Powered by Deep Web Technologies
Note: This page contains sample records for the topic "rechargeable lithium-ion batteries" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

Electrode Materials for Rechargeable Lithium-Ion Batteries: A...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Electrode Materials for Rechargeable Lithium-Ion Batteries: A New Synthetic Approach Technology available for licensing: New high-energy cathode materials for use in rechargeable...

2

Microstructural Modeling and Design of Rechargeable Lithium-Ion Batteries  

E-Print Network [OSTI]

Microstructural Modeling and Design of Rechargeable Lithium-Ion Batteries R. Edwin Garci´a,a, *,z microstructure. Experi- mental measurements are reproduced. Early models for lithium-ion batteries were developed Institute of Technology, Cambridge, Massachusetts 01239-4307, USA The properties of rechargeable lithium

García, R. Edwin

3

Amorphous Metallic Glass as New High Power and Energy Density Anodes For Lithium Ion Rechargeable Batteries  

E-Print Network [OSTI]

We have investigated the use of aluminum based amorphous metallic glass as the anode in lithium ion rechargeable batteries. Amorphous metallic glasses have no long-range ordered microstructure; the atoms are less closely ...

Meng, Shirley Y.

4

High-Capacity Micrometer-Sized Li2S Particles as Cathode Materials for Advanced Rechargeable Lithium-Ion Batteries  

E-Print Network [OSTI]

Lithium-Ion Batteries Yuan Yang, Guangyuan Zheng, Sumohan Misra,§ Johanna Nelson,§ Michael F. Toney for lithium metal-free rechargeable batteries. It has a theoretical capacity of 1166 mAh/g, which is nearly 1 as the cathode material for rechargeable lithium-ion batteries with high specific energy. INTRODUCTION

Cui, Yi

5

STUDIES ON TWO CLASSES OF POSITIVE ELECTRODE MATERIALS FOR LITHIUM-ION BATTERIES  

E-Print Network [OSTI]

facing rechargeable lithium batteries. Nature, 2001. 414(of rechargeable lithium batteries, I. Lithium manganeseof rechargeable lithium batteries, II. Lithium ion

Wilcox, James D.

2010-01-01T23:59:59.000Z

6

Finding Room for Improvement in Transition Metal Oxides Cathodes for Lithium-ion Batteries  

E-Print Network [OSTI]

Oxides Cathodes for Lithium-ion Batteries Kinson C. Kam andusing rechargeable lithium-ion batteries has become an

Kam, Kinson

2012-01-01T23:59:59.000Z

7

Layered cathode materials for lithium ion rechargeable batteries  

DOE Patents [OSTI]

A number of materials with the composition Li.sub.1+xNi.sub..alpha.Mn.sub..beta.Co.sub..gamma.M'.sub..delta.O.sub.2-- zF.sub.z (M'=Mg,Zn,Al,Ga,B,Zr,Ti) for use with rechargeable batteries, wherein x is between about 0 and 0.3, .alpha. is between about 0.2 and 0.6, .beta. is between about 0.2 and 0.6, .gamma. is between about 0 and 0.3, .delta. is between about 0 and 0.15, and z is between about 0 and 0.2. Adding the above metal and fluorine dopants affects capacity, impedance, and stability of the layered oxide structure during electrochemical cycling.

Kang, Sun-Ho (Naperville, IL); Amine, Khalil (Downers Grove, IL)

2007-04-17T23:59:59.000Z

8

Coated Silicon Nanowires as Anodes in Lithium Ion Batteries  

E-Print Network [OSTI]

for rechargeable lithium batteries. J. Power Sources 139,for advanced lithium-ion batteries. J. Power Sources 174,nano-anodes for lithium rechargeable batteries. Angew. Chem.

Watts, David James

2014-01-01T23:59:59.000Z

9

Electrochemical Properties of Nanostructured Al1-xCux Alloys as Anode Materials for Rechargeable Lithium-Ion Batteries  

E-Print Network [OSTI]

controlling these two properties is the mag- nitude of interaction between the active and the inactiveElectrochemical Properties of Nanostructured Al1-xCux Alloys as Anode Materials for Rechargeable Lithium-Ion Batteries C. Y. Wang,a, * Y. S. Meng,b, * G. Ceder,c, *,z and Y. Lia,d,z a Advanced Materials

Ceder, Gerbrand

10

Advances in lithium-ion batteries  

E-Print Network [OSTI]

Advances in Lithium-Ion Batteries Edited by Walter A. vanpuzzling mysteries of lithium ion batteries. The book beginssuch importance to lithium ion batteries one is amazed that

Kerr, John B.

2003-01-01T23:59:59.000Z

11

Phase transformations and microstructural design of lithiated metal anodes for lithium-ion rechargeable batteries  

E-Print Network [OSTI]

There has been great recent interest in lithium storage at the anode of Li-ion rechargeable battery by alloying with metals such as Al, Sn, and Sb, or metalloids such as Si, as an alternative to the intercalation of graphite. ...

Limthongkul, Pimpa, 1975-

2002-01-01T23:59:59.000Z

12

Structural micro-porous carbon anode for rechargeable lithium-ion batteries  

DOE Patents [OSTI]

A secondary battery having a rechargeable lithium-containing anode, a cathode and a separator positioned between the cathode and anode with an organic electrolyte solution absorbed therein is provided. The anode comprises three-dimensional microporous carbon structures synthesized from polymeric high internal phase emulsions or materials derived from this emulsion source, i.e., granules, powders, etc.

Delnick, Frank M. (Albuquerque, NM); Even, Jr., William R. (Livermore, CA); Sylwester, Alan P. (Washington, DC); Wang, James C. F. (Livermore, CA); Zifer, Thomas (Manteca, CA)

1995-01-01T23:59:59.000Z

13

Structural micro-porous carbon anode for rechargeable lithium-ion batteries  

DOE Patents [OSTI]

A secondary battery having a rechargeable lithium-containing anode, a cathode and a separator positioned between the cathode and anode with an organic electrolyte solution absorbed therein is provided. The anode comprises three-dimensional microporous carbon structures synthesized from polymeric high internal phase emulsions or materials derived from this emulsion source, i.e., granules, powders, etc. 6 figs.

Delnick, F.M.; Even, W.R. Jr.; Sylwester, A.P.; Wang, J.C.F.; Zifer, T.

1995-06-20T23:59:59.000Z

14

Rechargeable lithium-ion cell  

DOE Patents [OSTI]

The invention relates to a rechargeable lithium-ion cell, a method for its manufacture, and its application. The cell is distinguished by the fact that it has a metallic housing (21) which is electrically insulated internally by two half shells (15), which cover electrode plates (8) and main output tabs (7) and are composed of a non-conductive material, where the metallic housing is electrically insulated externally by means of an insulation coating. The cell also has a bursting membrane (4) which, in its normal position, is located above the electrolyte level of the cell (1). In addition, the cell has a twisting protection (6) which extends over the entire surface of the cover (2) and provides centering and assembly functions for the electrode package, which comprises the electrode plates (8).

Bechtold, Dieter (Bad Vilbel, DE); Bartke, Dietrich (Kelkheim, DE); Kramer, Peter (Konigstein, DE); Kretzschmar, Reiner (Kelkheim, DE); Vollbert, Jurgen (Hattersheim, DE)

1999-01-01T23:59:59.000Z

15

LITHIUM-ION BATTERY CHARGING REPORT G. MICHAEL BARRAMEDA  

E-Print Network [OSTI]

to handle the Powerizer Li-Ion rechargeable Battery Packs. It will bring reveal battery specificationsLITHIUM-ION BATTERY CHARGING REPORT G. MICHAEL BARRAMEDA 1. Abstract This report introduces how the amount of "de-Rating" the batteries have experienced. 2. Safety Guidelines · Must put battery

Ruina, Andy L.

16

The development of low cost LiFePO4-based high power lithium-ion batteries  

E-Print Network [OSTI]

study of rechargeable lithium batteries for application inin consumer-size lithium batteries, such as the synthetic4 -BASED HIGH POWER LITHIUM-ION BATTERIES Joongpyo Shim,

Shim, Joongpyo; Sierra, Azucena; Striebel, Kathryn A.

2003-01-01T23:59:59.000Z

17

Novel Electrolytes for Lithium Ion Batteries  

SciTech Connect (OSTI)

We have been investigating three primary areas related to lithium ion battery electrolytes. First, we have been investigating the thermal stability of novel electrolytes for lithium ion batteries, in particular borate based salts. Second, we have been investigating novel additives to improve the calendar life of lithium ion batteries. Third, we have been investigating the thermal decomposition reactions of electrolytes for lithium-oxygen batteries.

Lucht, Brett L

2014-12-12T23:59:59.000Z

18

EV Everywhere Batteries Workshop - Next Generation Lithium Ion...  

Energy Savers [EERE]

Next Generation Lithium Ion Batteries Breakout Session Report EV Everywhere Batteries Workshop - Next Generation Lithium Ion Batteries Breakout Session Report Breakout session...

19

Electrolytes for lithium ion batteries  

DOE Patents [OSTI]

A family of electrolytes for use in a lithium ion battery. The genus of electrolytes includes ketone-based solvents, such as, 2,4-dimethyl-3-pentanone; 3,3-dimethyl 2-butanone(pinacolone) and 2-butanone. These solvents can be used in combination with non-Lewis Acid salts, such as Li.sub.2[B.sub.12F.sub.12] and LiBOB.

Vaughey, John; Jansen, Andrew N.; Dees, Dennis W.

2014-08-05T23:59:59.000Z

20

Synthesis of Na1.25V3O8 Nanobelts with Excellent Long-Term Stability for Rechargeable Lithium-Ion Batteries  

E-Print Network [OSTI]

by the calcination temperatures. As cathode materials for lithium ion batteries, the Na1.25V3O8 nanobelts synthesized.25V3O8 nanobelts are promising cathode materials for secondary lithium batteries. KEYWORDS: sodium vanadium oxide, nanobelts, sol-gel, lithium-ion batteries, long-term stability 1. INTRODUCTION Because

Cao, Guozhong

Note: This page contains sample records for the topic "rechargeable lithium-ion batteries" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

A Better Anode Design to Improve Lithium-Ion Batteries  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

A Better Anode Design to Improve Lithium-Ion Batteries A Better Anode Design to Improve Lithium-Ion Batteries Print Friday, 23 March 2012 13:53 Lithium-ion batteries are in smart...

22

Model Reformulation and Design of Lithium-ion Batteries  

E-Print Network [OSTI]

987 94 Model Reformulation and Design of Lithium-ion Batteries V.R. Subramanian1,*, V. Boovaragavan Prediction......................................997 Optimal Design of Lithium-ion Batteries Lithium-ion batteries, product design, Bayesian estimation, Markov Chain Monte Carlo simulation

Subramanian, Venkat

23

Secretary Chu Celebrates Expansion of Lithium-Ion Battery Production...  

Office of Environmental Management (EM)

Celebrates Expansion of Lithium-Ion Battery Production in North Carolina Secretary Chu Celebrates Expansion of Lithium-Ion Battery Production in North Carolina July 26, 2011 -...

24

Fact Sheet: Lithium-Ion Batteries for Stationary Energy Storage...  

Energy Savers [EERE]

Fact Sheet: Lithium-Ion Batteries for Stationary Energy Storage (October 2012) Fact Sheet: Lithium-Ion Batteries for Stationary Energy Storage (October 2012) DOE's Energy Storage...

25

Kinetic Monte Carlo Simulation of Surface Heterogeneity in Graphite Anodes for Lithium-Ion Batteries: Passive Layer  

E-Print Network [OSTI]

, but was lower at later cycles. The temperature that optimizes the active surface in a lithium-ion battery. Published February 14, 2011. Rechargeable lithium-ion batteries have been extensively used in mobile-discharge rate. The lithium-ion battery is also promising for electric (plug-in and hybrid) vehicles

Subramanian, Venkat

26

Cyclic plasticity and shakedown in high-capacity electrodes of lithium-ion batteries Laurence Brassart, Kejie Zhao, Zhigang Suo  

E-Print Network [OSTI]

Cyclic plasticity and shakedown in high-capacity electrodes of lithium-ion batteries Laurence for lithium-ion batteries. Upon absorbing a large amount of lithium, the electrode swells greatly rights reserved. 1. Introduction Rechargeable lithium-ion batteries are energy-storage systems of choice

Suo, Zhigang

27

Optimum Charging Profile for Lithium-ion Batteries to Maximize Energy Storage and Utilization  

E-Print Network [OSTI]

Optimum Charging Profile for Lithium-ion Batteries to Maximize Energy Storage and Utilization Ravi applications, the ability to recharge quickly and efficiently is a critical requirement for a storage battery The optimal profile of charging current for a lithium-ion battery is estimated using dynamic optimization

Subramanian, Venkat

28

Side Reactions in Lithium-Ion Batteries  

E-Print Network [OSTI]

for rechargeable lithium batteries. Advanced Materials 10,Protection of Secondary Lithium Batteries. Journal of thein Rechargeable Lithium Batteries for Overcharge Protection.

Tang, Maureen Han-Mei

2012-01-01T23:59:59.000Z

29

EV Everywhere Batteries Workshop - Beyond Lithium Ion Breakout...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Beyond Lithium Ion Breakout Session Report EV Everywhere Batteries Workshop - Beyond Lithium Ion Breakout Session Report Breakout session presentation for the EV Everywhere Grand...

30

Six-Membered-Ring Malonatoborate-Based Lithium Salts as Electrolytes for Lithium Ion Batteries  

E-Print Network [OSTI]

References 1. Lithium Ion Batteries: Fundamentals andProgram for Lithium Ion Batteries, U.S. Department ofas Electrolytes for Lithium Ion Batteries Li Yang a , Hanjun

Yang, Li

2014-01-01T23:59:59.000Z

31

Investigation on Aluminum-Based Amorphous Metallic Glass as New Anode Material in Lithium Ion Batteries  

E-Print Network [OSTI]

Aluminum based amorphous metallic glass powders were produced and tested as the anode materials for the lithium ion rechargeable batteries. Ground Al??Ni₁?La₁? was found to have a ...

Meng, Shirley Y.

32

Mechanical Properties of Lithium-Ion Battery Separator Materials  

E-Print Network [OSTI]

Mechanical Properties of Lithium-Ion Battery Separator Materials Patrick Sinko B.S. Materials Science and Engineering 2013, Virginia Tech John Cannarella PhD. Candidate Mechanical and Aerospace and motivation ­ Why study lithium-ion batteries? ­ Lithium-ion battery fundamentals ­ Why study the mechanical

Petta, Jason

33

Anode materials for lithium-ion batteries  

DOE Patents [OSTI]

An anode material for lithium-ion batteries is provided that comprises an elongated core structure capable of forming an alloy with lithium; and a plurality of nanostructures placed on a surface of the core structure, with each nanostructure being capable of forming an alloy with lithium and spaced at a predetermined distance from adjacent nanostructures.

Sunkara, Mahendra Kumar; Meduri, Praveen; Sumanasekera, Gamini

2014-12-30T23:59:59.000Z

34

Lithium Ion Battery Performance of Silicon Nanowires With Carbon...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Ion Battery Performance of Silicon Nanowires With Carbon Skin . Lithium Ion Battery Performance of Silicon Nanowires With Carbon Skin . Abstract: Silicon (Si) nanomaterials have...

35

Lithium-ion batteries having conformal solid electrolyte layers  

DOE Patents [OSTI]

Hybrid solid-liquid electrolyte lithium-ion battery devices are disclosed. Certain devices comprise anodes and cathodes conformally coated with an electron insulating and lithium ion conductive solid electrolyte layer.

Kim, Gi-Heon; Jung, Yoon Seok

2014-05-27T23:59:59.000Z

36

High-discharge-rate lithium ion battery  

SciTech Connect (OSTI)

The present invention provides for a lithium ion battery and process for creating such, comprising higher binder to carbon conductor ratios than presently used in the industry. The battery is characterized by much lower interfacial resistances at the anode and cathode as a result of initially mixing a carbon conductor with a binder, then with the active material. Further improvements in cycleability can also be realized by first mixing the carbon conductor with the active material first and then adding the binder.

Liu, Gao; Battaglia, Vincent S; Zheng, Honghe

2014-04-22T23:59:59.000Z

37

Performance Characteristics of Lithium-ion Batteries of Various Chemistries for Plug-in Hybrid Vehicles  

E-Print Network [OSTI]

the manufacture of lithium batteries (References 2 and 3).Characteristics of Lithium-ion Batteries of VariousAdvisor utilizing lithium-ion batteries of the different

Burke, Andrew; Miller, Marshall

2009-01-01T23:59:59.000Z

38

Surface reconstruction and chemical evolution of stoichiometric layered cathode materials for lithium-ion batteries  

E-Print Network [OSTI]

Layered Oxides for Lithium Batteries. Nano Lett. 13, 3857O 2 Cathode Material in Lithium Ion Batteries. Adv. Energydecomposition in lithium ion batteries: first-principles

Lin, Feng

2014-01-01T23:59:59.000Z

39

Flexographically Printed Rechargeable Zinc-based Battery for Grid Energy Storage  

E-Print Network [OSTI]

the rechargeable battery industry. Li-ion batteries rapidlyLi-ion chemistry. For grid storage applications, several other rechargeable batteryLi-ion batteries, because cadmium is highly toxic. In 1991, lithium-ion battery

Wang, Zuoqian

2013-01-01T23:59:59.000Z

40

Advanced Cathode Material Development for PHEV Lithium Ion Batteries...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

More Documents & Publications Advanced Cathode Material Development for PHEV Lithium Ion Batteries High Energy Novel Cathode Alloy Automotive Cell Develop & evaluate...

Note: This page contains sample records for the topic "rechargeable lithium-ion batteries" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

Correlation of Lithium-Ion Battery Performance with Structural...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Correlation of Lithium-Ion Battery Performance with Structural and Chemical Transformations Wednesday, April 30, 2014 Chemical evolution and structural transformations in a...

42

Advanced Cathode Material Development for PHEV Lithium Ion Batteries...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

More Documents & Publications Advanced Cathode Material Development for PHEV Lithium Ion Batteries Vehicle Technologies Office Merit Review 2014: High Energy Novel...

43

Lower Cost Lithium Ion Batteries From Aluminum Substituted Cathode...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Lower Cost Lithium Ion Batteries From Aluminum Substituted Cathode Materials Lawrence Berkeley National Laboratory Contact LBL About This Technology Technology Marketing...

44

Development of Electrolytes for Lithium-ion Batteries  

Broader source: Energy.gov (indexed) [DOE]

Battaglia & J. Kerr (LBNL) * M. Payne (Novolyte) * F. Puglia & B. Ravdel (Yardney) * G. Smith & O. Borodin (U. Utah) 3 3 Develop novel electrolytes for lithium ion batteries that...

45

Characterization of Electrode Materials for Lithium Ion and Sodium Ion Batteries using Synchrotron Radiation Techniques  

E-Print Network [OSTI]

Alternatives to Current Lithium-Ion Batteries. Adv. EnergyMaterials for Lithium Ion Batteries. Materials Matters. 7 4.to the Study of Lithium Ion Batteries. J. Solid State

Doeff, Marca M.

2013-01-01T23:59:59.000Z

46

Failure modes in high-power lithium-ion batteries for use in hybrid electric vehicles  

E-Print Network [OSTI]

MODES IN HIGH-POWER LITHIUM-ION BATTERIES FOR USE IN HYBRIDof high-power lithium-ion batteries for hybrid electricthe development of lithium-ion batteries for hybrid electric

2001-01-01T23:59:59.000Z

47

An Analytical Model for Predicting the Remaining Battery Capacity of Lithium-Ion Batteries  

E-Print Network [OSTI]

An Analytical Model for Predicting the Remaining Battery Capacity of Lithium-Ion Batteries Peng cycle-life tends to shrink significantly. The capacities of commercial lithium-ion batteries fade by 10 prediction model to estimate the remaining capacity of a Lithium-Ion battery. The proposed analytical model

Pedram, Massoud

48

Intercalation dynamics in lithium-ion batteries  

E-Print Network [OSTI]

A new continuum model has been proposed by Singh, Ceder, and Bazant for the ion intercalation dynamics in a single crystal of rechargeable-battery electrode materials. It is based on the Cahn-Hilliard equation coupled to ...

Burch, Damian

2009-01-01T23:59:59.000Z

49

Three-Dimensional Lithium-Ion Battery Model (Presentation)  

SciTech Connect (OSTI)

Nonuniform battery physics can cause unexpected performance and life degradations in lithium-ion batteries; a three-dimensional cell performance model was developed by integrating an electrode-scale submodel using a multiscale modeling scheme.

Kim, G. H.; Smith, K.

2008-05-01T23:59:59.000Z

50

Lithium-ion battery modeling using non-equilibrium thermodynamics  

E-Print Network [OSTI]

The focus of this thesis work is the application of non-equilibrium thermodynamics in lithium-ion battery modeling. As the demand for higher power and longer lasting batteries increases, the search for materials suitable ...

Ferguson, Todd R. (Todd Richard)

2014-01-01T23:59:59.000Z

51

High power rechargeable batteries Paul V. Braun  

E-Print Network [OSTI]

High power rechargeable batteries Paul V. Braun , Jiung Cho, James H. Pikul, William P. King storage Secondary batteries High energy density High power density Lithium ion battery 3D battery electrodes a b s t r a c t Energy and power density are the key figures of merit for most electrochemical

Braun, Paul

52

Lithium-ion batteries with intrinsic pulse overcharge protection  

DOE Patents [OSTI]

The present invention relates in general to the field of lithium rechargeable batteries, and more particularly relates to the positive electrode design of lithium-ion batteries with improved high-rate pulse overcharge protection. Thus the present invention provides electrochemical devices containing a cathode comprising at least one primary positive material and at least one secondary positive material; an anode; and a non-aqueous electrolyte comprising a redox shuttle additive; wherein the redox potential of the redox shuttle additive is greater than the redox potential of the primary positive material; the redox potential of the redox shuttle additive is lower than the redox potential of the secondary positive material; and the redox shuttle additive is stable at least up to the redox potential of the secondary positive material.

Chen, Zonghai; Amine, Khalil

2013-02-05T23:59:59.000Z

53

Silicon-tin oxynitride glassy composition and use as anode for lithium-ion battery  

DOE Patents [OSTI]

Disclosed are silicon-tin oxynitride glassy compositions which are especially useful in the construction of anode material for thin-film electrochemical devices including rechargeable lithium-ion batteries, electrochromic mirrors, electrochromic windows, and actuators. Additional applications of silicon-tin oxynitride glassy compositions include optical fibers and optical waveguides.

Neudecker, Bernd J. (Knoxville, TN); Bates, John B. (Oak Ridge, TN)

2001-01-01T23:59:59.000Z

54

Synthesis, Characterization and Performance of Cathodes for Lithium Ion Batteries  

E-Print Network [OSTI]

0 lithium batteries. J. Electrochem. Soc.for rechargeable lithium batteries. Advanced Materials 1998,for rechargeable lithium batteries. J. Electrochem. Soc.

Zhu, Jianxin

2014-01-01T23:59:59.000Z

55

Fail Safe Design for Large Capacity Lithium-ion Batteries  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Fail Safe Design for Large Capacity Lithium-ion Batteries NREL Commercialization & Tech Transfer Webinar March 27, 2011 Gi-Heon Kim gi-heon.kim@nrel.gov John Ireland, Kyu-Jin Lee,...

56

Thermo-mechanical Behavior of Lithium-ion Battery Electrodes  

E-Print Network [OSTI]

Developing electric vehicles is widely considered as a direct approach to resolve the energy and environmental challenges faced by the human race. As one of the most promising power solutions to electric cars, the lithium ion battery is expected...

An, Kai

2013-11-25T23:59:59.000Z

57

Understanding Why Silicon Anodes of Lithium-Ion Batteries Are...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Understanding Why Silicon Anodes of Lithium-Ion Batteries Are Fast to Discharge but Slow to Charge December 02, 2014 Measured and calculated rate-performance of a Si thin-film (70...

58

Electrolytes for Use in High Energy Lithium-Ion Batteries with...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

for Use in High Energy Lithium-Ion Batteries with Wide Operating Temperature Range Electrolytes for Use in High Energy Lithium-Ion Batteries with Wide Operating Temperature Range...

59

Post-Test Analysis of Lithium-Ion Battery Materials at Argonne...  

Broader source: Energy.gov (indexed) [DOE]

Test Analysis of Lithium-Ion Battery Materials at Argonne National Laboratory Post-Test Analysis of Lithium-Ion Battery Materials at Argonne National Laboratory 2013 DOE Hydrogen...

60

Modeling and Simulation of Lithium-Ion Batteries from a Systems Engineering Perspective  

E-Print Network [OSTI]

The lithium-ion battery is an ideal candidate for a wide variety of applications due to its high energy/power density and operating voltage. Some limitations of existing lithium-ion battery technology include underutilization, ...

Braatz, Richard D.

Note: This page contains sample records for the topic "rechargeable lithium-ion batteries" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

Modeling temperature distribution in cylindrical lithium ion batteries for use in electric vehicle cooling system design  

E-Print Network [OSTI]

Recent advancements in lithium ion battery technology have made BEV's a more feasible alternative. However, some safety concerns still exist. While the energy density of lithium ion batteries has all but made them the ...

Jasinski, Samuel Anthony

2008-01-01T23:59:59.000Z

62

Design Principles for the Use of Electroactive Polymers for Overcharge Protection of Lithium-Ion Batteries  

E-Print Network [OSTI]

Modeling of Lithium Batteries. Kluwer Academic Publishers,of interest for lithium batteries. Therefore, we can use y =and J. Newman, Advances in Lithium-Ion Batteries, ch.

Thomas-Alyea, Karen E.; Newman, John; Chen, Guoying; Richardson, Thomas J.

2005-01-01T23:59:59.000Z

63

Advanced Electrolyte Additives for PHEV/EV Lithium-ion Battery...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

More Documents & Publications Advanced Electrolyte Additives for PHEVEV Lithium-ion Battery Development of Advanced Electrolytes and Electrolyte Additives...

64

E-Print Network 3.0 - aqueous lithium-ion battery Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Summary: -board identification and diagnostics for Lithium Ion batteries. The electrochemical, electrical, and transport... and cost Target, Current technology status...

65

Design of a Lithium-ion Battery Pack for PHEV Using a Hybrid Optimization Method  

E-Print Network [OSTI]

Design of a Lithium-ion Battery Pack for PHEV Using a Hybrid Optimization Method Nansi Xue1 Abstract This paper outlines a method for optimizing the design of a lithium-ion battery pack for hy- brid, volume or material cost. Keywords: Lithium-ion, Optimization, Hybrid vehicle, Battery pack design

Papalambros, Panos

66

Porous Doped Silicon Nanowires for Lithium Ion Battery Anode with Long Cycle Life  

E-Print Network [OSTI]

in energy storage has stimulated significant interest in lithium ion battery research. The lithium ion battery is one of the most promising systems which is efficient in delivering energy, light in weightPorous Doped Silicon Nanowires for Lithium Ion Battery Anode with Long Cycle Life Mingyuan Ge

Zhou, Chongwu

67

Cycle Life Modeling of Lithium-Ion Batteries Gang Ning* and Branko N. Popov**,z  

E-Print Network [OSTI]

Cycle Life Modeling of Lithium-Ion Batteries Gang Ning* and Branko N. Popov**,z Department and Newman4 made a first attempt to model the parasitic reactions in lithium-ion batteries by incorporating a solvent oxidation into a lithium-ion battery model. Spotnitz5 developed polynomial expressions

Popov, Branko N.

68

Performance Characteristics of Cathode Materials for Lithium-Ion Batteries: A Monte Carlo Strategy  

E-Print Network [OSTI]

Performance Characteristics of Cathode Materials for Lithium-Ion Batteries: A Monte Carlo Strategy to study the performance of cathode materials in lithium-ion batteries. The methodology takes into account. Published September 26, 2008. Lithium-ion batteries are state-of-the-art power sources1 for por- table

Subramanian, Venkat

69

AN OPEN-CIRCUIT-VOLTAGE MODEL OF LITHIUM-ION BATTERIES FOR EFFECTIVE INCREMENTAL CAPACITY ANALYSIS  

E-Print Network [OSTI]

AN OPEN-CIRCUIT-VOLTAGE MODEL OF LITHIUM-ION BATTERIES FOR EFFECTIVE INCREMENTAL CAPACITY ANALYSIS electrochemical properties and aging status. INTRODUCTION With the widespread use of lithium-ion batteries the com- plex battery physical behavior during the lithium-ion intercalac- tion/deintercalation process

Peng, Huei

70

Abstract--This paper describes experimental results aiming at analyzing lithium-ion batteries performances  

E-Print Network [OSTI]

Abstract--This paper describes experimental results aiming at analyzing lithium-ion batteries (SOH) of cells. Index Terms--Lithium-ion batteries, Aging, EIS, State Of Charge, State Of Health, Fuzzy Logic System. I. INTRODUCTION Lithium ion secondary batteries are now being used in wide applications

Boyer, Edmond

71

Stress generation during lithiation of high-capacity electrode particles in lithium ion batteries  

E-Print Network [OSTI]

Stress generation during lithiation of high-capacity electrode particles in lithium ion batteries S in controlling stress generation in high-capacity electrodes for lithium ion batteries. ? 2013 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved. Keywords: Lithium ion battery; Lithiation

Zhu, Ting

72

Arrays of Sealed Silicon Nanotubes As Anodes for Lithium Ion Batteries  

E-Print Network [OSTI]

Arrays of Sealed Silicon Nanotubes As Anodes for Lithium Ion Batteries Taeseup Song, Jianliang Xia ABSTRACT Silicon is a promising candidate for electrodes in lithium ion batteries due to its large reversible capacity and long-term cycle stability. KEYWORDS Lithium ion battery, silicon, nanotubes

Rogers, John A.

73

Kinetics of Initial Lithiation of Crystalline Silicon Electrodes of Lithium-Ion Batteries  

E-Print Network [OSTI]

Kinetics of Initial Lithiation of Crystalline Silicon Electrodes of Lithium-Ion Batteries Matt phase. KEYWORDS: Lithium-ion batteries, silicon, kinetics, plasticity Lithium-ion batteries already at the electrolyte/lithiated silicon interface, diffusion of lithium through the lithiated phase, and the chemical

74

Large Plastic Deformation in High-Capacity Lithium-Ion Batteries Caused by Charge and Discharge  

E-Print Network [OSTI]

Large Plastic Deformation in High-Capacity Lithium-Ion Batteries Caused by Charge and Discharge, Massachusetts 02138 Evidence has accumulated recently that a high-capacity elec- trode of a lithium-ion battery in the particle is high, possibly leading to fracture and cavitation. I. Introduction LITHIUM-ION batteries

Suo, Zhigang

75

Parameter Estimation and Capacity Fade Analysis of Lithium-Ion Batteries Using Reformulated Models  

E-Print Network [OSTI]

Parameter Estimation and Capacity Fade Analysis of Lithium-Ion Batteries Using Reformulated Models and characterize capacity fade in lithium-ion batteries. As a comple- ment to approaches to mathematically model been made in developing lithium-ion battery models that incor- porate transport phenomena

Subramanian, Venkat

76

Improved layered mixed transition metal oxides for Li-ion batteries  

E-Print Network [OSTI]

for rechargeable lithium batteries," Science 311(5763), 977-^ for Advanced Lithium-Ion Batteries," J. Electrochem. Soc.02 for lithium-ion batteries," Chem. Lett. , [3] Yabuuchi,

Doeff, Marca M.

2010-01-01T23:59:59.000Z

77

Non-aqueous electrolyte for lithium-ion battery  

DOE Patents [OSTI]

The present technology relates to stabilizing additives and electrolytes containing the same for use in electrochemical devices such as lithium ion batteries and capacitors. The stabilizing additives include triazinane triones and bicyclic compounds comprising succinic anhydride, such as compounds of Formulas I and II described herein.

Zhang, Lu; Zhang, Zhengcheng; Amine, Khalil

2014-04-15T23:59:59.000Z

78

Edge-Enriched Graphitic Anodes by KOH Activation for Higher Rate Capability Lithium Ion Batteries  

E-Print Network [OSTI]

Lithium Ion Batteries D. Zakhidov,1,2 R. Sugamata,3 T. Yasue,3 T. Hayashi,3 Y. A. Kim,3 and M. Endo4 1 successful anode for lithium ion batteries due to its low cost, safety, and ease of fabrication, but higher are expected to surpass conventional graphite anodes due to larger number of edges for lithium ion

79

Chemical Shuttle Additives in Lithium Ion Batteries  

SciTech Connect (OSTI)

The goals of this program were to discover and implement a redox shuttle that is compatible with large format lithium ion cells utilizing LiNi{sub 1/3}Mn{sub 1/3}Co{sub 1/3}O{sub 2} (NMC) cathode material and to understand the mechanism of redox shuttle action. Many redox shuttles, both commercially available and experimental, were tested and much fundamental information regarding the mechanism of redox shuttle action was discovered. In particular, studies surrounding the mechanism of the reduction of the oxidized redox shuttle at the carbon anode surface were particularly revealing. The initial redox shuttle candidate, namely 2-(pentafluorophenyl)-tetrafluoro-1,3,2-benzodioxaborole (BDB) supplied by Argonne National Laboratory (ANL, Lemont, Illinois), did not effectively protect cells containing NMC cathodes from overcharge. The ANL-RS2 redox shuttle molecule, namely 1,4-bis(2-methoxyethoxy)-2,5-di-tert-butyl-benzene, which is a derivative of the commercially successful redox shuttle 2,5-di-tert-butyl-1,4-dimethoxybenzene (DDB, 3M, St. Paul, Minnesota), is an effective redox shuttle for cells employing LiFePO{sub 4} (LFP) cathode material. The main advantage of ANL-RS2 over DDB is its larger solubility in electrolyte; however, ANL-RS2 is not as stable as DDB. This shuttle also may be effectively used to rebalance cells in strings that utilize LFP cathodes. The shuttle is compatible with both LTO and graphite anode materials although the cell with graphite degrades faster than the cell with LTO, possibly because of a reaction with the SEI layer. The degradation products of redox shuttle ANL-RS2 were positively identified. Commercially available redox shuttles Li{sub 2}B{sub 12}F{sub 12} (Air Products, Allentown, Pennsylvania and Showa Denko, Japan) and DDB were evaluated and were found to be stable and effective redox shuttles at low C-rates. The Li{sub 2}B{sub 12}F{sub 12} is suitable for lithium ion cells utilizing a high voltage cathode (potential that is higher than NMC) and the DDB is useful for lithium ion cells with LFP cathodes (potential that is lower than NMC). A 4.5 V class redox shuttle provided by Argonne National Laboratory was evaluated which provides a few cycles of overcharge protection for lithium ion cells containing NMC cathodes but it is not stable enough for consideration. Thus, a redox shuttle with an appropriate redox potential and sufficient chemical and electrochemical stability for commercial use in larger format lithium ion cells with NMC cathodes was not found. Molecular imprinting of the redox shuttle molecule during solid electrolyte interphase (SEI) layer formation likely contributes to the successful reduction of oxidized redox shuttle species at carbon anodes. This helps to understand how a carbon anode covered with an SEI layer, that is supposed to be electrically insulating, can reduce the oxidized form of a redox shuttle.

Patterson, Mary

2013-03-31T23:59:59.000Z

80

Multi-layered, chemically bonded lithium-ion and lithium/air batteries  

SciTech Connect (OSTI)

Disclosed are multilayer, porous, thin-layered lithium-ion batteries that include an inorganic separator as a thin layer that is chemically bonded to surfaces of positive and negative electrode layers. Thus, in such disclosed lithium-ion batteries, the electrodes and separator are made to form non-discrete (i.e., integral) thin layers. Also disclosed are methods of fabricating integrally connected, thin, multilayer lithium batteries including lithium-ion and lithium/air batteries.

Narula, Chaitanya Kumar; Nanda, Jagjit; Bischoff, Brian L; Bhave, Ramesh R

2014-05-13T23:59:59.000Z

Note: This page contains sample records for the topic "rechargeable lithium-ion batteries" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

Lithium ion batteries with titania/graphene anodes  

DOE Patents [OSTI]

Lithium ion batteries having an anode comprising at least one graphene layer in electrical communication with titania to form a nanocomposite material, a cathode comprising a lithium olivine structure, and an electrolyte. The graphene layer has a carbon to oxygen ratio of between 15 to 1 and 500 to 1 and a surface area of between 400 and 2630 m.sup.2/g. The nanocomposite material has a specific capacity at least twice that of a titania material without graphene material at a charge/discharge rate greater than about 10 C. The olivine structure of the cathode of the lithium ion battery of the present invention is LiMPO.sub.4 where M is selected from the group consisting of Fe, Mn, Co, Ni and combinations thereof.

