Powered by Deep Web Technologies
Note: This page contains sample records for the topic "receiver solar photovoltaic" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

Modular assembly of a photovoltaic solar energy receiver  

DOE Patents (OSTI)

There is provided a modular assembly of a solar energy concentrator having a photovoltaic energy receiver with passive cooling. Solar cell means are fixedly coupled to a radiant energy concentrator. Tension means bias a large area heat sink against the cell thereby allowing the cell to expand or contract with respect to the heat sink due to differential heat expansion.

Graven, Robert M. (Downers Grove, IL); Gorski, Anthony J. (Lemont, IL); Schertz, William W. (Batavia, IL); Graae, Johan E. A. (Elmhurst, IL)

1978-01-01T23:59:59.000Z

2

Photovoltaic solar cell  

DOE Patents (OSTI)

A photovoltaic solar cell for generating electricity from sunlight is disclosed. The photovoltaic solar cell comprises a plurality of spaced-apart point contact junctions formed in a semiconductor body to receive the sunlight and generate the electicity therefrom, the plurality of spaced-apart point contact junctions having a first plurality of regions having a first doping type and a second plurality of regions having a second doping type. In addition, the photovoltaic solar cell comprises a first electrical contact electrically connected to each of the first plurality of regions and a second electrical contact electrically connected to each of the second plurality of regions, as well as a passivation layer covering major surfaces and sidewalls of the photovoltaic solar cell.

Nielson, Gregory N; Okandan, Murat; Cruz-Campa, Jose Luis; Resnick, Paul J

2013-11-26T23:59:59.000Z

3

PHOTOVOLTAIC SOLAR ELECTRIC SYSTEM  

E-Print Network (OSTI)

CALIFORNIA ENERGY COMMISSION Buying a PHOTOVOLTAIC SOLAR ELECTRIC SYSTEM A Consumer Guide 2003 System: A Consumer Guide i Buying a Photovoltaic Solar Electric System A Consumer Guide California Energy water system that uses the sun's energy to heat water, solar electric or photovoltaic technology uses

Krothapalli, Anjaneyulu

4

Photovoltaic solar concentrator module  

DOE Patents (OSTI)

This invention consists of a planar photovoltaic concentrator module for producing an electrical signal from incident solar radiation which includes an electrically insulating housing having a front wall, an opposing back wall and a hollow interior. A solar cell having electrical terminals is positioned within the interior of the housing. A planar conductor is connected with a terminal of the solar cell of the same polarity. A lens forming the front wall of the housing is operable to direct solar radiation incident to the lens into the interior of the housing. A refractive optical element in contact with the solar cell and facing the lens receives the solar radiation directed into the interior of the housing by the lens and directs the solar radiation to the solar cell to cause the solar cell to generate an electrical signal. An electrically conductive planar member is positioned in the housing to rest on the housing back wall in supporting relation with the solar cell terminal of opposite polarity. The planar member is operable to dissipate heat radiated by the solar cell as the solar cell generates an electrical signal and further forms a solar cell conductor connected with the solar cell terminal to permit the electrical signal generated by the solar cell to be measured between the planar member and the conductor.

Chiang, C.J.

1991-05-16T23:59:59.000Z

5

Expedited Permitting Process for Solar Photovoltaic Systems ...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Expedited Permitting Process for Solar Photovoltaic Systems (Vermont) Expedited Permitting Process for Solar Photovoltaic Systems (Vermont) Eligibility Agricultural Commercial...

6

Energy 101: Solar Photovoltaics | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Energy 101: Solar Photovoltaics Energy 101: Solar Photovoltaics February 10, 2011 - 5:29pm Addthis Learn more about photovoltaic systems that convert light energy into electricity....

7

Planar photovoltaic solar concentrator module  

DOE Patents (OSTI)

A planar photovoltaic concentrator module for producing an electrical signal from incident solar radiation includes an electrically insulating housing having a front wall, an opposing back wall and a hollow interior. A solar cell having electrical terminals is positioned within the interior of the housing. A planar conductor is connected with a terminal of the solar cell of the same polarity. A lens forming the front wall of the housing is operable to direct solar radiation incident to the lens into the interior of the housing. A refractive optical element in contact with the solar cell and facing the lens receives the solar radiation directed into the interior of the housing by the lens and directs the solar radiation to the solar cell to cause the solar cell to generate an electrical signal. An electrically conductive planar member is positioned in the housing to rest on the housing back wall in supporting relation with the solar cell terminal of opposite polarity. The planar member is operable to dissipate heat radiated by the solar cell as the solar cell generates an electrical signal and further forms a solar cell conductor connected with the solar cell terminal to permit the electrical signal generated by the solar cell to be measured between the planar member and the conductor. 5 figs.

Chiang, C.J.

1992-12-01T23:59:59.000Z

8

Planar photovoltaic solar concentrator module  

DOE Patents (OSTI)

A planar photovoltaic concentrator module for producing an electrical signal from incident solar radiation includes an electrically insulating housing having a front wall, an opposing back wall and a hollow interior. A solar cell having electrical terminals is positioned within the interior of the housing. A planar conductor is connected with a terminal of the solar cell of the same polarity. A lens forming the front wall of the housing is operable to direct solar radiation incident to the lens into the interior of the housing. A refractive optical element in contact with the solar cell and facing the lens receives the solar radiation directed into the interior of the housing by the lens and directs the solar radiation to the solar cell to cause the solar cell to generate an electrical signal. An electrically conductive planar member is positioned in the housing to rest on the housing back wall in supporting relation with the solar cell terminal of opposite polarity. The planar member is operable to dissipate heat radiated by the solar cell as the solar cell generates an electrical signal and further forms a solar cell conductor connected with the solar cell terminal to permit the electrical signal generated by the solar cell to be measured between the planar member and the conductor.

Chiang, Clement J. (New Brunswick, NJ)

1992-01-01T23:59:59.000Z

9

Photovoltaic solar concentrator  

SciTech Connect

A photovoltaic solar concentrator is disclosed with one or more transverse-junction solar cells (also termed point contact solar cells) and a lens located above each solar cell to concentrate sunlight onto the solar cell to generate electricity. Piezoelectric actuators tilt or translate each lens to track the sun using a feedback-control circuit which senses the electricity generated by one or more of the solar cells. The piezoelectric actuators can be coupled through a displacement-multiplier linkage to provide an increased range of movement of each lens. Each lens in the solar concentrator can be supported on a frame (also termed a tilt plate) having three legs, with the movement of the legs being controlled by the piezoelectric actuators.

Nielson, Gregory N.; Okandan, Murat; Resnick, Paul J.; Cruz-Campa, Jose Luis

2012-12-11T23:59:59.000Z

10

Solar photovoltaic panels tracking system  

Science Conference Proceedings (OSTI)

This research project concentrates on the design and control of a two-degrees-of-freedom orientation system for the photovoltaic solar panels in sunny regions which are considered very rich in solar energy. A brief background on the sun path and behavior ... Keywords: altitude, azimuth, closed-loop control, open-loop control, orientation, sensor, solar photovoltaic panels, solar tracking

Ahmed Abu Hanieh

2010-05-01T23:59:59.000Z

11

Ceramic solar receivers  

DOE Green Energy (OSTI)

The application of ceramic materials to high temperature solar receivers for advanced Brayton and advanced Stirling thermal electric systems is discussed. Conceptual designs for ceramic cavity receivers employing impingement jet-cooled, dome-shaped silicon carbide heat exchanger modules are offered. Optical, mechanical, heat transfer and structural analyses of this novel receiver approach are presented.

Jarvinen, P. O.

1979-01-01T23:59:59.000Z

12

Chapter 9: Photovoltaic DevicesChapter 9: Photovoltaic Devices Solar energy spectrumSolar energy spectrum  

E-Print Network (OSTI)

;Photovoltaic devices or solar cells convert thePhotovoltaic devices or solar cells convert the incident solar 4 Solar cell plant #12;Cars powered by photovoltaic devices PHYS 5320 Chapter Nine 5 #12;SolarChapter 9: Photovoltaic DevicesChapter 9: Photovoltaic Devices Solar energy spectrumSolar energy

Wang, Jianfang

13

Solar heat receiver  

DOE Patents (OSTI)

A receiver for converting solar energy to heat a gas to temperatures from 700.degree.-900.degree. C. The receiver is formed to minimize impingement of radiation on the walls and to provide maximum heating at and near the entry of the gas exit. Also, the receiver is formed to provide controlled movement of the gas to be heated to minimize wall temperatures. The receiver is designed for use with gas containing fine heat absorbing particles, such as carbon particles.

Hunt, Arlon J. (Oakland, CA); Hansen, Leif J. (Berkeley, CA); Evans, David B. (Orinda, CA)

1985-01-01T23:59:59.000Z

14

Solar heat receiver  

DOE Patents (OSTI)

A receiver is described for converting solar energy to heat a gas to temperatures from 700 to 900/sup 0/C. The receiver is formed to minimize impingement of radiation on the walls and to provide maximum heating at and near the entry of the gas exit. Also, the receiver is formed to provide controlled movement of the gas to be heated to minimize wall temperatures. The receiver is designed for use with gas containing fine heat absorbing particles, such as carbon particles.

Hunt, A.J.; Hansen, L.J.; Evans, D.B.

1982-09-29T23:59:59.000Z

15

The Market Value and Cost of Solar Photovoltaic Electricity Production  

E-Print Network (OSTI)

Production of Solar Photovoltaic Cells”, Center for theconcerns is solar photovoltaic cells (PVs), which captureProduction of Solar Photovoltaic Cells Solar PV cells

Borenstein, Severin

2008-01-01T23:59:59.000Z

16

Energy Conversion – Photovoltaic, Concentrating Solar Power, and ...  

Science Conference Proceedings (OSTI)

About this Symposium. Meeting, Materials Science & Technology 2012. Symposium, Energy Conversion – Photovoltaic, Concentrating Solar Power, and  ...

17

Terrestrial applications of bifacial photovoltaic solar panels  

Science Conference Proceedings (OSTI)

Bifacial Photovoltaic solar cells (so-called transparent bifacial photovoltaic solar cells) offer additional absorption by rear side, which is a significant advantage over ordinary Photovoltaic solar cells. A range of experiments have been done on bifacial ... Keywords: absorption, panels, photovoltaic, solar cells, terrestrial

P. Ooshaksaraei; R. Zulkifli; S. H. Zaidi; M. Alghoul; A. Zaharim; K. Sopian

2011-10-01T23:59:59.000Z

18

Central solar energy receiver  

DOE Patents (OSTI)

An improved tower-mounted central solar energy receiver for heating air drawn through the receiver by an induced draft fan. A number of vertically oriented, energy absorbing, fin-shaped slats are radially arranged in a number of concentric cylindrical arrays on top of the tower coaxially surrounding a pipe having air holes through which the fan draws air which is heated by the slats which receive the solar radiation from a heliostat field. A number of vertically oriented and wedge-shaped columns are radially arranged in a number of concentric cylindrical clusters surrounding the slat arrays. The columns have two mirror-reflecting sides to reflect radiation into the slat arrays and one energy absorbing side to reduce reradiation and reflection from the slat arrays.

Drost, M. Kevin (Richland, WA)

1983-01-01T23:59:59.000Z

19

Solar energy receiver  

DOE Patents (OSTI)

An improved long-life design for solar energy receivers provides for greatly reduced thermally induced stress and permits the utilization of less expensive heat exchanger materials while maintaining receiver efficiencies in excess of 85% without undue expenditure of energy to circulate the working fluid. In one embodiment, the flow index for the receiver is first set as close as practical to a value such that the Graetz number yields the optimal heat transfer coefficient per unit of pumping energy, in this case, 6. The convective index for the receiver is then set as closely as practical to two times the flow index so as to obtain optimal efficiency per unit mass of material.

Schwartz, Jacob (Arlington, MA)

1978-01-01T23:59:59.000Z

20

Photon management in thermal and solar photovoltaics  

E-Print Network (OSTI)

Photovoltaics is a technology that directly converts photon energy into electrical energy. Depending on the photon source, photovoltaic systems can be categorized into two groups: solar photovoltaics (PV) and thermophotovoltaics ...

Hu, Lu

2008-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "receiver solar photovoltaic" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

Solar Photovoltaic SPECIFICATION, CHECKLIST AND GUIDE  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Photovoltaic Photovoltaic SPECIFICATION, CHECKLIST AND GUIDE Renewable Energy Ready Home Renewable Energy Ready Home SOLAR PHOTOVOLTAIC SPECIFICATION, CHECKLIST AND GUIDE i Table of Contents About the Renewable Energy Ready Home Specifications Assumptions of the RERH Solar Photovoltaic Specification .............................................................................. 1 Builder and Specification Limitations ............................................................................................................. 2

22

Solar Photovoltaic Technologies Available for Licensing ...  

Site Map; Printable Version; Share this resource. Send a link to Solar Photovoltaic Technologies Available for Licensing - Energy Innovation Portalto ...

23

Energy 101: Solar Photovoltaics | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

101: Solar Photovoltaics 101: Solar Photovoltaics Energy 101: Solar Photovoltaics February 10, 2011 - 5:29pm Addthis Learn more about photovoltaic systems that convert light energy into electricity. Andy Oare Andy Oare Former New Media Strategist, Office of Public Affairs What are the key facts? The literal translation of the word photovoltaic is light-electricity. Photovoltaic systems generate power without pollution - and recent advancements have greatly increased their efficiency. Enough energy from the sun hits the earth every hour to power the planet for an entire year-and solar photovoltaic (PV) systems are a clean, cost-effective way to harness that power for homes and businesses. The literal translation of the word photovoltaic is light-electricity-and this is exactly what photovoltaic materials and devices do-they convert

24

New Hampshire Electric Co-Op - Residential Solar Photovoltaic...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Residential Solar Photovoltaic Incentive Program New Hampshire Electric Co-Op - Residential Solar Photovoltaic Incentive Program Eligibility Residential Savings For Solar Buying &...

25

Modeling adoption of solar photovoltaics and analysis of net metering in the city of Austin.  

E-Print Network (OSTI)

??Solar photovoltaics have received government support in the form of rebates, tax credits and net metering tariff mechanisms. The intended goal of these incentives is… (more)

Josyula, Siva Kiran

2011-01-01T23:59:59.000Z

26

The Market Value and Cost of Solar Photovoltaic Electricity Production  

E-Print Network (OSTI)

World Conference on Photovoltaic Energy Conversion, Volumeof Solar Photovoltaic Cells”, Center for the Study of EnergyPhotovoltaic Subsidies? ” Center for the Study of Energy

Borenstein, Severin

2008-01-01T23:59:59.000Z

27

Solar Photovoltaics development -Status and perspectives  

E-Print Network (OSTI)

Solar Photovoltaics development - Status and perspectives Jørgen Fenhann Risø National Laboratory for the development of solar photovoltaics, contributing to the Macro Task E1 on production cost for fusion.S. with 53 MWp followed by Japan and EU. Until now off-grid installation have dominated the solar PV market

28

Solar Photovoltaic Technology Update - 2005  

Science Conference Proceedings (OSTI)

This report surveys the state of the solar photovoltaic (PV) industry in the United States and worldwide in 2005. The installed capacity of PV has continued recent trends and has increased dramatically in 20058212particularly in Germany and Japan, where government policies encourage its deployment, and to a lesser extent in the United States8212while at the same time manufacturers and vendors continued to make incremental performance improvements. In some markets, shortages of silicon feedstock or finish...

2006-03-28T23:59:59.000Z

29

Efficiency enhancement of luminescent solar concentrations for photovoltaic technologies  

E-Print Network (OSTI)

and V.U. Ho?mann. Photovoltaic Solar Energy Gen- eration.e?ciency for photovoltaic solar energy collections, reviewedenergy sources, the manufacturing of solar cells and photovoltaic

Wang, Chunhua

2011-01-01T23:59:59.000Z

30

A solar concentrating photovoltaic/thermal collector.  

E-Print Network (OSTI)

??This thesis discusses aspects of a novel solar concentrating photovoltaic / thermal (PV/T) collector that has been designed to produce both electricity and hot water.… (more)

Coventry, Joseph S

2008-01-01T23:59:59.000Z

31

Kansas City Power and Light - Solar Photovoltaic Rebates | Department...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Solar Photovoltaic Rebates Kansas City Power and Light - Solar Photovoltaic Rebates Eligibility Agricultural Commercial Fed. Government Industrial Local Government Multi-Family...

32

Immersion Cooling of Photovoltaic Cells in Highly Concentrated Solar Beams.  

E-Print Network (OSTI)

??Concentrated solar radiation can be utilized to generate electrical power from photovoltaic cells, but concentrated solar radiation increases the photovoltaic cell’s temperature. This increase in… (more)

Darwish, Ahmed

2011-01-01T23:59:59.000Z

33

EIA - International Energy Outlook 2009-Solar Photovoltaic and solar  

Gasoline and Diesel Fuel Update (EIA)

Solar Photovoltaic and Solar Thermal Electric Technologies Solar Photovoltaic and Solar Thermal Electric Technologies International Energy Outlook 2009 Solar Photovoltaic and Solar Thermal Electric Technologies Solar power is one of the fastest-growing sources of renewable energy worldwide. Many nations, concerned about the environmental impacts of electricity generation from fossil fuels or from large-scale hydroelectric plants, have been turning to solar power as an environmentally benign alternative. The solar energy that reaches the earth can be harnessed to generate electric power, and the potential for large-scale applications of solar power has improved markedly in recent years. Two solar power technologies—solar photovoltaic and solar thermal—are widely employed today, and their use is likely to increase in the future.

34

Smart grid adds value to solar photovoltaics  

Science Conference Proceedings (OSTI)

This panel session examines the challenges and opportunities of integrating large scale solar photovoltaic units into the electric power grid. As large solar PV projects (hundreds of MW) come online, their output variation due to weather changes will ...

2012-01-01T23:59:59.000Z

35

Sandia Photovoltaic Vehicle receives GreenGov Presidential Award | National  

National Nuclear Security Administration (NNSA)

Photovoltaic Vehicle receives GreenGov Presidential Award | National Photovoltaic Vehicle receives GreenGov Presidential Award | National Nuclear Security Administration Our Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure Continuing Management Reform Countering Nuclear Terrorism About Us Our Programs Our History Who We Are Our Leadership Our Locations Budget Our Operations Media Room Congressional Testimony Fact Sheets Newsletters Press Releases Speeches Events Social Media Video Gallery Photo Gallery NNSA Archive Federal Employment Apply for Our Jobs Our Jobs Working at NNSA Blog Home > Media Room > Press Releases > Sandia Photovoltaic Vehicle receives GreenGov Presidential Award ... Press Release Sandia Photovoltaic Vehicle receives GreenGov Presidential Award

36

Photovoltaic nanocrystal scintillators hybridized on Si solar cells  

E-Print Network (OSTI)

Photovoltaic nanocrystal scintillators hybridized on Si solar cells for enhanced conversion on solar cells to enhance photovoltaic device parameters including spectral responsivity, open circuit@bilkent.edu.tr Abstract: We propose and demonstrate semiconductor nanocrystal based photovoltaic scintillators integrated

Demir, Hilmi Volkan

37

Efficiency enhancement of luminescent solar concentrations for photovoltaic technologies  

E-Print Network (OSTI)

1.1 Solar Energy . . . . . . . . .on ?uorescent glass-?lms. Solar Energy Materials and SolarHo?mann. Photovoltaic Solar Energy Gen- eration. Optical

Wang, Chunhua

2011-01-01T23:59:59.000Z

38

Solar energy storage through the homogeneous electrocatalytic reduction of carbon dioxide : photoelectrochemical and photovoltaic approaches  

E-Print Network (OSTI)

Photochemical and Photovoltaic Solar-Energy Converters. J.Photovoltaic and Photoelectrochemical Conversion of Solar Energy.Electrode Solar Energy Anode Photovoltaic Cell Cathode PP

Sathrum, Aaron John

2011-01-01T23:59:59.000Z

39

NREL: Learning - Solar Photovoltaic Technology Basics  

NLE Websites -- All DOE Office Websites (Extended Search)

Solar Photovoltaic Technology Basics Solar Photovoltaic Technology Basics Content on this page requires a newer version of Adobe Flash Player. Get Adobe Flash player This video provides an overview of NREL's research in solar photovoltaic technology. Text Version Solar cells, also called photovoltaic (PV) cells by scientists, convert sunlight directly into electricity. PV gets its name from the process of converting light (photons) to electricity (voltage), which is called the PV effect. The PV effect was discovered in 1954, when scientists at Bell Telephone discovered that silicon (an element found in sand) created an electric charge when exposed to sunlight. Soon solar cells were being used to power space satellites and smaller items like calculators and watches. Today, thousands of people power their homes and businesses with individual

40

Photovoltaics  

Energy.gov (U.S. Department of Energy (DOE))

Photovoltaic (PV) materials and devices convert sunlight into electrical energy, and PV cells are commonly known as solar cells. Photovoltaics can literally be translated as light-electricity.

Note: This page contains sample records for the topic "receiver solar photovoltaic" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

Central solar-energy receiver  

DOE Patents (OSTI)

An improved tower-mounted central solar energy receiver for heating air drawn through the receiver by an induced draft fan is described. A number of vertically oriented, energy absorbing, fin-shaped slats are radially arranged in a number of concentric cylindrical arrays on top of the tower coaxially surrounding a pipe having air holes through which the fan draws air which is heated by the slats which receive the solar radiation from a heliostat field. A number of vertically oriented and wedge-shaped columns are radially arranged in a number of concentric cylindrical clusters surrounding the slat arrays. The columns have two mirror-reflecting sides to reflect radiation into the slat arrays and one energy absorbing side to reduce reradiation and reflection from the slat arrays.

Not Available

1981-10-27T23:59:59.000Z

42

The Market Value and Cost of Solar Photovoltaic Electricity Production  

E-Print Network (OSTI)

Adjusting for Time-Varying Production SACRAMENTO flat-rateSolar Photovoltaic Electricity Production Severin BorensteinPhotovoltaic Electricity Production Severin Borenstein 1

Borenstein, Severin

2008-01-01T23:59:59.000Z

43

Tunable Nanocrystalline CZTS for Solar Photovoltaics with No Required Annealing  

Thin-film solar cells are expected to replace the current first generation of solar photovoltaic technology due to their lower manufacturing cost and increased electrical output. Nanocrystal cells, one of the second generation of solar photovoltaics, ...

44

VISUALS: Photovoltaic Solar Cells Close-Up  

Science Conference Proceedings (OSTI)

Jan 10, 2008 ... This site contains very close-up static and portrait shots of photovoltaic solar cells and cell arrays. Two cell types are shown: A silver and gray ...

45

NREL's PV Incubator: Where Solar Photovoltaic Records Go to be...  

NLE Websites -- All DOE Office Websites (Extended Search)

has energized our entire company." Solar Junction, San Jose, California - Concentrated photovoltaic (CPV) manufacturer Solar Junction's multi-junction solar cell recently...

46

Solar photovoltaics for development applications  

DOE Green Energy (OSTI)

This document introduces photovoltaic technology to individuals and groups specializing in development activities. Examples of actual installations illustrate the many services supplied by photovoltaic systems in development applications, including water pumping, lighting, health care, refrigeration, communications, and a variety of productive uses. The various aspects of the technology are explored to help potential users evaluate whether photovoltaics can assist them in achieving their organizational goals. Basic system design, financing techniques, and the importance of infrastructure are included, along with additional sources of information and major US photovoltaic system suppliers.

Shepperd, L.W. [Florida Solar Energy Center, Cape Canaveral, FL (United States)] [Florida Solar Energy Center, Cape Canaveral, FL (United States); Richards, E.H. [Sandia National Labs., Albuquerque, NM (United States)] [Sandia National Labs., Albuquerque, NM (United States)

1993-08-01T23:59:59.000Z

47

Solar energy storage through the homogeneous electrocatalytic reduction of carbon dioxide : photoelectrochemical and photovoltaic approaches  

E-Print Network (OSTI)

electricity from photovoltaic cells to convert CO 2 intoSolar Energy Anode Photovoltaic Cell Cathode PP Mesh SpacerCoupling a Photovoltaic Solar Cell with a Homogeneous

Sathrum, Aaron John

2011-01-01T23:59:59.000Z

48

Valuing the Time-Varying Electricity Production of Solar Photovoltaic Cells  

E-Print Network (OSTI)

Production of Solar Photovoltaic Cells Severin BorensteinProduction of Solar Photovoltaic Cells Severin Borenstein 1concerns is so- lar photovoltaic cells (PVs), which capture

Borenstein, Severin

2005-01-01T23:59:59.000Z

49

Photovoltaics  

DOE Green Energy (OSTI)

Summarizes the goals and activities of the DOE Solar Energy Technologies Program efforts within its photovoltaics subprogram.

Not Available

2008-09-01T23:59:59.000Z

50

SunShot Initiative: Innovative Ballasted Flat Roof Solar Photovoltaic  

NLE Websites -- All DOE Office Websites (Extended Search)

Innovative Ballasted Flat Roof Innovative Ballasted Flat Roof Solar Photovoltaic Racking System to someone by E-mail Share SunShot Initiative: Innovative Ballasted Flat Roof Solar Photovoltaic Racking System on Facebook Tweet about SunShot Initiative: Innovative Ballasted Flat Roof Solar Photovoltaic Racking System on Twitter Bookmark SunShot Initiative: Innovative Ballasted Flat Roof Solar Photovoltaic Racking System on Google Bookmark SunShot Initiative: Innovative Ballasted Flat Roof Solar Photovoltaic Racking System on Delicious Rank SunShot Initiative: Innovative Ballasted Flat Roof Solar Photovoltaic Racking System on Digg Find More places to share SunShot Initiative: Innovative Ballasted Flat Roof Solar Photovoltaic Racking System on AddThis.com... Concentrating Solar Power Photovoltaics

51

Photovoltaics: Solar Energy Technologies Program (SETP) (Fact Sheet)  

DOE Green Energy (OSTI)

Fact sheet summarizing the goals and activities of the DOE Solar Energy Technologies Program efforts within its photovoltaics subprogram.

Not Available

2009-10-01T23:59:59.000Z

52

Nantong Qiangsheng Photovoltaic Technology Co Ltd QS Solar | Open Energy  

Open Energy Info (EERE)

Nantong Qiangsheng Photovoltaic Technology Co Ltd QS Solar Nantong Qiangsheng Photovoltaic Technology Co Ltd QS Solar Jump to: navigation, search Name Nantong Qiangsheng Photovoltaic Technology Co Ltd (QS Solar) Place Shanghai Municipality, China Zip 200336 Sector Solar Product Chinese amorphous thin-film solar cell maker. References Nantong Qiangsheng Photovoltaic Technology Co Ltd (QS Solar)[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Nantong Qiangsheng Photovoltaic Technology Co Ltd (QS Solar) is a company located in Shanghai Municipality, China . References ↑ "[ Nantong Qiangsheng Photovoltaic Technology Co Ltd (QS Solar)]" Retrieved from "http://en.openei.org/w/index.php?title=Nantong_Qiangsheng_Photovoltaic_Technology_Co_Ltd_QS_Solar&oldid=349037

53

The Market Value and Cost of Solar Photovoltaic Electricity Production  

E-Print Network (OSTI)

Time-of-Use Rates Undermine California’s Solar Photovoltaic172, University of California Energy Institute, SeptemberShannon Moynahan, “The California Solar Initiative — Triumph

Borenstein, Severin

2008-01-01T23:59:59.000Z

54

Hybrid photovoltaic/thermal solar energy system  

DOE Green Energy (OSTI)

Heating and cooling systems that use hybrid solar energy collectors (combination photovoltaic-thermal) have the potential for considerable energy savings, particularly when the system includes a heat pump. Economic evaluations show that photovoltaic systems are potentially most economical, but results depend critically on future collector costs as well as energy prices. Results are based on a specially developed computer program that predicted the total auxiliary energy required for five different solar heating/cooling systems. Performance calculations for a modeled residence and small office building were made using meteorological data from four geographic locations. Annual system costs were also calculated.

Kern, E.C. Jr.; Russell, M.C.

1978-03-27T23:59:59.000Z

55

Evaluation tests for photovoltaic concentrator receiver sections and modules  

DOE Green Energy (OSTI)

Sandia has developed a third-generation set of specifications for performance and reliability testing of photovoltaic concentrator modules. Several new requirements have been defined. The primary purpose of the tests is to screen new concentrator designs and new production runs for susceptibility to known failure mechanisms. Ultraviolet radiation testing of materials precedes receiver section and module performance and environmental tests. The specifications include the purpose, procedure, and requirements for each test. Recommendations for future improvements are presented.

Woodworth, J.R.; Whipple, M.L.

1992-06-01T23:59:59.000Z

56

Solar Photovoltaics Market Update, Volume 3: Fall  

Science Conference Proceedings (OSTI)

Volume 3 of EPRI’s quarterly Solar PV Market Update provides continued insight into some of the front line trends that are afoot throughout the photovoltaic segment. Like previous Updates, it synthesizes primary as well as secondary data from multiple sources in an effort to highlight both macro and micro industry developments that are likely to impact utility solar PV investment and planning efforts. Specifically, this report offers an account of recent PV pricing and cost trends, an apparent ...

2012-10-30T23:59:59.000Z

57

Industrial solar breeder project using concentrator photovoltaics  

DOE Green Energy (OSTI)

The purpose of this program is to demonstrate the use of a concentrating photovoltaic system to provide the energy for operating a silicon solar cell production facility, i.e., to demonstrate a solar breeder. Solarex has proposed to conduct the first real test of the solar breeder concept by building and operating a 200 kW(e) (peak) concentrating photovoltaic system based on the prototype and system design developed during Phase I. This system will provide all of the electrical and thermal energy required to operate a solar cell production line. This demonstration would be conducted at the Solarex Rockville facility, with the photovoltaic array located over the company parking lot and on an otherwise unusable flood plain. Phase I of this program included a comprehensive analysis of the application, prototype fabrication and evaluation, system design and specification, and a detailed plan for Phases II and III. A number of prototype tracking concentrator solar collectors were constructed and operated. Extensive system analysis was performed to design the Phase II system as a stand-alone power supply for a solar cell production line. Finally, a detailed system fabrication proposal for Phase II and an operation and evaluation plan for Phase III were completed. These proposals included technical, management, and cost plans for the fabrication and exercise of the proposed system.

Hamilton, R.; Wohlgemuth, J.; Burkholder, J.; Levine, A.; Storti, G.; Wrigley, C.; McKegg, A.

1979-08-01T23:59:59.000Z

58

NREL: Photovoltaics Research - Solar Energy Research Facility  

NLE Websites -- All DOE Office Websites (Extended Search)

Solar Energy Research Facility Solar Energy Research Facility Photo of the Solar Energy Research Facility. The exterior stepped clerestory of the Solar Energy Research Facility. Photovoltaics (PV) and basic energy sciences are two major research areas conducted in the Solar Energy Research Facility (SERF). The building incorporates a multitude of energy saving features that make it one of the government's most energy efficient buildings with 40 percent lower energy costs than similar buildings designed to meet federal energy standards. The SERF houses three adjoining modules each containing a laboratory pod and an office pod. Laboratories in the west module are used to develop semiconductor material for high-efficiency crystalline solar cells. Laboratories in the center module are used to fabricate prototype solar

59

Efficiency enhancement of luminescent solar concentrations for photovoltaic technologies  

E-Print Network (OSTI)

dyes. Photovoltaic (PV) solar cells are used to attach atis fa- vored by the silicon PV solar cells for the LSC PVemission properties for PV solar cells. We studied e?ect of

Wang, Chunhua

2011-01-01T23:59:59.000Z

60

Net Zero Residential Test Facility Gaithersburg, MD Solar Photovoltaic Panels  

E-Print Network (OSTI)

1 Net Zero Residential Test Facility Gaithersburg, MD Solar Photovoltaic Panels Solar Thermal R-35 Rim Joist Area 5" open cell spray foam 2" mineral wool insulation blanket R-10 Basement Slab electric WH #12;NZERTF Gaithersburg, MD Solar Photovoltaic Array Roof Mounted South half of main roof

Oak Ridge National Laboratory

Note: This page contains sample records for the topic "receiver solar photovoltaic" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

Solar Photovoltaic System Operations and Maintenance  

Science Conference Proceedings (OSTI)

Grid-connected flat plate solar photovoltaic (PV) systems are being deployed at an accelerating rate worldwide. Representing a growing absolute share of both independent power producer (IPP) and utility generation portfolios, these PV assets are now commanding a greater level of attention to ensure their optimal availability and performance. Contrary to popular belief, PV power plants are not maintenance free; in fact, they require a steady diet of scheduled preventive maintenance and unscheduled service...

2011-12-22T23:59:59.000Z

62

Solar photovoltaic/thermal residential systems  

DOE Green Energy (OSTI)

The results of a conceptual design study using computer simulations to determine the physical and economic performance of combined photovoltaic/thermal collector heat-pump solar systems for a single-family residence are presented. Economic analyses are based upon projected costs for a 1986 system installation. The results show that PV/T collector systems can be economically competitive for a cold climate residence, that systems employing on-site electrical storage batteries are not economically competitive with utility-interactive systems, and that an ambient-air-source heat-pump system has a lower life-cycle cost than a solar-source heat-pump system.

Russell, M.C.

1979-12-28T23:59:59.000Z

63

Direct Use of Solar Photovoltaic (PV) Energy  

Science Conference Proceedings (OSTI)

PV-DC refers to the direct use of photovoltaic (PV) energy in an appliance or other equipment without a grid connection. Most (over 90) of the new deployments of PV solar panels connect to the ac electric grid and do not use dc energy directly. These grid-connected PV systems use an electronic inverter to convert the dc array output to ac power for interfacing with the grid. However, with double-digit growth in all types of PV applications, the direct use of solar for powering end-use loads needs to be m...

2010-12-31T23:59:59.000Z

64

Nanocone-Based Photovoltaic Solar Cells - Oak Ridge National ...  

Nanocone-Based Photovoltaic Solar Cells Note: The technology described above is an early stage opportunity. Licensing rights to this intellectual property may

65

Oncor Electric Delivery - Solar Photovoltaic Standard Offer Program...  

Open Energy Info (EERE)

be certified to UL-1703 standards Start Date 06062011 Installation Requirements All solar photovoltaic system installations must obtain appropriate local building permits and...

66

Utility-scale installations lead solar photovoltaic growth - Today ...  

U.S. Energy Information Administration (EIA)

According to EIA's new survey-based estimate of total solar capacity, total on-grid photovoltaic (PV) capacity nearly doubled in 2011, led by particularly strong ...

67

Solar Photovoltaic Cell/Module Shipments Report 2011  

U.S. Energy Information Administration (EIA)

September 2012 U.S. Energy Information Administration | Solar Photovoltaic Cell/Module Shipments Report 2011 7 Table 2. Value, average price, and average efficiency ...

68

Solar photovoltaic technology: The thin film option  

DOE Green Energy (OSTI)

Photovoltaics (PV) the direct conversion of sunlight to electricity was first discovered by scientists at the Bell Labs in 1954. In the late 1960's and 1970's most of the solar cell technology has been used for space applications to power satellites. The main work horse for the PV technology has been crystalline silicon (Si) solar cells. Over the past 15 years this has led to cost reduction from $35/kWh to about $0.30/kWh at the present time. Demonstrated reliability of 20 years or more has resulted in acceptance by several utilities. However, cost reductions in crystalline Si solar cells have been limited by the cost of wafering of ingots and the attendant loss of material. A number of Si sheet solar cells are also being investigated. In the past decade the emphasis of the research and development effort has been focused on thin film solar cells, which have the potential for generating power at much lower cost of $1-2/Wp. Thin film solar cells that are presently being investigated and are generating global attention are: amorphous silicon (a-Si:H), cadmium telluride (CdTe), and copper indium diselenide (CuInSe/sub 2,/ or CIS). In the past few years, considerable progress has been; made by all three of these thin film solar cells. This paper reviews the current status and future potential of these exiting thin film solar cell technologies.

Ullal, H.S.; Zweibel, K.; Sabisky, E.S.; Surek, T.

1988-01-01T23:59:59.000Z

69

Receiver System: Lessons Learned From Solar Two  

DOE Green Energy (OSTI)

The Boeing Company fabricated the Solar Two receiver as a subcontractor for the Solar Two project. The receiver absorbed sunlight reflected from the heliostat field. A molten-nitrate-salt heat transfer fluid was pumped from a storage tank at grade level, heated from 290 to 565 C by the receiver mounted on top of a tower, then flowed back down into another storage tank. To make electricity, the hot salt was pumped through a steam generator to produce steam that powered a conventional Rankine steam turbine/generator. This evaluation identifies the most significant Solar Two receiver system lessons learned from the Mechanical Design, Instrumentation and Control, Panel Fabrication, Site Construction, Receiver System Operation, and Management from the perspective of the receiver designer/manufacturer. The lessons learned on the receiver system described here consist of two parts: the Problem and one or more identified Solutions. The appendix summarizes an inspection of the advanced receiver panel developed by Boeing that was installed and operated in the Solar Two receiver.

LITWIN, ROBERT Z.; PACHECO, JAMES E.

2002-03-01T23:59:59.000Z

70

Seeing solar on campus : a visible photovoltaic installation on campus  

E-Print Network (OSTI)

This paper presents a methodology for selecting a site on the MIT campus for a visible solar photovoltaic installation. Visibility, solar exposure, advertising potential, aesthetics, interactivity and direct or important ...

Guarda, Daniel Jair Alves

2006-01-01T23:59:59.000Z

71

Innovation and production in the global solar photovoltaic industry  

Science Conference Proceedings (OSTI)

The global development of solar photovoltaic power is seen as a potentially major technology in the pursuit of alternative energy sources. Given its evolutionary nature, in terms of both technology and the market, there is some discernible divergence ... Keywords: Innovation, Patent, Production, Solar photovoltaic (PV) market

Show-Ling Jang; Li-Ju Chen; Jennifer H. Chen; Yu-Chieh Chiu

2013-03-01T23:59:59.000Z

72

Photovoltaic Measurements in Single-Nanowire Silicon Solar Cells  

E-Print Network (OSTI)

Photovoltaic Measurements in Single-Nanowire Silicon Solar Cells Michael D. Kelzenberg, Daniel B Single-nanowire solar cells were created by forming rectifying junctions in electrically contacted vapor-voltage measurements were made under simulated Air Mass 1.5 global illumination. Photovoltaic spectral response

Heaton, Thomas H.

73

Solar Photovoltaics for Sustainable Agriculture and  

E-Print Network (OSTI)

Solar photovoltaic (PV) systems have shown their potential in rural electrification projects around the world, especially concerning Solar Home Systems. With continuing price decreases of PV systems, other applications are becoming economically attractive and growing experience is gained with the use of PV in such areas as social and communal services, agriculture and other productive activities, which can have a significant impact on rural development. There is still a lack of information, however, on the potential and limitations of such PV applications. The main aim of this study is, therefore, to contribute to a better understanding of the potential impact and of the limitations of PV systems on sustainable agriculture and rural development (SARD), especially concerning income-generating activities. It is, in fact, of paramount importance to identify the potential contribution of PV to rural development in order to gain further financial and political commitment for PV projects and programmes and to design appropriate PV projects. One of the main lessons learnt through this study is that success of PV programmes is significantly enhanced when an integrated strategy is followed. Solar photovoltaic systems, through their flexibility in use, offer unique chances for the energy sector to provide “packages ” of energy services to remote rural areas such as for rural health care, education, communication, agriculture, lighting and water supply. It is hoped that this document contributes to the generation of ideas and discussions among the different institutions involved in providing these services to rural areas and thereby to an "informed " decision on the PV technology option.

B. Van Campen; D. Guidi; G. Best

2000-01-01T23:59:59.000Z

74

Progress in solar thermal distributed receiver technology  

DOE Green Energy (OSTI)

The author reports the status of research on distributed receivers, which are solar thermal collectors which concentrate sunlight on an absorber and do not employ the central receiver concept. Point-focusing collectors such as the parabolic dish, line-focusing collectors such as the parabolic trough, and the fixed-mirror distributed-focus of hemispheric bowl collectors are the most common receivers. Following an overview of fundamental principals, there is a description of several installations and of the organic Rankine Cycle engine and the Solarized Automotive Gas Turbine projects. Future development will explore other types of power cycles, new materials, and other components and designs. 5 references, 6 figures.

Leonard, J.A.; Otts, J.V.

1985-08-01T23:59:59.000Z

75

Solar Photovoltaics: Status, Costs, and Trends  

Science Conference Proceedings (OSTI)

This White Paper addresses the history, status, and trends of flat-plate solar photovoltaic power technologies in both crystalline silicon and thin-film forms. Perspectives are provided on the cost and performance, as well as, the materials used for producing PV modules. The major milestones and trends in PV power system development are described, looking back to the 1970's, and forward to the next 30 years. Current incentives and policies are also discussed with focus on utility engagement in PV power. ...

