Sample records for recognized laboratory engine

  1. Naval Civil Engineering Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Naval Civil Engineering Laboratory Personnel from the Power Systems Department have participated in numerous distribution equipment research, development, demonstration, testing,...

  2. EM Laboratory Researcher James Marra Recognized for Leadership

    Broader source: Energy.gov [DOE]

    AIKEN, S.C. – Dr. James Marra, an investigator with EM’s Savannah River National Laboratory (SRNL), was named the 2014 recipient of the D.T. Rankin Award for exemplary service to the Nuclear and Environmental Technology Division of the American Ceramic Society (ACerS).

  3. Materials Engineering Research Facility | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Materials Engineering Research Facility Argonne's new Materials Engineering Research Facility (MERF) supports the laboratory's Advanced Battery Materials Synthesis and...

  4. Sandia National Laboratories: materials science and engineering

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    science and engineering Joint Hire Increases Materials Science Collaboration for Sandia, UNM On September 16, 2014, in Advanced Materials Laboratory, Capabilities, Energy, Energy...

  5. Facilties & Engineering Services | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Facilties & Engineering Services The Facilities Services Group (FSG) is responsible for the facilities and infrastructure of the Ames Laboratory. The group includes custodial...

  6. Sandia National Laboratories: Materials Science and Engineering...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    CapabilitiesCapabilitiesMaterials Science and Engineering Support for Microsystems-Enabled Photovoltaic Grand Challenge Laboratory-Directed Research and Development Project...

  7. Department of Chemical Engineering Thermal and Flow Engineering Laboratory

    E-Print Network [OSTI]

    Zevenhoven, Ron

    Department of Chemical Engineering Thermal and Flow Engineering Laboratory Ron Zevenhoven Course of Physics that (chemical) engineers have to work with haven't changed since then, an update was called for for quite a few of ÅA's chemical engineering students. This text is produced in two languages for several

  8. Sandia National Laboratories: Systems Engineering

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    News & Events, Renewable Energy, Solar, Solar Newsletter, Systems Analysis, Systems Engineering Engineers at Sandia, along with part-ner institutions Georgia Tech, Bucknell...

  9. Sandia National Laboratories: Systems Engineering

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    On November 12, 2013, in CRF, Energy, Facilities, News, News & Events, Systems Engineering, Transportation Energy Joe Pratt (in Sandia's Energy Systems Engineering & Analysis...

  10. Argonne National Laboratory's Omnivorous Engine

    ScienceCinema (OSTI)

    Thomas Wallner

    2010-01-08T23:59:59.000Z

    Why can't an engine run on any fuel? Argonne is designing an omnivorous engine that can run on any blend of gasoline, ethanol or butanol?and calibrate itself to burn that fuel most efficiently.

  11. CRAD, Engineering - Oak Ridge National Laboratory High Flux Isotope...

    Broader source: Energy.gov (indexed) [DOE]

    Engineering - Oak Ridge National Laboratory High Flux Isotope Reactor Contractor ORR CRAD, Engineering - Oak Ridge National Laboratory High Flux Isotope Reactor Contractor ORR...

  12. CRAD, Engineering - Los Alamos National Laboratory Waste Characterizat...

    Broader source: Energy.gov (indexed) [DOE]

    Laboratory Waste Characterization, Reduction, and Repackaging Facility CRAD, Engineering - Los Alamos National Laboratory Waste Characterization, Reduction, and Repackaging...

  13. Sandia National Laboratories: Systems Engineering

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Systems Engineering Sandia Offers Approach to Help Utilities Understand Effects of PV Variability on the Grid On March 7, 2013, in DETL, Distribution Grid Integration, Energy,...

  14. Sandia National Laboratories: Systems Engineering

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Partnership, Renewable Energy, Research & Capabilities, Systems Analysis, Systems Engineering, Wind Energy Sandia recently produced the final set of inspection panels to be used...

  15. Sandia National Laboratories: Systems Engineering

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Engineering New Report Describes Joint Opportunities for Natural Gas and Hydrogen Fuel-Cell Vehicle Markets On March 6, 2015, in Capabilities, Center for Infrastructure Research...

  16. Sandia National Laboratories: Systems Engineering

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Photovoltaic, Renewable Energy, SMART Grid, Solar, Systems Analysis, Systems Engineering The Mesa del Sol microgrid project was selected as one of eight finalists among...

  17. Sandia National Laboratories: engineering science

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    engineering science Caterpillar, Sandia CRADA Opens Door to Multiple Research Projects On April 17, 2013, in Capabilities, Computational Modeling & Simulation, CRF, Materials...

  18. Pieper Servant Leadership Award Nomination The Pieper Servant Leadership Award recognizes leaders in the College of Engineering at

    E-Print Network [OSTI]

    Sheridan, Jennifer

    _______________________________________________________________ Pieper Servant Leadership Award Nomination The Pieper Servant Leadership Award recognizes leaders in the College of Engineering at UW and facilitated in cultures, organizations, and families by and through the example of enlightened leadership

  19. Visual Engineering | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa del SolStrengthening aTurbulenceUtilize AvailableMedia1.1 The Visual Engineering Visual

  20. ORE 601 Ocean and Resources Engineering Laboratory Designation

    E-Print Network [OSTI]

    Frandsen, Jannette B.

    ORE 601 Ocean and Resources Engineering Laboratory Designation Core course Catalog Description This course aims to provide ocean and resources engineering students with the fundamentals necessary Program Outcome 2: Basic science, mathematics, & engineering Program Outcome 3: Ocean engineering core

  1. Engineering Sciences 154 Laboratory Assignment 1

    E-Print Network [OSTI]

    Jones, R. Victor

    in data sheets. A good low-noise amplifier design takes into account the response to both types of sources is poorly designed. (c) Repeat this analysis for the case of a non inverting amplifier with R3 and R4 nonEngineering Sciences 154 Laboratory Assignment 1 OPERATIONAL AMPLIFIERS Introduction The primary

  2. ASSOCIATED LABORATORY PLASMA PHYSICS AND ENGINEERING

    E-Print Network [OSTI]

    Lisboa, Universidade Técnica de

    ASSOCIATED LABORATORY ON PLASMA PHYSICS AND ENGINEERING Centro de Fusão Nuclear Centro de Física dos PlasmasCentro de Fusão Nuclear INSTITUTO SUPERIOR TÉCNICO Centro de Física dos Plasmas WORK Units of excellence in Europe, in the fields of Nuclear Fusion, Plasma Physics and Technologies

  3. FACULTY OF TECHNOLOGY Heat Engineering Laboratory

    E-Print Network [OSTI]

    Zevenhoven, Ron

    FACULTY OF TECHNOLOGY Heat Engineering Laboratory Combined thermal treatment of CCA-wood waste Report 2007-1 #12;- i - Report 2007-1 Combined thermal treatment of CCA-wood waste and municipal sewage sludge for arsenic emissions control Johan Sipilä1 , Maria Zevenhoven2 and Ron Zevenhoven1 1 Heat

  4. FACULTY OF TECHNOLOGY Heat Engineering Laboratory

    E-Print Network [OSTI]

    Zevenhoven, Ron

    FACULTY OF TECHNOLOGY Heat Engineering Laboratory Carbon dioxide sequestration by mineral - Carbon dioxide sequestration by mineral carbonation Literature review update 2005­2007 Johan Sipilä1 carbonation Literature review update 2005­2007 Johan Sipilä, Sebastian Teir and Ron Zevenhoven Report 2008

  5. CRAD, Engineering - Oak Ridge National Laboratory High Flux Isotope...

    Broader source: Energy.gov (indexed) [DOE]

    Oak Ridge National Laboratory High Flux Isotope Reactor CRAD, Engineering - Oak Ridge National Laboratory High Flux Isotope Reactor February 2007 A section of Appendix C to DOE G...

  6. Lawrence Berkeley National Laboratory Center for Computational Sciences and Engineering

    E-Print Network [OSTI]

    ' & $ % Lawrence Berkeley National Laboratory Center for Computational Sciences and Engineering Combustion Richard Pember Phillip Colella Louis Howell Ann Almgren John Bell William Crutchfield Vincent Beckner Center for Computational Sciences and Engineering Lawrence Berkeley National Laboratory Keith

  7. Undergraduate Nuclear Engineering Program Recognizing that in the US the nuclear industry is undergoing a renaissance and is hiring many engineers at one of the

    E-Print Network [OSTI]

    Virginia Tech

    to visit a nuclear-related facility or nuclear power plant. Contact Join us and be a part of the excitingUndergraduate Nuclear Engineering Program Background Recognizing that in the US the nuclear a world-class nuclear engineering education and research program. To satisfy the workforce needs

  8. Visit to the Deep Underground Science and Engineering Laboratory

    ScienceCinema (OSTI)

    None

    2010-01-08T23:59:59.000Z

    U.S. Department of Energy scientists and administrators join members of the National Science Foundation and South Dakotas Sanford Underground Laboratory for the deepest journey yet to the proposed site of the Deep Underground Science and Engineering Laboratory (DUSEL).

  9. EIS-0290: Idaho National Engineering and Environmental Laboratory...

    Broader source: Energy.gov (indexed) [DOE]

    Regarding Remote-Handled Transuranic Waste Identified in the DOE Programmatic Spent Nuclear Fuel Management and Idaho National Engineering Laboratory Environmental...

  10. Stirling engine research at national and university laboratories in Japan

    SciTech Connect (OSTI)

    Hane, G.J.; Hutchinson, R.A.

    1987-09-01T23:59:59.000Z

    Pacific Northwest Laboratory (PNL) reviewed research projects that are related to the development of Stirling engines and that are under way at Japanese national laboratories and universities. The research and development focused on component rather than on whole engine development. PNL obtained the information from a literature review and interviews conducted at the laboratories and universities. The universities have less equipment available and operate with smaller staffs for research than do the laboratories. In particular, the Mechanical Engineering Laboratory and the Aerospace Laboratory conduct high-quality component and fundamental work. Despite having less equipment, some of the researchers at the universities conduct high-quality fundamental research. As is typical in Japan, several of the university professors are very active in consulting and advisory capacities to companies engaged in Stirling engine development, and also with government and association advisory and technical committees. Contacts with these professors and selective examination of their research are good ways to keep abreast of Japanese Stirling developments.

  11. Sandia National Laboratories: Engineering Excellence Awards

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Engineering Excellence Awards Sandia Solar Energy Test System Cited in National Engineering Competition On May 16, 2013, in Concentrating Solar Power, Energy, Energy Storage,...

  12. Engine Research Facility | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    engines range in size from automobile- to locomotive-sized, as well as stationary electric power production engines. The facility is used to discover and evaluate new...

  13. Sandia National Laboratories: Internal Combustion Engine Division...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Internal Combustion Engine Division conference CRF Researchers Received "Best Paper" Award for Paper Presented at American Society of Mechanical Engineers' (ASME) 2012 Internal...

  14. Sandia National Laboratories: internal combustion engine fuel...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    internal combustion engine fuel efficiency Measurements of Thermal Stratification in a Homogenous Charge Compression Ignition Engine On February 27, 2013, in CRF, Energy,...

  15. Sandia National Laboratories: American Council of Engineering...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Council of Engineering Companies Sandia Solar Energy Test System Cited in National Engineering Competition On May 16, 2013, in Concentrating Solar Power, Energy, Energy Storage,...

  16. Sandia National Laboratories: International Tokamak Engineering...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Analysis, Systems Engineering Sandian Dean Buchenauer (in Sandia's Hydrogen and Metallurgy Science Dept.) and Professor David Q. Hwang (UC Davis, School of Engineering) will...

  17. Sandia National Laboratories: Engine Combustion Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Engine Combustion Network Lyle Pickett Named a Society of Automotive Engineers Fellow On October 22, 2013, in CRF, Energy, Facilities, News, News & Events, Transportation Energy...

  18. Sandia National Laboratories: predictive engine spray combustion...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    predictive engine spray combustion modeling Sandia Expands an International Collaboration and Web Database on Engine Fuel Spray Combustion Research On November 13, 2012, in CRF,...

  19. ME 374D Automotive Engineering laboratory ABET EC2000 syllabus

    E-Print Network [OSTI]

    Ben-Yakar, Adela

    . Awareness of contemporary issues in engineering practice, including economic, social, political the ability to: A. Apply principles of engineering, basic science, and mathematics (including multivariateME 374D ­ Automotive Engineering laboratory Page 1 ABET EC2000 syllabus ME 374D ­ Automotive

  20. Sandia National Laboratories: fuel-efficient engine

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    fuel-efficient engine Sandia Maps Multiple Paths to Cleaner, Low-Temp Diesels On October 22, 2013, in CRF, Energy, Facilities, News, News & Events, Partnership, Sensors & Optical...

  1. Update on Engine Combustion Research at Sandia National Laboratories

    SciTech Connect (OSTI)

    Jay Keller; Gurpreet Singh

    2001-05-14T23:59:59.000Z

    The objectives of this paper are to describe the research efforts in diesel engine combustion at Sandia National Laboratories' Combustion Research Facility and to provide recent experimental results. We have four diesel engine experiments supported by the Department of Energy, Office of Heavy Vehicle Technologies: a one-cylinder version of a Cummins heavy-duty engine, a diesel simulation facility, a one-cylinder Caterpillar engine to evaluate combustion of alternative fuels, and a homogeneous-charge, compression ignition (HCCI) engine. Recent experimental results of diesel combustion research will be discussed and a description will be given of our HCCI experimental program and of our HCCI modeling work.

  2. Calibration studies of the Hayes Coastal Engineering Laboratory 

    E-Print Network [OSTI]

    Thurlow, Aimee Rebecca

    2006-04-12T23:59:59.000Z

    The Hayes Coastal Engineering Laboratory is a new laboratory with two water basins: a 45.72-meters long, 3.66 meters wide and 3.06 meters deep Tow Tank with sediment pit for dredging and current flow studies, and a 36.58 ...

  3. Sandia National Laboratories: Dish Engine Systems

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Trough Systems CLFR Power Towers Acciona Abengoa Sener Solar Millennium SkyFuel Siemens Ausra SPGMann SkyFuel Abengoa Brightsource Energy SolarReserve eSolar Dish Engine...

  4. Neurobiology Engineering Laboratory Western Michigan University

    E-Print Network [OSTI]

    Miller, Damon A.

    stimulation on protein production by skeletal muscle cells. Support WMU College of Engineering and Applied) in neural research. MEAs enable long term measurement and stimulation of neuron cell culture electrical J.-M. Vianney, D. Miller, and J. Spitsbergen, "Treatment with acetylcholine or electrical

  5. The College of Engineering of The Pennsylvania State University invites applications for the position of Head of the Department of Electrical Engineering. The successful candidate must have an established and widely recognized

    E-Print Network [OSTI]

    Guiltinan, Mark

    for the position of Head of the Department of Electrical Engineering. The successful candidate must have an established and widely recognized reputation in Electrical Engineering. An earned doctorate is required the research and educational initiatives of Electrical Engineering; (2) building upon existing departmental

  6. Waste Technology Engineering Laboratory (324 building)

    SciTech Connect (OSTI)

    Kammenzind, D.E.

    1997-05-27T23:59:59.000Z

    The 324 Facility Standards/Requirements Identification Document (S/RID) is comprised of twenty functional areas. Two of the twenty functional areas (Decontamination and Decommissioning and Environmental Restoration) were determined as nonapplicable functional areas and one functional area (Research and Development and Experimental Activities) was determined applicable, however, requirements are found in other functional areas and will not be duplicated. Each functional area follows as a separate chapter, either containing the S/RID or a justification for nonapplicability. The twenty functional areas listed below follow as chapters: 1. Management Systems; 2. Quality Assurance; 3. Configuration Management; 4. Training and Qualification; 5. Emergency Management; 6. Safeguards and Security; 7. Engineering Program; 8. Construction; 9. Operations; 10. Maintenance; 11. Radiation Protection; 12. Fire Protection; 13. Packaging and Transportation; 14. Environmental Restoration; 15. Decontamination and Decommissioning; 16. Waste Management; 17. Research and Development and Experimental Activities; 18. Nuclear Safety; 19. Occupational Safety and Health; 20. Environmental Protection.

  7. Successful neural network projects at the Idaho National Engineering Laboratory

    SciTech Connect (OSTI)

    Cordes, G.A.

    1991-01-01T23:59:59.000Z

    This paper presents recent and current projects at the Idaho National Engineering Laboratory (INEL) that research and apply neural network technology. The projects are summarized in the paper and their direct application to space reactor power and propulsion systems activities is discussed. 9 refs., 10 figs., 3 tabs.

  8. CRAD, Engineering- Oak Ridge National Laboratory High Flux Isotope Reactor

    Broader source: Energy.gov [DOE]

    A section of Appendix C to DOE G 226.1-2 "Federal Line Management Oversight of Department of Energy Nuclear Facilities." Consists of Criteria Review and Approach Documents (CRADs) used for a February 2007 assessment of the Engineering Program in preparation for restart of the Oak Ridge National Laboratory High Flux Isotope Reactor.

  9. Deep Underground Science and Engineering Laboratory - Preliminary Design Report

    E-Print Network [OSTI]

    Kevin T. Lesko; Steven Acheson; Jose Alonso; Paul Bauer; Yuen-Dat Chan; William Chinowsky; Steve Dangermond; Jason A. Detwiler; Syd De Vries; Richard DiGennaro; Elizabeth Exter; Felix B. Fernandez; Elizabeth L. Freer; Murdock G. D. Gilchriese; Azriel Goldschmidt; Ben Grammann; William Griffing; Bill Harlan; Wick C. Haxton; Michael Headley; Jaret Heise; Zbigniew Hladysz; Dianna Jacobs; Michael Johnson; Richard Kadel; Robert Kaufman; Greg King; Robert Lanou; Alberto Lemut; Zoltan Ligeti; Steve Marks; Ryan D. Martin; John Matthesen; Brendan Matthew; Warren Matthews; Randall McConnell; William McElroy; Deborah Meyer; Margaret Norris; David Plate; Kem E. Robinson; William Roggenthen; Rohit Salve; Ben Sayler; John Scheetz; Jim Tarpinian; David Taylor; David Vardiman; Ron Wheeler; Joshua Willhite; James Yeck

    2011-08-03T23:59:59.000Z

    The DUSEL Project has produced the Preliminary Design of the Deep Underground Science and Engineering Laboratory (DUSEL) at the rehabilitated former Homestake mine in South Dakota. The Facility design calls for, on the surface, two new buildings - one a visitor and education center, the other an experiment assembly hall - and multiple repurposed existing buildings. To support underground research activities, the design includes two laboratory modules and additional spaces at a level 4,850 feet underground for physics, biology, engineering, and Earth science experiments. On the same level, the design includes a Department of Energy-shepherded Large Cavity supporting the Long Baseline Neutrino Experiment. At the 7,400-feet level, the design incorporates one laboratory module and additional spaces for physics and Earth science efforts. With input from some 25 science and engineering collaborations, the Project has designed critical experimental space and infrastructure needs, including space for a suite of multidisciplinary experiments in a laboratory whose projected life span is at least 30 years. From these experiments, a critical suite of experiments is outlined, whose construction will be funded along with the facility. The Facility design permits expansion and evolution, as may be driven by future science requirements, and enables participation by other agencies. The design leverages South Dakota's substantial investment in facility infrastructure, risk retirement, and operation of its Sanford Laboratory at Homestake. The Project is planning education and outreach programs, and has initiated efforts to establish regional partnerships with underserved populations - regional American Indian and rural populations.

  10. Idaho National Engineering Laboratory: Annual report, 1986

    SciTech Connect (OSTI)

    Not Available

    1986-01-01T23:59:59.000Z

    The INEL underwent a year of transition in 1986. Success with new business initiatives, the prospects of even better things to come, and increased national recognition provided the INEL with a glimpse of its promising and exciting future. Among the highlights were: selection of the INEL as the preferred site for the Special Isotope Separation Facility (SIS); the first shipments of core debris from the Three Mile Island Unit 2 reactor to the INEL; dedication of three new facilities - the Fluorinel Dissolution Process, the Remote Analytical Laboratory, and the Stored Waste Experimental Pilot Plant; groundbreaking for the Fuel Processing Restoration Facility; and the first IR-100 award won by the INEL, given for an innovative machine vision system. The INEL has been assigned project management responsibility for the SDI Office-sponsored Multimegawatt Space Reactor and the Air Force-sponsored Multimegawatt Terrestrial Power Plant Project. New Department of Defense initiatives have been realized in projects involving development of prototype defense electronics systems, materials research, and hazardous waste technology. While some of our major reactor safety research programs have been completed, the INEL continues as a leader in advanced reactor technologies development. In April, successful tests were conducted for the development of the Integral Fast Reactor. Other 1986 highlights included the INEL's increased support to the Office of Civilian Radioactive Waste Management for complying with the Nuclear Waste Policy Act of 1982. Major INEL activities included managing a cask procurement program, demonstrating fuel assembly consolidation, and testing spent fuel storage casks. In addition, the INEL supplied the Tennessee Valley Authority with management and personnel experienced in reactor technology, increased basic research programs at the Idaho Research Center, and made numerous outreach efforts to assist the economies of Idaho communities.

  11. Argonne National Laboratory Chemical Engineering Division Water-gas shift catalysis

    E-Print Network [OSTI]

    Argonne National Laboratory Chemical Engineering Division Water-gas shift catalysis Sara Yu Choung Engineering Division Argonne National Laboratory Hydrogen, Fuel Cells, and Infrastructure Technologies 2003 Merit Review Berkeley, CA May 19-22, 2003 #12;Argonne National Laboratory Chemical Engineering Division

  12. Thermal Engineering Laboratory, Vanderbilt University Photo courtesy of Dr. Steve Allisonwikipedia.org

    E-Print Network [OSTI]

    Walker, D. Greg

    #12;Thermal Engineering Laboratory, Vanderbilt University 2 Photo courtesy of Dr. Steve Allisonwikipedia.org www.elmettechnologies.com/ #12;3 #12;Thermal Engineering Laboratory, Vanderbilt University 4 #12;Thermal Engineering Laboratory, Vanderbilt University 5 mr390325.f2.jpeg (JPEG Image, 1885x1434

  13. BioTherapeutics Engineering Laboratory (BioTEL) Small molecules

    E-Print Network [OSTI]

    Mease, Kenneth D.

    Tissues and organs Physiological functions cmcm PI: Young Jik Kwon, kwonyj@uci.edu, 949-824-8714, http NH2l n HN HN O m H3O+HN O H N O HN OH OH O Nucleic acid H2N Dissociated nucleic acid H2N PI: YoungTherapeutics Engineering Laboratory (BioTEL) NIH 3T3 Cells RAW309 CR.1 Nanoparticles Naked DNANIH 3T3 Cells (Fibroblast

  14. The Prospective Role of JAEA Nuclear Fuel Cycle Engineering Laboratories

    SciTech Connect (OSTI)

    Ojima, Hisao; Dojiri, Shigeru; Tanaka, Kazuhiko; Takeda, Seiichiro; Nomura, Shigeo [Nuclear Fuel Cycle Engineering Laboratories, Japan Atomic Energy Agency, Tokai-mura, Naka-gun, Ibaraki 319-1194 (Japan)

    2007-07-01T23:59:59.000Z

    JAEA Nuclear Fuel Cycle Engineering Laboratories was established in 2005 to take over the activities of the JNC Tokai Works. Many kinds of development activities have been carried out since 1959. Among these, the results on the centrifuge for U enrichment, LWR spent fuel reprocessing and MOX fuel fabrication have already provided the foundation of the fuel cycle industry in Japan. R and D on the treatment and disposal of high-level waste and FBR fuel reprocessing has also been carried out. Through such activities, radioactive material release to the environment has been appropriately controlled and all nuclear materials have been placed under IAEA safeguards. The Laboratories has sufficient experience and ability to establish the next generation closed cycle and strives to become a world-class Center Of Excellence (COE). (authors)

  15. A graphical electromagnetic simulation laboratory for power systems engineering programs

    SciTech Connect (OSTI)

    Gole, A.M. [Univ. of Manitoba, Winnipeg, Manitoba (Canada)] [Univ. of Manitoba, Winnipeg, Manitoba (Canada); Nayak, O.B. [Manitoba HVDC Research Centre, Winnipeg, Manitoba (Canada)] [Manitoba HVDC Research Centre, Winnipeg, Manitoba (Canada); Sidhu, T.S.; Sachdev, M.S. [Univ. of Saskatchewan, Saskatoon, Saskatchewan (Canada)] [Univ. of Saskatchewan, Saskatoon, Saskatchewan (Canada)

    1996-05-01T23:59:59.000Z

    The recent availability of Electromagnetic Transient Programs with graphical front ends now makes it possible to put together models for circuits and systems in a manner similar to the connection of components in a laboratory. In the past, the non-graphical EMT Programs required considerable expertise in their use and thus distracted the students into the details or simulation. The introduction of a graphical simulation based laboratory into Undergraduate and Graduate Engineering Programs is presented, based on the PSCAD/EMTDC program. The philosophy behind the design of suitable example cases is presented within the framework of an Undergraduate Power Electronics Course, an HVdc Transmission Course and a course on Power System Protection.

  16. Sandia National Laboratories ASCI Applications Software Quality Engineering Practices

    SciTech Connect (OSTI)

    ZEPPER, JOHN D.; ARAGON, KATHRYN MARY; ELLIS, MOLLY A.; BYLE, KATHLEEN A.; EATON, DONNA SUE

    2002-01-01T23:59:59.000Z

    This document provides a guide to the deployment of the software verification activities, software engineering practices, and project management principles that guide the development of Accelerated Strategic Computing Initiative (ASCI) applications software at Sandia National Laboratories (Sandia). The goal of this document is to identify practices and activities that will foster the development of reliable and trusted products produced by the ASCI Applications program. Document contents include an explanation of the structure and purpose of the ASCI Quality Management Council, an overview of the software development lifecycle, an outline of the practices and activities that should be followed, and an assessment tool. These sections map practices and activities at Sandia to the ASCI Software Quality Engineering: Goals, Principles, and Guidelines, a Department of Energy document.

  17. Sandia National Laboratories ASCI Applications Software Quality Engineering Practices

    SciTech Connect (OSTI)

    ZEPPER, JOHN D.; ARAGON, KATHRYN MARY; ELLIS, MOLLY A.; BYLE, KATHLEEN A.; EATON, DONNA SUE

    2003-04-01T23:59:59.000Z

    This document provides a guide to the deployment of the software verification activities, software engineering practices, and project management principles that guide the development of Accelerated Strategic Computing Initiative (ASCI) applications software at Sandia National Laboratories (Sandia). The goal of this document is to identify practices and activities that will foster the development of reliable and trusted products produced by the ASCI Applications program. Document contents include an explanation of the structure and purpose of the ASCI Quality Management Council, an overview of the software development lifecycle, an outline of the practices and activities that should be followed, and an assessment tool.

  18. Idaho National Engineering Laboratory Waste Management Operations Roadmap Document

    SciTech Connect (OSTI)

    Bullock, M.

    1992-04-01T23:59:59.000Z

    At the direction of the Department of Energy-Headquarters (DOE-HQ), the DOE Idaho Field Office (DOE-ID) is developing roadmaps for Environmental Restoration and Waste Management (ER&WM) activities at Idaho National Engineering Laboratory (INEL). DOE-ID has convened a select group of contractor personnel from EG&G Idaho, Inc. to assist DOE-ID personnel with the roadmapping project. This document is a report on the initial stages of the first phase of the INEL`s roadmapping efforts.

  19. EIS-0203: Spent Nuclear Fuel Management and Idaho National Engineering Laboratory Environmental Restoration and Waste Management Programs

    Broader source: Energy.gov [DOE]

    Spent Nuclear Fuel Management and Idaho National Engineering Laboratory Environmental Restoration and Waste Management Programs

  20. Idaho National Engineering Laboratory, Test Area North, Hangar 629 -- Photographs, written historical and descriptive data

    SciTech Connect (OSTI)

    NONE

    1994-12-31T23:59:59.000Z

    The report describes the history of the Idaho National Engineering Laboratory`s Hangar 629. The hangar was built to test the possibility of linking jet engine technology with nuclear power. The history of the project is described along with the development and eventual abandonment of the Flight Engine Test hangar. The report contains historical photographs and architectural drawings.

  1. Tiger Team assessment of the Idaho National Engineering Laboratory

    SciTech Connect (OSTI)

    Not Available

    1991-08-01T23:59:59.000Z

    The purpose of the Safety and Health (S H) Subteam assessment was to determine the effectiveness of representative safety and health programs at the Idaho National Engineering Laboratory (INEL) site. Four Technical Safety Appraisal (TSA) Teams were assembled for this purpose by the US Department of Energy (DOE), Deputy Assistant Secretary for Safety and Quality Assurance, Office of Safety Appraisals (OSA). Team No. 1 reviewed EG G Idaho, Inc. (EG G Idaho) and the Department of Energy Field Office, Idaho (ID) Fire Department. Team No. 2 reviewed Argonne National Laboratory-West (ANL-W). Team No. 3 reviewed selected contractors at the INEL; specifically, Morrison Knudsen-Ferguson of Idaho Company (MK-FIC), Protection Technology of Idaho, Inc. (PTI), Radiological and Environmental Sciences Laboratory (RESL), and Rockwell-INEL. Team No. 4 provided an Occupational Safety and Health Act (OSHA)-type compliance sitewide assessment of INEL. The S H Subteam assessment was performed concurrently with assessments conducted by Environmental and Management Subteams. Performance was appraised in the following technical areas: Organization and Administration, Quality Verification, Operations, Maintenance, Training and Certification, Auxiliary Systems, Emergency Preparedness, Technical Support, Packaging and Transportation, Nuclear Criticality Safety, Security/Safety Interface, Experimental Activities, Site/Facility Safety Review, Radiological Protection, Personnel Protection, Worker Safety and Health (OSHA) Compliance, Fire Protection, Aviation Safety, Medical Services, and Firearms Safety.

  2. Tiger Team assessment of the Idaho National Engineering Laboratory

    SciTech Connect (OSTI)

    Not Available

    1991-08-01T23:59:59.000Z

    This report documents the Tiger Team Assessment of the Idaho National Engineering Laboratory (INEL) located in Idaho Falls, Idaho. INEL is a multiprogram, laboratory site of the US Department of Energy (DOE). Overall site management is provided by the DOE Field Office, Idaho; however, the DOE Field Office, Chicago has responsibility for the Argonne National Laboratory-West facilities and operations through the Argonne Area Office. In addition, the Idaho Branch Office of the Pittsburgh Naval Reactors Office has responsibility for the Naval Reactor Facility (NRF) at the INEL. The assessment included all DOE elements having ongoing program activities at the site except for the NRF. In addition, the Safety and Health Subteam did not review the Westinghouse Idaho Nuclear Company, Inc. facilities and operations. The Tiger Team Assessment was conducted from June 17 to August 2, 1991, under the auspices of the Office of Special Projects, Office of the Assistant Secretary for Environment, Safety and Health, Headquarters, DOE. The assessment was comprehensive, encompassing environmental, safety, and health (ES H) disciplines; management; and contractor and DOE self-assessments. Compliance with applicable federal, state, and local regulations; applicable DOE Orders; best management practices; and internal INEL site requirements was assessed. In addition, an evaluation of the adequacy and effectiveness of the DOE and the site contractors management of ES H/quality assurance programs was conducted.

  3. Tiger Team assessment of the Idaho National Engineering Laboratory

    SciTech Connect (OSTI)

    Goldberg, Edward S.; Keating, John J.

    1991-08-01T23:59:59.000Z

    The Management Subteam conducted a management assessment of Environment, Safety, and Health (ES H) programs and their implementation of Idaho National Engineering Laboratory (INEL). The objectives of the assessment were to: (1) evaluate the effectiveness of existing management functions and processes in terms of ensuring environmental compliance, and the health and safety of workers and the general public; and (2) identify probable root causes for ES H findings and concerns. Organizations reviewed were DOE-Headquarters: DOE Field Offices, Chicago (CH) and Idaho (ID); Argonne Area Offices, East (AAO-E) and West (AAO-W); Radiological and Environmental Sciences Laboratory (RESL); Argonne National Laboratory (ANL); EG G Idaho, Inc. (EG G); Westinghouse Idaho Nuclear Company, Inc. (WINCO); Rockwell-INEL; MK-Ferguson of Idaho Company (MK-FIC); and Protection Technology of Idaho, Inc. (PTI). The scope of the assessment covered the following ES H management issues: policies and procedures; roles, responsibilities, and authorities; management commitment; communication; staff development, training, and certification; recruitment; compliance management; conduct of operations; emergency planning and preparedness; quality assurance; self assessment; oversight activities; and cost plus award fee processes.

  4. Chemical & Engineering News Serving the chemical, life sciences and laboratory worlds

    E-Print Network [OSTI]

    Chemical & Engineering News Serving the chemical, life sciences and laboratory worlds Awards Home of Catalysis Science & Technology (Probationary). Chemical & Engineering Or Petroleum Chemistry February 1, 2010 Volume 88, Number 5 p. 42 Sponsored by the George A. Olah Endowment

  5. The Quality of Management and of the Science and Engineering at the NNSA National Security Laboratories

    Broader source: Energy.gov [DOE]

    The Quality of Management and of the Science and Engineering at the NNSA National Security Laboratories was presented to CRENEL 9/15/2014.

  6. Epidemiologic surveillance. Annual report for Idaho National Engineering Laboratory 1994

    SciTech Connect (OSTI)

    NONE

    1994-12-31T23:59:59.000Z

    Epidemiologic surveillance at DOE facilities consists of regular and systematic collection, analysis, and interpretation of data on absences due to illness and injury in the work force. Its purpose is to provide an early warning system for health problems occurring among employees at participating sites. In this annual report, the 1994 morbidity data for the Idaho National Engineering Laboratory are summarized. These analyses focus on absences of 5 or more consecutive workdays occurring among workers aged 17-85 years. They are arranged in five sets of tables that present: (1) the distribution of the labor force by occupational category and pay status; (2) the absences per person, diagnoses per absence, and diagnosis rates for the whole work force; (3) diagnosis rates by type of disease or injury; (4) diagnosis rates by occupational category; and (5) relative risks for specific types of disease or injury by occupational category.

  7. Idaho National Engineering Laboratory installation roadmap document. Revision 1

    SciTech Connect (OSTI)

    Not Available

    1993-05-30T23:59:59.000Z

    The roadmapping process was initiated by the US Department of Energy`s office of Environmental Restoration and Waste Management (EM) to improve its Five-Year Plan and budget allocation process. Roadmap documents will provide the technical baseline for this planning process and help EM develop more effective strategies and program plans for achieving its long-term goals. This document is a composite of roadmap assumptions and issues developed for the Idaho National Engineering Laboratory (INEL) by US Department of Energy Idaho Field Office and subcontractor personnel. The installation roadmap discusses activities, issues, and installation commitments that affect waste management and environmental restoration activities at the INEL. The High-Level Waste, Land Disposal Restriction, and Environmental Restoration Roadmaps are also included.

  8. Faculty of Technology Heat Engineering Laboratory course 424512 E Ron Zevenhoven c.s.

    E-Print Network [OSTI]

    Zevenhoven, Ron

    Faculty of Technology Heat Engineering Laboratory course 424512 E Ron Zevenhoven c.s. April 2009 of Technology Heat Engineering Laboratory course 424512 E Ron Zevenhoven c.s. April 2009 2/4 where Ti (n in the figure below, and the numerical values in the table: continues.... #12;Faculty of Technology Heat

  9. 1Mechanical, Aerospace and Nuclear Engineering nacThe Gaerttner Laboratory RPI LINAC Facility

    E-Print Network [OSTI]

    Danon, Yaron

    Nuclear Criticality Safety Program Conference April 27, 2011 #12;2Mechanical, Aerospace and Nuclear, Aerospace and Nuclear Engineering nacThe Gaerttner Laboratory RPI LINAC Facility Nuclear Criticality Safety1Mechanical, Aerospace and Nuclear Engineering nacThe Gaerttner Laboratory RPI LINAC Facility

  10. Report on Audit of Architect and Engineering Costs at the Idaho National Engineering Laboratory

    SciTech Connect (OSTI)

    NONE

    1996-03-22T23:59:59.000Z

    In September 1990 the Office of Inspector General (OIG) issued the Department-wide Audit of Architect and Engineering Design Costs (DOE/IG-0289) which concluded that the Department`s A/E costs averaged more than twice that of private industry. The primary cause of the higher costs was the lack of Departmental A/E cost standards that would provide measurement criteria for controlling costs. Consistent with our prior Department-wide audit, the purpose of this audit was to determine whether A/E services performed at the Laboratory were economical. Specifically, we determined whether the costs for A/E services at the Laboratory were comparable to the cost standards for A/E services in industry and the State; and, whether A/E costs were reasonable.

  11. Sandia National Laboratories: light-duty diesel engine

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Paper Presented at American Society of Mechanical Engineers' (ASME) 2012 Internal Combustion Engine Division (ICED) Conference On August 28, 2013, in CRF, Energy, Energy...

  12. DOE BES/DMS Materials Science and Engineering/Frederick Seitz Materials Research Laboratory Dept. of Materials and Engineering and Materials

    E-Print Network [OSTI]

    Zuo, Jian-Min "Jim"

    DOE BES/DMS Materials Science and Engineering/Frederick Seitz Materials Research Laboratory J. M/DMS Materials Science and Engineering/Frederick Seitz Materials Research Laboratory #12;DOE BES/DMS Materials Science and Engineering/Frederick Seitz Materials Research Laboratory Outline of This Lecture I. Electron

  13. Quality New Mexico recognizes Community Programs Office

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Quality New Mexico recognizes Community Programs Office March 6, 2012 LOS ALAMOS, New Mexico, March 6, 2012-Los Alamos National Laboratory's Community Programs Office received...

  14. DOE BES/DMS Materials Science and Engineering/Frederick Seitz Materials Research Laboratory A Tutorial on Electron Microscopy

    E-Print Network [OSTI]

    Zuo, Jian-Min "Jim"

    DOE BES/DMS Materials Science and Engineering/Frederick Seitz Materials Research Laboratory #12;DOE BES/DMS Materials Science and Engineering/Frederick Seitz Materials Research Laboratory and spectroscopy #12;DOE BES/DMS Materials Science and Engineering/Frederick Seitz Materials Research Laboratory I

  15. The Idaho National Engineering and Environmental Laboratory Source Water Assessment

    SciTech Connect (OSTI)

    Sehlke, G.

    2003-03-17T23:59:59.000Z

    The Idaho National Engineering and Environmental Laboratory (INEEL) covers approximately 890 square miles and includes 12 public water systems that must be evaluated for Source water protection purposes under the Safe Drinking Water Act. Because of its size and location, six watersheds and five aquifers could potentially affect the INEEL's drinking water sources. Based on a preliminary evaluation of the available information, it was determined that the Big Lost River, Birch Creek, and Little Lost River Watersheds and the eastern Snake River Plain Aquifer needed to be assessed. These watersheds were delineated using the United States Geologic Survey's Hydrological Unit scheme. Well capture zones were originally estimated using the RESSQC module of the Environmental Protection Agency's Well Head Protection Area model, and the initial modeling assumptions and results were checked by running several scenarios using Modflow modeling. After a technical review, the resulting capture zones were expanded to account for the uncertainties associated with changing groundwater flow directions, a this vadose zone, and other data uncertainties. Finally, all well capture zones at a given facility were merged to a single wellhead protection area at each facility. A contaminant source inventory was conducted, and the results were integrated with the well capture zones, watershed and aquifer information, and facility information using geographic information system technology to complete the INEEL's Source Water Assessment. Of the INEEL's 12 public water systems, three systems rated as low susceptibility (EBR-1, Main Gate, and Gun Range), and the remainder rated as moderate susceptibility. No INEEL public water system rated as high susceptibility. We are using this information to develop a source water management plan from which we will subsequently implement an INEEL-wide source water management program. The results are a very robust set of wellhead protection areas that will protect the INEEL's public water systems yet not too conservative to inhibit the INEEL from carrying out its missions.

