892 12,856 12,120 10,820 1990-2011 Pacific (California) 811 805 705 740 725 711 1979-2011 Louisiana & Alabama 12,201 11,458 10,785 9,665 9,250 8,555 1981-2011 Texas 2,738 2,550 2,402 2,451 2,145 1,554 1981-2011

478

Gulf of Mexico Federal Offshore - Texas Associated-Dissolved Natural Gas,  

U.S. Energy Information Administration (EIA) Indexed Site

Texas Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Texas Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Gulf of Mexico Federal Offshore - Texas Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 474 320 541 522 532 494 1990's 446 407 691 574 679 891 794 1,228 1,224 1,383 2000's 1,395 1,406 1,267 1,119 886 547 378 377 465 629 2010's 689 539 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 8/1/2013 Next Release Date: 8/1/2014 Referring Pages: Associated-Dissolved Natural Gas Proved Reserves, Wet After Lease

479

Table 13: Associated-dissolved natural gas proved reserves, reserves changes, an  

U.S. Energy Information Administration (EIA) Indexed Site

: Associated-dissolved natural gas proved reserves, reserves changes, and production, wet after lease separation, 2011" : Associated-dissolved natural gas proved reserves, reserves changes, and production, wet after lease separation, 2011" "billion cubic feet" ,,"Changes in Reserves During 2011" ,"Published",,,,,,,,"New Reservoir" ,"Proved",,"Revision","Revision",,,,"New Field","Discoveries","Estimated","Proved" ,"Reserves","Adjustments","Increases","Decreases","Sales","Acquisitions","Extensions","Discoveries","in Old Fields","Production","Reserves" "State and Subdivision",40543,"(+,-)","(+)","(-)","(-)","(+)","(+)","(+)","(+)","(-)",40908

480

Table 15: Shale natural gas proved reserves, reserves changes, and production, w  

U.S. Energy Information Administration (EIA) Indexed Site

: Shale natural gas proved reserves, reserves changes, and production, wet after lease separation, 2011" : Shale natural gas proved reserves, reserves changes, and production, wet after lease separation, 2011" "billion cubic feet" ,,"Changes in Reserves During 2011" ,"Published",,,,,,,,"New Reservoir" ,"Proved",,"Revision","Revision",,,,"New Field","Discoveries","Estimated","Proved" ,"Reserves","Adjustments","Increases","Decreases","Sales","Acquisitions","Extensions","Discoveries","in Old Fields","Production","Reserves" "State and Subdivision",40543,"(+,-)","(+)","(-)","(-)","(+)","(+)","(+)","(+)","(-)",40908

Note: This page contains sample records for the topic "recoverable wet natural" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


481

Table 10: Total natural gas proved reserves, reserves changes, and production, w  

U.S. Energy Information Administration (EIA) Indexed Site

: Total natural gas proved reserves, reserves changes, and production, wet after lease separation, 2011" : Total natural gas proved reserves, reserves changes, and production, wet after lease separation, 2011" "billion cubic feet" ,,"Changes in reserves during 2011" ,"Published",,,,,,,,"New Reservoir" ,"Proved",,"Revision","Revision",,,,"New Field","Discoveries","Estimated","Proved" ,"Reserves","Adjustments","Increases","Decreases","Sales","Acquisitions","Extensions","Discoveries","in Old Fields","Production","Reserves" "State and subdivision",40543,"(+,-)","(+)","(-)","(-)","(+)","(+)","(+)","(+)","(-)",40908

482

Table 12: Nonassociated natural gas proved reserves, reserves changes, and produ  

U.S. Energy Information Administration (EIA) Indexed Site

: Nonassociated natural gas proved reserves, reserves changes, and production, wet after lease separation, 2011 " : Nonassociated natural gas proved reserves, reserves changes, and production, wet after lease separation, 2011 " "billion cubic feet" ,,"Changes in Reserves During 2011" ,"Published",,,,,,,,"New Reservoir" ,"Proved",,"Revision","Revision",,,,"New Field","Discoveries","Estimated","Proved" ,"Reserves","Adjustments","Increases","Decreases","Sales","Acquisitions","Extensions","Discoveries","in Old Fields","Production","Reserves" "State and Subdivision",40543,"(+,-)","(+)","(-)","(-)","(+)","(+)","(+)","(+)","(-)",40908

483

Specs add confidence in use of wet welding. [Underwater welding  

SciTech Connect

Underwater wet welding can now be utilized with the same confidence as dry welding, provided certain guidelines are followed. A new electrode is discussed that has been delivering exceptionally high quality welds by a diving firm in Houston. With the issuance of the American Welding Society's specifications (ANS/LAWS D3.6-83) much of the confusion surrounding underwater welding should be eliminated. The new specifications establish the levels of quality for underwater welding and gives everyone in the business a common language.

