National Library of Energy BETA

Sample records for recognized laboratory engine

  1. Sandia Labs Engineer Recognized by IEEE

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Engineer Recognized by IEEE - Sandia Energy Energy Search Icon Sandia Home Locations Contact Us Employee Locator Energy & Climate Secure & Sustainable Energy Future Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 Geothermal Natural Gas Safety, Security & Resilience of the Energy Infrastructure Energy Storage Nuclear Power & Engineering Grid Modernization Battery Testing Nuclear Energy Defense Waste Management Programs Advanced

  2. FLC Recognizes Laboratory's Technology Transfer Activities - News Releases

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    | NREL FLC Recognizes Laboratory's Technology Transfer Activities August 19, 2004 Golden, Colo. - The Federal Laboratory Consortium for Technology Transfer (FLC) has recognized the Department of Energy's National Renewable Energy Laboratory with three regional awards for technology transfer activities. "These awards acknowledge our success in moving NREL technologies to the private sector," said Tom Williams, director of NREL's Technology Transfer Office. NREL was honored with two

  3. NNSA Recognizes Laboratory and Site Partners for Achievements in

    National Nuclear Security Administration (NNSA)

    Environmental Innovation with 2016 Sustainability Awards | National Nuclear Security Administration | (NNSA) Recognizes Laboratory and Site Partners for Achievements in Environmental Innovation with 2016 Sustainability Awards April 18, 2016 WASHINGTON, D.C. - The Department of Energy's National Nuclear Security Administration (NNSA) recognized several sites across the Nuclear Security Enterprise with 2016 Sustainability Awards for innovation and excellence in environmental sustainability.

  4. Engineer, Sandia National Laboratories | National Nuclear Security

    National Nuclear Security Administration (NNSA)

    Administration | (NNSA) Engineer, Sandia National Laboratories Clifford Ho Clifford Ho February 2010 Asian American Engineer of the Year Clifford Ho, a Sandia engineer, has been selected by the Chinese Institute of Engineers - USA to receive the Asian American Engineer of the Year Award. The honor is presented each year to the nation's most outstanding Asian American engineers and scientists who make significant, lasting and global contributions to the nation. Ho was recognized for his

  5. Fossil Energy Acting Assistant Secretary Recognized at Black Engineer of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    the Year Awards | Department of Energy Fossil Energy Acting Assistant Secretary Recognized at Black Engineer of the Year Awards Fossil Energy Acting Assistant Secretary Recognized at Black Engineer of the Year Awards February 19, 2013 - 8:54am Addthis Director Dot Harris presents Chris Smith, Principal Deputy Assistant Secretary and Acting Assistant Secretary of Fossil Energy, with a professional achievement award at the Black Engineer of the Year Awards conference this February. Photo

  6. Engineer Marshall Jones Recognized by Price Chopper | GE Global...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Engineer Marshall Jones Recognized by Price Chopper Click to email this to a friend (Opens in new window) Share on Facebook (Opens in new window) Click to share (Opens in new ...

  7. Los Alamos National Laboratory recognizes employee teams with 2015

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Pollution Prevention Awards 2015 Pollution Prevention Awards Los Alamos National Laboratory recognizes employee teams with 2015 Pollution Prevention Awards Nearly 400 Lab employees on 32 teams received Pollution Prevention awards during an Earth Day awards ceremony April 23, 2015 image description Los Alamos National Laboratory sits on top of a once-remote mesa in northern New Mexico with the Jemez mountains as a backdrop to research and innovation covering multi-disciplines from bioscience,

  8. Los Alamos National Laboratory recognizes employee teams with 2015

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Pollution Prevention Awards 015 Pollution Prevention Awards Los Alamos National Laboratory recognizes employee teams with 2015 Pollution Prevention Awards Nearly 400 Lab employees on 32 teams received Pollution Prevention awards during an Earth Day awards ceremony April 22, 2015 Los Alamos National Laboratory sits on top of a once-remote mesa in northern New Mexico with the Jemez mountains as a backdrop to research and innovation covering multi-disciplines from bioscience, sustainable energy

  9. NREL: Transportation Research - NREL Engineer Recognized for Leadership in

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Motor Thermal Management NREL Engineer Recognized for Leadership in Motor Thermal Management Photo of Kevin Bennion with award June 16, 2016 NREL senior engineer and researcher Kevin Bennion received a special recognition award from the U.S. Department of Energy's Vehicle Technologies Office for expertise and leadership in the thermal management of motor designs in electric drive technologies research. The award was presented at a Vehicle Technologies Office ceremony on June 6, 2016, in

  10. Nuclear Engineering | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Nuclear Engineering Nearly every commercial reactor in existence today owes its development to seminal research conducted at Argonne National Laboratory. Building on this heritage, ...

  11. Emeritus Scientists and Engineers | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Emeritus Scientists and Engineers Argonne's world-class researchers have achieved national and international recognition, including: Three Nobel Prizes, 119 R&D 100 Awards, More than 700 national and international awards and honors, and More than 800 patents. In 2006, Argonne created a new honorary status for qualified staff. The title of "Emeritus," conferred at the time of retirement, recognizes the individual's important contributions to the laboratory. This title is granted

  12. Los Alamos National Laboratory recognizes employee teams with...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Nearly 400 Lab employees on 32 teams received Pollution Prevention awards during an Earth Day awards ceremony April 23, 2015 image description Los Alamos National Laboratory...

  13. Los Alamos National Laboratory recognizes employee teams with 2015

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    champion | National Nuclear Security Administration | (NNSA) National Laboratory receives Presidential Award as a climate champion Wednesday, December 30, 2015 - 12:00am NNSA Blog Los Alamos National Laboratory recently received a second presidential award as a climate champion. From left are: Mathew Moury, Associate Under Secretary for Environment, Health, Safety and Security; Michael Sweitzer, NNSA; Josh Silverman, Director, DOE Office of Sustainability Support; Christy Goldfuss, Director,

  14. EM Laboratory Researcher James Marra Recognized for Leadership

    Broader source: Energy.gov [DOE]

    AIKEN, S.C. – Dr. James Marra, an investigator with EM’s Savannah River National Laboratory (SRNL), was named the 2014 recipient of the D.T. Rankin Award for exemplary service to the Nuclear and Environmental Technology Division of the American Ceramic Society (ACerS).

  15. NREL Scientists and Engineers Recognized for Top Innovations as Lab Celebrates Another Record-Breaking Year of Inventions

    Office of Energy Efficiency and Renewable Energy (EERE)

    During its annual Innovation and Technology Transfer Awards ceremony on May 3, the U.S. Department of Energy's (DOE) National Renewable Energy Laboratory (NREL) recognized researchers and staff for 169 new innovations, a record-breaking number of scientific and engineering inventions in fiscal year 2015 (FY15)

  16. MIT- Energy Science and Engineering Laboratory | Open Energy...

    Open Energy Info (EERE)

    Science and Engineering Laboratory Jump to: navigation, search Logo: MIT- Energy Science and Engineering Laboratory Name: MIT- Energy Science and Engineering Laboratory Address: 77...

  17. Materials Engineering Research Facility | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Materials Engineering Research Facility Materials Engineering Research Facility exterior 1 of 11 Materials Engineering Research Facility exterior With the Materials Engineering Research Facility's state-of-the-art labs and equipment, Argonne researchers can safely scale up materials from the research bench for commercial testing. Photo courtesy Argonne National Laboratory. Materials Engineering Research Facility exterior 1 of 11 Materials Engineering Research Facility exterior With the Materials

  18. Sandia Energy Cyber Engineering Research Laboratory (CERL...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    wins-funding-for-programming-in-situ-data-analysisvisualizationfeed 0 Sandia Cyber Engineering Research Laboratory (CERL) Formally Opens http:energy.sandia.gov...

  19. Nuclear Engineering Science Laboratory Synthesis program accepting...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Nuclear Engineering Science Laboratory Synthesis program accepting applications for spring, summer 2016 Opportunity provides students with research experience at Oak Ridge National ...

  20. Visual Engineering | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    other engineering products. In addition, Mark Bryden and Doug McCorkle, along with collaborators at NETL and Reaction Engineering International have developed open-source software...

  1. Nuclear Engineering Science Laboratory Synthesis program accepting

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    applications for spring, summer 2016 Nuclear Engineering Science Laboratory Synthesis program accepting applications for spring, summer 2016 Opportunity provides students with research experience at Oak Ridge National Laboratory FOR IMMEDIATE RELEASE Nov. 11, 2015 FY16-06 OAK RIDGE, Tenn.-The Nuclear Engineering Science Laboratory Synthesis (NESLS) program is accepting applications for spring and summer 2016. NESLS is a cooperative research initiative at Oak Ridge National Laboratory (ORNL)

  2. Argonne National Laboratory's Omnivorous Engine

    SciTech Connect (OSTI)

    Thomas Wallner

    2009-10-16

    Why can't an engine run on any fuel? Argonne is designing an omnivorous engine that can run on any blend of gasoline, ethanol or butanoland calibrate itself to burn that fuel most efficiently.

  3. Argonne National Laboratory's Omnivorous Engine

    ScienceCinema (OSTI)

    Thomas Wallner

    2010-01-08

    Why can't an engine run on any fuel? Argonne is designing an omnivorous engine that can run on any blend of gasoline, ethanol or butanol?and calibrate itself to burn that fuel most efficiently.

  4. Mechanical Engineering | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Capabilities Electronics Design and Fabrication High Performance Computing Mechanical Engineering Monte Carlo Simulations Mechanical Engineering Mechanical Engineering In recent years the Mechanical Support Group has participated in the construction of the ATLAS Tile Calorimeter, as well as detectors for the MINOS and NOvA experiments. For ATLAS, the group was responsible for construction of a large fraction of the extended barrel tile hadron calorimeter. For MINOS, we designed and fabricated

  5. Nuclear Engineering | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Nuclear Milestones Publications News Press Releases Features Science Highlights In the ... Divisions Energy Systems Global Security Sciences Nuclear Engineering Nuclear Milestones ...

  6. Cyber Engineering Research Laboratory (CERL)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Solar Energy Wind Energy Water Power Supercritical CO2 Geothermal Natural Gas Safety, Security & Resilience of the Energy Infrastructure Energy Storage Nuclear Power & Engineering ...

  7. Sandia's Dr. Jeffrey Tsao Is Recognized as an Asian-American Engineer of

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    the Year Dr. Jeffrey Tsao Is Recognized as an Asian-American Engineer of the Year - Sandia Energy Energy Search Icon Sandia Home Locations Contact Us Employee Locator Energy & Climate Secure & Sustainable Energy Future Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 Geothermal Natural Gas Safety, Security & Resilience of the Energy Infrastructure Energy Storage Nuclear Power & Engineering Grid Modernization Battery Testing

  8. Department of Energy Recognizes Cummins for Deep Energy Retrofit at Jamestown Engine Plant

    Broader source: Energy.gov [DOE]

    As a part of the Administration’s effort to increase energy efficiency nationwide through the Better Buildings, Better Plants Challenge, the Energy Department today recognized Cummins Inc., for demonstrating leadership in reducing energy use and costs at its Jamestown Engine Plant in Jamestown, New York.

  9. Materials Engineering Research Facility | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Materials Engineering Research Facility Argonne's new Materials Engineering Research Facility (MERF) supports the laboratory's Advanced Battery Materials Synthesis and Manufacturing R&D Program. The MERF is enabling the development of manufacturing processes for producing advanced battery materials in sufficient quantity for industrial testing. The research conducted in this program is known as process scale-up. Scale-up R&D involves taking a laboratory-developed material and developing

  10. Engineer, Sandia National Laboratories | National Nuclear Security

    National Nuclear Security Administration (NNSA)

    Administration | (NNSA) Engineer, Sandia National Laboratories Sandra Begay-Campbell Sandra Begay-Campbell Ely S. Parker Award Sandra Begay-Campbell, a Sandia National Laboratories engineer and a member of the Navajo Nation, was selected for the prestigious Ely S. Parker Award by the American Indian Science and Engineering Society at an honors banquet Oct. 31 in Portland, Ore. Begay-Campbell, who has worked at Sandia for 17 years and is a principal member of the technical staff, received the

  11. Stirling engine research at Argonne National Laboratory

    SciTech Connect (OSTI)

    Holtz, R.E.; Daley, J.G.; Roach, P.D.

    1986-06-01

    Stirling engine research at Argonne National Laboratory has been focused at (1) development of mathematical models and analytical tools for predicting component and engine performance, and (2) experimental research into fundamental heat transfer and fluid flow phenomena occurring in Stirling cycle devices. A result of the analytical effort has been the formation of a computer library specifically for Stirling engine researchers and developers. The library contains properties of structural materials commonly used, thermophysical properties of several working fluids, correlations for heat transfer calculations and general specifications of mechanical arrangements (including various drive mechanisms) that can be utilized to model a particular engine. The library also contains alternative modules to perform analysis at different levels of sophistication, including design optimization. A reversing flow heat transfer facility is operating at Argonne to provide data at prototypic Stirling engine operating conditions under controlled laboratory conditions. This information is needed to validate analytical models.

  12. NETL Recognized for Management Excellence

    Broader source: Energy.gov [DOE]

    Management practices at the Office of Fossil Energy’s National Energy Technology Laboratory have been recognized by one of the world’s leading professional organizations for chemical engineers.

  13. Introduce a Girl to Engineering Day 2014 | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    4 Introduce a Girl to Engineering Day 2014 1 of 25 Introduce a Girl to Engineering Day 2014 Credit: Argonne National Laboratory (photo by Mark Lopez) Introduce a Girl to Engineering Day 2014 1 of 25 Introduce a Girl to Engineering Day 2014 Credit: Argonne National Laboratory (photo by Mark Lopez) Introduce a Girl to Engineering Day 2014 2 of 25 Introduce a Girl to Engineering Day 2014 Credit: Argonne National Laboratory (photo by Wes Agresta) Introduce a Girl to Engineering Day 2014 3 of 25

  14. Recognizing Innovation at Lawrence Berkeley National Laboratory: Michael Stadler, PECASE Winner

    Office of Energy Efficiency and Renewable Energy (EERE)

    I had the pleasure of participating in a ceremony this week honoring this year’s 13 Presidential Early Career Awards for Scientists and Engineers (PECASE) winners funded by the Energy Department....

  15. Sandia National Laboratories: Careers: Electrical Engineering

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Electrical Engineering Electrical Engineering photo Electrical engineers at Sandia design and develop advanced instrumentation systems for in-flight weapons system evaluations and other applications. Sandia creates innovative, science-based, systems-engineering solutions to our nation's most challenging national security problems. Sandia electrical engineers are an integral part of multidisciplinary teams tasked with defining requirements, creating system designs, implementing design

  16. Engine Research Facility | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Engine Research Facility Argonne's Engine Research Facility allows scientists and engineers to study in-cylinder combustion and emissions under realistic operating conditions. The facility's engines range in size from automobile- to locomotive-sized, as well as stationary electric power production engines. The facility is used to discover and evaluate new technologies to determine their technical feasibility and commercial viability. In addition, Argonne researchers use the facility's engines to

  17. Sandia National Laboratories: Careers: Systems Engineering

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Systems Engineering Systems engineering robot Systems engineers contribute to every aspect that impacts how a product is conceived, developed, and deployed into the field. Systems engineers at Sandia have the opportunity to contribute technically and programmatically in the development of our many breakthrough products. Systems engineers have responsibilities across the entire product life cycle, giving them a unique, hands-on work experience. Systems engineers work with business development

  18. Visit to the Deep Underground Science and Engineering Laboratory

    ScienceCinema (OSTI)

    None

    2010-01-08

    U.S. Department of Energy scientists and administrators join members of the National Science Foundation and South Dakotas Sanford Underground Laboratory for the deepest journey yet to the proposed site of the Deep Underground Science and Engineering Laboratory (DUSEL).

  19. Visit to the Deep Underground Science and Engineering Laboratory

    SciTech Connect (OSTI)

    2009-03-31

    U.S. Department of Energy scientists and administrators join members of the National Science Foundation and South Dakotas Sanford Underground Laboratory for the deepest journey yet to the proposed site of the Deep Underground Science and Engineering Laboratory (DUSEL).

  20. Visit to the Deep Underground Science and Engineering Laboratory

    SciTech Connect (OSTI)

    2009-01-01

    U.S. Department of Energy scientists and administrators join members of the National Science Foundation and South Dakotas Sanford Underground Laboratory for the deepest journey yet to the proposed site of the Deep Underground Science and Engineering Laboratory (DUSEL).

  1. Working with SRNL - Our Facilities - Engineering Development Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Engineering Development Laboratory Working with SRNL Our Facilities - Engineering Development Laboratory This fully-equipped, climate-controlled, 10,000 sq. ft. laboratory contains three high bays, three overhead cranes, a large fabrication shop, ample electrical support systems, several data acquisition systems, and over 3,000 pieces of measuring and test instrumentation. Innovative equipment tests and demonstrations are performed in the laboratory, as well as tests on existing and proposed

  2. Sandia National Laboratories: Careers: Mechanical Engineering

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Mechanical Engineering Engineering photo Sandia mechanical engineers design and develop advanced components and systems for national-defense programs, homeland security, and other applications. Mechanical engineers at Sandia work on design, analysis, manufacturing, and test activities in many areas, including nuclear weapons and power, renewable energy, intelligent machines, robotics, pulsed power, missile defense, remote sensing, advanced manufacturing, and micro- and nanosystems. Sandia

  3. Vehicle Technologies Office Recognizes Outstanding Researchers...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... Raj Sekar of Argonne National Laboratory, for 45 years of engine research during which he recognized the importance of using X-rays to visualize fuel sprays; was instrumental in ...

  4. Engines and Fuels | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Engines and Fuels Engines and Fuels Argonne's Engines and Fuels research focuses on understanding the interactions between fuels and engines in order to maximize the benefits available through optimization as well as to enable multi-fuel capability. Argonne researchers apply their expertise in the areas of combustion chemistry, fuel spray characterization, combustion system design, controls, and in-cylinder sensing as well as emissions control. A team of experts spanning a range of disciplines

  5. Institute for Molecular Engineering | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Learn more about the Institute for Molecular Engineering. When completed in early 2015, the William Eckhardt Research Center at the University of Chicago will be the home of the Institute of Molecular Engineering. Institute for Molecular Engineering The new Institute for Molecular Engineering explores innovative technologies that address fundamental societal problems through advances in nanoscale manipulation and design at a molecular scale. Addressing Societal Problems with Molecular Science

  6. Stirling engine research at national and university laboratories in Japan

    SciTech Connect (OSTI)

    Hane, G.J.; Hutchinson, R.A.

    1987-09-01

    Pacific Northwest Laboratory (PNL) reviewed research projects that are related to the development of Stirling engines and that are under way at Japanese national laboratories and universities. The research and development focused on component rather than on whole engine development. PNL obtained the information from a literature review and interviews conducted at the laboratories and universities. The universities have less equipment available and operate with smaller staffs for research than do the laboratories. In particular, the Mechanical Engineering Laboratory and the Aerospace Laboratory conduct high-quality component and fundamental work. Despite having less equipment, some of the researchers at the universities conduct high-quality fundamental research. As is typical in Japan, several of the university professors are very active in consulting and advisory capacities to companies engaged in Stirling engine development, and also with government and association advisory and technical committees. Contacts with these professors and selective examination of their research are good ways to keep abreast of Japanese Stirling developments.

  7. Sandia National Laboratories: Careers: Aerospace Engineering

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Aerospace Engineering Aerospace imagery Sandia's aerospace engineers have provided critical data for the design and analysis of flight vehicles since the 1950s. Aerospace engineers at Sandia support atmospheric and space flight vehicles across the speed regimes, from subsonic to hypersonic, through their collaborative work on multidisciplinary teams. Our aerodynamics and astronautics specialists integrate the results from experiments, analysis, and simulation to solve complex problems of

  8. Sandia National Laboratories: Careers: Nuclear Engineering

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Nuclear Engineering Nuclear Engineer Sandia's primary mission is ensuring that the U.S. nuclear arsenal is safe, secure, reliable, and capable of fully supporting our nation's deterrence policy. Nuclear engineers at Sandia work in multidisciplinary teams on a variety of projects that involve nuclear reactors, weapons, equipment, and information systems. For example, they design, develop, and test nuclear equipment and systems. They also monitor the testing, operation, and maintenance of nuclear

  9. Idaho National Laboratory Nuclear Engineering Overview

    SciTech Connect (OSTI)

    2008-01-01

    This video provides a brief overview of the nuclear history and work that takes place at Idaho National Laboratory. Learn more at http://www.facebook.com/idahonationallaboratory

  10. Division of Materials Sciences and Engineering | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Materials Sciences and Engineering R&D picked up a news release on Ames Laboratory researchers' discovery of a new type of Weyl semimetal, and accompanied the story with this cool artwork. READ MORE Fall 2016 Science Undergraduate Laboratory Intern (SULI) students Curt Waltmann (left), Timothy Hackett and Haley Hood began their program on Aug. 22, start of the Iowa State University fall semester. Ames Laboratory Science Undergraduate Laboratory Internship participant Ivy Wu (right) explains

  11. Technical Staff, Engine Combustion, Sandia National Laboratories | National

    National Nuclear Security Administration (NNSA)

    Nuclear Security Administration | (NNSA) Technical Staff, Engine Combustion, Sandia National Laboratories Charles Mueller Charles Mueller August 2009 Harry L. Horning Memorial Award Chuck Mueller, a member of Sandia National Laboratories technical staff, has received the 2008 Harry L. Horning Memorial Award for his work on the paper, "Early Direct-Injection, Low-Temperature Combustion of Diesel Fuel in an Optical Engine Utilizing a 15-Hole, Dual-Row, Narrow-Included-Angle Nozzle."