  16. EA-0845: Expansion of the Idaho National Engineering Laboratory Research Center, Idaho Falls, Idaho

    Broader source: Energy.gov [DOE]

    This EA evaluates the environmental impacts of a proposal to expand and upgrade facilities at the U.S. Department of Energy's Idaho National Engineering Laboratory Research Center, located in Idaho...

  17. EA-0907: Idaho National Engineering Laboratory Sewer System Upgrade Project, Idaho Falls, Idaho

    Broader source: Energy.gov [DOE]

    This EA evaluates the environmental impacts of a proposal to upgrade the Sewer System at the U.S. Department of Energy's Idaho National Engineering Laboratory (INEL) near Idaho Falls, Idaho.  The...

  18. EA-0843: Idaho National Engineering Laboratory Low-Level and Mixed Waste Processing, Idaho Falls, Idaho

    Broader source: Energy.gov [DOE]

    This EA evaluates the environmental impacts of a proposal to (1) reduce the volume of the U.S. Department of Energy's Idaho National Engineering Laboratory's (INEL) generated low-level waste (LLW)...

  19. A woman like you: Women scientists and engineers at Brookhaven National Laboratory

    SciTech Connect (OSTI)

    Benkovitz, Carmen; Bernholc, Nicole; Cohen, Anita; Eng, Susan; Enriquez-Leder, Rosario; Franz, Barbara; Gorden, Patricia; Hanson, Louise; Lamble, Geraldine; Martin, Harriet; Mastrangelo, Iris; McLane, Victoria; Villela, Maria-Alicia; Vivirito, Katherine; Woodhead, Avril

    1991-01-01T23:59:59.000Z

    This publication by the women in Science and Engineering introduces career possibilities in science and engineering. It introduces what work and home life are like for women who have already entered these fields. Women at Brookhaven National Laboratory work in a variety of challenging research roles -- from biologist and environmental scientist to safety engineer, from patent lawyer to technician. Brookhaven National Laboratory is a multi-program laboratory which carries out basic and applied research in the physical, biomedical and environmental sciences and in selected energy technologies. The Laboratory is managed by Associated University, Inc., under contract with the US Department of Energy. Brookhaven and the other national laboratories, because of their enormous research resources, can play a critical role in a education and training of the workforce.

  20. A woman like you: Women scientists and engineers at Brookhaven National Laboratory. Careers in action

    SciTech Connect (OSTI)

    Not Available

    1991-12-31T23:59:59.000Z

    This publication by the women in Science and Engineering introduces career possibilities in science and engineering. It introduces what work and home life are like for women who have already entered these fields. Women at Brookhaven National Laboratory work in a variety of challenging research roles -- from biologist and environmental scientist to safety engineer, from patent lawyer to technician. Brookhaven National Laboratory is a multi-program laboratory which carries out basic and applied research in the physical, biomedical and environmental sciences and in selected energy technologies. The Laboratory is managed by Associated University, Inc., under contract with the US Department of Energy. Brookhaven and the other national laboratories, because of their enormous research resources, can play a critical role in a education and training of the workforce.

  1. Transport parameter determination and modeling of sodium and strontium plumes at the Idaho National Engineering Laboratory

    E-Print Network [OSTI]

    Londergan, John Thomas

    1987-01-01T23:59:59.000Z

    TRANSPORT PARAMETER DETERMINATION AND MODELING OF SODIUM AND STRONTIUM PLUMES AT THE IDAHO NATIONAL ENGINEERING LABORATORY A Thesis by JOHN THOMAS LONDERGAN Submitted to the Graduate College of Texas A&M University in partial fulfillment... of the requirements for the degree of MASTER OF SCIENCE May 1987 Major Subject: Geophysics TRANSPORT PARAMETER DETERMINATION AND MODELING OF SODIUM AND STRONTIUM PLUMES AT THE IDAHO NATIONAL ENGINEERING LABORATORY A Thesis by JOHN THOMAS LONDERGAN Approved...

  2. Sandia National Laboratories: high-fidelity engine combustion...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    engine combustion models Direct Measurement of Key Molecule Will Increase Accuracy of Combustion Models On March 3, 2015, in Computational Modeling & Simulation, CRF, Energy,...

  3. 20.109 Laboratory Fundamentals in Biological Engineering, Spring 2006

    E-Print Network [OSTI]

    Engelward, Bevin

    This course introduces experimental biochemical and molecular techniques from a quantitative engineering perspective. Rigorous quantitative data collection, statistical analysis, and conceptual understanding of instrumentation ...

  4. Sandia National Laboratories: multi-physics engineering modeling...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    multi-physics engineering modeling and simulation Caterpillar, Sandia CRADA Opens Door to Multiple Research Projects On April 17, 2013, in Capabilities, Computational Modeling &...

  5. DOE BES/DMS Materials Science and Engineering/Frederick Seitz Materials Research Laboratory Dept. of Materials and Engineering and Materials

    E-Print Network [OSTI]

    Zuo, Jian-Min "Jim"

    DOE BES/DMS Materials Science and Engineering/Frederick Seitz Materials Research Laboratory J. M://cbed.mse.uiuc.edu Theory and Practice of Electron Diffraction #12;DOE BES/DMS Materials Science and Engineering BES/DMS Materials Science and Engineering/Frederick Seitz Materials Research Laboratory Why

  6. Sandia National Laboratories: Two Sandia Engineers named as Influencer...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    and Innovators of Wind Power On May 26, 2011, in Energy, News, Renewable Energy, Wind Energy ALBUQUERQUE, N.M. - April 28, 2011 - Sandia engineers Jose Zayas and Dale Berg...

  7. Introduce a Girl to Engineering Day | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Teacher Programs Classroom Resources Contact education@anl.gov Introduce a Girl to Engineering Day "Let us pick up our books and pencils. They are our most powerful weapon."-...

  8. ENGINEERING

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ENGINEERING the Future of ENERGY Regional University Alliance National Energy Technology Laboratory Office of Research and Development The Future of Energy The time to redraw...

  9. Comparison of Recuperator Alloy Degradation in Laboratory and Engine Testing

    SciTech Connect (OSTI)

    Pint, Bruce A [ORNL; More, Karren Leslie [ORNL; Trejo, Rosa M [ORNL; Lara-Curzio, Edgar [ORNL

    2006-01-01T23:59:59.000Z

    In order to increase the efficiency of advanced microturbines, durable alloy foils are needed for their recuperators to operate at 650-700 C. Prior work has demonstrated that water vapor in the exhaust gas causes more rapid consumption of Cr from austenitic alloys, leading to a reduction in lifetime for the thin-walled components in this application. New commercial alloy foils are being tested in both laboratory tests in humid air and in the exhaust gas of a modified 60 kW microturbine. Initial results are presented for a commercial batch of 80 {micro}m alloy 120 foil. The Cr consumption rates in laboratory testing were similar to those observed in previous testing. The initial results from the microturbine indicate a faster Cr consumption rate compared to the laboratory test, but longer term results are needed to quantify the difference. These results will help to verify a Cr consumption model for predicting lifetimes in this environment based on classical gas transport theory.

  10. Idaho National Engineering and Environmental Laboratory Awarded VPP Gold Star

    Broader source: Energy.gov [DOE]

    Our journey to safety excellence began some six (6) years ago. The task seemed ominous with 6000 plus employees ranging from administrative assistants and craftsman to research scientists and engineers. Another challenge was the geographic dispersion of work areas being as much as 50 miles apart. A core group of employees caught the vision and knew that it could be done, and it is that perseverance that has lead the INEEL to the DOE-VPP Gold Star.

  11. The Cascades Proposal for the Deep Underground Science and Engineering Laboratory

    E-Print Network [OSTI]

    W. C. Haxton; J. F. Wilkerson

    2007-05-25T23:59:59.000Z

    One of the options for creating a Deep Underground Science and Engineering Laboratory (DUSEL) is a site in the Mt. Stuart batholith, a granodiorite and tonalite rock mass in the Cascade mountain range in Washington State. The batholith's 100-year history in hard-rock tunneling includes the construction of the longest and deepest tunnels in the U.S., the parallel Cascade and Pioneer tunnels. The laboratory plan would utilize these two tunnels to produce a laboratory that has many desirable features, including dedicated, clean, horizontal access, container-module transport, and low operations costs. Various aspects of the site help to reduce geotechnical, environmental, and safety risks.

  12. Proceedings of the National Renewable Energy Laboratory Wind Energy Systems Engineering Workshop

    SciTech Connect (OSTI)

    Dykes, K.

    2014-12-01T23:59:59.000Z

    The second National Renewable Energy Laboratory (NREL) Wind Energy Systems Engineering Workshop was held in Broomfield, Colorado, from January 29 to February 1, 2013. The event included a day-and-a-half workshop exploring a wide variety of topics related to system modeling and design of wind turbines and plants. Following the workshop, 2 days of tutorials were held at NREL, showcasing software developed at Sandia National Laboratories, the National Aeronautics and Space Administration's Glenn Laboratories, and NREL. This document provides a brief summary of the various workshop activities and includes a review of the content and evaluation results from attendees.

  13. Review of Heavy-Duty Engine Combustion Research at Sandia National Laboratories

    SciTech Connect (OSTI)

    Robert W. Carling; Gurpreet Singh

    2000-06-19T23:59:59.000Z

    The objectives of this paper are to describe the research efforts in diesel engine combustion at Sandia National Laboratories' Combustion Research Facility and to provide recent experimental results. We have four diesel engine experiments supported by the Department of Energy, Office of Heavy Vehicle Technologies: a one-cylinder version of a Cummins heavy-duty engine, a diesel simulation facility, a one-cylinder Caterpillar engine to evaluate combustion of alternative fuels, and a homogeneous-charge, compression-ignition (HCCI) engine facility is under development. Recent experimental results to be discussed are: the effects of injection timing and diluent addition on late-combustion soot burnout, diesel-spray ignition and premixed-burn behavior, a comparison of the combustion characteristics of M85 (a mixture of 85% methanol and 15% gasoline) and DF2 (No.2 diesel reference fuel), and a description of our HCCI experimental program and modeling work.

  14. Air emission inventory for the Idaho National Engineering Laboratory: 1994 emissions report

    SciTech Connect (OSTI)

    NONE

    1995-07-01T23:59:59.000Z

    This report Presents the 1994 update of the Air Emission inventory for the Idaho National Engineering Laboratory (INEL). The INEL Air Emission Inventory documents sources and emissions of non-radionuclide pollutants from operations at the INEL. The report describes the emission inventory process and all of the sources at the INEL, and provides non-radionuclide emissions estimates for stationary sources.

  15. Air Emission Inventory for the Idaho National Engineering and Environmental Laboratory - Calendar Year 1999 Emission Report

    SciTech Connect (OSTI)

    Zohner, S.K.

    2000-05-30T23:59:59.000Z

    This report presents the 1999 calendar year update of the Air Emission Inventory for the Idaho National Engineering and Environmental Laboratory (INEEL). The INEEL Air Emission Inventory documents sources and emissions of nonradionuclide pollutants from operations at the INEEL. The report describes the emission inventory process and all of the sources at the INEEL, and provides nonradionuclide emissions estimates for stationary sources.

  16. OMWeb Virtual Web-based Remote Laboratory for Modelica in Engineering Courses

    E-Print Network [OSTI]

    Zhao, Yuxiao

    OMWeb ­ Virtual Web-based Remote Laboratory for Modelica in Engineering Courses Mohsen Torabzadeh the individual learning. OMWeb is part of the open source platform Open- Modelica. It can be applied to several be illustrated by dynamic simulations. Keywords: OMWeb, OpenModelica, Virtual, Web- based 1 Introduction

  17. Idaho National Engineering Laboratory Nonradiological Waste Management Information for 1993 and record to date

    SciTech Connect (OSTI)

    Sims, A.M.; Taylor, K.A.

    1994-08-01T23:59:59.000Z

    This document provides detailed data and graphics on airborne and liquid effluent releases, fuel oil and coal consumption, water usage, and hazardous and mixed waste generated for calendar year 1993. This report summarizes industrial waste data records compiled since 1971 for the Idaho National Engineering Laboratory (INEL). The data presented are from the INEL Nonradiological Waste Management Information System.

  18. Air Emission Inventory for the Idaho National Engineering and Environmental Laboratory - Calendar Year 1998 Emissions Report

    SciTech Connect (OSTI)

    S. K. Zohner

    1999-10-01T23:59:59.000Z

    This report presents the 1998 calendar year update of the Air Emission Inventory for the Idaho National Engineering and Environmental Laboratory (INEEL). The INEEL Air Emission Inventory documents sources and emissions of nonradionuclide pollutants from operations at the INEEL. The report describes the emission inventory process and all of the sources at the INEEL, and provides nonradiological emissions estimates for stationary sources.

  19. The Laboratory Environment of the URI Integrated Computer Engineering Design (ICED) Curriculum

    E-Print Network [OSTI]

    Uht, Augustus K.

    The Laboratory Environment of the URI Integrated Computer Engineering Design (ICED) Curriculum continuity. URI's new ICED undergraduate cur­ riculum addresses these issues through a comprehensive multi environment of the ICED curriculum. The pedagogical use of industrial CAD logic design and synthesis tools

  20. CRAD, Engineering- Oak Ridge National Laboratory High Flux Isotope Reactor Contractor ORR

    Broader source: Energy.gov [DOE]

    A section of Appendix C to DOE G 226.1-2 "Federal Line Management Oversight of Department of Energy Nuclear Facilities." Consists of Criteria Review and Approach Documents (CRADs) used for a February 2007 assessment of the Engineering Program portion of an Operational Readiness Review of the Oak Ridge National Laboratory High Flux Isotope Reactor.

  1. CRAD, Engineering- Los Alamos National Laboratory Waste Characterization, Reduction, and Repackaging Facility

    Broader source: Energy.gov [DOE]

    A section of Appendix C to DOE G 226.1-2 "Federal Line Management Oversight of Department of Energy Nuclear Facilities." Consists of Criteria Review and Approach Documents (CRADs) used for an assessment of the Engineering Program portion of an Operational Readiness Review at the Los Alamos National Laboratory Waste Characterization, Reduction, and Repackaging Facility.

  2. Idaho National Engineering Laboratory Nonradiological Waste Management Information for 1992 and record to date

    SciTech Connect (OSTI)

    Randall, V.C.; Sims, A.M.

    1993-08-01T23:59:59.000Z

    This document provides detailed data and graphics on airborne and liquid effluent releases, fuel oil and coal consumption, water usage, and hazardous and mixed waste generated for calendar year 1992. This report summarizes industrial waste data records compiled since 1971 for the Idaho National Engineering Laboratory (INEL). The data presented are from the INEL Nonradiological Waste Management Information System.

  3. 1Mechanical, Aerospace and Nuclear Engineering nacThe Gaerttner Laboratory Nuclear Data Research at RPI

    E-Print Network [OSTI]

    Danon, Yaron

    1Mechanical, Aerospace and Nuclear Engineering nacThe Gaerttner Laboratory Nuclear Data Research at RPI Y. Danon Rensselaer Polytechnic Institute, Troy, NY, 12180 RPI Nuclear Data (RND) 2011 Symposium for Criticality Safety and Reactor Applications Rensselaer Polytechnic Institute, April 27, 2011 #12;2Mechanical

  4. Cloud Computing and Distributed Systems Laboratory DEPT. OF COMPUTER SCIENCE AND SOFTWARE ENGINEERING

    E-Print Network [OSTI]

    Melbourne, University of

    Cloud Computing and Distributed Systems Laboratory DEPT. OF COMPUTER SCIENCE AND SOFTWARE ENGINEERING THE UNIVERSITY OF MELBOURNE, AUSTRALIA The Cloud Computing and Distributed Systems (CLOUDS in 2008 by the CLOUDS lab at the University of Melbourne, facilitates the realization of the above vision

  5. 2002 Wastewater Land Application Site Performance Reports for the Idaho National Engineering and Environmental Laboratory

    SciTech Connect (OSTI)

    Meachum, T.R.; Lewis, M.G.

    2003-02-20T23:59:59.000Z

    The 2002 Wastewater Land Application site Performance Reports for the Idaho National Engineering and Environmental Laboratory describe site conditions for the facilities with State of Idaho Wastewater Land Application Permits. Permit-required monitoring data are summarized, and permit exceedences or environmental impacts relating to the operation of the facilities during the 2002 permit year are discussed.

  6. 2003 Wastewater Land Application Site Performance Reports for the Idaho National Engineering and Environmental Laboratory

    SciTech Connect (OSTI)

    Teresa R. Meachum

    2004-02-01T23:59:59.000Z

    The 2003 Wastewater Land Application Site Performance Reports for the Idaho National Engineering and Environmental Laboratory describe the conditions for the facilities with State of Idaho Wastewater Land Application Permits. Permit-required monitoring data are summarized, and permit exceedences or environmental impacts relating to the operations of the facilities during the 2003 permit year are discussed.

  7. Mechanical Energy and Power Systems Laboratory Mechanical Energy and Power Systems Laboratory Proceedings of the ASME 2009 International Mechanical Engineering Conference and

    E-Print Network [OSTI]

    Van de Ven, James D.

    Mechanical Energy and Power Systems Laboratory Mechanical Energy and Power Systems Laboratory Proceedings of the ASME 2009 International Mechanical Engineering Conference and Exposition ASME/IMECE 2009 Copyright c 2009 by ASME Dr. James D. Van de Ven #12;seal, and several of it's important variables.C(3

  8. Successful companies recognize that it is essential to supplement the technical training of their engineers and scientists with knowledge about how companies operate to broaden their business

    E-Print Network [OSTI]

    Stanford, Kyle

    of their engineers and scientists with knowledge about how companies operate to broaden their business knowledge · An Engineering/Applied Science degree in any of the following disciplines ­ Design, Quality Professionals (CMTP) Essential Business Knowledge For Emerging Leaders SESSION 1: Friday, Sept 16, 2011 SESSION

  9. Air emissions inventory for the Idaho National Engineering Laboratory -- 1995 emissions report

    SciTech Connect (OSTI)

    NONE

    1996-06-01T23:59:59.000Z

    This report presents the 1995 update of the Air Emission Inventory for the Idaho National Engineering Laboratory (INEL). The INEL Air Emission Inventory documents sources and emissions of non-radionuclide pollutants from operations at the INEL. The report describes the emission inventory process and all of the sources at the INEL, and provides non-radionuclide emissions estimates for stationary sources. The air contaminants reported include nitrogen oxides, sulfur oxides, carbon monoxide, volatile organic compounds, particulates, and hazardous air pollutants (HAPs).

  10. Environmental resource document for the Idaho National Engineering Laboratory. Volume 2

    SciTech Connect (OSTI)

    Irving, J.S.

    1993-07-01T23:59:59.000Z

    This document contains information related to the environmental characterization of the Idaho National Engineering Laboratory (INEL). The INEL is a major US Department of Energy facility in southeastern Idaho dedicated to nuclear research, waste management, environmental restoration, and other activities related to the development of technology. Environmental information covered in this document includes land, air, water, and ecological resources; socioeconomic characteristics and land use; and cultural, aesthetic, and scenic resources.

  11. Determination of transport parameters from coincident chloride and tritium plumes at the Idaho National Engineering Laboratory

    E-Print Network [OSTI]

    Fryar, Alan Ernest

    1986-01-01T23:59:59.000Z

    -radioactive waste, but rad1onuclides are often toxic at far lower concentrations than are hazardous non-radi oacti ve speci es (Freeze and Cherry, 1979). Most radioactive waste, in terms of activity, is generated at vari ous stages of what Freeze and Cherry...DETERMINATION OF TRANSPORT PARAMETERS FROM COINCIDENT CHLORIDE AND TRITIUM PLUMES AT THE IDAHO NATIONAL ENGINEERING LABORATORY A Thesis by ALAN ERNEST FRYAR Submitted to the Graduate College of Texas A&M University in partial fulfillment...

  12. 2001 Wastewater Land Application Site Performance Reports for the Idaho National Engineering and Environmental Laboratory

    SciTech Connect (OSTI)

    Meachum, T.R.; Lewis, M.G.

    2002-02-15T23:59:59.000Z

    The 2001 Wastewater Land Application Site Performance Reports for the Idaho National Engineering and Environmental Laboratory describe site conditions for the facilities with State of Idaho Wastewater Land Application Permits. Permit-required monitoring data are summarized, and any permit exceedences or environmental impacts relating to the operation of any of the facilities during the 2001 permit year are discussed. Additionally, any special studies performed at the facilities, which related to the operation of the facility or application of the wastewater, are discussed.

  13. 2001 Wastewater Land Application Site Performance Reports for the Idaho National Engineering and Environmental Laboratory

    SciTech Connect (OSTI)

    Meachum, Teresa Ray; Lewis, Michael George

    2002-02-01T23:59:59.000Z

    The 2001 Wastewater Land Application Site Performance Reports for the Idaho National Engineering and Environmental Laboratory describe site conditions for the facilities with State of Idaho Wastewater Land Application Permits. Permit-required monitoring data are summarized, and any permit exceedences or environmental impacts relating to the operation of any of the facilities during the 2001 permit year are discussed. Additionally, any special studies performed at the facilities, which related to the operation of the facility or application of the wastewater, are discussed.

  14. Thermal and Flow Engineering Laboratory course 424512 E Ron Zevenhoven c.s.

    E-Print Network [OSTI]

    Zevenhoven, Ron

    of as it is transported across the cell boundaries "e" and "w", using xxdx d axax )()( The grid to be used. For the heat conductivity, use k = 2 W/(m.K). Questions 5 and 6 after J. Brännbacka (2005, 2006). In exam 2008CFD2013 P 32 1 x 15°C 0°C 47°C x WW W P E EE w e x x #12;Thermal and Flow Engineering Laboratory course

  15. Environmental resource document for the Idaho National Engineering Laboratory. Volume 1

    SciTech Connect (OSTI)

    Irving, J.S.

    1993-07-01T23:59:59.000Z

    This document contains information related to the environmental characterization of the Idaho National Engineering Laboratory (INEL). The INEL is a major US Department of Energy facility in southeastern Idaho dedicated to nuclear research, waste management, environmental restoration, and other activities related to the development of technology. Environmental information covered in this document includes land, air, water, and ecological resources; socioeconomic characteristics and land use; and cultural, aesthetic, and scenic resources.

  16. Air Emission Inventory for the Idaho National Engineering Laboratory, 1993 emissions report

    SciTech Connect (OSTI)

    Not Available

    1994-06-01T23:59:59.000Z

    This report presents the 1993 update of the Air Emission Inventory for the Idaho National Engineering Laboratory (INEL). The purpose of the Air Emission Inventory is to commence the preparation of the permit to operate application for the INEL, as required by the recently promulgated Title V regulations of the Clean Air Act. The report describes the emission inventory process and all of the sources at the INEL and provides emissions estimates for both mobile and stationary sources.

  17. Development of a Laboratory Kit for Robotics Engineering Education Gregory S. Fischer, William R. Michalson, Taskin Padir, Gary Pollice

    E-Print Network [OSTI]

    Camesano, Terri

    industrial automation robot, the Unimate. With the advances in enabling technologies (electronics, hardware engineering disciplines together to design and construct robots and robotic systems for diverse applicationsDevelopment of a Laboratory Kit for Robotics Engineering Education Gregory S. Fischer, William R

  18. High Level Waste Tank Closure Project at the Idaho National Engineering and Environmental Laboratory

    SciTech Connect (OSTI)

    Wessman, D. L.; Quigley, K. D.

    2002-02-27T23:59:59.000Z

    The Department of Energy, Idaho Operations Office (DOE-ID) is making preparations to close two underground high-level waste (HLW) storage tanks at the Idaho National Engineering and Environmental Laboratory (INEEL) to meet Resource Conservation and Recovery Act (RCRA) regulations and Department of Energy orders. Closure of these two tanks is scheduled for 2004 as the first phase in closure of the eleven 300,000 gallon tanks currently in service at the Idaho Nuclear Technology and Engineering Center (INTEC). The INTEC Tank Farm Facility (TFF) Closure sequence consists of multiple steps to be accomplished through the existing tank riser access points. Currently, the tank risers contain steam and process waste lines associated with the steam jets, corrosion coupons, and liquid level indicators. As necessary, this equipment will be removed from the risers to allow adequate space for closure equipment and activities.

  19. 1995 annual epidemiologic surveillance report for Idaho National Engineering and Environmental Laboratory

    SciTech Connect (OSTI)

    NONE

    1995-12-31T23:59:59.000Z

    The US Department of Energy's (DOE) conduct of epidemiologic surveillance provides an early warning system for health problems among workers. This program monitors illnesses and health conditions that result in an absence of five or more consecutive workdays, occupational injuries and illnesses, and disabilities and deaths among current workers. This report summarizes epidemiologic surveillance data collected from the Idaho National Engineering and Environmental Laboratory (INEEL) from January 1, 1995 through December 31, 1995. The data were collected by a coordinator at INEEL and submitted to the Epidemiologic Surveillance Data Center, located at Oak Ridge Institute for Science and Education, where quality control procedures and data analyses were carried out.

  20. Idaho National Engineering and Environmental Laboratory Wildland Fire Management Environmental Assessment

    SciTech Connect (OSTI)

    Irving, John S

    2003-04-01T23:59:59.000Z

    DOE prepared an environmental assessment (EA)for wildland fire management activities on the Idaho National Engineering and Environmental Laboratory (INEEL) (DOE/EA-1372). The EA was developed to evaluate wildland fire management options for pre-fire, fire suppression, and post fire activities. Those activities have an important role in minimizing the conversion of the native sagebrush steppe ecosystem found on the INEEL to non-native weeds. Four alternative management approaches were analyzed: Alternative 1 - maximum fire protection; Alternative 2 - balanced fire protection; Alternative 2 - balanced fire protection; Alternative 3 - protect infrastructure and personnel; and Alternative 4 - no action/traditional fire protection.

  1. Idaho National Engineering and Environmental Laboratory Wildland Fire Management Environmental Assessment - April 2003

    SciTech Connect (OSTI)

    Irving, J.S.

    2003-04-30T23:59:59.000Z

    DOE prepared an environmental assessment (EA)for wildland fire management activities on the Idaho National Engineering and Environmental Laboratory (INEEL) (DOE/EA-1372). The EA was developed to evaluate wildland fire management options for pre-fire, fire suppression, and post fire activities. Those activities have an important role in minimizing the conversion of the native sagebrush steppe ecosystem found on the INEEL to non-native weeds. Four alternative management approaches were analyzed: Alternative 1 - maximum fire protection; Alternative 2 - balanced fire protection; Alternative 2 - balanced fire protection; Alternative 3 - protect infrastructure and personnel; and Alternative 4 - no action/traditional fire protection.

  2. Quaternary volcanism, tectonics, and sedimentation in the Idaho National Engineering Laboratory area

    SciTech Connect (OSTI)

    Hackett, W.R.; Smith, R.P.

    1992-09-01T23:59:59.000Z

    In this article, we discuss the regional context and describe localities for a two-day field excursion in the vicinity of the Idaho National Engineering Laboratory (INEL). We address several geologic themes: (1) Late Cenozoic, bimodal volcanism of the Eastern Snake River Plain (ESRP), (2) the regional tectonics and structural geology of the Basin and Range province to the northwest of the ESRP, (3) fluvial, lacustrine, and aeolian sedimentation in the INEL area, and (4) the influence of Quaternary volcanism and tectonics on sedimentation near the INEL.

  3. Quaternary volcanism, tectonics, and sedimentation in the Idaho National Engineering Laboratory area

    SciTech Connect (OSTI)

    Hackett, W.R.; Smith, R.P.

    1992-01-01T23:59:59.000Z

    In this article, we discuss the regional context and describe localities for a two-day field excursion in the vicinity of the Idaho National Engineering Laboratory (INEL). We address several geologic themes: (1) Late Cenozoic, bimodal volcanism of the Eastern Snake River Plain (ESRP), (2) the regional tectonics and structural geology of the Basin and Range province to the northwest of the ESRP, (3) fluvial, lacustrine, and aeolian sedimentation in the INEL area, and (4) the influence of Quaternary volcanism and tectonics on sedimentation near the INEL.

  4. Long-term land use future scenarios for the Idaho National Engineering Laboratory

    SciTech Connect (OSTI)

    NONE

    1995-08-01T23:59:59.000Z

    In order to facilitate decision regarding environmental restoration activities at the Idaho National Engineering Laboratory (INEL), the United States Department of Energy, Idaho Operations Office (DOE-ID) conducted analyses to project reasonable future land use scenarios at the INEL for the next 100 years. The methodology for generating these scenarios included: review of existing DOE plans, policy statements, and mission statements pertaining to the INEL; review of surrounding land use characteristics and county developments policies; solicitation of input from local, county, state and federal planners, policy specialists, environmental professionals, and elected officials; and review of environmental and development constraints at the INEL site that could influence future land use.

  5. In summary: Idaho National Engineering Laboratory site environmental report for calendar year 1995

    SciTech Connect (OSTI)

    Roush, D.; Mitchell, R.G.; Peterson, D.

    1996-08-01T23:59:59.000Z

    Every human is exposed to natural radiation. This exposure comes from many sources, including cosmic radiation from outer space, naturally-occurring radon, and radioactivity from substances in our bodies. In addition to natural sources of radiation, humans can also be exposed to man-made sources of radiation. Examples of man-made sources include nuclear medicine, X-rays, nuclear weapons testing, and accidents at nuclear power plants. The Idaho National Engineering Laboratory (INEL) is a U.S. Department of Energy (DOE) research facility that deals, in part, with studying nuclear reactors and storing radioactive materials. Careful handling and rigorous procedures do not completely eliminate the risk of releasing radioactivity. So, there is a remote possibility for a member of the public near the INEL to be exposed to radioactivity from the INEL. Extensive monitoring of the environment takes place on and around the INEL. These programs search for radionuclides and other contaminants. The results of these programs are presented each year in a site environmental report. This document summarizes the Idaho National Engineering Laboratory Site Environmental Report for Calendar Year 1995.

  6. Educating Next Generation Nuclear Criticality Safety Engineers at the Idaho National Laboratory

    SciTech Connect (OSTI)

    J. D. Bess; J. B. Briggs; A. S. Garcia

    2011-09-01T23:59:59.000Z

    One of the challenges in educating our next generation of nuclear safety engineers is the limitation of opportunities to receive significant experience or hands-on training prior to graduation. Such training is generally restricted to on-the-job-training before this new engineering workforce can adequately provide assessment of nuclear systems and establish safety guidelines. Participation in the International Criticality Safety Benchmark Evaluation Project (ICSBEP) and the International Reactor Physics Experiment Evaluation Project (IRPhEP) can provide students and young professionals the opportunity to gain experience and enhance critical engineering skills. The ICSBEP and IRPhEP publish annual handbooks that contain evaluations of experiments along with summarized experimental data and peer-reviewed benchmark specifications to support the validation of neutronics codes, nuclear cross-section data, and the validation of reactor designs. Participation in the benchmark process not only benefits those who use these Handbooks within the international community, but provides the individual with opportunities for professional development, networking with an international community of experts, and valuable experience to be used in future employment. Traditionally students have participated in benchmarking activities via internships at national laboratories, universities, or companies involved with the ICSBEP and IRPhEP programs. Additional programs have been developed to facilitate the nuclear education of students while participating in the benchmark projects. These programs include coordination with the Center for Space Nuclear Research (CSNR) Next Degree Program, the Collaboration with the Department of Energy Idaho Operations Office to train nuclear and criticality safety engineers, and student evaluations as the basis for their Master's thesis in nuclear engineering.

  7. Cleaning and Decontamination Using Strippable and Protective Coatings at the Idaho National Engineering and Environmental Laboratory

    SciTech Connect (OSTI)

    J. Tripp; K. Archibald; L. Lauerhass; M. Argyle; R. Demmer

    1999-03-01T23:59:59.000Z

    The Idaho National Engineering and Environmental Laboratory (INEEL) Radioactive Liquid Waste Reduction (RLWR) group is conducting a testing and evaluation program on strippable and protective coatings. The purpose of the program is to determine how and where these coatings can be used to aid in the minimization of liquid waste generation. These coatings have become more important in daily operations because of the increased concern of secondary liquid waste generation at the INEEL. Several different strippable and protective coatings were investigated by the RLWR group, including Pentek 604, Bartlett (TLC), and ALARA 1146. During the tests quantitative data was determined, such as effectiveness at reducing contamination levels, or costs, as well as some qualitative data on issues like ease of application or removal. PENTEK 604 and Bartlett TLC are seen as superior products with slightly different uses.

  8. Idaho National Engineering Laboratory site environmental report for calendar year 1995

    SciTech Connect (OSTI)

    Mitchell, R.G.; Peterson, D.; Hoff, D.L.

    1996-08-01T23:59:59.000Z

    This report presents a compilation of data collected in 1995 for the routine environmental surveillance programs conducted on and around the Idaho National Engineering Laboratory (INEL). During 1995, the offsite surveillance program was conducted by the Environmental Science and Research Foundation. Onsite surveillance was performed by Lockheed Idaho Technologies Company (LITCO). Ground-water monitoring, both on and offsite, was performed by the US Geological Survey (USGS). This report also presents summaries of facility effluent monitoring data collected by INEL contractors. This report, prepared in accordance with the requirements in DOE Order 5400.1, is not intended to cover the numerous special environmental research programs being conducted at the INEL by the Foundation, LITCO, USGS, and others.

  9. Idaho National Engineering and Environmental Laboratory Site Environmental Report for Calendar Year 1997

    SciTech Connect (OSTI)

    R. B. Evans; D. Roush; R. W. Brooks; D. B. Martin

    1998-08-01T23:59:59.000Z

    The results of the various monitoring programs for 1997 indicated that radioactivity from the Idaho National Engineering and Environmental Laboratory (INEEL) operations could generally not be distinguished from worldwide fallout and natural radioactivity in the region surrounding the INEEL. Although some radioactive materials were discharged during INEEL operations, concentrations in the offsite environment and doses to the surrounding population were far less than state of Idaho and federal health protection guidelines. The maximum potential population dose from submersion, ingestion, inhalation, and deposition to the approximately 121,500 people residing within an 80-km (50-mi) radius from the geographical center of the INEEL was estimated to be 0.2 person-rem (2 x 10-3 person-Sv) using the MDIFF air dispersion model. This population dose is less than 0.0005% of the estimated 43,700 person-rem (437 person-Sv) population dose from background radioactivity.

  10. Accident Investigation at the Idaho National Laboratory Engineering Demonstration Facility, February 2013

    Broader source: Energy.gov [DOE]

    On Monday, February 12, 2013, a principal investigator at the Idaho National Laboratory (INL) Engineering Demonstration Facility (IEDF) was testing the system configuration of experimental process involving liquid sodium carbonate. An unanticipated event occurred that resulted in the ejection of the 900° C liquid sodium carbonate from the system. The ejected liquid came into contact with the principal investigator and caused multiple second and third degree burn injuries to approximately 10 percent of his body. The Office of Health, Safety and Security (HSS) Site Lead for the Idaho Site shadowed the accident investigation team assembled by the contractor in an effort to independently verify that a rigorous, thorough, and unbiased investigation was taking place, and to maintain awareness of the events surrounding the accident

  11. Air Emission Inventory for the Idaho National Engineering Laboratory: 1992 emissions report

    SciTech Connect (OSTI)

    Stirrup, T.S.

    1993-06-01T23:59:59.000Z

    This report presents the 1992 Air Emission Inventory for the Idaho National Engineering Laboratory. Originally, this report was in response to the Environmental Oversight and Monitoring Agreement in 1989 between the State of Idaho and the Department of Energy Idaho Field Office, and a request from the Idaho Air Quality Bureau. The current purpose of the Air Emission Inventory is to provide the basis for the preparation of the INEL Permit-to-Operate (PTO) an Air Emission Source Application, as required by the recently promulgated Title V regulations of the Clean Air Act. This report includes emissions calculations from 1989 to 1992. The Air Emission Inventory System, an ORACLE-based database system, maintains the emissions inventory.

  12. The Idaho National Engineering Laboratory site environmental report for calendar year 1989

    SciTech Connect (OSTI)

    Hoff, D.L.; Mitchell, R.G.; Bowman, G.C.; Moore, R.

    1990-06-01T23:59:59.000Z

    To verify that exposures resulting from operations at the Department of Energy (DOE) nuclear facilities have remained very small, each site at which nuclear activities are underway operates an environmental surveillance program to monitor the air, water and any other pathway where radionuclides from operations might conceivably reach workers or members of the public. This report presents data collected in 1989 for the routine environmental surveillance program conducted by the Radiological and Environmental Sciences Laboratory (RESL) of DOE and the US Geological Survey (USGS) at the Idaho National Engineering Laboratory (INEL) site. The environmental surveillance program for the INEL and vicinity for 1989 included the collection and analysis of samples from potential exposure pathways. Three basic groups of samples were collected. Those collected within the INEL boundaries will be referred to as onsite samples. Samples collected outside, but near, the Site boundaries will be referred to as boundary samples or part of a group of offsite samples. Samples collected from locations considerably beyond the Site boundaries will be referred to as distant samples or part of the offsite group. With the exception of Craters of the Moon National Monument, the distant locations are sufficiently remote from the Site to ensure that detectable radioactivity is primarily due to natural background sources or sources other than INEL operations. 35 refs., 14 figs., 13 tabs.

  13. Description of the Sandia National Laboratories science, technology & engineering metrics process.

    SciTech Connect (OSTI)

    Jordan, Gretchen B.; Watkins, Randall D.; Trucano, Timothy Guy; Burns, Alan Richard; Oelschlaeger, Peter

    2010-04-01T23:59:59.000Z

    There has been a concerted effort since 2007 to establish a dashboard of metrics for the Science, Technology, and Engineering (ST&E) work at Sandia National Laboratories. These metrics are to provide a self assessment mechanism for the ST&E Strategic Management Unit (SMU) to complement external expert review and advice and various internal self assessment processes. The data and analysis will help ST&E Managers plan, implement, and track strategies and work in order to support the critical success factors of nurturing core science and enabling laboratory missions. The purpose of this SAND report is to provide a guide for those who want to understand the ST&E SMU metrics process. This report provides an overview of why the ST&E SMU wants a dashboard of metrics, some background on metrics for ST&E programs from existing literature and past Sandia metrics efforts, a summary of work completed to date, specifics on the portfolio of metrics that have been chosen and the implementation process that has been followed, and plans for the coming year to improve the ST&E SMU metrics process.

