Powered by Deep Web Technologies
Note: This page contains sample records for the topic "rechargeable lithium battery" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

Design and Simulation of Lithium Rechargeable Batteries  

E-Print Network [OSTI]

J. -P. Gabano, Ed. , Lithium Batteries, Academic Press, Newfor Rechargeable Lithium Batteries," J. Electrochem.for Rechargeable Lithium Batteries," J. Electroclzern.

Doyle, C.M.

2010-01-01T23:59:59.000Z

2

Ionic liquids for rechargeable lithium batteries  

E-Print Network [OSTI]

for rechargeable lithium batteries (Preliminary report,applications using lithium batteries, we must be sure thattemperature range. For lithium batteries in hybrid vehicles,

Salminen, Justin; Papaiconomou, Nicolas; Kerr, John; Prausnitz, John; Newman, John

2008-01-01T23:59:59.000Z

3

Design and Simulation of Lithium Rechargeable Batteries  

E-Print Network [OSTI]

Gabano, Ed. , Lithium Batteries, Academic Press, New York,K. V. Kordesch, "Primary Batteries 1951-1976," J. Elec- n ~.Rechargeable Lithium Batteries," J. Electrochem. Soc. , [20

Doyle, C.M.

2010-01-01T23:59:59.000Z

4

Design and Simulation of Lithium Rechargeable Batteries  

E-Print Network [OSTI]

A New Rechargeable Plastic Li-Ion Battery," Lithium Batteryion battery developed at Bellcore in Red Bank, NJ.1-6 The experimental prototYpe cell has the configuration: Li

Doyle, C.M.

2010-01-01T23:59:59.000Z

5

A Failure and Structural Analysis of Block Copolymer Electrolytes for Rechargeable Lithium Metal Batteries  

E-Print Network [OSTI]

for Rechargeable Lithium Metal Batteries By Gregory Michaelfor Rechargeable Lithium Metal Batteries by Gregory Michaelin rechargeable lithium metal batteries. The block copolymer

Stone, Gregory Michael

2012-01-01T23:59:59.000Z

6

Lithium Metal Anodes for Rechargeable Batteries  

SciTech Connect (OSTI)

Rechargeable lithium metal batteries have much higher energy density than those of lithium ion batteries using graphite anode. Unfortunately, uncontrollable dendritic lithium growth inherent in these batteries (upon repeated charge/discharge cycling) and limited Coulombic efficiency during lithium deposition/striping has prevented their practical application over the past 40 years. With the emerging of post Li-ion batteries, safe and efficient operation of lithium metal anode has become an enabling technology which may determine the fate of several promising candidates for the next generation of energy storage systems, including rechargeable Li-air battery, Li-S battery, and Li metal battery which utilize lithium intercalation compounds as cathode. In this work, various factors which affect the morphology and Coulombic efficiency of lithium anode will be analyzed. Technologies used to characterize the morphology of lithium deposition and the results obtained by modeling of lithium dendrite growth will also be reviewed. At last, recent development in this filed and urgent need in this field will also be discussed.

Xu, Wu; Wang, Jiulin; Ding, Fei; Chen, Xilin; Nasybulin, Eduard N.; Zhang, Yaohui; Zhang, Jiguang

2014-02-28T23:59:59.000Z

7

Anodes for rechargeable lithium batteries  

DOE Patents [OSTI]

A negative electrode (12) for a non-aqueous electrochemical cell (10) with an intermetallic host structure containing two or more elements selected from the metal elements and silicon, capable of accommodating lithium within its crystallographic host structure such that when the host structure is lithiated it transforms to a lithiated zinc-blende-type structure. Both active elements (alloying with lithium) and inactive elements (non-alloying with lithium) are disclosed. Electrochemical cells and batteries as well as methods of making the negative electrode are disclosed.

Thackeray, Michael M. (Naperville, IL); Kepler, Keith D. (Mountain View, CA); Vaughey, John T. (Elmhurst, IL)

2003-01-01T23:59:59.000Z

8

Electrode Materials for Rechargeable Lithium-Ion Batteries: A...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Electrode Materials for Rechargeable Lithium-Ion Batteries: A New Synthetic Approach Technology available for licensing: New high-energy cathode materials for use in rechargeable...

9

Microstructural Modeling and Design of Rechargeable Lithium-Ion Batteries  

E-Print Network [OSTI]

Microstructural Modeling and Design of Rechargeable Lithium-Ion Batteries R. Edwin Garci´a,a, *,z microstructure. Experi- mental measurements are reproduced. Early models for lithium-ion batteries were developed Institute of Technology, Cambridge, Massachusetts 01239-4307, USA The properties of rechargeable lithium

García, R. Edwin

10

Layered manganese oxide intergrowth electrodes for rechargeable lithium batteries: Part 1-substitution with Co or Ni  

E-Print Network [OSTI]

Cathode Materials for Lithium Batteries, 2003, Massachusettsfor Rechargeable Lithium Batteries: Part 1-Substitution withelectrode materials for lithium batteries because of their

Dolle, Mickael; Patoux, Sebastien; Doeff, Marca M.

2004-01-01T23:59:59.000Z

11

Rechargeable thin-film lithium batteries  

SciTech Connect (OSTI)

Rechargeable thin-film batteries consisting of lithium metal anodes, an amorphous inorganic electrolyte, and cathodes of lithium intercalation compounds have been fabricated and characterized. These include Li-TiS{sub 2}, Li-V{sub 2}O{sub 5}, and Li-Li{sub x}Mn{sub 2}O{sub 4} cells with open circuit voltages at full charge of about 2.5 V, 3.7 V, and 4.2 V, respectively. The realization of these robust cells, which can be cycled thousands of times, was possible because of the stability of the amorphous lithium electrolyte, lithium phosphorus oxynitride. This material has a typical composition of Li{sub 2.9}PO{sub 3.3}N{sub 0.46}and a conductivity at 25 C of 2 {mu}S/cm. The thin-film cells have been cycled at 100% depth of discharge using current densities of 5 to 100 {mu}A/cm{sup 2}. Over most of the charge-discharge range, the internal resistance appears to be dominated by the cathode, and the major source of the resistance is the diffusion of Li{sup +} ions from the electrolyte into the cathode. Chemical diffusion coefficients were determined from ac impedance measurements.

Bates, J.B.; Gruzalski, G.R.; Dudney, N.J.; Luck, C.F.; Yu, X.

1993-09-01T23:59:59.000Z

12

Factors influencing the discharge characteristics of Na0.44MnO2-based positive electrode materials for rechargeable lithium batteries  

E-Print Network [OSTI]

for Rechargeable Lithium Batteries Marca M. Doeff, Kwang-For Rechargeable Lithium Batteries Marca M. Doefr*, Kwang-FOR RECHARGEABLE LITHIUM BATTERIES Marca M. Doeff * , Kwang-

Doeff, M.M.

2011-01-01T23:59:59.000Z

13

STUDIES ON TWO CLASSES OF POSITIVE ELECTRODE MATERIALS FOR LITHIUM-ION BATTERIES  

E-Print Network [OSTI]

facing rechargeable lithium batteries. Nature, 2001. 414(of rechargeable lithium batteries, I. Lithium manganeseof rechargeable lithium batteries, II. Lithium ion

Wilcox, James D.

2010-01-01T23:59:59.000Z

14

Self-doped block copolymer electrolytes for solid-state, rechargeable lithium batteries  

E-Print Network [OSTI]

Self-doped block copolymer electrolytes for solid-state, rechargeable lithium batteries Donald R. Introduction The ideal electrolyte material for a solid-state battery would have the ionic conductivity and cathode binder thin-®lm, solid-state, rechargeable lithium batteries of the type Li/ BCE/LiMnO2 have been

Sadoway, Donald Robert

15

Rechargeable Lithium-Air Batteries: Development of Ultra High Specific Energy Rechargeable Lithium-Air Batteries Based on Protected Lithium Metal Electrodes  

SciTech Connect (OSTI)

BEEST Project: PolyPlus is developing the worlds first commercially available rechargeable lithium-air (Li-Air) battery. Li-Air batteries are better than the Li-Ion batteries used in most EVs today because they breathe in air from the atmosphere for use as an active material in the battery, which greatly decreases its weight. Li-Air batteries also store nearly 700% as much energy as traditional Li-Ion batteries. A lighter battery would improve the range of EVs dramatically. Polyplus is on track to making a critical breakthrough: the first manufacturable protective membrane between its lithiumbased negative electrode and the reaction chamber where it reacts with oxygen from the air. This gives the battery the unique ability to recharge by moving lithium in and out of the batterys reaction chamber for storage until the battery needs to discharge once again. Until now, engineers had been unable to create the complex packaging and air-breathing components required to turn Li-Air batteries into rechargeable systems.

None

2010-07-01T23:59:59.000Z

16

Lithium Metal Anodes for Rechargeable Batteries. | EMSL  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: VegetationEquipment Surfaces and Interfaces Sample6, 2011Liisa O'NeillFuelsLaboratory Lithium

17

Side Reactions in Lithium-Ion Batteries  

E-Print Network [OSTI]

for rechargeable lithium batteries. Advanced Materials 10,Protection of Secondary Lithium Batteries. Journal of thein Rechargeable Lithium Batteries for Overcharge Protection.

Tang, Maureen Han-Mei

2012-01-01T23:59:59.000Z

18

High-Capacity Micrometer-Sized Li2S Particles as Cathode Materials for Advanced Rechargeable Lithium-Ion Batteries  

E-Print Network [OSTI]

Lithium-Ion Batteries Yuan Yang, Guangyuan Zheng, Sumohan Misra,§ Johanna Nelson,§ Michael F. Toney for lithium metal-free rechargeable batteries. It has a theoretical capacity of 1166 mAh/g, which is nearly 1 as the cathode material for rechargeable lithium-ion batteries with high specific energy. INTRODUCTION

Cui, Yi

19

Amorphous Metallic Glass as New High Power and Energy Density Anodes For Lithium Ion Rechargeable Batteries  

E-Print Network [OSTI]

We have investigated the use of aluminum based amorphous metallic glass as the anode in lithium ion rechargeable batteries. Amorphous metallic glasses have no long-range ordered microstructure; the atoms are less closely ...

Meng, Shirley Y.

20

Rechargeable lithium battery for use in applications requiring a low to high power output  

DOE Patents [OSTI]

Rechargeable lithium batteries which employ characteristics of thin-film batteries can be used to satisfy power requirements within a relatively broad range. Thin-film battery cells utilizing a film of anode material, a film of cathode material and an electrolyte of an amorphorus lithium phosphorus oxynitride can be connected in series or parallel relationship for the purpose of withdrawing electrical power simultaneously from the cells. In addition, such battery cells which employ a lithium intercalation compound as its cathode material can be connected in a manner suitable for supplying power for the operation of an electric vehicle. Still further, by incorporating within the battery cell a relatively thick cathode of a lithium intercalation compound, a relatively thick anode of lithium and an electrolyte film of lithium phosphorus oxynitride, the battery cell is rendered capable of supplying power for any of a number of consumer products, such as a laptop computer or a cellular telephone.

Bates, John B. (Oak Ridge, TN)

1996-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "rechargeable lithium battery" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

Rechargeable lithium battery for use in applications requiring a low to high power output  

DOE Patents [OSTI]

Rechargeable lithium batteries which employ characteristics of thin-film batteries can be used to satisfy power requirements within a relatively broad range. Thin-film battery cells utilizing a film of anode material, a film of cathode material and an electrolyte of an amorphous lithium phosphorus oxynitride can be connected in series or parallel relationship for the purpose of withdrawing electrical power simultaneously from the cells. In addition, such battery cells which employ a lithium intercalation compound as its cathode material can be connected in a manner suitable for supplying power for the operation of an electric vehicle. Still further, by incorporating within the battery cell a relatively thick cathode of a lithium intercalation compound, a relatively thick anode of lithium and an electrolyte film of lithium phosphorus oxynitride, the battery cell is rendered capable of supplying power for any of a number of consumer products, such as a laptop computer or a cellular telephone.

Bates, John B. (Oak Ridge, TN)

1997-01-01T23:59:59.000Z

22

High energy density, thin-lm, rechargeable lithium batteries for marine eld operations  

E-Print Network [OSTI]

High energy density, thin-®lm, rechargeable lithium batteries for marine ®eld operations Biying February 2001 Abstract All solid state, thin-®lm batteries with the cell con®guration of VOx, no binder) cathode consisted of a dense ®lm of vanadium oxide (200 nm thick), deposited on aluminum foil

Sadoway, Donald Robert

23

Block copolymer electrolytes for lithium batteries  

E-Print Network [OSTI]

polymer electrolytes for lithium batteries. Nature 394, 456-facing rechargeable lithium batteries. Nature 414, 359-367 (vanadium oxides for lithium batteries. Journal of Materials

Hudson, William Rodgers

2011-01-01T23:59:59.000Z

24

Coated Silicon Nanowires as Anodes in Lithium Ion Batteries  

E-Print Network [OSTI]

for rechargeable lithium batteries. J. Power Sources 139,for advanced lithium-ion batteries. J. Power Sources 174,nano-anodes for lithium rechargeable batteries. Angew. Chem.

Watts, David James

2014-01-01T23:59:59.000Z

25

Synthesis, Characterization and Performance of Cathodes for Lithium Ion Batteries  

E-Print Network [OSTI]

0 lithium batteries. J. Electrochem. Soc.for rechargeable lithium batteries. Advanced Materials 1998,for rechargeable lithium batteries. J. Electrochem. Soc.

Zhu, Jianxin

2014-01-01T23:59:59.000Z

26

Phase transformations and microstructural design of lithiated metal anodes for lithium-ion rechargeable batteries  

E-Print Network [OSTI]

There has been great recent interest in lithium storage at the anode of Li-ion rechargeable battery by alloying with metals such as Al, Sn, and Sb, or metalloids such as Si, as an alternative to the intercalation of graphite. ...

Limthongkul, Pimpa, 1975-

2002-01-01T23:59:59.000Z

27

Structural micro-porous carbon anode for rechargeable lithium-ion batteries  

DOE Patents [OSTI]

A secondary battery having a rechargeable lithium-containing anode, a cathode and a separator positioned between the cathode and anode with an organic electrolyte solution absorbed therein is provided. The anode comprises three-dimensional microporous carbon structures synthesized from polymeric high internal phase emulsions or materials derived from this emulsion source, i.e., granules, powders, etc.

Delnick, Frank M. (Albuquerque, NM); Even, Jr., William R. (Livermore, CA); Sylwester, Alan P. (Washington, DC); Wang, James C. F. (Livermore, CA); Zifer, Thomas (Manteca, CA)

1995-01-01T23:59:59.000Z

28

Structural micro-porous carbon anode for rechargeable lithium-ion batteries  

DOE Patents [OSTI]

A secondary battery having a rechargeable lithium-containing anode, a cathode and a separator positioned between the cathode and anode with an organic electrolyte solution absorbed therein is provided. The anode comprises three-dimensional microporous carbon structures synthesized from polymeric high internal phase emulsions or materials derived from this emulsion source, i.e., granules, powders, etc. 6 figs.

Delnick, F.M.; Even, W.R. Jr.; Sylwester, A.P.; Wang, J.C.F.; Zifer, T.

1995-06-20T23:59:59.000Z

29

Graphene-sulfur nanocomposites for rechargeable lithium-sulfur battery electrodes  

SciTech Connect (OSTI)

Rechargeable lithium-sulfur batteries having a cathode that includes a graphene-sulfur nanocomposite can exhibit improved characteristics. The graphene-sulfur nanocomposite can be characterized by graphene sheets with particles of sulfur adsorbed to the graphene sheets. The sulfur particles have an average diameter less than 50 nm..

Liu, Jun; Lemmon, John P; Yang, Zhenguo; Cao, Yuiliang; Li, Xiaolin

2014-06-17T23:59:59.000Z

30

X-ray diffraction and EXAFS analysis of materials for lithium-based rechargeable batteries  

SciTech Connect (OSTI)

Lithium iron phosphate LiFePO{sub 4} (triphylite) and lithium titanate Li{sub 4}Ti{sub 5}O{sub 12} are used as components of a number of active materials in modern rechargeable batteries. Samples of these materials are studied by X-ray diffraction and extended X-ray absorption fine structure (EXAFS) spectroscopy. Hypotheses about the phase composition of the analyzed samples are formulated.

Sharkov, M. D., E-mail: mischar@mail.ioffe.ru; Boiko, M. E.; Bobyl, A. V.; Ershenko, E. M.; Terukov, E. I. [Russian Academy of Sciences, Ioffe Physical-Technical Institute (Russian Federation); Zubavichus, Y. V. [National Research Centre Kurchatov Institute (Russian Federation)

2013-12-15T23:59:59.000Z

31

Layered cathode materials for lithium ion rechargeable batteries  

DOE Patents [OSTI]

A number of materials with the composition Li.sub.1+xNi.sub..alpha.Mn.sub..beta.Co.sub..gamma.M'.sub..delta.O.sub.2-- zF.sub.z (M'=Mg,Zn,Al,Ga,B,Zr,Ti) for use with rechargeable batteries, wherein x is between about 0 and 0.3, .alpha. is between about 0.2 and 0.6, .beta. is between about 0.2 and 0.6, .gamma. is between about 0 and 0.3, .delta. is between about 0 and 0.15, and z is between about 0 and 0.2. Adding the above metal and fluorine dopants affects capacity, impedance, and stability of the layered oxide structure during electrochemical cycling.

Kang, Sun-Ho (Naperville, IL); Amine, Khalil (Downers Grove, IL)

2007-04-17T23:59:59.000Z

32

An overviewFunctional nanomaterials for lithium rechargeable batteries, supercapacitors, hydrogen storage, and fuel cells  

SciTech Connect (OSTI)

Graphical abstract: Nanomaterials play important role in lithium ion batteries, supercapacitors, hydrogen storage and fuel cells. - Highlights: Nanomaterials play important role for lithium rechargeable batteries. Nanostructured materials increase the capacitance of supercapacitors. Nanostructure improves the hydrogenation/dehydrogenation of hydrogen storage materials. Nanomaterials enhance the electrocatalytic activity of the catalysts in fuel cells. - Abstract: There is tremendous worldwide interest in functional nanostructured materials, which are the advanced nanotechnology materials with internal or external dimensions on the order of nanometers. Their extremely small dimensions make these materials unique and promising for clean energy applications such as lithium ion batteries, supercapacitors, hydrogen storage, fuel cells, and other applications. This paper will highlight the development of new approaches to study the relationships between the structure and the physical, chemical, and electrochemical properties of functional nanostructured materials. The Energy Materials Research Programme at the Institute for Superconducting and Electronic Materials, the University of Wollongong, has been focused on the synthesis, characterization, and applications of functional nanomaterials, including nanoparticles, nanotubes, nanowires, nanoporous materials, and nanocomposites. The emphases are placed on advanced nanotechnology, design, and control of the composition, morphology, nanostructure, and functionality of the nanomaterials, and on the subsequent applications of these materials to areas including lithium ion batteries, supercapacitors, hydrogen storage, and fuel cells.

Liu, Hua Kun, E-mail: hua@uow.edu.au

2013-12-15T23:59:59.000Z

33

Visualization of Charge Distribution in a Lithium Battery Electrode  

E-Print Network [OSTI]

for Rechargeable Lithium Batteries. J. Electrochem. Soc.Calculations for Lithium Batteries. J. Electrostatics 1995,Modeling of Lithium Polymer Batteries. J. Power Sources

Liu, Jun

2010-01-01T23:59:59.000Z

34

The UC Davis Emerging Lithium Battery Test Project  

E-Print Network [OSTI]

for rechargeable lithium batteries, Journal of Powerand iron phosphate lithium batteries will be satisfactoryapplications. The cost of lithium batteries remains high ($

Burke, Andy; Miller, Marshall

2009-01-01T23:59:59.000Z

35

Synthesis and Characterization of Simultaneous Electronic and Ionic Conducting Block Copolymers for Lithium Battery Electrodes  

E-Print Network [OSTI]

Protection in Secondary Lithium Batteries. Electrochim. ActaFacing Rechargeable Lithium Batteries. Nature 2001, 414,for Rechargeable Lithium Batteries Using Electroactive

Patel, Shrayesh

2013-01-01T23:59:59.000Z

36

Overcharge Protection for 4 V Lithium Batteries at High Rates and Low Temperature  

E-Print Network [OSTI]

Protection for 4 V Lithium Batteries at High Rates and LowIntroduction Rechargeable lithium batteries are known forfor rechargeable lithium batteries. When impregnated into a

Chen, Guoying

2010-01-01T23:59:59.000Z

37

Cu2Sb thin film electrodes prepared by pulsed laser deposition f or lithium batteries  

E-Print Network [OSTI]

Laser Deposition for Lithium Batteries Seung-Wan Song, a, *in rechargeable lithium batteries. Introduction Sb-in rechargeable lithium batteries. Two advantages of

Song, Seung-Wan; Reade, Ronald P.; Cairns, Elton J.; Vaughey, Jack T.; Thackeray, Michael M.; Striebel, Kathryn A.

2003-01-01T23:59:59.000Z

38

Electrochemical Properties of Nanostructured Al1-xCux Alloys as Anode Materials for Rechargeable Lithium-Ion Batteries  

E-Print Network [OSTI]

controlling these two properties is the mag- nitude of interaction between the active and the inactiveElectrochemical Properties of Nanostructured Al1-xCux Alloys as Anode Materials for Rechargeable Lithium-Ion Batteries C. Y. Wang,a, * Y. S. Meng,b, * G. Ceder,c, *,z and Y. Lia,d,z a Advanced Materials

Ceder, Gerbrand

39

Finding Room for Improvement in Transition Metal Oxides Cathodes for Lithium-ion Batteries  

E-Print Network [OSTI]

Oxides Cathodes for Lithium-ion Batteries Kinson C. Kam andusing rechargeable lithium-ion batteries has become an

Kam, Kinson

2012-01-01T23:59:59.000Z

40

Characterization of an Electroactive Polymer for Overcharge Protection in Secondary Lithium Batteries  

E-Print Network [OSTI]

Protection in Secondary Lithium Batteries Guoying Chen,protection agents in lithium batteries is relatively new,in rechargeable lithium batteries with a variety of

Chen, Guoying; Thomas-Alyea, Karen E.; Newman, John; Richardson, Thomas J.

2005-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "rechargeable lithium battery" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

High power rechargeable batteries Paul V. Braun  

E-Print Network [OSTI]

High power rechargeable batteries Paul V. Braun , Jiung Cho, James H. Pikul, William P. King storage Secondary batteries High energy density High power density Lithium ion battery 3D battery electrodes a b s t r a c t Energy and power density are the key figures of merit for most electrochemical

Braun, Paul

42

Flexographically Printed Rechargeable Zinc-based Battery for Grid Energy Storage  

E-Print Network [OSTI]

the rechargeable battery industry. Li-ion batteries rapidlyLi-ion chemistry. For grid storage applications, several other rechargeable batteryLi-ion batteries, because cadmium is highly toxic. In 1991, lithium-ion battery

Wang, Zuoqian

2013-01-01T23:59:59.000Z

43

Visualization of Charge Distribution in a Lithium Battery Electrode  

E-Print Network [OSTI]

Distribution in Thin-Film Batteries. J. Electrochem. Soc.of Lithium Polymer Batteries. J. Power Sources 2002, 110,for Rechargeable Li Batteries. Chem. Mater. 2010, 15. Padhi,

Liu, Jun

2010-01-01T23:59:59.000Z

44

Beyond Conventional Cathode Materials for Li-ion Batteries and Na-ion Batteries Nickel fluoride conversion materials and P2 type Na-ion intercalation cathodes /  

E-Print Network [OSTI]

spinel structures for lithium batteries. ElectrochemistryMaterials for Rechargeable Lithium Batteries. Journal of thefor Rechargeable Lithium Batteries. Electrochemical and

Lee, Dae Hoe

2013-01-01T23:59:59.000Z

45

The development of low cost LiFePO4-based high power lithium-ion batteries  

E-Print Network [OSTI]

study of rechargeable lithium batteries for application inin consumer-size lithium batteries, such as the synthetic4 -BASED HIGH POWER LITHIUM-ION BATTERIES Joongpyo Shim,

Shim, Joongpyo; Sierra, Azucena; Striebel, Kathryn A.

2003-01-01T23:59:59.000Z

46

STUDIES ON TWO CLASSES OF POSITIVE ELECTRODE MATERIALS FOR LITHIUM-ION BATTERIES  

E-Print Network [OSTI]

Linden, D. , Handbook of Batteries. 2nd ed. 1995, New York:rechargeable lithium batteries. Nature, 2001. 414(6861): p.of rechargeable lithium batteries, I. Lithium manganese

Wilcox, James D.

2010-01-01T23:59:59.000Z

47

Characterization of Cathode Materials for Rechargeable Lithium Batteries using Synchrotron Based In Situ X-ray Techniques  

SciTech Connect (OSTI)

The emergence of portable telecommunication, computer equipment and ultimately hybrid electric vehicles has created a substantial interest in manufacturing rechargeable batteries that are less expensive, non-toxic, operate for longer time, small in size and weigh less. Li-ion batteries are taking an increasing share of the rechargeable battery market. The present commercial battery is based on a layered LiCoO{sub 2} cathode and a graphitized carbon anode. LiCoO{sub 2} is expensive but it has the advantage being easily manufactured in a reproducible manner. Other low cost layered compounds such as LiNiO{sub 2}, LiNi{sub 0.85}Co{sub 0.15}O{sub 2} or cubic spinels such as LiMn{sub 2}O{sub 4} have been considered. However, these suffer from cycle life and thermal stability problems. Recently, some battery companies have demonstrated a new concept of mixing two different types of insertion compounds to make a composite cathode, aimed at reducing cost and improving self-discharge. Reports clearly showed that this blending technique can prevent the decline in capacity caused by cycling or storage at elevated temperatures. However, not much work has been reported on the charge-discharge characteristics and phase transitions for these composite cathodes. Understanding the structure and structural changes of electrode materials during the electrochemical cycling is the key to develop better .lithium ion batteries. The successful commercialization of the lithium-ion battery is mainly built on the advances in solid state chemistry of the intercalation compounds. Most of the progress in understanding the lithium ion battery materials has been obtained from x-ray diffraction studies. Up to now, most XRD studies on lithium-ion battery materials have been done ex situ. Although these ex situ XRD studies have provided important information about the structures of battery materials, they do face three major problems. First of all, the pre-selected charge (discharge) states may not be representative for the full picture of the structural changes during charge (discharge). In other words, the important information might be missed for those charge (discharge) states which were not selected for ex situ XRD studies. Secondly, the structure of the sample may have changed after removed from the cell. Finally, it is impossible to use the ex situ XRD to study the dynamic effects during high rate charge-discharge, which is crucial for the application of lithium-ion batteries for electric vehicle. A few in situ studies have been done using conventional x-ray tube sources. All of the in situ XRD studies using conventional x-ray tube sources have been done in the reflection mode in cells with beryllium windows. Because of the weak signals, data collection takes a long time, often several hundred hours for a single charge-discharge cycle. This long time data collection is not suitable for dynamic studies at all. Furthermore, in the reflection mode, the x-ray beam probes mainly the surface layer of the cathode materials. Iri collaboration with LG Chemical Ltd., BNL group designed and constructed the cells for in situ studies. LG Chemical provided several blended samples and pouch cells to BNL for preliminary in situ study. The LG Chemical provided help on integrate the blended cathode into these cells. The BNL team carried out in situ XAS and XRD studies on the samples and pouch cells provided by LG Chemical under normal charge-discharge conditions at elevated temperature.

Yang, Xiao-Qing

2007-05-23T23:59:59.000Z

48

aqueous rechargeable lithium: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

batteries MIT - DSpace Summary: There has been great recent interest in lithium storage at the anode of Li-ion rechargeable battery by alloying with metals such as Al,...

49

aqueous lithium rechargeable: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

batteries MIT - DSpace Summary: There has been great recent interest in lithium storage at the anode of Li-ion rechargeable battery by alloying with metals such as Al,...

50

Binder free three-dimensional sulphur/few-layer graphene foam cathode with enhanced high-rate capability for rechargeable lithium sulphur batteries  

E-Print Network [OSTI]

], 0000 | 1 Binder free three-dimensional sulphur/few-layer graphene foam cathode with enhanced high-rate capability for rechargeable lithium sulphur batteries Kai Xi,a Piran R. Kidambi,b Renjie Chen,c Chenlong Gao,a Xiaoyu Peng,a Caterina... Ducati,a Stephan Hofmannb* and R. Vasant Kumar a* 5 Received (in XXX, XXX) Xth XXXXXXXXX 20XX, Accepted Xth XXXXXXXXX 20XX DOI: 10.1039/b000000x A novel ultra-lightweight three-dimensional (3-D) cathode system for lithium sulphur (Li-S) batteries...

Xi, Kai; Kidambi, Piran R.; Chen, Renjie; Gao, Chenlong; Peng, Xiaoyu; Ducati, Caterina; Hofmann, Stephan; Kumar, R. Vasant

2014-03-04T23:59:59.000Z

51

Making Li-air batteries rechargeable: material challenges  

SciTech Connect (OSTI)

A Li-air battery could potentially provide three to five times higher energy density/specific energy than conventional batteries, thus enable the driving range of an electric vehicle comparable to a gasoline vehicle. However, making Li-air batteries rechargeable presents significant challenges, mostly related with materials. Herein, we discuss the key factors that influence the rechargeability of Li-air batteries with a focus on nonaqueous system. The status and materials challenges for nonaqueous rechargeable Li-air batteries are reviewed. These include electrolytes, cathode (electocatalysts), lithium metal anodes, and oxygen-selective membranes (oxygen supply from air). The perspective of rechargeable Li-air batteries is provided.

Shao, Yuyan; Ding, Fei; Xiao, Jie; Zhang, Jian; Xu, Wu; Park, Seh Kyu; Zhang, Jiguang; Wang, Yong; Liu, Jun

2013-02-25T23:59:59.000Z

52

Description: Lithium batteries are used daily in our work  

E-Print Network [OSTI]

Description: Lithium batteries are used daily in our work activities from flashlights, cell phones containing one SureFire 3-volt non-rechargeable 123 lithium battery and one Interstate 3-volt non-rechargeable 123 lithium battery. A Garage Mechanic had the SureFire flashlight in his shirt pocket with the lens

53

Highly Reversible Li-Ion Intercalating MoP2 Nanoparticle Cluster Anode for Lithium Rechargeable Batteries  

E-Print Network [OSTI]

Highly Reversible Li-Ion Intercalating MoP2 Nanoparticle Cluster Anode for Lithium Rechargeable, metal phosphides MPn, M = transition metal ions as attractive Li-ion anode materials have received lithium reactions, i MPn LixMPn simple Li-ion interca- lation and ii MPn M LixM + LixP alloying followed

Cho, Jaephil

54

Overcharge Protection for 4 V Lithium Batteries at High Rates and Low Temperature  

E-Print Network [OSTI]

Protection for 4 V Lithium Batteries at High Rates and LowRechargeable lithium batteries are known for their highBecause lithium ion batteries are especially susceptible to

Chen, Guoying

2010-01-01T23:59:59.000Z

55

Method and apparatus for preparation of spherical metal carbonates and lithium metal oxides for lithium rechargeable batteries  

DOE Patents [OSTI]

A number of materials with the composition Li.sub.1+xNi.sub..alpha.Mn.sub..beta.Co.sub..gamma.M'.sub..delta.O.sub.2-- zF.sub.z (M'=Mg,Zn,Al,Ga,B,Zr,Ti) for use with rechargeable batteries, wherein x is between about 0 and 0.3, .alpha. is between about 0.2 and 0.6, .beta. is between about 0.2 and 0.6, .gamma. is between about 0 and 0.3, .delta. is between about 0 and 0.15, and z is between about 0 and 0.2. Adding the above metal and fluorine dopants affects capacity, impedance, and stability of the layered oxide structure during electrochemical cycling. Another aspect of the invention includes materials with the composition Li.sub.1+xNi.sub..alpha.Co.sub..beta.Mn.sub..gamma.M'.sub..delta.O.sub.yF- .sub.z (M'=Mg,Zn,Al,Ga,B,Zr,Ti), where the x is between 0 and 0.2, the .alpha. between 0 and 1, the .beta. between 0 and 1, the .gamma. between 0 and 2, the .delta. between about 0 and about 0.2, the y is between 2 and 4, and the z is between 0 and 0.5.

Kang, Sun-Ho (Naperville, IL); Amine, Khalil (Downers Grove, IL)

2008-10-14T23:59:59.000Z

56

New sealed rechargeable batteries and supercapacitors  

SciTech Connect (OSTI)

This conference was divided into the following sections: supercapacitors; nickel-metal hydride batteries; lithium polymer batteries; lithium/carbon batteries; cathode materials; and lithium batteries. Separate abstracts were prepared for the 46 papers of this conference.

Barnett, B.M. (ed.) (Arthur D. Little, Inc., Cambridge, MA (United States)); Dowgiallo, E. (ed.) (Dept. of Energy, Washington, DC (United States)); Halpert, G. (ed.) (Jet Propulsion Lab., Pasadena, CA (United States)); Matsuda, Y. (ed.) (Yamagushi Univ., Ube (Japan)); Takehara, Z.I. (ed.) (Kyoto Univ. (Japan))

1993-01-01T23:59:59.000Z

57

Synthesis of Na1.25V3O8 Nanobelts with Excellent Long-Term Stability for Rechargeable Lithium-Ion Batteries  

E-Print Network [OSTI]

by the calcination temperatures. As cathode materials for lithium ion batteries, the Na1.25V3O8 nanobelts synthesized.25V3O8 nanobelts are promising cathode materials for secondary lithium batteries. KEYWORDS: sodium vanadium oxide, nanobelts, sol-gel, lithium-ion batteries, long-term stability 1. INTRODUCTION Because

Cao, Guozhong

58

Wednesday, October 17th Bourns A265 1:40-2:30pm To realize the next generation rechargeable lithium batteries, it is critical to use novel electrode  

E-Print Network [OSTI]

lithium batteries, it is critical to use novel electrode materials with higher lithium storage capacity. In this presentation, a number of novel lithium battery electrode materials including silicon anode, tin anode, and sulfur cathode will be presented. Silicon (Si) and tin (Sn) possess very high lithium storage capacities

59

Improved layered mixed transition metal oxides for Li-ion batteries  

E-Print Network [OSTI]

for rechargeable lithium batteries," Science 311 (5763),for rechargeable lithium batteries," Science 311(5763), 977-M n , ^ for Advanced Lithium-Ion Batteries," J. Electrochem.

Doeff, Marca M.

2010-01-01T23:59:59.000Z

60

Theory of SEI Formation in Rechargeable Batteries: Capacity Fade, Accelerated Aging and Lifetime Prediction  

E-Print Network [OSTI]

Cycle life is critically important in applications of rechargeable batteries, but lifetime prediction is mostly based on empirical trends, rather than mathematical models. In practical lithium-ion batteries, capacity fade ...

Pinson, Matthew Bede

Note: This page contains sample records for the topic "rechargeable lithium battery" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

LITHIUM-ION BATTERY CHARGING REPORT G. MICHAEL BARRAMEDA  

E-Print Network [OSTI]

to handle the Powerizer Li-Ion rechargeable Battery Packs. It will bring reveal battery specificationsLITHIUM-ION BATTERY CHARGING REPORT G. MICHAEL BARRAMEDA 1. Abstract This report introduces how the amount of "de-Rating" the batteries have experienced. 2. Safety Guidelines · Must put battery

Ruina, Andy L.

62

Rechargeable thin film battery and method for making the same  

DOE Patents [OSTI]

A rechargeable, stackable, thin film, solid-state lithium electrochemical cell, thin film lithium battery and method for making the same is disclosed. The cell and battery provide for a variety configurations, voltage and current capacities. An innovative low temperature ion beam assisted deposition method for fabricating thin film, solid-state anodes, cathodes and electrolytes is disclosed wherein a source of energetic ions and evaporants combine to form thin film cell components having preferred crystallinity, structure and orientation. The disclosed batteries are particularly useful as power sources for portable electronic devices and electric vehicle applications where high energy density, high reversible charge capacity, high discharge current and long battery lifetimes are required.

Goldner, Ronald B.; Liu, Te-Yang; Goldner, Mark A.; Gerouki, Alexandra; Haas, Terry E.

2006-01-03T23:59:59.000Z

63

Lithium battery management system  

DOE Patents [OSTI]

Provided is a system for managing a lithium battery system having a plurality of cells. The battery system comprises a variable-resistance element electrically connected to a cell and located proximate a portion of the cell; and a device for determining, utilizing the variable-resistance element, whether the temperature of the cell has exceeded a predetermined threshold. A method of managing the temperature of a lithium battery system is also included.

Dougherty, Thomas J. (Waukesha, WI)

2012-05-08T23:59:59.000Z

64

Making Li-air batteries rechargeable: material challenges. |...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Li-air batteries rechargeable: material challenges. Making Li-air batteries rechargeable: material challenges. Abstract: A Li-air battery could potentially provide three to five...

65

Advances in lithium-ion batteries  

E-Print Network [OSTI]

Advances in Lithium-Ion Batteries Edited by Walter A. vanpuzzling mysteries of lithium ion batteries. The book beginssuch importance to lithium ion batteries one is amazed that

Kerr, John B.

2003-01-01T23:59:59.000Z

66

Solid state thin film battery having a high temperature lithium alloy anode  

DOE Patents [OSTI]

An improved rechargeable thin-film lithium battery involves the provision of a higher melting temperature lithium anode. Lithium is alloyed with a suitable solute element to elevate the melting point of the anode to withstand moderately elevated temperatures.

Hobson, David O. (Oak Ridge, TN)

1998-01-01T23:59:59.000Z

67

Electrocatalysts for Nonaqueous LithiumAir Batteries:...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Electrocatalysts for Nonaqueous LithiumAir Batteries: Status, Challenges, and Perspective. Electrocatalysts for Nonaqueous LithiumAir Batteries: Status, Challenges,...

68

Self-Organized Amorphous TiO2 Nanotube Arrays on Porous Ti Foam for Rechargeable Lithium and Sodium Ion Batteries  

SciTech Connect (OSTI)

Self-organized amorphous TiO2 nanotube arrays (NTAs) were successfully fabricated on both Ti foil and porous Ti foam through electrochemical anodization techniques. The starting Ti foams were fabricated using ARCAM s Electron Beam Melting (EBM) technology. The TiO2 NTAs on Ti foam were used as anodes in lithium ion batteries; they exhibited high capacities of 103 Ahcm-2 at 10 Acm-2 and 83 Ahcm-2 at 500 Acm-2, which are two to three times higher than those achieved on the standard Ti foil, which is around 40 Ahcm-2 at 10 Acm-2 and 24 Ahcm-2 at 500 Acm-2, respectively. This improvement is mainly attributed to higher surface area of the Ti foam and higher porosity of the nanotube arrays layer grown on the Ti foam. In addition, a Na-ion half-cell composed of these NTAs anodes and Na metal showed a self-improving specific capacity upon cycling at 10 Acm-2. These results indicate that TiO2 NTAs grown on Ti porous foam are promising electrodes for Li-ion or Na-ion rechargeable batteries.

Bi, Zhonghe [ORNL; Paranthaman, Mariappan Parans [ORNL; Menchhofer, Paul A [ORNL; Dehoff, Ryan R [ORNL; Bridges, Craig A [ORNL; Chi, Miaofang [ORNL; Guo, Bingkun [ORNL; Sun, Xiao-Guang [ORNL; Dai, Sheng [ORNL

2013-01-01T23:59:59.000Z

69

Ab-initio study of cathode materials for lithium batteries  

E-Print Network [OSTI]

Using first principles calculations the effect of electronic structure on the stability of positive electrode materials for lithium rechargeable batteries is investigated. The investigation focuses upon lithiated ?-NaFeO? ...