  12. Overview of Engine Combustion Research at Sandia National Laboratories

    SciTech Connect (OSTI)

    Robert W. Carling; Gurpreet Singh

    1999-04-26

    The objectives of this paper are to describe the ongoing projects in diesel engine combustion research at Sandia National Laboratories' Combustion Research Facility and to detail recent experimental results. The approach we are employing is to assemble experimental hardware that mimic realistic engine geometries while enabling optical access. For example, we are using multi-cylinder engine heads or one-cylinder versions of production heads mated to one-cylinder engine blocks. Optical access is then obtained through a periscope in an exhaust valve, quartz windows in the piston crown, windows in spacer plates just below the head, or quartz cylinder liners. We have three diesel engine experiments supported by the Department of Energy, Office of Heavy Vehicle Technologies: a one-cylinder version of a Cummins heavy-duty engine, a diesel simulation facility, and a one-cylinder Caterpillar engine to evaluate combustion of alternative diesel fuels.

  13. Y-12 recognized for work with STEM group | National Nuclear Security...

    National Nuclear Security Administration (NNSA)

    Y-12 has been recognized by the Federal Laboratory Consortium for its outstanding work in support of science, technology, engineering, and math education. The FLC Southeast Region ...

  14. Waste Technology Engineering Laboratory (324 building)

    SciTech Connect (OSTI)

    Kammenzind, D.E.

    1997-05-27

    The 324 Facility Standards/Requirements Identification Document (S/RID) is comprised of twenty functional areas. Two of the twenty functional areas (Decontamination and Decommissioning and Environmental Restoration) were determined as nonapplicable functional areas and one functional area (Research and Development and Experimental Activities) was determined applicable, however, requirements are found in other functional areas and will not be duplicated. Each functional area follows as a separate chapter, either containing the S/RID or a justification for nonapplicability. The twenty functional areas listed below follow as chapters: 1. Management Systems; 2. Quality Assurance; 3. Configuration Management; 4. Training and Qualification; 5. Emergency Management; 6. Safeguards and Security; 7. Engineering Program; 8. Construction; 9. Operations; 10. Maintenance; 11. Radiation Protection; 12. Fire Protection; 13. Packaging and Transportation; 14. Environmental Restoration; 15. Decontamination and Decommissioning; 16. Waste Management; 17. Research and Development and Experimental Activities; 18. Nuclear Safety; 19. Occupational Safety and Health; 20. Environmental Protection.

  15. Ergonomic assessments of three Idaho National Engineering Laboratory cafeterias

    SciTech Connect (OSTI)

    Ostrom, L.T.; Romero, H.A.; Gilbert, B.G.; Wilhelmsen, C.A.

    1993-05-01

    The Idaho National Engineering Laboratory is a Department of Energy facility that performs a variety of engineering and research projects. EG&G Idaho is the prime contractor for the laboratory and, as such, performs the support functions in addition to technical, research, and development functions. As a part of the EG&G Idaho Industrial Hygiene Initiative, ergonomic assessments were conducted at three Idaho National Engineering Laboratory Cafeterias. The purposes of the assessments were to determine whether ergonomic problems existed in the work places and, if so, to make recommendations to improve the work place and task designs. The study showed there were ergonomic problems in all three cafeterias assessed. The primary ergonomic stresses observed included wrist and shoulder stress in the dish washing task, postural stress in the dish washing and food preparation tasks, and back stress in the food handling tasks.

  16. Idaho National Engineering Laboratory: Annual report, 1986

    SciTech Connect (OSTI)

    Not Available

    1986-01-01

    The INEL underwent a year of transition in 1986. Success with new business initiatives, the prospects of even better things to come, and increased national recognition provided the INEL with a glimpse of its promising and exciting future. Among the highlights were: selection of the INEL as the preferred site for the Special Isotope Separation Facility (SIS); the first shipments of core debris from the Three Mile Island Unit 2 reactor to the INEL; dedication of three new facilities - the Fluorinel Dissolution Process, the Remote Analytical Laboratory, and the Stored Waste Experimental Pilot Plant; groundbreaking for the Fuel Processing Restoration Facility; and the first IR-100 award won by the INEL, given for an innovative machine vision system. The INEL has been assigned project management responsibility for the SDI Office-sponsored Multimegawatt Space Reactor and the Air Force-sponsored Multimegawatt Terrestrial Power Plant Project. New Department of Defense initiatives have been realized in projects involving development of prototype defense electronics systems, materials research, and hazardous waste technology. While some of our major reactor safety research programs have been completed, the INEL continues as a leader in advanced reactor technologies development. In April, successful tests were conducted for the development of the Integral Fast Reactor. Other 1986 highlights included the INEL's increased support to the Office of Civilian Radioactive Waste Management for complying with the Nuclear Waste Policy Act of 1982. Major INEL activities included managing a cask procurement program, demonstrating fuel assembly consolidation, and testing spent fuel storage casks. In addition, the INEL supplied the Tennessee Valley Authority with management and personnel experienced in reactor technology, increased basic research programs at the Idaho Research Center, and made numerous outreach efforts to assist the economies of Idaho communities.

  17. Introduce a Girl to Engineering Day | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Learn About Introduce a Girl to Engineering Day Contact education@anl.gov Introduce a Girl to Engineering Day "Let us pick up our books and pencils. They are our most powerful weapon."- Malala Yousafzai, 2014 Nobel Prize Laureate Are you a problem solver? Are you compelled to understand how things work? Come join Argonne National Laboratory in exploring the world of Engineering and the endless possibilities a career in this exciting field offers. Women in Science and Technology, in

  18. CRAD, Engineering- Oak Ridge National Laboratory High Flux Isotope Reactor

    Broader source: Energy.gov [DOE]

    A section of Appendix C to DOE G 226.1-2 "Federal Line Management Oversight of Department of Energy Nuclear Facilities." Consists of Criteria Review and Approach Documents (CRADs) used for a February 2007 assessment of the Engineering Program in preparation for restart of the Oak Ridge National Laboratory High Flux Isotope Reactor.

  19. NREL Staff Recognized for Top Innovations - News Releases | NREL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Staff Recognized for Top Innovations Principal Engineer Bhushan Sopori honored for solar research impacts May 9, 2014 The Energy Department's National Renewable Energy Laboratory recently recognized the professionals behind the lab's greatest innovations from the past year during its annual Innovation and Technology Transfer Awards ceremony. The event also celebrated NREL's commercialization and partnering successes, recognizing the researchers and engineers-including three honorees in the new

  20. The engineering institute of Los Alamos National Laboratory

    SciTech Connect (OSTI)

    Farrar, Charles R; Park, Gyuhae; Cornwell, Phillip J; Todd, Michael D

    2008-01-01

    Los Alamos National Laboratory (LANL) and the University of California, San Diego (UCSD) have taken the unprecedented step of creating a collaborative, multi-disciplinary graduate education program and associated research agenda called the Engineering Institute. The mission of the Engineering Institute is to develop a comprehensive approach for conducting LANL mission-driven, multidisciplinary engineering research and to improve recruiting, revitalization, and retention of the current and future staff necessary to support the LANL' s national security responsibilities. The components of the Engineering Institute are (1) a joint LANL/UCSD degree program, (2) joint LANL/UCSD research projects, (3) the Los Alamos Dynamic Summer School, (4) an annual workshop, and (5) industry short courses. This program is a possible model for future industry/government interactions with university partners.

  1. American Society of Mechanical Engineers/Savannah River National Laboratory

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    (ASME/SRNL) Materials and Components for Hydrogen Infrastructure Codes and Standards Workshop and the DOE Hydrogen Pipeline Working Group Meeting Attendee List | Department of Energy Meeting Attendee List American Society of Mechanical Engineers/Savannah River National Laboratory (ASME/SRNL) Materials and Components for Hydrogen Infrastructure Codes and Standards Workshop and the DOE Hydrogen Pipeline Working Group Meeting Attendee List Sponsored by SRNL, ASME, and DOE held at the Center for

  2. American Society of Mechanical Engineers/Savannah River National Laboratory

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    (ASME/SRNL) Materials and Components for Hydrogen Infrastructure Codes and Standards Workshop and the DOE Hydrogen Pipeline Working Group Workshop Agenda | Department of Energy Agenda American Society of Mechanical Engineers/Savannah River National Laboratory (ASME/SRNL) Materials and Components for Hydrogen Infrastructure Codes and Standards Workshop and the DOE Hydrogen Pipeline Working Group Workshop Agenda Sponsored by SRNL, ASME, and DOE held at the Center for Hydrogen Research, Aiken,

  3. The Prospective Role of JAEA Nuclear Fuel Cycle Engineering Laboratories

    SciTech Connect (OSTI)

    Ojima, Hisao; Dojiri, Shigeru; Tanaka, Kazuhiko; Takeda, Seiichiro; Nomura, Shigeo

    2007-07-01

    JAEA Nuclear Fuel Cycle Engineering Laboratories was established in 2005 to take over the activities of the JNC Tokai Works. Many kinds of development activities have been carried out since 1959. Among these, the results on the centrifuge for U enrichment, LWR spent fuel reprocessing and MOX fuel fabrication have already provided the foundation of the fuel cycle industry in Japan. R and D on the treatment and disposal of high-level waste and FBR fuel reprocessing has also been carried out. Through such activities, radioactive material release to the environment has been appropriately controlled and all nuclear materials have been placed under IAEA safeguards. The Laboratories has sufficient experience and ability to establish the next generation closed cycle and strives to become a world-class Center Of Excellence (COE). (authors)

  4. Idaho National Engineering Laboratory Waste Management Operations Roadmap Document

    SciTech Connect (OSTI)

    Bullock, M.

    1992-04-01

    At the direction of the Department of Energy-Headquarters (DOE-HQ), the DOE Idaho Field Office (DOE-ID) is developing roadmaps for Environmental Restoration and Waste Management (ER&WM) activities at Idaho National Engineering Laboratory (INEL). DOE-ID has convened a select group of contractor personnel from EG&G Idaho, Inc. to assist DOE-ID personnel with the roadmapping project. This document is a report on the initial stages of the first phase of the INEL`s roadmapping efforts.

  5. Pollution prevention efforts recognized

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Stories » Pollution prevention efforts recognized Pollution prevention efforts recognized Pollution prevention awards recognize individuals or teams whose efforts minimize waste, conserve resources and apply sustainable practices. April 17, 2012 George Rael presenting a bronze award for "green" purchasing to Laboratory Deputy Director Beth Sellers. George Rael, assistant manager for national security missions for the Department of Energy's Los Alamos Site Office, presents a bronze

  6. Association of Energy Engineers Certified Energy Manager Program Becomes First Credential Recognized under Better Buildings Workforce Guidelines

    Office of Energy Efficiency and Renewable Energy (EERE)

    This week, the Department announced that the Association of Energy Engineers’ (AEE) Certified Energy Manager® is the first certification program to be recognized under the Better Buildings Workforce Guidelines program.

  7. Tiger Team assessment of the Idaho National Engineering Laboratory

    SciTech Connect (OSTI)

    Not Available

    1991-08-01

    This report documents the Tiger Team Assessment of the Idaho National Engineering Laboratory (INEL) located in Idaho Falls, Idaho. INEL is a multiprogram, laboratory site of the US Department of Energy (DOE). Overall site management is provided by the DOE Field Office, Idaho; however, the DOE Field Office, Chicago has responsibility for the Argonne National Laboratory-West facilities and operations through the Argonne Area Office. In addition, the Idaho Branch Office of the Pittsburgh Naval Reactors Office has responsibility for the Naval Reactor Facility (NRF) at the INEL. The assessment included all DOE elements having ongoing program activities at the site except for the NRF. In addition, the Safety and Health Subteam did not review the Westinghouse Idaho Nuclear Company, Inc. facilities and operations. The Tiger Team Assessment was conducted from June 17 to August 2, 1991, under the auspices of the Office of Special Projects, Office of the Assistant Secretary for Environment, Safety and Health, Headquarters, DOE. The assessment was comprehensive, encompassing environmental, safety, and health (ES H) disciplines; management; and contractor and DOE self-assessments. Compliance with applicable federal, state, and local regulations; applicable DOE Orders; best management practices; and internal INEL site requirements was assessed. In addition, an evaluation of the adequacy and effectiveness of the DOE and the site contractors management of ES H/quality assurance programs was conducted.

  8. Tiger Team assessment of the Idaho National Engineering Laboratory

    SciTech Connect (OSTI)

    Goldberg, Edward S.; Keating, John J.

    1991-08-01

    The Management Subteam conducted a management assessment of Environment, Safety, and Health (ES H) programs and their implementation of Idaho National Engineering Laboratory (INEL). The objectives of the assessment were to: (1) evaluate the effectiveness of existing management functions and processes in terms of ensuring environmental compliance, and the health and safety of workers and the general public; and (2) identify probable root causes for ES H findings and concerns. Organizations reviewed were DOE-Headquarters: DOE Field Offices, Chicago (CH) and Idaho (ID); Argonne Area Offices, East (AAO-E) and West (AAO-W); Radiological and Environmental Sciences Laboratory (RESL); Argonne National Laboratory (ANL); EG G Idaho, Inc. (EG G); Westinghouse Idaho Nuclear Company, Inc. (WINCO); Rockwell-INEL; MK-Ferguson of Idaho Company (MK-FIC); and Protection Technology of Idaho, Inc. (PTI). The scope of the assessment covered the following ES H management issues: policies and procedures; roles, responsibilities, and authorities; management commitment; communication; staff development, training, and certification; recruitment; compliance management; conduct of operations; emergency planning and preparedness; quality assurance; self assessment; oversight activities; and cost plus award fee processes.

  9. Tiger Team assessment of the Idaho National Engineering Laboratory

    SciTech Connect (OSTI)

    McKenzie, Barbara J.; West, Stephanie G.; Jones, Olga G.; Kerr, Dorothy A.; Bieri, Rita A.; Sanderson, Nancy L.

    1991-08-01

    The purpose of the Safety and Health (S H) Subteam assessment was to determine the effectiveness of representative safety and health programs at the Idaho National Engineering Laboratory (INEL) site. Four Technical Safety Appraisal (TSA) Teams were assembled for this purpose by the US Department of Energy (DOE), Deputy Assistant Secretary for Safety and Quality Assurance, Office of Safety Appraisals (OSA). Team No. 1 reviewed EG G Idaho, Inc. (EG G Idaho) and the Department of Energy Field Office, Idaho (ID) Fire Department. Team No. 2 reviewed Argonne National Laboratory-West (ANL-W). Team No. 3 reviewed selected contractors at the INEL; specifically, Morrison Knudsen-Ferguson of Idaho Company (MK-FIC), Protection Technology of Idaho, Inc. (PTI), Radiological and Environmental Sciences Laboratory (RESL), and Rockwell-INEL. Team No. 4 provided an Occupational Safety and Health Act (OSHA)-type compliance sitewide assessment of INEL. The S H Subteam assessment was performed concurrently with assessments conducted by Environmental and Management Subteams. Performance was appraised in the following technical areas: Organization and Administration, Quality Verification, Operations, Maintenance, Training and Certification, Auxiliary Systems, Emergency Preparedness, Technical Support, Packaging and Transportation, Nuclear Criticality Safety, Security/Safety Interface, Experimental Activities, Site/Facility Safety Review, Radiological Protection, Personnel Protection, Worker Safety and Health (OSHA) Compliance, Fire Protection, Aviation Safety, Medical Services, and Firearms Safety.

  10. NREL Researcher Recognized for Outstanding Achievement by Hispanic

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Engineers Organization - News Releases | NREL Researcher Recognized for Outstanding Achievement by Hispanic Engineers Organization July 26, 2005 Golden, Colo. - Dr. Maria Ghirardi, a researcher at the U.S. Department of Energy's (DOE) National Renewable Energy Laboratory (NREL), was named one of the nation's best and brightest engineers and scientists by the Hispanic Engineers National Achievement Awards Corporation (HENAAC) today. Ghirardi's research has helped position NREL as the world's

  11. NREL: Transportation Research - NREL Researcher Jason Lustbader Recognized

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    with SAE Excellence in Oral Presentation Award NREL Researcher Jason Lustbader Recognized with SAE Excellence in Oral Presentation Award Man with dark hair in blue shirt with arms crossed. NREL Senior Research Engineer Jason Lustbader. July 27, 2016 On July 14, 2016, National Renewable Energy Laboratory (NREL) Senior Research Engineer Jason Lustbader was recognized with an SAE Excellence in Oral Presentation Award. The award honors individuals who make outstanding presentations at the SAE

  12. Idaho National Engineering Laboratory, Test Area North, Hangar 629 -- Photographs, written historical and descriptive data

    SciTech Connect (OSTI)

    1994-12-31

    The report describes the history of the Idaho National Engineering Laboratory`s Hangar 629. The hangar was built to test the possibility of linking jet engine technology with nuclear power. The history of the project is described along with the development and eventual abandonment of the Flight Engine Test hangar. The report contains historical photographs and architectural drawings.

  13. Idaho National Engineering Laboratory installation roadmap document. Revision 1

    SciTech Connect (OSTI)

    Not Available

    1993-05-30

    The roadmapping process was initiated by the US Department of Energy`s office of Environmental Restoration and Waste Management (EM) to improve its Five-Year Plan and budget allocation process. Roadmap documents will provide the technical baseline for this planning process and help EM develop more effective strategies and program plans for achieving its long-term goals. This document is a composite of roadmap assumptions and issues developed for the Idaho National Engineering Laboratory (INEL) by US Department of Energy Idaho Field Office and subcontractor personnel. The installation roadmap discusses activities, issues, and installation commitments that affect waste management and environmental restoration activities at the INEL. The High-Level Waste, Land Disposal Restriction, and Environmental Restoration Roadmaps are also included.

  14. The Quality of Management and of the Science and Engineering at the NNSA National Security Laboratories

    Office of Energy Efficiency and Renewable Energy (EERE)

    The Quality of Management and of the Science and Engineering at the NNSA National Security Laboratories was presented to CRENEL 9/15/2014.

  15. Thermal treatment technology at the Idaho National Engineering Laboratory

    SciTech Connect (OSTI)

    Hillary, J.M.

    1994-12-31

    Recent surveys of mixed wastes in interim storage throughout the 30-site Department of Energy complex indicate that only 12 of those sites account for 98% of such wastes by volume. Current inventories at the Idaho National Engineering Laboratory (INEL) account for 38% of total DOE wastes in interim storage, the largest of any single site. For a large percentage of these waste volumes, as well as the substantial amounts of buried and currently generated wastes, thermal treatment processes have been designated as the technologies of choice. Current facilities and a number of proposed strategies exist for thermal treatment of wastes of this nature at the INEL. High-level radioactive waste is solidified in the Waste Calciner Facility at the Idaho Central Processing Plant. Low-level solid wastes until recently have been processed at the Waste Experimental Reduction Facility (WERF), a compaction, size reduction, and controlled air incineration facility. WERF is currently undergoing process upgrading and RCRA Part B permitting. Recent systems studies have defined effective strategies, in the form of thermal process sequences, for treatment of wastes of the complex and heterogeneous nature in the INEL inventory. This presentation reviews the current status of operating facilities, active studies in this area, and proposed strategies for thermal treatment of INEL wastes.

  16. Awards | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Awards Each year, Argonne National Laboratory and many of its world-class scientists and engineers are recognized for their outstanding talents and the innovative technologies they develop with their research teams and in association with industry partners. Argonne researchers have received or been recognized by: R&D 100 Awards: Each year, R&D Magazine recognizes the 100 most technologically significant new products of the last year. The competition has two purposes: to recognize

  17. Consultant Subcontracting at the Idaho National Engineering Laboratory, WR-B-95-07

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    OFFICE OF INSPECTOR GENERAL CONSULTANT SUBCONTRACTING AT THE IDAHO NATIONAL ENGINEERING LABORATORY Report Number: WR-B-95-07 Western Regional Audit Office Date of Issue: June 20, 1995 Albuquerque, New Mexico 87185 CONSULTANT SUBCONTRACTING AT THE IDAHO NATIONAL ENGINEERING LABORATORY TABLE OF CONTENTS Page SUMMARY ........................................ 1 PART I - APPROACH AND OVERVIEW .......................... 2 Introduction ................................... 2 Scope and Methodology

  18. Introduce a Girl to Engineering Day | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    in Science and Technology, in conjunction with Argonne Education, present "Introduce a Girl to Engineering Day". This day gives young female students a unique opportunity to...

  19. Sandia National Laboratories: Rodeo queen and chemical engineer

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    is driving them to the next rodeo, a loaded horse trailer hitched to the truck, chemical engineering textbooks strewn over the dash. "It's a crazy-busy life right now," says Cami,...

  20. Argonne engineer receives prestigious medal | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Merzari combines high-performance computing with real-world engineering practices to develop predictive, large-scale simulations of turbulence. His work aims to build our understanding of complex flows and improve the safety and efficiency of energy systems like nuclear reactors. Merzari combines high-performance computing with real-world engineering practices to develop predictive, large-scale simulations of turbulence. His work aims to build our understanding of complex flows and improve the

  1. EA-0907: Idaho National Engineering Laboratory Sewer System Upgrade Project, Idaho Falls, Idaho

    Broader source: Energy.gov [DOE]

    This EA evaluates the environmental impacts of a proposal to upgrade the Sewer System at the U.S. Department of Energy's Idaho National Engineering Laboratory (INEL) near Idaho Falls, Idaho.  The...

  2. EA-0845: Expansion of the Idaho National Engineering Laboratory Research Center, Idaho Falls, Idaho

    Broader source: Energy.gov [DOE]

    This EA evaluates the environmental impacts of a proposal to expand and upgrade facilities at the U.S. Department of Energy's Idaho National Engineering Laboratory Research Center, located in Idaho...