  14. Application of system simulation for engineering the technical computing environment of the Lawrence Livermore National Laboratorie

    SciTech Connect (OSTI)

    Boyd, V; Edmunds, T; Minuzzo, K; Powell, E; Roche, L

    1998-09-15T23:59:59.000Z

    This report summarizes an investigation performed by Lawrence Livermore National Laboratory? s (LLNL) Scientific Computing & Communications Department (SCCD) and the Garland Location of Raytheon Systems Company (RSC) from April through August.1998. The study assessed the applicability and benefits of utilizing System Simulation in architecting and deploying technical computing assets at LLNL, particularly in support of the ASCI program and associated scientific computing needs. The recommendations and other reported findings reflect the consensus of the investigation team. The investigation showed that there are potential benefits to performing component level simulation within SCCD in support of the ASCI program. To illustrate this, a modeling exercise was conducted by the study team that generated results consistent with measured operational performance. This activity demonstrated that a relatively modest effort could improve the toolset for making architectural trades and improving levels of understanding for managing operational practices. This capability to evaluate architectural trades was demonstrated by evaluating some of the productivity impacts of changing one of the design parameters of an existing file transfer system. The use of system simulation should be tailored to the local context of resource requirements/limitations, technology plans/processes/issues, design and deployment schedule, and organizational factors. In taking these matters into account, we recommend that simulation modeling be employed within SCCD on a limited basis for targeted engineering studies, and that an overall performance engineering program be established to better equip the Systems Engineering organization to direct future architectural decisions and operational practices. The development of an end-to-end modeling capability and enterprise-level modeling system within SCCD is not warranted in view of the associated development requirements and difficulty in determining firm operational performance requirements in advance of the critical architectural decisions. These recommendations also account for key differences between the programmatic and institutional environments at LLNL and RSC.

  15. Sandia National Laboratories: Photovoltaics

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    PV Facilities On November 10, 2010, in Photovoltaic System Evaluation Laboratory Distributed Energy Technologies Laboratory Microsystems and Engineering Sciences Applications...

  16. 2002 Wastewater Land Application Site Performance Reports for the Idaho National Engineering and Environmental Laboratory and Associated Documentation

    SciTech Connect (OSTI)

    Meachum, Teresa Ray; Michael G. Lewis

    2003-02-01T23:59:59.000Z

    The 2002 Wastewater Land Application site Performance Reports for the Idaho National Engineering and Environmental Laboratory describe site conditions for the facilities with State of Idaho Wastewater Land Application Permits. Permit-required monitoring data are summarized, and permit exceedences or environmental impacts relating to the operation of the facilities during the 2002 permit year are discussed.

  17. Project Management Plan for the Idaho National Engineering Laboratory Waste Isolation Pilot Plant Experimental Test Program

    SciTech Connect (OSTI)

    Connolly, M.J.; Sayer, D.L.

    1993-11-01T23:59:59.000Z

    EG&G Idaho, Inc. and Argonne National Laboratory-West (ANL-W) are participating in the Idaho National Engineering Laboratory`s (INEL`s) Waste Isolation Pilot Plant (WIPP) Experimental Test Program (WETP). The purpose of the INEL WET is to provide chemical, physical, and radiochemical data on transuranic (TRU) waste to be stored at WIPP. The waste characterization data collected will be used to support the WIPP Performance Assessment (PA), development of the disposal No-Migration Variance Petition (NMVP), and to support the WIPP disposal decision. The PA is an analysis required by the Code of Federal Regulations (CFR), Title 40, Part 191 (40 CFR 191), which identifies the processes and events that may affect the disposal system (WIPP) and examines the effects of those processes and events on the performance of WIPP. A NMVP is required for the WIPP by 40 CFR 268 in order to dispose of land disposal restriction (LDR) mixed TRU waste in WIPP. It is anticipated that the detailed Resource Conservation and Recovery Act (RCRA) waste characterization data of all INEL retrievably-stored TRU waste to be stored in WIPP will be required for the NMVP. Waste characterization requirements for PA and RCRA may not necessarily be identical. Waste characterization requirements for the PA will be defined by Sandia National Laboratories. The requirements for RCRA are defined in 40 CFR 268, WIPP RCRA Part B Application Waste Analysis Plan (WAP), and WIPP Waste Characterization Program Plan (WWCP). This Project Management Plan (PMP) addresses only the characterization of the contact handled (CH) TRU waste at the INEL. This document will address all work in which EG&G Idaho is responsible concerning the INEL WETP. Even though EG&G Idaho has no responsibility for the work that ANL-W is performing, EG&G Idaho will keep a current status and provide a project coordination effort with ANL-W to ensure that the INEL, as a whole, is effectively and efficiently completing the requirements for WETP.

  18. 3-minute diagnosis: Researchers develop new method to recognize pathogens

    ScienceCinema (OSTI)

    Beer, Reg

    2014-05-30T23:59:59.000Z

    Imagine knowing precisely why you feel sick ... before the doctor's exam is over. Lawrence Livermore researcher Reg Beer and his engineering colleagues have developed a new method to recognize disease-causing pathogens quicker than ever before.

  19. Progress in High-Level Waste Tank Cleaning at the Idaho National Environmental and Engineering Laboratory

    SciTech Connect (OSTI)

    Lockie, K. A.; McNaught, W. B.

    2002-02-26T23:59:59.000Z

    The Department of Energy Idaho Operations Office (DOE-ID) is making preparations to close two underground high-level waste (HLW) storage tanks at the Idaho National Engineering and Environmental Laboratory (INEEL) to meet Resource Conservation and Recovery Act (RCRA) regulations and Department of Energy (DOE) orders. Closure of these two tanks is scheduled for 2004 as the first phase in closure of the eleven 300,000 gallon tanks currently in service at the Idaho Nuclear Technology and Engineering Center (INTEC). Design, development, and deployment of a remotely operated tank cleaning system were completed in August 2001. The system incorporates many commercially available components, which have been adapted for application in cleaning high-level waste tanks. The system also uses existing waste transfer technology (steam-jets) to remove tank heel solids from the tank bottoms during the cleaning operations. By using this existing transfer system and commercially available equipment, the cost of developing custom designed cleaning equipment can be avoided. Remotely operated directional spray nozzles, automatic rotating wash balls, video monitoring equipment, decontamination spray-rings, and tank specific access interface devices have been integrated to provide a system that efficiently cleans tank walls and heel solids in an acidic, radioactive environment. This system is also compliant with operational and safety performance requirements at INTEC. Through the deployment of the tank cleaning system, the INEEL High Level Waste Program has demonstrated the capability to clean tanks to meet RCRA clean closure standards and DOE closure performance measures. The tank cleaning system deployed at the INTEC offers unique advantages over other approaches evaluated at the INEEL and throughout the DOE Complex. The system's ability to agitate and homogenize the tank heel sludge will simplify verification-sampling techniques and reduce the total quantity of samples required to demonstrate compliance with the performance standards. This will reduce tank closure budget requirements and improve closure-planning schedules.

  20. The Idaho National Engineering Laboratory Site environmental report for calendar Year 1990

    SciTech Connect (OSTI)

    Hoff, D.L.; Mitchell, R.G.; Moore, R.; Shaw, R.M.

    1991-06-01T23:59:59.000Z

    The results of the various monitoring programs for 1990 indicate that most radioactivity from the Idaho National Engineering Laboratory (INEL) operations could not be distinguished from worldwide fallout and natural radioactivity in the region surrounding the INEL Site. Although some radioactive materials were discharged during Site operations, concentrations and doses to the surrounding population were of no health consequence and were far less than State of Idaho and Federal health protection guidelines. The first section of the report summarizes Calendar Year 1990 and January 1 through April 1, 1991, INEL activities related to compliance with environmental regulations and laws. The balance of the report describes the surveillance program, the collection of foodstuffs at the INEL boundary and distant offsite locations, and the collection of air and water samples at onsite locations and offsite boundary and distant locations. The report also compares and evaluates the sample results and discusses implications, if any. Nonradioactive and radioactive effluent monitoring at the Site, and the US Geological Survey (USGS) ground-water monitoring program are also summarized. 33 refs., 18 figs., 29 tabs.

  1. Strontium distribution coefficients of surficial sediment samples from the Idaho National Engineering Laboratory, Idaho

    SciTech Connect (OSTI)

    Liszewski, M.J.; Miller, K.E. [Geological Survey, Idaho Falls, ID (United States); Rosentreter, J.J. [Idaho State Univ., Idaho Falls, ID (United States)

    1997-05-01T23:59:59.000Z

    Strontium distribution coefficients (K{sub d}`s) were measured for 20 surficial sediment samples collected from selected sites at the Idaho national Engineering Laboratory (INEL). The measurements were made to help assess the variability of strontium K{sub d}`s found at the INEL as part of an ongoing investigation of strontium chemical transport properties of surficial and interbedded sediments at the INEL. The investigation is being conducted by the US Geological Survey and Idaho State University in cooperation with the US Department of Energy. Batch experimental techniques wee used to determine K{sub d}`s of surficial sediments using a synthesized aqueous solution representative of wastewater in waste disposal ponds at the INEL. Strontium K{sub d}`s of the 20 surficial sediments ranged from 36 {+-} 1 to 275 {+-} 6 milliliters per gram. These results indicate significant variability in the strontium sorptive capacities of surficial sediments at the INEL. Some of this variability can be attributed to physical and chemical properties of the sediment itself; however, the remainder of the variability may be due to compositional changes in the equilibrated solutions after being mixed with the sediment.

  2. Mercury Removal at Idaho National Engineering and Environmental Laboratory's New Waste Calcining Facility

    SciTech Connect (OSTI)

    Ashworth, Samuel Clay; Wood, R. A.; Taylor, D. D.; Sieme, D. D.

    2000-03-01T23:59:59.000Z

    Technologies were investigated to determine viable processes for removing mercury from the calciner (NWCF) offgas system at the Idaho National Engineering and Environmental Laboratory. Technologies for gas phase and aqueous phase treatment were evaluated. The technologies determined are intended to meet EPA Maximum Achievable Control Technology (MACT) requirements under the Clean Air Act and Resource Conservation and Recovery Act (RCRA). Currently, mercury accumulation in the calciner off-gas scrubbing system is transferred to the tank farm. These transfers lead to accumulation in the liquid heels of the tanks. The principal objective for aqueous phase mercury removal is heel mercury reduction. The system presents a challenge to traditional methods because of the presence of nitrogen oxides in the gas phase and high nitric acid in the aqueous scrubbing solution. Many old and new technologies were evaluated including sorbents and absorption in the gas phase and ion exchange, membranes/sorption, galvanic methods, and UV reduction in the aqueous phase. Process modifications and feed pre-treatment were also evaluated. Various properties of mercury and its compounds were summarized and speciation was predicted based on thermodynamics. Three systems (process modification, NOxidizer combustor, and electrochemical aqueous phase treatment) and additional technology testing were recommended.

  3. Idaho National Engineering and Environmental Laboratory Offsite Environmental Surveillance Program Report: Third Quarter 1999

    SciTech Connect (OSTI)

    R. Evans

    2000-03-01T23:59:59.000Z

    The Environmental Science and Research Foundation conducts an offsite environmental surveillance program for the Department of Energy's Idaho National Engineering and Environmental Laboratory (INEEL). The Foundation's environmental surveillance program monitors the effects, if any, of US Department of Energy (DOE) activities on the offsite environment, collects data to confirm compliance with applicable environmental laws and regulations, and observes any trends in the environmental levels of radioactivity. This report for the third quarter of 1999 is based on 704 samples of air, fine particulates, atmospheric moisture, precipitation, milk, and food. All concentrations of radioactivity found in these samples were consistent with concentrations which have been found in sampling during recent quarters and which have been attributed in the past to natural background radiation, worldwide fallout from past nuclear weapons testing, and nuclear operations around the world. No! measured concentrations could be directly attributed to operations at the INEEL. Concentrations in all samples were below the guidelines set by both the DOE and the US Environmental Protection Agency (EPA) for protection of the public.

  4. Idaho National Engineering and Environmental Laboratory Offsite Environmental Surveillance Program Report: Fourth Quarter 1998

    SciTech Connect (OSTI)

    T. Saffle; R. Evans

    1999-08-01T23:59:59.000Z

    The Environmental Science and Research Foundation conducts the Offsite Environmental Surveillance Program at the US Department of Energy's Idaho National Engineering and Environmental Laboratory (INEEL). The Foundation's environmental surveillance program monitors the effects, if any, of US Department of Energy (DOE) activities on the offsite environment, collects data to confirm compliance with applicable environmental laws and regulations, and observes any trends in the environmental levels of radioactivity. This report for the fourth quarter 1998 is based on 622 samples collected of air, fine particulates, atmospheric moisture, precipitation, water, milk, potatoes, and game animals. All concentrations of radioactivity found in these samples were consistent with concentrations which have been found in sampling during recent quarters and which have been attributed in the past to natural background radioactivity, worldwide fallout from past nuclear weapons testing, an! d nuclear operations around the world. No measured concentrations could be directly attributed to operations at the INEEL, although statistical differences did exist between on-site and distant gross beta concentrations. No evidence could be found to link these differences with a specific INEEL source. Concentrations in all samples were below the guidelines set by both the DOE and the US Environmental Protection Agency (EPA) for protection of the public.

  5. Idaho National Engineering and Environmental Laboratory Offsite Environmental Surveillance Program Report: First Quarter 1999

    SciTech Connect (OSTI)

    R. Evans

    1999-09-01T23:59:59.000Z

    The Environmental Science and Research Foundation conducts an Offsite Environmental Surveillance Program at the US Department of Energy's Idaho National Engineering and Environmental Laboratory (INEEL). The Foundation's environmental surveillance program monitors the effects, if any, of US Department of Energy (DOE) activities on the offsite environment, collects data to confirm compliance with applicable environmental laws and regulations, and observes any trends in the environmental levels of radioactivity. This report for the first quarter 1999 is based on 564 samples of air (including airborne radioactivity, fine particulates, and atmospheric moisture), precipitation, milk, and wild game tissues. All concentrations of radioactivity found in these samples were consistent with concentrations which have been found in sampling during recent quarters and which have been attributed in the past to natural background radiation, worldwide fallout from past nuclear weapons ! testing, an d nuclear operations around the world. No measured concentrations could be directly attributed to operations at the INEEL. Concentrations in all samples were below the guidelines set by both the DOE and the US Environmental Protection Agency (EPA) for protection of the public.

  6. Idaho National Engineering and Environmental Laboratory Offsite Environmental Surveillance Program Report: Second Quarter 1999

    SciTech Connect (OSTI)

    R. Evans

    1999-12-01T23:59:59.000Z

    The Environmental Science and Research Foundation conducts an Offsite Environmental Surveillance Program at the US Department of Energy's Idaho National Engineering and Environmental Laboratory (INEEL). The Foundation's environmental surveillance program monitors the effects, if any, of US Department of Energy (DOE) activities on the offsite environment, collects data to confirm compliance with applicable environmental laws and regulations, and observes any trends in the environmental levels of radioactivity. This report for the second quarter 1999 is based on 618 samples of air (including airborne radioactivity, fine particulates, and atmospheric moisture), precipitation, milk, drinking water, sheep, wild game tissues, and environmental radiation. All concentrations of radioactivity found in these samples were consistent with concentrations which have been found in sampling during recent quarters and which have been attributed in the past to natural background radiation, worldwide fallout from past nuclear weapons testing, and nuclear operations around the world. No measured concentrations could be directly attributed to operations at the INEEL. Concentrations in all samples were below the guidelines set by both the DOE and the US Environmental Protection Agency (EPA) for protection of the public.

  7. 1998 Environmental Monitoring Program Report for the Idaho National Engineering and Environmental Laboratory

    SciTech Connect (OSTI)

    L. V. Street

    1999-09-01T23:59:59.000Z

    This report describes the calendar year 1998 compliance monitoring and environmental surveillance activities of the Lockheed Martin Idaho Technologies Company Environmental Monitoring Program performed at the Idaho National Engineering and Environmental Laboratory. This report includes results of sampling performed by the Drinking Water, Effluent, Storm Water, Groundwater Monitoring, and Environmental Surveillance Programs. This report compares the 1998 results to program-specific regulatory guidelines and past data to evaluate trends. The primary purposes of the monitoring and surveillance activities are to evaluate environmental conditions, to provide and interpret data, to verify compliance with applicable regulations or standards, and to ensure protection of public health and the environment. Surveillance of environmental media did not identify any previously unknown environmental problems or trends, which would indicate a loss of control or unplanned releases from facility operations. The INEEL complied with permits and applicable regulations, with the exception of nitrogen samples in a disposal pond effluent stream and iron and total coliform bacteria in groundwater downgradient from one disposal pond. Data collected by the Environmental Monitoring Program demonstrate that the public health and environment were protected.

  8. Evaluation of Rocky Flats Plant stored plutonium inventory at the Idaho National Engineering Laboratory

    SciTech Connect (OSTI)

    Clements, T.L. Jr.; Einerson, J.J.

    1995-09-01T23:59:59.000Z

    The purpose of this document is to evaluate reported inventories of plutonium contained in stored transuranic (TRU) waste generated by the Rocky Flats Plant (RFP). From 1970 to 1989, this waste was shipped to the Idaho National Engineering Laboratory (INEL) and placed in aboveground retrievable storage at the Radioactive Waste Management Complex (RWMC)-Transuranic Storage Area (TSA). This evaluation was initiated to address potential uncertainty in quantities of stored plutonium reported in the Radioactive Waste Management Information System (RWMIS). The RWMIS includes radionuclide information from generators that shipped TRU waste to INEL for storage. Recent evaluations performed on buried TRU waste (1954-1970) resulted in significant revision to the original reported values of plutonium, americium, and enriched uranium. These evaluations were performed based on Rocky Flats Plant (RFP) Inventory Difference (ID) records. This evaluation for stored TRU waste was performed to: (1) identify if significant discrepancies exist between RWMIS reported values and RFP ID records, (2) describe the methodology used to perform the RWMIS evaluation, (3) determine a Best Estimate (BE) and 95% Upper Confidence Bound (UB) on the plutonium inventory, (4) provide conclusions based on this evaluation, and (5) identify recommendations and/or actions that might be needed.

  9. Incineration of DOE offsite mixed waste at the Idaho National Engineering and Environmental Laboratory

    SciTech Connect (OSTI)

    Harris, J.D.; Harvego, L.A.; Jacobs, A.M. [Lockheed Martin Idaho Technologies Co., Idaho Falls, ID (United States); Willcox, M.V. [Dept. of Energy Idaho Operations Office, Idaho Falls, ID (United States)

    1998-01-01T23:59:59.000Z

    The Waste Experimental Reduction Facility (WERF) incinerator at the Idaho National Engineering and Environmental Laboratory (INEEL) is one of three incinerators in the US Department of Energy (DOE) Complex capable of incinerating mixed low-level waste (MLLW). WERF has received MLLW from offsite generators and is scheduled to receive more. The State of Idaho supports receipt of offsite MLLW waste at the WERF incinerator within the requirements established in the (INEEL) Site Treatment Plan (STP). The incinerator is operating as a Resource Conservation and Recovery Act (RCRA) Interim Status Facility, with a RCRA Part B permit application currently being reviewed by the State of Idaho. Offsite MLLW received from other DOE facilities are currently being incinerated at WERF at no charge to the generator. Residues associated with the incineration of offsite MLLW waste that meet the Envirocare of Utah waste acceptance criteria are sent to that facility for treatment and/or disposal. WERF is contributing to the treatment and reduction of MLLW in the DOE Complex.

  10. A preliminary survey of the National Wetlands Inventory as mapped for the Idaho National Engineering Laboratory

    SciTech Connect (OSTI)

    Hampton, N.L.; Rope, R.C.; Glennon, J.M.; Moor, K.S.

    1995-02-01T23:59:59.000Z

    Approximately 135 areas within the boundaries of the Idaho National Engineering Laboratory (INEL) have been mapped as wetland habitat as part of the United States Fish and Wildlife Service (FWS) National Wetlands Inventory (NWI). A preliminary survey of these wetlands was conducted to examine their general characteristics and status, to provide an estimation of relative ecological importance, to identify additional information needed to complete ecological characterization of important INEL wetlands, and to identify high priority wetland areas on the INEL. The purpose of the survey was to provide information to support the preparation of the Environmental Restoration and Waste Management (ER&WM) Environmental Impact Statement (EIS). Information characterizing general vegetation, hydrology, wildlife use, and archaeology was collected at 105 sample sites on the INEL. Sites representing NWI palustrine, lacustrine, and riverine wetlands (including manmade), and areas unmapped or unclassified by the NWI were included in the sample. The field information was used to develop a preliminary ranking of relative ecological importance for each wetland visited during this survey. Survey limitations are identified.

  11. NATIONAL HIGH MAGNETIC FIELD LABORATORY REPORTSVOLUME 11 N0.2 2004

    E-Print Network [OSTI]

    Weston, Ken

    , recognized as the world leader in magnet science, engineering, and experimental infrastructureNATIONAL HIGH MAGNETIC FIELD LABORATORY REPORTSVOLUME 11 · N0.2 · 2004 OPERATED BY: FLORIDA STATE: National High Magnetic Field Laboratory 1800 East Paul Dirac Drive Tallahassee, Florida 32310-3706 Tel: 850

  12. HIGH LEVEL WASTE TANK CLOSURE PROJECT AT THE IDAHO NATIONAL ENGINEERING AND ENVIRONMENTAL LABORATORY

    SciTech Connect (OSTI)

    Quigley, K.D.; Wessman, D

    2003-02-27T23:59:59.000Z

    The Department of Energy, Idaho Operations Office (DOE-ID) is in the process of closing two underground high-level waste (HLW) storage tanks at the Idaho National Engineering and Environmental Laboratory (INEEL) to meet Resource Conservation and Recovery Act (RCRA) regulations and Department of Energy orders. Closure of these two tanks is scheduled for 2004 as the first phase in closure of the eleven 1.14 million liter (300,000 gallon) tanks currently in service at the Idaho Nuclear Technology and Engineering Center (INTEC). The INTEC Tank Farm Facility (TFF) Closure sequence consists of multiple steps to be accomplished through the existing tank riser access points. Currently, the tank risers contain steam and process waste lines associated with the steam jets, corrosion coupons, and liquid level indicators. As necessary, this equipment will be removed from the risers to allow adequate space for closure equipment and activities. The basic tank closure sequence is as follows: Empty the tank to the residual heel using the existing jets; Video and sample the heel; Replace steam jets with new jet at a lower position in the tank, and remove additional material; Flush tank, piping and secondary containment with demineralized water; Video and sample the heel; Evaluate decontamination effectiveness; Displace the residual heel with multiple placements of grout; and Grout piping, vaults and remaining tank volume. Design, development, and deployment of a remotely operated tank cleaning system were completed in June 2002. The system incorporates many commercially available components, which have been adapted for application in cleaning high-level waste tanks. The system is cost-effective since it also utilizes existing waste transfer technology (steam jets), to remove tank heel solids from the tank bottoms during the cleaning operations. Remotely operated directional spray nozzles, automatic rotating wash balls, video monitoring equipment, decontamination spray-rings, and tank -specific access interface devices have been integrated to provide a system that efficiently cleans tank walls and heel solids in an acidic, radioactive environment. Through the deployment of the tank cleaning system, the INEEL High Level Waste Program has cleaned tanks to meet RCRA clean closure standards and DOE closure performance measures. Design, development, and testing of tank grouting delivery equipment were completed in October 2002. The system incorporates lessons learned from closures at other DOE facilities. The grout will be used to displace the tank residuals remaining after the cleaning is complete. To maximize heel displacement to the discharge pump, grout was placed in a sequence of five positions utilizing two riser locations. The project is evaluating the use of six positions to optimize the residuals removed. After the heel has been removed and the residuals stabilized, the tank, piping, and secondary containment will be grouted.

  13. College of Engineering MNG Mining Engineering

    E-Print Network [OSTI]

    MacAdam, Keith

    (Concurrent), PHY 232, engineering standing. MNG 302 MINERALS PROCESSING LABORATORY. (1) ApplicationCollege of Engineering MNG Mining Engineering KEY: # = new course * = course changed = course ENGINEERING. (1) Orientationtotheminingengineeringprofession

  14. Modular development of an educational remote laboratory platform for electrical engineering : the ELVIS iLab

    E-Print Network [OSTI]

    Jiwaji, Adnaan

    2008-01-01T23:59:59.000Z

    iLabs are remote online laboratories that allow users to perform experiments through the Internet. As an educational tool the iLab platform enables students and educators, who do not have access to laboratories, to complement ...

  15. Idaho National Engineering Laboratory (INEL) Environmental Restoration (ER) Program Baseline Safety Analysis File (BSAF)

    SciTech Connect (OSTI)

    NONE

    1995-09-01T23:59:59.000Z

    The Baseline Safety Analysis File (BSAF) is a facility safety reference document for the Idaho National Engineering Laboratory (INEL) environmental restoration activities. The BSAF contains information and guidance for safety analysis documentation required by the U.S. Department of Energy (DOE) for environmental restoration (ER) activities, including: Characterization of potentially contaminated sites. Remedial investigations to identify and remedial actions to clean up existing and potential releases from inactive waste sites Decontamination and dismantlement of surplus facilities. The information is INEL-specific and is in the format required by DOE-EM-STD-3009-94, Preparation Guide for U.S. Department of Energy Nonreactor Nuclear Facility Safety Analysis Reports. An author of safety analysis documentation need only write information concerning that activity and refer to BSAF for further information or copy applicable chapters and sections. The information and guidance provided are suitable for: {sm_bullet} Nuclear facilities (DOE Order 5480-23, Nuclear Safety Analysis Reports) with hazards that meet the Category 3 threshold (DOE-STD-1027-92, Hazard Categorization and Accident Analysis Techniques for Compliance with DOE Order 5480.23, Nuclear Safety Analysis Reports) {sm_bullet} Radiological facilities (DOE-EM-STD-5502-94, Hazard Baseline Documentation) Nonnuclear facilities (DOE-EM-STD-5502-94) that are classified as {open_quotes}low{close_quotes} hazard facilities (DOE Order 5481.1B, Safety Analysis and Review System). Additionally, the BSAF could be used as an information source for Health and Safety Plans and for Safety Analysis Reports (SARs) for nuclear facilities with hazards equal to or greater than the Category 2 thresholds, or for nonnuclear facilities with {open_quotes}moderate{close_quotes} or {open_quotes}high{close_quotes} hazard classifications.

  16. Tank Closure Progress at the Department of Energy's Idaho National Engineering Laboratory Tank Farm Facility

    SciTech Connect (OSTI)

    Quigley, K.D. [CH2M..WG Idaho, LLC, Idaho Falls, ID (United States); Butterworth, St.W. [CH2M..WG Idaho, LLC, Idaho Falls, ID (United States); Lockie, K.A. [U.S. Department of Energy, Idaho Operations Office, Idaho Falls, ID (United States)

    2008-07-01T23:59:59.000Z

    Significant progress has been made at the U.S. Department of Energy (DOE) Idaho National Laboratory (INL) to empty, clean and close radioactive liquid waste storage tanks at the Idaho Nuclear Technology and Engineering Center (INTEC) Tank Farm Facility (TFF). The TFF includes eleven 1,135.6-kL (300,000-gal) underground stainless steel storage tanks and four smaller, 113.5-kL (30,000-gal) stainless steel tanks, along with tank vaults, interconnecting piping, and ancillary equipment. The TFF tanks have historically been used to store a variety of radioactive liquid waste, including wastes associated with past spent nuclear fuel reprocessing. Although four of the large storage tanks remain in use for waste storage, the other seven 1,135.6-kL (300,000-gal) tanks and the four 113.5-kL (30,000-gal) tanks have been emptied of waste, cleaned and filled with grout. A water spray cleaning system was developed and deployed to clean internal tank surfaces and remove remaining tank wastes. The cleaning system was effective in removing all but a very small volume of solid residual waste particles. Recent issuance of an Amended Record of Decision (ROD) in accordance with the National Environmental Policy Act, and a Waste Determination complying with Section 3116 of the Ronald W. Reagan National Defense Authorization Act (NDAA) for Fiscal Year 2005, has allowed commencement of grouting activities on the cleaned tanks. The first three 113.5-kL (30,000-gal) tanks were grouted in the Fall of 2006 and the fourth tank and the seven 1,135.6-kL (300,000-gal) tanks were filled with grout in 2007 to provide long-term stability. It is currently planned that associated tank valve boxes and interconnecting piping, will be stabilized with grout as early as 2008. (authors)

  17. Idaho National Engineering and Environmental Laboratory Site Environmental Report for Calendar Year 1998

    SciTech Connect (OSTI)

    T. R. Saffle; R. G. Mitchell; R. B. Evans; D. B. Martin

    2000-07-01T23:59:59.000Z

    The results of the various monitoring programs for 1998 indicated that radioactivity from the DOE's Idaho National Engineering and Environmental Laboratory (INEEL) operations could generally not be distinguished from worldwide fallout and natural radioactivity in the region surrounding the INEEL. Although some radioactive materials were discharged during INEEL operations, concentrations in the offsite environment and doses to the surrounding population were far less than state of Idaho and federal health protection guidelines. Gross alpha and gross beta measurements, used as a screening technique for air filters, were investigated by making statistical comparisons between onsite or boundary location concentrations and the distant community group concentrations. Gross alpha activities were generally higher at distant locations than at boundary and onsite locations. Air samples were also analyzed for specific radionuclides. Some human-made radionuclides were detected at offsite locations, but most were near the minimum detectable concentration and their presence was attributable to natural sources, worldwide fallout, and statistical variations in the analytical results rather than to INEEL operations. Low concentrations of 137Cs were found in muscle tissue and liver of some game animals and sheep. These levels were mostly consistent with background concentrations measured in animals sampled onsite and offsite in recent years. Ionizing radiation measured simultaneously at the INEEL boundary and distant locations using environmental dosimeters were similar and showed only background levels. The maximum potential population dose from submersion, ingestion, inhalation, and deposition to the approximately 121,500 people residing within an 80-km (50-mi) radius from the geographical center of the INEEL was estimated to be 0.08 person-rem (8 x 10-4 person-Sv) using the MDIFF air dispersion model. This population dose is less than 0.0002 percent of the estimated 43,7 00 person-rem (437 person-Sv) population dose from background radioactivity.

  18. Tank Closure Progress at the Department of Energy's Idaho National Engineering Laboratory Tank Farm Facility

    SciTech Connect (OSTI)

    Lockie, K.A. [U.S. Department of Energy, Idaho Operations Office, Idaho Falls, ID (United States); Suttora, L.C. [U.S. Department of Energy, Washington, D.C. (United States); Quigley, K.D. [CH2M..WG Idaho, LLC, Idaho Falls, ID (United States); Stanisich, N. [Portage Environmental, Inc., Idaho Falls, ID (United States)

    2007-07-01T23:59:59.000Z

    Significant progress has been made at the U.S. Department of Energy (DOE) Idaho National Laboratory (INL) to clean and close emptied radioactive liquid waste storage tanks at the Idaho Nuclear Technology and Engineering Center (INTEC) Tank Farm Facility (TFF). The TFF includes eleven 1,135.6-kL (300,000-gal) underground stainless steel storage tanks and four smaller, 113.5-kL (30,000-gal) stainless steel tanks, along with tank vaults, interconnecting piping, and ancillary equipment. The TFF tanks have historically been used to store a variety of radioactive liquid waste, including wastes associated with past spent nuclear fuel reprocessing. Although four of the large storage tanks remain in use for waste storage, the other seven 1,135.6-kL (300,000-gal) tanks and the four 113.5-kL (30,000-gal) tanks have been emptied of waste and cleaned in preparation of final closure. A water spray cleaning system was developed and deployed to clean internal tank surfaces and remove remaining tank wastes. The cleaning system was effective in removing all but a very small volume of solid residual waste particles. Recent issuance of an Amended Record of Decision (ROD) in accordance with the National Environmental Policy Act, and a Waste Determination complying with Section 3116 of the Ronald W. Reagan National Defense Authorization Act (NDAA) for Fiscal Year 2005, has allowed commencement of grouting activities on the cleaned tanks. In November 2006, three of the 113.5-kL (30,000-gal) tanks were filled with grout to provide long-term stability. It is currently planned that all seven cleaned 1,135.6-kL (300,000-gal) tanks, as well as the four 113.5-kL (30,000-gal) tanks and all associated tank vaults and interconnecting piping, will be stabilized with grout as early as 2008. (authors)

  19. The University of Michigan Structural Dynamics Laboratory McGill University Faculty of Engineering

    E-Print Network [OSTI]

    Barthelat, Francois

    ? · Greenhouse gas production ­ a contribution to global warming RENEWABLE and ALTERNATIVE ENERGY: Adding Professor and Canada Research Chair Department of Electrical and Computer Engineering December 5, 2007 #12;McGill University Faculty of Engineering Faculty of Engineering Total world energy and electricity

  20. Texas Tech University | Whitacre College of Engineering | Box 43103 | Lubbock, Texas 79409-3103 | 806.742.3451| www.coe.ttu.edu Undergraduate Laboratory Renovation Initiative

    E-Print Network [OSTI]

    Gelfond, Michael

    -3103 | 806.742.3451| www.coe.ttu.edu Undergraduate Laboratory Renovation Initiative The Whitacre College of Engineering Undergraduate Laboratory Renovation Initiative is a $6.5MM effort to properly equip and modernize Systems & Alternative Energy Lab Audiovisual, Studio & Collaborative Classrooms Department of Construction

  1. HISTORICAL AMERICAN ENGINEERING RECORD - IDAHO NATIONAL ENGINEERING AND ENVIRONMENTAL LABORATORY, TEST AREA NORTH, HAER NO. ID-33-E

    SciTech Connect (OSTI)

    Susan Stacy; Hollie K. Gilbert

    2005-02-01T23:59:59.000Z

    Test Area North (TAN) was a site of the Aircraft Nuclear Propulsion (ANP) Project of the U.S. Air Force and the Atomic Energy Commission. Its Cold War mission was to develop a turbojet bomber propelled by nuclear power. The project was part of an arms race. Test activities took place in five areas at TAN. The Assembly & Maintenance area was a shop and hot cell complex. Nuclear tests ran at the Initial Engine Test area. Low-power test reactors operated at a third cluster. The fourth area was for Administration. A Flight Engine Test facility (hangar) was built to house the anticipated nuclear-powered aircraft. Experiments between 1955-1961 proved that a nuclear reactor could power a jet engine, but President John F. Kennedy canceled the project in March 1961. ANP facilities were adapted for new reactor projects, the most important of which were Loss of Fluid Tests (LOFT), part of an international safety program for commercial power reactors. Other projects included NASA's Systems for Nuclear Auxiliary Power and storage of Three Mile Island meltdown debris. National missions for TAN in reactor research and safety research have expired; demolition of historic TAN buildings is underway.

  2. College of Engineering EE Electrical Engineering

    E-Print Network [OSTI]

    MacAdam, Keith

    College of Engineering EE Electrical Engineering KEY: # = new course * = course changed = course IN ELECTRICAL AND COMPUTER ENGINEERING. (3,includingtransferfunctions,networkparameters,andadesignprojectinvolvingmoderndesignpractices.Prereq: EE 211. Concur: MA 214. EE 222 ELECTRICAL ENGINEERING LABORATORY I. (2) Laboratory exercises

  3. Preliminary Waste Form Compliance Plan for the Idaho National Engineering and Environmental Laboratory High-Level Waste

    SciTech Connect (OSTI)

    B. A. Staples; T. P. O'Holleran

    1999-05-01T23:59:59.000Z

    The Department of Energy (DOE) has specific technical and documentation requirements for high-level waste (HLW) that is to be placed in a federal repository. This document describes in general terms the strategy to be used at the Idaho National Engineering and Environmental Laboratory (INEEL) to demonstrate that vitrified HLW, if produced at the INEEL, meets these requirements. Waste form, canister, quality assurance, and documentation specifications are discussed. Compliance strategy is given, followed by an overview of how this strategy would be implemented for each specification.

  4. Chemical & Engineering News Serving the chemical, life sciences and laboratory worlds

    E-Print Network [OSTI]

    Zare, Richard N.

    to give him a chemistry set, the young Zare was able to buy laboratory supplies from a local pharmacist describes himself as an antisocial kid. "I used my interest in science as a weapon to show how good I was

  5. Thomas Wallner | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Omnivorous Engine Argonne National Laboratory's Omnivorous Engine Browse by Topic Energy Energy efficiency Vehicles Alternative fuels Automotive engineering Biofuels Diesel Fuel...

  6. Site-specific probabilistic seismic hazard analyses for the Idaho National Engineering Laboratory. Volume 1: Final report

    SciTech Connect (OSTI)

    NONE

    1996-05-01T23:59:59.000Z

    This report describes and summarizes a probabilistic evaluation of ground motions for the Idaho National Engineering Laboratory (INEL). The purpose of this evaluation is to provide a basis for updating the seismic design criteria for the INEL. In this study, site-specific seismic hazard curves were developed for seven facility sites as prescribed by DOE Standards 1022-93 and 1023-96. These sites include the: Advanced Test Reactor (ATR); Argonne National Laboratory West (ANL); Idaho Chemical Processing Plant (ICPP or CPP); Power Burst Facility (PBF); Radioactive Waste Management Complex (RWMC); Naval Reactor Facility (NRF); and Test Area North (TAN). The results, probabilistic peak ground accelerations and uniform hazard spectra, contained in this report are not to be used for purposes of seismic design at INEL. A subsequent study will be performed to translate the results of this probabilistic seismic hazard analysis to site-specific seismic design values for the INEL as per the requirements of DOE Standard 1020-94. These site-specific seismic design values will be incorporated into the INEL Architectural and Engineering Standards.

  7. In situ vitrification application to buried waste: Final report of intermediate field tests at Idaho National Engineering Laboratory

    SciTech Connect (OSTI)

    Callow, R.A.; Weidner, J.R.; Loehr, C.A.; Bates, S.O. (EG and G Idaho, Inc., Idaho Falls, ID (United States)); Thompson, L.E.; McGrail, B.P. (Pacific Northwest Lab., Richland, WA (United States))

    1991-08-01T23:59:59.000Z

    This report describes two in situ vitrification field tests conducted on simulated buried waste pits during June and July 1990 at the Idaho National Engineering Laboratory. In situ vitrification, an emerging technology for in place conversion of contaminated soils into a durable glass and crystalline waste form, is being investigated as a potential remediation technology for buried waste. The overall objective of the two tests was to access the general suitability of the process to remediate waste structures representative of buried waste found at Idaho National Engineering Laboratory. In particular, these tests, as part of a treatability study, were designed to provide essential information on the field performance of the process under conditions of significant combustible and metal wastes and to test a newly developed electrode feed technology. The tests were successfully completed, and the electrode feed technology successfully processed the high metal content waste. Test results indicate the process is a feasible technology for application to buried waste. 33 refs., 109 figs., 39 tabs.