Reed, John Stuart, 1968-

2003-01-01T23:59:59.000Z

70

Rechargeable Heat Battery's Secret Revealed: Solar Energy Capture...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Rechargeable Heat Battery Rechargeable Heat Battery's Secret Revealed Solar energy capture in chemical form makes it storable and transportable January 11, 2011 | Tags: Chemistry,...

71

Rechargeable lithium-ion cell  

DOE Patents [OSTI]

The invention relates to a rechargeable lithium-ion cell, a method for its manufacture, and its application. The cell is distinguished by the fact that it has a metallic housing (21) which is electrically insulated internally by two half shells (15), which cover electrode plates (8) and main output tabs (7) and are composed of a non-conductive material, where the metallic housing is electrically insulated externally by means of an insulation coating. The cell also has a bursting membrane (4) which, in its normal position, is located above the electrolyte level of the cell (1). In addition, the cell has a twisting protection (6) which extends over the entire surface of the cover (2) and provides centering and assembly functions for the electrode package, which comprises the electrode plates (8).

Bechtold, Dieter (Bad Vilbel, DE); Bartke, Dietrich (Kelkheim, DE); Kramer, Peter (Konigstein, DE); Kretzschmar, Reiner (Kelkheim, DE); Vollbert, Jurgen (Hattersheim, DE)

1999-01-01T23:59:59.000Z

72

In Operando X-ray Diffraction and Transmission X-ray Microscopy of Lithium Sulfur Batteries  

E-Print Network [OSTI]

In Operando X-ray Diffraction and Transmission X-ray Microscopy of Lithium Sulfur Batteries Johanna Information ABSTRACT: Rechargeable lithium-sulfur (Li-S) batteries hold great potential for high of these batteries for commercial use. The two primary obstacles are the solubility of long chain lithium

Cui, Yi

73

Batteries: Overview of Battery Cathodes  

E-Print Network [OSTI]

M=Mn, Ni, Co) in Lithium Batteries at 50C. Electrochem.Spinel Electrodes for Lithium Batteries. J. Am. Ceram. Soc.for Rechargeable Lithium Batteries. J. Power Sources 54:

Doeff, Marca M

2011-01-01T23:59:59.000Z

74

Cyclic plasticity and shakedown in high-capacity electrodes of lithium-ion batteries Laurence Brassart, Kejie Zhao, Zhigang Suo  

E-Print Network [OSTI]

Cyclic plasticity and shakedown in high-capacity electrodes of lithium-ion batteries Laurence for lithium-ion batteries. Upon absorbing a large amount of lithium, the electrode swells greatly rights reserved. 1. Introduction Rechargeable lithium-ion batteries are energy-storage systems of choice

Suo, Zhigang

75

Cathode material for lithium batteries  

DOE Patents [OSTI]

A method of manufacture an article of a cathode (positive electrode) material for lithium batteries. The cathode material is a lithium molybdenum composite transition metal oxide material and is prepared by mixing in a solid state an intermediate molybdenum composite transition metal oxide and a lithium source. The mixture is thermally treated to obtain the lithium molybdenum composite transition metal oxide cathode material.

Park, Sang-Ho; Amine, Khalil

2013-07-23T23:59:59.000Z

76

Improved layered mixed transition metal oxides for Li-ion batteries  

E-Print Network [OSTI]

for rechargeable lithium batteries," Science 311(5763), 977-^ for Advanced Lithium-Ion Batteries," J. Electrochem. Soc.02 for lithium-ion batteries," Chem. Lett. , [3] Yabuuchi,

Doeff, Marca M.

2010-01-01T23:59:59.000Z

77

Develop high energy high power Li-ion battery cathode materials : a first principles computational study  

E-Print Network [OSTI]

of cathode materials for lithium batteries guided by first-facing rechargeable lithium batteries. Nature, 2001. 414(M.S. Whittingham, Lithium batteries and cathode materials.

Xu, Bo; Xu, Bo

2012-01-01T23:59:59.000Z

78

Conductive polymeric compositions for lithium batteries  

DOE Patents [OSTI]

Novel chain polymers comprising weakly basic anionic moieties chemically bound into a polyether backbone at controllable anionic separations are presented. Preferred polymers comprise orthoborate anions capped with dibasic acid residues, preferably oxalato or malonato acid residues. The conductivity of these polymers is found to be high relative to that of most conventional salt-in-polymer electrolytes. The conductivity at high temperatures and wide electrochemical window make these materials especially suitable as electrolytes for rechargeable lithium batteries.

Angell, Charles A. (Mesa, AZ); Xu, Wu (Tempe, AZ)

2009-03-17T23:59:59.000Z

79

Alloys of clathrate allotropes for rechargeable batteries  

DOE Patents [OSTI]

The present disclosure is directed at an electrode for a battery wherein the electrode comprises clathrate alloys of silicon, germanium or tin. In method form, the present disclosure is directed at methods of forming clathrate alloys of silicon, germanium or tin which methods lead to the formation of empty cage structures suitable for use as electrodes in rechargeable type batteries.

Chan, Candace K; Miller, Michael A; Chan, Kwai S

2014-12-09T23:59:59.000Z

80

Washington: Graphene Nanostructures for Lithium Batteries Recieves...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Washington: Graphene Nanostructures for Lithium Batteries Recieves 2012 R&D 100 Award Washington: Graphene Nanostructures for Lithium Batteries Recieves 2012 R&D 100 Award February...

Note: This page contains sample records for the topic "rechargeable lithium battery" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

Solid-state lithium battery  

DOE Patents [OSTI]

The present invention is directed to a higher power, thin film lithium-ion electrolyte on a metallic substrate, enabling mass-produced solid-state lithium batteries. High-temperature thermodynamic equilibrium processing enables co-firing of oxides and base metals, providing a means to integrate the crystalline, lithium-stable, fast lithium-ion conductor lanthanum lithium tantalate (La.sub.1/3-xLi.sub.3xTaO.sub.3) directly with a thin metal foil current collector appropriate for a lithium-free solid-state battery.

Ihlefeld, Jon; Clem, Paul G; Edney, Cynthia; Ingersoll, David; Nagasubramanian, Ganesan; Fenton, Kyle Ross

2014-11-04T23:59:59.000Z

82

Optimum Charging Profile for Lithium-ion Batteries to Maximize Energy Storage and Utilization  

E-Print Network [OSTI]

Optimum Charging Profile for Lithium-ion Batteries to Maximize Energy Storage and Utilization Ravi applications, the ability to recharge quickly and efficiently is a critical requirement for a storage battery The optimal profile of charging current for a lithium-ion battery is estimated using dynamic optimization

Subramanian, Venkat

83

Kinetic Monte Carlo Simulation of Surface Heterogeneity in Graphite Anodes for Lithium-Ion Batteries: Passive Layer  

E-Print Network [OSTI]

, but was lower at later cycles. The temperature that optimizes the active surface in a lithium-ion battery. Published February 14, 2011. Rechargeable lithium-ion batteries have been extensively used in mobile-discharge rate. The lithium-ion battery is also promising for electric (plug-in and hybrid) vehicles

Subramanian, Venkat

84

Redox shuttle additives for overcharge protection in lithium batteries  

E-Print Network [OSTI]

Protection in Lithium Batteries, T. J. Richardson* and P.OVERCHARGE PROTECTION IN LITHIUM BATTERIES T. J. Richardson*improve the safety of lithium batteries. ACKNOWLEDGEMENT

Richardson, Thomas J.; Ross Jr., P.N.

1999-01-01T23:59:59.000Z

85

Grafted polyelectrolyte membranes for lithium batteries and fuel cells  

E-Print Network [OSTI]

MEMBRANES FOR LITHIUM BATTERIES AND FUEL CELLS. John Kerralso be discussed. Lithium Batteries for Transportation andpolymer membrane for lithium batteries. This paper will give

Kerr, John B.

2003-01-01T23:59:59.000Z

86

Battery charging control methods, electric vehicle charging methods, battery charging apparatuses and rechargeable battery systems  

DOE Patents [OSTI]

Battery charging control methods, electric vehicle charging methods, battery charging apparatuses and rechargeable battery systems. According to one aspect, a battery charging control method includes accessing information regarding a presence of at least one of a surplus and a deficiency of electrical energy upon an electrical power distribution system at a plurality of different moments in time, and using the information, controlling an adjustment of an amount of the electrical energy provided from the electrical power distribution system to a rechargeable battery to charge the rechargeable battery.

Tuffner, Francis K. (Richland, WA); Kintner-Meyer, Michael C. W. (Richland, WA); Hammerstrom, Donald J. (West Richland, WA); Pratt, Richard M. (Richland, WA)

2012-05-22T23:59:59.000Z

87

Flexographically Printed Rechargeable Zinc-based Battery for Grid Energy Storage  

E-Print Network [OSTI]

Performance for Lithium Batteries, J. Electrochem. Soc. ,developments in lithium ion batteries, Materials Sciencefor advanced lithium-ion batteries, Journal of Power

Wang, Zuoqian

2013-01-01T23:59:59.000Z

88

Six-Membered-Ring Malonatoborate-Based Lithium Salts as Electrolytes for Lithium Ion Batteries  

E-Print Network [OSTI]

References 1. Lithium Ion Batteries: Fundamentals andProgram for Lithium Ion Batteries, U.S. Department ofas Electrolytes for Lithium Ion Batteries Li Yang a , Hanjun

Yang, Li

2014-01-01T23:59:59.000Z

89

Investigation on Aluminum-Based Amorphous Metallic Glass as New Anode Material in Lithium Ion Batteries  

E-Print Network [OSTI]

Aluminum based amorphous metallic glass powders were produced and tested as the anode materials for the lithium ion rechargeable batteries. Ground Al??Ni₁?La₁? was found to have a ...

Meng, Shirley Y.

90

Nanocomposite polymer electrolyte for rechargeable magnesium batteries  

SciTech Connect (OSTI)

Nanocomposite polymer electrolytes present new opportunities for rechargeable magnesium batteries. However, few polymer electrolytes have demonstrated reversible Mg deposition/dissolution and those that have still contain volatile liquids such as tetrahydrofuran (THF). In this work, we report a nanocomposite polymer electrolyte based on poly(ethylene oxide) (PEO), Mg(BH4)2 and MgO nanoparticles for rechargeable Mg batteries. Cells with this electrolyte have a high coulombic efficiency of 98% for Mg plating/stripping and a high cycling stability. Through combined experiment-modeling investigations, a correlation between improved solvation of the salt and solvent chain length, chelation and oxygen denticity is established. Following the same trend, the nanocomposite polymer electrolyte is inferred to enhance the dissociation of the salt Mg(BH4)2 and thus improve the electrochemical performance. The insights and design metrics thus obtained may be used in nanocomposite electrolytes for other multivalent systems.

Shao, Yuyan; Rajput, Nav Nidhi; Hu, Jian Z.; Hu, Mary Y.; Liu, Tianbiao L.; Wei, Zhehao; Gu, Meng; Deng, Xuchu; Xu, Suochang; Han, Kee Sung; Wang, Jiulin; Nie, Zimin; Li, Guosheng; Zavadil, K.; Xiao, Jie; Wang, Chong M.; Henderson, Wesley A.; Zhang, Jiguang; Wang, Yong; Mueller, Karl T.; Persson, Kristin A.; Liu, Jun

2014-12-28T23:59:59.000Z

91

Solid state thin film battery having a high temperature lithium alloy anode  

DOE Patents [OSTI]

An improved rechargeable thin-film lithium battery involves the provision of a higher melting temperature lithium anode. Lithium is alloyed with a suitable solute element to elevate the melting point of the anode to withstand moderately elevated temperatures. 2 figs.

Hobson, D.O.

1998-01-06T23:59:59.000Z

92

Khalil Amine on Lithium-air Batteries  

ScienceCinema (OSTI)

Khalil Amine, materials scientist at Argonne National Laboratory, speaks on the new technology Lithium-air batteries, which could potentially increase energy density by 5-10 times over lithium-ion batteries.

Khalil Amine

2010-01-08T23:59:59.000Z

93

Michael Thackery on Lithium-air Batteries  

ScienceCinema (OSTI)

Michael Thackery, Distinguished Fellow at Argonne National Laboratory, speaks on the new technology Lithium-air batteries, which could potentially increase energy density by 5-10 times over lithium-ion batteries.

Michael Thackery

2010-01-08T23:59:59.000Z

94

Novel Electrolytes for Lithium Ion Batteries  

SciTech Connect (OSTI)

We have been investigating three primary areas related to lithium ion battery electrolytes. First, we have been investigating the thermal stability of novel electrolytes for lithium ion batteries, in particular borate based salts. Second, we have been investigating novel additives to improve the calendar life of lithium ion batteries. Third, we have been investigating the thermal decomposition reactions of electrolytes for lithium-oxygen batteries.

Lucht, Brett L

2014-12-12T23:59:59.000Z

95

EV Everywhere Batteries Workshop - Next Generation Lithium Ion...  

Energy Savers [EERE]

Next Generation Lithium Ion Batteries Breakout Session Report EV Everywhere Batteries Workshop - Next Generation Lithium Ion Batteries Breakout Session Report Breakout session...

96

Molten Air -- A new, highest energy class of rechargeable batteries  

E-Print Network [OSTI]

This study introduces the principles of a new class of batteries, rechargeable molten air batteries, and several battery chemistry examples are demonstrated. The new battery class uses a molten electrolyte, are quasi reversible, and have amongst the highest intrinsic battery electric energy storage capacities. Three examples of the new batteries are demonstrated. These are the iron, carbon and VB2 molten air batteries with respective intrinsic volumetric energy capacities of 10,000, 19,000 and 27,000 Wh per liter.

Licht, Stuart

2013-01-01T23:59:59.000Z

97

Flexographically Printed Rechargeable Zinc-based Battery for Grid Energy Storage  

E-Print Network [OSTI]

and rechargeable zinc-air battery, U.S. Patent S. Mller,for the rechargeable zincair battery, J Appl Electrochem,zinc-air. The four main types of commercially available rechargeable battery

Wang, Zuoqian

2013-01-01T23:59:59.000Z

98

Solid polymer electrolyte lithium batteries  

DOE Patents [OSTI]

This invention pertains to Lithium batteries using Li ion (Li[sup +]) conductive solid polymer electrolytes composed of solvates of Li salts immobilized in a solid organic polymer matrix. In particular, this invention relates to Li batteries using solid polymer electrolytes derived by immobilizing solvates formed between a Li salt and an aprotic organic solvent (or mixture of such solvents) in poly(vinyl chloride). 3 figures.

Alamgir, M.; Abraham, K.M.

1993-10-12T23:59:59.000Z

99

Solid polymer electrolyte lithium batteries  

DOE Patents [OSTI]

This invention pertains to Lithium batteries using Li ion (Li.sup.+) conductive solid polymer electrolytes composed of solvates of Li salts immobilized in a solid organic polymer matrix. In particular, this invention relates to Li batteries using solid polymer electrolytes derived by immobilizing solvates formed between a Li salt and an aprotic organic solvent (or mixture of such solvents) in poly(vinyl chloride).

Alamgir, Mohamed (Dedham, MA); Abraham, Kuzhikalail M. (Needham, MA)

1993-01-01T23:59:59.000Z

100

Lithium metal oxide electrodes for lithium batteries  

DOE Patents [OSTI]

An uncycled electrode for a non-aqueous lithium electrochemical cell including a lithium metal oxide having the formula Li.sub.(2+2x)/(2+x)M'.sub.2x/(2+x)M.sub.(2-2x)/(2+x)O.sub.2-.delta., in which 0.ltoreq.x<1 and .delta. is less than 0.2, and in which M is a non-lithium metal ion with an average trivalent oxidation state selected from two or more of the first row transition metals or lighter metal elements in the periodic table, and M' is one or more ions with an average tetravalent oxidation state selected from the first and second row transition metal elements and Sn. Methods of preconditioning the electrodes are disclosed as are electrochemical cells and batteries containing the electrodes.

Thackeray, Michael M. (Naperville, IL); Kim, Jeom-Soo (Naperville, IL); Johnson, Christopher S. (Naperville, IL)

2008-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "rechargeable lithium battery" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

Rechargeable Magnesium Batteries: Low-Cost Rechargeable Magnesium Batteries with High Energy Density  

SciTech Connect (OSTI)

BEEST Project: Pellion Technologies is developing rechargeable magnesium batteries that would enable an EV to travel 3 times farther than it could using Li-ion batteries. Prototype magnesium batteries demonstrate excellent electrochemical behavior; delivering thousands of charge cycles with very little fade. Nevertheless, these prototypes have always stored too little energy to be commercially viable. Pellion Technologies is working to overcome this challenge by rapidly screening potential storage materials using proprietary, high-throughput computer models. To date, 12,000 materials have been identified and analyzed. The resulting best materials have been electrochemically tested, yielding several very promising candidates.

None

2010-10-01T23:59:59.000Z

102

Novel Energy Sources -Material Architecture and Charge Transport in Solid State Ionic Materials for Rechargeable Li ion Batteries  

SciTech Connect (OSTI)

Since its introduction in the consumer market at the beginning of 1990s by Sony Corporation Li-ion rechargeable battery and LiCoO2 cathode is an inseparable couple for highly reliable practical applications. However, a separation is inevitable as Li-ion rechargeable battery industry demand more and more from this well serving cathode. Spinel-type lithium manganate (e.g., LiMn2O4), lithium-based layered oxide materials (e.g., LiNiO2) and lithium-based olivine-type compounds (e.g., LiFePO4) are nowadays being extensively studied for application as alternate cathode materials in Li-ion rechargeable batteries. Primary goal of this project was the advancement of Li-ion rechargeable battery to meet the future demands of the energy sector. Major part of the research emphasized on the investigation of electrodes and solid electrolyte materials for improving the charge transport properties in Li-ion rechargeable batteries. Theoretical computational methods were used to select electrodes and electrolyte material with enhanced structural and physical properties. The effect of nano-particles on enhancing the battery performance was also examined. Satisfactory progress has been made in the bulk form and our efforts on realizing micro-battery based on thin films is close to give dividend and work is progressing well in this direction.

Katiyar, Ram S; Gmez, M; Majumder, S B; Morell, G; Tomar, M S; Smotkin, E; Bhattacharya, P; Ishikawa, Y

2009-01-19T23:59:59.000Z

103

Jeff Chamberlain on Lithium-air batteries  

ScienceCinema (OSTI)

Jeff Chamberlain, technology transfer expert at Argonne National Laboratory, speaks on the new technology Lithium-air batteries, which could potentially increase energy density by 5-10 times over lithium-ion batteries. More information at http://www.anl.gov/Media_Center/News/2009/batteries090915.html

Chamberlain, Jeff

2013-04-19T23:59:59.000Z

104

Jeff Chamberlain on Lithium-air batteries  

SciTech Connect (OSTI)

Jeff Chamberlain, technology transfer expert at Argonne National Laboratory, speaks on the new technology Lithium-air batteries, which could potentially increase energy density by 5-10 times over lithium-ion batteries. More information at http://www.anl.gov/Media_Center/News/2009/batteries090915.html

Chamberlain, Jeff

2009-01-01T23:59:59.000Z

105

Michael Thackeray on Lithium-air Batteries  

ScienceCinema (OSTI)

Michael Thackeray, Distinguished Fellow at Argonne National Laboratory, speaks on the new technology Lithium-air batteries, which could potentially increase energy density by 5-10 times over lithium-ion batteries. More information at http://www.anl.gov/Media_Center/News/2009/batteries090915.html

Thackeray, Michael

2013-04-19T23:59:59.000Z

106

Lithium metal oxide electrodes for lithium batteries  

DOE Patents [OSTI]

An uncycled preconditioned electrode for a non-aqueous lithium electrochemical cell including a lithium metal oxide having the formula xLi2-yHyO.xM'O2.(1-x)Li1-zHzMO2 in which 0lithium metal ion with an average trivalent oxidation state selected from two or more of the first row transition metals or lighter metal elements in the periodic table, and M' is one or more ions with an average tetravalent oxidation state selected from the first and second row transition metal elements and Sn. The xLi2-yHy.xM'O2.(1-x)Li1-zHzMO2 material is prepared by preconditioning a precursor lithium metal oxide (i.e., xLi2M'O3.(1-x)LiMO2) with a proton-containing medium with a pH<7.0 containing an inorganic acid. Methods of preparing the electrodes are disclosed, as are electrochemical cells and batteries containing the electrodes.

Thackeray, Michael M.; Johnson, Christopher S.; Amine, Khalil; Kang, Sun-Ho

2010-06-08T23:59:59.000Z

107

Ethylmethylcarbonate, a promising solvent for Li-ion rechargeable batteries  

SciTech Connect (OSTI)

Ethylmethylcarbonate (EMC) has been found to be a promising solvent for rechargeable Li-ion batteries. Graphite electrodes, which are usually sensitive to the composition of the electrolyte solution, can be successfully cycled at high reversible capacities in several Li salt solutions in this solvent (LiAsF{sub 6}, LiPF{sub 6}, etc.). These results are interesting because lithium ions cannot intercalate into graphite in diethyl carbonate solutions and cycle poorly in dimethyl carbonate solutions. To understand the high compatibility of EMC for Li-ion battery systems as compared with the other two open-chain alkyl carbonates mentioned above, the surface chemistry developed in both Li and carbon electrodes in EMC solution was studied and compared with that developed on these electrodes in other alkyl carbonate solutions. Basically, the major surface species formed on both electrodes in EMC include ROLi, ROCO{sub 2}Li, and Li{sub 2}CO{sub 3} species. The uniqueness of EMC as a battery solvent is discussed in light of these studies.

Ein-Eli, Y.; Thomas, S.R.; Koch, V. [Covalent Associates Inc., Woburn, MA (United States); Aurbach, D.; Markovsky, B.; Schechter, A. [Bar-Ilan Univ., Ramat Gan (Israel). Dept. of Chemistry

1996-12-01T23:59:59.000Z

108

A Better Anode Design to Improve Lithium-Ion Batteries  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

A Better Anode Design to Improve Lithium-Ion Batteries A Better Anode Design to Improve Lithium-Ion Batteries Print Friday, 23 March 2012 13:53 Lithium-ion batteries are in smart...

109

Model Reformulation and Design of Lithium-ion Batteries  

E-Print Network [OSTI]

987 94 Model Reformulation and Design of Lithium-ion Batteries V.R. Subramanian1,*, V. Boovaragavan Prediction......................................997 Optimal Design of Lithium-ion Batteries Lithium-ion batteries, product design, Bayesian estimation, Markov Chain Monte Carlo simulation

Subramanian, Venkat

110

Novel forms of carbon as potential anodes for lithium batteries  

SciTech Connect (OSTI)

The objective of this study is to design and synthesize novel carbons as potential electrode materials for lithium rechargeable batteries. A synthetic approach which utilizes inorganic templates is described and initial characterization results are discussed. The templates also act as a catalyst enabling carbon formation at low temperatures. This synthetic approach should make it easier to control the surface and bulk characteristics of these carbons.

Winans, R.E.; Carrado, K.A.

1994-06-01T23:59:59.000Z

111

Electrolytes for lithium ion batteries  

DOE Patents [OSTI]

A family of electrolytes for use in a lithium ion battery. The genus of electrolytes includes ketone-based solvents, such as, 2,4-dimethyl-3-pentanone; 3,3-dimethyl 2-butanone(pinacolone) and 2-butanone. These solvents can be used in combination with non-Lewis Acid salts, such as Li.sub.2[B.sub.12F.sub.12] and LiBOB.

Vaughey, John; Jansen, Andrew N.; Dees, Dennis W.

2014-08-05T23:59:59.000Z

112

Broadcasting with a Battery Limited Energy Harvesting Rechargeable Transmitter  

E-Print Network [OSTI]

) at the transmitter at random instants. The battery at the transmitter has a finite storage capacity, hence energy mayBroadcasting with a Battery Limited Energy Harvesting Rechargeable Transmitter Omur Ozel1 , Jing with a battery limited energy harvesting trans- mitter in a two-user AWGN broadcast channel. The transmitter has

Ulukus, Sennur

113

Block copolymer electrolytes for lithium batteries  

E-Print Network [OSTI]

connecting to the solid-state lithium battery. c. An opticalbattery (discounting packaging, tabs, etc. ) demonstrate the advantage of the solid-state

Hudson, William Rodgers

2011-01-01T23:59:59.000Z

114

ALS Technique Gives Novel View of Lithium Battery Dendrite Growth  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

ALS Technique Gives Novel View of Lithium Battery Dendrite Growth Print Lithium-ion batteries, popular in today's electronic devices and electric vehicles, could gain significant...

115

Secretary Chu Celebrates Expansion of Lithium-Ion Battery Production...  

Office of Environmental Management (EM)

Celebrates Expansion of Lithium-Ion Battery Production in North Carolina Secretary Chu Celebrates Expansion of Lithium-Ion Battery Production in North Carolina July 26, 2011 -...

116

Linking Ion Solvation and Lithium Battery Electrolyte Properties...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Linking Ion Solvation and Lithium Battery Electrolyte Properties Linking Ion Solvation and Lithium Battery Electrolyte Properties 2010 DOE Vehicle Technologies and Hydrogen...

117

Manipulating the Surface Reactions in Lithium Sulfur Batteries...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Manipulating the Surface Reactions in Lithium Sulfur Batteries Using Hybrid Anode Structures. Manipulating the Surface Reactions in Lithium Sulfur Batteries Using Hybrid Anode...

118

Diagnostic Studies on Lithium Battery Cells and Cell Components...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Studies on Lithium Battery Cells and Cell Components Diagnostic Studies on Lithium Battery Cells and Cell Components 2012 DOE Hydrogen and Fuel Cells Program and Vehicle...

119

Development of High Energy Lithium Batteries for Electric Vehicles...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Lithium Batteries for Electric Vehicles Development of High Energy Lithium Batteries for Electric Vehicles 2012 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program...

120

Development of Polymer Electrolytes for Advanced Lithium Batteries...  

Broader source: Energy.gov (indexed) [DOE]

Development of Polymer Electrolytes for Advanced Lithium Batteries Development of Polymer Electrolytes for Advanced Lithium Batteries 2013 DOE Hydrogen and Fuel Cells Program and...

Note: This page contains sample records for the topic "rechargeable lithium battery" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

Fact Sheet: Lithium-Ion Batteries for Stationary Energy Storage...  

Energy Savers [EERE]

Fact Sheet: Lithium-Ion Batteries for Stationary Energy Storage (October 2012) Fact Sheet: Lithium-Ion Batteries for Stationary Energy Storage (October 2012) DOE's Energy Storage...

122

Hierarchically Porous Graphene as a Lithium-Air Battery Electrode...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Hierarchically Porous Graphene as a Lithium-Air Battery Electrode. Hierarchically Porous Graphene as a Lithium-Air Battery Electrode. Abstract: Functionalized graphene sheets (FGS)...

123

Electrocatalytic Activity Studies of Select Metal Surfaces and Implications in Li-Air Batteries  

E-Print Network [OSTI]

Rechargeable lithium-air batteries have the potential to provide ?3 times higher specific energy of fully packaged batteries than conventional lithium rechargeable batteries. However, very little is known about the oxygen ...

Gasteiger, Hubert A.

124

Method of preparation of carbon materials for use as electrodes in rechargeable batteries  

DOE Patents [OSTI]

A method is described for producing carbon materials for use as electrodes in rechargeable batteries. Electrodes prepared from these carbon materials exhibit intercalation efficiencies of {approx_equal} 80% for lithium, low irreversible loss of lithium, long cycle life, are capable of sustaining a high rates of discharge and are cheap and easy to manufacture. The method comprises a novel two-step stabilization process in which polymeric precursor materials are stabilized by first heating in an inert atmosphere and subsequently heating in air. During the stabilization process, the polymeric precursor material can be agitated to reduce particle fusion and promote mass transfer of oxygen and water vapor. The stabilized, polymeric precursor materials can then be converted to a synthetic carbon, suitable for fabricating electrodes for use in rechargeable batteries, by heating to a high temperature in a flowing inert atmosphere. 4 figs.

Doddapaneni, N.; Wang, J.C.F.; Crocker, R.W.; Ingersoll, D.; Firsich, D.W.

1999-03-16T23:59:59.000Z

125

Method of preparation of carbon materials for use as electrodes in rechargeable batteries  

DOE Patents [OSTI]

A method of producing carbon materials for use as electrodes in rechargeable batteries. Electrodes prepared from these carbon materials exhibit intercalation efficiencies of .apprxeq.80% for lithium, low irreversible loss of lithium, long cycle life, are capable of sustaining a high rates of discharge and are cheap and easy to manufacture. The method comprises a novel two-step stabilization process in which polymeric precursor materials are stabilized by first heating in an inert atmosphere and subsequently heating in air. During the stabilization process, the polymeric precursor material can be agitated to reduce particle fusion and promote mass transfer of oxygen and water vapor. The stabilized, polymeric precursor materials can then be converted to a synthetic carbon, suitable for fabricating electrodes for use in rechargeable batteries, by heating to a high temperature in a flowing inert atmosphere.

Doddapaneni, Narayan (Alburquerque, NM); Wang, James C. F. (Livermore, CA); Crocker, Robert W. (Fremont, CA); Ingersoll, David (Alburquerque, NM); Firsich, David W. (Dayton, OH)

1999-01-01T23:59:59.000Z

126

Improved zinc electrode and rechargeable zinc-air battery  

DOE Patents [OSTI]

The invention comprises an improved rechargeable zinc-air cell/battery having recirculating alkaline electrolyte and a zinc electrode comprising a porous foam support material which carries the active zinc electrode material. 5 figs.

Ross, P.N. Jr.

1988-06-21T23:59:59.000Z

127

Bimetallic Cathode Materials for Lithium Based Batteries  

E-Print Network [OSTI]

Bimetallic Cathode Materials for Lithium Based Batteries Frontiers in Materials Science Seminar / Chemistryg g g g g y University at Buffalo ­ The State University of New York (SUNY) Abstract Batteries for implantable cardiac defibrillators (ICDs) are based on the Lithium/Silver vanadium oxide (SVO, Ag2V4O11

128

Intercalation dynamics in lithium-ion batteries  

E-Print Network [OSTI]

A new continuum model has been proposed by Singh, Ceder, and Bazant for the ion intercalation dynamics in a single crystal of rechargeable-battery electrode materials. It is based on the Cahn-Hilliard equation coupled to ...

Burch, Damian

2009-01-01T23:59:59.000Z

129

Solid composite electrolytes for lithium batteries  

DOE Patents [OSTI]

Solid composite electrolytes are provided for use in lithium batteries which exhibit moderate to high ionic conductivity at ambient temperatures and low activation energies. In one embodiment, a ceramic-ceramic composite electrolyte is provided containing lithium nitride and lithium phosphate. The ceramic-ceramic composite is also preferably annealed and exhibits an activation energy of about 0.1 eV.

Kumar, Binod (Dayton, OH); Scanlon, Jr., Lawrence G. (Fairborn, OH)

2000-01-01T23:59:59.000Z

130

Anode materials for lithium-ion batteries  

DOE Patents [OSTI]

An anode material for lithium-ion batteries is provided that comprises an elongated core structure capable of forming an alloy with lithium; and a plurality of nanostructures placed on a surface of the core structure, with each nanostructure being capable of forming an alloy with lithium and spaced at a predetermined distance from adjacent nanostructures.

Sunkara, Mahendra Kumar; Meduri, Praveen; Sumanasekera, Gamini

2014-12-30T23:59:59.000Z

131

Chemical overcharge protection of lithium and lithium-ion secondary batteries  

DOE Patents [OSTI]

This invention features the use of redox reagents, dissolved in non-aqueous electrolytes, to provide overcharge protection for cells having lithium metal or lithium-ion negative electrodes (anodes). In particular, the invention features the use of a class of compounds consisting of thianthrene and its derivatives as redox shuttle reagents to provide overcharge protection. Specific examples of this invention are thianthrene and 2,7-diacetyl thianthrene. One example of a rechargeable battery in which 2,7-diacetyl thianthrene is used has carbon negative electrode (anode) and spinet LiMn{sub 2}O{sub 4} positive electrode (cathode). 8 figs.

Abraham, K.M.; Rohan, J.F.; Foo, C.C.; Pasquariello, D.M.

1999-01-12T23:59:59.000Z

132

Chemical overcharge protection of lithium and lithium-ion secondary batteries  

DOE Patents [OSTI]

This invention features the use of redox reagents, dissolved in non-aqueous electrolytes, to provide overcharge protection for cells having lithium metal or lithium-ion negative electrodes (anodes). In particular, the invention features the use of a class of compounds consisting of thianthrene and its derivatives as redox shuttle reagents to provide overcharge protection. Specific examples of this invention are thianthrene and 2,7-diacetyl thianthrene. One example of a rechargeable battery in which 2,7-diacetyl thianthrene is used has carbon negative electrode (anode) and spinet LiMn.sub.2 O.sub.4 positive electrode (cathode).

Abraham, Kuzhikalail M. (Needham, MA); Rohan, James F. (Cork City, IE); Foo, Conrad C. (Dedham, MA); Pasquariello, David M. (Pawtucket, RI)

1999-01-01T23:59:59.000Z

133

Cr-Ga-N materials for negative electrodes in Li rechargeable batteries : structure, synthesis and electrochemical performance  

E-Print Network [OSTI]

Electrochemical performances of two ternary compounds (Cr2GaN and Cr3GaN) in the Cr-Ga-N system as possible future anode materials for lithium rechargeable batteries were studied. Motivation for this study was dealt in ...

Kim, Miso

2007-01-01T23:59:59.000Z

134

Theory of SEI Formation in Rechargeable Batteries: Capacity Fade, Accelerated Aging and Lifetime Prediction  

E-Print Network [OSTI]

Cycle life is critically important in applications of rechargeable batteries, but lifetime prediction is mostly based on empirical trends, rather than mathematical models. In practical lithium-ion batteries, capacity fade occurs over thousands of cycles, limited by slow electrochemical processes, such as the formation of a solid-electrolyte interphase (SEI) in the negative electrode, which compete with reversible lithium intercalation. Focusing on SEI growth as the canonical degradation mechanism, we show that a simple single-particle model can accurately explain experimentally observed capacity fade in commercial cells with graphite anodes, and predict future fade based on limited accelerated aging data for short times and elevated temperatures. The theory is extended to porous electrodes, predicting that SEI growth is essentially homogeneous throughout the electrode, even at high rates. The lifetime distribution for a sample of batteries is found to be consistent with Gaussian statistics, as predicted by th...

Pinson, Matthew B

2012-01-01T23:59:59.000Z

135

Response of Lithium Polymer Batteries to Mechanical Loading  

E-Print Network [OSTI]

Response of Lithium Polymer Batteries to Mechanical Loading Karl Suabedissen1, Christina Peabody2 · Lithium polymer batteries are everywhere. · Efforts to create flexible batteries. · Restrictive battery performance. #12;Lithium Polymer Battery Structure · Al cathode coated with LiCoO2. · Cu anode coated

Petta, Jason

136

Design Principles for the Use of Electroactive Polymers for Overcharge Protection of Lithium-Ion Batteries  

E-Print Network [OSTI]

Modeling of Lithium Batteries. Kluwer Academic Publishers,of interest for lithium batteries. Therefore, we can use y =and J. Newman, Advances in Lithium-Ion Batteries, ch.

Thomas-Alyea, Karen E.; Newman, John; Chen, Guoying; Richardson, Thomas J.

2005-01-01T23:59:59.000Z

137

Studies of ionic liquids in lithium-ion battery test systems  

E-Print Network [OSTI]

are not useful for lithium batteries. We are therefore nowapplications using lithium batteries, we must be sure thattemperature range. For lithium batteries in hybrid vehicles,

Salminen, Justin; Prausnitz, John M.; Newman, John

2006-01-01T23:59:59.000Z

138

Performance Characteristics of Lithium-ion Batteries of Various Chemistries for Plug-in Hybrid Vehicles  

E-Print Network [OSTI]

the manufacture of lithium batteries (References 2 and 3).Characteristics of Lithium-ion Batteries of VariousAdvisor utilizing lithium-ion batteries of the different

Burke, Andrew; Miller, Marshall

2009-01-01T23:59:59.000Z

139

Surface reconstruction and chemical evolution of stoichiometric layered cathode materials for lithium-ion batteries  

E-Print Network [OSTI]

Layered Oxides for Lithium Batteries. Nano Lett. 13, 3857O 2 Cathode Material in Lithium Ion Batteries. Adv. Energydecomposition in lithium ion batteries: first-principles

Lin, Feng

2014-01-01T23:59:59.000Z

140

Performance, Charging, and Second-use Considerations for Lithium Batteries for Plug-in Electric Vehicles  

E-Print Network [OSTI]

Considerations for Lithium Batteries for Plug-in Electricfast charging of the lithium batteries should be possiblefast charging of the lithium batteries will be is possible

Burke, Andrew

2009-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "rechargeable lithium battery" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

Lithium ion battery with improved safety  

DOE Patents [OSTI]

A lithium battery with improved safety that utilizes one or more additives in the battery electrolyte solution wherein a lithium salt is dissolved in an organic solvent, which may contain propylene, carbonate. For example, a blend of 2 wt % triphenyl phosphate (TPP), 1 wt % diphenyl monobutyl phosphate (DMP) and 2 wt % vinyl ethylene carbonate additives has been found to significantly enhance the safety and performance of Li-ion batteries using a LiPF6 salt in EC/DEC electrolyte solvent. The invention relates to both the use of individual additives and to blends of additives such as that shown in the above example at concentrations of 1 to 4-wt % in the lithium battery electrolyte. This invention relates to additives that suppress gas evolution in the cell, passivate graphite electrode and protect it from exfoliating in the presence of propylene carbonate solvents in the electrolyte, and retard flames in the lithium batteries.

Chen, Chun-hua; Hyung, Yoo Eup; Vissers, Donald R.; Amine, Khalil

2006-04-11T23:59:59.000Z

142

Lithium-ion batteries with intrinsic pulse overcharge protection  

DOE Patents [OSTI]

The present invention relates in general to the field of lithium rechargeable batteries, and more particularly relates to the positive electrode design of lithium-ion batteries with improved high-rate pulse overcharge protection. Thus the present invention provides electrochemical devices containing a cathode comprising at least one primary positive material and at least one secondary positive material; an anode; and a non-aqueous electrolyte comprising a redox shuttle additive; wherein the redox potential of the redox shuttle additive is greater than the redox potential of the primary positive material; the redox potential of the redox shuttle additive is lower than the redox potential of the secondary positive material; and the redox shuttle additive is stable at least up to the redox potential of the secondary positive material.

Chen, Zonghai; Amine, Khalil

2013-02-05T23:59:59.000Z

143

2/1/2014 New Micro-Windmill TechnologyTo Recharge Cell Phone Batteries http://www.technocrazed.com/new-micro-windmill-technology-to-recharge-cell-phone-batteries 1/4  

E-Print Network [OSTI]

2/1/2014 New Micro-Windmill TechnologyTo Recharge Cell Phone Batteries http://www.technocrazed.com/new-micro-windmill-technology-to-recharge-cell-phone manual winding or new batteries. It is the researchers' dream to recharge the cell phone batteries Micro-Windmill Technology To Recharge Cell Phone Batteries New Micro-Windmill Technology To Recharge

Chiao, Jung-Chih

144

Flexographically Printed Rechargeable Zinc-based Battery for Grid Energy Storage  

E-Print Network [OSTI]

of gel electrolyte based solid-state battery chemistry alsoproject, a solid-state rechargeable battery was developedsolid-state batteries, as discussed in this dissertation, has the potential to disrupt the current battery

Wang, Zuoqian

2013-01-01T23:59:59.000Z

145

Investigation of the Rechargeability of Li-O2 Batteries in Non...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

the Rechargeability of Li-O2 Batteries in Non-aqueous Electrolyte. Investigation of the Rechargeability of Li-O2 Batteries in Non-aqueous Electrolyte. Abstract: In order to...