  3. EA-0843: Idaho National Engineering Laboratory Low-Level and Mixed Waste Processing, Idaho Falls, Idaho

    Broader source: Energy.gov [DOE]

    This EA evaluates the environmental impacts of a proposal to (1) reduce the volume of the U.S. Department of Energy's Idaho National Engineering Laboratory's (INEL) generated low-level waste (LLW)...

  4. A woman like you: Women scientists and engineers at Brookhaven National Laboratory

    SciTech Connect (OSTI)

    Benkovitz, Carmen; Bernholc, Nicole; Cohen, Anita; Eng, Susan; Enriquez-Leder, Rosario; Franz, Barbara; Gorden, Patricia; Hanson, Louise; Lamble, Geraldine; Martin, Harriet; Mastrangelo, Iris; McLane, Victoria; Villela, Maria-Alicia; Vivirito, Katherine; Woodhead, Avril

    1991-01-01

    This publication by the women in Science and Engineering introduces career possibilities in science and engineering. It introduces what work and home life are like for women who have already entered these fields. Women at Brookhaven National Laboratory work in a variety of challenging research roles -- from biologist and environmental scientist to safety engineer, from patent lawyer to technician. Brookhaven National Laboratory is a multi-program laboratory which carries out basic and applied research in the physical, biomedical and environmental sciences and in selected energy technologies. The Laboratory is managed by Associated University, Inc., under contract with the US Department of Energy. Brookhaven and the other national laboratories, because of their enormous research resources, can play a critical role in a education and training of the workforce.

  5. A woman like you: Women scientists and engineers at Brookhaven National Laboratory. Careers in action

    SciTech Connect (OSTI)

    Not Available

    1991-12-31

    This publication by the women in Science and Engineering introduces career possibilities in science and engineering. It introduces what work and home life are like for women who have already entered these fields. Women at Brookhaven National Laboratory work in a variety of challenging research roles -- from biologist and environmental scientist to safety engineer, from patent lawyer to technician. Brookhaven National Laboratory is a multi-program laboratory which carries out basic and applied research in the physical, biomedical and environmental sciences and in selected energy technologies. The Laboratory is managed by Associated University, Inc., under contract with the US Department of Energy. Brookhaven and the other national laboratories, because of their enormous research resources, can play a critical role in a education and training of the workforce.

  6. Introduce a Girl to Engineering Day 2016 | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    6 1 of 2 1 of 2 2 of 2 Browse By - Any - General Argonne Information Energy -Energy efficiency --Vehicles ---Automotive engineering ---Hybrid & electric vehicles -Energy sources --Nuclear energy -Energy usage --Energy storage ---Batteries --Smart Grid Environment -Biology --Environmental biology ---Metagenomics -Environmental science & technology --Air quality --Atmospheric & climate research --Environmental modeling tools Security Programs -Materials science --Nanoscience

  7. A High Intensity Multi-Purpose D-D Neutron Generator for Nuclear Engineering Laboratories

    SciTech Connect (OSTI)

    Ka-Ngo Leung; Jasmina L. Vujic; Edward C. Morse; Per F. Peterson

    2005-11-29

    This NEER project involves the design, construction and testing of a low-cost high intensity D-D neutron generator for teaching nuclear engineering students in a laboratory environment without radioisotopes or a nuclear reactor. The neutron generator was designed, fabricated and tested at Lawrence Berkeley National Laboratory (LBNL).

  8. A Sustainable Focus for Laboratory Design, Engineering, and Operation

    Office of Energy Efficiency and Renewable Energy (EERE)

    Presentation—given at the Spring 2013 Federal Utility Partnership Working Group (FUPWG) meeting—covers Labs 21, the International Institute for Sustainable Laboratories (I2SL), partnership changes, initiatives, energy efficiency opportunities, third-party financing, and demand-side management (DSM).

  9. Director's commitment to diversity recognized

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Director's commitment to diversity recognized Director's commitment to diversity recognized Profiles in Diversity Journal is recognizing Director Michael Anastasio for his commitment to workplace diversity. March 11, 2011 Los Alamos National Laboratory sits on top of a once-remote mesa in northern New Mexico with the Jemez mountains as a backdrop to research and innovation covering multi-disciplines from bioscience, sustainable energy sources, to plasma physics and new materials. Los Alamos

  10. Idaho National Engineering and Environmental Laboratory Awarded VPP Gold Star

    Broader source: Energy.gov [DOE]

    Our journey to safety excellence began some six (6) years ago. The task seemed ominous with 6000 plus employees ranging from administrative assistants and craftsman to research scientists and engineers. Another challenge was the geographic dispersion of work areas being as much as 50 miles apart. A core group of employees caught the vision and knew that it could be done, and it is that perseverance that has lead the INEEL to the DOE-VPP Gold Star.

  11. Sandia National Laboratories: Careers: Chemistry & Chemical Engineering

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Chemistry & Chemical Engineering Chemistry research photo Sandia's Combustion Research Facility pioneered the use of chemical-imaging tools, such as laser diagnostics, for combustion applications. Chemists at Sandia conduct research and development at the interface between biology, synthetic chemistry, and surface science to deliver prototype solutions in diverse applications. They provide knowledge about materials structure, properties, and performance and about the processes to produce,

  12. The transportable heavy-duty engine emissions testing laboratory

    SciTech Connect (OSTI)

    Not Available

    1991-05-01

    West Virginia University has designed and constructed a Transportable Emissions Testing Laboratory for measuring emissions from heavy duty vehicles, such as buses and trucks operating on conventional and alternative fuels. The laboratory facility can be transported to a test site located at, or nearby, the home base of the vehicles to be tested. The laboratory has the capability of measuring vehicle emissions as the vehicle is operated under either transient or steady state loads and speeds. The exhaust emissions from the vehicle is sampled and the levels of the constituents of the emission are measured. The laboratory consists of two major units; a power absorber unit and an emissions measurement unit. A power absorber unit allows for the connection of a dynamic load to the drive train of the vehicle so that the vehicle can be driven'' through a test cycle while actually mounted on a stationary test bed. The emissions unit contains instrumentation and equipment which allows for the dilution of the vehicle's exhaust with air. The diluteed exhaust is sampled and analyzed to measure the level of concentration of those constituents which have been identified to have impact on the clean environment. Sampling probes withdraw diluted exhaust which is supplied to a number of different exhaust gas analysis instruments. The exhaust gas analysis instruments have the capability to measure the levels of the following exhaust gas constituents: carbon monoxide (CO), carbon dioxide (CO{sub 2}), oxides of nitrogen (NO{sub x}), unburned hydrocarbons (HC), formaldehyde (HCHO), methane and particulate matter. Additional instruments or sampling devices can be installed whenever measurements of additional constituents are desired. A computer based, data acquisition system is used to continuously monitor a wide range of parameters important to the operation of the test and to record the test results.

  13. Idaho National Engineering and Environmental Laboratory Environmental Technologies Proof-of-Concepts. Final report FY-96

    SciTech Connect (OSTI)

    Barrie, S.L.; Carpenter, G.S.; Crockett, A.B.

    1997-04-01

    The Idaho National Engineering and Environmental Laboratory Environmental Technologies Proof-of-Concept Project was initiated for the expedited development of new or conceptual technologies in support of groundwater fate, transport, and remediation; buried waste characterization, retrieval, and treatment; waste minimization/pollution prevention; and spent fuel handling and storage. In Fiscal Year 1996, The Idaho National Engineering and Environmental Laboratory proposed 40 development projects and the Department of Energy funded 15. The projects proved the concepts of the various technologies, and all the technologies contribute to successful environmental management.

  14. Proceedings of the National Renewable Energy Laboratory Wind Energy Systems Engineering Workshop

    SciTech Connect (OSTI)

    Dykes, K.

    2014-12-01

    The second National Renewable Energy Laboratory (NREL) Wind Energy Systems Engineering Workshop was held in Broomfield, Colorado, from January 29 to February 1, 2013. The event included a day-and-a-half workshop exploring a wide variety of topics related to system modeling and design of wind turbines and plants. Following the workshop, 2 days of tutorials were held at NREL, showcasing software developed at Sandia National Laboratories, the National Aeronautics and Space Administration's Glenn Laboratories, and NREL. This document provides a brief summary of the various workshop activities and includes a review of the content and evaluation results from attendees.

  15. Idaho National Engineering Laboratory nonradiological waste management information for 1994 and record to date

    SciTech Connect (OSTI)

    French, D.L.; Lisee, D.J.; Taylor, K.A.

    1995-08-01

    This document provides detailed data and graphics on airborne and liquid effluent releases, fuel oil and coal consumption, water usage, and hazardous and mixed waste generated for calendar year 1994. This report summarizes industrial waste data records compiled since 1971 for the Idaho National Engineering Laboratory (INEL). The data presented are from the INEL Nonradiological Waste Management Information System.

  16. Air Emission Inventory for the Idaho National Engineering and Environmental Laboratory - Calendar Year 1999 Emission Report

    SciTech Connect (OSTI)

    Zohner, S.K.

    2000-05-30

    This report presents the 1999 calendar year update of the Air Emission Inventory for the Idaho National Engineering and Environmental Laboratory (INEEL). The INEEL Air Emission Inventory documents sources and emissions of nonradionuclide pollutants from operations at the INEEL. The report describes the emission inventory process and all of the sources at the INEEL, and provides nonradionuclide emissions estimates for stationary sources.

  17. Air emission inventory for the Idaho National Engineering Laboratory: 1994 emissions report

    SciTech Connect (OSTI)

    1995-07-01

    This report Presents the 1994 update of the Air Emission inventory for the Idaho National Engineering Laboratory (INEL). The INEL Air Emission Inventory documents sources and emissions of non-radionuclide pollutants from operations at the INEL. The report describes the emission inventory process and all of the sources at the INEL, and provides non-radionuclide emissions estimates for stationary sources.

  18. 2002 Wastewater Land Application Site Performance Reports for the Idaho National Engineering and Environmental Laboratory

    SciTech Connect (OSTI)

    Meachum, T.R.; Lewis, M.G.

    2003-02-20

    The 2002 Wastewater Land Application site Performance Reports for the Idaho National Engineering and Environmental Laboratory describe site conditions for the facilities with State of Idaho Wastewater Land Application Permits. Permit-required monitoring data are summarized, and permit exceedences or environmental impacts relating to the operation of the facilities during the 2002 permit year are discussed.

  19. 2003 Wastewater Land Application Site Performance Reports for the Idaho National Engineering and Environmental Laboratory

    SciTech Connect (OSTI)

    Teresa R. Meachum

    2004-02-01

    The 2003 Wastewater Land Application Site Performance Reports for the Idaho National Engineering and Environmental Laboratory describe the conditions for the facilities with State of Idaho Wastewater Land Application Permits. Permit-required monitoring data are summarized, and permit exceedences or environmental impacts relating to the operations of the facilities during the 2003 permit year are discussed.

  20. Idaho National Engineering Laboratory Nonradiological Waste Management Information for 1992 and record to date

    SciTech Connect (OSTI)

    Randall, V.C.; Sims, A.M.

    1993-08-01

    This document provides detailed data and graphics on airborne and liquid effluent releases, fuel oil and coal consumption, water usage, and hazardous and mixed waste generated for calendar year 1992. This report summarizes industrial waste data records compiled since 1971 for the Idaho National Engineering Laboratory (INEL). The data presented are from the INEL Nonradiological Waste Management Information System.

  1. CRAD, Engineering- Los Alamos National Laboratory Waste Characterization, Reduction, and Repackaging Facility

    Broader source: Energy.gov [DOE]

    A section of Appendix C to DOE G 226.1-2 "Federal Line Management Oversight of Department of Energy Nuclear Facilities." Consists of Criteria Review and Approach Documents (CRADs) used for an assessment of the Engineering Program portion of an Operational Readiness Review at the Los Alamos National Laboratory Waste Characterization, Reduction, and Repackaging Facility.

  2. CRAD, Engineering- Oak Ridge National Laboratory High Flux Isotope Reactor Contractor ORR

    Broader source: Energy.gov [DOE]

    A section of Appendix C to DOE G 226.1-2 "Federal Line Management Oversight of Department of Energy Nuclear Facilities." Consists of Criteria Review and Approach Documents (CRADs) used for a February 2007 assessment of the Engineering Program portion of an Operational Readiness Review of the Oak Ridge National Laboratory High Flux Isotope Reactor.

  3. Idaho National Engineering Laboratory radioecology and ecology programs. 1983 progress report

    SciTech Connect (OSTI)

    Markham, O. D.

    1983-06-01

    Progress is reported in research on: the baseline ecology of the Idaho National Engineering Laboratory (INEL), the effects of disturbance on animal and plant communities, and the behavior of radionuclides in the environment surrounding radioactive waste sites. Separate abstracts have been prepared for individual reports. (ACR)

  4. Air Emission Inventory for the Idaho National Engineering and Environmental Laboratory - Calendar Year 1998 Emissions Report

    SciTech Connect (OSTI)

    S. K. Zohner

    1999-10-01

    This report presents the 1998 calendar year update of the Air Emission Inventory for the Idaho National Engineering and Environmental Laboratory (INEEL). The INEEL Air Emission Inventory documents sources and emissions of nonradionuclide pollutants from operations at the INEEL. The report describes the emission inventory process and all of the sources at the INEEL, and provides nonradiological emissions estimates for stationary sources.

  5. Lab recognized for charitable giving

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Lab recognized for charitable giving Community Connections: Your link to news and opportunities from Los Alamos National Laboratory Latest Issue: September 1, 2016 all issues All Issues » submit Lab recognized for charitable giving Unique partnership continues to grow April 1, 2014 From left to right: Jerry Ethridge (LANS LLC director), Kristy Ortega (executive director of the United Way of Northern New Mexico) and Don Cobb (UWNNM board member) during the 2014 recognition of the Lab as a

  6. Quality New Mexico recognizes Community Programs Office

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Quality New Mexico recognizes Community Programs Office March 6, 2012 LOS ALAMOS, New Mexico, March 6, 2012-Los Alamos National Laboratory's Community Programs Office received...

  7. Engineering

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Engineering Engineering National security depends on science and technology. The United States relies on Los Alamos National Laboratory for the best of both. No place on Earth pursues a broader array of world-class scientific endeavors. Engineering New type of laser to help defeat threats to U.S. Navy. Los Alamos National Laboratory successfully tested a new high-current electron injector, a device that can be scaled up to produce the electrons needed to build a higher-power free-electron laser

  8. Mary Sullivan NETL's Mary Sullivan Recognized with Prestigious Federal Award

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Mary Sullivan NETL's Mary Sullivan Recognized with Prestigious Federal Award Pittsburgh, PA -- Mary Sullivan, a project manager at the National Energy Technology Laboratory (NETL), has received the prestigious Silver Award for Non-Supervisory Professionals from the Federal Executive Board in recognition of her project management, engineering, and communication skills; effective teamwork and leadership; and community service. Sullivan, who was raised in Scott Township and currently lives in Upper

  9. Hotchkiss High School Seniors Recognized for Renewable Energy Project -

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    News Releases | NREL Hotchkiss High School Seniors Recognized for Renewable Energy Project April 10, 2006 Golden, Colo. - The U.S. Department of Energy's National Renewable Energy Laboratory (NREL) presented a special Renewable Energy Award to Christopher Snow and Alexander Farinell from Hotchkiss High School, Hotchkiss, Colo., at the 51st Colorado Science and Engineering Fair (CSEF) on April 6. The award is sponsored by NREL's corporate partners, Midwest Research Institute (MRI) and

  10. Air Emission Inventory for the Idaho National Engineering Laboratory, 1993 emissions report

    SciTech Connect (OSTI)

    Not Available

    1994-06-01

    This report presents the 1993 update of the Air Emission Inventory for the Idaho National Engineering Laboratory (INEL). The purpose of the Air Emission Inventory is to commence the preparation of the permit to operate application for the INEL, as required by the recently promulgated Title V regulations of the Clean Air Act. The report describes the emission inventory process and all of the sources at the INEL and provides emissions estimates for both mobile and stationary sources.

  11. Environmental resource document for the Idaho National Engineering Laboratory. Volume 1

    SciTech Connect (OSTI)

    Irving, J.S.

    1993-07-01

    This document contains information related to the environmental characterization of the Idaho National Engineering Laboratory (INEL). The INEL is a major US Department of Energy facility in southeastern Idaho dedicated to nuclear research, waste management, environmental restoration, and other activities related to the development of technology. Environmental information covered in this document includes land, air, water, and ecological resources; socioeconomic characteristics and land use; and cultural, aesthetic, and scenic resources.

  12. Environmental resource document for the Idaho National Engineering Laboratory. Volume 2

    SciTech Connect (OSTI)

    Irving, J.S.

    1993-07-01

    This document contains information related to the environmental characterization of the Idaho National Engineering Laboratory (INEL). The INEL is a major US Department of Energy facility in southeastern Idaho dedicated to nuclear research, waste management, environmental restoration, and other activities related to the development of technology. Environmental information covered in this document includes land, air, water, and ecological resources; socioeconomic characteristics and land use; and cultural, aesthetic, and scenic resources.

  13. 2001 Wastewater Land Application Site Performance Reports for the Idaho National Engineering and Environmental Laboratory

    SciTech Connect (OSTI)

    Meachum, Teresa Ray; Lewis, Michael George

    2002-02-01

    The 2001 Wastewater Land Application Site Performance Reports for the Idaho National Engineering and Environmental Laboratory describe site conditions for the facilities with State of Idaho Wastewater Land Application Permits. Permit-required monitoring data are summarized, and any permit exceedences or environmental impacts relating to the operation of any of the facilities during the 2001 permit year are discussed. Additionally, any special studies performed at the facilities, which related to the operation of the facility or application of the wastewater, are discussed.

  14. 2001 Wastewater Land Application Site Performance Reports for the Idaho National Engineering and Environmental Laboratory

    SciTech Connect (OSTI)

    Meachum, T.R.; Lewis, M.G.

    2002-02-15

    The 2001 Wastewater Land Application Site Performance Reports for the Idaho National Engineering and Environmental Laboratory describe site conditions for the facilities with State of Idaho Wastewater Land Application Permits. Permit-required monitoring data are summarized, and any permit exceedences or environmental impacts relating to the operation of any of the facilities during the 2001 permit year are discussed. Additionally, any special studies performed at the facilities, which related to the operation of the facility or application of the wastewater, are discussed.

  15. NETL Technologies Recognized for Technology Development, Transfer |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Recognized for Technology Development, Transfer NETL Technologies Recognized for Technology Development, Transfer October 25, 2013 - 1:31pm Addthis Did you know? The Federal Laboratory Consortium for Technology Transfer is the nationwide network of federal laboratories that provides the forum to develop strategies and opportunities for linking laboratory mission technologies and expertise with the marketplace. In consonance with the Federal Technology Transfer Act of

  16. Environmental Assessment Idaho National Engineering Laboratory, low-level and mixed waste processing

    SciTech Connect (OSTI)

    Not Available

    1994-06-01

    The Department of Energy (DOE) has prepared an environmental assessment (EA), DOE/EA-0843, for the Idaho National Engineering Laboratory (INEL) low-level and mixed waste processing. The original proposed action, as reviewed in this EA, was (1) to incinerate INEL`s mixed low-level waste (MLLW) at the Waste Experimental Reduction Facility (WERF); (2) reduce the volume of INEL generated low-level waste (LLW) through sizing, compaction, and stabilization at the WERF; and (3) to ship INEL LLW to a commercial incinerator for supplemental LLW volume reduction.

  17. Overview of groundwater and surface water standards pertinent to the Idaho National Engineering Laboratory. Revision 3

    SciTech Connect (OSTI)

    Lundahl, A.L.; Williams, S.; Grizzle, B.J.

    1995-09-01

    This document presents an overview of groundwater- and surface water-related laws, regulations, agreements, guidance documents, Executive Orders, and DOE orders pertinent to the Idaho National Engineering Laboratory. This document is a summary and is intended to help readers understand which regulatory requirements may apply to their particular circumstances. However, the document is not intended to be used in lieu of applicable regulations. Unless otherwise noted, the information in this report reflects a summary and evaluation completed July 1, 1995. This document is considered a Living Document, and updates on changing laws and regulations will be provided.

  18. 1995 annual epidemiologic surveillance report for Idaho National Engineering and Environmental Laboratory

    SciTech Connect (OSTI)

    1995-12-31

    The US Department of Energy's (DOE) conduct of epidemiologic surveillance provides an early warning system for health problems among workers. This program monitors illnesses and health conditions that result in an absence of five or more consecutive workdays, occupational injuries and illnesses, and disabilities and deaths among current workers. This report summarizes epidemiologic surveillance data collected from the Idaho National Engineering and Environmental Laboratory (INEEL) from January 1, 1995 through December 31, 1995. The data were collected by a coordinator at INEEL and submitted to the Epidemiologic Surveillance Data Center, located at Oak Ridge Institute for Science and Education, where quality control procedures and data analyses were carried out.

  19. Idaho National Engineering and Environmental Laboratory Wildland Fire Management Environmental Assessment

    SciTech Connect (OSTI)

    Irving, John S

    2003-04-01

    DOE prepared an environmental assessment (EA)for wildland fire management activities on the Idaho National Engineering and Environmental Laboratory (INEEL) (DOE/EA-1372). The EA was developed to evaluate wildland fire management options for pre-fire, fire suppression, and post fire activities. Those activities have an important role in minimizing the conversion of the native sagebrush steppe ecosystem found on the INEEL to non-native weeds. Four alternative management approaches were analyzed: Alternative 1 - maximum fire protection; Alternative 2 - balanced fire protection; Alternative 2 - balanced fire protection; Alternative 3 - protect infrastructure and personnel; and Alternative 4 - no action/traditional fire protection.