  8. ThermalEngineeringLaboratory,VanderbiltUniversity Convection Heat Transfer of Nanofluids in Commercial

    E-Print Network [OSTI]

    Walker, D. Greg

    into spherical or linear chains of particles while models assume well dispersed solutions 1. 2. http in real systems · Benefits of nanofluids ­ reduced sedimentation and viscosity ­ reduced damage loading (%) calculated di-water Maxwell's model H-S bounds 8/10 #12;ThermalEngineeringLa

  9. ME 266P Mechanical Engineering Design Project Laboratory ABET EC2000 syllabus

    E-Print Network [OSTI]

    Ben-Yakar, Adela

    Management (Gantt Charts) 3. Product and Personal Liability of Engineers 4. Intellectual Property ­ Patents of three or four persons each. Each team receives a different project assignment (the team's stated of Course to Meeting the Requirements of Criterion 5: Relationship of the Course to ME Program Outcomes

  10. Idaho National Engineering and Environmental Laboratory, Old Waste Calcining Facility, Scoville vicinity, Butte County, Idaho -- Photographs, written historical and descriptive data. Historical American engineering record

    SciTech Connect (OSTI)

    NONE

    1997-12-31T23:59:59.000Z

    This report describes the history of the Old Waste Calcining Facility. It begins with introductory material on the Idaho National Engineering and Environmental Laboratory, the Materials Testing Reactor fuel cycle, and the Idaho Chemical Processing Plant. The report then describes management of the wastes from the processing plant in the following chapters: Converting liquid to solid wastes; Fluidized bed waste calcining process and the Waste Calcining Facility; Waste calcining campaigns; WCF gets a new source of heat; New Waste Calcining Facility; Last campaign; Deactivation and the RCRA cap; Significance/context of the old WCF. Appendices contain a photo key map for HAER photos, a vicinity map and neighborhood of the WCF, detailed description of the calcining process, and chronology of WCF campaigns.

  11. Vehicle Technologies Office Recognizes Outstanding Researchers...

    Energy Savers [EERE]

    Vehicle Technologies Office Recognizes Outstanding Researchers and Projects Vehicle Technologies Office Recognizes Outstanding Researchers and Projects June 24, 2015 - 11:51am...

  12. Geothermal Energy Association Recognizes the National Geothermal...

    Energy Savers [EERE]

    Geothermal Energy Association Recognizes the National Geothermal Data System Geothermal Energy Association Recognizes the National Geothermal Data System July 29, 2014 - 8:20am...

  13. Sustainability Awards Recognize Energy Department Employees Who...

    Office of Environmental Management (EM)

    Sustainability Awards Recognize Energy Department Employees Who Go Above and Beyond Sustainability Awards Recognize Energy Department Employees Who Go Above and Beyond November 10,...

  14. Analysis Activities at Idaho National Engineering & Environmental...

    Broader source: Energy.gov (indexed) [DOE]

    Analysis Activities at Idaho National Engineering & Environmental Laboratory Analysis Activities at Idaho National Engineering & Environmental Laboratory Presentation on INEENL's...

  15. Comparative evaluation of laboratory compaction devices based on their ability to produce mixtures with engineering properties similar to those produced in the field

    E-Print Network [OSTI]

    Consuegra, Alberto Enrique

    1988-01-01T23:59:59.000Z

    COMPARATIVE EVALUATION OF LABORATORY COMPACTION DEVICES BASED ON THEIR ABILITY TO PRODUCE MIXTURES WITH ENGINEERING PROPERTIES SIMILAR TO THOSE PRODUCED IN THE FIELD A Thesis by ALBERTO ENRIQUE CONSUEGRA Submitted to the Office of Graduate... MIXTURES WITH ENGINEERING PROPERTIES SIMILAR TO THOSE PRODUCED IN THE FIELD A Thesis by ALBERTO ENRIQUE CONSUEGRA Approve as to style and content by: Dallas N. tt (Chairman of Committee) Wayne D. Tiner (Member) Demetres Vistas (Member) ames T. P...

  16. 1997 Idaho National Engineering and Environmental Laboratory (INEEL) National Emission Standards for Hazardous Air Pollutants (NESHAPs) -- Radionuclides annual report

    SciTech Connect (OSTI)

    NONE

    1998-06-01T23:59:59.000Z

    Under Section 61.94 of Title 40, Code of Federal Regulations (CFR), Part 61, Subpart H, National Emission Standards for Emissions of Radionuclides Other Than Radon From Department of Energy Facilities, each Department of Energy (DOE) facility must submit an annual report documenting compliance. This report addresses the Section 61.94 reporting requirements for operations at the Idaho National Engineering and Environmental Laboratory (INEEL) for calendar year (CY) 1997. Section 1 of this report provides an overview of the INEEL facilities and a brief description of the radioactive materials and processes at the facilities. Section 2 identifies radioactive air effluent release points and diffuse sources at the INEEL and actual releases during 1997. Section 2 also describes the effluent control systems for each potential release point. Section 3 provides the methodology and EDE calculations for 1997 INEEL radioactive emissions.

  17. Short-Term and Long-Term Technology Needs/Matching Status at Idaho National Engineering and Environmental Laboratory

    SciTech Connect (OSTI)

    S. L. Claggett

    1999-12-01T23:59:59.000Z

    This report identifies potential technology deployment opportunities for the Environmental Management (EM) programs at the Idaho National Engineering and Environmental Laboratory (INEEL). The focus is on identifying candidates for Accelerated Site Technology Deployment (ASTD) proposals within the Environmental Restoration and Waste Management areas. The 86 technology needs on the Site Technology Coordination Group list were verified in the field. Six additional needs were found, and one listed need was no longer required. Potential technology matches were identified and then investigated for applicability, maturity, cost, and performance. Where promising, information on the technologies was provided to INEEL managers for evaluation. Eleven potential ASTD projected were identified, seven for near-term application and four for application within the next five years.

  18. Cultural Resource Assessment of the Test Area North Demolition Landfill at the Idaho National Engineering and Environmental Laboratory

    SciTech Connect (OSTI)

    Brenda R. Pace

    2003-07-01T23:59:59.000Z

    The proposed new demolition landfill at Test Area North on the Idaho National Engineering and Environmental Laboratory (INEEL) will support ongoing demolition and decontamination within the facilities on the north end of the INEEL. In June of 2003, the INEEL Cultural Resource Management Office conducted archival searches, field surveys, and coordination with the Shoshone-Bannock Tribes to identify all cultural resources that might be adversely affected by the project and to provide recommendations to protect those listed or eligible for listing on the National Register of Historic Places. These investigations showed that landfill construction and operation would affect two significant cultural resources. This report outlines protective measures to ensure that these effects are not adverse.

  19. Strontium Distribution Coefficients of Basalt and Sediment Infill Samples from the Idaho National Engineering and Environmental Laboratory, Idaho

    SciTech Connect (OSTI)

    M. N. Pace; R. C. Bartholomay (USGS); J. J. Rosentreter (ISU)

    1999-07-01T23:59:59.000Z

    The U.S. Geological Survey and Idaho State University, in cooperation with the U.S. Department of Energy, are conducting a study to determine and evaluate strontium distribution coefficients (Kds) of subsurface materials at the Idaho National Engineering and Environmental Laboratory (INEEL). The purpose of this study is to aid in assessing the variability of strontium Kds at the INEEL as part of an ongoing investigation of chemical transport of strontium-90 in the Snake River Plain aquifer. Batch experimental techniques were used to determine Kds of six basalt core samples, five samples of sediment infill of vesicles and fractures, and six standard material samples. Analyses of data from these experiments indicate that the Kds of the sediment infill samples are significantly larger than those of the basalt samples. Quantification of such information is essential of furthering the understanding of transport processes of strontium-90 in the Snake River Plain aquifer and in similar environments.

  20. Radiological, physical, and chemical characterization of low-level alpha contaminated wastes stored at the Idaho National Engineering Laboratory

    SciTech Connect (OSTI)

    Apel, M.L.; Becker, G.K.; Ragan, Z.K.; Frasure, J.; Raivo, B.D.; Gale, L.G.; Pace, D.P.

    1994-03-01T23:59:59.000Z

    This document provides radiological, physical, and chemical characterization data for low-level alpha-contaminated radioactive and low-level alpha-contaminated radioactive and hazardous (i.e., mixed) wastes stored at the Idaho National Engineering Laboratory and considered for treatment under the Private Sector Participation Initiative Program. Waste characterization data are provided in the form of INEL Waste Profile Sheets. These documents provide, for each content code, information on waste identification, waste description, waste storage configuration, physical/chemical waste composition, radionuclide and associated alpha activity waste characterization data, and hazardous constituents present in the waste. Information is provided for 97 waste streams which represent an estimated total volume of 25,450 m 3 corresponding to a total mass of approximately 12,000,000 kg. In addition, considerable information concerning alpha, beta, gamma, and neutron source term data specific to Rocky Flats-generated waste forms stored at the INEL are provided to assist in facility design specification.

  1. Environmental Survey preliminary report, Idaho National Engineering Laboratory, Idaho Falls, Idaho and Component Development and Integration Facility, Butte, Montana

    SciTech Connect (OSTI)

    Not Available

    1988-09-01T23:59:59.000Z

    This report presents the preliminary findings of the first phase of the Environmental Survey of the United States Department of Energy's (DOE) Idaho National Engineering Laboratory (INEL) and Component Development and Integration Facility (CDIF), conducted September 14 through October 2, 1987. The Survey is being conducted by an interdisciplinary team of environmental specialists, led and managed by the Office of Environment, Safety and Health's Office of Environmental Audit. The team includes outside experts supplied by a private contractor. The objective of the Survey is to identify environmental problems and areas of environmental risk associated with the INEL and CDIF. The Survey covers all environmental media and all areas of environmental regulation. It is being performed in accordance with the DOE Environmental Survey Manual. The on-site phase of the Survey involves the review of existing site environmental data, observations of the operations' carried on at the INEL and the CDIF, and interviews with site personnel. The Survey team developed a Sampling and Analysis (S A) Plan to assist in further assessing certain of the environmental problems identified during its on-site activities. The S A Plan will be executed by the Oak Ridge National Laboratory. When completed, the S A results will be incorporated into the INEL/CDIF Survey findings for inclusion into the Environmental Survey Summary Report. 90 refs., 95 figs., 77 tabs.

  2. Sandia National Laboratories Advanced Simulation and Computing (ASC) software quality plan : ASC software quality engineering practices Version 3.0.

    SciTech Connect (OSTI)

    Turgeon, Jennifer L.; Minana, Molly A.; Hackney, Patricia; Pilch, Martin M.

    2009-01-01T23:59:59.000Z

    The purpose of the Sandia National Laboratories (SNL) Advanced Simulation and Computing (ASC) Software Quality Plan is to clearly identify the practices that are the basis for continually improving the quality of ASC software products. Quality is defined in the US Department of Energy/National Nuclear Security Agency (DOE/NNSA) Quality Criteria, Revision 10 (QC-1) as 'conformance to customer requirements and expectations'. This quality plan defines the SNL ASC Program software quality engineering (SQE) practices and provides a mapping of these practices to the SNL Corporate Process Requirement (CPR) 001.3.6; 'Corporate Software Engineering Excellence'. This plan also identifies ASC management's and the software project teams responsibilities in implementing the software quality practices and in assessing progress towards achieving their software quality goals. This SNL ASC Software Quality Plan establishes the signatories commitments to improving software products by applying cost-effective SQE practices. This plan enumerates the SQE practices that comprise the development of SNL ASC's software products and explains the project teams opportunities for tailoring and implementing the practices.

  3. Baseline Flowsheet Generation for the Treatment and Disposal of Idaho National Engineering and Environmental Laboratory Sodium Bearing Waste

    SciTech Connect (OSTI)

    Barnes, C.M.; Lauerhass, L.; Olson, A.L.; Taylor, D.D.; Valentine, J.H.; Lockie, K.A. (DOE- ID)

    2002-01-16T23:59:59.000Z

    The High-Level Waste (HLW) Program at the Idaho National Engineering and Environmental Laboratory (INEEL) must implement technologies and processes to treat and qualify radioactive wastes located at the Idaho Nuclear Technology and Engineering Center (INTEC) for permanent disposal. This paper describes the approach and accomplishments to date for completing development of a baseline vitrification treatment flowsheet for sodium-bearing waste (SBW), including development of a relational database used to manage the associated process assumptions. A process baseline has been developed that includes process requirements, basis and assumptions, process flow diagrams, a process description, and a mass balance. In the absence of actual process or experimental results, mass and energy balance data for certain process steps are based on assumptions. Identification, documentation, validation, and overall management of the flowsheet assumptions are critical to ensuring an integrated, focused program. The INEEL HLW Program initially used a roadmapping methodology, developed through the INEEL Environmental Management Integration Program, to identify, document, and assess the uncertainty and risk associated with the SBW flowsheet process assumptions. However, the mass balance assumptions, process configuration and requirements should be accessible to all program participants. This need resulted in the creation of a relational database that provides formal documentation and tracking of the programmatic uncertainties related to the SBW flowsheet.

  4. Baseline Flowsheet Generation for the Treatment and Disposal of Idaho National Engineering and Environmental Laboratory Sodium Bearing Waste

    SciTech Connect (OSTI)

    Barnes, Charles Marshall; Lauerhass, Lance; Olson, Arlin Leland; Taylor, Dean Dalton; Valentine, James Henry; Lockie, Keith Andrew

    2002-02-01T23:59:59.000Z

    The High-Level Waste (HLW) Program at the Idaho National Engineering and Environmental Laboratory (INEEL) must implement technologies and processes to treat and qualify radioactive wastes located at the Idaho Nuclear Technology and Engineering Center (INTEC) for permanent disposal. This paper describes the approach and accomplishments to date for completing development of a baseline vitrification treatment flowsheet for sodium-bearing waste (SBW), including development of a relational database used to manage the associated process assumptions. A process baseline has been developed that includes process requirements, basis and assumptions, process flow diagrams, a process description, and a mass balance. In the absence of actual process or experimental results, mass and energy balance data for certain process steps are based on assumptions. Identification, documentation, validation, and overall management of the flowsheet assumptions are critical to ensuring an integrated, focused program. The INEEL HLW Program initially used a roadmapping methodology, developed through the INEEL Environmental Management Integration Program, to identify, document, and assess the uncertainty and risk associated with the SBW flowsheet process assumptions. However, the mass balance assumptions, process configuration and requirements should be accessible to all program participants. This need resulted in the creation of a relational database that provides formal documentation and tracking of the programmatic uncertainties related to the SBW flowsheet.

  5. Floodplain Assessment for the Proposed Engineered Erosion Controls at TA-72 in Lower Sandia Canyon, Los Alamos National Laboratory

    SciTech Connect (OSTI)

    Hathcock, Charles D. [Los Alamos National Laboratory

    2012-08-27T23:59:59.000Z

    Los Alamos National Laboratory (LANL) is preparing to implement engineering controls in Sandia Canyon at Technical Area (TA) 72. Los Alamos National Security (LANS) biologists conducted a floodplain determination and this project is located within a 100-year floodplain. The proposed project is to rehabilitate the degraded channel in lower Sandia Canyon where it crosses through the outdoor firing range at TA-72 to limit the loss of sediment and dissipate floodwater leaving LANL property (Figure 1). The proposed construction of these engineered controls is part of the New Mexico Environment Department's (NMED) approved LANL Individual Storm Water Permit. The purpose of this project is to install storm water controls at Sandia Watershed Site Monitoring Area 6 (S-SMA-6). Storm water controls will be designed and installed to meet the requirements of NPDES Permit No. NM0030759, commonly referred to as the LANL Individual Storm Water Permit (IP). The storm water control measures address storm water mitigation for the area within the boundary of Area of Concern (AOC) 72-001. This action meets the requirements of the IP for S-SMA-6 for storm water controls by a combination of: preventing exposure of upstream storm water and storm water generated within the channel to the AOC and totally retaining storm water falling outside the channel but within the AOC.

  6. Soil stabilization using oil shale solid wastes: Laboratory evaluation of engineering properties

    SciTech Connect (OSTI)

    Turner, J.P.

    1991-01-01T23:59:59.000Z

    Oil shale solid wastes were evaluated for possible use as soil stabilizers. A laboratory study was conducted and consisted of the following tests on compacted samples of soil treated with water and spent oil shale: unconfined compressive strength, moisture-density relationships, wet-dry and freeze-thaw durability, and resilient modulus. Significant increases in strength, durability, and resilient modulus were obtained by treating a silty sand with combusted western oil shale. Moderate increases in strength, durability, and resilient modulus were obtained by treating a highly plastic clay with combusted western oil shale. Solid waste from eastern shale can be used for soil stabilization if limestone is added during combustion. Without limestone, eastern oil shale waste exhibits little or no cementation. The testing methods, results, and recommendations for mix design of spent shale-stabilized pavement subgrades are presented. 11 refs., 3 figs., 10 tabs.

  7. Argonne's Laboratory computing center - 2007 annual report.

    SciTech Connect (OSTI)

    Bair, R.; Pieper, G. W.

    2008-05-28T23:59:59.000Z

    Argonne National Laboratory founded the Laboratory Computing Resource Center (LCRC) in the spring of 2002 to help meet pressing program needs for computational modeling, simulation, and analysis. The guiding mission is to provide critical computing resources that accelerate the development of high-performance computing expertise, applications, and computations to meet the Laboratory's challenging science and engineering missions. In September 2002 the LCRC deployed a 350-node computing cluster from Linux NetworX to address Laboratory needs for mid-range supercomputing. This cluster, named 'Jazz', achieved over a teraflop of computing power (1012 floating-point calculations per second) on standard tests, making it the Laboratory's first terascale computing system and one of the 50 fastest computers in the world at the time. Jazz was made available to early users in November 2002 while the system was undergoing development and configuration. In April 2003, Jazz was officially made available for production operation. Since then, the Jazz user community has grown steadily. By the end of fiscal year 2007, there were over 60 active projects representing a wide cross-section of Laboratory expertise, including work in biosciences, chemistry, climate, computer science, engineering applications, environmental science, geoscience, information science, materials science, mathematics, nanoscience, nuclear engineering, and physics. Most important, many projects have achieved results that would have been unobtainable without such a computing resource. The LCRC continues to foster growth in the computational science and engineering capability and quality at the Laboratory. Specific goals include expansion of the use of Jazz to new disciplines and Laboratory initiatives, teaming with Laboratory infrastructure providers to offer more scientific data management capabilities, expanding Argonne staff use of national computing facilities, and improving the scientific reach and performance of Argonne's computational applications. Furthermore, recognizing that Jazz is fully subscribed, with considerable unmet demand, the LCRC has framed a 'path forward' for additional computing resources.

  8. Photovoltaic energy conversion The objective of this laboratory is for you to explore the science and engineering of the conversion of

    E-Print Network [OSTI]

    Braun, Paul

    Photovoltaic energy conversion Objective The objective of this laboratory is for you to explore the science and engineering of the conversion of light to electricity by photovoltaic devices. Preparation photovoltaic modules; reversebiased Si pin photodiode. · White light LED lamp; dc power supply; bread board

  9. Los Alamos National Laboratory recognizes employee teams with...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    and gather significant amounts of data without a critical mass of plutonium. Gamma-ray bursts: infographic Gamma-ray bursts: infographic March, 26 2015 - Today with the help...

  10. Los Alamos National Laboratory recognizes employee teams with...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    - The new material has the highest oxygen reduction reaction (ORR) activity in alkaline media of any non-precious metal catalyst developed to date. Well R-50 at Los Alamos...

  11. Sandia National Laboratories: Sandia's Dr. Jeffrey Tsao Is Recognized...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    and NREL Announce Two New H2FIRST Reports New Report Describes Joint Opportunities for Natural Gas and Hydrogen Fuel-Cell Vehicle Markets Sandians Participate in 46th Annual...

  12. recognizing Los Alamos National Laboratory Director Michael Anastasio for his

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron4 Self-Scrubbing:,, ,Development of NovelHigh( ( (Buriedresearcher

  13. Los Alamos National Laboratory recognizes employee teams with 2015

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC)Integrated Codes |Is YourAwards PollutionPollution Prevention Awards 2015

  14. Los Alamos National Laboratory recognizes employee teams with 2015

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC)Integrated Codes |Is YourAwards PollutionPollution Prevention Awards

  15. Los Alamos National Laboratory recognizes employee teams with 2015

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville PowerCherries 82981-1cnHigh SchoolIn12electron 9 5LetLooking5 millionmarks 20overseePollution

  16. In Summary: Idaho National Engineering and Environmental Laboratory Site Environmental Report for Calendar Year 1998

    SciTech Connect (OSTI)

    A. A. Luft; R. B. Evans; T. Saffle; R. G. Mitchell; D. B. Martin

    2000-06-01T23:59:59.000Z

    Scientists from the Environmental Science and Research Foundation, Lockheed Martin Idaho Technologies Company (LMITCO), the US Geological Survey, the Naval Nuclear Propulsion Program Naval Reactors Facility, Argonne National Laboratory-West, and others monitored the environment on and around the INEEL to find contaminants attributable to the INEEL. During 1998, exposures from the INEEL to the public were found to be negligible. The US Department of Energy (DOE) and LMITCO made progress in developing and implementing a site-wide Environmental Management System. This system provides an underlying structure to make the management of environmental activities at the INEEL more systematic and predictable. Pathways by which INEEL contaminants might reach people off the INEEL were monitored. These included air, precipitation, water, locally grown food (milk, lettuce, wheat, and potatoes), livestock, game animals, soil, and direct ionizing radiation. Results from samples collected to monitor these pathways often contain ''background radioactivity,'' which is radioactivity from natural sources and nuclear weapons tests carried out between 1945 and 1980. According to results obtained in 1998, radioactivity from operations at the INEEL could not be distinguished from this background radioactivity in the regions surrounding the INEEL. Because radioactivity from the INEEL was not detected by offsite environmental surveillance methods, computer models were used to estimate the radiation dose to the public. The hypothetical maximum dose to an individual from INEEL operations was calculated to be 0.08 millirem. That is 0.002 percent of an average person's annual dose of 360 millirem from natural background radiation in southeast Idaho.

  17. Technology Evaluations Related to Mercury, Technetium, and Chloride in Treatment of Wastes at the Idaho Nuclear Technology and Engineering Center of the Idaho National Engineering and Environmental Laboratory

    SciTech Connect (OSTI)

    C. M. Barnes; D. D. Taylor; S. C. Ashworth; J. B. Bosley; D. R. Haefner

    1999-10-01T23:59:59.000Z

    The Idaho High-Level Waste and Facility Disposition Environmental Impact Statement defines alternative for treating and disposing of wastes stored at the Idaho Nuclear Technology and Engineering Center. Development is required for several technologies under consideration for treatment of these wastes. This report contains evaluations of whether specific treatment is needed and if so, by what methods, to remove mercury, technetium, and chlorides in proposed Environmental Impact Statement treatment processes. The evaluations of mercury include a review of regulatory requirements that would apply to mercury wastes in separations processes, an evaluation of the sensitivity of mercury flowrates and concentrations to changes in separations processing schemes and conditions, test results from laboratory-scale experiments of precipitation of mercury by sulfide precipitation agents from the TRUEX carbonate wash effluent, and evaluations of methods to remove mercury from New Waste Calcining Facility liquid and gaseous streams. The evaluation of technetium relates to the need for technetium removal and alternative methods to remove technetium from streams in separations processes. The need for removal of chlorides from New Waste Calcining Facility scrub solution is also evaluated.

  18. CYCLE-BY-CYCLE COMBUSTION VARIATIONS IN SPARK-IGNITED ENGINES Engineering Technology Division, Oak Ridge National Laboratory, Oak Ridge TN 37831-8088 USA

    E-Print Network [OSTI]

    Tennessee, University of

    -2053 USA ABSTRACT Under constant nominal operating conditions, internal combustion engines can exhibit sub Introduction Under constant nominal operating conditions, internal combustion engines can exhibit substantialCYCLE-BY-CYCLE COMBUSTION VARIATIONS IN SPARK-IGNITED ENGINES C.S. DAW Engineering Technology

  19. Department of Energy Programmatic Spent Nuclear Fuel Management and Idaho National Engineering Laboratory Environmental Restoration and Waste Management Programs draft environmental impact statement. Volume 1, Appendix B: Idaho National Engineering Laboratory Spent Nuclear Fuel Management Program

    SciTech Connect (OSTI)

    Not Available

    1994-06-01T23:59:59.000Z

    The US Department of Energy (DOE) has prepared this report to assist its management in making two decisions. The first decision, which is programmatic, is to determine the management program for DOE spent nuclear fuel. The second decision is on the future direction of environmental restoration, waste management, and spent nuclear fuel management activities at the Idaho National Engineering Laboratory. Volume 1 of the EIS, which supports the programmatic decision, considers the effects of spent nuclear fuel management on the quality of the human and natural environment for planning years 1995 through 2035. DOE has derived the information and analysis results in Volume 1 from several site-specific appendixes. Volume 2 of the EIS, which supports the INEL-specific decision, describes environmental impacts for various environmental restoration, waste management, and spent nuclear fuel management alternatives for planning years 1995 through 2005. This Appendix B to Volume 1 considers the impacts on the INEL environment of the implementation of various DOE-wide spent nuclear fuel management alternatives. The Naval Nuclear Propulsion Program, which is a joint Navy/DOE program, is responsible for spent naval nuclear fuel examination at the INEL. For this appendix, naval fuel that has been examined at the Naval Reactors Facility and turned over to DOE for storage is termed naval-type fuel. This appendix evaluates the management of DOE spent nuclear fuel including naval-type fuel.

  20. Confirmatory radiological survey of the BORAX-V turbine building Idaho National Engineering Laboratory, Idaho Falls, Idaho

    SciTech Connect (OSTI)

    Stevens, G.H.; Coleman, R.L.; Jensen, M.K.; Pierce, G.A. [Oak Ridge National Lab., TN (US); Egidi, P.V.; Mather, S.K. [Oak Ridge Inst. for Science and Education, Grand Junction, CO (United States)

    1993-07-01T23:59:59.000Z

    An independent assessment of the remediation of the BORAX-V (Boiling Water Reactor Experiment) turbine building at the Idaho National Engineering Laboratory (INEL), Idaho Falls, Idaho, was accomplished by the Oak Ridge National Laboratory Pollutant Assessments Group (ORNL/PAG). The purpose of the assessment was to confirm the site`s compliance with applicable Department of Energy guidelines. The assessment included reviews of both the decontamination and decommissioning Plan and data provided from the pre- and post-remedial action surveys and an independent verification survey of the facility. The independent verification survey included determination of background exposure rates and soil concentrations, beta-gamma and gamma radiation scans, smears for detection of removable contamination, and direct measurements for alpha and beta-gamma radiation activity on the basement and mezzanine floors and the building`s interior and exterior walls. Soil samples were taken, and beta-gamma and gamma radiation exposure rates were measured on areas adjacent to the building. Results of measurements on building surfaces at this facility were within established contamination guidelines except for elevated beta-gamma radiation levels located on three isolated areas of the basement floor. Following remediation of these areas, ORNL/PAG reviewed the remedial action contractor`s report and agreed that remediation was effective in removing the source of the elevated direct radiation. Results of all independent soil analyses for {sup 60}Co were below the detection limit. The highest {sup 137}Cs analysis result was 4.6 pCi/g; this value is below the INEL site-specific guideline of 10 pCi/g.

  1. Idaho National Engineering Laboratory Waste Area Groups 1-7 and 10 Technology Logic Diagram. Volume 3

    SciTech Connect (OSTI)

    O`Brien, M.C.; Meservey, R.H.; Little, M.; Ferguson, J.S.; Gilmore, M.C.

    1993-09-01T23:59:59.000Z

    The Idaho National Engineering Laboratory (INEL) Technology Logic Diagram (TLD) was developed to provide a decision support tool that relates Environmental Restoration (ER) and Waste Management (WM) problems at the INEL to potential technologies that can remediate these problems. The TLD identifies the research, development, demonstration, testing, and evaluation needed to develop these technologies to a state that allows technology transfer and application to an environmental restoration need. It is essential that follow-on engineering and system studies be conducted to build on the output of this project. These studies will begin by selecting the most promising technologies identified in this TLD and finding an optimum mix of technologies that will provide a socially acceptable balance between cost and risk to meet the site windows of opportunity. The TLD consists of three separate volumes: Volume I includes the purpose and scope of the TLD, a brief history of the INEL Waste Area Groups, and environmental problems they represent. A description of the TLD, definitions of terms, a description of the technology evaluation process, and a summary of each subelement, is presented. Volume II describes the overall layout and development of the TLD in logic diagram format. This section addresses the environmental restoration of contaminated INEL sites. Volume III (this volume) provides the Technology Evaluation Data Sheets (TEDS) for Environmental Restoration and Waste Management (EM) activities that are reference by a TEDS code number in Volume II. Each of these sheets represents a single logic trace across the TLD. These sheets contain more detail than provided for technologies in Volume II. Data sheets are arranged alphanumerically by the TEDS code number in the upper right corner of each sheet.

  2. Engineering Project Management Using The Engineering Cockpit

    E-Print Network [OSTI]

    Engineering Project Management Using The Engineering Cockpit A collaboration platform for project managers and engineers Thomas Moser, Richard Mordinyi, Dietmar Winkler and Stefan Biffl Christian Doppler Laboratory "Software Engineering Integration for Flexible Automation Systems" Vienna University of Technology

  3. 1996 Idaho National Engineering and Environmental Laboratory (INEEL) National Emissions Standards for Hazardous Air Pollutants (NESHAPs) -- Radionuclides. Annual report

    SciTech Connect (OSTI)

    NONE

    1997-06-01T23:59:59.000Z

    Under Section 61.94 of Title 40, Code of Federal Regulations (CFR), Part 61, Subpart H, ``National Emission Standards for Emissions of Radionuclides Other Than Radon From Department of Energy Facilities,`` each Department of Energy (DOE) facility must submit an annual report documenting compliance. This report addresses the Section 61.94 reporting requirements for operations at the Idaho National Engineering and Environmental Laboratory (INEEL) for calendar year (CY) 1996. The Idaho Operations Office of the DOE is the primary contact concerning compliance with the National Emission Standards for Hazardous Air Pollutants (NESHAPs) at the INEEL. For calendar year 1996, airborne radionuclide emissions from the INEEL operations were calculated to result in a maximum individual dose to a member of the public of 3.14E-02 mrem (3.14E-07 Sievert). This effective dose equivalent (EDE) is well below the 40 CFR 61, Subpart H, regulatory standard of 10 mrem per year (1.0E-04 Sievert per year).

  4. Workshop proceedings: Developing the scientific basis for long-term land management of the Idaho National Engineering and Environmental Laboratory

    SciTech Connect (OSTI)

    Sperber, T.D.; Reynolds, T.D. [eds.] [Environmental Science and Research Foundation, Inc., Idaho Falls, ID (United States); Breckenridge, R.P. [ed.] [Lockheed Martin Idaho Technologies Co., Idaho Falls, ID (United States)

    1998-03-01T23:59:59.000Z

    Responses to a survey on the INEEL Comprehensive Facility and Land Use Plan (US DOE 1996a) indicated the need for additional discussion on environmental resources, disturbance, and land use issues on the Idaho National Engineering and Environmental Laboratory (INEEL). As a result, in September 1997, a workshop evaluated the existing scientific basis and determined future data needs for long-term land management on the INEEL. This INEEL Long-Term Land Management Workshop examined existing data on biotic, abiotic, and heritage resources and how these resources have been impacted by disturbance activities of the INEEL. Information gained from this workshop will help guide land and facility use decisions, identify data gaps, and focus future research efforts. This report summarizes background information on the INEEL and its long-term land use planning efforts, presentations and discussions at the workshop, and the existing data available at the INEEL. In this document, recommendations for future INEEL land use planning, research efforts, and future workshops are presented. The authors emphasize these are not policy statements, but comments and suggestions made by scientists and others participating in the workshop. Several appendices covering land use disturbance, legal drivers, land use assumptions and workshop participant comments, workshop participants and contributors, and the workshop agenda are also included.

  5. Sorbent Testing For Solidification of Process Waste streams from the Radiochemical Engineering Development Center at Oak Ridge National Laboratory

    SciTech Connect (OSTI)

    Bickford, J. [MSE Technology Applications, Inc., MT (United States); Taylor, P. [Oak Ridge National Laboratory, Oak Ridge, TN (United States)

    2007-07-01T23:59:59.000Z

    The U.S. Department of Energy (DOE) tasked MSE Technology Applications, Inc. (MSE) to evaluate sorbents identified by Oak Ridge National Laboratory (ORNL) to solidify the radioactive liquid organic waste from the Radiochemical Engineering Development Center (REDC) at ORNL. REDC recovers and purifies heavy elements (berkelium, californium, einsteinium, and fermium) from irradiated targets for research and industrial applications. Both organic and aqueous waste streams are discharged from REDC. The organic waste is generated from the plutonium/uranium extraction (Purex), Cleanex, and Pubex processes. The Purex waste derives from an organic-aqueous isotope separation process for plutonium and uranium fission products, the Cleanex waste derives from the removal of fission products and other impurities from the americium/curium product, and the Pubex waste is derived from the separation process of plutonium from dissolved targets. MSE had also been tasked to test a grouting formula for the aqueous waste stream that includes radioactive shielding material. The aqueous waste is a mixture of the raffinate streams from the various extraction processes plus the caustic solution that is used to dissolve the aluminum cladding from the irradiated targets. (authors)

  6. Preliminary delineation of natural geochemical reactions, Snake River Plain aquifer system, Idaho National Engineering Laboratory and vicinity, Idaho

    SciTech Connect (OSTI)

    Knobel, L.L.; Bartholomay, R.C.; Orr, B.R.

    1997-05-01T23:59:59.000Z

    The U.S. Geological Survey, in cooperation with the U.S. Department of Energy, is conducting a study to determine the natural geochemistry of the Snake River Plain aquifer system at the Idaho National Engineering Laboratory (INEL), Idaho. As part of this study, a group of geochemical reactions that partially control the natural chemistry of ground water at the INEL were identified. Mineralogy of the aquifer matrix was determined using X-ray diffraction and thin-section analysis and theoretical stabilities of the minerals were used to identify potential solid-phase reactants and products of the reactions. The reactants and products that have an important contribution to the natural geochemistry include labradorite, olivine, pyroxene, smectite, calcite, ferric oxyhydroxide, and several silica phases. To further identify the reactions, analyses of 22 representative water samples from sites tapping the Snake River Plain aquifer system were used to determine the thermodynamic condition of the ground water relative to the minerals in the framework of the aquifer system. Principal reactions modifying the natural geochemical system include congruent dissolution of olivine, diopside, amorphous silica, and anhydrite; incongruent dissolution of labradorite with calcium montmorillonite as a residual product; precipitation of calcite and ferric oxyhydroxide; and oxidation of ferrous iron to ferric iron. Cation exchange reactions retard the downward movement of heavy, multivalent waste constituents where infiltration ponds are used for waste disposal.

  7. Strontium Distribution Coefficients of Surficial and Sedimentary Interbed Samples from the Idaho National Engineering and Environmental Laboratory, Idaho

    SciTech Connect (OSTI)

    M. J. Liszewski (USGS); J. J. Rosentreter (ISU); K. E. Miller (USGS); R. C. Bartholomay (USGS)

    1998-04-01T23:59:59.000Z

    The transport and fate of waste constituents in geologic media is dependent on physical and chemical processes that govern the distribution of constituents between the solid, geologic, stationary phase and an aqueous, mobile phase. This distribution often is quantified, at thermodynamic equilibrium by an empirically determined parameter called the distribution coefficient (Kd). Kd's can be used effectively to summarize the chemical factors that affect transport efficiency of ground-water constituents. Strontium distribution coefficients (Kd's) were measured for 21 surficial and 17 sedimentary interbed samples collected from sediment cores from selected sites at the Idaho National Engineering and Environmental Laboratory (INEEL) to help assess the variability of strontium Kd's at the INEEL as part of an ongoing investigation of strontium chemical-transport properties. Batch experimental techniques were used to determine strontium Kd's of the sediments. Measured strontium Kd's of th e surficial and interbedded sediments ranged from 26{+-}1 to 328{+-}41 milliliters per gram. These results indicate significant variability in the strontium sorptive capacities of surficial and interbedded sediments at the INEEL. Some of this variability can be attributed to physical and chemical properties of the sediment; other variability may be due to compositional changes in the equilibrated solutions after being mixed with the sediment.

  8. Engineering Evaluation of Proposed Alternative Salt Transfer Method for the Molten Salt Reactor Experiement for the Oak Ridge National Laboratory

    SciTech Connect (OSTI)

    Carlberg, Jon A.; Roberts, Kenneth T.; Kollie, Thomas G.; Little, Leslie E.; Brady, Sherman D.

    2009-09-30T23:59:59.000Z

    This evaluation was performed by Pro2Serve in accordance with the Technical Specification for an Engineering Evaluation of the Proposed Alternative Salt Transfer Method for the Molten Salt Reactor Experiment at the Oak Ridge National Laboratory (BJC 2009b). The evaluators reviewed the Engineering Evaluation Work Plan for Molten Salt Reactor Experiment Residual Salt Removal, Oak Ridge National Laboratory, Oak Ridge, Tennessee (DOE 2008). The Work Plan (DOE 2008) involves installing a salt transfer probe and new drain line into the Fuel Drain Tanks and Fuel Flush Tank and connecting them to the new salt transfer line at the drain tank cell shield. The probe is to be inserted through the tank ball valve and the molten salt to the bottom of the tank. The tank would then be pressurized through the Reactive Gas Removal System to force the salt into the salt canisters. The Evaluation Team reviewed the work plan, interviewed site personnel, reviewed numerous documents on the Molten Salt Reactor (Sects. 7 and 8), and inspected the probes planned to be used for the transfer. Based on several concerns identified during this review, the team recommends not proceeding with the salt transfer via the proposed alternate salt transfer method. The major concerns identified during this evaluation are: (1) Structural integrity of the tanks - The main concern is with the corrosion that occurred during the fluorination phase of the uranium removal process. This may also apply to the salt transfer line for the Fuel Flush Tank. Corrosion Associated with Fluorination in the Oak Ridge National Laboratory Fluoride Volatility Process (Litman 1961) shows that this problem is significant. (2) Continued generation of Fluorine - Although the generation of Fluorine will be at a lower rate than experienced before the uranium removal, it will continue to be generated. This needs to be taken into consideration regardless of what actions are taken with the salt. (3) More than one phase of material - There are likely multiple phases of material in the salt (metal or compound), either suspended through the salt matrix, layered in the bottom of the tank, or both. These phases may contribute to plugging during any planned transfer. There is not enough data to know for sure. (4) Probe heat trace - The alternate transfer method does not include heat tracing of the bottom of the probe. There is a concern that this may cool the salt and other phases of materials present enough to block the flow of salt. (5) Stress-corrosion cracking - Additionally, there is a concern regarding moisture that may have been introduced into the tanks. Due to time constraints, this concern was not validated. However, if moisture was introduced into the tanks and not removed during heating the tanks before HF and F2 sparging, there would be an additional concern regarding the potential for stress-corrosion cracking of the tank walls.

  9. PROJECT-SPECIFIC TYPE A VERIFICATION FOR THE BROOKHAVEN GRAPHITE RESEARCH REACTOR ENGINEERED CAP, BROOKHAVEN NATIONAL LABORATORY UPTON, NEW YORK DCN 5098-SR-07-0

    SciTech Connect (OSTI)

    Evan Harpenau

    2011-07-15T23:59:59.000Z

    The Oak Ridge Institute for Science and Education (ORISE) has reviewed the project documentation and data for the Brookhaven Graphite Research Reactor (BGRR) Engineered Cap at Brookhaven National Laboratory (BNL) in Upton, New York. The Brookhaven Science Associates (BSA) have completed removal of affected soils and performed as-left surveys by BSA associated with the BGRR Engineered Cap. Sample results have been submitted, as required, to demonstrate that remediation efforts comply with the cleanup goal of {approx}15 mrem/yr above background to a resident in 50 years (BNL 2011a).