Liu, Jun; Choi, Daiwon; Yang, Zhenguo; Wang, Donghai; Graff, Gordon L; Nie, Zimin; Viswanathan, Vilayanur V; Zhang, Jason; Xu, Wu; Kim, Jin Yong

2013-05-28T23:59:59.000Z

82

Theory of SEI Formation in Rechargeable Batteries: Capacity Fade, Accelerated Aging and Lifetime Prediction  

E-Print Network [OSTI]

Cycle life is critically important in applications of rechargeable batteries, but lifetime prediction is mostly based on empirical trends, rather than mathematical models. In practical lithium-ion batteries, capacity fade ...

Pinson, Matthew Bede

83

Lithium ion battery with improved safety  

DOE Patents [OSTI]

A lithium battery with improved safety that utilizes one or more additives in the battery electrolyte solution wherein a lithium salt is dissolved in an organic solvent, which may contain propylene, carbonate. For example, a blend of 2 wt % triphenyl phosphate (TPP), 1 wt % diphenyl monobutyl phosphate (DMP) and 2 wt % vinyl ethylene carbonate additives has been found to significantly enhance the safety and performance of Li-ion batteries using a LiPF6 salt in EC/DEC electrolyte solvent. The invention relates to both the use of individual additives and to blends of additives such as that shown in the above example at concentrations of 1 to 4-wt % in the lithium battery electrolyte. This invention relates to additives that suppress gas evolution in the cell, passivate graphite electrode and protect it from exfoliating in the presence of propylene carbonate solvents in the electrolyte, and retard flames in the lithium batteries.

Chen, Chun-hua; Hyung, Yoo Eup; Vissers, Donald R.; Amine, Khalil

2006-04-11T23:59:59.000Z

84

Electronically conductive polymer binder for lithium-ion battery electrode  

DOE Patents [OSTI]

A family of carboxylic acid group containing fluorene/fluorenon copolymers is disclosed as binders of silicon particles in the fabrication of negative electrodes for use with lithium ion batteries. These binders enable the use of silicon as an electrode material as they significantly improve the cycle-ability of silicon by preventing electrode degradation over time. In particular, these polymers, which become conductive on first charge, bind to the silicon particles of the electrode, are flexible so as to better accommodate the expansion and contraction of the electrode during charge/discharge, and being conductive promote the flow battery current.

Liu, Gao; Xun, Shidi; Battaglia, Vincent S; Zheng, Honghe

2014-10-07T23:59:59.000Z

85

Chemical overcharge protection of lithium and lithium-ion secondary batteries  

DOE Patents [OSTI]

This invention features the use of redox reagents, dissolved in non-aqueous electrolytes, to provide overcharge protection for cells having lithium metal or lithium-ion negative electrodes (anodes). In particular, the invention features the use of a class of compounds consisting of thianthrene and its derivatives as redox shuttle reagents to provide overcharge protection. Specific examples of this invention are thianthrene and 2,7-diacetyl thianthrene. One example of a rechargeable battery in which 2,7-diacetyl thianthrene is used has carbon negative electrode (anode) and spinet LiMn{sub 2}O{sub 4} positive electrode (cathode). 8 figs.

Abraham, K.M.; Rohan, J.F.; Foo, C.C.; Pasquariello, D.M.

1999-01-12T23:59:59.000Z

86

Chemical overcharge protection of lithium and lithium-ion secondary batteries  

DOE Patents [OSTI]

This invention features the use of redox reagents, dissolved in non-aqueous electrolytes, to provide overcharge protection for cells having lithium metal or lithium-ion negative electrodes (anodes). In particular, the invention features the use of a class of compounds consisting of thianthrene and its derivatives as redox shuttle reagents to provide overcharge protection. Specific examples of this invention are thianthrene and 2,7-diacetyl thianthrene. One example of a rechargeable battery in which 2,7-diacetyl thianthrene is used has carbon negative electrode (anode) and spinet LiMn.sub.2 O.sub.4 positive electrode (cathode).

Abraham, Kuzhikalail M. (Needham, MA); Rohan, James F. (Cork City, IE); Foo, Conrad C. (Dedham, MA); Pasquariello, David M. (Pawtucket, RI)

1999-01-01T23:59:59.000Z

87

Comparison of Reduced Order Lithium-Ion Battery Models for Control Applications  

E-Print Network [OSTI]

@umich.edu. automotive field, lithium-ion batteries are the core of energy source and storage. In most cases the lithium-ion battery performances play an important role for the energy efficiency of these vehicles, suffering often - 50 C over a short period of about 10 s - 20 s [9]. In order to efficiently manage the battery systems

Stefanopoulou, Anna

88

Virus constructed iron phosphate lithium ion batteries in unmanned aircraft systems  

E-Print Network [OSTI]

FePO? lithium ion batteries that have cathodes constructed by viruses are scaled up in size to examine potential for use as an auxiliary battery in the Raven to power the payload equipment. These batteries are assembled ...

Kolesnikov-Lindsey, Rachel

89

Structural Integration of Silicon Solar Cells and Lithium-ion Batteries Using Printed Electronics  

E-Print Network [OSTI]

state lithium-ion (Li-ion) battery were adhesively joinedfilm solid state Li-ion battery was not able to withstand5.8 The performance of the Li-ion battery under tensile

Kang, Jin Sung

2012-01-01T23:59:59.000Z

90

Towards a lithium-ion fiber battery  

E-Print Network [OSTI]

One of the key objectives in the realm of flexible electronics and flexible power sources is to achieve large-area, low-cost, scalable production of flexible systems. In this thesis we propose a new Li-ion battery architecture ...

Grena, Benjamin (Benjamin Jean-Baptiste)

2013-01-01T23:59:59.000Z

91

Redox shuttles for lithium ion batteries  

SciTech Connect (OSTI)

Compounds may have general Formula IVA or IVB. ##STR00001## where, R.sup.8, R.sup.9, R.sup.10, and R.sup.11 are each independently selected from H, F, Cl, Br, CN, NO.sub.2, alkyl, haloalkyl, and alkoxy groups; X and Y are each independently O, S, N, or P; and Z' is a linkage between X and Y. Such compounds may be used as redox shuttles in electrolytes for use in electrochemical cells, batteries and electronic devices.

Weng, Wei; Zhang, Zhengcheng; Amine, Khalil

2014-11-04T23:59:59.000Z

92

Sandia National Laboratories: lithium-ion battery  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the1developmentturbine blade manufacturinglife-cycleion battery Electric Car

93

Silicon sponge improves lithium-ion battery performance | EMSL  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLas ConchasPassiveSubmitted forHighlightsSeminarsSilicon sponge improves lithium-ion battery

94

Paper-Based Lithium-Ion Battery Nojan Aliahmad, Mangilal Agarwal, Sudhir Shrestha, and Kody Varahramyan  

E-Print Network [OSTI]

Paper-Based Lithium-Ion Battery Nojan Aliahmad, Mangilal Agarwal, Sudhir Shrestha, and Kody Indianapolis (IUPUI), Indianapolis, IN 46202 Lithium-ion batteries have a wide range of applications including devices. Lithium titanium oxide (Li4Ti5O12), lithium magnesium oxide (LiMn2O4) and lithium cobalt oxide

Zhou, Yaoqi

95

Impedance Analysis of Silicon Nanowire Lithium Ion Battery Anodes Riccardo Ruffo,  

E-Print Network [OSTI]

resistance and solid state diffusion through the bulk of the nanowires. The surface process is dominatedImpedance Analysis of Silicon Nanowire Lithium Ion Battery Anodes Riccardo Ruffo, Seung Sae Hong as a high-capacity anode in a lithium ion battery. The ac response was measured by using impedance

Cui, Yi

96

Diagnostic Characterization of High-Power Lithium-Ion Batteries For Use in Hybrid Electric Vehicles  

E-Print Network [OSTI]

Diagnostic Characterization of High-Power Lithium-Ion Batteries For Use in Hybrid Electric Vehicles and electric vehicles due to their relatively high specific energy and specific power. The Advanced Technology of lithium-ion batteries for hybrid electric vehicle (HEV) applications. The ATD Program is a joint effort

97

Synthesis and Electrochemical Performance of a Lithium Titanium Phosphate Anode for Aqueous Lithium-Ion Batteries  

E-Print Network [OSTI]

on larger scales. Im- provement of the safety of lithium-ion batteries must occur if they are to be utilized in aqueous cells. However, the choice of a suitable anode material for an aqueous lithium-ion battery is moreSynthesis and Electrochemical Performance of a Lithium Titanium Phosphate Anode for Aqueous Lithium

Cui, Yi

98

UV and EB Curable Binder Technology for Lithium Ion Batteries and UltraCapacitors  

SciTech Connect (OSTI)

the basic feasibility of using UV curing technology to produce Lithium ion battery electrodes at speeds over 200 feet per minute has been shown. A unique set of UV curable chemicals were discovered that were proven to be compatible with a Lithium ion battery environment with the adhesion qualities of PVDF.

Voelker, Gary

2012-04-30T23:59:59.000Z

99

Prediction of Multi-Physics Behaviors of Large Lithium-Ion Batteries During Internal and External Short Circuit (Presentation)  

SciTech Connect (OSTI)

This presentation describes the multi-physics behaviors of internal and external short circuits in large lithium-ion batteries.

Kim, G. H.; Lee, K. J.; Chaney, L.; Smith, K.; Darcy, E.; Pesaran, A.; Darcy, E.

2010-11-01T23:59:59.000Z

100

A robust state-of-charge estimator for multiple types of lithium-ion batteries using adaptive extended Kalman filter  

E-Print Network [OSTI]

A robust state-of-charge estimator for multiple types of lithium-ion batteries using adaptive a SOC estimator for suitable for multiple lithium ion battery chemistries. Proved the system robustness of charge (SoC) of multiple types of lithium ion battery (LiB) cells with adaptive extended Kalman filter

Mi, Chunting "Chris"

Note: This page contains sample records for the topic "rechargeable lithium-ion batteries" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

Capacity fade study of lithium-ion batteries cycled at high discharge rates Gang Ning, Bala Haran, Branko N. Popov*  

E-Print Network [OSTI]

Capacity fade study of lithium-ion batteries cycled at high discharge rates Gang Ning, Bala Haran at high discharge rates. # 2003 Elsevier Science B.V. All rights reserved. Keywords: Lithium-ion batteries collectors can affect up to different degrees the capacity fade of lithium-ion batteries [1­5]. Quantifying

Popov, Branko N.

102

Cycle-Life Characterization of Automotive Lithium-Ion Batteries with LiNiO2 Cathode  

E-Print Network [OSTI]

Cycle-Life Characterization of Automotive Lithium-Ion Batteries with LiNiO2 Cathode Yancheng Zhang of lithium- ion batteries for electric vehicles EVs and hybrid EVs HEVs . Substantial research has been- face, which is critical to the cycle life and calendar life of lithium- ion batteries.1,2 Unfortunately

103

Parameter Estimation and Capacity Fade Analysis of Lithium-Ion Batteries Using First-Principles-Based Efficient Reformulated Models  

E-Print Network [OSTI]

Parameter Estimation and Capacity Fade Analysis of Lithium-Ion Batteries Using First parameters of lithium-ion batteries are estimated using a first-principles electrochemical engineering model and understanding of lithium-ion batteries using physics-based first-principles models. These models are based

Subramanian, Venkat

104

Model-based simultaneous optimization of multiple design parameters for lithium-ion batteries for maximization of energy density  

E-Print Network [OSTI]

Model-based simultaneous optimization of multiple design parameters for lithium-ion batteries Keywords: Lithium-ion batteries Model-based design Optimization Physics based reformulated model a b s t r for porous electrodes that are commonly used in advanced batteries such as lithium-ion systems. The approach

Subramanian, Venkat

105

Highly - conductive cathode for lithium-ion battery using M13 phage - SWCNT complex  

E-Print Network [OSTI]

Lithium-ion batteries are commonly used in portable electronics, and the rapid growth of mobile technology calls for an improvement in battery capabilities. Reducing the particle size of electrode materials in synthesis ...

Adams, Melanie Chantal

2013-01-01T23:59:59.000Z

106

Design of a testing device for quasi-confined compression of lithium-ion battery cells  

E-Print Network [OSTI]

The Impact and Crashworthiness Laboratory at MIT has formed a battery consortium to promote research concerning the crash characteristics of new lithium-ion battery technologies as used in automotive applications. Within ...

Roselli, Eric (Eric J.)

2011-01-01T23:59:59.000Z

107

Lithium Ion Battery Performance of Silicon Nanowires With Carbon Skin  

SciTech Connect (OSTI)

Silicon (Si) nanomaterials have emerged as a leading candidate for next generation lithium-ion battery anodes. However, the low electrical conductivity of Si requires the use of conductive additives in the anode film. Here we report a solution-based synthesis of Si nanowires with a conductive carbon skin. Without any conductive additive, the Si nanowire electrodes exhibited capacities of over 2000 mA h g-1 for 100 cycles when cycled at C/10 and over 1200 mA h g-1 when cycled more rapidly at 1C against Li metal.. In situ transmission electron microscopy (TEM) observation reveals that the carbon skin performs dual roles: it speeds lithiation of the Si nanowires significantly, while also constraining the final volume expansion. The present work sheds light on ways to optimize lithium battery performance by smartly tailoring the nanostructure of composition of materials based on silicon and carbon.

Bogart, Timothy D.; Oka, Daichi; Lu, Xiaotang; Gu, Meng; Wang, Chong M.; Korgel, Brian A.

2013-12-06T23:59:59.000Z

108

Improved layered mixed transition metal oxides for Li-ion batteries  

E-Print Network [OSTI]

for rechargeable lithium batteries," Science 311 (5763),for rechargeable lithium batteries," Science 311(5763), 977-M n , ^ for Advanced Lithium-Ion Batteries," J. Electrochem.

Doeff, Marca M.

2010-01-01T23:59:59.000Z

109

Nanostructured materials for lithium-ion batteries: Surface conductivity vs. bulk  

E-Print Network [OSTI]

Nanostructured materials for lithium-ion batteries: Surface conductivity vs. bulk ion cathode materials for high capacity lithium-ion batteries. Owing to their inherently low electronic-ion batteries. Lithium transition metal phosphates such as LiFePO4,1 LiMnPO4,2 Li3V2(PO4)3 3 and LiVPO4F4 have

Ryan, Dominic

110

Graphite Foams for Lithium-Ion Battery Current Collectors  

SciTech Connect (OSTI)

Graphite open-cell foams, with their very high electronic and thermal conductivities, may serve as high surface area and corrosion resistant current collectors for lithium-ion batteries. As a proof of principle, cathodes were prepared by sintering carbon-coated LiFePO4 particles into the porous graphite foams. Cycling these cathodes in a liquid electrolyte cell showed promising performance even for materials and coatings that have not been optimized. The specific capacity is not limited by the foam structure, but by the cycling performance of the coated LiFePO4 particles. Upon extended cycling for more than 100 deep cycles, no loss of capacity is observed for rates of C/2 or less. The uncoated graphite foams will slowly intercalate lithium reversibly at potentials less than 0.2 volts versus lithium.

Dudney, Nancy J [ORNL; Tiegs, Terry N [ORNL; Kiggans, Jim [ORNL; Jang, Young-Il [ORNL; Klett, James William [ORNL

2007-01-01T23:59:59.000Z

111

Graphene-oxide-coated LiNi0.5Mn1.5O4 as high voltage cathode for lithium ion batteries with high energy  

E-Print Network [OSTI]

Graphene-oxide-coated LiNi0.5Mn1.5O4 as high voltage cathode for lithium ion batteries with high Since Sony rst commercialized lithium ion batteries in the early 1990s, the market for lithium ion of the great success of lithium ion battery technology developed for portable electronic devices, higher

Zhou, Chongwu

112

EA-1690: A123 Systems, Inc., Automotive-Class Lithium-Ion Battery...  

Broader source: Energy.gov (indexed) [DOE]

to A123 Systems, Inc., for Vertically Integrated Mass Production of Automotive-Class Lithium-Ion Batteries April 20, 2010 EA-1690: Finding of No Significant Impact A123 Systems,...

113

NREL Enhances the Performance of a Lithium-Ion Battery Cathode (Fact Sheet)  

SciTech Connect (OSTI)

Scientists from NREL and the University of Toledo have combined theoretical and experimental studies to demonstrate a promising approach to significantly enhance the performance of lithium iron phosphate (LiFePO4) cathodes for lithium-ion batteries.

Not Available

2012-10-01T23:59:59.000Z

114

Development of a representative volume element of lithium-ion batteries for thermo-mechanical integrity  

E-Print Network [OSTI]

The importance of Lithium-ion batteries continues to grow with the introduction of more electronic devices, electric cars, and energy storage. Yet the optimization approach taken by the manufacturers and system designers ...

Hill, Richard Lee, Sr

2011-01-01T23:59:59.000Z

115

Ab initio screening of lithium diffusion rates in transition metal oxide cathodes for lithium ion batteries  

E-Print Network [OSTI]

A screening metric for diffusion limitations in lithium ion battery cathodes is derived using transition state theory and common materials properties. The metric relies on net activation barrier for lithium diffusion. ...

Moore, Charles J. (Charles Jacob)

2012-01-01T23:59:59.000Z

116

Parameter Estimation and Capacity Fade Analysis of Lithium-Ion Batteries Using Reformulated Models  

E-Print Network [OSTI]

Many researchers have worked to develop methods to analyze and characterize capacity fade in lithium-ion batteries. As a complement to approaches to mathematically model capacity fade that require detailed understanding ...

Braatz, Richard D.

117

Microstructural effects on capacity-rate performance of vanadium oxide cathodes in lithium-ion batteries  

E-Print Network [OSTI]

Vanadium oxide thin film cathodes were analyzed to determine whether smaller average grain size and/or a narrower average grain size distribution affects the capacity-rate performance in lithium-ion batteries. Vanadium ...

Davis, Robin M. (Robin Manes)

2005-01-01T23:59:59.000Z

118

Material characterization of high-voltage lithium-ion battery models for crashworthiness analysis  

E-Print Network [OSTI]

A three-phased study of the material properties and post-impact behavior of prismatic pouch lithium-ion battery cells was conducted to refine computational finite element models and explore the mechanisms of thermal runaway ...

Meier, Joseph D. (Joseph David)

2013-01-01T23:59:59.000Z

119

Elastic modulus mapping of atomically thin film based Lithium Ion Battery electrodes Lithium Ion Batteries (LIB) are one of the most promising class of next generation energy storage devices,  

E-Print Network [OSTI]

Batteries (LIB) are one of the most promising class of next generation energy storage devices, which canElastic modulus mapping of atomically thin film based Lithium Ion Battery electrodes Lithium Ion the charging/discharging which otherwise lead to in efficient battery operation. The cyclically charging

120

Real-time observation of lithium fibers growth inside a nanoscale lithium-ion battery  

E-Print Network [OSTI]

to observe the real-time nucleation and growth of the lithium fibers inside a nanoscale Li-ion battery. Our needed for safe and high power Li-ion batteries. VC 2011 American Institute of Physics. [doi:10Real-time observation of lithium fibers growth inside a nanoscale lithium-ion battery Hessam

Endres. William J.

Note: This page contains sample records for the topic "rechargeable lithium-ion batteries" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

Lithium-Ion battery State of Charge estimation with a Kalman Filter based on a electrochemical model  

E-Print Network [OSTI]

Lithium-Ion battery State of Charge estimation with a Kalman Filter based on a electrochemical state of charge (SOC). In this paper an averaged electrochemical Lithium-ion battery model suitable-Volmer current and the solid concentration at the interface with the electrolyte and (ii) the battery current

Stefanopoulou, Anna

122

Phosphazene Based Additives for Improvement of Safety and Battery Lifetimes in Lithium-Ion Batteries  

SciTech Connect (OSTI)

There need to be significant improvements made in lithium-ion battery technology, principally in the areas of safety and useful lifetimes to truly enable widespread adoption of large format batteries for the electrification of the light transportation fleet. In order to effect the transition to lithium ion technology in a timely fashion, one promising next step is through improvements to the electrolyte in the form of novel additives that simultaneously improve safety and useful lifetimes without impairing performance characteristics over wide temperature and cycle duty ranges. Recent efforts in our laboratory have been focused on the development of such additives with all the requisite properties enumerated above. We present the results of the study of novel phosphazene based electrolytes additives.

Mason K Harrup; Kevin L Gering; Harry W Rollins; Sergiy V Sazhin; Michael T Benson; David K Jamison; Christopher J Michelbacher

2011-10-01T23:59:59.000Z

123

1020 IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, VOL. 62, NO. 3, MARCH 2013 State of Charge Estimation of Lithium-Ion Batteries  

E-Print Network [OSTI]

Estimation of Lithium-Ion Batteries in Electric Drive Vehicles Using Extended Kalman Filtering Zheng Chen. Index Terms--Extended Kalman filter (EKF), hardware-in- the-loop, lithium-ion battery, nonlinear battery], a modeling approach for the scale-up of a lithium- ion polymer battery (LIPB) is reported. A comparison

Mi, Chunting "Chris"

124

Flexographically Printed Rechargeable Zinc-based Battery for Grid Energy Storage  

E-Print Network [OSTI]

Performance for Lithium Batteries, J. Electrochem. Soc. ,developments in lithium ion batteries, Materials Sciencefor advanced lithium-ion batteries, Journal of Power

Wang, Zuoqian

2013-01-01T23:59:59.000Z

125

Study of polypyrrole graphite composite as anode material for secondary lithium-ion batteries  

E-Print Network [OSTI]

Study of polypyrrole graphite composite as anode material for secondary lithium-ion batteries of the composite. The composite material has been studied for specific discharge capacity, coulombic efficiency for the Li-ion battery. Of various carbon materials that have been tried, graphite is favored because it (i

Popov, Branko N.

126

Efficient Reformulation of Solid-Phase Diffusion in Physics-Based Lithium-Ion Battery Models  

E-Print Network [OSTI]

Efficient Reformulation of Solid-Phase Diffusion in Physics-Based Lithium-Ion Battery Models or approximation for the solid phase. One of the major difficulties in simulating Li-ion battery models is the need typically solve electrolyte con- centration, electrolyte potential, solid-state potential, and solid-state

Subramanian, Venkat

127

Mathematical Model Reformulation for Lithium-Ion Battery Simulations: Galvanostatic Boundary Conditions  

E-Print Network [OSTI]

-ion battery which has been converted to a one-dimensional 1D model using approxi- mations for solid-state listed elsewhere Electrochem. Solid-State Lett., 10, A225 2007 can be carried out to expedite of charge, state of health, and other parameters of lithium-ion batteries in millisec- onds. Rigorous

Subramanian, Venkat

128

Control oriented 1D electrochemical model of lithium ion battery Kandler A. Smith a  

E-Print Network [OSTI]

dynamics (i.e. state of charge). ? 2007 Elsevier Ltd. All rights reserved. Keywords: Lithium ion battery electrochemical system dynamics [3,4]. Empirical battery models are often favored for their low order (2­5 states and Wang show that a hybrid electric vehicle (HEV) cell may become solid state diffusion limited in sec

129

Crumpled Graphene-Encapsulated Si Nanoparticles for Lithium Ion Battery Anodes  

E-Print Network [OSTI]

efficiency. SECTION: Energy Conversion and Storage; Energy and Charge Transport Silicon is a promising highCrumpled Graphene-Encapsulated Si Nanoparticles for Lithium Ion Battery Anodes Jiayan Luo, Xin Zhao improved performance as Li ion battery anodes in terms of capacity, cycling stability, and Coulombic

Huang, Jiaxing

130

Fracture and debonding in lithium-ion batteries with electrodes of hollow coreeshell nanostructures  

E-Print Network [OSTI]

. In particular, silicon anodes of such coreeshell nano- structures have been cycled thousands of times failure modes in a coated-hollow electrode particle. -ion batteries Fracture Debonding Silicon a b s t r a c t In a novel design of lithium-ion batteries, hollow

Suo, Zhigang

131

STUDIES ON TWO CLASSES OF POSITIVE ELECTRODE MATERIALS FOR LITHIUM-ION BATTERIES  

E-Print Network [OSTI]

Linden, D. , Handbook of Batteries. 2nd ed. 1995, New York:rechargeable lithium batteries. Nature, 2001. 414(6861): p.of rechargeable lithium batteries, I. Lithium manganese

Wilcox, James D.

2010-01-01T23:59:59.000Z

132

Inelastic hosts as electrodes for high-capacity lithium-ion batteries Kejie Zhao, Matt Pharr, Joost J. Vlassak, and Zhigang Suoa  

E-Print Network [OSTI]

Inelastic hosts as electrodes for high-capacity lithium-ion batteries Kejie Zhao, Matt Pharr, Joost for high-capacity lithium-ion batteries. Upon absorbing lithium, silicon swells several times its volume strength. © 2011 American Institute of Physics. doi:10.1063/1.3525990 Lithium-ion batteries

133

Lithium Metal Anodes for Rechargeable Batteries  

SciTech Connect (OSTI)

Rechargeable lithium metal batteries have much higher energy density than those of lithium ion batteries using graphite anode. Unfortunately, uncontrollable dendritic lithium growth inherent in these batteries (upon repeated charge/discharge cycling) and limited Coulombic efficiency during lithium deposition/striping has prevented their practical application over the past 40 years. With the emerging of post Li-ion batteries, safe and efficient operation of lithium metal anode has become an enabling technology which may determine the fate of several promising candidates for the next generation of energy storage systems, including rechargeable Li-air battery, Li-S battery, and Li metal battery which utilize lithium intercalation compounds as cathode. In this work, various factors which affect the morphology and Coulombic efficiency of lithium anode will be analyzed. Technologies used to characterize the morphology of lithium deposition and the results obtained by modeling of lithium dendrite growth will also be reviewed. At last, recent development in this filed and urgent need in this field will also be discussed.

Xu, Wu; Wang, Jiulin; Ding, Fei; Chen, Xilin; Nasybulin, Eduard N.; Zhang, Yaohui; Zhang, Jiguang

2014-02-28T23:59:59.000Z

134

Developments in lithium-ion battery technology in the Peoples Republic of China.  

SciTech Connect (OSTI)

Argonne National Laboratory prepared this report, under the sponsorship of the Office of Vehicle Technologies (OVT) of the U.S. Department of Energy's (DOE's) Office of Energy Efficiency and Renewable Energy, for the Vehicles Technologies Team. The information in the report is based on the author's visit to Beijing; Tianjin; and Shanghai, China, to meet with representatives from several organizations (listed in Appendix A) developing and manufacturing lithium-ion battery technology for cell phones and electronics, electric bikes, and electric and hybrid vehicle applications. The purpose of the visit was to assess the status of lithium-ion battery technology in China and to determine if lithium-ion batteries produced in China are available for benchmarking in the United States. With benchmarking, DOE and the U.S. battery development industry would be able to understand the status of the battery technology, which would enable the industry to formulate a long-term research and development program. This report also describes the state of lithium-ion battery technology in the United States, provides information on joint ventures, and includes information on government incentives and policies in the Peoples Republic of China (PRC).

Patil, P. G.; Energy Systems

2008-02-28T23:59:59.000Z

135

Development of a constitutive model predicting the point of short-circuit within lithium-ion battery cells  

E-Print Network [OSTI]

The use of Lithium Ion batteries continues to grow in electronic devices, the automotive industry in hybrid and electric vehicles, as well as marine applications. Such batteries are the current best for these applications ...

Campbell, John Earl, Jr

2012-01-01T23:59:59.000Z

136

Implementations of electric vehicle system based on solar energy in Singapore assessment of lithium ion batteries for automobiles  

E-Print Network [OSTI]

In this thesis report, both quantitative and qualitative approaches are used to provide a comprehensive analysis of lithium ion (Li-ion) batteries for plug-in hybrid electric vehicle (PHEV) and battery electric vehicle ...

Fu, Haitao

2009-01-01T23:59:59.000Z

137

Integrated Lithium-Ion Battery Model Encompassing Multi-Physics in Varied Scales: An Integrated Computer Simulation Tool for Design and Development of EDV Batteries (Presentation)  

SciTech Connect (OSTI)

This presentation discusses the physics of lithium-ion battery systems in different length scales, from atomic scale to system scale.

Kim, G. H.; Smith, K.; Lee, K. J.; Santhanagopalan, S.; Pesaran, A.

2011-01-01T23:59:59.000Z

138

New electrolytes and electrolyte additives to improve the low temperature performance of lithium-ion batteries  

SciTech Connect (OSTI)

In this program, two different approaches were undertaken to improve the role of electrolyte at low temperature performance - through the improvement in (i) ionic conductivity and (ii) interfacial behavior. Several different types of electrolytes were prepared to examine the feasibil.ity of using these new electrolytes in rechargeable lithium-ion cells in the temperature range of +40C to -40C. The feasibility studies include (a) conductivity measurements of the electrolytes, (b) impedance measurements of lithium-ion cells using the screened electrolytes with di.fferent electrochemical history such as [(i) fresh cells prior to formation cycles, (ii) after first charge, and (iii) after first discharge], (c) electrical performance of the cells at room temperatures, and (d) charge discharge behavior at various low temperatures. Among the different types of electrolytes investigated in Phase I and Phase II of this SBIR project, carbonate-based LiPF6 electrolytes with the proposed additives and the low viscous ester as a third component to the carbonate-based LiPF6 electrolytes show promising results at low temperatures. The latter electrolytes deliver over 80% of room temperature capacity at -20{degrees}C when the lithium-ion cells containing these electrolytes were charged at -20 C. Also, there was no lithium plating when the lithium-ion cells using C-C composite anode and LiPF{sub 6} in EC/EMC/MP electrolyte were charged at -20{degrees}C at C/5 rate. The studies of ionic conductivity and AC impedance of these new electrolytes, as well as the charge discharge characteristics of lithium-ion cells using these new electrolytes at various low temperatures provide new findings: The reduced capacity and power capability, as well as the problem of lithium plating at low temperatures charging of lithium-ion cells are primarily due to slow the lithium-ion intercalation/de-intercalation kinetics in the carbon structure.

Yang, Xiao-Qing

2008-08-31T23:59:59.000Z

139

Diagnostic Characterization of High Power Lithium-Ion Batteries for Use in Hybrid Electric Vehicles  

E-Print Network [OSTI]

Diagnostic Characterization of High Power Lithium-Ion Batteries for Use in Hybrid Electric Vehicles are a fast-growing technology that is attrac- tive for use in portable electronics and electric vehicles due electric vehicle HEV applications.c A baseline cell chemistry was identified as a carbon anode negative

140

Doped LiFePO? cathodes for high power density lithium ion batteries  

E-Print Network [OSTI]

Olivine LiFePO4 has received much attention recently as a promising storage compound for cathodes in lithium ion batteries. It has an energy density similar to that of LiCoO 2, the current industry standard for cathode ...

Bloking, Jason T. (Jason Thompson), 1979-

2003-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "rechargeable lithium-ion batteries" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

Design and Simulation of Lithium Rechargeable Batteries  

E-Print Network [OSTI]

J. -P. Gabano, Ed. , Lithium Batteries, Academic Press, Newfor Rechargeable Lithium Batteries," J. Electrochem.for Rechargeable Lithium Batteries," J. Electroclzern.

Doyle, C.M.

2010-01-01T23:59:59.000Z

142

Evaluation of Tavorite-Structured Cathode Materials for Lithium-Ion Batteries Using High-Throughput Computing  

E-Print Network [OSTI]

Cathode materials with structure similar to the mineral tavorite have shown promise for use in lithium-ion batteries, but this class of materials is relatively unexplored. We use high-throughput density-functional-theory ...

Mueller, Tim

143

Experimental Validation of a Lithium-Ion Battery State of Charge Estimation with an Extended Kalman Filter  

E-Print Network [OSTI]

], is identified and validated through experimental data by a 10 Ah li-ion battery pack, during charge 37 V at 10 Ah Li-ion battery.. Keywords: Battery model, parameter identification, Kalman filter, SOCExperimental Validation of a Lithium-Ion Battery State of Charge Estimation with an Extended Kalman

Stefanopoulou, Anna

144

Corrosion of lithium-ion battery current collectors  

SciTech Connect (OSTI)

The primary current-collector materials being used in lithium-ion cells are susceptible to environmental degradation: aluminum to pitting corrosion and copper to environmentally assisted cracking. Localized corrosion occurred on bare aluminum electrodes during simulated ambient-temperature cycling in an excess of electrolyte. The highly oxidizing potential associated with the positive-electrode charge condition was the primary factor. The corrosion mechanism differed from the pitting typically observed in aqueous electrolytes because each site was filled with a mixed metal/metal-oxide product, forming surface mounds or nodules. Electrochemical impedance spectroscopy was shown to be an effective analytical tool for characterizing the corrosion behavior of aluminum under these conditions. Based on X-ray photoelectron spectroscopy analyses, little difference existed in the composition of the surface film on aluminum and copper after immersion or cycling in LiPF{sub 6} electrolytes made with two different solvent formulations. Although Li and P were the predominant adsorbed surface species, the corrosion resistance of aluminum may simply be due to its native oxide. Finally, copper was shown to be susceptible to environmental cracking at or near the lithium potential when specific metallurgical conditions existed (work hardening and large grain size).

Braithwaite, J.W.; Gonzales, A.; Nagasubramanian, G.; Lucero, S.J.; Peebles, D.E.; Ohlhausen, J.A.; Cieslak, W.R. [Sandia National Labs., Albuquerque, NM (United States)] [Sandia National Labs., Albuquerque, NM (United States)

1999-02-01T23:59:59.000Z

145

Lithium-ion battery diagnostic and prognostic techniques  

DOE Patents [OSTI]

Embodiments provide a method and a system for determining cell imbalance condition of a multi-cell battery including a plurality of cell strings. To determine a cell imbalance condition, a charge current is applied to the battery and is monitored during charging. The charging time for each cell string is determined based on the monitor of the charge current. A charge time difference of any two cell strings in the battery is used to determine the cell imbalance condition by comparing with a predetermined acceptable charge time difference for the cell strings.

Singh, Harmohan N.

2009-11-03T23:59:59.000Z

146

Advanced Surface and Microstructural Characterization of Natural Graphite Anodes for Lithium Ion Batteries  

SciTech Connect (OSTI)

Natural graphite powders were subjected to a series of thermal treatments in order to improve the anode irreversible capacity loss (ICL) and capacity retention during long-term cycling of lithium ion batteries. A baseline thermal treatment in inert Ar or N2 atmosphere was compared to cases with a proprietary additive to the furnace gas environment. This additive substantially altered the surface chemistry of the natural graphite powders and resulted in significantly improved long-term cycling performance of the lithium ion batteries over the commercial natural graphite baseline. Different heat-treatment temperatures were investigated ranging from 950-2900 C with the intent of achieving the desired long-term cycling performance with as low of a maximum temperature and thermal budget as possible. A detailed summary of the characterization data is also presented, which includes X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), Raman spectroscopy, and temperature-programed desorption mass spectroscopy (TPD-MS). This characterization data was correlated to the observed capacity fade improvements over the course of long-term cycling at high charge-discharge rates in full lithium-ion coin cells. It is believed that the long-term performance improvements are a result of forming a more stable solid electrolyte interface (SEI) layer on the anode graphite surfaces, which is directly related to the surface chemistry modifications imparted by the proprietary gas environment during thermal treatment.

Gallego, Nidia C [ORNL] [ORNL; Contescu, Cristian I [ORNL] [ORNL; Meyer III, Harry M [ORNL] [ORNL; Howe, Jane Y [ORNL] [ORNL; Meisner, Roberta Ann [ORNL] [ORNL; Payzant, E Andrew [ORNL] [ORNL; Lance, Michael J [ORNL] [ORNL; Yoon, Steve [A123 Systems, Inc.] [A123 Systems, Inc.; Denlinger, Matthew [A123 Systems, Inc.] [A123 Systems, Inc.; Wood III, David L [ORNL] [ORNL

2014-01-01T23:59:59.000Z

147

Analysis of Impedance Response in Lithium-ion Battery Electrodes  

E-Print Network [OSTI]

A major amount of degradation in battery life is in the form of chemical degradation due to the formation of Solid Electrolyte Interface (SEI) which is a passive film resulting from chemical reaction. Mechanical degradation in the form of fracture...

Cho, Seongkoo

2013-12-04T23:59:59.000Z

148

The lithium-ion battery industry for electric vehicles  

E-Print Network [OSTI]

Electric vehicles have reemerged as a viable alternative means of transportation, driven by energy security concerns, pressures to mitigate climate change, and soaring energy demand. The battery component will play a key ...