  20. Idaho National Engineering and Environmental Laboratory Wildland Fire Management Environmental Assessment - April 2003

    SciTech Connect (OSTI)

    Irving, J.S.

    2003-04-30

    DOE prepared an environmental assessment (EA)for wildland fire management activities on the Idaho National Engineering and Environmental Laboratory (INEEL) (DOE/EA-1372). The EA was developed to evaluate wildland fire management options for pre-fire, fire suppression, and post fire activities. Those activities have an important role in minimizing the conversion of the native sagebrush steppe ecosystem found on the INEEL to non-native weeds. Four alternative management approaches were analyzed: Alternative 1 - maximum fire protection; Alternative 2 - balanced fire protection; Alternative 2 - balanced fire protection; Alternative 3 - protect infrastructure and personnel; and Alternative 4 - no action/traditional fire protection.

  1. Quaternary volcanism, tectonics, and sedimentation in the Idaho National Engineering Laboratory area

    SciTech Connect (OSTI)

    Hackett, W.R.; Smith, R.P.

    1992-01-01

    In this article, we discuss the regional context and describe localities for a two-day field excursion in the vicinity of the Idaho National Engineering Laboratory (INEL). We address several geologic themes: (1) Late Cenozoic, bimodal volcanism of the Eastern Snake River Plain (ESRP), (2) the regional tectonics and structural geology of the Basin and Range province to the northwest of the ESRP, (3) fluvial, lacustrine, and aeolian sedimentation in the INEL area, and (4) the influence of Quaternary volcanism and tectonics on sedimentation near the INEL.

  2. Quaternary volcanism, tectonics, and sedimentation in the Idaho National Engineering Laboratory area

    SciTech Connect (OSTI)

    Hackett, W.R.; Smith, R.P.

    1992-09-01

    In this article, we discuss the regional context and describe localities for a two-day field excursion in the vicinity of the Idaho National Engineering Laboratory (INEL). We address several geologic themes: (1) Late Cenozoic, bimodal volcanism of the Eastern Snake River Plain (ESRP), (2) the regional tectonics and structural geology of the Basin and Range province to the northwest of the ESRP, (3) fluvial, lacustrine, and aeolian sedimentation in the INEL area, and (4) the influence of Quaternary volcanism and tectonics on sedimentation near the INEL.

  3. Expansion of the Idaho National Engineering Laboratory Research Center: Environmental assessment

    SciTech Connect (OSTI)

    Not Available

    1994-03-01

    The US Department of Energy (DOE) proposes to expand and upgrade facilities at the Idaho National Engineering Laboratory (INEL) Research Center (IRC) by constructing a research laboratory addition on the northeast corner of existing laboratory building; upgrading the fume hood system in the existing laboratory building; and constructing a hazardous waste handling facility and a chemical storage building. The DOE also proposes to expand the capabilities of biotechnology research programs by increasing use of radiolabeled compounds to levels in excess of current facility limits for three radionuclides (carbon-14, sulfur-35, and phosphorus-32). This Environmental assessment identifies the need for the new facilities, describes the proposed projects and environmental setting, and evaluates the potential environmental effects. Impacts associated with current operation are discussed and established as a baseline. Impacts associated with the proposed action and cumulative impacts are described against this background. Alternatives to the proposed action (No action; Locating proposed facilities at a different site) are discussed and a list of applicable regulations is provided. The no action alternative is continuation of existing operations at existing levels as described in Section 4 of this EA. Proposed facilities could be constructed at a different location, but these facilities would not be useful or practical since they are needed to provide a support function for IRC operations. Further, the potential environmental impacts would not be reduced if a different site was selected.

  4. Educating Next Generation Nuclear Criticality Safety Engineers at the Idaho National Laboratory

    SciTech Connect (OSTI)

    J. D. Bess; J. B. Briggs; A. S. Garcia

    2011-09-01

    One of the challenges in educating our next generation of nuclear safety engineers is the limitation of opportunities to receive significant experience or hands-on training prior to graduation. Such training is generally restricted to on-the-job-training before this new engineering workforce can adequately provide assessment of nuclear systems and establish safety guidelines. Participation in the International Criticality Safety Benchmark Evaluation Project (ICSBEP) and the International Reactor Physics Experiment Evaluation Project (IRPhEP) can provide students and young professionals the opportunity to gain experience and enhance critical engineering skills. The ICSBEP and IRPhEP publish annual handbooks that contain evaluations of experiments along with summarized experimental data and peer-reviewed benchmark specifications to support the validation of neutronics codes, nuclear cross-section data, and the validation of reactor designs. Participation in the benchmark process not only benefits those who use these Handbooks within the international community, but provides the individual with opportunities for professional development, networking with an international community of experts, and valuable experience to be used in future employment. Traditionally students have participated in benchmarking activities via internships at national laboratories, universities, or companies involved with the ICSBEP and IRPhEP programs. Additional programs have been developed to facilitate the nuclear education of students while participating in the benchmark projects. These programs include coordination with the Center for Space Nuclear Research (CSNR) Next Degree Program, the Collaboration with the Department of Energy Idaho Operations Office to train nuclear and criticality safety engineers, and student evaluations as the basis for their Master's thesis in nuclear engineering.

  5. Draft environmental assessment -- Closure of the Waste Calcining Facility (CPP-633), Idaho National Engineering Laboratory

    SciTech Connect (OSTI)

    Braun, J.B.; Irving, J.S.; Staley, C.S.; Stanley, N.

    1996-04-01

    The DOE-Idaho Operations Office has prepared an environmental assessment (EA) to analyze the environmental impacts of closing the Waste Calcining Facility (WCF) at the Idaho National Engineering Laboratory (INEL). The purpose of the action is to reduce the risk of radioactive exposure and release of radioactive and hazardous constituents and eliminate the need for extensive long-term surveillance and maintenance. DOE has determined that the closure is needed to reduce these risks to human health and the environment and to comply with Resource Conservation and Recovery Act requirements. The WCF closure project is described in the DOE Programmatic Spent Nuclear Fuel Management and Idaho National Engineering Laboratory Environmental Restoration and Waste Management Programs Final Environmental Impact Statement (Programmatic EIS). DOE determined in the Programmatic EIS Record of Decision (ROD) that certain actions would be implemented and other actions deferred. The EA examined the potential environmental impacts of the proposed action and evaluated reasonable alternatives, including the no action alternative in accordance with the Council on Environmental Quality Regulations. Based on the analysis in the EA, the action will not have a significant effect on the human environment.

  6. Recognizing Innovation at Lawrence Berkeley National Laboratory...

    Energy Savers [EERE]

    CO2 emissions at a given site, while also considering strategies such as load-shifting and demand-response. DER-CAM is now being used by more than 350 registered users worldwide. ...

  7. Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    performance computer system installed at Los Alamos National Laboratory June 17, 2014 Unclassified 'Wolf' system to advance many fields of science LOS ALAMOS, N.M., June 17, 2014-Los Alamos National Laboratory recently installed a new high-performance computer system, called Wolf, which will be used for unclassified research. "This machine modernizes our mid-tier resources available to Laboratory scientists," said Bob Tomlinson, of the Laboratory's High Performance Computing group.

  8. ENGINEERING

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ENGINEERING the Future of ENERGY Regional University Alliance National Energy Technology Laboratory Office of Research and Development The Future of Energy The time to redraw America's energy blueprint is now. The challenges we face today are the most critical in decades-from the impact of energy use on global ecosystems to the difficulties of efficiently harnessing our natural resources. Because energy is fundamental to human welfare, we must develop sustainable systems that make clean,

  9. Radiological, physical, and chemical characterization of transuranic wastes stored at the Idaho National Engineering Laboratory

    SciTech Connect (OSTI)

    Apel, M.L.; Becker, G.K.; Ragan, Z.K.; Frasure, J.; Raivo, B.D.; Gale, L.G.; Pace, D.P.

    1994-03-01

    This document provides radiological, physical and chemical characterization data for transuranic radioactive wastes and transuranic radioactive and hazardous (i.e., mixed) wastes stored at the Idaho National Engineering Laboratory and considered for treatment under the Private Sector Participation Initiative Program (PSPI). Waste characterization data are provided in the form of INEL Waste Profile Sheets. These documents provide, for each content code, information on waste identification, waste description, waste storage configuration, physical/chemical waste composition, radionuclide and associated alpha activity waste characterization data, and hazardous constituents present in the waste. Information is provided for 139 waste streams which represent an estimated total volume of 39,380{sup 3} corresponding to a total mass of approximately 19,000,000 kg. In addition, considerable information concerning alpha, beta, gamma, and neutron source term data specific to Rocky Flats Plant generated waste forms stored at the INEL are provided to assist in facility design specification.

  10. Air Emission Inventory for the Idaho National Engineering Laboratory: 1992 emissions report

    SciTech Connect (OSTI)

    Stirrup, T.S.

    1993-06-01

    This report presents the 1992 Air Emission Inventory for the Idaho National Engineering Laboratory. Originally, this report was in response to the Environmental Oversight and Monitoring Agreement in 1989 between the State of Idaho and the Department of Energy Idaho Field Office, and a request from the Idaho Air Quality Bureau. The current purpose of the Air Emission Inventory is to provide the basis for the preparation of the INEL Permit-to-Operate (PTO) an Air Emission Source Application, as required by the recently promulgated Title V regulations of the Clean Air Act. This report includes emissions calculations from 1989 to 1992. The Air Emission Inventory System, an ORACLE-based database system, maintains the emissions inventory.

  11. Commercial disposal options for Idaho National Engineering Laboratory low-level radioactive waste

    SciTech Connect (OSTI)

    Porter, C.L.; Widmayer, D.A.

    1995-09-01

    The Idaho National Engineering Laboratory (INEL) is a Department of Energy (DOE)-owned, contractor-operated site. Significant quantities of low-level radioactive waste (LLW) have been generated and disposed of onsite at the Radioactive Waste Management Complex (RWMC). The INEL expects to continue generating LLW while performing its mission and as aging facilities are decommissioned. An on-going Performance Assessment process for the RWMC underscores the potential for reduced or limited LLW disposal capacity at the existing onsite facility. In order to properly manage the anticipated amount of LLW, the INEL is investigating various disposal options. These options include building a new facility, disposing the LLW at other DOE sites, using commercial disposal facilities, or seeking a combination of options. This evaluation reports on the feasibility of using commercial disposal facilities.

  12. 1996 LMITCO environmental monitoring program report for the Idaho National Engineering and Environmental Laboratory

    SciTech Connect (OSTI)

    1997-09-01

    This report describes the calendar year 1996 environmental surveillance and compliance monitoring activities of the Lockheed Martin Idaho Technologies Company Environmental Monitoring Program performed at the Idaho National Engineering and Environmental Laboratory (INEEL). Results of sampling performed by the Radiological Environmental Surveillance, Site Environmental Surveillance, Drinking Water, Effluent Monitoring, Storm Water Monitoring, Groundwater Monitoring, and Special Request Monitoring Programs are included in this report. The primary purposes of the surveillance and monitoring activities are to evaluate environmental conditions, to provide and interpret data, to verify compliance with applicable regulations or standards, and to ensure protection of human health and the environment. This report compares 1996 data with program-specific regulatory guidelines and past data to evaluate trends.

  13. Accident Investigation at the Idaho National Laboratory Engineering Demonstration Facility, February 2013

    Office of Energy Efficiency and Renewable Energy (EERE)

    On Monday, February 12, 2013, a principal investigator at the Idaho National Laboratory (INL) Engineering Demonstration Facility (IEDF) was testing the system configuration of experimental process involving liquid sodium carbonate. An unanticipated event occurred that resulted in the ejection of the 900° C liquid sodium carbonate from the system. The ejected liquid came into contact with the principal investigator and caused multiple second and third degree burn injuries to approximately 10 percent of his body. The Office of Health, Safety and Security (HSS) Site Lead for the Idaho Site shadowed the accident investigation team assembled by the contractor in an effort to independently verify that a rigorous, thorough, and unbiased investigation was taking place, and to maintain awareness of the events surrounding the accident

  14. Thickness of surficial sediment at and near the Idaho National Engineering Laboratory, Idaho

    SciTech Connect (OSTI)

    Anderson, S.R.; Liszewski, M.J.; Ackerman, D.J.

    1996-06-01

    Thickness of surficial sediment was determined from natural-gamma logs in 333 wells at and near the Idaho National Engineering Laboratory in eastern Idaho to provide reconnaissance data for future site-characterization studies. Surficial sediment, which is defined as the unconsolidated clay, silt, sand, and gravel that overlie the uppermost basalt flow at each well, ranges in thickness from 0 feet in seven wells drilled through basalt outcrops east of the Idaho Chemical Processing Plant to 313 feet in well Site 14 southeast of the Big Lost River sinks. Surficial sediment includes alluvial, lacustrine, eolian, and colluvial deposits that generally accumulated during the past 200 thousand years. Additional thickness data, not included in this report, are available from numerous auger holes and foundation borings at and near most facilities.

  15. Idaho National Engineering Laboratory site environmental report for calendar year 1995

    SciTech Connect (OSTI)

    Mitchell, R.G.; Peterson, D.; Hoff, D.L.

    1996-08-01

    This report presents a compilation of data collected in 1995 for the routine environmental surveillance programs conducted on and around the Idaho National Engineering Laboratory (INEL). During 1995, the offsite surveillance program was conducted by the Environmental Science and Research Foundation. Onsite surveillance was performed by Lockheed Idaho Technologies Company (LITCO). Ground-water monitoring, both on and offsite, was performed by the US Geological Survey (USGS). This report also presents summaries of facility effluent monitoring data collected by INEL contractors. This report, prepared in accordance with the requirements in DOE Order 5400.1, is not intended to cover the numerous special environmental research programs being conducted at the INEL by the Foundation, LITCO, USGS, and others.

  16. Idaho National Engineering and Environmental Laboratory Site Environmental Report for Calendar Year 1997

    SciTech Connect (OSTI)

    R. B. Evans; D. Roush; R. W. Brooks; D. B. Martin

    1998-08-01

    The results of the various monitoring programs for 1997 indicated that radioactivity from the Idaho National Engineering and Environmental Laboratory (INEEL) operations could generally not be distinguished from worldwide fallout and natural radioactivity in the region surrounding the INEEL. Although some radioactive materials were discharged during INEEL operations, concentrations in the offsite environment and doses to the surrounding population were far less than state of Idaho and federal health protection guidelines. The maximum potential population dose from submersion, ingestion, inhalation, and deposition to the approximately 121,500 people residing within an 80-km (50-mi) radius from the geographical center of the INEEL was estimated to be 0.2 person-rem (2 x 10-3 person-Sv) using the MDIFF air dispersion model. This population dose is less than 0.0005% of the estimated 43,700 person-rem (437 person-Sv) population dose from background radioactivity.

  17. NREL Employees Recognized by Industry Peers - News Releases | NREL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Employees Recognized by Industry Peers December 13, 2011 Photo of Dick DeBlasio DeBlasio Named to the "Fierce 15" by FierceEnergy.com. Trade media and industry groups recently have honored several employees at the U.S. Department of Energy's National Renewable Energy Laboratory (NREL) for contributions to advancing renewable energy research and furthering their professions. DeBlasio Named to the "Fierce 15" FierceEnergy.com recently named NREL Chief Engineer for Renewable

  18. The Idaho National Engineering Laboratory site environmental report for calendar year 1989

    SciTech Connect (OSTI)

    Hoff, D.L.; Mitchell, R.G.; Bowman, G.C.; Moore, R.

    1990-06-01

    To verify that exposures resulting from operations at the Department of Energy (DOE) nuclear facilities have remained very small, each site at which nuclear activities are underway operates an environmental surveillance program to monitor the air, water and any other pathway where radionuclides from operations might conceivably reach workers or members of the public. This report presents data collected in 1989 for the routine environmental surveillance program conducted by the Radiological and Environmental Sciences Laboratory (RESL) of DOE and the US Geological Survey (USGS) at the Idaho National Engineering Laboratory (INEL) site. The environmental surveillance program for the INEL and vicinity for 1989 included the collection and analysis of samples from potential exposure pathways. Three basic groups of samples were collected. Those collected within the INEL boundaries will be referred to as onsite samples. Samples collected outside, but near, the Site boundaries will be referred to as boundary samples or part of a group of offsite samples. Samples collected from locations considerably beyond the Site boundaries will be referred to as distant samples or part of the offsite group. With the exception of Craters of the Moon National Monument, the distant locations are sufficiently remote from the Site to ensure that detectable radioactivity is primarily due to natural background sources or sources other than INEL operations. 35 refs., 14 figs., 13 tabs.

  19. Description of the Sandia National Laboratories science, technology & engineering metrics process.

    SciTech Connect (OSTI)

    Jordan, Gretchen B.; Watkins, Randall D.; Trucano, Timothy Guy; Burns, Alan Richard; Oelschlaeger, Peter

    2010-04-01

    There has been a concerted effort since 2007 to establish a dashboard of metrics for the Science, Technology, and Engineering (ST&E) work at Sandia National Laboratories. These metrics are to provide a self assessment mechanism for the ST&E Strategic Management Unit (SMU) to complement external expert review and advice and various internal self assessment processes. The data and analysis will help ST&E Managers plan, implement, and track strategies and work in order to support the critical success factors of nurturing core science and enabling laboratory missions. The purpose of this SAND report is to provide a guide for those who want to understand the ST&E SMU metrics process. This report provides an overview of why the ST&E SMU wants a dashboard of metrics, some background on metrics for ST&E programs from existing literature and past Sandia metrics efforts, a summary of work completed to date, specifics on the portfolio of metrics that have been chosen and the implementation process that has been followed, and plans for the coming year to improve the ST&E SMU metrics process.

  20. Idaho National Engineering Laboratory Environmental Restoration Program Schedule Contingency Evaluation Report

    SciTech Connect (OSTI)

    Not Available

    1993-09-01

    This report represents the schedule contingency evaluation done on the FY-93 Major System Acquisition (MSA) Baseline for the Idaho National Engineering Laboratory`s (INEL) Environmental Restoration Program (EPP). A Schedule Contingency Evaluation Team (SCET) was established to evaluate schedule contingency on the MSA Baseline for the INEL ERP associated with completing work within milestones established in the baseline. Baseline schedules had been established considering enforceable deadlines contained in the Federal Facilities Agreement/Consent Order (FFA/CO), the agreement signed in 1992, by the State of Idaho, Department of Health & Welfare, the U.S. Environmental Protection Agency, Region 10, and the U.S. Department of Energy, Idaho Operations Office. The evaluation was based upon the application of standard schedule risk management techniques to the specific problems of the INEL ERP. The schedule contingency evaluation was designed to provided early visibility for potential schedule delays impacting enforceable deadlines. The focus of the analysis was on the duration of time needed to accomplish all required activities to achieve completion of the milestones in the baseline corresponding to the enforceable deadlines. Additionally, the analysis was designed to identify control of high-probability, high-impact schedule risk factors.

  1. Idaho National Engineering and Environmental Laboratory institutional plan -- FY 2000--2004

    SciTech Connect (OSTI)

    Enge, R.S.

    1999-12-01

    In this first institutional plan prepared by Bechtel BWXT Idaho, LLC, for the Idaho National Engineering and Environmental Laboratory, the INEEL will focus its efforts on three strategic thrusts: (1) Environmental Management stewardship for DOE-EM, (2) Nuclear reactor technology for DOE-Nuclear Energy (NE), and (3) Energy R and D, demonstration, and deployment (initial focus on biofuels and chemicals from biomass). The first strategic thrust focuses on meeting DOE-EMs environmental cleanup and long-term stewardship needs in a manner that is safe, cost-effective, science-based, and approved by key stakeholders. The science base at the INEEL will be further used to address a grand challenge for the INEEL and the DOE complex--the development of a fundamental scientific understanding of the migration of subsurface contaminants. The second strategic thrust is directed at DOE-NEs needs for safe, economical, waste-minimized, and proliferation-resistant nuclear technologies. As NE lead laboratories, the INEEL and ANL will pursue specific priorities. The third strategic thrust focuses on DOE's needs for clean, efficient, and renewable energy technology. As an initial effort, the INEEL will enhance its capability in biofuels, bioprocessing, and biochemicals. The content of this institutional plan is designed to meet basic DOE requirements for content and structure and reflect the key INEEL strategic thrusts. Updates to this institutional plan will offer additional content and resource refinements.

  2. Engineered Biosynthesis of Alternative Biodiesel Fuel - Energy Innovation

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Administration | (NNSA) Engineer, Sandia National Laboratories Clifford Ho Clifford Ho February 2010 Asian American Engineer of the Year Clifford Ho, a Sandia engineer, has been selected by the Chinese Institute of Engineers - USA to receive the Asian American Engineer of the Year Award. The honor is presented each year to the nation's most outstanding Asian American engineers and scientists who make significant, lasting and global contributions to the nation. Ho was recognized for his

  3. Project Management Plan for the Idaho National Engineering Laboratory Waste Isolation Pilot Plant Experimental Test Program

    SciTech Connect (OSTI)

    Connolly, M.J.; Sayer, D.L.