  10. Observing and modeling nonlinear dynamics in an internal combustion engine Engineering Technology Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831-8088

    E-Print Network [OSTI]

    Tennessee, University of

    Observing and modeling nonlinear dynamics in an internal combustion engine C. S. Daw* Engineering motivated, nonlinear map as a model for cyclic combustion variation in spark-ignited internal combustion combustion engines can exhibit substantial cycle-to-cycle variation in combustion energy release

  11. Department of Energy Programmatic Spent Nuclear Fuel Management and Idaho National Engineering Laboratory Environmental Restoration and Waste Management Programs Draft Environmental Impact Statement. Volume 1

    SciTech Connect (OSTI)

    Not Available

    1994-06-01T23:59:59.000Z

    This document analyzes at a pregrammatic level the potential environmental consequences over the next 40 years of alternatives related to the transportation, receipt, processing, and storage of spent nuclear fuel under the responsibility of the US Department of Energy. It also analyzes the site-specific consequences of the Idaho National Engineering Laboratory sitewide actions anticipated over the next 10 years for waste and spent nuclear fuel management and environmental restoration. For pregrammatic spent nuclear fuel management, this document analyzes alternatives of no action, decentralization, regionalization, centralization and the use of the plans that existed in 1992/1993 for the management of these materials. For the Idaho National Engineering Laboratory, this document analyzes alternatives of no action, ten-year plan, minimum and maximum treatment, storage, and disposal of US Department of Energy wastes.

  12. Department of Energy Programmatic Spent Nuclear Fuel Management and Idaho National Engineering Laboratory Environmental Restoration and Waste Management Programs Draft Environmental Impact Statement. Volume 2, Part A

    SciTech Connect (OSTI)

    Not Available

    1994-06-01T23:59:59.000Z

    This document analyzes at a programmatic level the potential environmental consequences over the next 40 years of alternatives related to the transportation, receipt, processing, and storage of spent nuclear fuel under the responsibility of the US Department of Energy. It also analyzes the site-specific consequences of the Idaho National Engineering Laboratory sitewide actions anticipated over the next 10 years for waste and spent nuclear fuel management and environmental restoration. For programmatic spent nuclear fuel management this document analyzes alternatives of no action, decentralization, regionalization, centralization and the use of the plans that existed in 1992/1993 for the management of these materials. For the Idaho National Engineering Laboratory, this document analyzes alternatives of no action, ten-year plan, minimum and maximum and maximum treatment, storage, and disposal of US Department of Energy wastes.

  13. Department of Energy Programmatic Spent Nuclear Fuel Management and Idaho National Engineering Laboratory Environmental Restoration and Waste Management Programs draft environmental impact statement. Summary

    SciTech Connect (OSTI)

    Not Available

    1994-06-01T23:59:59.000Z

    This document analyzes at a programmatic level the potential environmental consequences over the next 40 years of alternatives related to the transportation, receipt, processing, and storage of spent nuclear fuel under the responsibility of the US Department of Energy. It also analyzes the site-specific consequences of the Idaho National Engineering Laboratory sitewide actions anticipated over the next 10 years for waste and spent nuclear fuel management and environmental restoration. For programmatic spent nuclear fuel management, this document analyzes alternatives of no action, decentralization, regionalization, centralization and the use of the plans that existed in 1992/1993 for the management of these materials. For the Idaho National Engineering Laboratory, this document analyzes alternatives of no action, ten-year plan, minimum and maximum treatment, storage, and disposal of US Department of Energy wastes.

  14. EA-1407: Proposed TA-16 Engineering Complex Refurbishment and Consolidation at Los Alamos National Laboratory, Los Alamos, New Mexico

    Broader source: Energy.gov [DOE]

    This EA evaluates the environmental impacts for the proposal to construct and operate offices, laboratories, and shops within the U.S. Department of Energy Los Alamos National Laboratory's (LANL)...

  15. RCRA Part B Permit Application for the Idaho National Engineering Laboratory - Volume 5 Radioactive Waste Management Complex

    SciTech Connect (OSTI)

    Pamela R. Cunningham

    1992-07-01T23:59:59.000Z

    This section of the Radioactive Waste Management Complex (RWMC) Part B permit application describes the waste characteristics Of the transuranic (TRU) mixed wastes at the RWMC waste management units to be permitted: the Intermediate-Level Transuranic Storage Facility (ILTSF) and the Waste Storage Facility (WSF). The ILTSF is used to store radioactive remote-handled (RH) wastes. The WSF will be used to store radioactive contact-handled (CH) wastes. The Transuranic Storage Area (TSA) was established at the RWMC to provide interim storage of TRU waste. Department of Energy (DOE) Order 5820.2A defines TRU waste as waste contaminated with alpha-emitting transuranium radionuclides with half-lives greater than 20 years in concentrations greater than 100 nanocuries per gram (nCi/g) o f waste material. The TSA serves generators both on and off the Idaho National Engineering Laboratory (INEL). The ILTSF is located at the TSA, and the WSF will be located there also. Most of the wastes managed at the TSA are mixed wastes, which are radioactive wastes regulated under the Atomic Energy Act (AEA) that also contain hazardous materials regulated under the Resource Conservation and Recovery Act (RCRA) and the Idaho Hazardous Waste Management Regulations. These wastes include TRU mixed wastes and some low-level mixed wastes. Accordingly, the TSA is subject to the permitting requirements of RCRA and the Idaho Administrative Procedures Act (IDAPA). Prior to 1982, DOE orders defined TRU wastes as having transuranium radionuclides in concentrations greater than 10 nCi/g, The low-level mixed wastes managed at the TSA are those wastes with 10 to 100 nCi/g of TRU radionuclides that prior to 1982 were considered TRU waste.

  16. Energy Department Employees Recognized for Power Restoration...

    Energy Savers [EERE]

    and commercial equipment that will save consumers money and reduce energy consumption and air pollution. "The Samuel J. Heyman Service to America Medals recognize federal employees...

  17. Quality New Mexico recognizes Community Programs Office

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    CPO receives Pion recognition Quality New Mexico recognizes Community Programs Office LANL has received 14 Pion and Roadrunner recognitions from Quality New Mexico since 1997....

  18. Naval Civil Engineering Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC)Integrated CodesTransparency VisitSilver Toyota1Resourceloading newNaturalNatureNaval

  19. Argonne's Laboratory computing resource center : 2006 annual report.

    SciTech Connect (OSTI)

    Bair, R. B.; Kaushik, D. K.; Riley, K. R.; Valdes, J. V.; Drugan, C. D.; Pieper, G. P.

    2007-05-31T23:59:59.000Z

    Argonne National Laboratory founded the Laboratory Computing Resource Center (LCRC) in the spring of 2002 to help meet pressing program needs for computational modeling, simulation, and analysis. The guiding mission is to provide critical computing resources that accelerate the development of high-performance computing expertise, applications, and computations to meet the Laboratory's challenging science and engineering missions. In September 2002 the LCRC deployed a 350-node computing cluster from Linux NetworX to address Laboratory needs for mid-range supercomputing. This cluster, named 'Jazz', achieved over a teraflop of computing power (10{sup 12} floating-point calculations per second) on standard tests, making it the Laboratory's first terascale computing system and one of the 50 fastest computers in the world at the time. Jazz was made available to early users in November 2002 while the system was undergoing development and configuration. In April 2003, Jazz was officially made available for production operation. Since then, the Jazz user community has grown steadily. By the end of fiscal year 2006, there were 76 active projects on Jazz involving over 380 scientists and engineers. These projects represent a wide cross-section of Laboratory expertise, including work in biosciences, chemistry, climate, computer science, engineering applications, environmental science, geoscience, information science, materials science, mathematics, nanoscience, nuclear engineering, and physics. Most important, many projects have achieved results that would have been unobtainable without such a computing resource. The LCRC continues to foster growth in the computational science and engineering capability and quality at the Laboratory. Specific goals include expansion of the use of Jazz to new disciplines and Laboratory initiatives, teaming with Laboratory infrastructure providers to offer more scientific data management capabilities, expanding Argonne staff use of national computing facilities, and improving the scientific reach and performance of Argonne's computational applications. Furthermore, recognizing that Jazz is fully subscribed, with considerable unmet demand, the LCRC has framed a 'path forward' for additional computing resources.

  20. Mentoring | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    As one of the largest laboratories in the nation for science and engineering research, Argonne National Laboratory is home to some of the most prolific and well-renowned scientists...

  1. Laboratory Evaluation of In Situ Chemical Oxidation for Groundwater Remediation, Test Area North, Operable Unit 1-07B, Idaho National Engineering and Environmental Laboratory, Volume One - Main Text and Appendices A and B

    SciTech Connect (OSTI)

    Cline, S.R.; Denton, D.L.; Giaquinto, J.M.; McCracken, M.K.; Starr, R.C.

    1999-04-01T23:59:59.000Z

    The laboratory investigation was performed to evaluate the feasibility of utilizing in situ chemical oxidation for remediating the secondary source of groundwater contaminants at the Idaho National Engineering and Environmental Laboratory (INEEL) Test Area North (TAN) Site. The study involved trichloroethene (TCE) contaminated media (groundwater, soil, and sludge) from TAN. The effectiveness of the selected oxidant, potassium permanganate (KMn0(sub4)), was evaluated at multiple oxidant and contaminant concentrations. Experiments were performed to determine the oxidant demand of each medium and the rate of TCE oxidation. The experiments were performed under highly controlled conditions (gas-tight reactors, constant 12C temperature). Multiple parameter were monitored over time including MN0(sub 4) and TCE concentrations and pH.

  2. Laboratory Evaluation of In Situ Chemical Oxidation for Groundwater Remediation, Test Area North, Operable Unit 1-07B, Idaho National Engineering and Environmental Laboratory, Volume Two, Appendices C, D, and E

    SciTech Connect (OSTI)

    Cline, S.R.; Denton, D.L.; Giaquinto, J.M.; McCracken, M.K.; Starr, R.C.

    1999-04-01T23:59:59.000Z

    These appendices support the results and discussion of the laboratory work performed to evaluate the feasibility of in situ chemical oxidation for Idaho National Environmental and Engineering Laboratory's (INEEL) Test Area North (TAN) which is contained in ORNL/TM-1371 l/Vol. This volume contains Appendices C-E. Appendix C is a compilation of all recorded data and mathematical calculations made to interpret the data. For the Task 3 and Task 4 work, the spreadsheet column definitions are included immediately before the actual spreadsheet pages and are listed as ''Sample Calculations/Column Definitions'' in the table of contents. Appendix D includes the chronological order in which the experiments were conducted and the final project costs through October 1998. Appendix E is a compilation of the monthly progress reports submitted to INEEL during the course of the project.

  3. Secretary's Honor Awards: Recognizing Employee Excellence | Department...

    Office of Environmental Management (EM)

    at a reduced cost to taxpayers. Mars Science Laboratory Multi-Mission Radioisotope Thermoelectric Generator team for delivering the Generator for the NASA's Mars Science laboratory...

  4. Tomé wins Distinguished Scientist, Engineer Award

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ScientistEngineer Award Tom wins Distinguished Scientist, Engineer Award The Minerals, Metals & Materials Society recognized Tom for his "long lasting contribution to...

  5. The Intelligent Systems and Control Laboratory and the Advanced Power Systems Research Center in the Department of Mechanical Engineering Engineering Mechanics at Michigan Technological University invites

    E-Print Network [OSTI]

    Endres. William J.

    and practical knowledge of how their performance varies when engines are run with biodiesel fuel blends including backpacking, hiking, camping, fishing, and both alpine and crosscountry skiing at Michigan

  6. Engineering AnteaterDrive

    E-Print Network [OSTI]

    Mease, Kenneth D.

    Rockw ell & M DEA Engineering Tower AnteaterDrive AnteaterDrive East Peltason Drive EastPeltasonDrive East Peltason Drive Anteater Parking Structure EngineeringServiceRoad Engineering Laboratory Facility Engineering Gateway Engineering Hall AIRB Calit2 Engineering Lecture Hall Campus Building Engineering Building

  7. Software Engineering for Space Exploration Iowa State University and Jet Propulsion Laboratory/California Institute of Technology

    E-Print Network [OSTI]

    Lutz, Robyn R.

    and Techniques, D.2.4.g Reliability, D.2.7 Distribution, Maintenance and Enhancement, D.2.15 Software and System Safety. 1. Software engineering plays a vital role in space exploration Innovations in robotic spacecraft1 Software Engineering for Space Exploration Robyn Lutz Iowa State University and Jet

  8. Engines

    SciTech Connect (OSTI)

    Enga, B.E.

    1981-08-25T23:59:59.000Z

    This invention relates to Stirling engines and to improved methods of operation whereby catalytic oxidation of a major proportion of the fuel takes place in the external combustor. An external combustion unit of a Stirling engine comprises a catalytic combustor having a thermally stable and oxidation resistant monolith made from and/or carrying a catalytic material and including a multiplicity of flow paths for catalytic combustion of combustible gases and injected fuel. The use of a catalytic combustor in accordance with this invention enables a Stirling or other engine fitted therewith to be used in areas such as mines and underwater installations where conventional flame combustion is impracticable or is controlled by stringent regulations.

  9. Fossil Energy Acting Assistant Secretary Recognized at Black Engineer of

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33Frequently20,000 RussianBy: Thomas P. D'Agostino, Undersecretary forCITIFormat for

  10. Hispanic engineers group recognizes ORNL's Idrobo | ornl.gov

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville PowerCherries 82981-1cnHigh School football High SchoolBundles toHiring ReconstructionandApply

  11. Iyer, Woldegabriel recognized for helping New Mexico small businesses

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    December Iyer, Woldegabriel recognized Iyer, Woldegabriel recognized for helping New Mexico small businesses The scientists received Principal Investigator Excellence (PIE)...

  12. Sandia National Laboratories Advanced Simulation and Computing (ASC) software quality plan. Part 1: ASC software quality engineering practices, Version 2.0.

    SciTech Connect (OSTI)

    Sturtevant, Judith E.; Heaphy, Robert; Hodges, Ann Louise; Boucheron, Edward A.; Drake, Richard Roy; Minana, Molly A.; Hackney, Patricia; Forsythe, Christi A.; Schofield, Joseph Richard, Jr. (,; .); Pavlakos, Constantine James; Williamson, Charles Michael; Edwards, Harold Carter

    2006-09-01T23:59:59.000Z

    The purpose of the Sandia National Laboratories Advanced Simulation and Computing (ASC) Software Quality Plan is to clearly identify the practices that are the basis for continually improving the quality of ASC software products. The plan defines the ASC program software quality practices and provides mappings of these practices to Sandia Corporate Requirements CPR 1.3.2 and 1.3.6 and to a Department of Energy document, ASCI Software Quality Engineering: Goals, Principles, and Guidelines. This document also identifies ASC management and software project teams responsibilities in implementing the software quality practices and in assessing progress towards achieving their software quality goals.

  13. Summary of ground water and surface water flow and contaminant transport computer codes used at the Idaho National Engineering Laboratory (INEL). Version 1.0

    SciTech Connect (OSTI)

    Bandy, P.J.; Hall, L.F.

    1993-03-01T23:59:59.000Z

    This report presents information on computer codes for numerical and analytical models that have been used at the Idaho National Engineering Laboratory (INEL) to model ground water and surface water flow and contaminant transport. Organizations conducting modeling at the INEL include: EG&G Idaho, Inc., US Geological Survey, and Westinghouse Idaho Nuclear Company. Information concerning computer codes included in this report are: agency responsible for the modeling effort, name of the computer code, proprietor of the code (copyright holder or original author), validation and verification studies, applications of the model at INEL, the prime user of the model, computer code description, computing environment requirements, and documentation and references for the computer code.

  14. Summary of ground water and surface water flow and contaminant transport computer codes used at the Idaho National Engineering Laboratory (INEL). [Contaminant transport computer codes

    SciTech Connect (OSTI)

    Bandy, P.J.; Hall, L.F.

    1993-03-01T23:59:59.000Z

    This report presents information on computer codes for numerical and analytical models that have been used at the Idaho National Engineering Laboratory (INEL) to model ground water and surface water flow and contaminant transport. Organizations conducting modeling at the INEL include: EG G Idaho, Inc., US Geological Survey, and Westinghouse Idaho Nuclear Company. Information concerning computer codes included in this report are: agency responsible for the modeling effort, name of the computer code, proprietor of the code (copyright holder or original author), validation and verification studies, applications of the model at INEL, the prime user of the model, computer code description, computing environment requirements, and documentation and references for the computer code.

  15. Sandia National Laboratories Advanced Simulation and Computing (ASC) software quality plan part 2 mappings for the ASC software quality engineering practices, version 2.0.

    SciTech Connect (OSTI)

    Heaphy, Robert; Sturtevant, Judith E.; Hodges, Ann Louise; Boucheron, Edward A.; Drake, Richard Roy; Minana, Molly A.; Hackney, Patricia; Forsythe, Christi A.; Schofield, Joseph Richard, Jr. (,; .); Pavlakos, Constantine James; Williamson, Charles Michael; Edwards, Harold Carter

    2006-09-01T23:59:59.000Z

    The purpose of the Sandia National Laboratories Advanced Simulation and Computing (ASC) Software Quality Plan is to clearly identify the practices that are the basis for continually improving the quality of ASC software products. The plan defines the ASC program software quality practices and provides mappings of these practices to Sandia Corporate Requirements CPR001.3.2 and CPR001.3.6 and to a Department of Energy document, ''ASCI Software Quality Engineering: Goals, Principles, and Guidelines''. This document also identifies ASC management and software project teams' responsibilities in implementing the software quality practices and in assessing progress towards achieving their software quality goals.

  16. FY10 Engineering Innovations, Research and Technology Report

    SciTech Connect (OSTI)

    Lane, M A; Aceves, S M; Paulson, C N; Candy, J V; Bennett, C V; Carlisle, K; Chen, D C; White, D A; Bernier, J V; Puso, M A; Weisgraber, T H; Corey, B; Lin, J I; Wheeler, E K; Conway, A M; Kuntz, J D; Spadaccini, C M; Dehlinger, D A; Kotovsky, J; Nikolic, R; Mariella, R P; Foudray, A K; Tang, V; Guidry, B L; Ng, B M; Lemmond, T D; Chen, B Y; Meyers, C A; Houck, T L

    2011-01-11T23:59:59.000Z

    This report summarizes key research, development, and technology advancements in Lawrence Livermore National Laboratory's Engineering Directorate for FY2010. These efforts exemplify Engineering's nearly 60-year history of developing and applying the technology innovations needed for the Laboratory's national security missions, and embody Engineering's mission to ''Enable program success today and ensure the Laboratory's vitality tomorrow.'' Leading off the report is a section featuring compelling engineering innovations. These innovations range from advanced hydrogen storage that enables clean vehicles, to new nuclear material detection technologies, to a landmine detection system using ultra-wideband ground-penetrating radar. Many have been recognized with R&D Magazine's prestigious R&D 100 Award; all are examples of the forward-looking application of innovative engineering to pressing national problems and challenging customer requirements. Engineering's capability development strategy includes both fundamental research and technology development. Engineering research creates the competencies of the future where discovery-class groundwork is required. Our technology development (or reduction to practice) efforts enable many of the research breakthroughs across the Laboratory to translate from the world of basic research to the national security missions of the Laboratory. This portfolio approach produces new and advanced technological capabilities, and is a unique component of the value proposition of the Lawrence Livermore Laboratory. The balance of the report highlights this work in research and technology, organized into thematic technical areas: Computational Engineering; Micro/Nano-Devices and Structures; Measurement Technologies; Engineering Systems for Knowledge Discovery; and Energy Manipulation. Our investments in these areas serve not only known programmatic requirements of today and tomorrow, but also anticipate the breakthrough engineering innovations that will be needed in the future.

  17. The authors are with the Vision, Imaging, Video and Audio research laboratory, School of Information Technology and Engineering,

    E-Print Network [OSTI]

    Payeur, Pierre

    of Information Technology and Engineering, University of Ottawa, Ottawa, Canada, K1N 6N5. Email: [ppayeur, yliu found in Northern parts of Canada and Europe also preempt this technology to be widely used. Combustible

  18. Engineering and Architecture (FEA)

    E-Print Network [OSTI]

    Faculty of Engineering and Architecture (FEA) #12;362 Faculty of Engineering and Architecture (FEA) Undergraduate Catalogue 2014­15 Faculty of Engineering and Architecture (FEA) Officers of the Faculty Peter F as 1913 the University recognized the need for engineering education and training in the Middle East

  19. University , Engineering

    E-Print Network [OSTI]

    Zakharov, Leonid E.

    , Princeton Plasma Physics Laboratory Presented at Seminar of Department of Nuclear Engineering Massachusetts{AC020{76{CHO{3073. Leonid E. Zakharov, Department of Nuclear Engineering, MIT , Feb.26, 2001, Cambridge acting on the guide wall. This design concept opens opportunities for nuclear engineers and technologists

  20. Sandia National Laboratories Advanced Simulation and Computing (ASC) software quality plan. Part 1 : ASC software quality engineering practices version 1.0.

    SciTech Connect (OSTI)

    Minana, Molly A.; Sturtevant, Judith E.; Heaphy, Robert; Hodges, Ann Louise; Boucheron, Edward A.; Drake, Richard Roy; Forsythe, Christi A.; Schofield, Joseph Richard, Jr.; Pavlakos, Constantine James; Williamson, Charles Michael; Edwards, Harold Carter

    2005-01-01T23:59:59.000Z

    The purpose of the Sandia National Laboratories (SNL) Advanced Simulation and Computing (ASC) Software Quality Plan is to clearly identify the practices that are the basis for continually improving the quality of ASC software products. Quality is defined in DOE/AL Quality Criteria (QC-1) as conformance to customer requirements and expectations. This quality plan defines the ASC program software quality practices and provides mappings of these practices to the SNL Corporate Process Requirements (CPR 1.3.2 and CPR 1.3.6) and the Department of Energy (DOE) document, ASCI Software Quality Engineering: Goals, Principles, and Guidelines (GP&G). This quality plan identifies ASC management and software project teams' responsibilities for cost-effective software engineering quality practices. The SNL ASC Software Quality Plan establishes the signatories commitment to improving software products by applying cost-effective software engineering quality practices. This document explains the project teams opportunities for tailoring and implementing the practices; enumerates the practices that compose the development of SNL ASC's software products; and includes a sample assessment checklist that was developed based upon the practices in this document.

  1. Engineering

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOnItem NotEnergy,ARMFormsGasReleaseSpeeches Energy Speeches RSS June 25,Engineering

  2. Engineering

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville Power AdministrationField8, 2000Consumption SurveyEnergyphysicist Dave JohnsonEngineering

  3. Sandia National Laboratories: Energy Efficiency

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    impact of swirl ratio and injection pressure on fuel-air mixing in a light-duty diesel engine." This award recognizes the best technical contribution from all ... Key Hydrogen...

  4. Opportunities with Laboratories under the Chicago Office

    Broader source: Energy.gov (indexed) [DOE]

    with Laboratories under the Chicago Office 1 Princeton Plasma Physics Laboratory 1. Mechanical Engineering Services; Larry Dudek; 188,000 2. Phone system; William Bryan; 300,000...

  5. Recognizing Entailment in Intelligent Tutoring Systems

    E-Print Network [OSTI]

    Palmer, Martha

    Recognizing Entailment in Intelligent Tutoring Systems RODNEY D. NIELSEN1,2 , WAYNE WARD1 and Education Research University of Colorado, Campus Box 594, Boulder, Colorado 80309-0594, USA Rodney, etc. These systems range from Finite State Machines and scripted dialogues (c.f., Pon- Barry, Clark

  6. Industrial Assessment Center Awards: Recognizing Excellence in...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    in Future Energy Leaders May 5, 2014 - 2:19pm Addthis Dayakar Devaru, University of West Virginia graduate student, named Outstanding IAC Engineering Student for his...

  7. Intern experience with the Environmental Laboratory of the U.S. Army Engineer Waterways Experiment Station: an internship report

    E-Print Network [OSTI]

    Truitt, Clifford Lee, 1948-

    2013-03-13T23:59:59.000Z

    at no cost to the District. Typical DOTS requests include technically reviewing proposed project designs, compiling and providing references on a technical topic, devel? oping scopes of work for District contracts, reviewing test data and acting... the author managed and executed a complete, comprehensive engineering pro? ject examining the feasibility of an innovative dredged material dis? posal technique. The Indiana Harbor project provided an opportunity to function as a member of a large inter...

  8. Los Alamos National Laboratory, an affirmative action/equal opportunity employer, is operated by the University of California for the U.S. Department of Energy under contract W-7405-ENG-36. By acceptance of this article, the publisher recognizes that the

    E-Print Network [OSTI]

    Alamos National Laboratory, Los Alamos, New Mexico 87545 (Received 17 October 1994; accepted by the University of California for the U.S. Department of Energy under contract W-7405-ENG-36. By acceptance performed under the auspices of the U.S. Department of Energy. Los Alamos National Laboratory strongly

  9. Fuels, Engines & Emissions | Clean Energy | ORNL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Fuels, Engines, Emissions SHARE Fuels, Engines and Emissions Research Fuels, Engines, and Emissions research at Oak Ridge National Laboratory is helping identify ways to increase...

  10. Nuclear Science and Engineering | ornl.gov

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Nuclear Science Engineering SHARE Nuclear Science and Engineering The Nuclear Science and Engineering Directorate (NSED) at Oak Ridge National Laboratory (ORNL) is committed to...

  11. Safety analysis report for packaging for the Idaho National Engineering Laboratory TRA Type 1 Shipping Container and TRA Type 2 Shipping Capsule

    SciTech Connect (OSTI)

    Havlovick, B.J.

    1992-07-27T23:59:59.000Z

    The TRA Type I Shipping Container and TRA Type II Shipping Capsule were designed and fabricated at the Idaho National Engineering Laboratory as special form containers for the transport of non-fissile radioisotopes and fissile radioisotopes in exempt quantities. The Type I container measures 0.75 in. outside diameter and 3.000 in long. The Type II capsule is 0.495 in. outside diameter 2.000 in. long. The container and capsule were tested and evaluated to determine their compliance with Title 49 Code of Federal Regulations 173, which governs packages for special form radioactive material. This report is based upon those tests and evaluations. The results of those tests and evaluations demonstrate the container and capsule are in full compliance with the special form shipping container regulations of 49 CFR 173.

  12. Initial performance assessment of the disposal of spent nuclear fuel and high-level waste stored at Idaho National Engineering Laboratory. Volume 1, Methodology and results

    SciTech Connect (OSTI)

    Rechard, R.P. [ed.

    1993-12-01T23:59:59.000Z

    This performance assessment characterized plausible treatment options conceived by the Idaho National Engineering Laboratory (INEL) for its spent fuel and high-level radioactive waste and then modeled the performance of the resulting waste forms in two hypothetical, deep, geologic repositories: one in bedded salt and the other in granite. The results of the performance assessment are intended to help guide INEL in its study of how to prepare wastes and spent fuel for eventual permanent disposal. This assessment was part of the Waste Management Technology Development Program designed to help the US Department of Energy develop and demonstrate the capability to dispose of its nuclear waste. Although numerous caveats must be placed on the results, the general findings were as follows: Though the waste form behavior depended upon the repository type, all current and proposed waste forms provided acceptable behavior in the salt and granite repositories.

  13. Engineering Engineering

    E-Print Network [OSTI]

    Maroncelli, Mark

    T A C T i N f O r M A T i O N #12;4 engineering is the profession in which a knowledge of advancedEngineering Engineering Technology & A T P E N N S T A T E 2 0 1 0 ­ 2 0 1 1 #12;2 Join us at penn state! Since 1896, Penn State has been a leader in engineering and engineering technology education

  14. LANL, Sandia National Lab recognize New Mexico small businesses...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    LANL, Sandia National Lab recognize New Mexico small businesses for innovation LANL, Sandia recognized New Mexico small businesses for innovation Businesses include the Pueblo of...

  15. Ten New Mexico small businesses recognized at Innovation Celebration...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    NM small businesses recognized at Innovation Celebration Ten New Mexico small businesses recognized at Innovation Celebration April 3 Small businesses participating in projects...

  16. New Mexico Small Business Assistance Program recognized by U...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    NM Small Business assistance program recognized New Mexico Small Business Assistance Program recognized by U.S. Department of Commerce Receives the 2012 Manufacturing Advocate of...

  17. Y-12 Site Office Recognized For Contributions To Combined Federal...

    National Nuclear Security Administration (NNSA)

    Home Field Offices Welcome to the NNSA Production Office NPO News Releases Y-12 Site Office Recognized For Contributions To ... Y-12 Site Office Recognized For...

  18. Oregon Institute of Technology Recognized for Increasing its...

    Office of Environmental Management (EM)

    Institute of Technology Recognized for Increasing its Use of Geothermal and Solar Energy Oregon Institute of Technology Recognized for Increasing its Use of Geothermal and Solar...

  19. Forest County Potawatomi Recognized for Renewable Energy Achievements...

    Energy Savers [EERE]

    Forest County Potawatomi Recognized for Renewable Energy Achievements Forest County Potawatomi Recognized for Renewable Energy Achievements May 28, 2014 - 5:53pm Addthis A...

  20. Solar Powering America by Recognizing Communities Funding Opportunity...

    Energy Savers [EERE]

    Solar Powering America by Recognizing Communities Funding Opportunity Solar Powering America by Recognizing Communities Funding Opportunity March 5, 2015 5:00PM EST U.S. Department...

  1. Department of Energy Recognizes Winners of 2011 Federal Energy...

    Energy Savers [EERE]

    Department of Energy Recognizes Winners of 2011 Federal Energy and Water Management Awards Department of Energy Recognizes Winners of 2011 Federal Energy and Water Management...

  2. Idaho National Laboratory Advanced Test Reactor Probabilistic Risk Assessment

    Broader source: Energy.gov [DOE]

    Presenter: Bentley Harwood, Advanced Test Reactor Nuclear Safety Engineer Battelle Energy Alliance Idaho National Laboratory

  3. Materials and process engineering projects for the Sandia National Laboratories/Newly Independent States Industrial Partnering Program. Volume 2

    SciTech Connect (OSTI)

    Zanner, F.J.; Moffatt, W.C.

    1995-07-01T23:59:59.000Z

    In July, 1994, a team of materials specialists from Sandia and US. Industry traveled to Russia and the Ukraine to select and fund projects in materials and process technology in support of the Newly Independent States/Industrial Partnering Program (NIS/IPP). All of the projects are collaborations with scientists and Engineers at NIS Institutes. Each project is scheduled to last one year, and the deliverables are formatted to supply US. Industry with information which will enable rational decisions to be made regarding the commercial value of these technologies. This work is an unedited interim compilation of the deliverables received to date.

  4. Materials and process engineering projects for the Sandia National Laboratories/Newly Independent States Industrial Partnering Program. Volume 1

    SciTech Connect (OSTI)

    Zanner, F.J.; Moffatt, W.C.

    1995-07-01T23:59:59.000Z

    In July, 1994, a team of materials specialists from Sandia and U S Industry traveled to Russia and the Ukraine to select and fund projects in materials and process technology in support of the Newly Independent States/Industrial Partnering Program (NIS/IPP). All of the projects are collaborations with scientists and Engineers at NIS Institutes. Each project is scheduled to last one year, and the deliverables are formatted to supply US Industry with information which will enable rational decisions to be made regarding the commercial value of these technologies. This work is an unedited interim compilation of the deliverables received to date.

  5. The Los Alamos, Sandia, and Livermore Laboratories: Integration and collaboration solving science and technology problems for the nation

    SciTech Connect (OSTI)

    NONE

    1994-12-01T23:59:59.000Z

    More than 40 years ago, three laboratories were established to take on scientific responsibility for the nation`s nuclear weapons - Los Alamos, Sandia, and Livermore. This triad of laboratories has provided the state-of-the-art science and technology to create America`s nuclear deterrent and to ensure that the weapons are safe, secure, and to ensure that the weapons are safe, secure, and reliable. These national security laboratories carried out their responsibilities through intense efforts involving almost every field of science, engineering, and technology. Today, they are recognized as three of the world`s premier research and development laboratories. This report sketches the history of the laboratories and their evolution to an integrated three-laboratory system. The characteristics that make them unique are described and some of the major contributions they have made over the years are highlighted.

  6. The Use of Chemical and Physical Properties for Characterization of Strontium Distribution Coefficients at the Idaho National Engineering and Environmental Laboratory, Idaho

    SciTech Connect (OSTI)

    J. J. Rosentreter; R. Nieves; J. Kalivas; J. P. Rousseau; R. C. Bartholomay

    1999-06-01T23:59:59.000Z

    The U.S. Geological Survey and Idaho State University, in cooperation with the U.S. Department of Energy, conducted a study to determine strontium distribution coefficients (Kds) of surficial sediments at the Idaho National Engineering and Environmental Laboratory (INEEL). Batch experimental techniques were used to determine experimental Kds of 20 surficial-sediment samples from the INEEL. The Kds describe the distribution of a solute between the solution and solid phase. A best-fit model was obtained using a four-variable data set consisting of surface area, manganese oxide concentration, specific conductance, and pH. Application of the model to an independent split of the data resulted in an average relative error of prediction of 20 percent and a correlation coefficient of 0.921 between predicted and observed strontium Kds. Chemical and physical characteristics of the solution and sediment that could successfully predict the Kd values were identified. Prediction variable select ion was limited to variables which are either easily determined or have available tabulated characteristics. The selection criterion could circumvent the need for time- and labor-intensive laboratory experiments and provide an alternate faster method for estimating strontium Kds.

  7. Abstracts and parameter index database for reports pertaining to the unsaturated zone and surface water-ground water interactions at the Idaho National Engineering Laboratory

    SciTech Connect (OSTI)

    Bloomsburg, G.; Finnie, J.; Horn, D.; King, B.; Liou, J. [Idaho Univ., Moscow, ID (United States)

    1993-05-01T23:59:59.000Z

    This report is a product generated by faculty at the University of Idaho in support of research and development projects on Unsaturated Zone Contamination and Transport Processes, and on Surface Water-Groundwater Interactions and Regional Groundwater Flow at the Idaho National Engineering Laboratory. These projects are managed by the State of Idaho`s INEL Oversight Program under a grant from the US Department of Energy. In particular, this report meets project objectives to produce a site-wide summary of hydrological information based on a literature search and review of field, laboratory and modeling studies at INEL, including a cross-referenced index to site-specific physical, chemical, mineralogic, geologic and hydrologic parameters determined from these studies. This report includes abstracts of 149 reports with hydrological information. For reports which focus on hydrological issues, the abstracts are taken directly from those reports; for reports dealing with a variety of issues beside hydrology, the abstracts were generated by the University of Idaho authors concentrating on hydrology-related issues. Each abstract is followed by a ``Data`` section which identifies types of technical information included in a given report, such as information on parameters or chemistry, mineralogy, stream flows, water levels. The ``Data`` section does not include actual values or data.

  8. Sandia National Laboratories - Grid Integration Collaborations

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Standards Organizations - Underwriters Laboratory - Institute of Electrical and Electronics Engineers - National Institute of Standards and Technology - North American...

  9. Sandia National Laboratories: Research: Facilities: Technology...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Science and Engineering Center Pulsed Power and Systems Validation Facility Radiation Detection Materials Characterization Laboratory Shock Thermodynamic Applied Research...

  10. Introduction to Electrical and Computer Engineering

    E-Print Network [OSTI]

    Batten, Christopher

    Introduction to Electrical and Computer Engineering Christopher Batten Computer Systems Laboratory School of Electrical and Computer Engineering Cornell University ENGRG 1060 Explorations in Engineering Computer Engineering Design Power Systems Computer Engineering Electrical Circuits Electrical Devices

  11. Ray Bair | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    science, computational and laboratory research Large scale applications of high performance computing and communications News FLC awards researchers for transfer of engine...

  12. Sandia National Laboratories: advanced materials

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Laboratory, Concentrating Solar Power, Energy, Energy Storage, Facilities, National Solar Thermal Test Facility, News, News & Events, Renewable Energy, Solar, Systems Engineering...

  13. Engineering Aerial view of

    E-Print Network [OSTI]

    Yang, Junfeng

    -neutral Torus 2 Climate Change 4 Combustion and Catalysis Laboratory #12;4 5 1Engineering Revolution 5 #12;6 7Columbia Engineering Plus #12;1 1 2 3 4 5 6 Aerial view of Columbia campus with Columbia Engineering-a liated buildings highlighted in blue Columbia Engineering Plus Engineering Revolution 4

  14. Idaho National Laboratory

    ScienceCinema (OSTI)

    McCarthy, Kathy

    2013-05-28T23:59:59.000Z

    INL is the leading laboratory for nuclear R&D. Nuclear engineer Dr. Kathy McCarthy talks aobut the work there and the long-term benefits it will provide.

  15. The River Campus Libraries comprised of the Annex Storage Library; the Carlson Science and Engineering Library; the Laboratory for Laser Energetics Library; the Physics-Optics-Astronomy Library; and the Rush Rhees

    E-Print Network [OSTI]

    , Collaborative Solutions, and Digital Capabilities. Through these priorities, the River Campus Libraries aimsThe River Campus Libraries ­ comprised of the Annex Storage Library; the Carlson Science and Engineering Library; the Laboratory for Laser Energetics Library; the Physics-Optics-Astronomy Library

  16. Mixed and low-level waste treatment project: Appendix C, Health and safety criteria for the mixed and low-level waste treatment facility at the Idaho National Engineering Laboratory

    SciTech Connect (OSTI)

    Neupauer, R.M.; Thurmond, S.M.

    1992-09-01T23:59:59.000Z

    This report contains health and safety information relating to the chemicals that have been identified in the mixed waste streams at the Waste Treatment Facility at the Idaho National Engineering Laboratory. Information is summarized in two summary sections--one for health considerations and one for safety considerations. Detailed health and safety information is presented in material safety data sheets (MSDSs) for each chemical.

  17. Mixed and low-level waste treatment project: Appendix C, Health and safety criteria for the mixed and low-level waste treatment facility at the Idaho National Engineering Laboratory. Part 2, Chemical constituents

    SciTech Connect (OSTI)

    Neupauer, R.M.; Thurmond, S.M.

    1992-09-01T23:59:59.000Z

    This report contains health and safety information relating to the chemicals that have been identified in the mixed waste streams at the Waste Treatment Facility at the Idaho National Engineering Laboratory. Information is summarized in two summary sections--one for health considerations and one for safety considerations. Detailed health and safety information is presented in material safety data sheets (MSDSs) for each chemical.

  18. Mixed and low-level waste treatment project: Appendix C, Health and safety criteria for the mixed and low-level waste treatment facility at the Idaho National Engineering Laboratory. Part 1, Waste streams and treatment technologies

    SciTech Connect (OSTI)

    Neupauer, R.M.; Thurmond, S.M.

    1992-09-01T23:59:59.000Z

    This report describes health and safety concerns associated with the Mixed and Low-level Waste Treatment Facility at the Idaho National Engineering Laboratory. Various hazards are described such as fire, electrical, explosions, reactivity, temperature, and radiation hazards, as well as the potential for accidental spills, exposure to toxic materials, and other general safety concerns.