146

Novel electrolyte chemistries for Mg-Ni rechargeable batteries.  

SciTech Connect (OSTI)

Commercial hybrid electric vehicles (HEV) and battery electric vehicles (BEV) serve as means to reduce the nation's dependence on oil. Current electric vehicles use relatively heavy nickel metal hydride (Ni-MH) rechargeable batteries. Li-ion rechargeable batteries have been developed extensively as the replacement; however, the high cost and safety concerns are still issues to be resolved before large-scale production. In this study, we propose a new highly conductive solid polymer electrolyte for Mg-Ni high electrochemical capacity batteries. The traditional corrosive alkaline aqueous electrolyte (KOH) is replaced with a dry polymer with conductivity on the order of 10{sup -2} S/cm, as measured by impedance spectroscopy. Several potential novel polymer and polymer composite candidates are presented with the best-performing electrolyte results for full cell testing and cycling.

Garcia-Diaz, Brenda (Savannah River National Laboratory); Kane, Marie; Au, Ming (Savannah River National Laboratory)

2010-10-01T23:59:59.000Z

147

Zinc electrode and rechargeable zinc-air battery  

DOE Patents [OSTI]

An improved zinc electrode is disclosed for a rechargeable zinc-air battery comprising an outer frame and a porous foam electrode support within the frame which is treated prior to the deposition of zinc thereon to inhibit the formation of zinc dendrites on the external surface thereof. The outer frame is provided with passageways for circulating an alkaline electrolyte through the treated zinc-coated porous foam. A novel rechargeable zinc-air battery system is also disclosed which utilizes the improved zinc electrode and further includes an alkaline electrolyte within said battery circulating through the passageways in the zinc electrode and an external electrolyte circulation means which has an electrolyte reservoir external to the battery case including filter means to filter solids out of the electrolyte as it circulates to the external reservoir and pump means for recirculating electrolyte from the external reservoir to the zinc electrode.

Ross, Jr., Philip N. (Kensington, CA)

1989-01-01T23:59:59.000Z

148

A Lithium Superionic Sulfide Cathode for Lithium-Sulfur Batteries  

SciTech Connect (OSTI)

This work presents a facile synthesis approach for core-shell structured Li2S nanoparticles, which have Li2S as the core and Li3PS4 as the shell. This material functions as lithium superionic sulfide (LSS) cathode for long-lasting, energy-efficient lithium-sulfur (Li-S) batteries. The LSS has an ionic conductivity of 10-7 S cm-1 at 25 oC, which is 6 orders of magnitude higher than that of bulk Li2S (~10-13 S cm-1). The high lithium-ion conductivity of LSS imparts an excellent cycling performance to all-solid Li-S batteries, which also promises safe cycling of high-energy batteries with metallic lithium anodes.

Lin, Zhan [ORNL] [ORNL; Liu, Zengcai [ORNL] [ORNL; Dudney, Nancy J [ORNL] [ORNL; Liang, Chengdu [ORNL] [ORNL

2013-01-01T23:59:59.000Z

149

EV Everywhere Batteries Workshop - Beyond Lithium Ion Breakout...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Beyond Lithium Ion Breakout Session Report EV Everywhere Batteries Workshop - Beyond Lithium Ion Breakout Session Report Breakout session presentation for the EV Everywhere Grand...

150

Silicon-tin oxynitride glassy composition and use as anode for lithium-ion battery  

DOE Patents [OSTI]

Disclosed are silicon-tin oxynitride glassy compositions which are especially useful in the construction of anode material for thin-film electrochemical devices including rechargeable lithium-ion batteries, electrochromic mirrors, electrochromic windows, and actuators. Additional applications of silicon-tin oxynitride glassy compositions include optical fibers and optical waveguides.

Neudecker, Bernd J. (Knoxville, TN); Bates, John B. (Oak Ridge, TN)

2001-01-01T23:59:59.000Z

151

Electrochemically Stable Cathode Current Collectors for Rechargeable Magnesium Batteries  

SciTech Connect (OSTI)

Rechargeable Mg batteries are attractive energy storage systems and could bring cost-effective energy solutions. Currently, however, no practical cathode current collectors that can withstand high voltages in Mg2+ electrolytes has been identified and therefore cathode research is greatly hindered. Here we identified that two metals, Mo and W, are electrochemically stable through formation of surface passive layers. The presented results could have significant impacts on the developments of high voltage Mg batteries.

Cheng, Yingwen; Liu, Tianbiao L.; Shao, Yuyan; Engelhard, Mark H.; Liu, Jun; Li, Guosheng

2014-01-01T23:59:59.000Z

152

Development of High Energy Lithium Batteries for Electric Vehicles...  

Broader source: Energy.gov (indexed) [DOE]

Kasei * Focused on High Capacity Manganese Rich (HCMR TM ) cathodes & Silicon-Carbon composite anodes for Lithium ion batteries * Envia's high energy Li-ion battery materials...

153

Lithium Ion Battery Performance of Silicon Nanowires With Carbon...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Ion Battery Performance of Silicon Nanowires With Carbon Skin . Lithium Ion Battery Performance of Silicon Nanowires With Carbon Skin . Abstract: Silicon (Si) nanomaterials have...

154

Two Studies Reveal Details of Lithium-Battery Function  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Two Studies Reveal Details of Lithium-Battery Function Print Our way of life is deeply intertwined with battery technologies that have enabled a mobile revolution powering cell...

155

Two Studies Reveal Details of Lithium-Battery Function  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Two Studies Reveal Details of Lithium-Battery Function Two Studies Reveal Details of Lithium-Battery Function Print Wednesday, 27 February 2013 00:00 Our way of life is deeply...

156

Multi-layered, chemically bonded lithium-ion and lithium/air batteries  

SciTech Connect (OSTI)

Disclosed are multilayer, porous, thin-layered lithium-ion batteries that include an inorganic separator as a thin layer that is chemically bonded to surfaces of positive and negative electrode layers. Thus, in such disclosed lithium-ion batteries, the electrodes and separator are made to form non-discrete (i.e., integral) thin layers. Also disclosed are methods of fabricating integrally connected, thin, multilayer lithium batteries including lithium-ion and lithium/air batteries.

Narula, Chaitanya Kumar; Nanda, Jagjit; Bischoff, Brian L; Bhave, Ramesh R

2014-05-13T23:59:59.000Z

157

An Analytical Model for Predicting the Remaining Battery Capacity of Lithium-Ion Batteries  

E-Print Network [OSTI]

An Analytical Model for Predicting the Remaining Battery Capacity of Lithium-Ion Batteries Peng cycle-life tends to shrink significantly. The capacities of commercial lithium-ion batteries fade by 10 prediction model to estimate the remaining capacity of a Lithium-Ion battery. The proposed analytical model

Pedram, Massoud

158

Lithium sulfide compositions for battery electrolyte and battery electrode coatings  

SciTech Connect (OSTI)

Methods of forming lithium-containing electrolytes are provided using wet chemical synthesis. In some examples, the lithium containing electroytes are composed of .beta.-Li.sub.3PS.sub.4 or Li.sub.4P.sub.2S.sub.7. The solid electrolyte may be a core shell material. In one embodiment, the core shell material includes a core of lithium sulfide (Li.sub.2S), a first shell of .beta.-Li.sub.3PS.sub.4 or Li.sub.4P.sub.2S.sub.7, and a second shell including one or .beta.-Li.sub.3PS.sub.4 or Li.sub.4P.sub.2S.sub.7 and carbon. The lithium containing electrolytes may be incorporated into wet cell batteries or solid state batteries.

Liang, Chengdu; Liu, Zengcai; Fu, Wunjun; Lin, Zhan; Dudney, Nancy J; Howe, Jane Y; Rondinone, Adam J

2013-12-03T23:59:59.000Z

159

Lithium sulfide compositions for battery electrolyte and battery electrode coatings  

SciTech Connect (OSTI)

Method of forming lithium-containing electrolytes are provided using wet chemical synthesis. In some examples, the lithium containing electrolytes are composed of .beta.-Li.sub.3PS.sub.4 or Li.sub.4P.sub.2S.sub.7. The solid electrolyte may be a core shell material. In one embodiment, the core shell material includes a core of lithium sulfide (Li.sub.2S), a first shell of .beta.-Li.sub.3PS.sub.4 or Li.sub.4P.sub.2S.sub.7, and a second shell including one of .beta.-Li.sub.3PS.sub.4 or Li.sub.4P.sub.2S.sub.7 and carbon. The lithium containing electrolytes may be incorporated into wet cell batteries or solid state batteries.

Liang, Chengdu; Liu, Zengcai; Fu, Wujun; Lin, Zhan; Dudney, Nancy J; Howe, Jane Y; Rondinone, Adam J

2014-10-28T23:59:59.000Z

160

Mechanical Properties of Lithium-Ion Battery Separator Materials  

E-Print Network [OSTI]

Mechanical Properties of Lithium-Ion Battery Separator Materials Patrick Sinko B.S. Materials Science and Engineering 2013, Virginia Tech John Cannarella PhD. Candidate Mechanical and Aerospace and motivation ­ Why study lithium-ion batteries? ­ Lithium-ion battery fundamentals ­ Why study the mechanical

Petta, Jason

Note: This page contains sample records for the topic "rechargeable lithium battery" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

A NEW CONCEPT IN AN ELECTRICALLY RECHARGEABLE ZINC-AIR ALKALINE BATTERY  

E-Print Network [OSTI]

Study of a New Zinc-Air Battery Concept Using Flowingdiagram of the zinc-air battery single cell prototype usedRECHARGEABLE ZINC-AIR ALKALINE BATTERY Philip N. Ross

Ross, P.N.

2010-01-01T23:59:59.000Z

162

Composite cathodes for lithium rechargeable batteries  

E-Print Network [OSTI]

The utility of incorporating continuous, nanoscale vanadium oxide phases within preferred domains of self-organizing copolymers was investigated towards the fabrication of composite, nanoarchitectured electrode materials ...

Olivetti, Elsa A

2007-01-01T23:59:59.000Z

163

Design and Simulation of Lithium Rechargeable Batteries  

E-Print Network [OSTI]

forces for use in a material balance equation. At this pointj/2. c c c Equation 4, material balance in solid insertion2-9 is a material balance on the salt, whereas equation 2-10

Doyle, C.M.

2010-01-01T23:59:59.000Z

164

Ionic liquids for rechargeable lithium batteries  

E-Print Network [OSTI]

conducting polymer electrochromic devices using ionicelectrochemical cells and electrochromic devices, including

Salminen, Justin; Papaiconomou, Nicolas; Kerr, John; Prausnitz, John; Newman, John

2008-01-01T23:59:59.000Z

165

Design and Simulation of Lithium Rechargeable Batteries  

E-Print Network [OSTI]

and Renewable Energy, Office of Transportation Technologies, Electric and Hybridand Renewable Energy, Office of Transportation Technologies, Electric and Hybrid

Doyle, C.M.

2010-01-01T23:59:59.000Z

166

Ionic liquids for rechargeable lithium batteries  

E-Print Network [OSTI]

efficiency of dye-sensitized solar cells, J. Phys. Chem.in dye-sensitized nanocrystalline solar cells, J. Phys.

Salminen, Justin; Papaiconomou, Nicolas; Kerr, John; Prausnitz, John; Newman, John

2008-01-01T23:59:59.000Z

167

Cyanoethylated compounds as additives in lithium/lithium batteries  

DOE Patents [OSTI]

The power loss of lithium/lithium ion battery cells is significantly reduced, especially at low temperatures, when about 1% by weight of an additive is incorporated in the electrolyte layer of the cells. The usable additives are organic solvent soluble cyanoethylated polysaccharides and poly(vinyl alcohol). The power loss decrease results primarily from the decrease in the charge transfer resistance at the interface between the electrolyte and the cathode.

Nagasubramanian, Ganesan (Albuquerque, NM)

1999-01-01T23:59:59.000Z

168

Lithium metal oxide electrodes for lithium cells and batteries  

DOE Patents [OSTI]

A lithium metal oxide positive electrode for a non-aqueous lithium cell is disclosed. The cell is prepared in its initial discharged state and has a general formula xLiMO.sub.2.(1-x)Li.sub.2 M'O.sub.3 in which 0batteries are disclosed with anode, cathode and electrolyte as are batteries of several cells connected in parallel or series or both.

Thackeray, Michael M. (Naperville, IL); Johnson, Christopher S. (Naperville, IL); Amine, Khalil (Downers Grove, IL); Kim, Jaekook (Naperville, IL)

2004-01-13T23:59:59.000Z

169

Perovskite Sr0.95Ce0.05CoO3d loaded with copper nanoparticles as a bifunctional catalyst for lithium-air batteries  

E-Print Network [OSTI]

for lithium-air batteries Wei Yang,ab Jason Salim,c Shuai Li,ab Chunwen Sun,*ab Liquan Chen,ab John B could be used in a metal/air battery or a PEM fuel cell as an efficient and stable bifunctional catalyst electrolyte. More challenging is the requirement for the Li/air rechargeable battery, viz. an inexpensive

170

Electrolytic orthoborate salts for lithium batteries  

DOE Patents [OSTI]

Orthoborate salts suitable for use as electrolytes in lithium batteries and methods for making the electrolyte salts are provided. The electrolytic salts have one of the formulae (I). In this formula anionic orthoborate groups are capped with two bidentate chelating groups, Y1 and Y2. Certain preferred chelating groups are dibasic acid residues, most preferably oxalyl, malonyl and succinyl, disulfonic acid residues, sulfoacetic acid residues and halo-substituted alkylenes. The salts are soluble in non-aqueous solvents and polymeric gels and are useful components of lithium batteries in electrochemical devices.

Angell, Charles Austen [Mesa, AZ; Xu, Wu [Tempe, AZ

2009-05-05T23:59:59.000Z

171

Electrolytic orthoborate salts for lithium batteries  

DOE Patents [OSTI]

Orthoborate salts suitable for use as electrolytes in lithium batteries and methods for making the electrolyte salts are provided. The electrolytic salts have one of the formulae (I). In this formula anionic orthoborate groups are capped with two bidentate chelating groups, Y1 and Y2. Certain preferred chelating groups are dibasic acid residues, most preferably oxalyl, malonyl and succinyl, disulfonic acid residues, sulfoacetic acid residues and halo-substituted alkylenes. The salts are soluble in non-aqueous solvents and polymeric gels and are useful components of lithium batteries in electrochemical devices.

Angell, Charles Austen (Mesa, AZ); Xu, Wu (Tempe, AZ)

2008-01-01T23:59:59.000Z

172

Lithium-Polysulfide Flow Battery Demonstration  

ScienceCinema (OSTI)

In this video, Stanford graduate student Wesley Zheng demonstrates the new low-cost, long-lived flow battery he helped create. The researchers created this miniature system using simple glassware. Adding a lithium polysulfide solution to the flask immediately produces electricity that lights an LED. A utility version of the new battery would be scaled up to store many megawatt-hours of energy.

Zheng, Wesley

2014-07-16T23:59:59.000Z

173

High-discharge-rate lithium ion battery  

SciTech Connect (OSTI)

The present invention provides for a lithium ion battery and process for creating such, comprising higher binder to carbon conductor ratios than presently used in the industry. The battery is characterized by much lower interfacial resistances at the anode and cathode as a result of initially mixing a carbon conductor with a binder, then with the active material. Further improvements in cycleability can also be realized by first mixing the carbon conductor with the active material first and then adding the binder.

Liu, Gao; Battaglia, Vincent S; Zheng, Honghe

2014-04-22T23:59:59.000Z

174

Lithium-Polysulfide Flow Battery Demonstration  

SciTech Connect (OSTI)

In this video, Stanford graduate student Wesley Zheng demonstrates the new low-cost, long-lived flow battery he helped create. The researchers created this miniature system using simple glassware. Adding a lithium polysulfide solution to the flask immediately produces electricity that lights an LED. A utility version of the new battery would be scaled up to store many megawatt-hours of energy.

Zheng, Wesley

2014-06-30T23:59:59.000Z

175

Cr, N-Codoped TiO2 Mesoporous Microspheres for Li-ion Rechargeable Batteries with Enhanced Electrochemical Performance  

SciTech Connect (OSTI)

Cr,N-codoped TiO2 mesoporous microspheres synthesized using hydrothermal and subsequent nitridation treatment, exhibited higher solubility of nitrogen, and improved electrical conductivity than N-doped TiO2, as anode for Lithium-ion rechargeable batteries, which led to improving charge-discharge capacity at 0.1 C and twice higher rate capability compared to that of nitrogen-doped TiO2 mesoporous microsphere at 10 C

Bi, Zhonghe [ORNL] [ORNL; Paranthaman, Mariappan Parans [ORNL] [ORNL; Guo, Bingkun [ORNL] [ORNL; Unocic, Raymond R [ORNL] [ORNL; Meyer III, Harry M [ORNL] [ORNL; Bridges, Craig A [ORNL] [ORNL; Sun, Xiao-Guang [ORNL] [ORNL; Dai, Sheng [ORNL] [ORNL

2014-01-01T23:59:59.000Z

176

Simulations of Plug-in Hybrid Vehicles Using Advanced Lithium Batteries and Ultracapacitors on Various Driving Cycles  

E-Print Network [OSTI]

using Advanced Lithium Batteries and Ultracapacitors onusing advanced lithium batteries having energy densities ofA number of lithium batteries and ultracapacitors have been

Burke, Andy; Zhao, Hengbing

2010-01-01T23:59:59.000Z

177

Hierarchically Structured Materials for Lithium Batteries  

SciTech Connect (OSTI)

Lithium-ion battery (LIB) is one of the most promising power sources to be deployed in electric vehicles (EV), including solely battery powered vehicles, plug-in hybrid electric vehicles, and hybrid electrical vehicles. With the increasing demand on devices of high energy densities (>500 Wh/kg) , new energy storage systems, such as lithium-oxygen (Li-O2) batteries and other emerging systems beyond the conventional LIB also attracted worldwide interest for both transportation and grid energy storage applications in recent years. It is well known that the electrochemical performances of these energy storage systems depend not only on the composition of the materials, but also on the structure of electrode materials used in the batteries. Although the desired performances characteristics of batteries often have conflict requirements on the micro/nano-structure of electrodes, hierarchically designed electrodes can be tailored to satisfy these conflict requirements. This work will review hierarchically structured materials that have been successfully used in LIB and Li-O2 batteries. Our goal is to elucidate 1) how to realize the full potential of energy materials through the manipulation of morphologies, and 2) how the hierarchical structure benefits the charge transport, promotes the interfacial properties, prolongs the electrode stability and battery lifetime.

Xiao, Jie; Zheng, Jianming; Li, Xiaolin; Shao, Yuyan; Zhang, Jiguang

2013-09-25T23:59:59.000Z

178

Lithium Polymer (LiPo) Battery Usage Lithium polymer batteries are now being widely used in hobby and UAV applications. They work  

E-Print Network [OSTI]

Lithium Polymer (LiPo) Battery Usage 1 Lithium polymer batteries are now being widely used in hobby only LiPo Chargers with Error Detection - It is always recommended that you charge your lithium polymer batteries with a battery charger specifically designed for lithium polymer batteries. As an example, you

Langendoen, Koen

179

Real-time observation of lithium fibers growth inside a nanoscale lithium-ion battery  

E-Print Network [OSTI]

to observe the real-time nucleation and growth of the lithium fibers inside a nanoscale Li-ion battery. Our needed for safe and high power Li-ion batteries. VC 2011 American Institute of Physics. [doi:10Real-time observation of lithium fibers growth inside a nanoscale lithium-ion battery Hessam

Endres. William J.

180

Synthesis and Electrochemical Performance of a Lithium Titanium Phosphate Anode for Aqueous Lithium-Ion Batteries  

E-Print Network [OSTI]

on larger scales. Im- provement of the safety of lithium-ion batteries must occur if they are to be utilized in aqueous cells. However, the choice of a suitable anode material for an aqueous lithium-ion battery is moreSynthesis and Electrochemical Performance of a Lithium Titanium Phosphate Anode for Aqueous Lithium

Cui, Yi

Note: This page contains sample records for the topic "rechargeable lithium battery" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

Solid composite electrolytes for lithium batteries  

DOE Patents [OSTI]

Solid composite electrolytes are provided for use in lithium batteries which exhibit moderate to high ionic conductivity at ambient temperatures and low activation energies. In one embodiment, a polymer-ceramic composite electrolyte containing poly(ethylene oxide), lithium tetrafluoroborate and titanium dioxide is provided in the form of an annealed film having a room temperature conductivity of from 10.sup.-5 S cm.sup.-1 to 10.sup.-3 S cm.sup.-1 and an activation energy of about 0.5 eV.

Kumar, Binod (Dayton, OH); Scanlon, Jr., Lawrence G. (Fairborn, OH)

2001-01-01T23:59:59.000Z

182

Lithium metal oxide electrodes for lithium cells and batteries  

DOE Patents [OSTI]

A lithium metal oxide positive electrode for a non-aqueous lithium cell is disclosed. The cell is prepared in its initial discharged state and has a general formula xLiMO2.(1-x)Li2M'O3 in which 0batteries are disclosed with anode, cathode and electrolyte as are batteries of several cells connected in parallel or series or both.

Thackeray, Michael M.; Johnson, Christopher S.; Amine, Khalil; Kim, Jaekook

2006-11-14T23:59:59.000Z

183

Lithium Metal Oxide Electrodes For Lithium Cells And Batteries  

DOE Patents [OSTI]

A lithium metal oxide positive electrode for a non-aqueous lithium cell is disclosed. The cell is prepared in its initial discharged state and has a general formula xLiMO.sub.2.(1-x)Li.sub.2 M'O.sub.3 in which 0batteries are disclosed with anode, cathode and electrolyte as are batteries of several cells connected in parallel or series or both.

Thackeray, Michael M. (Naperville, IL); Johnson, Christopher S. (Naperville, IL); Amine, Khalil (Downers Grove, IL); Kim, Jaekook (Naperville, IL)

2004-01-20T23:59:59.000Z

184

Lithium metal oxide electrodes for lithium cells and batteries  

DOE Patents [OSTI]

A lithium metal oxide positive electrode for a non-aqueous lithium cell is disclosed. The cell is prepared in its initial discharged state and has a general formula xLiMO.sub.2.(1-x)Li.sub.2M'O.sub.3 in which 0batteries are disclosed with anode, cathode and electrolyte as are batteries of several cells connected in parallel or series or both.

Thackeray, Michael M. (Naperville, IL); Johnson, Christopher S. (Naperville, IL); Amine, Khalil (Oakbrook, IL)

2008-12-23T23:59:59.000Z

185

Anode material for lithium batteries  

DOE Patents [OSTI]

Primary and secondary Li-ion and lithium-metal based electrochemical cell systems. The suppression of gas generation is achieved through the addition of an additive or additives to the electrolyte system of respective cell, or to the cell itself whether it be a liquid, a solid- or plasticized polymer electrolyte system. The gas suppression additives are primarily based on unsaturated hydrocarbons.

Belharouak, Ilias (Westmont, IL); Amine, Khalil (Downers Grove, IL)

2012-01-31T23:59:59.000Z

186

Anode material for lithium batteries  

DOE Patents [OSTI]

Primary and secondary Li-ion and lithium-metal based electrochemical cell system. The suppression of gas generation is achieved through the addition of an additive or additives to the electrolyte system of respective cell, or to the cell itself whether it be a liquid, a solid- or plastized polymer electrolyte system. The gas suppression additives are primarily based on unsaturated hydrocarbons.

Belharouak, Ilias (Bolingbrook, IL); Amine, Khalil (Downers Grove, IL)

2008-06-24T23:59:59.000Z

187

Anode material for lithium batteries  

DOE Patents [OSTI]

Primary and secondary Li-ion and lithium-metal based electrochemical cell systems. The suppression of gas generation is achieved through the addition of an additive or additives to the electrolyte system of respective cell, or to the cell itself whether it be a liquid, a solid- or plasticized polymer electrolyte system. The gas suppression additives are primarily based on unsaturated hydrocarbons.

Belharouak, Ilias (Bolingbrook, IL); Amine, Khalil (Oak Brook, IL)

2011-04-05T23:59:59.000Z

188

Characterization of Electrode Materials for Lithium Ion and Sodium Ion Batteries using Synchrotron Radiation Techniques  

E-Print Network [OSTI]

Alternatives to Current Lithium-Ion Batteries. Adv. EnergyMaterials for Lithium Ion Batteries. Materials Matters. 7 4.to the Study of Lithium Ion Batteries. J. Solid State

Doeff, Marca M.

2013-01-01T23:59:59.000Z

189

Failure modes in high-power lithium-ion batteries for use in hybrid electric vehicles  

E-Print Network [OSTI]

MODES IN HIGH-POWER LITHIUM-ION BATTERIES FOR USE IN HYBRIDof high-power lithium-ion batteries for hybrid electricthe development of lithium-ion batteries for hybrid electric

2001-01-01T23:59:59.000Z

190

Lithium-ion batteries having conformal solid electrolyte layers  

DOE Patents [OSTI]

Hybrid solid-liquid electrolyte lithium-ion battery devices are disclosed. Certain devices comprise anodes and cathodes conformally coated with an electron insulating and lithium ion conductive solid electrolyte layer.

Kim, Gi-Heon; Jung, Yoon Seok

2014-05-27T23:59:59.000Z

191

Solid polymeric electrolytes for lithium batteries  

DOE Patents [OSTI]

Novel conductive polyanionic polymers and methods for their preparion are provided. The polyanionic polymers comprise repeating units of weakly-coordinating anionic groups chemically linked to polymer chains. The polymer chains in turn comprise repeating spacer groups. Spacer groups can be chosen to be of length and structure to impart desired electrochemical and physical properties to the polymers. Preferred embodiments are prepared from precursor polymers comprising the Lewis acid borate tri-coordinated to a selected ligand and repeating spacer groups to form repeating polymer chain units. These precursor polymers are reacted with a chosen Lewis base to form a polyanionic polymer comprising weakly coordinating anionic groups spaced at chosen intervals along the polymer chain. The polyanionic polymers exhibit high conductivity and physical properties which make them suitable as solid polymeric electrolytes in lithium batteries, especially secondary lithium batteries.

Angell, Charles A.; Xu, Wu; Sun, Xiaoguang

2006-03-14T23:59:59.000Z

192

Electrochemical and microstructural studies of AlPO?-nanoparticle coated LiCoO? for lithium-ion batteries  

E-Print Network [OSTI]

AlPO?-nanoparticle coated LiCoO? is studied as a positive electrode for lithium rechargeable batteries for a high-voltage charge limit of 4.7V. To understand the role of the coating in transport phenomena and in deintercalation ...

Appapillai, Anjuli T. (Anjuli Tara)

2006-01-01T23:59:59.000Z

193

Electrolytes - R&D for Advanced Lithium Batteries. Interfacial...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

es089kerr2011o.pdf More Documents & Publications Electrolytes - R&D for Advanced Lithium Batteries. Interfacial Behavior of Electrolytes Interfacial Behavior of Electrolytes...

194

Advanced Cathode Material Development for PHEV Lithium Ion Batteries...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

More Documents & Publications Advanced Cathode Material Development for PHEV Lithium Ion Batteries High Energy Novel Cathode Alloy Automotive Cell Develop & evaluate...

195

Sandia National Laboratories: Solid-State Lithium Batteries  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Lithium Batteries ARPAe: Innovation Activities On November 25, 2013, in Technology Showcase Nominees Partnering with Sandia Research Facilities Current Projects Technology Showcase...

196

Electrolytes - R&D for Advanced Lithium Batteries. Interfacial...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

- Interfacial and Bulk Properties and Stability Electrolytes - R&D for Advanced Lithium Batteries. Interfacial Behavior of Electrolytes Interfacial Behavior of Electrolytes...

197

Correlation of Lithium-Ion Battery Performance with Structural...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Correlation of Lithium-Ion Battery Performance with Structural and Chemical Transformations Wednesday, April 30, 2014 Chemical evolution and structural transformations in a...

198

Advanced Cathode Material Development for PHEV Lithium Ion Batteries...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

More Documents & Publications Advanced Cathode Material Development for PHEV Lithium Ion Batteries Vehicle Technologies Office Merit Review 2014: High Energy Novel...

199

Lower Cost Lithium Ion Batteries From Aluminum Substituted Cathode...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Lower Cost Lithium Ion Batteries From Aluminum Substituted Cathode Materials Lawrence Berkeley National Laboratory Contact LBL About This Technology Technology Marketing...

200

Negative Electrodes Improve Safety in Lithium Cells and Batteries...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Negative Electrodes Improve Safety in Lithium Cells and Batteries Technology available for licensing: Enhanced stability at a lower cost Lowers cost for enhanced stability...

Note: This page contains sample records for the topic "rechargeable lithium battery" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

Development of Electrolytes for Lithium-ion Batteries  

Broader source: Energy.gov (indexed) [DOE]

Battaglia & J. Kerr (LBNL) * M. Payne (Novolyte) * F. Puglia & B. Ravdel (Yardney) * G. Smith & O. Borodin (U. Utah) 3 3 Develop novel electrolytes for lithium ion batteries that...

202

Three-Dimensional Lithium-Ion Battery Model (Presentation)  

SciTech Connect (OSTI)

Nonuniform battery physics can cause unexpected performance and life degradations in lithium-ion batteries; a three-dimensional cell performance model was developed by integrating an electrode-scale submodel using a multiscale modeling scheme.

Kim, G. H.; Smith, K.

2008-05-01T23:59:59.000Z

203

Solid-state Graft Copolymer Electrolytes for Lithium Battery Applications  

E-Print Network [OSTI]

Battery safety has been a very important research area over the past decade. Commercially available lithium ion batteries employ low flash point (<80 C), flammable, and volatile organic electrolytes. These organic based ...

Hu, Qichao

204

Lithium-ion battery modeling using non-equilibrium thermodynamics  

E-Print Network [OSTI]

The focus of this thesis work is the application of non-equilibrium thermodynamics in lithium-ion battery modeling. As the demand for higher power and longer lasting batteries increases, the search for materials suitable ...

Ferguson, Todd R. (Todd Richard)

2014-01-01T23:59:59.000Z

205

Rechargeable aluminum batteries with conducting polymers as positive electrodes.  

SciTech Connect (OSTI)

This report is a summary of research results from an Early Career LDRD project con-ducted from January 2012 to December 2013 at Sandia National Laboratories. Demonstrated here is the use of conducting polymers as active materials in the posi-tive electrodes of rechargeable aluminum-based batteries operating at room tempera-ture. The battery chemistry is based on chloroaluminate ionic liquid electrolytes, which allow reversible stripping and plating of aluminum metal at the negative elec-trode. Characterization of electrochemically synthesized polypyrrole films revealed doping of the polymers with chloroaluminate anions, which is a quasi-reversible reac-tion that facilitates battery cycling. Stable galvanostatic cycling of polypyrrole and polythiophene cells was demonstrated, with capacities at near-theoretical levels (30-100 mAh g-1) and coulombic efficiencies approaching 100%. The energy density of a sealed sandwich-type cell with polythiophene at the positive electrode was estimated as 44 Wh kg-1, which is competitive with state-of-the-art battery chemistries for grid-scale energy storage.

Hudak, Nicholas S.

2013-12-01T23:59:59.000Z

206

Probabilistic Analysis of Rechargeable Batteries in a Photovoltaic Power Supply System  

SciTech Connect (OSTI)

We developed a model for the probabilistic behavior of a rechargeable battery acting as the energy storage component in a photovoltaic power supply system. Stochastic and deterministic models are created to simulate the behavior of the system component;. The components are the solar resource, the photovoltaic power supply system, the rechargeable battery, and a load. Artificial neural networks are incorporated into the model of the rechargeable battery to simulate damage that occurs during deep discharge cycles. The equations governing system behavior are combined into one set and solved simultaneously in the Monte Carlo framework to evaluate the probabilistic character of measures of battery behavior.

Barney, P.; Ingersoll, D.; Jungst, R.; O'Gorman, C.; Paez, T.L.; Urbina, A.

1998-11-24T23:59:59.000Z

207

Layer cathode methods of manufacturing and materials for Li-ion rechargeable batteries  

DOE Patents [OSTI]

A positive electrode active material for lithium-ion rechargeable batteries of general formula Li.sub.1+xNi.sub..alpha.Mn.sub..beta.A.sub..gamma.O.sub.2 and further wherein A is Mg, Zn, Al, Co, Ga, B, Zr, or Ti and 0

Kang, Sun-Ho (Naperville, IL); Amine, Khalil (Downers Grove, IL)

2008-01-01T23:59:59.000Z

208

Ab initio screening of lithium diffusion rates in transition metal oxide cathodes for lithium ion batteries  

E-Print Network [OSTI]

A screening metric for diffusion limitations in lithium ion battery cathodes is derived using transition state theory and common materials properties. The metric relies on net activation barrier for lithium diffusion. ...

Moore, Charles J. (Charles Jacob)

2012-01-01T23:59:59.000Z

209

Manganese oxide composite electrodes for lithium batteries  

DOE Patents [OSTI]

An activated electrode for a non-aqueous electrochemical cell is disclosed with a precursor of a lithium metal oxide with the formula xLi.sub.2MnO.sub.3.(1-x)LiMn.sub.2-yM.sub.yO.sub.4 for 0lithium and lithia, from the precursor. A cell and battery are also disclosed incorporating the disclosed positive electrode.

Thackeray, Michael M. (Naperville, IL); Johnson, Christopher S. (Naperville, IL); Li, Naichao (Croton on Hudson, NY)

2007-12-04T23:59:59.000Z

210

Manganese oxide composite electrodes for lithium batteries  

DOE Patents [OSTI]

An activated electrode for a non-aqueous electrochemical cell is disclosed with a precursor thereof a lithium metal oxide with the formula xLi.sub.2MnO.sub.3.(1-x)LiMn.sub.2-yM.sub.yO.sub.4 for 0.5lithium and lithia, from the precursor. A cell and battery are also disclosed incorporating the disclosed positive electrode.

Johnson, Christopher S. (Naperville, IL); Kang, Sun-Ho (Naperville, IL); Thackeray, Michael M. (Naperville, IL)

2009-12-22T23:59:59.000Z

211

Long life lithium batteries with stabilized electrodes  

DOE Patents [OSTI]

The present invention relates to non-aqueous electrolytes having electrode stabilizing additives, stabilized electrodes, and electrochemical devices containing the same. Thus the present invention provides electrolytes containing an alkali metal salt, a polar aprotic solvent, and an electrode stabilizing additive. In some embodiments the additives include a substituted or unsubstituted cyclic or spirocyclic hydrocarbon containing at least one oxygen atom and at least one alkenyl or alkynyl group. When used in electrochemical devices with, e.g., lithium manganese oxide spinel electrodes or olivine or carbon-coated olivine electrodes, the new electrolytes provide batteries with improved calendar and cycle life.

Amine, Khalil (Downers Grove, IL); Liu, Jun (Naperville, IL); Vissers, Donald R. (Naperville, IL); Lu, Wenquan (Darien, IL)

2009-03-24T23:59:59.000Z

212

EERE Partner Testimonials- Phil Roberts, California Lithium Battery (CalBattery)  

Broader source: Energy.gov [DOE]

Phil Roberts, CEO and Founder of California Lithium Battery (CalBattery), describes the new growth and development that was possible through partnering with the U.S. Department of Energy.

213

Electrochimica Acta 51 (2006) 20122022 A generalized cycle life model of rechargeable Li-ion batteries  

E-Print Network [OSTI]

­discharge model to simulate the cycle life behavior of rechargeable Li-ion batteries has been developed. The model and Newman [4] made a first attempt to model the parasitic reaction in Li-ion batteries by assuming a solvent and reversible capacity loss due to the growth and dissolution of SEI film in Li-ion batteries. Ramadass et al

Popov, Branko N.

214

Investigation of the Rechargeability of Li-O2 Batteries in Non-aqueous Electrolyte  

SciTech Connect (OSTI)

In order to understand the nature of the limited cycle life and poor energy efficiency associated with the secondary Li-O2 batteries the discharge products of primary Li-O2 cells at different depth of discharge (DOD) are systematically analyzed in this work. It is revealed that if discharged to 2.0 V a small amount of Li2O2 coexist with Li2CO3 and RO-(C=O)-OLi) in alkyl carbonate-based electrolyte. Further discharging the air electrodes to below 2.0 V the amount of Li2CO3 and LiRCO3 increases significantly due to the severe electrolyte decomposition. There is no Li2O detected in this alkyl carbonate electrolyte regardless of DOD. It is also found that the alkyl carbonate based electrolyte begins to decompose at 4.0 V during charging under the combined influences from the high surface area carbon, the nickel metal current collector and the oxygen atmosphere. Accordingly the impedance of the Li-O2 cell continues to increase after each discharge and recharge process indicating a repeated plating of insoluble lithium salts on the carbon surface. Therefore the whole carbon electrode becomes completely insulated only after a few cycles and loses the function of providing active tri-phase regions for the Li-oxygen batteries.

Xiao, Jie; Hu, Jian Z.; Wang, Deyu; Hu, Dehong; Xu, Wu; Graff, Gordon L.; Nie, Zimin; Liu, Jun; Zhang, Jiguang

2011-07-01T23:59:59.000Z

215

Design of an AUV recharging system  

E-Print Network [OSTI]

The Odyssey AUV Series uses a Lithium-ion Polymer battery which is able to supply the necessary power for a limited mission time. The current method of recharge includes surfacing the AUV, opening the vehicle, removing the ...

Miller, Bryan D. (Bryan David)

2005-01-01T23:59:59.000Z

216

Lithium-Titanium-Oxide Anodes Improve Battery Safety and Performance...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Lithium-Titanium-Oxide Anodes Improve Battery Safety and Performance Technology available for licensing: Li4Ti5O12 spinel is a promising alternative to graphite electrodes with...

217

Fail Safe Design for Large Capacity Lithium-ion Batteries  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Fail Safe Design for Large Capacity Lithium-ion Batteries NREL Commercialization & Tech Transfer Webinar March 27, 2011 Gi-Heon Kim gi-heon.kim@nrel.gov John Ireland, Kyu-Jin Lee,...

218

Thermo-mechanical Behavior of Lithium-ion Battery Electrodes  

E-Print Network [OSTI]

Developing electric vehicles is widely considered as a direct approach to resolve the energy and environmental challenges faced by the human race. As one of the most promising power solutions to electric cars, the lithium ion battery is expected...

An, Kai

2013-11-25T23:59:59.000Z

219

Understanding Why Silicon Anodes of Lithium-Ion Batteries Are...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Understanding Why Silicon Anodes of Lithium-Ion Batteries Are Fast to Discharge but Slow to Charge December 02, 2014 Measured and calculated rate-performance of a Si thin-film (70...