    1993-11-01

    EG&G Idaho, Inc. and Argonne National Laboratory-West (ANL-W) are participating in the Idaho National Engineering Laboratory`s (INEL`s) Waste Isolation Pilot Plant (WIPP) Experimental Test Program (WETP). The purpose of the INEL WET is to provide chemical, physical, and radiochemical data on transuranic (TRU) waste to be stored at WIPP. The waste characterization data collected will be used to support the WIPP Performance Assessment (PA), development of the disposal No-Migration Variance Petition (NMVP), and to support the WIPP disposal decision. The PA is an analysis required by the Code of Federal Regulations (CFR), Title 40, Part 191 (40 CFR 191), which identifies the processes and events that may affect the disposal system (WIPP) and examines the effects of those processes and events on the performance of WIPP. A NMVP is required for the WIPP by 40 CFR 268 in order to dispose of land disposal restriction (LDR) mixed TRU waste in WIPP. It is anticipated that the detailed Resource Conservation and Recovery Act (RCRA) waste characterization data of all INEL retrievably-stored TRU waste to be stored in WIPP will be required for the NMVP. Waste characterization requirements for PA and RCRA may not necessarily be identical. Waste characterization requirements for the PA will be defined by Sandia National Laboratories. The requirements for RCRA are defined in 40 CFR 268, WIPP RCRA Part B Application Waste Analysis Plan (WAP), and WIPP Waste Characterization Program Plan (WWCP). This Project Management Plan (PMP) addresses only the characterization of the contact handled (CH) TRU waste at the INEL. This document will address all work in which EG&G Idaho is responsible concerning the INEL WETP. Even though EG&G Idaho has no responsibility for the work that ANL-W is performing, EG&G Idaho will keep a current status and provide a project coordination effort with ANL-W to ensure that the INEL, as a whole, is effectively and efficiently completing the requirements for WETP.

  4. Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Builders place final beam in first phase of CMRR project at Los Alamos National Laboratory July 22, 2008 LOS ALAMOS, New Mexico, July 22, 2008- Workers hoisted the final steel beam ...

  5. Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Forest fire near Los Alamos National Laboratory June 26, 2011 Los Alamos, New Mexico, June 26, 2011, 6:07pm-The Las Conchas fire burning in the Jemez Mountains approximately 12...

  6. 2002 Wastewater Land Application Site Performance Reports for the Idaho National Engineering and Environmental Laboratory and Associated Documentation

    SciTech Connect (OSTI)

    Meachum, Teresa Ray; Michael G. Lewis

    2003-02-01

    The 2002 Wastewater Land Application site Performance Reports for the Idaho National Engineering and Environmental Laboratory describe site conditions for the facilities with State of Idaho Wastewater Land Application Permits. Permit-required monitoring data are summarized, and permit exceedences or environmental impacts relating to the operation of the facilities during the 2002 permit year are discussed.

  7. Pollution prevention efforts recognized

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    of the award-winning ideas and projects Dewars done right Workers at the Laboratory's Gas Facility contracted with a commercial company to refurbish used containers of...

  8. Engine design takes a major leap at Argonne | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Mechanical Engineer Janardhan Kodavasal, from right, discusses piston bowl design with Assistant Computational Scientist Marta García and Principal Mechanical Engineer Sibendu Som. Mechanical Engineer Janardhan Kodavasal, from right, discusses piston bowl design with Assistant Computational Scientist Marta García and Principal Mechanical Engineer Sibendu Som. Engine design takes a major leap at Argonne By Greg Cunningham * April 8, 2016 Tweet EmailPrint The search for a truly revolutionary

  9. Environmental assessment: Closure of the Waste Calcining Facility (CPP-633), Idaho National Engineering Laboratory

    SciTech Connect (OSTI)

    1996-07-01

    The U.S. Department of Energy (DOE) proposes to close the Waste Calcining Facility (WCF). The WCF is a surplus DOE facility located at the Idaho Chemical Processing Plant (ICPP) on the Idaho National Engineering Laboratory (INEL). Six facility components in the WCF have been identified as Resource Conservation and Recovery Ace (RCRA)-units in the INEL RCRA Part A application. The WCF is an interim status facility. Consequently, the proposed WCF closure must comply with Idaho Rules and Standards for Hazardous Waste contained in the Idaho Administrative Procedures Act (IDAPA) Section 16.01.05. These state regulations, in addition to prescribing other requirements, incorporate by reference the federal regulations, found at 40 CFR Part 265, that prescribe the requirements for facilities granted interim status pursuant to the RCRA. The purpose of the proposed action is to reduce the risk of radioactive exposure and release of hazardous constituents and eliminate the need for extensive long-term surveillance and maintenance. DOE has determined that the closure is needed to reduce potential risks to human health and the environment, and to comply with the Idaho Hazardous Waste Management Act (HWMA) requirements.

  10. The Idaho National Engineering Laboratory Site environmental report for calendar Year 1990

    SciTech Connect (OSTI)

    Hoff, D.L.; Mitchell, R.G.; Moore, R.; Shaw, R.M.

    1991-06-01

    The results of the various monitoring programs for 1990 indicate that most radioactivity from the Idaho National Engineering Laboratory (INEL) operations could not be distinguished from worldwide fallout and natural radioactivity in the region surrounding the INEL Site. Although some radioactive materials were discharged during Site operations, concentrations and doses to the surrounding population were of no health consequence and were far less than State of Idaho and Federal health protection guidelines. The first section of the report summarizes Calendar Year 1990 and January 1 through April 1, 1991, INEL activities related to compliance with environmental regulations and laws. The balance of the report describes the surveillance program, the collection of foodstuffs at the INEL boundary and distant offsite locations, and the collection of air and water samples at onsite locations and offsite boundary and distant locations. The report also compares and evaluates the sample results and discusses implications, if any. Nonradioactive and radioactive effluent monitoring at the Site, and the US Geological Survey (USGS) ground-water monitoring program are also summarized. 33 refs., 18 figs., 29 tabs.

  11. Idaho National Engineering and Environmental Laboratory radiological control performance indicator report. Third quarter, calendar year 1997

    SciTech Connect (OSTI)

    1997-11-01

    This document provides a report and analysis of the Radiological Control Program through the third quarter of calendar year 1997 (CY-97) at the Idaho National Engineering and Environmental Laboratory (INEEL) under the direction of Lockheed Martin Idaho Technologies Company (LMITCO). This Performance Indicator Report is provided in accordance with Article 133 of the INEEL Radiological Control Manual. The INEEL collective occupational radiation exposure goal (deep dose) has been revised from 137 person-rem to 102.465 person-rem. Aggressive application of ALARA protective measures has resulted in a 66.834 person-rem deep dose compared to projected third quarter goal of 85.5 person-rem. Dose savings at the ICPP Tank Farm and rescheduling of some of the ROVER work account for most of the difference in the goal and actual dose year to date. Work at the ICPP Tank farm has resulted in about 14 rem dose savings. The RWMC has also reduced exposure by moving waste to new temporary storage facilities well ahead of schedule.

  12. Retrofit of an Engineered Glove-port to a Los Alamos National Laboratory's Plutonium Facility Glovebox

    SciTech Connect (OSTI)

    Rael, P.E.D.; Cournoyer, M.E.Ph.D.; Chunglo, S.D.; Vigil, T.J.; Schreiber, P.E.S.

    2008-07-01

    At the Los Alamos National Laboratory's Plutonium Facility (TA-55), various isotopes of plutonium along with other actinides are routinely handled such that the spread of radiological contamination and excursions of contaminants into the operator's breathing zone are prevented through the use of a variety of gloveboxes (the glovebox coupled with adequate negativity providing primary confinement). The current technique for changing glovebox gloves are the weakest part of this engineering control. 1300 pairs of gloves are replaced each year at TA-55, generating approximately 500 m{sup 3}/yr of transuranic (TRU) waste and Low Level Waste (LLW) waste that represents an annual disposal cost of about 4 million dollars. By retrofitting the LANL 8'' glove-port ring, a modern 'Push-Through' technology is utilized. This 'Push-Through' technology allows relatively fast glove changes to be done by operators with much less training and experience and without breaching containment. A dramatic reduction in waste is realized; exposure of the worker to residual contamination reduced, and the number of breaches due to installation issues is eliminated. In the following presentation, the evolution of the 'Push- Through' technology, the features of the glove-port retrofit, and waste savings are discussed. (author)

  13. 1997 LMITCO Environmental Monitoring Program Report for the Idaho National Engineering and Environmental Laboratory

    SciTech Connect (OSTI)

    Andersen, B.; Street, L.; Wilhelmsen, R.

    1998-09-01

    This report describes the calendar year 1997 environmental surveillance and compliance monitoring activities of the Lockheed Martin Idaho Technologies Company Environmental Monitoring Program performed at the Idaho National Engineering and Environmental Laboratory. This report includes results of sampling performed by the Radiological Environmental Surveillance, Site Environmental Surveillance, Drinking Water, Effluent Monitoring, Storm Water Monitoring, Groundwater Monitoring, and Special Request Monitoring Programs and compares 1997 data with program-specific regulatory guidelines and past data to evaluate trends. The primary purposes of the surveillance and monitoring activities are to evaluate environmental conditions, to provide and interpret data, to verify compliance with applicable regulations or standard, and to ensure protection of human health and the environment. Surveillance of environmental media did not identify any previously unknown environmental problems or trends indicating a loss of control or unplanned releases from facility operations. With the exception of one nitrogen sample in the disposal pond effluent stream and iron and total coliform bacteria in groundwater downgradient from one disposal pond, compliance with permits and applicable regulations was achieved. Data collected by the Environmental Monitoring Program demonstrate that public health and the environment were protected.

  14. Introduction to Proceedings of SPIE: Optical Engineering at the Lawrence Livermore National Laboratory II

    SciTech Connect (OSTI)

    Wuest, C R; Lane, M A

    2004-02-20

    The second annual conference on optical engineering at Lawrence Livermore National Laboratory (LLNL) focused entirely on National Ignition Facility (NIF) activities. NIF's 192-beam UV laser system is the world's largest optical and optomechanical system. This past year, a decade-long design, construction, fabrication, and installation effort culminated in the commissioning of the first four laser beams in this 30,000 square meter facility. This flashlamp-pumped Nd:glass laser system is built on a scale unprecedented in laser R&D. Nearly every aspect of the NIF design is unconventional, from the 40 x 40-cm-square size of each beam, to the 40 varieties of telephone-booth-size modular optical assemblies, to the elevated configuration of the 200-m-long, class-100 beamlines that converge on a 10-m-diameter target chamber. A large technical staff and many industrial partners were needed to reach the current state of accomplishment, including development of a number of advanced optical materials and fabrication technologies.

  15. Laboratory Performance Evaluation of Residential Scale Gas Engine Driven Heat Pump

    SciTech Connect (OSTI)

    Abu-Heiba, Ahmad; Mehdizadeh Momen, Ayyoub; Mahderekal, Dr. Isaac

    2016-01-01

    Building space cooling is, and until 2040 is expected to continue to be, the single largest use of electricity in the residential sector in the United States (EIA Energy Outlook 2015 .) Increases in electric-grid peak demand leads to higher electricity prices, system inefficiencies, power quality problems, and even failures. Thermally-activated systems, such as gas engine-driven heat pump (GHP), can reduce peak demand. This study describes the performance of a residential scale GHP. It was developed as part of a cooperative research and development agreement (CRADA) that was authorized by the Department of Energy (DOE) between OAK Ridge National Laboratory (ORNL) and Southwest Gas. Results showed the GHP produced 16.5 kW (4.7 RT) of cooling capacity at 35 C (95 F) rating condition with gas coefficient of performance (COP) of 0.99. In heating, the GHP produced 20.2 kW (5.75 RT) with a gas COP of 1.33. The study also discusses other benefits and challenges facing the GHP technology such as cost, reliability, and noise.

  16. Engineering Students and Alumni Recognized for Distinguished...

    Energy Savers [EERE]

    dioxide emissions and 481 MBtu saved in energy consumption. ... large industrial end-users reduce electrical energy use. ... in savings of more than 967 million kWh of electricity. ...

  17. Lab scientists recognized for economic development efforts

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    scientists recognized for economic development efforts Community Connections: Your link to news and opportunities from Los Alamos National Laboratory Latest Issue: September 1, 2016 all issues All Issues » submit Lab scientists recognized for economic development efforts Program provides regional businesses with expert assistance December 1, 2013 Winner of the 2013 Principal Investigator Award is Andy McCown Winner of a 2013 Principal Investigator Award is Andy McCown (at right, with pie), of

  18. Awards recognize outstanding innovation in Technology Transfer

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Awards recognize outstanding innovation Awards recognize outstanding innovation in Technology Transfer The award honors inventors whose patented invention exhibits significant technical advance, adaptability to public use, and noteworthy value to the mission of the Lab. August 8, 2011 Los Alamos National Laboratory sits on top of a once-remote mesa in northern New Mexico with the Jemez mountains as a backdrop to research and innovation covering multi-disciplines from bioscience, sustainable

  19. Argonne Recognized for Excellence in Technology Transfer | Argonne...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Jason Harper Jason Harper Argonne Recognized for Excellence in Technology Transfer By Angela Hardin * April 11, 2014 Tweet EmailPrint The Federal Laboratory Consortium (FLC)...

  20. New Mexico Small Business Assistance Program recognized by U...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    NM Small Business assistance program recognized New Mexico Small Business Assistance ... Program of Los Alamos, Sandia national laboratories LOS ALAMOS, NEW MEXICO, May 31, ...

  1. Ten New Mexico small businesses recognized at Innovation Celebration...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    NM small businesses recognized at Innovation Celebration Ten New Mexico small businesses ... laboratories to the state of New Mexico and small business owners," said David Pesiri. ...

  2. Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Mexican pueblo preserves cultural history through collaborative tours with Los Alamos National Laboratory August 24, 2015 Students gain new insights into their ancestry LOS ALAMOS, N.M., Aug. 24, 2015-San Ildefonso Pueblo's Summer Education Enhancement Program brought together academic and cultural learning in the form of a recent tour of Cave Kiva Trail in Mortandad Canyon."Opening up this archaeological site and sharing it with the descendants of its first inhabitants is a

  3. Preliminary siting activities for new waste handling facilities at the Idaho National Engineering Laboratory

    SciTech Connect (OSTI)

    Taylor, D.D.; Hoskinson, R.L.; Kingsford, C.O.; Ball, L.W.

    1994-09-01

    The Idaho Waste Processing Facility, the Mixed and Low-Level Waste Treatment Facility, and the Mixed and Low-Level Waste Disposal Facility are new waste treatment, storage, and disposal facilities that have been proposed at the Idaho National Engineering Laboratory (INEL). A prime consideration in planning for such facilities is the selection of a site. Since spring of 1992, waste management personnel at the INEL have been involved in activities directed to this end. These activities have resulted in the (a) identification of generic siting criteria, considered applicable to either treatment or disposal facilities for the purpose of preliminary site evaluations and comparisons, (b) selection of six candidate locations for siting,and (c) site-specific characterization of candidate sites relative to selected siting criteria. This report describes the information gathered in the above three categories for the six candidate sites. However, a single, preferred site has not yet been identified. Such a determination requires an overall, composite ranking of the candidate sites, which accounts for the fact that the sites under consideration have different advantages and disadvantages, that no single site is superior to all the others in all the siting criteria, and that the criteria should be assigned different weighing factors depending on whether a site is to host a treatment or a disposal facility. Stakeholder input should now be solicited to help guide the final selection. This input will include (a) siting issues not already identified in the siting, work to date, and (b) relative importances of the individual siting criteria. Final site selection will not be completed until stakeholder input (from the State of Idaho, regulatory agencies, the public, etc.) in the above areas has been obtained and a strategy has been developed to make a composite ranking of all candidate sites that accounts for all the siting criteria.

  4. Idaho National Engineering Laboratory (INEL) Environmental Restoration (ER) Program Baseline Safety Analysis File (BSAF)

    SciTech Connect (OSTI)

    1995-09-01

    The Baseline Safety Analysis File (BSAF) is a facility safety reference document for the Idaho National Engineering Laboratory (INEL) environmental restoration activities. The BSAF contains information and guidance for safety analysis documentation required by the U.S. Department of Energy (DOE) for environmental restoration (ER) activities, including: Characterization of potentially contaminated sites. Remedial investigations to identify and remedial actions to clean up existing and potential releases from inactive waste sites Decontamination and dismantlement of surplus facilities. The information is INEL-specific and is in the format required by DOE-EM-STD-3009-94, Preparation Guide for U.S. Department of Energy Nonreactor Nuclear Facility Safety Analysis Reports. An author of safety analysis documentation need only write information concerning that activity and refer to BSAF for further information or copy applicable chapters and sections. The information and guidance provided are suitable for: {sm_bullet} Nuclear facilities (DOE Order 5480-23, Nuclear Safety Analysis Reports) with hazards that meet the Category 3 threshold (DOE-STD-1027-92, Hazard Categorization and Accident Analysis Techniques for Compliance with DOE Order 5480.23, Nuclear Safety Analysis Reports) {sm_bullet} Radiological facilities (DOE-EM-STD-5502-94, Hazard Baseline Documentation) Nonnuclear facilities (DOE-EM-STD-5502-94) that are classified as {open_quotes}low{close_quotes} hazard facilities (DOE Order 5481.1B, Safety Analysis and Review System). Additionally, the BSAF could be used as an information source for Health and Safety Plans and for Safety Analysis Reports (SARs) for nuclear facilities with hazards equal to or greater than the Category 2 thresholds, or for nonnuclear facilities with {open_quotes}moderate{close_quotes} or {open_quotes}high{close_quotes} hazard classifications.

  5. Site-specific probabilistic seismic hazard analyses for the Idaho National Engineering Laboratory. Volume 2: Appendices

    SciTech Connect (OSTI)

    1996-05-01

    The identification of seismic sources is often based on a combination of geologic and tectonic considerations and patterns of observed seismicity; hence, a historical earthquake catalogue is important. A historical catalogue of earthquakes of approximate magnitude (M) 2.5 and greater for the time period 1850 through 1992 was compiled for the INEL region. The primary data source used was the Decade of North American Geology (DNAG) catalogue for the time period from about 1800 through 1985 (Engdahl and Rinehart, 1988). A large number of felt earthquakes, especially prior to the 1970`s, which were below the threshold of completeness established in the DNAG catalogue (Engdahl and Rinehart, 1991), were taken from the state catalogues compiled by Stover and colleagues at the National Earthquake Information Center (NEIC) and combined with the DNAG catalogue for the INEL region. The state catalogues were those of Idaho, Montana, Nevada, Utah, and Wyoming. NEIC`s Preliminary Determination of Epicenters (PDE) and the state catalogues compiled by the Oregon Department of Geology and Mineral Industries (DOGAMI), and the University of Nevada at Reno (UNR) were also used to supplement the pre-1986 time period. A few events reanalyzed by Jim Zollweg (Boise State University, written communication, 1994) were also modified in the catalogue. In the case of duplicate events, the DNAG entry was preferred over the Stover et al. entry for the period 1850 through 1985. A few events from Berg and Baker (1963) were also added to the catalogue. This information was and will be used in determining the seismic risk of buildings and facilities located at the Idaho National Engineering Laboratory.

  6. Idaho National Engineering and Environmental Laboratory Site Environmental Report for Calendar Year 1998

    SciTech Connect (OSTI)

    T. R. Saffle; R. G. Mitchell; R. B. Evans; D. B. Martin

    2000-07-01

    The results of the various monitoring programs for 1998 indicated that radioactivity from the DOE's Idaho National Engineering and Environmental Laboratory (INEEL) operations could generally not be distinguished from worldwide fallout and natural radioactivity in the region surrounding the INEEL. Although some radioactive materials were discharged during INEEL operations, concentrations in the offsite environment and doses to the surrounding population were far less than state of Idaho and federal health protection guidelines. Gross alpha and gross beta measurements, used as a screening technique for air filters, were investigated by making statistical comparisons between onsite or boundary location concentrations and the distant community group concentrations. Gross alpha activities were generally higher at distant locations than at boundary and onsite locations. Air samples were also analyzed for specific radionuclides. Some human-made radionuclides were detected at offsite locations, but most were near the minimum detectable concentration and their presence was attributable to natural sources, worldwide fallout, and statistical variations in the analytical results rather than to INEEL operations. Low concentrations of 137Cs were found in muscle tissue and liver of some game animals and sheep. These levels were mostly consistent with background concentrations measured in animals sampled onsite and offsite in recent years. Ionizing radiation measured simultaneously at the INEEL boundary and distant locations using environmental dosimeters were similar and showed only background levels. The maximum potential population dose from submersion, ingestion, inhalation, and deposition to the approximately 121,500 people residing within an 80-km (50-mi) radius from the geographical center of the INEEL was estimated to be 0.08 person-rem (8 x 10-4 person-Sv) using the MDIFF air dispersion model. This population dose is less than 0.0002 percent of the estimated 43,7 00

  7. Tank Closure Progress at the Department of Energy's Idaho National Engineering Laboratory Tank Farm Facility

    SciTech Connect (OSTI)

    Quigley, K.D.; Butterworth, St.W.; Lockie, K.A.