  19. Mixed and low-level waste treatment project: Appendix C, Health and safety criteria for the mixed and low-level waste treatment facility at the Idaho National Engineering Laboratory

    SciTech Connect (OSTI)

    Neupauer, R.M.; Thurmond, S.M.

    1992-09-01T23:59:59.000Z

    This report describes health and safety concerns associated with the Mixed and Low-level Waste Treatment Facility at the Idaho National Engineering Laboratory. Various hazards are described such as fire, electrical, explosions, reactivity, temperature, and radiation hazards, as well as the potential for accidental spills, exposure to toxic materials, and other general safety concerns.

  20. Argonne's Laboratory Computing Resource Center : 2005 annual report.

    SciTech Connect (OSTI)

    Bair, R. B.; Coghlan, S. C; Kaushik, D. K.; Riley, K. R.; Valdes, J. V.; Pieper, G. P.

    2007-06-30T23:59:59.000Z

    Argonne National Laboratory founded the Laboratory Computing Resource Center in the spring of 2002 to help meet pressing program needs for computational modeling, simulation, and analysis. The guiding mission is to provide critical computing resources that accelerate the development of high-performance computing expertise, applications, and computations to meet the Laboratory's challenging science and engineering missions. The first goal of the LCRC was to deploy a mid-range supercomputing facility to support the unmet computational needs of the Laboratory. To this end, in September 2002, the Laboratory purchased a 350-node computing cluster from Linux NetworX. This cluster, named 'Jazz', achieved over a teraflop of computing power (10{sup 12} floating-point calculations per second) on standard tests, making it the Laboratory's first terascale computing system and one of the fifty fastest computers in the world at the time. Jazz was made available to early users in November 2002 while the system was undergoing development and configuration. In April 2003, Jazz was officially made available for production operation. Since then, the Jazz user community has grown steadily. By the end of fiscal year 2005, there were 62 active projects on Jazz involving over 320 scientists and engineers. These projects represent a wide cross-section of Laboratory expertise, including work in biosciences, chemistry, climate, computer science, engineering applications, environmental science, geoscience, information science, materials science, mathematics, nanoscience, nuclear engineering, and physics. Most important, many projects have achieved results that would have been unobtainable without such a computing resource. The LCRC continues to improve the computational science and engineering capability and quality at the Laboratory. Specific goals include expansion of the use of Jazz to new disciplines and Laboratory initiatives, teaming with Laboratory infrastructure providers to develop comprehensive scientific data management capabilities, expanding Argonne staff use of national computing facilities, and improving the scientific reach and performance of Argonne's computational applications. Furthermore, recognizing that Jazz is fully subscribed, with considerable unmet demand, the LCRC has begun developing a 'path forward' plan for additional computing resources.

  1. Oregon State University School of Civil & Construction Engineering

    E-Print Network [OSTI]

    Haller, Merrick

    1 Oregon State University School of Civil & Construction Engineering Site Safety Plan O.H. Hinsdale Director of Civil & Construction Engineering Laboratories Melora M. Park NEES Site Operations Manager Wave Research Laboratory Structural Engineering Laboratory Geotechnical Research Facility David Trejo

  2. College of Engineering MFS Manufacturing Systems Engineering

    E-Print Network [OSTI]

    MacAdam, Keith

    ) The topics will include fundamentals of concurrent engineering, product life cycle, product specificationCollege of Engineering MFS Manufacturing Systems Engineering KEY: # = new course * = course changed of these processes. Lecture, two hours; laboratory; two hours. Prereq: EM 302, EM 313, and engineering standing

  3. College of Engineering CE Civil Engineering

    E-Print Network [OSTI]

    MacAdam, Keith

    College of Engineering CE Civil Engineering KEY: # = new course * = course changed = course.Lecture,twohours;laboratory,fourhoursperweek.Prereqorcoreq:MA113orconsentofinstructor. CE 120 INTRODUCTION TO CIVIL ENGINEERING. (1) An introduction to the civil engineering profession and the use of computer hardware and software in CE systems analysis and design

  4. at the Schulich School of Engineering

    E-Print Network [OSTI]

    Garousi, Vahid

    : power and alternative energy, telecommunications, and even oil and gas. Computer Engineering Degree Signal and Image Analysis Biometric Systems Research Biometric Technologies CARP Biosystems Modeling Lab Research Laboratory Visualization Research Laboratory Laboratory for Software Engineering Decisions Support

  5. Nuclear Engineering Nuclear Criticality Safety

    E-Print Network [OSTI]

    Kemner, Ken

    development, Nuclear Operations Division (NOD) waste management and storage activities and other laboratoryNuclear Engineering Nuclear Criticality Safety The Nuclear Engineering Division (NE) of Argonne National Laboratory is experienced in performing criticality safety and shielding evaluations for nuclear

  6. The application of formal software engineering methods to the unattended and remote monitoring software suite at Los Alamos National Laboratory

    SciTech Connect (OSTI)

    Determan, John Clifford [Los Alamos National Laboratory; Longo, Joseph F [Los Alamos National Laboratory; Michel, Kelly D [Los Alamos National Laboratory

    2009-01-01T23:59:59.000Z

    The Unattended and Remote Monitoring (UNARM) system is a collection of specialized hardware and software used by the International Atomic Energy Agency (IAEA) to institute nuclear safeguards at many nuclear facilities around the world. The hardware consists of detectors, instruments, and networked computers for acquiring various forms of data, including but not limited to radiation data, global position coordinates, camera images, isotopic data, and operator declarations. The software provides two primary functions: the secure and reliable collection of this data from the instruments and the ability to perform an integrated review and analysis of the disparate data sources. Several years ago the team responsible for maintaining the software portion of the UNARM system began the process of formalizing its operations. These formal operations include a configuration management system, a change control board, an issue tracking system, and extensive formal testing, for both functionality and reliability. Functionality is tested with formal test cases chosen to fully represent the data types and methods of analysis that will be commonly encountered. Reliability is tested with iterative, concurrent testing where up to five analyses are executed simultaneously for thousands of cycles. Iterative concurrent testing helps ensure that there are no resource conflicts or leaks when multiple system components are in use simultaneously. The goal of this work is to provide a high quality, reliable product, commensurate with the criticality of the application. Testing results will be presented that demonstrate that this goal has been achieved and the impact of the introduction of a formal software engineering framework to the UNARM product will be presented.

  7. INL Site Portion of the April 1995 Programmatic Spent Nuclear Fuel Management and Idaho National Engineering Laboratory Environmental Restoration and Waste Mamagement Programmatic Final Environmental Impact Statement

    SciTech Connect (OSTI)

    N /A

    2005-06-30T23:59:59.000Z

    In April 1995, the Department of Energy (DOE) and the Department of the Navy, as a cooperating agency, issued the Programmatic Spent Nuclear Fuel Management and Idaho National Engineering Laboratory Environmental Restoration and Waste Management Programs Final Environmental Impact Statement (1995 EIS). The 1995 EIS analyzed alternatives for managing The Department's existing and reasonably foreseeable inventories of spent nuclear fuel through the year 2035. It also included a detailed analysis of environmental restoration and waste management activities at the Idaho National Engineering and Environmental Laboratory (INEEL). The analysis supported facility-specific decisions regarding new, continued, or planned environmental restoration and waste management operations. The Record of Decision (ROD) was signed in June 1995 and amended in February 1996. It documented a number of projects or activities that would be implemented as a result of decisions regarding INL Site operations. In addition to the decisions that were made, decisions on a number of projects were deferred or projects have been canceled. DOE National Environmental Policy Act (NEPA) implementing procedures (found in 10 CFR Part 1 021.330(d)) require that a Supplement Analysis of site-wide EISs be done every five years to determine whether the site-wide EIS remains adequate. While the 1995 EIS was not a true site-wide EIS in that several programs were not included, most notably reactor operations, this method was used to evaluate the adequacy of the 1995 EIS. The decision to perform a Supplement Analysis was supported by the multi-program aspect of the 1995 EIS in conjunction with the spirit of the requirement for periodic review. The purpose of the SA is to determine if there have been changes in the basis upon which an EIS was prepared. This provides input for an evaluation of the continued adequacy of the EIS in light of those changes (i.e., whether there are substantial changes in the proposed action, significant new circumstances, or new information relevant to environmental concerns). This is not to question the previous analysis or decisions based on that analysis, but whether the environmental impact analyses are still adequate in light of programmatic changes. In addition, the information for each of the projects for which decisions were deferred in the ROD needs to be reviewed to determine if decisions can be made or if any additional NEP A analysis needs to be completed. The Supplement Analysis is required to contain sufficient information for DOE to determine whether (1) an existing EIS should be supplemented, (2) a new EIS should be prepared, or (3) no further NEP A documentation is required.

  8. Los Alamos National Laboratory, an affirmative action/equal opportunity employer, is operated by the University of California for the U.S. Department of Energy under contract W-7405-ENG-36. By acceptance of this article, the publisher recognizes that the

    E-Print Network [OSTI]

    by the University of California for the U.S. Department of Energy under contract W-7405-ENG-36. By acceptance performed under the auspices of the U.S. Department of Energy. Los Alamos National Laboratory strongly Peak in the Bandelier National Monument [Figure 1]. That night, strong winds blew the fire out

  9. Position, rotation, and intensity invariant recognizing method

    DOE Patents [OSTI]

    Ochoa, Ellen (Pleasanton, CA); Schils, George F. (San Ramon, CA); Sweeney, Donald W. (Alamo, CA)

    1989-01-01T23:59:59.000Z

    A method for recognizing the presence of a particular target in a field of view which is target position, rotation, and intensity invariant includes the preparing of a target-specific invariant filter from a combination of all eigen-modes of a pattern of the particular target. Coherent radiation from the field of view is then imaged into an optical correlator in which the invariant filter is located. The invariant filter is rotated in the frequency plane of the optical correlator in order to produce a constant-amplitude rotational response in a correlation output plane when the particular target is present in the field of view. Any constant response is thus detected in the output The U.S. Government has rights in this invention pursuant to Contract No. DE-AC04-76DP00789 between the U.S. Department of Energy and AT&T Technologies, Inc.

  10. EPA recognizes industry leaders for beneficial use

    SciTech Connect (OSTI)

    Goss, D. [American Coal Ash Association (United States)

    2007-07-01T23:59:59.000Z

    The EPA's Coal Combustion Products Partnership C{sup 2}P{sup 2})recognized industry leaders in beneficial use during the second annual C{sup 2}P{sup 2} awards ceremony held 23 October 2006 in Atlanta, Georgia. The C{sup 2}P{sup 2} program is led by the EPA with the ACAA, DOE, FHWA, USDA - Agricultural Research Services (ARS), and Utilities Solid Waste Activities Group (USWAG). The award for overall achievement went to Great River Energy of Underwood, ND who partnered with more than 10 public and private organizations to develop an extensive market for fly ash from Coal Creek Station, the world's largest lignite-fired plant. Other awards were given for environmental achievement, innovation, partnership, research and communications and outreach. 9 photos.

  11. Finding of no significant impact for the interim action for cleanup of Pit 9 at the Radioactive Waste Management Complex, Idaho National Engineering Laboratory

    SciTech Connect (OSTI)

    Not Available

    1993-10-01T23:59:59.000Z

    The Department of Energy (DOE) has prepared an environmental assessment (EA), DOE/EA-0854, for an interim action under the Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA). The proposed action would be conducted at Pit 9, Operable Unit 7--10, located at the Subsurface Disposal Area (SDA) of the Radioactive Waste Management Complex (RWMC) at the Idaho National Engineering Laboratory (INEL). The proposed action consists of construction of retrieval and processing buildings, excavation and retrieval of wastes from Pit 9, selective physical separation and chemical extraction, and stabilization of wastes either through thermal processing or by forming a stabilized concentrate. The proposed action would involve limited waste treatment process testing and full-scale waste treatment processing for cleaning up pre-1970 Transuranic (TRU) wastes in Pit 9. The purpose of this interim action is to expedite the overall cleanup at the RWMC and to reduce the risks associated with potential migration of Pit 9 wastes to the Snake River Plain Aquifer.

  12. Department of Energy Programmatic Spent Nuclear Fuel Management and Idaho National Engineering Laboratory Environmental Restoration and Waste Management Programs Draft Environmental Impact Statement. Volume 2, Part B

    SciTech Connect (OSTI)

    Not Available

    1994-06-01T23:59:59.000Z

    Two types of projects in the spent nuclear fuel and environmental restoration and waste management activities at the Idaho National Engineering Laboratory (INEL) are described. These are: foreseeable proposed projects where some funding for preliminary planning and/or conceptual design may already be authorized, but detailed design or planning will not begin until the Department of Energy (DOE) has determined that the requirements of the National Environmental Policy Act process for the project have been completed; planned or ongoing projects not yet completed but whose National Environmental Policy Act documentation is already completed or is expected to be completed before the Record of Decision for this Envirorunental Impact Statement (EIS) is issued. The section on project summaries describe the projects (both foreseeable proposed and ongoing).They provide specific information necessary to analyze the environmental impacts of these projects. Chapter 3 describes which alternative(s) each project supports. Summaries are included for (a) spent nuclear fuel projects, (b) environmental remediation projects, (c) the decontamination and decommissioning of surplus INEL facilities, (d) the construction, upgrade, or replacement of existing waste management facilities, (e) infrastructure projects supporting waste management activities, and (f) research and development projects supporting waste management activities.

  13. Validation Work to Support the Idaho National Engineering and Environmental Laboratory Calculational Burnup Methodology Using Shippingport Light Water Breeder Reactor (LWBR) Spent Fuel Assay Data

    SciTech Connect (OSTI)

    J. W. Sterbentz

    1999-08-01T23:59:59.000Z

    Six uranium isotopes and fourteen fission product isotopes were calculated on a mass basis at end-of-life (EOL) conditions for three fuel rods from different Light Water Breeder Reactor (LWBR) measurements. The three fuel rods evaluated here were taken from an LWBR seed module, a standard blanket module, and a reflector (Type IV) module. The calculated results were derived using a depletion methodology previously employed to evaluate many of the radionuclide inventories for spent nuclear fuels at the Idaho National Engineering and Environmental Laboratory. The primary goal of the calculational task was to further support the validation of this particular calculational methodology and its application to diverse reactor types and fuels. Result comparisons between the calculated and measured mass concentrations in the three rods indicate good agreement for the three major uranium isotopes (U-233, U-234, U-235) with differences of less than 20%. For the seed and standard blanket rod, the U-233 and U-234 differences were within 5% of the measured values (these two isotopes alone represent greater than 97% of the EOL total uranium mass). For the major krypton and xenon fission product isotopes, differences of less than 20% and less than 30% were observed, respectively. In general, good agreement was obtained for nearly all the measured isotopes. For these isotopes exhibiting significant differences, possible explanations are discussed in terms of measurement uncertainty, complex transmutations, etc.

  14. User`s Guide: Database of literature pertaining to the unsaturated zone and surface water-ground water interactions at the Idaho National Engineering Laboratory

    SciTech Connect (OSTI)

    Hall, L.F.

    1993-05-01T23:59:59.000Z

    Since its beginnings in 1949, hydrogeologic investigations at the Idaho National Engineering Laboratory (INEL) have resulted in an extensive collection of technical publications providing information concerning ground water hydraulics and contaminant transport within the unsaturated zone. Funding has been provided by the Department of Energy through the Department of Energy Idaho Field Office in a grant to compile an INEL-wide summary of unsaturated zone studies based on a literature search. University of Idaho researchers are conducting a review of technical documents produced at or pertaining to the INEL, which present or discuss processes in the unsaturated zone and surface water-ground water interactions. Results of this review are being compiled as an electronic database. Fields are available in this database for document title and associated identification number, author, source, abstract, and summary of information (including types of data and parameters). AskSam{reg_sign}, a text-based database system, was chosen. WordPerfect 5.1{copyright} is being used as a text-editor to input data records into askSam.

  15. Mechanical Engineering Department technical review

    SciTech Connect (OSTI)

    Carr, R.B.; Abrahamson, L.; Denney, R.M.; Dubois, B.E (eds.) [eds.

    1982-01-01T23:59:59.000Z

    Technical achievements and publication abstracts related to research in the following Divisions of Lawrence Livermore Laboratory are reported in this biannual review: Nuclear Fuel Engineering; Nuclear Explosives Engineering; Weapons Engineering; Energy Systems Engineering; Engineering Sciences; Magnetic Fusion Engineering; and Material Fabrication. (LCL)

  16. petroleuM engineering College of Engineering and Mines

    E-Print Network [OSTI]

    Hartman, Chris

    ................................................................................4 PETE F101--Fundamentals of Petroleum, Drilling and Production and Fluid Properties Laboratory ....1 PETE F407--Petroleum Production EngineeringpetroleuM engineering College of Engineering and Mines Department of Petroleum Engineering 907

  17. Tomé wins Distinguished Scientist, Engineer Award

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ScientistEngineer Award presented by the Structural Materials Division of The Minerals, Metals & Materials Society (TMS). TMS recognized Tom for his "long lasting...

  18. Exciting Students About Science & Engineering ...

    E-Print Network [OSTI]

    Evans, Paul G.

    Exciting Students About Science & Engineering ... ASM MATERIALS CAMP® 2013 MATERIALS IN TODAY'S WORLD Materials science and engineering is a study of the relationship between the structure with extensive involvement in laboratory facilities to actively explore materials science & engineering

  19. Solar Powering America by Recognizing Communities Funding Opportunity

    Broader source: Energy.gov [DOE]

    DOE's SunShot Initiative is accepting applications for the Solar Powering America by Recognizing Communities funding opportunity.

  20. PIR: PMaC's Idiom Recognizer Catherine Olschanowsky, Allan Snavely

    E-Print Network [OSTI]

    Snavely, Allan

    PIR: PMaC's Idiom Recognizer Catherine Olschanowsky, Allan Snavely Department of Computer Science. PIR, PMaC's Static Idiom Recognizer, automates the pattern recognition process. PIR recognizes the PIR implementation and defines a subset of idioms commonly found in HPC applications. We examine

  1. Science, Technology & Engineering

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    to lead LANL Science, Technology & Engineering directorate August 17, 2012 LOS ALAMOS, NEW MEXICO, August 17, 2012-Los Alamos National Laboratory Director Charles McMillan...

  2. Engineering Engineering

    E-Print Network [OSTI]

    Keinan, Alon

    of global poverty and sustainability". An ESW course, offered by Civil & Environmental Engineering, teaches as an alternative to diesel fuel, storm-water management in the Virgin Islands, and construction of a bridge here

  3. automotive engineers preprint: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Fig. 1 Stefanopoulou, Anna 10 ME 374D Automotive Engineering laboratory ABET EC2000 syllabus Engineering Websites Summary: and Automotive Engineering - ME 374C Notes 2010 at...

  4. High Level Waste Tank Farm Replacement Project for the Idaho Chemical Processing Plant at the Idaho National Engineering Laboratory. Environmental Assessment

    SciTech Connect (OSTI)

    Not Available

    1993-06-01T23:59:59.000Z

    The Department of Energy (DOE) has prepared an environmental assessment (EA), DOE/EA-0831, for the construction and operation of the High-Level Waste Tank Farm Replacement (HLWTFR) Project for the Idaho Chemical Processing Plant located at the Idaho National Engineering Laboratory (INEL). The HLWTFR Project as originally proposed by the DOE and as analyzed in this EA included: (1) replacement of five high-level liquid waste storage tanks with four new tanks and (2) the upgrading of existing tank relief piping and high-level liquid waste transfer systems. As a result of the April 1992 decision to discontinue the reprocessing of spent nuclear fuel at INEL, DOE believes that it is unlikely that the tank replacement aspect of the project will be needed in the near term. Therefore, DOE is not proposing to proceed with the replacement of the tanks as described in this-EA. The DOE`s instant decision involves only the proposed upgrades aspect of the project described in this EA. The upgrades are needed to comply with Resource Conservation and Recovery Act, the Idaho Hazardous Waste Management Act requirements, and the Department`s obligations pursuant to the Federal Facilities Compliance Agreement and Consent Order among the Environmental Protection Agency, DOE, and the State of Idaho. The environmental impacts of the proposed upgrades are adequately covered and are bounded by the analysis in this EA. If DOE later proposes to proceed with the tank replacement aspect of the project as described in the EA or as modified, it will undertake appropriate further review pursuant to the National Environmental Policy Act.

  5. Geologic processes in the RWMC area, Idaho National Engineering Laboratory: Implications for long term stability and soil erosion at the radioactive waste management complex

    SciTech Connect (OSTI)

    Hackett, W.R.; Tullis, J.A.; Smith, R.P. [and others

    1995-09-01T23:59:59.000Z

    The Radioactive Waste Management Complex (RWMC) is the disposal and storage facility for low-level radioactive waste at the Idaho National Engineering Laboratory (INEL). Transuranic waste and mixed wastes were also disposed at the RWMC until 1970. It is located in the southwestern part of the INEL about 80 km west of Idaho Falls, Idaho. The INEL occupies a portion of the Eastern Snake River Plain (ESRP), a low-relief, basalt, and sediment-floored basin within the northern Rocky Mountains and northeastern Basin and Range Province. It is a cool and semiarid, sagebrush steppe desert characterized by irregular, rolling terrain. The RWMC began disposal of INEL-generated wastes in 1952, and since 1954, wastes have been accepted from other Federal facilities. Much of the waste is buried in shallow trenches, pits, and soil vaults. Until about 1970, trenches and pits were excavated to the basalt surface, leaving no sediments between the waste and the top of the basalt. Since 1970, a layer of sediment (about 1 m) has been left between the waste and the basalt. The United States Department of Energy (DOE) has developed regulations specific to radioactive-waste disposal, including environmental standards and performance objectives. The regulation applicable to all DOE facilities is DOE Order 5820.2A (Radioactive Waste Management). An important consideration for the performance assessment of the RWMC is the long-term geomorphic stability of the site. Several investigators have identified geologic processes and events that could disrupt a radioactive waste disposal facility. Examples of these {open_quotes}geomorphic hazards{close_quotes} include changes in stream discharge, sediment load, and base level, which may result from climate change, tectonic processes, or magmatic processes. In the performance assessment, these hazards are incorporated into scenarios that may affect the future performance of the RWMC.

  6. Chlorofluorocarbons, Sulfur Hexafluoride, and Dissolved Permanent Gases in Ground Water from Selected Sites In and Near the Idaho National Engineering and Environmental Laboratory, Idaho, 1994 - 1997

    SciTech Connect (OSTI)

    Busenberg, E.; Plummer, L.N.; Bartholomay, R.C.; Wayland, J.E.

    1998-08-01T23:59:59.000Z

    From July 1994 through May 1997, the U.S. Geological Survey, in cooperations with the Department of Energy, sampled 86 wells completed in the Snake River Plain aquifer at and near the Idaho National Engineering and Environmental Laboratory (INEEL). The wells were sampled for a variety of constituents including one- and two-carbon halocarbons. Concentrations of dichlorodifluoromethane (CFC-12), trichlorofluoromethane (CFC-11), and trichlorotrifluororoethane (CFC-113) were determined. The data will be used to evaluate the ages of ground waters at INEEL. The ages of the ground water will be used to determine recharge rates, residence time, and travel time of water in the Snake River Plain aquifer in and near INEEL. The chromatograms of 139 ground waters are presented showing a large number of halomethanes, haloethanes, and haloethenes present in the ground waters underlying the INEEL. The chromatograms can be used to qualitatively evaluate a large number of contaminants at parts per trillion to parts per billion concentrations. The data can be used to study temporal and spatial distribution of contaminants in the Snake River Plain aquifer. Representative compressed chromatograms for all ground waters sampled in this study are available on two 3.5-inch high density computer disks. The data and the program required to decompress the data can be obtained from the U.S. Geological Survey office at Idaho Falls, Idaho. Sulfur hexafluoride (SF6) concentrations were measured in selected wells to determine the feasibility of using this environmental tracer as an age dating tool of ground water. Concentrations of dissolved nitrogen, argon, carbon dioxide, oxygen, and methane were measured in 79 ground waters. Concentrations of dissolved permanent gases are tabulated and will be used to evaluate the temperature of recharge of ground water in and near the INEEL.

  7. Initial performance assessment of the disposal of spent nuclear fuel and high-level waste stored at Idaho National Engineering Laboratory. Volume 2: Appendices

    SciTech Connect (OSTI)

    Rechard, R.P. [ed.

    1993-12-01T23:59:59.000Z

    This performance assessment characterized plausible treatment options conceived by the Idaho National Engineering Laboratory (INEL) for its spent fuel and high-level radioactive waste and then modeled the performance of the resulting waste forms in two hypothetical, deep, geologic repositories: one in bedded salt and the other in granite. The results of the performance assessment are intended to help guide INEL in its study of how to prepare wastes and spent fuel for eventual permanent disposal. This assessment was part of the Waste Management Technology Development Program designed to help the US Department of Energy develop and demonstrate the capability to dispose of its nuclear waste, as mandated by the Nuclear Waste Policy Act of 1982. The waste forms comprised about 700 metric tons of initial heavy metal (or equivalent units) stored at the INEL: graphite spent fuel, experimental low enriched and highly enriched spent fuel, and high-level waste generated during reprocessing of some spent fuel. Five different waste treatment options were studied; in the analysis, the options and resulting waste forms were analyzed separately and in combination as five waste disposal groups. When the waste forms were studied in combination, the repository was assumed to also contain vitrified high-level waste from three DOE sites for a common basis of comparison and to simulate the impact of the INEL waste forms on a moderate-sized repository, The performance of the waste form was assessed within the context of a whole disposal system, using the U.S. Environmental Protection Agency`s Environmental Radiation Protection Standards for Management and Disposal of Spent Nuclear Fuel, High-Level and Transuranic Radioactive Wastes, 40 CFR 191, promulgated in 1985. Though the waste form behavior depended upon the repository type, all current and proposed waste forms provided acceptable behavior in the salt and granite repositories.

  8. Sandia National Laboratories: Engine Combustion

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Combustion Direct Measurement of Key Molecule Will Increase Accuracy of Combustion Models On March 3, 2015, in Computational Modeling & Simulation, CRF, Energy, Facilities, News,...

  9. Sandia National Laboratories: solar engineering

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    July 9, 2014, in Center for Infrastructure Research and Innovation (CIRI), Concentrating Solar Power, Energy, Energy Storage, Energy Storage Systems, Facilities, Infrastructure...

  10. Sandia National Laboratories: Cardinal Engineering

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    marine hydrokinetic (MHK) reference models (RMs) for wave energy converters and tidal, ocean, and river current energy converters. The RMP team includes a partnership between...

  11. A plug fit for every car | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    the laboratory science magazine. Argonne engineer Kevin Stutenberg sets up an electric car for testing. Argonne engineer Kevin Stutenberg sets up an electric car for testing. A...

  12. Chemical Kinetic Models for Advanced Engine Combustion

    Broader source: Energy.gov (indexed) [DOE]

    Models for Advanced Engine Combustion William J. Pitz (PI) Marco Mehl, Charles K. Westbrook Lawrence Livermore National Laboratory June 17, 2014 DOE National Laboratory Advanced...

  13. H2 Internal Combustion Engine Research

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    H 2 Internal Combustion Engine Research* H Internal Combustion Engine Research 2 Thomas Wallner Argonne National Laboratory 2008 DOE Merit Review Bethesda, Maryland February 25 th...

  14. Progress of the Engine Combustion Network

    Broader source: Energy.gov (indexed) [DOE]

    the Progress of the Engine Combustion Network Engine Combustion Network Lyle M. Pickett Sandia National Laboratories Sponsor: DOE Office of Vehicle Technologies Program Manager:...

  15. Advanced Engine Development | ornl.gov

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Advanced Engine Development High-performance computing accelerates advanced engine development July 11, 2014 Oak Ridge National Laboratory's (ORNL's) Dean Edwards and a...

  16. Department of Energy Recognizes Six Leading Organizations for...

    Broader source: Energy.gov (indexed) [DOE]

    2007 National Green Power Supplier Award Winners WASHINGTON, DC - The U.S. Department of Energy (DOE) will recognize six leading organizations at the Seventh Annual Green Power...

  17. Energy Department Employee Recognized for Eliminating One Million...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    greenhouse gas emissions. Silverman is being recognized for identifying gaps in air pollution controls at Department facilities where he initiated steps to prevent the...

  18. JLab Recognizes Security Firm as Top Small Business Subcontractor...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Recognizes Security Firm as Top Small Business Subcontractor for 2009 Small Business Mike Dallas, Jefferson Lab's chief operating officer, presents Nicole Stuart, Top Guard...

  19. Energy Department Recognizes Fort Worth for Leadership in Advancing...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Fort Worth for Leadership in Advancing Energy Efficiency Energy Department Recognizes Fort Worth for Leadership in Advancing Energy Efficiency April 14, 2015 - 10:04am Addthis NEWS...

  20. Energy Department Recognizes San Antonio Area Partners for Advancing...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    San Antonio Area Partners for Advancing Energy Efficiency Energy Department Recognizes San Antonio Area Partners for Advancing Energy Efficiency April 15, 2015 - 10:36am Addthis...

  1. Y-12 employees receive awards recognizing excellence in nuclear...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    receive ... Y-12 employees receive awards recognizing excellence in nuclear weapons program Posted: October 6, 2014 - 9:09am Defense Programs 2013 Award of Excellence recipient...

  2. Recognizing and Assigning ESPC Risks and Responsibilities Using...

    Energy Savers [EERE]

    and Performance Matrix Document offers guidance on how to recognize and assign energy savings performance contract (ESPC) risks and responsibilities using the risk,...

  3. DOI Recognizes Interagency Collaboration with a 2013 Partners...

    Broader source: Energy.gov (indexed) [DOE]

    with the common goal of supporting the sustainable development of renewable energy. For more information, see the press release. Addthis Related Articles DOI Recognizes...

  4. Energy Systems Integration Laboratory (Fact Sheet), NREL (National...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    from fundamental research to applications engineering. Partners at the ESIF's Energy Systems Integration Laboratory may include: * Hydrogen equipment manufacturers * Automobile...

  5. Forces on laboratory model dredge cutterhead

    E-Print Network [OSTI]

    Young, Dustin Ray

    2010-07-14T23:59:59.000Z

    Dredge cutting forces produced by the movement of the cutterhead through the sediment have been measured with the laboratory dredge carriage located at the Haynes Coastal Engineering Laboratory. The sediment bed that was used for the dredging test...

  6. Forces on laboratory model dredge cutterhead 

    E-Print Network [OSTI]

    Young, Dustin Ray

    2010-07-14T23:59:59.000Z

    Dredge cutting forces produced by the movement of the cutterhead through the sediment have been measured with the laboratory dredge carriage located at the Haynes Coastal Engineering Laboratory. The sediment bed that was ...

  7. Oversight Reports - Los Alamos National Laboratory | Department...

    Broader source: Energy.gov (indexed) [DOE]

    May 2011 Safety System Oversight Assessment of the Los Alamos National Laboratory Weapons Engineering Tritium Facility Tritium Gas Handling System February 8, 2011 Independent...

  8. Sandia National Laboratories: About Sandia: Leadership: President...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    the national interest." From our establishment as an engineering laboratory during World War II helping America produce the first nuclear weapons, to our expanded role today as a...

  9. Independent Oversight Review, Los Alamos National Laboratory...

    Broader source: Energy.gov (indexed) [DOE]

    conducted an independent review of the Los Alamos National Laboratory (LANL) Weapons Engineering Tritium Facility (WETF) safety significant Tritium Gas Containment System...

  10. Enterprise Assessments Review, Los Alamos National Laboratory...

    Energy Savers [EERE]

    - November 2014 November 2014 Review of the Los Alamos National Laboratory Weapons Engineering Tritium Facility Fire Suppression System The Department of Energy Office of...

  11. Laboratory of Knowledge and Intelligent Computing (KIC) Department of Computer Engineering Technological Institute of Epirus, Arta, Greece http://kic.teiep.gr

    E-Print Network [OSTI]

    Dimakopoulos, Vassilios

    Technological Institute of Epirus, Arta, Greece http://kic.teiep.gr The Symbolic Aggregate approXimation method Petros Karvelis (Ph.D.) Technological Institute of Arta, Greece Department of Computer Engineering) Department of Computer Engineering Technological Institute of Epirus, Arta, Greece http

  12. Exploiting Cognitive Psychology Research for Recognizing Intention in Information Graphics

    E-Print Network [OSTI]

    Carberry, Sandra

    Exploiting Cognitive Psychology Research for Recognizing Intention in Information Graphics, recognizing the intended message of an information graphic, focusing on how results from re- search for individuals with sight-impairments to access the content of informa- tion graphics. Introduction Information

  13. Undergraduate Engineering

    E-Print Network [OSTI]

    Bristol, University of

    , spacecraft, Formula 1 or wind power, then this is the course for you. Our degrees focus on the technical material that interests you from the start, ensuring theoretical ideas are set clearly in a practical Laboratory for Advanced Dynamic Engineering (BLADE) ­ fantastic world-class facilities for cutting

  14. Engineering Technician

    Broader source: Energy.gov [DOE]

    Alternate Title(s):Civil Engineering Technician; Electrical Engineering Technician; Mechanical Engineering Technician; Environmental Engineering Technician

  15. Laboratory Experiments and their Applicability 

    E-Print Network [OSTI]

    Steinhaus, Thomas; Jahn, Wolfram

    2007-11-14T23:59:59.000Z

    In conjunction with the Dalmarnock Fire Tests a series of laboratory tests have been conducted at the BRE Centre for Fire Safety Engineering at the University of Edinburgh (UoE) in support of the large scale tests. These ...

  16. @ work' video segment features Robotic Software Engineer

    ScienceCinema (OSTI)

    Idaho National Laboratory

    2010-01-08T23:59:59.000Z

    @ work highlights Idaho National Laboratory employees and the jobs they perform.This segment features Robotic Software Engineer Miles Walton.

  17. Oregon, Pennsylvania: EERE-Supported Innovation Recognized by...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    for Fuel-Saving Product August 16, 2013 - 1:18pm Addthis During aircraft operation, gas turbine engines are continuously exposed to erosive media that damage engine...

  18. UC's Ohio Eminent Scholars The Ohio Board of Regents recognizes

    E-Print Network [OSTI]

    Papautsky, Ian

    Lee, DSc Mechanical, Industrial and Nuclear Engineering (Engineering and Applied Science) Patrick.................................................$169,447,609 Nursing..........................................................$1,503,659 Pharmacy

  19. Julie N. Howat & Colin S. Howat Kurata Thermodynamics Laboratory

    E-Print Network [OSTI]

    Howat, Colin S. "Chip"

    at KTL Kurata Thermodynamics Laboratory Department of Chemical & Petroleum Engineering UniversityJulie N. Howat & Colin S. Howat Kurata Thermodynamics Laboratory Department of Chemical & Petroleum Total Pressure Method , xsat #12;Kurata Thermodynamics Laboratory Department of Chemical & Petroleum

  20. Mechanical engineering Department Seminar

    E-Print Network [OSTI]

    Mechanical engineering Department Seminar Domitilla Del Vecchio Department of Mechanical. A near future is envisioned in which re- engineered bacteria will turn waste into energy and kill cancer, she joined the Department of Mechanical Engineering and the Laboratory for Information and Decision

  1. Pacific Northwest Laboratory annual report for 1982 to the DOE Office of the Assistant Secretary for Environmental Protection, Safety and Emergency Preparedness. Part 5. Environmental and occupational protection, assessment, and engineering

    SciTech Connect (OSTI)

    Bair, W.J.

    1983-02-01T23:59:59.000Z

    Part 5 of the 1982 Annual Report to the Department of Energy's Office of Environmental Protection, Safety and Emergency Preparedness presents Pacific Northwest Laboratory's progress on work performed for the Office of Environmental Programs, Office of Operational Safety, and the Office of Nuclear Safety. The report is in three sections, introduced by blue divider pages, corresponding to the program elements: Technology Impacts, Environmental and Safety Engineering, Operational and Environmental Safety. In each section, articles describe progress made during FY 1982 on individual projects, as identified by the Field Task Proposal/Agreement. Authors of these articles represent a broad spectrum of capabilities derived from various segments of the Laboratory, reflecting the interdisciplinary nature of the work.

  2. Engineering Career Fair College of Engineering

    E-Print Network [OSTI]

    Ning, Peng

    Driveline North America Fidelity Investments ImagineOptix ABB Eaton Biogen Idec Pioneer SurgicalTechnology Rambus Cisco The College of Engineering would like to recognize the following corporations. SURFNet Avjet Biotech Microsoft Research in Motion Tekelec United Resource Recovery Corporation Advanced

  3. Department of Energy Programmatic Spent Nuclear Fuel Management and Idaho National Engineering Laboratory Environmental Restoration and Waste Management Programs Draft Environmental Impact Statement. Volume 1, Appendix D, Part B: Naval spent nuclear fuel management

    SciTech Connect (OSTI)

    Not Available

    1994-06-01T23:59:59.000Z

    This volume contains the following attachments: transportation of Naval spent nuclear fuel; description of Naval spent nuclear receipt and handling at the Expended Core Facility at the Idaho National Engineering Laboratory; comparison of storage in new water pools versus dry container storage; description of storage of Naval spent nuclear fuel at servicing locations; description of receipt, handling, and examination of Naval spent nuclear fuel at alternate DOE facilities; analysis of normal operations and accident conditions; and comparison of the Naval spent nuclear fuel storage environmental assessment and this environmental impact statement.

  4. Sorbent Testing for the Solidification of Organic Process Waste streams from the Radiochemical Engineering Development Center at Oak Ridge National Laboratory

    SciTech Connect (OSTI)

    Bickford, J.; Foote, M. [MSE Technology Applications, Inc., Montana (United States); Taylor, P. [Oak Ridge National Laboratory, Oak Ridge, Tennessee (United States)

    2008-07-01T23:59:59.000Z

    The U.S. Department of Energy (DOE) has tasked MSE Technology Applications, Inc. (MSE) with evaluating various sorbents to solidify the radioactive liquid organic waste from the Radiochemical Engineering Development Center (REDC) at Oak Ridge National Laboratory (ORNL). REDC recovers and purifies heavy elements (berkelium, californium, einsteinium, and fermium) from irradiated targets for research and industrial applications. Both aqueous and organic waste streams are discharged from REDC. Organic waste is generated from the plutonium/uranium extraction (PUREX), Cleanex, and Pubex processes.1 The PUREX waste derives from an organic-aqueous isotope separation process for plutonium and uranium fission products, the Cleanex waste derives from the removal of fission products and other impurities from the americium/curium product, and the Pubex waste is derived from the separation process of plutonium from dissolved targets. An aqueous waste stream is also produced from these separation processes. MSE has been tasked to test a grouting formula for the aqueous waste stream that includes specially formulated radioactive shielding materials developed by Science and Technology Applications, LLC. This paper will focus on the sorbent testing work. Based on work performed at Savannah River Site (SRS) (Refs. 1, 2), ORNL tested and evaluated three sorbents capable of solidifying the PUREX, Pubex, and Cleanex waste streams and a composite of the three organic waste streams: Imbiber Beads{sup R} IMB230301 (Imbiber Beads), Nochar A610 Petro Bond, and Petroset II Granular{sup TM} (Petroset II-G). Surrogates of the PUREX, Pubex, Cleanex, and a composite organic waste were used for the bench-scale testing. Recommendations resulting from the ORNL testing included follow-on testing by MSE for two of the three sorbents: Nochar Petro Bond and Petroset II-G. MSE recommended that another clay sorbent, Organoclay BM-QT-199, be added to the test sequence. The sorbent/surrogate combinations were tested at bench scale, 19-liter (L) [5-gallon (gal)] bucket scale, and 208-L (55-gal) drum scale. The testing performed by MSE will help ORNL select the right solidification materials and wasteform generation methods for the design of a new treatment facility. The results could also be used to help demonstrate that ORNL could meet the waste acceptance criteria for the ultimate disposal site for the waste-forms. The organics will be solidified as transuranic waste for disposal at the Waste Isolation Pilot Plant, and the aqueous waste stream will be grouted and disposed of at the Nevada Test Site as low-level waste if real waste testing indicates similar results to the surrogate testing. The objective of this work was to identify a sorbent capable of solidifying PUREX, Pubex, and Cleanex organic wastes individually and a composite of the three organic waste streams. The sorbent and surrogate combinations must also be compatible with processing equipment and maintain stability under a variety of conditions that could occur during storage/shipment of the solidified wastes. (authors)

  5. EA-0874: Low-level Waste Drum Staging Building at Weapons Engineering Tritium Facility, TA-16 Los Alamos National Laboratory, Los Alamos, New Mexico

    Broader source: Energy.gov [DOE]

    This EA evaluates the environmental impacts of a proposal to place a 3 meter (m) by 4.5 m prefabricated storage building (transportainer) adjacent to the existing Weapons Engineering Tritium...