220

Kinetics of Initial Lithiation of Crystalline Silicon Electrodes of Lithium-Ion Batteries  

E-Print Network [OSTI]

Kinetics of Initial Lithiation of Crystalline Silicon Electrodes of Lithium-Ion Batteries Matt phase. KEYWORDS: Lithium-ion batteries, silicon, kinetics, plasticity Lithium-ion batteries already at the electrolyte/lithiated silicon interface, diffusion of lithium through the lithiated phase, and the chemical

Note: This page contains sample records for the topic "rechargeable lithium battery" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

SMART METER PRIVACY USING A RECHARGEABLE BATTERY: MINIMIZING THE RATE OF INFORMATION LEAKAGE  

E-Print Network [OSTI]

SMART METER PRIVACY USING A RECHARGEABLE BATTERY: MINIMIZING THE RATE OF INFORMATION LEAKAGE David. INTRODUCTION Deployments of smart electricity meters to residential homes con- tinue unabated around the world resources. Smart meters are essential to coordinate the desired charging and discharg- ing of the batteries

Khisti, Ashish

222

Paper-Based Lithium-Ion Battery Nojan Aliahmad, Mangilal Agarwal, Sudhir Shrestha, and Kody Varahramyan  

E-Print Network [OSTI]

Paper-Based Lithium-Ion Battery Nojan Aliahmad, Mangilal Agarwal, Sudhir Shrestha, and Kody Indianapolis (IUPUI), Indianapolis, IN 46202 Lithium-ion batteries have a wide range of applications including devices. Lithium titanium oxide (Li4Ti5O12), lithium magnesium oxide (LiMn2O4) and lithium cobalt oxide

Zhou, Yaoqi

223

Automated Battery Swap and Recharge to Enable Persistent UAV Missions  

E-Print Network [OSTI]

This paper introduces a hardware platform for automated battery changing and charging for multiple UAV agents. The automated station holds a bu er of 8 batteries in a novel dual-drum structure that enables a "hot" battery ...

Toksoz, Tuna

224

High Performance Batteries Based on Hybrid Magnesium and Lithium Chemistry  

SciTech Connect (OSTI)

Magnesium and lithium (Mg/Li) hybrid batteries that combine Mg and Li electrochemistry, consisting of a Mg anode, a lithium-intercalation cathode and a dual-salt electrolyte with both Mg2+ and Li+ ions, were constructed and examined in this work. Our results show that hybrid (Mg/Li) batteries were able to combine the advantages of Li-ion and Mg batteries, and delivered outstanding rate performance (83% for capacities at 15C and 0.1C) and superior cyclic stability (~5% fade after 3000 cycles).

Cheng, Yingwen; Shao, Yuyan; Zhang, Jiguang; Sprenkle, Vincent L.; Liu, Jun; Li, Guosheng

2014-01-01T23:59:59.000Z

225

Synthesis and Characterization of Simultaneous Electronic and Ionic Conducting Block Copolymers for Lithium Battery Electrodes  

E-Print Network [OSTI]

binder material for solid-state battery electrodes. The1.10. Proposed new solid-state lithium battery design. The

Patel, Shrayesh

2013-01-01T23:59:59.000Z

226

Bubbles Help Break Energy Storage Record for Lithium Air-Batteries  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Bubbles Help Break Energy Storage Record for Lithium Air-Batteries Foam-base graphene keeps oxygen flowing in batteries that holds promise for electric vehicles January...

227

Block copolymer electrolytes for lithium batteries  

E-Print Network [OSTI]

interface in the Li-ion battery. Electrochimica Acta 50,K. The role of Li-ion battery electrolyte reactivity inK. The role of Li-ion battery electrolyte reactivity in

Hudson, William Rodgers

2011-01-01T23:59:59.000Z

228

Electrolytes for Use in High Energy Lithium-Ion Batteries with...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

for Use in High Energy Lithium-Ion Batteries with Wide Operating Temperature Range Electrolytes for Use in High Energy Lithium-Ion Batteries with Wide Operating Temperature Range...

229

Post-Test Analysis of Lithium-Ion Battery Materials at Argonne...  

Broader source: Energy.gov (indexed) [DOE]

Test Analysis of Lithium-Ion Battery Materials at Argonne National Laboratory Post-Test Analysis of Lithium-Ion Battery Materials at Argonne National Laboratory 2013 DOE Hydrogen...

230

Biologically enhanced cathode design for improved capacity and cycle life for lithium-oxygen batteries  

E-Print Network [OSTI]

Lithium-oxygen batteries have a great potential to enhance the gravimetric energy density of fully packaged batteries by two to three times that of lithium ion cells. Recent studies have focused on finding stable electrolytes ...

Oh, Dahyun

231

Modeling and Simulation of Lithium-Ion Batteries from a Systems Engineering Perspective  

E-Print Network [OSTI]

The lithium-ion battery is an ideal candidate for a wide variety of applications due to its high energy/power density and operating voltage. Some limitations of existing lithium-ion battery technology include underutilization, ...

Braatz, Richard D.

232

Modeling temperature distribution in cylindrical lithium ion batteries for use in electric vehicle cooling system design  

E-Print Network [OSTI]

Recent advancements in lithium ion battery technology have made BEV's a more feasible alternative. However, some safety concerns still exist. While the energy density of lithium ion batteries has all but made them the ...

Jasinski, Samuel Anthony

2008-01-01T23:59:59.000Z

233

Advanced Electrolyte Additives for PHEV/EV Lithium-ion Battery...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

More Documents & Publications Advanced Electrolyte Additives for PHEVEV Lithium-ion Battery Development of Advanced Electrolytes and Electrolyte Additives...

234

E-Print Network 3.0 - aqueous lithium-ion battery Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Summary: -board identification and diagnostics for Lithium Ion batteries. The electrochemical, electrical, and transport... and cost Target, Current technology status...

235

In-situ and ex-situ observations of lithium de-intercalation from LiCoO? : atomic force microscopy and transmission electron microscopy studies  

E-Print Network [OSTI]

Lithium cobalt dioxide is the most commonly used material for positive electrodes in lithium rechargeable batteries. During lithium de-intercalation from this material, ... undergoes a number of phase transitions, which ...

Clmenon, Anne

2005-01-01T23:59:59.000Z

236

Design of a Lithium-ion Battery Pack for PHEV Using a Hybrid Optimization Method  

E-Print Network [OSTI]

Design of a Lithium-ion Battery Pack for PHEV Using a Hybrid Optimization Method Nansi Xue1 Abstract This paper outlines a method for optimizing the design of a lithium-ion battery pack for hy- brid, volume or material cost. Keywords: Lithium-ion, Optimization, Hybrid vehicle, Battery pack design

Papalambros, Panos

237

Porous Doped Silicon Nanowires for Lithium Ion Battery Anode with Long Cycle Life  

E-Print Network [OSTI]

in energy storage has stimulated significant interest in lithium ion battery research. The lithium ion battery is one of the most promising systems which is efficient in delivering energy, light in weightPorous Doped Silicon Nanowires for Lithium Ion Battery Anode with Long Cycle Life Mingyuan Ge

Zhou, Chongwu

238

Cycle Life Modeling of Lithium-Ion Batteries Gang Ning* and Branko N. Popov**,z  

E-Print Network [OSTI]

Cycle Life Modeling of Lithium-Ion Batteries Gang Ning* and Branko N. Popov**,z Department and Newman4 made a first attempt to model the parasitic reactions in lithium-ion batteries by incorporating a solvent oxidation into a lithium-ion battery model. Spotnitz5 developed polynomial expressions

Popov, Branko N.

239

Performance Characteristics of Cathode Materials for Lithium-Ion Batteries: A Monte Carlo Strategy  

E-Print Network [OSTI]

Performance Characteristics of Cathode Materials for Lithium-Ion Batteries: A Monte Carlo Strategy to study the performance of cathode materials in lithium-ion batteries. The methodology takes into account. Published September 26, 2008. Lithium-ion batteries are state-of-the-art power sources1 for por- table

Subramanian, Venkat

240

AN OPEN-CIRCUIT-VOLTAGE MODEL OF LITHIUM-ION BATTERIES FOR EFFECTIVE INCREMENTAL CAPACITY ANALYSIS  

E-Print Network [OSTI]

AN OPEN-CIRCUIT-VOLTAGE MODEL OF LITHIUM-ION BATTERIES FOR EFFECTIVE INCREMENTAL CAPACITY ANALYSIS electrochemical properties and aging status. INTRODUCTION With the widespread use of lithium-ion batteries the com- plex battery physical behavior during the lithium-ion intercalac- tion/deintercalation process

Peng, Huei

Note: This page contains sample records for the topic "rechargeable lithium battery" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

Abstract--This paper describes experimental results aiming at analyzing lithium-ion batteries performances  

E-Print Network [OSTI]

Abstract--This paper describes experimental results aiming at analyzing lithium-ion batteries (SOH) of cells. Index Terms--Lithium-ion batteries, Aging, EIS, State Of Charge, State Of Health, Fuzzy Logic System. I. INTRODUCTION Lithium ion secondary batteries are now being used in wide applications

Boyer, Edmond

242

Stress generation during lithiation of high-capacity electrode particles in lithium ion batteries  

E-Print Network [OSTI]

Stress generation during lithiation of high-capacity electrode particles in lithium ion batteries S in controlling stress generation in high-capacity electrodes for lithium ion batteries. ? 2013 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved. Keywords: Lithium ion battery; Lithiation

Zhu, Ting

243

Arrays of Sealed Silicon Nanotubes As Anodes for Lithium Ion Batteries  

E-Print Network [OSTI]

Arrays of Sealed Silicon Nanotubes As Anodes for Lithium Ion Batteries Taeseup Song, Jianliang Xia ABSTRACT Silicon is a promising candidate for electrodes in lithium ion batteries due to its large reversible capacity and long-term cycle stability. KEYWORDS Lithium ion battery, silicon, nanotubes

Rogers, John A.

244

Large Plastic Deformation in High-Capacity Lithium-Ion Batteries Caused by Charge and Discharge  

E-Print Network [OSTI]

Large Plastic Deformation in High-Capacity Lithium-Ion Batteries Caused by Charge and Discharge, Massachusetts 02138 Evidence has accumulated recently that a high-capacity elec- trode of a lithium-ion battery in the particle is high, possibly leading to fracture and cavitation. I. Introduction LITHIUM-ION batteries

Suo, Zhigang

245

Amphiphilic Surface Modification of Hollow Carbon Nanofibers for Improved Cycle Life of Lithium Sulfur Batteries  

E-Print Network [OSTI]

lithium sulfur batteries, due to their high specific energy and relatively low cost. Despite recent progress in addressing the various problems of sulfur cathodes, lithium sulfur batteries still exhibit at C/2. KEYWORDS: Lithium sulfur batteries; energy storage; surface modification Increasing the energy

Cui, Yi

246

Parameter Estimation and Capacity Fade Analysis of Lithium-Ion Batteries Using Reformulated Models  

E-Print Network [OSTI]

Parameter Estimation and Capacity Fade Analysis of Lithium-Ion Batteries Using Reformulated Models and characterize capacity fade in lithium-ion batteries. As a comple- ment to approaches to mathematically model been made in developing lithium-ion battery models that incor- porate transport phenomena

Subramanian, Venkat

247

STUDIES ON TWO CLASSES OF POSITIVE ELECTRODE MATERIALS FOR LITHIUM-ION BATTERIES  

E-Print Network [OSTI]

4) Lithium Battery Cathode. Electrochemical and Solid-StateBattery Electrodes Utilizing Fibrous Conductive Additives. Electrochemical and Solid-Statesolid state, these effects can become limiting in some systems. 1.3 Battery

Wilcox, James D.

2010-01-01T23:59:59.000Z

248

Virus constructed iron phosphate lithium ion batteries in unmanned aircraft systems  

E-Print Network [OSTI]

FePO? lithium ion batteries that have cathodes constructed by viruses are scaled up in size to examine potential for use as an auxiliary battery in the Raven to power the payload equipment. These batteries are assembled ...

Kolesnikov-Lindsey, Rachel

249

Structural Integration of Silicon Solar Cells and Lithium-ion Batteries Using Printed Electronics  

E-Print Network [OSTI]

state lithium-ion (Li-ion) battery were adhesively joinedfilm solid state Li-ion battery was not able to withstand5.8 The performance of the Li-ion battery under tensile

Kang, Jin Sung

2012-01-01T23:59:59.000Z

250

Electrode materials and lithium battery systems  

DOE Patents [OSTI]

A material comprising a lithium titanate comprising a plurality of primary particles and secondary particles, wherein the average primary particle size is about 1 nm to about 500 nm and the average secondary particle size is about 1 .mu.m to about 4 .mu.m. In some embodiments the lithium titanate is carbon-coated. Also provided are methods of preparing lithium titanates, and devices using such materials.

Amine, Khalil (Downers Grove, IL); Belharouak, Ilias (Westmont, IL); Liu, Jun (Naperville, IL)

2011-06-28T23:59:59.000Z

251

New nanocrystalline manganese oxides as cathode materials for lithium batteries : electron microscopy, electrochemical and X-ray absorption studies  

E-Print Network [OSTI]

1 New nanocrystalline manganese oxides as cathode materials for lithium batteries : electron: manganese oxide, lithium batteries, nanomaterials Corresponding author: Pierre Strobel, tel. 33 476 887 940 with lithium iodide in aqueous medium at room temperature. Transmission electron microscopy (TEM) showed

Paris-Sud XI, Université de

252

Positive Energy From rechargeable batteries to fuel cells: electrochemical energy as one  

E-Print Network [OSTI]

of the fascinating and green alternatives to combustion engines Yaakov Vilenchik1 , David Andelman2 and Emanuel such as rechargeable batteries and fuel cells, which in the future could replace the combustion engine. We equally with oxygen in the air), which in turn is used to heat water into steam. Steam under high pressure has large

Andelman, David

253

Lithium Polysulfidophosphates: A Family of Lithium-Conducting Sulfur-Rich Compounds for Lithium-Sulfur Batteries  

SciTech Connect (OSTI)

Given the great potential for improving the energy density of state-of-the-art lithium-ion batteries by a factor of 5, a breakthrough in lithium-sulfur (Li-S) batteries will have a dramatic impact in a broad scope of energy related fields. Conventional Li-S batteries that use liquid electrolytes are intrinsically short-lived with low energy efficiency. The challenges stem from the poor electronic and ionic conductivities of elemental sulfur and its discharge products. We report herein lithium polysulfidophosphates (LPSP), a family of sulfur-rich compounds, as the enabler of long-lasting and energy-efficient Li-S batteries. LPSP have ionic conductivities of 3.0 10-5 S cm-1 at 25 oC, which is 8 orders of magnitude higher than that of Li2S (~10-13 S cm-1). The high Li-ion conductivity of LPSP is the salient characteristic of these compounds that impart the excellent cycling performance to Li-S batteries. In addition, the batteries are configured in an all-solid state that promises the safe cycling of high-energy batteries with metallic lithium anodes.

Lin, Zhan [ORNL] [ORNL; Liu, Zengcai [ORNL] [ORNL; Fu, Wujun [ORNL] [ORNL; Dudney, Nancy J [ORNL] [ORNL; Liang, Chengdu [ORNL] [ORNL

2013-01-01T23:59:59.000Z

254

Non-aqueous electrolyte for lithium-ion battery  

DOE Patents [OSTI]

The present technology relates to stabilizing additives and electrolytes containing the same for use in electrochemical devices such as lithium ion batteries and capacitors. The stabilizing additives include triazinane triones and bicyclic compounds comprising succinic anhydride, such as compounds of Formulas I and II described herein.

Zhang, Lu; Zhang, Zhengcheng; Amine, Khalil

2014-04-15T23:59:59.000Z

255

Metal-Air Batteries  

SciTech Connect (OSTI)

Metal-air batteries have much higher specific energies than most currently available primary and rechargeable batteries. Recent advances in electrode materials and electrolytes, as well as new designs on metal-air batteries, have attracted intensive effort in recent years, especially in the development of lithium-air batteries. The general principle in metal-air batteries will be reviewed in this chapter. The materials, preparation methods, and performances of metal-air batteries will be discussed. Two main metal-air batteries, Zn-air and Li-air batteries will be discussed in detail. Other type of metal-air batteries will also be described.

Zhang, Jiguang; Bruce, Peter G.; Zhang, Gregory

2011-08-01T23:59:59.000Z

256

Lithium ion batteries with titania/graphene anodes  

DOE Patents [OSTI]

Lithium ion batteries having an anode comprising at least one graphene layer in electrical communication with titania to form a nanocomposite material, a cathode comprising a lithium olivine structure, and an electrolyte. The graphene layer has a carbon to oxygen ratio of between 15 to 1 and 500 to 1 and a surface area of between 400 and 2630 m.sup.2/g. The nanocomposite material has a specific capacity at least twice that of a titania material without graphene material at a charge/discharge rate greater than about 10 C. The olivine structure of the cathode of the lithium ion battery of the present invention is LiMPO.sub.4 where M is selected from the group consisting of Fe, Mn, Co, Ni and combinations thereof.

Liu, Jun; Choi, Daiwon; Yang, Zhenguo; Wang, Donghai; Graff, Gordon L; Nie, Zimin; Viswanathan, Vilayanur V; Zhang, Jason; Xu, Wu; Kim, Jin Yong

2013-05-28T23:59:59.000Z

257

High Voltage Electrolyte for Lithium Batteries  

Broader source: Energy.gov (indexed) [DOE]

battery using high voltage high energy cathode materials to enable large-scale, cost competitive production of the next generation of electric-drive vehicles. To...

258

Layered electrodes for lithium cells and batteries  

DOE Patents [OSTI]

Lithium metal oxide compounds of nominal formula Li.sub.2MO.sub.2, in which M represents two or more positively charged metal ions, selected predominantly and preferably from the first row of transition metals are disclosed herein. The Li.sub.2MO.sub.2 compounds have a layered-type structure, which can be used as positive electrodes for lithium electrochemical cells, or as a precursor for the in-situ electrochemical fabrication of LiMO.sub.2 electrodes. The Li.sub.2MO.sub.2 compounds of the invention may have additional functions in lithium cells, for example, as end-of-discharge indicators, or as negative electrodes for lithium cells.

Johnson, Christopher S. (Naperville, IL); Thackeray, Michael M. (Naperville, IL); Vaughey, John T. (Elmhurst, IL); Kahaian, Arthur J. (Chicago, IL); Kim, Jeom-Soo (Naperville, IL)

2008-04-15T23:59:59.000Z

259

Edge-Enriched Graphitic Anodes by KOH Activation for Higher Rate Capability Lithium Ion Batteries  

E-Print Network [OSTI]

Lithium Ion Batteries D. Zakhidov,1,2 R. Sugamata,3 T. Yasue,3 T. Hayashi,3 Y. A. Kim,3 and M. Endo4 1 successful anode for lithium ion batteries due to its low cost, safety, and ease of fabrication, but higher are expected to surpass conventional graphite anodes due to larger number of edges for lithium ion

260

Electrochemically Stable Cathode Current Collectors for Rechargeable...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Stable Cathode Current Collectors for Rechargeable Magnesium Batteries . Electrochemically Stable Cathode Current Collectors for Rechargeable Magnesium Batteries . Abstract:...

Note: This page contains sample records for the topic "rechargeable lithium battery" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

California Lithium Battery, Inc. | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Systems and CALiB Power. US production of this advanced Very Large Format (400Ah+) si-graphene LI-ion battery is scheduled to start in California in 2014. Plans are to produce the...

262

Comparison of Reduced Order Lithium-Ion Battery Models for Control Applications  

E-Print Network [OSTI]

@umich.edu. automotive field, lithium-ion batteries are the core of energy source and storage. In most cases the lithium-ion battery performances play an important role for the energy efficiency of these vehicles, suffering often - 50 C over a short period of about 10 s - 20 s [9]. In order to efficiently manage the battery systems

Stefanopoulou, Anna

263

Packaging material for thin film lithium batteries  

DOE Patents [OSTI]

A thin film battery including components which are capable of reacting upon exposure to air and water vapor incorporates a packaging system which provides a barrier against the penetration of air and water vapor. The packaging system includes a protective sheath overlying and coating the battery components and can be comprised of an overlayer including metal, ceramic, a ceramic-metal combination, a parylene-metal combination, a parylene-ceramic combination or a parylene-metal-ceramic combination.

Bates, John B. (116 Baltimore Dr., Oak Ridge, TN 37830); Dudney, Nancy J. (11634 S. Monticello Rd., Knoxville, TN 37922); Weatherspoon, Kim A. (223 Wadsworth Pl., Oak Ridge, TN 37830)

1996-01-01T23:59:59.000Z

264

Nanostructured Composite Electrodes for Lithium Batteries (Final Technical Report)  

SciTech Connect (OSTI)

The objective of this study was to explore new ways to create nanostructured electrodes for rechargeable lithium batteries. Of particular interests are unique nanostructures created by electrochemical deposition, etching and combustion chemical vapor deposition (CCVD). Three-dimensional nanoporous Cu6Sn5 alloy has been successfully prepared using an electrochemical co-deposition process. The walls of the foam structure are highly-porous and consist of numerous small grains. This represents a novel way of creating porous structures that allow not only fast transport of gas and liquid but also rapid electrochemical reactions due to high surface area. The Cu6Sn5 samples display a reversible capacity of {approx}400 mAhg-1. Furthermore, these materials exhibit superior rate capability. At a current drain of 10 mA/cm2(20C rate), the obtainable capacity was more than 50% of the capacity at 0.5 mA/cm2 (1C rate). Highly open and porous SnO2 thin films with columnar structure were obtained on Si/SiO2/Au substrates by CCVD. The thickness was readily controlled by the deposition time, varying from 1 to 5 microns. The columnar grains were covered by nanoparticles less than 20 nm. These thin film electrodes exhibited substantially high specific capacity. The reversible specific capacity of {approx}3.3 mAH/cm2 was demonstrated for up to 80 cycles at a charge/discharge rate of 0.3 mA/cm2. When discharged at 0.9 mA/cm2, the capacity was about 2.1 mAH/cm2. Tin dioxide box beams or tubes with square or rectangular cross sections were synthesized using CCVD. The cross-sectional width of the SnO2 tubules was tunable from 50 nm to sub-micrometer depending on synthesis temperature. The tubes are readily aligned in the direction perpendicular to the substrate surface to form tube arrays. Silicon wafers were electrochemically etched to produce porous silicon (PS) with honeycomb-type channels and nanoporous walls. The diameters of the channels are about 1 to 3 microns and the depth of the channels can be up to 100 microns. We have successfully used the PS as a matrix for Si-Li-based alloy. Other component(s) can be incorporated into the PS either by an electroless metallization or by kinetically controlled vapor deposition.

Meilin Liu, James Gole

2006-12-14T23:59:59.000Z

265

Lithium-Ion Battery Teacher Workshop  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: VegetationEquipment Surfaces and Interfaces Sample6, 2011Liisa O'NeillFuelsLaboratoryLithiumLithium

266

High Performance Binderless Electrodes for Rechargeable Lithium Batteries -  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsruc DocumentationP-SeriesFlickr FlickrGuidedCH2M HILLAdministration |

267

Self-Regulating, Nonflamable Rechargeable Lithium Batteries - Energy  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administrationcontroller systemsBi (2) SrEvaluating the Seasonalsw 'PeeringStations forInnovation

268

Composite Electrodes for Rechargeable Lithium-Ion Batteries | Argonne  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation Proposed New SubstationCleanCommunity Involvement andMISR, and4Compliance andBonding -

269

Anodes for rechargeable lithium batteries - Energy Innovation Portal  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsruc DocumentationP-Series to someone by E-mail ShareRedAndreasAnode performance Anode

270

Electronically conductive polymer binder for lithium-ion battery electrode  

DOE Patents [OSTI]

A family of carboxylic acid group containing fluorene/fluorenon copolymers is disclosed as binders of silicon particles in the fabrication of negative electrodes for use with lithium ion batteries. These binders enable the use of silicon as an electrode material as they significantly improve the cycle-ability of silicon by preventing electrode degradation over time. In particular, these polymers, which become conductive on first charge, bind to the silicon particles of the electrode, are flexible so as to better accommodate the expansion and contraction of the electrode during charge/discharge, and being conductive promote the flow battery current.

Liu, Gao; Xun, Shidi; Battaglia, Vincent S; Zheng, Honghe

2014-10-07T23:59:59.000Z

271

NREL Enhances the Performance of a Lithium-Ion Battery Cathode (Fact Sheet)  

SciTech Connect (OSTI)

Scientists from NREL and the University of Toledo have combined theoretical and experimental studies to demonstrate a promising approach to significantly enhance the performance of lithium iron phosphate (LiFePO4) cathodes for lithium-ion batteries.

Not Available

2012-10-01T23:59:59.000Z

272

Thin film lithium-based batteries and electrochromic devices fabricated with nanocomposite electrode materials  

DOE Patents [OSTI]

Thin-film lithium-based batteries and electrochromic devices (10) are fabricated with positive electrodes (12) comprising a nanocomposite material composed of lithiated metal oxide nanoparticles (40) dispersed in a matrix composed of lithium tungsten oxide.

Gillaspie, Dane T; Lee, Se-Hee; Tracy, C. Edwin; Pitts, John Roland

2014-02-04T23:59:59.000Z

273

Highly Soluble Alkoxide Magnesium Salts for Rechargeable Magnesium Batteries  

SciTech Connect (OSTI)

A unique class of air-stable and non-pyrophoric magnesium electrolytes has been developed based on alkoxide magnesium compounds. The crystals obtained from this class of electrolytes exhibit a unique structure of tri-magnesium cluster, [Mg3Cl3(OR)2(THF)6]+ [(THF)MgCl3] . High reversible capacities and good rate capabilities were obtained in Mg-Mo6S8 batteries using these new electrolytes at both 20 and 50 oC.

Liao, Chen [ORNL] [ORNL; Guo, Bingkun [ORNL] [ORNL; Jiang, Deen [ORNL] [ORNL; Custelcean, Radu [ORNL] [ORNL; Mahurin, Shannon Mark [ORNL] [ORNL; Sun, Xiao-Guang [ORNL] [ORNL; Dai, Sheng [ORNL] [ORNL

2014-01-01T23:59:59.000Z

274

Lithium Ion Battery Performance of Silicon Nanowires With Carbon Skin  

SciTech Connect (OSTI)

Silicon (Si) nanomaterials have emerged as a leading candidate for next generation lithium-ion battery anodes. However, the low electrical conductivity of Si requires the use of conductive additives in the anode film. Here we report a solution-based synthesis of Si nanowires with a conductive carbon skin. Without any conductive additive, the Si nanowire electrodes exhibited capacities of over 2000 mA h g-1 for 100 cycles when cycled at C/10 and over 1200 mA h g-1 when cycled more rapidly at 1C against Li metal.. In situ transmission electron microscopy (TEM) observation reveals that the carbon skin performs dual roles: it speeds lithiation of the Si nanowires significantly, while also constraining the final volume expansion. The present work sheds light on ways to optimize lithium battery performance by smartly tailoring the nanostructure of composition of materials based on silicon and carbon.

Bogart, Timothy D.; Oka, Daichi; Lu, Xiaotang; Gu, Meng; Wang, Chong M.; Korgel, Brian A.

2013-12-06T23:59:59.000Z

275

Nanostructured materials for lithium-ion batteries: Surface conductivity vs. bulk  

E-Print Network [OSTI]

Nanostructured materials for lithium-ion batteries: Surface conductivity vs. bulk ion cathode materials for high capacity lithium-ion batteries. Owing to their inherently low electronic-ion batteries. Lithium transition metal phosphates such as LiFePO4,1 LiMnPO4,2 Li3V2(PO4)3 3 and LiVPO4F4 have

Ryan, Dominic

276

Towards a lithium-ion fiber battery  

E-Print Network [OSTI]

One of the key objectives in the realm of flexible electronics and flexible power sources is to achieve large-area, low-cost, scalable production of flexible systems. In this thesis we propose a new Li-ion battery architecture ...

Grena, Benjamin (Benjamin Jean-Baptiste)

2013-01-01T23:59:59.000Z

277

Simulations of Plug-in Hybrid Vehicles Using Advanced Lithium Batteries and Ultracapacitors on Various Driving Cycles  

E-Print Network [OSTI]

of the rechargeable Zinc-air battery were estimated based onindicated in Table 3, the Zinc-air battery is assumed to bepower capability of the Zinc-air battery is due to a large

Burke, Andy; Zhao, Hengbing

2010-01-01T23:59:59.000Z

278

Graphite Foams for Lithium-Ion Battery Current Collectors  

SciTech Connect (OSTI)

Graphite open-cell foams, with their very high electronic and thermal conductivities, may serve as high surface area and corrosion resistant current collectors for lithium-ion batteries. As a proof of principle, cathodes were prepared by sintering carbon-coated LiFePO4 particles into the porous graphite foams. Cycling these cathodes in a liquid electrolyte cell showed promising performance even for materials and coatings that have not been optimized. The specific capacity is not limited by the foam structure, but by the cycling performance of the coated LiFePO4 particles. Upon extended cycling for more than 100 deep cycles, no loss of capacity is observed for rates of C/2 or less. The uncoated graphite foams will slowly intercalate lithium reversibly at potentials less than 0.2 volts versus lithium.

Dudney, Nancy J [ORNL; Tiegs, Terry N [ORNL; Kiggans, Jim [ORNL; Jang, Young-Il [ORNL; Klett, James William [ORNL

2007-01-01T23:59:59.000Z

279

Electrochemical kinetics of thin film vanadium pentoxide cathodes for lithium batteries  

E-Print Network [OSTI]

Electrochemical experiments were performed to investigate the processing-property-performance relations of thin film vanadium pentoxide cathodes used in lithium batteries. Variations in microstructures were achieved via ...

Mui, Simon C., 1976-

2005-01-01T23:59:59.000Z

280

Highly - conductive cathode for lithium-ion battery using M13 phage - SWCNT complex  

E-Print Network [OSTI]

Lithium-ion batteries are commonly used in portable electronics, and the rapid growth of mobile technology calls for an improvement in battery capabilities. Reducing the particle size of electrode materials in synthesis ...

Adams, Melanie Chantal

2013-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "rechargeable lithium battery" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

Design of a testing device for quasi-confined compression of lithium-ion battery cells  

E-Print Network [OSTI]

The Impact and Crashworthiness Laboratory at MIT has formed a battery consortium to promote research concerning the crash characteristics of new lithium-ion battery technologies as used in automotive applications. Within ...

Roselli, Eric (Eric J.)

2011-01-01T23:59:59.000Z

282

PHYSICAL REVIEW B 84, 205446 (2011) First-principles study of the oxygen evolution reaction of lithium peroxide in the lithium-air battery  

E-Print Network [OSTI]

motivation in seeking batteries with higher specific energies and higher energy den- sities. Metal-air of lithium peroxide in the lithium-air battery Yifei Mo, Shyue Ping Ong, and Gerbrand Ceder* Department) The lithium-air chemistry is an interesting candidate for the next-generation batteries with high specific

Ceder, Gerbrand

283

Lithium Iron Phosphate Composites for Lithium Batteries | Argonne National  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: VegetationEquipment Surfaces and Interfaces Sample6, 2011Liisa O'NeillFuelsLaboratory Lithium Iron

284

Nanostructured lithium-aluminum alloy electrodes for lithium-ion batteries.  

SciTech Connect (OSTI)

Electrodeposited aluminum films and template-synthesized aluminum nanorods are examined as negative electrodes for lithium-ion batteries. The lithium-aluminum alloying reaction is observed electrochemically with cyclic voltammetry and galvanostatic cycling in lithium half-cells. The electrodeposition reaction is shown to have high faradaic efficiency, and electrodeposited aluminum films reach theoretical capacity for the formation of LiAl (1 Ah/g). The performance of electrodeposited aluminum films is dependent on film thickness, with thicker films exhibiting better cycling behavior. The same trend is shown for electron-beam deposited aluminum films, suggesting that aluminum film thickness is the major determinant in electrochemical performance regardless of deposition technique. Synthesis of aluminum nanorod arrays on stainless steel substrates is demonstrated using electrodeposition into anodic aluminum oxide templates followed by template dissolution. Unlike nanostructures of other lithium-alloying materials, the electrochemical performance of these aluminum nanorod arrays is worse than that of bulk aluminum.

Hudak, Nicholas S.; Huber, Dale L.

2010-12-01T23:59:59.000Z

285

How to Obtain Reproducible Results for Lithium Sulfur Batteries  

SciTech Connect (OSTI)

The basic requirements for getting reliable Li-S battery data have been discussed in this work. Unlike Li-ion batteries, electrolyte-rich environment significantly affects the cycling stability of Li-S batteries prepared and tested under the same conditions. The reason has been assigned to the different concentrations of polysulfide-containing electrolytes in the cells, which have profound influences on both sulfur cathode and lithium anode. At optimized S/E ratio of 50 g L-1, a good balance among electrolyte viscosity, wetting ability, diffusion rate dissolved polysulfide and nucleation/growth of short-chain Li2S/Li2S2 has been built along with largely reduced contamination on the lithium anode side. Accordingly, good cyclability, high reversible capacity and Coulombic efficiency are achieved in Li-S cell with controlled S/E ratio without any additive. Other factors such as sulfur content in the composite and sulfur loading on the electrode also need careful concern in Li-S system in order to generate reproducible results and gauge the various methods used to improve Li-S battery technology.

Zheng, Jianming; Lu, Dongping; Gu, Meng; Wang, Chong M.; Zhang, Jiguang; Liu, Jun; Xiao, Jie

2013-01-01T23:59:59.000Z

286

Process to produce lithium-polymer batteries  

DOE Patents [OSTI]

A polymer bonded sheet product is described suitable for use as an electrode in a non-aqueous battery system. A porous electrode sheet is impregnated with a solid polymer electrolyte, so as to diffuse into the pores of the electrode. The composite is allowed to cool, and the electrolyte is entrapped in the porous electrode. The sheet products composed have the solid polymer electrolyte composition diffused into the active electrode material by melt-application of the solid polymer electrolyte composition into the porous electrode material sheet. The solid polymer electrolyte is maintained at a temperature that allows for rapid diffusion into the pores of the electrode. The composite electrolyte-electrode sheets are formed on current collectors and can be coated with solid polymer electrolyte prior to battery assembly. The interface between the solid polymer electrolyte composite electrodes and the solid polymer electrolyte coating has low resistance. 1 fig.

MacFadden, K.O.

1998-06-30T23:59:59.000Z

287

Process to produce lithium-polymer batteries  

DOE Patents [OSTI]

A polymer bonded sheet product suitable for use as an electrode in a non-aqueous battery system. A porous electrode sheet is impregnated with a solid polymer electrolyte, so as to diffuse into the pores of the electrode. The composite is allowed to cool, and the electrolyte is entrapped in the porous electrode. The sheet products composed have the solid polymer electrolyte composition diffused into the active electrode material by melt-application of the solid polymer electrolyte composition into the porous electrode material sheet. The solid polymer electrolyte is maintained at a temperature that allows for rapid diffusion into the pores of the electrode. The composite electrolyte-electrode sheets are formed on current collectors and can be coated with solid polymer electrolyte prior to battery assembly. The interface between the solid polymer electrolyte composite electrodes and the solid polymer electrolyte coating has low resistance.

MacFadden, Kenneth Orville (Highland, MD)

1998-01-01T23:59:59.000Z

288

Lithium-titanium-oxide anodes for lithium batteries  

DOE Patents [OSTI]

A spinel-type structure with the general formula Li[Ti.sub.1.67 Li.sub.0.33-y M.sub.y ]O.sub.4, for 0battery comprising an plurality of cells, electrically connected, each cell comprising a negative electrode, an electrolyte and a positive electrode, the negative electrode consisting of the spinel-type structure disclosed.

Vaughey, John T. (Elmhurst, IL); Thackeray, Michael M. (Naperville, IL); Kahaian, Arthur J. (Chicago, IL); Jansen, Andrew N. (Bolingbrook, IL); Chen, Chun-hua (Westmont, IL)

2001-01-01T23:59:59.000Z

289

Lithium-Ion Batteries - Energy Innovation Portal  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: VegetationEquipment Surfaces and Interfaces Sample6, 2011Liisa O'NeillFuelsLaboratoryLithium

290

Novel carbonaceous materials for lithium secondary batteries  

SciTech Connect (OSTI)

Carbonaceous materials have been synthesized using pillared clays (PILCs) as templates. The PILC was loaded with organic materials such as pyrene in the liquid and vapor phase, styrene in the vapor phase, trioxane, ethylene and propylene. The samples were then pyrolyzed at 700 C in an inert atmosphere, followed by dissolution of the inorganic template by conventional demineralization methods. X-ray powder diffraction of the carbons showed broad d{sub 002} peaks in the diffraction pattern, indicative of a disordered or turbostratic system. N{sub 2} BET surface areas of the carbonaceous materials range from 10 to 100 m{sup 2}/g. There is some microporosity (r < 1 nm) in the highest surface area carbons. Most of the surface area, however, comes from a mixture of micro and mesopores with radii of 2--5 nm. Electrochemical studies were performed on these carbons. Button cells were fabricated with capacity- limiting carbon pellets electrodes as the cathode a/nd metallic lithium foil as the anode. Large reversible capacities (up to 850 mAh/g) were achieved for most of the samples. The irreversible capacity loss was less than 180 mAh/g after the first cycle, suggesting that these types of carbon materials are very stable to lithium insertion and de-insertion reactions.

Sandi, G.; Winans, R.E.; Carrado, K.A.; Johnson, C.S.

1997-07-01T23:59:59.000Z

291

Chemical Shuttle Additives in Lithium Ion Batteries  

SciTech Connect (OSTI)

The goals of this program were to discover and implement a redox shuttle that is compatible with large format lithium ion cells utilizing LiNi{sub 1/3}Mn{sub 1/3}Co{sub 1/3}O{sub 2} (NMC) cathode material and to understand the mechanism of redox shuttle action. Many redox shuttles, both commercially available and experimental, were tested and much fundamental information regarding the mechanism of redox shuttle action was discovered. In particular, studies surrounding the mechanism of the reduction of the oxidized redox shuttle at the carbon anode surface were particularly revealing. The initial redox shuttle candidate, namely 2-(pentafluorophenyl)-tetrafluoro-1,3,2-benzodioxaborole (BDB) supplied by Argonne National Laboratory (ANL, Lemont, Illinois), did not effectively protect cells containing NMC cathodes from overcharge. The ANL-RS2 redox shuttle molecule, namely 1,4-bis(2-methoxyethoxy)-2,5-di-tert-butyl-benzene, which is a derivative of the commercially successful redox shuttle 2,5-di-tert-butyl-1,4-dimethoxybenzene (DDB, 3M, St. Paul, Minnesota), is an effective redox shuttle for cells employing LiFePO{sub 4} (LFP) cathode material. The main advantage of ANL-RS2 over DDB is its larger solubility in electrolyte; however, ANL-RS2 is not as stable as DDB. This shuttle also may be effectively used to rebalance cells in strings that utilize LFP cathodes. The shuttle is compatible with both LTO and graphite anode materials although the cell with graphite degrades faster than the cell with LTO, possibly because of a reaction with the SEI layer. The degradation products of redox shuttle ANL-RS2 were positively identified. Commercially available redox shuttles Li{sub 2}B{sub 12}F{sub 12} (Air Products, Allentown, Pennsylvania and Showa Denko, Japan) and DDB were evaluated and were found to be stable and effective redox shuttles at low C-rates. The Li{sub 2}B{sub 12}F{sub 12} is suitable for lithium ion cells utilizing a high voltage cathode (potential that is higher than NMC) and the DDB is useful for lithium ion cells with LFP cathodes (potential that is lower than NMC). A 4.5 V class redox shuttle provided by Argonne National Laboratory was evaluated which provides a few cycles of overcharge protection for lithium ion cells containing NMC cathodes but it is not stable enough for consideration. Thus, a redox shuttle with an appropriate redox potential and sufficient chemical and electrochemical stability for commercial use in larger format lithium ion cells with NMC cathodes was not found. Molecular imprinting of the redox shuttle molecule during solid electrolyte interphase (SEI) layer formation likely contributes to the successful reduction of oxidized redox shuttle species at carbon anodes. This helps to understand how a carbon anode covered with an SEI layer, that is supposed to be electrically insulating, can reduce the oxidized form of a redox shuttle.