Kassatly, Sherif (Sherif Nabil)

2010-01-01T23:59:59.000Z

149

A Unified Open-Circuit-Voltage Model of Lithium-ion Batteries for State-of-Charge Estimation and State-of-Health Monitoring $  

E-Print Network [OSTI]

A Unified Open-Circuit-Voltage Model of Lithium-ion Batteries for State-of-Charge Estimation. Keywords: Electric vehicles, Lithium-ion batteries, Open-Circuit-Voltage, State-of-Charge, State is widely used for characterizing battery properties under different conditions. It contains important

Peng, Huei

150

Surface Modification Agents for Lithium-Ion Batteries | Argonne National  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security AdministrationcontrollerNanocrystalline GalliumSuppression of conductivity inBatteries -

151

The Application of Synchrotron Techniques to the Study of Lithium-ion Batteries  

SciTech Connect (OSTI)

This paper gives a brief review of the application of synchrotron X-ray techniques to the study of lithium-ion battery materials. The two main techniques are X-ray absorption spectroscopy (XAS) and high-resolution X-ray diffraction (XRD). Examples are given for in situ XAS and XRD studies of lithium-ion battery cathodes during cycling. This includes time-resolved methods. The paper also discusses the application of soft X-ray XAS to do ex situ studies on battery cathodes. By applying two signal detection methods, it is possible to probe the surface and the bulk of cathode materials simultaneously. Another example is the use of time-resolved XRD studies of the decomposition of reactions of charged cathodes at elevated temperatures. Measurements were done both in the dry state and in the presence of electrolyte. Brief reports are also given on two new synchrotron techniques. One is inelastic X-ray scattering, and the other is synchrotron X-ray reflectometry studies of the surface electrode interface (SEI) on highly oriented single crystal lithium battery cathode surfaces.

McBreen, J.

2009-07-01T23:59:59.000Z

152

Design and Simulation of Lithium Rechargeable Batteries  

E-Print Network [OSTI]

Gabano, Ed. , Lithium Batteries, Academic Press, New York,K. V. Kordesch, "Primary Batteries 1951-1976," J. Elec- n ~.Rechargeable Lithium Batteries," J. Electrochem. Soc. , [20

Doyle, C.M.

2010-01-01T23:59:59.000Z

153

Ionic liquids for rechargeable lithium batteries  

E-Print Network [OSTI]

for rechargeable lithium batteries (Preliminary report,applications using lithium batteries, we must be sure thattemperature range. For lithium batteries in hybrid vehicles,

Salminen, Justin; Papaiconomou, Nicolas; Kerr, John; Prausnitz, John; Newman, John

2008-01-01T23:59:59.000Z

154

On-board state of health monitoring of lithium-ion batteries using incremental capacity analysis with support vector regressionq  

E-Print Network [OSTI]

On-board state of health monitoring of lithium-ion batteries using incremental capacity analysis-board battery state-of-health (SOH) monitoring framework is proposed. 2013 Accepted 5 February 2013 Available online 11 February 2013 Keywords: Electric vehicles Lithium

Peng, Huei

155

Forming gas treatment of lithium ion battery anode graphite powders  

DOE Patents [OSTI]

The invention provides a method of making a battery anode in which a quantity of graphite powder is provided. The temperature of the graphite powder is raised from a starting temperature to a first temperature between 1000 and 2000.degree. C. during a first heating period. The graphite powder is then cooled to a final temperature during a cool down period. The graphite powder is contacted with a forming gas during at least one of the first heating period and the cool down period. The forming gas includes H.sub.2 and an inert gas.

Contescu, Cristian Ion; Gallego, Nidia C; Howe, Jane Y; Meyer, III, Harry M; Payzant, Edward Andrew; Wood, III, David L; Yoon, Sang Young

2014-09-16T23:59:59.000Z

156

Sandia National Laboratories: lithium-ion-based solid electrolyte battery  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the1developmentturbine blade manufacturinglife-cycleion battery Electric Carion-based

157

Graphene-based Electrochemical Energy Conversion and Storage: Fuel cells, Supercapacitors and Lithium Ion Batteries  

SciTech Connect (OSTI)

Graphene has attracted extensive research interest due to its strictly 2-dimensional (2D) structure, which results in its unique electronic, thermal, mechanical, and chemical properties and potential technical applications. These remarkable characteristics of graphene, along with the inherent benefits of a carbon material, make it a promising candidate for application in electrochemical energy devices. This article reviews the methods of graphene preparation, introduces the unique electrochemical behavior of graphene, and summarizes the recent research and development on graphene-based fuel cells, supercapacitors and lithium ion batteries. In addition, promising areas are identified for the future development of graphene-based materials in electrochemical energy conversion and storage systems.

Hou, Junbo; Shao, Yuyan; Ellis, Michael A.; Moore, Robert; Yi, Baolian

2011-09-14T23:59:59.000Z

158

Nb-doped TiO2 Nanofibers for Lithium Ion Batteries M. Fehse,, S. Cavaliere, P. E. Lippens, I. Savych, A. Iodacela, L.  

E-Print Network [OSTI]

Nb-doped TiO2 Nanofibers for Lithium Ion Batteries M. Fehse,, S. Cavaliere, P. E. Lippens, I, lithium ion batteries (LIB) have come a long way.1 Originally intended to serve only for small portable properties due to necessary solid elec- trolyte interphase (SEI) formation and the risk of lithium plating

Paris-Sud XI, Université de

159

Six Thousand Electrochemical Cycles of Double-Walled Silicon Nanotube Anodes for Lithium Ion Batteries  

SciTech Connect (OSTI)

Despite remarkable progress, lithium ion batteries still need higher energy density and better cycle life for consumer electronics, electric drive vehicles and large-scale renewable energy storage applications. Silicon has recently been explored as a promising anode material for high energy batteries; however, attaining long cycle life remains a significant challenge due to materials pulverization during cycling and an unstable solid-electrolyte interphase. Here, we report double-walled silicon nanotube electrodes that can cycle over 6000 times while retaining more than 85% of the initial capacity. This excellent performance is due to the unique double-walled structure in which the outer silicon oxide wall confines the inner silicon wall to expand only inward during lithiation, resulting in a stable solid-electrolyte interphase. This structural concept is general and could be extended to other battery materials that undergo large volume changes.

Wu, H

2011-08-18T23:59:59.000Z

160

Improving the Performance of Lithium Ion Batteries at Low Temperature  

SciTech Connect (OSTI)

The ability for Li-ion batteries to operate at low temperatures is extremely critical for the development of energy storage for electric and hybrid electric vehicle technologies. Currently, Li-ion cells have limited success in operating at temperature below 10 deg C. Electrolyte conductivity at low temperature is not the main cause of the poor performance of Li-ion cells. Rather the formation of a tight interfacial film between the electrolyte and the electrodes has often been an issue that resulted in a progressive capacity fading and limited discharge rate capability. The objective of our Phase I work is to develop novel electrolytes that can form low interfacial resistance solid electrolyte interface (SEI) films on carbon anodes and metal oxide cathodes. From the results of our Phase I work, we found that the interfacial impedance of Fluoro Ethylene Carbonate (FEC) electrolyte at the low temperature of 20degC is astonishingly low, compared to the baseline 1.2M LiPFEMC:EC:PC:DMC (10:20:10:60) electrolyte. We found that electrolyte formulations with fluorinated carbonate co-solvent have excellent film forming properties and better de-solvation characteristics to decrease the interfacial SEI film resistance and facilitate the Li-ion diffusion across the SEI film. The very overwhelming low interfacial impedance for FEC electrolytes will translate into Li-ion cells with much higher power for cold cranking and high Regen/charge at the low temperature. Further, since the SEI film resistance is low, Li interaction kinetics into the electrode will remain very fast and thus Li plating during Regen/charge period be will less likely to happen.

Trung H. Nguyen; Peter Marren; Kevin Gering

2007-04-20T23:59:59.000Z

Note: This page contains sample records for the topic "rechargeable lithium-ion batteries" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

Designing Silicon Nanostructures for High Energy Lithium Ion...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Designing Silicon Nanostructures for High Energy Lithium Ion Battery Anodes Designing Silicon Nanostructures for High Energy Lithium Ion Battery Anodes 2012 DOE Hydrogen and Fuel...

162

Composite Electrodes for Rechargeable Lithium-Ion Batteries | Argonne  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation Proposed New SubstationCleanCommunity Involvement andMISR, and4Compliance andBonding -

163

Thermal stability of LiPF6EC:EMC electrolyte for lithium ion batteries Gerardine G. Bottea  

E-Print Network [OSTI]

Thermal stability of LiPF6±EC:EMC electrolyte for lithium ion batteries Gerardine G. Bottea , Ralph study of the LiPF6±EC:EMC electrolyte. The effect of different variables on its thermal stability was evaluated: salt (LiPF6) concentration effect, solvents, EC:EMC ratios, and heating rates. Hermetically

164

Electronic transport in Lithium Nickel Manganese Oxide, a high-voltage cathode material for Lithium-Ion batteries  

E-Print Network [OSTI]

Potential routes by which the energy densities of lithium-ion batteries may be improved abound. However, the introduction of Lithium Nickel Manganese Oxide (LixNi1i/2Mn3/2O4, or LNMO) as a positive electrode material appears ...

Ransil, Alan Patrick Adams

2013-01-01T23:59:59.000Z

165

Modeling the performance and cost of lithium-ion batteries for electric-drive vehicles.  

SciTech Connect (OSTI)

This report details the Battery Performance and Cost model (BatPaC) developed at Argonne National Laboratory for lithium-ion battery packs used in automotive transportation. The model designs the battery for a specified power, energy, and type of vehicle battery. The cost of the designed battery is then calculated by accounting for every step in the lithium-ion battery manufacturing process. The assumed annual production level directly affects each process step. The total cost to the original equipment manufacturer calculated by the model includes the materials, manufacturing, and warranty costs for a battery produced in the year 2020 (in 2010 US$). At the time this report is written, this calculation is the only publically available model that performs a bottom-up lithium-ion battery design and cost calculation. Both the model and the report have been publically peer-reviewed by battery experts assembled by the U.S. Environmental Protection Agency. This report and accompanying model include changes made in response to the comments received during the peer-review. The purpose of the report is to document the equations and assumptions from which the model has been created. A user of the model will be able to recreate the calculations and perhaps more importantly, understand the driving forces for the results. Instructions for use and an illustration of model results are also presented. Almost every variable in the calculation may be changed by the user to represent a system different from the default values pre-entered into the program. The distinct advantage of using a bottom-up cost and design model is that the entire power-to-energy space may be traversed to examine the correlation between performance and cost. The BatPaC model accounts for the physical limitations of the electrochemical processes within the battery. Thus, unrealistic designs are penalized in energy density and cost, unlike cost models based on linear extrapolations. Additionally, the consequences on cost and energy density from changes in cell capacity, parallel cell groups, and manufacturing capabilities are easily assessed with the model. New proposed materials may also be examined to translate bench-scale values to the design of full-scale battery packs providing realistic energy densities and prices to the original equipment manufacturer. The model will be openly distributed to the public in the year 2011. Currently, the calculations are based in a Microsoft{reg_sign} Office Excel spreadsheet. Instructions are provided for use; however, the format is admittedly not user-friendly. A parallel development effort has created an alternate version based on a graphical user-interface that will be more intuitive to some users. The version that is more user-friendly should allow for wider adoption of the model.

Nelson, P. A.

2011-10-20T23:59:59.000Z

166

PSM: Lithium-Ion Battery State of Charge (SOC) and Critical Surface Charge (CSC) Estimation using an Electrochemical Model-driven  

E-Print Network [OSTI]

PSM: Lithium-Ion Battery State of Charge (SOC) and Critical Surface Charge (CSC) Estimation using Abstract-- This paper presents a numerical calculation of the evolution of the spatially-resolved solid concentration in the two electrodes of a lithium-ion cell. The microscopic solid con- centration is driven

Stefanopoulou, Anna

167

Mesoporous carbon -Cr2O3 composite as an anode material for lithium ion batteries  

SciTech Connect (OSTI)

Mesoporous carbon-Cr2O3 (M-C-Cr2O3) composite was prepared by co-assembly of in-situ formed phenolic resin, chromium precursor, and Pluronic block copolymer under acidic conditions, followed by carbonization at 750oC under Argon. The TEM results confirmed that the Cr2O3 nanoparticles, ranging from 10 to 20 nm, were well dispersed in the matrix of mesoporous carbon. The composite exhibited an initial reversible capacity of 710 mAh g-1 and good cycling stability, which is mainly due to the synergic effects of carbons within the composites, i.e. confining the crystal growth of Cr2O3 during the high temperature treatment step and buffering the volume change of Cr2O3 during the cycling step. This composite material is a promising anode material for lithium ion batteries.

Guo, Bingkun [ORNL; Chi, Miaofang [ORNL; Sun, Xiao-Guang [ORNL; Dai, Sheng [ORNL

2012-01-01T23:59:59.000Z

168

Some comments on the Butler-Volmer equation for modeling Lithium-ion batteries  

E-Print Network [OSTI]

In this article the Butler-Volmer equation used in describing Lithium-ion (Li-ion) batteries is discussed. First, a complete mathematical model based on a macro-homogeneous approach developed by Neuman is presented. Two common mistakes found in the literature regarding a sign in a boundary conditions and the use of the transfer coefficient are mentioned. The paper focuses on the form of the Butler-Volmer equation in the model. It is shown how practical problems can be avoided by taking care in the form used, particularly to avoid difficulties when the solid particle in the electrodes approaches a fully charged or discharged state or the electrolyte gets depleted. This shows that the open circuit voltage and the exchange current density must depend on the lithium concentration in both the solid and the electrolyte in a particular way at the extremes of the concentration ranges.

Ramos, A M

2015-01-01T23:59:59.000Z

169

Modeling Electrochemical Decomposition of Fluoroethylene Carbonate on Silicon Anode Surfaces in Lithium Ion Batteries  

E-Print Network [OSTI]

Fluoroethylene carbonate (FEC) shows promise as an electrolyte additive for improving passivating solid-electrolyte interphase (SEI) films on silicon anodes used in lithium ion batteries (LIB). We apply density functional theory (DFT), ab initio molecular dynamics (AIMD), and quantum chemistry techniques to examine excess-electron-induced FEC molecular decomposition mechanisms that lead to FEC-modified SEI. We consider one- and two-electron reactions using cluster models and explicit interfaces between liquid electrolyte and model Li(x)Si(y) surfaces, respectively. FEC is found to exhibit more varied reaction pathways than unsubstituted ethylene carbonate. The initial bond-breaking events and products of one- and two-electron reactions are qualitatively similar, with a fluoride ion detached in both cases. However, most one-electron products are charge-neutral, not anionic, and may not coalesce to form effective Li+-conducting SEI unless they are further reduced or take part in other reactions. The implication...

Leung, Kevin; Foster, Michael E; Ma, Yuguang; del la Hoz, Julibeth M Martinez; Sai, Na; Balbuena, Perla B

2014-01-01T23:59:59.000Z

170

Nanostructured lithium-aluminum alloy electrodes for lithium-ion batteries.  

SciTech Connect (OSTI)

Electrodeposited aluminum films and template-synthesized aluminum nanorods are examined as negative electrodes for lithium-ion batteries. The lithium-aluminum alloying reaction is observed electrochemically with cyclic voltammetry and galvanostatic cycling in lithium half-cells. The electrodeposition reaction is shown to have high faradaic efficiency, and electrodeposited aluminum films reach theoretical capacity for the formation of LiAl (1 Ah/g). The performance of electrodeposited aluminum films is dependent on film thickness, with thicker films exhibiting better cycling behavior. The same trend is shown for electron-beam deposited aluminum films, suggesting that aluminum film thickness is the major determinant in electrochemical performance regardless of deposition technique. Synthesis of aluminum nanorod arrays on stainless steel substrates is demonstrated using electrodeposition into anodic aluminum oxide templates followed by template dissolution. Unlike nanostructures of other lithium-alloying materials, the electrochemical performance of these aluminum nanorod arrays is worse than that of bulk aluminum.

Hudak, Nicholas S.; Huber, Dale L.

2010-12-01T23:59:59.000Z

171

Making Li-air batteries rechargeable: material challenges. |...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Li-air batteries rechargeable: material challenges. Making Li-air batteries rechargeable: material challenges. Abstract: A Li-air battery could potentially provide three to five...

172

STUDIES ON TWO CLASSES OF POSITIVE ELECTRODE MATERIALS FOR LITHIUM-ION BATTERIES  

E-Print Network [OSTI]

the lithium- transition metal electrostatic interaction. Thecation electrostatic interactions. 1 Lithium ions occupy theinteractions or by inhibiting the complete removal of lithium

Wilcox, James D.

2010-01-01T23:59:59.000Z

173

Celgard US Manufacturing Facilities Initiative for Lithium-ion...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

More Documents & Publications Celgard US Manufacturing Facilities Initiative for Lithium-ion Battery Separator Celgard US Manufacturing Facilities Initiative for Lithium-ion...

174

Observation of State of Charge Distributions in Lithium-ion Battery Electrodes  

SciTech Connect (OSTI)

Current lithium-ion battery technology is gearing towards meeting the robust demand of power and energy requirements for all-electric transportation without compromising on the safety, performance, and cycle life. The state-of-charge (SOC) of a Li-ion cell can be a macroscopic indicator of the state-of-health of the battery. The microscopic origin of the SOC relates to the local lithium content in individual electrode particles and the effective ability of Li-ions to transport or shuttle between the redox couples through the cell geometric boundaries. Herein, micrometer-resolved Raman mapping of a transition-metal-based oxide positive electrode, Li{sub 1-x}(Ni{sub y}Co{sub z}Al{sub 1-y-z})O{sub 2}, maintained at different SOCs, is shown. An attempt has been made to link the underlying changes to the composition and structural integrity at the individual particle level. Furthermore, an SOC distribution at macroscopic length scale of the electrodes is presented.

Remillard, Jeffrey [Ford Research and Advanced Engineering, Ford Motor Company; O'Neil, Ann E [Ford Research and Advanced Engineering, Ford Motor Company; Bernardi, Dawn [Ford Research and Advanced Engineering, Ford Motor Company; Ro, Tina J [Massachusetts Institute of Technology (MIT); Miller, Ted [Ford Motor Company; Neitering, Ken [Ford Research and Advanced Engineering, Ford Motor Company; Go, Joo-Young [SB Limotive, Korea; Nanda, Jagjit [ORNL

2011-01-01T23:59:59.000Z

175

Modeling Electrochemical Decomposition of Fluoroethylene Carbonate on Silicon Anode Surfaces in Lithium Ion Batteries  

E-Print Network [OSTI]

Fluoroethylene carbonate (FEC) shows promise as an electrolyte additive for improving passivating solid-electrolyte interphase (SEI) films on silicon anodes used in lithium ion batteries (LIB). We apply density functional theory (DFT), ab initio molecular dynamics (AIMD), and quantum chemistry techniques to examine excess-electron-induced FEC molecular decomposition mechanisms that lead to FEC-modified SEI. We consider one- and two-electron reactions using cluster models and explicit interfaces between liquid electrolyte and model Li(x)Si(y) surfaces, respectively. FEC is found to exhibit more varied reaction pathways than unsubstituted ethylene carbonate. The initial bond-breaking events and products of one- and two-electron reactions are qualitatively similar, with a fluoride ion detached in both cases. However, most one-electron products are charge-neutral, not anionic, and may not coalesce to form effective Li+-conducting SEI unless they are further reduced or take part in other reactions. The implications of these reactions to silicon-anode based LIB are discussed.

Kevin Leung; Susan B. Rempe; Michael E. Foster; Yuguang Ma; Julibeth M. Martinez del la Hoz; Na Sai; Perla B. Balbuena

2014-01-17T23:59:59.000Z

176

Interface Modifications by Anion Acceptors for High Energy Lithium Ion Batteries  

SciTech Connect (OSTI)

Li-rich, Mn-rich (LMR) layered composite, for example, Li[Li0.2Ni0.2Mn0.6]O2, has attracted extensive interests because of its highest energy density among all cathode candidates for lithium ion batteries (LIB). However, capacity degradation and voltage fading are the major challenges associated with this series of layered composite, which plagues its practical application. Herein, we demonstrate that anion receptor, tris(pentafluorophenyl)borane ((C6F5)3B, TPFPB), substantially enhances the cycling stability and alleviates the voltage degradation of LMR. In the presence of 0.2 M TPFPB, Li[Li0.2Ni0.2Mn0.6]O2 shows capacity retention of 81% after 300 cycles. It is proposed that TPFPB effectively confines the highly active oxygen species released from structural lattice through its strong coordination ability and high oxygen solubility. The electrolyte decomposition caused by the oxygen species attack is therefore largely mitigated, forming reduced amount of byproducts on the cathode surface. Additionally, other salts such as insulating LiF derived from electrolyte decomposition are also soluble in the presence of TPFPB. The collective effects of TPFPB mitigate the accumulation of parasitic reaction products and stabilize the interfacial resistances between cathode and electrolyte during extended cycling, thus significantly improving the cycling performance of Li[Li0.2Ni0.2Mn0.6]O2.

Zheng, Jianming; Xiao, Jie; Gu, Meng; Zuo, Pengjian; Wang, Chong M.; Zhang, Jiguang

2014-03-15T23:59:59.000Z

177

Fused ring and linking groups effect on overcharge protection for lithium-ion batteries.  

SciTech Connect (OSTI)

The derivatives of 1,3-benzodioxan (DBBD1) and 1,4-benzodioxan (DBBD2) bearing two tert-butyl groups have been synthesized as new redox shuttle additives for overcharge protection of lithium-ion batteries. Both compounds exhibit a reversible redox wave over 4 V vs Li/Li{sup +} with better solubility in a commercial electrolyte (1.2 M LiPF{sub 6}) dissolved in ethylene carbonate/ethyl methyl carbonate (EC/EMC 3/7) than the di-tert-butyl-substituted 1,4-dimethoxybenzene (DDB). The electrochemical stability of DBBD1 and DBBD2 was tested under charge/discharge cycles with 100% overcharge at each cycle in MCMB/LiFePO{sub 4} and Li{sub 4}Ti{sub 5}O{sub 12}/LiFePO{sub 4} cells. DBBD2 shows significantly better performance than DBBD1 for both cell chemistries. The structural difference and reaction energies for decomposition have been studied by density functional calculations.

Weng, W.; Zhang, Z.; Redfern, P. C.; Curtiss, L. A.; Amine, K.

2011-02-01T23:59:59.000Z

178

Design and Simulation of Lithium Rechargeable Batteries  

E-Print Network [OSTI]

A New Rechargeable Plastic Li-Ion Battery," Lithium Batteryion battery developed at Bellcore in Red Bank, NJ.1-6 The experimental prototYpe cell has the configuration: Li

Doyle, C.M.

2010-01-01T23:59:59.000Z

179

Design of an AUV recharging system  

E-Print Network [OSTI]

The Odyssey AUV Series uses a Lithium-ion Polymer battery which is able to supply the necessary power for a limited mission time. The current method of recharge includes surfacing the AUV, opening the vehicle, removing the ...

Miller, Bryan D. (Bryan David)

2005-01-01T23:59:59.000Z

180

Organic salts as super-high rate capability materials for lithium-ion batteries Y. Y. Zhang, Y. Y. Sun, S. X. Du, H.-J. Gao, and S. B. Zhang  

E-Print Network [OSTI]

Organic salts as super-high rate capability materials for lithium-ion batteries Y. Y. Zhang, Y. Y of transition metal doped Li2S as cathode materials in lithium batteries J. Renewable Sustainable Energy 4 of electrode nanomaterials in lithium-ion battery: The effects of surface stress J. Appl. Phys. 112, 103507

Gao, Hongjun

Note: This page contains sample records for the topic "rechargeable lithium-ion batteries" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

Vehicle Technologies Office Merit Review 2014: Daikin Advanced Lithium Ion Battery Technology High Voltage Electrolyte  

Broader source: Energy.gov [DOE]

Presentation given by Daikin America at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about Daikin advanced lithium ion...

182

Surface-Modified Membrane as A Separator for Lithium-Ion Polymer Battery  

E-Print Network [OSTI]

This paper describes the fabrication of novel modified polyethylene (PE) membranes using plasma technology to create high-performance and cost-effective separator membranes for practical applications in lithium-ion polymer ...

Kim, Jun Young

183

Rechargeable Heat Battery's Secret Revealed: Solar Energy Capture...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Rechargeable Heat Battery Rechargeable Heat Battery's Secret Revealed Solar energy capture in chemical form makes it storable and transportable January 11, 2011 | Tags: Chemistry,...

184

An overviewFunctional nanomaterials for lithium rechargeable batteries, supercapacitors, hydrogen storage, and fuel cells  

SciTech Connect (OSTI)

Graphical abstract: Nanomaterials play important role in lithium ion batteries, supercapacitors, hydrogen storage and fuel cells. - Highlights: Nanomaterials play important role for lithium rechargeable batteries. Nanostructured materials increase the capacitance of supercapacitors. Nanostructure improves the hydrogenation/dehydrogenation of hydrogen storage materials. Nanomaterials enhance the electrocatalytic activity of the catalysts in fuel cells. - Abstract: There is tremendous worldwide interest in functional nanostructured materials, which are the advanced nanotechnology materials with internal or external dimensions on the order of nanometers. Their extremely small dimensions make these materials unique and promising for clean energy applications such as lithium ion batteries, supercapacitors, hydrogen storage, fuel cells, and other applications. This paper will highlight the development of new approaches to study the relationships between the structure and the physical, chemical, and electrochemical properties of functional nanostructured materials. The Energy Materials Research Programme at the Institute for Superconducting and Electronic Materials, the University of Wollongong, has been focused on the synthesis, characterization, and applications of functional nanomaterials, including nanoparticles, nanotubes, nanowires, nanoporous materials, and nanocomposites. The emphases are placed on advanced nanotechnology, design, and control of the composition, morphology, nanostructure, and functionality of the nanomaterials, and on the subsequent applications of these materials to areas including lithium ion batteries, supercapacitors, hydrogen storage, and fuel cells.

Liu, Hua Kun, E-mail: hua@uow.edu.au

2013-12-15T23:59:59.000Z

185

Innovative Manufacturing and Materials for Low-Cost Lithium-Ion...  

Broader source: Energy.gov (indexed) [DOE]

Merit Review 2014: Innovative Manufacturing and Materials for Low-Cost Lithium-Ion Batteries Innovative Manufacturing and Materials for Low-Cost Lithium-Ion Batteries...

186

Overcharge Protection for 4 V Lithium Batteries at High Rates and Low Temperature  

E-Print Network [OSTI]

Protection for 4 V Lithium Batteries at High Rates and LowRechargeable lithium batteries are known for their highBecause lithium ion batteries are especially susceptible to

Chen, Guoying

2010-01-01T23:59:59.000Z

187

Cr, N-Codoped TiO2 Mesoporous Microspheres for Li-ion Rechargeable Batteries with Enhanced Electrochemical Performance  

SciTech Connect (OSTI)

Cr,N-codoped TiO2 mesoporous microspheres synthesized using hydrothermal and subsequent nitridation treatment, exhibited higher solubility of nitrogen, and improved electrical conductivity than N-doped TiO2, as anode for Lithium-ion rechargeable batteries, which led to improving charge-discharge capacity at 0.1 C and twice higher rate capability compared to that of nitrogen-doped TiO2 mesoporous microsphere at 10 C

Bi, Zhonghe [ORNL] [ORNL; Paranthaman, Mariappan Parans [ORNL] [ORNL; Guo, Bingkun [ORNL] [ORNL; Unocic, Raymond R [ORNL] [ORNL; Meyer III, Harry M [ORNL] [ORNL; Bridges, Craig A [ORNL] [ORNL; Sun, Xiao-Guang [ORNL] [ORNL; Dai, Sheng [ORNL] [ORNL

2014-01-01T23:59:59.000Z

188

Recovery of lithium and cobalt from waste lithium ion batteries of mobile phone  

SciTech Connect (OSTI)

Graphical abstract: Recovery of valuable metals from scrap batteries of mobile phone. - Highlights: Recovery of Co and Li from spent LIBs was performed by hydrometallurgical route. Under the optimum condition, 99.1% of lithium and 70.0% of cobalt were leached. The mechanism of the dissolution of lithium and cobalt was studied. Activation energy for lithium and cobalt were found to be 32.4 kJ/mol and 59.81 kJ/mol, respectively. After metal recovery, residue was washed before disposal to the environment. - Abstract: In view of the stringent environmental regulations, availability of limited natural resources and ever increasing need of alternative energy critical elements, an environmental eco-friendly leaching process is reported for the recovery of lithium and cobalt from the cathode active materials of spent lithium-ion batteries of mobile phones. The experiments were carried out to optimize the process parameters for the recovery of lithium and cobalt by varying the concentration of leachant, pulp density, reductant volume and temperature. Leaching with 2 M sulfuric acid with the addition of 5% H{sub 2}O{sub 2} (v/v) at a pulp density of 100 g/L and 75 C resulted in the recovery of 99.1% lithium and 70.0% cobalt in 60 min. H{sub 2}O{sub 2} in sulfuric acid solution acts as an effective reducing agent, which enhance the percentage leaching of metals. Leaching kinetics of lithium in sulfuric acid fitted well to the chemical controlled reaction model i.e. 1 ? (1 ? X){sup 1/3} = k{sub c}t. Leaching kinetics of cobalt fitted well to the model ash diffusion control dense constant sizes spherical particles i.e. 1 ? 3(1 ? X){sup 2/3} + 2(1 ? X) = k{sub c}t. Metals could subsequently be separated selectively from the leach liquor by solvent extraction process to produce their salts by crystallization process from the purified solution.

Jha, Manis Kumar, E-mail: mkjha@nmlindia.org; Kumari, Anjan; Jha, Amrita Kumari; Kumar, Vinay; Hait, Jhumki; Pandey, Banshi Dhar

2013-09-15T23:59:59.000Z

189

Fluorinated Phosphazene Co-solvents for Improved Thermal and Safety Performance in Lithium-Ion Battery Electrolytes  

SciTech Connect (OSTI)

The safety of lithium-ion batteries is coming under increased scrutiny as they are being adopted for large format applications especially in the vehicle transportation industry and for grid-scale energy storage. The primary short-comings of lithium-ion batteries are the flammability of the liquid electrolyte and sensitivity to high voltage and elevated temperatures. We have synthesized a series of non-flammable fluorinated phosphazene liquids and blended them with conventional carbonate solvents. While the use of these phosphazenes as standalone electrolytes is highly desirable, they simply do not satisfy all of the many requirements that must be met such as high LiPF6 solubility and low viscosity, thus we have used them as additives and co-solvents in blends with typical carbonates. The physical and electrochemical properties of the electrolyte blends were characterized, and then the blends were used to build 2032-type coin cells which were evaluated at constant current cycling rates from C/10 to C/1. We have evaluated the performance of the electrolytes by determining the conductivity, viscosity, flash point, vapor pressure, thermal stability, electrochemical window, cell cycling data, and the ability to form solid electrolyte interphase (SEI) films. This paper presents our results on a series of chemically similar fluorinated cyclic phosphazene trimers, the FM series, which has exhibited numerous beneficial effects on battery performance, lifetimes, and safety aspects.

Harry W. Rollins; Mason K. Harrup; Eric J. Dufek; David K. Jamison; Sergiy V. Sazhin; Kevin L. Gering; Dayna L. Daubaras

2014-10-01T23:59:59.000Z

190

Ethylmethylcarbonate, a promising solvent for Li-ion rechargeable batteries  

SciTech Connect (OSTI)

Ethylmethylcarbonate (EMC) has been found to be a promising solvent for rechargeable Li-ion batteries. Graphite electrodes, which are usually sensitive to the composition of the electrolyte solution, can be successfully cycled at high reversible capacities in several Li salt solutions in this solvent (LiAsF{sub 6}, LiPF{sub 6}, etc.). These results are interesting because lithium ions cannot intercalate into graphite in diethyl carbonate solutions and cycle poorly in dimethyl carbonate solutions. To understand the high compatibility of EMC for Li-ion battery systems as compared with the other two open-chain alkyl carbonates mentioned above, the surface chemistry developed in both Li and carbon electrodes in EMC solution was studied and compared with that developed on these electrodes in other alkyl carbonate solutions. Basically, the major surface species formed on both electrodes in EMC include ROLi, ROCO{sub 2}Li, and Li{sub 2}CO{sub 3} species. The uniqueness of EMC as a battery solvent is discussed in light of these studies.

Ein-Eli, Y.; Thomas, S.R.; Koch, V. [Covalent Associates Inc., Woburn, MA (United States); Aurbach, D.; Markovsky, B.; Schechter, A. [Bar-Ilan Univ., Ramat Gan (Israel). Dept. of Chemistry

1996-12-01T23:59:59.000Z

191

Three-dimensional graphene/LiFePO{sub 4} nanostructures as cathode materials for flexible lithium-ion batteries  

SciTech Connect (OSTI)

Graphical abstract: Graphene/LiFePO{sub 4} composites as a high-performance cathode material for flexible lithium-ion batteries have been prepared by using a co-precipitation method to synthesize graphene/LiFePO4 powders as precursors and then followed by a solvent evaporation process. - Highlights: Flexible LiFePO{sub 4}/graphene films were prepared first time by a solvent evaporation process. The flexible electrode exhibited a high discharge capacity without conductive additives. Graphene network offers the electrode adequate strength to withstand repeated flexing. - Abstract: Three-dimensional graphene/LiFePO{sub 4} nanostructures for flexible lithium-ion batteries were successfully prepared by solvent evaporation method. Structural characteristics of flexible electrodes were investigated by X-ray diffraction (XRD), atomic force microscopy (AFM) and scanning electron microscopy (SEM). Electrochemical performance of graphene/LiFePO{sub 4} was examined by a variety of electrochemical testing techniques. The graphene/LiFePO{sub 4} nanostructures showed high electrochemical properties and significant flexibility. The composites with low graphene content exhibited a high capacity of 163.7 mAh g{sup ?1} at 0.1 C and 114 mAh g{sup ?1} at 5 C without further incorporation of conductive agents.

Ding, Y.H., E-mail: yhding@xtu.edu.cn [College of Chemical Engineering, Xiangtan University, Hunan 411105 (China); Institute of Rheology Mechanics, Xiangtan University, Hunan 411105 (China); Ren, H.M. [Institute of Rheology Mechanics, Xiangtan University, Hunan 411105 (China); Huang, Y.Y. [BTR New Energy Materials Inc., Shenzhen 518000 (China); Chang, F.H.; Zhang, P. [Institute of Rheology Mechanics, Xiangtan University, Hunan 411105 (China)

2013-10-15T23:59:59.000Z

192

Nanowire Lithium-Ion Battery P R O J E C T L E A D E R : Alec Talin (NIST)  

E-Print Network [OSTI]

To fabricate a single nanowire Li-ion battery and observe it charging and discharging. K E Y A C C O M P L I S H M E N T S Designed, fabricated, and tested complete Li-ion nanowire batteries measuring Nanowire Lithium-Ion Battery P R O J E C T L E A D E R : Alec Talin (NIST) C O L L A B O R A T O R

193

Celgard US Manufacturing Facilities Initiative for Lithium-ion...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Initiative for Lithium-ion Battery Separator Celgard US Manufacturing Facilities Initiative for Lithium-ion Battery Separator FY 2012 Annual Progress Report for Energy Storage R&D...

194

A Failure and Structural Analysis of Block Copolymer Electrolytes for Rechargeable Lithium Metal Batteries  

E-Print Network [OSTI]

for Rechargeable Lithium Metal Batteries By Gregory Michaelfor Rechargeable Lithium Metal Batteries by Gregory Michaelin rechargeable lithium metal batteries. The block copolymer

Stone, Gregory Michael

2012-01-01T23:59:59.000Z

195

Alloys of clathrate allotropes for rechargeable batteries  

DOE Patents [OSTI]

The present disclosure is directed at an electrode for a battery wherein the electrode comprises clathrate alloys of silicon, germanium or tin. In method form, the present disclosure is directed at methods of forming clathrate alloys of silicon, germanium or tin which methods lead to the formation of empty cage structures suitable for use as electrodes in rechargeable type batteries.