    2008-07-01

    Significant progress has been made at the U.S. Department of Energy (DOE) Idaho National Laboratory (INL) to empty, clean and close radioactive liquid waste storage tanks at the Idaho Nuclear Technology and Engineering Center (INTEC) Tank Farm Facility (TFF). The TFF includes eleven 1,135.6-kL (300,000-gal) underground stainless steel storage tanks and four smaller, 113.5-kL (30,000-gal) stainless steel tanks, along with tank vaults, interconnecting piping, and ancillary equipment. The TFF tanks have historically been used to store a variety of radioactive liquid waste, including wastes associated with past spent nuclear fuel reprocessing. Although four of the large storage tanks remain in use for waste storage, the other seven 1,135.6-kL (300,000-gal) tanks and the four 113.5-kL (30,000-gal) tanks have been emptied of waste, cleaned and filled with grout. A water spray cleaning system was developed and deployed to clean internal tank surfaces and remove remaining tank wastes. The cleaning system was effective in removing all but a very small volume of solid residual waste particles. Recent issuance of an Amended Record of Decision (ROD) in accordance with the National Environmental Policy Act, and a Waste Determination complying with Section 3116 of the Ronald W. Reagan National Defense Authorization Act (NDAA) for Fiscal Year 2005, has allowed commencement of grouting activities on the cleaned tanks. The first three 113.5-kL (30,000-gal) tanks were grouted in the Fall of 2006 and the fourth tank and the seven 1,135.6-kL (300,000-gal) tanks were filled with grout in 2007 to provide long-term stability. It is currently planned that associated tank valve boxes and interconnecting piping, will be stabilized with grout as early as 2008. (authors)

  8. Volcanic hazards of the Idaho National Engineering Laboratory and adjacent areas

    SciTech Connect (OSTI)

    Hackett, W.R.; Smith, R.P.

    1994-12-01

    Potential volcanic hazards are assessed, and hazard zone maps are developed for the Idaho National Engineering Laboratory (INEL) and adjacent areas. The basis of the hazards assessment and mapping is the past volcanic history of the INEL region, and the apparent similarity of INEL volcanism with equivalent, well-studied phenomena in other regions of active volcanism, particularly Hawaii and Iceland. The most significant hazards to INEL facilities are associated with basaltic volcanism, chiefly lava flows, which move slowly and mainly threaten property by inundation or burning. Related hazards are volcanic gases and tephra, and ground disturbance associated with the ascent of magma under the volcanic zones. Several volcanic zones are identified in the INEL area. These zones contain most of the volcanic vents and fissures of the region and are inferred to be the most probable sites of future INEL volcanism. Volcanic-recurrence estimates are given for each of the volcanic zones based on geochronology of the lavas, together with the results of field and petrographic investigations concerning the cogenetic relationships of INEL volcanic deposits and associated magma intrusion. Annual probabilities of basaltic volcanism within the INEL volcanic zones range from 6.2 {times} 10{sup {minus}5} per year (average 16,000-year interval between eruptions) for the axial volcanic zone near the southern INEL boundary and the Arco volcanic-rift zone near the western INEL boundary, to 1 {times} 10{sup {minus}5} per year (average 100,000-year interval between eruptions) for the Howe-East Butte volcanic rift zone, a geologically old and poorly defined feature of the central portion of INEL. Three volcanic hazard zone maps are developed for the INEL area: lava flow hazard zones, a tephra (volcanic ash) and gas hazard zone, and a ground-deformation hazard zone. The maps are useful in land-use planning, site selection, and safety analysis.

  9. Partnering: An Engine for Innovation: Continuum Magazine, Fall 2014/Issue 7 (Book), NREL (National Renewable Energy Laboratory)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    L L 2 0 1 4 / I S S U E 7 NREL is a national laboratory of the U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, operated by the Alliance for Sustainable Energy, LLC. WWW.NREL.GOV/CONTINUUM P A R T N E R I N G : A N E N G I N E F O R I N N O V A T I O N 2 Continuum DAN SAYS PARTNERING: AN ENGINE FOR INNOVATION Collaborative research truly is an engine for innovation. While the term "partnership" may seem straightforward, there are actually many ways in which

  10. HISTORICAL AMERICAN ENGINEERING RECORD - IDAHO NATIONAL ENGINEERING AND ENVIRONMENTAL LABORATORY, TEST AREA NORTH, HAER NO. ID-33-E

    SciTech Connect (OSTI)

    Susan Stacy; Hollie K. Gilbert

    2005-02-01

    Test Area North (TAN) was a site of the Aircraft Nuclear Propulsion (ANP) Project of the U.S. Air Force and the Atomic Energy Commission. Its Cold War mission was to develop a turbojet bomber propelled by nuclear power. The project was part of an arms race. Test activities took place in five areas at TAN. The Assembly & Maintenance area was a shop and hot cell complex. Nuclear tests ran at the Initial Engine Test area. Low-power test reactors operated at a third cluster. The fourth area was for Administration. A Flight Engine Test facility (hangar) was built to house the anticipated nuclear-powered aircraft. Experiments between 1955-1961 proved that a nuclear reactor could power a jet engine, but President John F. Kennedy canceled the project in March 1961. ANP facilities were adapted for new reactor projects, the most important of which were Loss of Fluid Tests (LOFT), part of an international safety program for commercial power reactors. Other projects included NASA's Systems for Nuclear Auxiliary Power and storage of Three Mile Island meltdown debris. National missions for TAN in reactor research and safety research have expired; demolition of historic TAN buildings is underway.

  11. Rewarding Green: NETL Recognized for Sustainable Buildings

    Broader source: Energy.gov [DOE]

    A new awards program initiated by the U.S. Department of Energy Sustainability Performance Office has recognized a building at the National Energy Technology Laboratory as a high-performance sustainable building — a model of DOE’s five guiding principles for sustainable buildings: integrated design, optimized energy use, water conservation, enhanced indoor environmental quality, and reduced environmental impact of materials.

  12. Advanced Reciprocating Engine Systems (ARES) R&D- Presentation by Argonne National Laboratory, June 2011

    Broader source: Energy.gov [DOE]

    Presentation on Technologies for Gaseous Fueled Advanced Reciprocating Engine Systems (ARES), given by Sreenath Gupta at the U.S. DOE Industrial Distributed Energy Portfolio Review Meeting in Washington, D.C. on June 1-2, 2011.

  13. Advanced Reciprocating Engine Systems (ARES) Research at Argonne National Laboratory. A Report

    SciTech Connect (OSTI)

    Gupta, Sreenath; Biruduganti, Muni; Bihari, Bipin; Sekar, Raj

    2014-08-01

    The goals of these experiments were to determine the potential of employing spectral measurements to deduce combustion metrics such as HRR, combustion temperatures, and equivalence ratios in a natural gas-fired reciprocating engine. A laser-ignited, natural gas-fired single-cylinder research engine was operated at various equivalence ratios between 0.6 and 1.0, while varying the EGR levels between 0% and maximum to thereby ensure steady combustion. Crank angle-resolved spectral signatures were collected over 266-795 nm, encompassing chemiluminescence emissions from OH*, CH*, and predominantly by CO2* species. Further, laser-induced gas breakdown spectra were recorded under various engine operating conditions.

  14. Environmental surveillance for EG&G Idaho Waste Management facilities at the Idaho National Engineering Laboratory. 1993 annual report

    SciTech Connect (OSTI)

    Wilhelmsen, R.N.; Wright, K.C.; McBride, D.W.; Borsella, B.W.

    1994-08-01

    This report describes calendar year 1993 environmental surveillance activities of Environmental Monitoring of EG&G Idaho, Inc., performed at EG&G Idaho operated Waste Management facilities at the Idaho National Engineering Laboratory (INEL). The major facilities monitored include the Radioactive Waste Management Complex, the Waste Experimental Reduction Facility, the Mixed Waste Storage Facility, and two surplus facilities. Included are results of the sampling performed by the Radiological and Environmental Sciences Laboratory and the United States Geological Survey. The primary purposes of monitoring are to evaluate environmental conditions, to provide and interpret data, to ensure compliance with applicable regulations or standards, and to ensure protection of human health and the environment. This report compares 1993 environmental surveillance data with US Department of Energy derived concentration guides and with data from previous years.

  15. Stratigraphy of the unsaturated zone and the Snake River Plain aquifer at and near the Idaho National Engineering Laboratory, Idaho

    SciTech Connect (OSTI)

    Anderson, S.R.; Liszewski, M.J.

    1997-08-01

    The unsaturated zone and the Snake River Plain aquifer at and near the Idaho National Engineering Laboratory (INEL) are made up of at least 178 basalt-flow groups, 103 sedimentary interbeds, 6 andesite-flow groups, and 4 rhyolite domes. Stratigraphic units identified in 333 wells in this 890-mile{sup 2} area include 121 basalt-flow groups, 102 sedimentary interbeds, 6 andesite-flow groups, and 1 rhyolite dome. Stratigraphic units were identified and correlated using the data from numerous outcrops and 26 continuous cores and 328 natural-gamma logs available in December 1993. Basalt flows make up about 85% of the volume of deposits underlying the area.

  16. SAFETY ENGINEERING FOR THE RELATIVISTIC HEAVY ION COLLIDER AT THE BROOKHAVEN NATIONAL LABORATORY.

    SciTech Connect (OSTI)

    MUSOLINO,S.V.

    1999-11-14

    THERE ARE ONLY A FEW OTHER HIGH ENERGY PARTICLE ACCELERATORS LIKE RHIC IN THE WORLD. THEREFORE, THE DESIGNERS OF THE MACHINE DO NOT ALWAYS HAVE CONSENSUS DESIGN STANDARDS AND REGULATORY GUIDANCE AVAILABLE TO ESTABLISH THE ENGINEERING PARAMETERS FOR SAFETY. SOME OF THE AREAS WHERE STANDARDS ARE NOT AVAILABLE RELATE TO THE CRYOGENIC SYSTEM, CONTAINMENT OF LARGE VOLUMES OF FLAMMABLE GAS IN FRAGILE VESSELS IN THE EXPERIMENTAL APPARATUS AND MITIGATION OF A DESIGN BASIS ACCIDENT WITH A STORED PARTICLE BEAM. UNIQUE BUT EQUIVALENT SAFETY ENGINEERING MUST BE DETERMINED. SPECIAL DESIGN CRITERIA FOR PROMPT RADIATION WERE DEVELOPED TO PROVIDE GUIDANCE FOR THE DESIGN OF RADIATION SHIELDING.

  17. Argonne Distinguished Fellows | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Argonne Distinguished Fellows The Argonne Distinguished Fellow is the highest scientific/engineering rank at the laboratory, and this distinction is held by only a small fraction (approximately 3 percent) of the research staff. Staff members who achieve this rank have a widely recognized international reputation and have demonstrated exceptional achievements in science or engineering that are relevant to Argonne's core missions (e.g., seminal discoveries or advances that have broad influence and

  18. Site-specific probabilistic seismic hazard analyses for the Idaho National Engineering Laboratory. Volume 1: Final report

    SciTech Connect (OSTI)

    1996-05-01

    This report describes and summarizes a probabilistic evaluation of ground motions for the Idaho National Engineering Laboratory (INEL). The purpose of this evaluation is to provide a basis for updating the seismic design criteria for the INEL. In this study, site-specific seismic hazard curves were developed for seven facility sites as prescribed by DOE Standards 1022-93 and 1023-96. These sites include the: Advanced Test Reactor (ATR); Argonne National Laboratory West (ANL); Idaho Chemical Processing Plant (ICPP or CPP); Power Burst Facility (PBF); Radioactive Waste Management Complex (RWMC); Naval Reactor Facility (NRF); and Test Area North (TAN). The results, probabilistic peak ground accelerations and uniform hazard spectra, contained in this report are not to be used for purposes of seismic design at INEL. A subsequent study will be performed to translate the results of this probabilistic seismic hazard analysis to site-specific seismic design values for the INEL as per the requirements of DOE Standard 1020-94. These site-specific seismic design values will be incorporated into the INEL Architectural and Engineering Standards.

  19. Christopher Johnson | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Christopher Johnson Christopher Johnson Chemist - Chemical Sciences and Engineering Christopher Johnson is an internationally recognized chemist with more than 19 years of experience conducting chemical and electrochemical research and development on battery materials at Argonne National Laboratory. His areas of expertise include research in cathode materials for lithium ion batteries, sodium ion batteries and polyvalent systems, the discovery, design and synthesis of battery materials-anodes,

  20. Engineering development of advanced physical fine coal cleaning for premium fuel applications. Task 6 -- Selective agglomeration laboratory research and engineering development for premium fuels

    SciTech Connect (OSTI)

    Moro, N.; Jha, M.C.

    1997-06-27

    The primary goal of this project is the engineering development of two advanced physical fine coal cleaning processes, column flotation and selective agglomeration, for premium fuel applications. The project scope included laboratory research and benchscale testing on six coals to optimize these processes, followed by the design, construction, and operation of a 2 t/hr process development unit (PDU). The project began in October, 1992, and is scheduled for completion by September 1997. This report represents the findings of Subtask 6.5 Selective Agglomeration Bench-Scale Testing and Process Scale-up. During this work, six project coals, namely Winifrede, Elkhorn No. 3, Sunnyside, Taggart, Indiana VII, and Hiawatha were processed in a 25 lb/hr continuous selective agglomeration bench-scale test unit.

  1. Idaho National Engineering and Environmental Laboratory, Old Waste Calcining Facility, Scoville vicinity, Butte County, Idaho -- Photographs, written historical and descriptive data. Historical American engineering record

    SciTech Connect (OSTI)

    1997-12-31

    This report describes the history of the Old Waste Calcining Facility. It begins with introductory material on the Idaho National Engineering and Environmental Laboratory, the Materials Testing Reactor fuel cycle, and the Idaho Chemical Processing Plant. The report then describes management of the wastes from the processing plant in the following chapters: Converting liquid to solid wastes; Fluidized bed waste calcining process and the Waste Calcining Facility; Waste calcining campaigns; WCF gets a new source of heat; New Waste Calcining Facility; Last campaign; Deactivation and the RCRA cap; Significance/context of the old WCF. Appendices contain a photo key map for HAER photos, a vicinity map and neighborhood of the WCF, detailed description of the calcining process, and chronology of WCF campaigns.

  2. 3-minute diagnosis: Researchers develop new method to recognize pathogens

    ScienceCinema (OSTI)

    Beer, Reg

    2014-05-30

    Imagine knowing precisely why you feel sick ... before the doctor's exam is over. Lawrence Livermore researcher Reg Beer and his engineering colleagues have developed a new method to recognize disease-causing pathogens quicker than ever before.

  3. Salton Sea Power Plant Recognized as Most Innovative Geothermal Project

    Broader source: Energy.gov [DOE]

    The first power plant to be built in the Salton Sea area in 20 years was recognized in December by Power Engineering magazine as the most innovative geothermal project of the year.

  4. Quality New Mexico recognizes Community Programs Office

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    CPO receives Piñon recognition Quality New Mexico recognizes Community Programs Office LANL has received 14 Piñon and Roadrunner recognitions from Quality New Mexico since 1997. March 6, 2012 Los Alamos National Laboratory sits on top of a once-remote mesa in northern New Mexico with the Jemez mountains as a backdrop to research and innovation covering multi-disciplines from bioscience, sustainable energy sources, to plasma physics and new materials. Los Alamos National Laboratory sits on top

  5. Support for the in situ vitrification treatability study at the Idaho National Engineering Laboratory: FY 1988 summary

    SciTech Connect (OSTI)

    Oma, K.H.; Reimus, M.A.H.; Timmerman, C.L.

    1989-02-01

    The objective of this project is to determine if in situ vitrification (ISV) is a viable, long-term confinement technology for previously buried solid transuranic and mixed waste at the Radioactive Waste Management Complex (RWMC). The RWMC is located at the Idaho National Engineering Laboratory (INEL). In situ vitrification is a thermal treatment process that converts contaminated soils and wastes into a durable glass and crystalline form. During processing, heavy metals or other inorganic constituents are retained and immobilized in the glass structure, and organic constituents are typically destroyed or removed for capture by an off-gas treatment system. The primary FY 1988 activities included engineering-scale feasibility tests on INEL soils containing a high metals loading. Results of engineering-scale testing indicate that wastes with a high metals content can be successfully processed by ISV. The process successfully vitrified soils containing localized metal concentrations as high as 42 wt % without requiring special methods to prevent electrical shorting within the melt zone. Vitrification of this localized concentration resulted in a 15.9 wt % metals content in the entire ISV test block. This ISV metals limit is related to the quantity of metal that accumulates at the bottom of the molten glass zone. Intermediate pilot-scale testing is recommended to determine metals content scale-up parameters in order to project metals content limits for large-scale ISV operation at INEL.

  6. The transportable heavy-duty engine emissions testing laboratory. Annual progress report, April 1990--April 1991

    SciTech Connect (OSTI)

    Not Available

    1991-05-01

    West Virginia University has designed and constructed a Transportable Emissions Testing Laboratory for measuring emissions from heavy duty vehicles, such as buses and trucks operating on conventional and alternative fuels. The laboratory facility can be transported to a test site located at, or nearby, the home base of the vehicles to be tested. The laboratory has the capability of measuring vehicle emissions as the vehicle is operated under either transient or steady state loads and speeds. The exhaust emissions from the vehicle is sampled and the levels of the constituents of the emission are measured. The laboratory consists of two major units; a power absorber unit and an emissions measurement unit. A power absorber unit allows for the connection of a dynamic load to the drive train of the vehicle so that the vehicle can be ``driven`` through a test cycle while actually mounted on a stationary test bed. The emissions unit contains instrumentation and equipment which allows for the dilution of the vehicle`s exhaust with air. The diluteed exhaust is sampled and analyzed to measure the level of concentration of those constituents which have been identified to have impact on the clean environment. Sampling probes withdraw diluted exhaust which is supplied to a number of different exhaust gas analysis instruments. The exhaust gas analysis instruments have the capability to measure the levels of the following exhaust gas constituents: carbon monoxide (CO), carbon dioxide (CO{sub 2}), oxides of nitrogen (NO{sub x}), unburned hydrocarbons (HC), formaldehyde (HCHO), methane and particulate matter. Additional instruments or sampling devices can be installed whenever measurements of additional constituents are desired. A computer based, data acquisition system is used to continuously monitor a wide range of parameters important to the operation of the test and to record the test results.

  7. NSC employees recognized as community role models | National Nuclear

    National Nuclear Security Administration (NNSA)

    Security Administration | (NNSA) recognized as community role models Monday, January 26, 2015 - 3:56pm NNSA Blog Sr. Quality Engineer Brenette Wilder and Lead Project Engineer Dwight Drake from NNSA's National Security Campus in Kansas City, Mo, were among seven individuals recently recognized as the 2015 Black Achiever's Society Honorees. They were chosen for their educational, social and economic contributions to the community. The two join nearly 500 African American businessmen and women

  8. 2003 Idaho National Engineering and Environmental Laboratory Shallow Injection Well Verification and Status Report

    SciTech Connect (OSTI)

    Lewis, M.G.

    2003-08-21

    A detailed verification of the shallow injection well inventory for Bechtel BWXT Idaho, LLC and Argonne National Laboratory-West-operated facilities was performed in 2003. Fourteen wells, or 20%, were randomly selected for the verification. This report provides updated information on the 14 shallow injection wells that were randomly selected for the 2003 verification. Where applicable, additional information is provided for shallow injection wells that were not selected for the 2003 verification. This updated information was incorporated into the 2003 Shallow Injection Wells Inventory, Sixty-eight wells were removed from the 2003 Shallow Injection Well Inventory.

  9. 2003 Idaho National Engineering and Environmental Laboratory Shallow Injection Well Verification and Status Report

    SciTech Connect (OSTI)

    Mike Lewis

    2003-08-01

    A detailed verification of the shallow injection well inventory for Bechtel BWXT Idaho, LLC and Argonne National Laboratory-West-operated facilities was performed in 2003. Fourteen wells, or 20%, were randomly selected for the verification. This report provides updated information on the 14 shallow injection wells that were randomly selected for the 2003 verification. Where applicable, additional information is provided for shallow injection wells that were not selected for the 2003 verification. This updated information was incorporated into the 2003 Shallow Injection Wells Inventory. Sixty-eight wells were removed from the 2003 Shallow Injection Well Inventory.

  10. ORNL, partners officially recognized for discovery of elements 115, 117

    ScienceCinema (OSTI)

    Roberto, Jim

    2016-01-15

    The International Union for Pure and Applied Chemistry has announced formal verification of four new chemical elements, recognizing the Department of Energy?s Oak Ridge National Laboratory and its collaborators for the discovery of elements 115 and 117.

  11. LANL, Sandia National Lab recognize New Mexico small businesses for

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    innovation LANL, Sandia National Lab recognize New Mexico small businesses for innovation LANL, Sandia recognized New Mexico small businesses for innovation Businesses include the Pueblo of Zia; Herbs, Etc.; Musicode Innovations; SAVSU Technologies; and Albuquerque Delicate Dentistry Inc. April 30, 2012 Aerial view of Los Alamos National Laboratory Aerial view of Los Alamos National Laboratory. Contact Steve Sandoval Communications Office (505) 665-9206 Email LOS ALAMOS, NEW MEXICO, April,

  12. The discharge plasma in ion engine neutralizers: Numerical simulations and comparisons with laboratory data

    SciTech Connect (OSTI)

    Mikellides, Ioannis G.; Goebel, Dan M.; Snyder, John Steven; Katz, Ira; Herman, Daniel A.

    2010-12-01

    Numerical simulations of neutralizer hollow cathodes at various operating conditions and orifice sizes are presented. The simulations were performed using a two-dimensional axisymmetric model that solves numerically an extensive system of conservation laws for the partially ionized gas in these devices. The results for the plasma are compared directly with Langmuir probe measurements. The computed keeper voltages are also compared with the observed values. Whenever model inputs and/or specific physics of the cathode discharge were uncertain or unknown additional sensitivity calculations have been performed to quantify the uncertainties. The model has also been employed to provide insight into recent ground test observations of the neutralizer cathode in NASA's evolutionary xenon thruster. It is found that a likely cause of the observed keeper voltage drop in a long duration test of the engine is cathode orifice erosion.

  13. Engineering

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Includes Engineering Standards Manual, Master Specifications Index, Drafting Manual, Design Guides, and more. IHS Standards Expert login information Collections include ANSI,...

  14. Preliminary siting criteria for the proposed mixed and low-level waste treatment facility at the Idaho National Engineering Laboratory

    SciTech Connect (OSTI)

    Jorgenson-Waters, M.