Patterson, Mary

2013-03-31T23:59:59.000Z

292

Redox shuttles for lithium ion batteries  

SciTech Connect (OSTI)

Compounds may have general Formula IVA or IVB. ##STR00001## where, R.sup.8, R.sup.9, R.sup.10, and R.sup.11 are each independently selected from H, F, Cl, Br, CN, NO.sub.2, alkyl, haloalkyl, and alkoxy groups; X and Y are each independently O, S, N, or P; and Z' is a linkage between X and Y. Such compounds may be used as redox shuttles in electrolytes for use in electrochemical cells, batteries and electronic devices.

Weng, Wei; Zhang, Zhengcheng; Amine, Khalil

2014-11-04T23:59:59.000Z

293

Sandia National Laboratories: lithium-ion battery  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the1developmentturbine blade manufacturinglife-cycleion battery Electric Car

294

(Data in metric tons of lithium content unless otherwise noted) Domestic Production and Use: Chile was the leading lithium chemical producer in the world; Argentina, China, and  

E-Print Network [OSTI]

companies were pursuing the development of lithium batteries for hybrid electric vehicles--vehicles with an internal combustion engine and a battery-powered electric motor. Most commercially available hybrid rechargeable lithium batteries were being used increasingly in portable electronic devices and electrical tools

295

Prediction of Multi-Physics Behaviors of Large Lithium-Ion Batteries During Internal and External Short Circuit (Presentation)  

SciTech Connect (OSTI)

This presentation describes the multi-physics behaviors of internal and external short circuits in large lithium-ion batteries.

Kim, G. H.; Lee, K. J.; Chaney, L.; Smith, K.; Darcy, E.; Pesaran, A.; Darcy, E.

2010-11-01T23:59:59.000Z

296

On the Accuracy and Simplifications of Battery Models using In Situ Measurements of Lithium Concentration in Operational Cells  

E-Print Network [OSTI]

. INTRODUCTION Accurate estimates of Lithium Ion Battery State of Charge (SOC) are critical for constraining and solid phase lithium distributions across the electrode may better utilize the battery's stored energyOn the Accuracy and Simplifications of Battery Models using In Situ Measurements of Lithium

Stefanopoulou, Anna

297

A robust state-of-charge estimator for multiple types of lithium-ion batteries using adaptive extended Kalman filter  

E-Print Network [OSTI]

A robust state-of-charge estimator for multiple types of lithium-ion batteries using adaptive a SOC estimator for suitable for multiple lithium ion battery chemistries. Proved the system robustness of charge (SoC) of multiple types of lithium ion battery (LiB) cells with adaptive extended Kalman filter

Mi, Chunting "Chris"

298

Capacity fade study of lithium-ion batteries cycled at high discharge rates Gang Ning, Bala Haran, Branko N. Popov*  

E-Print Network [OSTI]

Capacity fade study of lithium-ion batteries cycled at high discharge rates Gang Ning, Bala Haran at high discharge rates. # 2003 Elsevier Science B.V. All rights reserved. Keywords: Lithium-ion batteries collectors can affect up to different degrees the capacity fade of lithium-ion batteries [1­5]. Quantifying

Popov, Branko N.

299

Nanotechnology Alert. Nanofountain for Treatment of Cancer; Nanocomposites To Improve Computers' Life Span; Lithium Sulfur Batteries Using Nanocarbon  

E-Print Network [OSTI]

' Life Span; Lithium Sulfur Batteries Using Nanocarbon Electrodes This issue profiles a nanofountain, and lithium sulfur batteries that use nanocarbon electrodes. Deliverable Type: Technical Insights Date OF CANCER 3. NANOCOMPOSITES TO IMPROVE COMPUTERS LIFE SPAN 4. LITHIUM SULFUR BATTERIES USING NANOCARBON

Espinosa, Horacio D.

300

Cycle-Life Characterization of Automotive Lithium-Ion Batteries with LiNiO2 Cathode  

E-Print Network [OSTI]

Cycle-Life Characterization of Automotive Lithium-Ion Batteries with LiNiO2 Cathode Yancheng Zhang of lithium- ion batteries for electric vehicles EVs and hybrid EVs HEVs . Substantial research has been- face, which is critical to the cycle life and calendar life of lithium- ion batteries.1,2 Unfortunately

Note: This page contains sample records for the topic "rechargeable lithium battery" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

Parameter Estimation and Capacity Fade Analysis of Lithium-Ion Batteries Using First-Principles-Based Efficient Reformulated Models  

E-Print Network [OSTI]

Parameter Estimation and Capacity Fade Analysis of Lithium-Ion Batteries Using First parameters of lithium-ion batteries are estimated using a first-principles electrochemical engineering model and understanding of lithium-ion batteries using physics-based first-principles models. These models are based

Subramanian, Venkat

302

Model-based simultaneous optimization of multiple design parameters for lithium-ion batteries for maximization of energy density  

E-Print Network [OSTI]

Model-based simultaneous optimization of multiple design parameters for lithium-ion batteries Keywords: Lithium-ion batteries Model-based design Optimization Physics based reformulated model a b s t r for porous electrodes that are commonly used in advanced batteries such as lithium-ion systems. The approach

Subramanian, Venkat

303

Impedance Analysis of Silicon Nanowire Lithium Ion Battery Anodes Riccardo Ruffo,  

E-Print Network [OSTI]

resistance and solid state diffusion through the bulk of the nanowires. The surface process is dominatedImpedance Analysis of Silicon Nanowire Lithium Ion Battery Anodes Riccardo Ruffo, Seung Sae Hong as a high-capacity anode in a lithium ion battery. The ac response was measured by using impedance

Cui, Yi

304

Diagnostic Characterization of High-Power Lithium-Ion Batteries For Use in Hybrid Electric Vehicles  

E-Print Network [OSTI]

Diagnostic Characterization of High-Power Lithium-Ion Batteries For Use in Hybrid Electric Vehicles and electric vehicles due to their relatively high specific energy and specific power. The Advanced Technology of lithium-ion batteries for hybrid electric vehicle (HEV) applications. The ATD Program is a joint effort

305

UV and EB Curable Binder Technology for Lithium Ion Batteries and UltraCapacitors  

SciTech Connect (OSTI)

the basic feasibility of using UV curing technology to produce Lithium ion battery electrodes at speeds over 200 feet per minute has been shown. A unique set of UV curable chemicals were discovered that were proven to be compatible with a Lithium ion battery environment with the adhesion qualities of PVDF.

Voelker, Gary

2012-04-30T23:59:59.000Z

306

Phosphazene Based Additives for Improvement of Safety and Battery Lifetimes in Lithium-Ion Batteries  

SciTech Connect (OSTI)

There need to be significant improvements made in lithium-ion battery technology, principally in the areas of safety and useful lifetimes to truly enable widespread adoption of large format batteries for the electrification of the light transportation fleet. In order to effect the transition to lithium ion technology in a timely fashion, one promising next step is through improvements to the electrolyte in the form of novel additives that simultaneously improve safety and useful lifetimes without impairing performance characteristics over wide temperature and cycle duty ranges. Recent efforts in our laboratory have been focused on the development of such additives with all the requisite properties enumerated above. We present the results of the study of novel phosphazene based electrolytes additives.

Mason K Harrup; Kevin L Gering; Harry W Rollins; Sergiy V Sazhin; Michael T Benson; David K Jamison; Christopher J Michelbacher

2011-10-01T23:59:59.000Z

307

Grafted polyelectrolyte membranes for lithium batteries and fuel cells  

SciTech Connect (OSTI)

Polyelectrolyte materials have been developed for lithium battery systems in response to the severe problems due to salt concentration gradients that occur in composite electrodes (aka membrane-electrode assemblies). Comb branch polymer architectures are described which allow for grafting of appropriate anions on to the polymer and also for cross-linking to provide for appropriate mechanical properties. The interactions of the polymers with the electrode surfaces are critical for the performance of the system and some of the structural features that influence this will be described. Parallels with the fuel cell MEA structures exist and will also be discussed.

Kerr, John B.

2003-06-24T23:59:59.000Z

308

Silicon sponge improves lithium-ion battery performance | EMSL  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLas ConchasPassiveSubmitted forHighlightsSeminarsSilicon sponge improves lithium-ion battery

309

AGEING PROCEDURES ON LITHIUM BATTERIES IN AN INTERNATIONAL COLLABORATION CONTEXT  

SciTech Connect (OSTI)

The widespread introduction of electrically-propelled vehicles is currently part of many political strategies and introduction plans. These new vehicles, ranging from limited (mild) hybrid to plug-in hybrid to fully-battery powered, will rely on a new class of advanced storage batteries, such as those based on lithium, to meet different technical and economical targets. The testing of these batteries to determine the performance and life in the various applications is a time-consuming and costly process that is not yet well developed. There are many examples of parallel testing activities that are poorly coordinated, for example, those in Europe, Japan and the US. These costs and efforts may be better leveraged through international collaboration, such as that possible within the framework of the International Energy Agency. Here, a new effort is under development that will establish standardized, accelerated testing procedures and will allow battery testing organizations to cooperate in the analysis of the resulting data. This paper reviews the present state-of-the-art in accelerated life testing in Europe, Japan and the US. The existing test procedures will be collected, compared and analyzed with the goal of international collaboration.

Jeffrey R. Belt; Ira Bloom; Mario Conte; Fiorentino Valerio Conte; Kenji Morita; Tomohiko Ikeya; Jens Groot

2010-11-01T23:59:59.000Z

310

Crown Ethers in Nonaqueous Electrolytes for Lithium/Air Batteries  

SciTech Connect (OSTI)

The effects of three crown ethers, 12-crown-4, 15-crown-5, and 18-crown-6, as additives and co-solvents in non-aqueous electrolytes on the cell performance of primary Li/air batteries operated in a dry air environment were investigated. Crown ethers have large effects on the discharge performance of non-aqueous electrolytes in Li/air batteries. A small amount (normally less than 10% by weight or volume in electrolytes) of 12-Crown-4 and 15-crown-5 reduces the battery performance and a minimum discharge capacity appears at the crown ether content of ca. 5% in the electrolytes. However, when the content increases to about 15%, both crown ethers improve the capacity of Li/air cells by about 28% and 16%, respectively. 15-Crown-5 based electrolytes even show a maximum discharge capacity in the crown ether content range from 10% to 15%. On the other hand, the increase of 18-crown-6 amount in the electrolytes continuously lowers of the cell performance. The different battery performances of these three crown ethers in electrolytes are explained by the combined effects from the electrolytes contact angle, oxygen solubility, viscosity, ionic conductivity, and the stability of complexes formed between crown ether molecules and lithium ions.

Xu, Wu; Xiao, Jie; Wang, Deyu; Zhang, Jian; Zhang, Jiguang

2010-02-04T23:59:59.000Z

311

Simulations of Plug-in Hybrid Vehicles Using Advanced Lithium Batteries and Ultracapacitors on Various Driving Cycles  

E-Print Network [OSTI]

7: Simulation results for the batteries alone kW kW Batteryor even lithium-ion batteries. This is another advantagewith the air-electrode batteries. Table 6: Simulation

Burke, Andy; Zhao, Hengbing

2010-01-01T23:59:59.000Z

312

Electronic transport in Lithium Nickel Manganese Oxide, a high-voltage cathode material for Lithium-Ion batteries  

E-Print Network [OSTI]

Potential routes by which the energy densities of lithium-ion batteries may be improved abound. However, the introduction of Lithium Nickel Manganese Oxide (LixNi1i/2Mn3/2O4, or LNMO) as a positive electrode material appears ...

Ransil, Alan Patrick Adams

2013-01-01T23:59:59.000Z

313

Electrochemical Lithium Harvesting from Waste Li-ion Batteries Byron M. Wolfe III1  

E-Print Network [OSTI]

Electrochemical Lithium Harvesting from Waste Li-ion Batteries Byron M. Wolfe III1 , Wen Chao Lee1 This study demonstrates the feasibility of using water and the contents of waste Li-ion batteries for the electrodes in a Li-liquid battery system. Li metal was collected electrochemically from a waste Li

Zhou, Yaoqi

314

Recovery of lithium and cobalt from waste lithium ion batteries of mobile phone  

SciTech Connect (OSTI)

Graphical abstract: Recovery of valuable metals from scrap batteries of mobile phone. - Highlights: Recovery of Co and Li from spent LIBs was performed by hydrometallurgical route. Under the optimum condition, 99.1% of lithium and 70.0% of cobalt were leached. The mechanism of the dissolution of lithium and cobalt was studied. Activation energy for lithium and cobalt were found to be 32.4 kJ/mol and 59.81 kJ/mol, respectively. After metal recovery, residue was washed before disposal to the environment. - Abstract: In view of the stringent environmental regulations, availability of limited natural resources and ever increasing need of alternative energy critical elements, an environmental eco-friendly leaching process is reported for the recovery of lithium and cobalt from the cathode active materials of spent lithium-ion batteries of mobile phones. The experiments were carried out to optimize the process parameters for the recovery of lithium and cobalt by varying the concentration of leachant, pulp density, reductant volume and temperature. Leaching with 2 M sulfuric acid with the addition of 5% H{sub 2}O{sub 2} (v/v) at a pulp density of 100 g/L and 75 C resulted in the recovery of 99.1% lithium and 70.0% cobalt in 60 min. H{sub 2}O{sub 2} in sulfuric acid solution acts as an effective reducing agent, which enhance the percentage leaching of metals. Leaching kinetics of lithium in sulfuric acid fitted well to the chemical controlled reaction model i.e. 1 ? (1 ? X){sup 1/3} = k{sub c}t. Leaching kinetics of cobalt fitted well to the model ash diffusion control dense constant sizes spherical particles i.e. 1 ? 3(1 ? X){sup 2/3} + 2(1 ? X) = k{sub c}t. Metals could subsequently be separated selectively from the leach liquor by solvent extraction process to produce their salts by crystallization process from the purified solution.

Jha, Manis Kumar, E-mail: mkjha@nmlindia.org; Kumari, Anjan; Jha, Amrita Kumari; Kumar, Vinay; Hait, Jhumki; Pandey, Banshi Dhar

2013-09-15T23:59:59.000Z

315

Block copolymer with simultaneous electric and ionic conduction for use in lithium ion batteries  

DOE Patents [OSTI]

Redox reactions that occur at the electrodes of batteries require transport of both ions and electrons to the active centers. Reported is the synthesis of a block copolymer that exhibits simultaneous electronic and ionic conduction. A combination of Grignard metathesis polymerization and click reaction was used successively to synthesize the block copolymer containing regioregular poly(3-hexylthiophene) (P3HT) and poly(ethylene oxide) (PEO) segments. The P3HT-PEO/LiTFSI mixture was then used to make a lithium battery cathode with LiFePO.sub.4 as the only other component. All-solid lithium batteries of the cathode described above, a solid electrolyte and a lithium foil as the anode showed capacities within experimental error of the theoretical capacity of the battery. The ability of P3HT-PEO to serve all of the transport and binding functions required in a lithium battery electrode is thus demonstrated.

2013-10-08T23:59:59.000Z

316

Elastic modulus mapping of atomically thin film based Lithium Ion Battery electrodes Lithium Ion Batteries (LIB) are one of the most promising class of next generation energy storage devices,  

E-Print Network [OSTI]

Batteries (LIB) are one of the most promising class of next generation energy storage devices, which canElastic modulus mapping of atomically thin film based Lithium Ion Battery electrodes Lithium Ion the charging/discharging which otherwise lead to in efficient battery operation. The cyclically charging

317

Nanosheet-structured LiV3O8 with high capacity and excellent stability for high energy lithium batteries  

E-Print Network [OSTI]

for high-energy lithium battery applications. 1. Introduction Energy storage and conversion have sources.1­6 Lithium-ion batteries are considered to be the most promising energy-storage systemsNanosheet-structured LiV3O8 with high capacity and excellent stability for high energy lithium

Cao, Guozhong

318

Redox shuttles for overcharge protection of lithium batteries  

DOE Patents [OSTI]

The present invention is generally related to electrolytes containing novel redox shuttles for overcharge protection of lithium-ion batteries. The redox shuttles are capable of thousands hours of overcharge tolerance and have a redox potential at about 3-5.5 V vs. Li and particularly about 4.4-4.8 V vs. Li. Accordingly, in one aspect the invention provides electrolytes comprising an alkali metal salt; a polar aprotic solvent; and a redox shuttle additive that is an aromatic compound having at least one aromatic ring with four or more electronegative substituents, two or more oxygen atoms bonded to the aromatic ring, and no hydrogen atoms bonded to the aromatic ring; and wherein the electrolyte solution is substantially non-aqueous. Further there are provided electrochemical devices employing the electrolyte and methods of making the electrolyte.

Amine, Khalil (Downers Grove, IL); Chen, Zonghai (Downers Grove, IL); Wang, Qingzheng (San Jose, CA)

2010-12-14T23:59:59.000Z

319

Integrated Lithium-Ion Battery Model Encompassing Multi-Physics in Varied Scales: An Integrated Computer Simulation Tool for Design and Development of EDV Batteries (Presentation)  

SciTech Connect (OSTI)

This presentation discusses the physics of lithium-ion battery systems in different length scales, from atomic scale to system scale.

Kim, G. H.; Smith, K.; Lee, K. J.; Santhanagopalan, S.; Pesaran, A.

2011-01-01T23:59:59.000Z

320

EA-1690: A123 Systems, Inc., Automotive-Class Lithium-Ion Battery...  

Broader source: Energy.gov (indexed) [DOE]

to A123 Systems, Inc., for Vertically Integrated Mass Production of Automotive-Class Lithium-Ion Batteries April 20, 2010 EA-1690: Finding of No Significant Impact A123 Systems,...

Note: This page contains sample records for the topic "rechargeable lithium battery" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

Development of a representative volume element of lithium-ion batteries for thermo-mechanical integrity  

E-Print Network [OSTI]

The importance of Lithium-ion batteries continues to grow with the introduction of more electronic devices, electric cars, and energy storage. Yet the optimization approach taken by the manufacturers and system designers ...

Hill, Richard Lee, Sr

2011-01-01T23:59:59.000Z

322

Vehicle Technologies Office Merit Review 2014: High Energy Lithium Batteries for PHEV Applications  

Broader source: Energy.gov [DOE]

Presentation given by [company name] at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about high energy lithium batteries...

323

Performance, Charging, and Second-use Considerations for Lithium Batteries for Plug-in Electric Vehicles  

E-Print Network [OSTI]

for Plug-in Hybrid Electric Vehicles (PHEVs): Goals andE. , Plug-in Hybrid-Electric Vehicle Powertrain Design andLithium Batteries for Plug-in Electric Vehicles Andrew Burke

Burke, Andrew

2009-01-01T23:59:59.000Z

324

Parameter Estimation and Capacity Fade Analysis of Lithium-Ion Batteries Using Reformulated Models  

E-Print Network [OSTI]

Many researchers have worked to develop methods to analyze and characterize capacity fade in lithium-ion batteries. As a complement to approaches to mathematically model capacity fade that require detailed understanding ...

Braatz, Richard D.

325

Microstructural effects on capacity-rate performance of vanadium oxide cathodes in lithium-ion batteries  

E-Print Network [OSTI]

Vanadium oxide thin film cathodes were analyzed to determine whether smaller average grain size and/or a narrower average grain size distribution affects the capacity-rate performance in lithium-ion batteries. Vanadium ...

Davis, Robin M. (Robin Manes)

2005-01-01T23:59:59.000Z

326

Material characterization of high-voltage lithium-ion battery models for crashworthiness analysis  

E-Print Network [OSTI]

A three-phased study of the material properties and post-impact behavior of prismatic pouch lithium-ion battery cells was conducted to refine computational finite element models and explore the mechanisms of thermal runaway ...

Meier, Joseph D. (Joseph David)

2013-01-01T23:59:59.000Z

327

Lithium-Ion battery State of Charge estimation with a Kalman Filter based on a electrochemical model  

E-Print Network [OSTI]

Lithium-Ion battery State of Charge estimation with a Kalman Filter based on a electrochemical state of charge (SOC). In this paper an averaged electrochemical Lithium-ion battery model suitable-Volmer current and the solid concentration at the interface with the electrolyte and (ii) the battery current

Stefanopoulou, Anna

328

Inelastic hosts as electrodes for high-capacity lithium-ion batteries Kejie Zhao, Matt Pharr, Joost J. Vlassak, and Zhigang Suoa  

E-Print Network [OSTI]

Inelastic hosts as electrodes for high-capacity lithium-ion batteries Kejie Zhao, Matt Pharr, Joost for high-capacity lithium-ion batteries. Upon absorbing lithium, silicon swells several times its volume strength. © 2011 American Institute of Physics. doi:10.1063/1.3525990 Lithium-ion batteries

329

Graphene-oxide-coated LiNi0.5Mn1.5O4 as high voltage cathode for lithium ion batteries with high energy  

E-Print Network [OSTI]

Graphene-oxide-coated LiNi0.5Mn1.5O4 as high voltage cathode for lithium ion batteries with high Since Sony rst commercialized lithium ion batteries in the early 1990s, the market for lithium ion of the great success of lithium ion battery technology developed for portable electronic devices, higher

Zhou, Chongwu

330

Manufacturing of Protected Lithium Electrodes for Advanced Lithium...  

Broader source: Energy.gov (indexed) [DOE]

Lithium Electrodes for Advanced Lithium-Air, Lithium-Water, and Lithium-Sulfur Batteries, April 2013 Manufacturing of Protected Lithium Electrodes for Advanced Lithium-Air,...

331

CO2/oxalate Cathodes as Safe and Efficient Alternatives in High Energy Density Metal-Air Type Rechargeable Batteries  

E-Print Network [OSTI]

We present theoretical analysis on why and how rechargeable metal-air type batteries can be made significantly safer and more practical by utilizing CO2/oxalate conversions instead of O2/peroxide or O2/hydroxide ones, in the positive electrode. Metal-air batteries, such as the Li-air one, may have very large energy densities, comparable to that of gasoline, theoretically allowing for long range all-electric vehicles. There are, however, still significant challenges, especially related to the safety of their underlying chemistries, the robustness of their recharging and the need of supplying high purity O2 from air to the battery. We point out that the CO2/oxalate reversible electrochemical conversion is a viable alternative of the O2-based ones, allowing for similarly high energy density and almost identical voltage, while being much safer through the elimination of aggressive oxidant peroxides and the use of thermally stable, non-oxidative and environmentally benign oxalates instead.

Nemeth, Karoly

2013-01-01T23:59:59.000Z

332

1020 IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, VOL. 62, NO. 3, MARCH 2013 State of Charge Estimation of Lithium-Ion Batteries  

E-Print Network [OSTI]

Estimation of Lithium-Ion Batteries in Electric Drive Vehicles Using Extended Kalman Filtering Zheng Chen. Index Terms--Extended Kalman filter (EKF), hardware-in- the-loop, lithium-ion battery, nonlinear battery], a modeling approach for the scale-up of a lithium- ion polymer battery (LIPB) is reported. A comparison

Mi, Chunting "Chris"

333

Study of polypyrrole graphite composite as anode material for secondary lithium-ion batteries  

E-Print Network [OSTI]

Study of polypyrrole graphite composite as anode material for secondary lithium-ion batteries of the composite. The composite material has been studied for specific discharge capacity, coulombic efficiency for the Li-ion battery. Of various carbon materials that have been tried, graphite is favored because it (i

Popov, Branko N.

334

Rubbery Graft Copolymer Electrolytes for Solid-State, Thin-Film Lithium Batteries  

E-Print Network [OSTI]

Rubbery Graft Copolymer Electrolytes for Solid-State, Thin-Film Lithium Batteries Patrick E. Trapa to be stable over a wide temperature range and voltage window. Solid-state, thin-film batteries comprised triflate-doped POEM-g-PDMS, which exhibited solid-like mechanical behavior, were nearly identical to those

Sadoway, Donald Robert

335

Efficient Reformulation of Solid-Phase Diffusion in Physics-Based Lithium-Ion Battery Models  

E-Print Network [OSTI]

Efficient Reformulation of Solid-Phase Diffusion in Physics-Based Lithium-Ion Battery Models or approximation for the solid phase. One of the major difficulties in simulating Li-ion battery models is the need typically solve electrolyte con- centration, electrolyte potential, solid-state potential, and solid-state

Subramanian, Venkat

336

Mathematical Model Reformulation for Lithium-Ion Battery Simulations: Galvanostatic Boundary Conditions  

E-Print Network [OSTI]

-ion battery which has been converted to a one-dimensional 1D model using approxi- mations for solid-state listed elsewhere Electrochem. Solid-State Lett., 10, A225 2007 can be carried out to expedite of charge, state of health, and other parameters of lithium-ion batteries in millisec- onds. Rigorous

Subramanian, Venkat

337

Control oriented 1D electrochemical model of lithium ion battery Kandler A. Smith a  

E-Print Network [OSTI]

dynamics (i.e. state of charge). ? 2007 Elsevier Ltd. All rights reserved. Keywords: Lithium ion battery electrochemical system dynamics [3,4]. Empirical battery models are often favored for their low order (2­5 states and Wang show that a hybrid electric vehicle (HEV) cell may become solid state diffusion limited in sec

338

Crumpled Graphene-Encapsulated Si Nanoparticles for Lithium Ion Battery Anodes  

E-Print Network [OSTI]

efficiency. SECTION: Energy Conversion and Storage; Energy and Charge Transport Silicon is a promising highCrumpled Graphene-Encapsulated Si Nanoparticles for Lithium Ion Battery Anodes Jiayan Luo, Xin Zhao improved performance as Li ion battery anodes in terms of capacity, cycling stability, and Coulombic

Huang, Jiaxing

339

Fracture and debonding in lithium-ion batteries with electrodes of hollow coreeshell nanostructures  

E-Print Network [OSTI]

. In particular, silicon anodes of such coreeshell nano- structures have been cycled thousands of times failure modes in a coated-hollow electrode particle. -ion batteries Fracture Debonding Silicon a b s t r a c t In a novel design of lithium-ion batteries, hollow

Suo, Zhigang

340

Development of a constitutive model predicting the point of short-circuit within lithium-ion battery cells  

E-Print Network [OSTI]

The use of Lithium Ion batteries continues to grow in electronic devices, the automotive industry in hybrid and electric vehicles, as well as marine applications. Such batteries are the current best for these applications ...

Campbell, John Earl, Jr

2012-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "rechargeable lithium battery" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

Implementations of electric vehicle system based on solar energy in Singapore assessment of lithium ion batteries for automobiles  

E-Print Network [OSTI]

In this thesis report, both quantitative and qualitative approaches are used to provide a comprehensive analysis of lithium ion (Li-ion) batteries for plug-in hybrid electric vehicle (PHEV) and battery electric vehicle ...

Fu, Haitao

2009-01-01T23:59:59.000Z

342

"Buried-Anode" Technology Leads to Advanced Lithium Batteries (Fact Sheet)  

SciTech Connect (OSTI)

A technology developed at the National Renewable Energy Laboratory has sparked a start-up company that has attracted funding from the Advanced Projects Research Agency-Energy (ARPA-E). Planar Energy, Inc. has licensed NREL's "buried-anode" technology and put it to work in solid-state lithium batteries. The company claims its large-format batteries can achieve triple the performance of today's lithium-ion batteries at half the cost, and if so, they could provide a significant boost to the emerging market for electric and plug-in hybrid vehicles.

Not Available

2011-02-01T23:59:59.000Z

343

SISGR: Linking Ion Solvation and Lithium Battery Electrolyte Properties  

SciTech Connect (OSTI)

The solvation and phase behavior of the model battery electrolyte salt lithium trifluoromethanesulfonate (LiCF3SO3) in commonly used organic solvents; ethylene carbonate (EC), gamma-butyrolactone (GBL), and propylene carbonate (PC) was explored. Data from differential scanning calorimetry (DSC), Raman spectroscopy, and X-ray diffraction were correlated to provide insight into the solvation states present within a sample mixture. Data from DSC analyses allowed the construction of phase diagrams for each solvent system. Raman spectroscopy enabled the determination of specific solvation states present within a solvent-????salt mixture, and X-ray diffraction data provided exact information concerning the structure of a solvates that could be isolated Thermal analysis of the various solvent-salt mixtures revealed the phase behavior of the model electrolytes was strongly dependent on solvent symmetry. The point groups of the solvents were (in order from high to low symmetry): C2V for EC, CS for GBL, and C1 for PC(R). The low symmetry solvents exhibited a crystallinity gap that increased as solvent symmetry decreased; no gap was observed for EC-LiTf, while a crystallinity gap was observed spanning 0.15 to 0.3 mole fraction for GBL-LiTf, and 0.1 to 0.33 mole fraction for PC(R)-LiTf mixtures. Raman analysis demonstrated the dominance of aggregated species in almost all solvent compositions. The AGG and CIP solvates represent the majority of the species in solutions for the more concentrated mixtures, and only in very dilute compositions does the SSIP solvate exist in significant amounts. Thus, the poor charge transport characteristics of CIP and AGG account for the low conductivity and transport properties of LiTf and explain why is a poor choice as a source of Li+ ions in a Li-ion battery.

Trulove, Paul C; Foley, Matthew P

2013-03-14T23:59:59.000Z

344

Flexographically Printed Rechargeable Zinc-based Battery for Grid Energy Storage  

E-Print Network [OSTI]

J. stergaard, Battery energy storage technology for powerBattery for Grid Energy Storage..Energy Storage for the Grid: A Battery of Choices, Science,

Wang, Zuoqian

2013-01-01T23:59:59.000Z

345

Experimental Validation of a Lithium-Ion Battery State of Charge Estimation with an Extended Kalman Filter  

E-Print Network [OSTI]

], is identified and validated through experimental data by a 10 Ah li-ion battery pack, during charge 37 V at 10 Ah Li-ion battery.. Keywords: Battery model, parameter identification, Kalman filter, SOCExperimental Validation of a Lithium-Ion Battery State of Charge Estimation with an Extended Kalman

Stefanopoulou, Anna

346

Buried anode lithium thin film battery and process for forming the same  

DOE Patents [OSTI]

A reverse configuration, lithium thin film battery (300) having a buried lithium anode layer (305) and process for making the same. The present invention is formed from a precursor composite structure (200) made by depositing electrolyte layer (204) onto substrate (201), followed by sequential depositions of cathode layer (203) and current collector (202) on the electrolyte layer. The precursor is subjected to an activation step, wherein a buried lithium anode layer (305) is formed via electroplating a lithium anode layer at the interface of substrate (201) and electrolyte film (204). The electroplating is accomplished by applying a current between anode current collector (201) and cathode current collector (202).

Lee, Se-Hee; Tracy, C. Edwin; Liu, Ping

2004-10-19T23:59:59.000Z

347

The UC Davis Emerging Lithium Battery Test Project  

E-Print Network [OSTI]

of the Electric Fuel Zinc-Air Battery System for EVs,of the Electric Fuel Zinc-air battery for electric vehicles,

Burke, Andy; Miller, Marshall

2009-01-01T23:59:59.000Z

348

Designer carbons as potential anodes for lithium secondary batteries  

SciTech Connect (OSTI)

Carbons are the material of choice for lithium secondary battery anodes. Our objective is to use designed synthesis to produce a carbon with a predictable structure. The approach is to pyrolyze aromatic hydrocarbons within a pillared clay. Results from laser desorption mass spectrometry, scanning tunneling microscopy, X-ray diffraction, and small angle neutron scattering suggest that we have prepared disordered, porous sheets of carbon, free of heteroatoms. One of the first demonstrations of template-directed carbon formation was reported by Tomita and co-workers, where polyacrylonitrile was carbonized at 700{degrees}C yielding thin films with relatively low surface areas. More recently, Schwarz has prepared composites using polyfurfuryl alcohol and pillared clays. In the study reported here, aromatic hydrocarbons and polymers which do not contain heteroatoms are being investigated. The alumina pillars in the clay should act as acid sites to promote condensation similar to the Scholl reaction. In addition, these precursors should readily undergo thermal polymerization, such as is observed in the carbonization of polycyclic aromatic hydrocarbons.

Winans, R.E.; Carrado, K.A.; Thiyagarajan, P. [and others

1995-07-01T23:59:59.000Z

349

Developments in lithium-ion battery technology in the Peoples Republic of China.  

SciTech Connect (OSTI)

Argonne National Laboratory prepared this report, under the sponsorship of the Office of Vehicle Technologies (OVT) of the U.S. Department of Energy's (DOE's) Office of Energy Efficiency and Renewable Energy, for the Vehicles Technologies Team. The information in the report is based on the author's visit to Beijing; Tianjin; and Shanghai, China, to meet with representatives from several organizations (listed in Appendix A) developing and manufacturing lithium-ion battery technology for cell phones and electronics, electric bikes, and electric and hybrid vehicle applications. The purpose of the visit was to assess the status of lithium-ion battery technology in China and to determine if lithium-ion batteries produced in China are available for benchmarking in the United States. With benchmarking, DOE and the U.S. battery development industry would be able to understand the status of the battery technology, which would enable the industry to formulate a long-term research and development program. This report also describes the state of lithium-ion battery technology in the United States, provides information on joint ventures, and includes information on government incentives and policies in the Peoples Republic of China (PRC).

Patil, P. G.; Energy Systems

2008-02-28T23:59:59.000Z

350

Waste-Lithium-Liquid (WLL) Flow Battery for Stationary Energy Storage Applications Youngsik Kim* and Nina MahootcheianAsl  

E-Print Network [OSTI]

Waste-Lithium-Liquid (WLL) Flow Battery for Stationary Energy Storage Applications Youngsik Kim in a Waste-Lithium-Liquid (WLL) flow battery that can be used in a stationary energy storage application. Li* and Nina MahootcheianAsl Richard Lugar Center for Renewable Energy, Department of Mechanical Engineering

Zhou, Yaoqi

351

On-board state of health monitoring of lithium-ion batteries using incremental capacity analysis with support vector regressionq  

E-Print Network [OSTI]

On-board state of health monitoring of lithium-ion batteries using incremental capacity analysis-board battery state-of-health (SOH) monitoring framework is proposed. 2013 Accepted 5 February 2013 Available online 11 February 2013 Keywords: Electric vehicles Lithium

Peng, Huei

352

A membrane-free lithium/polysulfide semi-liquid battery for large-scale energy storage  

E-Print Network [OSTI]

A membrane-free lithium/polysulfide semi-liquid battery for large-scale energy storage Yuan Yang,a Guangyuan Zhengb and Yi Cui*ac Large-scale energy storage represents a key challenge for renewable energy develop a new lithium/ polysulfide (Li/PS) semi-liquid battery for large-scale energy storage

Cui, Yi

353

Ionic Liquid-Enhanced Solid State Electrolyte Interface (SEI) for Lithium Sulfur Batteries  

SciTech Connect (OSTI)

Li-S battery is a complicated system with many challenges existing before its final market penetration. While most of the reported work for Li-S batteries is focused on the cathode design, we demonstrate in this work that the anode consumption accelerated by corrosive polysulfide solution also critically determines the Li-S cell performance. To validate this hypothesis, ionic liquid (IL) N-methyl-N-butylpyrrolidinium bis(trifluoromethylsulfonyl)imide (Py14TFSI) has been employed to modify the properties of SEI layer formed on Li metal surface in Li-S batteries. It is found that the IL-enhanced passivation film on the lithium anode surface exhibits much different morphology and chemical compositions, effectively protecting lithium metal from continuous attack by soluble polysulfides. Therefore, both cell impedance and the irreversible consumption of polysulfides on lithium metal are reduced. As a result, the Coulombic efficiency and the cycling stability of Li-S batteries have been greatly improved. After 120 cycles, Li-S battery cycled in the electrolyte containing IL demonstrates a high capacity retention of 94.3% at 0.1 C rate. These results unveil another important failure mechanism for Li-S batteries and shin the light on the new approaches to improve Li-S battery performances.

Zheng, Jianming; Gu, Meng; Chen, Honghao; Meduri, Praveen; Engelhard, Mark H.; Zhang, Jiguang; Liu, Jun; Xiao, Jie

2013-05-16T23:59:59.000Z

354

Rate Characteristics of Anatase TiO2 Nanotubes and Nanorods for Lithium Battery Anode Materials at Room  

E-Print Network [OSTI]

ratio.11 Repulsive Coulombic interactions be- tween lithium ions are expected to be responsibleRate Characteristics of Anatase TiO2 Nanotubes and Nanorods for Lithium Battery Anode Materials for lithium content to x = 0.7. Li surface storage on nanometer-sized particles can be energetically more

Cho, Jaephil

355

A description of the vapor phase in the lithium thionyl chloride battery  

E-Print Network [OSTI]

A DESCRIPTION OF TIIE YAPOP, PHASE IN THF. LITHIUM THIONYI. CHLORIDE BATTERY A Thesis by RODOLFO MORALES, JR. Submitted to the Graduate College of Texas AEzM University in partial fulfrHment of the requirement for the degree oi' MASTER... OF SCIENCE August 1988 Major Subject: Chemical Engineering A DESCRIPTION OF THE VAPOR PHASE IN THE LITHIUM THIONYL CHLORIDE BATTERY A Thesis bv RODOLFO 'vIORALES, JR. Approved as to style and content by: Ralph E. White (Chairman of Committee) James...

Morales, Rodolfo

1988-01-01T23:59:59.000Z

356

The UC Davis Emerging Lithium Battery Test Project  

E-Print Network [OSTI]

initial and life cycle costs of the battery. As indicatedbattery chemistries have the potential for longer cycle life which on a life cycle costLife cycle data for the Altairnano 50Ah cell (Altairnano data) Battery cost

Burke, Andy; Miller, Marshall

2009-01-01T23:59:59.000Z

357

Elaboration and Characterization of a Free Standing LiSICON Membrane for Aqueous Lithium-Air Battery  

E-Print Network [OSTI]

: Metal-air battery, Lithium anode, Li2O - Al2O3 - TiO2 - P2O5 system, LiPON, Solid electrolyte 1. Introduction Metal-air batteries are based on the use of a metal negative electrode in combination-sur-Loing, France Abstract In order to develop a LISICON separator for an aqueous lithium-air battery, a thin

Paris-Sud XI, Université de

358

Lithium Insertion Chemistry of Some Iron Vanadates  

E-Print Network [OSTI]

G.Pistoia (Eds. ), Lithium batteries, Science & Technology,Keywords: Lithium batteries, iron vanadates, insertionelectrode materials for lithium batteries, (mostly layered

Patoux, Sebastien; Richardson, Thomas J.

2008-01-01T23:59:59.000Z

359

Flexographically Printed Rechargeable Zinc-based Battery for Grid Energy Storage  

E-Print Network [OSTI]

corrosion resistant to an oxidizing potential and inexpensive, are widely used as the current collector for the cathode in lithium

Wang, Zuoqian

2013-01-01T23:59:59.000Z

360

Diagnostic Characterization of High Power Lithium-Ion Batteries for Use in Hybrid Electric Vehicles  

E-Print Network [OSTI]

Diagnostic Characterization of High Power Lithium-Ion Batteries for Use in Hybrid Electric Vehicles are a fast-growing technology that is attrac- tive for use in portable electronics and electric vehicles due electric vehicle HEV applications.c A baseline cell chemistry was identified as a carbon anode negative

Note: This page contains sample records for the topic "rechargeable lithium battery" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

Computational Fluid Dynamics Modeling of a Lithium/Thionyl Chloride Battery with Electrolyte Flow  

E-Print Network [OSTI]

Computational Fluid Dynamics Modeling of a Lithium/Thionyl Chloride Battery with Electrolyte Flow W.B. Gu and C.Y. Wang GATE Center of Excellence for Advanced Energy Storage Department of Mechanical are performed using a finite volume method of computational fluid dynamics. The predicted discharge curves

Wang, Chao-Yang

362

Doped LiFePO? cathodes for high power density lithium ion batteries  

E-Print Network [OSTI]

Olivine LiFePO4 has received much attention recently as a promising storage compound for cathodes in lithium ion batteries. It has an energy density similar to that of LiCoO 2, the current industry standard for cathode ...