Chan, Candace K; Miller, Michael A; Chan, Kwai S

2014-12-09T23:59:59.000Z

196

Fracture of electrodes in lithium-ion batteries caused by fast charging Kejie Zhao, Matt Pharr, Joost J. Vlassak, and Zhigang Suoa  

E-Print Network [OSTI]

Fracture of electrodes in lithium-ion batteries caused by fast charging Kejie Zhao, Matt Pharr distribution of lithium results in stresses that may cause the particle to fracture. The distributions of the particle, below which fracture is averted. © 2010 American Institute of Physics. doi:10.1063/1.3492617 I

197

STUDIES ON TWO CLASSES OF POSITIVE ELECTRODE MATERIALS FOR LITHIUM-ION BATTERIES  

SciTech Connect (OSTI)

The development of advanced lithium-ion batteries is key to the success of many technologies, and in particular, hybrid electric vehicles. In addition to finding materials with higher energy and power densities, improvements in other factors such as cost, toxicity, lifetime, and safety are also required. Lithium transition metal oxide and LiFePO{sub 4}/C composite materials offer several distinct advantages in achieving many of these goals and are the focus of this report. Two series of layered lithium transition metal oxides, namely LiNi{sub 1/3}Co{sub 1/3-y}M{sub y}Mn{sub 1/3}O{sub 2} (M=Al, Co, Fe, Ti) and LiNi{sub 0.4}Co{sub 0.2-y}M{sub y}Mn{sub 0.4}O{sub 2} (M = Al, Co, Fe), have been synthesized. The effect of substitution on the crystal structure is related to shifts in transport properties and ultimately to the electrochemical performance. Partial aluminum substitution creates a high-rate positive electrode material capable of delivering twice the discharge capacity of unsubstituted materials. Iron substituted materials suffer from limited electrochemical performance and poor cycling stability due to the degradation of the layered structure. Titanium substitution creates a very high rate positive electrode material due to a decrease in the anti-site defect concentration. LiFePO{sub 4} is a very promising electrode material but suffers from poor electronic and ionic conductivity. To overcome this, two new techniques have been developed to synthesize high performance LiFePO{sub 4}/C composite materials. The use of graphitization catalysts in conjunction with pyromellitic acid leads to a highly graphitic carbon coating on the surface of LiFePO{sub 4} particles. Under the proper conditions, the room temperature electronic conductivity can be improved by nearly five orders of magnitude over untreated materials. Using Raman spectroscopy, the improvement in conductivity and rate performance of such materials has been related to the underlying structure of the carbon films. The combustion synthesis of LiFePO4 materials allows for the formation of nanoscale active material particles with high-quality carbon coatings in a quick and inexpensive fashion. The carbon coating is formed during the initial combustion process at temperatures that exceed the thermal stability limit of LiFePO{sub 4}. The olivine structure is then formed after a brief calcination at lower temperatures in a controlled environment. The carbon coating produced in this manner has an improved graphitic character and results in superior electrochemical performance. The potential co-synthesis of conductive carbon entities, such as carbon nanotubes and fibers, is also briefly discussed.

Wilcox, James D.

2008-12-18T23:59:59.000Z

198

Electrochemical-thermal modeling and microscale phase change for passive internal thermal management of lithium ion batteries.  

SciTech Connect (OSTI)

A fully coupled electrochemical and thermal model for lithium-ion batteries is developed to investigate the impact of different thermal management strategies on battery performance. In contrast to previous modeling efforts focused either exclusively on particle electrochemistry on the one hand or overall vehicle simulations on the other, the present work predicts local electrochemical reaction rates using temperature-dependent data on commercially available batteries designed for high rates (C/LiFePO{sub 4}) in a computationally efficient manner. Simulation results show that conventional external cooling systems for these batteries, which have a low composite thermal conductivity ({approx}1 W/m-K), cause either large temperature rises or internal temperature gradients. Thus, a novel, passive internal cooling system that uses heat removal through liquid-vapor phase change is developed. Although there have been prior investigations of phase change at the microscales, fluid flow at the conditions expected here is not well understood. A first-principles based cooling system performance model is developed and validated experimentally, and is integrated into the coupled electrochemical-thermal model for assessment of performance improvement relative to conventional thermal management strategies. The proposed cooling system passively removes heat almost isothermally with negligible thermal resistances between the heat source and cooling fluid. Thus, the minimization of peak temperatures and gradients within batteries allow increased power and energy densities unencumbered by thermal limitations.

Fuller, Thomas F. (Georgia Institute of Technology, Atlanta, GA); Bandhauer, Todd (Georgia Institute of Technology, Atlanta, GA); Garimella, Srinivas (Georgia Institute of Technology, Atlanta, GA)

2012-01-01T23:59:59.000Z

199

Structural Integration of Silicon Solar Cells and Lithium-ion Batteries Using Printed Electronics  

E-Print Network [OSTI]

solid state battery ..of the thin-film solid state battery is shown in Fig. 13.the thin-film solid state battery. CHAPTER FIVE Performance

Kang, Jin Sung

2012-01-01T23:59:59.000Z

200

Studies of ionic liquids in lithium-ion battery test systems  

E-Print Network [OSTI]

are not useful for lithium batteries. We are therefore nowapplications using lithium batteries, we must be sure thattemperature range. For lithium batteries in hybrid vehicles,

Salminen, Justin; Prausnitz, John M.; Newman, John

2006-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "rechargeable lithium-ion batteries" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

Characterization of Electrode Materials for Lithium Ion and Sodium Ion Batteries using Synchrotron Radiation Techniques  

E-Print Network [OSTI]

Relationships in the Li-Ion Battery Electrode Material LiNiAl foil may be used for Li ion battery cathode materials andElectrode materials, Li ion battery, Na ion battery, X-ray

Doeff, Marca M.

2013-01-01T23:59:59.000Z

202

Material and energy flows in the materials production, assembly, and end-of-life stages of the automotive lithium-ion battery life cycle  

SciTech Connect (OSTI)

This document contains material and energy flows for lithium-ion batteries with an active cathode material of lithium manganese oxide (LiMn{sub 2}O{sub 4}). These data are incorporated into Argonne National Laboratory's Greenhouse gases, Regulated Emissions, and Energy use in Transportation (GREET) model, replacing previous data for lithium-ion batteries that are based on a nickel/cobalt/manganese (Ni/Co/Mn) cathode chemistry. To identify and determine the mass of lithium-ion battery components, we modeled batteries with LiMn{sub 2}O{sub 4} as the cathode material using Argonne's Battery Performance and Cost (BatPaC) model for hybrid electric vehicles, plug-in hybrid electric vehicles, and electric vehicles. As input for GREET, we developed new or updated data for the cathode material and the following materials that are included in its supply chain: soda ash, lime, petroleum-derived ethanol, lithium brine, and lithium carbonate. Also as input to GREET, we calculated new emission factors for equipment (kilns, dryers, and calciners) that were not previously included in the model and developed new material and energy flows for the battery electrolyte, binder, and binder solvent. Finally, we revised the data included in GREET for graphite (the anode active material), battery electronics, and battery assembly. For the first time, we incorporated energy and material flows for battery recycling into GREET, considering four battery recycling processes: pyrometallurgical, hydrometallurgical, intermediate physical, and direct physical. Opportunities for future research include considering alternative battery chemistries and battery packaging. As battery assembly and recycling technologies develop, staying up to date with them will be critical to understanding the energy, materials, and emissions burdens associated with batteries.

Dunn, J.B.; Gaines, L.; Barnes, M.; Wang, M.; Sullivan, J. (Energy Systems)

2012-06-21T23:59:59.000Z

203

Hydrothermal synthesis of flowerlike SnO{sub 2} nanorod bundles and their application for lithium ion battery  

SciTech Connect (OSTI)

SnO{sub 2} nanorod bundles were synthesized by hydrothermal method. Field-emission scanning electron microscopy and transmission electron microscopy images showed that the as-prepared flowerlike SnO{sub 2} nanorod bundles consist of tetragonal nanorods with size readily tunable. Their electrochemical properties and application as anode for lithium-ion battery were evaluated by galvanostatic dischargecharge testing and cycle voltammetry. SnO{sub 2} nanorod flowers possess improved discharge capacity of 694 mA h g{sup ?1} up to 40th cycle at 0.1 C. - Highlights: ? The flowerlike SnO{sub 2} nanorod bundles were synthesized by hydrothermal method. ? SnO{sub 2} nanorod bundles with tunable size by controlling concentration of SnCl{sub 4}. ? A probable formation mechanism of SnO{sub 2} nanorod bundles has been proposed.

Wen, Zhigang, E-mail: xh168688@126.com [School of Materials Science and Engineering, Central South University, Changsha 410083 (China); State Key Laboratory of Powder Metallurgy, Central South University, Changsha 410083 (China); Department of Chemistry and Chemical Engineering, Qiannan Normal College for Nationalities, Duyun 558000 (China); Zheng, Feng, E-mail: fzheng@mail.csu.edu.cn [School of Materials Science and Engineering, Central South University, Changsha 410083 (China); State Key Laboratory of Powder Metallurgy, Central South University, Changsha 410083 (China); Yu, Hongchun; Jiang, Ziran [School of Materials Science and Engineering, Central South University, Changsha 410083 (China); Liu, Kanglian [Department of Chemistry and Chemical Engineering, Qiannan Normal College for Nationalities, Duyun 558000 (China)

2013-02-15T23:59:59.000Z

204

Bis(fluoromalonato)borate (BFMB) Anion Based Ionic Liquid As an Additive for Lithium-Ion Battery Electrolytes  

SciTech Connect (OSTI)

Propylene carbonate (PC) is a good solvent for lithium ion battery applications due to its low melting point and high dielectric constant. However, PC is easily intercalated into graphite causing it to exfoliate, killing its electrochemical performance. Here we report on the synthesis of a new ionic liquid electrolyte based on partially fluorinated borate anion, 1-butyl-1,2-dimethylimidazolium bis(fluoromalonato)borate (BDMIm.BFMB), which can be used as an additive in 1 M LiPF6/PC electrolyte to suppress graphite exfoliation and improve cycling performance. In addition, both PC and BDMIm.BFMB can be used synergistically as additive to 1.0M LiPF6/methyl isopropyl sulfone (MIPS) to dramatically improve its cycling performance. It is also found that the chemistry nature of the ionic liquids has dramatic effect on their role as additive in PC based electrolyte.

Sun, Xiao-Guang [ORNL] [ORNL; Liao, Chen [ORNL] [ORNL; Baggetto, Loic [ORNL] [ORNL; Guo, Bingkun [ORNL] [ORNL; Unocic, Raymond R [ORNL] [ORNL; Veith, Gabriel M [ORNL] [ORNL; Dai, Sheng [ORNL] [ORNL

2014-01-01T23:59:59.000Z

205

Theory of SEI Formation in Rechargeable Batteries: Capacity Fade, Accelerated Aging and Lifetime Prediction  

E-Print Network [OSTI]

Cycle life is critically important in applications of rechargeable batteries, but lifetime prediction is mostly based on empirical trends, rather than mathematical models. In practical lithium-ion batteries, capacity fade occurs over thousands of cycles, limited by slow electrochemical processes, such as the formation of a solid-electrolyte interphase (SEI) in the negative electrode, which compete with reversible lithium intercalation. Focusing on SEI growth as the canonical degradation mechanism, we show that a simple single-particle model can accurately explain experimentally observed capacity fade in commercial cells with graphite anodes, and predict future fade based on limited accelerated aging data for short times and elevated temperatures. The theory is extended to porous electrodes, predicting that SEI growth is essentially homogeneous throughout the electrode, even at high rates. The lifetime distribution for a sample of batteries is found to be consistent with Gaussian statistics, as predicted by th...

Pinson, Matthew B

2012-01-01T23:59:59.000Z

206

Cation-substituted spinel oxide and oxyfluoride cathodes for lithium ion batteries  

DOE Patents [OSTI]

The present invention includes compositions and methods of making cation-substituted and fluorine-substituted spinel cathode compositions by firing a LiMn.sub.2-y-zLi.sub.yM.sub.zO.sub.4 oxide with NH.sub.4HF.sub.2 at low temperatures of between about 300 and 700.degree. C. for 2 to 8 hours and a .eta. of more than 0 and less than about 0.50, mixed two-phase compositions consisting of a spinel cathode and a layered oxide cathode, and coupling them with unmodified or surface modified graphite anodes in lithium ion cells.

Manthiram, Arumugam; Choi, Wongchang

2014-05-13T23:59:59.000Z

207

STUDIES ON TWO CLASSES OF POSITIVE ELECTRODE MATERIALS FOR LITHIUM-ION BATTERIES  

E-Print Network [OSTI]

4) Lithium Battery Cathode. Electrochemical and Solid-StateBattery Electrodes Utilizing Fibrous Conductive Additives. Electrochemical and Solid-Statesolid state, these effects can become limiting in some systems. 1.3 Battery

Wilcox, James D.

2010-01-01T23:59:59.000Z

208

The Lithium-Ion Cell: Model, State Of Charge Estimation  

E-Print Network [OSTI]

The Lithium-Ion Cell: Model, State Of Charge Estimation and Battery Management System Tutor degradation mechanisms of a Li-ion cell based on LiCoO2", Journal of Power Sources #12;Lithium ions and e and Y. Fuentes. Computer simulations of a lithium-ion polymer battery and implications for higher

Schenato, Luca

209

Internal Short Circuit Device Helps Improve Lithium-Ion Battery Design (Fact Sheet)  

SciTech Connect (OSTI)

NREL's emulation tool helps manufacturers ensure the safety and reliability of electric vehicle batteries.

Not Available

2012-04-01T23:59:59.000Z

210

Mechanics of Electrodes in Lithium-ion Batteries A dissertation presented  

E-Print Network [OSTI]

investigates the mechanical behavior of electrodes in Li-ion batteries. Each electrode in a Li-ion battery of electrodes in Li-ion batteries. We model an inelastic host of Li by considering diffusion, elastic reaction promotes plastic deformation by lowering the stress needed to flow. Li-ion battery is an emerging

211

Cation-substituted spinel oxide and oxyfluoride cathodes for lithium ion batteries  

DOE Patents [OSTI]

The present invention includes compositions and methods of making cation-substituted and fluorine-substituted spinel cathode compositions by firing a LiMn2-y-zLiyMzO4 oxide with NH4HF2 at low temperatures of between about 300 and 700.degree. C. for 2 to 8 hours and a .eta. of more than 0 and less than about 0.50, mixed two-phase compositions consisting of a spinel cathode and a layered oxide cathode, and coupling them with unmodified or surface modified graphite anodes in lithium ion cells.

Manthiram, Arumugam; Choi, Wonchang

2010-05-18T23:59:59.000Z

212

Hierarchical mesoporous/microporous carbon with graphitized frameworks for high-performance lithium-ion batteries  

SciTech Connect (OSTI)

A hierarchical meso-/micro-porous graphitized carbon with uniform mesopores and ordered micropores, graphitized frameworks, and extra-high surface area of ?2200 m{sup 2}/g, was successfully synthesized through a simple one-step chemical vapor deposition process. The commercial mesoporous zeolite Y was utilized as a meso-/ micro-porous template, and the small-molecule methane was employed as a carbon precursor. The as-prepared hierarchical meso-/micro-porous carbons have homogeneously distributed mesopores as a host for electrolyte, which facilitate Li{sup +} ions transport to the large-area micropores, resulting a high reversible lithium ion storage of 1000 mA h/g and a high columbic efficiency of 65% at the first cycle.

Lv, Yingying; Fang, Yin; Qian, Xufang; Tu, Bo [Department of Chemistry, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Laboratory of Advanced Materials, Fudan University, Shanghai 200433 (China); Wu, Zhangxiong [Department of Chemical Engineering, Monash University, Clayton, VIC 3800 (Australia); Asiri, Abdullah M. [Chemistry Department and The Center of Excellence for Advanced Materials Research, King Abdulaziz University, P.O. Box 80203, Jeddah 21589 (Saudi Arabia); Zhao, Dongyuan, E-mail: dyzhao@fudan.edu.cn [Department of Chemistry, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Laboratory of Advanced Materials, Fudan University, Shanghai 200433 (China); Department of Chemical Engineering, Monash University, Clayton, VIC 3800 (Australia)

2014-11-01T23:59:59.000Z

213

Electrochemical and microstructural studies of AlPO?-nanoparticle coated LiCoO? for lithium-ion batteries  

E-Print Network [OSTI]

AlPO?-nanoparticle coated LiCoO? is studied as a positive electrode for lithium rechargeable batteries for a high-voltage charge limit of 4.7V. To understand the role of the coating in transport phenomena and in deintercalation ...

Appapillai, Anjuli T. (Anjuli Tara)

2006-01-01T23:59:59.000Z

214

Layered Li1+x(Ni0.425Mn0.425Co0.15)1xO2 Positive Electrode Materials for Lithium-Ion Batteries  

E-Print Network [OSTI]

Layered Li1+x(Ni0.425Mn0.425Co0.15)1­xO2 Positive Electrode Materials for Lithium-Ion Batteries range decreased with overlithiation Keywords : Although LiCoO2 is suitable for the lithium-ion battery electrochemical performances. Recently lithium-rich manganese-based materials such as Li[NixLi(1/3­2x/3)Mn(2/3­x/3

Boyer, Edmond

215

Battery charging control methods, electric vehicle charging methods, battery charging apparatuses and rechargeable battery systems  

DOE Patents [OSTI]

Battery charging control methods, electric vehicle charging methods, battery charging apparatuses and rechargeable battery systems. According to one aspect, a battery charging control method includes accessing information regarding a presence of at least one of a surplus and a deficiency of electrical energy upon an electrical power distribution system at a plurality of different moments in time, and using the information, controlling an adjustment of an amount of the electrical energy provided from the electrical power distribution system to a rechargeable battery to charge the rechargeable battery.

Tuffner, Francis K. (Richland, WA); Kintner-Meyer, Michael C. W. (Richland, WA); Hammerstrom, Donald J. (West Richland, WA); Pratt, Richard M. (Richland, WA)

2012-05-22T23:59:59.000Z

216

Composition-tailored synthesis of gradient transition metal precursor particles for lithium-ion battery cathode materials.  

SciTech Connect (OSTI)

We report the tailored synthesis of particles with internal gradients in transition metal composition aided by the use of a general process model. Tailored synthesis of transition metal particles was achieved using a coprecipitation reaction with tunable control over the process conditions. Gradients in the internal composition of the particles was monitored and confirmed experimentally by analysis of particles collected during regularly timed intervals. Particles collected from the reactor at the end of the process were used as the precursor material for the solid-state synthesis of Li{sub 1.2}(Mn{sub 0.62}Ni{sub 0.38}){sub 0.8}O{sub 2}, which was electrochemically evaluated as the active cathode material in a lithium battery. The Li{sub 1.2}(Mn{sub 0.62}Ni{sub 0.38}){sub 0.8}O{sub 2} material was the first example of a structurally integrated multiphase material with a tailored internal gradient in relative transition metal composition as the active cathode material in a lithium-ion battery. We believe our general synthesis strategy may be applied to produce a variety of new cathode materials with tunable interior, surface, and overall relative transition metal compositions.

Koenig, G. M.; Belharouak, I.; Deng, H.; Amine, K.; Sun, Y. K. (Chemical Sciences and Engineering Division)

2011-04-12T23:59:59.000Z

217

Tailored Recovery of Carbons from Waste Tires for Enhanced Performance as Anodes in Lithium-ion Batteries  

SciTech Connect (OSTI)

Morphologically tailored pyrolysis-recovered carbon black is utilized in lithium-ion batteries as a potential solution for adding value to waste tire-rubber-derived materials. Micronized tire rubber was digested in a hot oleum bath to yield a sulfonated rubber slurry that was then filtered, washed, and compressed into a solid cake. Carbon was recovered from the modified rubber cake by pyrolysis in a nitrogen atmosphere. The chemical pretreatment of rubber produced a carbon monolith with higher yield than that from the control (a fluffy tire-rubber-derived carbon black). The carbon monolith showed a very small volume fraction of pores of widths 3 4 nm, reduced specific surface area, and an ordered assembly of graphitic domains. Electrochemical studies on the recovered-carbon-based anode revealed an improved Li-ion battery performance with higher reversible capacity than that of commercial carbon materials. Anodes made with a sulfonated tire-rubber-derived carbon and a control tire-rubber-derived carbon, respectively, exhibited an initial coulombic efficiency of 80% and 45%, respectively. The reversible capacity of the cell with the sulfonated carbon as anode was 400 mAh/g after 100 cycles, with nearly 100% coulombic efficiency. Our success in producing higher performance carbon material from waste tire rubber for potential use in energy storage applications adds a new avenue to tire rubber recycling.

Naskar, Amit K [ORNL; Bi, [ORNL; Saha, Dipendu [ORNL; Chi, Miaofang [ORNL; Bridges, Craig A [ORNL; Paranthaman, Mariappan Parans [ORNL

2014-01-01T23:59:59.000Z

218

Implications of Rapid Charging and Chemo-Mechanical Degradation in Lithium-Ion Battery Electrodes  

E-Print Network [OSTI]

Li-ion batteries, owing to their unique characteristics with high power and energy density, are broadly considered a leading candidate for vehicle electrification. A pivotal performance drawback of the Li-ion batteries manifests in the lengthy...

Hasan, Mohammed Fouad

2014-04-23T23:59:59.000Z

219

Efficient Simulation and Reformulation of Lithium-Ion Battery Models for Enabling Electric Transportation  

E-Print Network [OSTI]

Improving the efficiency and utilization of battery systems can increase the viability and cost-effectiveness of existing technologies for electric vehicles (EVs). Developing smarter battery management systems and advanced ...

Northrop, Paul W. C.

220

Efficient Reformulation of Solid-Phase Diffusion in Physics-Based Lithium-Ion Battery Models  

E-Print Network [OSTI]

in the solid phase. Introduction Physics based Li-ion battery models use porous electrode theory. One and their drawbacks Porous electrode models of Li-ion batteries often use approximations to eliminate the time and disadvantages when used in Li-ion battery models. For instance, the Duhamel's superposition method is the robust

Subramanian, Venkat

Note: This page contains sample records for the topic "rechargeable lithium-ion batteries" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

Making Li-air batteries rechargeable: material challenges  

SciTech Connect (OSTI)

A Li-air battery could potentially provide three to five times higher energy density/specific energy than conventional batteries, thus enable the driving range of an electric vehicle comparable to a gasoline vehicle. However, making Li-air batteries rechargeable presents significant challenges, mostly related with materials. Herein, we discuss the key factors that influence the rechargeability of Li-air batteries with a focus on nonaqueous system. The status and materials challenges for nonaqueous rechargeable Li-air batteries are reviewed. These include electrolytes, cathode (electocatalysts), lithium metal anodes, and oxygen-selective membranes (oxygen supply from air). The perspective of rechargeable Li-air batteries is provided.

Shao, Yuyan; Ding, Fei; Xiao, Jie; Zhang, Jian; Xu, Wu; Park, Seh Kyu; Zhang, Jiguang; Wang, Yong; Liu, Jun

2013-02-25T23:59:59.000Z

222

E-Print Network 3.0 - advanced lithium-ion batteries Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Materials Reliability Division Collection: Materials Science 38 1 of 5 Copyright 2007 Tesla Motors Updated: December 19, 2007 The Tesla Roadster Battery System Summary: This...

223

Performance Characteristics of Lithium-ion Batteries of Various Chemistries for Plug-in Hybrid Vehicles  

E-Print Network [OSTI]

initial and life cycle costs of the battery. This paper hasbattery chemistries have the potential for longer cycle life which on a life cycle cost

Burke, Andrew; Miller, Marshall

2009-01-01T23:59:59.000Z

224

Block copolymer with simultaneous electric and ionic conduction for use in lithium ion batteries  

DOE Patents [OSTI]

Redox reactions that occur at the electrodes of batteries require transport of both ions and electrons to the active centers. Reported is the synthesis of a block copolymer that exhibits simultaneous electronic and ionic conduction. A combination of Grignard metathesis polymerization and click reaction was used successively to synthesize the block copolymer containing regioregular poly(3-hexylthiophene) (P3HT) and poly(ethylene oxide) (PEO) segments. The P3HT-PEO/LiTFSI mixture was then used to make a lithium battery cathode with LiFePO.sub.4 as the only other component. All-solid lithium batteries of the cathode described above, a solid electrolyte and a lithium foil as the anode showed capacities within experimental error of the theoretical capacity of the battery. The ability of P3HT-PEO to serve all of the transport and binding functions required in a lithium battery electrode is thus demonstrated.

2013-10-08T23:59:59.000Z

225

Nanocomposite polymer electrolyte for rechargeable magnesium batteries  

SciTech Connect (OSTI)

Nanocomposite polymer electrolytes present new opportunities for rechargeable magnesium batteries. However, few polymer electrolytes have demonstrated reversible Mg deposition/dissolution and those that have still contain volatile liquids such as tetrahydrofuran (THF). In this work, we report a nanocomposite polymer electrolyte based on poly(ethylene oxide) (PEO), Mg(BH4)2 and MgO nanoparticles for rechargeable Mg batteries. Cells with this electrolyte have a high coulombic efficiency of 98% for Mg plating/stripping and a high cycling stability. Through combined experiment-modeling investigations, a correlation between improved solvation of the salt and solvent chain length, chelation and oxygen denticity is established. Following the same trend, the nanocomposite polymer electrolyte is inferred to enhance the dissociation of the salt Mg(BH4)2 and thus improve the electrochemical performance. The insights and design metrics thus obtained may be used in nanocomposite electrolytes for other multivalent systems.

Shao, Yuyan; Rajput, Nav Nidhi; Hu, Jian Z.; Hu, Mary Y.; Liu, Tianbiao L.; Wei, Zhehao; Gu, Meng; Deng, Xuchu; Xu, Suochang; Han, Kee Sung; Wang, Jiulin; Nie, Zimin; Li, Guosheng; Zavadil, K.; Xiao, Jie; Wang, Chong M.; Henderson, Wesley A.; Zhang, Jiguang; Wang, Yong; Mueller, Karl T.; Persson, Kristin A.; Liu, Jun

2014-12-28T23:59:59.000Z

226

Synthesis and Characterization of Lithium Bis(fluoromalonato)borate (LiBFMB) for Lithium Ion Battery Applications  

SciTech Connect (OSTI)

A new orthochelated salt, lithium bis(monofluoromalonato)borate (LiBFMB), has been synthesized and purified for the first time for application in lithium ion batteries. The presence of fluorine in the borate anion of LiBFMB increases its oxidation potential and also facilitates ion dissociation, as reflected by the ratio of ionic conductivity measured by electrochemical impedance spectroscopy ( exp) and that by ion diffusivity coefficients obtained using pulsed field gradient nuclear magnetic resonance (PFG-NMR) technique ( NMR). Half-cell tests using 5.0 V lithium nickel manganese oxide (LiNi0.5Mn1.5O4) as a cathode and EC/DMC/DEC as a solvent reveals that the impedance of the LiBFMB cell is much larger than those of LiPF6 and LiBOB based cells, which results in lower capacity and poor cycling performance of the former. XPS spectra of the cycled cathode electrode suggest that because of the stability of the LiBFMB salt, the solid electrolyte interphase (SEI) formed on the cathode surface is significantly different from those of LiPF6 and LiBOB based electrolytes, resulting in more solvent decomposition and thicker SEI layer. Initial results also indicate that using high dielectric constant solvent PC alters the surface chemistry, reduces the interfacial impedance, and enhances the performance of LiBFMB based 5.0V cell.

Liao, Chen [ORNL] [ORNL; Han, Kee Sung [ORNL] [ORNL; Baggetto, Loic [ORNL] [ORNL; Hillesheim, Daniel A [ORNL] [ORNL; Custelcean, Radu [ORNL] [ORNL; Lee, Dr. Eun-Sung [University of Texas at Austin] [University of Texas at Austin; Guo, Bingkun [ORNL] [ORNL; Bi, Zhonghe [ORNL] [ORNL; Jiang, Deen [ORNL] [ORNL; Veith, Gabriel M [ORNL] [ORNL; Hagaman, Edward {Ed} W [ORNL; Brown, Gilbert M [ORNL] [ORNL; Bridges, Craig A [ORNL] [ORNL; Paranthaman, Mariappan Parans [ORNL] [ORNL; Manthiram, Arumugam [University of Texas at Austin] [University of Texas at Austin; Dai, Sheng [ORNL] [ORNL; Sun, Xiao-Guang [ORNL] [ORNL

2014-01-01T23:59:59.000Z

227

In-Situ Transmission Electron Microscopy Probing of Native Oxide and Artificial Layers on Silicon Nanoparticles for Lithium Ion Batteries  

SciTech Connect (OSTI)

Surface modification of silicon nanoparticle via molecular layer deposition (MLD) has been recently proved to be an effective way for dramatically enhancing the cyclic performance in lithium ion batteries. However, the fundamental mechanism as how this thin layer of coating function is not known, which is even complicated by the inevitable presence of native oxide of several nanometers on the silicon nanoparticle. Using in-situ TEM, we probed in detail the structural and chemical evolution of both uncoated and coated silicon particles upon cyclic lithiation/delithation. We discovered that upon initial lithiation, the native oxide layer converts to crystalline Li2O islands, which essentially increases the impedance on the particle, resulting in ineffective lithiation/delithiation, and therefore low coulombic efficiency. In contrast, the alucone MLD coated particles show extremely fast, thorough and highly reversible lithiation behaviors, which are clarified to be associated with the mechanical flexibility and fast Li+/e- conductivity of the alucone coating. Surprisingly, the alucone MLD coating process chemically changes the silicon surface, essentially removing the native oxide layer and therefore mitigates side reaction and detrimental effects of the native oxide. This study provides a vivid picture of how the MLD coating works to enhance the coulombic efficiency and preserve capacity and clarifies the role of the native oxide on silicon nanoparticles during cyclic lithiation and delithiation. More broadly, this work also demonstrated that the effect of the subtle chemical modification of the surface during the coating process may be of equal importance as the coating layer itself.

He, Yang; Piper, Daniela M.; Gu, Meng; Travis, Jonathan J.; George, Steven M.; Lee, Se-Hee; Genc, Arda; Pullan, Lee; Liu, Jun; Mao, Scott X.; Zhang, Jiguang; Ban, Chunmei; Wang, Chong M.

2014-10-27T23:59:59.000Z

228

Towards First Principles prediction of Voltage Dependences of Electrolyte/Electrolyte Interfacial Processes in Lithium Ion Batteries  

E-Print Network [OSTI]

In lithium ion batteries, Li+ intercalation and processes associated with passivation of electrodes are governed by applied voltages, which are in turn associated with free energy changes of Li+ transfer (Delta G_t) between the solid and liquid phases. Using ab initio molecular dynamics (AIMD) and thermodynamic integration techniques, we compute Delta G_t for the virtual transfer of a Li+ from a LiC(6) anode slab, with pristine basal planes exposed, to liquid ethylene carbonate confined in a nanogap. The onset of delithiation, at Delta G_t=0, is found to occur on LiC(6) anodes with negatively charged basal surfaces. These negative surface charges are evidently needed to retain Li+ inside the electrode, and should affect passivation ("SEI") film formation processes. Fast electrolyte decomposition is observed at even larger electron surface densities. By assigning the experimentally known voltage (0.1 V vs. Li+/Li metal) to the predicted delithiation onset, an absolute potential scale is obtained. This enables ...

Leung, Kevin

2013-01-01T23:59:59.000Z

229

Thermal characteristics of air flow cooling in the lithium ion batteries experimental chamber  

SciTech Connect (OSTI)

A battery pack prototype has been designed and built to evaluate various air cooling concepts for the thermal management of Li-ion batteries. The heat generation from the Li-Ion batteries was simulated with electrical heat generation devices with the same dimensions as the Li-Ion battery (200 mm x 150 mm x 12 mm). Each battery simulator generates up to 15W of heat. There are 20 temperature probes placed uniformly on the surface of the battery simulator, which can measure temperatures in the range from -40 C to +120 C. The prototype for the pack has up to 100 battery simulators and temperature probes are recorder using a PC based DAQ system. We can measure the average surface temperature of the simulator, temperature distribution on each surface and temperature distributions in the pack. The pack which holds the battery simulators is built as a crate, with adjustable gap (varies from 2mm to 5mm) between the simulators for air flow channel studies. The total system flow rate and the inlet flow temperature are controlled during the test. The cooling channel with various heat transfer enhancing devices can be installed between the simulators to investigate the cooling performance. The prototype was designed to configure the number of cooling channels from one to hundred Li-ion battery simulators. The pack is thermally isolated which prevents heat transfer from the pack to the surroundings. The flow device can provide the air flow rate in the gap of up to 5m/s velocity and air temperature in the range from -30 C to +50 C. Test results are compared with computational modeling of the test configurations. The present test set up will be used for future tests for developing and validating new cooling concepts such as surface conditions or heat pipes.

Lukhanin A.; Rohatgi U.; Belyaev, A.; Fedorchenko, D.; Khazhmuradov, M.; Lukhanin, O; Rudychev, I.

2012-07-08T23:59:59.000Z

230

Missouri Lithium-Ion Battery Company Hosts Tour With U.S. Deputy...  

Energy Savers [EERE]

Kokam's in Missouri are helping American workers to compete in the fast-growing advanced battery and energy storage industry," said Deputy Secretary of Energy Poneman. "We at the...

231

Anodes for rechargeable lithium batteries  

DOE Patents [OSTI]

A negative electrode (12) for a non-aqueous electrochemical cell (10) with an intermetallic host structure containing two or more elements selected from the metal elements and silicon, capable of accommodating lithium within its crystallographic host structure such that when the host structure is lithiated it transforms to a lithiated zinc-blende-type structure. Both active elements (alloying with lithium) and inactive elements (non-alloying with lithium) are disclosed. Electrochemical cells and batteries as well as methods of making the negative electrode are disclosed.

Thackeray, Michael M. (Naperville, IL); Kepler, Keith D. (Mountain View, CA); Vaughey, John T. (Elmhurst, IL)

2003-01-01T23:59:59.000Z

232

Layer cathode methods of manufacturing and materials for Li-ion rechargeable batteries  

DOE Patents [OSTI]

A positive electrode active material for lithium-ion rechargeable batteries of general formula Li.sub.1+xNi.sub..alpha.Mn.sub..beta.A.sub..gamma.O.sub.2 and further wherein A is Mg, Zn, Al, Co, Ga, B, Zr, or Ti and 0

Kang, Sun-Ho (Naperville, IL); Amine, Khalil (Downers Grove, IL)

2008-01-01T23:59:59.000Z

233

Characterization of Electrode Materials for Lithium Ion and Sodium Ion Batteries using Synchrotron Radiation Techniques  

SciTech Connect (OSTI)

We describe the use of synchrotron X-ray absorption spectroscopy (XAS) and X-ray diffraction (XRD) techniques to probe details of intercalation/deintercalation processes in electrode materials for Li ion and Na ion batteries. Both in situ and ex situ experiments are used to understand structural behavior relevant to the operation of devices.

Mehta, Apurva; Stanford Synchrotron Radiation Lightsource; Doeff, Marca M.; Chen, Guoying; Cabana, Jordi; Richardson, Thomas J.; Mehta, Apurva; Shirpour, Mona; Duncan, Hugues; Kim, Chunjoong; Kam, Kinson C.; Conry, Thomas

2013-04-30T23:59:59.000Z

234

Molten Air -- A new, highest energy class of rechargeable batteries  

E-Print Network [OSTI]

This study introduces the principles of a new class of batteries, rechargeable molten air batteries, and several battery chemistry examples are demonstrated. The new battery class uses a molten electrolyte, are quasi reversible, and have amongst the highest intrinsic battery electric energy storage capacities. Three examples of the new batteries are demonstrated. These are the iron, carbon and VB2 molten air batteries with respective intrinsic volumetric energy capacities of 10,000, 19,000 and 27,000 Wh per liter.

Licht, Stuart

2013-01-01T23:59:59.000Z

235

Nanoscale Imaging of Lithium Ion Distribution During In Situ Operation of Battery Electrode and Electrolyte  

E-Print Network [OSTI]

A major challenge in the development of new battery materials is understanding their fundamental mechanisms of operation and degradation. Their microscopically inhomogeneous nature calls for characterization tools that provide operando and localized information from individual grains and particles. Here we describe an approach that images the nanoscale distribution of ions during electrochemical charging of a battery in a transmission electron microscope liquid flow cell. We use valence energy-loss spectroscopy to track both solvated and intercalated ions, with electronic structure fingerprints of the solvated ions identified using an ab initio non-linear response theory. Equipped with the new electrochemical cell holder, nanoscale spectroscopy and theory, we have been able to determine the lithiation state of a LiFePO4 electrode and surrounding aqueous electrolyte in real time with nanoscale resolution during electrochemical charge and discharge. We follow lithium transfer between electrode and electrolyte a...

Holtz, Megan E; Gunceler, Deniz; Gao, Jie; Sundararaman, Ravishankar; Schwarz, Kathleen A; Arias, Toms A; Abrua, Hctor D; Muller, David A

2013-01-01T23:59:59.000Z

236

Flexographically Printed Rechargeable Zinc-based Battery for Grid Energy Storage  

E-Print Network [OSTI]

and rechargeable zinc-air battery, U.S. Patent S. Mller,for the rechargeable zincair battery, J Appl Electrochem,zinc-air. The four main types of commercially available rechargeable battery

Wang, Zuoqian

2013-01-01T23:59:59.000Z

237

accumulateurs lithium-ion au: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

in Lithium Ion Battery Electrodes Texas A&M University - TxSpace Summary: Lithium ion battery systems are promising solutions to current energy storage needs due to their high...