1984-02-01T23:59:59.000Z

484

Update of Enhanced Mercury Capture by Wet FGD  

Science Conference Proceedings (OSTI)

This document describes recent progress on three mercury control technology research and development projects. One project is co-funded by EPRI and the U.S. Department of Energy's National Energy Technology Laboratory (DOE-NETL), the second is funded solely by EPRI, and the third is co-funded by EPRI, DOE-NETL, and several EPRI-member companies. All three projects are focused on understanding and/or enhancing mercury capture (co-removal) by wet flue gas desulfurization (FGD) systems. The first project, c...

2007-03-12T23:59:59.000Z

485

US PRACTICE FOR INTERIM WET STORAGE OF RRSNF  

DOE Green Energy (OSTI)

Aluminum research reactor spent nuclear fuel is currently being stored or is anticipated to be returned to the United States and stored at Department of Energy storage facilities at the Savannah River Site and the Idaho Nuclear Technology and Engineering Center. This paper summarizes the current practices to provide for continued safe interim wet storage in the U.S. Aluminum fuel stored in poor quality water is subject to aggressive corrosion attack and therefore water chemistry control systems are essential to maintain water quality. Fuel with minor breaches are safely stored directly in the basin. Fuel pieces and heavily damaged fuel is safely stored in isolation canisters.

Vinson, D.

2010-08-05T23:59:59.000Z

486

Gas supplies of interstate natural gas pipeline companies 1985  

SciTech Connect

This publication provides information on the total reserves, production, and deliverability capabilities of the 91 interstate pipeline companies. The gas supplies of interstate pipeline companies consist of the certificated, dedicated, recoverable, salable natural gas available from domestic in-the-ground reserves; gas purchased under contracts with other interstate pipeline companies; domestically produced coal gas, liquefied natural gas (LNG), and synthetic natural gas (SNG); and imported natural gas and LNG. The domestic in-the-ground reserves consist of company owned reserves including natural gas in underground storage, reserves dedicated to or warranted under contracts with independent producers, and supplemental or short-term supplies purchased from independent producers and intrastate pipeline companies. To avoid duplicate reporting of domestic in-the-ground reserves, the volumes of gas under contract agreement between jurisdictional pipelines have been excluded in summarizing state and national reserves. Volumes contracted under agreements with foreign suppliers include pipeline imports from Canada and Mexico and LNG from Algeria. 7 figs., 18 tabs.

Not Available

1986-11-14T23:59:59.000Z

487

Gas supplies of interstate natural gas pipeline companies, 1984  

SciTech Connect

This publication provides information on the total reserves, production, and deliverability capabilities of 89 interstate pipeline companies. The gas supplies of interstate pipeline companies consist of the certificated, dedicated, recoverable, salable natural gas available from domestic in-the-ground reserves; gas purchased under contracts with other interstate pipeline companies; domestically produced coal gas, liquefied natural gas (LNG), and synthetic natural gas (SNG); and imported natural gas and LNG. The domestic in-the-ground reserves consist of company-owned reserves including natural gas in underground storage, reserves dedicated to or warranted under contracts with independent producers, and supplemental or short-term supplies purchased from independent producers and intrastate pipeline companies. To avoid duplicate reporting of domestic in-the-ground reserves, the volumes of gas under contract agreement between jurisdictional pipelines have been excluded in summarizing state and national reserves. Volumes contracted under agreements with foreign suppliers include pipeline imports from Canada and Mexico and LNG from Algeria. 8 figs., 18 tabs.

Price, R.

1985-12-04T23:59:59.000Z

488

1988 Wet deposition temporal and spatial patterns in North America  

DOE Green Energy (OSTI)

The focus of this report is on North American wet deposition temporal patterns from 1979 to 1988 and spatial patterns for 1988. It is the third in a series of reports that investigate the patterns of annual precipitation-weighted average concentration and annual deposition for nine ion species: hydrogen, sulfate, nitrate, ammonium, calcium, chloride, sodium, potassium, and magnesium. Mosaic maps, based on surface estimation using kriging, display concentration and deposition spatial patterns of pH, hydrogen, sulfate, nitrate, ammonium, and calcium ion species for 1988 annual, winter, and summer periods. Temporal pattern analyses use a subset of 35 sites over a 10-year (1979--1988) period and an expanded subset of 137 sites, with greater spatial coverage, over a 7-year (1982--1988) period. The 10-year period represents the longest period with wet deposition monitoring data available that has a sufficient number of sites with data of known quality to allow a descriptive summary of annual temporal patterns. Sen`s median trend estimate and Kendall`s seasonal tau (KST) test are calculated for each ion species concentration and deposition at each site in both subsets.