    1992-09-01

    The Mixed and Low-Level Waste Treatment Facility project was established in 1991 by the US Department of Energy Idaho Field Office. This facility will provide treatment capabilities for Idaho National Engineering Laboratory (INEL) low-level mixed waste and low-level waste. This report identifies the siting requirements imposed on facilities that treat and store these waste types by Federal and State regulatory agencies and the US Department of Energy. Site selection criteria based on cost, environmental, health and safety, archeological, geological and service, and support requirements are presented. These criteria will be used to recommend alternative sites for the new facility. The National Environmental Policy Act process will then be invoked to evaluate the alternatives and the alternative sites and make a final site determination.

  15. 1997 Idaho National Engineering and Environmental Laboratory (INEEL) National Emission Standards for Hazardous Air Pollutants (NESHAPs) -- Radionuclides annual report

    SciTech Connect (OSTI)

    1998-06-01

    Under Section 61.94 of Title 40, Code of Federal Regulations (CFR), Part 61, Subpart H, National Emission Standards for Emissions of Radionuclides Other Than Radon From Department of Energy Facilities, each Department of Energy (DOE) facility must submit an annual report documenting compliance. This report addresses the Section 61.94 reporting requirements for operations at the Idaho National Engineering and Environmental Laboratory (INEEL) for calendar year (CY) 1997. Section 1 of this report provides an overview of the INEEL facilities and a brief description of the radioactive materials and processes at the facilities. Section 2 identifies radioactive air effluent release points and diffuse sources at the INEEL and actual releases during 1997. Section 2 also describes the effluent control systems for each potential release point. Section 3 provides the methodology and EDE calculations for 1997 INEEL radioactive emissions.

  16. Short-Term and Long-Term Technology Needs/Matching Status at Idaho National Engineering and Environmental Laboratory

    SciTech Connect (OSTI)

    S. L. Claggett

    1999-12-01

    This report identifies potential technology deployment opportunities for the Environmental Management (EM) programs at the Idaho National Engineering and Environmental Laboratory (INEEL). The focus is on identifying candidates for Accelerated Site Technology Deployment (ASTD) proposals within the Environmental Restoration and Waste Management areas. The 86 technology needs on the Site Technology Coordination Group list were verified in the field. Six additional needs were found, and one listed need was no longer required. Potential technology matches were identified and then investigated for applicability, maturity, cost, and performance. Where promising, information on the technologies was provided to INEEL managers for evaluation. Eleven potential ASTD projected were identified, seven for near-term application and four for application within the next five years.

  17. Summary of the 1987 soil sampling effort at the Idaho National Engineering Laboratory Test Reactor Area Paint Shop Ditch

    SciTech Connect (OSTI)

    Wood, T.R.; Knight, J.L.; Hertzler, C.L.

    1989-08-01

    Sampling of the Test Reactor Area (TRA) Paint Shop Ditch at the Idaho National Engineering Laboratory was initiated in compliance with the Interim Agreement between the Department of Energy (DOE) and the Environmental Protection Agency (EPA). Sampling of the TRA Paint Shop Ditch was done as part of the Action Plan to achieve and maintain compliance with the Resource Conservation and Recovery Act (RCRA) and applicable regulations. It is the purpose of this document to provide a summary of the July 6, 1987 sampling activities that occurred in ditch west of Building TRA-662, which housed the TRA Paint Shop in 1987. This report will give a narrative description of the field activities, locations of collected samples, discuss the sampling procedures and the chemical analyses. Also included in the scope of this report is to bring together data and reports on the TRA Paint Shop Ditch for archival purposes. 6 refs., 10 figs., 8 tabs.

  18. Cultural Resource Assessment of the Test Area North Demolition Landfill at the Idaho National Engineering and Environmental Laboratory

    SciTech Connect (OSTI)

    Brenda R. Pace

    2003-07-01

    The proposed new demolition landfill at Test Area North on the Idaho National Engineering and Environmental Laboratory (INEEL) will support ongoing demolition and decontamination within the facilities on the north end of the INEEL. In June of 2003, the INEEL Cultural Resource Management Office conducted archival searches, field surveys, and coordination with the Shoshone-Bannock Tribes to identify all cultural resources that might be adversely affected by the project and to provide recommendations to protect those listed or eligible for listing on the National Register of Historic Places. These investigations showed that landfill construction and operation would affect two significant cultural resources. This report outlines protective measures to ensure that these effects are not adverse.

  19. Soil stabilization using oil shale solid wastes: Laboratory evaluation of engineering properties

    SciTech Connect (OSTI)

    Turner, J.P.

    1991-01-01

    Oil shale solid wastes were evaluated for possible use as soil stabilizers. A laboratory study was conducted and consisted of the following tests on compacted samples of soil treated with water and spent oil shale: unconfined compressive strength, moisture-density relationships, wet-dry and freeze-thaw durability, and resilient modulus. Significant increases in strength, durability, and resilient modulus were obtained by treating a silty sand with combusted western oil shale. Moderate increases in strength, durability, and resilient modulus were obtained by treating a highly plastic clay with combusted western oil shale. Solid waste from eastern shale can be used for soil stabilization if limestone is added during combustion. Without limestone, eastern oil shale waste exhibits little or no cementation. The testing methods, results, and recommendations for mix design of spent shale-stabilized pavement subgrades are presented. 11 refs., 3 figs., 10 tabs.

  20. Sandia National Laboratories Advanced Simulation and Computing (ASC) software quality plan : ASC software quality engineering practices Version 3.0.

    SciTech Connect (OSTI)

    Turgeon, Jennifer L.; Minana, Molly A.; Hackney, Patricia; Pilch, Martin M.

    2009-01-01

    The purpose of the Sandia National Laboratories (SNL) Advanced Simulation and Computing (ASC) Software Quality Plan is to clearly identify the practices that are the basis for continually improving the quality of ASC software products. Quality is defined in the US Department of Energy/National Nuclear Security Agency (DOE/NNSA) Quality Criteria, Revision 10 (QC-1) as 'conformance to customer requirements and expectations'. This quality plan defines the SNL ASC Program software quality engineering (SQE) practices and provides a mapping of these practices to the SNL Corporate Process Requirement (CPR) 001.3.6; 'Corporate Software Engineering Excellence'. This plan also identifies ASC management's and the software project teams responsibilities in implementing the software quality practices and in assessing progress towards achieving their software quality goals. This SNL ASC Software Quality Plan establishes the signatories commitments to improving software products by applying cost-effective SQE practices. This plan enumerates the SQE practices that comprise the development of SNL ASC's software products and explains the project teams opportunities for tailoring and implementing the practices.

  1. Floodplain Assessment for the Proposed Engineered Erosion Controls at TA-72 in Lower Sandia Canyon, Los Alamos National Laboratory

    SciTech Connect (OSTI)

    Hathcock, Charles D.

    2012-08-27

    Los Alamos National Laboratory (LANL) is preparing to implement engineering controls in Sandia Canyon at Technical Area (TA) 72. Los Alamos National Security (LANS) biologists conducted a floodplain determination and this project is located within a 100-year floodplain. The proposed project is to rehabilitate the degraded channel in lower Sandia Canyon where it crosses through the outdoor firing range at TA-72 to limit the loss of sediment and dissipate floodwater leaving LANL property (Figure 1). The proposed construction of these engineered controls is part of the New Mexico Environment Department's (NMED) approved LANL Individual Storm Water Permit. The purpose of this project is to install storm water controls at Sandia Watershed Site Monitoring Area 6 (S-SMA-6). Storm water controls will be designed and installed to meet the requirements of NPDES Permit No. NM0030759, commonly referred to as the LANL Individual Storm Water Permit (IP). The storm water control measures address storm water mitigation for the area within the boundary of Area of Concern (AOC) 72-001. This action meets the requirements of the IP for S-SMA-6 for storm water controls by a combination of: preventing exposure of upstream storm water and storm water generated within the channel to the AOC and totally retaining storm water falling outside the channel but within the AOC.

  2. Engineering

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    accomplished and versatile leader, managing a wide range of scientific and manufacturing operations," Laboratory Director Michael Anastasio said. "At Los Alamos and elsewhere,...

  3. ENGINEERING

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Energy Technology Laboratory, success is founded on public-private partnerships. Through an integrated mix of internal ... are developing the next generation of energy technologies ...

  4. Environmental Survey preliminary report, Idaho National Engineering Laboratory, Idaho Falls, Idaho and Component Development and Integration Facility, Butte, Montana

    SciTech Connect (OSTI)

    Not Available

    1988-09-01

    This report presents the preliminary findings of the first phase of the Environmental Survey of the United States Department of Energy's (DOE) Idaho National Engineering Laboratory (INEL) and Component Development and Integration Facility (CDIF), conducted September 14 through October 2, 1987. The Survey is being conducted by an interdisciplinary team of environmental specialists, led and managed by the Office of Environment, Safety and Health's Office of Environmental Audit. The team includes outside experts supplied by a private contractor. The objective of the Survey is to identify environmental problems and areas of environmental risk associated with the INEL and CDIF. The Survey covers all environmental media and all areas of environmental regulation. It is being performed in accordance with the DOE Environmental Survey Manual. The on-site phase of the Survey involves the review of existing site environmental data, observations of the operations' carried on at the INEL and the CDIF, and interviews with site personnel. The Survey team developed a Sampling and Analysis (S A) Plan to assist in further assessing certain of the environmental problems identified during its on-site activities. The S A Plan will be executed by the Oak Ridge National Laboratory. When completed, the S A results will be incorporated into the INEL/CDIF Survey findings for inclusion into the Environmental Survey Summary Report. 90 refs., 95 figs., 77 tabs.

  5. engineering

    National Nuclear Security Administration (NNSA)

    an award last month for his 3D printing innovation. It could revolutionize additive manufacturing.

    Lawrence Livermore Lab engineer Bryan Moran wasn't necessarily...

  6. Engineer

    Office of Environmental Management (EM)

    Energy Sandia Corporation - May 15, 2008 Enforcement Letter, Sandia Corporation - May 15, 2008 May 15, 2008 Issued to Sandia Corporation related to the Protection of Classified Information at the Sandia National Laboratories On May 15, 2008, the U.S. Department of Energy (DOE) issued an Enforcement Letter to Sandia Corporation expressing concerns about the protection of classified material at the Sandia National Laboratories. Enforcement Letter, Sandia Corporation - May 15, 2008 (1.36 MB)

  7. Department of Energy Programmatic Spent Nuclear Fuel Management and Idaho National Engineering Laboratory Environmental Restoration and Waste Management Programs draft environmental impact statement. Volume 1, Appendix B: Idaho National Engineering Laboratory Spent Nuclear Fuel Management Program

    SciTech Connect (OSTI)

    Not Available

    1994-06-01

    The US Department of Energy (DOE) has prepared this report to assist its management in making two decisions. The first decision, which is programmatic, is to determine the management program for DOE spent nuclear fuel. The second decision is on the future direction of environmental restoration, waste management, and spent nuclear fuel management activities at the Idaho National Engineering Laboratory. Volume 1 of the EIS, which supports the programmatic decision, considers the effects of spent nuclear fuel management on the quality of the human and natural environment for planning years 1995 through 2035. DOE has derived the information and analysis results in Volume 1 from several site-specific appendixes. Volume 2 of the EIS, which supports the INEL-specific decision, describes environmental impacts for various environmental restoration, waste management, and spent nuclear fuel management alternatives for planning years 1995 through 2005. This Appendix B to Volume 1 considers the impacts on the INEL environment of the implementation of various DOE-wide spent nuclear fuel management alternatives. The Naval Nuclear Propulsion Program, which is a joint Navy/DOE program, is responsible for spent naval nuclear fuel examination at the INEL. For this appendix, naval fuel that has been examined at the Naval Reactors Facility and turned over to DOE for storage is termed naval-type fuel. This appendix evaluates the management of DOE spent nuclear fuel including naval-type fuel.

  8. Idaho National Engineering Laboratory Waste Area Groups 1-7 and 10 Technology Logic Diagram. Volume 3

    SciTech Connect (OSTI)

    O`Brien, M.C.; Meservey, R.H.; Little, M.; Ferguson, J.S.; Gilmore, M.C.

    1993-09-01

    The Idaho National Engineering Laboratory (INEL) Technology Logic Diagram (TLD) was developed to provide a decision support tool that relates Environmental Restoration (ER) and Waste Management (WM) problems at the INEL to potential technologies that can remediate these problems. The TLD identifies the research, development, demonstration, testing, and evaluation needed to develop these technologies to a state that allows technology transfer and application to an environmental restoration need. It is essential that follow-on engineering and system studies be conducted to build on the output of this project. These studies will begin by selecting the most promising technologies identified in this TLD and finding an optimum mix of technologies that will provide a socially acceptable balance between cost and risk to meet the site windows of opportunity. The TLD consists of three separate volumes: Volume I includes the purpose and scope of the TLD, a brief history of the INEL Waste Area Groups, and environmental problems they represent. A description of the TLD, definitions of terms, a description of the technology evaluation process, and a summary of each subelement, is presented. Volume II describes the overall layout and development of the TLD in logic diagram format. This section addresses the environmental restoration of contaminated INEL sites. Volume III (this volume) provides the Technology Evaluation Data Sheets (TEDS) for Environmental Restoration and Waste Management (EM) activities that are reference by a TEDS code number in Volume II. Each of these sheets represents a single logic trace across the TLD. These sheets contain more detail than provided for technologies in Volume II. Data sheets are arranged alphanumerically by the TEDS code number in the upper right corner of each sheet.

  9. Idaho National Engineering Laboratory Waste Area Groups 1-7 and 10 Technology Logic Diagram. Volume 2

    SciTech Connect (OSTI)

    O`Brien, M.C.; Meservey, R.H.; Little, M.; Ferguson, J.S.; Gilmore, M.C.

    1993-09-01

    The Idaho National Engineering Laboratory (INEL) Technology Logic Diagram (TLD) was developed to provide a decision support tool that relates Environmental Restoration (ER) and Waste Management (WM) problems at the INEL to potential technologies that can remediate these problems. The TLD identifies the research, development, demonstration, testing, and evaluation needed to develop these technologies to a state that allows technology transfer and application to an environmental restoration need. It is essential that follow-on engineering and system studies be conducted to build on the output of this project. These studies will begin by selecting the most promising technologies identified in this TLD and finding an optimum mix of technologies that will provide a socially acceptable balance between cost and risk to meet the site windows of opportunity. The TLD consists of three separate volumes: Volume I includes the purpose and scope of the TLD, a brief history of the INEL Waste Area Groups, and environmental problems they represent. A description of the TLD, definitions of terms, a description of the technology evaluation process, and a summary of each subelement, is presented. Volume II (this volume) describes the overall layout and development of the TLD in logic diagram format. This section addresses the environmental restoration of contaminated INEL sites. Specific INEL problem areas/contaminants are identified along with technology solutions, the status of the technologies, precise science and technology needs, and implementation requirements. Volume III provides the Technology Evaluation Data Sheets (TEDS) for Environmental Restoration and Waste Management (EM) activities that are referenced by a TEDS codenumber in Volume II. Each of these sheets represents a single logic trace across the TLD. These sheets contain more detail than provided for technologies in Volume II.

  10. 1996 Idaho National Engineering and Environmental Laboratory (INEEL) National Emissions Standards for Hazardous Air Pollutants (NESHAPs) -- Radionuclides. Annual report

    SciTech Connect (OSTI)

    1997-06-01

    Under Section 61.94 of Title 40, Code of Federal Regulations (CFR), Part 61, Subpart H, ``National Emission Standards for Emissions of Radionuclides Other Than Radon From Department of Energy Facilities,`` each Department of Energy (DOE) facility must submit an annual report documenting compliance. This report addresses the Section 61.94 reporting requirements for operations at the Idaho National Engineering and Environmental Laboratory (INEEL) for calendar year (CY) 1996. The Idaho Operations Office of the DOE is the primary contact concerning compliance with the National Emission Standards for Hazardous Air Pollutants (NESHAPs) at the INEEL. For calendar year 1996, airborne radionuclide emissions from the INEEL operations were calculated to result in a maximum individual dose to a member of the public of 3.14E-02 mrem (3.14E-07 Sievert). This effective dose equivalent (EDE) is well below the 40 CFR 61, Subpart H, regulatory standard of 10 mrem per year (1.0E-04 Sievert per year).

  11. Idaho National Engineering Laboratory Conceptual Site Treatment Plan. Tables 8.1 and 8.2, Appendices A, B, C

    SciTech Connect (OSTI)

    Eaton, D.

    1993-10-01

    The US Department of Energy (DOE) is required by Section 3021(b) of the Resource Conservation and Recovery Act (RCRA), as amended by the Federal Facility Compliance Act (FFCAct), to prepare plans describing the development of treatment capacities and technologies for treating mixed waste. The FFCAct requires site treatment plans (STPs or plans) to be developed for each site at which DOE generates or stores mixed waste and submitted to the host state or the US Environmental Protection Agency (EPA) for either approval, approval with modification, or disapproval. The Idaho National Engineering Laboratory (INEL) Conceptual Site Treatment Plan (CSTP) is the preliminary version of the plan required by the FFCAct and is being provided to the State of Idaho, the EPA, and others for review. A list of the other DOE sites preparing CSTPs is included in Appendix A of this document. In addition to aiding the INEL in formulating its Final Proposed STP, this CSTP will also provide information to other DOE sites for use in identifying common technology needs and potential options for treating their wastes. The INEL CSTP is also intended to be used in conjunction with CSTPs from other sites as a basis for nationwide discussions among state regulators, the EPA, and other interested parties on treatment strategies and options, and on technical and equity issues associated with DOE`s mixed waste.

  12. Petrography, age, and paleomagnetism of basaltic lava flows in coreholes at Test Area North (TAN), Idaho National Engineering Laboratory

    SciTech Connect (OSTI)

    Lanphere, M.A.; Champion, D.E.; Kuntz, M.A.

    1994-12-31

    The petrography, age, and paleomagnetism were determined on basalt from 21 lava flows comprising about 1,700 feet of core from two coreholes (TAN CH No. 1 and TAN CH No. 2) in the Test Area North (TAN) area of the Idaho National Engineering Laboratory (INEL). Paleomagnetic studies were made on two additional cores from shallow coreholes in the TAN area. K-Ar ages and paleomagnetism also were determined on nearby surface outcrops of Circular Butte. Paleomagnetic measurements were made on 416 samples from four coreholes and on a single site in surface lava flows of Circular Butte. K-Ar ages were measured on 9 basalt samples from TAN CH No. 1 and TAN CH No. 2 and one sample from Circular Butte. K-Ar ages ranged from 1.044 Ma to 2.56 Ma. All of the samples have reversed magnetic polarity and were erupted during the Matuyama Reversed Polarity Epoch. The purpose of investigations was to develop a three-dimensional stratigraphic framework for geologic and hydrologic studies including potential volcanic hazards to facilities at the INEL and movement of radionuclides in the Snake River Plain aquifer.

  13. Analysis Activities at Idaho National Engineering & Environmental...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Activities at Idaho National Engineering & Environmental Laboratory Analysis Activities at Idaho National Engineering & Environmental Laboratory Presentation on INEENL's analysis ...

  14. Laboratories | NREL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Laboratories Our laboratories are available to industry and other organizations for researching, developing, and evaluating energy technologies. We have experienced lab technicians, scientists and engineers ready to design and run tests for you. Some labs are available for conducting your own research. A | B | C | D | E | F | G | H | I | J | K | L | M | N | O | P | Q | R | S | T | U | V | W | X | Y | Z A Accelerated Exposure Testing Laboratory Advanced Optical Materials Laboratory Advanced

  15. Industrial Assessment Center Awards: Recognizing Excellence in Future

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Leaders | Department of Energy Industrial Assessment Center Awards: Recognizing Excellence in Future Energy Leaders Industrial Assessment Center Awards: Recognizing Excellence in Future Energy Leaders May 5, 2014 - 2:19pm Addthis Dayakar Devaru, University of West Virginia graduate student, named Outstanding IAC Engineering Student for his contributions to more than 100 energy-efficiency Industrial Assessment Center (IAC) initiative assessments. | Photo courtesy of University of West

  16. Engineering Evaluation of Proposed Alternative Salt Transfer Method for the Molten Salt Reactor Experiement for the Oak Ridge National Laboratory

    SciTech Connect (OSTI)

    Carlberg, Jon A.; Roberts, Kenneth T.; Kollie, Thomas G.; Little, Leslie E.; Brady, Sherman D.