238

Solid lithium-ion electrolyte  

DOE Patents [OSTI]

The present invention relates to the composition of a solid lithium-ion electrolyte based on the Li{sub 2}O--CeO{sub 2}--SiO{sub 2} system having good transparent characteristics and high ion conductivity suitable for uses in lithium batteries, electrochromic devices and other electrochemical applications. 12 figs.

Zhang, J.G.; Benson, D.K.; Tracy, C.E.

1998-02-10T23:59:59.000Z

239

Solid lithium-ion electrolyte  

DOE Patents [OSTI]

The present invention relates to the composition of a solid lithium-ion electrolyte based on the Li.sub.2 O--CeO.sub.2 --SiO.sub.2 system having good transparent characteristics and high ion conductivity suitable for uses in lithium batteries, electrochromic devices and other electrochemical applications.

Zhang, Ji-Guang (Golden, CO); Benson, David K. (Golden, CO); Tracy, C. Edwin (Golden, CO)

1998-01-01T23:59:59.000Z

240

Novel Redox Shuttles for Overcharge Protection of Lithium-Ion...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Redox Shuttles for Overcharge Protection of Lithium-Ion Batteries Technology available for licensing: Electrolytes containing novel redox shuttles (electron transporters) for...

Note: This page contains sample records for the topic "rechargeable lithium-ion batteries" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

JCESR: Moving Beyond Lithium-Ion | Argonne National Laboratory  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

JCESR: Moving Beyond Lithium-Ion Share Topic Energy Energy usage Energy storage Batteries Browse By - Any - Energy -Energy efficiency --Vehicles ---Alternative fuels ---Automotive...

242

LiMn{sub 2}O{sub 4} nanoparticles anchored on graphene nanosheets as high-performance cathode material for lithium-ion batteries  

SciTech Connect (OSTI)

Nanocrystalline LiMn{sub 2}O{sub 4}/graphene nanosheets nanocomposite has been successfully synthesized by a one-step hydrothermal method without post-heat treatment. In the nanocomposite, LiMn{sub 2}O{sub 4} nanoparticles of 1030 nm in size are well crystallized and homogeneously anchored on the graphene nanosheets. The graphene nanosheets not only provide a highly conductive matrix for LiMn{sub 2}O{sub 4} nanoparticles but also effectively reduce the agglomeration of LiMn{sub 2}O{sub 4} nanoparticles. The nanocrystalline LiMn{sub 2}O{sub 4}/graphene nanosheets nanocomposite exhibited greatly improved electrochemical performance in terms of specific capacity, cycle performance, and rate capability compared with the bare LiMn{sub 2}O{sub 4} nanoparticles. The superior electrochemical performance of the nanocrystalline LiMn{sub 2}O{sub 4}/graphene nanosheets nanocomposite makes it promising as cathode material for high-performance lithium-ion batteries. - Graphical abstract: Nanocrystalline LiMn{sub 2}O{sub 4}/graphene nanosheets (GNS) nanocomposite exhibit superior cathode performance for lithium-ion batteries compared to the bare LiMn{sub 2}O{sub 4} nanoparticles. Display Omitted - Highlights: LiMn{sub 2}O{sub 4}/graphene nanocomposite is synthesized by a one-step hydrothermal method. LiMn{sub 2}O{sub 4} nanoparticles are uniformly anchored on the graphene nanosheets. The nanocomposite exhibits excellent cathode performance for lithium-ion batteries.

Lin, Binghui; Yin, Qing; Hu, Hengrun; Lu, Fujia [School of Materials Science and Engineering, Nanjing University of Science and Technology, Xiaolingwei 200, Nanjing, Jiangsu 210094 (China); Xia, Hui, E-mail: xiahui@njust.edu.cn [School of Materials Science and Engineering, Nanjing University of Science and Technology, Xiaolingwei 200, Nanjing, Jiangsu 210094 (China); Herbert Gleiter Institute of Nanoscience, Nanjing University of Science and Technology, Nanjing 210094 (China)

2014-01-15T23:59:59.000Z

243

Rechargeable Magnesium Batteries: Low-Cost Rechargeable Magnesium Batteries with High Energy Density  

SciTech Connect (OSTI)

BEEST Project: Pellion Technologies is developing rechargeable magnesium batteries that would enable an EV to travel 3 times farther than it could using Li-ion batteries. Prototype magnesium batteries demonstrate excellent electrochemical behavior; delivering thousands of charge cycles with very little fade. Nevertheless, these prototypes have always stored too little energy to be commercially viable. Pellion Technologies is working to overcome this challenge by rapidly screening potential storage materials using proprietary, high-throughput computer models. To date, 12,000 materials have been identified and analyzed. The resulting best materials have been electrochemically tested, yielding several very promising candidates.

None

2010-10-01T23:59:59.000Z

244

Characterization of Cathode Materials for Rechargeable Lithium Batteries using Synchrotron Based In Situ X-ray Techniques  

SciTech Connect (OSTI)

The emergence of portable telecommunication, computer equipment and ultimately hybrid electric vehicles has created a substantial interest in manufacturing rechargeable batteries that are less expensive, non-toxic, operate for longer time, small in size and weigh less. Li-ion batteries are taking an increasing share of the rechargeable battery market. The present commercial battery is based on a layered LiCoO{sub 2} cathode and a graphitized carbon anode. LiCoO{sub 2} is expensive but it has the advantage being easily manufactured in a reproducible manner. Other low cost layered compounds such as LiNiO{sub 2}, LiNi{sub 0.85}Co{sub 0.15}O{sub 2} or cubic spinels such as LiMn{sub 2}O{sub 4} have been considered. However, these suffer from cycle life and thermal stability problems. Recently, some battery companies have demonstrated a new concept of mixing two different types of insertion compounds to make a composite cathode, aimed at reducing cost and improving self-discharge. Reports clearly showed that this blending technique can prevent the decline in capacity caused by cycling or storage at elevated temperatures. However, not much work has been reported on the charge-discharge characteristics and phase transitions for these composite cathodes. Understanding the structure and structural changes of electrode materials during the electrochemical cycling is the key to develop better .lithium ion batteries. The successful commercialization of the lithium-ion battery is mainly built on the advances in solid state chemistry of the intercalation compounds. Most of the progress in understanding the lithium ion battery materials has been obtained from x-ray diffraction studies. Up to now, most XRD studies on lithium-ion battery materials have been done ex situ. Although these ex situ XRD studies have provided important information about the structures of battery materials, they do face three major problems. First of all, the pre-selected charge (discharge) states may not be representative for the full picture of the structural changes during charge (discharge). In other words, the important information might be missed for those charge (discharge) states which were not selected for ex situ XRD studies. Secondly, the structure of the sample may have changed after removed from the cell. Finally, it is impossible to use the ex situ XRD to study the dynamic effects during high rate charge-discharge, which is crucial for the application of lithium-ion batteries for electric vehicle. A few in situ studies have been done using conventional x-ray tube sources. All of the in situ XRD studies using conventional x-ray tube sources have been done in the reflection mode in cells with beryllium windows. Because of the weak signals, data collection takes a long time, often several hundred hours for a single charge-discharge cycle. This long time data collection is not suitable for dynamic studies at all. Furthermore, in the reflection mode, the x-ray beam probes mainly the surface layer of the cathode materials. Iri collaboration with LG Chemical Ltd., BNL group designed and constructed the cells for in situ studies. LG Chemical provided several blended samples and pouch cells to BNL for preliminary in situ study. The LG Chemical provided help on integrate the blended cathode into these cells. The BNL team carried out in situ XAS and XRD studies on the samples and pouch cells provided by LG Chemical under normal charge-discharge conditions at elevated temperature.

Yang, Xiao-Qing

2007-05-23T23:59:59.000Z

245

Studies of ionic liquids in lithium-ion battery test systems  

SciTech Connect (OSTI)

In this work, thermal and electrochemical properties of neat and mixed ionic liquid - lithium salt systems have been studied. The presence of a lithium salt causes both thermal and phase-behavior changes. Differential scanning calorimeter DSC and thermal gravimetric analysis TGA were used for thermal analysis for several imidazolium bis(trifluoromethylsulfonyl)imide, trifluoromethansulfonate, BF{sub 4}, and PF{sub 6} systems. Conductivities and diffusion coefficient have been measured for some selected systems. Chemical reactions in electrode - ionic liquid electrolyte interfaces were studied by interfacial impedance measurements. Lithium-lithium and lithium-carbon cells were studied at open circuit and a charged system. The ionic liquids studied include various imidazolium systems that are already known to be electrochemically unstable in the presence of lithium metal. In this work the development of interfacial resistance is shown in a Li|BMIMBF{sub 4} + LiBF{sub 4}|Li cell as well as results from some cycling experiments. As the ionic liquid reacts with the lithium electrode the interfacial resistance increases. The results show the magnitude of reactivity due to reduction of the ionic liquid electrolyte that eventually has a detrimental effect on battery performance.

Salminen, Justin; Prausnitz, John M.; Newman, John

2006-06-01T23:59:59.000Z

246

Electrode Materials for Rechargeable Lithium-Ion Batteries: A New Synthetic  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation ProposedUsing Zirconia Nanoparticles as Selective Sorbents . | EMSLSolid

247

Lithium Ion Production NDE  

E-Print Network [OSTI]

Lithium Ion Electrode Production NDE and QC Considerations David Wood, Debasish Mohanty, Jianlin Li, and Claus Daniel 12/9/13 EERE Quality Control Workshop #12;2 Presentation name Lithium Ion Electrode to be meaningful and provide electrode and cell QC. #12;3 Presentation name New Directions in Lithium Ion Electrode

248

Broadcasting with a Battery Limited Energy Harvesting Rechargeable Transmitter  

E-Print Network [OSTI]

) at the transmitter at random instants. The battery at the transmitter has a finite storage capacity, hence energy mayBroadcasting with a Battery Limited Energy Harvesting Rechargeable Transmitter Omur Ozel1 , Jing with a battery limited energy harvesting trans- mitter in a two-user AWGN broadcast channel. The transmitter has

Ulukus, Sennur

249

Layered manganese oxide intergrowth electrodes for rechargeable lithium batteries: Part 1-substitution with Co or Ni  

E-Print Network [OSTI]

Cathode Materials for Lithium Batteries, 2003, Massachusettsfor Rechargeable Lithium Batteries: Part 1-Substitution withelectrode materials for lithium batteries because of their

Dolle, Mickael; Patoux, Sebastien; Doeff, Marca M.

2004-01-01T23:59:59.000Z

250

Improved zinc electrode and rechargeable zinc-air battery  

DOE Patents [OSTI]

The invention comprises an improved rechargeable zinc-air cell/battery having recirculating alkaline electrolyte and a zinc electrode comprising a porous foam support material which carries the active zinc electrode material. 5 figs.

Ross, P.N. Jr.

1988-06-21T23:59:59.000Z

251

Pulsed field gradient magnetic resonance measurements of lithium-ion diffusion  

E-Print Network [OSTI]

The transport of lithium ions between the electrolyte-electrode interface and the electrode bulk is an essential and presently rate limiting process in the high-current operation of lithium-ion batteries. Despite their ...

Krsulich, Kevin D

2014-01-01T23:59:59.000Z

252

Mechanical characterization of lithium-ion battery micro components for development of homogenized and multilayer material models  

E-Print Network [OSTI]

The overall battery research of the Impact and Crashworthiness Laboratory (ICL) at MIT has been focused on understanding the battery's mechanical properties so that individual battery cells and battery packs can be ...

Miller, Kyle M. (Kyle Mark)

2014-01-01T23:59:59.000Z

253

New sealed rechargeable batteries and supercapacitors  

SciTech Connect (OSTI)

This conference was divided into the following sections: supercapacitors; nickel-metal hydride batteries; lithium polymer batteries; lithium/carbon batteries; cathode materials; and lithium batteries. Separate abstracts were prepared for the 46 papers of this conference.

Barnett, B.M. (ed.) (Arthur D. Little, Inc., Cambridge, MA (United States)); Dowgiallo, E. (ed.) (Dept. of Energy, Washington, DC (United States)); Halpert, G. (ed.) (Jet Propulsion Lab., Pasadena, CA (United States)); Matsuda, Y. (ed.) (Yamagushi Univ., Ube (Japan)); Takehara, Z.I. (ed.) (Kyoto Univ. (Japan))

1993-01-01T23:59:59.000Z

254

Factors influencing the discharge characteristics of Na0.44MnO2-based positive electrode materials for rechargeable lithium batteries  

E-Print Network [OSTI]

for Rechargeable Lithium Batteries Marca M. Doeff, Kwang-For Rechargeable Lithium Batteries Marca M. Doefr*, Kwang-FOR RECHARGEABLE LITHIUM BATTERIES Marca M. Doeff * , Kwang-

Doeff, M.M.

2011-01-01T23:59:59.000Z

255

A Facile synthesis of flower-like Co{sub 3}O{sub 4} porous spheres for the lithium-ion battery electrode  

SciTech Connect (OSTI)

The porous hierarchical spherical Co{sub 3}O{sub 4} assembled by nanosheets have been successfully fabricated. The porosity and the particle size of the product can be controlled by simply altering calcination temperature. SEM, TEM and SAED were performed to confirm that mesoporous Co{sub 3}O{sub 4} nanostructures are built-up by numerous nanoparticles with random attachment. The BET specific surface area and pore size of the product calcined at 280 deg. C are 72.5 m{sup 2} g{sup -1} and 4.6 nm, respectively. Our experiments further demonstrated that electrochemical performances of the synthesized products working as an anode material of lithium-ion battery are strongly dependent on the porosity. - Graphical abstract: The flower-like Co{sub 3}O{sub 4} porous spheres with hierarchical structure have been successfully prepared via a simple calcination process using cobalt hydroxide as precursor.

Zheng Jun; Liu Jing; Lv Dongping; Kuang Qin [State Key Laboratory for Physical Chemistry of Solid Surfaces and Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005 (China); Jiang Zhiyuan, E-mail: zyjiang@xmu.edu.c [State Key Laboratory for Physical Chemistry of Solid Surfaces and Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005 (China); Xie Zhaoxiong; Huang Rongbin; Zheng Lansun [State Key Laboratory for Physical Chemistry of Solid Surfaces and Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005 (China)

2010-03-15T23:59:59.000Z

256

Solid lithium ion conducting electrolytes and methods of preparation  

DOE Patents [OSTI]

A composition comprised of nanoparticles of lithium ion conducting solid oxide material, wherein the solid oxide material is comprised of lithium ions, and at least one type of metal ion selected from pentavalent metal ions and trivalent lanthanide metal ions. Solution methods useful for synthesizing these solid oxide materials, as well as precursor solutions and components thereof, are also described. The solid oxide materials are incorporated as electrolytes into lithium ion batteries.

Narula, Chaitanya K; Daniel, Claus

2013-05-28T23:59:59.000Z

257

Rechargeable thin-film lithium batteries  

SciTech Connect (OSTI)

Rechargeable thin-film batteries consisting of lithium metal anodes, an amorphous inorganic electrolyte, and cathodes of lithium intercalation compounds have been fabricated and characterized. These include Li-TiS{sub 2}, Li-V{sub 2}O{sub 5}, and Li-Li{sub x}Mn{sub 2}O{sub 4} cells with open circuit voltages at full charge of about 2.5 V, 3.7 V, and 4.2 V, respectively. The realization of these robust cells, which can be cycled thousands of times, was possible because of the stability of the amorphous lithium electrolyte, lithium phosphorus oxynitride. This material has a typical composition of Li{sub 2.9}PO{sub 3.3}N{sub 0.46}and a conductivity at 25 C of 2 {mu}S/cm. The thin-film cells have been cycled at 100% depth of discharge using current densities of 5 to 100 {mu}A/cm{sup 2}. Over most of the charge-discharge range, the internal resistance appears to be dominated by the cathode, and the major source of the resistance is the diffusion of Li{sup +} ions from the electrolyte into the cathode. Chemical diffusion coefficients were determined from ac impedance measurements.

Bates, J.B.; Gruzalski, G.R.; Dudney, N.J.; Luck, C.F.; Yu, X.

1993-09-01T23:59:59.000Z

258

2/1/2014 New Micro-Windmill TechnologyTo Recharge Cell Phone Batteries http://www.technocrazed.com/new-micro-windmill-technology-to-recharge-cell-phone-batteries 1/4  

E-Print Network [OSTI]

2/1/2014 New Micro-Windmill TechnologyTo Recharge Cell Phone Batteries http://www.technocrazed.com/new-micro-windmill-technology-to-recharge-cell-phone manual winding or new batteries. It is the researchers' dream to recharge the cell phone batteries Micro-Windmill Technology To Recharge Cell Phone Batteries New Micro-Windmill Technology To Recharge

Chiao, Jung-Chih

259

Stability of aluminum in low-temperature lithium-ion battery electrolytes. Progress report, October 1997--September 1998  

SciTech Connect (OSTI)

The authors investigated the stability of aluminum at the high positive potentials encountered during the charging of lithium-ion cells. The electrolyte in these cells consists of solutions of lithium hexafluorophosphate and lithium methide in binary- and ternary-solvent mixtures of ethylene carbonate, dimethyl carbonate, and ethyl methyl carbonate. They performed the investigations with the controlled potential coulometry technique. They found that a protective surface film was formed on aluminum electrodes in these solutions and that this film protected the electrodes from further corrosion. The protective surface film was found to break down in lithium methide solutions at 4.25 V versus a lithium reference electrode, and this resulted in increased corrosion of the aluminum electrodes at higher potentials. In contrast to lithium methide solutions, the protective surface film formed on aluminum electrodes in lithium hexafluorophosphate solutions was found to be quite stable and did not break down at potentials up to [approximately]5 V.

Behl, W.K.; Plichta, E.J.

1999-03-01T23:59:59.000Z

260

Lithium ion sources  

E-Print Network [OSTI]

HIFAN 1866 Lithium ion sources by Prabir K. Roy, Wayne G.No. DE-AC02-05CH11231. Lithium ion sources Prabir K. RoyUSA Abstract A 10.9 cm diameter lithium alumino-silicate ion

Roy, Prabir K.

2014-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "rechargeable lithium-ion batteries" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

Flexographically Printed Rechargeable Zinc-based Battery for Grid Energy Storage  

E-Print Network [OSTI]

of gel electrolyte based solid-state battery chemistry alsoproject, a solid-state rechargeable battery was developedsolid-state batteries, as discussed in this dissertation, has the potential to disrupt the current battery

Wang, Zuoqian

2013-01-01T23:59:59.000Z

262

Investigation of the Rechargeability of Li-O2 Batteries in Non...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

the Rechargeability of Li-O2 Batteries in Non-aqueous Electrolyte. Investigation of the Rechargeability of Li-O2 Batteries in Non-aqueous Electrolyte. Abstract: In order to...

263

Synthesis and electrochemical performances of amorphous carbon-coated Sn-Sb particles as anode material for lithium-ion batteries  

SciTech Connect (OSTI)

The amorphous carbon coating on the Sn-Sb particles was prepared from aqueous glucose solutions using a hydrothermal method. Because the outer layer carbon of composite materials is loose cotton-like and porous-like, it can accommodate the expansion and contraction of active materials to maintain the stability of the structure, and hinder effectively the aggregation of nano-sized alloy particles. The as-prepared composite materials show much improved electrochemical performances as anode materials for lithium-ion batteries compared with Sn-Sb alloy and carbon alone. This amorphous carbon-coated Sn-Sb particle is extremely promising anode materials for lithium secondary batteries and has a high potentiality in the future use. - Graphical abstract: The amorphous carbon coating on the Sn-Sb particles was prepared from aqueous glucose solutions using a hydrothermal method. Because the outer layer carbon of composite materials is loose cotton-like and porous-like, it can accommodate the expansion and contraction of active materials to maintain the stability of the structure, and hinder effectively the aggregation of nano-sized alloy particles.

Wang Zhong [State Key Laboratory of Rare Earth Materials Chemistry and Applications, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871 (China); General Research Institute for Nonferrous Metal, Beijing 100088 (China); Tian Wenhuai [Department of Materials Physics and Chemistry, University of Science and Technology Beijing, Beijing 100083 (China); Liu Xiaohe [Department of Inorganic Materials, Central South University, Changsha, Hunan 410083 (China); Yang Rong [State Key Laboratory of Rare Earth Materials Chemistry and Applications, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871 (China); Li Xingguo [State Key Laboratory of Rare Earth Materials Chemistry and Applications, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871 (China)], E-mail: xgli@pku.edu.cn

2007-12-15T23:59:59.000Z

264

Rechargeable thin film battery and method for making the same  

DOE Patents [OSTI]

A rechargeable, stackable, thin film, solid-state lithium electrochemical cell, thin film lithium battery and method for making the same is disclosed. The cell and battery provide for a variety configurations, voltage and current capacities. An innovative low temperature ion beam assisted deposition method for fabricating thin film, solid-state anodes, cathodes and electrolytes is disclosed wherein a source of energetic ions and evaporants combine to form thin film cell components having preferred crystallinity, structure and orientation. The disclosed batteries are particularly useful as power sources for portable electronic devices and electric vehicle applications where high energy density, high reversible charge capacity, high discharge current and long battery lifetimes are required.

Goldner, Ronald B.; Liu, Te-Yang; Goldner, Mark A.; Gerouki, Alexandra; Haas, Terry E.

2006-01-03T23:59:59.000Z

265

The Effect of Single Walled Carbon Nanotubes on Lithium-Ion Batteries and Electric Double Layer Capacitors  

E-Print Network [OSTI]

into the anode of the Li-ion battery and the electrodes of the EDLC to observe the effects it would have and resistance of the EDLC. If the use of SWNT also improves these devices, it would be evidence that Li-ion batteries and EDLCs are excellent options for more efficient commercial energy storage. Li-ion batteries

Mellor-Crummey, John

266

Novel electrolyte chemistries for Mg-Ni rechargeable batteries.  

SciTech Connect (OSTI)

Commercial hybrid electric vehicles (HEV) and battery electric vehicles (BEV) serve as means to reduce the nation's dependence on oil. Current electric vehicles use relatively heavy nickel metal hydride (Ni-MH) rechargeable batteries. Li-ion rechargeable batteries have been developed extensively as the replacement; however, the high cost and safety concerns are still issues to be resolved before large-scale production. In this study, we propose a new highly conductive solid polymer electrolyte for Mg-Ni high electrochemical capacity batteries. The traditional corrosive alkaline aqueous electrolyte (KOH) is replaced with a dry polymer with conductivity on the order of 10{sup -2} S/cm, as measured by impedance spectroscopy. Several potential novel polymer and polymer composite candidates are presented with the best-performing electrolyte results for full cell testing and cycling.

Garcia-Diaz, Brenda (Savannah River National Laboratory); Kane, Marie; Au, Ming (Savannah River National Laboratory)

2010-10-01T23:59:59.000Z

267

Zinc electrode and rechargeable zinc-air battery  

DOE Patents [OSTI]

An improved zinc electrode is disclosed for a rechargeable zinc-air battery comprising an outer frame and a porous foam electrode support within the frame which is treated prior to the deposition of zinc thereon to inhibit the formation of zinc dendrites on the external surface thereof. The outer frame is provided with passageways for circulating an alkaline electrolyte through the treated zinc-coated porous foam. A novel rechargeable zinc-air battery system is also disclosed which utilizes the improved zinc electrode and further includes an alkaline electrolyte within said battery circulating through the passageways in the zinc electrode and an external electrolyte circulation means which has an electrolyte reservoir external to the battery case including filter means to filter solids out of the electrolyte as it circulates to the external reservoir and pump means for recirculating electrolyte from the external reservoir to the zinc electrode.

Ross, Jr., Philip N. (Kensington, CA)

1989-01-01T23:59:59.000Z

268

Electrochemically Stable Cathode Current Collectors for Rechargeable Magnesium Batteries  

SciTech Connect (OSTI)

Rechargeable Mg batteries are attractive energy storage systems and could bring cost-effective energy solutions. Currently, however, no practical cathode current collectors that can withstand high voltages in Mg2+ electrolytes has been identified and therefore cathode research is greatly hindered. Here we identified that two metals, Mo and W, are electrochemically stable through formation of surface passive layers. The presented results could have significant impacts on the developments of high voltage Mg batteries.

Cheng, Yingwen; Liu, Tianbiao L.; Shao, Yuyan; Engelhard, Mark H.; Liu, Jun; Li, Guosheng

2014-01-01T23:59:59.000Z

269

Journal of Power Sources 160 (2006) 662673 Power and thermal characterization of a lithium-ion battery  

E-Print Network [OSTI]

-ion battery; Electrochemical modeling; Hybrid-electric vehicles; Transient; Solid-state diffusion; Heat, indicating solid-state diffusion is the limiting mechanism. The 3.9 V cell-1 maximum limit, meant to protect where batteries are used as a transient pulse power source, cycled about a relatively fixed state

270

The Effect of Single Walled Carbon Nanotubes on Lithium-Ion Batteries and Electric Double Layer Capacitors  

E-Print Network [OSTI]

on the overall performance of Li-ion batteries and EDLCs. SWNTs were incorporated into the anode of the Lithium carbon in the EDLC to act as conductors. An EDLC containing no SWNT was the control. Activated carbon secondary batteries High voltage (3.6 V) No memory effect lightweight EDLCs High power density High

271

Special Feature: Reducing Energy Costs with Better Batteries  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Scientific Computing Center (NERSC) are working to achieve this goal. New Anode Boots Capacity of Lithium-Ion Batteries Lithium-ion batteries are everywhere- in smart...

272

Innovative Manufacturing and Materials for Low-Cost Lithium-Ion...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Manufacturing and Materials for Low-Cost Lithium-Ion Batteries 2012 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer...

273

Three-Dimensional Thermal-Electrochemical Coupled Model for Spirally Wound Large-Format Lithium-Ion Batteries (Presentation)  

SciTech Connect (OSTI)

This presentation discusses the behavior of spirally wound large-format Li-ion batteries with respect to their design. The objectives of the study include developing thermal and electrochemical models resolving 3-dimensional spirally wound structures of cylindrical cells, understanding the mechanisms and interactions between local electrochemical reactions and macroscopic heat and electron transfers, and developing a tool and methodology to support macroscopic designs of cylindrical Li-ion battery cells.

Lee, K. J.; Smith K.; Kim, G. H.

2011-04-01T23:59:59.000Z

274

Dual Phase Li4 Ti5O12TiO2 Nanowire Arrays As Integrated Anodes For High-rate Lithium-ion Batteries  

SciTech Connect (OSTI)

Lithium titanate (Li4Ti5O12) is well known as a zero strain material inherently, which provides excellent long cycle stability as a negative electrode for lithium ion batteries. However, the low specific capacity (175 mA h g?1) limits it to power batteries although the low electrical conductivity is another intrinsic issue need to be solved. In this work, we developed a facile hydrothermal and ion-exchange route to synthesize the self-supported dual-phase Li4Ti5O12TiO2 nanowire arrays to further improve its capacity as well as rate capability. The ratio of Li4Ti5O12 to TiO2 in the dual phase Li4Ti5O12TiO2 nanowire is around 2:1. The introduction of TiO2 into Li4Ti5O12 increases the specific capacity. More importantly, by interface design, it creates a dual-phase nanostructure with high grain boundary density that facilitates both electron and Li ion transport. Compared with phase-pure nanowire Li4Ti5O12 and TiO2 nanaowire arrays, the dual-phase nanowire electrode yielded superior rate capability (135.5 at 5 C, 129.4 at 10 C, 120.2 at 20 C and 115.5 mA h g?1 at 30 C). In-situ transmission electron microscope clearly shows the near zero deformation of the dual phase structure, which explains its excellent cycle stability.

Liao, Jin; Chabot, Victor; Gu, Meng; Wang, Chong M.; Xiao, Xingcheng; Chen, Zhongwei

2014-08-19T23:59:59.000Z

275

Fabrication of carbon microcapsules containing silicon nanoparticles-carbon nanotubes nanocomposite by sol-gel method for anode in lithium ion battery  

SciTech Connect (OSTI)

Carbon microcapsules containing silicon nanoparticles (Si NPs)-carbon nanotubes (CNTs) nanocomposite (Si-CNT-C) have been fabricated by a surfactant mediated sol-gel method followed by a carbonization process. Silicon nanoparticles-carbon nanotubes (Si-CNT) nanohybrids were produced by a wet-type beadsmill method. To obtain Si-CNT nanocomposites with spherical morphologies, a silica precursor (tetraethylorthosilicate, TEOS) and polymer (PMMA) mixture was employed as a structure-directing medium. Thus the Si-CNT/Silica-Polymer microspheres were prepared by an acid catalyzed sol-gel method. Then a carbon precursor such as polypyrrole (PPy) was incorporated onto the surfaces of pre-existing Si-CNT/silica-polymer to generate Si-CNT/Silica-Polymer-PPy microspheres. Subsequent thermal treatment of the precursor followed by wet etching of silica produced Si-CNT-C microcapsules. The intermediate silica/polymer must disappear during the carbonization and etching process resulting in the formation of an internal free space. The carbon precursor polymer should transform to carbon shell to encapsulate remaining Si-CNT nanocomposites. Therefore, hollow carbon microcapsules containing Si-CNT nanocomposites could be obtained (Si-CNT-C). The successful fabrication was confirmed by scanning electron microscopy (SEM) and X-ray diffraction (XRD). These final materials were employed for anode performance improvement in lithium ion battery. The cyclic performances of these Si-CNT-C microcapsules were measured with a lithium battery half cell tests. - Graphical Abstract: Carbon microcapsules containing silicon nanoparticles (Si NPs)-carbon nanotubes (CNTs) nanocomposite (Si-CNT-C) have been fabricated by a surfactant mediated sol-gel method. Highlights: > Polymeric microcapsules containing Si-CNT transformed to carbon microcapsules. > Accommodate volume changes of Si NPs during Li ion charge/discharge. > Sizes of microcapsules were controlled by experimental parameters. > Lithium storage capacity and coulombic efficiency were demonstrated. > Use of sol-gel procedure as intermediate reaction.

Bae, Joonwon, E-mail: joonwonbae@gmail.com [Samsung Advanced Institute of Technology, Yong-In City 446-712, Gyeong-Gi Province (Korea, Republic of)

2011-07-15T23:59:59.000Z

276

One-pot synthesis of SnO{sub 2}/reduced graphene oxide nanocomposite in ionic liquid-based solution and its application for lithium ion batteries  

SciTech Connect (OSTI)

Graphical abstract: - Highlights: A facile and low-temperature method is developed for SnO{sub 2}/graphene composite. Synthesis performed in a choline chloride-based ionic liquid. The composite shows an enhanced cycling stability as anode for Li-ion batteries. 4 nm SnO{sub 2} nanoparticles mono-dispersed on the surface of reduced graphene oxide. - Abstract: A facile and low-temperature method is developed for SnO{sub 2}/graphene composite which involves an ultrasonic-assistant oxidationreduction reaction between Sn{sup 2+} and graphene oxide in a choline chlorideethylene glycol based ionic liquid under ambient conditions. The reaction solution is non-corrosive and environmental-friendly. Moreover, the proposed technique does not require complicated infrastructures and heat treatment. The SnO{sub 2}/graphene composite consists of about 4 nm sized SnO{sub 2} nanoparticles with cassiterite structure mono-dispersed on the surface of reduced graphene oxide. As anode for lithium-ion batteries, the SnO{sub 2}/graphene composite shows a satisfying cycling stability (535 mAh g{sup ?1} after 50 cycles @100 mA g{sup ?1}), which is significantly prior to the bare 4 nm sized SnO{sub 2} nanocrsytals. The graphene sheets in the hybrid nanostructure could provide a segmentation effect to alleviate the volume expansion of the SnO{sub 2} and restrain the small and active Sn-based particles aggregating into larger and inactive clusters during cycling.

Gu, Changdong, E-mail: cdgu@zju.edu.cn; Zhang, Heng; Wang, Xiuli; Tu, Jiangping

2013-10-15T23:59:59.000Z

277

A NEW CONCEPT IN AN ELECTRICALLY RECHARGEABLE ZINC-AIR ALKALINE BATTERY  

E-Print Network [OSTI]

Study of a New Zinc-Air Battery Concept Using Flowingdiagram of the zinc-air battery single cell prototype usedRECHARGEABLE ZINC-AIR ALKALINE BATTERY Philip N. Ross

Ross, P.N.

2010-01-01T23:59:59.000Z

278

EV Everywhere Batteries Workshop - Materials Processing and Manufactur...  

Energy Savers [EERE]

More Documents & Publications EV Everywhere Batteries Workshop - Next Generation Lithium Ion Batteries Breakout Session Report EV Everywhere Batteries Workshop - Beyond...

279

Development of Production-Intent Plug-In Hybrid Vehicle Using Advanced Lithium-Ion Battery Packs with Deployment to a Demonstration Fleet  

SciTech Connect (OSTI)

The primary goal of this project was to speed the development of one of the first commercially available, OEM-produced plug-in hybrid electric vehicles (PHEV). The performance of the PHEV was expected to double the fuel economy of the conventional hybrid version. This vehicle program incorporated a number of advanced technologies, including advanced lithium-ion battery packs and an E85-capable flex-fuel engine. The project developed, fully integrated, and validated plug-in specific systems and controls by using GMs Global Vehicle Development Process (GVDP) for production vehicles. Engineering Development related activities included the build of mule vehicles and integration vehicles for Phases I & II of the project. Performance data for these vehicles was shared with the U.S. Department of Energy (DOE). The deployment of many of these vehicles was restricted to internal use at GM sites or restricted to assigned GM drivers. Phase III of the project captured the first half or Alpha phase of the Engineering tasks for the development of a new thermal management design for a second generation battery module. The project spanned five years. It included six on-site technical reviews with representatives from the DOE. One unique aspect of the GM/DOE collaborative project was the involvement of the DOE throughout the OEM vehicle development process. The DOE gained an understanding of how an OEM develops vehicle efficiency and FE performance, while balancing many other vehicle performance attributes to provide customers well balanced and fuel efficient vehicles that are exciting to drive. Many vehicle content and performance trade-offs were encountered throughout the vehicle development process to achieve product cost and performance targets for both the OEM and end customer. The project team completed two sets of PHEV development vehicles with fully integrated PHEV systems. Over 50 development vehicles were built and operated for over 180,000 development miles. The team also completed four GM engineering development Buy-Off rides/milestones. The project included numerous engineering vehicle and systems development trips including extreme hot, cold and altitude exposure. The final fuel economy performance demonstrated met the objectives of the PHEV collaborative GM/DOE project. Charge depletion fuel economy of twice that of the non-PHEV model was demonstrated. The project team also designed, developed and tested a high voltage battery module concept that appears to be feasible from a manufacturability, cost and performance standpoint. The project provided important product development and knowledge as well as technological learnings and advancements that include multiple U.S. patent applications.