2009-12-31T23:59:59.000Z

76

Program on Technology Innovation: Central Station Solar Photovoltaic, Linear Fresnel, and Dish-Engine Technology Assessment  

Science Conference Proceedings (OSTI)

This Technology Innovation (TI) project, performed in conjunction with an EPRI feasibility study for a 50 to 500 megawatt (MW) central station solar power (CSSP) plant to be developed in New Mexico by mid-2010, surveyed and characterized photovoltaic (PV), linear Fresnel, and dish-engine solar technology options. The overall feasibility study also assessed the status of parabolic trough and central receiver solar technologies.

2008-05-06T23:59:59.000Z

77

Department of Veterans Affairs, FONSI - Ground mounted solar photovoltaic  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Ground mounted solar Ground mounted solar photovoltaic power at San Joaquin National Cemetery Department of Veterans Affairs, FONSI - Ground mounted solar photovoltaic power at San Joaquin National Cemetery An Environmental Assessment (EA) has been prepared under the direction of an interdisciplinary team analyzing theproposed construction of a Photovoltaic System at the San Joaquin National Cemetery (SNC) in San Joaquin,Calofornia. CX rulemaking files More Documents & Publications Department of Veterans Affairs, FONSI - Rooftop solar PV power at Calverton National Cemetery Department of Energy Technical Support Document National Environmental Policy Act Implementing Procedures Supplement to Notice of Proposed Rulemaking Proposed Changes and Supplemental Supporting Basis

78

Advancing Solar Through Photovoltaic Technology Innovations | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Advancing Solar Through Photovoltaic Technology Innovations Advancing Solar Through Photovoltaic Technology Innovations Advancing Solar Through Photovoltaic Technology Innovations April 19, 2011 - 5:17pm Addthis At NREL's High-Intensity Pulse Solar Simulator, NREL's Keith Emery removes an array of multijunction solar cells produced by PV Incubator partner Solar Junction. The NREL instrument can produce the intensity of up to 90 suns. | Photo credit: Dennis Schroeder At NREL's High-Intensity Pulse Solar Simulator, NREL's Keith Emery removes an array of multijunction solar cells produced by PV Incubator partner Solar Junction. The NREL instrument can produce the intensity of up to 90 suns. | Photo credit: Dennis Schroeder David Moore Presidential Management Fellow, Office of Energy Efficiency & Renewable Energy

79

Advancing Solar Through Photovoltaic Technology Innovations | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Advancing Solar Through Photovoltaic Technology Innovations Advancing Solar Through Photovoltaic Technology Innovations Advancing Solar Through Photovoltaic Technology Innovations April 19, 2011 - 5:17pm Addthis At NREL's High-Intensity Pulse Solar Simulator, NREL's Keith Emery removes an array of multijunction solar cells produced by PV Incubator partner Solar Junction. The NREL instrument can produce the intensity of up to 90 suns. | Photo credit: Dennis Schroeder At NREL's High-Intensity Pulse Solar Simulator, NREL's Keith Emery removes an array of multijunction solar cells produced by PV Incubator partner Solar Junction. The NREL instrument can produce the intensity of up to 90 suns. | Photo credit: Dennis Schroeder David Moore Presidential Management Fellow, Office of Energy Efficiency & Renewable Energy

80

Solar Heat-Pipe Receiver Wick Modeling  

DOE Green Energy (OSTI)

Stirling-cycle engines have been identified as a promising technology for the conversion of concentrated solar energy into usable electrical power. In previous experimented work, we have demonstrated that a heat pipe receiver can significantly improve system performance-over a directly-illuminated heater head. The design and operating conditions of a heat pipe receiver differ significantly from typical laboratory heat pipes. New wick structures have been developed to exploit the characteristics of the solar generation system. Typically, these wick structures allow vapor generation within the wick. Conventional heat pipe models do not handle this enhancement yet it can more than double the performance of the wick. In this study, I develop a steady-state model of a boiling-enhanced wick for a solar heat pipe receiver. The model is used for design-point calculations and is written in FORTRAN90. Some limited comparisons have been made with actual test data.

Andraka, C.E.

1998-12-21T23:59:59.000Z

Note: This page contains sample records for the topic "receiver solar photovoltaic" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

Liquid cooled, linear focus solar cell receiver  

DOE Patents (OSTI)

Separate structures for electrical insulation and thermal conduction are established within a liquid cooled, linear focus solar cell receiver for use with parabolic or Fresnel optical concentrators. The receiver includes a V-shaped aluminum extrusion having a pair of outer faces each formed with a channel receiving a string of solar cells in thermal contact with the extrusion. Each cell string is attached to a continuous glass cover secured within the channel with spring clips to isolate the string from the external environment. Repair or replacement of solar cells is effected simply by detaching the spring clips to remove the cover/cell assembly without interrupting circulation of coolant fluid through the receiver. The lower surface of the channel in thermal contact with the cells of the string is anodized to establish a suitable standoff voltage capability between the cells and the extrusion. Primary electrical insulation is provided by a dielectric tape disposed between the coolant tube and extrusion. Adjacent solar cells are soldered to interconnect members designed to accommodate thermal expansion and mismatches. The coolant tube is clamped into the extrusion channel with a releasably attachable clamping strip to facilitate easy removal of the receiver from the coolant circuit.

Kirpich, A.S.

1983-12-08T23:59:59.000Z

82

Liquid cooled, linear focus solar cell receiver  

DOE Patents (OSTI)

Separate structures for electrical insulation and thermal conduction are established within a liquid cooled, linear focus solar cell receiver for use with parabolic or Fresnel optical concentrators. The receiver includes a V-shaped aluminum extrusion having a pair of outer faces each formed with a channel receiving a string of solar cells in thermal contact with the extrusion. Each cell string is attached to a continuous glass cover secured within the channel with spring clips to isolate the string from the external environment. Repair or replacement of solar cells is effected simply by detaching the spring clips to remove the cover/cell assembly without interrupting circulation of coolant fluid through the receiver. The lower surface of the channel in thermal contact with the cells of the string is anodized to establish a suitable standoff voltage capability between the cells and the extrusion. Primary electrical insulation is provided by a dielectric tape disposed between the coolant tube and extrusion. Adjacent solar cells are soldered to interconnect members designed to accommodate thermal expansion and mismatches. The coolant tube is clamped into the extrusion channel with a releasably attachable clamping strip to facilitate easy removal of the receiver from the coolant circuit.

Kirpich, Aaron S. (Broomall, PA)

1985-01-01T23:59:59.000Z

83

A handbook for solar central receiver design  

DOE Green Energy (OSTI)

This Handbook describes central receiver technology for solar thermal power plants. It contains a description and assessment of the major components in a central receiver system configured for utility scale production of electricity using Rankine-cycle steam turbines. It also describes procedures to size and optimize a plant and discussed examples from recent system analyses. Information concerning site selection criteria, cost estimation, construction, and operation and maintenance is also included, which should enable readers to perform design analyses for specific applications.

Falcone, P.K.

1986-12-01T23:59:59.000Z

84

Progress Energy Florida - SunSense Solar Photovoltaics Rebate Program  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Progress Energy Florida - SunSense Solar Photovoltaics Rebate Progress Energy Florida - SunSense Solar Photovoltaics Rebate Program (Florida) Progress Energy Florida - SunSense Solar Photovoltaics Rebate Program (Florida) < Back Eligibility Residential Savings Category Solar Buying & Making Electricity Maximum Rebate $20,000 Program Info State Florida Program Type Utility Rebate Program Rebate Amount Varies '''''All funds for Progress Energy Florida's SunSense Solar PV Rebate program have been committed at this time.''''' Progress Energy Florida (PEF) has allocated $1.9 million per year towards residential photovoltaic (PV) incentives. PEF will accept applications annually from residential customers both wishing to install a PV system and qualifying for a rebate. Reservations for a rebate will be issued on a first-come basis, however a reservation does not guarantee that a rebate

85

Alameda Municipal Power - Solar Photovoltaics Rebate Program | Department  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Solar Photovoltaics Rebate Program Solar Photovoltaics Rebate Program Alameda Municipal Power - Solar Photovoltaics Rebate Program < Back Eligibility Commercial Residential Savings Category Solar Buying & Making Electricity Program Info Expiration Date December 31, 2017 State California Program Type Utility Rebate Program Rebate Amount Program is closed Provider Alameda Power and Telecom '''''Note: Alameda Municipal Power had a budget of $4.2 million to support this program. The utility has allocated the full budget and is no longer accepting applications. The information below is provided for historical purposes. ''''' Alameda Municipal Power offers an incentive program to customers who install solar photovoltaic (PV) systems. Rebates will be provided to commercial and residential customers on a per-watt AC basis, which, in

86

Solar Central Receiver with an Irising Aperture  

E-Print Network (OSTI)

Variable sun elevation, azimuthal and declination angles with the time of day, and seasons of the year respectively, give variable projected image size defects produced by field site concave mirrors on the central cavity receiver's aperture entrance. If the aperture is small, it will be inefficient for periods when the solar isolation is inclined due to spillage. However, if the aperture is large, it will be inefficient for periods when the solar isolation is normal, due to excess heat radiation and convection losses. Thus, the fixed aperture area size is a compromise between ideal sizes for different conditions. The end result is a loss of efficiency as a function of time of day and seasons of the year. This research presents an approach to maximize the interception factor on the receiver entrance, with reducing the heat losses by radiation and convection through its aperture area. A central receiver system, having a down-looking cavity with an irises aperture is being proposed for application in rich environmental solar conditions, utilized solar flux insolation throughout the day on the city of Kuwait. Solar tower focusing collector with a cavity type receiver having a fixed area aperture at the entrance is presented for comparison with the proposed technique. This collector is proved to be less efficient than the suggested design. The isiring cavity receiver with a variable area aperture provides an approximately constant efficiency regardless of the time of day or season of the year. The end result is the proposed system shows improved performance and capability. However, over the life-time of installation these advantages of the proposed system should overweigh its disadvantages of additional cost due to extra automation.

Galal, T.; Kulaib, A. M.; Abuzaid, M.

2010-01-01T23:59:59.000Z

87

Standard Terminology Relating to Photovoltaic Solar Energy Conversion  

E-Print Network (OSTI)

1.1 This terminology pertains to photovoltaic (radiant-to-electrical energy conversion) device performance measurements and is not a comprehensive list of terminology for photovoltaics in general. 1.2 Additional terms used in this terminology and of interest to solar energy may be found in Terminology E 772.

American Society for Testing and Materials. Philadelphia

2005-01-01T23:59:59.000Z

88

Renewable Energies III Photovoltaics, Solar & Geo-Thermal  

E-Print Network (OSTI)

Renewable Energies III Photovoltaics, Solar & Geo-Thermal 21st August - 2nd September 2011 2011 will provide students with a solid foundation in renewable energies (especially photovoltaics of renewable energies. Accommodation is arranged in fully-equipped cosy holiday flats with fellow students

89

City of San Jose - Solar Hot Water Heaters and Photovoltaic Systems...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Hot Water Heaters and Photovoltaic Systems Permit Requirements City of San Jose - Solar Hot Water Heaters and Photovoltaic Systems Permit Requirements Eligibility Commercial...

90

A survey of thin-film solar photovoltaic industry & technologies  

E-Print Network (OSTI)

A new type of solar cell technology using so-called thin-film solar photovoltaic material has the potential to make a great impact on our lives. Because it uses very little or no silicon at all, thin- film (TF) solar ...

Grama, Sorin

2007-01-01T23:59:59.000Z

91

EELE408 Photovoltaics Lecture 16: Silicon Solar Cell Fabrication Techniques  

E-Print Network (OSTI)

1 EELE408 Photovoltaics Lecture 16: Silicon Solar Cell Fabrication Techniques Dr. Todd J. Kaiser - Bozeman Screen Printed Solar Cells · Starting wafer is about 0.5 mm thick and 10 x 10 cm2. The wafer is p-type and lightly doped with Boron (1016/cm3) 2 Screen Printed Solar Cells · Saw Damage Etch ­ The starting wafer

Kaiser, Todd J.

92

Solar Photovoltaic Capacity F t P f d P li  

E-Print Network (OSTI)

6/19/2013 1 Solar Photovoltaic ­ Capacity F t P f d P li Generating Resources Advisory Committee Advisor Model (SAM), version 2013.1.15 Technology: Solar PV (PVWatts system model)Technology: Solar PV Plant life: 25 years Weather data: Typical/representative of longterm averages; not one full historical

93

Performance and Reliability of the Solar Progress Photovoltaic Plant  

Science Conference Proceedings (OSTI)

Amorphous silicon is presently a leading contender for cost-effective photovoltaic power generation. Findings reported here confirm that the Solar Progress experimental power plant with amorphous silicon modules operated with high reliability, and no unexpected problems arose.

1991-01-23T23:59:59.000Z

94

NREL GIS Data: Hawaii Low Resolution Photovoltaic Solar Resource...  

Open Energy Info (EERE)

April 01st, 2011 (3 years ago) Keywords GIS hawaii NREL photovoltaic shapefile solar Data applicationzip icon Shapefile (zip, 1.2 MiB) Metadata Metadata accessible through...

95

Property Influence of Polyanilines on Photovoltaic Behaviors of Dye-Sensitized Solar Cells  

E-Print Network (OSTI)

Property Influence of Polyanilines on Photovoltaic Behaviors of Dye-Sensitized Solar Cells Shuxin conductors on the photovoltaic behaviors of dye-sensitized solarcellsisstudied of both the film formation property and the cluster size of polyanilines on the photovoltaic behaviors

96

Solar | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

City of Boulder established a solar sales and use tax rebate for photovoltaic (PV) and solar water heating installations. Solar system owners may receive a rebate (essentially a...

97

Udhaya Energy Photovoltaics P Ltd UPV Solar | Open Energy Information  

Open Energy Info (EERE)

Udhaya Energy Photovoltaics P Ltd UPV Solar Udhaya Energy Photovoltaics P Ltd UPV Solar Jump to: navigation, search Name Udhaya Energy Photovoltaics (P) Ltd. (UPV Solar) Place Coimbatore, Tamil Nadu, India Zip 641 407 Sector Solar Product Coimbatore-based manufacturers & exporters Of solar PV cells. Coordinates 11.01167°, 76.98406° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":11.01167,"lon":76.98406,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

98

Window and seal design for a small particle solar receiver.  

E-Print Network (OSTI)

??Central receivers for solar power towers have recently been under intense investigation. They can convert solar radiation into electricity by supplying heat to a thermodynamic… (more)

Mande, Onkar Kiran

2012-01-01T23:59:59.000Z

99

Modeling of Performance, Cost, and Financing of Concentrating Solar, Photovoltaic, and Solar Heat Systems (Poster)  

SciTech Connect

This poster, submitted for the CU Energy Initiative/NREL Symposium on October 3, 2006 in Boulder, Colorado, discusses the modeling, performance, cost, and financing of concentrating solar, photovoltaic, and solar heat systems.

Blair, N.; Mehos, M.; Christiansen, C.

2006-10-03T23:59:59.000Z

100

Implementations of electric vehicle system based on solar energy in Singapore : assessment of solar photovoltaic systems  

E-Print Network (OSTI)

To evaluate the feasibility of solar energy based Electric Vehicle Transportation System in Singapore, the state of the art Photovoltaic Systems have been reviewed in this report with a focus on solar cell technologies. ...

Sun, Li

2009-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "receiver solar photovoltaic" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

Solar central receiver heliostat reflector assembly  

SciTech Connect

A heliostat reflector assembly for a solar central receiver system comprises a light-weight, readily assemblable frame which supports a sheet of stretchable reflective material and includes mechanism for selectively applying tension to and positioning the sheet to stretch it to optical flatness. The frame is mounted on and supported by a pipe pedestal assembly that, in turn, is installed in the ground. The frame is controllably driven in a predetermined way by a light-weight drive system so as to be angularly adjustable in both elevation and azimuth to track the sun and efficiently continuously reflect the sun's rays to a focal zone, i.e. central receiver, which forms part of a solar energy utilization system, such as a solar energy fueled electrical power generation system. The frame may include a built-in system for testing for optical flatness of the reflector. The preferable geometric configuration of the reflector is octagonal; however, it may be other shapes, such as hexagonal, pentagonal or square. Several different embodiments of means for tensioning and positioning the reflector to achieve optical flatness are disclosed. The reflector assembly is based on the stretch frame concept which provides an extremely light-weight, simple, low-cost reflector assembly that may be driven for positioning and tracking by a light-weight, inexpensive drive system.

Horton, Richard H. (Schenectady, NY); Zdeb, John J. (Clifton Park, NY)

1980-01-01T23:59:59.000Z

102

Experimental investigation on the photovoltaic-thermal solar heat pump air-conditioning system on water-heating mode  

Science Conference Proceedings (OSTI)

An experimental study on operation performance of photovoltaic-thermal solar heat pump air-conditioning system was conducted in this paper. The experimental system of photovoltaic-thermal solar heat pump air-conditioning system was set up. The performance parameters such as the evaporation pressure, the condensation pressure and the coefficient of performance (COP) of heat pump air-conditioning system, the water temperature and receiving heat capacity in water heater, the photovoltaic (PV) module temperature and the photovoltaic efficiency were investigated. The experimental results show that the mean photovoltaic efficiency of photovoltaic-thermal (PV/T) solar heat pump air-conditioning system reaches 10.4%, and can improve 23.8% in comparison with that of the conventional photovoltaic module, the mean COP of heat pump air-conditioning system may attain 2.88 and the water temperature in water heater can increase to 42 C. These results indicate that the photovoltaic-thermal solar heat pump air-conditioning system has better performances and can stably work. (author)

Fang, Guiyin; Hu, Hainan; Liu, Xu [Department of Physics, Nanjing University, Nanjing 210093 (China)

2010-09-15T23:59:59.000Z

103

EELE408 Photovoltaics Lecture 11: Solar Cell Parameters  

E-Print Network (OSTI)

1 EELE408 Photovoltaics Lecture 11: Solar Cell Parameters Dr. Todd J. Kaiser tjkaiser@ece.montana.edu Department of Electrical and Computer Engineering Montana State University - Bozeman Solar Cell Parameters Light IL 3 Voltage Illluminating the cell adds to the "dark" current of the diode The IV curve shifts

Kaiser, Todd J.

104

Solar photovoltaic systems for residences in the Northeast  

DOE Green Energy (OSTI)

Under sponsorship of the US Department of Energy, MIT Lincoln Laboratory is conducting a program to develop residential solar photovoltaic (PV) systems. The first phase of this activity involves the design, construction and testing of four prototype systems at the Northeast Residential Experiment Station. The systems employ roof-mounted photovoltaic arrays of 500 to 800 square feet which provide solar-generated electricity sufficient to cut in half the electrical demand of an energy-efficient, passive-solar residence. Construction of these systems will be complete by December 1980, and will be followed by a one-year test period.

Russell, M.C.

1980-01-01T23:59:59.000Z

105

Solar central receiver technology: the Solar Two Project  

DOE Green Energy (OSTI)

Solar Two will be the world`s largest operating solar central receiver power plant. It is expected to begin operating in April 1996; it is currently undergoing start-up and checkout. The plant will use sunlight reflected from 1926 sun-tracking mirrors to heat molten nitrate salt flowing in a heat exchanger (receiver) that sits atop a 200 foot tower. The heated salt will be stored in a tank for use, when needed, to generate superheated steam for producing electricity with a conventional Rankine-cycle turbine/generator. The purpose of the project is to validate molten-salt solar central receiver technology and to reduce the perceived risks associated with the first full-scale commercial plants. Already, much has been learned during the project including the effects of trace contaminants in the salt and the large effect of wind on the receiver. There is also much that remains to be learned. This report describes the technical status of the Solar Two project including a summary of lessons learned to date.

Sutherland, J.P. [Southern California Edison Co., Irwindale, CA (United States)

1996-05-01T23:59:59.000Z

106

ADAPTIVE HYSTERESIS CURRENT CONTROL OF INVERTER FOR SOLAR PHOTOVOLTAIC APPLICATIONS  

E-Print Network (OSTI)

Abstract – Power inverters are used to convert the D.C power produced by the solar photovoltaic cell into AC. This paper presents a novel Adaptive Hysteresis Current Controller to control the inverter, used in the solar photovoltaic cell. The proposed controller is capable of reducing the total harmonic distortion and to provide constant switching frequency. The mathematical model of Photovoltaic array is developed using the Newton’s method using the parameter obtained from a commercial photovoltaic data sheet under variable weather conditions, in which the effect of irradiance and temperature are considered. The modeled Photovoltaic array is interfaced with DC-DC boost converter, AC-DC inverter and load. A DC-DC boost converter is used to step up the input DC voltage of the Photovoltaic array while the DC-AC single-phase inverter converts the input DC comes from boost converter into AC. The performance of the proposed controller of inverter is evaluated through MATLAB-Simulation. The results obtained with the proposed algorithm are compared with those obtained when using conventional fixed hysteresis current controller for single-phase photovoltaic inverter in terms of THD and switching frequency.

unknown authors

2011-01-01T23:59:59.000Z

107

Operational results from the Saudi Solar Village Photovoltaic power system  

Science Conference Proceedings (OSTI)

The world's largest photovoltaic power system was carried into the operation phase a few months ago. This system was developed and fabricated in the United States and it is providing electrical energy to three remote villages in Saudi Arabia. The facility includes a 350 kW photovoltaic array, 1-MW diesel powered generator, 1100 kWH lead acid batteries, a 300 KVA inverter and a solar weather data monitoring station. The photovoltaic power system is capable of completely automatic operation. It is designed to operate in stand-alone and cogeneration modes of operation.

Huraib, F.; Al-Sani, A.; Khoshami, B.H.

1982-08-01T23:59:59.000Z

108

Solar Photovoltaics Market Update: Volume 2 - Summer 2012  

Science Conference Proceedings (OSTI)

Volume 2 of the Electric Power Research Institute’s (EPRI’s) quarterly Solar PV Market Update provides EPRI members with continued insight into some of the front-line trends throughout the photovoltaic (PV) segment. Whereas Volume 1 of the Solar PV Market Update (1025103) focused more intently on the PV market situation in the United States, this edition explores various solar industry economic, policy, and technology issues from an international perspective. It ...

2012-08-24T23:59:59.000Z

109

1 Copyright 2011 by ASME MATERIAL OPTIMIZATION FOR CONCENTRATED SOLAR PHOTOVOLTAIC AND  

E-Print Network (OSTI)

photovoltaic and hot water co-generation based on various solar cell technologies and micro channel heat sinks. Concentrated solar Photovoltaic (PV) based on multi junction cells can yield around 35-40% efficiency is moderate [3] in comparison to the concentrated solar photovoltaic, for which multi-junction cells

110

Residential Solar Photovoltaics: Comparison of Financing Benefits Innovations and Options  

NLE Websites -- All DOE Office Websites (Extended Search)

Residential Solar Photovoltaics: Residential Solar Photovoltaics: Comparison of Financing Benefits, Innovations, and Options Bethany Speer Technical Report NREL/TP-6A20-51644 October 2012 NREL is a national laboratory of the U.S. Department of Energy, Office of Energy Efficiency & Renewable Energy, operated by the Alliance for Sustainable Energy, LLC. National Renewable Energy Laboratory 15013 Denver West Parkway Golden, Colorado 80401 303-275-3000 * www.nrel.gov Contract No. DE-AC36-08GO28308 Residential Solar Photovoltaics: Comparison of Financing Benefits, Innovations, and Options Bethany Speer Prepared under Task Nos. SM10.2442, SM12.3010 Technical Report NREL/TP-6A20-51644 October 2012 NOTICE This report was prepared as an account of work sponsored by an agency of the United States government.

111

The Social Acceptance of School-based Solar Photovoltaic Projects: An Ontario, Canada Case Study.  

E-Print Network (OSTI)

??The installation of solar photovoltaic (solar PV) technology on elementary and secondary schools has been undertaken around the world in an attempt to tie together… (more)

Beckstead, Claire Louise

2008-01-01T23:59:59.000Z

112

Laminated photovoltaic modules using back-contact solar cells  

DOE Patents (OSTI)

Photovoltaic modules which comprise back-contact solar cells, such as back-contact crystalline silicon solar cells, positioned atop electrically conductive circuit elements affixed to a planar support so that a circuit capable of generating electric power is created. The modules are encapsulated using encapsulant materials such as EVA which are commonly used in photovoltaic module manufacture. The module designs allow multiple cells to be electrically connected in a single encapsulation step rather than by sequential soldering which characterizes the currently used commercial practices.

Gee, James M. (Albuquerque, NM); Garrett, Stephen E. (Albuquerque, NM); Morgan, William P. (Albuquerque, NM); Worobey, Walter (Albuquerque, NM)

1999-09-14T23:59:59.000Z

113

Juice from solar concentrate [photovoltaic collector  

Science Conference Proceedings (OSTI)

Conventional photovoltaic (PV) panels made from silicon to provide electricity to office buildings and homes are still too expensive. Unless they are heavily subsidized, it rarely makes sense to install them where electricity is available from the grid. ...

P. Patel-Predo

2005-10-01T23:59:59.000Z

114

Sawnee EMC- Solar Photovoltaic Rebate Program  

Energy.gov (U.S. Department of Energy (DOE))

Sawnee EMC offers a rebate of $300 per kilowatt (kW) to residential customers who install photovoltaic (PV) systems that meet the cooperative's [http://www.sawnee.com/Rate%20Pdfs/NEM%20Rider.pdf...

115

Integrated solar receiver/biomass gasifier research  

SciTech Connect

Processes for producing liquid fuels from olefin-rich pyrolysis gases obtained from fast pyrolysis of biomass are being developed by J. Kuester at Arizona State University and J. Diebold at the Naval Weapons Center, China Lake, Calif. In the Diebold process the biomass, carried by steam, is blown through an entrained bed gasifier. The olefins are then separated from the rest of the reaction products and polymerized thermally to gasoline; the other gases are used as fuel for the process. The Kuester process uses a fluidized bed gasifier and a catalytic Fischer-Tropsch reactor which converts the olefins, hydrogen, and carbon monoxide into n-propanol and paraffinic hydrocarbons. The advantages over the Diebold process are shorter residence time and elimination of the gas separation requirement. One disadvantage is the low octane rating of the fuel. As part of the solar thermal program at the Solar Energy Research Institute (SERI), an entrained bed reactor/receiver for fast pyrolysis of biomass is being developed for use with either the Diebold or Kuester process. This system is discussed.

Benham, C.; Bergeron, P.; Bessler, G.; Bohn, M.

1979-11-01T23:59:59.000Z

116

Insuring Solar Photovoltaics: Challenges and Possible Solutions  

NLE Websites -- All DOE Office Websites (Extended Search)

Concentrating Solar Power - Technology, Costs, and Markets: A Guide to the Impact CSP Technologies will Have on the Solar and Broader Renewable Energy Markets through 2020:...

117

Solar Photovoltaics Market Update: Volume 6: Q2 2013  

Science Conference Proceedings (OSTI)

Volume 6 of EPRI’s quarterly Solar PV Market Update provides continued insight into some of the front line trends that are afoot throughout the photovoltaic segment. Like previous Updates, it synthesizes primary and secondary data from multiple sources in an effort to highlight economic, policy, and technology developments that are likely to impact utility solar PV investment and planning efforts.This report examines recent upheaval in the PV inverter landscape, marked by equipment ...

2013-06-30T23:59:59.000Z

118

Solar Photovoltaics Market Update, Volume 5: Q1 2013  

Science Conference Proceedings (OSTI)

Volume 5 of EPRI's quarterly Solar PV Market Update provides continued insight into some of the front line trends that are afoot throughout the photovoltaic segment. Like previous Updates, it synthesizes primary as well as secondary data from multiple sources in an effort to highlight economic, policy, and technology developments that are likely to impact utility solar PV investment and planning efforts. Specifically, this report examines global PV installation and market issues, providing key ...

2013-04-04T23:59:59.000Z

119

Solar Photovoltaics Market Update: Volume 8: Q4 2013  

Science Conference Proceedings (OSTI)

Volume 8 of EPRI’s quarterly Solar PV Market Update provides continued insight into some of the front line trends that are afoot throughout the photovoltaic segment. As with previous Updates, it synthesizes primary and secondary data from multiple sources in an effort to highlight economic, policy, and technology developments that are likely to impact utility solar PV investment and planning efforts.This report first highlights PV component, system, and PPA pricing developments ...

2013-12-23T23:59:59.000Z

120

High-Performance Home Technologies: Solar Thermal & Photovoltaic Systems  

DOE Green Energy (OSTI)

This document is the sixth volume of the Building America Best Practices Series. It presents information that is useful throughout the United States for enhancing the energy efficiency practices in the specific climate zones that are presented in the first five Best Practices volumes. It provides an introduction to current photovoltaic and solar thermal building practices. Information about window selection and shading is included.

Baechler, M.; Gilbride, T.; Ruiz, K.; Steward, H.; Love, P.

2007-06-01T23:59:59.000Z

Note: This page contains sample records for the topic "receiver solar photovoltaic" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

Oncor Electric Delivery - Solar Photovoltaic Standard Offer Program...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Program Type Utility Rebate Program Rebate Amount Residential: 538.79kW AC and 0.53kWh AC Non-residential: 538.79kW AC and 0.41kWh AC The 2013 Oncor Solar Photovoltaic...

122

Flux Distribution of a Single-Axis Tracking Parabolic Trough Array with Photovoltaic Receiver  

E-Print Network (OSTI)

Flux Distribution of a Single-Axis Tracking Parabolic Trough Array with Photovoltaic Receiver G 0200 Australia E-mail: gregory.burgess@anu.edu.au Abstract Single-axis tracking parabolic troughs Long arrays of single-axis tracking parabolic troughs with a fluid filled absorber are a well

123

Renewable energy options in Saudi Arabia: the economic viability of solar photovoltaics within the residential sector  

Science Conference Proceedings (OSTI)

Renewable energy options, including solar power, are becoming progressively more viable and thus increasingly pose challenges to conventional sources of energy, such as oil, coal and natural gas. Solar Photovoltaic technology is one type of solar energy ... Keywords: Saudi Arabia, feasibility study, renewable energy, residential buildings, solar photovoltaics

Yasser Al-Saleh; Hanan Taleb

2009-02-01T23:59:59.000Z

124

Solar Leasing for Residential Photovoltaic Systems (Revised) (Fact Sheet)  

NLE Websites -- All DOE Office Websites (Extended Search)

In the past year, the residential solar lease has received In the past year, the residential solar lease has received significant attention in the solar marketplace, primarily for its ability to leverage two key commercial tax credits for the individual homeowner. However, on January 1, 2009, the $2,000 cap on the residential investment tax credit (ITC) was lifted. As a result, the expansion of the solar lease model across the United States may be slower than antici-

125

Solar Radio Burst Effects on Global Positioning System Receivers .  

E-Print Network (OSTI)

??This thesis presents a series of studies investigating solar radio burst effects on Global Positioning System (GPS) receivers along with supporting instrumentation and analysis techniques.… (more)

Cerruti, Alessandro Paolo

2007-01-01T23:59:59.000Z

126

NREL: Concentrating Solar Power Research - Receiver R&D  

NLE Websites -- All DOE Office Websites (Extended Search)

used to analyze the steady-state, off-sun thermal losses of receivers used in solar parabolic trough power plants; helps to reduce collector optical losses and reduce receiver...

127

Making the sun work for you. Solar electricity from photovoltaics  

SciTech Connect

Written for homeowners and non-technical users, this guide explains how to harness solar power for homes and other small-scale applications. Step-by-step instructions show how to design, install, and operate photovoltaic systems that meet a wide variety of needs. Methods for sizing, sitting, and wiring these systems are explicitly demonstrated. Information on tax credits, building and safety codes, zoning regulations, and solar access laws along with numerous charts and illustrations help to maximize the benefits of sun-generated electricity. This volume also discusses the history of alternative energy sources and considers future possibilities for solar energy.

1984-01-01T23:59:59.000Z

128

Solar Photovoltaic Technologies - Energy Innovation Portal  

In order to better compete with fossil fuels, researchers are attempting to create a second generation of cheaper, more efficient solar cells.

129

Solar Photovoltaics Research and Technology: The Revolution ...  

Science Conference Proceedings (OSTI)

Moreover, technology progress and ownership for next-generation solar PV mandates a ... Dislocations in Si-Doped LEC GaAs Revisited: A Spectrum Image

130

Solar Photovoltaic Financing: Residential Sector Deployment  

NLE Websites -- All DOE Office Websites (Extended Search)

(a subsidiary of U.S. Bancorp), AFC First Financial Corporation, and Gemstone Lease Management, LLC, announced a residential solar lease program for homeowners who meet certain...

131

Novel Controls of Photovoltaic (PV) Solar Farms.  

E-Print Network (OSTI)

??Solar Farms are absolutely idle in the night and even during daytime operate below capacity in early mornings and late afternoons. Thus, the entire expensive… (more)

Rahman, Shah Arifur

2012-01-01T23:59:59.000Z

132

Glass for low-cost photovoltaic solar arrays  

DOE Green Energy (OSTI)

In photovoltaic systems, the encapsulant material that protects the solar cells should be highly transparent and very durable. Glass satisfies these two criteria and is considered a primary candidate for low-cost, photovoltaic encapsulation systems. In this report, various aspects of glass encapsulation are treated that are important for the designer of photovoltaic systems. Candidate glasses and available information defining the state of the art of glass encapsulation materials and processes for automated, high volume production of terrestrial photovoltaic devices and related applications are presented. The criteria for consideration of the glass encapsulation systems were based on the LSA (Low-cost Solar Array) Project goals for arrays: (a) a low degradation rate, (b) high reliability, (c) an efficiency greater than 10 percent, (d) a total array price less than $500/kW, and (e) a production capacity of 5 x 10/sup 5/ kW/yr. The glass design areas treated herein include the types of glass, sources and costs, physical properties and glass modifications, such as antireflection coatings. 78 references.

Bouquet, F.L.

1980-02-01T23:59:59.000Z

133

2009 Concentrating Photovoltaic Solar Technology Assessment  

Science Conference Proceedings (OSTI)

This report investigates manufacturers of concentrating photovoltaic (CPV) systems with a special emphasis on companies that may be ready to deploy one or more 50-MW systems by 2012. The report has three main sections: Detailed profiles of 10 companies that appear likely to be able to field utility-scale deployments by 2012 A market study and forecast for CPV over the period 2012–2020 An appendix, listing contacts and other information about the dozens of CPV vendors that were not included in the detail...

2010-04-13T23:59:59.000Z

134

NREL: Concentrating Solar Power Research - Particle Receiver...  

NLE Websites -- All DOE Office Websites (Extended Search)

Bed-Novel Components to Overcome Existing Barriers Advancing concentrating solar power (CSP) systems to the target cost of 0.06 per kilowatt-hour, set by the U.S. Department of...

135

Solar and Photovoltaic Data from the University of Oregon Solar Radiation Monitoring Laboratory (UO SRML)  

DOE Data Explorer (OSTI)

The UO SRML is a regional solar radiation data center whose goal is to provide sound solar resource data for planning, design, deployment, and operation of solar electric facilities in the Pacific Northwest. The laboratory has been in operation since 1975. Solar data includes solar resource maps, cumulative summary data, daily totals, monthly averages, single element profile data, parsed TMY2 data, and select multifilter radiometer data. A data plotting program and other software tools are also provided. Shade analysis information and contour plots showing the effect of tilt and orientation on annual solar electric system perfomance make up a large part of the photovoltaics data.(Specialized Interface)

136

Solar and Allison receive ATS contracts  

Science Conference Proceedings (OSTI)

The US Department of Energy (DOE) has awarded contracts to Solar Turbines Incorporated and Allison Engine Company, for development of advanced power generation engines in the under-20-MW category, as part of Phase III of the Advanced Turbine Systems (ATS) program. The contracts are for construction of complete prototype engines. Solar`s contract, announced on September 15, is for development of 5- and 15-MW engines. Allison`s contract, announced October 17, is for a family of engines in the 4.5- to 11-MW range. Solar`s 5- and 15-MW engines will be variations on the same design, with the smaller engine being the focus of engineering work, and the larger one scale up from it. The Solar ATS engine will be a two-shaft, simple-cycle engine. Efficiency targets are 42% for the 5-MW engine and 43% for the 15-MW model. The NOx target is `single digits.` The Allison ATS engine family will cover the power range from 4.5-11MW. The engines will be two-shaft, simple-cycle units. The DOE target for (LHV) simple cycle efficiency is 15% over the best current technology, which would mean something close to 40%. Allison`s target for NOx is a ppm figure in the single digits. 1 fig.

NONE

1995-11-01T23:59:59.000Z

137

Cogenerating Photovoltaic and Thermal Solar Collector  

E-Print Network (OSTI)

heat US Department of Energy: Parabolic Trough SpectroLab Concentrating Terrestrial PV Cell C1MJ CDO peak load and irradiance hours of the day #12;Design · Parabolic solar collector · GaAs PV cells

Eirinaki, Magdalini

138

New EIA data show total grid-connected photovoltaic solar capacity ...  

U.S. Energy Information Administration (EIA)

Using new information, EIA combines data on utility-scale solar photovoltaic (PV) capacity with customer-sited PV capacity, as reported in the graphic.

139

Polycrystalline Thin Film Photovoltaics: From the Laboratory to Solar Fields; Preprint  

DOE Green Energy (OSTI)

We review the status of commercial polycrystalline thin-film solar cells and photovoltaic (PV) modules, including current and projected commercialization activities.

von Roedern, B.; Ullal, H. S.; Zweibel, K.

2006-05-01T23:59:59.000Z

140

Flat-Plate Photovoltaic Performance Testing at the Solar Technology Acceleration Center (SolarTAC)  

Science Conference Proceedings (OSTI)

The flat-plate photovoltaic (PV) performance testing project at the Solar Technology Acceleration Center (SolarTAC) is a multi-year, data-driven effort to provide unbiased field testing of a variety of commercial-scale solar PV systems under different environmental and seasonal conditions. Its core aim is to assess and characterize the operation of both well-established as well as less mature PV module technologies to ultimately inform future PV product investment decisions by electric utilities and ...

2013-10-30T23:59:59.000Z

Note: This page contains sample records for the topic "receiver solar photovoltaic" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

Solar photovoltaic applications seminar: design, installation and operation of small, stand-alone photovoltaic power systems  

DOE Green Energy (OSTI)

This seminar material was developed primarily to provide solar photovoltaic (PV) applied engineering technology to the Federal community. An introduction to photoconductivity, semiconductors, and solar photovoltaic cells is included along with a demonstration of specific applications and application identification. The seminar details general systems design and incorporates most known information from industry, academia, and Government concerning small solar cell power system design engineering, presented in a practical and applied manner. Solar PV power system applications involve classical direct electrical energy conversion and electric power system analysis and synthesis. Presentations and examples involve a variety of disciplines including structural analysis, electric power and load analysis, reliability, sizing and optimization; and, installation, operation and maintenance. Four specific system designs are demonstrated: water pumping, domestic uses, navigational and aircraft aids, and telecommunications. All of the applications discussed are for small power requirement (under 2 kilowatts), stand-alone systems to be used in remote locations. Also presented are practical lessons gained from currently installed and operating systems, problems at sites and their resolution, a logical progression through each major phase of system acquisition, as well as thorough design reviews for each application.

Not Available

1980-07-01T23:59:59.000Z

142

City of Boulder - Solar Sales and Use Tax Rebate (Colorado) ...  

Open Energy Info (EERE)

City of Boulder established a solar sales and use tax rebate for photovoltaic (PV) and solar water heating installations. Solar system owners may receive a rebate (essentially a...

143

Support and maneuvering apparatus for solar energy receivers  

DOE Patents (OSTI)

A support and maneuvering apparatus is disclosed for a solar energy receiving device adpated for receiving and concentrating solar energy and having a central axis extending through the center thereof. The apparatus includes a frame for mounting the perimeter of said solar energy receiving device. A support member extends along the central axis of the receiving device and has a base end passing through the center of the receiving device and an outer distal end adapted for carrying a solar energy receiving and conversion mechanism. A variable tension mechanism interconnects the support member with the frame to provide stiffening for the support member and the frame and to assist in the alignment of the frame to optimize the optical efficiency of the solar energy receiving device. A rotatable base is provided, and connecting members extend from the base for pivotable attachment to the frame at spaced positions therealong. Finally, an elevation assembly is connected to the receiving device for selectively pivoting the receiving device about an axis defined between the attachment positions of the connecting members on the frame.