Simpson, J.C.; Olsen, A.R.; Bittner, E.A.

1992-03-01T23:59:59.000Z

489

1986 wet deposition temporal and spatial patterns in North America  

DOE Green Energy (OSTI)

The focus of this report is on North American wet deposition temporal patterns from 1979 to 1986 and spatial patterns for 1986. The report provides statistical distribution summaries of annual precipitation-weighted average concentration and annual deposition for nine ion species: hydrogen, sulfate, nitrate, ammonium, calcium, chloride, sodium, potassium, and magnesium. The data in the report are from the Acid Depositing System (ADS) for the statistical reporting of North American deposition data. Isopleth maps, based on surface estimation using kriging, display concentration and deposition spatial patterns of pH, hydrogen, sulfate, nitrate, ammonium, and calcium ion species for 1986 annual, winter, and summer periods. The temporal pattern analyses use a subset of 30 sites over an 8-year (1979-1986) period and an expanded subset of 137 sites with greater spatial coverage over a 5-year (1982-1986) period. The 8-year period represents the longest period with wet deposition monitoring data unavailable that has a sufficient number of sites with data of known quality to allow a descriptive summary of annual temporal patterns. 19 refs., 105 figs., 29 tabs.

Olsen, A.R.

1989-07-01T23:59:59.000Z

490

1988 Wet deposition temporal and spatial patterns in North America  

DOE Green Energy (OSTI)

The focus of this report is on North American wet deposition temporal patterns from 1979 to 1988 and spatial patterns for 1988. It is the third in a series of reports that investigate the patterns of annual precipitation-weighted average concentration and annual deposition for nine ion species: hydrogen, sulfate, nitrate, ammonium, calcium, chloride, sodium, potassium, and magnesium. Mosaic maps, based on surface estimation using kriging, display concentration and deposition spatial patterns of pH, hydrogen, sulfate, nitrate, ammonium, and calcium ion species for 1988 annual, winter, and summer periods. Temporal pattern analyses use a subset of 35 sites over a 10-year (1979--1988) period and an expanded subset of 137 sites, with greater spatial coverage, over a 7-year (1982--1988) period. The 10-year period represents the longest period with wet deposition monitoring data available that has a sufficient number of sites with data of known quality to allow a descriptive summary of annual temporal patterns. Sen's median trend estimate and Kendall's seasonal tau (KST) test are calculated for each ion species concentration and deposition at each site in both subsets.

Simpson, J.C.; Olsen, A.R.; Bittner, E.A.

1992-03-01T23:59:59.000Z

491

Predictive modeling of reactive wetting and metal joining.  

SciTech Connect

The performance, reproducibility and reliability of metal joints are complex functions of the detailed history of physical processes involved in their creation. Prediction and control of these processes constitutes an intrinsically challenging multi-physics problem involving heating and melting a metal alloy and reactive wetting. Understanding this process requires coupling strong molecularscale chemistry at the interface with microscopic (diffusion) and macroscopic mass transport (flow) inside the liquid followed by subsequent cooling and solidification of the new metal mixture. The final joint displays compositional heterogeneity and its resulting microstructure largely determines the success or failure of the entire component. At present there exists no computational tool at Sandia that can predict the formation and success of a braze joint, as current capabilities lack the ability to capture surface/interface reactions and their effect on interface properties. This situation precludes us from implementing a proactive strategy to deal with joining problems. Here, we describe what is needed to arrive at a predictive modeling and simulation capability for multicomponent metals with complicated phase diagrams for melting and solidification, incorporating dissolutive and composition-dependent wetting.

van Swol, Frank B.