No, author

2013-09-29T23:59:59.000Z

280

Modification of carbon nanotubes by CuO-doped NiO nanocomposite for use as an anode material for lithium-ion batteries  

SciTech Connect (OSTI)

CuO-doped NiO (CuNiO) with porous hexagonal morphology is fabricated via a modified in-situ co-precipitation method and its nanocomposite is prepared with carbon nanotubes (CNTs). The electrochemical properties of CuNiO/CNT nanocomposite are investigated by cyclic voltammetry (CV), galvanostatic chargedischarge tests and electrochemical impedance spectroscopy (EIS). Since Cu can both act as conductor and a catalyst, the CuNiO/CNT nanocomposite exhibits higher initial coulombic efficiency (82.7% of the 2nd cycle) and better capacity retention (78.6% on 50th cycle) than bare CuNiO (78.9% of the 2nd cycle), CuO/CNT (76.8% of the 2nd cycle) and NiO/CNT (77.7% of the 2nd cycle) at the current density of 100 mA /g. This high capacity and good cycling ability is attributed to the partial substitution of Cu{sup +2} for Ni{sup +2}, resulting in an increase of holes concentration, and therefore improved p-type conductivity along with an intimate interaction with CNTs providing large surface area, excellent conduction, mechanical strength and chemical stability. - Graphical abstract: The porous CuNiO/CNT nanocomposite synthesized via a modified co-precipitation method in combination with subsequent calcination was applied in the negative electrode materials for lithium-ion batteries and exhibited high electrochemical performance. - Highlights: CuO doped NiO/CNTs nano composite is achieved via a simple co-precipitation method. Monodispersity, shape and sizes of sample particles is specifically controlled. Good quality adhesion between CNTs and CuNiO is visible from TEM image. High electrochemical performance is achieved. Discharge capacity of 686 mA h/g after 50 cycles with coulombic efficiency (82.5%)

Mustansar Abbas, Syed, E-mail: qau_abbas@yahoo.com [Nanoscience and Catalysis Division, National Centre for Physics, Islamabad 45320 (Pakistan); Department of Chemistry, Quaid-e-Azam University, Islamabad (Pakistan); Tajammul Hussain, Syed [Nanoscience and Catalysis Division, National Centre for Physics, Islamabad 45320 (Pakistan); Ali, Saqib [Department of Chemistry, Quaid-e-Azam University, Islamabad (Pakistan); Ahmad, Nisar [Department of Chemistry, Hazara University, Mansehra (Pakistan); Ali, Nisar [Department of Physics, University of Punjab, Lahore (Pakistan); Abbas, Saghir [Department of Chemistry, Quaid-e-Azam University, Islamabad (Pakistan); Ali, Zulfiqar [Nanoscience and Catalysis Division, National Centre for Physics, Islamabad 45320 (Pakistan); College of Earth and Environmental Sciences, University of Punjab, Lahore (Pakistan)

2013-06-15T23:59:59.000Z

Note: This page contains sample records for the topic "rechargeable lithium-ion batteries" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

Improved Lithium Ion Behavior Properties of TiO2@Graphitic-like Carbon Core@Shell Nanostructure  

E-Print Network [OSTI]

Improved Lithium Ion Behavior Properties of TiO2@Graphitic-like Carbon Core@Shell Nanostructure Min Intercalation Electrochemistry Capacitance Lithium Ion batteries A B S T R A C T We demonstrate TiO2@graphitic on the electrode surface and enhanced lithium ion intercalation, leading to lower charge transfer resistance

Cao, Guozhong

282

Self-doped block copolymer electrolytes for solid-state, rechargeable lithium batteries  

E-Print Network [OSTI]

Self-doped block copolymer electrolytes for solid-state, rechargeable lithium batteries Donald R. Introduction The ideal electrolyte material for a solid-state battery would have the ionic conductivity and cathode binder thin-®lm, solid-state, rechargeable lithium batteries of the type Li/ BCE/LiMnO2 have been

Sadoway, Donald Robert

283

Combustion synthesized nanocrystalline Li{sub 3}V{sub 2}(PO{sub 4}){sub 3}/C cathode for lithium-ion batteries  

SciTech Connect (OSTI)

Graphical abstract: Nanocrystalline Li{sub 3}V{sub 2}(PO{sub 4}){sub 3}/C compound has been synthesized using a novel corn assisted combustion (CAC) method, wherein the composite prepared at 850 C is found to exhibit superior physical and electrochemical properties than the one synthesized at 800 C (Fig. 1). Despite the charge disproportionation of V{sup 4+} and a possible solid solution behavior of Li{sub 3}V{sub 2}(PO{sub 4}){sub 3} cathode upon insertion and de-insertion of Li{sup +} ions, the structural stability of the same is appreciable, even with the extraction of third lithium at 4.6 V (Fig. 2). An appreciable specific capacity of 174 mAh g{sup ?1} with an excellent columbic efficiency (99%) and better capacity retention upon high rate applications have been exhibited by Li{sub 3}V{sub 2}(PO{sub 4}){sub 3}/C cathode, thus demonstrating the feasibility of CAC method in preparing the title compound to best suit with the needs of lithium battery applications. Display Omitted Highlights: ? Novel corn assisted combustion method has been used to synthesize Li{sub 3}V{sub 2}(PO{sub 4}){sub 3}/C. ? Corn is a cheap and eco benign combustible fuel to facilitate CAC synthesis. ? Li{sub 3}V{sub 2}(PO{sub 4}){sub 3}/C exhibits an appreciable specific capacity of 174 mAh g{sup ?1} (C/10 rate). ? Currently observed columbic efficiency of 99% is better than the reported behavior. ? Suitability of Li{sub 3}V{sub 2}(PO{sub 4}){sub 3}/C cathode up to 10C rate is demonstrated. -- Abstract: Nanocrystalline Li{sub 3}V{sub 2}(PO{sub 4}){sub 3}/C composite synthesized using a novel corn assisted combustion method at 850 C exhibits superior physical and electrochemical properties than the one synthesized at 800 C. Despite the charge disproportionation of V{sup 4+} and a possible solid solution behavior of Li{sub 3}V{sub 2}(PO{sub 4}){sub 3} cathode upon insertion and extraction of Li{sup +} ions, the structural stability of the same is appreciable, even with the extraction of third lithium at 4.6 V. An appreciable specific capacity of 174 mAh g{sup ?1} and better capacity retention upon high rate applications have been exhibited by Li{sub 3}V{sub 2}(PO{sub 4}){sub 3}/C cathode, thus demonstrating the suitability of the same for lithium-ion battery applications.

Nathiya, K.; Bhuvaneswari, D.; Gangulibabu [Central Electrochemical Research Institute, Karaikudi 630006 (India)] [Central Electrochemical Research Institute, Karaikudi 630006 (India); Kalaiselvi, N., E-mail: kalaiselvicecri@gmail.com [Central Electrochemical Research Institute, Karaikudi 630006 (India)

2012-12-15T23:59:59.000Z

284

Novel Cell Design for Combined In Situ Acoustic Emission and X-ray Diffraction of Cycling Lithium Ion Batteries  

SciTech Connect (OSTI)

An in situ acoustic emission (AE) and X-ray diffraction (XRD) cell for use in the study of battery electrode materials has been devised and tested. This cell uses commercially available coin cell hardware retrofitted with a metalized polyethylene terephthalate (PET) disk which acts as both an X-ray window and a current collector. In this manner the use of beryllium and its associated cost and hazard is avoided. An AE sensor may be affixed to the cell face opposite the PET window in order to monitor degradation effects, such as particle fracture, during cell cycling. Silicon particles which were previously studied by the AE technique were tested in this cell as a model material. The performance of these cells compared well with unmodified coin cells while providing information about structural changes in the active material as the cell is repeatedly charged and discharged.

Rhodes, Kevin J [ORNL; Kirkham, Melanie J [ORNL; Meisner, Roberta Ann [ORNL; Parish, Chad M [ORNL; Dudney, Nancy J [ORNL; Daniel, Claus [ORNL

2011-01-01T23:59:59.000Z

285

An electrical network model for computing current distribution in a spirally wound lithium ion cell  

E-Print Network [OSTI]

Lithium ion batteries are the most viable option for electric vehicles but they still have significant limitations. Safety of these batteries is one of the concerns that need to be addressed when they are used in mainstream ...

Patnaik, Somani

2012-01-01T23:59:59.000Z

286

Rechargeable aluminum batteries with conducting polymers as positive electrodes.  

SciTech Connect (OSTI)

This report is a summary of research results from an Early Career LDRD project con-ducted from January 2012 to December 2013 at Sandia National Laboratories. Demonstrated here is the use of conducting polymers as active materials in the posi-tive electrodes of rechargeable aluminum-based batteries operating at room tempera-ture. The battery chemistry is based on chloroaluminate ionic liquid electrolytes, which allow reversible stripping and plating of aluminum metal at the negative elec-trode. Characterization of electrochemically synthesized polypyrrole films revealed doping of the polymers with chloroaluminate anions, which is a quasi-reversible reac-tion that facilitates battery cycling. Stable galvanostatic cycling of polypyrrole and polythiophene cells was demonstrated, with capacities at near-theoretical levels (30-100 mAh g-1) and coulombic efficiencies approaching 100%. The energy density of a sealed sandwich-type cell with polythiophene at the positive electrode was estimated as 44 Wh kg-1, which is competitive with state-of-the-art battery chemistries for grid-scale energy storage.

Hudak, Nicholas S.

2013-12-01T23:59:59.000Z

287

Rechargeable Lithium-Air Batteries: Development of Ultra High Specific Energy Rechargeable Lithium-Air Batteries Based on Protected Lithium Metal Electrodes  

SciTech Connect (OSTI)

BEEST Project: PolyPlus is developing the worlds first commercially available rechargeable lithium-air (Li-Air) battery. Li-Air batteries are better than the Li-Ion batteries used in most EVs today because they breathe in air from the atmosphere for use as an active material in the battery, which greatly decreases its weight. Li-Air batteries also store nearly 700% as much energy as traditional Li-Ion batteries. A lighter battery would improve the range of EVs dramatically. Polyplus is on track to making a critical breakthrough: the first manufacturable protective membrane between its lithiumbased negative electrode and the reaction chamber where it reacts with oxygen from the air. This gives the battery the unique ability to recharge by moving lithium in and out of the batterys reaction chamber for storage until the battery needs to discharge once again. Until now, engineers had been unable to create the complex packaging and air-breathing components required to turn Li-Air batteries into rechargeable systems.

None

2010-07-01T23:59:59.000Z

288

Probabilistic Analysis of Rechargeable Batteries in a Photovoltaic Power Supply System  

SciTech Connect (OSTI)

We developed a model for the probabilistic behavior of a rechargeable battery acting as the energy storage component in a photovoltaic power supply system. Stochastic and deterministic models are created to simulate the behavior of the system component;. The components are the solar resource, the photovoltaic power supply system, the rechargeable battery, and a load. Artificial neural networks are incorporated into the model of the rechargeable battery to simulate damage that occurs during deep discharge cycles. The equations governing system behavior are combined into one set and solved simultaneously in the Monte Carlo framework to evaluate the probabilistic character of measures of battery behavior.

Barney, P.; Ingersoll, D.; Jungst, R.; O'Gorman, C.; Paez, T.L.; Urbina, A.

1998-11-24T23:59:59.000Z

289

Mapping Particle Charges in Battery Electrodes  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

of batteries masks their chemical complexity. A typical lithium-ion battery in a cell phone consists of trillions of particles. When a lithium-ion battery is charged or...

290

Electrochimica Acta 51 (2006) 20122022 A generalized cycle life model of rechargeable Li-ion batteries  

E-Print Network [OSTI]

­discharge model to simulate the cycle life behavior of rechargeable Li-ion batteries has been developed. The model and Newman [4] made a first attempt to model the parasitic reaction in Li-ion batteries by assuming a solvent and reversible capacity loss due to the growth and dissolution of SEI film in Li-ion batteries. Ramadass et al

Popov, Branko N.

291

Mn3O4-Graphene Hybrid as a High-Capacity Anode Material for Lithium Ion Hailiang Wang,,  

E-Print Network [OSTI]

Mn3O4-Graphene Hybrid as a High-Capacity Anode Material for Lithium Ion Batteries Hailiang Wang hybrid materials of Mn3O4 nanoparticles on reduced graphene oxide (RGO) sheets for lithium ion battery stability, owing to the intimate interactions between the graphene substrates and the Mn3O4 nanoparticles

Cui, Yi

292

Lithium transition metal fluorophosphates (Li{sub 2}CoPO{sub 4}F and Li{sub 2}NiPO{sub 4}F) as cathode materials for lithium ion battery from atomistic simulation  

SciTech Connect (OSTI)

Lithium transition metal fluorophosphates (Li{sub 2}MPO{sub 4}F, M: Co and Ni) have been investigated from atomistic simulation. In order to predict the characteristics of these materials as cathode materials for lithium ion batteries, structural property, defect chemistry, and Li{sup +} ion transportation property are characterized. The coreshell model with empirical force fields is employed to reproduce the unit-cell parameters of crystal structure, which are in good agreement with the experimental data. In addition, the formation energies of intrinsic defects (Frenkel and antisite) are determined by energetics calculation. From migration energy calculations, it is found that these flurophosphates have a 3D Li{sup +} ion diffusion network forecasting good Li{sup +} ion conducting performances. Accordingly, we expect that this study provides an atomic scale insight as cathode materials for lithium ion batteries. - Graphical abstract: Lithium transition metal fluorophosphates (Li{sub 2}CoPO{sub 4}F and Li{sub 2}NiPO{sub 4}F). Display Omitted - Highlights: Lithium transition metal fluorophosphates (Li{sub 2}MPO{sub 4}F, M: Co and Ni) are investigated from classical atomistic simulation. The unit-cell parameters from experimental studies are reproduced by the coreshell model. Li{sup +} ion conducting Li{sub 2}MPO{sub 4}F has a 3D Li{sup +} ion diffusion network. It is predicted that Li/Co or Li/Ni antisite defects are well-formed at a substantial concentration level.

Lee, Sanghun, E-mail: sh0129.lee@samsung.com; Park, Sung Soo, E-mail: sung.s.park@samsung.com

2013-08-15T23:59:59.000Z

293

Novel carbonaceous materials used as anodes in lithium ion cells  

SciTech Connect (OSTI)

The objective of this work is to synthesize disordered carbons used as anodes in lithium ion batteries, where the porosity and surface area are controlled. Both parameters are critical since the irreversible capacity obtained in the first cycle seems to be associated with the surface area (an exfoliation mechanism occurs in which the exposed surface area continues to increase).

Sandi, G.; Winans, R.E.; Carrado, K.A.

1997-09-01T23:59:59.000Z

294

Thin film method of conducting lithium-ions  

DOE Patents [OSTI]

The present invention relates to the composition of a solid lithium-ion electrolyte based on the Li.sub.2 O--CeO.sub.2 --SiO.sub.2 system having good transparent characteristics and high ion conductivity suitable for uses in lithium batteries, electrochromic devices and other electrochemical applications.

Zhang, Ji-Guang (Golden, CO); Benson, David K. (Golden, CO); Tracy, C. Edwin (Golden, CO)

1998-11-10T23:59:59.000Z

295

Thin film method of conducting lithium-ions  

DOE Patents [OSTI]

The present invention relates to the composition of a solid lithium-ion electrolyte based on the Li{sub 2}O-CeO{sub 2}-SiO{sub 2} system having good transparent characteristics and high ion conductivity suitable for uses in lithium batteries, electrochromic devices and other electrochemical applications. 12 figs.

Zhang, J.G.; Benson, D.K.; Tracy, C.E.

1998-11-10T23:59:59.000Z

296

Self-Organized Amorphous TiO2 Nanotube Arrays on Porous Ti Foam for Rechargeable Lithium and Sodium Ion Batteries  

SciTech Connect (OSTI)

Self-organized amorphous TiO2 nanotube arrays (NTAs) were successfully fabricated on both Ti foil and porous Ti foam through electrochemical anodization techniques. The starting Ti foams were fabricated using ARCAM s Electron Beam Melting (EBM) technology. The TiO2 NTAs on Ti foam were used as anodes in lithium ion batteries; they exhibited high capacities of 103 Ahcm-2 at 10 Acm-2 and 83 Ahcm-2 at 500 Acm-2, which are two to three times higher than those achieved on the standard Ti foil, which is around 40 Ahcm-2 at 10 Acm-2 and 24 Ahcm-2 at 500 Acm-2, respectively. This improvement is mainly attributed to higher surface area of the Ti foam and higher porosity of the nanotube arrays layer grown on the Ti foam. In addition, a Na-ion half-cell composed of these NTAs anodes and Na metal showed a self-improving specific capacity upon cycling at 10 Acm-2. These results indicate that TiO2 NTAs grown on Ti porous foam are promising electrodes for Li-ion or Na-ion rechargeable batteries.

Bi, Zhonghe [ORNL; Paranthaman, Mariappan Parans [ORNL; Menchhofer, Paul A [ORNL; Dehoff, Ryan R [ORNL; Bridges, Craig A [ORNL; Chi, Miaofang [ORNL; Guo, Bingkun [ORNL; Sun, Xiao-Guang [ORNL; Dai, Sheng [ORNL

2013-01-01T23:59:59.000Z

297

Exploring the interaction between lithium ion and defective graphene surface using dispersion corrected DFT studies  

SciTech Connect (OSTI)

To analyze the lithium ion interaction with realistic graphene surfaces, we carried out dispersion corrected DFT-D3 studies on graphene with common point defects and chemisorbed oxygen containing functional groups along with defect free graphene surface. Our study reveals that, the interaction between lithium ion (Li+) and graphene is mainly through the delocalized ? electron of pure graphene layer. However, the oxygen containing functional groups pose high adsorption energy for lithium ion due to the Li-O ionic bond formation. Similarly, the point defect groups interact with lithium ion through possible carbon dangling bonds and/or cation-? type interactions. Overall these defect sites render a preferential site for lithium ions compared with pure graphene layer. Based on these findings, the role of graphene surface defects in lithium battery performance were discussed.

Vijayakumar, M.; Hu, Jian Z.

2013-10-15T23:59:59.000Z

298

High energy density, thin-lm, rechargeable lithium batteries for marine eld operations  

E-Print Network [OSTI]

High energy density, thin-®lm, rechargeable lithium batteries for marine ®eld operations Biying February 2001 Abstract All solid state, thin-®lm batteries with the cell con®guration of VOx, no binder) cathode consisted of a dense ®lm of vanadium oxide (200 nm thick), deposited on aluminum foil

Sadoway, Donald Robert

299

SMART METER PRIVACY USING A RECHARGEABLE BATTERY: MINIMIZING THE RATE OF INFORMATION LEAKAGE  

E-Print Network [OSTI]

SMART METER PRIVACY USING A RECHARGEABLE BATTERY: MINIMIZING THE RATE OF INFORMATION LEAKAGE David. INTRODUCTION Deployments of smart electricity meters to residential homes con- tinue unabated around the world resources. Smart meters are essential to coordinate the desired charging and discharg- ing of the batteries

Khisti, Ashish

300

Automated Battery Swap and Recharge to Enable Persistent UAV Missions  

E-Print Network [OSTI]

This paper introduces a hardware platform for automated battery changing and charging for multiple UAV agents. The automated station holds a bu er of 8 batteries in a novel dual-drum structure that enables a "hot" battery ...

Toksoz, Tuna

Note: This page contains sample records for the topic "rechargeable lithium-ion batteries" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

Maximizing the Life of a Lithium-Ion Cell by Optimization of Charging Rates  

E-Print Network [OSTI]

for lithium-ion batteries to maximize the energy storage. However, Methekar et al. did not deal with the useful cell life. Similar work has been done by Wang to maximize the efficiency of the battery charging been done to understand the capacity fade phenomena and predict the battery life.1-22 How- ever, only

302

Lithium borate cluster salts as novel redox shuttles for overcharge protection of lithium-ion cells.  

SciTech Connect (OSTI)

Redox shuttle is a promising mechanism for intrinsic overcharge protection in lithium-ion cells and batteries. Two lithium borate cluster salts are reported to function as both the main salt for a nonaqueous electrolyte and the redox shuttle for overcharge protection. Lithium borate cluster salts with a tunable redox potential are promising candidates for overcharge protection for most positive electrodes in state-of-the-art lithium-ion cells.

Chen, Z.; Liu, J.; Jansen, A. N.; Casteel, B.; Amine, K.; GirishKumar, G.; Air Products and Chemicals, Inc.

2010-01-01T23:59:59.000Z

303

Lithium ion conducting electrolytes  

DOE Patents [OSTI]

The present invention relates generally to highly conductive alkali-metal ion non-crystalline electrolyte systems, and more particularly to novel and unique molten (liquid), rubbery, and solid electrolyte systems which are especially well suited for use with high current density electrolytic cells such as primary and secondary batteries.

Angell, Charles Austen (Mesa, AZ); Liu, Changle (Midland, MI); Xu, Kang (Montgomery Village, MD); Skotheim, Terje A. (Tucson, AZ)

1999-01-01T23:59:59.000Z

304

Rechargeable lithium battery for use in applications requiring a low to high power output  

DOE Patents [OSTI]

Rechargeable lithium batteries which employ characteristics of thin-film batteries can be used to satisfy power requirements within a relatively broad range. Thin-film battery cells utilizing a film of anode material, a film of cathode material and an electrolyte of an amorphorus lithium phosphorus oxynitride can be connected in series or parallel relationship for the purpose of withdrawing electrical power simultaneously from the cells. In addition, such battery cells which employ a lithium intercalation compound as its cathode material can be connected in a manner suitable for supplying power for the operation of an electric vehicle. Still further, by incorporating within the battery cell a relatively thick cathode of a lithium intercalation compound, a relatively thick anode of lithium and an electrolyte film of lithium phosphorus oxynitride, the battery cell is rendered capable of supplying power for any of a number of consumer products, such as a laptop computer or a cellular telephone.

Bates, John B. (Oak Ridge, TN)

1996-01-01T23:59:59.000Z

305

Rechargeable lithium battery for use in applications requiring a low to high power output  

DOE Patents [OSTI]

Rechargeable lithium batteries which employ characteristics of thin-film batteries can be used to satisfy power requirements within a relatively broad range. Thin-film battery cells utilizing a film of anode material, a film of cathode material and an electrolyte of an amorphous lithium phosphorus oxynitride can be connected in series or parallel relationship for the purpose of withdrawing electrical power simultaneously from the cells. In addition, such battery cells which employ a lithium intercalation compound as its cathode material can be connected in a manner suitable for supplying power for the operation of an electric vehicle. Still further, by incorporating within the battery cell a relatively thick cathode of a lithium intercalation compound, a relatively thick anode of lithium and an electrolyte film of lithium phosphorus oxynitride, the battery cell is rendered capable of supplying power for any of a number of consumer products, such as a laptop computer or a cellular telephone.

Bates, John B. (Oak Ridge, TN)

1997-01-01T23:59:59.000Z

306

Preparation of novel carbon microfiber/carbon nanofiber-dispersed polyvinyl alcohol-based nanocomposite material for lithium-ion electrolyte battery separator  

E-Print Network [OSTI]

December 2012 Keywords: Li-ion battery separator Polyvinyl alcohol Carbon micro-nanofibers Suspension acetate to produce polyvinyl alcohol gel, ball-milling of the surfactant dispersed carbon micro of the polyvinyl alcohol gel formation, and the mixing of hydro- phobic reagents along with polyethylene glycol

Singh, Jayant K.

307

Positive Energy From rechargeable batteries to fuel cells: electrochemical energy as one  

E-Print Network [OSTI]

of the fascinating and green alternatives to combustion engines Yaakov Vilenchik1 , David Andelman2 and Emanuel such as rechargeable batteries and fuel cells, which in the future could replace the combustion engine. We equally with oxygen in the air), which in turn is used to heat water into steam. Steam under high pressure has large

Andelman, David

308

Graphene-sulfur nanocomposites for rechargeable lithium-sulfur battery electrodes  

SciTech Connect (OSTI)

Rechargeable lithium-sulfur batteries having a cathode that includes a graphene-sulfur nanocomposite can exhibit improved characteristics. The graphene-sulfur nanocomposite can be characterized by graphene sheets with particles of sulfur adsorbed to the graphene sheets. The sulfur particles have an average diameter less than 50 nm..

Liu, Jun; Lemmon, John P; Yang, Zhenguo; Cao, Yuiliang; Li, Xiaolin

2014-06-17T23:59:59.000Z

309

High performance batteries with carbon nanomaterials and ionic liquids  

DOE Patents [OSTI]

The present invention is directed to lithium-ion batteries in general and more particularly to lithium-ion batteries based on aligned graphene ribbon anodes, V.sub.2O.sub.5 graphene ribbon composite cathodes, and ionic liquid electrolytes. The lithium-ion batteries have excellent performance metrics of cell voltages, energy densities, and power densities.

Lu, Wen (Littleton, CO)

2012-08-07T23:59:59.000Z

310

Electrochemically Stable Cathode Current Collectors for Rechargeable...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Stable Cathode Current Collectors for Rechargeable Magnesium Batteries . Electrochemically Stable Cathode Current Collectors for Rechargeable Magnesium Batteries . Abstract:...

311

Direct Access to Mesoporous Crystalline TiO2/Carbon Composites with Large and Uniform Pores for Use as Anode Materials in Lithium Ion Batteries  

SciTech Connect (OSTI)

Mesoporous and highly crystalline TiO{sub 2} (anatase)/carbon composites with large (>5?nm) and uniform pores were synthesized using PI-b-PEO block copolymers as structure directing agents. Pore sizes could be tuned by utilizing block copolymers with different molecular weights. The resulting mesoporous TiO{sub 2}/carbon was successfully used as an anode material for Li ion batteries. Without addition of conducting aid (Super P), the electrode showed high capacity during the first insertion/desertion cycle due to carbon wiring inside the walls of mesoporous TiO{sub 2}/carbon. The electrode further showed stable cycle performance up to 50 cycles and the specific charge capacity at 30?C was 38?mA h (g of TiO{sub 2}){sup ?1}, which indicates CCM-TiO{sub 2}/carbon can be used as a material for high rate use.

Lee, Jinwoo; Jung, Yoon S.; Warren, Scott C.; Kamperman, Marleen; Oh, Seung M.; DiSalvo, Francis J.; Wiesner, Ulrich

2011-01-01T23:59:59.000Z

312

Final Report - Recovery Act - Development and application of processing and process control for nano-composite materials for lithium ion batteries  

SciTech Connect (OSTI)

Oak Ridge National Laboratory and A123 Systems, Inc. collaborated on this project to develop a better understanding, quality control procedures, and safety testing for A123 System s nanocomposite separator (NCS) technology which is a cell based patented technology and separator. NCS demonstrated excellent performance. x3450 prismatic cells were shown to survive >8000 cycles (1C/2C rate) at room temperature with greater than 80% capacity retention with only NCS present as an alternative to conventional polyolefin. However, for a successful commercialization, the coating conditions required to provide consistent and reliable product had not been optimized and QC techniques for being able to remove defective material before incorporation into a cell had not been developed. The work outlined in this report addresses these latter two points. First, experiments were conducted to understand temperature profiles during the different drying stages of the NCS coating when applied to both anode and cathode. One of the more interesting discoveries of this study was the observation of the large temperature decrease experienced by the wet coating between the end of the infrared (IR) drying stage and the beginning of the exposure to the convection drying oven. This is not a desirable situation as the temperature gradient could have a deleterious effect on coating quality. Based on this and other experimental data a radiative transfer model was developed for IR heating that also included a mass transfer module for drying. This will prove invaluable for battery coating optimization especially where IR drying is being employed. A stress model was also developed that predicts that under certain drying conditions tensile stresses are formed in the coating which could lead to cracking that is sometimes observed after drying is complete. Prediction of under what conditions these stresses form is vital to improving coating quality. In addition to understanding the drying process other parameters such as slurry quality and equipment optimization were examined. Removal of particles and gels by filtering, control of viscosity by %solids and mixing adjustments, removal of trapped gas in the slurry and modification of coater speed and slot die gap were all found to be important for producing uniform and flaw-free coatings. Second, an in-line Hi-Pot testing method has been developed specifically for NCS that will enable detection of coating flaws that could lead to soft or hard electrical shorts within the cell. In this way flawed material can be rejected before incorporation into the cell thus greatly reducing the amount of scrap that is generated. Improved battery safety is an extremely important benefit of NCS. Evaluation of battery safety is usually accomplished by conducting a variety of tests including nail penetration, hot box, over charge, etc. For these tests entire batteries must be built but the resultant temperature and voltage responses reveal little about the breakdown mechanism. In this report is described a pinch test which is used to evaluate NCS quality at various stages including coated anode and cathode as well as assembled cell. Coupled with post-microscopic examination of the damaged pinch point test data can assist in the coating optimization from an improved end-use standpoint. As a result of this work two invention disclosures, one for optimizing drying methodology and the other for an in-line system for flaw detection, have been filed. In addition, 2 papers are being written for submission to peer-reviewed journals.

Daniel, Claus [ORNL; Armstrong, Beth L [ORNL; Maxey, L Curt [ORNL; Sabau, Adrian S [ORNL; Wang, Hsin [ORNL; Hagans, Patrick [A123 Systems, Inc.; Babinec, Sue [A123 Systems, Inc.

2013-08-01T23:59:59.000Z

313

CRADA Final Report for NFE-08-01826: Development and application of processing and processcontrol for nano-composite materials for lithium ion batteries  

SciTech Connect (OSTI)

Oak Ridge National Laboratory and A123 Systems, Inc. collaborated on this project to develop a better understanding, quality control procedures, and safety testing for A123 Systems nanocomposite separator (NCS) technology which is a cell based patented technology and separator. NCS demonstrated excellent performance. x3450 prismatic cells were shown to survive >8000 cycles (1C/2C rate) at room temperature with greater than 80% capacity retention with only NCS present as an alternative to conventional polyolefin. However, for a successful commercialization, the coating conditions required to provide consistent and reliable product had not been optimized and QC techniques for being able to remove defective material before incorporation into a cell had not been developed. The work outlined in this report addresses these latter two points. First, experiments were conducted to understand temperature profiles during the different drying stages of the NCS coating when applied to both anode and cathode. One of the more interesting discoveries of this study was the observation of the large temperature decrease experienced by the wet coating between the end of the infrared (IR) drying stage and the beginning of the exposure to the convection drying oven. This is not a desirable situation as the temperature gradient could have a deleterious effect on coating quality. Based on this and other experimental data a radiative transfer model was developed for IR heating that also included a mass transfer module for drying. This will prove invaluable for battery coating optimization especially where IR drying is being employed. A stress model was also developed that predicts that under certain drying conditions tensile stresses are formed in the coating which could lead to cracking that is sometimes observed after drying is complete. Prediction of under what conditions these stresses form is vital to improving coating quality. In addition to understanding the drying process other parameters such as slurry quality and equipment optimization were examined. Removal of particles and gels by filtering, control of viscosity by %solids and mixing adjustments, removal of trapped gas in the slurry and modification of coater speed and slot die gap were all found to be important for producing uniform and flaw-free coatings. Second, an in-line Hi-Pot testing method has been developed specifically for NCS that will enable detection of coating flaws that could lead to soft or hard electrical shorts within the cell. In this way flawed material can be rejected before incorporation into the cell thus greatly reducing the amount of scrap that is generated. Improved battery safety is an extremely important benefit of NCS. Evaluation of battery safety is usually accomplished by conducting a variety of tests including nail penetration, hot box, over charge, etc. For these tests entire batteries must be built but the resultant temperature and voltage responses reveal little about the breakdown mechanism. In this report is described a pinch test which is used to evaluate NCS quality at various stages including coated anode and cathode as well as assembled cell. Coupled with post-microscopic examination of the damaged pinch point test data can assist in the coating optimization from an improved end-use standpoint. As a result of this work two invention disclosures, one for optimizing drying methodology and the other for an in-line system for flaw detection, have been filed. In addition, 2 papers are being written for submission to peer-reviewed journals.

Daniel, C.; Armstrong, B.; Maxey, C.; Sabau, A.; Wang, H.; Hagans, P. (A123 Systems, Inc.); and Babinec, S. (A123 Systems, Inc.)

2012-12-15T23:59:59.000Z

314

Development of Large Format Lithium Ion Cells with Higher Energy...  

Broader source: Energy.gov (indexed) [DOE]

Large Format Lithium Ion Cells with Higher Energy Density Development of Large Format Lithium Ion Cells with Higher Energy Density 2013 DOE Hydrogen and Fuel Cells Program and...

315

Expansion of Novolyte Capacity for Lithium Ion Electrolyte Production...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

15eswise2012p.pdf More Documents & Publications Expansion of Novolyte Capacity for Lithium Ion Electrolyte Production Expansion of Novolyte Capacity for Lithium Ion Electrolyte...

316

Expansion of Novolyte Capacity for Lithium Ion Electrolyte Production...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

15eswise2011p.pdf More Documents & Publications Expansion of Novolyte Capacity for Lithium Ion Electrolyte Production Expansion of Novolyte Capacity for Lithium Ion Electrolyte...

317

Exploring the interaction between lithium ion and defective graphene...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Exploring the interaction between lithium ion and defective graphene surface using dispersion corrected DFT studies. Exploring the interaction between lithium ion and defective...

318

Method of preparation of carbon materials for use as electrodes in rechargeable batteries  

DOE Patents [OSTI]

A method is described for producing carbon materials for use as electrodes in rechargeable batteries. Electrodes prepared from these carbon materials exhibit intercalation efficiencies of {approx_equal} 80% for lithium, low irreversible loss of lithium, long cycle life, are capable of sustaining a high rates of discharge and are cheap and easy to manufacture. The method comprises a novel two-step stabilization process in which polymeric precursor materials are stabilized by first heating in an inert atmosphere and subsequently heating in air. During the stabilization process, the polymeric precursor material can be agitated to reduce particle fusion and promote mass transfer of oxygen and water vapor. The stabilized, polymeric precursor materials can then be converted to a synthetic carbon, suitable for fabricating electrodes for use in rechargeable batteries, by heating to a high temperature in a flowing inert atmosphere. 4 figs.

Doddapaneni, N.; Wang, J.C.F.; Crocker, R.W.; Ingersoll, D.; Firsich, D.W.

1999-03-16T23:59:59.000Z

319

Method of preparation of carbon materials for use as electrodes in rechargeable batteries  

DOE Patents [OSTI]

A method of producing carbon materials for use as electrodes in rechargeable batteries. Electrodes prepared from these carbon materials exhibit intercalation efficiencies of .apprxeq.80% for lithium, low irreversible loss of lithium, long cycle life, are capable of sustaining a high rates of discharge and are cheap and easy to manufacture. The method comprises a novel two-step stabilization process in which polymeric precursor materials are stabilized by first heating in an inert atmosphere and subsequently heating in air. During the stabilization process, the polymeric precursor material can be agitated to reduce particle fusion and promote mass transfer of oxygen and water vapor. The stabilized, polymeric precursor materials can then be converted to a synthetic carbon, suitable for fabricating electrodes for use in rechargeable batteries, by heating to a high temperature in a flowing inert atmosphere.

Doddapaneni, Narayan (Alburquerque, NM); Wang, James C. F. (Livermore, CA); Crocker, Robert W. (Fremont, CA); Ingersoll, David (Alburquerque, NM); Firsich, David W. (Dayton, OH)

1999-01-01T23:59:59.000Z

320

Recycle Batteries CSM recycles a variety of battery types including automotive, sealed lead acid, nickel  

E-Print Network [OSTI]

metal hydride and lithium ion batteries. The use of these batteries is increasing as a green, nickel metal hydride and lithium ion batteries. Please contact EHS if you need an accumulation containerRecycle Batteries CSM recycles a variety of battery types including automotive, sealed lead acid

Note: This page contains sample records for the topic "rechargeable lithium-ion batteries" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

Highly Soluble Alkoxide Magnesium Salts for Rechargeable Magnesium Batteries  

SciTech Connect (OSTI)

A unique class of air-stable and non-pyrophoric magnesium electrolytes has been developed based on alkoxide magnesium compounds. The crystals obtained from this class of electrolytes exhibit a unique structure of tri-magnesium cluster, [Mg3Cl3(OR)2(THF)6]+ [(THF)MgCl3] . High reversible capacities and good rate capabilities were obtained in Mg-Mo6S8 batteries using these new electrolytes at both 20 and 50 oC.

Liao, Chen [ORNL] [ORNL; Guo, Bingkun [ORNL] [ORNL; Jiang, Deen [ORNL] [ORNL; Custelcean, Radu [ORNL] [ORNL; Mahurin, Shannon Mark [ORNL] [ORNL; Sun, Xiao-Guang [ORNL] [ORNL; Dai, Sheng [ORNL] [ORNL

2014-01-01T23:59:59.000Z

322

X-ray diffraction and EXAFS analysis of materials for lithium-based rechargeable batteries  

SciTech Connect (OSTI)

Lithium iron phosphate LiFePO{sub 4} (triphylite) and lithium titanate Li{sub 4}Ti{sub 5}O{sub 12} are used as components of a number of active materials in modern rechargeable batteries. Samples of these materials are studied by X-ray diffraction and extended X-ray absorption fine structure (EXAFS) spectroscopy. Hypotheses about the phase composition of the analyzed samples are formulated.

Sharkov, M. D., E-mail: mischar@mail.ioffe.ru; Boiko, M. E.; Bobyl, A. V.; Ershenko, E. M.; Terukov, E. I. [Russian Academy of Sciences, Ioffe Physical-Technical Institute (Russian Federation); Zubavichus, Y. V. [National Research Centre Kurchatov Institute (Russian Federation)

2013-12-15T23:59:59.000Z

323

Novel Energy Sources -Material Architecture and Charge Transport in Solid State Ionic Materials for Rechargeable Li ion Batteries  

SciTech Connect (OSTI)

Since its introduction in the consumer market at the beginning of 1990s by Sony Corporation Li-ion rechargeable battery and LiCoO2 cathode is an inseparable couple for highly reliable practical applications. However, a separation is inevitable as Li-ion rechargeable battery industry demand more and more from this well serving cathode. Spinel-type lithium manganate (e.g., LiMn2O4), lithium-based layered oxide materials (e.g., LiNiO2) and lithium-based olivine-type compounds (e.g., LiFePO4) are nowadays being extensively studied for application as alternate cathode materials in Li-ion rechargeable batteries. Primary goal of this project was the advancement of Li-ion rechargeable battery to meet the future demands of the energy sector. Major part of the research emphasized on the investigation of electrodes and solid electrolyte materials for improving the charge transport properties in Li-ion rechargeable batteries. Theoretical computational methods were used to select electrodes and electrolyte material with enhanced structural and physical properties. The effect of nano-particles on enhancing the battery performance was also examined. Satisfactory progress has been made in the bulk form and our efforts on realizing micro-battery based on thin films is close to give dividend and work is progressing well in this direction.