Bloking, Jason T. (Jason Thompson), 1979-

2003-01-01T23:59:59.000Z

363

Formation of Large Polysulfide Complexes during the Lithium-Sulfur Battery Discharge  

SciTech Connect (OSTI)

Sulfur cathodes have much larger capacities than transition-metal-oxide cathodes used in commercial lithium-ion batteries but suffer from unsatisfactory capacity retention and long-term cyclability. Capacity degradation originates from soluble lithium polysulfides gradually diffusing into the electrolyte. Understanding of the formation and dynamics of soluble polysulfides during the discharging process at the atomic level remains elusive, which limits further development of lithium-sulfur (Li-S) batteries. Here we report first-principles molecular dynamics simulations and density functional calculations, through which the discharging products of Li-S batteries are studied. We find that, in addition to simple Li2Sn (1 n 8) clusters generated from single cyclooctasulfur (S8) rings, large Li-S clusters form by collectively coupling several different rings to minimize the total energy. At high lithium concentration, a Li-S network forms at the sulfur surfaces. The results can explain the formation of the soluble Li-S complex, such as Li2S8, Li2S6, and Li2S4, and the insoluble Li2S2 and Li2S structures. In addition, we show that the presence of oxygen impurities in graphene, particularly oxygen atoms bonded to vacancies and edges, may stabilize the lithium polysulfides that may otherwise diffuse into the electrolyte.

Wang, Bin [Vanderbilt University, Nashville; Alhassan, Saeed M. [The Petroleum Institute; Pantelides, Sokrates T [ORNL

2014-01-01T23:59:59.000Z

364

Three-dimensional batteries using a liquid cathode  

E-Print Network [OSTI]

3 and 4, secondary lithium batteries based on using lithiumcommercial primary lithium batteries. The final part of thislithium batteries. ..

Malati, Peter Moneir

2013-01-01T23:59:59.000Z

365

The Mechanisms of Oxygen Reduction and Evolution Reactions in Nonaqueous Lithium-Oxygen Batteries  

SciTech Connect (OSTI)

The oxygen reduction/evolution reaction (ORR/OER) mechanisms in nonaqueous Li-O2 batteries have been investigated by using electron paramagnetic resonance spectroscopy in this work. We identified the superoxide radical anion (O2-) as an intermediate in the ORR process using 5,5-dimethyl-pyrroline N-oxide as a spin trap, while no O2- in OER was detected during the charge process. These findings provide insightful understanding on the fundamental oxygen reaction mechanisms in rechargeable nonaqueous Li-O2 batteries.

Cao, Ruiguo; Walter, Eric D.; Xu, Wu; Nasybulin, Eduard N.; Bhattacharya, Priyanka; Bowden, Mark E.; Engelhard, Mark H.; Zhang, Jiguang

2014-09-30T23:59:59.000Z

366

Dendrimer-Encapsulated Ruthenium Nanoparticles as Catalysts for Lithium-O2 Batteries  

SciTech Connect (OSTI)

Dendrimer-encapsulated ruthenium nanoparticles (DEN-Ru) have been used as catalysts in lithium-O2 batteries for the first time. Results obtained from UV-vis spectroscopy, electron microscopy and X-ray photoelectron spectroscopy show that the nanoparticles synthesized by the dendrimer template method are ruthenium oxide instead of metallic ruthenium reported earlier by other groups. The DEN-Ru significantly improve the cycling stability of lithium (Li)-O2 batteries with carbon black electrodes and decrease the charging potential even at low catalyst loading. The monodispersity, porosity and large number of surface functionalities of the dendrimer template prevent the aggregation of the ruthenium nanoparticles making their entire surface area available for catalysis. The potential of using DEN-Ru as stand-alone cathode materials for Li-O2 batteries is also explored.

Bhattacharya, Priyanka; Nasybulin, Eduard N.; Engelhard, Mark H.; Kovarik, Libor; Bowden, Mark E.; Li, Shari; Gaspar, Daniel J.; Xu, Wu; Zhang, Jiguang

2014-12-01T23:59:59.000Z

367

New electrolytes and electrolyte additives to improve the low temperature performance of lithium-ion batteries  

SciTech Connect (OSTI)

In this program, two different approaches were undertaken to improve the role of electrolyte at low temperature performance - through the improvement in (i) ionic conductivity and (ii) interfacial behavior. Several different types of electrolytes were prepared to examine the feasibil.ity of using these new electrolytes in rechargeable lithium-ion cells in the temperature range of +40C to -40C. The feasibility studies include (a) conductivity measurements of the electrolytes, (b) impedance measurements of lithium-ion cells using the screened electrolytes with di.fferent electrochemical history such as [(i) fresh cells prior to formation cycles, (ii) after first charge, and (iii) after first discharge], (c) electrical performance of the cells at room temperatures, and (d) charge discharge behavior at various low temperatures. Among the different types of electrolytes investigated in Phase I and Phase II of this SBIR project, carbonate-based LiPF6 electrolytes with the proposed additives and the low viscous ester as a third component to the carbonate-based LiPF6 electrolytes show promising results at low temperatures. The latter electrolytes deliver over 80% of room temperature capacity at -20{degrees}C when the lithium-ion cells containing these electrolytes were charged at -20 C. Also, there was no lithium plating when the lithium-ion cells using C-C composite anode and LiPF{sub 6} in EC/EMC/MP electrolyte were charged at -20{degrees}C at C/5 rate. The studies of ionic conductivity and AC impedance of these new electrolytes, as well as the charge discharge characteristics of lithium-ion cells using these new electrolytes at various low temperatures provide new findings: The reduced capacity and power capability, as well as the problem of lithium plating at low temperatures charging of lithium-ion cells are primarily due to slow the lithium-ion intercalation/de-intercalation kinetics in the carbon structure.

Yang, Xiao-Qing

2008-08-31T23:59:59.000Z

368

EERE Partner Testimonials - Phil Roberts, California Lithium...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Phil Roberts, California Lithium Battery (CalBattery) EERE Partner Testimonials - Phil Roberts, California Lithium Battery (CalBattery) Addthis Text Version The words "Office of...

369

Study of a layered iron(III) phosphate phase Na3Fe3(PO4)4 used as positive electrode in lithium batteries  

E-Print Network [OSTI]

prepared by solid-state reaction was studied as positive electrode in lithium batteries. Up to 1.9 Li and lithium batteries. 1. Introduction : Recently, a new class of cathodic material based on iron phosphatesStudy of a layered iron(III) phosphate phase Na3Fe3(PO4)4 used as positive electrode in lithium

Paris-Sud XI, Université de

370

Nb-doped TiO2 Nanofibers for Lithium Ion Batteries M. Fehse,, S. Cavaliere, P. E. Lippens, I. Savych, A. Iodacela, L.  

E-Print Network [OSTI]

Nb-doped TiO2 Nanofibers for Lithium Ion Batteries M. Fehse,, S. Cavaliere, P. E. Lippens, I, lithium ion batteries (LIB) have come a long way.1 Originally intended to serve only for small portable properties due to necessary solid elec- trolyte interphase (SEI) formation and the risk of lithium plating

Paris-Sud XI, Université de

371

Electrically recharged battery employing a packed/spouted bed metal particle electrode  

DOE Patents [OSTI]

A secondary metal air cell, employing a spouted/packed metal particle bed and an air electrode. More specifically a zinc air cell well suited for use in electric vehicles which is capable of being either electrically or hydraulically recharged.

Siu, Stanley C. (Alameda, CA); Evans, James W. (Piedmont, CA); Salas-Morales, Juan (Berkeley, CA)

1995-01-01T23:59:59.000Z

372

Lithium-ion battery diagnostic and prognostic techniques  

DOE Patents [OSTI]

Embodiments provide a method and a system for determining cell imbalance condition of a multi-cell battery including a plurality of cell strings. To determine a cell imbalance condition, a charge current is applied to the battery and is monitored during charging. The charging time for each cell string is determined based on the monitor of the charge current. A charge time difference of any two cell strings in the battery is used to determine the cell imbalance condition by comparing with a predetermined acceptable charge time difference for the cell strings.

Singh, Harmohan N.

2009-11-03T23:59:59.000Z

373

Studies of ionic liquids in lithium-ion battery test systems  

SciTech Connect (OSTI)

In this work, thermal and electrochemical properties of neat and mixed ionic liquid - lithium salt systems have been studied. The presence of a lithium salt causes both thermal and phase-behavior changes. Differential scanning calorimeter DSC and thermal gravimetric analysis TGA were used for thermal analysis for several imidazolium bis(trifluoromethylsulfonyl)imide, trifluoromethansulfonate, BF{sub 4}, and PF{sub 6} systems. Conductivities and diffusion coefficient have been measured for some selected systems. Chemical reactions in electrode - ionic liquid electrolyte interfaces were studied by interfacial impedance measurements. Lithium-lithium and lithium-carbon cells were studied at open circuit and a charged system. The ionic liquids studied include various imidazolium systems that are already known to be electrochemically unstable in the presence of lithium metal. In this work the development of interfacial resistance is shown in a Li|BMIMBF{sub 4} + LiBF{sub 4}|Li cell as well as results from some cycling experiments. As the ionic liquid reacts with the lithium electrode the interfacial resistance increases. The results show the magnitude of reactivity due to reduction of the ionic liquid electrolyte that eventually has a detrimental effect on battery performance.

Salminen, Justin; Prausnitz, John M.; Newman, John

2006-06-01T23:59:59.000Z

374

Evaluation of Tavorite-Structured Cathode Materials for Lithium-Ion Batteries Using High-Throughput Computing  

E-Print Network [OSTI]

Cathode materials with structure similar to the mineral tavorite have shown promise for use in lithium-ion batteries, but this class of materials is relatively unexplored. We use high-throughput density-functional-theory ...

Mueller, Tim

375

Analysis of Impedance Response in Lithium-ion Battery Electrodes  

E-Print Network [OSTI]

A major amount of degradation in battery life is in the form of chemical degradation due to the formation of Solid Electrolyte Interface (SEI) which is a passive film resulting from chemical reaction. Mechanical degradation in the form of fracture...

Cho, Seongkoo

2013-12-04T23:59:59.000Z

376

The lithium-ion battery industry for electric vehicles  

E-Print Network [OSTI]

Electric vehicles have reemerged as a viable alternative means of transportation, driven by energy security concerns, pressures to mitigate climate change, and soaring energy demand. The battery component will play a key ...

Kassatly, Sherif (Sherif Nabil)

2010-01-01T23:59:59.000Z

377

The Application of Synchrotron Techniques to the Study of Lithium-ion Batteries  

SciTech Connect (OSTI)

This paper gives a brief review of the application of synchrotron X-ray techniques to the study of lithium-ion battery materials. The two main techniques are X-ray absorption spectroscopy (XAS) and high-resolution X-ray diffraction (XRD). Examples are given for in situ XAS and XRD studies of lithium-ion battery cathodes during cycling. This includes time-resolved methods. The paper also discusses the application of soft X-ray XAS to do ex situ studies on battery cathodes. By applying two signal detection methods, it is possible to probe the surface and the bulk of cathode materials simultaneously. Another example is the use of time-resolved XRD studies of the decomposition of reactions of charged cathodes at elevated temperatures. Measurements were done both in the dry state and in the presence of electrolyte. Brief reports are also given on two new synchrotron techniques. One is inelastic X-ray scattering, and the other is synchrotron X-ray reflectometry studies of the surface electrode interface (SEI) on highly oriented single crystal lithium battery cathode surfaces.

McBreen, J.

2009-07-01T23:59:59.000Z

378

A Unified Open-Circuit-Voltage Model of Lithium-ion Batteries for State-of-Charge Estimation and State-of-Health Monitoring $  

E-Print Network [OSTI]

A Unified Open-Circuit-Voltage Model of Lithium-ion Batteries for State-of-Charge Estimation. Keywords: Electric vehicles, Lithium-ion batteries, Open-Circuit-Voltage, State-of-Charge, State is widely used for characterizing battery properties under different conditions. It contains important

Peng, Huei

379

Examination of the corrosion behavior of aluminum current collectors in lithium/polymer batteries  

SciTech Connect (OSTI)

The corrosion behavior of aluminum, a candidate material for the current collectors of the positive electrodes of lithium-polymer batteries, in contact with a lithium polymer electrolyte was examined in both batteries and three-electrode electrochemical cells. The results indicate aluminum is resistant to uniform corrosion in the polymer electrolyte: poly(ethylene oxide)-LiN(CF{sub 3}SO{sub 2}){sub 2} but can be susceptible to pitting corrosion. Localized pitting corrosion occurs on the aluminum current collector during overcharging of the battery. Pitting corrosion only occurred in the electrochemical cells when the aluminum electrode was anodically polarized to potentials that were considerably greater than those that resulted in pitting corrosion in batteries. The greater susceptibility of the aluminum current collectors of batteries to pitting corrosion is attributed to inhomogeneous current flow through the current collector. This results in local breakdown of the passive film on aluminum at sites of locally high current density. The inhomogeneous current density that flows through the aluminum/cathode interface is caused by the presence of discrete paths through the cathode with low electrical resistance. In an effort to improve the localized corrosion behavior of aluminum electrodes, it was found that surfaces impregnated by ion implantation with {approximately}20 atom % tungsten exhibited enhanced resistance to pitting corrosion in poly(ethylene oxide)-LiN(CF{sub 3}SO{sub 2}){sub 2}.

Chen, Y.; Devine, T.M.; Evans, J.W. [Lawrence Berkeley National Lab., CA (United States). Environmental Energy Technology Div.] [Lawrence Berkeley National Lab., CA (United States). Environmental Energy Technology Div.; [Univ. of California, Berkeley, CA (United States). Dept. of Materials Science and Mineral Engineering; Monteiro, O.R.; Brown, I.G. [Lawrence Berkeley National Lab., CA (United States). Accelerator and Fusion Research Div.] [Lawrence Berkeley National Lab., CA (United States). Accelerator and Fusion Research Div.

1999-04-01T23:59:59.000Z

380

E-Print Network 3.0 - aqueous rechargeable battery Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Villanova University Collection: Renewable Energy ; Engineering 95 1 of 5 Copyright 2007 Tesla Motors Updated: December 19, 2007 The Tesla Roadster Battery System Summary: 1 of 5...

Note: This page contains sample records for the topic "rechargeable lithium battery" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

Flexographically Printed Rechargeable Zinc-based Battery for Grid Energy Storage  

E-Print Network [OSTI]

Integration with photovoltaic cells: Research on integrationpower harvesting using photovoltaic cells for lower-powerof printable photovoltaic cell, zinc-based battery as well

Wang, Zuoqian

2013-01-01T23:59:59.000Z

382

Effect of polymer electrode morphology on performance of a lithium/polypyrrole battery  

E-Print Network [OSTI]

/discharge experiments. sevu vive. see 1 s m eszse6 ~ ~ I Figure 12 is a schematic of a battery cathode used to make a fibrillar polypyrrole film. A gold-coated Anopore electrode is attached to one side of a Kel-f' plug with silver epoxy before inserting...EFFECT OF POLYMER ELECTRODE MORPHOLOGY ON PERFORMANCE OI' A LITHIUM/POLYPYRROLE BATTERY A Thesis by MARJORIE ANNE NICHOLSON Submitted to the OfIice of Graduate Studies of Texas A&M University in partial fulfillment of the requirements...

Nicholson, Marjorie Anne

1991-01-01T23:59:59.000Z

383

Continuous process to produce lithium-polymer batteries  

DOE Patents [OSTI]

Solid polymer electrolytes are extruded with active electrode material in a continuous, one-step process to form composite electrolyte-electrodes ready for assembly into battery cells. The composite electrolyte electrode sheets are extruded onto current collectors to form electrodes. The composite electrodes, as extruded, are electronically and ionically conductive. The composite electrodes can be over coated with a solid polymer electrolyte, which acts as a separator upon battery assembly. The interface between the solid polymer electrolyte composite electrodes and the solid polymer electrolyte separator has low resistance. 1 fig.

Chern, T.S.H.; Keller, D.G.; MacFadden, K.O.

1998-05-12T23:59:59.000Z

384

Continuous process to produce lithium-polymer batteries  

DOE Patents [OSTI]

Solid polymer electrolytes are extruded with active electrode material in a continuous, one-step process to form composite electrolyte-electrodes ready for assembly into battery cells. The composite electrolyte-electrode sheets are extruded onto current collectors to form electrodes. The composite electrodes, as extruded, are electronically and ionically conductive. The composite electrodes can be overcoated with a solid polymer electrolyte, which acts as a separator upon battery assembly. The interface between the solid polymer electrolyte composite electrodes and the solid polymer electrolyte separator has low resistance.

Chern, Terry Song-Hsing (Midlothian, VA); Keller, David Gerard (Baltimore, MD); MacFadden, Kenneth Orville (Highland, MD)

1998-01-01T23:59:59.000Z

385

The Effect of Single Walled Carbon Nanotubes on Lithium-Ion Batteries and Electric Double Layer Capacitors  

E-Print Network [OSTI]

on the overall performance of Li-ion batteries and EDLCs. SWNTs were incorporated into the anode of the Lithium carbon in the EDLC to act as conductors. An EDLC containing no SWNT was the control. Activated carbon secondary batteries High voltage (3.6 V) No memory effect lightweight EDLCs High power density High

386

New Nanostructured Li2S/Silicon Rechargeable Battery with High Specific Energy  

E-Print Network [OSTI]

an average voltage of 2.2 V vs Li/Li+ (about 60% of the voltage of conventional Li-ion batteries nanowires R echargeable batteries are critical power sources for mobile applications such as portable-11 the relatively low charge capacity of cathodes remains the limiting factor preventing higher energy density

Cui, Yi

387

Carbons for lithium batteries prepared using sepiolite as an inorganic template  

DOE Patents [OSTI]

A method of preparing an anode material using sepiolite clay having channel-like interstices in its lattice structure. Carbonaceous material is deposited in the channel-like interstices of the sepiolite clay and then the sepiolite clay is removed leaving the carbonaceous material. The carbonaceous material is formed into an anode. The anode is combined with suitable cathode and electrolyte materials to form a battery of the lithium-ion type.

Sandi, Giselle (Wheaton, IL); Winans, Randall E. (Downers Grove, IL); Gregar, K. Carrado (Naperville, IL)

2000-01-01T23:59:59.000Z

388

Electrically recharged battery employing a packed/spouted bed metal particle electrode  

DOE Patents [OSTI]

A secondary metal air cell, employing a spouted/packed metal particle bed and an air electrode, is described. More specifically a zinc air cell well suited for use in electric vehicles which is capable of being either electrically or hydraulically recharged. 5 figs.

Siu, S.C.; Evans, J.W.; Salas-Morales, J.

1995-08-15T23:59:59.000Z

389

Inexpensive, Nonfluorinated Anions for Lithium Salts and Ionic...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Anions for Lithium Salts and Ionic Liquids for Lithium Battery Electrolytes Inexpensive, Nonfluorinated Anions for Lithium Salts and Ionic Liquids for Lithium Battery Electrolytes...

390

Surface Modification Agents for Lithium-Ion Batteries | Argonne National  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security AdministrationcontrollerNanocrystalline GalliumSuppression of conductivity inBatteries -

391

Six Thousand Electrochemical Cycles of Double-Walled Silicon Nanotube Anodes for Lithium Ion Batteries  

SciTech Connect (OSTI)

Despite remarkable progress, lithium ion batteries still need higher energy density and better cycle life for consumer electronics, electric drive vehicles and large-scale renewable energy storage applications. Silicon has recently been explored as a promising anode material for high energy batteries; however, attaining long cycle life remains a significant challenge due to materials pulverization during cycling and an unstable solid-electrolyte interphase. Here, we report double-walled silicon nanotube electrodes that can cycle over 6000 times while retaining more than 85% of the initial capacity. This excellent performance is due to the unique double-walled structure in which the outer silicon oxide wall confines the inner silicon wall to expand only inward during lithiation, resulting in a stable solid-electrolyte interphase. This structural concept is general and could be extended to other battery materials that undergo large volume changes.

Wu, H

2011-08-18T23:59:59.000Z

392

Synthesis and Characterization of Lithium Bis(fluoromalonato)borate (LiBFMB) for Lithium Ion Battery Applications  

SciTech Connect (OSTI)

A new orthochelated salt, lithium bis(monofluoromalonato)borate (LiBFMB), has been synthesized and purified for the first time for application in lithium ion batteries. The presence of fluorine in the borate anion of LiBFMB increases its oxidation potential and also facilitates ion dissociation, as reflected by the ratio of ionic conductivity measured by electrochemical impedance spectroscopy ( exp) and that by ion diffusivity coefficients obtained using pulsed field gradient nuclear magnetic resonance (PFG-NMR) technique ( NMR). Half-cell tests using 5.0 V lithium nickel manganese oxide (LiNi0.5Mn1.5O4) as a cathode and EC/DMC/DEC as a solvent reveals that the impedance of the LiBFMB cell is much larger than those of LiPF6 and LiBOB based cells, which results in lower capacity and poor cycling performance of the former. XPS spectra of the cycled cathode electrode suggest that because of the stability of the LiBFMB salt, the solid electrolyte interphase (SEI) formed on the cathode surface is significantly different from those of LiPF6 and LiBOB based electrolytes, resulting in more solvent decomposition and thicker SEI layer. Initial results also indicate that using high dielectric constant solvent PC alters the surface chemistry, reduces the interfacial impedance, and enhances the performance of LiBFMB based 5.0V cell.

Liao, Chen [ORNL] [ORNL; Han, Kee Sung [ORNL] [ORNL; Baggetto, Loic [ORNL] [ORNL; Hillesheim, Daniel A [ORNL] [ORNL; Custelcean, Radu [ORNL] [ORNL; Lee, Dr. Eun-Sung [University of Texas at Austin] [University of Texas at Austin; Guo, Bingkun [ORNL] [ORNL; Bi, Zhonghe [ORNL] [ORNL; Jiang, Deen [ORNL] [ORNL; Veith, Gabriel M [ORNL] [ORNL; Hagaman, Edward {Ed} W [ORNL; Brown, Gilbert M [ORNL] [ORNL; Bridges, Craig A [ORNL] [ORNL; Paranthaman, Mariappan Parans [ORNL] [ORNL; Manthiram, Arumugam [University of Texas at Austin] [University of Texas at Austin; Dai, Sheng [ORNL] [ORNL; Sun, Xiao-Guang [ORNL] [ORNL

2014-01-01T23:59:59.000Z

393

Flexographically Printed Rechargeable Zinc-based Battery for Grid Energy Storage  

E-Print Network [OSTI]

Patterning of micro-scale conductive networks using reel-to-wireless sensor network field, micro-batteries are needed todevices[13] and micro-scale conductive networks[14]. 2.3.

Wang, Zuoqian

2013-01-01T23:59:59.000Z

394

Lithium Ion Battery Performance of Silicon Nanowires With Carbon Skin . |  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: VegetationEquipment Surfaces and Interfaces Sample6, 2011Liisa O'NeillFuels MarketLisaLithiumEMSL Ion

395

Manipulating the Surface Reactions in Lithium Sulfur Batteries Using Hybrid Anode Structures  

SciTech Connect (OSTI)

Lithium-sulfur (Li-S) batteries have recently attracted extensive attention due to the high theoretical energy density and potential low cost. Even so, significant challenges prevent widespread adoption, including continuous dissolution and consumption of active sulfur during cycling. Here we present a fundamentally new design using electrically connected graphite and lithium metal as a hybrid anode to control undesirable surface reactions on the anode. The lithiated graphite placed in front of the lithium metal functions as an artificial self-regulated solid electrolyte interface (SEI) layer to actively control the electrochemical reaction while minimizing the deleterious side reactions on the surface and bulk lithium metal. Continuous corrosion and contamination of lithium anode by dissolved polysulfides is largely mitigated. Excellent electrochemical performance has been observed. Li-S cell incorporating the hybrid design retain a capacity of more than 800 mAh g-1 for 400 cycles, corresponding to only 11% fade and a Coulombic efficiency above 99%. This simple hybrid concept may also provide new lessons for protecting metal anodes in other energy storage devices.

Huang, Cheng; Xiao, Jie; Shao, Yuyan; Zheng, Jianming; Bennett, Wendy D.; Lu, Dongping; Saraf, Laxmikant V.; Engelhard, Mark H.; Ji, Liwen; Zhang, Jiguang; Li, Xiaolin; Graff, Gordon L.; Liu, Jun

2014-01-09T23:59:59.000Z

396

Corrosion of lithium-ion battery current collectors  

SciTech Connect (OSTI)

The primary current-collector materials being used in lithium-ion cells are susceptible to environmental degradation: aluminum to pitting corrosion and copper to environmentally assisted cracking. Localized corrosion occurred on bare aluminum electrodes during simulated ambient-temperature cycling in an excess of electrolyte. The highly oxidizing potential associated with the positive-electrode charge condition was the primary factor. The corrosion mechanism differed from the pitting typically observed in aqueous electrolytes because each site was filled with a mixed metal/metal-oxide product, forming surface mounds or nodules. Electrochemical impedance spectroscopy was shown to be an effective analytical tool for characterizing the corrosion behavior of aluminum under these conditions. Based on X-ray photoelectron spectroscopy analyses, little difference existed in the composition of the surface film on aluminum and copper after immersion or cycling in LiPF{sub 6} electrolytes made with two different solvent formulations. Although Li and P were the predominant adsorbed surface species, the corrosion resistance of aluminum may simply be due to its native oxide. Finally, copper was shown to be susceptible to environmental cracking at or near the lithium potential when specific metallurgical conditions existed (work hardening and large grain size).

Braithwaite, J.W.; Gonzales, A.; Nagasubramanian, G.; Lucero, S.J.; Peebles, D.E.; Ohlhausen, J.A.; Cieslak, W.R. [Sandia National Labs., Albuquerque, NM (United States)] [Sandia National Labs., Albuquerque, NM (United States)

1999-02-01T23:59:59.000Z

397

Forming gas treatment of lithium ion battery anode graphite powders  

DOE Patents [OSTI]

The invention provides a method of making a battery anode in which a quantity of graphite powder is provided. The temperature of the graphite powder is raised from a starting temperature to a first temperature between 1000 and 2000.degree. C. during a first heating period. The graphite powder is then cooled to a final temperature during a cool down period. The graphite powder is contacted with a forming gas during at least one of the first heating period and the cool down period. The forming gas includes H.sub.2 and an inert gas.

Contescu, Cristian Ion; Gallego, Nidia C; Howe, Jane Y; Meyer, III, Harry M; Payzant, Edward Andrew; Wood, III, David L; Yoon, Sang Young

2014-09-16T23:59:59.000Z

398

Sandia National Laboratories: lithium-ion-based solid electrolyte battery  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the1developmentturbine blade manufacturinglife-cycleion battery Electric Carion-based

399

CHEMICAL WASTE RECYCLING PROGRAM All types of batteries are collected by Chemical Waste Services (CWS) for recycling. These include  

E-Print Network [OSTI]

Services (CWS) for recycling. These include alkaline, lithium, rechargeable, coin batteries, lead-cadmium (ni-cads), nickel metal hydride, lithium, etc. They are individually bagged and placed phones, drills, computers, cameras, PDAs, toys and games. It is also used as a corrosion resistant

Baker, Chris I.

400

Final Progress Report for Linking Ion Solvation and Lithium Battery Electrolyte Properties  

SciTech Connect (OSTI)

The research objective of this proposal was to provide a detailed analysis of how solvent and anion structure govern the solvation state of Li+ cations in solvent-LiX mixtures and how this, in turn, dictates the electrolyte physicochemical and electrochemical properties which govern (in part) battery performance. Lithium battery electrolytes remain a poorly understood and hardly studied topic relative to the research devoted to battery electrodes. This is due to the fact that it is the electrodes which determine the energy (capacity) of the battery. The electrolyte, however, plays a crucial role in the practical energy density, power, low and/or high temperature performance, lifetime, safety, etc. which is achievable. The development within this project of a "looking glass" into the molecular interactions (i.e., solution structure) in bulk electrolytes through a synergistic experimental approach involving three research thrusts complements work by other researchers to optimize multi-solvent electrolytes and efforts to understand/control the electrode-electrolyte interfaces, thereby enabling the rational design of electrolytes for a wide variety of battery chemistries and applications (electrolytes-on-demand). The three research thrusts pursued include: (1) conduction of an in-depth analysis of the thermal phase behavior of diverse solvent-LiX mixtures, (2) exploration of the ionic association/solvate formation behavior of select LiX salts with a wide variety of solvents, and (3) linking structure to properties?determination of electrolyte physicochemical and electrochemical properties for comparison with the ionic association and phase behavior.

Henderson, Wesley

2014-08-29T23:59:59.000Z

Note: This page contains sample records for the topic "rechargeable lithium battery" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

Advanced Surface and Microstructural Characterization of Natural Graphite Anodes for Lithium Ion Batteries  

SciTech Connect (OSTI)

Natural graphite powders were subjected to a series of thermal treatments in order to improve the anode irreversible capacity loss (ICL) and capacity retention during long-term cycling of lithium ion batteries. A baseline thermal treatment in inert Ar or N2 atmosphere was compared to cases with a proprietary additive to the furnace gas environment. This additive substantially altered the surface chemistry of the natural graphite powders and resulted in significantly improved long-term cycling performance of the lithium ion batteries over the commercial natural graphite baseline. Different heat-treatment temperatures were investigated ranging from 950-2900 C with the intent of achieving the desired long-term cycling performance with as low of a maximum temperature and thermal budget as possible. A detailed summary of the characterization data is also presented, which includes X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), Raman spectroscopy, and temperature-programed desorption mass spectroscopy (TPD-MS). This characterization data was correlated to the observed capacity fade improvements over the course of long-term cycling at high charge-discharge rates in full lithium-ion coin cells. It is believed that the long-term performance improvements are a result of forming a more stable solid electrolyte interface (SEI) layer on the anode graphite surfaces, which is directly related to the surface chemistry modifications imparted by the proprietary gas environment during thermal treatment.

Gallego, Nidia C [ORNL] [ORNL; Contescu, Cristian I [ORNL] [ORNL; Meyer III, Harry M [ORNL] [ORNL; Howe, Jane Y [ORNL] [ORNL; Meisner, Roberta Ann [ORNL] [ORNL; Payzant, E Andrew [ORNL] [ORNL; Lance, Michael J [ORNL] [ORNL; Yoon, Steve [A123 Systems, Inc.] [A123 Systems, Inc.; Denlinger, Matthew [A123 Systems, Inc.] [A123 Systems, Inc.; Wood III, David L [ORNL] [ORNL

2014-01-01T23:59:59.000Z

402

Organic salts as super-high rate capability materials for lithium-ion batteries Y. Y. Zhang, Y. Y. Sun, S. X. Du, H.-J. Gao, and S. B. Zhang  

E-Print Network [OSTI]

Organic salts as super-high rate capability materials for lithium-ion batteries Y. Y. Zhang, Y. Y of transition metal doped Li2S as cathode materials in lithium batteries J. Renewable Sustainable Energy 4 of electrode nanomaterials in lithium-ion battery: The effects of surface stress J. Appl. Phys. 112, 103507

Gao, Hongjun

403

Search for new manganese-cobalt oxides as positive electrode materials for lithium batteries P. Strobel, J. Tillier, A. Diaz, A. Ibarra-Palos, F. Thiry and J.B. Soupart *  

E-Print Network [OSTI]

positive electrode material for lithium batteries ; last but not least, copper or cobalt substitutionSearch for new manganese-cobalt oxides as positive electrode materials for lithium batteries P new mixed manganese-cobalt oxides for lithium battery positive electrode materials were obtained using

Boyer, Edmond

404

Modeling the performance and cost of lithium-ion batteries for electric-drive vehicles.  

SciTech Connect (OSTI)

This report details the Battery Performance and Cost model (BatPaC) developed at Argonne National Laboratory for lithium-ion battery packs used in automotive transportation. The model designs the battery for a specified power, energy, and type of vehicle battery. The cost of the designed battery is then calculated by accounting for every step in the lithium-ion battery manufacturing process. The assumed annual production level directly affects each process step. The total cost to the original equipment manufacturer calculated by the model includes the materials, manufacturing, and warranty costs for a battery produced in the year 2020 (in 2010 US$). At the time this report is written, this calculation is the only publically available model that performs a bottom-up lithium-ion battery design and cost calculation. Both the model and the report have been publically peer-reviewed by battery experts assembled by the U.S. Environmental Protection Agency. This report and accompanying model include changes made in response to the comments received during the peer-review. The purpose of the report is to document the equations and assumptions from which the model has been created. A user of the model will be able to recreate the calculations and perhaps more importantly, understand the driving forces for the results. Instructions for use and an illustration of model results are also presented. Almost every variable in the calculation may be changed by the user to represent a system different from the default values pre-entered into the program. The distinct advantage of using a bottom-up cost and design model is that the entire power-to-energy space may be traversed to examine the correlation between performance and cost. The BatPaC model accounts for the physical limitations of the electrochemical processes within the battery. Thus, unrealistic designs are penalized in energy density and cost, unlike cost models based on linear extrapolations. Additionally, the consequences on cost and energy density from changes in cell capacity, parallel cell groups, and manufacturing capabilities are easily assessed with the model. New proposed materials may also be examined to translate bench-scale values to the design of full-scale battery packs providing realistic energy densities and prices to the original equipment manufacturer. The model will be openly distributed to the public in the year 2011. Currently, the calculations are based in a Microsoft{reg_sign} Office Excel spreadsheet. Instructions are provided for use; however, the format is admittedly not user-friendly. A parallel development effort has created an alternate version based on a graphical user-interface that will be more intuitive to some users. The version that is more user-friendly should allow for wider adoption of the model.

Nelson, P. A.

2011-10-20T23:59:59.000Z

405

Improved cell design for lithium alloy/metal sulfide battery  

DOE Patents [OSTI]

The disclosed lithium alloy/iron sulfide cell design provides loop-like positive and negative sheet metal current collectors electrically insulated from one another by separator means, the positive collector being located outwardly of the negative collector. The collectors are initially secured within an open-ended cell housing, which allows for collector pretesting for electrical shorts prior to adding any electrode materials and/or electrolyte to the cell. Separate chambers are defined outwardly of the positive collector and inwardly of the negative collector open respectively in opposite directions toward the open ends of the cell housing; and positive and negative electrode materials can be extruded into these respective chambers via the opposite open housing ends. The chambers and cell housing ends can then be sealed closed. A cross wall structurally reinforces the cell housing and also thereby defines two cavities, and paired positive and negative collectors are disposed in each cavity and electrically connected in parallel. The cell design provides for a high specific energy output and improved operating life in that any charge-discharge cycle swelling of the positive electrode material will be inwardly against only the positive collector to minimize shorts caused by the collectors shifting relative to one another.

Kaun, T.D.

1984-03-30T23:59:59.000Z

406

Cell design for lithium alloy/metal sulfide battery  

DOE Patents [OSTI]

The disclosed lithium alloy/iron sulfide cell design provides loop-like positive and negative sheet metal current collectors electrically insulated from one another by separator means, the positive collector being located outwardly of the negative collector. The collectors are initially secured within an open-ended cell housing, which allows for collector pretesting for electrical shorts prior to adding any electrode materials and/or electrolyte to the cell. Separate chambers are defined outwardly of the positive collector and inwardly of the negative collector open respectively in opposite directions toward the open ends of the cell housing; and positive and negative electrode materials can be extruded into these respective chambers via the opposite open housing ends. The chambers and cell housing ends can then be sealed closed. A cross wall structurally reinforces the cell housing and also thereby defines two cavities, and paired positive and negative collectors are disposed in each cavity and electrically connected in parallel. The cell design provides for a high specific energy output and improved operating life in that any charge-discharge cycle swelling of the positive electrode material will be inwardly against only the positive collector to minimize shorts caused by the collectors shifting relative to one another.

Kaun, Thomas D. (New Lennox, IL)

1985-01-01T23:59:59.000Z

407

Some comments on the Butler-Volmer equation for modeling Lithium-ion batteries  

E-Print Network [OSTI]

In this article the Butler-Volmer equation used in describing Lithium-ion (Li-ion) batteries is discussed. First, a complete mathematical model based on a macro-homogeneous approach developed by Neuman is presented. Two common mistakes found in the literature regarding a sign in a boundary conditions and the use of the transfer coefficient are mentioned. The paper focuses on the form of the Butler-Volmer equation in the model. It is shown how practical problems can be avoided by taking care in the form used, particularly to avoid difficulties when the solid particle in the electrodes approaches a fully charged or discharged state or the electrolyte gets depleted. This shows that the open circuit voltage and the exchange current density must depend on the lithium concentration in both the solid and the electrolyte in a particular way at the extremes of the concentration ranges.

Ramos, A M

2015-01-01T23:59:59.000Z

408

Protective coating on positive lithium-metal-oxide electrodes for lithium batteries  

DOE Patents [OSTI]

A positive electrode for a non-aqueous lithium cell comprising a LiMn2-xMxO4 spinel structure in which M is one or more metal cations with an atomic number less than 52, such that the average oxidation state of the manganese ions is equal to or greater than 3.5, and in which 0.ltoreq.x.ltoreq.0.15, having one or more lithium spine oxide LiM'2O4 or lithiated spinel oxide Li1+yM'2O4 compounds on the surface thereof in which M' are cobalt cations and in which 0.ltoreq.y.ltoreq.1.

Johnson, Christopher S.; Thackeray, Michael M.; Kahaian, Arthur J.

2006-05-23T23:59:59.000Z

409

Lithium Doping of Single-Walled Carbon Nanotubes for Battery and Semiconductor Applications Kevin Donaher, Columbia University, Georgia Institute of Technology SURF 2010 Fellow  

E-Print Network [OSTI]

Lithium Doping of Single-Walled Carbon Nanotubes for Battery and Semiconductor Applications Kevin Jang, Mentor: Wonsang Koh Abstract The properties of lithium doped (5,5) metallic and (8 lithium binds to carbon nanotubes and how this affects the band structure of the semiconducting carbon

Li, Mo

410

Graphene-based Electrochemical Energy Conversion and Storage: Fuel cells, Supercapacitors and Lithium Ion Batteries  

SciTech Connect (OSTI)

Graphene has attracted extensive research interest due to its strictly 2-dimensional (2D) structure, which results in its unique electronic, thermal, mechanical, and chemical properties and potential technical applications. These remarkable characteristics of graphene, along with the inherent benefits of a carbon material, make it a promising candidate for application in electrochemical energy devices. This article reviews the methods of graphene preparation, introduces the unique electrochemical behavior of graphene, and summarizes the recent research and development on graphene-based fuel cells, supercapacitors and lithium ion batteries. In addition, promising areas are identified for the future development of graphene-based materials in electrochemical energy conversion and storage systems.

Hou, Junbo; Shao, Yuyan; Ellis, Michael A.; Moore, Robert; Yi, Baolian

2011-09-14T23:59:59.000Z

411

Nanoscale Imaging of Lithium Ion Distribution During In Situ Operation of Battery Electrode and Electrolyte  

E-Print Network [OSTI]

A major challenge in the development of new battery materials is understanding their fundamental mechanisms of operation and degradation. Their microscopically inhomogeneous nature calls for characterization tools that provide operando and localized information from individual grains and particles. Here we describe an approach that images the nanoscale distribution of ions during electrochemical charging of a battery in a transmission electron microscope liquid flow cell. We use valence energy-loss spectroscopy to track both solvated and intercalated ions, with electronic structure fingerprints of the solvated ions identified using an ab initio non-linear response theory. Equipped with the new electrochemical cell holder, nanoscale spectroscopy and theory, we have been able to determine the lithiation state of a LiFePO4 electrode and surrounding aqueous electrolyte in real time with nanoscale resolution during electrochemical charge and discharge. We follow lithium transfer between electrode and electrolyte a...