Murphy, Lawrence M. (Littleton, CO)

1989-01-01T23:59:59.000Z

144

Support and maneuvering apparatus for solar energy receivers  

DOE Patents (OSTI)

A support and maneuvering apparatus is disclosed for a solar energy receiving device adapted for receiving and concentrating solar energy and having a central axis extending through the center thereof. The apparatus includes a frame for mounting the perimeter of said solar energy receiving device. A support member extends along the central axis of the receiving device and has a base end passing through the center of the receiving device and an outer distal end adapted for carrying a solar energy receiving and conversion mechanism. A variable tension mechanism interconnects the support member with the frame to provide stiffening for the support member and the frame and to assist in the alignment of the frame to optimize the optical efficiency of the solar energy receiving device. A rotatable base is provided, and connecting members extend from the base for pivotable attachment to the frame at spaced positions therealong. Finally, an elevation assembly is connected to the receiving device for selectively pivoting the receiving about an axis defined between the attachment positions of the connecting members on the frame. 4 figs.

Murphy, L.M.

1988-07-28T23:59:59.000Z

145

Measuring Solar Spectral and Angle-ofIncidence Effects on Photovoltaic Modules and Solar Irradiance Sensors  

E-Print Network (OSTI)

Historically, two time-of-day dependent factors have complicated the characterization of photovoltaic module and array performance; namely, changes in the solar spectrum over the day and optical effects in the module that vary with the solar angle-of-incidence. This paper describes straightforward methods for directly measuring the effects of these two factors. Measured results for commercial modules, as well as for typical solar irradiance sensors (pyranometers) are provided. The empirical relationships obtained from the measurements can be used to improve the methods used for system design, verification of performance after installation, and diagnostic monitoring of performance during operation. INTRODUCTION It is common knowledge to people familiar with photovoltaic technology that the electrical current generated by photovoltaic devices is influenced by the spectral distribution (spectrum) of sunlight. It is also commonly understood that the spectral distribution of sunlight vari...

David L. King; Jay A. Kratochvil; William E. Boyson

1997-01-01T23:59:59.000Z

146

FINAL REPORT OF RESEARCH ON CuxS/ (Cd,Zn)S PHOTOVOLTAIC SOLAR ENERGY CONVERTERS 3/77 - 9/79  

E-Print Network (OSTI)

Cu X S/(Cd,Zn)S PHOTOVOLTAIC SOLAR ENERGY CONVERTERS 3/77 -of Research on Photovoltaic Solar Energy Converters CuxSI(Cd

Chin, B.L.

2013-01-01T23:59:59.000Z

147

Windowed versus windowless solar energy cavity receivers  

DOE Green Energy (OSTI)

A model for a windowed, high-temperature cavity receiver of the heated-air type is developed and used to evaluate the greenhouse effect as a method for obtaining high receiver operating efficiencies. The effects on receiver efficiency of varying the window cutoff wavelength, the amount of absorption in the window pass-band, the cavity operating temperature, and the number of windows are determined. Single windowed cavities are found to offer theoretical efficiencies comparable to windowless ones, while multiple windowed units are found to suffer from low operating efficiencies due to losses resulting from reflections at each window/air interface. A ''first order'' examination is made of the feasibility of air cooling the window to assure its survival. This appears possible if a proper combination of cooling technique and window material characteristics is selected.

Jarvinen, P. O.

1976-09-01T23:59:59.000Z

148

SOLCOST-PHOTOVOLTAIC solar energy design program: User's Guide  

DOE Green Energy (OSTI)

The SOLCOST-PHOTOVOLTAIC solar energy design program is a public domain interactive computer design tool intended for use by non-solar specialists to predict the long term performance for photovoltaic systems. A life cycle cost analysis is included in the program along with the ERDA-EPRI standard economic analysis which predicts levelized busbar energy costs for the photovoltaic system assuming ownership by an electric utility. SOLCOST-PV currently can evaluate flat plate arrays and concentrating arrays which use Fresnel lenses and passive cooling. The methodology could easily be extended to include all the known types of concentrators, however the scope of the version 1.0 activity was limited to only the flat plate and the passive Fresnel concentrators. An overview of the SOLCOST-PV capabilities and methodology is given. A detailed guide to the SOLCOST-PV input parameters is included, and examples showing typical interactive execution sessions and the resulting SOLCOST-PV output are presented. Appendices A and B provide additional information on the SOLCOST-PV analysis.

Not Available

1980-10-01T23:59:59.000Z

149

Hybrid solar central receiver for combined cycle power plant  

DOE Patents (OSTI)

A hybrid combined cycle power plant is described including a solar central receiver for receiving solar radiation and converting it to thermal energy. The power plant includes a molten salt heat transfer medium for transferring the thermal energy to an air heater. The air heater uses the thermal energy to preheat the air from the compressor of the gas cycle. The exhaust gases from the gas cycle are directed to a steam turbine for additional energy production. 1 figure.

Bharathan, D.; Bohn, M.S.; Williams, T.A.

1995-05-23T23:59:59.000Z

150

Hybrid solar central receiver for combined cycle power plant  

DOE Patents (OSTI)

A hybrid combined cycle power plant including a solar central receiver for receiving solar radiation and converting it to thermal energy. The power plant includes a molten salt heat transfer medium for transferring the thermal energy to an air heater. The air heater uses the thermal energy to preheat the air from the compressor of the gas cycle. The exhaust gases from the gas cycle are directed to a steam turbine for additional energy production.

Bharathan, Desikan (Lakewood, CO); Bohn, Mark S. (Golden, CO); Williams, Thomas A. (Arvada, CO)

1995-01-01T23:59:59.000Z

151

Solar Photovoltaics Expanding Electric Generation Options  

Science Conference Proceedings (OSTI)

EPRI and others have demonstrated that a broad portfolio of cost-competitive supply technologies will be needed to satisfy the world's rising demands for energy while meeting climate policy and other societal objectives. Solar energy is a particularly attractive renewable energy option because it is well distributed and abundant over most of the earth's surface. This White Paper reviews the status of PV technology and markets, the potential for evolutionary and revolutionary technology advances, the iss...

2007-12-21T23:59:59.000Z

152

Solar Photovoltaic Hydrogen: The Technologies and Their Place in Our Roadmaps and Energy Economics  

DOE Green Energy (OSTI)

Future solar photovoltaics-hydrogen systems are discussed in terms of the evolving hydrogen economy. The focus is on distributed hydrogen, relying on the same distributed-energy strengths of solar-photovoltaic electricity in the built environment. Solar-hydrogen residences/buildings, as well as solar parks, are presented. The economics, feasibility, and potential of these approaches are evaluated in terms of roadmap predictions on photovoltaic and hydrogen pathways-and whether solar-hydrogen fit in these strategies and timeframes. Issues with the ''hydrogen future'' are considered, and alternatives to this hydrogen future are examined.

Kazmerski, L. L.; Broussard, K.

2004-08-01T23:59:59.000Z

153

Photovoltaic effect in InSe Application to Solar Energy Conversion  

E-Print Network (OSTI)

253 Photovoltaic effect in InSe Application to Solar Energy Conversion A. Segura, J. P. Guesdon, J are reported. Photovoltaic spectra are fitted with measured values oftransport and optical parameters. InSe is shown to be a new material with attractive characteristics for solar energy conversion. Performance

Paris-Sud XI, Université de

154

A Control Strategy for Off-Grid Solar Photovoltaic Power System Based on MPPT Algorithm  

Science Conference Proceedings (OSTI)

Off-grid solar photovoltaic (PV) power system characteristics are used widely in many far-away areas during theses years. The new control strategy employs Maximum Power Point Tracking (MPPT) algorithm. The maximum power point tracker is a high efficiency ... Keywords: off-grid solar photovoltaic power system, maximum power point tracking algorithm, perturbation and observation control method

Tianjian Wang; Xia Dang; Dong Liu

2012-10-01T23:59:59.000Z

155

Ligand chemistry of titania precursor affects transient photovoltaic behavior in inverted organic solar cells  

E-Print Network (OSTI)

transient photovoltaic behavior in inverted organic solar cells Jong Bok Kim,1,a) Seokhoon Ahn,2,b) Seok JuLigand chemistry of titania precursor affects transient photovoltaic behavior in inverted organic solar cells Jong Bok Kim, Seokhoon Ahn, Seok Ju Kang, Colin Nuckolls, and Yueh-Lin Loo Citation: Appl

156

Absorber and emitter for solar thermo-photovoltaic systems to achieve efficiency  

E-Print Network (OSTI)

Pbs photovoltaic cells," Int. J. Energy Res. 16(6), 481­487 (1992). 7. V. Badescu, "ThermodynamicAbsorber and emitter for solar thermo- photovoltaic systems to achieve efficiency exceeding, provides a sharp emissivity peak at the solar cell band-gap while suppressing emission at lower frequencies

Fan, Shanhui

157

Solar Photovoltaic Financing: Residential Sector Deployment  

DOE Green Energy (OSTI)

This report presents the information that homeowners and policy makers need to facilitate PV financing at the residential level. The full range of cash payments, bill savings, and tax incentives is covered, as well as potentially available solar attribute payments. Traditional financing is also compared to innovative solutions, many of which are borrowed from the commercial sector. Together, these mechanisms are critical for making the economic case for a residential PV installation, given its high upfront costs. Unfortunately, these programs are presently limited to select locations around the country. By calling attention to these innovative initiatives, this report aims to help policy makers consider greater adoption of these models to benefit homeowners interested installing a residential PV system.

Coughlin, J.; Cory, K.

2009-03-01T23:59:59.000Z

158

Modeling of solar receiver for cracking of liquid petroleum gas  

SciTech Connect

The paper presents the model of an industrial solar receiver/reactor for thermal cracking of liquid petroleum gas (LPG) at the typical temperature range of 800--850 C. The concentrated solar radiation enters the receiver located on the ground and provided with a compound parabolic concentrator (CPC) at the ceiling. This is achieved with a reflecting solar tower. The radiative model uses the classical concept of equivalent gray plane to represent a panel of 40 cracking tubes placed in parallel of a refractory wall of the receiver. The radiative flux distribution on each wall is calculated and the chemistry in each reactor tube is evaluated until convergence is achieved. The design of an industrial size receiver, its behavior, and performance have been evaluated using this model. The computer program based on this model was run for a variety of flow conditions, feed compositions, and pressures.

Segal, A.; Epstein, M. [Weizmann Inst. of Science, Rehovot (Israel). Solar Research Facilities Unit

1997-02-01T23:59:59.000Z

159

Environmental Assessment Photovoltaic Solar Project at the Durango, Colorado, Disposal Site  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Photovoltaic Solar Project Photovoltaic Solar Project at the Durango, Colorado, Disposal Site Final June 2011 LMS/DUD/S06350 DOE/EA-1770 This page intentionally left blank LMS/DUD/S06350 DOE/EA 1770 Environmental Assessment Photovoltaic Solar Project at the Durango, Colorado, Disposal Site Final June 2011 This page intentionally left blank -1- U.S. Department of Energy Office of Legacy Management DOE/EA 1770 FINDING OF NO SIGNIFICANT IMPACT Photovoltaic Solar Project at the Durango, Colorado, Disposal Site, La Plata County AGENCY: U.S. Department of Energy (DOE), Office of Legacy Management (LM) ACTION: Finding of No Significant Impact (FONSI) SUMMARY: LM prepared an Environmental Assessment (EA) (DOE/EA-1770) that evaluated two action alternatives related to the installation, operation, and removal of a photovoltaic (PV) solar energy

160

China Glass Solar aka CG Solar formerly Weihai Bluestar Terra Photovoltaic  

Open Energy Info (EERE)

aka CG Solar formerly Weihai Bluestar Terra Photovoltaic aka CG Solar formerly Weihai Bluestar Terra Photovoltaic Co Ltd Jump to: navigation, search Name China Glass Solar (aka CG Solar, formerly Weihai Bluestar Terra Photovoltaic Co Ltd) Place Weihai, Shandong Province, China Zip 264205 Sector Solar Product A Sino-US joint venture producing a-si thin-film solar cells Coordinates 37.497898°, 122.114731° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":37.497898,"lon":122.114731,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

Note: This page contains sample records for the topic "receiver solar photovoltaic" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

19th European Photovoltaic Solar Energy Conference Pre-Print 4AV.1.45 QUANTUM EFFICIENCY OF CdTe SOLAR CELLS IN FORWARD BIAS  

E-Print Network (OSTI)

19th European Photovoltaic Solar Energy Conference Pre-Print 4AV.1.45 QUANTUM EFFICIENCY OF Cd;19th European Photovoltaic Solar Energy Conference Pre-Print 4AV.1.45 Figure 2 shows the numerical as #12;19th European Photovoltaic Solar Energy Conference Pre-Print 4AV.1.45 CE V( )= J V,100%( )- J V

Sites, James R.

162

Numerical modeling of dish-Stirling reflux solar receivers  

DOE Green Energy (OSTI)

Using reflux solar receivers to collect solar energy for dish-Stirling electric power generation systems is currently being investigated by several organizations, including Sandia National Laboratories, Albuquerque, New Mexico. In support of this program, Sandia has developed two numerical models describing the energy transfer within and thermal performance of pool-boiler and heat-pipe receivers. Both models are applicable to axisymmetric geometries and they both consider the radiative and convective energy transfer within the receiver cavity, the conductive and convective energy transfer within the receiver cavity, the conductive and convective energy transfer from the receiver housing, and the energy transfer to the receiver working fluid. In these models, the radiative transfer within the receiver is analyzed using a two-band (solar and infrared) net-radiation formulation for enclosure radiation. Empirical convective correlations describe the convective heat transfer from the cavity to the surroundings. The primary difference between the models is the level of detail in modeling the heat conduction through the receiver walls. The more detailed model uses a two-dimensional finite control volume method, whereas the simpler model uses a one-dimensional thermal resistance approach. 20 refs., 7 figs., 2 tabs.

Hogan, R.E.

1990-01-01T23:59:59.000Z

163

Photovoltaic Advanced Research and Development Project: Solar Radiation Research annual report  

DOE Green Energy (OSTI)

This report gives an overview of the fiscal year 1990 research activities and results under the Solar Radiation Research Task of the Photovoltaic Advanced Research and Development Project at the Solar Energy Research Institute. The activities under this task include developing and applying measurement techniques, instrumentation, and data and models to understand and quantify the response of photovoltaic devices to variations in broadband and spectra solar radiation. The information presented in this report was presented at the SERI Photovoltaic Advanced Research and Development Project 10th Review Meeting, October 1990, and will be published in a special issue of Solar Cells dedicated to the meeting.

Riordan, C.; Hulstrom, R.; Cannon, T.; Myers, D.; Stoffel, T.

1990-11-01T23:59:59.000Z

164

Nanofluid-based receivers for high-temperature, high-flux direct solar collectors  

E-Print Network (OSTI)

Solar power plants with surface receivers have low overall energy conversion efficiencies due to large emissive losses at high temperatures. Alternatively, volumetric receivers promise increased performance because solar ...

Lenert, Andrej

2010-01-01T23:59:59.000Z

165

Lawrence Livermore and Cool Earth Solar receive $1.7 million for renewable  

NLE Websites -- All DOE Office Websites (Extended Search)

3 3 For immediate release: 05/14/2013 | NR-13-05-03 Lawrence Livermore and Cool Earth Solar receive $1.7 million for renewable energy demonstration project Anne M Stark, LLNL, (925) 422-9799, stark8@llnl.gov Printer-friendly The concentrator photovoltaic (CPV) system in the field. Photo courtesy of Cool Earth Inc. High Resolution Image The California Energy Commission (CEC) has awarded $1.7 million to a partnership between Lawrence Livermore National Laboratory and Cool Earth Solar Inc. (CES) to conduct a community-scale renewable energy integration demonstration project at the Livermore Valley Open Campus. CES is the prime awardee and is contributing an additional $1 million in matching funds to the CEC amount, while LLNL will provide advanced R&D support for the effort.

166

DOE to Provide Up to $17.6 Million for Solar Photovoltaic Technology  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Up to $17.6 Million for Solar Photovoltaic Up to $17.6 Million for Solar Photovoltaic Technology Development DOE to Provide Up to $17.6 Million for Solar Photovoltaic Technology Development September 29, 2008 - 3:43pm Addthis WASHINGTON - The U.S. Department of Energy (DOE) today announced up to $17.6 million, subject to annual appropriations, for six early stage photovoltaic (PV) module incubator projects that focus on the initial manufacturing of advanced solar PV technologies. Including the cost share from industry, which will be at least 20 percent, the total research investment is expected to reach up to $35.4 million. These projects support President Bush's Solar America Initiative, which aims to make solar energy cost-competitive with conventional forms of electricity by 2015. Increasing the use of alternative and clean energy technologies such as

167

DOE to Provide Up to $17.6 Million for Solar Photovoltaic Technology  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

DOE to Provide Up to $17.6 Million for Solar Photovoltaic DOE to Provide Up to $17.6 Million for Solar Photovoltaic Technology Development DOE to Provide Up to $17.6 Million for Solar Photovoltaic Technology Development September 29, 2008 - 3:43pm Addthis WASHINGTON - The U.S. Department of Energy (DOE) today announced up to $17.6 million, subject to annual appropriations, for six early stage photovoltaic (PV) module incubator projects that focus on the initial manufacturing of advanced solar PV technologies. Including the cost share from industry, which will be at least 20 percent, the total research investment is expected to reach up to $35.4 million. These projects support President Bush's Solar America Initiative, which aims to make solar energy cost-competitive with conventional forms of electricity by 2015.

168

Utility-Scale Concentrating Solar Power and Photovoltaic Projects: A Technology and Market Overview  

DOE Green Energy (OSTI)

Over the last several years, solar energy technologies have been, or are in the process of being, deployed at unprecedented levels. A critical recent development, resulting from the massive scale of projects in progress or recently completed, is having the power sold directly to electric utilities. Such 'utility-scale' systems offer the opportunity to deploy solar technologies far faster than the traditional 'behind-the-meter' projects designed to offset retail load. Moreover, these systems have employed significant economies of scale during construction and operation, attracting financial capital, which in turn can reduce the delivered cost of power. This report is a summary of the current U.S. utility-scale solar state-of-the-market and development pipeline. Utility-scale solar energy systems are generally categorized as one of two basic designs: concentrating solar power (CSP) and photovoltaic (PV). CSP systems can be further delineated into four commercially available technologies: parabolic trough, central receiver (CR), parabolic dish, and linear Fresnel reflector. CSP systems can also be categorized as hybrid, which combine a solar-based system (generally parabolic trough, CR, or linear Fresnel) and a fossil fuel energy system to produce electric power or steam.

Mendelsohn, M.; Lowder, T.; Canavan, B.

2012-04-01T23:59:59.000Z

169

Mechanism of Hydrogen Formation in Solar Parabolic Trough Receivers  

SciTech Connect

Solar parabolic trough systems for electricity production are receiving renewed attention, and new solar plants are under construction to help meet the growing demands of the power market in the Western United States. The growing solar trough industry will rely on operating experience it has gained over the last two decades. Recently, researchers found that trough plants that use organic heat transfer fluids (HTF) such as Therminol VP-1 are experiencing significant heat losses in the receiver tubes. The cause has been traced back to the accumulation of excess hydrogen gas in the vacuum annulus that surrounds the steel receiver tube, thus compromising the thermal insulation of the receiver. The hydrogen gas is formed during the thermal decomposition of the organic HTF that circulates inside the receiver loop, and the installation of hydrogen getters inside the annulus has proven to be insufficient for controlling the hydrogen build-up over the lifetime of the receivers. This paper will provide an overview of the chemical literature dealing with the thermal decomposition of diphenyl oxide and biphenyl, the two constituents of Therminol VP-1.

Moens, L.; Blake, D. M.

2008-03-01T23:59:59.000Z

170

Milk, Eggs and Solar: Grocery Co-Op Puts Photovoltaics to Work | Department  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Milk, Eggs and Solar: Grocery Co-Op Puts Photovoltaics to Work Milk, Eggs and Solar: Grocery Co-Op Puts Photovoltaics to Work Milk, Eggs and Solar: Grocery Co-Op Puts Photovoltaics to Work September 2, 2010 - 12:15pm Addthis Maya Payne Smart Former Writer for Energy Empowers, EERE Grocery shoppers in Burlington, Vt., are picking up much more than food and household items these days. Strolling the aisles of community-owned City Market, the 3,000 daily customers also learn about the co-op's 136 rooftop photovoltaic panels and monthly "Solar Made Simple" seminars. Reducing energy demand With freezer and refrigerator units running 24/7, energy demand is high at the 16,000 square foot store. The co-op's electricity bill averaged $17,000 a month. With the solar energy system, its conventional energy use is expected to

171

22nd European Photovoltaic Solar Energy Conference, Fiera Milano, Italy, 3-7 September 2007 Version: 30 August 2007  

E-Print Network (OSTI)

(F-gases) which are used, or considered to be used, in crystalline silicon photovoltaic solar cell22nd European Photovoltaic Solar Energy Conference, Fiera Milano, Italy, 3-7 September 2007 Version: 30 August 2007 FLUORINATED GREENHOUSE GASES IN PHOTOVOLTAIC MODULE MANUFACTURING: POTENTIAL EMISSIONS

172

DESIGN OF A MICROCHANNEL BASED SOLAR RECEIVER/REACTOR FOR  

E-Print Network (OSTI)

DESIGN OF A MICROCHANNEL BASED SOLAR RECEIVER/REACTOR FOR METHANE-STEAM REFORMING Drost, K. J- current experimental data [1, 2]. Methane-steam reforming is modeled by three reduced-order reactions and modeling are used to investigate the strong endothermic reactions of methane-steam reforming inside

Apte, Sourabh V.

173

Performance of the Solar Two central receiver power plant  

DOE Green Energy (OSTI)

Solar Two is a utility-led project to promote the commercialization of solar power towers by retrofitting the Solar One pilot plant from a water/steam-based system to a molten salt system. Solar Two is capable of producing 10 MW(e) net electricity with enough thermal storage capacity to operate the turbine for three hours after sunset. The plant was turned over to its operations and maintenance contractor in February 1998, marking transition from start-up to the test and evaluation phase. Solar Two has collected as much as 230 MWh thermal and generated as much as 72 MWh(e) gross electricity in one day. The plant has demonstrated dispatchability after dark, during clouds, and during sunshine hours. To date, Solar Two has collected thermal energy at a maximum rate of 39 MW(t) and generated gross electricity at a maximum rate of 11.1 MW(e). Important lessons have been learned in the areas of heat trace, valve selection, materials of construction, and steam generator design. Testing has begun in a number of areas relating to receiver performance, storage tank performance, salt chemistry, overnight thermal conditioning, electricity dispatching, performance monitoring and evaluation, availability tracking, and receiver controls.

Prairie, M.R.; Pacheco, J.E.; Gilbert, R.L.; Reilly, H.E. [Sandia National Labs., Albuquerque, NM (United States); Speidel, P.J. [Shada Environmental Specialists, Inc., Huntington Beach, CA (United States); Kelly, B.D. [Bechtel Corp., San Francisco, CA (United States)

1998-09-01T23:59:59.000Z

174

Solar Central Receiver Hybrid Power Systems sodium-cooled receiver concept. Final report. Volume III. Appendices  

DOE Green Energy (OSTI)

The overall, long term objective of the Solar Central Receiver Hybrid Power System is to identify, characterize, and ultimately demonstrate the viability and cost effectiveness of solar/fossil, steam Rankine cycle, hybrid power systems that: (1) consist of a combined solar central receiver energy source and a nonsolar energy source at a single, common site, (2) may operate in the base, intermediate, and peaking capacity modes, (3) produce the rated output independent of variations in solar insolation, (4) provide a significant savings (50% or more) in fuel consumpton, and (5) produce power at the minimum possible cost in mills/kWh. It is essential that these hybrid concepts be technically feasible and economically competitive with other systems in the near to mid-term time period (1985-1990) on a commercial scale. The program objective for Phase I is to identify and conceptually characterize solar/fossil steam Rankine cycle, commercial-scale, power plant systems that are economically viable and technically feasible. This volume contains appendices to the conceptual design and systems analysis studies gien in Volume II, Books 1 and 2. (WHK)

None

1980-01-01T23:59:59.000Z

175

Reliability analysis of solar photovoltaic system using hourly mean solar radiation data  

Science Conference Proceedings (OSTI)

This paper presents the hourly mean solar radiation and standard deviation as inputs to simulate the solar radiation over a year. Monte Carlo simulation (MCS) technique is applied and MATLAB program is developed for reliability analysis of small isolated power system using solar photovoltaic (SPV). This paper is distributed in two parts. Firstly various solar radiation prediction methods along with hourly mean solar radiation (HMSR) method are compared. The comparison is carried on the basis of predicted electrical power generation with actual power generated by SPV system. Estimation of solar photovoltaic power using HMSR method is close to the actual power generated by SPV system. The deviation in monsoon months is due to the cloud cover. In later part of the paper various reliability indices are obtained by HMSR method using MCS technique. Load model used is IEEE-RTS. Reliability indices, additional load hours (ALH) and additional power (AP) reduces exponentially with increase in load indicates that a SPV source will offset maximum fuel when all of its generated energy is utilized. Fuel saving calculation is also investigated. Case studies are presented for Sagardeep Island in West Bengal state of India. (author)

Moharil, Ravindra M. [Department of Electrical Engineering, Yeshwantrao Chavan College of Engineering, Nagpur, Maharashtra (India); Kulkarni, Prakash S. [Department of Electrical Engineering, Visvesvaraya National Institute of Technology, South Ambazari Road, Nagpur 440011, Maharashtra (India)

2010-04-15T23:59:59.000Z

176

Tax barriers to solar central receiver generation technology  

DOE Green Energy (OSTI)

Tax loads and required revenues are estimated for current and future solar central receiver and gas-fired plants competing in the same market. An economic measure of tax equity is used to evaluate the equity of the tax loads under past and present tax codes. The same measure is used to devise a tax strategy which produces the following two types of equitable taxation: (1) the two plants carry nearly equal tax loads, and (2) local, state and federal governments receive the same distribution of revenues from the solar plant as from the gas-fired plant `Me results show that central receivers (and likely other capital-intensive technologies) carry higher tax loads compared to competing gasfired generation, that tax loads are highly correlated with competitiveness, and that equitable taxation is feasible within the boundaries of the study.

Jenkins, A.F. [California Energy Commission, Sacramento, CA (United States); Reilly, H.E. [Sandia National Labs., Albuquerque, NM (United States)

1994-12-31T23:59:59.000Z

177

Solar kinetics` photovoltaic concentrator module and tracker development  

DOE Green Energy (OSTI)

Solar Kinetics, Inc., has been developing a point-focus concentrating photovoltaic module and tracker system under contract to Sandia National Laboratories. The primary focus of the contract was to achieve a module design that was manufacturable and passed Sandia`s environmental testing. Nine modules of two variations were assembled, tested, and characterized in Phase 1, and results of these tests were promising, with module efficiency approaching the theoretical limit achievable with the components used. The module efficiency was 11.9% at a solar irradiance of 850 W/m{sup 2} and an extrapolated cell temperature of 25{degrees}C. Improvements in module performance are anticipated as cell efficiencies meet their expectations. A 2-kW tracker and controller accommodating 20 modules was designed, built, installed, and operated at Solar Kinetics` test site. The drive used many commercially available components in an innovative arrangement to reduce cost and increase reliability. Backlash and bearing play were controlled by use of preloaded, low slip-stick, synthetic slide bearings. The controller design used a standard industrial programmable logic controller to perform ephemeris calculations, operate the actuators, and monitor encoders.

White, D.L.; Howell, B. [Solar Kinetics, Inc., Dallas, TX (United States)

1995-11-01T23:59:59.000Z

178

Photovoltaic commercialization: an analysis of legal issues affecting a government-accelerated solar industry  

DOE Green Energy (OSTI)

The Photovoltaics Research, Development, and Demonstration Act of 1978 is discussed. Legal issues, including solar access, the need for performance standards, the effects of building codes on photovoltaic system use and commercialization, and manufacturer and installer performance guarantees, are examined. Electric utility policies are examined, including interconnection, and rates and legal issues affecting them. (LEW)

Lamm, D.

1980-06-01T23:59:59.000Z

179

Salem Electric- Photovoltaic Rebate Program  

Energy.gov (U.S. Department of Energy (DOE))

Salem Electric offers a rebate to residential customers who install solar photovoltaic (PV) systems. Customers have the option of receiving a rebate or a [http://dsireusa.org/incentives/incentive...

180

Description of the University of Texas at Arlington Solar Energy Research Facility photovoltaic/thermal residential system  

DOE Green Energy (OSTI)

The addition of a photovoltaic array to a solar-heated single-family residence at the University of Texas at Arlington permits the study of combined photovoltaic/thermal system operation. Equipment and construction details are presented.

Darkazalli, G.

1979-03-16T23:59:59.000Z

Note: This page contains sample records for the topic "receiver solar photovoltaic" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

Energy Basics: Photovoltaics  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Photovoltaics Photovoltaic (PV) materials and devices convert sunlight into electrical energy, and PV cells are commonly known as solar cells. Photovoltaics can literally be...

182

A two dimensional thermal network model for a photovoltaic solar wall  

Science Conference Proceedings (OSTI)

A two dimensional thermal network model is proposed to predict the temperature distribution for a section of photovoltaic solar wall installed in an outdoor room laboratory in Concordia University, Montreal, Canada. The photovoltaic solar wall is constructed with a pair of glass coated photovoltaic modules and a polystyrene filled plywood board as back panel. The active solar ventilation through a photovoltaic solar wall is achieved with an exhaust fan fixed in the outdoor room laboratory. The steady state thermal network nodal equations are developed for conjugate heat exchange and heat transport for a section of a photovoltaic solar wall. The matrix solution procedure is adopted for formulation of conductance and heat source matrices for obtaining numerical solution of one dimensional heat conduction and heat transport equations by performing two dimensional thermal network analyses. The temperature distribution is predicted by the model with measurement data obtained from the section of a photovoltaic solar wall. The effect of conduction heat flow and multi-node radiation heat exchange between composite surfaces is useful for predicting a ventilation rate through a solar ventilation system. (author)

Dehra, Himanshu [1-140 Avenue Windsor, Lachine, Quebec (Canada)

2009-11-15T23:59:59.000Z

183

Enhanced Photovoltaic Performance of Nanostructured Hybrid Solar Cell Using Highly Oriented TiO2 Nanotubes  

E-Print Network (OSTI)

Enhanced Photovoltaic Performance of Nanostructured Hybrid Solar Cell Using Highly Oriented TiO2 nanotubes can be effectively controlled for the suitable use for a hybrid solar cell by varying the diameter nanotubes to form hybrid solar cells. The open circuit voltage, short circuit current density, fill factor

Cao, Guozhong

184

IEEE JOURNAL OF PHOTOVOLTAICS, VOL. 2, NO. 2, APRIL 2012 123 Gallium Arsenide Solar Cell Absorption  

E-Print Network (OSTI)

IEEE JOURNAL OF PHOTOVOLTAICS, VOL. 2, NO. 2, APRIL 2012 123 Gallium Arsenide Solar Cell Absorption flat gallium arsenide solar cell, we show that it is possible to modify the flow of light and enhance above the solar cell. The incoupling element is lossless and, thus, has the advantage that no energy

Grandidier, Jonathan

185

Milk, Eggs and Solar: Grocery Co-Op Puts Photovoltaics to Work...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

community-owned City Market, the 3,000 daily customers also learn about the co-op's 136 rooftop photovoltaic panels and monthly "Solar Made Simple" seminars. Reducing energy...

186

The Installed Price of Solar Photovoltaic Systems in the U.S...  

NLE Websites -- All DOE Office Websites (Extended Search)

to Decline at a Rapid Pace Tracking the Sun VI August 2013 The installed price of solar photovoltaic (PV) power systems in the United States fell substantially in 2012 and...

187

Simulation of a green wafer fab featuring solar photovoltaic technology and storage system  

Science Conference Proceedings (OSTI)

A semiconductor wafer fab requires a significant amount of energy to maintain its daily operations. Solar photovoltaics (PV) is a clean and renewable technology that can be potentially used to power large wafer fabs. There exist some critical factors ...

Leann Sanders; Stephanie Lopez; Greg Guzman; Jesus Jimenez; Tongdan Jin

2012-12-01T23:59:59.000Z

188

Review of Spanish renewable energy policy to encourage investment in solar photovoltaic  

Science Conference Proceedings (OSTI)

The Spanish renewable energy sector has experienced phenomenal growth over the past decade due to implementation of regulatory frameworks that have encouraged the rapid deployment of some renewable energy technologies particularly solar photovoltaic(PV)

Sana Zeeshan Shirazi; Syed Mohammad Zeeshan Shirazi

2012-01-01T23:59:59.000Z

189

Heat Pipe Solar Receiver Development Activities at Sandia National Laboratories  

SciTech Connect

Over the past decade, Sandia National Laboratories has been involved in the development of receivers to transfer energy from the focus of a parabolic dish concentrator to the heater tubes of a Stirling engine. Through the isothermal evaporation and condensation of sodium. a heat-pipe receiver can efficiently transfer energy to an engine's working fluid and compensate for irregularities in the flux distribution that is delivered by the concentrator. The operation of the heat pipe is completely passive because the liquid sodium is distributed over the solar-heated surface by capillary pumping provided by a wick structure. Tests have shown that using a heat pipe can boost the system performance by twenty percent when compared to directly illuminating the engine heater tubes. Designing heat pipe solar receivers has presented several challenges. The relatively large area ({approximately}0.2 m{sup 2}) of the receiver surface makes it difficult to design a wick that can continuously provide liquid sodium to all regions of the heated surface. Selecting a wick structure with smaller pores will improve capillary pumping capabilities of the wick, but the small pores will restrict the flow of liquid and generate high pressure drops. Selecting a wick that is comprised of very tine filaments can increase the permeability of the wick and thereby reduce flow losses, however, the fine wick structure is more susceptible to corrosion and mechanical damage. This paper provides a comprehensive review of the issues encountered in the design of heat pipe solar receivers and solutions to problems that have arisen. Topics include: flow characterization in the receiver, the design of wick systems. the minimization of corrosion and dissolution of metals in sodium systems. and the prevention of mechanical failure in high porosity wick structures.

Adkins, D.R.; Andraka, C.E.; Moreno, J.B.; Moss, T.A.; Rawlinson, K.S.; Showalter, S.K.

1999-01-08T23:59:59.000Z

190

Heat Pipe Solar Receiver Development Activities at Sandia National Laboratories  

DOE Green Energy (OSTI)

Over the past decade, Sandia National Laboratories has been involved in the development of receivers to transfer energy from the focus of a parabolic dish concentrator to the heater tubes of a Stirling engine. Through the isothermal evaporation and condensation of sodium. a heat-pipe receiver can efficiently transfer energy to an engine's working fluid and compensate for irregularities in the flux distribution that is delivered by the concentrator. The operation of the heat pipe is completely passive because the liquid sodium is distributed over the solar-heated surface by capillary pumping provided by a wick structure. Tests have shown that using a heat pipe can boost the system performance by twenty percent when compared to directly illuminating the engine heater tubes. Designing heat pipe solar receivers has presented several challenges. The relatively large area ({approximately}0.2 m{sup 2}) of the receiver surface makes it difficult to design a wick that can continuously provide liquid sodium to all regions of the heated surface. Selecting a wick structure with smaller pores will improve capillary pumping capabilities of the wick, but the small pores will restrict the flow of liquid and generate high pressure drops. Selecting a wick that is comprised of very tine filaments can increase the permeability of the wick and thereby reduce flow losses, however, the fine wick structure is more susceptible to corrosion and mechanical damage. This paper provides a comprehensive review of the issues encountered in the design of heat pipe solar receivers and solutions to problems that have arisen. Topics include: flow characterization in the receiver, the design of wick systems. the minimization of corrosion and dissolution of metals in sodium systems. and the prevention of mechanical failure in high porosity wick structures.

Adkins, D.R.; Andraka, C.E.; Moreno, J.B.; Moss, T.A.; Rawlinson, K.S.; Showalter, S.K.

1999-01-08T23:59:59.000Z

191

Testing of Stirling engine solar reflux heat-pipe receivers  

DOE Green Energy (OSTI)

Alkali metal heat-pipe receivers have been identified as a desirable interface to couple a Stirling-cycle engine with a parabolic dish solar concentrator. The reflux receiver provides power nearly isothermally to the engine heater heads while de-coupling the heater head design from the solar absorber surface design. The independent design of the receiver and engine heater head leads to high system efficiency. Heat pipe reflux receivers have been demonstrated at approximately 30 kW{sub t} power throughput by others. This size is suitable fm engine output powers up to 10 kW{sub e}. Several 25-kW{sub e}, Stirling-cycle engines exist, as well as designs for 75-kW{sub t} parabolic dish solar concentrators. The extension of heat pipe technology from 30 kW{sub t} to 75 kW{sub t} is not trivial. Heat pipe designs are pushed to their limits, and it is critical to understand the flux profiles expected from the dish, and the local performance of the wick structure. Sandia has developed instrumentation to monitor and control the operation of heat pipe reflux receivers to test their throughput limits, and analytical models to evaluate receiver designs. In the past 1.5 years, several heat pipe receivers have been tested on Sandia`s test bed concentrators (TBC`s) and 60-kW{sub t} solar furnace. A screen-wick heat pipe developed by Dynatherm was tested to 27.5 kW{sub t} throughput. A Cummins Power Generation (CPG)/Thermacore 30-kW{sub t} heat pipe was pushed to a throughput of 41 kW{sub t} to verify design models. A Sandia-design screen-wick and artery 75-kW{sub t} heat pipe and a CPG/Thermacore 75-kW{sub t} sintered-wick heat pipe were also limit tested on the TBC. This report reviews the design of these receivers, and compares test results with model predictions.

Rawlinson, S.; Cordeiro, P.; Dudley, V.; Moss, T.

1993-07-01T23:59:59.000Z

192

Improved Organic Photovoltaics - Energy Innovation Portal  

Solar Photovoltaic Improved Organic Photovoltaics B4 Materials For Organic Semiconductor Applications, Including Molecular Electronics And Organic Photovoltaics

193

Photovoltaic Systems  

Energy.gov (U.S. Department of Energy (DOE))

A photovoltaic (PV), or solar electric system, is made up of several photovoltaic solar cells. An individual PV cell is usually small, typically producing about 1 or 2 watts of power. To boost the...

194

Solar Central Receiver Prototype Heliostat. Volume I. Final technical report  

DOE Green Energy (OSTI)

The objective of this project was to support the Solar Central Receiver Power Plant research, development and demonstration effort by: (1) Establishment of a heliostat design, with associated manufacturing, assembly, installation and maintenance approaches, that, in quantity production will yield significant reductions in capital and operating costs over an assumed 30 year plant lifetime as compared with existing designs; and (2) Identification of needs for near term and future research and development in heliostat concept, materials, manufacture, installation, maintenance, and other areas, where successful accomplishment and application would offer significant payoffs in the further reduction of the cost of electrical energy from solar central receiver power plants. The prototype heliostat design is presented in detail; and manufacturing, installation, and maintenance procedures described. (WHK)

None

1979-06-01T23:59:59.000Z

195

Insuring Solar Photovoltaics: Challenges and Possible Solutions; (Revised)  

DOE Green Energy (OSTI)

Insuring solar photovoltaic (PV) systems poses certain challenges. Insurance premiums, which can represent a significant part of overall costs for PV developers, can affect market competition. The market for certain types of insurance products is limited. Historical loss data is lacking, and test data for the long-term viability of PV products under real-life conditions is limited. Insurers' knowledge about PV systems and the PV industry is uneven even as the industry introduces innovative contractual structures and business models. Interviews conducted for this report with PV project developers, insurance brokers, and underwriters suggest government actions aimed at better testing, data collection, and communication could facilitate the development of a market for PV insurance products. This report identifies actions by governments, national laboratories, and other stakeholders that could accelerate the development of insurance products in support PV systems. Such actions include: increasing understanding of the solar PV industry among insurance professionals; expanding the availability of PV historical loss data; evaluating the expansion of renewable energy business classification; developing module and component testing capabilities and services offered by federal labs; and, advancing industry standards for PV system installers.

Speer, B.; Mendelsohn, M.; Cory, K.