Katiyar, Ram S; Gmez, M; Majumder, S B; Morell, G; Tomar, M S; Smotkin, E; Bhattacharya, P; Ishikawa, Y

2009-01-19T23:59:59.000Z

324

Development of High Energy Lithium Batteries for Electric Vehicles...  

Broader source: Energy.gov (indexed) [DOE]

Kasei * Focused on High Capacity Manganese Rich (HCMR TM ) cathodes & Silicon-Carbon composite anodes for Lithium ion batteries * Envia's high energy Li-ion battery materials...

325

ALS Technique Gives Novel View of Lithium Battery Dendrite Growth  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

ALS Technique Gives Novel View of Lithium Battery Dendrite Growth Print Lithium-ion batteries, popular in today's electronic devices and electric vehicles, could gain significant...

326

Addressing the Impact of Temperature Extremes on Large Format Li-Ion Batteries for Vehicle Applications (Presentation)  

SciTech Connect (OSTI)

This presentation discusses the effects of temperature on large format lithium-ion batteries in electric drive vehicles.

Pesaran, A.; Santhanagopalan, S.; Kim, G. H.

2013-05-01T23:59:59.000Z

327

Engineering nanostructured electrodes and fabrication of film electrodes for efficient lithium ion intercalation  

E-Print Network [OSTI]

for clean sustainable energy, newer lithium ion batteries with higher energy density, higher power density challenges associated with fossil fuels. Although renewable or sustainable energy including solar, wind,9 and to harvest the clean and sustainable energy such as solar, wind and tidal energy.1012 Advanced energy

Cao, Guozhong

328

Bifunctional Electrolytes for Lithium-ion Batteries  

Broader source: Energy.gov [DOE]

2013 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting

329

Side Reactions in Lithium-Ion Batteries  

E-Print Network [OSTI]

attic with colleagues Paul Albertus, Penny Gunterman, Ryanalso owe a great deal to Paul Albertus, whose level-headed,

Tang, Maureen Han-Mei

2012-01-01T23:59:59.000Z

330

Batteries - Beyond Lithium Ion Breakout session  

Energy Savers [EERE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustionImprovement3--Logistical5/08 Attendance List1-02EvaluationJohnBall State buildingLifeBasis20585

331

Lithium-Ion Batteries - Energy Innovation Portal  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: VegetationEquipment Surfaces and Interfaces Sample6, 2011Liisa O'NeillFuelsLaboratoryLithium

332

Lithium-Ion Battery Teacher Workshop  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: VegetationEquipment Surfaces and Interfaces Sample6, 2011Liisa O'NeillFuelsLaboratoryLithiumLithium

333

Nanocomposite Materials for Lithium-Ion Batteries  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion | Department ofT ib l L d F S i DOEToward aInnovationHydrogenNRGA C T S HNanocomposite

334

Side Reactions in Lithium-Ion Batteries  

E-Print Network [OSTI]

and EIS models. . . . . . . . . . . . . . . . . . . . .state and EIS fitting. . . . . . . . . . . . . . . . . . .ferrocene EIS in LiClO 4 . . . . . . . . . . . . . . . . .

Tang, Maureen Han-Mei

2012-01-01T23:59:59.000Z

335

Department of Electrical Engineering Spring 2013 PSU Studio Lab 2 -TOREye  

E-Print Network [OSTI]

). Power the circuit with a USB-rechargeable lithium ion battery. Manufacture custom frames to house

Demirel, Melik C.

336

A High-Performance PHEV Battery Pack  

Broader source: Energy.gov (indexed) [DOE]

LCD Glass OLED Materials Color Filter Lithium-Ion Batteries for - Mobile Phone, Laptop, Power Tool - Hybrid & Electric Vehicles - ESS Energy Solution(10%) Petro-...

337

New materials for batteries and fuel cells. Materials Research Society symposium proceedings, Volume 575  

SciTech Connect (OSTI)

This proceedings volume is organized into seven sections that reflect the materials systems and issues of electrochemical materials R and D in batteries, fuel cells, and capacitors. The first three parts are largely devoted to lithium ion rechargeable battery materials since that electrochemical system has received much of the attention from the scientific community. Part 1 discusses cathodes for lithium ion rechargeable batteries as well as various other battery systems. Part 2 deals with electrolytes and cell stability, and Part 3 discusses anode developments, focusing on carbon and metal oxides. Part 4 focuses on another rechargeable system that has received substantial interest, nickel/metal hydride battery materials. The next two parts discuss fuel cells--Part 5 deals with Proton Exchange Membrane (PEM) fuel cells, and Part 6 discusses oxide materials for solid oxide fuel cells. The former has the benefit of operating around room temperature, whereas the latter has the benefit of operating with a more diverse (non-hydrogen) fuel source. Part 7 presents developments in electrochemical capacitors, termed Supercapacitors. These devices are receiving renewed interest and have shown substantial improvements in the past few years. In all, the results presented at this symposium gave a deeper understanding of the relationship between synthesis, properties, and performance of power source materials. Papers are processed separately for inclusion on the data base.

Doughty, D.H.; Nazar, L.F.; Arakawa, Masayasu; Brack, H.P.; Naoi, Katsuhiko [eds.

2000-07-01T23:59:59.000Z

338

Mitigating Performance Degradation of High-Energy Lithium-Ion...  

Broader source: Energy.gov (indexed) [DOE]

Mitigating Performance Degradation of High-Energy Lithium-Ion Cells Mitigating Performance Degradation of High-Energy Lithium-Ion Cells 2013 DOE Hydrogen and Fuel Cells Program and...

339

Novel Lithium Ion Anode Structures: Overview of New DOE BATT...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Lithium Ion Anode Structures: Overview of New DOE BATT Anode Projects Novel Lithium Ion Anode Structures: Overview of New DOE BATT Anode Projects 2011 DOE Hydrogen and Fuel Cells...

340

Development of Large Format Lithium Ion Cells with Higher Energy...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Large Format Lithium Ion Cells with Higher Energy Density Exceeding 500WhL Development of Large Format Lithium Ion Cells with Higher Energy Density Exceeding 500WhL 2012 DOE...

Note: This page contains sample records for the topic "rechargeable lithium-ion batteries" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

Cr-Ga-N materials for negative electrodes in Li rechargeable batteries : structure, synthesis and electrochemical performance  

E-Print Network [OSTI]

Electrochemical performances of two ternary compounds (Cr2GaN and Cr3GaN) in the Cr-Ga-N system as possible future anode materials for lithium rechargeable batteries were studied. Motivation for this study was dealt in ...

Kim, Miso

2007-01-01T23:59:59.000Z

342

CO2/oxalate Cathodes as Safe and Efficient Alternatives in High Energy Density Metal-Air Type Rechargeable Batteries  

E-Print Network [OSTI]

We present theoretical analysis on why and how rechargeable metal-air type batteries can be made significantly safer and more practical by utilizing CO2/oxalate conversions instead of O2/peroxide or O2/hydroxide ones, in the positive electrode. Metal-air batteries, such as the Li-air one, may have very large energy densities, comparable to that of gasoline, theoretically allowing for long range all-electric vehicles. There are, however, still significant challenges, especially related to the safety of their underlying chemistries, the robustness of their recharging and the need of supplying high purity O2 from air to the battery. We point out that the CO2/oxalate reversible electrochemical conversion is a viable alternative of the O2-based ones, allowing for similarly high energy density and almost identical voltage, while being much safer through the elimination of aggressive oxidant peroxides and the use of thermally stable, non-oxidative and environmentally benign oxalates instead.

Nemeth, Karoly

2013-01-01T23:59:59.000Z

343

Saft America Advanced Batteries Plant Celebrates Grand Opening...  

Energy Savers [EERE]

Florida, factory, which will produce advanced lithium-ion batteries to power electric vehicles and other applications. Saft America estimates it will create nearly 280...

344

advanced battery technologies: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Websites Summary: diesel engine, an electric motor, a Lithium-Ion battery, and an Eaton automated manual transmission. The electric motor, clutch, transmission, inverter,...

345

advanced battery technology: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Websites Summary: diesel engine, an electric motor, a Lithium-Ion battery, and an Eaton automated manual transmission. The electric motor, clutch, transmission, inverter,...

346

Investigation of the Rechargeability of Li-O2 Batteries in Non-aqueous Electrolyte  

SciTech Connect (OSTI)

In order to understand the nature of the limited cycle life and poor energy efficiency associated with the secondary Li-O2 batteries the discharge products of primary Li-O2 cells at different depth of discharge (DOD) are systematically analyzed in this work. It is revealed that if discharged to 2.0 V a small amount of Li2O2 coexist with Li2CO3 and RO-(C=O)-OLi) in alkyl carbonate-based electrolyte. Further discharging the air electrodes to below 2.0 V the amount of Li2CO3 and LiRCO3 increases significantly due to the severe electrolyte decomposition. There is no Li2O detected in this alkyl carbonate electrolyte regardless of DOD. It is also found that the alkyl carbonate based electrolyte begins to decompose at 4.0 V during charging under the combined influences from the high surface area carbon, the nickel metal current collector and the oxygen atmosphere. Accordingly the impedance of the Li-O2 cell continues to increase after each discharge and recharge process indicating a repeated plating of insoluble lithium salts on the carbon surface. Therefore the whole carbon electrode becomes completely insulated only after a few cycles and loses the function of providing active tri-phase regions for the Li-oxygen batteries.

Xiao, Jie; Hu, Jian Z.; Wang, Deyu; Hu, Dehong; Xu, Wu; Graff, Gordon L.; Nie, Zimin; Liu, Jun; Zhang, Jiguang

2011-07-01T23:59:59.000Z

347

Lithium Ion Cell Development for Photovoltaic Energy Storage Applications  

SciTech Connect (OSTI)

The overall project goal is to reduce the cost of home and neighborhood photovoltaic storage systems by reducing the single largest cost component ?? the energy storage cells. Solar power is accepted as an environmentally advantaged renewable power source. Its deployment in small communities and integrated into the grid, requires a safe, reliable and low cost energy storage system. The incumbent technology of lead acid cells is large, toxic to produce and dispose of, and offer limited life even with significant maintenance. The ideal PV storage battery would have the safety and low cost of lead acid but the performance of lithium ion chemistry. Present lithium ion batteries have the desired performance but cost and safety remain the two key implementation barriers. The purpose of this project is to develop new lithium ion cells that can meet PVES cost and safety requirements using A123Systems phosphate-based cathode chemistries in commercial PHEV cell formats. The cost target is a cell design for a home or neighborhood scale at <$25/kWh. This DOE program is the continuation and expansion of an initial MPSC (Michigan Public Service Commission) program towards this goal. This program further pushes the initial limits of some aspects of the original program ?? even lower cost anode and cathode actives implemented at even higher electrode loadings, and as well explores new avenues of cost reduction via new materials ?? specifically our higher voltage cathode. The challenge in our materials development is to achieve parity in the performance metrics of cycle life and high temperature storage, and to produce quality materials at the production scale. Our new cathode material, M1X, has a higher voltage and so requires electrolyte reformulation to meet the high temperature storage requirements. The challenge of thick electrode systems is to maintain adequate adhesion and cycle life. The composite separator has been proven in systems having standard loading electrodes; the challenge with this material will be to maintain proven performance when this composite is coated onto a thicker electrode; as well the high temperature storage must meet application requirements. One continuing program challenge was the lack of specific performance variables for this PV application and so the low power requirements of PHEV/EV transportation markets were again used.

Susan Babinec

2012-02-08T23:59:59.000Z

348

Flexographically Printed Rechargeable Zinc-based Battery for Grid Energy Storage  

E-Print Network [OSTI]

J. stergaard, Battery energy storage technology for powerBattery for Grid Energy Storage..Energy Storage for the Grid: A Battery of Choices, Science,

Wang, Zuoqian

2013-01-01T23:59:59.000Z

349

A Model Reduction Framework for Efficient Simulation of Li-Ion Batteries  

E-Print Network [OSTI]

of degradation processes in lithium-ion batteries, the modelling of cell dynamics at the mircometer scale lithium-ion batteries is the deposition of metallic lithium at the negative battery electrode (LiA Model Reduction Framework for Efficient Simulation of Li-Ion Batteries Mario Ohlberger Stephan

350

Beyond Conventional Cathode Materials for Li-ion Batteries and Na-ion Batteries Nickel fluoride conversion materials and P2 type Na-ion intercalation cathodes /  

E-Print Network [OSTI]

spinel structures for lithium batteries. ElectrochemistryMaterials for Rechargeable Lithium Batteries. Journal of thefor Rechargeable Lithium Batteries. Electrochemical and

Lee, Dae Hoe

2013-01-01T23:59:59.000Z

351

Are Batteries Ready for Plug-in Hybrid Buyers?  

E-Print Network [OSTI]

237253. Burke, A. , 2007. Batteries and ultracapacitors forresults with lithium-ion batteries. In: Proceedings (CD)locate/tranpol Are batteries ready for plug-in hybrid

Axsen, Jonn; Burke, Andy; Kurani, Kenneth S

2010-01-01T23:59:59.000Z

352

Khalil Amine on Lithium-air Batteries  

ScienceCinema (OSTI)

Khalil Amine, materials scientist at Argonne National Laboratory, speaks on the new technology Lithium-air batteries, which could potentially increase energy density by 5-10 times over lithium-ion batteries.

Khalil Amine

2010-01-08T23:59:59.000Z

353

Michael Thackery on Lithium-air Batteries  

ScienceCinema (OSTI)

Michael Thackery, Distinguished Fellow at Argonne National Laboratory, speaks on the new technology Lithium-air batteries, which could potentially increase energy density by 5-10 times over lithium-ion batteries.

Michael Thackery

2010-01-08T23:59:59.000Z

354

John B. Goodenough, Cathode Materials, and Rechargeable Lithium-ion  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsruc DocumentationP-SeriesFlickrinformation forTechnologies |Jennifer

355

Lithium Ion Electrode Production NDE and QC Considerations |...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

QC Considerations Lithium Ion Electrode Production NDE and QC Considerations Review of Oak Ridge process and QC activities by David Wood, Oak Ridge National Laboratory, at the...

356

Development of Large Format Lithium Ion Cells with Higher Energy...  

Broader source: Energy.gov (indexed) [DOE]

Overall Project Goal: To research, develop and demonstrate large format lithium ion cells with energy density > 500 WhL Barriers addressed: - Low energy density - Cost -...

357

EV Everywhere Batteries Workshop - Next Generation Lithium Ion Batteries  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:Year in Review: TopEnergyIDIQ Contract ESPC IDIQ Contract DocumentBreakout Session Report |

358

Internal Short Circuits in Lithium-Ion Cells for PHEVs  

SciTech Connect (OSTI)

Development of Plug-in Hybrid Electric Vehicles (PHEVs) has recently become a high national priority because of their potential to enable significantly reduced petroleum consumption by the domestic transportation sector in the relatively near term. Lithium-ion (Li-ion) batteries are a critical enabling technology for PHEVs. Among battery technologies with suitable operating characteristics for use in vehicles, Li-ion batteries offer the best combination of energy, power, life and cost. Consequently, worldwide, leading corporations and government agencies are supporting the development of Li-ion batteries for PHEVs, as well as the full spectrum of vehicular applications ranging from mild hybrid to all-electric. In this project, using a combination of well-defined experiments, custom designed cells and simulations, we have improved the understanding of the process by which a Li-ion cell that develops an internal short progresses to thermal runaway. Using a validated model for thermal runaway, we have explored the influence of environmental factors and cell design on the propensity for thermal runaway in full-sized PHEV cells. We have also gained important perspectives about internal short development and progression; specifically that initial internal shorts may be augmented by secondary shorts related to separator melting. Even though the nature of these shorts is very stochastic, we have shown the critical and insufficiently appreciated role of heat transfer in influencing whether a developing internal short results in a thermal runaway. This work should lead to enhanced perspectives on separator design, the role of active materials and especially cathode materials with respect to safety and the design of automotive cooling systems to enhance battery safety in PHEVs.

Sriramulu, Suresh; Stringfellow, Richard

2013-05-25T23:59:59.000Z

359

Synthesis and Characterization of Mesoporous Semiconductors and Their Energy Applications  

E-Print Network [OSTI]

for Use in Rechargeable Lithium Batteries. J. Power SourcesHigh Rate Rechargeable Lithium Batteries. Small Pan, J. H. ;Electrode for Lithium Ion Batteries. Nano Lett. 2009, 9,

Kang, Chris Byung-hwa

2013-01-01T23:59:59.000Z

360

Multimode AFM (Nanoscope) | EMSL  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

grown... Lithium Metal Anodes for Rechargeable Batteries. Rechargeable lithium metal batteries have much higher energy density than those of lithium ion batteries using...

Note: This page contains sample records for the topic "rechargeable lithium-ion batteries" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

A High-Efficiency Grid-Tie Battery Energy Storage System.  

E-Print Network [OSTI]

??Lithium-ion based battery energy storage system has become one of the most popular forms of energy storage system for its high charge and discharge efficiency (more)

Qian, Hao

2011-01-01T23:59:59.000Z

362

Modeling of Nonuniform Degradation in Large-Format Li-ion Batteries (Poster)  

SciTech Connect (OSTI)

Shows results of an empirical model capturing effects of both storage and cycling and developed the lithium ion nickel cobalt aluminum advanced battery chemistry.

Smith, K.; Kim, G. H.; Pesaran, A.

2009-06-01T23:59:59.000Z

363

Lithium Hexamethyldisilazide: A View of Lithium Ion Solvation  

E-Print Network [OSTI]

Lithium Hexamethyldisilazide: A View of Lithium Ion Solvation through a Glass-Bottom Boat BRETT L and reactivities, we were drawn to lithium hexamethyldisilazide (LiHMDS; (Me3Si)2NLi) by its promi- nence principles of lithium ion coordination chemistry.2 Understanding how solvation influences organolithium

Collum, David B.

364

Solid-state Graft Copolymer Electrolytes for Lithium Battery Applications  

E-Print Network [OSTI]

Battery safety has been a very important research area over the past decade. Commercially available lithium ion batteries employ low flash point (<80 C), flammable, and volatile organic electrolytes. These organic based ...

Hu, Qichao

365

Overview of Computer-Aided Engineering of Batteries (CAEBAT)...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Computer-Aided Engineering of Batteries (CAEBAT) and Introduction to Multi-Scale, Multi-Dimensional (MSMD) Modeling of Lithium-Ion Batteries Overview of Computer-Aided Engineering...

366

Are batteries ready for plug-in hybrid buyers?  

E-Print Network [OSTI]

Of the battery chemistries discussed, only Li-ion shows the2008) battery researchers continue to develop Li-ionbattery chemistries: nickel-metal hydride (NiMH) and lithium-ion (Li-

Axsen, Jonn; Kurani, Kenneth S.; Burke, Andrew

2008-01-01T23:59:59.000Z

367

Are Batteries Ready for Plug-in Hybrid Buyers?  

E-Print Network [OSTI]

Of the battery chemistries discussed, only Li-ion shows the2008) battery researchers continue to develop Li-ionbattery chemistries: nickel- metal hydride (NiMH) and lithium-ion (Li-

Axsen, Jonn; Burke, Andy; Kurani, Kenneth S

2010-01-01T23:59:59.000Z

368

Are Batteries Ready for Plug-in Hybrid Buyers?  

E-Print Network [OSTI]

Of the battery chemistries discussed, only Li-ion shows the2008) battery researchers continue to develop Li-ionbattery chemistries: nickel-metal hydride (NiMH) and lithium-ion (Li-

Axsen, Jonn; Kurani, Kenneth S; Burke, Andy

2009-01-01T23:59:59.000Z

369

Microfabricated thin-film batteries : technology and potential applications  

E-Print Network [OSTI]

High-energy-density lithium ion batteries have enabled a myriad of small consumer-electronics applications. Batteries for these applications most often employ a liquid electrolyte system. However, liquid electrolytes do ...

Greiner, Julia

2006-01-01T23:59:59.000Z

370

Electrically recharged battery employing a packed/spouted bed metal particle electrode  

DOE Patents [OSTI]

A secondary metal air cell, employing a spouted/packed metal particle bed and an air electrode. More specifically a zinc air cell well suited for use in electric vehicles which is capable of being either electrically or hydraulically recharged.

Siu, Stanley C. (Alameda, CA); Evans, James W. (Piedmont, CA); Salas-Morales, Juan (Berkeley, CA)

1995-01-01T23:59:59.000Z

371

Lithium Ion Electrode Production NDE and QC Considerations  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

3 Presentation name New Directions in Lithium Ion Electrode In-Line NDE * Low-cost IR laser thickness measurement (can be done in multiple point scans across the web or an entire...

372

Development of Large Format Lithium Ion Cells with Higher Energy...  

Broader source: Energy.gov (indexed) [DOE]

Hydrogen and Fuel Cells Program Review ES-127 Development of Large Format Lithium Ion Cells with Higher Energy Density Erin O'Driscoll (PI) Han Wu (Presenter) Dow Kokam May 13,...

373

Simulations of Plug-in Hybrid Vehicles Using Advanced Lithium Batteries and Ultracapacitors on Various Driving Cycles  

E-Print Network [OSTI]

7: Simulation results for the batteries alone kW kW Batteryor even lithium-ion batteries. This is another advantagewith the air-electrode batteries. Table 6: Simulation

Burke, Andy; Zhao, Hengbing

2010-01-01T23:59:59.000Z

374

E-Print Network 3.0 - aqueous rechargeable battery Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Villanova University Collection: Renewable Energy ; Engineering 95 1 of 5 Copyright 2007 Tesla Motors Updated: December 19, 2007 The Tesla Roadster Battery System Summary: 1 of 5...

375

Flexographically Printed Rechargeable Zinc-based Battery for Grid Energy Storage  

E-Print Network [OSTI]

Integration with photovoltaic cells: Research on integrationpower harvesting using photovoltaic cells for lower-powerof printable photovoltaic cell, zinc-based battery as well

Wang, Zuoqian

2013-01-01T23:59:59.000Z

376

New Nanostructured Li2S/Silicon Rechargeable Battery with High Specific Energy  

E-Print Network [OSTI]

an average voltage of 2.2 V vs Li/Li+ (about 60% of the voltage of conventional Li-ion batteries nanowires R echargeable batteries are critical power sources for mobile applications such as portable-11 the relatively low charge capacity of cathodes remains the limiting factor preventing higher energy density

Cui, Yi

377

The characteristic of carbon-coated LiFePO{sub 4} as cathode material for lithium ion battery synthesized by sol-gel process in one step heating and varied pH  

SciTech Connect (OSTI)

This research has been done on the synthesis of carbon coated LiFePO{sub 4} through sol-gel process. Carbon layer serves for improving electronic conductivity, while the variation of pH in the sol-gel process is intended to obtain the morphology of the material that may improve battery performance. LiFePO{sub 4}/C precursors are Li{sub 2}CO{sub 3}, NH{sub 4}H{sub 2}PO{sub 4} and FeC{sub 2}O{sub 4}.H{sub 2}O and citric acid. In the synthesis process, consisting of a colloidal suspension FeC{sub 2}O{sub 4}.H{sub 2}O and distilled water mixed with a colloidal suspension consisting of NH{sub 4}H{sub 2}PO{sub 4}, Li{sub 2}CO{sub 3}, and distilled water. Variations addition of citric acid is used to control the pH of the gel formed by mixing two colloidal suspensions. Sol in this study had a pH of 5, 5.4 and 5.8. The obtained wet gel is further dried in the oven and then sintered at a temperature 700C for 10 hours. The resulting material is further characterized by XRD to determine the phases formed. The resulting powder morphology is observed through SEM. Specific surface area of the powder was tested by BET, while the electronic conductivity characterized with EIS.

Triwibowo, J., E-mail: joko.triwibowo@lipi.go.id [Research Center for Physics LIPI, Kawasan PUSPIPTEK Serpong (Indonesia); Yuniarti, E.; Suharyadi, E. [Gadjah Mada University, Faculty of Mathematics and Natural Sciences, Sekip Utara Yogyakarta (Indonesia)

2014-09-25T23:59:59.000Z

378

Electrically recharged battery employing a packed/spouted bed metal particle electrode  

DOE Patents [OSTI]

A secondary metal air cell, employing a spouted/packed metal particle bed and an air electrode, is described. More specifically a zinc air cell well suited for use in electric vehicles which is capable of being either electrically or hydraulically recharged. 5 figs.

Siu, S.C.; Evans, J.W.; Salas-Morales, J.

1995-08-15T23:59:59.000Z

379

Uniform hierarchical SnS microspheres: Solvothermal synthesis and lithium ion storage performance  

SciTech Connect (OSTI)

Graphical abstract: - Highlights: Uniform hierarchical SnS microspheres via solvothermal reaction. The formation process was investigated in detail. The obtained hierarchical SnS microspheres exhibit superior capacity (1650 mAh g{sup ?1}) when used as lithium battery for the hierarchical microsphere structure. - Abstract: Hierarchical SnS microspheres have been successfully synthesized by a mild solvothermal process using poly(vinylpyrrolidone) as surfactant in this work. The morphology and composition of the microspheres were investigated by X-ray diffraction, scanning electron microscopy and transmission electron microscopy. The influence of reaction parameters, such as sulfur sources, reaction temperature and the concentration of PVP, on the final morphology of the products are investigated. On the basis of time-dependent experiments, the growth mechanism has also been proposed. The specific surface area of the 3D hierarchitectured SnS microspheres were investigated by using nitrogen adsorption and desorption isotherms. Lithium ion storage performances of the synthesized materials as anodes for Lithium-ion battery were investigated in detail and it exhibits excellent electrochemical properties.

Fang, Zhen, E-mail: fzfscn@mail.ahnu.edu.cn; Wang, Qin; Wang, Xiaoqing; Fan, Fan; Wang, Chenyan; Zhang, Xiaojun

2013-11-15T23:59:59.000Z

380

Batteries: Overview of Battery Cathodes  

E-Print Network [OSTI]

M=Mn, Ni, Co) in Lithium Batteries at 50C. Electrochem.Spinel Electrodes for Lithium Batteries. J. Am. Ceram. Soc.for Rechargeable Lithium Batteries. J. Power Sources 54:

Doeff, Marca M

2011-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "rechargeable lithium-ion batteries" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

Batteries, mobile phones & small electrical devices  

E-Print Network [OSTI]

, mobile phones and data collection equipment. Lithium Ion batteries are used in mobile phones, laptopsBatteries, mobile phones & small electrical devices IN-BUILDING RECYCLING STATIONS. A full list of acceptable items: Sealed batteries ­excludes vented NiCad and Lead acid batteries Cameras Laser printer

382

Flexographically Printed Rechargeable Zinc-based Battery for Grid Energy Storage  

E-Print Network [OSTI]

Patterning of micro-scale conductive networks using reel-to-wireless sensor network field, micro-batteries are needed todevices[13] and micro-scale conductive networks[14]. 2.3.

Wang, Zuoqian

2013-01-01T23:59:59.000Z

383

Overview of Computer-Aided Engineering of Batteries and Introduction to Multi-Scale, Multi-Dimensional Modeling of Li-Ion Batteries (Presentation)  

SciTech Connect (OSTI)

This 2012 Annual Merit Review presentation gives an overview of the Computer-Aided Engineering of Batteries (CAEBAT) project and introduces the Multi-Scale, Multi-Dimensional model for modeling lithium-ion batteries for electric vehicles.

Pesaran, A.; Kim, G. H.; Smith, K.; Santhanagopalan, S.; Lee, K. J.

2012-05-01T23:59:59.000Z

384

Simulation of Electrolyte Composition Effects on High Energy Lithium-Ion Cells  

SciTech Connect (OSTI)

An important feature of the DUALFOIL model for simulation of lithium-ion cells [1,2] is rigorous accounting for non-ideal electrolyte properties. Unfortunately, data are available on only a few electrolytes [3,4]. However, K. Gering has developed a model for estimation of electrolyte properties [5] and recently generated complete property sets (density, conductivity, activity coefficient, diffusivity, transport number) as a function of temperature and salt concentration. Here we use these properties in an enhanced version of the DUALFOIL model called DISTNP, available in Battery Design Studio [6], to examine the effect of different electrolytes on cell performance. Specifically, the behavior of a high energy LiCoO2/graphite 18650-size cell is simulated. The ability of Battery Design Studio to si

K. Gering

2014-09-01T23:59:59.000Z

385

Processes for making dense, spherical active materials for lithium-ion cells  

DOE Patents [OSTI]

Processes are provided for making dense, spherical mixed-metal carbonate or phosphate precursors that are particularly well suited for the production of active materials for electrochemical devices such as lithium ion secondary batteries. Exemplified methods include precipitating dense, spherical particles of metal carbonates or metal phosphates from a combined aqueous solution using a precipitating agent such as ammonium hydrogen carbonate, sodium hydrogen carbonate, or a mixture that includes sodium hydrogen carbonate. Other exemplified methods include precipitating dense, spherical particles of metal phosphates using a precipitating agent such as ammonium hydrogen phosphate, ammonium dihydrogen phosphate, sodium phosphate, sodium hydrogen phosphate, sodium dihydrogen phosphate, or a mixture of any two or more thereof. Further provided are compositions of and methods of making dense, spherical metal oxides and metal phosphates using the dense, spherical metal precursors. Still further provided are electrodes and batteries using the same.

Kang, Sun-Ho (Naperville, IL); Amine, Khalil (Downers Grove, IL)

2011-11-22T23:59:59.000Z

386

Technological assessment and evaluation of high power batteries and their commercial values  

E-Print Network [OSTI]

Lithium Ion (Li-ion) battery technology has the potential to compete with the more matured Nickel Metal Hydride (NiMH) battery technology in the Hybrid Electric Vehicle (HEV) energy storage market as it has higher specific ...

Teo, Seh Kiat

2006-01-01T23:59:59.000Z

387

Biologically enhanced cathode design for improved capacity and cycle life for lithium-oxygen batteries  

E-Print Network [OSTI]

Lithium-oxygen batteries have a great potential to enhance the gravimetric energy density of fully packaged batteries by two to three times that of lithium ion cells. Recent studies have focused on finding stable electrolytes ...

Oh, Dahyun

388

Design of Safer High-Energy Density Materials for Lithium-Ion...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

of Safer High-Energy Density Materials for Lithium-Ion Cells Design of Safer High-Energy Density Materials for Lithium-Ion Cells 2012 DOE Hydrogen and Fuel Cells Program and...

389

Combustion Synthesis of Nanoparticulate LiMgxMn1-xPO4 (x=0, 0.1, 0.2) Carbon Composites  

E-Print Network [OSTI]

for Rechargeable Lithium Batteries. J. Electrochem. Soc.Materials for Lithium Batteries. J. Electrochem. Soc. 148,LiMnPO 4 for Lithium Ion Batteries. Electrochem. and Solid

Doeff, Marca M

2010-01-01T23:59:59.000Z

390

Combustion Synthesis of Nanoparticulate LiMgxMn1-xPO4 (x=0, 0.1, 0.2) Carbon Composites  

E-Print Network [OSTI]

for Rechargeable Lithium Batteries. J. Electrochem. Soc.4 V Cathode Materials for Lithium Batteries. J. Electrochem.LiMnPO 4 for Lithium Ion Batteries. Electrochem. and Solid

Doeff, Marca M

2010-01-01T23:59:59.000Z

391

Oriented nanotube electrodes for lithium ion batteries and supercapacitors  

DOE Patents [OSTI]

An electrode having an oriented array of multiple nanotubes is disclosed. Individual nanotubes have a lengthwise inner pore defined by interior tube walls which extends at least partially through the length of the nanotube. The nanotubes of the array may be oriented according to any identifiable pattern. Also disclosed is a device featuring an electrode and methods of fabrication.

Frank, Arthur J.; Zhu, Kai; Wang, Qing

2013-03-05T23:59:59.000Z

392

Expanding U.S.-based Lithium-ion Battery Manufacturing  

Broader source: Energy.gov [DOE]

2013 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting

393

Development of Electrolytes for Lithium-ion Batteries  

Broader source: Energy.gov (indexed) [DOE]

(ANL) * M. Smart (NASA JPL) * W. Li (S. China Univ. Tech.) * V. Battaglia & J. Kerr (LBNL) * A. Garsuch (BASF) * F. Puglia & B. Ravdel (Yardney) * Spinel Focus group (LBNL-...

394

Development of Electrolytes for Lithium-ion Batteries  

Broader source: Energy.gov (indexed) [DOE]

* D. Abraham (ANL) * M. Smart (NASA JPL) * W. Li (S. China Univ. Tech.) * V. Battaglia (LBNL) * M. Payne (Novolyte) * F. Puglia (Yardney) * W. Henderson (N.C. State) Partners...

395

Development of Electrolytes for Lithium-ion Batteries  

Broader source: Energy.gov (indexed) [DOE]

Extension) Timeline Budget Barriers * A. Garsuch (BASF) * HV Spinel Focus group (LBNL-BATT) * Silicon Focus group (LBNL- BATT) * F. Puglia & B. Ravdel (Yardney) * D. Abraham...

396

Development of Electrolytes for Lithium-ion Batteries  

Broader source: Energy.gov (indexed) [DOE]

for FY13 - 147 K Timeline Budget Barriers * A. Garsuch (BASF) * Spinel Focus group (LBNL- BATT) * F. Puglia & B. Ravdel (Yardney) * D. Abraham (ANL) * M. Smart (NASA JPL) * V....

397

Virus-Enabled Silicon Anode for Lithium-Ion Batteries  

SciTech Connect (OSTI)

A novel three-dimensional Tobacco mosaic virus assembled silicon anode is reported. This electrode combines genetically modified virus templates for the production of high aspect ratio nanofeatured surfaces with electroless deposition to produce an integrated nickel current collector followed by physical vapor deposition of a silicon layer to form a high capacity silicon anode. This composite silicon anode produced high capacities (3300 mAh/g), excellent charge?discharge cycling stability (0.20% loss per cycle at 1C), and consistent rate capabilities (46.4% at 4C) between 0 and 1.5 V. The biological templated nanocomposite electrode architecture displays a nearly 10-fold increase in capacity over currently available graphite anodes with remarkable cycling stability.

Chen, X L; Gerasopoulos, K; Guo, J C; Brown, A; Wang, Chunsheng; Ghodssi, Reza; Culver, J N

2010-01-01T23:59:59.000Z

398

Virus-Enabled Silicon Anode for Lithium-Ion Batteries  

E-Print Network [OSTI]

ratio nanofeatured surfaces with electroless deposition to produce an integrated nickel current coating in electroless plating solutions due to strong covalent-like interactions between the thiol groups particle) for the synthesis of nickel and cobalt nanowires. These struc- tures self-assemble vertically

Rubloff, Gary W.

399

Vertically Integrated Mass Production of Automotive Class Lithium Ion Batteries  

Broader source: Energy.gov [DOE]

2013 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting

400

Nanostructured electrodes for lithium ion batteries using biological scaffolds  

E-Print Network [OSTI]

Without doubt, energy and environment are becoming central issues for the future. In this regard, not only device performance but also environmentally sustainable ways of making energy device is important. To meet these ...

Lee, Yun Jung, Ph. D. Massachusetts Institute of Technology

2009-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "rechargeable lithium-ion batteries" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

Advanced titania nanostructures and composites for lithium ion battery  

E-Print Network [OSTI]

. Wei Department of Chemistry and Biochemistry, Lamar University, Beaumont, TX 77710, USA Z. Guo (&) Integrated Composites Laboratory (ICL), Dan F. Smith Department of Chemical Engineering, Lamar University, Beaumont, TX 77710, USA e-mail: zhanhu.guo@lamar.edu 123 J Mater Sci (2012) 47:2519­2534 DOI 10.1007/s10853

Guo, John Zhanhu

402

Modeling of Transport in Lithium Ion Battery Electrodes  

E-Print Network [OSTI]

to model the solid state diffusion behavior in several generated electrode morphologies. Developed computational codes were used to generate targeted structures under prescribed conditions of particle shape, size, and overall morphology. The diffusion...