Holtz, Megan E; Gunceler, Deniz; Gao, Jie; Sundararaman, Ravishankar; Schwarz, Kathleen A; Arias, Toms A; Abrua, Hctor D; Muller, David A

2013-01-01T23:59:59.000Z

412

High elastic modulus polymer electrolytes suitable for preventing thermal runaway in lithium batteries  

DOE Patents [OSTI]

A polymer that combines high ionic conductivity with the structural properties required for Li electrode stability is useful as a solid phase electrolyte for high energy density, high cycle life batteries that do not suffer from failures due to side reactions and dendrite growth on the Li electrodes, and other potential applications. The polymer electrolyte includes a linear block copolymer having a conductive linear polymer block with a molecular weight of at least 5000 Daltons, a structural linear polymer block with an elastic modulus in excess of 1.times.10.sup.7 Pa and an ionic conductivity of at least 1.times.10.sup.-5 Scm.sup.-1. The electrolyte is made under dry conditions to achieve the noted characteristics. In another aspect, the electrolyte exhibits a conductivity drop when the temperature of electrolyte increases over a threshold temperature, thereby providing a shutoff mechanism for preventing thermal runaway in lithium battery cells.

Mullin, Scott; Panday, Ashoutosh; Balsara, Nitash Pervez; Singh, Mohit; Eitouni, Hany Basam; Gomez, Enrique Daniel

2014-04-22T23:59:59.000Z

413

It all began in 2001, when three NREL researchers took their thin-film expertise from window technology research and applied it to a solid-state, thin-film lithium battery. The researchers  

E-Print Network [OSTI]

window technology research and applied it to a solid-state, thin-film lithium battery. The researchers developed the concept of building the battery in reverse order, depositing first the solid-state electrolyte's"buried-anode" technology and put it to work in solid-state lithium batteries. The company claims its large-format batteries

414

Improving the Performance of Lithium Ion Batteries at Low Temperature  

SciTech Connect (OSTI)

The ability for Li-ion batteries to operate at low temperatures is extremely critical for the development of energy storage for electric and hybrid electric vehicle technologies. Currently, Li-ion cells have limited success in operating at temperature below 10 deg C. Electrolyte conductivity at low temperature is not the main cause of the poor performance of Li-ion cells. Rather the formation of a tight interfacial film between the electrolyte and the electrodes has often been an issue that resulted in a progressive capacity fading and limited discharge rate capability. The objective of our Phase I work is to develop novel electrolytes that can form low interfacial resistance solid electrolyte interface (SEI) films on carbon anodes and metal oxide cathodes. From the results of our Phase I work, we found that the interfacial impedance of Fluoro Ethylene Carbonate (FEC) electrolyte at the low temperature of 20degC is astonishingly low, compared to the baseline 1.2M LiPFEMC:EC:PC:DMC (10:20:10:60) electrolyte. We found that electrolyte formulations with fluorinated carbonate co-solvent have excellent film forming properties and better de-solvation characteristics to decrease the interfacial SEI film resistance and facilitate the Li-ion diffusion across the SEI film. The very overwhelming low interfacial impedance for FEC electrolytes will translate into Li-ion cells with much higher power for cold cranking and high Regen/charge at the low temperature. Further, since the SEI film resistance is low, Li interaction kinetics into the electrode will remain very fast and thus Li plating during Regen/charge period be will less likely to happen.

Trung H. Nguyen; Peter Marren; Kevin Gering

2007-04-20T23:59:59.000Z

415

Toward commercializable microphase-separating copolymer electrolytes for rechargeable lithium batteries  

E-Print Network [OSTI]

Microphase-separating copolymers have been shown to possess the electrical properties of a polymer liquid and the mechanical properties of a solid. In the past, these materials had to be produced via anionic methods that ...

Trapa, Patrick E. (Patrick Ervin), 1976-

2003-01-01T23:59:59.000Z

416

A Failure and Structural Analysis of Block Copolymer Electrolytes for Rechargeable Lithium Metal Batteries  

E-Print Network [OSTI]

resistance are determined by fitting an equivalent circuitresistances in the cell can be extracted by fitting equivalentresistance and is approximately 20 ohm-cm throughout the experiment. The equivalent

Stone, Gregory Michael

2012-01-01T23:59:59.000Z

417

Electrode Materials for Rechargeable Lithium-Ion Batteries: A New Synthetic  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation ProposedUsing Zirconia Nanoparticles as Selective Sorbents . | EMSLSolid

418

Methods and apparatuses for making cathodes for high-temperature, rechargeable batteries  

DOE Patents [OSTI]

The approaches for fabricating cathodes can be adapted to improve control over cathode composition and to better accommodate batteries of any shape and their assembly. For example, a first solid having an alkali metal halide, a second solid having a transition metal, and a third solid having an alkali metal aluminum halide are combined into a mixture. The mixture can be heated in a vacuum to a temperature that is greater than or equal to the melting point of the third solid. When the third solid is substantially molten liquid, the mixture is compressed into a desired cathode shape and then cooled to solidify the mixture in the desired cathode shape.

Meinhardt, Kerry D; Sprenkle, Vincent L; Coffey, Gregory W

2014-05-20T23:59:59.000Z

419

Lithium/iron sulfide batteries for electric-vehicle propulsion and other applications. Progress report, October 1979-March 1980  

SciTech Connect (OSTI)

The research and development activities of the program at Argonne National Laboratory (ANL) on lithium/iron sulfide batteries during the period October 1979-March 1980 is described. Although the major emphasis is currently on batteries for electric-vehicle propulsion, stationary energy-storage applications are also under investigation. The individual battery cells, which operate at 400 to 500/sup 0/C, are of a vertically oriented, prismatic design with two or more positive electrodes of FeS or FeS/sub 2/, facing negative electrodes of lithium-aluminum or lithium-silicon alloy, and molten LiCl-KCl electrolyte. The ANL program consists of cell chemistry studies, materials engineering, and component and auxiliary systems development. Important elements of this program are studies of the effects of design modifications on cell performance and post-test examinations of cells. During the reporting period, cell and battery development work has been aimed primarily at the first phase of the Mark II electric-vehicle battery program, which consists of an effort to develop high-reliability cells having boron nitride felt separators. Later in the Mark II program, the cells will be tested in 10-cell modules. Work on stationary energy-storage batteries during this period has consisted mainly of conceptual design studies. 23 figures, 9 tables.

None

1980-08-01T23:59:59.000Z

420

Observation of State of Charge Distributions in Lithium-ion Battery Electrodes  

SciTech Connect (OSTI)

Current lithium-ion battery technology is gearing towards meeting the robust demand of power and energy requirements for all-electric transportation without compromising on the safety, performance, and cycle life. The state-of-charge (SOC) of a Li-ion cell can be a macroscopic indicator of the state-of-health of the battery. The microscopic origin of the SOC relates to the local lithium content in individual electrode particles and the effective ability of Li-ions to transport or shuttle between the redox couples through the cell geometric boundaries. Herein, micrometer-resolved Raman mapping of a transition-metal-based oxide positive electrode, Li{sub 1-x}(Ni{sub y}Co{sub z}Al{sub 1-y-z})O{sub 2}, maintained at different SOCs, is shown. An attempt has been made to link the underlying changes to the composition and structural integrity at the individual particle level. Furthermore, an SOC distribution at macroscopic length scale of the electrodes is presented.

Remillard, Jeffrey [Ford Research and Advanced Engineering, Ford Motor Company; O'Neil, Ann E [Ford Research and Advanced Engineering, Ford Motor Company; Bernardi, Dawn [Ford Research and Advanced Engineering, Ford Motor Company; Ro, Tina J [Massachusetts Institute of Technology (MIT); Miller, Ted [Ford Motor Company; Neitering, Ken [Ford Research and Advanced Engineering, Ford Motor Company; Go, Joo-Young [SB Limotive, Korea; Nanda, Jagjit [ORNL

2011-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "rechargeable lithium battery" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

Material and energy flows in the materials production, assembly, and end-of-life stages of the automotive lithium-ion battery life cycle  

SciTech Connect (OSTI)

This document contains material and energy flows for lithium-ion batteries with an active cathode material of lithium manganese oxide (LiMn{sub 2}O{sub 4}). These data are incorporated into Argonne National Laboratory's Greenhouse gases, Regulated Emissions, and Energy use in Transportation (GREET) model, replacing previous data for lithium-ion batteries that are based on a nickel/cobalt/manganese (Ni/Co/Mn) cathode chemistry. To identify and determine the mass of lithium-ion battery components, we modeled batteries with LiMn{sub 2}O{sub 4} as the cathode material using Argonne's Battery Performance and Cost (BatPaC) model for hybrid electric vehicles, plug-in hybrid electric vehicles, and electric vehicles. As input for GREET, we developed new or updated data for the cathode material and the following materials that are included in its supply chain: soda ash, lime, petroleum-derived ethanol, lithium brine, and lithium carbonate. Also as input to GREET, we calculated new emission factors for equipment (kilns, dryers, and calciners) that were not previously included in the model and developed new material and energy flows for the battery electrolyte, binder, and binder solvent. Finally, we revised the data included in GREET for graphite (the anode active material), battery electronics, and battery assembly. For the first time, we incorporated energy and material flows for battery recycling into GREET, considering four battery recycling processes: pyrometallurgical, hydrometallurgical, intermediate physical, and direct physical. Opportunities for future research include considering alternative battery chemistries and battery packaging. As battery assembly and recycling technologies develop, staying up to date with them will be critical to understanding the energy, materials, and emissions burdens associated with batteries.

Dunn, J.B.; Gaines, L.; Barnes, M.; Wang, M.; Sullivan, J. (Energy Systems)

2012-06-21T23:59:59.000Z

422

Metal-Air Electric Vehicle Battery: Sustainable, High-Energy Density, Low-Cost Electrochemical Energy Storage Metal-Air Ionic Liquid (MAIL) Batteries  

SciTech Connect (OSTI)

Broad Funding Opportunity Announcement Project: ASU is developing a new class of metal-air batteries. Metal-air batteries are promising for future generations of EVs because they use oxygen from the air as one of the batterys main reactants, reducing the weight of the battery and freeing up more space to devote to energy storage than Li-Ion batteries. ASU technology uses Zinc as the active metal in the battery because it is more abundant and affordable than imported lithium. Metal-air batteries have long been considered impractical for EV applications because the water-based electrolytes inside would decompose the battery interior after just a few uses. Overcoming this traditional limitation, ASUs new battery system could be both cheaper and safer than todays Li-Ion batteries, store from 4-5 times more energy, and be recharged over 2,500 times.

None

2009-12-21T23:59:59.000Z

423

STUDIES ON TWO CLASSES OF POSITIVE ELECTRODE MATERIALS FOR LITHIUM-ION BATTERIES  

E-Print Network [OSTI]

the lithium- transition metal electrostatic interaction. Thecation electrostatic interactions. 1 Lithium ions occupy theinteractions or by inhibiting the complete removal of lithium

Wilcox, James D.

2010-01-01T23:59:59.000Z

424

Thermal stability of LiPF6EC:EMC electrolyte for lithium ion batteries Gerardine G. Bottea  

E-Print Network [OSTI]

Thermal stability of LiPF6±EC:EMC electrolyte for lithium ion batteries Gerardine G. Bottea , Ralph study of the LiPF6±EC:EMC electrolyte. The effect of different variables on its thermal stability was evaluated: salt (LiPF6) concentration effect, solvents, EC:EMC ratios, and heating rates. Hermetically

425

Lithium/Manganese Dioxide (Li/MnO(2)) Battery Performance Evaluation: Final Report  

SciTech Connect (OSTI)

In February 1997, under the auspices of the Product Realization Program, an initiative to develop performance models for lithium/manganese dioxide-based batteries began. As a part of this initiative, the performance characteristics of the cells under a variety of conditions were determined, both for model development and for model validation. As a direct result of this work, it became apparent that possible Defense Program (DP) uses for batteries based on this cell chemistry existed. A larger effort aimed at mapping the performance envelope of this chemistry was initiated in order to assess the practicality of this cell chemistry, not only for DP applications, but also for other uses. The work performed included an evaluation of the cell performance as a function of a number of variables, including cell size, manufacturer, current, pulse loads, constant current loads, safety, etc. In addition, the development of new evaluation techniques that would apply to any battery system, such as those related to reliability assessments began. This report describes the results of these evaluations.

Ingersoll, D.; Clark, N.H.

1999-04-01T23:59:59.000Z

426

Solution Phase Routes to Functional Nanostructured Materials for Energy Applications  

E-Print Network [OSTI]

Rate Rechargeable Lithium Batteries. Small 2011, 7, 407414.Rate Rechargeable Lithium Batteries. Small 2011, 7, 407?414.Rate Rechargeable Lithium Batteries: Relationships among

Rauda, Iris Ester

2012-01-01T23:59:59.000Z

427

Mesoporous carbon -Cr2O3 composite as an anode material for lithium ion batteries  

SciTech Connect (OSTI)

Mesoporous carbon-Cr2O3 (M-C-Cr2O3) composite was prepared by co-assembly of in-situ formed phenolic resin, chromium precursor, and Pluronic block copolymer under acidic conditions, followed by carbonization at 750oC under Argon. The TEM results confirmed that the Cr2O3 nanoparticles, ranging from 10 to 20 nm, were well dispersed in the matrix of mesoporous carbon. The composite exhibited an initial reversible capacity of 710 mAh g-1 and good cycling stability, which is mainly due to the synergic effects of carbons within the composites, i.e. confining the crystal growth of Cr2O3 during the high temperature treatment step and buffering the volume change of Cr2O3 during the cycling step. This composite material is a promising anode material for lithium ion batteries.

Guo, Bingkun [ORNL; Chi, Miaofang [ORNL; Sun, Xiao-Guang [ORNL; Dai, Sheng [ORNL

2012-01-01T23:59:59.000Z

428

Modeling Electrochemical Decomposition of Fluoroethylene Carbonate on Silicon Anode Surfaces in Lithium Ion Batteries  

E-Print Network [OSTI]

Fluoroethylene carbonate (FEC) shows promise as an electrolyte additive for improving passivating solid-electrolyte interphase (SEI) films on silicon anodes used in lithium ion batteries (LIB). We apply density functional theory (DFT), ab initio molecular dynamics (AIMD), and quantum chemistry techniques to examine excess-electron-induced FEC molecular decomposition mechanisms that lead to FEC-modified SEI. We consider one- and two-electron reactions using cluster models and explicit interfaces between liquid electrolyte and model Li(x)Si(y) surfaces, respectively. FEC is found to exhibit more varied reaction pathways than unsubstituted ethylene carbonate. The initial bond-breaking events and products of one- and two-electron reactions are qualitatively similar, with a fluoride ion detached in both cases. However, most one-electron products are charge-neutral, not anionic, and may not coalesce to form effective Li+-conducting SEI unless they are further reduced or take part in other reactions. The implication...

Leung, Kevin; Foster, Michael E; Ma, Yuguang; del la Hoz, Julibeth M Martinez; Sai, Na; Balbuena, Perla B

2014-01-01T23:59:59.000Z

429

Liquid-solid phase diagrams of binary carbonates for lithium batteries  

SciTech Connect (OSTI)

The authors present the liquid-solid phase diagrams that they mapped with a differential scanning calorimeter (DSC) for the following seven binary carbonates: dimethyl carbonate (DMC)-ethylene carbonate (EC), ethyl methyl carbonate (EMC)-EC, EMC-propylene carbonate (PC), EMC-dimethyl ethylene carbonate (DMEC), EMC-isobutylene carbonate (iBC), PC-EC, and EMC-DMC. Many of these are among the most frequently used solvent systems for making the nonaqueous electrolytes for lithium batteries. The phase diagrams of these carbonate systems are all of the simple eutectic type but with vastly different particular features. Comparison of these phase diagrams shows that to expand the liquid region of a carbonate system toward low temperature, the two components of the system need to have comparable melting temperatures and compatible molecular structures. These results are consistent with thermodynamic considerations and have significant practical implications.

Ding, M.S.; Xu, K.; Jow, T.R.

2000-05-01T23:59:59.000Z

430

Structural Integration of Silicon Solar Cells and Lithium-ion Batteries Using Printed Electronics  

E-Print Network [OSTI]

solid state battery ..of the thin-film solid state battery is shown in Fig. 13.the thin-film solid state battery. CHAPTER FIVE Performance

Kang, Jin Sung

2012-01-01T23:59:59.000Z

431

A membrane-free lithium/polysulfide semi-liquid battery for large-scale energy storage  

SciTech Connect (OSTI)

Large-scale energy storage represents a key challenge for renewable energy and new systems with low cost, high energy density and long cycle life are desired. In this article, we develop a new lithium/polysulfide (Li/PS) semi-liquid battery for large-scale energy storage, with lithium polysulfide (Li{sub 2}S{sub 8}) in ether solvent as a catholyte and metallic lithium as an anode. Unlike previous work on Li/S batteries with discharge products such as solid state Li{sub 2}S{sub 2} and Li{sub 2}S, the catholyte is designed to cycle only in the range between sulfur and Li{sub 2}S{sub 4}. Consequently all detrimental effects due to the formation and volume expansion of solid Li{sub 2}S{sub 2}/Li{sub 2}S are avoided. This novel strategy results in excellent cycle life and compatibility with flow battery design. The proof-of-concept Li/PS battery could reach a high energy density of 170 W h kg{sup -1} and 190 W h L{sup -1} for large scale storage at the solubility limit, while keeping the advantages of hybrid flow batteries. We demonstrated that, with a 5 M Li{sub 2}S{sub 8} catholyte, energy densities of 97 W h kg{sup -1} and 108 W h L{sup -1} can be achieved. As the lithium surface is well passivated by LiNO{sub 3} additive in ether solvent, internal shuttle effect is largely eliminated and thus excellent performance over 2000 cycles is achieved with a constant capacity of 200 mA h g{sup -1}. This new system can operate without the expensive ion-selective membrane, and it is attractive for large-scale energy storage.

Yang, Yuan; Zheng, Guangyuan; Cui, Yi

2013-01-01T23:59:59.000Z

432

EV Everywhere Batteries Workshop - Materials Processing and Manufactur...  

Energy Savers [EERE]

More Documents & Publications EV Everywhere Batteries Workshop - Next Generation Lithium Ion Batteries Breakout Session Report EV Everywhere Batteries Workshop - Beyond...

433

Lithium-sulfur batteries based on nitrogen-doped carbon and ionic liquid electrolyte  

SciTech Connect (OSTI)

Nitrogen-doped mesoporous carbon (NC) and sulfur were used to prepare an NC/S composite cathode, which was evaluated in an ionic liquid electrolyte of 0.5 M lithium bis(trifluoromethane sulfonyl)imide (LiTFSI) in methylpropylpyrrolidinium bis(trifluoromethane sulfonyl)imide (MPPY.TFSI) by cyclic voltammetry (CV), electrochemical impedance spectroscopy (EIS), and cycle testing. To facilitate the comparison, a C/S composite based on activated carbon (AC) without nitrogen doping was also fabricated under the same conditions as those for the NC/S composite. Compared with the AC/S composite, the NC/S composite showed enhanced activity toward sulfur reduction, as evidenced by the early onset sulfur reduction potential, higher redox current density in the CV test, and faster charge transfer kinetics as indicated by EIS measurement. At room temperature under a current density of 84 mA g-1 (C/20), the battery based on the NC/S composite exhibited higher discharge potential and an initial capacity of 1420 mAh g-1 whereas that based on the AC/S composite showed lower discharge potential and an initial capacity of 1120 mAh g-1. Both batteries showed similar capacity fading with cycling due to the intrinsic polysulfide solubility and the polysulfide shuttle mechanism; the capacity fading can be improved by further modification of the cathode.

Sun, Xiao-Guang [ORNL; Wang, Xiqing [ORNL; Mayes, Richard T [ORNL; Dai, Sheng [ORNL

2012-01-01T23:59:59.000Z

434

Characterization of Electrode Materials for Lithium Ion and Sodium Ion Batteries using Synchrotron Radiation Techniques  

E-Print Network [OSTI]

Relationships in the Li-Ion Battery Electrode Material LiNiAl foil may be used for Li ion battery cathode materials andElectrode materials, Li ion battery, Na ion battery, X-ray

Doeff, Marca M.

2013-01-01T23:59:59.000Z

435

PSM: Lithium-Ion Battery State of Charge (SOC) and Critical Surface Charge (CSC) Estimation using an Electrochemical Model-driven  

E-Print Network [OSTI]

PSM: Lithium-Ion Battery State of Charge (SOC) and Critical Surface Charge (CSC) Estimation using Abstract-- This paper presents a numerical calculation of the evolution of the spatially-resolved solid concentration in the two electrodes of a lithium-ion cell. The microscopic solid con- centration is driven

Stefanopoulou, Anna

436

Fracture of electrodes in lithium-ion batteries caused by fast charging Kejie Zhao, Matt Pharr, Joost J. Vlassak, and Zhigang Suoa  

E-Print Network [OSTI]

Fracture of electrodes in lithium-ion batteries caused by fast charging Kejie Zhao, Matt Pharr distribution of lithium results in stresses that may cause the particle to fracture. The distributions of the particle, below which fracture is averted. © 2010 American Institute of Physics. doi:10.1063/1.3492617 I

437

Liquid-phase plasma synthesis of silicon quantum dots embedded in carbon matrix for lithium battery anodes  

SciTech Connect (OSTI)

Graphical abstract: - Highlights: Silicon quantum dots embedded in carbon matrix (SiQDs/C) were fabricated. SiQDs/C exhibits excellent battery performance as anode materials with high specific capacity. The good performance was attributed to the marriage of small sized SiQDs and carbon. - Abstract: Silicon quantum dots embedded in carbon matrix (SiQDs/C) nanocomposites were prepared by a novel liquid-phase plasma assisted synthetic process. The SiQDs/C nanocomposites were demonstrated to show high specific capacity, good cycling life and high coulmbic efficiency as anode materials for lithium-ion battery.

Wei, Ying [Institute of Functional Nano and Soft Materials (FUNSOM) and Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, Suzhou (China); College of Chemistry and Chemical Engineering, Bohai University, Jinzhou 121000 (China); Yu, Hang; Li, Haitao; Ming, Hai; Pan, Keming; Huang, Hui [Institute of Functional Nano and Soft Materials (FUNSOM) and Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, Suzhou (China); Liu, Yang, E-mail: yangl@suda.edu.cn [Institute of Functional Nano and Soft Materials (FUNSOM) and Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, Suzhou (China); Kang, Zhenhui, E-mail: zhkang@suda.edu.cn [Institute of Functional Nano and Soft Materials (FUNSOM) and Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, Suzhou (China)

2013-10-15T23:59:59.000Z

438

Controlled Nucleation and Growth Process of Li2S2/Li2S in Lithium-Sulfur Batteries  

SciTech Connect (OSTI)

Lithium-sulfur battery is a promising next-generation energy storage system because of its potentially three to five times higher energy density than that of traditional lithium ion batteries. However, the dissolution and precipitation of soluble polysulfides during cycling initiate a series of key-chain reactions that significantly shorten battery life. Herein, we demonstrate that through a simple but effective strategy, significantly improved cycling performance is achieved for high sulfur loading electrodes through controlling the nucleation and precipitation of polysulfieds on the electrode surface. More than 400 or 760 stable cycling are successfully displayed in the cells with locked discharge capacity of 625 mAh g-1 or 500 mAh g-1, respectively. The nucleation and growth process of dissolved polysulfides has been electrochemically altered to confine the thickness of discharge products passivated on the cathode surface, increasing the utilization rate of sulfur while avoiding severe morphology changes on the electrode. More importantly, the exposure of new lithium metal surface to the S-containing electrolyte is also greatly reduced through this strategy, largely minimizing the anode corrosion caused by polysulfides. This work interlocks the electrode morphologies and its evolution with electrochemical interference to modulate cell performances by using Li-S system as a platform, providing different but critical directions for this community.

Zheng, Jianming; Gu, Meng; Wang, Chong M.; Zuo, Pengjian; Koech, Phillip K.; Zhang, Jiguang; Liu, Jun; Xiao, Jie

2013-09-20T23:59:59.000Z

439

Nanowire Lithium-Ion Battery P R O J E C T L E A D E R : Alec Talin (NIST)  

E-Print Network [OSTI]

To fabricate a single nanowire Li-ion battery and observe it charging and discharging. K E Y A C C O M P L I S H M E N T S Designed, fabricated, and tested complete Li-ion nanowire batteries measuring Nanowire Lithium-Ion Battery P R O J E C T L E A D E R : Alec Talin (NIST) C O L L A B O R A T O R

440

Development of bulk-type all-solid-state lithium-sulfur battery using LiBH{sub 4} electrolyte  

SciTech Connect (OSTI)

Stable battery operation of a bulk-type all-solid-state lithium-sulfur battery was demonstrated by using a LiBH{sub 4} electrolyte. The electrochemical activity of insulating elemental sulfur as the positive electrode was enhanced by the mutual dispersion of elemental sulfur and carbon in the composite powders. Subsequently, a tight interface between the sulfur-carbon composite and the LiBH{sub 4} powders was manifested only by cold-pressing owing to the highly deformable nature of the LiBH{sub 4} electrolyte. The high reducing ability of LiBH{sub 4} allows using the use of a Li negative electrode that enhances the energy density. The results demonstrate the interface modification of insulating sulfur and the architecture of an all-solid-state Li-S battery configuration with high energy density.

Unemoto, Atsushi, E-mail: unemoto@imr.tohoku.ac.jp; Ikeshoji, Tamio [WPI-Advanced Institute for Materials Research, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai 980-8577 (Japan); Yasaku, Syun; Matsuo, Motoaki [Institute for Materials Research, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai 980-8577 (Japan); Nogami, Genki; Tazawa, Masaru; Taniguchi, Mitsugu [Mitsubishi Gas Chemicals Co., Ltd., 182 Tayuhama Shinwari, Kita-ku, Niigata 950-3112 (Japan); Orimo, Shin-ichi [WPI-Advanced Institute for Materials Research, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai 980-8577 (Japan); Institute for Materials Research, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai 980-8577 (Japan)

2014-08-25T23:59:59.000Z

Note: This page contains sample records for the topic "rechargeable lithium battery" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

Performance, Charging, and Second-use Considerations for Lithium Batteries for Plug-in Electric Vehicles  

E-Print Network [OSTI]

range. Figure 6: PV/battery system schematic Prospects andAC inverter can be provided by the PV panel or battery aloneor the PV panel and battery in combination. For crystalline

Burke, Andrew

2009-01-01T23:59:59.000Z

442

Modeling Electrochemical Decomposition of Fluoroethylene Carbonate on Silicon Anode Surfaces in Lithium Ion Batteries  

E-Print Network [OSTI]

Fluoroethylene carbonate (FEC) shows promise as an electrolyte additive for improving passivating solid-electrolyte interphase (SEI) films on silicon anodes used in lithium ion batteries (LIB). We apply density functional theory (DFT), ab initio molecular dynamics (AIMD), and quantum chemistry techniques to examine excess-electron-induced FEC molecular decomposition mechanisms that lead to FEC-modified SEI. We consider one- and two-electron reactions using cluster models and explicit interfaces between liquid electrolyte and model Li(x)Si(y) surfaces, respectively. FEC is found to exhibit more varied reaction pathways than unsubstituted ethylene carbonate. The initial bond-breaking events and products of one- and two-electron reactions are qualitatively similar, with a fluoride ion detached in both cases. However, most one-electron products are charge-neutral, not anionic, and may not coalesce to form effective Li+-conducting SEI unless they are further reduced or take part in other reactions. The implications of these reactions to silicon-anode based LIB are discussed.

Kevin Leung; Susan B. Rempe; Michael E. Foster; Yuguang Ma; Julibeth M. Martinez del la Hoz; Na Sai; Perla B. Balbuena

2014-01-17T23:59:59.000Z

443

Interface Modifications by Anion Acceptors for High Energy Lithium Ion Batteries  

SciTech Connect (OSTI)

Li-rich, Mn-rich (LMR) layered composite, for example, Li[Li0.2Ni0.2Mn0.6]O2, has attracted extensive interests because of its highest energy density among all cathode candidates for lithium ion batteries (LIB). However, capacity degradation and voltage fading are the major challenges associated with this series of layered composite, which plagues its practical application. Herein, we demonstrate that anion receptor, tris(pentafluorophenyl)borane ((C6F5)3B, TPFPB), substantially enhances the cycling stability and alleviates the voltage degradation of LMR. In the presence of 0.2 M TPFPB, Li[Li0.2Ni0.2Mn0.6]O2 shows capacity retention of 81% after 300 cycles. It is proposed that TPFPB effectively confines the highly active oxygen species released from structural lattice through its strong coordination ability and high oxygen solubility. The electrolyte decomposition caused by the oxygen species attack is therefore largely mitigated, forming reduced amount of byproducts on the cathode surface. Additionally, other salts such as insulating LiF derived from electrolyte decomposition are also soluble in the presence of TPFPB. The collective effects of TPFPB mitigate the accumulation of parasitic reaction products and stabilize the interfacial resistances between cathode and electrolyte during extended cycling, thus significantly improving the cycling performance of Li[Li0.2Ni0.2Mn0.6]O2.

Zheng, Jianming; Xiao, Jie; Gu, Meng; Zuo, Pengjian; Wang, Chong M.; Zhang, Jiguang

2014-03-15T23:59:59.000Z

444

Fused ring and linking groups effect on overcharge protection for lithium-ion batteries.  

SciTech Connect (OSTI)

The derivatives of 1,3-benzodioxan (DBBD1) and 1,4-benzodioxan (DBBD2) bearing two tert-butyl groups have been synthesized as new redox shuttle additives for overcharge protection of lithium-ion batteries. Both compounds exhibit a reversible redox wave over 4 V vs Li/Li{sup +} with better solubility in a commercial electrolyte (1.2 M LiPF{sub 6}) dissolved in ethylene carbonate/ethyl methyl carbonate (EC/EMC 3/7) than the di-tert-butyl-substituted 1,4-dimethoxybenzene (DDB). The electrochemical stability of DBBD1 and DBBD2 was tested under charge/discharge cycles with 100% overcharge at each cycle in MCMB/LiFePO{sub 4} and Li{sub 4}Ti{sub 5}O{sub 12}/LiFePO{sub 4} cells. DBBD2 shows significantly better performance than DBBD1 for both cell chemistries. The structural difference and reaction energies for decomposition have been studied by density functional calculations.

Weng, W.; Zhang, Z.; Redfern, P. C.; Curtiss, L. A.; Amine, K.

2011-02-01T23:59:59.000Z

445

Lithium Insertion Chemistry of Some Iron Vanadates  

E-Print Network [OSTI]

in A. Nazri, G.Pistoia (Eds. ), Lithium batteries, Science &structure materials in lithium cells, for a lower limitLithium Insertion Chemistry of Some Iron Vanadates Sbastien

Patoux, Sebastien; Richardson, Thomas J.

2008-01-01T23:59:59.000Z

446

Electrochemical-thermal modeling and microscale phase change for passive internal thermal management of lithium ion batteries.  

SciTech Connect (OSTI)

A fully coupled electrochemical and thermal model for lithium-ion batteries is developed to investigate the impact of different thermal management strategies on battery performance. In contrast to previous modeling efforts focused either exclusively on particle electrochemistry on the one hand or overall vehicle simulations on the other, the present work predicts local electrochemical reaction rates using temperature-dependent data on commercially available batteries designed for high rates (C/LiFePO{sub 4}) in a computationally efficient manner. Simulation results show that conventional external cooling systems for these batteries, which have a low composite thermal conductivity ({approx}1 W/m-K), cause either large temperature rises or internal temperature gradients. Thus, a novel, passive internal cooling system that uses heat removal through liquid-vapor phase change is developed. Although there have been prior investigations of phase change at the microscales, fluid flow at the conditions expected here is not well understood. A first-principles based cooling system performance model is developed and validated experimentally, and is integrated into the coupled electrochemical-thermal model for assessment of performance improvement relative to conventional thermal management strategies. The proposed cooling system passively removes heat almost isothermally with negligible thermal resistances between the heat source and cooling fluid. Thus, the minimization of peak temperatures and gradients within batteries allow increased power and energy densities unencumbered by thermal limitations.

Fuller, Thomas F. (Georgia Institute of Technology, Atlanta, GA); Bandhauer, Todd (Georgia Institute of Technology, Atlanta, GA); Garimella, Srinivas (Georgia Institute of Technology, Atlanta, GA)

2012-01-01T23:59:59.000Z

447

Internal Short Circuit Device Helps Improve Lithium-Ion Battery Design (Fact Sheet)  

SciTech Connect (OSTI)

NREL's emulation tool helps manufacturers ensure the safety and reliability of electric vehicle batteries.

Not Available

2012-04-01T23:59:59.000Z

448

Mechanics of Electrodes in Lithium-ion Batteries A dissertation presented  

E-Print Network [OSTI]

investigates the mechanical behavior of electrodes in Li-ion batteries. Each electrode in a Li-ion battery of electrodes in Li-ion batteries. We model an inelastic host of Li by considering diffusion, elastic reaction promotes plastic deformation by lowering the stress needed to flow. Li-ion battery is an emerging

449

Fluorinated Phosphazene Co-solvents for Improved Thermal and Safety Performance in Lithium-Ion Battery Electrolytes  

SciTech Connect (OSTI)

The safety of lithium-ion batteries is coming under increased scrutiny as they are being adopted for large format applications especially in the vehicle transportation industry and for grid-scale energy storage. The primary short-comings of lithium-ion batteries are the flammability of the liquid electrolyte and sensitivity to high voltage and elevated temperatures. We have synthesized a series of non-flammable fluorinated phosphazene liquids and blended them with conventional carbonate solvents. While the use of these phosphazenes as standalone electrolytes is highly desirable, they simply do not satisfy all of the many requirements that must be met such as high LiPF6 solubility and low viscosity, thus we have used them as additives and co-solvents in blends with typical carbonates. The physical and electrochemical properties of the electrolyte blends were characterized, and then the blends were used to build 2032-type coin cells which were evaluated at constant current cycling rates from C/10 to C/1. We have evaluated the performance of the electrolytes by determining the conductivity, viscosity, flash point, vapor pressure, thermal stability, electrochemical window, cell cycling data, and the ability to form solid electrolyte interphase (SEI) films. This paper presents our results on a series of chemically similar fluorinated cyclic phosphazene trimers, the FM series, which has exhibited numerous beneficial effects on battery performance, lifetimes, and safety aspects.

Harry W. Rollins; Mason K. Harrup; Eric J. Dufek; David K. Jamison; Sergiy V. Sazhin; Kevin L. Gering; Dayna L. Daubaras

2014-10-01T23:59:59.000Z

450

An electrochemical cell for in operando studies of lithium/sodium batteries using a conventional x-ray powder diffractometer  

SciTech Connect (OSTI)

An electrochemical cell has been designed for powder X-ray diffraction studies of lithium ion batteries (LIB) and sodium ion batteries (SIB) in operando with high time resolution using a conventional powder X-ray diffractometer. The cell allows for studies of both anode and cathode electrode materials in reflection mode. The cell design closely mimics that of standard battery testing coin cells and allows obtaining powder X-ray diffraction patterns under representative electrochemical conditions. In addition, the cell uses graphite as the X-ray window instead of beryllium, and it is easy to operate and maintain. Test examples on lithium insertion/extraction in two spinel-type LIB electrode materials (Li{sub 4}Ti{sub 5}O{sub 12} anode and LiMn{sub 2}O{sub 4} cathode) are presented as well as first results on sodium extraction from a layered SIB cathode material (Na{sub 0.84}Fe{sub 0.56}Mn{sub 0.44}O{sub 2})

Shen, Yanbin; Pedersen, Erik E.; Christensen, Mogens; Iversen, Bo B., E-mail: bo@chem.au.dk [Center for Materials Crystallography, Department of Chemistry and iNANO, Aarhus University, Aarhus (Denmark)

2014-10-15T23:59:59.000Z

451

Batteries: Overview of Battery Cathodes  

SciTech Connect (OSTI)

The very high theoretical capacity of lithium (3829 mAh/g) provided a compelling rationale from the 1970's onward for development of rechargeable batteries employing the elemental metal as an anode. The realization that some transition metal compounds undergo reductive lithium intercalation reactions reversibly allowed use of these materials as cathodes in these devices, most notably, TiS{sub 2}. Another intercalation compound, LiCoO{sub 2}, was described shortly thereafter but, because it was produced in the discharged state, was not considered to be of interest by battery companies at the time. Due to difficulties with the rechargeability of lithium and related safety concerns, however, alternative anodes were sought. The graphite intercalation compound (GIC) LiC{sub 6} was considered an attractive candidate but the high reactivity with commonly used electrolytic solutions containing organic solvents was recognized as a significant impediment to its use. The development of electrolytes that allowed the formation of a solid electrolyte interface (SEI) on surfaces of the carbon particles was a breakthrough that enabled commercialization of Li-ion batteries. In 1990, Sony announced the first commercial batteries based on a dual Li ion intercalation system. These devices are assembled in the discharged state, so that it is convenient to employ a prelithiated cathode such as LiCoO{sub 2} with the commonly used graphite anode. After charging, the batteries are ready to power devices. The practical realization of high energy density Li-ion batteries revolutionized the portable electronics industry, as evidenced by the widespread market penetration of mobile phones, laptop computers, digital music players, and other lightweight devices since the early 1990s. In 2009, worldwide sales of Li-ion batteries for these applications alone were US$ 7 billion. Furthermore, their performance characteristics (Figure 1) make them attractive for traction applications such as hybrid electric vehicles (HEVs), plug-in hybrid electric vehicles (PHEVs), and electric vehicles (EVs); a market predicted to be potentially ten times greater than that of consumer electronics. In fact, only Liion batteries can meet the requirements for PHEVs as set by the U.S. Advanced Battery Consortium (USABC), although they still fall slightly short of EV goals. In the case of Li-ion batteries, the trade-off between power and energy shown in Figure 1 is a function both of device design and the electrode materials that are used. Thus, a high power battery (e.g., one intended for an HEV) will not necessarily contain the same electrode materials as one designed for high energy (i.e., for an EV). As is shown in Figure 1, power translates into acceleration, and energy into range, or miles traveled, for vehicular uses. Furthermore, performance, cost, and abuse-tolerance requirements for traction batteries differ considerably from those for consumer electronics batteries. Vehicular applications are particularly sensitive to cost; currently, Li-ion batteries are priced at about $1000/kWh, whereas the USABC goal is $150/kWh. The three most expensive components of a Li-ion battery, no matter what the configuration, are the cathode, the separator, and the electrolyte. Reduction of cost has been one of the primary driving forces for the investigation of new cathode materials to replace expensive LiCoO{sub 2}, particularly for vehicular applications. Another extremely important factor is safety under abuse conditions such as overcharge. This is particularly relevant for the large battery packs intended for vehicular uses, which are designed with multiple cells wired in series arrays. Premature failure of one cell in a string may cause others to go into overcharge during passage of current. These considerations have led to the development of several different types of cathode materials, as will be covered in the next section. Because there is not yet one ideal material that can meet requirements for all applications, research into cathodes for Li-ion batteries is, as of this writ

Doeff, Marca M

2010-07-12T23:59:59.000Z

452

STUDIES ON TWO CLASSES OF POSITIVE ELECTRODE MATERIALS FOR LITHIUM-ION BATTERIES  

SciTech Connect (OSTI)

The development of advanced lithium-ion batteries is key to the success of many technologies, and in particular, hybrid electric vehicles. In addition to finding materials with higher energy and power densities, improvements in other factors such as cost, toxicity, lifetime, and safety are also required. Lithium transition metal oxide and LiFePO{sub 4}/C composite materials offer several distinct advantages in achieving many of these goals and are the focus of this report. Two series of layered lithium transition metal oxides, namely LiNi{sub 1/3}Co{sub 1/3-y}M{sub y}Mn{sub 1/3}O{sub 2} (M=Al, Co, Fe, Ti) and LiNi{sub 0.4}Co{sub 0.2-y}M{sub y}Mn{sub 0.4}O{sub 2} (M = Al, Co, Fe), have been synthesized. The effect of substitution on the crystal structure is related to shifts in transport properties and ultimately to the electrochemical performance. Partial aluminum substitution creates a high-rate positive electrode material capable of delivering twice the discharge capacity of unsubstituted materials. Iron substituted materials suffer from limited electrochemical performance and poor cycling stability due to the degradation of the layered structure. Titanium substitution creates a very high rate positive electrode material due to a decrease in the anti-site defect concentration. LiFePO{sub 4} is a very promising electrode material but suffers from poor electronic and ionic conductivity. To overcome this, two new techniques have been developed to synthesize high performance LiFePO{sub 4}/C composite materials. The use of graphitization catalysts in conjunction with pyromellitic acid leads to a highly graphitic carbon coating on the surface of LiFePO{sub 4} particles. Under the proper conditions, the room temperature electronic conductivity can be improved by nearly five orders of magnitude over untreated materials. Using Raman spectroscopy, the improvement in conductivity and rate performance of such materials has been related to the underlying structure of the carbon films. The combustion synthesis of LiFePO4 materials allows for the formation of nanoscale active material particles with high-quality carbon coatings in a quick and inexpensive fashion. The carbon coating is formed during the initial combustion process at temperatures that exceed the thermal stability limit of LiFePO{sub 4}. The olivine structure is then formed after a brief calcination at lower temperatures in a controlled environment. The carbon coating produced in this manner has an improved graphitic character and results in superior electrochemical performance. The potential co-synthesis of conductive carbon entities, such as carbon nanotubes and fibers, is also briefly discussed.