2010-02-01T23:59:59.000Z

196

ECE 414A/514A Photovoltaic Solar Energy Systems  

E-Print Network (OSTI)

, and development of photovoltaic cells and it is expected to continue into the foreseeable future. This trend management optics. The physical limits on photovoltaic cell performance and practical device operation will be analyzed. The main device emphasis will focus on different types of silicon photovoltaic cells including

Arizona, University of

197

Structural analysis of a reflux pool-boiler solar receiver  

DOE Green Energy (OSTI)

Coupled thermal-structural finite element calculations of a reflux pool-boiler solar receiver were performed to characterize the operating stresses and to address issues affecting the service life of the receiver. Analyses performed using shell elements provided information for receiver material selection and design optimization. Calculations based on linear elastic fracture mechanics principles were performed using continuum elements to assess the vulnerability of a seam-weld to fatigue crack growth. All calculations were performed using ABAQUS, a general purpose finite element code, and elements specifically formulated for coupled thermal-structural analysis. Two materials were evaluated: 316L SS and Haynes 230 alloys. The receiver response was simulated for a combination of structural and thermal loads that represent the startup and operating conditions of the receiver. For both materials, maximum stresses in the receiver developed shortly after startup due to uneven temperature distribution across the receiver surface. The largest effective stress was near yield in the 316L SS receiver and below 39 percent of yield in the Haynes 230 receiver. The calculations demonstrated that stress reductions of over 25 percent could be obtained by reducing the aft dome thickness to one closer to the absorber. The fatigue calculations demonstrated that the stress distribution near the seam-weld notch depends primarily on the structural load created by internal pressurization of the receiver rather than the thermal, indicating that the thermal loads can be neglected when assessing the stress intensity near the seam-weld notch. The stress intensity factor, computed using the J-integral method and crack opening-displacement field equations, was significantly below the fatigue threshold for most steels. The calculations indicated that the weld notch was always loaded in compression, a condition which is not conducive to fatigue crack growth. 15 refs., 30 figs., 3 tabs.

Hoffman, E.L.; Stone, C.M.

1991-06-01T23:59:59.000Z

198

Felt-metal-wick heat-pipe solar receiver  

DOE Green Energy (OSTI)

Reflux heat-pipe receivers have been identified as a desirable interface to couple a Stirling-cycle engine with a parabolic dish solar concentrator. The reflux receiver provides power nearly isothermally to the engine heater heads while decoupling the heater head design from the solar absorber surface design. The independent design of the receiver and engine heater head leads to higher system efficiency. Heat pipe reflux receivers have been demonstrated at approximately 65 kW{sub t} power throughput. Several 25 to 30-kW{sub e} Stirling-cycle engines are under development, and will soon be incorporated in commercial dish-Stirling systems. These engines will require reflux receivers with power throughput limits reaching 90-kW{sub t}. The extension of heat pipe technology from 60 kW{sub t} to 100 kW{sub t} is not trivial. Current heat pipe wick technology is pushed to its limits. It is necessary to develop and test advanced wick structure technologies to perform this task. Sandia has developed and begun testing a Bekaert Corporation felt metal wick structure fabricated by Porous Metal Products Inc. This wick is about 95% porous, and has liquid permeability a factor of 2 to 8 times higher than conventional technologies for a given maximum pore radius. The wick has been successfully demonstrated in a bench-scale heat pipe, and a full-scale on-sun receiver has been fabricated. This report details the wick design, characterization and installation into a heat pipe receiver, and the results of the bench-scale tests are presented. The wick performance is modeled, and the model results are compared to test results.

Andraka, C.E.; Adkins, D.R.; Moss, T.A. [Sandia National Labs., Albuquerque, NM (United States); Cole, H.M. [Porous Metal Products, Jacksboro, TX (United States); Andreas, N.H. [Bekaert Corp., Marietta, GA (United States)

1994-12-31T23:59:59.000Z

199

Solar central receiver prototype heliostat. Interim technical progress report  

DOE Green Energy (OSTI)

The objective of Phase I of this project is to support the Solar Central Receiver Power Plant research, development and demonstration effort by: (1) Establishment of a heliostat design, with associated manufacturing, assembly, installation and maintenance approaches, that, in quantity production will yield significant reductions in capital and operating costs over an assumed 30 year plant lifetime as compared with existing designs. (2) Identification of needs for near term and further research and development in heliostat concept, materials, manufacture, installation, maintenance, and other areas, where successful accomplishment and application would offer significant payoffs in the further reduction of the cost of electrical energy from Solar Central Receiver Power Plants. The Phase I study will define a low-cost heliostat preliminary design and the conceptual design of a heliostat manufacturing/installation plan which will result in low life cycle cost when produced and installed at high rate and large quantities for commercial Solar Central Receiver Power Plants. The study will develop the annualized life cycle cost and the performance of heliostats for a 30 year plant life, for each of three rates of continuous production and installation. The three specified rates are 25,000, 250,000, and 1,000,000 heliostats per year. The analysis of these varying production rates, requiring highly automated tooling and installation equipment concepts, will define the economies of large scale not realizable on Pilot Plant or Demonstration Plant installations. Project status is described in detail. (WHK)

None

1978-04-05T23:59:59.000Z

200

Power efficiency for very high temperature solar thermal cavity receivers  

DOE Patents (OSTI)

This invention is an improved solar energy cavity receiver for exposing materials and components to high temperatures. The receiver includes a housing having an internal reflective surface defining a cavity and having an inlet for admitting solar radiation thereto. A photothermal absorber is positioned in the cavity to receive radiation from the inlet. A reflective baffle is positioned between the absorber and the inlet to severely restrict the re-radiation of energy through the inlet. The front surface of the baffle defines a narrow annulus with the internal reflective surface of the housing. The front surface of the baffle is contoured to reflect incoming radiation onto the internal surface of the housing, from which it is reflected through the annulus and onto the front surface of the absorber. The back surface of the baffle intercepts infrared radiation from the front of the absorber. With this arrangement, a high percentage of the solar power input is retained in the cavity; thus, high internal temperatures are attained.

McDougal, Allan R. (LaCanada-Flintridge, CA); Hale, Robert R. (Upland, CA)

1984-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "receiver solar photovoltaic" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

EEE 565 Solar Cells Course Objective: To introduce the basic concepts of the operation of photovoltaic devices, the  

E-Print Network (OSTI)

solar cell technologies, and how they are integrated into solar cell systems. Topics: 1) PhotovoltaicEEE 565 Solar Cells Fall 2012 Course Objective: To introduce the basic concepts of the operation of photovoltaic devices, the major technologies, and the impact of materials and device structure

Zhang, Junshan

202

NREL's PV Incubator: Where Solar Photovoltaic Records Go to be Broken |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

NREL's PV Incubator: Where Solar Photovoltaic Records Go to be NREL's PV Incubator: Where Solar Photovoltaic Records Go to be Broken NREL's PV Incubator: Where Solar Photovoltaic Records Go to be Broken June 28, 2011 - 11:44am Addthis NREL Principal Engineer Keith Emery prepares to load three-junction concentrator cells into NREL's
 High-Intensity Pulse Solar Simulator to test for efficiency. | Department of Energy Photo | Courtesy of National Renewable Energy Laboratory | Photo by Dennis Schroeder | Public Domain | NREL Principal Engineer Keith Emery prepares to load three-junction concentrator cells into NREL's
 High-Intensity Pulse Solar Simulator to test for efficiency. | Department of Energy Photo | Courtesy of National Renewable Energy Laboratory | Photo by Dennis Schroeder | Public Domain | Minh Le Minh Le

203

City of San Jose - Solar Hot Water Heaters and Photovoltaic Systems Permit  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

San Jose - Solar Hot Water Heaters and Photovoltaic Systems San Jose - Solar Hot Water Heaters and Photovoltaic Systems Permit Requirements City of San Jose - Solar Hot Water Heaters and Photovoltaic Systems Permit Requirements < Back Eligibility Commercial Construction Industrial Installer/Contractor Multi-Family Residential Residential Savings Category Solar Buying & Making Electricity Program Info State California Program Type Solar/Wind Permitting Standards Provider City of San Jose Building, Planning and Electrical Permits are required for Photovoltiac (PV) systems installed in San Jose. In most cases, PV systems must also undergo a Building Plan Review and an Electrical Plan Review. Building Plan Reviews are not required for installations that meet all of the following criteria: 1. Total panel weight (including frame) is not greater than 5 lbs. per

204

Modeling Photovoltaic and Concentrating Solar Power Trough Performance, Cost, and Financing with Solar Advisor Model  

DOE Green Energy (OSTI)

A comprehensive solar technology systems analysis model, the Solar Advisor Model (SAM), has been developed to support the federal R&D community and the solar industry by staff at the National Renewable Energy Laboratory (NREL) and Sandia National Laboratory. This model is able to model the finances, incentives, and performance of flat-plate photovoltaic (PV), concentrating PV, and concentrating solar power (specifically, parabolic troughs). The primary function of the model is to allow users to investigate the impact of variations in performance, cost, and financial parameters to better understand their impact on key figures of merit. Figures of merit related to the cost and performance of these systems include, but aren't limited to, system output, system efficiencies, levelized cost of energy, return on investment, and system capital and O&M costs. SAM allows users to do complex system modeling with an intuitive graphical user interface (GUI). In fact, all tables and graphics for this paper are taken directly from the model GUI. This model has the capability to compare different solar technologies within the same interface, making use of similar cost and finance assumptions. Additionally, the ability to do parametric and sensitivity analysis is central to this model. There are several models within SAM to model the performance of photovoltaic modules and inverters. This paper presents an overview of each PV and inverter model, introduces a new generic model, and briefly discusses the concentrating solar power (CSP) parabolic trough model. A comparison of results using the different PV and inverter models is also presented.

Blair, N.; Mehos, M.; Christensen, C.; Cameron, C.

2008-01-01T23:59:59.000Z

205

Electricity Rate Structures and the Economics of Solar PV: Could Mandatory Time-of-Use Rates Undermine California’s Solar Photovoltaic Subsidies?  

E-Print Network (OSTI)

Photovoltaic Systems in California and the Southwest RegionTime-of-Use Rates Undermine California’s Solar Photovoltaicof the University of California Energy Institute, a multi-

Borenstein, Severin

2007-01-01T23:59:59.000Z

206

EH AND S ANALYSIS OF DYE-SENSITIZED PHOTOVOLTAIC SOLAR CELL PRODUCTION.  

DOE Green Energy (OSTI)

Photovoltaic solar cells based on a dye-sensitized nanocrystalline titanium dioxide photoelectrode have been researched and reported since the early 1990's. Commercial production of dye-sensitized photovoltaic solar cells has recently been reported in Australia. In this report, current manufacturing methods are described, and estimates are made of annual chemical use and emissions during production. Environmental, health and safety considerations for handling these materials are discussed. This preliminary EH and S evaluation of dye-sensitized titanium dioxide solar cells indicates that some precautions will be necessary to mitigate hazards that could result in worker exposure. Additional information required for a more complete assessment is identified.

BOWERMAN,B.; FTHENAKIS,V.

2001-10-01T23:59:59.000Z

207

Rational Device Design for Highly Efficient Organic Photovoltaic Solar Cells.  

E-Print Network (OSTI)

??Abundant, scalable, environmentally-friendly organic photovoltaic (OPV) technology is increasingly promising in recent years. The power conversion efficiency (PCE) of OPVs has been raised to around… (more)

Yang, Bin

2013-01-01T23:59:59.000Z

208

SunShot Initiative: A Small-Particle Solar Receiver for High-Temperature  

NLE Websites -- All DOE Office Websites (Extended Search)

A Small-Particle Solar Receiver A Small-Particle Solar Receiver for High-Temperature Brayton Power Cycles to someone by E-mail Share SunShot Initiative: A Small-Particle Solar Receiver for High-Temperature Brayton Power Cycles on Facebook Tweet about SunShot Initiative: A Small-Particle Solar Receiver for High-Temperature Brayton Power Cycles on Twitter Bookmark SunShot Initiative: A Small-Particle Solar Receiver for High-Temperature Brayton Power Cycles on Google Bookmark SunShot Initiative: A Small-Particle Solar Receiver for High-Temperature Brayton Power Cycles on Delicious Rank SunShot Initiative: A Small-Particle Solar Receiver for High-Temperature Brayton Power Cycles on Digg Find More places to share SunShot Initiative: A Small-Particle Solar Receiver for High-Temperature Brayton Power Cycles on AddThis.com...

209

Predictions of convective losses from a solar cavity receiver  

SciTech Connect

Convective losses arising from buoyancy driven flow were calculated for a two-dimensional model simulating a solar cavity receiver. The TEMPEST code, capable of fully three-dimensional coupled thermal-hydraulic transient calculations, was used for the simulation. Predicted velocity and temperature results for a 2.59 m deep by 2.88 m high rectangular cavity with an aperture opening of 1.72 m were used to determine convective losses for prescribed interior wall temperatures and cavity orientation. Velocity vector and temperature isotherm plots were used to analyze flow characteristics.

Eyler, L.L.

1979-12-01T23:59:59.000Z

210

Mission analysis of photovoltaic solar energy systems. Final report. Volume I. Summary  

SciTech Connect

A summary report of a study program whose principal objective was to develop methods for the technical and economic evaluation of potential missions (applications) for photovoltaic solar energy conversion in the southwestern United States in the 1980 to 2000 period is presented. A secondary objective was to apply the methodology, when developed, to the evaluation of a number of illustrative examples of candidate missions in order to obtain at least a preliminary indication of the competitive position of the photovoltaic technology in the future energy economy of the Southwest. Because of their large potential significance, most of the effort in the study was devoted to two main classes of missions: on-site applications (in which the photovoltaic system serves an electric load point that is colocated with the system) and central station power plant applications. A smaller amount of attention was given to the electrolytic production of hydrogen with electric power generated by the photovoltaic conversion of solar energy. (WHK)

1975-12-01T23:59:59.000Z

211

Energy storage and power conditioning aspects of photovoltaic solar power systems. Volume I. First quarterly report  

SciTech Connect

Solar energy may be utilized as thermal energy or converted into electricity by solar cells. ERDA's National Photovoltaic Conversion Program is concerned with this latter approach and is currently sponsoring industrial programs for photovoltaic systems and devices. In one such program, Spectrolab, Inc., is charged with performing conceptual design and analysis of three photovoltaic solar power systems. The sizes of these three systems will cover the requirements of residential, commercial and electric utility central station applications. In addition to a solar cell array, photovoltaic power systems must also include an energy storage system to enable operation during periods of low insolation and a power conditioning system to control the dc power from the array and convert it into an ac waveshape compatible with existing electrical equipment. The Scientific Development Operation of Bechtel Corporation is participating in the Spectrolab program by compiling and studying data on the energy storage and power conditioning aspects of all three photovoltaic solar power systems and by the conceptual design of the system for electric utility central station applications. The results of the energy storage and power conditioning study effort are presented in this report. (W.D.M.)

1975-10-01T23:59:59.000Z

212

Energy storage and power conditioning aspects of photovoltaic solar power systems. Volume I. First quarterly report  

DOE Green Energy (OSTI)

Solar energy may be utilized as thermal energy or converted into electricity by solar cells. ERDA's National Photovoltaic Conversion Program is concerned with this latter approach and is currently sponsoring industrial programs for photovoltaic systems and devices. In one such program, Spectrolab, Inc., is charged with performing conceptual design and analysis of three photovoltaic solar power systems. The sizes of these three systems will cover the requirements of residential, commercial and electric utility central station applications. In addition to a solar cell array, photovoltaic power systems must also include an energy storage system to enable operation during periods of low insolation and a power conditioning system to control the dc power from the array and convert it into an ac waveshape compatible with existing electrical equipment. The Scientific Development Operation of Bechtel Corporation is participating in the Spectrolab program by compiling and studying data on the energy storage and power conditioning aspects of all three photovoltaic solar power systems and by the conceptual design of the system for electric utility central station applications. The results of the energy storage and power conditioning study effort are presented in this report. (W.D.M.)

Not Available

1975-10-01T23:59:59.000Z

213

2644 IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS, VOL. 55, NO. 7, JULY 2008 An Adaptive Solar Photovoltaic Array Using  

E-Print Network (OSTI)

November 21, 2000 PV Lesson Plan 2 ­ Solar Electric Arrays Prepared for the Oregon Million Solar. (­) (+) (­)(+) (­) (+) (­) (+) (+) (+) (­) (­) Solar cells in series boost voltage Solar cells in parallel boost amperage #12;2 A photovoltaic (PV Roofs Coalition By Frank Vignola ­ University of Oregon Solar Radiation Monitoring Lab John Hocken

Lehman, Brad

214

Photovoltaic solar panel resistance to simulated hail. Low-Cost Solar Array Project  

SciTech Connect

As part of the Jet Propulsion Laboratory's Low-Cost Solar Array Project, test methods have been evaluated and procedures developed for testing photovoltaic flat-plate solar cell modules for resistance to impact by hailstones. Testing has included the use of simulated hailstones (frozen ice spheres projected at terminal velocity), steel balls, and other projectile types applied with three loading methods: pneumatic gun, gravity drop, and static loading. Results are presented that compare the advantages and disadvantages of the three test methods. Dropped-steel-ball tests are shown to exhibit little correlation with high-velocity ice-ball tests, whereas statically-loaded steel balls show a somewhat better correlation with ice-ball tests. Results are also presented on the hail impact strength of 16 flat-plate photovoltaic modules. The module designs tested have been shown to be capable of withstanding as large as 1-1/2-inch diameter and not capable of withstanding as small as 1/2-inch diameter simulated hail. The top surface material of the modules has a dominant influence on the hail impact resistance of the modules. In order of increasing impact strength for a given thickness, the top surface materials encountered in the modules tester were: clear silicone rubber, annealed glass, tempered glass, and acrylic sheet. The critical failure mechanism of each module type is explored and means for improving the hail resistance of future modules are described.

Moore, D.; Wilson, A.

1978-10-15T23:59:59.000Z

215

Photovoltaic solar panel resistance to simulated hail. Low-Cost Solar Array Project  

DOE Green Energy (OSTI)

As part of the Jet Propulsion Laboratory's Low-Cost Solar Array Project, test methods have been evaluated and procedures developed for testing photovoltaic flat-plate solar cell modules for resistance to impact by hailstones. Testing has included the use of simulated hailstones (frozen ice spheres projected at terminal velocity), steel balls, and other projectile types applied with three loading methods: pneumatic gun, gravity drop, and static loading. Results are presented that compare the advantages and disadvantages of the three test methods. Dropped-steel-ball tests are shown to exhibit little correlation with high-velocity ice-ball tests, whereas statically-loaded steel balls show a somewhat better correlation with ice-ball tests. Results are also presented on the hail impact strength of 16 flat-plate photovoltaic modules. The module designs tested have been shown to be capable of withstanding as large as 1-1/2-inch diameter and not capable of withstanding as small as 1/2-inch diameter simulated hail. The top surface material of the modules has a dominant influence on the hail impact resistance of the modules. In order of increasing impact strength for a given thickness, the top surface materials encountered in the modules tester were: clear silicone rubber, annealed glass, tempered glass, and acrylic sheet. The critical failure mechanism of each module type is explored and means for improving the hail resistance of future modules are described.

Moore, D.; Wilson, A.

1978-10-15T23:59:59.000Z

216

Numerical modeling of a solid particle solar central receiver  

Science Conference Proceedings (OSTI)

The flow of air and particles and the heat transfer inside a solar heated, open cavity containing a falling cloud of 100 to 1000 micron solid particles have been studied. Two-way momentum and thermal coupling between the particles and the air is included in the analysis along with the effects of radiative transport within the particle cloud, among the cavity surfaces, and between the cloud and the surfaces. The flow field is assumed to be two dimensional with steady mean quantities. The PSI-Cell (particle source in cell) computer code is used to describe the gas-particle interaction. The method of discrete ordinates is used to obtain the radiative transfer within the cloud. The results include the velocity and temperature profiles of the particles and the air. In addition, the thermal performance of the solid particle solar receiver has been determined as a function of the following particle parameters: size, mass flow rate, absorptivity, and infrared scattering albedo. Other parameters which have been varied include the incident solar flux (both magnitude and distribution) and receiver size. A forced flow, applied across the cavity aperture, has also been investigated as a means of decreasing convective heat loss from the cavity. Comparison of the results from the model has been made with an experiment performed at the radiant heat facility in Albuquerque. The model has also been used to predict the entrainment of air and the decrease in particle drag which has been observed when measurements were made of particle velocity in a cloud of particles in free fall.

Evans, G.H.; Houf, W.G.; Greif, R.; Crowe, C.

1985-12-01T23:59:59.000Z

217

The Market Value and Cost of Solar Photovoltaic Electricity Production  

E-Print Network (OSTI)

char- acteristics. Solar power is generated during daylightcontext of wind power than solar power, because spatiallythe average valuation of the solar power if the value is the

Borenstein, Severin

2008-01-01T23:59:59.000Z

218

Experiment study on single-pass photovoltaic-thermal (PV/T) air collector with absorber  

Science Conference Proceedings (OSTI)

Problem statement: Solar cell received heat from solar irradiance as well and this will reduce the efficiency of the solar cell. The heat trap at the solar photovoltaic panel becomes waste energy. Approach: The solution for this was by adding a cooling ... Keywords: air collector, photovoltaic thermal, rectangle tunnel absorber, thermal efficiency

Goh Li Jin; Hafidz Ruslan; Sohif Mat; Mohd. Yusof Othman; Azami Zaharim; Kamaruzzaman Sopian

2010-10-01T23:59:59.000Z

219

Presented at the 21st European Photovoltaic Solar Energy Conference, Dresden,Germany, 4-8 September 2006 ENVIRONMENTAL IMPACTS OF PV ELECTRICITY GENERATION -  

E-Print Network (OSTI)

Presented at the 21st European Photovoltaic Solar Energy Conference, Dresden,Germany, 4-8 September (Franklin #12;Presented at the 21st European Photovoltaic Solar Energy Conference, Dresden,Germany, 4;Presented at the 21st European Photovoltaic Solar Energy Conference, Dresden,Germany, 4-8 September 2006 0 5

220

Efficiency enhancement of luminescent solar concentrations for photovoltaic technologies  

E-Print Network (OSTI)

by one-sun solar simulator. . . . . . . . . . . . . . .is characterized by one-sun solar simulator as shown in Fig.is characterized by one-sun solar simulator. rials to solar

Wang, Chunhua

2011-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "receiver solar photovoltaic" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

Efficiency enhancement of luminescent solar concentrations for photovoltaic technologies  

E-Print Network (OSTI)

Process 3.2.2 Solar Simulator Spectrum . . . . . . . . . .500nm to 600nm over the solar spectrum, while QDS like CdSe/e?cient use of the solar spectrum. Solar Energy Materials

Wang, Chunhua

2011-01-01T23:59:59.000Z

222

Solar Leasing for Residential Photovoltaic Systems (Fact Sheet)  

DOE Green Energy (OSTI)

This publication examines the solar lease option for residential PV systems and describes two solar lease programs already in place.

Not Available

2009-02-01T23:59:59.000Z

223

2008 Solar Technologies Market Report  

E-Print Network (OSTI)

Solar Photovoltaic Industry: Looking Through the Storm.Solar Photovoltaic Industry: Looking Through the Storm.

Price, S.

2010-01-01T23:59:59.000Z

224

Integrating Solar Thermal and Photovoltaic Systems in Whole Building Energy Simulation  

E-Print Network (OSTI)

This paper introduces methodologies on how the renewable energy generated by the solar thermal and solar photovoltaic (PV) systems installed on site can be integrated in the whole building simulation analyses, which then can be available to analyze the energy impact of solar systems installed in commercial buildings. A large prototypical office building (124,000 ft2) was used in simulation modeling. The DOE-2.1e program was used for whole building simulation, F-Chart (Beckman et al., 1977) for solar thermal systems analysis, and PV F-Chart (Klein and Beckman, 1983) for solar PV systems analysis.

Cho, S.; Haberl, J.

2010-08-01T23:59:59.000Z

225

Scattering Properties of nanostructures : applications to photovoltaics  

E-Print Network (OSTI)

2nd World Conf. Photovoltaic Energy Conversion, Vienna, p.the 12th European Photovoltaic Solar Energy Conference, p.12th European Photovoltaic Solar Energy Conf. , p. 1481 (

Derkacs, Daniel

2009-01-01T23:59:59.000Z

226

22nd European Photovoltaic Solar Energy Conference, Milan, 3-7 September 2007 Cu(InGa)Se2 THIN-FILM SOLAR CELLS  

E-Print Network (OSTI)

22nd European Photovoltaic Solar Energy Conference, Milan, 3-7 September 2007 Cu(InGa)Se2 THIN-FILM SOLAR CELLS: COMPARATIVE LIFE-CYCLE ANALYSIS OF BUFFER LAYERS Vasilis M. Fthenakis and Hyung Chul Kim National Photovoltaic EH&S Research Center Brookhaven National Laboratory Upton, NY 11973, USA ABSTRACT

227

The solar cube: A building-integrated photovoltaic incubator  

SciTech Connect

A huge tipped glass tube provides instruction to visitors to the Discovery Science Center in Los Angeles, and an educational diversion to commuters on Interstate 5. The project revealed that photovoltaic industry has a lot to learn from those in the construction industry about building-integrated photovoltaics. The industry must develop products pleasing to the architect and the architect's client, and easily adaptable to the rest of the building. This market requires PV manufacturers to look at photovoltaics as a building material that just so happens to produce electricity, too. Hence, price per square rules in this application over cost per watt. Most importantly, of course, demonstrating as pioneers the potential of building-integrated photovoltaics has delighted the client, The Science Discovery Center.

Perlin, J.

2000-06-01T23:59:59.000Z

228

Assessing the drivers of regional trends in solar photovoltaic manufacturing  

E-Print Network (OSTI)

The photovoltaic (PV) industry has grown rapidly as a source of energy and economic activity. Since 2008, the average manufacturer-sale price of PV modules has declined by over a factor of two, coinciding with a significant ...

Goodrich, Alan C.

229

Evaluation of Veda, Inc. , central receiver solar collection system concept  

DOE Green Energy (OSTI)

The Unified Heliostat Array (UHA) is a geometrical heliostat field layout with rows of mirrors placed at various levels on terraces. The Veda Industrial Heliostat (VIH) is a toroidal segment mirror mounted on an equatorial mount. These two concepts are evaluated to assess the credibility of the optical designs and the validity of UHA and VIH performance estimates, to determine what the distinctive features embodied in UHA AND VIH concepts offer that more conventional central receiver technologies do not, and to determine where the UHA and VIH concepts might be most applicable in DOE's Solar Thermal Program. The UHA area efficiency, flux density distribution, and beam safety are evaluated, and the feasibility of using a secondary mirror and the potential for special applications are assessed. The optical design, equatorial mount, and manufacturability of the VIH are evaluated. (LEW)

Ator, J.

1981-08-01T23:59:59.000Z

230

Energy Basics: Photovoltaic Cells  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Energy Basics Renewable Energy Printable Version Share this resource Biomass Geothermal Hydrogen Hydropower Ocean Solar Photovoltaics Cells Systems Concentrating Solar...

231

Energy Basics: Photovoltaics  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Energy Basics Renewable Energy Printable Version Share this resource Biomass Geothermal Hydrogen Hydropower Ocean Solar Photovoltaics Cells Systems Concentrating Solar...

232

Energy Basics: Photovoltaic Systems  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Energy Basics Renewable Energy Printable Version Share this resource Biomass Geothermal Hydrogen Hydropower Ocean Solar Photovoltaics Cells Systems Concentrating Solar...

233

Residential solar photovoltaic systems: Final report for the Northeast Residential Experiment Station  

Science Conference Proceedings (OSTI)

This report covers research and development work conducted by the MIT Energy Lab. from July 1982 through June 1986. This Energy Lab. work in the field of solar photovoltaic systems followed six years of similar work at the MIT Lincoln Lab. under the same contract with the US DOE. The final report from the Lincoln Lab. period was published by Lincoln Lab. in 1983. During the period of Energy Lab. involvement, the project focused on the refinement of residential scale, roof-mounted photovoltaic systems for application in the northeastern US. Concurrent with the conclusion of MIT`s involvement, the New England Electric Co. is building a major field test of residential photovoltaics in Gardner, Massachusetts to determine experimentally the effects of photovoltaics on electric power company operations. Using systems designs and technology developed at MIT, the long-term performance of these thirty residential systems in Gardner will provide a measure of our success.

Kern, E.C. Jr.

1986-06-01T23:59:59.000Z

234

Improved high temperature solar absorbers for use in Concentrating Solar Power central receiver applications.  

DOE Green Energy (OSTI)

Concentrating solar power (CSP) systems use solar absorbers to convert the heat from sunlight to electric power. Increased operating temperatures are necessary to lower the cost of solar-generated electricity by improving efficiencies and reducing thermal energy storage costs. Durable new materials are needed to cope with operating temperatures >600 C. The current coating technology (Pyromark High Temperature paint) has a solar absorptance in excess of 0.95 but a thermal emittance greater than 0.8, which results in large thermal losses at high temperatures. In addition, because solar receivers operate in air, these coatings have long term stability issues that add to the operating costs of CSP facilities. Ideal absorbers must have high solar absorptance (>0.95) and low thermal emittance (<0.05) in the IR region, be stable in air, and be low-cost and readily manufacturable. We propose to utilize solution-based synthesis techniques to prepare intrinsic absorbers for use in central receiver applications.

Stechel, Ellen Beth; Ambrosini, Andrea; Hall, Aaron Christopher; Lambert, Timothy L.; Staiger, Chad Lynn; Bencomo, Marlene

2010-09-01T23:59:59.000Z

235

A NEW SOLAR THERMAL RECEIVER UTILIZING SMALL PARTICLES  

E-Print Network (OSTI)

of advanced concept solar power plants. For conditions offor the operation of a solar power plant is very small.success or failure of the solar thermal power program may be

Hunt, Arlon J.

2011-01-01T23:59:59.000Z

236

Sri M., Huld T., Dunlop E.D., Albuisson M., Lefvre M., Wald L., 2007. Uncertainties in photovoltaic electricity yield prediction from fluctuation of solar radiation. Proceedings of the 22nd  

E-Print Network (OSTI)

Photovoltaic Solar Energy Conference, Milano, Italy 3-7.9.2007 (preprint). UNCERTAINTIES IN PHOTOVOLTAIC European Photovoltaic Solar Energy Conference, Milan : Italy (2007)" #12;Súri M., Huld T., Dunlop E fluctuation of solar radiation. Proceedings of the 22nd European Photovoltaic Solar Energy Conference, Milano

Paris-Sud XI, Université de

237

Solar thermophotovoltaic efficiency potentials : surpassing photovoltaic device efficiencies  

E-Print Network (OSTI)

Solar energy has gained more attention in recent years due to increased concerns about the continued use of fossil fuels. Solar energy is a form of renewable energy, and solar energy technology does not release greenhouse ...

Barnes, Kathryn M

2012-01-01T23:59:59.000Z

238

The Market Value and Cost of Solar Photovoltaic Electricity Production  

E-Print Network (OSTI)

gas reduction from solar PV generation. REFERENCES Asmus,and the Economics of Solar PV: Could Mandatory Time-of-UseAverage Value Per MWh of Solar PV Power from Adjusting for

Borenstein, Severin

2008-01-01T23:59:59.000Z

239

Semiconductor Quantum Dots and Quantum Dot Arrays and Applications of Multiple Exciton Generation to Third-Generation Photovoltaic Solar Cells  

E-Print Network (OSTI)

to Third-Generation Photovoltaic Solar Cells A. J. Nozik,*,, M. C. Beard, J. M. Luther, M. Law,§ R. J. Applications: Quantum Dot Solar Cells 6884 6.1. Quantum Dot Solar Cell Configurations 6885 6.1.1. Photoelectrodes Composed of Quantum Dot Arrays 6885 6.1.2. Quantum Dot-Sensitized Nanocrystalline TiO2 Solar Cells

George, Steven C.

240

Design of a High Temperature Small Particle Solar Receiver for Powering a Gas Turbine Engine  

E-Print Network (OSTI)

Design of a High Temperature Small Particle Solar Receiver for Powering a Gas Turbine Engine Dr. Fletcher Miller SDSU Department of Mechanical Engineering Abstract Solar thermal power for electricity will describe the design of a high temperature solar receiver capable of driving a gas turbine for power

Ponce, V. Miguel

Note: This page contains sample records for the topic "receiver solar photovoltaic" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

The Market Value and Cost of Solar Photovoltaic Electricity Production  

E-Print Network (OSTI)

Hour of Day Real-Time Price PV - South PV - West PV output (Correlation Between Prices and Solar PV Production Thecorrelation between prices and solar PV production discussed

Borenstein, Severin

2008-01-01T23:59:59.000Z

242

The Market Value and Cost of Solar Photovoltaic Electricity Production  

E-Print Network (OSTI)

such weather also produces higher solar PV production. Thus,solar PV production increases with hotter, sunnier weathersolar PV production that includes random vari- ation due to weather.

Borenstein, Severin

2008-01-01T23:59:59.000Z

243

Airport Solar Photovoltaic Concentrator Project. Phase 1 - final report, June 1, 1978-February 28, 1979  

DOE Green Energy (OSTI)

The system design, analysis, and specification, site preparation, and operation and evaluation plan for a 500 kWe photovoltaic power supply to be located at the Phoenix Sky Harbor International Airport in Phoenix, Arizona, are presented. The solar cell arrays are concentrator silicon solar cells with tracking 70X Cassegrain-type concentrators. The power conditioning system, tracking system, and control systems are described in detal. Environmental impact studies are described. Component specifications and drawings are included. (WHK)

Not Available

1979-12-01T23:59:59.000Z

244

Water harvesting for young trees using Peltier modules powered by photovoltaic solar energy  

Science Conference Proceedings (OSTI)

Young trees transplanted from nursery into open field require a minimum amount of soil moisture to successfully root in their new location, especially in dry-climate areas. One possibility is to obtain the required water from air moisture. This can be ... Keywords: DAQB, Dew condenser, EMF, ETc, Hr, Irrigation, SPV, SPVM, Solar photovoltaic energy, TD, Ta, Tdp, Thermoelectric effect, Ts, Water harvesting

M. A. MuñOz-GarcíA; G. P. Moreda; M. P. Raga-Arroyo; O. MaríN-GonzáLez

2013-04-01T23:59:59.000Z

245

SOLERAS - Photovoltaic Power Systems Project. Rural solar applications. Final report: project summary  

Science Conference Proceedings (OSTI)

The Saudi Solar Village Project photovoltaic system is described, consisting of 160 arrays, a computerized control system, 1100 kW of electrical storage in lead-acid batteries, and an automatic weather data gathering system. Satisfactory overall system performance is reported. Performance degradation due to dust on the array lenses was determined. Field operational problems are discussed. (LEW)

Not Available

1985-01-01T23:59:59.000Z

246

Enhanced photovoltaic characteristics of solar cells based on n-type triphenodioxazine derivative  

Science Conference Proceedings (OSTI)

Polymer solar cells based on poly (2-methoxy-5-(2'-ethyl-hexyloxy)-1, 4-phenylene vinylene) (MEH-PPV):1-(3-methoxycarbonyl)-propyl-1-1-phenyl-(6,6)C61(PCBM):3, 10-di(trifluoromethane) triphenodioxazine (TFTD) was fabricated using spin coating technology. ... Keywords: Absorption spectra, Photoluminescence, Photovoltaics, Polymer

Fen Qiao; Aimin Liu; Yi Xiao; Yang Ping Ou; Ji quan Zhang; Yong chang Sang

2008-12-01T23:59:59.000Z

247

Review article: A review of particle swarm optimization and its applications in Solar Photovoltaic system  

Science Conference Proceedings (OSTI)

Particle swarm optimization is a stochastic optimization, evolutionary and simulating algorithm derived from human behaviour and animal behaviour as well. Special property of particle swarm optimization is that it can be operated in continuous real number ... Keywords: Linearly decreasing inertia weight, PSO parameters & control, Particle swarm optimization, Solar Photovoltaics, Time varying acceleration coefficients

Anula Khare; Saroj Rangnekar

2013-05-01T23:59:59.000Z

248

SURVEILLANCE OF PHOTOVOLTAIC SOLAR ENERGY SYSTEMS USING METEOSAT DERIVED IRRADIANCES  

E-Print Network (OSTI)

which allow for a cheap and reliable check of the power production of grid connected PV systems. These checks are done by calculating the estimated output of the PV system with a simulation-model. The model Utrecht ABSTRACT In this paper, we describe a surveillance procedure for grid connected photovoltaic (PV

Heinemann, Detlev

249

Photovoltaic Performance and Reliability Database: A Gateway to Experimental Data Monitoring Projects for PV at the Florida Solar Energy Center  

DOE Data Explorer (OSTI)

This site is the gateway to experimental data monitoring projects for photovoltaic (PV) at the Florida Solar Energy Center. The website and the database were designed to facilitate and standardize the processes for archiving, analyzing and accessing data collected from dozens of operational PV systems and test facilities monitored by FSEC's Photovoltaics and Distributed Generation Division. [copied from http://www.fsec.ucf.edu/en/research/photovoltaics/data_monitoring/index.htm

250

Ligitek Photovoltaic | Open Energy Information  

Open Energy Info (EERE)

Page Edit with form History Facebook icon Twitter icon Ligitek Photovoltaic Jump to: navigation, search Name Ligitek Photovoltaic Place Taiwan Sector Solar Product Ligitek solar...

251

Lab scientist receives NASA award for the Solar Dynamics Observatory...  

NLE Websites -- All DOE Office Websites (Extended Search)

movies are shown by news media outlets whenever there is intense solar activity such as solar flares and coronal mass ejections. By imaging the sun at specific EUV emission lines...

252

PERFORMANCE ANALYSIS OF A WINDOWED HIGH TEMPERATURE GAS RECEIVER USING A SUSPENSION OF ULTRAFINE CARBON PARTICLES AS THE SOLAR ABSORBER  

E-Print Network (OSTI)

efficiency. INTRODUCTION Recently, there has been renewed interest in windowed high temperature receivers for solar thermal

Fisk, William J.

2012-01-01T23:59:59.000Z

253

Solar For Schools: A Case Study in Identifying and Implementing Solar Photovoltaic (PV) Projects in Three California School Districts  

SciTech Connect

The Department of Energy's (DOE) Solar America Showcase program seeks to accelerate demand for solar technologies among key end use market sectors. As part of this activity, DOE provides technical assistance through its national laboratories to large-scale, high-visibility solar installation projects. The Solar Schools Assessment and Implementation Project (SSAIP) in the San Francisco Bay Area was selected for a 2009 DOE Solar America Showcase award. SSAIP was formed through the efforts of the nonprofit Sequoia Foundation and includes three school districts: Berkeley, West Contra Costa, and Oakland Unified School Districts. This paper summarizes the technical assistance efforts that resulted from this technical assistance support. It serves as a case study and reference document detailing the steps and processes that could be used to successfully identify, fund, and implement solar photovoltaics (PV) projects in school districts across the country.

Kandt, A.

2011-01-01T23:59:59.000Z

254

Design and validation of an air window for a molten salt solar thermal receiver  

E-Print Network (OSTI)

This thesis contributes to the development of Concentrating Solar Power (CSP) receivers and focuses on the design of an efficient aperture. An air window is proposed for use as the aperture of a CSP molten salt receiver ...

Paxson, Adam Taylor

2009-01-01T23:59:59.000Z

255

The Market Value and Cost of Solar Photovoltaic Electricity Production  

E-Print Network (OSTI)

by low price caps, the di?erence between solar PV powersolar PV power using hourly wholesale electricity prices and5. Real-time Prices for Valuing the Power from Solar PVs As

Borenstein, Severin

2008-01-01T23:59:59.000Z

256

Feasibility Study of Economics and Performance of Solar Photovoltaics...  

NLE Websites -- All DOE Office Websites (Extended Search)

land to a solar developer. The savings and payback are deemed reasonable, and as such, a solar PV system represents a viable reuse for the landfill under analyzed conditions. vi...

257

Concentrating Photovoltaic Module Testing at NREL's Concentrating Solar Radiation Users Facility  

DOE Green Energy (OSTI)

There has been much recent interest in photovoltaic modules designed to operate with concentrated sunlight (>100 suns). Concentrating photovoltaic (CPV) technology offers an exciting new opportunity as a viable alternative to dish Stirling engines. Advantages of CPV include potential for>40% cell efficiency in the long term (25% now), no moving parts, no intervening heat transfer surface, near-ambient temperature operation, no thermal mass, fast response, concentration reduces cost of cells relative to optics, and scalable to a range of sizes. Over the last few years, we have conducted testing of several CPV modules for DOEs Concentrating Solar Power (CSP) program. The testing facilities are located at the Concentrating Solar Radiation Users Facility (CRULF) and consist the 10 kW High-Flux Solar Furnace (HFSF) and a 14m2 Concentrating Technologies, LLC (CTEK) dish. This paper will primarily describe the test capabilities; module test results will be detailed in the presentation.

Bingham, C.; Lewandowski, A.; Stone, K.; Sherif, R.; Ortabasi, U.; Kusek, S.