  6. PPPL engineer named winner of the 2013 Fusion Technology Award...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    honor from the Nuclear and Plasma Sciences Society of the Institute of Electrical and Electronics Engineers (IEEE) recognizes outstanding contributions to research and...

  7. Overview of Biomedical Engineering and Biomedical

    E-Print Network [OSTI]

    - Virtual Autopsy #12;OAK RIDGE NATIONAL LABORATORY U. S. DEPARTMENT OF ENERGY Biomedical Engineering and the University of Tennessee · Leverages strong programs in mechanical engineering, materials, sensors, biologyOverview of Biomedical Engineering and Biomedical Informatics in the Computational Sciences

  8. New Mexico Small Business Assistance Program recognized by U...

    Broader source: Energy.gov (indexed) [DOE]

    New Mexico Small Business Assistance Program recognized by U.S. Department of Commerce Editor's Note: This announcement was originally posted on http:www.lanl.gov LOS ALAMOS,...

  9. AHA Recognizes Fit-Friendly Worksites at SRS

    Broader source: Energy.gov [DOE]

    AIKEN, S.C. – Two contractors supporting the EM program at the Savannah River Site (SRS) were recognized recently as Fit-Friendly Worksites by the American Heart Association (AHA).

  10. allergenic molecules recognized: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    of task: deciding whether a phone is present or not. Mirjam Wester; Judith M. Kessens; Catia Cucchiarini; Helmer Strik 2001-01-01 469 A robot vision system for recognizing 3-D...

  11. University of Minnesota Morris Clean Energy Investments Recognized...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    wins the global clean energy race, while creating good local jobs and protecting the environment" said U.S. Secretary of Energy Steven Chu. UMN-Morris is nationally recognized...

  12. Engineering Electrical &

    E-Print Network [OSTI]

    Hickman, Mark

    Computer Engineering Electrical & Electronic Engineering Mechatronics Engineering Mechanical Engineering Civil Engineering Natural Resources Engineering Forest Engineering Chemical & Process Engineering ELECTIVE 2 Required Engineering Intermediate Year 2011 Eight Required Courses Chart: 120 points College

  13. Engineering Electrical &

    E-Print Network [OSTI]

    Hickman, Mark

    Computer Engineering Electrical & Electronic Engineering Mechatronics Engineering Mechanical Engineering Civil Engineering Natural Resources Engineering Forest Engineering Chemical & Process Engineering ELECTIVE 2 Required Engineering Intermediate Year 2012 Eight Required Courses Chart: 120 points College

  14. College of Engineering Speaker Series

    E-Print Network [OSTI]

    Huang, Haiying

    APR 2 Chris Singer, NASA Director, Engineering Directorate Marshall Space Flight Center Dr. Ali Erdemir, Argonne National Laboratory Argonne Distinguished Fellow Senior Scientist Karen Kabbes, Kabbes

  15. Fuels for Advanced Combustion Engines

    Broader source: Energy.gov (indexed) [DOE]

    Fuels for Advanced Combustion Engines Bradley T. Zigler National Renewable Energy Laboratory 15 May 2012 Project ID FT002 This presentation does not contain any proprietary,...

  16. Engineering Engineering Education

    E-Print Network [OSTI]

    Simaan, Nabil

    E School of Engineering Engineering Education in a University Setting 292 Degree Programs in Engineering 294 Special Programs 296 Honors 298 Academic Regulations 300 Courses of Study 305 Engineering of Engineering is the largest and oldest private engineering school in the South. Classes offering engineering

  17. Published in Chemical Engineering Education,1997, 31(4), 260-265. A NOVEL LABORATORY COURSE ON ADVANCED ChE EXPERIMENTS

    E-Print Network [OSTI]

    Bodner, George M.

    Chemical Company in this educational investment in future experimentalists. Dow*s financial support has students in laboratory courses to think, explore, hypothesize, plan, solve, and evaluate. The typical, and hence beginning graduate students, to have an appreciation for the care, planning, design, and testing

  18. Wind Engineering & Natural Disaster Mitigation

    E-Print Network [OSTI]

    Denham, Graham

    Wind Engineering & Natural Disaster Mitigation For more than 45 years, Western University has been internationally recognized as the leading university for wind engineering and wind- related research. Its of environmental disaster mitigation, with specific strengths in wind and earthquake research. Boundary Layer Wind

  19. Department of Mechanical, Materials, and Aerospace Engineering Department of Mechanical, Materials, and Aerospace Engineering

    E-Print Network [OSTI]

    Saniie, Jafar

    instrumentation, com- bustion, internal combustion engines, two-phase flow and heat-transfer, electrohydrodynamics mobile and stationary combustion sources. Materials science and engineering laboratories includeDepartment of Mechanical, Materials, and Aerospace Engineering Department of Mechanical, Materials

  20. Laboratory Directed Research and Development Annual Report for 2009

    SciTech Connect (OSTI)

    Hughes, Pamela J.

    2010-03-31T23:59:59.000Z

    This report documents progress made on all LDRD-funded projects during fiscal year 2009. As a US Department of Energy (DOE) Office of Science (SC) national laboratory, Pacific Northwest National Laboratory (PNNL) has an enduring mission to bring molecular and environmental sciences and engineering strengths to bear on DOE missions and national needs. Their vision is to be recognized worldwide and valued nationally for leadership in accelerating the discovery and deployment of solutions to challenges in energy, national security, and the environment. To achieve this mission and vision, they provide distinctive, world-leading science and technology in: (1) the design and scalable synthesis of materials and chemicals; (2) climate change science and emissions management; (3) efficient and secure electricity management from generation to end use; and (4) signature discovery and exploitation for threat detection and reduction. PNNL leadership also extends to operating EMSL: the Environmental Molecular Sciences Laboratory, a national scientific user facility dedicated to providing itnegrated experimental and computational resources for discovery and technological innovation in the environmental molecular sciences.

  1. INL '@work' Nuclear Engineer

    ScienceCinema (OSTI)

    McLean, Heather

    2013-05-28T23:59:59.000Z

    Heather MacLean talks about her job as a Nuclear Engineer for Idaho National Laboratory. For more information about INL careers, visit http://www.facebook.com/idahonationallaboratory.

  2. Nano-High: Lawrence Berkeley National Laboratory Lecture on Materials

    Broader source: Energy.gov [DOE]

    Nano-High, a program of the Lawrence Berkeley National Laboratory, is a series of free Saturday morning talks by internationally recognized leaders in scientific research. The talks are designed...

  3. DOE Announces Strategic Engineering and Technology Roadmap for...

    Energy Savers [EERE]

    the United States. The Department's world-class National Laboratories, led by Savannah River National Laboratory, will spearhead the integration of these engineering and...

  4. ENGINEERING TECHNOLOGY Engineering Technology

    E-Print Network [OSTI]

    ENGINEERING TECHNOLOGY Engineering Technology Program The Bachelor of Science in Engineering Technology (BSET) is a hands-on program based upon engineering technology fundamentals, engineering for employment or further education. The focus is on current engineering technology issues and applications used

  5. HCCI and Stratified-Charge CI Engine Combustion Research

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Charg HCCI and Stratified-Char e CI Engine ge CI Engine Combustion Research Combustion Research John E. Dec, Magnus Sjberg, and Wontae Hwang Sandia National Laboratories DOE...

  6. Advanced Reciprocating Engine Systems (ARES) R&D - Presentation...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Reciprocating Engine Systems (ARES) R&D - Presentation by Argonne National Laboratory, June 2011 Advanced Reciprocating Engine Systems (ARES) R&D - Presentation by Argonne National...

  7. Princeton Plasma Physics Laboratory:

    SciTech Connect (OSTI)

    Phillips, C.A. (ed.)

    1986-01-01T23:59:59.000Z

    This paper discusses progress on experiments at the Princeton Plasma Physics Laboratory. The projects and areas discussed are: Principal Parameters Achieved in Experimental Devices, Tokamak Fusion Test Reactor, Princeton Large Torus, Princeton Beta Experiment, S-1 Spheromak, Current-Drive Experiment, X-ray Laser Studies, Theoretical Division, Tokamak Modeling, Spacecraft Glow Experiment, Compact Ignition Tokamak, Engineering Department, Project Planning and Safety Office, Quality Assurance and Reliability, and Administrative Operations.

  8. Leveraging smart meter data to recognize home appliances Markus Weiss+#

    E-Print Network [OSTI]

    Leveraging smart meter data to recognize home appliances Markus Weiss+# , Adrian Helfenstein -- The worldwide adoption of smart meters that measure and communicate residential electricity consumption gives demand. In this paper we present an infrastructure and a set of algorithms that make use of smart meters

  9. Extending Plan Inference Techniques to Recognize Intentions in Information Graphics

    E-Print Network [OSTI]

    Carberry, Sandra

    Extending Plan Inference Techniques to Recognize Intentions in Information Graphics Stephanie Elzer information graphics. Our work is part of a larger project to de- velop an interactive natural language system graphics. 1 Introduction The amount of information available electronically has increased dramatically over

  10. Energy Department Recognizes University of Utah in Better Buildings Challenge

    Office of Energy Efficiency and Renewable Energy (EERE)

    As part of President Obama’s Better Buildings Challenge, the Energy Department recognized the University of Utah today for its leadership in energy efficiency and for reducing energy use by 40 percent in a historic campus building, saving the University $57,000 a year.

  11. A Personal Touch -Recognizing Users Based on Touch Screen Behavior

    E-Print Network [OSTI]

    of user interaction of personal smart phones and touch screen based devices are often shared among severalA Personal Touch - Recognizing Users Based on Touch Screen Behavior Sarah Martina Kolly Computer, there are still many open research questions concerning the basic input properties of these devices. We performed

  12. West Virginia University 1 Benjamin M. Statler College of Engineering and

    E-Print Network [OSTI]

    Mohaghegh, Shahab

    .S.C.S.) · Bachelor of Science in Electrical Engineering (B.S.E.E.) · Bachelor of Science in Industrial Engineering (B · Industrial and Management Systems Engineering · Mechanical and Aerospace Engineering · Mining Engineering · Petroleum and Natural Gas Engineering All undergraduate programs are recognized by industry as providing

  13. Laboratory or Service Center Name Web Presence or Contact Details Keywords Agri-genomics Laboratory http://agl.tamu.edu/

    E-Print Network [OSTI]

    Behmer, Spencer T.

    irradiation, Food safety, Dosimetry plans Tick Research Laboratory http://ticsys.tamu.edu/ Ticks, Pest Control Improvement Laboratory http://cottonimprovementlab.tamu.edu/ Cotton, Crop Imrovement, Fiber Quality Food Engineering Laboratory http://baen.tamu.edu/foodengineering/FEngr/F Engr.html Food Engineering, Food Storage

  14. The Critical Mass Laboratory at Rocky Flats

    SciTech Connect (OSTI)

    Rothe, Robert E

    2003-10-15T23:59:59.000Z

    The Critical Mass Laboratory (CML) at Rocky Flats northwest of Denver, Colorado, was built in 1964 and commissioned to conduct nuclear experiments on January 28, 1965. It was built to attain more accurate and precise experimental data to ensure nuclear criticality safety at the plant than were previously possible. Prior to its construction, safety data were obtained from long extrapolations of subcritical data (called in situ experiments), calculated parameters from reactor engineering 'models', and a few other imprecise methods. About 1700 critical and critical-approach experiments involving several chemical forms of enriched uranium and plutonium were performed between then and 1988. These experiments included single units and arrays of fissile materials, reflected and 'bare' systems, and configurations with various degrees of moderation, as well as some containing strong neutron absorbers. In 1989, a raid by the Federal Bureau of Investigation (FBI) caused the plant as a whole to focus on 'resumption' instead of further criticality safety experiments. Though either not recognized or not admitted for a few years, that FBI raid did sound the death knell for the CML. The plant's optimistic goal of resumption evolved to one of deactivation, decommissioning, and plantwide demolition during the 1990s. The once-proud CML facility was finally demolished in April of 2002.

  15. Storage and disposition of weapons usable fissile materials (FMD) PEIS: Blending of U-233 to {lt}12% or {lt}5% enrichment at the Idaho National Engineering Laboratory. Data report, Draft: Version 1

    SciTech Connect (OSTI)

    Shaber, E.L.

    1995-08-01T23:59:59.000Z

    Uranium-233 (U-233), a uranium isotope, is a fissionable material capable of fueling nuclear reactors or being utilized in the manufacturing of nuclear weapons. As such, it is controlled as a special nuclear material. The Idaho National Engineering Laboratory (INEL) and Oak Ridge National Laboratory (ORNL) currently store the Department of Energy`s (DOE`s) supply of unirradiated U-233 fuel materials. Irradiated U-233 is covered by the national spent nuclear fuel (SNF) program and is not in the scope of this report. The U-233 stored at ORNL is relatively pure uranium oxide in the form of powder or monolithic solids. This material is currently stored in stainless steel canisters of variable lengths measuring about 3 inches in diameter. The ORNL material enrichment varies with some material containing considerable amounts of U-235. The INEL material is fuel from the Light Water Breeder Reactor (LWBR) Program and consists of enriched uranium and thorium oxides in zircaloy cladding. The DOE inventory of U-233 contains trace quantities of U-232, and daughter products from the decay of U-232 and U-233, resulting in increased radioactivity over time. These increased levels of radioactivity generally result in the need for special handling considerations.

  16. Presented by Performance Engineering

    E-Print Network [OSTI]

    Presented by Performance Engineering Research Institute (PERI) Philip C. Roth Future Technologies of Energy Roth_PERI_SC10 Performance engineering: enabling petascale science Maximizing performance accelerator modeling S3D turbulent combustion modeling Photo courtesy of Argonne National Laboratory Cray XT5

  17. Science & Engineering Engineering Databases

    E-Print Network [OSTI]

    Hampton, Randy

    -present. Good for computers, electronics, biomedical, control, electrical and ocean engineering, physics9/09 DK,DS Science & Engineering Library Engineering Databases How to search the engineering initials Special features: Limit to peer-reviewed journals Compendex [Engineering Index] 1884-present

  18. Early Career Recognition Alumni Award Department of Electrical Engineering

    E-Print Network [OSTI]

    Yener, Aylin

    Early Career Recognition Alumni Award Department of Electrical Engineering Penn State University The Society of Penn State Electrical Engineers, the electrical engineering alumni association, has developed an award to recognize and honor outstanding Penn State Electrical Engineering Alumni at the outset

  19. Sandia National Laboratories: Geomechanics Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    including studies of coupled effects Extrapolation of laboratory measurements to field conditions In situ stress measurements and evaluation of in situ boundary conditions...

  20. Maximizing Power Output in Homogeneous Charge Compression Ignition (HCCI) Engines and Enabling Effective Control of Combustion Timing

    E-Print Network [OSTI]

    Saxena, Samveg

    2011-01-01T23:59:59.000Z

    Ford Motor Company, “Diesel Engine Aftertreatment: How FordNational Laboratory, “Engine Combustion Network”, http://High Power Output without Engine Knock and with Ultra-Low

  1. Federally-Recognized Tribes of the Columbia-Snake Basin.

    SciTech Connect (OSTI)

    United States. Bonneville Power Administration

    1997-11-01T23:59:59.000Z

    This is an omnibus publication about the federally-recognized Indian tribes of the Columbia-Snake river basin, as presented by themselves. It showcases several figurative and literal snapshots of each tribe, bits and pieces of each tribe`s story. Each individual tribe or tribal confederation either submitted its own section to this publication, or developed its own section with the assistance of the writer-editor. A federally-recognized tribe is an individual Indian group, or confederation of Indian groups, officially acknowledged by the US government for purposes of legislation, consultation and benefits. This publication is designed to be used both as a resource and as an introduction to the tribes. Taken together, the sections present a rich picture of regional indian culture and history, as told by the tribes.

  2. Tribology Laboratory | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    systems (surface engineered materials, lubricants, fuels, and fuellubricant additives) for use in aggressive environments (for example, where two surfaces are rubbing...

  3. The Laboratory SLAC National Accelerator Laboratory is home to a two-mile

    E-Print Network [OSTI]

    Wechsler, Risa H.

    -program laboratory for photon science, astrophysics, and accelerator and particle physics research. Six scientists promises to be just as extraordinary. #12;Accelerator Physics Particle accelerators are the working engines#12;The Laboratory SLAC National Accelerator Laboratory is home to a two-mile linear accelerator

  4. Air Force Research Laboratory Placement: Air Force Research Laboratory, Materials and Manufacturing Directorate, Wright-Patterson

    E-Print Network [OSTI]

    Alpay, S. Pamir

    Air Force Research Laboratory Placement: Air Force Research Laboratory, Materials and Manufacturing Directorate, Wright-Patterson Air Force Base, Dayton OH Discipline(s): Materials science/engineering, chemical. Description: We are looking for a qualified candidate to join our team at the Air Force Research Laboratory

  5. Cleaner, More Efficient Diesel Engines

    ScienceCinema (OSTI)

    Musculus, Mark

    2014-02-26T23:59:59.000Z

    Mark Musculus, an engine combustion scientist at Sandia National Laboratories, led a study that outlines the science base for auto and engine manufacturers to build the next generation of cleaner, more efficient engines using low-temperature combustion. Here, Musculus discusses the work at Sandia's Combustion Research Facility.

  6. Cleaner, More Efficient Diesel Engines

    SciTech Connect (OSTI)

    Musculus, Mark

    2013-08-13T23:59:59.000Z

    Mark Musculus, an engine combustion scientist at Sandia National Laboratories, led a study that outlines the science base for auto and engine manufacturers to build the next generation of cleaner, more efficient engines using low-temperature combustion. Here, Musculus discusses the work at Sandia's Combustion Research Facility.

  7. Engineering Office of Undergraduate Admissions

    E-Print Network [OSTI]

    Yang, Junfeng

    -neutral Torus 2 Climate Change 4 Combustion and Catalysis Laboratory #12;3 Columbia Engineering is believingColumbia Engineering Plus Office of Undergraduate Admissions Columbia University 212 Hamilton Hall 3 4 5 6 Aerial view of Columbia campus with Columbia Engineering-affiliated buildings highlighted

  8. NEW INDUSTRIAL AUTOMATION LABORATORY & COURSES ECET TECHONOLOGY PROGRAM ADVANCEMENT

    E-Print Network [OSTI]

    Allen, Gale

    Paper #16 NEW INDUSTRIAL AUTOMATION LABORATORY & COURSES ECET TECHONOLOGY PROGRAM ADVANCEMENT Gale, Engineering and Technology. A new industrial automation laboratory was recently assembled and seven stations Minnesota state funding, industry contributions, and curriculum planning efforts resulted in a significant

  9. Laboratory Directed Research and Development Program FY 2007 Annual Report

    SciTech Connect (OSTI)

    Sjoreen, Terrence P [ORNL

    2008-04-01T23:59:59.000Z

    The Oak Ridge National Laboratory (ORNL) Laboratory Directed Research and Development (LDRD) program reports its status to the U.S. Department of Energy (DOE) in March of each year. The program operates under the authority of DOE Order 413.2B, 'Laboratory Directed Research and Development' (April 19, 2006), which establishes DOE's requirements for the program while providing the Laboratory Director broad flexibility for program implementation. LDRD funds are obtained through a charge to all Laboratory programs. This report includes summaries for all ORNL LDRD research activities supported during FY 2007. The associated FY 2007 ORNL LDRD Self-Assessment (ORNL/PPA-2008/2) provides financial data and an internal evaluation of the program's management process. ORNL is a DOE multiprogram science, technology, and energy laboratory with distinctive capabilities in materials science and engineering, neutron science and technology, energy production and end-use technologies, biological and environmental science, and scientific computing. With these capabilities ORNL conducts basic and applied research and development (R&D) to support DOE's overarching mission to advance the national, economic, and energy security of the United States and promote scientific and technological innovation in support of that mission. As a national resource, the Laboratory also applies its capabilities and skills to specific needs of other federal agencies and customers through the DOE Work for Others (WFO) program. Information about the Laboratory and its programs is available on the Internet at http://www.ornl.gov/. LDRD is a relatively small but vital DOE program that allows ORNL, as well as other DOE laboratories, to select a limited number of R&D projects for the purpose of: (1) maintaining the scientific and technical vitality of the Laboratory; (2) enhancing the Laboratory's ability to address future DOE missions; (3) fostering creativity and stimulating exploration of forefront science and technology; (4) serving as a proving ground for new research; and (5) supporting high-risk, potentially high-value R&D. Through LDRD the Laboratory is able to improve its distinctive capabilities and enhance its ability to conduct cutting-edge R&D for its DOE and WFO sponsors. To meet the LDRD objectives and fulfill the particular needs of the Laboratory, ORNL has established a program with two components: the Director's R&D Fund and the Seed Money Fund. As outlined in Table 1, these two funds are complementary. The Director's R&D Fund develops new capabilities in support of the Laboratory initiatives, while the Seed Money Fund is open to all innovative ideas that have the potential for enhancing the Laboratory's core scientific and technical competencies. Provision for multiple routes of access to ORNL LDRD funds maximizes the likelihood that novel ideas with scientific and technological merit will be recognized and supported.

  10. 33engineering EnginEEring and

    E-Print Network [OSTI]

    Wagner, Stephan

    33engineering EnginEEring and ThE builT EnvironmEnT www.wits.ac.za/ebe #12;34 guide for applicants 2015 The study of Engineering Career opportunities for engineers are limitless and extend beyond the formal engineering sector. A career in engineering requires special talents ­ engineers need

  11. CONTENT KNOWLEDGE (Declarative Knowledge and Technical Skills): Students will demonstrate a broad knowledge of fundamental and applied engineering subjects: fluid

    E-Print Network [OSTI]

    Fernandez, Eduardo

    and buoyancy, thermodynamics, heat transfer, engineering materials, strength of materials, statistical methods skills and know-hows needed to formulate and solve engineering problems, program computers the engineering skills gained through coursework in engineering mathematics, ocean engineering laboratory

  12. Y-12 transition and the birth of the national laboratories

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    university or private laboratory to underwrite. Government reservations - The Clinton Engineer Works, for example - were the place for semi-works and other installations associated...

  13. Power Systems Integration Laboratory (Fact Sheet), NREL (National...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    from fundamental research to applications engineering. Partners at the ESIF's Power Systems Integration Laboratory may include: * Manufacturers of distributed generation and...

  14. Energy Systems Sensor Laboratory (Fact Sheet), NREL (National...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    from fundamental research to applications engineering. Partners at the ESIF's Energy Systems Sensor Laboratory may include: * Hydrogen sensor manufacturers * Codes and standards...

  15. Vehicle Technologies Office's Research Recognized by R&D 100...

    Energy Savers [EERE]

    fuel costs. Read more about VTO's research on Emissions Control for Internal Combustion Engines. Addthis Related Articles U.S. Department of Energy Projects Win 31 R&D 100 Awards...

  16. Los Alamos National Laboratory A National Science Laboratory

    SciTech Connect (OSTI)

    Chadwick, Mark B. [Los Alamos National Laboratory

    2012-07-20T23:59:59.000Z

    Our mission as a DOE national security science laboratory is to develop and apply science, technology, and engineering solutions that: (1) Ensure the safety, security, and reliability of the US nuclear deterrent; (2) Protect against the nuclear threat; and (3) Solve Energy Security and other emerging national security challenges.

  17. Sandia National Laboratories' Stanley Atcitty Wins Presidential...

    Office of Environmental Management (EM)

    for Scientists and Engineers July 24, 2012 - 11:27am Addthis Dr. Stanley Atcitty, an energy storage systems researcher at Sandia National Laboratories, has been named a winner...

  18. University of Illinois at Urbana-Champaign, Materials Research Laboratory progress report for FY 1992

    SciTech Connect (OSTI)

    Not Available

    1992-07-01T23:59:59.000Z

    This interdisciplinary laboratory in the College of Engineering support research in areas of condensed matter physics, solid state chemistry, and materials science. These research programs are developed with the assistance of faculty, students, and research associates in the departments of Physics, Materials Science and Engineering, chemistry, Chemical Engineering, Electrical Engineering, Mechanical Engineering, and Nuclear Engineering.

  19. PROGRAMME SPECIFICATION POSTGRADUATE PROGRAMMES Programme name Mechanical Engineering

    E-Print Network [OSTI]

    Weyde, Tillman

    and management, combustions, IC engines, screw compressors and expanders, experimental techniques, mechatronics e.g. engineering or computer laboratories. Solve complex engineering problems using advanced or theoretical investigations and applications to current design problems. WHAT TYPES OF ASSESSMENT AND FEEDBACK

  20. Petroleum Engineering Research Building Naming Opportunities

    E-Print Network [OSTI]

    Gelfond, Michael

    Petroleum Engineering Research Building Naming Opportunities Area Naming of the Building Upstream Faculty Office Faculty Office Core and Rheology Laboratory Fracturing and Production Laboratory Mercury Apache Occidental Petroleum Anadarko Chevron Pioneer Natural Resources Terry and Linda Fuller & James

  1. Two Companies Recognized for Leadership in Energy Efficiency | Department

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron Spin Transition in2,EHSS A-Zandof Energy Two Companies Recognized

  2. DOE Recognizes Green Power Network Leaders | Department of Energy

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 1112011AT&T,Office of Policy, OAPM |TRU WasteAdministrator |20.1CPlanEP9425 701 9thRecognizes

  3. PPPL recognized for green electronics purchasing program | Princeton Plasma

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC)IntegratedSpeeding access toTestPhysics Lab PPPL recognized for green electronics

  4. Pre-Approved1 Engineering Electives for Biological Engineering (NOTE: Technical Electives Engineering Electives Bioengineering Electives)2

    E-Print Network [OSTI]

    Lawrence, Rick L.

    Probability and Statistics I [F] 3 EIND 434 Project and Engineering Management [F] 3 EMAT 252 Materials Science Laboratory [F,S] 1 EMAT 452 Adv. Engineering Materials [on demand] 3 EMEC 321 Thermodynamics II [FPre-Approved1 Engineering Electives for Biological Engineering (NOTE: Technical Electives

  5. Research programs at the Department of Energy National Laboratories. Volume 2: Laboratory matrix

    SciTech Connect (OSTI)

    NONE

    1994-12-01T23:59:59.000Z

    For nearly fifty years, the US national laboratories, under the direction of the Department of Energy, have maintained a tradition of outstanding scientific research and innovative technological development. With the end of the Cold War, their roles have undergone profound changes. Although many of their original priorities remain--stewardship of the nation`s nuclear stockpile, for example--pressing budget constraints and new federal mandates have altered their focus. Promotion of energy efficiency, environmental restoration, human health, and technology partnerships with the goal of enhancing US economic and technological competitiveness are key new priorities. The multiprogram national laboratories offer unparalleled expertise in meeting the challenge of changing priorities. This volume aims to demonstrate each laboratory`s uniqueness in applying this expertise. It describes the laboratories` activities in eleven broad areas of research that most or all share in common. Each section of this volume is devoted to a single laboratory. Those included are: Argonne National Laboratory; Brookhaven National Laboratory; Idaho National Engineering Laboratory; Lawrence Berkeley Laboratory; Lawrence Livermore National Laboratory; Los Alamos National Laboratory; National Renewable Energy Laboratory; Oak Ridge National Laboratory; Pacific Northwest Laboratory; and Sandia National Laboratories. The information in this volume was provided by the multiprogram national laboratories and compiled at Lawrence Berkeley Laboratory.

  6. Modeling of High Efficiency Clean Combustion Engines

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Lawrence Livermore National Laboratory Modeling of high efficiency clean combustion engines Daniel Flowers Salvador Aceves Tom Piggott Daniel Flowers, Salvador Aceves, Tom Piggott,...

  7. Internal Combustion Engine Energy Retention (ICEER)

    Broader source: Energy.gov (indexed) [DOE]

    ICEER Internal Combustion Engine Energy Retention PI: Jeffrey Gonder Team: Eric Wood & Sean Lopp National Renewable Energy Laboratory June 18, 2014 Project ID: VSS126 This...

  8. NDE Development for ACERT Engine Components

    Broader source: Energy.gov (indexed) [DOE]

    ACERT ENGINE COMPONENTS J. G. Sun Argonne National Laboratory Collaborators: Jeff Jensen, Nate Phillips Caterpillar, Inc. HT Lin, Mike Kass, D. Ray Johnson Oak Ridge National...

  9. PHEV Engine Control and Energy Management Strategy

    Broader source: Energy.gov (indexed) [DOE]

    Oak Ridge National Laboratory PHEV Engine Control and Energy Management Strategy This presentation does not contain any proprietary, confidential, or otherwise restricted...

  10. Fuels For Advanced Combustion Engines (FACE)

    Broader source: Energy.gov (indexed) [DOE]

    Fuels For Advanced Combustion Engines (FACE) Presented by: Scott Sluder, Ron Graves, John Storey Oak Ridge National Laboratory Brad Zigler, Wendy Clark National Renewable Energy...

  11. Lawrence E. Carlson Professor of Mechanical Engineering

    E-Print Network [OSTI]

    Carlson, Lawrence E.

    Education, American Society of Mechanical Engineers, pp. 31-33. Solar Stirling Engine 2Cam Rock ClimbingPortfolio Lawrence E. Carlson Professor of Mechanical Engineering Founding Co-Director, Integrated Teaching and Learning Program and Laboratory University of Colorado at Boulder #12;ENGINEERING EDUCATION

  12. Engineering Annual Summary 1996

    SciTech Connect (OSTI)

    Dimolitsas, S.

    1997-04-30T23:59:59.000Z

    Fiscal year 1996 has been a year of significant change for the Lawrence Livermore National Laboratory (LLNL) in general and for Engineering in particular. Among these changes, the Laboratory`s national security mission was better defined, the stockpile stewardship program objectives became crisper, LLNL`s investment in high-performance computing was re-emphasized with the procurement of a $100 million supercomputer for the Laboratory`s Accelerated Strategic Computing Initiative (ASCI) program, two major Laser programs (the National Ignition Facility and Atomic Vapor Laser Isotope Separation) expanded significantly, and DOE`s human genome efforts moved to the next phase of development. In the area of business operations, LLNL`s Cost Cutting Initiative Program (CCIP) was completed and the Laboratory restructured its workforce using a Voluntary Separation Incentive Program (VSIP). Engineering similarly also saw many technical and programmatic successes, as well as changes, starting with completion of its strategic plan, significant consolidation of its facilities, restructuring of its workforce, reduction of its overhead costs, substantial transfers of staff between programs, and finally my personal arrival at Livermore. This report is the first opportunity to capture some of Engineering`s FY96 activities and accomplishments in a succinct fashion, and to relate these to our strategic plan.

  13. Princeton Plasma Physics Laboratory

    SciTech Connect (OSTI)

    Not Available

    1990-01-01T23:59:59.000Z

    This report discusses the following topics: principal parameters achieved in experimental devices fiscal year 1990; tokamak fusion test reactor; compact ignition tokamak; Princeton beta experiment- modification; current drive experiment-upgrade; international collaboration; x-ray laser studies; spacecraft glow experiment; plasma processing: deposition and etching of thin films; theoretical studies; tokamak modeling; international thermonuclear experimental reactor; engineering department; project planning and safety office; quality assurance and reliability; technology transfer; administrative operations; PPPL patent invention disclosures for fiscal year 1990; graduate education; plasma physics; graduate education: plasma science and technology; science education program; and Princeton Plasma Physics Laboratory reports fiscal year 1990.

  14. Chlorine-36 in Water, Snow, and Mid-Latitude Glacial Ice of North America: Meteoric and Weapons-Tests Production in the Vicinity of the Idaho National Engineering and Environmental Laboratory, Idaho

    SciTech Connect (OSTI)

    L. DeWayne; J. R. Green (USGS); S. Vogt, P. Sharma (Purdue University); S. K. Frape (University of Waterloo); S. N. Davis (University of Arizona); G. L. Cottrell (USGS)

    1999-01-01T23:59:59.000Z

    Measurements of chlorine-36 (36Cl) were made for 64 water, snow, and glacial-ice and -runoff samples to determine the meteoric and weapons-tests-produced concentrations and fluxes of this radionuclide at mid-latitudes in North America. The results will facilitate the use of 36Cl as a hydrogeologic tracer at the Idaho National Engineering and Environmental Laboratory (INEEL). This information was used to estimate meteoric and weapons-tests contributions of this nuclide to environmental inventories at and near the INEEL. The data presented in this report suggest a meteoric source 36Cl for environmental samples collected in southeastern Idaho and western Wyoming if the concentration is less than 1 x 10 7 atoms/L. Additionally, concentrations in water, snow, or glacial ice between 1 x 10 7 and 1 x 10 8 atoms/L may be indicative of a weapons-tests component from peak 36Cl production in the late 1950s. Chlorine-36 concentrations between 1 x 10 8 and 1 x 10 9 atoms/L may be representative of re-suspension of weapons-tests fallout airborne disposal of 36Cl from the INTEC, or evapotranspiration. It was concluded from the water, snow, and glacial data presented here that concentrations of 36Cl measured in environmental samples at the INEEL larger than 1 x 10 9 atoms/L can be attributed to waste-disposal practices.

  15. Department of Energy Programmatic Spent Nuclear Fuel Management and Idaho National Engineering Laboratory Environmental Restoration and Waste Management Programs, Draft Environmental Impact Statement. Volume 1, Appendix D: Part A, Naval Spent Nuclear Fuel Management

    SciTech Connect (OSTI)

    Not Available

    1994-06-01T23:59:59.000Z

    Volume 1 to the Department of Energy`s Programmatic Spent Nuclear Fuel Management and Idaho National Engineering Laboratory Environmental Management Programs Environmental Impact Statement evaluates a range of alternatives for managing naval spent nuclear fuel expected to be removed from US Navy nuclear-powered vessels and prototype reactors through the year 2035. The Environmental Impact Statement (EIS) considers a range of alternatives for examining and storing naval spent nuclear fuel, including alternatives that terminate examination and involve storage close to the refueling or defueling site. The EIS covers the potential environmental impacts of each alternative, as well as cost impacts and impacts to the Naval Nuclear Propulsion Program mission. This Appendix covers aspects of the alternatives that involve managing naval spent nuclear fuel at four naval shipyards and the Naval Nuclear Propulsion Program Kesselring Site in West Milton, New York. This Appendix also covers the impacts of alternatives that involve examining naval spent nuclear fuel at the Expended Core Facility in Idaho and the potential impacts of constructing and operating an inspection facility at any of the Department of Energy (DOE) facilities considered in the EIS. This Appendix also considers the impacts of the alternative involving limited spent nuclear fuel examinations at Puget Sound Naval Shipyard. This Appendix does not address the impacts associated with storing naval spent nuclear fuel after it has been inspected and transferred to DOE facilities. These impacts are addressed in separate appendices for each DOE site.

  16. Department of Energy Programmatic Spent Nuclear Fuel Management and Idaho National Engineering Laboratory Environmental Restoration and Waste Management Programs Draft Environmental Impact Statement. Volume 1, Appendix C, Savannah River Site Spent Nuclear Fuel Mangement Program

    SciTech Connect (OSTI)

    Not Available

    1994-06-01T23:59:59.000Z

    The US Department of Energy (DOE) is engaged in two related decision making processes concerning: (1) the transportation, receipt, processing, and storage of spent nuclear fuel (SNF) at the DOE Idaho National Engineering Laboratory (INEL) which will focus on the next 10 years; and (2) programmatic decisions on future spent nuclear fuel management which will emphasize the next 40 years. DOE is analyzing the environmental consequences of these spent nuclear fuel management actions in this two-volume Environmental Impact Statement (EIS). Volume 1 supports broad programmatic decisions that will have applicability across the DOE complex and describes in detail the purpose and need for this DOE action. Volume 2 is specific to actions at the INEL. This document, which limits its discussion to the Savannah River Site (SRS) spent nuclear fuel management program, supports Volume 1 of the EIS. Following the introduction, Chapter 2 contains background information related to the SRS and the framework of environmental regulations pertinent to spent nuclear fuel management. Chapter 3 identifies spent nuclear fuel management alternatives that DOE could implement at the SRS, and summarizes their potential environmental consequences. Chapter 4 describes the existing environmental resources of the SRS that spent nuclear fuel activities could affect. Chapter 5 analyzes in detail the environmental consequences of each spent nuclear fuel management alternative and describes cumulative impacts. The chapter also contains information on unavoidable adverse impacts, commitment of resources, short-term use of the environment and mitigation measures.

  17. Heavy element radionuclides (Pu, Np, U) and {sup 137}Cs in soils collected from the Idaho National Engineering and Environmental Laboratory and other sites in Idaho, Montana, and Wyoming

    SciTech Connect (OSTI)

    Beasley, T.M.; Rivera, W. Jr. [Dept. of Energy, New York, NY (United States). Environmental Measurements Lab.; Kelley, J.M.; Bond, L.A. [Pacific Northwest National Lab., Richland, WA (United States); Liszewski, M.J. [Bureau of Reclamation (United States); Orlandini, K.A. [Argonne National Lab., IL (United States)

    1998-10-01T23:59:59.000Z

    The isotopic composition of Pu in soils on and near the Idaho National Engineering and Environmental Laboratory (INEEL) has been determined in order to apportion the sources of the Pu into those derived from stratospheric fallout, regional fallout from the Nevada Test Site (NTS), and facilities on the INEEL site. Soils collected offsite in Idaho, Montana, and Wyoming were collected to further characterize NTS fallout in the region. In addition, measurements of {sup 237}Np and {sup 137}Cs were used to further identify the source of the Pu from airborne emissions at the Idaho Chemical Processing Plant (ICPP) or fugitive releases from the Subsurface Disposal Area (SDA) in the Radioactive Waste Management Complex (RWMC). There is convincing evidence from this study that {sup 241}Am, in excess of that expected from weapons-grade Pu, constituted a part of the buried waste at the SDA that has subsequently been released to the environment. Measurements of {sup 236}U in waters from the Snake River Plain aquifer and a soil core near the ICPP suggest that this radionuclide may be a unique interrogator of airborne releases from the ICPP. Neptunium-237 and {sup 238}Pu activities in INEEL soils suggest that airborne releases of Pu from the ICPP, over its operating history, may have recently been overestimated.