Wilcox, James D.

2008-12-18T23:59:59.000Z

453

A hyperbolic problem with non-local constraint describing ion-rearrangement in a model for ion-lithium batteries  

E-Print Network [OSTI]

In this paper we study the Fokker-Plank equation arising in a model which describes the charge and discharge process of ion-lithium batteries. In particular we focus our attention on slow reaction regimes with non-negligible entropic effects, which triggers the mass-splitting transition. At first we prove that the problem is globally well-posed. After that we prove a stability result under some hypothesis of improved regularity and a uniqueness result for the stability under some additional condition of

Stefano Scrobogna; Juan J. L. Velzquez

2015-02-20T23:59:59.000Z

454

Layered Li1+x(Ni0.425Mn0.425Co0.15)1xO2 Positive Electrode Materials for Lithium-Ion Batteries  

E-Print Network [OSTI]

Layered Li1+x(Ni0.425Mn0.425Co0.15)1­xO2 Positive Electrode Materials for Lithium-Ion Batteries range decreased with overlithiation Keywords : Although LiCoO2 is suitable for the lithium-ion battery electrochemical performances. Recently lithium-rich manganese-based materials such as Li[NixLi(1/3­2x/3)Mn(2/3­x/3

Boyer, Edmond

455

Synthesis and Characterization of Mesoporous Semiconductors and Their Energy Applications  

E-Print Network [OSTI]

for Use in Rechargeable Lithium Batteries. J. Power SourcesHigh Rate Rechargeable Lithium Batteries. Small Pan, J. H. ;Electrode for Lithium Ion Batteries. Nano Lett. 2009, 9,

Kang, Chris Byung-hwa

2013-01-01T23:59:59.000Z

456

Multimode AFM (Nanoscope) | EMSL  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

grown... Lithium Metal Anodes for Rechargeable Batteries. Rechargeable lithium metal batteries have much higher energy density than those of lithium ion batteries using...

457

Implications of Rapid Charging and Chemo-Mechanical Degradation in Lithium-Ion Battery Electrodes  

E-Print Network [OSTI]

Li-ion batteries, owing to their unique characteristics with high power and energy density, are broadly considered a leading candidate for vehicle electrification. A pivotal performance drawback of the Li-ion batteries manifests in the lengthy...

Hasan, Mohammed Fouad

2014-04-23T23:59:59.000Z

458

Efficient Simulation and Reformulation of Lithium-Ion Battery Models for Enabling Electric Transportation  

E-Print Network [OSTI]

Improving the efficiency and utilization of battery systems can increase the viability and cost-effectiveness of existing technologies for electric vehicles (EVs). Developing smarter battery management systems and advanced ...

Northrop, Paul W. C.

459

Efficient Reformulation of Solid-Phase Diffusion in Physics-Based Lithium-Ion Battery Models  

E-Print Network [OSTI]

in the solid phase. Introduction Physics based Li-ion battery models use porous electrode theory. One and their drawbacks Porous electrode models of Li-ion batteries often use approximations to eliminate the time and disadvantages when used in Li-ion battery models. For instance, the Duhamel's superposition method is the robust

Subramanian, Venkat

460

Plasma synthesis of lithium based intercalation powders for solid polymer electrolyte batteries  

DOE Patents [OSTI]

The invention relates to a process for preparing lithium intercalation compounds by plasma reaction comprising the steps of: forming a feed solution by mixing lithium nitrate or lithium hydroxide or lithium oxide and the required metal nitrate or metal hydroxide or metal oxide and between 10-50% alcohol by weight; mixing the feed solution with O.sub.2 gas wherein the O.sub.2 gas atomizes the feed solution into fine reactant droplets, inserting the atomized feed solution into a plasma reactor to form an intercalation powder; and if desired, heating the resulting powder to from a very pure single phase product.

Kong, Peter C. (Idaho Falls, ID); Pink, Robert J. (Pocatello, ID); Nelson, Lee O. (Idaho Falls, ID)

2005-01-04T23:59:59.000Z

Note: This page contains sample records for the topic "rechargeable lithium battery" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

Composition-tailored synthesis of gradient transition metal precursor particles for lithium-ion battery cathode materials.  

SciTech Connect (OSTI)

We report the tailored synthesis of particles with internal gradients in transition metal composition aided by the use of a general process model. Tailored synthesis of transition metal particles was achieved using a coprecipitation reaction with tunable control over the process conditions. Gradients in the internal composition of the particles was monitored and confirmed experimentally by analysis of particles collected during regularly timed intervals. Particles collected from the reactor at the end of the process were used as the precursor material for the solid-state synthesis of Li{sub 1.2}(Mn{sub 0.62}Ni{sub 0.38}){sub 0.8}O{sub 2}, which was electrochemically evaluated as the active cathode material in a lithium battery. The Li{sub 1.2}(Mn{sub 0.62}Ni{sub 0.38}){sub 0.8}O{sub 2} material was the first example of a structurally integrated multiphase material with a tailored internal gradient in relative transition metal composition as the active cathode material in a lithium-ion battery. We believe our general synthesis strategy may be applied to produce a variety of new cathode materials with tunable interior, surface, and overall relative transition metal compositions.

Koenig, G. M.; Belharouak, I.; Deng, H.; Amine, K.; Sun, Y. K. (Chemical Sciences and Engineering Division)

2011-04-12T23:59:59.000Z

462

Three-dimensional graphene/LiFePO{sub 4} nanostructures as cathode materials for flexible lithium-ion batteries  

SciTech Connect (OSTI)

Graphical abstract: Graphene/LiFePO{sub 4} composites as a high-performance cathode material for flexible lithium-ion batteries have been prepared by using a co-precipitation method to synthesize graphene/LiFePO4 powders as precursors and then followed by a solvent evaporation process. - Highlights: Flexible LiFePO{sub 4}/graphene films were prepared first time by a solvent evaporation process. The flexible electrode exhibited a high discharge capacity without conductive additives. Graphene network offers the electrode adequate strength to withstand repeated flexing. - Abstract: Three-dimensional graphene/LiFePO{sub 4} nanostructures for flexible lithium-ion batteries were successfully prepared by solvent evaporation method. Structural characteristics of flexible electrodes were investigated by X-ray diffraction (XRD), atomic force microscopy (AFM) and scanning electron microscopy (SEM). Electrochemical performance of graphene/LiFePO{sub 4} was examined by a variety of electrochemical testing techniques. The graphene/LiFePO{sub 4} nanostructures showed high electrochemical properties and significant flexibility. The composites with low graphene content exhibited a high capacity of 163.7 mAh g{sup ?1} at 0.1 C and 114 mAh g{sup ?1} at 5 C without further incorporation of conductive agents.

Ding, Y.H., E-mail: yhding@xtu.edu.cn [College of Chemical Engineering, Xiangtan University, Hunan 411105 (China); Institute of Rheology Mechanics, Xiangtan University, Hunan 411105 (China); Ren, H.M. [Institute of Rheology Mechanics, Xiangtan University, Hunan 411105 (China); Huang, Y.Y. [BTR New Energy Materials Inc., Shenzhen 518000 (China); Chang, F.H.; Zhang, P. [Institute of Rheology Mechanics, Xiangtan University, Hunan 411105 (China)

2013-10-15T23:59:59.000Z

463

Interface Modifications by Anion Acceptors for High Energy Lithium...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Modifications by Anion Acceptors for High Energy Lithium Ion Batteries. Interface Modifications by Anion Acceptors for High Energy Lithium Ion Batteries. Abstract: Li-rich, Mn-rich...

464

Designing Silicon Nanostructures for High Energy Lithium Ion...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Designing Silicon Nanostructures for High Energy Lithium Ion Battery Anodes Designing Silicon Nanostructures for High Energy Lithium Ion Battery Anodes 2012 DOE Hydrogen and Fuel...

465

Vehicle Technologies Office Merit Review 2014: High Energy Lithium...  

Broader source: Energy.gov (indexed) [DOE]

High Energy Lithium Batteries for PHEV Applications Vehicle Technologies Office Merit Review 2014: High Energy Lithium Batteries for PHEV Applications Presentation given by...

466

Additives and Cathode Materials for High-Energy Lithium Sulfur...  

Broader source: Energy.gov (indexed) [DOE]

Additives and Cathode Materials for High-Energy Lithium Sulfur Batteries Additives and Cathode Materials for High-Energy Lithium Sulfur Batteries 2013 DOE Hydrogen and Fuel Cells...

467

Optimization of mesoporous carbon structures for lithium&ndash...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

mesoporous carbon structures for lithiumsulfur battery applications. Optimization of mesoporous carbon structures for lithiumsulfur battery applications. Abstract:...

468

Special Feature: Reducing Energy Costs with Better Batteries  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Scientific Computing Center (NERSC) are working to achieve this goal. New Anode Boots Capacity of Lithium-Ion Batteries Lithium-ion batteries are everywhere- in smart...

469

Mapping Particle Charges in Battery Electrodes  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

of batteries masks their chemical complexity. A typical lithium-ion battery in a cell phone consists of trillions of particles. When a lithium-ion battery is charged or...

470

Effects of electrolyte salts on the performance of Li-O2 batteries  

SciTech Connect (OSTI)

It is well known that the stability of nonaqueous electrolyte is critical for the rechargeable Li-O2 batteries. Although stability of many solvents used in the electrolytes has been investigated, considerably less attention has been paid to the stability of electrolyte salt which is the second major component. Herein, we report the systematic investigation of the stability of seven common lithium salts in tetraglyme used as electrolytes for Li-O2 batteries. The discharge products of Li-O2 reaction were analyzed by X-ray diffraction, X-ray photoelectron spectroscopy and nuclear magnetic resonance spectroscopy. The performance of Li-O2 batteries was strongly affected by the salt used in the electrolyte. Lithium tetrafluoroborate (LiBF4) and lithium bis(oxalato)borate (LiBOB) decompose and form LiF and lithium borates, respectively during the discharge of Li-O2 batteries. Several other salts, including lithium bis(trifluoromethane)sulfonamide (LiTFSI), lithium trifluoromethanesulfonate (LiTf), lithium hexafluorophosphate (LiPF6), lithium perchlorate (LiClO4) , and lithium bromide (LiBr) led to the discharge products which mainly consisted of Li2O2 and only minor signs of decomposition of LiTFSI, LiTf, LPF6 and LiClO4 were detected. LiBr showed the best stability during the discharge process. As for the cycling performance, LiTf and LiTFSI were the best among the studied salts. In addition to the instability of lithium salts, decomposition of tetraglyme solvent was a more significant factor contributing to the limited cycling stability. Thus a more stable nonaqueous electrolyte including organic solvent and lithium salt still need to be further developed to reach a fully reversible Li-O2 battery.

Nasybulin, Eduard N.; Xu, Wu; Engelhard, Mark H.; Nie, Zimin; Burton, Sarah D.; Cosimbescu, Lelia; Gross, Mark E.; Zhang, Jiguang

2013-02-05T23:59:59.000Z

471

E-Print Network 3.0 - advanced lithium-ion batteries Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Materials Reliability Division Collection: Materials Science 38 1 of 5 Copyright 2007 Tesla Motors Updated: December 19, 2007 The Tesla Roadster Battery System Summary: This...

472

Performance Characteristics of Lithium-ion Batteries of Various Chemistries for Plug-in Hybrid Vehicles  

E-Print Network [OSTI]

initial and life cycle costs of the battery. This paper hasbattery chemistries have the potential for longer cycle life which on a life cycle cost

Burke, Andrew; Miller, Marshall

2009-01-01T23:59:59.000Z

473

FLUIDIC: Metal Air Recharged  

ScienceCinema (OSTI)

Fluidic, with the help of ARPA-E funding, has developed and deployed the world's first proven high cycle life metal air battery. Metal air technology, often used in smaller scale devices like hearing aids, has the lowest cost per electron of any rechargeable battery storage in existence. Deploying these batteries for grid reliability is competitive with pumped hydro installations while having the advantages of a small footprint. Fluidic's battery technology allows utilities and other end users to store intermittent energy generated from solar and wind, as well as maintain reliable electrical delivery during power outages. The batteries are manufactured in the US and currently deployed to customers in emerging markets for cell tower reliability. As they continue to add customers, they've gained experience and real world data that will soon be leveraged for US grid reliability.

Friesen, Cody

2014-04-02T23:59:59.000Z

474

FLUIDIC: Metal Air Recharged  

SciTech Connect (OSTI)

Fluidic, with the help of ARPA-E funding, has developed and deployed the world's first proven high cycle life metal air battery. Metal air technology, often used in smaller scale devices like hearing aids, has the lowest cost per electron of any rechargeable battery storage in existence. Deploying these batteries for grid reliability is competitive with pumped hydro installations while having the advantages of a small footprint. Fluidic's battery technology allows utilities and other end users to store intermittent energy generated from solar and wind, as well as maintain reliable electrical delivery during power outages. The batteries are manufactured in the US and currently deployed to customers in emerging markets for cell tower reliability. As they continue to add customers, they've gained experience and real world data that will soon be leveraged for US grid reliability.

Friesen, Cody

2014-03-07T23:59:59.000Z

475

Vehicle Technologies Office Merit Review 2014: Daikin Advanced Lithium Ion Battery Technology High Voltage Electrolyte  

Broader source: Energy.gov [DOE]

Presentation given by Daikin America at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about Daikin advanced lithium ion...

476

Surface-Modified Membrane as A Separator for Lithium-Ion Polymer Battery  

E-Print Network [OSTI]

This paper describes the fabrication of novel modified polyethylene (PE) membranes using plasma technology to create high-performance and cost-effective separator membranes for practical applications in lithium-ion polymer ...

Kim, Jun Young

477

Thermal characteristics of air flow cooling in the lithium ion batteries experimental chamber  

SciTech Connect (OSTI)

A battery pack prototype has been designed and built to evaluate various air cooling concepts for the thermal management of Li-ion batteries. The heat generation from the Li-Ion batteries was simulated with electrical heat generation devices with the same dimensions as the Li-Ion battery (200 mm x 150 mm x 12 mm). Each battery simulator generates up to 15W of heat. There are 20 temperature probes placed uniformly on the surface of the battery simulator, which can measure temperatures in the range from -40 C to +120 C. The prototype for the pack has up to 100 battery simulators and temperature probes are recorder using a PC based DAQ system. We can measure the average surface temperature of the simulator, temperature distribution on each surface and temperature distributions in the pack. The pack which holds the battery simulators is built as a crate, with adjustable gap (varies from 2mm to 5mm) between the simulators for air flow channel studies. The total system flow rate and the inlet flow temperature are controlled during the test. The cooling channel with various heat transfer enhancing devices can be installed between the simulators to investigate the cooling performance. The prototype was designed to configure the number of cooling channels from one to hundred Li-ion battery simulators. The pack is thermally isolated which prevents heat transfer from the pack to the surroundings. The flow device can provide the air flow rate in the gap of up to 5m/s velocity and air temperature in the range from -30 C to +50 C. Test results are compared with computational modeling of the test configurations. The present test set up will be used for future tests for developing and validating new cooling concepts such as surface conditions or heat pipes.

Lukhanin A.; Rohatgi U.; Belyaev, A.; Fedorchenko, D.; Khazhmuradov, M.; Lukhanin, O; Rudychev, I.

2012-07-08T23:59:59.000Z

478

Hydrothermal synthesis of flowerlike SnO{sub 2} nanorod bundles and their application for lithium ion battery  

SciTech Connect (OSTI)

SnO{sub 2} nanorod bundles were synthesized by hydrothermal method. Field-emission scanning electron microscopy and transmission electron microscopy images showed that the as-prepared flowerlike SnO{sub 2} nanorod bundles consist of tetragonal nanorods with size readily tunable. Their electrochemical properties and application as anode for lithium-ion battery were evaluated by galvanostatic dischargecharge testing and cycle voltammetry. SnO{sub 2} nanorod flowers possess improved discharge capacity of 694 mA h g{sup ?1} up to 40th cycle at 0.1 C. - Highlights: ? The flowerlike SnO{sub 2} nanorod bundles were synthesized by hydrothermal method. ? SnO{sub 2} nanorod bundles with tunable size by controlling concentration of SnCl{sub 4}. ? A probable formation mechanism of SnO{sub 2} nanorod bundles has been proposed.

Wen, Zhigang, E-mail: xh168688@126.com [School of Materials Science and Engineering, Central South University, Changsha 410083 (China); State Key Laboratory of Powder Metallurgy, Central South University, Changsha 410083 (China); Department of Chemistry and Chemical Engineering, Qiannan Normal College for Nationalities, Duyun 558000 (China); Zheng, Feng, E-mail: fzheng@mail.csu.edu.cn [School of Materials Science and Engineering, Central South University, Changsha 410083 (China); State Key Laboratory of Powder Metallurgy, Central South University, Changsha 410083 (China); Yu, Hongchun; Jiang, Ziran [School of Materials Science and Engineering, Central South University, Changsha 410083 (China); Liu, Kanglian [Department of Chemistry and Chemical Engineering, Qiannan Normal College for Nationalities, Duyun 558000 (China)

2013-02-15T23:59:59.000Z

479

Bis(fluoromalonato)borate (BFMB) Anion Based Ionic Liquid As an Additive for Lithium-Ion Battery Electrolytes  

SciTech Connect (OSTI)

Propylene carbonate (PC) is a good solvent for lithium ion battery applications due to its low melting point and high dielectric constant. However, PC is easily intercalated into graphite causing it to exfoliate, killing its electrochemical performance. Here we report on the synthesis of a new ionic liquid electrolyte based on partially fluorinated borate anion, 1-butyl-1,2-dimethylimidazolium bis(fluoromalonato)borate (BDMIm.BFMB), which can be used as an additive in 1 M LiPF6/PC electrolyte to suppress graphite exfoliation and improve cycling performance. In addition, both PC and BDMIm.BFMB can be used synergistically as additive to 1.0M LiPF6/methyl isopropyl sulfone (MIPS) to dramatically improve its cycling performance. It is also found that the chemistry nature of the ionic liquids has dramatic effect on their role as additive in PC based electrolyte.

Sun, Xiao-Guang [ORNL] [ORNL; Liao, Chen [ORNL] [ORNL; Baggetto, Loic [ORNL] [ORNL; Guo, Bingkun [ORNL] [ORNL; Unocic, Raymond R [ORNL] [ORNL; Veith, Gabriel M [ORNL] [ORNL; Dai, Sheng [ORNL] [ORNL

2014-01-01T23:59:59.000Z

480

Simulations of Plug-in Hybrid Vehicles Using Advanced Lithium Batteries and Ultracapacitors on Various Driving Cycles  

E-Print Network [OSTI]

of Ultracapacitor-Battery Energy Storage Systems GainingFerdowsi, A New Battery/Ultracapacitor Energy Storage Systemthe vehicle. The energy storage and battery weight for AER

Burke, Andy; Zhao, Hengbing

2010-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "rechargeable lithium battery" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


481

Performance, Charging, and Second-use Considerations for Lithium Batteries for Plug-in Electric Vehicles  

E-Print Network [OSTI]

power required by the electric motor. The characteristics ofthe battery size and the electric motor and engine powers,electric range and electric motor power (mid-size passenger

Burke, Andrew

2009-01-01T23:59:59.000Z

482

Missouri Lithium-Ion Battery Company Hosts Tour With U.S. Deputy...  

Energy Savers [EERE]

Kokam's in Missouri are helping American workers to compete in the fast-growing advanced battery and energy storage industry," said Deputy Secretary of Energy Poneman. "We at the...

483

ESTABLISHING SUSTAINABLE US HEV/PHEV MANUFACTURING BASE: STABILIZED LITHIUM METAL POWDER, ENABLING MATERIAL AND REVOLUTIONARY TECHNOLOGY FOR HIGH ENERGY LI-ION BATTERIES  

SciTech Connect (OSTI)

FMC Lithium Division has successfully completed the project Establishing Sustainable US PHEV/EV Manufacturing Base: Stabilized Lithium Metal Powder, Enabling Material and Revolutionary Technology for High Energy Li-ion Batteries. The project included design, acquisition and process development for the production scale units to 1) produce stabilized lithium dispersions in oil medium, 2) to produce dry stabilized lithium metal powders, 3) to evaluate, design and acquire pilot-scale unit for alternative production technology to further decrease the cost, and 4) to demonstrate concepts for integrating SLMP technology into the Li- ion batteries to increase energy density. It is very difficult to satisfy safety, cost and performance requirements for the PHEV and EV applications. As the initial step in SLMP Technology introduction, industry can use commercially available LiMn2O4 or LiFePO4, for example, that are the only proven safer and cheaper lithium providing cathodes available on the market. Unfortunately, these cathodes alone are inferior to the energy density of the conventional LiCoO2 cathode and, even when paired with the advanced anode materials, such as silicon composite material, the resulting cell will still not meet the energy density requirements. We have demonstrated, however, if SLMP Technology is used to compensate for the irreversible capacity in the anode, the efficiency of the cathode utilization will be improved and the cost of the cell, based on the materials, will decrease.

Yakovleva, Marina

2012-12-31T23:59:59.000Z

484

Rechargeable alkaline zinc/ferricyanide battery, Phase III. Final report, 26 October 1981-18 September 1982  

SciTech Connect (OSTI)

Project effort was concentrated primarily on technical advancement of the alkaline zinc/ferricyanide battery to meet goals of scale-up and demonstration of solid-reactant storage with 1000-cm/sup 2/ full-scale cells; development of a conceptual engineering design for a 50-kW solar-photovoltaic storage system; demonstration of solar acceptance random cycling; and determination of cycle life of cells operating at 70- and 200-mA.h/cm/sup 2/ capacity. These goals were met in the design, fabrication, and cyclic testing of a 1000-cm/sup 2/ cell having a flow aspect ratio of 2:1. After some design optimization, energy efficiency in 2N NaOH at 43/sup 0/C is 74 to 78 percent. Testing has been in conjunction with a crystallizer/reservoir designed with a capacity of 300 mA.h/cm/sup 2/ that delivers solids-free electrolyte to the cell. A conceptual engineering design for a 50-kW solar storage-battery system has been formulated with mass and thermal balances computed. Single-cell (60-cm/sup 2/) cycle life tests are in progress at 35 mA/cm/sup 2/ with 2N NaOH electrolyte with Nafion N-125 separator at 40/sup 0/C. Over 800 cycles at 70 mA.h/cm/sup 2/ capacity with mean energy efficiency of 76.6 +- 2.1 percent have been logged. Mean voltaic and coulombic efficiencies are 83.3 +- 1.8 percent and 92.0 +- 1.8 percent, respectively. Single-cell (60-cm/sup 2/) cycle life tests run under similar conditions at 249 +- 45 mA.h/cm/sup 2/ have logged over 220 cycles with mean energy efficiency of 75.3 +- 5.1 percent. Mean voltaic and coulombic efficiencies are 84.7 +- 2.0 and 89.0 +- 6.0, respectively.

Adams, G.B.; Hollandsworth, R.P.; Webber, B.D.

1983-02-01T23:59:59.000Z

485

Tailored Recovery of Carbons from Waste Tires for Enhanced Performance as Anodes in Lithium-ion Batteries  

SciTech Connect (OSTI)

Morphologically tailored pyrolysis-recovered carbon black is utilized in lithium-ion batteries as a potential solution for adding value to waste tire-rubber-derived materials. Micronized tire rubber was digested in a hot oleum bath to yield a sulfonated rubber slurry that was then filtered, washed, and compressed into a solid cake. Carbon was recovered from the modified rubber cake by pyrolysis in a nitrogen atmosphere. The chemical pretreatment of rubber produced a carbon monolith with higher yield than that from the control (a fluffy tire-rubber-derived carbon black). The carbon monolith showed a very small volume fraction of pores of widths 3 4 nm, reduced specific surface area, and an ordered assembly of graphitic domains. Electrochemical studies on the recovered-carbon-based anode revealed an improved Li-ion battery performance with higher reversible capacity than that of commercial carbon materials. Anodes made with a sulfonated tire-rubber-derived carbon and a control tire-rubber-derived carbon, respectively, exhibited an initial coulombic efficiency of 80% and 45%, respectively. The reversible capacity of the cell with the sulfonated carbon as anode was 400 mAh/g after 100 cycles, with nearly 100% coulombic efficiency. Our success in producing higher performance carbon material from waste tire rubber for potential use in energy storage applications adds a new avenue to tire rubber recycling.

Naskar, Amit K [ORNL; Bi, [ORNL; Saha, Dipendu [ORNL; Chi, Miaofang [ORNL; Bridges, Craig A [ORNL; Paranthaman, Mariappan Parans [ORNL

2014-01-01T23:59:59.000Z

486

New materials for batteries and fuel cells. Materials Research Society symposium proceedings, Volume 575  

SciTech Connect (OSTI)

This proceedings volume is organized into seven sections that reflect the materials systems and issues of electrochemical materials R and D in batteries, fuel cells, and capacitors. The first three parts are largely devoted to lithium ion rechargeable battery materials since that electrochemical system has received much of the attention from the scientific community. Part 1 discusses cathodes for lithium ion rechargeable batteries as well as various other battery systems. Part 2 deals with electrolytes and cell stability, and Part 3 discusses anode developments, focusing on carbon and metal oxides. Part 4 focuses on another rechargeable system that has received substantial interest, nickel/metal hydride battery materials. The next two parts discuss fuel cells--Part 5 deals with Proton Exchange Membrane (PEM) fuel cells, and Part 6 discusses oxide materials for solid oxide fuel cells. The former has the benefit of operating around room temperature, whereas the latter has the benefit of operating with a more diverse (non-hydrogen) fuel source. Part 7 presents developments in electrochemical capacitors, termed Supercapacitors. These devices are receiving renewed interest and have shown substantial improvements in the past few years. In all, the results presented at this symposium gave a deeper understanding of the relationship between synthesis, properties, and performance of power source materials. Papers are processed separately for inclusion on the data base.

Doughty, D.H.; Nazar, L.F.; Arakawa, Masayasu; Brack, H.P.; Naoi, Katsuhiko [eds.

2000-07-01T23:59:59.000Z

487

Mechanical characterization of lithium-ion battery micro components for development of homogenized and multilayer material models  

E-Print Network [OSTI]

The overall battery research of the Impact and Crashworthiness Laboratory (ICL) at MIT has been focused on understanding the battery's mechanical properties so that individual battery cells and battery packs can be ...

Miller, Kyle M. (Kyle Mark)

2014-01-01T23:59:59.000Z

488

innovati nNREL Enhances the Performance of a Lithium-Ion Battery Cathode  

E-Print Network [OSTI]

potential environmental and safety issues. The search for a replacement cathode material has led to lithium, the chemical reaction of the anode with the electrolyte causes electrons to enter the wire, moving throughFePO4 is due to the particular geometry of its electronic struc- ture--in technical terms, it has

489

Characterization of Electrode Materials for Lithium Ion and Sodium Ion Batteries using Synchrotron Radiation Techniques  

SciTech Connect (OSTI)

We describe the use of synchrotron X-ray absorption spectroscopy (XAS) and X-ray diffraction (XRD) techniques to probe details of intercalation/deintercalation processes in electrode materials for Li ion and Na ion batteries. Both in situ and ex situ experiments are used to understand structural behavior relevant to the operation of devices.

Mehta, Apurva; Stanford Synchrotron Radiation Lightsource; Doeff, Marca M.; Chen, Guoying; Cabana, Jordi; Richardson, Thomas J.; Mehta, Apurva; Shirpour, Mona; Duncan, Hugues; Kim, Chunjoong; Kam, Kinson C.; Conry, Thomas

2013-04-30T23:59:59.000Z

490

High Energy Density Cathode for Lithium Batteries: From LiCoO_(2) to Sulfur  

E-Print Network [OSTI]

addressed, i.e. the safety hazard resulted from the Li dendrite formation on the Li metal anode and the poor cyclability arising from the polysulfides shuttle. Firstly, to overcome the safety issue, this dissertation reported a lithiated Si-S (LSS) battery...

Pu, Xiong

2014-05-29T23:59:59.000Z

491

Innovative Manufacturing and Materials for Low-Cost Lithium-Ion...  

Broader source: Energy.gov (indexed) [DOE]

Merit Review 2014: Innovative Manufacturing and Materials for Low-Cost Lithium-Ion Batteries Innovative Manufacturing and Materials for Low-Cost Lithium-Ion Batteries...

492

Design of an AUV recharging system  

E-Print Network [OSTI]

The utility of present Autonomous Underwater Vehicles (AUVs) is limited by their on-board energy storage capability. Research indicates that rechargeable batteries will continue to be the AUV power source of choice for at ...

Gish, Lynn Andrew

2004-01-01T23:59:59.000Z

493

Cation-substituted spinel oxide and oxyfluoride cathodes for lithium ion batteries  

DOE Patents [OSTI]

The present invention includes compositions and methods of making cation-substituted and fluorine-substituted spinel cathode compositions by firing a LiMn.sub.2-y-zLi.sub.yM.sub.zO.sub.4 oxide with NH.sub.4HF.sub.2 at low temperatures of between about 300 and 700.degree. C. for 2 to 8 hours and a .eta. of more than 0 and less than about 0.50, mixed two-phase compositions consisting of a spinel cathode and a layered oxide cathode, and coupling them with unmodified or surface modified graphite anodes in lithium ion cells.

Manthiram, Arumugam; Choi, Wongchang

2014-05-13T23:59:59.000Z

494

Olivine electrode engineering impact on the electrochemical performance of lithium-ion batteries.  

SciTech Connect (OSTI)

High energy and power density lithium iron phosphate was studied for hybrid electric vehicle applications. This work addresses the effects of porosity in a composite electrode using a four-point probe resistivity analyzer, galvanostatic cycling, and electrochemical impedance spectroscopy (EIS). The four-point probe result indicates that the porosity of composite electrode affects the electronic conductivity significantly. This effect is also observed from the cell's pulse current discharge performance. Compared to the direct current (dc) methods used, the EIS data are more sensitive to electrode porosity, especially for electrodes with low porosity values.

Lu, W.; Jansen, A.; Dees, D.; Henriksen, G.; Chemical Sciences and Engineering Division

2010-08-01T23:59:59.000Z

495

Lithium transition metal fluorophosphates (Li{sub 2}CoPO{sub 4}F and Li{sub 2}NiPO{sub 4}F) as cathode materials for lithium ion battery from atomistic simulation  

SciTech Connect (OSTI)

Lithium transition metal fluorophosphates (Li{sub 2}MPO{sub 4}F, M: Co and Ni) have been investigated from atomistic simulation. In order to predict the characteristics of these materials as cathode materials for lithium ion batteries, structural property, defect chemistry, and Li{sup +} ion transportation property are characterized. The coreshell model with empirical force fields is employed to reproduce the unit-cell parameters of crystal structure, which are in good agreement with the experimental data. In addition, the formation energies of intrinsic defects (Frenkel and antisite) are determined by energetics calculation. From migration energy calculations, it is found that these flurophosphates have a 3D Li{sup +} ion diffusion network forecasting good Li{sup +} ion conducting performances. Accordingly, we expect that this study provides an atomic scale insight as cathode materials for lithium ion batteries. - Graphical abstract: Lithium transition metal fluorophosphates (Li{sub 2}CoPO{sub 4}F and Li{sub 2}NiPO{sub 4}F). Display Omitted - Highlights: Lithium transition metal fluorophosphates (Li{sub 2}MPO{sub 4}F, M: Co and Ni) are investigated from classical atomistic simulation. The unit-cell parameters from experimental studies are reproduced by the coreshell model. Li{sup +} ion conducting Li{sub 2}MPO{sub 4}F has a 3D Li{sup +} ion diffusion network. It is predicted that Li/Co or Li/Ni antisite defects are well-formed at a substantial concentration level.

Lee, Sanghun, E-mail: sh0129.lee@samsung.com; Park, Sung Soo, E-mail: sung.s.park@samsung.com

2013-08-15T23:59:59.000Z

496

In-Situ Transmission Electron Microscopy Probing of Native Oxide and Artificial Layers on Silicon Nanoparticles for Lithium Ion Batteries  

SciTech Connect (OSTI)

Surface modification of silicon nanoparticle via molecular layer deposition (MLD) has been recently proved to be an effective way for dramatically enhancing the cyclic performance in lithium ion batteries. However, the fundamental mechanism as how this thin layer of coating function is not known, which is even complicated by the inevitable presence of native oxide of several nanometers on the silicon nanoparticle. Using in-situ TEM, we probed in detail the structural and chemical evolution of both uncoated and coated silicon particles upon cyclic lithiation/delithation. We discovered that upon initial lithiation, the native oxide layer converts to crystalline Li2O islands, which essentially increases the impedance on the particle, resulting in ineffective lithiation/delithiation, and therefore low coulombic efficiency. In contrast, the alucone MLD coated particles show extremely fast, thorough and highly reversible lithiation behaviors, which are clarified to be associated with the mechanical flexibility and fast Li+/e- conductivity of the alucone coating. Surprisingly, the alucone MLD coating process chemically changes the silicon surface, essentially removing the native oxide layer and therefore mitigates side reaction and detrimental effects of the native oxide. This study provides a vivid picture of how the MLD coating works to enhance the coulombic efficiency and preserve capacity and clarifies the role of the native oxide on silicon nanoparticles during cyclic lithiation and delithiation. More broadly, this work also demonstrated that the effect of the subtle chemical modification of the surface during the coating process may be of equal importance as the coating layer itself.

He, Yang; Piper, Daniela M.; Gu, Meng; Travis, Jonathan J.; George, Steven M.; Lee, Se-Hee; Genc, Arda; Pullan, Lee; Liu, Jun; Mao, Scott X.; Zhang, Jiguang; Ban, Chunmei; Wang, Chong M.

2014-10-27T23:59:59.000Z

497

Towards First Principles prediction of Voltage Dependences of Electrolyte/Electrolyte Interfacial Processes in Lithium Ion Batteries  

E-Print Network [OSTI]

In lithium ion batteries, Li+ intercalation and processes associated with passivation of electrodes are governed by applied voltages, which are in turn associated with free energy changes of Li+ transfer (Delta G_t) between the solid and liquid phases. Using ab initio molecular dynamics (AIMD) and thermodynamic integration techniques, we compute Delta G_t for the virtual transfer of a Li+ from a LiC(6) anode slab, with pristine basal planes exposed, to liquid ethylene carbonate confined in a nanogap. The onset of delithiation, at Delta G_t=0, is found to occur on LiC(6) anodes with negatively charged basal surfaces. These negative surface charges are evidently needed to retain Li+ inside the electrode, and should affect passivation ("SEI") film formation processes. Fast electrolyte decomposition is observed at even larger electron surface densities. By assigning the experimentally known voltage (0.1 V vs. Li+/Li metal) to the predicted delithiation onset, an absolute potential scale is obtained. This enables ...

Leung, Kevin

2013-01-01T23:59:59.000Z

498

Nano-sized structured layered positive electrode materials to enable high energy density and high rate capability lithium batteries  

DOE Patents [OSTI]

Nano-sized structured dense and spherical layered positive active materials provide high energy density and high rate capability electrodes in lithium-ion batteries. Such materials are spherical second particles made from agglomerated primary particles that are Li.sub.1+.alpha.(Ni.sub.xCo.sub.yMn.sub.z).sub.1-tM.sub.tO.sub.2-dR.sub.d- , where M is selected from can be Al, Mg, Fe, Cu, Zn, Cr, Ag, Ca, Na, K, In, Ga, Ge, V, Mo, Nb, Si, Ti, Zr, or a mixture of any two or more thereof, R is selected from F, Cl, Br, I, H, S, N, or a mixture of any two or more thereof, and 0.ltoreq..alpha..ltoreq.0.50; 0

Deng, Haixia; Belharouak, Ilias; Amine, Khalil

2012-10-02T23:59:59.000Z

499

Small angle neutron scattering analysis of novel carbons for lithium secondary batteries.  

SciTech Connect (OSTI)

Small angle neutron scattering analyses of carbonaceous materials used as anodes in lithium ion cells have been performed. The carbons have been synthesized using pillared clays (PILCs) as inorganic templates. Pillared clays are layered silicates whose sheets have been permanently propped open by sets of thermally stable molecular props. The calcined PILC was loaded with five different organic precursors and heated at 700 C under nitrogen. When the inorganic pillars were removed by acid treatment, carbon sheets are produced with holes. The fitting of the data in the high q region suggested that the carbon sheets have voids with radii ranging from 4 to 8 {angstrom}. Similar radii were obtained for the PILC and PILC/organic precursor, which suggests that the carbon was well distributed in the clay prior to pyrolysis.

Sandi, G.; Thiyagarajan, P.; Winans, R.; Carrado, K.

1998-01-14T23:59:59.000Z

500

Cation-substituted spinel oxide and oxyfluoride cathodes for lithium ion batteries  

DOE Patents [OSTI]

The present invention includes compositions and methods of making cation-substituted and fluorine-substituted spinel cathode compositions by firing a LiMn2-y-zLiyMzO4 oxide with NH4HF2 at low temperatures of between about 300 and 700.degree. C. for 2 to 8 hours and a .eta. of more than 0 and less than about 0.50, mixed two-phase compositions consisting of a spinel cathode and a layered oxide cathode, and coupling them with unmodified or surface modified graphite anodes in lithium ion cells.

Manthiram, Arumugam; Choi, Wonchang

2010-05-18T23:59:59.000Z