2003-05-01T23:59:59.000Z

258

Building America Best Practices Series, Volume 6: High-Performance Home Technologies: Solar Thermal & Photovoltaic Systems  

SciTech Connect

This guide is was written by PNNL for the US Department of Energy's Building America program to provide information for residential production builders interested in building near zero energy homes. The guide provides indepth descriptions of various roof-top photovoltaic power generating systems for homes. The guide also provides extensive information on various designs of solar thermal water heating systems for homes. The guide also provides construction company owners and managers with an understanding of how solar technologies can be added to their homes in a way that is cost effective, practical, and marketable. Twelve case studies provide examples of production builders across the United States who are building energy-efficient homes with photovoltaic or solar water heating systems.

Baechler, Michael C.; Gilbride, Theresa L.; Ruiz, Kathleen A.; Steward, Heidi E.; Love, Pat M.

2007-06-04T23:59:59.000Z

259

Building America Best Practices Series, Volume 6: High-Performance Home Technologies: Solar Thermal & Photovoltaic Systems  

SciTech Connect

This guide is was written by PNNL for the US Department of Energy's Building America program to provide information for residential production builders interested in building near zero energy homes. The guide provides indepth descriptions of various roof-top photovoltaic power generating systems for homes. The guide also provides extensive information on various designs of solar thermal water heating systems for homes. The guide also provides construction company owners and managers with an understanding of how solar technologies can be added to their homes in a way that is cost effective, practical, and marketable. Twelve case studies provide examples of production builders across the United States who are building energy-efficient homes with photovoltaic or solar water heating systems.

Baechler, Michael C.; Gilbride, Theresa L.; Ruiz, Kathleen A.; Steward, Heidi E.; Love, Pat M.

2007-06-04T23:59:59.000Z

260

ORGANIC PHOTOVOLTAIC DEVICE OPTIMIZATION .  

E-Print Network (OSTI)

??Polymer based organic photovoltaic (OPV) is making great progress on solar cell performance in the past decade. As a potential alternative to conventional expensive photovoltaic… (more)

Nie, Wanyi

2012-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "receiver solar photovoltaic" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

The Market Value and Cost of Solar Photovoltaic Electricity Production  

E-Print Network (OSTI)

energy generation from wind, geothermal, biomass, and central station solar thermal, with a 5% annual increase in the real cost

Borenstein, Severin

2008-01-01T23:59:59.000Z

262

Public comments on solar study areas This document contains a summary of the public scoping comments received by the  

E-Print Network (OSTI)

and ductwork within the structure. The Home of the Future also includes solar thermal and photovoltaic (PV Energy Laboratory Energy Innovations Science & Technology at NREL New reference solar spectrum changing how scientists evaluate solar cells Spring 2009 National Wind Technology Center prepares to install

Nur, Amos

263

Residential Solar Photovoltaics: Comparison of Financing Benefits, Innovations, and Options  

DOE Green Energy (OSTI)

This report examines relatively new, innovative financing methods for residential photovoltaics (PV) and compares them to traditional self-financing. It provides policymakers with an overview of the residential PV financing mechanisms, describes relative advantages and challenges, and analyzes differences between them where data is available. Because these innovative financing mechanisms have only been implemented in a few locations, this report can inform their wider adoption.

Speer, B.

2012-10-01T23:59:59.000Z

264

On the Use of Agent-Based Simulation for Efficiency Analysis of Domestic Heating Using Photovoltaic Solar Energy  

E-Print Network (OSTI)

Solar Energy Production Combined with a Heatpump Jan Treur VU University Amsterdam, Agent Systems on a heatpump together with a photovoltaic (PV) solar energy installation. A simulation model for the cost (in to a simulation model for the yields of a PV installation agent to estimate produced solar energy (in kWh per day

Treur, Jan

265

Development of a solar thermal receiver for high temperature applications  

DOE Green Energy (OSTI)

A thermal receiver for point focus collectors is being constructed. Its design, which is based upon experience with a commercial receiver, employs the advantages of that receiver and improves some of its features. The new receiver uses as a buffer between the cavity surface and the heat transfer fluid a thermal mass, which with a very small temperature drop penalty smooths the flux distribution to eliminate hot spots. Maximum operating temperature range was extended from 620/sup 0/C to 870/sup 0/C and receiver efficiency was improved. The design of the receiver enables significant spillage flux at the receiver to be used. Thus, lower quality optics can be employed in applications not requiring very high temperatures. Design and construction features of the receiver are presented and the testing program is described.

Bohn, M.; Bessler, G.

1979-11-01T23:59:59.000Z

266

Modelling the convective flow in solar thermal receivers K.C. Yeh; G. Hughes & K. Lovegrove  

E-Print Network (OSTI)

Modelling the convective flow in solar thermal receivers K.C. Yeh; G. Hughes & K. Lovegrove density differences produced using the varying salt concentrations in a water tank. The flow to visualise #12;Modelling the Convective Flow in Solar Thermal Receivers Yeh the flow outside the cavity mouth

267

Photovoltaic engineering services pertinent to solar energy conversion  

SciTech Connect

The application of the compound parabolic concentrator (CPC) for use with solar cells has been investigated. Experiments with state-of-the-art Si cells in a CPC and under solar concentration were performed. A theoretical model for calculating the behavior of Si solar cells with concentration was developed. Detailed calculations of the energy distribution in the CPC were made. Finally a cost effectiveness analysis shows that the CPC system will produce power at very much lower cost than will flat panel solar cell arrays. (auth)

Bell, R O; Ho, J C.T.; Kurth, W; Surek, T

1975-06-01T23:59:59.000Z

268

Utility-scale installations lead solar photovoltaic growth - Today ...  

U.S. Energy Information Administration (EIA)

... led by particularly strong growth in both utility-scale PV and commercial sector PV capacity. Although 2011 was a record year for solar PV growth, ...

269

The Market Value and Cost of Solar Photovoltaic Electricity Production  

E-Print Network (OSTI)

are a form of distributed generation. The current directPV. As a form of distributed generation, solar PV is alsoprovisions for distributed generation. hour when electricity

Borenstein, Severin

2008-01-01T23:59:59.000Z

270

Progress Energy Florida - SunSense Solar Photovoltaics Rebate...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Rebate Program Rebate Amount Varies '''''All funds for Progress Energy Florida's SunSense Solar PV Rebate program have been committed at this time.''''' Progress Energy Florida...

271

NREL: Photovoltaics Research - Solar Policy and Program Technical...  

NLE Websites -- All DOE Office Websites (Extended Search)

and comparison to best practices with suggestions for policy changes to better serve the solar DG market Unbiased analysis of economic and market impacts related to policy changes...

272

Increasing the solar photovoltaic energy capture on sunny and cloudy days  

Science Conference Proceedings (OSTI)

This report analyzes an extensive set of measurements of the solar irradiance made using four identical solar arrays and associated solar sensors (collectively referred to as solar collectors) with different tilt angles relative to the earth's surface, and thus the position of the sun, in order to determine an optimal tracking algorithm for capturing solar radiation. The study included a variety of ambient conditions including different seasons and both cloudy and cloud-free conditions. One set of solar collectors was always approximately pointed directly toward the sun (DTS) for a period around solar noon. These solar collectors thus captured the direct beam component of the solar radiation that predominates on sunny days. We found that on sunny days, solar collectors with a DTS configuration captured more solar energy in accordance with the well-known cosine dependence for the response of a flat-surfaced solar collector to the angle of incidence with direct beam radiation. In particular, a DTS orientation was found to capture up to twice as much solar energy as a horizontal (H) orientation in which the array is tilted toward the zenith. Another set of solar collectors always had an H orientation, and this best captured the diffuse component of the solar radiation that predominates on cloudy days. The dependence of the H/DTS ratio on the solar-collector tilt angle was in approximate agreement with the Isotropic Diffuse Model derived for heavily overcast conditions. During cloudy periods, we found that an H configuration increased the solar energy capture by nearly 40% compared to a DTS configuration during the same period, and we estimate the solar energy increase of an H configuration over a system that tracks the obscured solar disk could reach 50% over a whole heavily-overcast day. On an annual basis the increase is predicted to be much less, typically only about 1%, because the contribution of cloudy days to the total annual solar energy captured by a photovoltaic system is small. These results are consistent with the solar tracking algorithm optimized for cloudy conditions that we proposed in an earlier report and that was based on a much smaller data set. Improving the harvesting of solar energy on cloudy days deserves wider attention due to increasing efforts to utilize renewable solar energy. In particular, increasing the output of distributed solar power systems on cloudy days is important to developing solar-powered home fueling and charging systems for hydrogen-powered fuel-cell electric and battery-powered vehicles, respectively, because it reduces the system size and cost for solar power systems that are designed to have sufficient energy output on the worst (cloudy) days. (author)

Kelly, Nelson A.; Gibson, Thomas L. [General Motors R and D Center, 480-106-269, Chemical Sciences and Materials Systems Laboratory, 30500 Mound Road, Warren, MI 48090-9055 (United States)

2011-01-15T23:59:59.000Z

273

EVALUATION OF FLAT-PLATE PHOTOVOLTAIC THERMAL HYBRID SYSTEMS FOR SOLAR ENERGY UTILIZATION.  

DOE Green Energy (OSTI)

The technical and economic attractiveness of combined photovoltaic/thermal (PV/T) solar energy collectors was evaluated. The study was limited to flat-plate collectors since concentrating photovoltaic collectors require active cooling and thus are inherently PV/T collectors, the only decision being whether to use the thermal energy or to dump it. it was also specified at the outset that reduction in required roof area was not to be used as an argument for combining the collection of thermal and electrical energy into one module. Three tests of economic viability were identified, all of which PV/T must pass if it is to be considered a promising alternative: PV/T must prove to be competitive with photovoltaic-only, thermal-only, and side-by-side photovoltaic-plus-thermal collectors and systems. These three tests were applied to systems using low-temperature (unglazed) collectors and to systems using medium-temperature (glazed) collectors in Los Angeles, New York, and Tampa. For photovoltaics, the 1986 DOE cost goals were assumed to have been realized, and for thermal energy collection two technologies were considered: a current technology based on metal and glass, and a future technology based on thin-film plastics. The study showed that for medium-temperature applications PV/T is not an attractive option in any of the locations studied. For low-temperature applications, PV/T appears to be marginally attractive.

ANDREWS,J.W.

1981-06-01T23:59:59.000Z

274

Photovoltaic  

Science Conference Proceedings (OSTI)

Oct 9, 2012 ... Columnar p-n Heterostructures Formed by a Thin-Film Self-Assembly Approach: Potential for PV Solar Cells: Tolga Aytug1; Daniela Bogorin1; ...

275

Solar Power: Using Photovoltaics to Preserve California's Electricity Capacity Reserves  

DOE Green Energy (OSTI)

The California Power Authority (CPA) is committed to increasing the use of renewable energy supplies--such as photovoltaics and wind--as a hedge against price fluctuations of electricity and natural gas. The CPA wants to own and operate an adequate supply of reserve generation that: - Can be deployed quickly in response to severe summer peak loads, unexpected loss of base and intermediate generation units, and failure of critical transmission facilities; - Will minimize the reliance on spot market purchases during periods when the State is most vulnerable to price gouging from private generators.

Herig, C..

2001-09-01T23:59:59.000Z

276

Solar Power Fact Book, Fourth Edition: Volume 1—Photovoltaics  

Science Conference Proceedings (OSTI)

Grid-connected deployment of solar power technologies is accelerating in response to improving economics, consumer preferences, renewable energy mandates and incentives, climate change and energy security considerations, and additional factors. Many electricity providers have incorporated solar technologies in their generation mixes and on their power delivery systems by investing in projects, signing purchase agreements with independent producers, and facilitating consumer applications. Other ...

2013-12-23T23:59:59.000Z

277

SOLAR RADIATION DURABILITY OF MATERIALS, COMPONENTS AND SYSTEMS FOR PHOTOVOLTAICS  

E-Print Network (OSTI)

. Discussions at the NREL PV reliability workshop in 2011 came to the conclusion that while initial performance as a function of total absorbed solar radiation dose. In a reliability engineering framework, these quantitative and published data, comparisons have been made showing the reduction of solar irradiance incident on the PV

Rollins, Andrew M.

278

Solar Power Fact Book, Fourth Edition: Volume 1—Photovoltaics  

Science Conference Proceedings (OSTI)

Grid-connected deployment of solar power technologies is accelerating in response to improving economics, consumer preferences, renewable energy mandates and incentives, climate change and energy security considerations, and additional factors. Many electricity providers have incorporated solar technologies in their generation mixes and on their power delivery systems by investing in projects, signing purchase agreements with independent producers, and facilitating consumer applications. Other ...

2014-01-28T23:59:59.000Z

279

NREL: Photovoltaics Research - Updated Solar Resource Maps Available for  

NLE Websites -- All DOE Office Websites (Extended Search)

Updated Solar Resource Maps Available for India Updated Solar Resource Maps Available for India July 15, 2013 Through funding from the U.S. Department of Energy and U.S. Department of State, and in collaboration with India's Ministry of New and Renewable Energy, NREL has updated its 10-kilometer (km) solar resource maps for India. The new maps incorporate updated 10-km hourly solar resource data developed using weather satellite measurements combined with site-time specific solar modeling. Additionally, the maps expand the time of analysis by four years, from 2002-2007 to 2002-2011 and include enhanced aerosols information to improve estimates of direct normal irradiance. The data is available in both geographic information system and static map formats on NREL's website for both global horizontal irradiance and

280

NREL: Photovoltaics Research - Solar Decathlon Heads to California for 2013  

NLE Websites -- All DOE Office Websites (Extended Search)

Decathlon Heads to California for 2013 Event Decathlon Heads to California for 2013 Event Photo showing the aerial view of several structures with solar panels on top. Aerial view of the U.S. Department of Energy Solar Decathlon 2011 in Washington, D.C. (Credit: Stefano Paltera/U.S. Department of Energy Solar Decathlon) January 11, 2013 For the first time, the U.S. Department of Energy Solar Decathlon will be held outside of Washington, D.C. This fall, 20 collegiate teams will head to the Orange Country Great Park in Irvine, California, to compete in this award-winning showcase of energy-efficient and solar-powered houses. The free event will take place in a specially constructed village Oct. 3-13, 2013. The competition houses will be open to visitors on eight days over two weekends. Public hours will be from 11 a.m. to 7 p.m. daily:

Note: This page contains sample records for the topic "receiver solar photovoltaic" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

Solar  

Energy.gov (U.S. Department of Energy (DOE))

The U.S. Department of Energy (DOE) leads a large network of researchers and other partners to deliver innovative solar photovoltaic and concentrating solar power technologies that will make solar...

282

Utility-Scale Concentrating Solar Power and Photovoltaic Projects: A Technology and Market Overview  

NLE Websites -- All DOE Office Websites (Extended Search)

Utility-Scale Concentrating Utility-Scale Concentrating Solar Power and Photovoltaics Projects: A Technology and Market Overview Michael Mendelsohn, Travis Lowder, and Brendan Canavan Technical Report NREL/TP-6A20-51137 April 2012 NREL is a national laboratory of the U.S. Department of Energy, Office of Energy Efficiency & Renewable Energy, operated by the Alliance for Sustainable Energy, LLC. National Renewable Energy Laboratory 1617 Cole Boulevard Golden, Colorado 80401 303-275-3000 * www.nrel.gov Contract No. DE-AC36-08GO28308 Utility-Scale Concentrating Solar Power and Photovoltaics Projects: A Technology and Market Overview Michael Mendelsohn, Travis Lowder, and Brendan Canavan Prepared under Task No. SM10.2442

283

An investigation of photovoltaic powered pumps in direct solar domestic hot water systems  

DOE Green Energy (OSTI)

The performance of photovoltaic powered pumps in direct solar domestic hot water (PV-SDHW) systems has been studied. The direct PV- SDHW system employs a photovoltaic array, a separately excited DC- motor, a centrifugal pump, a thermal collector, and a storage tank. A search methodology for an optimum PV-SDHW system configuration has been proposed. A comparison is made between the long-term performance of a PV-SDHW system and a conventional SDHW system operating under three control schemes. The three schemes are: an ON-OFF flow controlled SDHW system operating at the manufacturer-recommended constant flow rate, and a linear proportional flow controlled SDHW system with the flow proportional to the solar radiation operating under an optimum proportionality. 13 refs., 6 figs.

Al-Ibrahim, A.M.; Klein, S.A.; Mitchell, J.W.; Beckman, W.A.

1996-09-01T23:59:59.000Z

284

Environmental Assessment Photovoltaic Solar Project at the Durango, Colorado, Disposal Site  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

U.S. Department of Energy Office of Legacy Management U.S. Department of Energy Office of Legacy Management DOE/EA 1770 FINDING OF NO SIGNIFICANT IMPACT Photovoltaic Solar Project at the Durango, Colorado, Disposal Site, La Plata County AGENCY: U.S. Department of Energy (DOE), Office of Legacy Management (LM) ACTION: Finding of No Significant Impact (FONSI) SUMMARY: LM prepared an Environmental Assessment (EA) (DOE/EA-1770) that evaluated two action alternatives related to the installation, operation, and removal of a photovoltaic (PV) solar energy system on the Durango, Colorado, Disposal Site and the No Action Alternative. Alternative 1 evaluated the use of the 18-acre (ac) vegetated surface of the disposal cell for the installation of a PV system. The second action alternative (Alternative 2, the Preferred Action) considered the use of the surface of the

285

Chapter 1.03: Solar Photovoltaics Technology: No Longer an Outlier  

Science Conference Proceedings (OSTI)

The status and future technology, market, and industry opportunities for solar photovoltaics are examined and discussed. The co-importance of both policy and technology investments for the future markets and competitiveness of this solar approach is emphasized. This paper underscores the technology side, with a comprehensive overview and insights to technical, policy, market, industry and other investments needed to tip photovoltaics to its next level of contribution as a significant clean-energy partner in the world energy economy. The requirement to venture from near-term and evolutionary approaches into disruptive and revolutionary technology pathways is argued for our needs in the mid-term (the next 10-15 years) and the long-term (beyond the first quarter of this century).

Kazmerski, L. L.

2012-01-01T23:59:59.000Z

286

Receiver for solar-energy collector having improved aperture aspect  

DOE Patents (OSTI)

A secondary concentrator for use in receiver systems for linear focusing primary concentrators is provided with reflector wings at each end. The wings increase the capture of light rays reflected from areas adjacent the rim of a primary concentrator, increasing the apparent aperture size of the receiver as viewed from the rim of the primary concentrator. The length, tilt, and curvature of the wing reflectors can be adjusted to provide a receiver having a desired aperture aspect.

McIntire, W.R.

1981-03-13T23:59:59.000Z

287

SunShot Initiative: High-Flux Microchannel Solar Receiver  

NLE Websites -- All DOE Office Websites (Extended Search)

(CSP) R&D funding opportunity announcement (FOA), are working to develop an advanced heat exchanger for use in CSP receivers. The heat exchanger has the potential to...

288

Proceedings of the flat-plate solar array project research forum on photovoltaic metallization systems  

DOE Green Energy (OSTI)

A Photovoltaic Metallization Research Forum, under the sponsorship of the Jet Propulsion Laboratory's Flat-Plate Solar Array Project and the US Department of Energy, was held March 16-18, 1983 at Pine Mountain, Georgia. The Forum consisted of five sessions, covering (1) the current status of metallization systems, (2) system design, (3) thick-film metallization, (4) advanced techniques and (5) future metallization challenges. Twenty-three papers were presented.

None

1983-11-15T23:59:59.000Z

289

Modeling Photovoltaic and Concentrating Solar Power Trough Performance, Cost, and Financing with the Solar Advisor Model: Preprint  

Science Conference Proceedings (OSTI)

A comprehensive solar technology systems analysis model, the Solar Advisor Model (SAM), has been developed to support the federal R&D community and the solar industry by staff at the National Renewable Energy Laboratory (NREL) and Sandia National Laboratory. This model is able to model the finances, incentives, and performance of flat-plate photovoltaic (PV), concentrating PV, and concentrating solar power (specifically, parabolic troughs). The primary function of the model is to allow users to investigate the impact of variations in performance, cost, and financial parameters to better understand their impact on key figures of merit. Figures of merit related to the cost and performance of these systems include, but aren't limited to, system output, system efficiencies, levelized cost of energy, return on investment, and system capital and O&M costs. There are several models within SAM to model the performance of photovoltaic modules and inverters. This paper presents an overview of each PV and inverter model, introduces a new generic model, and briefly discusses the concentrating solar power (CSP) parabolic trough model. A comparison of results using the different PV and inverter models is also presented.

Blair, N.; Mehos, M.; Christensen, C.; Cameron, C.

2008-05-01T23:59:59.000Z

290

Photovoltaic Energy Conversion  

E-Print Network (OSTI)

Photovoltaic Energy Conversion Frank Zimmermann #12;Solar Electricity Generation Consumes no fuel Buy Solar Energy Stocks? Make Photovoltaics your Profession! #12;Challenges Make solar cells more and fossil fuel depletion problems! #12;Photovoltaics: Explosive Growth #12;Take Advantage of Solar Megatrend

Glashausser, Charles

291

Receiver subsystem analysis report (RADL Item 4-1). 10-MWe Solar Thermal Central-Receiver Pilot Plant: solar-facilities design integration  

DOE Green Energy (OSTI)

The results are presented of those thermal hydraulic, structural, and stress analyses required to demonstrate that the Receiver design for the Barstow Solar Pilot Plant will satisfy the general design and performance requirements during the plant's design life. Recommendations resulting from those analyses and supporting test programs are presented regarding operation of the receiver. The analyses are limited to receiver subsystem major structural parts (primary tower, receiver unit core support structure), pressure parts (absorber panels, feedwater, condensate and steam piping/components, flash tank, and steam mainfold) and shielding. (LEW)

Not Available

1982-04-01T23:59:59.000Z

292

Feasibility Study of Economics and Performance of Solar Photovoltaics...  

NLE Websites -- All DOE Office Websites (Extended Search)

For the Standard Chlorine of Delaware site, there are two area types that could contain solar panels: roof and ground space. Fixed-axis panels will be the system used for covered...

293

System integration issues of residential solar photovoltaic systems  

DOE Green Energy (OSTI)

The objective of this study is to evaluate the economic effects of residential solar PV systems on the utility's revenue, capacity, and energy requirements from the electric utility's perspective and to estimate the price that it might pay for surplus energy compared to what it would charge for deficits. The power and energy generated by the solar PV systems reduce the capital and operating costs that would otherwise be incurred by the utility. These avoided costs suggest what the utility might pay for surplus solar PV energy. The avoided costs are evaluated under three integration hypotheses, namely: (1) the utility has no system storage, (2) the utility has system storage, and (3) the solar PV systems are supported by dedicated storage devices, the purpose of which is to minimize sales to and purchases from the utility. Findings are reported in detail. (WHK)

Yamayee, Z.A.; Peschon, J.

1980-03-01T23:59:59.000Z

294

Solar Photovoltaic Feasibility Study: City of Nitro, West Virginia  

NLE Websites -- All DOE Office Websites (Extended Search)

energy property and placed it in service. 35% Yes Not specified Hawaii Solar and Wind Energy Credit (Corporate) Hawaii taxpayer that files a corporate net income tax return or...

295

The Market Value and Cost of Solar Photovoltaic Electricity Production  

E-Print Network (OSTI)

2: Hourly Average Real-time Price and Solar PV ProductionWeekdays Hour of Day Real-Time Price PV - South PV - West PVwest if faced with real-time prices, but an analysis of the

Borenstein, Severin

2008-01-01T23:59:59.000Z

296

Engineering and Economic Evaluation of Central-Station Solar Photovoltaic Power Plants  

Science Conference Proceedings (OSTI)

The market for solar photovoltaics (PV) is growing rapidly as the technology continues to mature. By the end of 2010, the installed global PV capacity was upwards of 40,000 MWp, of which roughly 17,000 MW were installed in 2010. Total PV capacity in the U.S. grew to about 2,500 MW.1 As the manufacturing capacity for solar PV cells and modules has increased, the cost of modules has decreased significantly. This engineering and economic evaluation addressed 22 combinations of six PV technologies and four l...

2012-03-15T23:59:59.000Z

297

Incorporation of NREL Solar Advisor Model Photovoltaic Capabilities with GridLAB-D  

SciTech Connect

This report provides a summary of the work updating the photovoltaic model inside GridLAB-D. The National Renewable Energy Laboratory Solar Advisor Model (SAM) was utilized as a basis for algorithms and validation of the new implementation. Subsequent testing revealed that the two implementations are nearly identical in both solar impacts and power output levels. This synergized model aides the system-level impact studies of GridLAB-D, but also allows more specific details of a particular site to be explored via the SAM software.

Tuffner, Francis K.; Hammerstrom, Janelle L.; Singh, Ruchi

2012-10-19T23:59:59.000Z

298

Solar Photovoltaic Economic Development: Building and Growing a Local PV Industry, August 2011 (Book)  

DOE Green Energy (OSTI)

The U.S. photovoltaic (PV) industry is forecast to grow, and it represents an opportunity for economic development and job creation in communities throughout the United States. This report helps U.S. cities evaluate economic opportunities in the PV industry. It serves as a guide for local economic development offices in evaluating their community?s competitiveness in the solar PV industry, assessing the viability of solar PV development goals, and developing strategies for recruiting and retaining PV companies to their areas.

Not Available

2011-08-01T23:59:59.000Z

299

Concentrator Photovoltaic Systems | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Concentrator Photovoltaic Systems Concentrator Photovoltaic Systems August 20, 2013 - 4:12pm Addthis Concentrator photovoltaic (PV) systems use less solar cell material than other...

300

Nanopillar Photovoltaics: Photon Management and Junction Engineering for Next-Generation Solar Cells  

E-Print Network (OSTI)

for efficient photovoltaic cells, Nat. Nanotechnol. 6, 568-for efficient photovoltaic cells, Nat. Nanotechnol. 6, 568-trapping in thin-film photovoltaic cells, Opt. Express 8,

Mariani, Giacomo

2013-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "receiver solar photovoltaic" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

HEAP: heat energy analysis program. A computer model simulating solar receivers  

DOE Green Energy (OSTI)

Thermal design of solar receivers is commonly accomplished via approximate models, where the receiver is treated as an isothermal box with lumped quantities of heat losses to the surroundings by radiation, conduction and convection. These approximate models, though adequate for preliminary design purposes, are not detailed enough to distinguish between different receiver designs, or to predict transient performance under variable solar flux, ambient temperatures, etc. A computer code has been written for this purpose and is given the name HEAP, an acronym for Heat Energy Analysis Program. HEAP has a basic structure that fits a general heat transfer problem, but with specific features that are custom-made for solar receivers. The code is written in MBASIC computer language. This document explains the detailed methodology followed in solving the heat transfer problem, and includes a program flow chart, an explanation of input and output tables, and an example of the simulation of a cavity-type solar receiver.

Lansing, F.L.

1979-01-15T23:59:59.000Z

302

Energy Basics: Photovoltaic Cell Structures  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Energy Basics Renewable Energy Printable Version Share this resource Biomass Geothermal Hydrogen Hydropower Ocean Solar Photovoltaics Cells Systems Concentrating Solar...

303

Energy Basics: Photovoltaic Cell Performance  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Energy Basics Renewable Energy Printable Version Share this resource Biomass Geothermal Hydrogen Hydropower Ocean Solar Photovoltaics Cells Systems Concentrating Solar...

304

Energy Basics: Concentrator Photovoltaic Systems  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Energy Basics Renewable Energy Printable Version Share this resource Biomass Geothermal Hydrogen Hydropower Ocean Solar Photovoltaics Cells Systems Concentrating Solar...

305

Energy Basics: Photovoltaic System Performance  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Energy Basics Renewable Energy Printable Version Share this resource Biomass Geothermal Hydrogen Hydropower Ocean Solar Photovoltaics Cells Systems Concentrating Solar...

306

Energy Basics: Photovoltaic Cell Materials  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Energy Basics Renewable Energy Printable Version Share this resource Biomass Geothermal Hydrogen Hydropower Ocean Solar Photovoltaics Cells Systems Concentrating Solar...

307

Letting the Sun Shine on Solar Costs: An Empirical Investigation of Photovoltaic Cost Trends in California  

SciTech Connect

This report provides a comprehensive analysis of grid-connected solar photovoltaic (PV) cost trends in California, which is by far the largest PV market in the United States. The findings of this work may help stakeholders to understand important trends in the California PV market, and policymakers to design more effective solar incentive programs--a particularly important objective given the recent announcement from the California Public Utilities Commission (CPUC) to establish an 11-year, $3.2 billion incentive program for customer-sited solar. The study statistically analyzes the installed cost of grid-connected PV systems funded by the state's two largest solar rebate programs, overseen by the California Energy Commission (CEC) [operating since 1998] and the CPUC [operating since 2001].

Wiser, R.; Bolinger, M.; Cappers, P.; Margolis, R.

2006-01-01T23:59:59.000Z

308

Letting the Sun Shine on Solar Costs: An Empirical Investigation of Photovoltaic Cost Trends in California  

DOE Green Energy (OSTI)

This report provides a comprehensive analysis of grid-connected solar photovoltaic (PV) cost trends in California, which is by far the largest PV market in the United States. The findings of this work may help stakeholders to understand important trends in the California PV market, and policymakers to design more effective solar incentive programs--a particularly important objective given the recent announcement from the California Public Utilities Commission (CPUC) to establish an 11-year, $3.2 billion incentive program for customer-sited solar. The study statistically analyzes the installed cost of grid-connected PV systems funded by the state's two largest solar rebate programs, overseen by the California Energy Commission (CEC) [operating since 1998] and the CPUC [operating since 2001].

Wiser, R.; Bolinger, M.; Cappers, P.; Margolis, R.

2006-01-01T23:59:59.000Z

309

High-Flux Microchannel Solar Receiver (Fact Sheet)  

Science Conference Proceedings (OSTI)

Oregon State University is one of the 2012 SunShot CSP R&D awardees for their advanced receivers. This fact sheet explains the motivation, description, and impact of the project.

Not Available

2012-09-01T23:59:59.000Z

310

Performance prediction evaluation of ceramic materials in point-focusing solar receivers  

DOE Green Energy (OSTI)

A Performance Prediction Model was adapted to evaluate the use of ceramic materials in solar receivers for point-focusing distributed applications. TPS system requirements were determined including the receiver operating environment (such as concentrator performance and environment/natural occurrences) and system operating parameters for various engine types. Preliminary receiver designs evolve from these system requirements. Specific receiver designs evaluated in this report to determine material functional requirements include the NRL solchem converter/heat exchanger, MIT/LL ceramic dome. Black and Veatch/EPRI ceramic tube receiver, and the Sanders honeycomb matrix Brayton receiver. Status of the first phase of a continuing task of evaluation and reporting on high temperature ceramics for solar thermal receiver applications is described. Subsequent reports will develop the Performance Prediction Model in more detail and provide data on its use in the several high temperature receiver and reactor designs planned for or under development.

Ewing, J.; Zwissler, J.

1979-06-01T23:59:59.000Z

311

Definition: Photovoltaics | Open Energy Information  

Open Energy Info (EERE)

Photovoltaics Photovoltaics Jump to: navigation, search Dictionary.png Photovoltaics Pertaining to the direct conversion of light into electricity[1][2] View on Wikipedia Wikipedia Definition Photovoltaics (PV) is a method of generating electrical power by converting solar radiation into direct current electricity using semiconductors that exhibit the photovoltaic effect. Photovoltaic power generation employs solar panels composed of a number of solar cells containing a photovoltaic material. Materials presently used for photovoltaics include monocrystalline silicon, polycrystalline silicon, amorphous silicon, cadmium telluride, and copper indium gallium selenide/sulfide. Due to the increased demand for renewable energy sources, the manufacturing of solar cells and photovoltaic arrays has advanced

312

Improved thermal storage module for solar dynamic receivers  

DOE Patents (OSTI)

This invention relates to a thermal storage apparatus and more particularly to an apparatus for use in conjunction with solar dynamic energy storage systems. The invention is comprised of a thermal energy storage system comprising a germanium phase change material and a graphite container.

Beatty, R.L.; Lauf, R.J.

1990-12-31T23:59:59.000Z

313

Improved thermal storage module for solar dynamic receivers  

DOE Patents (OSTI)

This invention relates to a thermal storage apparatus and more particularly to an apparatus for use in conjunction with solar dynamic energy storage systems. The invention is comprised of a thermal energy storage system comprising a germanium phase change material and a graphite container.

Beatty, R.L.; Lauf, R.J.

1990-01-01T23:59:59.000Z

314

Mission analysis of photovoltaic solar energy conversion. Volume I. Executive summary  

DOE Green Energy (OSTI)

An investigation of terrestrial applications for the photovoltaic conversion of solar energy is summarized. The specific objectives of the study were: (a) to survey and evaluate near-term (1976--1985) civilian photovoltaic applications in the United States; (b) to evaluate the most promising major missions for the mid-term period (1986--2000) and to determine the conditions under which photovoltaic technology can compete in those applications at array prices consistent with ERDA goals; (c) to address critical external issues and identify the sensitivity of photovoltaic system technical requirements to such factors; and (d) to quantify the societal costs of alternative energy sources and identify equalizing incentives. The study was divided into six separate but interrelated tasks: Task 1, Analysis of Near-Term Applications; Task 2, Analysis of Major Mid-Term Missions; Task 3, Review and Updating of the ERDA Technology Implementation Plan; Task 4, Critical External Issues; Task 5, The Impact of Incentives; and Task 6, The Societal Costs of Conventional Power Generation. The emphasis of the study was on the first two of these tasks, the other four serving to provide supplementary information.

Leonard, S.L.; Rattin, E.J.; Siegel, B.

1977-03-01T23:59:59.000Z

315

Solar Photovoltaic Project: materials, processes, and testing activities. Quarterly report, April 1-June 30, 1979  

DOE Green Energy (OSTI)

The US Department of Energy has set a 20-year lifetime goal for terrestrial photovoltaic modules. In its capacity as a Photovoltaic Field Tests and Applications Center, Massachusetts Institute of Technology Lincoln Laboratory has established various experimental test sites, ranging in size from 0.1- to 25-kW-peak power, throughout the United States. These sites include modules from several manufacturers and serve as test beds for photovoltaic system components. This report, the fifth in a series of similar reports (1-4), summarizes the activities of the Materials, Processes and Testing Laboratory of the Solar Photovoltaic Field Tests and Applications Project during the three-month period (4/1/79 to 6/30/79). During this period, inspection trips were made to test sites at the University of Texas at Arlington and at Mead, Nebraska. Modules were tested in the field to determine the extent of physical and electrical degradation which had taken place since previous inspections. Several modules were removed from these sites for more detailed laboratory analysis. In addition, degradation analysis of modules from the rooftop of the Chicago Museum of Science and Industry, and failure analysis of modules from the Lincoln Laboratory Rooftop Test Bed and Residential Test Beds was performed. The results of both field testing and the laboratory analyses are reported.

Forman, S.E.; Themelis, M.P.

1979-10-31T23:59:59.000Z

316

Solar Photovoltaic Project: materials, processes, and testing activities. Quarterly report, 1 January-31 March 1979  

DOE Green Energy (OSTI)

The Department of Energy has set a 20-year-lifetime goal for terrestrial photovoltaic modules. Massachusetts Institute of Technology's Lincoln Laboratory, in its capacity as a Photovoltaic Field Tests and Applications Center, has established throughout the United States various experimental test sites which range in size from 0.1 to 25 kW of peak power. These sites include modules from several manufacturers and serve as test beds for photovoltaic system components. The activities of the Materials, Processes, and Testing Laboratory of the Solar Photovoltaic Project during a three-month (1/1/79-3/31/79) period are summarized. During this period, an inspection trip was made to the Mead, Nebraska, test site. The modules were tested in the field to determine the extent of physical and electrical degradation which had taken place since previous inspections. In addition, several modules were removed from the site for more detailed laboratory examination. The results of both the field testing and laboratory analyses are reported.

Forman, S.E.; Themelis, M.P.

1979-06-30T23:59:59.000Z

317

Design, cost, and performance comparisons of several solar thermal systems for process heat. Volume III. Receivers  

DOE Green Energy (OSTI)

The receiver subsystem converts reflected solar radiation into thermal power by heating a working fluid. The objective of the task described was to estimate the cost and performance of the receiver subsystem for parabolic troughs, parabolic dishes, and central receivers over a wide range of temperatures and power levels for thermal power applications. This volume presents the fundamental design philosophy employed, the constraints identified, the tradeoffs performed and the cost and performance results obtained for each receiver in the study matrix.

Woodard, J.B. Jr.

1981-03-01T23:59:59.000Z

318

Life Cycle Greenhouse Gas Emissions from Solar Photovoltaics  

E-Print Network (OSTI)

and module manufacturing. · System/Plant Decommissioning · Disposal · PowerPlant Decommissioning · Waste life cycle GHG emissions from solar PV systems are similar to other renewables and nuclear energy.nrel.gov/harmonization. · Life cycle GHG emissions from c-Si and TF PV technologies appear broadly similar; the small number

319

Presented at the 21th European Photovoltaic Solar Energy Conference, Dresden, Germany, 4-8 September 2006  

E-Print Network (OSTI)

Presented at the 21th European Photovoltaic Solar Energy Conference, Dresden, Germany, 4-8 September 2006 A COST AND ENVIRONMENTAL IMPACT COMPARISON OF GRID-CONNECTED ROOFTOP AND GROUND-BASED PV Centre of the Netherlands ECN, Unit Solar Energy, P.O. Box 1, 1755 ZG PETTEN, the Netherlands E.A. Alsema

320

THE PERFORMANCE OF THIN FILM SOLAR CELLS EMPLOYING PHOTOVOLTAIC Cu22014x Te-CdTe HETEROJUNCTIONS (1)  

E-Print Network (OSTI)

195 THE PERFORMANCE OF THIN FILM SOLAR CELLS EMPLOYING PHOTOVOLTAIC Cu22014x Te This paper is a short status report on the continuing development of Cu22014xTe-CdTe thin film solar cells thin film work. The most pressing current need is to determine how to extend cell life, particularly

Paris-Sud XI, Université de

Note: This page contains sample records for the topic "receiver solar photovoltaic" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

The Effects of Non-Uniform Electronic Properties on Thin Film Photovoltaics  

E-Print Network (OSTI)

World  Conf.  Photovoltaic   Energy  Conversion  (2003),  Conference  on  Photovoltaic  Energy  Conversion,  May  17 th  European  Photovoltaic  Solar  Energy  Conference,  

Brown, Gregory Ferguson

2011-01-01T23:59:59.000Z

322

High Efficiency Nanostructured III-V Photovoltaics for Solar Concentrator Application  

DOE Green Energy (OSTI)

The High Efficiency Nanostructured III-V Photovoltaics for Solar Concentrators project seeks to provide new photovoltaic cells for Concentrator Photovoltaics (CPV) Systems with higher cell efficiency, more favorable temperature coefficients and less sensitivity to changes in spectral distribution. The main objective of this project is to provide high efficiency III-V solar cells that will reduce the overall cost per Watt for power generation using CPV systems.This work is focused both on a potential near term application, namely the use of indium arsenide (InAs) QDs to spectrally "tune" the middle (GaAs) cell of a SOA triple junction device to a more favorable effective bandgap, as well as the long term goal of demonstrating intermediate band solar cell effects. The QDs are confined within a high electric field i-region of a standard GaAs solar cell. The extended absorption spectrum (and thus enhanced short circuit current) of the QD solar cell results from the increase in the sub GaAs bandgap spectral response that is achievable as quantum dot layers are introduced into the i-region. We have grown InAs quantum dots by OMVPE technique and optimized the QD growth conditions. Arrays of up to 40 layers of strain balanced quantum dots have been experimentally demonstrated with good material quality, low residual stain and high PL intensity. Quantum dot enhanced solar cells were grown and tested under simulated one sun AM1.5 conditions. Concentrator solar cells have been grown and fabricated with 5-40 layers of QDs. Testing of these devices show the QD cells have improved efficiency compared to baseline devices without QDs. Device modeling and measurement of thermal properties were performed using Crosslight APSYS. Improvements in a triple junction solar cell with the insertion of QDs into the middle current limiting junction was shown to be as high as 29% under one sun illumination for a 10 layer stack QD enhanced triple junction solar cell. QD devices have strong potential for net gains in efficiency at high concentration.

Hubbard, Seth

2012-09-12T23:59:59.000Z

323

Maximally concentrating optics for photovoltaic solar energy conversion  

DOE Green Energy (OSTI)

Use of a two-stage concentrator with a fresnel lens primary and a nonimaging dielectric totally internally reflecting secondary, has unique advantages for photovoltaic concentration. Some preliminary ray trace studies have shown that with planar lenses, an increase in angular acceptance for a given geometric concentration to about 2/3 of the maximum theoretical limit can be achieved. To demonstrate this, two preprototype concentrators, each having a geometric concentration of 248:1 for a 0.635cm (0.25 inch) diameter cell, have been designed, built, and tested. Measurements of the angular response show an acceptance of 8[degrees] (full angle) which is drastically better than the 1[degrees]--2[degrees] achievable without a secondary, and is in excellent agreement with the ray trace predictions. For these preprototypes, passive cooling was sufficient to prevent any thermal problems for both the cell and secondary. No problems associated with nouuniform cell illumination were found, as evidenced by the fill factor of 71%--73% measured under concentration. Initial measurements of the system electrical efficiency lie in the range 7.5%--9.9% for a variety of individual cells.