Martin, Michael

2012-07-16T23:59:59.000Z

403

Celgard US Manufacturing Facilities Initiative for Lithium-ion Battery  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-Up fromDepartmentTieCelebrate Earth Day with Secretary Chu CelebratePiSeparator |

404

Celgard US Manufacturing Facilities Initiative for Lithium-ion Battery  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-Up fromDepartmentTieCelebrate Earth Day with Secretary Chu CelebratePiSeparator

405

Celgard US Manufacturing Facilities Initiative for Lithium-ion Battery  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-Up fromDepartmentTieCelebrate Earth Day with Secretary Chu CelebratePiSeparatorSeparator

406

Novel Electrolyte Enables Stable Graphite Anodes in Lithium Ion Batteries -  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the Contributions andDataNationalNewportBig Eddyof H-2Novel Catalysts BasedEnergy

407

CUBICON Materials that Outperform Lithium-Ion Batteries - Energy Innovation  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation Proposed New Substation Sites Proposed Route BTRICGEGR-N Goods PO6,Act of 1956Energy

408

Lithium-Ion Battery Recycling Facilities | Department of Energy  

Energy Savers [EERE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of Inspector General Office0-72.pdfGeorgeDoesn't Happen toLeveragingLindsey Geisler About UsListListing

409

High Power Performance Lithium Ion Battery - Energy Innovation Portal  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation ProposedUsingFun withconfinement plasmas in the Madison SymmetricHighPerformancng DavidEnergy

410

A Better Anode Design to Improve Lithium-Ion Batteries  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLasDelivered‰PNGExperience hands-onASTROPHYSICSHe β- DecayBenew20-Year6 GeneralAA Better

411

A Better Anode Design to Improve Lithium-Ion Batteries  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLasDelivered‰PNGExperience hands-onASTROPHYSICSHe β- DecayBenew20-Year6 GeneralAA BetterA

412

A Better Anode Design to Improve Lithium-Ion Batteries  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLasDelivered‰PNGExperience hands-onASTROPHYSICSHe β- DecayBenew20-Year6 GeneralAA BetterAA

413

A Better Anode Design to Improve Lithium-Ion Batteries  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLasDelivered‰PNGExperience hands-onASTROPHYSICSHe β- DecayBenew20-Year6 GeneralAA BetterAAA

414

A Better Anode Design to Improve Lithium-Ion Batteries  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLasDelivered‰PNGExperience hands-onASTROPHYSICSHe β- DecayBenew20-Year6 GeneralAA

415

A Better Anode Design to Improve Lithium-Ion Batteries  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLasDelivered‰PNGExperience hands-onASTROPHYSICSHe β- DecayBenew20-Year6 GeneralAAA Better

416

Multilayer Graphene-Silicon Structures for Lithium Ion Battery Anodes -  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: VegetationEquipment SurfacesResource ProgramModification andinterface1JUN 2AmesEnergy Innovation

417

Lithium-Ion Battery Recycling Facilities | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-UpHeatMulti-Dimensionalthe10IO1OP001 LetterLight-Duty11.2.1310 DOE Vehicle2 DOE Hydrogen

418

Lithium-Ion Battery Recycling Issues | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-UpHeatMulti-Dimensionalthe10IO1OP001 LetterLight-Duty11.2.1310 DOE Vehicle2 DOE

419

EV Everywhere Batteries Workshop - Beyond Lithium Ion Breakout Session  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:Year in Review: TopEnergyIDIQ Contract ESPC IDIQ Contract Document displaysFaceCharging-

420

Dow Kokam Lithium Ion Battery Production Facilities | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-UpHeat Pump Models |Conduct, Parent(CRADA and DOW AreaJuneDonna FriendHot RocksDow St.2

Note: This page contains sample records for the topic "rechargeable lithium-ion batteries" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

Dow Kokam Lithium Ion Battery Production Facilities | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-UpHeat Pump Models |Conduct, Parent(CRADA and DOW AreaJuneDonna FriendHot RocksDow St.21

422

Advanced Cathode Material Development for PHEV Lithium Ion Batteries |  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-Up fromDepartment of EnergyAdministrative RecordsBiofuels CostEnergy

423

Advanced Cathode Material Development for PHEV Lithium Ion Batteries |  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-Up fromDepartment of EnergyAdministrative RecordsBiofuels CostEnergyDepartment of

424

Designing Silicon Nanostructures for High Energy Lithium Ion Battery Anodes  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-UpHeat Pump Models |Conduct, Parent Company Agrees toDepartmentDepartmentDesigning|

425

Development of Electrolytes for Lithium-ion Batteries | Department of  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-UpHeat Pump Models |Conduct, Parent Companya new highModelingDepartmentEnergy 2 DOE

426

Development of Electrolytes for Lithium-ion Batteries | Department of  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-UpHeat Pump Models |Conduct, Parent Companya new highModelingDepartmentEnergy 2

427

Development of Electrolytes for Lithium-ion Batteries | Department of  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-UpHeat Pump Models |Conduct, Parent Companya new highModelingDepartmentEnergy

428

A Better Anode Design to Improve Lithium-Ion Batteries  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary)morphinanInformation Desert SouthwestTechnologies |November 2011 Mon, Next2025StepsElectron---neutrinoAA Better

429

A Better Anode Design to Improve Lithium-Ion Batteries  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary)morphinanInformation Desert SouthwestTechnologies |November 2011 Mon, Next2025StepsElectron---neutrinoAA BetterA

430

A Better Anode Design to Improve Lithium-Ion Batteries  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary)morphinanInformation Desert SouthwestTechnologies |November 2011 Mon, Next2025StepsElectron---neutrinoAA

431

Lithium Ion Battery Performance of Silicon Nanowires With Carbon Skin . |  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: VegetationEquipment Surfaces and Interfaces Sample6, 2011Liisa O'NeillFuels MarketLisaLithiumEMSL Ion

432

Longer Life Lithium Ion Batteries with Silicon Anodes - Energy Innovation  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: VegetationEquipment Surfaces and Interfaces Sample6,Local CorrelationsConditions. |

433

Autonomic Shutdown of Lithium-Ion Batteries Using Thermoresponsive  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsruc DocumentationP-Series to someone byDearTechnical InformationAugust 29,with Query

434

Electrolytes for Lithium Ion Batteries - Energy Innovation Portal  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation ProposedUsing Zirconia Nanoparticles as Selective Sorbents . |of ZnO Nanorods inSolar

435

Fail Safe Design for Large Capacity Lithium-ion Batteries  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsruc DocumentationP-Series toESnet4:Epitaxial ThinFOR IMMEDIATE5FacilitiesFacilityAboutFail Safe

436

BIFUNCTIONAL ELECTROLYTES FOR LITHIUM ION BATTERIES | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-Up fromDepartmentTie Ltd: Scope ChangeL-01-06Hot-Humid Climate:BEopt Version 2.0:

437

Bifunctional Electrolytes for Lithium-ion Batteries | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-Up fromDepartmentTie Ltd: ScopeDepartment1, 2011 DRAFTof Energy Beyond10Hydrocarbons2

438

Bifunctional Electrolytes for Lithium-ion Batteries | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-Up fromDepartmentTie Ltd: ScopeDepartment1, 2011 DRAFTof Energy

439

Bifunctional Electrolytes for Lithium-ion Batteries | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-Up fromDepartmentTie Ltd: ScopeDepartment1, 2011 DRAFTof Energy0 DOE Vehicle

440

Nanocomposite Carbon/Tin Anodes for Lithium Ion Batteries - Energy  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the Contributions andData andFleet TestAccounts andThe Role ofStorageNanocatalysts

Note: This page contains sample records for the topic "rechargeable lithium-ion batteries" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

Nanostructured Anodes for Lithium-Ion Batteries - Energy Innovation Portal  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the Contributions andData andFleetEngineering Of

442

Nanotube Arrays for Advanced Lithium-ion Batteries - Energy Innovation  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the Contributions andData andFleetEngineering OfSilica forNanotechnologyExposures

443

Nanotube composite anode materials improve lithium-ion battery performance  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the Contributions andData andFleetEngineering OfSilica

444

Surface-Modified Active Materials for Lithium Ion Battery Electrodes -  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security AdministrationcontrollerNanocrystalline GalliumSuppression of conductivitySurfaceEnergy Innovation

445

Advanced Lithium Ion Battery Technologies - Energy Innovation Portal  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth (AOD)ProductssondeadjustsondeadjustAbout the Building TechnologiesS1!4TCombustionOptimizingCMWG

446

Nanocomposite Materials for Lithium-Ion Batteries | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:Year in3.pdfEnergy HealthCommentsAugust 2012NEVADA SPARKSNV Energy RFP NV

447

A Better Anode Design to Improve Lithium-Ion Batteries  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Lab News Release Research conducted by: G. Liu, S. Xun, X. Song, H. Zheng, and V.S. Battaglia (EETD, Berkeley Lab), P. Olalde-Velasco and W. Yang (ALS, Berkeley Lab), L.-W. Wang...

448

Development of Electrolytes for Lithium-ion Batteries  

Broader source: Energy.gov [DOE]

2013 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting

449

Binder free three-dimensional sulphur/few-layer graphene foam cathode with enhanced high-rate capability for rechargeable lithium sulphur batteries  

E-Print Network [OSTI]

], 0000 | 1 Binder free three-dimensional sulphur/few-layer graphene foam cathode with enhanced high-rate capability for rechargeable lithium sulphur batteries Kai Xi,a Piran R. Kidambi,b Renjie Chen,c Chenlong Gao,a Xiaoyu Peng,a Caterina... Ducati,a Stephan Hofmannb* and R. Vasant Kumar a* 5 Received (in XXX, XXX) Xth XXXXXXXXX 20XX, Accepted Xth XXXXXXXXX 20XX DOI: 10.1039/b000000x A novel ultra-lightweight three-dimensional (3-D) cathode system for lithium sulphur (Li-S) batteries...

Xi, Kai; Kidambi, Piran R.; Chen, Renjie; Gao, Chenlong; Peng, Xiaoyu; Ducati, Caterina; Hofmann, Stephan; Kumar, R. Vasant

2014-03-04T23:59:59.000Z

450

Methods and apparatuses for making cathodes for high-temperature, rechargeable batteries  

DOE Patents [OSTI]

The approaches for fabricating cathodes can be adapted to improve control over cathode composition and to better accommodate batteries of any shape and their assembly. For example, a first solid having an alkali metal halide, a second solid having a transition metal, and a third solid having an alkali metal aluminum halide are combined into a mixture. The mixture can be heated in a vacuum to a temperature that is greater than or equal to the melting point of the third solid. When the third solid is substantially molten liquid, the mixture is compressed into a desired cathode shape and then cooled to solidify the mixture in the desired cathode shape.

Meinhardt, Kerry D; Sprenkle, Vincent L; Coffey, Gregory W

2014-05-20T23:59:59.000Z

451

Jeff Chamberlain on Lithium-air batteries  

ScienceCinema (OSTI)

Jeff Chamberlain, technology transfer expert at Argonne National Laboratory, speaks on the new technology Lithium-air batteries, which could potentially increase energy density by 5-10 times over lithium-ion batteries. More information at http://www.anl.gov/Media_Center/News/2009/batteries090915.html

Chamberlain, Jeff

2013-04-19T23:59:59.000Z

452

Jeff Chamberlain on Lithium-air batteries  

SciTech Connect (OSTI)

Jeff Chamberlain, technology transfer expert at Argonne National Laboratory, speaks on the new technology Lithium-air batteries, which could potentially increase energy density by 5-10 times over lithium-ion batteries. More information at http://www.anl.gov/Media_Center/News/2009/batteries090915.html

Chamberlain, Jeff

2009-01-01T23:59:59.000Z

453

Michael Thackeray on Lithium-air Batteries  

ScienceCinema (OSTI)

Michael Thackeray, Distinguished Fellow at Argonne National Laboratory, speaks on the new technology Lithium-air batteries, which could potentially increase energy density by 5-10 times over lithium-ion batteries. More information at http://www.anl.gov/Media_Center/News/2009/batteries090915.html

Thackeray, Michael

2013-04-19T23:59:59.000Z

454

Probing the Failure Mechanism of SnO2 Nanowires for Sodium-ion Batteries  

SciTech Connect (OSTI)

Non-lithium metals such as sodium have attracted wide attention as a potential charge carrying ion for rechargeable batteries, performing the same role as lithium in lithium- ion batteries. As sodium and lithium have the same +1 charge, it is assumed that what has been learnt about the operation of lithium ion batteries can be transferred directly to sodium batteries. Using in-situ TEM, in combination with DFT calculations, we probed the structural and chemical evolution of SnO2 nanowire anodes in Na-ion batteries and compared them quantitatively with results from Li-ion batteries [Science 330 (2010) 1515]. Upon Na insertion into SnO2, a displacement reaction occurs, leading to the formation of amorphous NaxSn nanoparticles covered by crystalline Na2O shell. With further Na insertion, the NaxSn core crystallized into Na15Sn4 (x=3.75). Upon extraction of Na (desodiation), the NaxSn core transforms to Sn nanoparticles. Associated with a volume shrinkage, nanopores appear and metallic Sn particles are confined in hollow shells of Na2O, mimicking a peapod structure. These pores greatly increase electrical impedance, therefore naturally accounting for the poor cyclability of SnO2. DFT calculations indicate that Na+ diffuses 30 times slower than Li+ in SnO2, in agreement with in-situ TEM measurement. Insertion of Na can chemo-mechanically soften the reaction product to greater extent than in lithiation. Therefore, in contrast to the lithiation of SnO2, no dislocation plasticity was seen ahead of the sodiation front. This direct comparison of the results from Na and Li highlights the critical role of ionic size and electronic structure of different ionic species on the charge/discharge rate and failure mechanisms in these batteries.

Gu, Meng; Kushima, Akihiro; Shao, Yuyan; Zhang, Jiguang; Liu, Jun; Browning, Nigel D.; Li, Ju; Wang, Chong M.

2013-09-30T23:59:59.000Z

455

Method and apparatus for preparation of spherical metal carbonates and lithium metal oxides for lithium rechargeable batteries  

DOE Patents [OSTI]

A number of materials with the composition Li.sub.1+xNi.sub..alpha.Mn.sub..beta.Co.sub..gamma.M'.sub..delta.O.sub.2-- zF.sub.z (M'=Mg,Zn,Al,Ga,B,Zr,Ti) for use with rechargeable batteries, wherein x is between about 0 and 0.3, .alpha. is between about 0.2 and 0.6, .beta. is between about 0.2 and 0.6, .gamma. is between about 0 and 0.3, .delta. is between about 0 and 0.15, and z is between about 0 and 0.2. Adding the above metal and fluorine dopants affects capacity, impedance, and stability of the layered oxide structure during electrochemical cycling. Another aspect of the invention includes materials with the composition Li.sub.1+xNi.sub..alpha.Co.sub..beta.Mn.sub..gamma.M'.sub..delta.O.sub.yF- .sub.z (M'=Mg,Zn,Al,Ga,B,Zr,Ti), where the x is between 0 and 0.2, the .alpha. between 0 and 1, the .beta. between 0 and 1, the .gamma. between 0 and 2, the .delta. between about 0 and about 0.2, the y is between 2 and 4, and the z is between 0 and 0.5.

Kang, Sun-Ho (Naperville, IL); Amine, Khalil (Downers Grove, IL)

2008-10-14T23:59:59.000Z

456

Capacity fade analysis of a battery/super capacitor hybrid and a battery under pulse loads full cell studies  

E-Print Network [OSTI]

. Introduction Hybrid energy storage devices are more efficient than a battery in supplying the total powerCapacity fade analysis of a battery/super capacitor hybrid and a battery under pulse loads ­ full words: capacity fade, interfacial impedance, lithium ion battery/supercapacitor hybrid, pulse discharge

Popov, Branko N.

457

Synthesis and Characterization of Simultaneous Electronic and Ionic Conducting Block Copolymers for Lithium Battery Electrodes  

E-Print Network [OSTI]

Protection in Secondary Lithium Batteries. Electrochim. ActaFacing Rechargeable Lithium Batteries. Nature 2001, 414,for Rechargeable Lithium Batteries Using Electroactive

Patel, Shrayesh

2013-01-01T23:59:59.000Z

458

Overcharge Protection for 4 V Lithium Batteries at High Rates and Low Temperature  

E-Print Network [OSTI]

Protection for 4 V Lithium Batteries at High Rates and LowIntroduction Rechargeable lithium batteries are known forfor rechargeable lithium batteries. When impregnated into a

Chen, Guoying

2010-01-01T23:59:59.000Z

459

Cu2Sb thin film electrodes prepared by pulsed laser deposition f or lithium batteries  

E-Print Network [OSTI]

Laser Deposition for Lithium Batteries Seung-Wan Song, a, *in rechargeable lithium batteries. Introduction Sb-in rechargeable lithium batteries. Two advantages of

Song, Seung-Wan; Reade, Ronald P.; Cairns, Elton J.; Vaughey, Jack T.; Thackeray, Michael M.; Striebel, Kathryn A.

2003-01-01T23:59:59.000Z

460

Electrochemical to mechanical energy conversion  

E-Print Network [OSTI]

Electrode materials for rechargeable lithium ion batteries are well-known to undergo significant dimensional changes during lithium-ion insertion and extraction. In the battery community, this has often been looked upon ...

Chin, Timothy Edward

2010-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "rechargeable lithium-ion batteries" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

Solid-state lithium battery  

DOE Patents [OSTI]

The present invention is directed to a higher power, thin film lithium-ion electrolyte on a metallic substrate, enabling mass-produced solid-state lithium batteries. High-temperature thermodynamic equilibrium processing enables co-firing of oxides and base metals, providing a means to integrate the crystalline, lithium-stable, fast lithium-ion conductor lanthanum lithium tantalate (La.sub.1/3-xLi.sub.3xTaO.sub.3) directly with a thin metal foil current collector appropriate for a lithium-free solid-state battery.

Ihlefeld, Jon; Clem, Paul G; Edney, Cynthia; Ingersoll, David; Nagasubramanian, Ganesan; Fenton, Kyle Ross

2014-11-04T23:59:59.000Z

462

Ground state hyperfine structure in muonic lithium ions  

E-Print Network [OSTI]

On the basis of perturbation theory in fine structure constant alpha and the ratio of electron to muon masses we calculate one-loop vacuum polarization, electron vertex corrections, nuclear structure and recoil corrections to hyperfine splitting of the ground state in muonic lithium ions $(\\mu\\ e\\ ^6_3Li)^+$ and $(\\mu\\ e\\ ^7_3Li)^+$. We obtain total results for the ground state small hyperfine splittings in $(\\mu\\ e\\ ^6_3Li)^+$ $\\Delta\

A. P. Martynenko; A. A. Ulybin

2014-11-21T23:59:59.000Z

463

In situ Nanotomography and Operando Transmission X-ray Microscopy...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

fossil fuels with cleaner, renewable energy sources, rechargeable battery technology for electric vehicles requires dramatic increases in performance. The lithium-ion battery...

464

Block copolymer electrolytes for lithium batteries  

E-Print Network [OSTI]

polymer electrolytes for lithium batteries. Nature 394, 456-facing rechargeable lithium batteries. Nature 414, 359-367 (vanadium oxides for lithium batteries. Journal of Materials

Hudson, William Rodgers

2011-01-01T23:59:59.000Z

465

Volume I, Issue 3 October 2011  

E-Print Network [OSTI]

capac- ity lithium-ion batteries for those vehicles of the future. Compared to other types of rechargeable batteries, lithium-ion batteries weigh less, can store more elec- tricity for longer periods. Lithium-ion batteries pro- vide energy as electricity flows from an anode to the device being powered

466

45nm direct battery DC-DC converter for mobile applications  

E-Print Network [OSTI]

Portable devices use Lithium-ion batteries as the energy source due to their high energy density, long cycle life and low memory effects. With the aggressive downscaling of CMOS, it is becoming increasingly difficult to ...

Bandyopadhyay, Saurav

2010-01-01T23:59:59.000Z

467

An ultra-compact and efficient Li-ion battery charger circuit for biomedical applications  

E-Print Network [OSTI]

This paper describes an ultra-compact analog lithium-ion (Li-ion) battery charger for wirelessly powered implantable medical devices. The charger presented here takes advantage of the tanh output current profile of an ...

Do Valle, Bruno Guimaraes

468

Optical state-of-charge monitor for batteries  

DOE Patents [OSTI]

A method and apparatus for determining the instantaneous state-of-charge of a battery in which change in composition with discharge manifests itself as a change in optical absorption. In a lead-acid battery, the sensor comprises a fiber optic system with an absorption cell or, alternatively, an optical fiber woven into an absorbed-glass-mat battery. In a lithium-ion battery, the sensor comprises fiber optics for introducing light into the anode to monitor absorption when lithium ions are introduced.

Weiss, Jonathan D. (Albuquerque, NM)

1999-01-01T23:59:59.000Z

469

Lithium Ion Electrode Production NDE and QC Considerations | Department of  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:Year in3.pdfEnergy Health andofIanJenniferLeslie Pezzullo:LightingEnergy Lithium Ion

470

Hemilabile Ligands in Organolithium Chemistry: Substituent Effects on Lithium Ion Chelation  

E-Print Network [OSTI]

-dimethyl effect on lithium ion chelation? The gem-dimethyl effect results when destabiliz- ing interactions causedHemilabile Ligands in Organolithium Chemistry: Substituent Effects on Lithium Ion Chelation Antonio; E-mail: dbc6@cornell.edu Abstract: The lithium diisopropylamide-mediated 1,2-elimination of 1

Collum, David B.

471

Highly Reversible Li-Ion Intercalating MoP2 Nanoparticle Cluster Anode for Lithium Rechargeable Batteries  

E-Print Network [OSTI]

Highly Reversible Li-Ion Intercalating MoP2 Nanoparticle Cluster Anode for Lithium Rechargeable, metal phosphides MPn, M = transition metal ions as attractive Li-ion anode materials have received lithium reactions, i MPn LixMPn simple Li-ion interca- lation and ii MPn M LixM + LixP alloying followed

Cho, Jaephil

472

Visualization of Charge Distribution in a Lithium Battery Electrode  

E-Print Network [OSTI]

Distribution in Thin-Film Batteries. J. Electrochem. Soc.of Lithium Polymer Batteries. J. Power Sources 2002, 110,for Rechargeable Li Batteries. Chem. Mater. 2010, 15. Padhi,

Liu, Jun

2010-01-01T23:59:59.000Z

473

Visualization of Charge Distribution in a Lithium Battery Electrode  

E-Print Network [OSTI]

for Rechargeable Lithium Batteries. J. Electrochem. Soc.Calculations for Lithium Batteries. J. Electrostatics 1995,Modeling of Lithium Polymer Batteries. J. Power Sources

Liu, Jun

2010-01-01T23:59:59.000Z

474

The UC Davis Emerging Lithium Battery Test Project  

E-Print Network [OSTI]

for rechargeable lithium batteries, Journal of Powerand iron phosphate lithium batteries will be satisfactoryapplications. The cost of lithium batteries remains high ($

Burke, Andy; Miller, Marshall

2009-01-01T23:59:59.000Z

475

10 Questions for a Batteries Expert: Daniel Abraham  

Broader source: Energy.gov [DOE]

Lithium-ion batteries are in almost every cell phone, as well as cameras, camcorders, and computers. Dr. Abraham explains, "Our goal is to get the batteries into our cars - into the next generation of plug-in hybrid and electric vehicles." Learn more.

476

Using Transient Electrical Measurements for Real-Time Monitoring of Battery State-of-Charge  

E-Print Network [OSTI]

system. I. INTRODUCTION Future energy-storage systems are likely to use lithium- ion batteries because regulate efficiency and power availability in battery-based systems, it is important to have a robust realUsing Transient Electrical Measurements for Real-Time Monitoring of Battery State

Nasipuri, Asis

477

NANOMATERIALS FOR HIGH CAPACITY LI-ION BATTERIES Taylor Grieve, Iowa State University, SURF 2009 Fellow  

E-Print Network [OSTI]

NANOMATERIALS FOR HIGH CAPACITY LI-ION BATTERIES Taylor Grieve, Iowa State University, SURF 2009 energy storage devices continues to grow. Lithium-ion (Li-ion) secondary, or renewable, batteries are of interest due to their high energy and power characteristics. Performance enhancements of Li- ion batteries

Li, Mo

478

The Seventh Cell of a Six-Cell Battery Delyan Raychev, Youhuizi Li and Weisong Shi  

E-Print Network [OSTI]

propose an alternate method, called autonomous battery clusters (ABC), of building batteries and new ways to maximize the energy utilization of any devices that could be powered by Lithium Ion batteries. Experimental source. Index Terms--Energy Efficiency; Energy Management; Bat- tery Discharging I. INTRODUCTION Mankind

Shi, Weisong

479

A Combined 6,7Li NMR and Molecular Dynamics Study of Li Diffusion...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

diffusion properties in electrode materials is important for designing rechargeable lithium-ion batteries with improved performance. In this work, the lithium dynamics in...

480

Optical State-of-Change Monitor for Lead-Acid Batteries  

SciTech Connect (OSTI)

A method and apparatus for determining the instantaneous state-of-charge of a battery in which change in composition with discharge manifests itself as a change in optical absorption. In a lead-acid battery, the sensor comprises a fiber optic system with an absorption cdl or, alternatively, an optical fiber woven into an absorbed-glass-mat battery. In a lithium-ion battery, the sensor comprises fiber optics for introducing light into the anode to monitor absorption when lithium ions are introduced.

Weiss, Jonathan D.

1998-07-24T23:59:59.000Z

Note: This page contains sample records for the topic "rechargeable lithium-ion batteries" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


481

FLUIDIC: Metal Air Recharged  

ScienceCinema (OSTI)

Fluidic, with the help of ARPA-E funding, has developed and deployed the world's first proven high cycle life metal air battery. Metal air technology, often used in smaller scale devices like hearing aids, has the lowest cost per electron of any rechargeable battery storage in existence. Deploying these batteries for grid reliability is competitive with pumped hydro installations while having the advantages of a small footprint. Fluidic's battery technology allows utilities and other end users to store intermittent energy generated from solar and wind, as well as maintain reliable electrical delivery during power outages. The batteries are manufactured in the US and currently deployed to customers in emerging markets for cell tower reliability. As they continue to add customers, they've gained experience and real world data that will soon be leveraged for US grid reliability.

Friesen, Cody

2014-04-02T23:59:59.000Z

482

FLUIDIC: Metal Air Recharged  

SciTech Connect (OSTI)

Fluidic, with the help of ARPA-E funding, has developed and deployed the world's first proven high cycle life metal air battery. Metal air technology, often used in smaller scale devices like hearing aids, has the lowest cost per electron of any rechargeable battery storage in existence. Deploying these batteries for grid reliability is competitive with pumped hydro installations while having the advantages of a small footprint. Fluidic's battery technology allows utilities and other end users to store intermittent energy generated from solar and wind, as well as maintain reliable electrical delivery during power outages. The batteries are manufactured in the US and currently deployed to customers in emerging markets for cell tower reliability. As they continue to add customers, they've gained experience and real world data that will soon be leveraged for US grid reliability.

Friesen, Cody

2014-03-07T23:59:59.000Z

483

Molecular Architecture for Polyphosphazene Electrolytes for Seawater Batteries  

SciTech Connect (OSTI)

In this work, a series of polyphosphazenes were designed to function as water resistant, yet ionically conductive membranes for application to lithium/seawater batteries. In membranes of this nature, various molecular architectures are possible and representatives from each possible type were chosen. These polymers were synthesized and their performance as solid polymer electrolytes was evaluated in terms of both lithium ion conductivity and water permeability. The impact that this molecular architecture has on total performance of the membranes for seawater batteries is discussed. Further implications of this molecular architecture on the mechanisms of lithium ion transport through polyphosphazenes are also discussed.

Mason K. Harrup; Mason K. Harrup; Thomas A. Luther; Christopher J. Orme; Eric S. Peterson

2005-08-01T23:59:59.000Z

484

On the Accuracy and Simplifications of Battery Models using In Situ Measurements of Lithium Concentration in Operational Cells  

E-Print Network [OSTI]

. INTRODUCTION Accurate estimates of Lithium Ion Battery State of Charge (SOC) are critical for constraining and solid phase lithium distributions across the electrode may better utilize the battery's stored energyOn the Accuracy and Simplifications of Battery Models using In Situ Measurements of Lithium

Stefanopoulou, Anna

485

Applied Surface Science 266 (2013) 516 Interphase chemistry of Si electrodes used as anodes in Li-ion batteries  

E-Print Network [OSTI]

in Li-ion batteries Catarina Pereira-Nabaisa,b , Jolanta S´wiatowskaa, , Alexandre Chagnesb, , Franc made to increase the energy density of lithium-ion batteries (LiB), namely for electric vehicle applications. One way to improve the energy density of a battery is to use high specific capacity materials, e

Boyer, Edmond

486

Adaptation of an Electrochemistry-based Li-Ion Battery Model to Account for Deterioration Observed Under Randomized Use  

E-Print Network [OSTI]

Adaptation of an Electrochemistry-based Li-Ion Battery Model to Account for Deterioration Observed). In this paper, we use an electrochemistry-based lithium ion (Li-ion) battery model developed in (Daigle, Moffett Field, CA 94035 matthew.j.daigle@nasa.gov ABSTRACT Tracking the variation in battery dynamics

Daigle, Matthew

487

Models for Battery Reliability and Lifetime  

SciTech Connect (OSTI)

Models describing battery degradation physics are needed to more accurately understand how battery usage and next-generation battery designs can be optimized for performance and lifetime. Such lifetime models may also reduce the cost of battery aging experiments and shorten the time required to validate battery lifetime. Models for chemical degradation and mechanical stress are reviewed. Experimental analysis of aging data from a commercial iron-phosphate lithium-ion (Li-ion) cell elucidates the relative importance of several mechanical stress-induced degradation mechanisms.

Smith, K.; Wood, E.; Santhanagopalan, S.; Kim, G. H.; Neubauer, J.; Pesaran, A.

2014-03-01T23:59:59.000Z

488

Rechargeable alkaline zinc/ferricyanide battery, Phase III. Final report, 26 October 1981-18 September 1982  

SciTech Connect (OSTI)

Project effort was concentrated primarily on technical advancement of the alkaline zinc/ferricyanide battery to meet goals of scale-up and demonstration of solid-reactant storage with 1000-cm/sup 2/ full-scale cells; development of a conceptual engineering design for a 50-kW solar-photovoltaic storage system; demonstration of solar acceptance random cycling; and determination of cycle life of cells operating at 70- and 200-mA.h/cm/sup 2/ capacity. These goals were met in the design, fabrication, and cyclic testing of a 1000-cm/sup 2/ cell having a flow aspect ratio of 2:1. After some design optimization, energy efficiency in 2N NaOH at 43/sup 0/C is 74 to 78 percent. Testing has been in conjunction with a crystallizer/reservoir designed with a capacity of 300 mA.h/cm/sup 2/ that delivers solids-free electrolyte to the cell. A conceptual engineering design for a 50-kW solar storage-battery system has been formulated with mass and thermal balances computed. Single-cell (60-cm/sup 2/) cycle life tests are in progress at 35 mA/cm/sup 2/ with 2N NaOH electrolyte with Nafion N-125 separator at 40/sup 0/C. Over 800 cycles at 70 mA.h/cm/sup 2/ capacity with mean energy efficiency of 76.6 +- 2.1 percent have been logged. Mean voltaic and coulombic efficiencies are 83.3 +- 1.8 percent and 92.0 +- 1.8 percent, respectively. Single-cell (60-cm/sup 2/) cycle life tests run under similar conditions at 249 +- 45 mA.h/cm/sup 2/ have logged over 220 cycles with mean energy efficiency of 75.3 +- 5.1 percent. Mean voltaic and coulombic efficiencies are 84.7 +- 2.0 and 89.0 +- 6.0, respectively.

Adams, G.B.; Hollandsworth, R.P.; Webber, B.D.

1983-02-01T23:59:59.000Z

489

Characterization of an Electroactive Polymer for Overcharge Protection in Secondary Lithium Batteries  

E-Print Network [OSTI]

Protection in Secondary Lithium Batteries Guoying Chen,protection agents in lithium batteries is relatively new,in rechargeable lithium batteries with a variety of

Chen, Guoying; Thomas-Alyea, Karen E.; Newman, John; Richardson, Thomas J.

2005-01-01T23:59:59.000Z

490

Develop high energy high power Li-ion battery cathode materials : a first principles computational study  

E-Print Network [OSTI]

of cathode materials for lithium batteries guided by first-facing rechargeable lithium batteries. Nature, 2001. 414(M.S. Whittingham, Lithium batteries and cathode materials.

Xu, Bo; Xu, Bo

2012-01-01T23:59:59.000Z

491

Metal-Air Batteries  

SciTech Connect (OSTI)

Metal-air batteries have much higher specific energies than most currently available primary and rechargeable batteries. Recent advances in electrode materials and electrolytes, as well as new designs on metal-air batteries, have attracted intensive effort in recent years, especially in the development of lithium-air batteries. The general principle in metal-air batteries will be reviewed in this chapter. The materials, preparation methods, and performances of metal-air batteries will be discussed. Two main metal-air batteries, Zn-air and Li-air batteries will be discussed in detail. Other type of metal-air batteries will also be described.

Zhang, Jiguang; Bruce, Peter G.; Zhang, Gregory

2011-08-01T23:59:59.000Z

492

PARAMETERIZATION AND VALIDATION OF AN INTEGRATED ELECTRO-THERMAL CYLINDRICAL LFP BATTERY MODEL  

E-Print Network [OSTI]

with a two-state thermal model to form an electro-thermal model for cylindrical lithium ion batteries- eters. A two-state thermal model is used to approximate the core and surface temperatures of the battery to lithium diffusion in the solid phase and in the electrolyte [13]. These circuit elements depend on state

Stefanopoulou, Anna

493

Electrocatalytic Activity Studies of Select Metal Surfaces and Implications in Li-Air Batteries  

E-Print Network [OSTI]

Rechargeable lithium-air batteries have the potential to provide ?3 times higher specific energy of fully packaged batteries than conventional lithium rechargeable batteries. However, very little is known about the oxygen ...

Gasteiger, Hubert A.

494

The Impact of Aluminum and Iron Substitution on the Structure and Electrochemistry of Li[Ni0.4Co0.2-yMyMn0.4]O2 Materials  

E-Print Network [OSTI]

of commercial lithium ion batteries since their introductiongeneration of lithium ion batteries. Mixed transition metal

WIlcox, James D.

2010-01-01T23:59:59.000Z

495

aqueous rechargeable lithium: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

batteries MIT - DSpace Summary: There has been great recent interest in lithium storage at the anode of Li-ion rechargeable battery by alloying with metals such as Al,...

496

aqueous lithium rechargeable: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

batteries MIT - DSpace Summary: There has been great recent interest in lithium storage at the anode of Li-ion rechargeable battery by alloying with metals such as Al,...

497

Nanostructured Materials for Energy Generation and Storage  

E-Print Network [OSTI]

energy generation and battery storage via the use ofenergy generation and battery storage via the use of nanos-and storage (e.g lithium-ion rechargeable battery)

Khan, Javed Miller

2012-01-01T23:59:59.000Z

498

The Fabrication of Titanium Dioxide Based Anode Material Using Aerosol Method  

E-Print Network [OSTI]

energy, rechargeable Li-ion battery based on carbon nanotubewith Sb and SnSb0.5 as Li-ion battery anodes. Carbon, 2003.Li, A review of application of carbon nanotubes for lithium ion battery

Zhao, Lin

2013-01-01T23:59:59.000Z

499

Lithium Ion Solvation: Amine and Unsaturated Hydrocarbon Solvates of Lithium Hexamethyldisilazide (LiHMDS)  

E-Print Network [OSTI]

Lithium Ion Solvation: Amine and Unsaturated Hydrocarbon Solvates of Lithium Hexamethyldisilazide, and 13C NMR spectroscopic studies of 6Li-15N labeled lithium hexamethyldisilazide ([6Li,15N]- Li ligand structure and lithium amide aggregation state is a complex and sensitive function of amine alkyl

Collum, David B.

500

Three-Dimensional Coherent Titania-Mesoporous Carbon Nanocomposite and Its Lithium-Ion Storage Properties  

E-Print Network [OSTI]

Three-Dimensional Coherent Titania-Mesoporous Carbon Nanocomposite and Its Lithium-Ion Storage Properties Laifa Shen,, Evan Uchaker, Changzhou Yuan, Ping Nie, Ming Zhang, Xiaogang Zhang,*, and Guozhong into the channels of surface- oxidized mesoporous carbon (CMK-3) by means of electrostatic interaction, followed

Cao, Guozhong