    2009-09-30

    This evaluation was performed by Pro2Serve in accordance with the Technical Specification for an Engineering Evaluation of the Proposed Alternative Salt Transfer Method for the Molten Salt Reactor Experiment at the Oak Ridge National Laboratory (BJC 2009b). The evaluators reviewed the Engineering Evaluation Work Plan for Molten Salt Reactor Experiment Residual Salt Removal, Oak Ridge National Laboratory, Oak Ridge, Tennessee (DOE 2008). The Work Plan (DOE 2008) involves installing a salt transfer probe and new drain line into the Fuel Drain Tanks and Fuel Flush Tank and connecting them to the new salt transfer line at the drain tank cell shield. The probe is to be inserted through the tank ball valve and the molten salt to the bottom of the tank. The tank would then be pressurized through the Reactive Gas Removal System to force the salt into the salt canisters. The Evaluation Team reviewed the work plan, interviewed site personnel, reviewed numerous documents on the Molten Salt Reactor (Sects. 7 and 8), and inspected the probes planned to be used for the transfer. Based on several concerns identified during this review, the team recommends not proceeding with the salt transfer via the proposed alternate salt transfer method. The major concerns identified during this evaluation are: (1) Structural integrity of the tanks - The main concern is with the corrosion that occurred during the fluorination phase of the uranium removal process. This may also apply to the salt transfer line for the Fuel Flush Tank. Corrosion Associated with Fluorination in the Oak Ridge National Laboratory Fluoride Volatility Process (Litman 1961) shows that this problem is significant. (2) Continued generation of Fluorine - Although the generation of Fluorine will be at a lower rate than experienced before the uranium removal, it will continue to be generated. This needs to be taken into consideration regardless of what actions are taken with the salt. (3) More than one phase of material

  17. NNSA Recognizes Labs, Sites for Commitment to Environmental Stewardship |

    National Nuclear Security Administration (NNSA)

    National Nuclear Security Administration | (NNSA) Recognizes Labs, Sites for Commitment to Environmental Stewardship April 30, 2012 WASHINGTON, D.C. - The National Nuclear Security Administration (NNSA) today congratulated its national laboratories and sites for achievements in environmental stewardship, awarding a total of 24 Pollution Prevention (P2) Awards for innovative initiatives across the enterprise. The P2 Awards recognize performance in integrating environmental stewardship

  18. Top 500 List Recognizes Fastest Supercomputers | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    00 List Recognizes Fastest Supercomputers Top 500 List Recognizes Fastest Supercomputers June 30, 2014 - 5:25pm Addthis Titan 1 of 4 Titan Oak Ridge National Laboratory's Titan has a theoretical peak performance of more than 27 petaflops, or more than 27 quadrillion calculations per second. This enables researchers across the scientific arena, from materials to climate change to astrophysics, to acquire unparalleled accuracy in their simulations and achieve research breakthroughs more rapidly

  19. National Renewable Energy Laboratory | National Nuclear Security...

    National Nuclear Security Administration (NNSA)

    National Renewable Energy Laboratory NNSA lab recognized for innovation to power electric ... Annual Merit Review Awards recognized significant achievements in the Department of Energy

  20. Management | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Chemical Sciences & Engineering Focus: Understanding & Control of Interfacial Processes Web Site Michael Thackeray Michael Thackeray (Deputy Director) Argonne National Laboratory...

  1. PROJECT-SPECIFIC TYPE A VERIFICATION FOR THE BROOKHAVEN GRAPHITE RESEARCH REACTOR ENGINEERED CAP, BROOKHAVEN NATIONAL LABORATORY UPTON, NEW YORK DCN 5098-SR-07-0

    SciTech Connect (OSTI)

    Evan Harpenau

    2011-07-15

    The Oak Ridge Institute for Science and Education (ORISE) has reviewed the project documentation and data for the Brookhaven Graphite Research Reactor (BGRR) Engineered Cap at Brookhaven National Laboratory (BNL) in Upton, New York. The Brookhaven Science Associates (BSA) have completed removal of affected soils and performed as-left surveys by BSA associated with the BGRR Engineered Cap. Sample results have been submitted, as required, to demonstrate that remediation efforts comply with the cleanup goal of {approx}15 mrem/yr above background to a resident in 50 years (BNL 2011a).

  2. EA-1407: Proposed TA-16 Engineering Complex Refurbishment and Consolidation at Los Alamos National Laboratory, Los Alamos, New Mexico

    Broader source: Energy.gov [DOE]

    This EA evaluates the environmental impacts for the proposal to construct and operate offices, laboratories, and shops within the U.S. Department of Energy Los Alamos National Laboratory's (LANL)...

  3. OE Grant Recipients, ISER Recognized for Innovation and Leadership

    Broader source: Energy.gov [DOE]

    As part of its annual awards ceremony, the Institute of Electrical and Electronics Engineers (IEEE) recently honored three individuals working on projects funded by the Office of Electricity & Energy Reliability for their leadership and contributions to engineering. Additionally, an education industry publication recognized the Emergency Support Function #12 (ESF #12) team within OE’s Infrastructure Security & Energy Restoration (ISER) Division with an annual Learning in Practice award for excellence in e-learning.

  4. Department of Energy Programmatic Spent Nuclear Fuel Management and Idaho National Engineering Laboratory Environmental Restoration and Waste Management Programs draft environmental impact statement. Summary

    SciTech Connect (OSTI)

    Not Available

    1994-06-01

    This document analyzes at a programmatic level the potential environmental consequences over the next 40 years of alternatives related to the transportation, receipt, processing, and storage of spent nuclear fuel under the responsibility of the US Department of Energy. It also analyzes the site-specific consequences of the Idaho National Engineering Laboratory sitewide actions anticipated over the next 10 years for waste and spent nuclear fuel management and environmental restoration. For programmatic spent nuclear fuel management, this document analyzes alternatives of no action, decentralization, regionalization, centralization and the use of the plans that existed in 1992/1993 for the management of these materials. For the Idaho National Engineering Laboratory, this document analyzes alternatives of no action, ten-year plan, minimum and maximum treatment, storage, and disposal of US Department of Energy wastes.

  5. Department of Energy Programmatic Spent Nuclear Fuel Management and Idaho National Engineering Laboratory Environmental Restoration and Waste Management Programs Draft Environmental Impact Statement. Volume 2, Part A

    SciTech Connect (OSTI)

    Not Available

    1994-06-01

    This document analyzes at a programmatic level the potential environmental consequences over the next 40 years of alternatives related to the transportation, receipt, processing, and storage of spent nuclear fuel under the responsibility of the US Department of Energy. It also analyzes the site-specific consequences of the Idaho National Engineering Laboratory sitewide actions anticipated over the next 10 years for waste and spent nuclear fuel management and environmental restoration. For programmatic spent nuclear fuel management this document analyzes alternatives of no action, decentralization, regionalization, centralization and the use of the plans that existed in 1992/1993 for the management of these materials. For the Idaho National Engineering Laboratory, this document analyzes alternatives of no action, ten-year plan, minimum and maximum and maximum treatment, storage, and disposal of US Department of Energy wastes.

  6. Department of Energy Programmatic Spent Nuclear Fuel Management and Idaho National Engineering Laboratory Environmental Restoration and Waste Management Programs Draft Environmental Impact Statement. Volume 1

    SciTech Connect (OSTI)

    Not Available

    1994-06-01

    This document analyzes at a pregrammatic level the potential environmental consequences over the next 40 years of alternatives related to the transportation, receipt, processing, and storage of spent nuclear fuel under the responsibility of the US Department of Energy. It also analyzes the site-specific consequences of the Idaho National Engineering Laboratory sitewide actions anticipated over the next 10 years for waste and spent nuclear fuel management and environmental restoration. For pregrammatic spent nuclear fuel management, this document analyzes alternatives of no action, decentralization, regionalization, centralization and the use of the plans that existed in 1992/1993 for the management of these materials. For the Idaho National Engineering Laboratory, this document analyzes alternatives of no action, ten-year plan, minimum and maximum treatment, storage, and disposal of US Department of Energy wastes.

  7. Secretary's Honor Awards: Recognizing Employee Excellence | Department...

    Office of Environmental Management (EM)

    Secretary's Honor Awards: Recognizing Employee Excellence Secretary's Honor Awards: Recognizing Employee Excellence October 5, 2012 - 2:40pm Addthis The Secretary of Energy ...

  8. Geothermal Energy Association Recognizes the National Geothermal...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Geothermal Energy Association Recognizes the National Geothermal Data System Geothermal Energy Association Recognizes the National Geothermal Data System July 29, 2014 - 8:20am...

  9. Los Alamos National Laboratory recognizes employee teams with...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    flux environment at geosynchronous orbit in response to rapid changes in geomagnetic and solar activity. Magnetic reconnection is a fundamental process in physics, the continuous...

  10. NNSA Recognizes Laboratory and Site Partners for Achievements...

    National Nuclear Security Administration (NNSA)

    increase energy and water efficiency, and reduce greenhouse gases, pollution and waste. ... Water: Y-12 Reduced Water Usage and Improved Water Quality. (Y-12 National Security ...

  11. Engineering Assessment and Certification of Integrity Lawrence Livermore National Laboratory - 321-R2 Tank System - April 2015

    SciTech Connect (OSTI)

    Abri, M.; Griffin, D.

    2015-05-28

    This Engineering Assessment and Certification of Integrity of retention tank system 321-R2 has been prepared for tank systems that store hazardous waste and have secondary containment.

  12. Los Alamos scientists recognized with breakthrough prize for neutrinos

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    research Breakthrough prize for neutrinos research Los Alamos scientists recognized with breakthrough prize for neutrinos research More than 1,300 scientists-including 35 from Los Alamos National Laboratory-were awarded the 2016 Breakthrough Prize in Fundamental Physics. November 12, 2015 Los Alamos National Laboratory sits on top of a once-remote mesa in northern New Mexico with the Jemez mountains as a backdrop to research and innovation covering multi-disciplines from bioscience,

  13. NETL Innovations Recognized with R&D 100 Awards | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Innovations Recognized with R&D 100 Awards NETL Innovations Recognized with R&D 100 Awards July 9, 2013 - 11:02am Addthis Washington, DC - Two technologies advanced by the Office of Fossil Energy's National Energy Technology Laboratory (NETL) in collaboration with strategic partners have been recognized by R&D Magazine as among the 100 most technologically significant products introduced into the commercial marketplace within the past year. This year's awards recognize NETL's

  14. Laboratory Evaluation of In Situ Chemical Oxidation for Groundwater Remediation, Test Area North, Operable Unit 1-07B, Idaho National Engineering and Environmental Laboratory, Volume Two, Appendices C, D, and E

    SciTech Connect (OSTI)

    Cline, S.R.; Denton, D.L.; Giaquinto, J.M.; McCracken, M.K.; Starr, R.C.

    1999-04-01

    These appendices support the results and discussion of the laboratory work performed to evaluate the feasibility of in situ chemical oxidation for Idaho National Environmental and Engineering Laboratory's (INEEL) Test Area North (TAN) which is contained in ORNL/TM-1371 l/Vol. This volume contains Appendices C-E. Appendix C is a compilation of all recorded data and mathematical calculations made to interpret the data. For the Task 3 and Task 4 work, the spreadsheet column definitions are included immediately before the actual spreadsheet pages and are listed as ''Sample Calculations/Column Definitions'' in the table of contents. Appendix D includes the chronological order in which the experiments were conducted and the final project costs through October 1998. Appendix E is a compilation of the monthly progress reports submitted to INEEL during the course of the project.

  15. Analytical Chemistry Laboratory | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Chemistry Laboratory provides a broad range of analytical chemistry support services to the scientific and engineering programs. AnalyticalChemistryLaboratoryfactsheet...

  16. Argonne's Laboratory computing center - 2007 annual report.

    SciTech Connect (OSTI)

    Bair, R.; Pieper, G. W.

    2008-05-28

    Argonne National Laboratory founded the Laboratory Computing Resource Center (LCRC) in the spring of 2002 to help meet pressing program needs for computational modeling, simulation, and analysis. The guiding mission is to provide critical computing resources that accelerate the development of high-performance computing expertise, applications, and computations to meet the Laboratory's challenging science and engineering missions. In September 2002 the LCRC deployed a 350-node computing cluster from Linux NetworX to address Laboratory needs for mid-range supercomputing. This cluster, named 'Jazz', achieved over a teraflop of computing power (1012 floating-point calculations per second) on standard tests, making it the Laboratory's first terascale computing system and one of the 50 fastest computers in the world at the time. Jazz was made available to early users in November 2002 while the system was undergoing development and configuration. In April 2003, Jazz was officially made available for production operation. Since then, the Jazz user community has grown steadily. By the end of fiscal year 2007, there were over 60 active projects representing a wide cross-section of Laboratory expertise, including work in biosciences, chemistry, climate, computer science, engineering applications, environmental science, geoscience, information science, materials science, mathematics, nanoscience, nuclear engineering, and physics. Most important, many projects have achieved results that would have been unobtainable without such a computing resource. The LCRC continues to foster growth in the computational science and engineering capability and quality at the Laboratory. Specific goals include expansion of the use of Jazz to new disciplines and Laboratory initiatives, teaming with Laboratory infrastructure providers to offer more scientific data management capabilities, expanding Argonne staff use of national computing facilities, and improving the scientific reach and

  17. Process Description and Operating History for the CPP-601/-640/-627 Fuel Reprocessing Complex at the Idaho National Engineering and Environmental Laboratory

    SciTech Connect (OSTI)

    E. P. Wagner

    1999-06-01

    The Fuel Reprocessing Complex (FRC) at the Idaho Nuclear Technology and Engineering Center at the Idaho National Engineering and Environmental Laboratory was used for reprocessing spent nuclear fuel from the early 1950's until 1992. The reprocessing facilities are now scheduled to be deactivated. As part of the deactivation process, three Resource Conservation and Recovery Act (RCRA) interim status units located in the complex must be closed. This document gathers the historical information necessary to provide a rational basis for the preparation of a comprehensive closure plan. Included are descriptions of process operations and the operating history of the FRC. A set of detailed tables record the service history and present status of the process vessels and transfer lines.

  18. Sandia National Laboratories Advanced Simulation and Computing (ASC) Software Quality Plan. Part 2, Mappings for the ASC software quality engineering practices. Version 1.0.

    SciTech Connect (OSTI)

    Ellis, Molly A.; Heaphy, Robert; Sturtevant, Judith E.; Hodges, Ann Louise; Boucheron, Edward A.; Drake, Richard Roy; Forsythe, Christi A.; Schofield, Joseph Richard, Jr.; Pavlakos, Constantine James; Williamson, Charles Michael; Edwards, Harold Carter

    2005-01-01

    The purpose of the Sandia National Laboratories Advanced Simulation and Computing (ASC) Software Quality Plan is to clearly identify the practices that are the basis for continually improving the quality of ASC software products. The plan defines the ASC program software quality practices and provides mappings of these practices to Sandia Corporate Requirements CPR 1.3.2 and 1.3.6 and to a Department of Energy document, 'ASCI Software Quality Engineering: Goals, Principles, and Guidelines'. This document also identifies ASC management and software project teams responsibilities in implementing the software quality practices and in assessing progress towards achieving their software quality goals.

  19. Sandia National Laboratories Advanced Simulation and Computing (ASC) software quality plan. Part 1: ASC software quality engineering practices, Version 2.0.

    SciTech Connect (OSTI)

    Sturtevant, Judith E.; Heaphy, Robert; Hodges, Ann Louise; Boucheron, Edward A.; Drake, Richard Roy; Minana, Molly A.; Hackney, Patricia; Forsythe, Christi A.; Schofield, Joseph Richard, Jr.; Pavlakos, Constantine James; Williamson, Charles Michael; Edwards, Harold Carter

    2006-09-01

    The purpose of the Sandia National Laboratories Advanced Simulation and Computing (ASC) Software Quality Plan is to clearly identify the practices that are the basis for continually improving the quality of ASC software products. The plan defines the ASC program software quality practices and provides mappings of these practices to Sandia Corporate Requirements CPR 1.3.2 and 1.3.6 and to a Department of Energy document, ASCI Software Quality Engineering: Goals, Principles, and Guidelines. This document also identifies ASC management and software project teams responsibilities in implementing the software quality practices and in assessing progress towards achieving their software quality goals.

  20. Sandia National Laboratories Advanced Simulation and Computing (ASC) software quality plan part 2 mappings for the ASC software quality engineering practices, version 2.0.

    SciTech Connect (OSTI)

    Heaphy, Robert; Sturtevant, Judith E.; Hodges, Ann Louise; Boucheron, Edward A.; Drake, Richard Roy; Minana, Molly A.; Hackney, Patricia; Forsythe, Christi A.; Schofield, Joseph Richard, Jr.; Pavlakos, Constantine James; Williamson, Charles Michael; Edwards, Harold Carter

    2006-09-01

    The purpose of the Sandia National Laboratories Advanced Simulation and Computing (ASC) Software Quality Plan is to clearly identify the practices that are the basis for continually improving the quality of ASC software products. The plan defines the ASC program software quality practices and provides mappings of these practices to Sandia Corporate Requirements CPR001.3.2 and CPR001.3.6 and to a Department of Energy document, ''ASCI Software Quality Engineering: Goals, Principles, and Guidelines''. This document also identifies ASC management and software project teams' responsibilities in implementing the software quality practices and in assessing progress towards achieving their software quality goals.

  1. Sustainability Awards Recognize Energy Department Employees Who...

    Broader source: Energy.gov (indexed) [DOE]

    ... Laboratory, the Pantex Plant, Princeton Plasma Physics Laboratory, Sandia National ... The Princeton Plasma Physics Laboratory also won for decreasing its fuel consumption. ...

  2. NREL Scientists and Engineers Recognized for Top Innovations...

    Office of Environmental Management (EM)

    ... Woods' expertise is in numerical and experimental heat and mass transfer, membrane HVAC processes, and liquid desiccant air conditioning. In 2012, he received an R&D 100 Award for ...

  3. Engineering Students and Alumni Recognized for Distinguished Achievement in

    Energy Savers [EERE]

    Across U.S. Industry | Department of Energy Energy-Intensive Processes Portfolio: Addressing Key Energy Challenges Across U.S. Industry Energy-Intensive Processes Portfolio: Addressing Key Energy Challenges Across U.S. Industry eip_report_pg9.pdf (2.52 MB) More Documents & Publications ITP Energy Intensive Processes: Energy-Intensive Processes Portfolio: Addressing Key Energy Challenges Across U.S. Industry Energy Technology Solutions Energy Technology Solutions: Public-Private

  4. NREL Scientists and Engineers Recognized for Top Innovations...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ... Woods' expertise is in numerical and experimental heat and mass transfer, membrane HVAC ... direct contact condenser (ADCC) technology for geothermal and thermoelectric applications. ...

  5. Sandians Recognized in Environmental Science & Technology's Best Paper

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Competition Recognized in Environmental Science & Technology's Best Paper Competition - Sandia Energy Energy Search Icon Sandia Home Locations Contact Us Employee Locator Energy & Climate Secure & Sustainable Energy Future Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 Geothermal Natural Gas Safety, Security & Resilience of the Energy Infrastructure Energy Storage Nuclear Power & Engineering Grid Modernization Battery

  6. Sandia National Laboratories Advanced Simulation and Computing (ASC) software quality plan. Part 1 : ASC software quality engineering practices version 1.0.

    SciTech Connect (OSTI)

    Minana, Molly A.; Sturtevant, Judith E.; Heaphy, Robert; Hodges, Ann Louise; Boucheron, Edward A.; Drake, Richard Roy; Forsythe, Christi A.; Schofield, Joseph Richard, Jr.; Pavlakos, Constantine James; Williamson, Charles Michael; Edwards, Harold Carter

    2005-01-01

    The purpose of the Sandia National Laboratories (SNL) Advanced Simulation and Computing (ASC) Software Quality Plan is to clearly identify the practices that are the basis for continually improving the quality of ASC software products. Quality is defined in DOE/AL Quality Criteria (QC-1) as conformance to customer requirements and expectations. This quality plan defines the ASC program software quality practices and provides mappings of these practices to the SNL Corporate Process Requirements (CPR 1.3.2 and CPR 1.3.6) and the Department of Energy (DOE) document, ASCI Software Quality Engineering: Goals, Principles, and Guidelines (GP&G). This quality plan identifies ASC management and software project teams' responsibilities for cost-effective software engineering quality practices. The SNL ASC Software Quality Plan establishes the signatories commitment to improving software products by applying cost-effective software engineering quality practices. This document explains the project teams opportunities for tailoring and implementing the practices; enumerates the practices that compose the development of SNL ASC's software products; and includes a sample assessment checklist that was developed based upon the practices in this document.

  7. jwang | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    jwang Ames Laboratory Profile Jigang Wang Assoc Prof Division of Materials Science & Engineering B15 Spedding Phone Number: 515-294-2964 Email Address: jgwang@iastate.edu Ames Laboratory Research Projects: Metamaterials Education: Ph.D. Electrical Engineering, Rice University, Houston, TX, 2005 M.S. Electrical Engineering, Rice University, Houston, TX, 2002 B.S. Physics, Jilin University, Changchun, P. R. China, 2000 Professional Appointments: Associate Scientist, Ames Laboratory, Iowa State

  8. Students Recognized for Creativity During Energy Education Event - News

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Releases | NREL Students Recognized for Creativity During Energy Education Event May 10, 2003 Golden, CO. - Tapping the power of the sun was the theme of today's Junior Solar Sprint Solarbrate event hosted by the U.S. Department of Energy's National Renewable Energy Laboratory (NREL). The 13th Annual Junior Solar Sprint gave students the chance to design, build and race vehicles whose only energy source was sunlight. Each team started with a motor and a silicon solar cell, which converts

  9. Students Recognized for Creativity and Skill in Energy Education Event -

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    News Releases | NREL Students Recognized for Creativity and Skill in Energy Education Event May 22, 2010 Fifty-four teams from 18 Colorado schools participated in today's Junior Solar Sprint competitions hosted by the U.S. Department of Energy's National Renewable Energy Laboratory (NREL). Teams used a solar cell and motor to design and build solar powered vehicles. Trophies for the fastest solar standard powered model cars were given to Colorado students from Drake Middle School (Arvada),

  10. Students Recognized for Skill and Creativity in Energy Education Event -

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    News Releases | NREL Students Recognized for Skill and Creativity in Energy Education Event Junior Solar Sprint Challenges Youth May 16, 2006 Golden, Colo. - Fifty-seven teams from 22 Colorado schools participated in today's Junior Solar Sprint and Hydrogen Fuel Cell car competitions hosted by the U.S. Department of Energy's National Renewable Energy Laboratory (NREL). Teams used either a solar cell and motor or a fuel cell and motor to design and build solar or hydrogen powered vehicles.