O'Gallagher, J.J.

1985-03-07T23:59:59.000Z

324

Thermal performance simulation of a solar cavity receiver under windy conditions  

SciTech Connect

Solar cavity receiver plays a dominant role in the light-heat conversion. Its performance can directly affect the efficiency of the whole power generation system. A combined calculation method for evaluating the thermal performance of the solar cavity receiver is raised in this paper. This method couples the Monte-Carlo method, the correlations of the flow boiling heat transfer, and the calculation of air flow field. And this method can ultimately figure out the surface heat flux inside the cavity, the wall temperature of the boiling tubes, and the heat loss of the solar receiver with an iterative solution. With this method, the thermal performance of a solar cavity receiver, a saturated steam receiver, is simulated under different wind environments. The highest wall temperature of the boiling tubes is about 150 C higher than the water saturation temperature. And it appears in the upper middle parts of the absorbing panels. Changing the wind angle or velocity can obviously affect the air velocity inside the receiver. The air velocity reaches the maximum value when the wind comes from the side of the receiver (flow angle {alpha} = 90 ). The heat loss of the solar cavity receiver also reaches a maximum for the side-on wind. (author)

Fang, J.B.; Wei, J.J.; Dong, X.W.; Wang, Y.S. [State Key Laboratory of Multiphase Flow in Power Engineering, Xi'an Jiaotong University, Xi'an 710049 (China)

2011-01-15T23:59:59.000Z

325

Published as: Ha T. Nguyen and Joshua M. Pearce, "Incorporating Shading Losses in Solar Photovoltaic Potential Assessment at the Municipal Scale" Solar Energy 86(5), pp. 12451260 (2012). DOI: http://dx.doi.org/10.1016/j.solener.2012.01.017  

E-Print Network (OSTI)

Photovoltaic Potential Assessment at the Municipal Scale" Solar Energy 86(5), pp. 1245­1260 (2012). DOI: http; Photovoltaic; Renewable energy; Solar energy; Solar irradiation modeling ; Shading Abbreviations (Apv, "Incorporating Shading Losses in Solar Photovoltaic Potential Assessment at the Municipal Scale" Solar Energy 86

Paris-Sud XI, Université de

326

Optimization of central receiver concentrated solar thermal : site selection, heliostat layout & canting  

E-Print Network (OSTI)

In this thesis, two new models are introduced for the purposes of (i) locating sites in hillside terrain suitable for central receiver solar thermal plants and (ii) optimization of heliostat field layouts for any terrain. ...

Noone, Corey J. (Corey James)

2011-01-01T23:59:59.000Z

327

Modeling the solar thermal receiver for the CSPonD Project  

E-Print Network (OSTI)

The objective was to create an accurate steady state thermal model of a molten salt receiver prototype with a horizontal divider plate in the molten salt for Concentrated Solar Power on Demand (CSPonD). The purpose of the ...

Rees, Jennifer A. (Jennifer Anne)

2011-01-01T23:59:59.000Z

328

Solar receiver protection means and method for loss of coolant flow  

DOE Patents (OSTI)

An apparatus and method are disclosed for preventing a solar receiver utilizing a flowing coolant liquid for removing heat energy therefrom from overheating after a loss of coolant flow. Solar energy is directed to the solar receiver by a plurality of reflectors which rotate so that they direct solar energy to the receiver as the earth rotates. The apparatus disclosed includes a first storage tank for containing a first predetermined volume of the coolant and a first predetermined volume of gas at a first predetermined pressure. The first storage tank includes an inlet and outlet through which the coolant can enter and exit. The apparatus also includes a second storage tank for containing a second predetermined volume of the coolant and a second predetermined volume of the gas at a second predetermined pressure, the second storage tank having an inlet through which the coolant can enter. The first and second storage tanks are in fluid communication with each other through the solar receiver. The first and second predetermined coolant volumes, the first and second gas volumes, and the first and second predetermined pressures are chosen so that a predetermined volume of the coolant liquid at a predetermined rate profile will flow from the first storage tank through the solar receiver and into the second storage tank. Thus, in the event of a power failure so that coolant flow ceases and the solar reflectors stop rotating, a flow rate maintained by the pressure differential between the first and second storage tanks will be sufficient to maintain the coolant in the receiver below a predetermined upper temperature until the solar reflectors become defocused with respect to the solar receiver due to the earth's rotation.

Glasgow, L.E.

1980-11-24T23:59:59.000Z

329

Solar receiver protection means and method for loss of coolant flow  

DOE Patents (OSTI)

An apparatus and method for preventing a solar receiver (12) utilizing a flowing coolant liquid for removing heat energy therefrom from overheating after a loss of coolant flow. Solar energy is directed to the solar receiver (12) by a plurality of reflectors (16) which rotate so that they direct solar energy to the receiver (12) as the earth rotates. The apparatus disclosed includes a first storage tank (30) for containing a first predetermined volume of the coolant and a first predetermined volume of gas at a first predetermined pressure. The first storage tank (30) includes an inlet and outlet through which the coolant can enter and exit. The apparatus also includes a second storage tank (34) for containing a second predetermined volume of the coolant and a second predetermined volume of the gas at a second predetermined pressure, the second storage tank (34) having an inlet through which the coolant can enter. The first and second storage tanks (30) and (34) are in fluid communication with each other through the solar receiver (12). The first and second predetermined coolant volumes, the first and second gas volumes, and the first and second predetermined pressures are chosen so that a predetermined volume of the coolant liquid at a predetermined rate profile will flow from the first storage tank (30) through the solar receiver (12) and into the second storage tank (34). Thus, in the event of a power failure so that coolant flow ceases and the solar reflectors (16) stop rotating, a flow rate maintained by the pressure differential between the first and second storage tanks (30) and (34) will be sufficient to maintain the coolant in the receiver (12) below a predetermined upper temperature until the solar reflectors (16) become defocused with respect to the solar receiver (12) due to the earth's rotation.

Glasgow, Lyle E. (Westlake Village, CA)

1983-01-01T23:59:59.000Z

330

Solar Photovoltaic Financing: Deployment by Federal Government Agencies  

DOE Green Energy (OSTI)

The goal of this report is to examine how federal agencies can finance on-site PV projects. It explains state-level cash incentives available, the importance of solar renewable energy certificate revenues (in certain markets), existing financing structures, as well as innovative financing structures being used by federal agencies to deploy on-site PV. Specific examples from the DOD, DOE, and other federal agencies are highlighted to explain federal project financing in detail.

Cory, K.; Coggeshall, C.; Coughlin, J.; Kreycik, C.

2009-07-01T23:59:59.000Z

331

EELE408 Photovoltaics Lecture 20: Photovoltaic Systems  

E-Print Network (OSTI)

into the grid 2 Application Areas 3 Photovoltaic System Basics · Photovoltaic Systems ­ Cell Panel Array1 EELE408 Photovoltaics Lecture 20: Photovoltaic Systems Dr. Todd J. Kaiser tjkaiser Panel 4 · DC · AC / = ACDC Charge Regulator Inverter Battery DC Load AC Load Modularity: Solar Cell

Kaiser, Todd J.

332

Photovoltaic Technology Incubator Awards  

SciTech Connect

This factsheet gives an overview of the Photovoltaic (PV) Technology Incubator Awards and the Solar America Initiative (SAI).

2007-06-01T23:59:59.000Z

333

Photovoltaics (Fact Sheet)  

DOE Green Energy (OSTI)

The fact sheet summarizes the goals and activities of the DOE Solar Energy Technologies Program efforts within its photovoltaics subprogram.

Not Available

2010-09-01T23:59:59.000Z

334

NIST Photovoltaic carrier dynamics  

Science Conference Proceedings (OSTI)

... carrier dynamics in novel electronic photovoltaic materials being considered and developed for future solar cell and energy capture applications. ...

2013-04-01T23:59:59.000Z

335

Photovoltaics (Fact Sheet)  

DOE Green Energy (OSTI)

The fact sheet summarizes the goals and activities of the DOE Solar Energy Technologies Program efforts within its photovoltaics subprogram.

Not Available

2011-06-01T23:59:59.000Z

336

Operation o Solar Photovoltaic-Thermal (PVT) Hybrid System in KIER  

E-Print Network (OSTI)

The details of the Photovoltaic Thermal (PVT) hybrid air heating system, UTC air heating system and its effect on the performance of photovoltaic (PV) module and room temperature in KIER are explained in this paper. Two identical test rooms were constructed such that one had unglazed transpired collector on its south facing wall while other had no solar wall. The temperature inside the room with UTC was 10-20oC higher than the temperature inside the room without UTC on a typical winter day. In second set of experiments, 75W PV modules were installed on the south facing walls of each test rooms. The temperature of the PV module with UTC was 5-9?lower than the PV module without UTC resulting in a 6% recovery of output electrical power under the forced ventilation. PVT hybrid system may alleviate burden on conventional energy consumption in Korea for heating the buildings and electricity generation.

Naveed, A.T.; Lee, E. J.; Kang, E. C.

2006-01-01T23:59:59.000Z

337

2009 Technical Risk and Uncertainty Analysis of the U.S. Department of Energy's Solar Energy Technologies Program Concentrating Solar Power and Photovoltaics R&D  

Science Conference Proceedings (OSTI)

The U.S. Department of Energy (DOE) Solar Energy Technologies Program (SETP) conducted a 2009 Technical Risk and Uncertainty Analysis to better assess its cost goals for concentrating solar power (CSP) and photovoltaic (PV) systems, and to potentially rebalance its R&D portfolio. This report details the methodology, schedule, and results of this technical risk and uncertainty analysis.

McVeigh, J.; Lausten, M.; Eugeni, E.; Soni, A.

2010-11-01T23:59:59.000Z

338

Maximally concentrating optics for photovoltaic solar energy conversion  

DOE Green Energy (OSTI)

The use of a two-stage concentrator with a fresnel lens primary and a non-imaging dielectric totally internally reflecting secondary, has unique advantages for photovoltaic concentration. This new design has a much larger acceptance angle than the conventional lens-cell concentrating system. In the continuation of this research, an optimally designed prototype which employs a 13.6-cm diameter flat fresnel tons as the primary focusing device, a dielectric compound hyperbolic concentrator (DCHC) as secondary and a 1-cm diameter high-concentration cell for electricity conversion has been built, tested and analyzed. Measurements under sunlight show that it has an angular acceptance of [plus minus]3.6 degrees, which is dramatically better than the [plus minus]0.5 degree achievable without a secondary concentrator. This performance agrees well with theoretical ray-tracing predictions. The secondary shows an optical efficiency of (91[plus minus]2)% at normal incidence. Combining with the primary fresnel tens which has an optical efficiency of (82[plus minus]2)%, tho two-stage system yields a total optical efficiency of (7l[plus minus]2)%. The measurement of the system electrical performance yielded a net electrical efficiency of 11.9%. No problems associated with non-uniform cell illumination were found, as evidenced by the excellent fill factor of (79[plus minus]2)% measured under concentration. The secondary geometrical properties and the optimal two-stage design procedures for various primary- cell combinations were systematical studied. A general design principle has been developed.

Winston, R.; O'Gallagher, J.; Ning, X.

1986-02-27T23:59:59.000Z

339

RECEIVED  

NLE Websites -- All DOE Office Websites (Extended Search)

40 40 ri,if--,r7n11-74"vtl Lit0 tait":,0 RECEIVED FFII 2 8 S96 OSTI The Winds of (Evolutionary) Change: Breathing New Life into Microbiology Gary J. Olsen,* Carl R. Woese,* and Ross A. Overbeekt DISCLAIMER This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsi- bility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Refer- ence herein to any specific commercial product, process, or service by trade name, trademark,

340

Receiver for solar energy collector having improved aperture aspect  

DOE Patents (OSTI)

A secondary concentrator for use in receiver systems for linear focusing primary concentrators is provided with reflector wings at each end. The wings increase the capture of light rays reflected from areas adjacent the rim of a primary concentrator, increasing the apparent aperture size of the absorber as viewed from the rim of the primary concentrator. The length, tilt, and curvature of the wing reflectors can be adjusted to provide an absorber having a desired aperture aspect.

McIntire, William R. (Downers Grove, IL)

1984-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "receiver solar photovoltaic" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

SolarTile: A rooftop integrated photovoltaic system. Phase 1, final report  

DOE Green Energy (OSTI)

AstroPower, Royal Group Technologies, and Solar Design Associates are jointly developing an integrated photovoltaic roofing system for residential and light commercial building applications. This family of products will rely heavily on the technological development of a roofing tile made from recycled plastic and innovative module fabrication and encapsulation processes in conjunction with an advanced Silicon-Film{trademark} solar cell product. This solar power generating roofing product is presently being referred to as the SolarTile. A conceptual drawing of the solar roofing tile is shown. The SolarTile will be integrated with non-solar tiles in a single roof installation permitting ease of assembly and the ability to use conventional roofing techniques at ridges, valleys, and eaves. The Phase 1 effort included tasks aimed at the development of the proposed product concept; product manufacturing or fabrication, and installation cost estimates; business planning; and a market assessment of the proposed product, including target selling prices, target market sectors, size estimates for each market sector, and planned distribution mechanisms for market penetration. Technical goals as stated in the Phase 1 proposal and relevant progress are reported.

NONE

1998-03-26T23:59:59.000Z

342

Feasibility Study of Solar Photovoltaics on Landfills in Puerto Rico (Second Study)  

Science Conference Proceedings (OSTI)

This report presents the results of an assessment of the technical and economic feasibility of deploying a solar photovoltaics (PV) system on landfill sites in Puerto Rico. The purpose of this report is to assess the landfills with the highest potential for possible solar PV installation and estimate cost, performance, and site impacts of three different PV options: crystalline silicon (fixed tilt), crystalline silicon (single-axis tracking), and thin film (fixed tilt). The report outlines financing options that could assist in the implementation of a system. According to the site production calculations, the most cost-effective system in terms of return on investment is the thin-film fixed-tilt technology. The report recommends financing options that could assist in the implementation of such a system. The landfills and sites considered in this report were all determined feasible areas in which to implement solar PV systems.

Salasovich, J.; Mosey, G.

2011-08-01T23:59:59.000Z

343

Central receiver solar thermal power system, phase 1. Progress report for period ending December 31, 1975  

DOE Green Energy (OSTI)

The program objective is the preliminary design of a 10 MWe pilot solar power plant supported by major subsystem experiments. Progress is reported on the following task elements: 10 MWe pilot plant; collector subsystem design and analysis; receiver subsystem requirements; receiver subsystem design; thermal storage subsystem; electrical power generation subsystem; and pilot plant architectural engineering and support. (WDM)

None

1976-04-01T23:59:59.000Z

344

Evaluation of solar-air-heating central-receiver concepts  

DOE Green Energy (OSTI)

The potential of seven proposed air-heating central receiver concepts are evaluated based on an independent, uniform of each one's performance and cost. The concepts include: metal tubes, ceramic tubes, sodium heat pipes, ceramic matrix, ceramic domes, small particles, and volumetric heat exchange. The selection of design points considered in the analysis, the method and ground rules used in formulating the conceptual designs are discussed, and each concept design is briefly described. The method, ground rules, and models used in the performance evaluation and cost analysis and the results are presented. (LEW)

Bird, S.P.; Drost, M.K.; Williams, T.A.; Brown, D.R.; Fort, J.A.; Garrett-Price, B.A.; Hauser, S.G.; McLean, M.A.; Paluszek, A.M.; Young, J.K.

1982-06-01T23:59:59.000Z

345

Central Receiver Solar Thermal Power System. Hailstone simulation test report  

SciTech Connect

The purpose of the work described is to verify heliostat survival and evaluate material damage resultant from the impact of 1 inch hailstones traveling at terminal velocity (75 feet/second). Data obtained from the tests were also used to predict the loss in specular transmittance of the plastic heliostat enclosures due to hail damage possible at potential solar thermal power plant sites in southwestern United States. The approach taken was to subject several different typical enclosure materials as well as an existing enclosure at Boardman, Oregon, to hailstone bombardment and measure and analyze the effects on enclosure performance. Hailstorm frequency and severity data, although sparse and highly generalized, was found in the literature and used along with the experimental data to predict total accumulative damage after 15 years of exposure. (WHK)

1978-02-15T23:59:59.000Z

346

Functional requirements for component films in a solar thin-film photovoltaic/thermal panel  

SciTech Connect

The functional requirements of the component films of a solar thin-film photovoltaic/thermal panel were considered. Particular emphasis was placed on the new functions, that each layer is required to perform, in addition to their pre-existing functions. The cut-off wavelength of the window layer, required for solar selectivity, can be achieved with charge carrier concentrations typical of photovoltaic devices, and thus does not compromise electrical efficiency. The upper (semiconductor) absorber layer has a sufficiently high thermal conductivity that there is negligible temperature difference across the film, and thus negligible loss in thermal performance. The lower (cermet) absorber layer can be fabricated with a high ceramic content, to maintain high solar selectivity, without significant increase in electrical resistance. A thin layer of molybdenum-based cermet at the top of this layer can provide an Ohmic contact to the upper absorber layer. A layer of aluminium nitride between the metal substrate and the back metal contact can provide electrical isolation to avoid short-circuiting of series-connected cells, while maintaining a thermal path to the metal substrate and heat extraction systems. Potential problems of differential contraction of heated films and substrates were identified, with a recommendation that fabrication processes, which avoid heating, are preferable. (author)

Johnston, David [Power and Energy Research Group, School of Engineering, Northumbria University, Ellison Place, Newcastle upon Tyne NE1 8ST (United Kingdom)

2010-03-15T23:59:59.000Z

347

10 MWe Solar Thermal Central Receiver Pilot Plant: 1983 operational test report  

DOE Green Energy (OSTI)

The design and construction of the world's largest solar thermal central receiver electric power plant, the 10 MWe Solar Thermal Central Receiver Pilot Plant, ''Solar One,'' located near Barstow, California, were completed in 1982. The plant continued in the two-year experimental Test and Evaluation phase throughout 1983. Experiences during 1983 have shown that all parts of the plant, especially solar unique ones, operated as well as or better than expected. It was possible to incorporate routine power production into the Test and Evaluation phase because plant performance yielded high confidence. All operational modes were tested, and plant automation activities began in earnest. This report contains: (1) a brief description of the plant system; (2) a summary of the year's experiences; (3) topical sections covering preliminary power production, automation activities, and receiver leak repairs; (4) a monthly list of principal activities; and (5) operation and maintenance costs.

Bartel, J.J.

1986-01-01T23:59:59.000Z

348

Statistical Characterization of Solar Photovoltaic Power Variability at Small Timescales: Preprint  

DOE Green Energy (OSTI)

Integrating large amounts of variable and uncertain solar photovoltaic power into the electricity grid is a growing concern for power system operators in a number of different regions. Power system operators typically accommodate variability, whether from load, wind, or solar, by carrying reserves that can quickly change their output to match the changes in the solar resource. At timescales in the seconds-to-minutes range, this is known as regulation reserve. Previous studies have shown that increasing the geographic diversity of solar resources can reduce the short term-variability of the power output. As the price of solar has decreased, the emergence of very large PV plants (greater than 10 MW) has become more common. These plants present an interesting case because they are large enough to exhibit some spatial smoothing by themselves. This work examines the variability of solar PV output among different arrays in a large ({approx}50 MW) PV plant in the western United States, including the correlation in power output changes between different arrays, as well as the aggregated plant output, at timescales ranging from one second to five minutes.

Shedd, S.; Hodge, B.-M.; Florita, A.; Orwig, K.

2012-08-01T23:59:59.000Z

349

Preliminary evaluation of two-element optical concentrators for use in solar photovoltaic systems  

DOE Green Energy (OSTI)

The objective of this program was: to evaluate for photovoltaic applications the use of the compound parabolic concentrator design as a field collector--in conjunction with a primary focusing concentrator. The primary focusing concentrator may be a parabolic reflector, an array of Fresnel mirrors, a Fresnel lens, or some other type; Select several candidate configurations of such compound systems (focusing concentrators/CPC field collectors); Perform an analytic evaluation of the technical performance of these systems; and identify the most promising configurations and perform a cost effectiveness study pertinent to coupling CPC concentrators to solar cells. (WDM)

None

1975-06-30T23:59:59.000Z

350

Feasibility Study of Economics and Performance of Solar Photovoltaics in Nitro, West Virginia  

DOE Green Energy (OSTI)

The study described in this report assessed brownfield sites designated by the City of Nitro, West Virginia for solar photovoltaic (PV) installations. The study analyzed three different types of PV systems for eight sites. The report estimates the cost, performance, and site impacts of thin film technology and crystalline silicon panels (both fixed-axis tracking and single-axis tracking systems). Potential job creation and electrical rate increases were also considered, and the report recommends financing options that could assist in the implementation of a system.

Lisell, L.; Mosey, G.

2010-08-01T23:59:59.000Z

351

Solar test of an integrated sodium reflux heat pipe receiver/reactor for thermochemical energy transport  

DOE Green Energy (OSTI)

A chemical reactor for carbon dioxide reforming of methane was integrated into a sodium reflux heat pipe receiver and tested in the solar furnace of the Weizmann Institute of Science, Rehovot, Israel. The receiver/reactor was a heat pipe with seven tubes inside an evacuated metal box containing sodium. The catalyst, 0.5 wt% Rh on alumina, filled two of the tubes with the front surface of the box serving as the solar absorber. In operation, concentrated sunlight heated the front plate and vaporized sodium from a wire mesh wick attached to other side. Sodium vapor condensed on the reactor tubes, releasing latent heat and returning to the wick by gravity. The receiver system performed satisfactorily in many tests under varying flow conditions. The maximum power absorbed was 7.5 kW at temperatures above 800C. The feasibility of operating a heat pipe receiver/reactor under solar conditions was proven, and the advantages of reflux devices confirmed.

Diver, R.B.; Fish, J.D. (Sandia National Labs., Albuquerque, NM (United States)); Levitan, R.; Levy, M.; Meirovitch, E.; Rosin, H. (Weizmann Inst. of Science, Rehovot (Israel)); Paripatyadar, S.A.; Richardson, J.T. (Univ. of Houston, TX (United States))

1992-01-01T23:59:59.000Z

352

Next-Generation Photovoltaic Technologies  

NLE Websites -- All DOE Office Websites (Extended Search)

Next-Generation Photovoltaic Technologies Next-Generation Photovoltaic Technologies Print Monday, 06 February 2012 15:48 Organic solar cells based on the polymerfullerene bulk...

353

An optimized model and test of the China's first high temperature parabolic trough solar receiver  

SciTech Connect

The vacuum solar receiver is the key component of a parabolic trough solar plant, which plays a prominent role in the gross system efficiency. Recently, China's first high temperature vacuum receiver, Sanle-3 HCE, has been developed and produced by Southeast University and Sanle Electronic Group. Before being utilized in China's first parabolic trough solar plant, accurately estimating the thermal properties of this new receiver is important. This paper first establishes and optimizes a 1-D theoretical model at Matlab program to compute the receiver's major heat loss through glass envelope, and then systematically analyzes the major influence factors of heat loss. With the laboratorial steady state test stand, the heat losses of both good vacuum and non-vacuum Sanle-3 receivers were surveyed. Comparison shows the original 1-D model agrees with the ends covered test while remarkably deviating from end exposed test. For the purpose of identifying the influence of receiver's end to total heat loss, an additional 3-D model is built by CFD software to further investigate the different heat transfer processes of receiver's end components. The 3-D end model is verified by heating power and IR temperature distribution images in the test. Combining the optimized 1-D model with the new 3-D end model, the comparison with test data shows a good accordance. At the same time the heat loss curve and emittance curve of this new receiver are given and compared with those of several other existing receivers as references. (author)

Gong, Guangjie; Huang, Xinyan; Wang, Jun; Hao, Menglong [Southeast University, Nanjing (China)

2010-12-15T23:59:59.000Z

354

Investigation of cold filling receiver panels and piping in molten-nitrate-salt central-receiver solar power plants  

DOE Green Energy (OSTI)

Cold filling refers to flowing a fluid through piping or tubes that are at temperatures below the fluid`s freezing point. Since the piping and areas of the receiver in a molten-nitrate salt central-receiver solar power plant must be electrically heated to maintain their temperatures above the nitrate salt freezing point (430{degrees}F, 221{degrees}C), considerable energy could be used to maintain such temperatures during nightly shut down and bad weather. Experiments and analyses have been conducted to investigate cold filling receiver panels and piping as a way of reducing parasitic electrical power consumption and increasing the availability of the plant. The two major concerns with cold filling are: (1) how far can the molten salt penetrate cold piping before freezing closed and (2) what thermal stresses develop during the associated thermal shock. Cold fill experiments were conducted by flowing molten salt at 550{degrees}F (288{degrees}C) through cold panels, manifolds, and piping to determine the feasibility of cold filling the receiver and piping. The transient thermal responses were measured and heat transfer coefficients were calculated from the data. Nondimensional analysis is presented which quantifies the thermal stresses in a pipe or tube undergoing thermal shock. In addition, penetration distances were calculated to determine the distance salt could flow in cold pipes prior to freezing closed.

Pacheco, J.E.; Ralph, M.E.; Chavez, J.M.

1994-12-31T23:59:59.000Z

355

Solar central receiver prototype heliostat. Volume III. Cost estimates  

DOE Green Energy (OSTI)

The Boeing heliostat design can be produced and installed for a Capital Cost of $42 per square meter at high commercial plant quantities and rates. This is 14% less than the DOE cost target. Even at a low commercial plant production rate of 25,000 heliostats per year the Capital Cost of $48 per square meter is 2% less than the cost goal established by the DOE. Projected capital costs and 30 year maintenance costs for three scenarios of production and installation are presented: (1) commercial rate production of 25,000, 250,000, and 1,000,000 heliostats per year; (2) a one-time only production quantity of 2500 heliostats; and (3) commercial rate production of 25,000 heliostats per year with each plant (25,000 heliostats) installed at widely dispersed sites throughout the Southwestern United States. These three scenarios for solar plant locations and the manufacturing/installation processes are fully described, and detailed cost breakdowns for the three scenarios are provided.

None

1978-06-01T23:59:59.000Z

356

Received 20 Oct 2012 | Accepted 29 Apr 2013 | Published 18 Jun 2013 Cortical responses elicited by photovoltaic  

E-Print Network (OSTI)

elicited by photovoltaic subretinal prostheses exhibit similarities to visually evoked potentials Yossi developed a wireless photovoltaic retinal prosthesis, in which camera- captured images are projected onto, yet the inner retinal neurons (inner nuclear and ganglion cell layers) that process the visual signals

Palanker, Daniel

357

10-MWe pilot-plant-receiver panel test requirements document solar thermal test facility  

DOE Green Energy (OSTI)

Testing plans for a full-scale test receiver panel and supporting hardware which essentially duplicate both physically and functionally, the design planned for the Barstow Solar Pilot Plant are presented. Testing is to include operation during normal start and shutdown, intermittent cloud conditions, and emergencies to determine the panel's transient and steady state operating characteristics and performance under conditions equal to or exceeding those expected in the pilot plant. The effects of variations of input and output conditions on receiver operation are also to be investigated. Test hardware are described, including the pilot plant receiver, the test receiver assembly, receiver panel, flow control, electrical control and instrumentation, and structural assembly. Requirements for the Solar Thermal Test Facility for the tests are given. The safety of the system is briefly discussed, and procedures are described for assembly, installation, checkout, normal and abnormal operations, maintenance, removal and disposition. Also briefly discussed are quality assurance, contract responsibilities, and test documentation. (LEW)

Not Available

1978-08-25T23:59:59.000Z

358

An improved model for natural convection heat loss from modified cavity receiver of solar dish concentrator  

Science Conference Proceedings (OSTI)

A 2-D model has been proposed to investigate the approximate estimation of the natural convection heat loss from modified cavity receiver of without insulation (WOI) and with insulation (WI) at the bottom of the aperture plane in our previous article. In this paper, a 3-D numerical model is presented to investigate the accurate estimation of natural convection heat loss from modified cavity receiver (WOI) of fuzzy focal solar dish concentrator. A comparison of 2-D and 3-D natural convection heat loss from a modified cavity receiver is carried out. A parametric study is carried out to develop separate Nusselt number correlations for 2-D and 3-D geometries of modified cavity receiver for estimation of convective heat loss from the receiver. The results show that the 2-D and 3-D are comparable only at higher angle of inclinations (60 {solar dish collector, when compared with other well known models. (author)

Reddy, K.S.; Sendhil Kumar, N. [Heat Transfer and Thermal Power Laboratory, Department of Mechanical Engineering, Indian Institute of Technology Madras, Chennai, Tamilnadu 600036 (India)

2009-10-15T23:59:59.000Z

359

2008 Solar Technologies Market Report  

E-Print Network (OSTI)

EIA). (2008a). Solar Photovoltaic Cell/Module ManufacturingEIA). (2009). Solar Photovoltaic Cell/Module Manufacturing

Price, S.

2010-01-01T23:59:59.000Z

360

The Impact of Solar Photovoltaic Generation on Balancing Requirements in the Southern Nevada System  

Science Conference Proceedings (OSTI)

Abstract—The impact of integrating large-scale solar photovoltaic (PV) generation on the balancing requirements in terms of regulation and load-following requirements in the southern Nevada balancing area is evaluated. The “swinging door” algorithm and the “probability box” method developed by Pacific Northwest National Laboratory (PNNL) were used to quantify the impact of large PV generation on the balancing requirements of the system operations. The system’s actual scheduling, real-time dispatch and regulation processes were simulated. Different levels of distributed generation were also considered in the study. The impact of hourly solar PV generation forecast errors on regulation and load-following requirements was assessed. The sensitivity of balancing requirements with respect to real-time forecast errors of large PV generation was analyzed. Index Terms—Ancillary services, balancing requirements, load following, regulation, renewables integration, swinging door

Ma, Jian; Lu, Shuai; Hafen, Ryan P.; Etingov, Pavel V.; Makarov, Yuri V.; Chadliev, Vladimir

2012-05-07T23:59:59.000Z

Note: This page contains sample records for the topic "receiver solar photovoltaic" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

Solar Sound Arts: Creating Instruments and Devices Powered by Photovoltaic Technologies  

E-Print Network (OSTI)

This paper describes recent developments in the creation of sound-making instruments and devices powered by photovoltaic (PV) technologies. With the rise of more efficient PV products in diverse packages, the possibilities for creating solar-powered musical instruments, sound installations, and loudspeakers are becoming increasingly realizable. This paper surveys past and recent developments in this area, including several projects by the author, and demonstrates how the use of PV technologies can influence the creative process in unique ways. In addition, this paper discusses how solar sound arts can enhance the aesthetic direction taken by recent work in soundscape studies and acoustic ecology. Finally, this paper will point towards future directions and possibilities as PV technologies continue to evolve and improve in terms of performance, and become more affordable.

unknown authors

2011-01-01T23:59:59.000Z

362

Hybrid photovoltaic/thermal (PV/T) solar systems simulation with Simulink/Matlab  

Science Conference Proceedings (OSTI)

The purpose of this work consists in thermodynamic modeling of hybrid photovoltaic-thermal (PV/T) solar systems, pursuing a modular strategy approach provided by Simulink/Matlab. PV/T solar systems are a recently emerging solar technology that allows for the simultaneous conversion of solar energy into both electricity and heat. This type of technology present some interesting advantages over the conventional ''side-by-side'' thermal and PV solar systems, such as higher combined electrical/thermal energy outputs per unit area, and a more uniform and aesthetical pleasant roof area. Despite the fact that early research on PV/T systems can be traced back to the seventies, only recently it has gained a renewed impetus. In this work, parametric studies and annual transient simulations of PV/T systems are undertaken in Simulink/Matlab. The obtained results show an average annual solar fraction of 67%, and a global overall efficiency of 24% (i.e. 15% thermal and 9% electrical), for a typical four-person single-family residence in Lisbon, with p-Si cells, and a collector area of 6 m{sup 2}. A sensitivity analysis performed on the PV/T collector suggests that the most important variable that should be addressed to improve thermal performance is the photovoltaic (PV) module emittance. Based on those results, some additional improvements are proposed, such as the use of vacuum, or a noble gas at low-pressure, to allow for the removal of PV cells encapsulation without air oxidation and degradation, and thus reducing the PV module emittance. Preliminary results show that this option allows for an 8% increase on optical thermal efficiency, and a substantial reduction of thermal losses, suggesting the possibility of working at higher fluid temperatures. The higher working temperatures negative effect in electrical efficiency was negligible, due to compensation by improved optical properties. The simulation results are compared with experimental data obtained from other authors and perform reasonably well. The Simulink modeling platform has been mainly used worldwide on simulation of control systems, digital signal processing and electric circuits, but there are very few examples of application to solar energy systems modeling. This work uses the modular environment of Simulink/Matlab to model individual PV/T system components, and to assemble the entire installation layout. The results show that the modular approach strategy provided by Matlab/Simulink environment is applicable to solar systems modeling, providing good code scalability, faster developing time, and simpler integration with external computational tools, when compared with traditional imperative-oriented programming languages. (author)

da Silva, R.M.; Fernandes, J.L.M. [Department of Mechanical Engineering, Instituto Superior Tecnico, Lisbon (Portugal)

2010-12-15T23:59:59.000Z

363

Wind effects on convective heat loss from a cavity receiver for a parabolic concentrating solar collector  

DOE Green Energy (OSTI)

Tests were performed to determine the convective heat loss characteristics of a cavity receiver for a parabolid dish concentrating solar collector for various tilt angles and wind speeds of 0-24 mph. Natural (no wind) convective heat loss from the receiver is the highest for a horizontal receiver orientation and negligible with the reveler facing straight down. Convection from the receiver is substantially increased by the presence of side-on wind for all receiver tilt angles. For head-on wind, convective heat loss with the receiver facing straight down is approximately the same as that for side-on wind. Overall it was found that for wind speeds of 20--24 mph, convective heat loss from the receiver can be as much as three times that occurring without wind.

Ma, R.Y. [California State Polytechnic Univ., Pomoma, CA (United States). Dept. of Mechanical Engineering

1993-09-01T23:59:59.000Z

364

NREL: Photovoltaics Research - Company Partners in Photovoltaic  

NLE Websites -- All DOE Office Websites (Extended Search)

Company Partners in Photovoltaic Manufacturing R&D Company Partners in Photovoltaic Manufacturing R&D More than 40 private-sector companies partnered with NREL on successful efforts within the PV Manufacturing R&D Project. They included manufacturers of crystalline silicon, thin-film, and concentrator solar technologies. The companies are listed below. Advanced Energy Systems Alpha Solarco ASE Americas AstroPower/GE Energy Boeing Aerospace BP Solar Cronar Crystal Systems Dow Corning Energy Conversion Devices Energy Photovoltaics ENTECH Evergreen Solar First Solar Glasstech Solar Global Photovoltaic Specialists Global Solar Energy Golden Photon Iowa Thin Film Technologies ITN Energy Systems Kopin Mobil Solar Energy Omnion Power Engineering Photon Energy Photovoltaics International PowerLight RWE Schott Solar/Schott Solar

365

Photovoltaic Cells  

Energy.gov (U.S. Department of Energy (DOE))

Photovoltaic (PV) cells, or solar cells, take advantage of the photoelectric effect to produce electricity. PV cells are the building blocks of all PV systems because they are the devices that...

366

Photovoltaics I  

Science Conference Proceedings (OSTI)

Mar 13, 2012 ... TiO2 is an attractive material for dye sensitized solar cells (DSSC) ... Second, I will discuss our design of photovoltaic (PV) materials that exploit ...

367

Concentrator Photovoltaic System Basics | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Concentrator Photovoltaic System Basics Concentrator Photovoltaic System Basics Concentrator Photovoltaic System Basics August 20, 2013 - 4:12pm Addthis Concentrator photovoltaic (PV) systems use less solar cell material than other PV systems. PV cells are the most expensive components of a PV system, on a per-area basis. A concentrator makes use of relatively inexpensive materials such as plastic lenses and metal housings to capture the solar energy shining on a fairly large area and focus that energy onto a smaller area-the solar cell. One measure of the effectiveness of this approach is the concentration ratio-in other words, how much concentration the cell is receiving. Concentrator PV systems have several advantages over flat-plate systems. First, concentrator systems reduce the size or number of cells needed and

368

Preliminary design of the Carrisa Plains solar central receiver power plant. Volume I. Executive summary  

DOE Green Energy (OSTI)

The design of the 30 MWe central receiver solar power plant to be located at Carrisa Plains, San Luis Obispo County, California, is summarized. The plant uses a vertical flat-panel (billboard) solar receiver located at the top of a tower to collect solar energy redirected by approximately 1900 heliostats located to the north of the tower. The solar energy is used to heat liquid sodium pumped from ground level from 610 to 1050/sup 0/F. The power conversion system is a non-reheat system, cost-effective at this size level, and designed for high-efficiency performance in an application requiring daily startup. Successful completion of this project will lead to power generation starting in 1986. This report also discusses plant performance, operations and maintenance, development, and facility cost estimate and economic analysis.

Not Available

1983-12-31T23:59:59.000Z

369

Suction-recirculation device for stabilizing particle flows within a solar powered solid particle receiver  

DOE Patents (OSTI)

A suction-recirculation device for stabilizing the flow of a curtain of blackened heat absorption particles falling inside of a solar receiver with an open aperture. The curtain of particles absorbs the concentrated heat from a solar mirror array reflected up to the receiver on a solar power tower. External winds entering the receiver at an oblique angle can destabilize the particle curtain and eject particles. A fan and ductwork is located behind the back wall of the receiver and sucks air out through an array of small holes in the back wall. Any entrained particles are separated out by a conventional cyclone device. Then, the air is recirculated back to the top of the receiver by injecting the recycled air through an array of small holes in the receiver's ceiling and upper aperture front wall. Since internal air is recirculated, heat losses are minimized and high receiver efficiency is maintained. Suction-recirculation velocities in the range of 1-5 m/s are sufficient to stabilize the particle curtain against external wind speeds in excess of 10 m/s.

Kolb, Gregory J. (Albuquerque, NM)

2012-02-07T23:59:59.000Z

370

Suction-recirculation device for stabilizing particle flows within a solar powered solid particle receiver  

SciTech Connect

A suction-recirculation device for stabilizing the flow of a curtain of blackened heat absorption particles falling inside of a solar receiver with an open aperture. The curtain of particles absorbs the concentrated heat from a solar mirror array reflected up to the receiver on a solar power tower. External winds entering the receiver at an oblique angle can destabilize the particle curtain and eject particles. A fan and ductwork is located behind the back wall of the receiver and sucks air out through an array of small holes in the back wall. Any entrained particles are separated out by a conventional cyclone device. Then, the air is recirculated back to the top of the receiver by injecting the recycled air through an array of small holes in the receiver's ceiling and upper aperture front wall. Since internal air is recirculated, heat losses are minimized and high receiver efficiency is maintained. Suction-recirculation velocities in the range of 1-5 m/s are sufficient to stabilize the particle curtain against external wind speeds in excess of 10 m/s.

Kolb, Gregory J. (Albuquerque, NM)

2012-02-07T23:59:59.000Z

371

Development of an integrated heat pipe-thermal storage system for a solar receiver  

SciTech Connect

The Organic Rankine Cycle (ORC) Solar Dynamic Power System (SDPS) is one of the candidates for Space Station prime power application. In the low earth orbit of the Space Station approximately 34 minutes of the 94-minute orbital period is spent in eclipse with no solar energy input to the power system. For this period the SDPS will use thermal energy storage (TES) material to provide a constant power output. Sundstrand Corporation is developing a ORC-SDPS candidate for the Space Station that uses toluene as the organic fluid and LiOH as the TES material. An integrated heat-pipe thermal storage receiver system is being developed as part of the ORC-SDPS solar receiver. This system incorporates potassium heat pipe elements to absorb and transfer the solar energy within the receiver cavity. The heat pipes contain the TES canisters within the potassium vapor space with the toluene heater tube used as the condenser region of the heat pipe. During the insolation period of the earth orbit, solar energy is delivered to the heat pipe in the ORC-SDPS receiver cavity. The heat pipe transforms the non-uniform solar flux incident in the heat pipe surface within the receiver cavity to an essentially uniform flux at the potassium vapor condensation interface in the heat pipe. During solar insolation, part of the thermal energy is delivered to the heater tube and the balance is stored in the TES units. During the eclipse period of the orbit, the balance stored in the TES units is transferred by the potassium vapor to the toluene heater tube. 3 refs., 8 figs.