  18. A comparison of dose and dose-rate conversion factors from the Soviet Union, United Kingdom, US Department of Energy, and the Idaho National Engineering Laboratory Fusion Safety Program

    SciTech Connect (OSTI)

    Rood, A.S.; Abbott, M.L.

    1991-12-01T23:59:59.000Z

    Several independent data sets of radiological dose and dose-rate conversion factors (DCF/DRCF) have been tabulated or developed by the international community both for fission and fusion safety purposes. This report compares sets from the US Department of Energy, the Soviet Union, and the United Kingdom with those calculated by the Idaho National Engineering Laboratory Fusion Safety Program. The objectives were to identify trends and potential outlying values for specific radionuclides and contribute to a future benchmark evaluation of the CARR computer code. Fifty-year committed effective dose equivalent factors were compared for the inhalation and ingestion pathways. External effective dose equivalent rates were compared for the air immersion and ground surface exposure pathways. Comparisons were made by dividing dose factors in the different data bases by the values in the FSP data base. Differences in DCF/DRCF values less than a factor of 2 were considered to be in good agreement and are likely due to the use of slightly different decay data, variations in the number of organs considered for calculating CEDE, and rounding errors. DCF/DRCF values that differed by greater than a factor of 10 were considered to be significant. These differences are attributed primarily to the use of different radionuclide decay data, selection and nomenclature for different isomeric states, treatment of progeny radionuclides, differences in calculational methodology, and assumptions on a radionuclide's chemical form.

  19. A comparison of dose and dose-rate conversion factors from the Soviet Union, United Kingdom, US Department of Energy, and the Idaho National Engineering Laboratory Fusion Safety Program

    SciTech Connect (OSTI)

    Rood, A.S.; Abbott, M.L.

    1991-12-01T23:59:59.000Z

    Several independent data sets of radiological dose and dose-rate conversion factors (DCF/DRCF) have been tabulated or developed by the international community both for fission and fusion safety purposes. This report compares sets from the US Department of Energy, the Soviet Union, and the United Kingdom with those calculated by the Idaho National Engineering Laboratory Fusion Safety Program. The objectives were to identify trends and potential outlying values for specific radionuclides and contribute to a future benchmark evaluation of the CARR computer code. Fifty-year committed effective dose equivalent factors were compared for the inhalation and ingestion pathways. External effective dose equivalent rates were compared for the air immersion and ground surface exposure pathways. Comparisons were made by dividing dose factors in the different data bases by the values in the FSP data base. Differences in DCF/DRCF values less than a factor of 2 were considered to be in good agreement and are likely due to the use of slightly different decay data, variations in the number of organs considered for calculating CEDE, and rounding errors. DCF/DRCF values that differed by greater than a factor of 10 were considered to be significant. These differences are attributed primarily to the use of different radionuclide decay data, selection and nomenclature for different isomeric states, treatment of progeny radionuclides, differences in calculational methodology, and assumptions on a radionuclide`s chemical form.

  20. Smart Grid Integration Laboratory

    SciTech Connect (OSTI)

    Wade Troxell

    2011-09-30T23:59:59.000Z

    The initial federal funding for the Colorado State University Smart Grid Integration Laboratory is through a Congressionally Directed Project (CDP), DE-OE0000070 Smart Grid Integration Laboratory. The original program requested in three one-year increments for staff acquisition, curriculum development, and instrumentation â?? all which will benefit the Laboratory. This report focuses on the initial phase of staff acquisition which was directed and administered by DOE NETL/ West Virginia under Project Officer Tom George. Using this CDP funding, we have developed the leadership and intellectual capacity for the SGIC. This was accomplished by investing (hiring) a core team of Smart Grid Systems engineering faculty focused on education, research, and innovation of a secure and smart grid infrastructure. The Smart Grid Integration Laboratory will be housed with the separately funded Integrid Laboratory as part of CSUâ??s overall Smart Grid Integration Center (SGIC). The period of performance of this grant was 10/1/2009 to 9/30/2011 which included one no cost extension due to time delays in faculty hiring. The Smart Grid Integration Laboratoryâ??s focus is to build foundations to help graduate and undergraduates acquire systems engineering knowledge; conduct innovative research; and team externally with grid smart organizations. Using the results of the separately funded Smart Grid Workforce Education Workshop (May 2009) sponsored by the City of Fort Collins, Northern Colorado Clean Energy Cluster, Colorado State University Continuing Education, Spirae, and Siemens has been used to guide the hiring of faculty, program curriculum and education plan. This project develops faculty leaders with the intellectual capacity to inspire its students to become leaders that substantially contribute to the development and maintenance of Smart Grid infrastructure through topics such as: (1) Distributed energy systems modeling and control; (2) Energy and power conversion; (3) Simulation of electrical power distribution system that integrates significant quantities of renewable and distributed energy resources; (4) System dynamic modeling that considers end-user behavior, economics, security and regulatory frameworks; (5) Best practices for energy management IT control solutions for effective distributed energy integration (including security with the underlying physical power systems); (6) Experimental verification of effects of various arrangements of renewable generation, distributed generation and user load types along with conventional generation and transmission. Understanding the core technologies for enabling them to be used in an integrated fashion within a distribution network remains is a benefit to the future energy paradigm and future and present energy engineers.

  1. ORNL engineering design and construction reengineering report

    SciTech Connect (OSTI)

    McNeese, L.E.

    1998-01-01T23:59:59.000Z

    A team composed of individuals representing research and development (R and D) divisions, infrastructure support organizations, and Department of Energy (DOE)-Oak Ridge Operations was chartered to reengineer the engineering, design, and construction (ED and C) process at Oak Ridge National Laboratory (ORNL). The team recognized that ED and C needs of both R and D customers and the ORNL infrastructure program have to be met to maintain a viable and competitive national laboratory. Their goal was to identify and recommend implementable best-in-class ED and C processes that will efficiently and cost-effectively support the ORNL R and D staff by being responsive to their programmatic and infrastructure needs. The team conducted process mapping of current and potential ED and C approaches, developed idealized versions of ED and C processes, and identified potential barriers to an efficient ED and C process. Eight subteams were assigned to gather information and to evaluate the significance of potential barriers through benchmarking, surveys, interviews, and reviews of key topical areas in order to determine whether the perceived barriers were real and important and whether they resulted from laws or regulations over which ORNL has no control.

  2. Using Web-Based Technology in Laboratory

    E-Print Network [OSTI]

    Plotkin, Joshua B.

    Using Web-Based Technology in Laboratory Instruction to Reduce Costs RITA M. POWELL,1 HELEN curriculum while reducing their costs through the application of web-based teaching tools. The project.interscience. wiley.com.); DOI 10.1002/cae.10029 Keywords: engineering education; laboratory materials; World Wide Web

  3. Key facts about Argonne National Laboratory

    E-Print Network [OSTI]

    Kemner, Ken

    Key facts about Argonne National Laboratory Argonne National Laboratory occupies 1,500 wooded acres in southeast DuPage County near Chicago. Mission Argonne's mission is to apply a unique blend of world needs of our nation. Argonne conducts R&D in many areas of basic and applied science and engineering

  4. SULI at Ames Laboratory

    SciTech Connect (OSTI)

    None

    2011-01-01T23:59:59.000Z

    A video snapshot of the Science Undergraduate Laboratory Internship (SULI) program at Ames Laboratory.

  5. General Engineer (Chief Engineer)

    Broader source: Energy.gov [DOE]

    This position is located in the Office of the Manager. If selected for this position you will serve as a General Engineer (Chief Engineer) in the Office of the Manager for the Department of Energy,...

  6. Laboratory directed research and development

    SciTech Connect (OSTI)

    Not Available

    1991-11-15T23:59:59.000Z

    The purposes of Argonne's Laboratory Directed Research and Development (LDRD) Program are to encourage the development of novel concepts, enhance the Laboratory's R D capabilities, and further the development of its strategic initiatives. Among the aims of the projects supported by the Program are establishment of engineering proof-of-principle''; development of an instrumental prototype, method, or system; or discovery in fundamental science. Several of these project are closely associated with major strategic thrusts of the Laboratory as described in Argonne's Five Year Institutional Plan, although the scientific implications of the achieved results extend well beyond Laboratory plans and objectives. The projects supported by the Program are distributed across the major programmatic areas at Argonne. Areas of emphasis are (1) advanced accelerator and detector technology, (2) x-ray techniques in biological and physical sciences, (3) advanced reactor technology, (4) materials science, computational science, biological sciences and environmental sciences. Individual reports summarizing the purpose, approach, and results of projects are presented.

  7. Engineering Careers: Software Engineering

    E-Print Network [OSTI]

    Fenster, Sam

    of others When you screw up, you can do it on a massive scale #12;Totally unlike other engineering electronic device #12;Software tools Software engineers build their own tools The OS on your laptop;Just like other engineering Established body of knowledge Established practices Build on the work

  8. Recognizing and Managing Common Health Problems of Beef Cattle

    E-Print Network [OSTI]

    Faries Jr., Floron C.

    2005-06-10T23:59:59.000Z

    . Management: The mass must be removed surgically and the toes bandaged closely together. ?One of my cows coughs, protrudes her tongue and breathes with her mouth open.? The cow obviously has a lung disease in which inflammation elicits an irritated... cough, and reduced air space encourages open-mouthed breathing. Because several infectious and noninfectious causes are possible, professional assistance will be needed to make a specific diagnosis by physical and laboratory examinations. A common...

  9. Economic Impact of Pacific Northwest National Laboratory on the State of Washington in Fiscal Year 2013

    SciTech Connect (OSTI)

    Scott, Michael J.; Niemeyer, Jackie M.

    2014-12-18T23:59:59.000Z

    Pacific Northwest National Laboratory (PNNL) is a large economic entity, with $1.06 billion in annual funding, $936 million in total spending, and 4,344 employees in fiscal year (FY) 2013. Four thousand, one hundred and one (4,101) employees live in Washington State. The Laboratory directly and indirectly supports almost $1.31 billion in economic output, 6,802 jobs, and $514 million in Washington State wage income from current operations. The state also gains more than $1.21 billion in output, more than 6,400 jobs, and $459 million in income through closely related economic activities, such as visitors, health care spending, spending by resident retirees, and spinoff companies. PNNL affects Washington’s economy through commonly recognized economic channels, including spending on payrolls and other goods and services that support Laboratory operations. Less-commonly recognized channels also have their own impacts and include company-supported spending on health care for its staff members and retirees, spending of its resident retirees, Laboratory visitor spending, and the economic activities in a growing constellation of “spinoff” companies founded on PNNL research, technology, and managerial expertise. PNNL also has a significant impact on science and technology education and community nonprofit organizations. PNNL is an active participant in the future scientific enterprise in Washington with the state’s K-12 schools, colleges, and universities. The Laboratory sends staff members to the classroom and brings hundreds of students to the PNNL campus to help train the next generation of scientists, engineers, mathematicians, and technicians. This investment in human capital, though difficult to measure in terms of current dollars of economic output, is among the important lasting legacies of the Laboratory. Finally, PNNL contributes to the local community with millions of dollars’ worth of cash and in-kind corporate and staff contributions, all of which strengthen the economy. This report quantifies these effects, providing detailed information on PNNL’s revenues and expenditures, as well as the impacts of its activities on the rest of the Washington State economy. This report also describes the impacts of the four closely related activities: health care spending, spinoff companies with roots in PNNL, visitors to the Laboratory, and PNNL retirees.

  10. Laboratory modeling of hydraulic dredges and design of dredge carriage for laboratory facility

    E-Print Network [OSTI]

    Glover, Gordon Jason

    2002-01-01T23:59:59.000Z

    of hydraulic dredge equipment have proven useful for obtaining qualitative results. The new Coastal Engineering Laboratory at Texas A&M University is equipped with model dredge testing facilities ideal for performing such experiments. The tow/dredge carriage...

  11. College of Engineering Engineering in

    E-Print Network [OSTI]

    Lin, Zhiqun

    in engineering education · Fundamental knowledge ­ practical skills ­ leadership values · Creating · InspiringCollege of Engineering Engineering in Social Context Jonathan Wickert Dean of Engineering #12;College of Engineering Game changers of the 20th century ... · Electrification · Automobile · Airplane

  12. Introduction Systems Engineering Fundamentals ENGINEERING

    E-Print Network [OSTI]

    Rhoads, James

    Introduction Systems Engineering Fundamentals i SYSTEMS ENGINEERING FUNDAMENTALS January 2001;Systems Engineering Fundamentals Introduction ii #12;Introduction Systems Engineering Fundamentals iii ............................................................................................................................................. iv PART 1. INTRODUCTION Chapter 1. Introduction to Systems Engineering Management

  13. Pre-Approved1 Chemical Engineering Technical Electives (NOTE: Technical Electives Engineering Electives Bioengineering Electives)2

    E-Print Network [OSTI]

    Lawrence, Rick L.

    & Design [S] 3 EIND 354 Engr Probability and Statistics I [F] 3 EIND 434 Project and Engineering Management [F] 3 EMAT 252 Materials Science Laboratory [F,S] 1 EMAT 452 Adv. Engineering Materials [on demand] 3Pre-Approved1 Chemical Engineering Technical Electives (NOTE: Technical Electives Engineering

  14. Training of Engineers and Managers An important task of the Earth Engineering Center

    E-Print Network [OSTI]

    Qian, Ning

    ) Zhejiang University, Institute for Thermal Power Engineering (Prof. Kefa Cen) The Combustion and Catalysis.wtert.org/gwc Combustion & Catalysis Laboratory (CCL): www.cclabs.org Department of Earth & Environmental Engineering (EEETraining of Engineers and Managers An important task of the Earth Engineering Center and sister

  15. Purdue Hydrogen Systems Laboratory

    SciTech Connect (OSTI)

    Jay P Gore; Robert Kramer; Timothee L Pourpoint; P. V. Ramachandran; Arvind Varma; Yuan Zheng

    2011-12-28T23:59:59.000Z

    The Hydrogen Systems Laboratory in a unique partnership between Purdue University's main campus in West Lafayette and the Calumet campus was established and its capabilities were enhanced towards technology demonstrators. The laboratory engaged in basic research in hydrogen production and storage and initiated engineering systems research with performance goals established as per the USDOE Hydrogen, Fuel Cells, and Infrastructure Technologies Program. In the chemical storage and recycling part of the project, we worked towards maximum recycling yield via novel chemical selection and novel recycling pathways. With the basic potential of a large hydrogen yield from AB, we used it as an example chemical but have also discovered its limitations. Further, we discovered alternate storage chemicals that appear to have advantages over AB. We improved the slurry hydrolysis approach by using advanced slurry/solution mixing techniques. We demonstrated vehicle scale aqueous and non-aqueous slurry reactors to address various engineering issues in on-board chemical hydrogen storage systems. We measured the thermal properties of raw and spent AB. Further, we conducted experiments to determine reaction mechanisms and kinetics of hydrothermolysis in hydride-rich solutions and slurries. We also developed a continuous flow reactor and a laboratory scale fuel cell power generation system. The biological hydrogen production work summarized as Task 4.0 below, included investigating optimal hydrogen production cultures for different substrates, reducing the water content in the substrate, and integrating results from vacuum tube solar collector based pre and post processing tests into an enhanced energy system model. An automated testing device was used to finalize optimal hydrogen production conditions using statistical procedures. A 3 L commercial fermentor (New Brunswick, BioFlo 115) was used to finalize testing of larger samples and to consider issues related to scale up. Efforts continued to explore existing catalytic methods involving nano catalysts for capture of CO2 from the fermentation process.

  16. Final environmental impact statement for the construction and operation of an independent spent fuel storage installation to store the Three Mile Island Unit 2 spent fuel at the Idaho National Engineering and Environmental Laboratory. Docket Number 72-20

    SciTech Connect (OSTI)

    NONE

    1998-03-01T23:59:59.000Z

    This Final Environmental Impact Statement (FEIS) contains an assessment of the potential environmental impacts of the construction and operation of an Independent Spent Fuel Storage Installation (ISFSI) for the Three Mile Island Unit 2 (TMI-2) fuel debris at the Idaho National Engineering and Environmental laboratory (INEEL). US Department of Energy-Idaho Operations Office (DOE-ID) is proposing to design, construct, and operate at the Idaho Chemical Processing Plant (ICPP). The TMI-2 fuel debris would be removed from wet storage, transported to the ISFSI, and placed in storage modules on a concrete basemat. As part of its overall spent nuclear fuel (SNF) management program, the US DOE has prepared a final programmatic environmental impact statement (EIS) that provides an overview of the spent fuel management proposed for INEEL, including the construction and operation of the TMI-2 ISFSI. In addition, DOE-ID has prepared an environmental assessment (EA) to describe the environmental impacts associated with the stabilization of the storage pool and the construction/operation of the ISFSI at the ICPP. As provided in NRC`s NEPA procedures, a FEIS of another Federal agency may be adopted in whole or in part in accordance with the procedures outlined in 40 CFR 1506.3 of the regulations of the Council on Environmental Quality (CEQ). Under 40 CFR 1506.3(b), if the actions covered by the original EIS and the proposed action are substantially the same, the agency adopting another agency`s statement is not required to recirculate it except as a final statement. The NRC has determined that its proposed action is substantially the same as actions considered in DOE`s environmental documents referenced above and, therefore, has elected to adopt the DOE documents as the NRC FEIS.

  17. Course 28123 Chemical/Biochemical Engineering Laboratory

    E-Print Network [OSTI]

    Simaan, Nabil

    and solid extraction, organic synthesis, fixed bed enzyme reactor, solids handling, combustion/ high, filtration, drying in a tunnel, spray drying, fluidization and fluidized bed drying, distillation, absorption

  18. Physical Sciences and Engineering | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    100 awards More Argonne named in several DOE Energy Frontier Research Center awards More Solar panel manufacturing is greener in Europe than China, study says More Microscopy...

  19. Lawrence Berkeley National Laboratory Engineering Division Office

    E-Print Network [OSTI]

    /4867399 DMAttia@lbl.gov Administrative Staff Glenda Fish Division Office Administrator 510/4867123 GJFish

  20. An Engineering Approach to Laboratory Ergonomics

    E-Print Network [OSTI]

    Pollard, Martin J.

    2010-01-01T23:59:59.000Z

    E L b Lab t furniture & design Ergonomics i Martin PollardEnvironment Goals • The ergonomics p g problem at LBNL/JGI •in the context of an ergonomics program • Review examples of

  1. Nuclear Engineering Division Irradiated Materials Laboratory

    E-Print Network [OSTI]

    Kemner, Ken

    cladding to high-temperature steam oxidation followed by cold-water quench. Sample preparation capabilities. · High-temperature . The four beta-gamma hot cells and the glove boxes are used to determine mechanical properties

  2. Publications Materials Science and Engineering Laboratory

    E-Print Network [OSTI]

    -destructive measure- ment scheme to actively monitor hydrogen content in steel pipelines, Proc. QNDE 2007, AIP for hydrogen pipelines, NIST IR 6649 (2007) Siewert TA, Smith R, Merritt J, Advanced welding and joiningColskey JD, Siewert TA, Crack tip opening angle optical measurement methods in five pipeline steels, Engi

  3. Physical Sciences and Engineering | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    awards More Argonne named in several DOE Energy Frontier Research Center awards More Solar panel manufacturing is greener in Europe than China, study says More Microscopy...

  4. Sandia National Laboratories: molecularly engineered ion exchanger

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ion exchanger ECIS and UOP (a Honewell Company): CSTs Clean Radioactive Waste in Fukushima and Worldwide On February 14, 2013, in Energy, Materials Science, Nuclear Energy,...

  5. Institute for Molecular Engineering | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    at a molecular scale has the potential for societal impact in such areas as energy, health care, and the environment. The institute benefits from leading scientists and...

  6. NuclearScienceandEngineeringLaboratory Sustainable

    E-Print Network [OSTI]

    Beex, A. A. "Louis"

    computational and visualization tools for application in nuclear power, nuclear security, nonproliferation innovative devices for application in nuclear power, nuclear security and safeguards, and radiation diagnosis of nuclear power to the electric grid. In the nuclear security, nonproliferation, and safeguards areas, ongoi

  7. Sandia National Laboratories: Computer Aided Engineering for...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Sandia received funding for its "Mechanistic Modeling Framework for Predicting Extreme Battery Response: Coupled Hierarchical Models for Thermal, Mechanical, Electrical and...

  8. Mechanical Engineering Industrial Energy Systems Laboratory

    E-Print Network [OSTI]

    Candea, George

    of District Heating and Cooling with an Electro-Thermal Energy Storage System Master Thesis ANURAG KUMAR of the district energy systems is performed and modifications are proposed in a district heating network. Based of the ETES system to integrate the district heating and cooling networks. An operational synergy is developed

  9. Facilties & Engineering Services | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOnItem NotEnergy,ARMFormsGasReleaseSpeechesHall A This photo shows one Thethe

  10. Engineer, Sandia National Laboratories | National Nuclear Security

    National Nuclear Security Administration (NNSA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn AprilA groupTubahq.na.gov Office ofDepartment ofr EEO ComplaintSystemsEmergencyEnd

  11. Engineer, Sandia National Laboratories | National Nuclear Security

    National Nuclear Security Administration (NNSA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn AprilA groupTubahq.na.gov Office ofDepartment ofr EEO

  12. Sandia National Laboratories: Careers: Aerospace Engineering

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa del Sol Home DistributionTransportationVice-President ofScience &AboutAerospace

  13. Sandia National Laboratories: Careers: Electrical Engineering

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa del Sol Home DistributionTransportationVice-President

  14. Sandia National Laboratories: Careers: Mechanical Engineering

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa del Sol Home DistributionTransportationVice-PresidentEvents Sorry, there

  15. Sandia National Laboratories: Careers: Nuclear Engineering

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa del Sol Home DistributionTransportationVice-PresidentEvents Sorry, thereNuclear

  16. Sandia National Laboratories: Careers: Systems Engineering

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa del Sol Home DistributionTransportationVice-PresidentEventsMaster'sCo-ops:

  17. Sandia National Laboratories: Research: Research Foundations: Engineering

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOnItemResearch > TheNuclearHomeland and NuclearReportMaterialsScience

  18. Sandia Energy - Cyber Engineering Research Laboratory (CERL)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Scienceand RequirementsCoatings Initiated at PNNL's SequimReactors To ReceiveCyber HomeCyber

  19. Applied Process Engineering Laboratory | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualProperty EditCalifornia: Energy Resources JumpAnaconda,Anza ElectricInc Jump

  20. US Army Corps of Engineers BUILDING STRONG

    E-Print Network [OSTI]

    US Army Corps of Engineers

    Modeling System Advanced Topics Alex Sánchez Research Hydraulic Engineer Coastal and Hydraulics Laboratory Engineer Research and Development Center June 21, 2012 #12;Coastal and Hydraulics Laboratory 2 Webinar Outline 18 June 2012 - Day 1 Introduction to CMS (slides) Overview of Documentation and Workshop

  1. US Army Corps of Engineers BUILDING STRONG

    E-Print Network [OSTI]

    US Army Corps of Engineers

    Modeling System Advanced Topics Alex Sánchez Research Hydraulic Engineer Coastal and Hydraulics Laboratory Engineer Research and Development Center June 20, 2012 #12;Coastal and Hydraulics Laboratory 2 Webinar Outline 18 June 2012 - Day 1 Introduction to CMS (slides) Overview of Documentation and Workshop

  2. US Army Corps of Engineers BUILDING STRONG

    E-Print Network [OSTI]

    US Army Corps of Engineers

    Modeling System Advanced Topics Alex Sánchez Research Hydraulic Engineer Coastal and Hydraulics Laboratory Engineer Research and Development Center June 19, 2012 #12;Coastal and Hydraulics Laboratory 2 Webinar Outline 18 June 2012 - Day 1 Introduction to CMS (slides) Overview of Documentation and Workshop

  3. US Army Corps of Engineers BUILDING STRONG

    E-Print Network [OSTI]

    US Army Corps of Engineers

    Modeling System Advanced Topics Alex Sánchez Research Hydraulic Engineer Coastal and Hydraulics Laboratory Engineer Research and Development Center June 22, 2012 #12;Coastal and Hydraulics Laboratory 2 Webinar Outline 18 June 2012 - Day 1 Introduction to CMS (slides) Overview of Documentation and Workshop

  4. Mycological Society of America A Gene Genealogical Approach to Recognize Phylogenetic Species Boundaries in the Lichenized

    E-Print Network [OSTI]

    California at Berkeley, University of

    Mycological Society of America A Gene Genealogical Approach to Recognize Phylogenetic Species-8897 A gene genealogical approach to recognize phylogenetic species boundaries in the lichenized fungus, was investigated as a model system in which to recognize species boundaries. Gene genealogies of 6 and 12 loci were

  5. DOE and Advisory Board Recognize Retiring Members for Service | Department

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613PortsmouthBartlesvilleAbout »DepartmentLaboratory |and LoanUnderFebruary 20,Servicesof

  6. Don Cook recognized for commitment to federal service | National Nuclear

    National Nuclear Security Administration (NNSA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn AprilA groupTubahq.na.gov Office ofDepartment of Energy Established |Laboratory

  7. Cost-Effective Reciprocating Engine Emissions Control and Monitoring for E&P Field and Gathering Engines

    SciTech Connect (OSTI)

    Keith Hohn; Sarah R. Nuss-Warren

    2011-08-31T23:59:59.000Z

    This final report describes a project intended to identify, develop, test, and commercialize emissions control and monitoring technologies that can be implemented by E&P operators to significantly lower their cost of environmental compliance and expedite project permitting. Technologies were installed and tested in controlled laboratory situations and then installed and tested on field engines based on the recommendations of an industry-based steering committee, analysis of installed horsepower, analysis of available emissions control and monitoring technologies, and review of technology and market gaps. The industry-recognized solution for lean-burn engines, a low-emissions-retrofit including increased airflow and pre-combustion chambers, was found to successfully control engine emissions of oxides of nitrogen (NO{sub X}) and carbon monoxide (CO). However, the standard non-selective catalytic reduction (NSCR) system recognized by the industry was found to be unable to consistently control both NO{sub X} and CO emissions. The standard NSCR system was observed to produce emissions levels that changed dramatically on a day-to-day or even hour-to-hour basis. Because difficulties with this system seemed to be the result of exhaust gas oxygen (EGO) sensors that produced identical output for very different exhaust gas conditions, models were developed to describe the behavior of the EGO sensor and an alternative, the universal exhaust gas oxygen (UEGO) sensor. Meanwhile, an integrated NSCR system using an advanced, signal-conditioned UEGO sensor was tested and found to control both NO{sub X} and CO emissions. In conjunction with this project, advanced monitoring technologies, such as Ion Sense, and improved sensors for emissions control, such as the AFM1000+ have been developed and commercialized.

  8. The MacEngineer 1 FacultyofEngineering,McMasterUniversityWinter2010

    E-Print Network [OSTI]

    Haykin, Simon

    Spekkens (PhD`77,Chemistry),VP Science andTechnology Development at Ontario Power Generation. This award recognizes Paul's and OPG's contributions to the reju- venation of nuclear engineering research and education in Ontario,in part through the establishment of the University Net- work of Excellence in Nuclear Engineering

  9. Laboratory Applications

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't YourTransport(FactDepartment ofLetter Report:40PM toLED Lighting5-15TradeLaboratories

  10. Laboratory Directors

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC)Integrated Codes |Is Your Home asLCLSLaboratory Directors Laboratory Directors A

  11. Laboratory Operations

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville PowerCherries 82981-1cnHigh SchoolIn12electron 9 5 - -/e),,sand CERN 73-11 Laboratory I |

  12. Nano-High: Lawrence Berkeley National Laboratory Lecture on the "compassionate instinct"

    Broader source: Energy.gov [DOE]

    Nano-High, a program of the Lawrence Berkeley National Laboratory, is a series of free Saturday morning talks by internationally recognized leaders in scientific research. The talks are designed...

  13. Nano-High: Lawrence Berkeley National Laboratory Lecture on Good Sugars

    Broader source: Energy.gov [DOE]

    Nano-High, a program of the Lawrence Berkeley National Laboratory, is a series of free Saturday morning talks by internationally recognized leaders in scientific research. The talks are designed...

  14. Nano-High: Lawrence Berkeley National Laboratory Lecture on Bad Sugars

    Broader source: Energy.gov [DOE]

    Nano-High, a program of the Lawrence Berkeley National Laboratory, is a series of free Saturday morning talks by internationally recognized leaders in scientific research. The talks are designed...

  15. Electrical Engineer (Field Engineering)

    Broader source: Energy.gov [DOE]

    (See Frequently Asked Questions for more information). Where would I be working? Western Area Power Administration Sierra Nevada Region Maintenance Engineering N5500 114 Parkshore Drive Folsom, CA...

  16. Department of Chemical Engineering Thermal and Flow Engineering Laboratory

    E-Print Network [OSTI]

    Zevenhoven, Ron

    design 12.9 Steam distillation 12.10 Multi-component distillation, azeotropic distillation, extractive distillation 13. Packed columns 13.1 Principle of operation, packings 13.2 Mass balance, mass transfer 13 drying using an absorption /stripping process 11. Batch distillation 11.1 Batch distillation principle 11

  17. Department of Chemical Engineering Thermal and Flow Engineering Laboratory

    E-Print Network [OSTI]

    Zevenhoven, Ron

    : continuous distillation, packed tower columns 7.5 Particle technology, multi-phase flows 8. Short introductions to process equipment and design; biotechnology; process dynamics and control 8.1 Process equipment and design 8.2 Biotechnology 8.3 Process dynamics and control Note: Chapter 7 and 8 are not part of the exam

  18. Environmental Engineering

    E-Print Network [OSTI]

    Wang, Hai

    CEECivil & Environmental Engineering THE SONNY ASTANI DEPARTMENT OF CIVIL & ENVIRONMENTAL ENGINEERING #12;Civil and Environmental engineers are critical in addressing the needs of civilization and human origins. Civil and Environmental Engineers create, con- struct, and manage the infrastructure

  19. & Mechanical Engineering

    E-Print Network [OSTI]

    Zhou, Chongwu

    , robotics, and the development of new tools for integrated approaches to concurrent engineeringAME Aerospace & Mechanical Engineering #12;Aerospace and Mechanical Engineers design complex Engineering (AME) students conduct basic and applied research within and across the usual disciplinary

  20. Engineering Prestigious

    E-Print Network [OSTI]

    Saskatchewan, University of

    Engineering Studious Prestigious Adventurous Curious Ambitious Ingenious #12;TheCollegeof Engineering We are committed to innovation in all aspects of engineering education and research. We deliver an accredited professional education program that effectively prepares our students to become engineering

  1. Diesel Engine Idling Test

    SciTech Connect (OSTI)

    Larry Zirker; James Francfort; Jordon Fielding

    2006-02-01T23:59:59.000Z

    In support of the Department of Energy’s FreedomCAR and Vehicle Technology Program Office goal to minimize diesel engine idling and reduce the consumption of millions of gallons of diesel fuel consumed during heavy vehicle idling periods, the Idaho National Laboratory (INL) conducted tests to characterize diesel engine wear rates caused by extended periods of idling. INL idled two fleet buses equipped with Detroit Diesel Series 50 engines, each for 1,000 hours. Engine wear metals were characterized from weekly oil analysis samples and destructive filter analyses. Full-flow and the bypass filter cartridges were removed at four stages of the testing and sent to an oil analysis laboratory for destructive analysis to ascertain the metals captured in the filters and to establish wear rate trends. Weekly samples were sent to two independent oil analysis laboratories. Concurrent with the filter analysis, a comprehensive array of other laboratory tests ascertained the condition of the oil, wear particle types, and ferrous particles. Extensive ferrogram testing physically showed the concentration of iron particles and associated debris in the oil. The tests results did not show the dramatic results anticipated but did show wear trends. New West Technologies, LLC, a DOE support company, supplied technical support and data analysis throughout the idle test.

  2. Laboratory Waste | Sample Preparation Laboratories

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC)Integrated Codes |Is Your Home asLCLSLaboratory Directors LaboratoryPlanning

  3. Geoscience Laboratory | Sample Preparation Laboratories

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC) Environmental AssessmentsGeoffrey CampbelllongApplyingGeorge T.Geoscience Laboratory

  4. Renewable Energy Research Laboratory, UMass Amherst www.ceere.org/rerl

    E-Print Network [OSTI]

    Massachusetts at Amherst, University of

    Renewable Energy Research Laboratory, UMass Amherst www.ceere.org/rerl 1 Small Wind PowerSmall Wind Sally Wright, PE Staff Engineer Renewable Energy Research Laboratory University of Massachusetts, Amherst A Presentation to Co-op Power Sally Wright, PE Staff Engineer Renewable Energy Research Laboratory

  5. U.S. Department of Energy Idaho National Engineering and Environmental...

    Broader source: Energy.gov (indexed) [DOE]

    Department of Energy Programmatic Spent Nuclear Fuel Management and Idaho National Engineering Laboratory Environmental Restoration and Waste Management Program Final...

  6. College of Engineering ENGINEERING

    E-Print Network [OSTI]

    Mayfield, John

    and Treatment 10 Advancing Production in Large-Scale Industries 12 A New Kind of Solar Cell 14 News Bites #12College of Engineering CYCLONE ENGINEERING RESEARCH `SENSING SKIN' MAKES WIND ENERGY MORE COST. CONTENTS4 A Smarter Power Grid 6 Reducing the Cost of Wind Energy 8 Revolutionizing Disease Prevention

  7. Sandia National Laboratories: Facilities

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Laboratory (PSEL) National Supervisory Control and Data Acquisition (SCADA) Test Bed Center for Integrated Nanotechnologies (CINT) Distributed Energy Technologies Laboratory...

  8. Environmental | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Environmental Management Program at the Ames Laboratory includes Waste Management, Pollution Prevention, Recycling, Cultural Resources, and the Laboratory's Environmental...

  9. DEPARTMENT OF MECHANICAL ENGINEERING UNDERGRADUATE CURRICULUM GUIDE

    E-Print Network [OSTI]

    , S 3 CHEM 112 General Chemistry Lab I (CHEM 111 or concurrent) F, S, SM 1 MECH 331 Intro. Engineering or concurrent) F, S, SM 5 MECH 338 Thermosciences Laboratory (MECH 337, MECH 342) F, S 1 MECH 201 Engineering Credits) TERM CR PH 142 Physics for Scientists & Engineers II - (PH 141; MATH 161 or concurrent) F, S 5

  10. Terry Fuller Engineering

    E-Print Network [OSTI]

    Gelfond, Michael

    Terry Fuller Petroleum Engineering Research Building Terry Fuller Petroleum Engineering Research Building Construction Engineering and Engineering Technology Construction Engineering and Engineering Technology Industrial Engineering Industrial Engineering Engineering Center Engineering Center Computer

  11. Mechanical engineering COLLEGE of ENGINEERING

    E-Print Network [OSTI]

    Berdichevsky, Victor

    . Mechanical engineering is a broad, versatile and creative discipline concerned with conversion of energyMechanical engineering COLLEGE of ENGINEERING DepartmentofMechanicalEngineering CollegeofEngineering t Home to nation's first electric-drive vehicle engineering program and alternative energy technology

  12. What engineering courses are there? Automotive Engineering

    E-Print Network [OSTI]

    Sussex, University of

    Electrical and Electronic Engineering Electronic Engineering Mechanical Engineering BEng Automotive Engineering Computer Engineering Electrical and Electronic Engineering Electronic Engineering Mechanical's student perspective `I chose to study Electrical and Electronic Engineering at Sussex because

  13. College of Engineering and Science ENGINEERING

    E-Print Network [OSTI]

    Stuart, Steven J.

    College of Engineering and Science COLLEGE OF ENGINEERING AND SCIENCE The College of Engineering and Science offers advanced degrees in Automotive Engineering, Bioengineering, Biosystems Engineering, Chemi- cal Engineering, Chemistry, Civil Engineering, Computer Engineering, Computer Science, Digital

  14. College of Engineering and Science ENGINEERING

    E-Print Network [OSTI]

    Stuart, Steven J.

    58 College of Engineering and Science 58 COLLEGE OF ENGINEERING AND SCIENCE The College of Engineering and Science offers advanced degrees in Automotive Engineering, Bioengineering, Biosystems Engineering, Chemi- cal Engineering, Chemistry, Civil Engineering, Computer Engineering, Computer Science

  15. College of Engineering and Science ENGINEERING

    E-Print Network [OSTI]

    Stuart, Steven J.

    35 College of Engineering and Science COLLEGE OF ENGINEERING AND SCIENCE The College of Engineering and Science offers advanced degrees in Automotive Engineering, Bioengineering, Biosystems Engineering, Chemi- cal Engineering, Chemistry, Civil Engineering, Computer Engineering, Computer Science, Digital

  16. Mechanical and Manufacturing Engineering Petroleum Engineering Minor

    E-Print Network [OSTI]

    Calgary, University of

    of Chemical and Petroleum Engineering for their petroleum engineering minor. As well, mechanical engineeringMechanical and Manufacturing Engineering Petroleum Engineering Minor The Department of Mechanical and Manufacturing Engineering offers a minor in petroleum engineering within the mechanical engineering major

  17. Sorption heat engines: simple inanimate negative entropy generators

    E-Print Network [OSTI]

    Anthonie W. J. Muller; Dirk Schulze-Makuch

    2005-12-18T23:59:59.000Z

    The name 'sorption heat engines' is proposed for simple negative entropy generators that are driven by thermal cycling and work on alternating adsorption and desorption. These generators are in general not explicitly recognized as heat engines. Their mechanism is applicable to the fields of engineering, physics, chemistry, geology, and biology, in particular the origin of life. Four kinds of sorption heat engines are distinguished depending on the occurrence of changes in the adsorbent or adsorbate during the thermal cycle.

  18. Maximizing Power Output in Homogeneous Charge Compression Ignition (HCCI) Engines and Enabling Effective Control of Combustion Timing

    E-Print Network [OSTI]

    Saxena, Samveg

    2011-01-01T23:59:59.000Z

    National Laboratory, “Engine Combustion Network”, http://Experimental study of biogas combustion characteristics andmechanisms of HCCI combustion”, “HCCI and CAI engines for

  19. Recognizing and Assigning ESPC Risks and Responsibilities Using the Risk, Responsibility, and Performance Matrix

    Broader source: Energy.gov [DOE]

    Document offers guidance on how to recognize and assign energy savings performance contract (ESPC) risks and responsibilities using the risk, responsibility, and performance matrix, also known as RRPM.

  20. Proceedings of the ASME/JSME 2011 8th Thermal Engineering Joint Conference

    E-Print Network [OSTI]

    Walker, D. Greg

    Proceedings of the ASME/JSME 2011 8th Thermal Engineering Joint Conference AJTEC2011 March 13 MOLECULAR DYNAMICS SIMULATIONS Majid S. al-Dosari Thermal Engineering Laboratory Department of Mechanical Thermal Engineering Laboratory Department of Mechanical Engineering Vanderbilt University Nashville