2013-09-01T23:59:59.000Z

492

Searching, naturally  

Science Conference Proceedings (OSTI)

Keywords: artificial intelligence, computational linguistics, information retrieval, knowledge representation, natural language processing, text processing

Eileen E. Allen

1998-06-01T23:59:59.000Z

493

NETL: Oil & Natural Gas Projects  

NLE Websites -- All DOE Office Websites (Extended Search)

Electromagnetic (EM) Telemetry Tool for Deep Well Drilling Applications Electromagnetic (EM) Telemetry Tool for Deep Well Drilling Applications DE-FC26-02NT41656 Goal: To develop a wireless, electromagnetic (EM) based telemetry system to facilitate efficient deep natural gas drilling at depths beyond 20,000 feet and up to 392ËšF (200ËšC) Background: The wireless, EM telemetry system will be designed to facilitate measurement-while-drilling (MWD) operations within a high temperature, deep drilling environment. The key components that will be developed and tested include a new high efficiency power amplifier (PA) and advanced signal processing algorithms. The novel PA architecture will provide greater and more efficient power delivery from the subterranean transmitter through the transmission media. Maximum energy transfer is especially critical downhole, where the transmitterÂ’s principal power source is typically a battery. Increased energy at the receiver antenna equates to increased recoverable signal amplitude; thus, the overall receiver signal-to-noise ratio is improved resulting in deeper operational depth capability.

494

Natural Gas Weekly Update, Printer-Friendly Version  

Gasoline and Diesel Fuel Update (EIA)

7, 2011 at 2:00 P.M. 7, 2011 at 2:00 P.M. Next Release: Thursday, April 14, 2011 Overview Prices Storage Other Market Trends Natural Gas Transportation Update Overview (For the Week Ending Wednesday, April 6, 2011) Continuing last weekÂ’s net decline, the Henry Hub price this week fell 8 cents from $4.25 per million Btu (MMBtu) on Wednesday, March 30, to $4.17 per MMBtu on Wednesday, April 6. At the New York Mercantile Exchange, the price of the near-month (May 2011) contract fell from $4.355 per MMBtu to $4.146 per MMBtu. Working natural gas in storage fell to 1,579 billion cubic feet (Bcf) as of Friday, April 1, according to EIAÂ’s Weekly Natural Gas Storage Report.The natural gas rotary rig count, as reported by Baker Hughes Incorporated, rose by 11 to 891. A new study released by EIA estimated technically recoverable shale

495

EIA - Natural Gas Production Data & Analysis  

Gasoline and Diesel Fuel Update (EIA)

Production Production Gross Withdrawals and Production Components of natural gas production for the U.S., States and the Gulf of Mexico (monthly, annual). Number of Producing Gas Wells U.S. and State level data (annual). Wellhead Value & Marketed Production U.S. and State level natural gas wellhead values and prices of marketed production (annual). Offshore Gross Withdrawals U.S., State, and Gulf of Mexico gross withdrawals from oil and gas wells(annual). Gulf of Mexico Federal Offshore Production Production of crude oil, natural gas wet after lease separation, natural gas liquids, dry natural gas, and lease condensate (annual). Natural Gas Plant Liquids Production Production by U.S., region, and State (annual). Lease Condensate Production Production by U.S., region, and State (annual).

496

Recoverable Robust Knapsack: the Discrete Scenario Case  

E-Print Network (OSTI)

Feb 24, 2011... different customers according to their demands maximizing the profit of ... In this paper, we show that for a fixed number of discrete scenarios ...

497

The recoverable robust tail assignment problem  

E-Print Network (OSTI)

using column generation in the master and subproblems of the Benders ...... described by (36)-(41) is a network flow problem with one source and multiple sink.

498

MHK Technologies/WET EnGen | Open Energy Information  

Open Energy Info (EERE)

EnGen EnGen < MHK Technologies Jump to: navigation, search << Return to the MHK database homepage WET EnGen.jpg Technology Profile Primary Organization Wave Energy Technologies Inc Project(s) where this technology is utilized *MHK Projects/Sandy Cove Technology Resource Click here Wave Technology Type Click here Point Absorber Technology Readiness Level Click here TRL 5/6: System Integration and Technology Laboratory Demonstration Technology Description The EnGen point absorber, which features 'Smart Float' technology that allows the device to travel along a rigid spar at an incline of 45 degrees. The spar is moored at a single point of contact which allows the device to be fully compliant on all three axes (pitch, roll and yaw). Mooring Configuration Proprietary

499

Effects of corn processing and dietary wet corn gluten feed on newly received and growing cattle.  

E-Print Network (OSTI)

??Effects of corn processing with or without the inclusion of wet corn gluten feed (WCGF) on growth and performance were analyzed in two experiments. Treatments… (more)

Siverson, Anna

2012-01-01T23:59:59.000Z

500

Dynamic wetting and heat transfer behaviour of aluminium droplets impinging and solidifying on copper substrates.  

E-Print Network (OSTI)

??The present work describes an experimental set-up built to simulate dynamic wetting and heat transfer occurring in many rapid solidification processes. Tests were performed with… (more)

Leboeuf, Sébastien

2004-01-01T23:59:59.000Z