Keddy, E.S.; Sena, J.T.; Merrigan, M.A.; Heidenreich, G.; Johnson, S.

1987-01-01T23:59:59.000Z

372

Advances in thin-film solar cells for lightweight space photovoltaic power  

SciTech Connect

The present stature and current research directions of photovoltaic arrays as primary power systems for space are reviewed. There have recently been great advances in the technology of thin-film solar cells for terrestrial applications. In a thin-film solar cell the thickness of the active element is only a few microns; transfer of this technology to space arrays could result in ultralow-weight solar arrays with potentially large gains in specific power. Recent advances in thin-film solar cells are reviewed, including polycrystalline copper-indium selenide (CuInSe2) and related I-III-VI2 compounds, polycrystalline cadmium telluride and related II-VI compounds, and amorphous silicon:hydrogen and alloys. The best experimental efficiency on thin-film solar cells to date is 12 percent AMO for CuInSe2. This efficiency is likely to be increased in the next few years. The radiation tolerance of thin-film materials is far greater than that of single-crystal materials. CuInSe2 shows no degradation when exposed to 1 MeV electrons. Experimental evidence also suggests that most of all of the radiation damage on thin-films can be removed by a low temperature anneal. The possibility of thin-film multibandgap cascade solar cells is discussed, including the tradeoffs between monolithic and mechanically stacked cells. The best current efficiency for a cascade is 12.5 percent AMO for an amorphous silicon on CuInSe2 multibandgap combination. Higher efficiencies are expected in the future. For several missions, including solar-electric propulsion, a manned Mars mission, and lunar exploration and manufacturing, thin-film photovolatic arrays may be a mission-enabling technology.

Landis, G.A.; Bailey, S.G.; Flood, D.J.

1989-01-01T23:59:59.000Z

373

A solarized Brayton engine based on turbo-charger technology and the DLR receiver  

DOE Green Energy (OSTI)

Northern Research and Engineering Corp. (NREC) is currently under contract to Sandia National Laboratories to solarize a 30 kWe Brayton engine that is based on turbo-charger technology. This program is also supported by the German Aerospace Research Establishment (DLR), which is supplying the solar receiver through an agreement with the International Energy Agency/SolarPACES. The engine is a low pressure, highly recuperated engine. The turbo-machinery is built up from commercial turbo-chargers, which ensures low cost and high reliability. A combustor will be included in the system to allow for full power production during cloud transients. Current estimates are that the engine/alternator thermal-to-electric efficiency will be 30+%. The solar receiver to be supplied by DLR will be an advanced version of their VOBREC volumetric receiver. This receiver has a parabolic quartz window and ceramic foam absorber. The estimated efficiency of the receiver is 90+%. Sandia has developed an economic model to estimate the levelized energy cost (LEC) of energy produced by dish/engine systems. The model includes both the operating characteristics of the dishes and engines as well as a detailed economic model. The results of the analysis indicate that the dish/Brayton systems compare favorably with dish/Stirling systems.

Gallup, D.R. [Sandia National Labs., Albuquerque, NM (United States); Kesseli, J.B. [Northern Research and Engineering Corp., Woburn, MA (United States)

1994-06-01T23:59:59.000Z

374

Convection heat loss from cavity receiver in parabolic dish solar thermal power system: A review  

SciTech Connect

The convection heat loss from cavity receiver in parabolic dish solar thermal power system can significantly reduce the efficiency and consequently the cost effectiveness of the system. It is important to assess this heat loss and subsequently improve the thermal performance of the receiver. This paper aims to present a comprehensive review and systematic summarization of the state of the art in the research and progress in this area. The efforts include the convection heat loss mechanism, experimental and numerical investigations on the cavity receivers with varied shapes that have been considered up to date, and the Nusselt number correlations developed for convection heat loss prediction as well as the wind effect. One of the most important features of this paper is that it has covered numerous cavity literatures encountered in various other engineering systems, such as those in electronic cooling devices and buildings. The studies related to those applications may provide valuable information for the solar receiver design, which may otherwise be ignored by a solar system designer. Finally, future development directions and the issues that need to be further investigated are also suggested. It is believed that this comprehensive review will be beneficial to the design, simulation, performance assessment and applications of the solar parabolic dish cavity receivers. (author)

Wu, Shuang-Ying; Xiao, Lan; Li, You-Rong [College of Power Engineering, Chongqing University, Chongqing 400044 (China); Cao, Yiding [Department of Mechanical and Materials Engineering, Florida International University, Miami, FL 33174 (United States)

2010-08-15T23:59:59.000Z

375

Methodology for Estimating Solar Potential on Multiple Building Rooftops for Photovoltaic Systems  

SciTech Connect

In this paper, a methodology for estimating solar potential on multiple building rooftops is presented. The objective of this methodology is to estimate the daily or monthly solar radiation potential on individual buildings in a city/region using Light Detection and Ranging (LiDAR) data and a geographic information system (GIS) approach. Conceptually, the methodology is based on the upward-looking hemispherical viewshed algorithm, but applied using an area-based modeling approach. The methodology considers input parameters, such as surface orientation, shadowing effect, elevation, and atmospheric conditions, that influence solar intensity on the earth s surface. The methodology has been implemented for some 212,000 buildings in Knox County, Tennessee, USA. Based on the results obtained, the methodology seems to be adequate for estimating solar radiation on multiple building rooftops. The use of LiDAR data improves the radiation potential estimates in terms of the model predictive error and the spatial pattern of the model outputs. This methodology could help cities/regions interested in sustainable projects to quickly identify buildings with higher potentials for roof-mounted photovoltaic systems.

Kodysh, Jeffrey B [ORNL; Omitaomu, Olufemi A [ORNL; Bhaduri, Budhendra L [ORNL; Neish, Bradley S [ORNL

2013-01-01T23:59:59.000Z

376

Solar Photovoltaic Financing: Deployment on Public Property by State and Local Governments  

DOE Green Energy (OSTI)

State and local governments have grown increasingly aware of the economic, environmental, and societal benefits of taking a lead role in U.S. implementation of renewable energy, particularly distributed photovoltaic (PV) installations. Recently, solar energy's cost premium has declined as a result of technology improvements and an increase in the cost of traditional energy generation. At the same time, a nationwide public policy focus on carbon-free, renewable energy has created a wide range of financial incentives to lower the costs of deploying PV even further. These changes have led to exponential increases in the availability of capital for solar projects, and tremendous creativity in the development of third-party ownership structures. As significant users of electricity, state and local governments can be an excellent example for solar PV system deployment on a national scale. Many public entities are not only considering deployment on public building rooftops, but also large-scale applications on available public lands. The changing marketplace requires that state and local governments be financially sophisticated to capture as much of the economic potential of a PV system as possible. This report examines ways that state and local governments can optimize the financial structure of deploying solar PV for public uses.

Cory, K.; Coughlin, J.; Coggeshall, C.

2008-05-01T23:59:59.000Z

377

Under Review for Publication in ASME J. Solar Energy Engineering SOL-12-1058 Life Estimation of Pressurized-Air Solar-Thermal Receiver Tubes  

E-Print Network (OSTI)

Under Review for Publication in ASME J. Solar Energy Engineering SOL-12-1058 Life Estimation of Pressurized-Air Solar-Thermal Receiver Tubes David K. Fork 1 e-mail: fork@google.com John Fitch e-mail: fitch.ziaei@gmail.com Robert I. Jetter e-mail: bjetter@sbcglobal.net The operational conditions of the solar thermal receiver

Cortes, Corinna

378

ECOLOGICAL CONSIDERATIONS OF THE SOLAR ALTERNATIVE  

E-Print Network (OSTI)

Principles of Photovoltaic Solar Energy Conversion, Brownbiomass from energy plantations). Impacts from photovoltaic

Davidson, M.

2010-01-01T23:59:59.000Z

379

NREL GIS Data: Alaska Low Resolution Photovoltaic Solar Resource | OpenEI  

Open Energy Info (EERE)

8 8 Varnish cache server Browse Upload data GDR 429 Throttled (bot load) Error 429 Throttled (bot load) Throttled (bot load) Guru Meditation: XID: 2142278078 Varnish cache server NREL GIS Data: Alaska Low Resolution Photovoltaic Solar Resource Dataset Summary Description Abstract: Monthly and annual average solar resource potential for Alaska. Purpose: Provide information on the solar resource potential for Alaska. The insolation values represent the average solar energy available to a flat plate collector, such as a photovoltaic panel, oriented due south at an angle from horizontal equal to the latitude of the collector location. Supplemental_Information: This data provides monthly average and annual average daily total solar resource averaged over surface cells of approximatley 40 km by 40 km in size. This data was developed from the Climatological Solar Radiation (CSR) Model. The CSR model was developed by the National Renewable Energy Laboratory for the U.S. Department of Energy. Specific information about this model can be found in Maxwell, George and Wilcox (1998) and George and Maxwell (1999). This model uses information on cloud cover, atmostpheric water vapor and trace gases, and the amount of aerosols in the atmosphere to calculate the monthly average daily total insolation (sun and sky) falling on a horizontal surface. The cloud cover data used as input to the CSR model are an 7-year histogram (1985-1991) of monthly average cloud fraction provided for grid cells of approximately 40km x 40km in size. Thus, the spatial resolution of the CSR model output is defined by this database. The data are obtained from the National Climatic Data Center in Ashville, North Carolina, and were developed from the U.S. Air Force Real Time Nephanalysis (RTNEPH) program. Atmospheric water vapor, trace gases, and aerosols are derived from a variety of sources. The procedures for converting the collector at latitude tilt are described in Marion and Wilcox (1994). Where possible, existing ground measurement stations are used to validate the data. Nevertheless, there is uncertainty associated with the meterological input to the model, since some of the input parameters are not avalible at a 40km resolution. As a result, it is believed that the modeled values are accurate to approximately 10% of a true measured value within the grid cell. Due to terrain effects and other micoclimate influences, the local cloud cover can vary significantly even within a single grid cell. Furthermore, the uncertainty of the modeled estimates increase with distance from reliable measurement sources and with the complexity of the terrain.

380

A Cradle to Grave Framework for Environmental Assessment of Photovoltaic Systems  

E-Print Network (OSTI)

th European Photovoltaic Solar Energy Conference, Barcelona,the 24 th European Photovoltaic Solar Energy Conference andof Roof Mounted Photovoltaic Cells,” Energy Bulletin, June

Zhang, Teresa; Dornfeld, David

2010-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "receiver solar photovoltaic" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

Producer-Focused Life Cycle Assessment of Thin-Film Silicon Photovoltaic Systems  

E-Print Network (OSTI)

21st European Photovoltaic Solar Energy Conference, Dresden,21st European Photovoltaic Solar Energy Conference, Dresden,International Energy Agency Photovoltaic Power System

Zhang, Teresa Weirui

2011-01-01T23:59:59.000Z

382

Mandatory Photovoltaic System Cost Analysis | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Mandatory Photovoltaic System Cost Analysis Mandatory Photovoltaic System Cost Analysis Eligibility Utility Savings For Solar Buying & Making Electricity Program Information...

383

Statistical Methods for Enhanced Metrology in Semiconductor/Photovoltaic Manufacturing  

E-Print Network (OSTI)

modeling method for photovoltaic cells. ” in Proc. IEEE 35thlosses in solar photovoltaic cell networks. ” Energy 32:Cell Variability Photovoltaic (PV) cells manufactured with

Zeng, Dekong

2012-01-01T23:59:59.000Z

384

Fabrication and Characterization of Organic/Inorganic Photovoltaic Devices  

E-Print Network (OSTI)

processable polymer photovoltaic cells by self-organizationand their influence on photovoltaic cells, Solar EnergyPhotodiodes, and Photovoltaic Cells, Applied Physics Letters

Guvenc, Ali Bilge

2012-01-01T23:59:59.000Z

385

Development of a 75-kW heat-pipe receiver for solar heat-engines  

DOE Green Energy (OSTI)

A program is now underway to develop commercial power conversion systems that use parabolic dish mirrors in conjunction with Stirling engines to convert solar energy to electric power. In early prototypes, the solar concentrator focused light directly on the heater tubes of the Stirling engine. Liquid-metal heat-pipes are now being developed to transfer energy from the focus of the solar concentrator to the heater tubes of the engine. The dome-shaped heat-pipe receivers are approximately one-half meters in diameter and up to 77-kW of concentrated solar energy is delivered to the absorber surface. Over the past several years, Sandia National Laboratories, through the sponsorship of the Department of Energy, has conducted a major program to explore receiver designs and identify suitable wick materials. A high-flux bench-scale system has been developed to test candidate wick designs, and full-scale systems have been tested on an 11-meter test-bed solar concentrator. Procedures have also been developed in this program to measure the properties of wick materials, and an extensive data-base on wick materials for high temperature heat pipes has been developed. This paper provides an overview of the receiver development program and results from some of the many heat-pipe tests.

Adkins, D.R.; Andraka, C.E.; Moss, T.A.

1995-05-01T23:59:59.000Z

386

Application of compound parabolic concentrators to solar photovoltaic conversion. Final report  

DOE Green Energy (OSTI)

The final results of an analytical and experimental study of the application of nonimaging concentrators to solar photovoltaic conversion are presented. Two versions of the Compound Parabolic Concentrator (CPC) were considered, the Dielectric Compound Parabolic Concentrator (DCPC) in which the concentrator is filled with a dielectric material that satisfies requirements for Total Internal Reflection (TIR), and a conventional CPC in which metallic reflection is used for the mirror surfaces. Two working prototype panels were constructed and tested during the course of the program. The first was a 1.22 m by 1.22 m DCPC panel that requires only ten adjustments/year, has a panel utilization factor (packing factor) of 96%, and delivered the equivalent of 138 W (peak) under 1 kW/m/sup 2/ direct insolation. The net energy conversion efficiency was 10.3% over the entire panel area. The second panel was a conventional CPC panel measuring 1.22 m by 1.22 m. This panel requires thirty-six adjustments per year, and delivers the equivalent of 97 W when under 1 kW/m/sup 2/ direct insolation. The results of a cost-effectiveness analysis of the concept of using nonimaging concentrators for photovoltaic conversion are also presented. The concentrator panels showed a decided savings in comparison to the cost of flat plate photovoltaic panels, both at present-day silicon costs ($2000/m/sup 2/) and projected lower silicon costs ($200/m/sup 2/). At a silicon cost of $200/m/sup 2/, a two-dimensional (cone) version of the collector has the potential for achieving from $0.60-2.00 per average watt (about $0.15-0.50 per peak watt) while requiring only crude (+-4.5/sup 0/) tracking.

Cole, R.L.; Gorski, A.J.; Graven, R.M.; McIntire, W.R.; Schertz, W.W.; Winston, R.; Zwerdling, S.

1977-02-01T23:59:59.000Z

387

Feasibility Study for Photovoltaics, Wind, solar Hot Water and Hybrid Systems  

DOE Green Energy (OSTI)

Southwestern Indian Polytechnic Institute (SIPI) located in Albuquerque New Mexico is a community college that serves American Indians and Alaska Natives. SIPI’s student body represents over 100 Native American Tribes. SIPI completed a renewable energy feasibility study program and established renewable energy hardware on the SIPI campus, which supplements and creates an educational resource to teach renewable energy courses. The SIPI campus is located, and has as student origins, areas, in which power is an issue in remote reservations. The following hardware was installed and integrated into the campus facilities: small wind turbine, large photovoltaic array that is grid-connected, two photovoltaic arrays, one thin film type, and one polycrystalline type, one dual-axis active tracker and one passive tracker, a hot air system for heating a small building, a portable hybrid photovoltaic system for remote power, and a hot water system to preheat water used in the SIPI Child Care facility. Educational curriculum has been developed for two renewable energy courses one being the study of energy production and use, and especially the roles renewable energy forms like solar, wind, geothermal, hydro, and biomass plays, and the second course being a more advanced in-depth study of renewable energy system design, maintenance, installation, and applications. Both courses rely heavily on experiential learning techniques so that installed renewable energy hardware is continuously utilized in hand-on laboratory activities and are part of the Electronics program of studies. Renewable energy technologies and science has also been included in other SIPI programs of study such as Environmental Science, Natural Resources, Agriculture, Engineering, Network Management, and Geospatial Technology.

Hooks, Ronald; Montoya, Valerie

2008-03-26T23:59:59.000Z

388

Solar receiver heliostat reflector having a linear drive and position information system  

DOE Patents (OSTI)

A heliostat for a solar receiver system comprises an improved drive and control system for the heliostat reflector assembly. The heliostat reflector assembly is controllably driven in a predetermined way by a light-weight drive system so as to be angularly adjustable in both elevation and azimuth to track the sun and efficiently continuously reflect the sun's rays to a focal zone, i.e., heat receiver, which forms part of a solar energy utilization system, such as a solar energy fueled electrical power generation system. The improved drive system includes linear stepping motors which comprise low weight, low cost, electronic pulse driven components. One embodiment comprises linear stepping motors controlled by a programmed, electronic microprocessor. Another embodiment comprises a tape driven system controlled by a position control magnetic tape.

Horton, Richard H. (Schenectady, NY)

1980-01-01T23:59:59.000Z

389

Increasing Community Access to Solar: Designing and Developing a Shared Solar Photovoltaic System (Fact Sheet)  

DOE Green Energy (OSTI)

This document introduces the Energy Department's new Guide to Community Shared Solar: Utility, Private, and Nonprofit Project Development. The guide is designed to help those who want to develop community shared solar projects - from community organizers and advocates to utility managers and government officials - navigate the process of developing shared systems, from early planning to implementation.

Not Available

2012-06-01T23:59:59.000Z

390

Energy Basics: Flat-Plate Photovoltaic Systems  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Energy Basics Renewable Energy Printable Version Share this resource Biomass Geothermal Hydrogen Hydropower Ocean Solar Photovoltaics Cells Systems Concentrating Solar...

391

Energy Basics: Photovoltaic Cell Quantum Efficiency  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Energy Basics Renewable Energy Printable Version Share this resource Biomass Geothermal Hydrogen Hydropower Ocean Solar Photovoltaics Cells Systems Concentrating Solar...

392

Energy Basics: Crystalline Silicon Photovoltaic Cells  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Energy Basics Renewable Energy Printable Version Share this resource Biomass Geothermal Hydrogen Hydropower Ocean Solar Photovoltaics Cells Systems Concentrating Solar...

393

Energy Basics: Photovoltaic Cell Conversion Efficiency  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Energy Basics Renewable Energy Printable Version Share this resource Biomass Geothermal Hydrogen Hydropower Ocean Solar Photovoltaics Cells Systems Concentrating Solar...

394

Energy Basics: Flat-Plate Photovoltaic Modules  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Energy Basics Renewable Energy Printable Version Share this resource Biomass Geothermal Hydrogen Hydropower Ocean Solar Photovoltaics Cells Systems Concentrating Solar...

395

Characterization and Modeling of 3D Photovoltaics  

Science Conference Proceedings (OSTI)

About this Abstract. Meeting, Materials Science & Technology 2012. Symposium, Energy Conversion – Photovoltaic, Concentrating Solar Power, and ...

396

What Changed in Article 690-Solar Photovoltaic Systems- of the 1999 National Electrical Code?  

DOE Green Energy (OSTI)

Article 690, Solar Photovoltaic Power Systems, has been in the National Electrical Code (NEC) since 1984. An NFPA-appointed Task Group for Article 690 proposed changes to Article 690 for both the 1996 and 1999 codes. The Task Group, supported by more than 50 professionals from throughout the photovoltaic (PV) industry, met seven times during the 1999 code cycle to integrate the needs of the industry with the needs of electrical inspectors and end users to ensure the safety of PV systems. The Task Group proposed 57 changes to Article 690, and all the changes were accepted in the review process. The performance and cost of PV installations were always a consideration as these changes were formed but safety was the number-one priority. All of the proposals were well substantiated and coordinated throughout the PV industry and with representatives of Underwriters Laboratories, Inc (UL). The most significant changes that were made in Article 690 for the 1999 NEC along with some of the rationale are discussed in the remainder of this article.

Bower, W.; Wiles, J.

1999-01-12T23:59:59.000Z

397

Feasibility Study of Economics and Performance of Solar Photovoltaics at Johnson County Landfill  

NLE Websites -- All DOE Office Websites (Extended Search)

Johnson Johnson County Landfill James Salasovich and Gail Mosey Technical Report NREL/TP-6A20-53186 January 2012 NREL is a national laboratory of the U.S. Department of Energy, Office of Energy Efficiency & Renewable Energy, operated by the Alliance for Sustainable Energy, LLC. National Renewable Energy Laboratory 1617 Cole Boulevard Golden, Colorado 80401 303-275-3000 * www.nrel.gov Contract No. DE-AC36-08GO28308 Feasibility Study of Economics and Performance of Solar Photovoltaics at Johnson County Landfill James Salasovich and Gail Mosey Prepared under Task No. IGST.1100 Technical Report NREL/TP-6A20-53186 January 2012 NOTICE This report was prepared as an account of work sponsored by an agency of the United States government.

398

Approaches to Future Generation Photovoltaics and Solar Fuels: Quantum Dots, Arrays, and Quantum Dot Solar Cells  

Science Conference Proceedings (OSTI)

One potential, long-term approach to more efficient and lower cost future generation solar cells for solar electricity and solar fuels is to utilize the unique properties of quantum dots (QDs) to control the relaxation pathways of excited states to enhance multiple exciton generation (MEG). We have studied MEG in close-packed PbSe QD arrays where the QDs are electronically coupled in the films and thus exhibit good transport while still maintaining quantization and MEG. We have developed simple, all-inorganic solution-processable QD solar cells that produce large short-circuit photocurrents and power conversion efficiencies above 5% via nanocrystalline p-n junctions. These solar cells show QYs for photocurrent that exceed 100% in the photon energy regions where MEG is possible; the photocurrent MEG QYs as a function of photon energy match those determined via time-resolved spectroscopy Recent analyses of the major effect of MEG combined with solar concentration on the conversion efficiency of solar cells will also be discussed.

Semonin, O.; Luther, J.; Beard, M.; Johnson, J.; Gao, J.; Nozik, A.

2012-01-01T23:59:59.000Z

399

PV Standards Work: Photovoltaic System and Component Certification, Test Facility Accreditation, and Solar Photovoltaic Energy Systems International Standards  

DOE Green Energy (OSTI)

This paper discusses efforts led by two companies (PowerMark Corporation and Sunset Technologies Inc.) to support both U.S. domestic and international photovoltaic (PV) system and component certification and test facility accreditation programs and the operation of the International Electrotechnical Commission (IEC) Technical Committee 82 (TC-82) Photovoltaic Energy Systems. International and national PV certification/accreditation programs are successfully facilitating entry of only the highest quality PV products into the marketplace. Standards also continue to be a cornerstone for assuring global PV product conformity assessment, reducing non-tariff trade barriers, and ultimately improving PV products while lowering cost.

Basso, T. S.; Chalmers, S.; Barikmo, H. O.

2005-11-01T23:59:59.000Z

400

Photovoltaics | Open Energy Information  

Open Energy Info (EERE)

Photovoltaics Photovoltaics (Redirected from Photovoltaic) Jump to: navigation, search (The following text is derived from NREL's description of photovoltaic technology.)[1] Photovoltaic Panels Solar cells, also called photovoltaic (PV) cells by scientists, convert sunlight directly into electricity. PV gets its name from the process of converting light (photons) to electricity (voltage), which is called the PV effect. The PV effect was discovered in 1954, when scientists at Bell Telephone discovered that silicon (an element found in sand) created an electric charge when exposed to sunlight. Soon solar cells were being used to power space satellites and smaller items like calculators and watches. Today, thousands of people power their homes and businesses with individual

Note: This page contains sample records for the topic "receiver solar photovoltaic" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

Solar access of residential rooftops in four California cities  

E-Print Network (OSTI)

the 14th European Photovoltaic Solar Energy Conference androoftop solar-energy systems, including photovoltaic panelsrooftop solar-energy systems, including photovoltaic panels

Levinson, Ronnen

2010-01-01T23:59:59.000Z

402

SIXTH QUARTERLY REPORT OF RESEARCH ON CuxS - (Cd,Zn)S PHOTOVOLTAIC SOLAR ENERGY CONVERTERS  

E-Print Network (OSTI)

for use in experimental photovoltaic cells. Hall mobilityvacuum method for photovoltaic cell fabrication" However,

Chin, B.L.

2011-01-01T23:59:59.000Z

403

Residential photovoltaic module and array requirement study. Low-Cost Solar Array Project engineering area. Final report appendices  

DOE Green Energy (OSTI)

This volume contains the appendices to a study to identify design requirements for photovoltaic modules and arrays used in residential applications. Appendices include: (1) codes, standards, and manuals of accepted practice-definition and importance; (2) regional code variations-impact; (3) model and city codes-review; (4) National Electric Code (NEC)-review; (5) types of standards-definition and importance; (6) federal standards-review; (7) standards review method; (8) manuals of accepted practice; (9) codes and referenced standards-summary; (10) public safety testing laboratories; (11) insurance review; (12) studies approach; (13) mounting configurations; (14) module/panel size and shape cost analysis; (15) grounding, wiring, terminal and voltage studies; (16) array installation cost summary; (17) photovoltaic shingle/module comparison; (18) retrofit application; (19) residential photovoltaic module performance criteria; (20) critique of JPL's solar cell module design and test specifications for residential applications; and (21) CSI format specification. (WHK)

Not Available

1979-06-01T23:59:59.000Z

404

Use of solar generators in Africa for broadcasting equipment. [For powering educational tv receivers  

SciTech Connect

In Africa, solar cells were used for the first time in 1968 to provide power supply for the TV receivers in Niger. In that country, school television programs are essentially devised for the schools located in regions not provided with power mains. The transmissions are received by the means of TV sets that are especially devised to operate under warm and wet weather conditions. These receivers, model CATEL CI 17, are equipped with 61-cm screens, and are completely solid-state. They can be powered by a d.c. power supply, between 30 and 36 V. Their consumption, extremely modest, ranges around 32 W. The power supply for these receivers had, at the beginning, been provided by high-capacity alkaline electrolyte cells. In order to secure a more practical and less expensive source of energy, an experimental solar cell was installed in 1968. Following a satisfactory operation of this experimental solar cell, a careful study was conducted, after which some twenty installations were set up, using silicon cells and lead-acid batteries. A description of the installations is presented; and maintenance, reliability, and cost of the installations are discussed. (WHK)

Polgar, S.

1977-01-01T23:59:59.000Z

405

10 MWe solar thermal central receiver pilot plant control system automation test report  

DOE Green Energy (OSTI)

This report describes results of tests on the automatic features added to the control system for the 10 MWe Solar Thermal Central Receiver Pilot Plant located near Barstow, CA. The plant, called Solar One, is a cooperative activity between the Department of Energy and the Associates: Southern California Edison, the Los Angeles Dept. of Water and Power and the California Energy Commission. This report provides an overview of the automation features added to the plant control system, a description of tests performed on the system, and the results of those tests.

Not Available

1987-04-01T23:59:59.000Z

406

Effect of Cavity Wall Temperature and Opening Ratio on the Natural Convection Heat Loss Characteristics of a Solar Cavity Receiver  

Science Conference Proceedings (OSTI)

The natural convection heat loss characteristics of a solar cavity receiver have been investigated by numerical simulation method. The results show that, the natural convection heat loss, the convection heat transfer coefficient and Nusselt number increase ... Keywords: solar cavity receiver, cavity wall temperature, opening ratio, natural convection heat loss

Lan Xiao; Shuang-Ying Wu; You-Rong Li

2011-02-01T23:59:59.000Z

407

NUMERICAL ANALYSIS OF DIRECT LIQUID-IMMERSED SOLAR CELL COOLING OF A LINEAR CONCENTRATING PHOTOVOLTAIC RECEIVER  

E-Print Network (OSTI)

performed the best agreement with the experimental data. The Enhanced Wall Function (EWF) model also term in the - equation [14]. The EWF model subdivides the near-wall region into a viscous sub

408

10-MWe pilot-plant-receiver-panel test-requirements document: Solar Thermal Test Facility  

DOE Green Energy (OSTI)

Plans are presented for insolation testing of a full-scale test receiver panel and supporting hardware which essentially duplicate both physically and functionally the design planned for the 10 MWe pilot plant. Testing includes operation during normal start and shutdown, intermittent cloud conditions, and emergencies to determine the transient and steady state operating characteristics and performance under conditions equal to or exceeding those expected in the pilot plant. The effects of variations of input and output conditions on receiver operation are also to be investigated. A brief description of the pilot plant receiver subsystem is presented, followed by a detailed description of the receiver assembly to be tested at the Solar Thermal Test Facility. Major subassemblies are described, including the receiver panel, flow control, electrical control and instrumentation, and the structural assembly. Requirements of the Solar Thermal Test Facility for the tests are given. System safety measures are described. The tests, operating conditions, and expected results are presented. Quality assurance, task responsibilities, and test documentation are also discussed. (LEW)

Not Available

1978-06-10T23:59:59.000Z

409

Implementing Solar Photovoltaic Projects on Historic Buildings and in Historic Districts  

SciTech Connect

Despite a global recession, the number of photovoltaic (PV) installations in the United States grew 30% from 2008 to 2009. A number of trends point toward continued growth of new PV installations. The efficiency of solar panels is increasing, while installation costs are going down. At the same time, federal, state, and local regulations are requiring that greater amounts of energy must come from renewable sources. Incentives for solar power technology implementation are being created and regulatory barriers removed. Corporations and governments are focusing on solar power to demonstrate leadership in environmental sustainability and resource conservation. Architects and builders are including PV arrays as a way to meet green building standards and property owners are seeking PV as a way to reduce their utility bills, as well as their carbon footprints. This publication focuses on the implementation of PV systems on historic properties. Many private property owners, as well as local, state, and national government entities, are seeking guidance on how best to integrate solar PV installations on historic buildings. Historic preservationists maintain that preserving, reusing, and maintaining historic structures is a key sustainable design strategy while also recognizing the importance of accommodating renewable energy technologies where they are appropriate. In some cases, however, conflicts have arisen over the installation of PV panels on historic properties. Addressing these conflicts and providing guidance regarding solutions and best practices is an important step toward resolving or eliminating barriers. Historic properties and districts in the United States provide tangible connections to the nation's past. Thousands of buildings, sites, districts, structures, and objects have been recognized for their historic and architectural significance. Local, state, and national designations of historic properties provide recognition, protection, and incentives that help to preserve those properties for future generations. At the national level, the National Register of Historic Places includes more than 86,000 listings, which encompass a total of more than 1.6 million historic resources. State registers of historic places also provide recognition and protection for historic sites and districts. Locally, more than 2,400 communities have established historic preservation ordinances. Typically implemented through zoning overlays, these local land use regulations manage changes to hundreds of thousands of historic properties. Over a period of 2 years (2007 and 2008) the U.S. Department of Energy (DOE) designated 25 major U.S. cities as Solar America Cities. DOE provided financial and technical assistance to help the cities develop comprehensive approaches to accelerate the adoption of solar energy technologies. The Solar America Cities partnerships represent the foundation of DOE's larger Solar America Communities program. As a part of this program, DOE identified the implementation of solar projects on historic properties and in historic districts as one area to address. A workshop titled 'Implementing Solar Projects on Historic Buildings and in Historic Districts' was held in Denver, Colorado, in June of 2010. Participants included representatives from the solar industry as well as historic preservationists from nonprofit organizations and government agencies at the local, state, and national levels. The workshop provided an opportunity to gain a common understanding of solar technologies and historic preservation procedures and priorities. The workshop participants also discussed some of the challenges involved in locating PV systems on historic properties and identified potential solutions. This publication is based on the discussions that occurred at this workshop and the recommendations that were developed by participants. Ideas expressed by participants in the workshop, and included in this document, do not necessarily reflect the opinion of any government council, agency, or entity.

Kandt, A.; Hotchkiss, E.; Walker, A.

2011-01-01T23:59:59.000Z

410

Solar Central Receiver Prototype Heliostat. Volume II. Phase II planning (preliminary)  

DOE Green Energy (OSTI)

A currently planned DOE program will develop and construct a 10 MW/sub e/ Pilot Plant to demonstrate the feasibility and operational characteristics of Solar Central Receiver Power Generation. The field of heliostats is a major element of the Solar Central Receiver Power Generation system. The primary objective of the program described is to establish and verify the manufacturability, performance, durability, and maintenance requirements of the commercial plant heliostat design. End products of the 16 month effort include: (1) design, fabrication, and test of heliostats; (2) preliminary designs of manufacturing, assembly, installation, and maintenance processes for quantity production; (3) detailed design of critical tooling or other special equipment for such processes; (4) refined cost estimates for heliostats and maintenance; and (5) an updated commercial plant heliostat preliminary design. The program management and control system is discussed. (WHK)

None

1978-06-01T23:59:59.000Z

411

Feasibility Study of Economics and Performance of Solar Photovoltaics at Johnson County Landfill  

DOE Green Energy (OSTI)

The U.S. Environmental Protection Agency (EPA), in accordance with the RE-Powering America's Land initiative, selected the Johnson County Landfill in Shawnee, Kansas, for a feasibility study of renewable energy production. Citizens of Shawnee, city planners, and site managers are interested in redevelopment uses for landfills in Kansas that are particularly well suited for grid-tied solar photovoltaic (PV) installation. This report assesses the Johnson County Landfill for possible grid-tied PV installations and estimates the cost, performance, and site impacts of three different PV options: crystalline silicon (fixed tilt), crystalline silicon (single-axis tracking), and thin film (fixed tilt). Each option represents a standalone system that can be sized to use an entire available site area. In addition, the report outlines financing options that could assist in the implementation of a system. The feasibility of PV systems installed on landfills is highly impacted by the available area for an array, solar resource, operating status, landfill cap status, distance to transmission lines, and distance to major roads. The report findings are applicable to other landfills in the surrounding area.

Salasovich, J.; Mosey, G.

2012-01-01T23:59:59.000Z

412

NREL: Photovoltaics Research - Photovoltaic Manufacturing R&D...  

NLE Websites -- All DOE Office Websites (Extended Search)

in the background. BP Solar's manufacturing capabilities include automatic sorting of solar cells after final testing. NREL's Photovoltaic (PV) Manufacturing Research and...

413

Concentrating Photovoltaics  

Science Conference Proceedings (OSTI)

Concentrating photovoltaics (CPV) are a promising alternative to flat-plate photovoltaics in high direct normal irradiance (DNI) environments. The technology’s basic operating characteristics offer significant upside compared with other solar technologies: higher system efficiencies of upwards of 30%+; higher capacity factors, generated through two-axis tracking, exceeding 30% in ideal locations; lower cellular degradation from heat compared to flat-plate PV; lower water requirements; and reduced footpri...

2010-11-19T23:59:59.000Z

414

Central receiver solar thermal system. Phase 1, CDRL item 10. Second quarterly technical progress report  

DOE Green Energy (OSTI)

Results of analysis and design efforts are summarized. This is the second quarterly technical progress report published on the Phase 1 Central Receiver Solar Thermal Power System contract. The dominant activities during the reporting period have involved the detailed definition of the subsystem research experiments and the design of the test articles and test facilities. Summaries of these activities are presented. Design changes to the 10-MWe pilot plant preliminary design baseline which have occurred during the report period are also described.

Hallet, Jr., R. W.; Gervais, R. L.

1976-04-01T23:59:59.000Z

415

Heat Transfer Analysis and Modeling of a Parabolic Trough Solar Receiver Implemented in Engineering Equation Solver  

DOE Green Energy (OSTI)

This report describes the development, validation, and use of a heat transfer model implemented in Engineering Equation Solver. The model determines the performance of a parabolic trough solar collector's linear receiver, also called a heat collector element. All heat transfer and thermodynamic equations, optical properties, and parameters used in the model are discussed. The modeling assumptions and limitations are also discussed, along with recommendations for model improvement.

Forristall, R.

2003-10-01T23:59:59.000Z

416

Improved power efficiency for very-high-temperature solar-thermal-cavity receivers  

DOE Patents (OSTI)

This invention is an improved solar energy cavity receiver for exposing materials and components to high temperatures. The receiver includes a housing having an internal reflective surface defining a cavity and having an inlet for admitting solar radiation thereto. A photothermal absorber is positiond in the cavity to receive radiation from the inlet. A reflective baffle is positioned between the absorber and the inlet to severely restrict the re-radiation of energy through the inlet. The front surface of the baffle defines a narrow annulus with the internal reflective surface of the housing. The front surface of the baffle is contoured to reflect incoming radiation onto the internal surface of the housing, from which it is reflected through the annulus and onto the front surface of the absorber. The back surface of the baffle intercepts radiation from the front of the absorber. With this arrangement, a high percentage of the solar power input is retained in the cavity; thus, high internal temperatues are attained.

McDougal, A.R.; Hale, R.R.

1982-04-14T23:59:59.000Z

417

Comparison of fixed asymmetrical and symmetrical reflectors for evacuated tube solar receivers  

SciTech Connect

A computer simulation of the relative performance of certain truncated symmetrical and asymmetrical fixed reflector designs for solar energy collection was performed. The comparison was on the basis of annual energy delivered to a circular cylindrical evacuated tube receiver per unit of mirror area, but seasonal load information was also included to determine possible seasonal load matching advantages of one type of collector over another when storage is employed. Circumsolar radiation models based on recent correlations in the literature was included. Major conclusions were that: (1) Annual solar fractions of between 80% and 95% seem to be feasible with a load matching collector used with moderate energy storage, with 80-90% being a likely optimum; (2) CPC reflectors always gave the best annual output performance per unit of mirror area, and the lowest receiver area for situations of constant annual load, regardless of whether the storage is included in the system; (3) Asymmetrical concentrator are more cost-effective for strongly seasonally asymmetrical load patterns; (4) Fixed parabolic systems required much more receiver area than the symmetrical CPC and asymmetrical system investigated; (5) Concentration levels utilizable in fixed systems are higher than previously supposed, with 3.5:1 in an asymmetrical reflector being optimal or nearly optimal for the domestic load pattern used in the study; (6) Using a load matched reflector, the amount of storage required to achieve solar fractions of total thermal energy (space heating, water heating, clothes drying) above 90% in a residence appears to be much lower than previously thought.

Mills, D.R.; Monger, A. (Univ. of Sydney (Australia)); Morrison, G.L. (Univ. of New South Wales, Sydney (Australia))

1994-07-01T23:59:59.000Z

418

High-Performance Home Technologies: Solar Thermal & Photovoltaic Systems; Volume 6 Building America Best Practices Series  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

by by Pacific Northwest National Laboratory & Oak Ridge National Laboratory June 4, 2007 June 2007 * NREL/TP-550-41085 PNNL-16362 High-Performance Home Technologies: Solar Thermal & Photovoltaic Systems Building America Best Practices Series Volume 6 High-Performance Home Technologies: Solar Thermal & Photovoltaic Systems Building America Best Practices Series Prepared by Pacific Northwest National Laboratory, a DOE national laboratory Michael C. Baechler Theresa Gilbride, Kathi Ruiz, Heidi Steward and Oak Ridge National Laboratory, a DOE national laboratory Pat M. Love June 4, 2007 DISCLAIMER This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor Battelle Memorial Institute, nor any of their employees, makes any warranty,

419

NREL: Learning - Photovoltaics for Students  

NLE Websites -- All DOE Office Websites (Extended Search)

Solar Sprint. The following resources will help students find out more information about solar photovoltaic (PV) systems. If you are unfamiliar with PV systems, see introduction...

420

Compound Photovoltaics - Programmaster.org  

Science Conference Proceedings (OSTI)

Sep 15, 2009 ... The growing prospects of current and coming solar-photovoltaic (PV) technologies are envisioned, arguing this solar-electricity source is ...

Note: This page contains sample records for the topic "receiver solar photovoltaic" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

Grid Impacts of Distributed Generation with Advanced Inverter Functions: Hosting Capacity of Large-Scale Solar Photovoltaic Using Smart Inverters  

Science Conference Proceedings (OSTI)

With increasing penetration levels of solar photovoltaics (PV), the need for inverter technology to provide grid support has become more and more critical. Since 2009, the Electric Power Research Institute (EPRI) and industry partners have been working to establish a common set of functions that can provide such capability. The development of a common set of functions is complete; however, very little work to date has addressed the impact that these common functions will have on grid performance, ...

2013-12-20T23:59:59.000Z

422

Solar Central Receiver Hybrid Power Systems sodium-cooled receiver concept. Final report. Volume II, Book 2. Conceptual design, Sections 5 and 6  

DOE Green Energy (OSTI)

The overall, long-term objective of the Solar Central Receiver Hybrid Power System program is to identify, characterize, and ultimately demonstrate the viability and cost effectiveness of solar/fossil, steam Rankine cycle, hybrid power systems that: (1) consist of a combined solar central receiver energy source and a nonsolar energy source at a single, common site, (2) may operate in the base, intermediate, and peaking capacity modes, (3) produce the rated output independent of variations in solar insolation, (4) provide a significant savings (50% or more) in fuel consumption, and (5) produce power at the minimum possible cost in mills/kWh. It is essential that these hybrid concepts be technically feasible and economically competitive with other systems in the near to mid-term time period (1985-1990) on a commercial scale. The program objective for Phase I is to identify and conceptually characterize solar/fossil steam Rankine cycle, commercial-scale, power plant systems that are economically viable and technically feasible. This volume contains the detailed conceptual design and cost/performance estimates and an assessment of the commercial scale solar central receiver hybrid power system. (WHK)

None

1980-01-01T23:59:59.000Z

423

Photovoltaics in the Classroom  

NLE Websites -- All DOE Office Websites (Extended Search)

that addresses several important topics, including: basics of electric power and energy; basics of photovoltaics and solar geometry; basics of data analysis for school...

424

Photovoltaic Cell Materials  

Energy.gov (U.S. Department of Energy (DOE))

Although crystalline silicon cells are the most common type, photovoltaic (PV), or solar cells, can be made of many semiconductor materials. Each material has unique strengths and characteristics...

425

Concentrating Photovoltaics (Presentation)  

SciTech Connect

Solar is growing rapidly, and the concentrating photovoltaics industry-both high- and low-concentration cell approaches-may be ready to ramp production in 2009.

Kurtz, S.

2009-01-20T23:59:59.000Z

426

SunShot Initiative: Photovoltaic Research Facilities  

NLE Websites -- All DOE Office Websites (Extended Search)

Initiative: Photovoltaic Research Facilities on AddThis.com... Concentrating Solar Power Photovoltaics Research & Development Competitive Awards Systems Integration Balance of...

427

SunShot Initiative: Photovoltaics Competitive Awards  

NLE Websites -- All DOE Office Websites (Extended Search)

Technologies in Solar Next Generation Photovoltaics Foundational Program to Advance Cell Efficiency SunShot Incubator Program Photovoltaic Supply Chain & Cross-Cutting...

428

Photovoltaic cell efficiency at elevated temperatures.  

E-Print Network (OSTI)

??In order to determine what type of photovoltaic solar cell could best be used in a thermoelectric photovoltaic hybrid power generator, we tested the change… (more)

Ray, Katherine Leung

2010-01-01T23:59:59.000Z

429

Photovoltaic Cell Performance Basics | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Photovoltaic Cell Performance Basics August 19, 2013 - 4:55pm Addthis Photovoltaic (PV), or solar cells use the energy in sunlight to produce electricity. However, the amount...

430

Prediction and optimization of the performance of parabolic solar dish concentrator with sphere receiver using analytical function  

E-Print Network (OSTI)

Parabolic solar dish concentrator with sphere receiver is less studied. We present an analytic function to calculate the intercept factor of the system with real sun bright distribution and Gaussian distribution, the results indicate that the intercept factor is related to the rim angle of reflector and the ratio of open angle of receiver at the top of reflector to optical error when the optical error is larger than or equal to 5 mrad, but is related to the rim angle, open angle and optical error in less than 5 mrad optical error. Furthermore we propose a quick process to optimize the system to provide the maximum solar energy to net heat efficiency for different optical error under typical condition. The results indicate that the parabolic solar dish concentrator with sphere receiver has rather high solar energy to net heat efficiency which is 20% more than solar trough and tower system including higher cosine factor and lower heat loss of the receiver.

Huang, Weidong; Hu, Peng; Chen, Zeshao

2011-01-01T23:59:59.000Z

431

The Adoption of Residential Solar Photovoltaic Systems in the Presence of a Financial Incentive: A Case Study of Consumer Experiences with the Renewable Energy Standard Offer Program in Ontario (Canada).  

E-Print Network (OSTI)

??Traditionally, high initial capital costs and lengthy payback periods have been identified as the most significant barriers that limit the diffusion of solar photovoltaic (PV)… (more)

Adachi, Christopher

2009-01-01T23:59:59.000Z

432

The National Solar Thermal Test Facility at Sandia National Laboratories conducts research and development  

E-Print Network (OSTI)

, photovoltaic (PV) energy generation techniques have received significant attention, since solar energy for practical applications, such as PV power stations, solar-powered vehicles, and solar power heating the string charger interface. Solar irradiations received by PV cells in the PV system, may be different

Fuerschbach, Phillip

433

Arizona public service utility solar central receiver study: Volume 1, Phase 1 topical report  

Science Conference Proceedings (OSTI)

The Arizona Public Service Company (APS), in association with Black and Veatch (BandV), Babcock and Wilcox (BandW), Solar Power Engineering Company (SPECO), Pitt-DesMoines (PDM), and the University of Houston (UH), has completed Phase I of the Utility Solar Central Receiver Study. This study was co-funded by the US Department of Energy (DOE) under Cooperative Agreement Number DE-FC04-86AL38741. The Phase I effort focused on defining the most cost-effective solar thermal central receiver (STCR) power plant configuration for commercial utility application. A team led by Pacific Gas and Electric (PGandE) performed a similar parallel effort; in addition, the Alternate Utility Team (AUT) under APS management completed work for Phase I to support the overall effort. By the conclusion of Phase I, the utilities had reached consensus on the key technical issues for the STCR technology and had performed assessments of the technology which showed similar and favorable economic potential in the commercial utility market. Furthermore, APS and PGandE have agreed to an integrated approach for Phase II to assess and mitigate key risk issues on the path to commercializing the technology. This topical report documents the Phase I efforts; a separate Phase II report will be submitted upon completion of Phase II. 114 figs., 74 tabs.

Not Available

1988-11-01T23:59:59.000Z

434

Metamaterial-based integrated plasmonic absorber/emitter for solar thermo-photovoltaic This article has been downloaded from IOPscience. Please scroll down to see the full text article.  

E-Print Network (OSTI)

coupled to a photovoltaic (PV) cell for power generation. By employing a low reflectivity refractory metal using photovoltaic (PV) cells, light trapping and enhanced absorbance by surface plasmons have beenMetamaterial-based integrated plasmonic absorber/emitter for solar thermo-photovoltaic systems

Shvets, Gennady

435

Materials technology assessment of high-temperature solar receivers for fuels and chemicals production  

DOE Green Energy (OSTI)

Current interest in using solar thermal energy to produce fuels and chemicals has prompted an assessment of materials technology for five proposed designs of solar receivers. The principal process of interest is water splitting. Reaction schemes considered involve the high-temperature decomposition of sulfuric acid, and silicon carbide is the structural ceramic material usually considered most resistant to the conditions of this reaction. Hence we have assessed the fabricability of the designs from SiC for that reaction system, even though most designs envision use with air, helium, or nitrogen as a heat transfer medium. Honeycomb and hemispherical dome receivers have been fabricated from SiC. A receiver using planar coiled tubes has been fabricated from cordierite but not from SiC. Fabrication has not been demonstrated for helical coil and long tube designs. The last three of these should be fabricable with up to two years development. All lack the ultimate test: operational experience. The need for relable seals is common to all designs. Metallic gaskets are subject to corrosion, and ceramic and mechanical seals have not been demonstrated for the anticipated thermal cycling.

Tiegs, T.N.

1981-07-01T23:59:59.000Z

436

Letting The Sun Shine On Solar Costs: An Empirical Investigation Of Photovoltaic Cost Trends In California  

E-Print Network (OSTI)

PHOTOVOLTAIC COST TRENDS IN CALIFORNIA Ryan Wiser Lawrencein the United States: California. We find that: (1) solarof PV system costs in California. Through mid-November 2005,

Wiser, Ryan; Bolinger, Mark; Cappers, Peter; Margolis, Robert

2006-01-01T23:59:59.000Z

437

New results in forecasting of photovoltaic systems output based on solar radiation forecasting  

Science Conference Proceedings (OSTI)

Accurate short term forecasting of photovoltaic (PV) systems output has a great significance for fast development of PV parks in South-East Europe

Laurentiu Fara

2013-01-01T23:59:59.000Z

438

Financial modeling of consumer discount rate in residential solar photovoltaic purchasing decisions.  

E-Print Network (OSTI)

??Diffusion of microgeneration technologies, particularly rooftop photovoltaic (PV), represents a key option in reducing emissions in the residential sector. This thesis uses a uniquely rich… (more)

Sigrin, Benjamin O.

2013-01-01T23:59:59.000Z

439

Solar central receiver prototype heliostat CDRL item B. d. Final technical report, Volume 2  

DOE Green Energy (OSTI)

This is volume II of a two volume report which presents the results of a study to define a low-cost approach to the production, installation, and operation of heliostats for central receiver solar thermal power plants. Performance and cost analyses are presented, and critical R and D areas are identified. Also, computer printed work sheets are included for heliostat investment, maintenance equipment investment, initial spares investment, and first years operations and maintenance for 2,500, 25,000, 250,000, and 1,000,000 units per year production. (WHK)

Easton, C. R.

1978-08-01T23:59:59.000Z

440

10-MWe solar-thermal central-receiver pilot plant. Phase II. Planning  

DOE Green Energy (OSTI)

The various considerations related to the Phase II schedules, material control and personnel training required to effectively implement the program are presented. The flow charts and schedules required to accomplish fabrication, installation, checkout, and personnel training to support the Pilot Plant schedule are identified. The planning addresses receiving, storage and shipment of raw materials, subassemblies, component, subsystems, and complete assemblies. The vendor activities and the major Martin Marietta facilities are included. These are the Mirror Assembly activities at Pueblo, Colorado and the heliostat assembly and installation activities at the Barstow-Daggett Airport and the solar plant. (LEW)

Not Available

1979-08-01T23:59:59.000Z

Note: This page contains sample records for the topic "receiver solar photovoltaic" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

Atmospheric transmittance model for a solar beam propagating between a heliostat and a receiver  

Science Conference Proceedings (OSTI)

This report presents formulae that provide reliable estimates of the percent energy loss P/sub L/ (or, equivalently, the transmittance tau) of a solar beam propagating between a heliostat and a receiver. These formulae are wavelength-independent, functional fits to the tabulated results of Vittitoe and Biggs, which in turn are the results of numerical integrations of spectral transmittance data calculated with the aid of the computer code LOWTRAN 3. The formulae allow for interpolation and extrapolation and have a form characteristic of atmospheric transmittance models.

Pitman, C.L.; Vant-Hull, L.L.

1984-02-01T23:59:59.000Z

442

Management of the ten-megawatt solar-thermal central-receiver pilot-plant project  

DOE Green Energy (OSTI)

This report deals with inspection (between April and May 1979) of the Ten-Megawatt Solar-Thermal Central-Receiver Pilot-Plant Project being constructed in Barstow, California by the Department of Energy (DOE) and a utility consortium. At the time of inspection the project was behind schedule and over its projected cost. The project was subsequently rescheduled for initial operation by June 1982 at an estimated cost of $139.5 million. Recommendations are included relative to: better utilization of DOE resources; modified date for initial operation; and initiation of independent management audits. Comments to the draft report are appended. (PSB)

Not Available

1980-06-20T23:59:59.000Z

443

Estimating solar access of typical residential rooftops: A case study in San Jose, CA  

E-Print Network (OSTI)

the 14 th European Photovoltaic Solar Energy Conference androoftop solar-energy systems, including photovoltaic panelsrooftop solar-energy systems, including photovoltaic panels

Levinson, Ronnen M

2008-01-01T23:59:59.000Z

444

Central Receiver Solar Thermal Power System, Phase 1. CDRL Item 10. Final technical progress report  

DOE Green Energy (OSTI)

Results of analysis and design efforts by McDonnell Douglas Astronautics Company (MDAC), Rocketdyne, Stearns-Roger, Inc., Sheldahl, Inc., and the University of Houston between 1 July 1975 and 30 June 1977 are summarized. This is the Final Technical Progress Report published on the Phase 1 Central Receiver Solar Thermal Power System contract. Historical summaries and final selection of 10-MWe pilot plant and 100-MWe commercial systems are presented, with emphasis on the collector field characteristics, overall system performance, selection of steam/feedwater operating conditions, and rationale for system and subsystem selection. The commercial and pilot plant designs, as well as the subsystem research experiment activities for the collector, receiver, and thermal storage subsystems are presented, including a historical summary, design summary, and a description of the overall SRE test program and major test results for each of the subsystems.

Hallet, Jr., R. W.; Gervais, R. L.

1978-05-01T23:59:59.000Z

445

Mass transport, corrosion, plugging, and their reduction in solar dish/Stirling heat pipe receivers  

DOE Green Energy (OSTI)

Solar dish/Stirling systems using sodium heat pipe receivers are being developed by industry and government laboratories here and abroad. The unique demands of this application lead to heat pipe wicks with very large surface areas and complex three-dimensional flow patterns. These characteristics can enhance the mass transport and concentration of constituents of the wick material, resulting in wick corrosion and plugging. As the test times for heat pipe receivers lengthen, we are beginning to see these effects both indirectly, as they affect performance, and directly in post-test examinations. We are also beginning to develop corrective measures. In this paper, we report on our test experiences, our post-test examinations, and on our initial effort to ameliorate various problems.

Adkins, D.R.; Andraka, C.E.; Bradshaw, R.W.; Goods, S.H.; Moreno, J.B.; Moss, T.A.

1996-07-01T23:59:59.000Z

446

10 MWe Solar Thermal Central Receiver Pilot Plant total capital cost  

DOE Green Energy (OSTI)

A detailed breakdown of the capital cost of the 10 MWe Solar Thermal Central Receiver Pilot Plant located near Barstow, California is presented. The total capital requirements of the pilot plant are given in four cost breakdown structures: (1) project costs (research and development, design, factory, construction, and start-up); (2) plant system costs (land, structures and improvements, collector system, receiver system, thermal transport system, thermal storage system, turbine-generator plant system, electrical plant system, miscellaneous plant equipment, and plant level); (3) elements of work costs (sitework/earthwork, concrete work, metal work, architectural work, process equipment, piping and electrical work); and (4) recurring and non-recurring costs. For all four structures, the total capital cost is the same ($141,200,000); however, the allocation of costs within each structure is different. These cost breakdown structures have been correlated to show the interaction and the assignment of costs for specific areas.

Norris, H.F. Jr.

1985-02-01T23:59:59.000Z

447

Numerical Study of Local/Regional Atmospheric Changes Caused by a Large Solar Central Receiver Power Plant  

Science Conference Proceedings (OSTI)

A two-dimensional, vertical cross section, numerical atmospheric mesoscale model has been applied to study the potential local/regional atmospheric effects of the installation of a 100 MWe solar thermal central receiver power plant at Barstow, ...

Chandrakant M. Bhumralkar; Arthur J. Slemmons; Kenneth C. Nitz

1981-06-01T23:59:59.000Z

448

Line focus solar thermal central receiver research study. Final report, April 30, 1977-March 30, 1979  

DOE Green Energy (OSTI)

The results of a study to examine the line focus central receiver alternative for solar thermal generation of electric power on a commercial scale are presented. The baseline concept consists of the following elements: (1) a solar collector (heliostat) whose geometry is the equivalent of a focused parabolic cylinder. The heliostat reflecting surface is composed of an array of flexible rectangular mirror panels supported along their long edges by a framework which rotates about an axis parallel to the ground plane. The mirror panels in one section (18.3 meters by 3.05 meters (60 feet by 10 feet)) are defocused in unison by a simple mechanism under computer control to achieve the required curvature. Two sections (110 meters/sup 2/(591 feet/sup 2/)) are controlled and driven in elevation by one control/drive unit. (2) A linear cavity receiver, composed of 61-meter (200-foot) sections supported by towers at an elevation of 61 meters (200 feet). Each section receives feedwater and produces turbine-rated steam. The cavity is an open cylinder 1.83 meters (6 feet) in inside diameter, with a 1.22 meter (4 foot) aperture oriented at 45 degrees to the collector field. (3) Heliostat control, consisting of a local controller at each heliostat module which communicates with a master control computer to perform elevation tracking and focal length adjustment. The control logic is open-loop, with sun position computer by the master computer with an algorithm. Image sensors, mounted above and below the receiver aperture, are used to monitor the collector field and provide feedback to the master computer for detection of misaligned heliostats. (WHK)

Di Canio, D.G.; Treytl, W.J.; Jur, F.A.; Watson, C.D.

1979-04-01T23:59:59.000Z

449

Nanocarbon-Based Photovoltaics  

E-Print Network (OSTI)

Carbon materials are excellent candidates for photovoltaic solar cells: they are Earth-abundant, possess high optical absorption, and maintain superior thermal and photostability. Here we report on solar cells with active ...

Bernardi, Marco

450

Organic photovoltaics and concentrators  

E-Print Network (OSTI)

The separation of light harvesting and charge generation offers several advantages in the design of organic photovoltaics and organic solar concentrators for the ultimate end goal of achieving a lower cost solar electric ...

Mapel, Jonathan King

2008-01-01T23:59:59.000Z

451

Photovoltaic Cell Conversion Efficiency  

Energy.gov (U.S. Department of Energy (DOE))

The conversion efficiency of a photovoltaic (PV) cell, or solar cell, is the percentage of the solar energy shining on a PV device that is converted into electrical energy, or electricity....

452

Solar Central Receiver Hybrid Power Systems sodium-cooled receiver concept. Final report. Volume II, Book 1. Conceptual design, Sections 1 through 4  

DOE Green Energy (OSTI)

The overall, long-term objective of the Solar Central Receiver Hybrid Power System program is to identify, characterize, and ultimately demonstrate the viability and cost effectiveness of solar/fossil, steam Rankine cycle, hybrid power systems that: (1) consist of a combined solar central receiver energy source and a nonsolar energy source at a single, common site, (2) may operate in the base, intermediate, and peaking capacity modes, (3) produce the rated output independent of variations in solar insolation, (4) provide a significant savings (50% or more) in fuel consumption, and (5) produce power at the minimum possible cost in mills/kWh. It is essential that these hybrid concepts be technically feasible and economically competitive with other systems in the near to mid-term time period (1985-1990) on a commercial scale. The program objective for Phase I is to identify and conceptually characterize solar/fossil steam Rankine cycle, commercial-scale, power plant systems that are economically viable and technically feasible. This volume presents in detail the market analysis, parametric analysis, and the selection process for the preferred system. (WHK)

None

1980-01-01T23:59:59.000Z

453

Photovoltaic Advanced Research and Development project: Solar radiation research annual report, 1 October 1990--30 September 1991  

DOE Green Energy (OSTI)

This report is a summary of the year 1991 research activities and results under the Solar Radiation Research task of the Photovoltaic (PV) Advanced Research and Development project at the National Renewable Energy Laboratory (NREL). This task directly supports the characterization, testing, and design of PV cells modules, and systems. The development of a scientific and engineering understanding of incident (i.e., available to PV devices) solar irradiance and the appropriate instrumentation systems and measurement methods are the activities and results of this project. Activities described in this report include the completion of the Atmospheric Optical Calibration Systems (AOCS) and the comparison of instrumentation systems that collect site-specific measurements of solar irradiance for the purpose of PV system feasibility studies and/or design.

Hulstrom, R.; Cannon, T.; Stoffel, T.; Riordan, C.

1992-10-01T23:59:59.000Z

454

Total capital cost data base: 10MWe Solar Thermal Central Receiver Pilot Plant  

DOE Green Energy (OSTI)

This report describes the total capital cost data base of the 10 MWe Solar Thermal Central Receiver Pilot Plant. This Solar One cost data base was created using the computer code ''Cost Data Management System (CDMS)''. The cost data base format was developed to be used as a common method of presentation of capital costs for power plants. The basic format is a plant system cost breakdown structure. Major accounts are land; structures and improvements; collector, receiver, thermal transport, thermal storage, and stream generation systems; turbine plant; electrical plant; miscellaneous plant systems and equipment; and plant-level indirect costs. Each major account includes subaccounts to as many as nine level of detail. The data base can be accessed to provide elements-of-work costs at any subaccount level or at the plant level. The elements-of-work include sitework/earthwork; concrete work; metal work; architectural; process equipment; piping; electrical; and miscellaneous work. Each of these elements-of-work can be or are broken into finer detail and costs can be accumulated to identify more specific needs, e.g., pipe insulation or heat exchangers. The cost data base can be accessed and various reports can be generated. These vary from a single page summary to detailed listings of costs and notes. Reported costs can be stated in dollars, dollars per kilowatt or percentage of the total plant cost. Reports or samples of reports for the pilot plant capital cost are included.

Norris, H.F. Jr.

1986-05-01T23:59:59.000Z

455

Heat transfer performance of an external receiver pipe under unilateral concentrated solar radiation  

Science Conference Proceedings (OSTI)

The heat transfer and absorption characteristics of an external receiver pipe under unilateral concentrated solar radiation are theoretically investigated. Since the heat loss ratio of the infrared radiation has maximum at moderate energy flux, the heat absorption efficiency will first increase and then decrease with the incident energy flux. The local absorption efficiency will increase with the flow velocity, while the wall temperature drops quickly. Because of the unilateral concentrated solar radiation and different incident angle, the heat transfer is uneven along the circumference. Near the perpendicularly incident region, the wall temperature and absorption efficiency slowly approaches to the maximum, while the absorption efficiency sharply drops near the parallelly incident region. The calculation results show that the heat transfer parameters calculated from the average incident energy flux have a good agreement with the average values of the circumference under different boundary conditions. For the whole pipe with coating of Pyromark, the absorption efficiency of the main region is above 85%, and only the absorption efficiency near the parallelly incident region is below 80%. In general, the absorption efficiency of the whole pipe increases with flow velocity rising and pipe length decreasing, and it approaches to the maximum at optimal concentrated solar flux. (author)

Jianfeng, Lu; Jing, Ding [School of Engineering, Sun Yat-Sen University, Guangzhou 510006 (China); Jianping, Yang [Key Laboratory of Enhanced Heat Transfer and Energy Conservation of the Ministry of Education, South China University of Technology, Guangzhou 510640 (China)

2010-11-15T23:59:59.000Z

456

10 MWe Solar Thermal Central Receiver Pilot Plant maintenance experience, January 1982-March 1983  

DOE Green Energy (OSTI)

This report presents a description of the maintenance experience at the 10 MWe Solar Thermal Central Receiver Pilot Plant near Barstow, California, during the period January 1982 through March 1983. The plant systems are briefly described, and statistical data on maintenance orders, labor requirements, and maintenance costs are presented. The data presented have been extracted from Southern California Edison historical maintenance records accumulated at the plant. Pilot plant systems requiring the most maintenance activity are identified so that efforts to reduce plant maintenance costs can be properly identified. The information is analyzed for the purpose of developing a data base for general use during the economic assessment, design, and staff planning of future solar central receiver plants. However, data presented here from the Pilot Plant should not be used for direct scaling of larger power production plants. The number and size of equipment items for larger plants will not scale, the designs will vary, and the Pilot Plant includes special testing and evaluation equipment which would not be necessary in plants built for the sole purpose of power production. Data taken at the Pilot Plant during the early plant startup and operational phase shows an annual maintenance cost of approximately one perent of the recurring plant capital cost. Similar costs for recent technology steam electric generating plants are estimated to range from 1.5 to 3%. The Pilot Plant maintenance cost will not appear as favorable if based on energy produced during power production due to the small plant size and equipment intensive nature of the plant. The solar-unique systems of the plant required 45% of the total plant maintenance labor and 39% of the total maintenance cost, both percentages being lower than anticipated.

Smith, J.W.

1985-05-01T23:59:59.000Z

457

Solar energy storage through the homogeneous electrocatalytic reduction of carbon dioxide : photoelectrochemical and photovoltaic approaches  

E-Print Network (OSTI)

Generation from Water Using Solar Energy. Materials-RelatedSemiconductor/Electrolyte Solar Energy Conversion. J. Phys.Conversion of Solar Energy. Philos. Trans. R. Soc. A-Math.

Sathrum, Aaron John

2011-01-01T23:59:59.000Z

458

Valuing the Time-Varying Electricity Production of Solar Photovoltaic Cells  

E-Print Network (OSTI)

1 March 2005 Abstract: Solar PV panels generate electricityhigh. Thus, a valuation of solar PV electricity productionbene?ts to many owners of solar PV in reduced electricity

Borenstein, Severin

2005-01-01T23:59:59.000Z

459

Solar energy storage through the homogeneous electrocatalytic reduction of carbon dioxide : photoelectrochemical and photovoltaic approaches  

E-Print Network (OSTI)

Predicting Efficiency of Solar Powered Hydrogen GenerationGeneration from Water Using Solar Energy. Materials-RelatedSemiconductor/Electrolyte Solar Energy Conversion. J. Phys.

Sathrum, Aaron John

2011-01-01T23:59:59.000Z

460

Tracking the Sun IV: An Historical Summary of the Installed Cost of Photovoltaics in the United States from 1998 to 2010  

E-Print Network (OSTI)

indicative of SREC prices that PV projects would receiveSolar Photovoltaic (PV) System Prices in the United States.average wholesale PV module prices in each year. Over the

Darghouth, Naim

2012-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "receiver solar photovoltaic" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

The impact of retail rate structures on the economics of commercial photovoltaic systems in California  

E-Print Network (OSTI)

An Assessment of Photovoltaic Energy Availability DuringPhotovoltaic Generation in South Australia. ” Energy Policy,Solar Photovoltaic Cells. ” Center for the Study of Energy

Mills, Andrew D.

2009-01-01T23:59:59.000Z

462

The Impact of Retail Rate Structures on the Economics of Commercial Photovoltaic Systems in California  

E-Print Network (OSTI)

An Assessment of Photovoltaic Energy Availability DuringPhotovoltaic Generation in South Australia. ” Energy Policy,Solar Photovoltaic Cells. ” Center for the Study of Energy

Wiser, Ryan; Mills, Andrew; Barbose, Galen; Golove, William

2007-01-01T23:59:59.000Z

463

The Impact of Retail Rate Structures on the Economics of Commercial Photovoltaic Systems in California  

E-Print Network (OSTI)

An Assessment of Photovoltaic Energy Availability DuringPhotovoltaic Generation in South Australia. ” Energy Policy,Solar Photovoltaic Cells. ” Center for the Study of Energy

Mills, Andrew

2009-01-01T23:59:59.000Z

464

An Analysis of the Effects of Photovoltaic Energy Systems on Residential Selling Prices in California.  

E-Print Network (OSTI)

Effects of Residential Photovoltaic Energy Systems on Homewith existing photovoltaic (PV) energy systems have sold ingrid-connected solar photovoltaic (PV) energy systems were

Cappers, Peter

2012-01-01T23:59:59.000Z

465

Solar energy program. Annual report, 1978  

DOE Green Energy (OSTI)

this annual report describes the work done at Argonne National Laboratory on the Solar Energy Program during FY 1978 (July 1, 1977 to June 30, 1978). Areas included in this report are solar energy collection, heating and cooling, thermal energy storage, ocean thermal energy conversion, photovoltaics, satellite power systems, bioconversion, central receiver solar thermal power, and wind energy conversion.

None

1979-02-01T23:59:59.000Z

466

High-efficiency one-sun photovoltaic module demonstration using solar-grade CZ silicon. Final report  

DOE Green Energy (OSTI)

This work was performed jointly by Sandia National Laboratories (Albuquerque, NM) and Siemens Solar Industries (Camarillo, CA) under a Cooperative Research and Development Agreement (CRADA 1248). The work covers the period May 1994 to March 1996. The purpose of the work was to explore the performance potential of commercial, photovoltaic-grade Czochralski (Cz) silicon, and to demonstrate this potential through fabrication of high-efficiency cells and a module. Fabrication of the module was omitted in order to pursue further development of advanced device structures. The work included investigation of response of the material to various fabrication processes, development of advanced cell structures using the commercial material, and investigation of the stability of Cz silicon solar cells. Some important achievements of this work include the following: post-diffusion oxidations were found to be a possible source of material contamination; bulk lifetimes around 75 pts were achieved; efficiencies of 17.6% and 15.7% were achieved for large-area cells using advanced cell structures (back-surface fields and emitter wrap-through); and preliminary investigations into photodegradation in Cz silicon solar cells found that oxygen thermal donors might be involved. Efficiencies around 20% should be possible with commercial, photovoltaic-grade silicon using properly optimized processes and device structures.

Gee, J.M.

1996-10-01T23:59:59.000Z

467

Solar Photovoltaics Wedge: Pathways for Growth and Potential Carbon Mitigation in the U.S.  

Science Conference Proceedings (OSTI)

The challenge of stabilizing global carbon emissions over the next 50 years has been framed in the context of finding seven 1.0 Gton C/year carbon reduction wedges. Solar photovoltaics (PV) could provide at least one carbon wedge, but will require significant growth in PV manufacturing capacity. The actual amount of installed PV capacity required to reach wedge-level carbon reductions will vary greatly depending on the mix of avoided fuels and the additional emissions from manufacturing PV capacity. In this work, we find that the US could reduce its carbon emissions by 0.25 Gton C/year, equal to the fraction of a global carbon wedge proportional to its current domestic electricity use, by installing 792-811 GW of PV capacity. We evaluate a series of PV growth scenarios and find that wedge-level reductions could be met by increasing PV manufacturing capacity and annual installations by 0.95 GW/year/year each year from 2009 to 2050 or by increasing up to 4 GW/year/year for a period of 4-17 years for early and late growth scenarios. This challenge of increasing PV manufacturing capacity and market demand is significant but not out of line with the recent rapid growth in both the global and US PV industry. We find that the rapid growth in PV manufacturing capacity leads to a short term increase in carbon emissions from the US electric sector. However, this increase is small, contributing less than an additional 0.3% to electric sector emissions for less than 4.5 years, alleviating recent concern regarding carbon emissions from rapid PV growth scenarios.

Drury, E.; Denholm, P.; Margolis, R. M.

2009-01-01T23:59:59.000Z

468

Energy Basics: Solar Energy Technologies  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Energy Basics Renewable Energy Printable Version Share this resource Biomass Geothermal Hydrogen Hydropower Ocean Solar Photovoltaics Concentrating Solar Power Solar...

469

Energy Basics: Solar Energy Resources  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Energy Basics Renewable Energy Printable Version Share this resource Biomass Geothermal Hydrogen Hydropower Ocean Solar Photovoltaics Concentrating Solar Power Solar...

470

Sylcom Solar | Open Energy Information  

Open Energy Info (EERE)

research, distribution, construction, operation, maintenance of products and of Photovoltaic Solar, Thermal Solar and Solar Thermoelectric installations. References Sylcom...

471

Energy Basics: Polycrystalline Thin Film Used in Photovoltaics  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Energy Basics Renewable Energy Printable Version Share this resource Biomass Geothermal Hydrogen Hydropower Ocean Solar Photovoltaics Cells Systems Concentrating Solar...

472

Energy Basics: Flat-Plate Photovoltaic Balance of System  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Energy Basics Renewable Energy Printable Version Share this resource Biomass Geothermal Hydrogen Hydropower Ocean Solar Photovoltaics Cells Systems Concentrating Solar...

473

Energy Basics: Photovoltaic Electrical Contacts and Cell Coatings  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Energy Basics Renewable Energy Printable Version Share this resource Biomass Geothermal Hydrogen Hydropower Ocean Solar Photovoltaics Cells Systems Concentrating Solar...

474

Energy Basics: Single-Crystalline Thin Film Used in Photovoltaics  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Energy Basics Renewable Energy Printable Version Share this resource Biomass Geothermal Hydrogen Hydropower Ocean Solar Photovoltaics Cells Systems Concentrating Solar...

475

Energy Basics: Types of Silicon Used in Photovoltaics  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Energy Basics Renewable Energy Printable Version Share this resource Biomass Geothermal Hydrogen Hydropower Ocean Solar Photovoltaics Cells Systems Concentrating Solar...

476

Letting The Sun Shine On Solar Costs: An Empirical Investigation Of Photovoltaic Cost Trends In California  

E-Print Network (OSTI)

LETTING THE SUN SHINE ON SOLAR COSTS: AN EMPIRICALLetting the Sun Shine on Solar Costs: An Empirical

Wiser, Ryan; Bolinger, Mark; Cappers, Peter; Margolis, Robert

2006-01-01T23:59:59.000Z

477

Terrestrial Solar Spectral Modeling Tools and Applications for Photovoltaic Devices: Preprint  

SciTech Connect

This conference paper describes the variations in terrestrial spectral irradiance on photovoltaic devices can be an important consideration in photovoltaic device design and performance. This paper describes three available atmospheric transmission models, MODTRAN, SMARTS2, and SPCTRAL2. We describe the basics of their operation and performance, and applications in the photovoltaic community. Examples of model input and output data and comparisons between the model results for each under similar conditions are presented. The SMARTS2 model is shown to be much easier to use, as accurate as the complex MODTRAN model, and more accurate than the historical NREL SPCTRAL2 model.

Myers, D. R.; Emery, K. E.; Gueymard, C.

2002-05-01T23:59:59.000Z

478

Photovoltaics | Open Energy Information  

Open Energy Info (EERE)

Photovoltaics Photovoltaics (Redirected from Solar Photovoltaics) Jump to: navigation, search (The following text is derived from NREL's description of photovoltaic technology.)[1] Photovoltaic Panels Solar cells, also called photovoltaic (PV) cells by scientists, convert sunlight directly into electricity. PV gets its name from the process of converting light (photons) to electricity (voltage), which is called the PV effect. The PV effect was discovered in 1954, when scientists at Bell Telephone discovered that silicon (an element found in sand) created an electric charge when exposed to sunlight. Soon solar cells were being used to power space satellites and smaller items like calculators and watches. Today, thousands of people power their homes and businesses with individual

479

Nanowire-based All Oxide Solar Cells  

E-Print Network (OSTI)

photovoltaic performance is widely applicable to any nanowire solar cellfilm solar cells. The principal photovoltaic (PV) materialphotovoltaic performance is widely applicable to any nanowire solar cell

Yang, Peidong

2009-01-01T23:59:59.000Z

480

A uniform economic valuation methodology for solar photovoltaic applications competing in a utility environment  

E-Print Network (OSTI)

The question of how the economic benefits of weather-dependent electric generation technologies should be measured is addressed, with specific reference to dispersed, user-owned photovoltaic systems. The approach to ...

Carpenter, Paul R.

1978-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "receiver solar photovoltaic" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


481

An economic analysis of grid-connected residential solar photovoltaic power systems  

E-Print Network (OSTI)

The question of the utility grid-connected residential market for photovoltaics is examined from a user-ownership perspective. The price is calculated at which the user would be economically indifferent between

Carpenter, Paul R.

482

Solar capabilities : promoting, technological learning in South Africa's photovoltaic supply industry  

E-Print Network (OSTI)

I explore the mechanisms through which technological capabilities have been built in the market for photovoltaic (PV) module and balance of system (BOS) manufacture in South Africa. Drawing on the literature on technology ...

Wright, Janelle N., 1978-

2003-01-01T23:59:59.000Z

483

An analysis of the photovoltaic value chain for reviewing solar energy policy in Massachusetts  

E-Print Network (OSTI)

We explore the photovoltaic value chain for 1st generation crystalline silicon, 2nd generation thin film and 3rd generation organic/ dye-sensitized PV in an effort to evaluate two levels of policy options intended to create ...

Dean, Ryan, S. B. (Ryan G.) Massachusetts Institute of Technology

2008-01-01T23:59:59.000Z

484

Transparent, near-infrared organic photovoltaic solar cells for window and energy-scavenging applications  

E-Print Network (OSTI)

We fabricate near-infrared absorbing organic photovoltaics that are highly transparent to visible light. By optimizing near-infrared optical-interference, we demonstrate power efficiencies of 1.3±0.1% with simultaneous ...

Lunt, Richard R.

485

New Hampshire Electric Co-Op- Residential Solar Photovoltaic Incentive Program  

Energy.gov (U.S. Department of Energy (DOE))

New Hampshire Electric Co-op (NHEC) is offering rebates for residential, grid-tied photovoltaic (PV) systems up to one megawatt (MW) in capacity. The rebate is equal to 20% of the installed cost of...

486

Solar-receiver heat-flux capability and structural integrity. Final report  

DOE Green Energy (OSTI)

An experimental program was conducted to determine the operating characteristics of full length (65 feet) single and multi-tube once-through steam generator test sections subjected to radiant heat flux levels commensurate with commercial solar tower receiver application. Absorbed heat flux levels ranging from 0.15 to 0.71 Btu/in./sup 2/-sec (0.25 to 1.16 MW/m/sup 2/) were achieved in a horizontal facility utilizing graphite radiant heater arrays. Steam exit temperatures ranged from 625 F (two-phase) to 1380 F at pressures of 1000 to 2300 psia. Wall temperature profiles and fluid pressure losses were obtained and compared with an existing computer model.

Tobin, R.D.

1976-05-01T23:59:59.000Z

487

Atmospheric transmission model for a solar beam propagating between a heliostat and a receiver  

Science Conference Proceedings (OSTI)

Formulae are presented that provide estimates of the transmittance for a solar beam propagating between a heliostat and a central receiver. These formulae are wavelength independent, functional fits to the tabulated data of Vittitoe and Biggs, which in turn are from numerical integrations of spectral transmittance data calculated with the aid of the computer code LOWTRAN 3. The formulae allow for interpolation and extrapolation, and they have a form characteristic of atmospheric transmission models. The transmittance model contains five explicit physical variables (the site elevation H, the atmospheric water vapor density rho, the scattering coefficient ..beta.., the tower height h, and the slant range R) and three implicit variables (the season of the year, the climatic region, and the site elevation H) because rho and ..beta.. are dependent on these three variables.

Pitman, C.L.; Vant-Hull, L.L.

1982-01-01T23:59:59.000Z

488

Amorphous Silicon-Carbon Nanostructure Photovoltaic Devices  

E-Print Network (OSTI)

way to do better. A photovoltaic cell, or solar cell, is aFor this thesis, I made photovoltaic cells using a Schottkyphotovoltaic processes oc- cur in a Schottky barrier solar cell. . . . . . . . . . . . . . . . . .

Schriver, Maria Christine

2012-01-01T23:59:59.000Z

489

Photovoltaic cell efficiency at elevated temperatures  

E-Print Network (OSTI)

In order to determine what type of photovoltaic solar cell could best be used in a thermoelectric photovoltaic hybrid power generator, we tested the change in efficiency due to higher temperatures of three types of solar ...

Ray, Katherine Leung

2010-01-01T23:59:59.000Z

490

10-MWe solar-thermal central-receiver pilot plant solar facilities design integration: plant maintenance/training manual (RADL Item 2-37). Section 2. Stationary apparatus  

Science Conference Proceedings (OSTI)

The stationary apparatus for the Barstow Solar Pilot Plant are listed, including: heat exchangers, receiver panels, tanks, vessels, and receivers, deaerator, condenser to the turbine-generator, desuperheaters, filters and strainers, demineralizers, heaters, dryers, separators, ullage gas supply and conditioning, auxiliary boilers, sewage treatment plant, expansion joints, and orifice plates. Specifications, operation and maintenance instructions are given for the heat exchangers, receiver panels, filters and strainers, separators, and especially for the ullage gas supply and conditioning. (LEW)

Not Available

1981-07-01T23:59:59.000Z

491

The design of future central receiver power plants based on lessons learned from the Solar One Pilot Plant  

SciTech Connect

The 10-MW{sub e} Solar One Pilot Plant was the world's largest solar central receiver power plant. During its power production years it delivered over 37,000 MWhrs (net) to the utility grid. In this type of electric power generating plant, large sun-tracking mirrors called heliostats reflect and concentrate sunlight onto a receiver mounted on top a of a tower. The receiver transforms the solar energy into thermal energy that heats water, turning it into superheated steam that drives a turbine to generate electricity. The Solar One Pilot Plant successfully demonstrated the feasibility of generating electricity with a solar central receiver power plant. During the initial 2 years the plant was tested and 4 years the plant was operated as a power plant, a great deal of data was collected relating to the efficiency and reliability of the plant's various systems. This paper summarizes these statistics and compares them to goals developed by the US Department of Energy. Based on this comparison, improvements in the design and operation of future central receiver plants are recommended. Research at Sandia National Laboratories and the US utility industry suggests that the next generation of central receiver power plants will use a molten salt heat transfer fluid rather than water/steam. Sandia has recently completed the development of the hardware needed in a molten salt power plant. Use of this new technology is expected to solve many of the performance problems encountered at Solar One. Projections for the energy costs from these future central receiver plants are also presented. For reference, these projections are compared to the current energy costs from the SEGS parabolic trough plants now operating in Southern California.

Kolb, G.J.

1991-01-01T23:59:59.000Z