Sample records for realty energy design

  1. CERTIFIED REALTY SPECIALIST | Department of Energy

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion |Energy UsageAUDITVehiclesTankless orA BRIEFAprilBudgetAbout »OperationsCERTIFICATE

  2. Lands and Realty | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia: Energy Resources Jump to:46 - 429Lacey, Washington:Lakeville, MN) Jump to:LamarJump to:LancoLandowners and

  3. Developers Diversified Realty | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 NoPublic Utilities Address:011-DNA Jump to:52c8ff988c1Dering Harbor, New York: EnergyEnergyguaGet involved as

  4. Building America Whole-House Solutions for New Homes: CDC Realty...

    Energy Savers [EERE]

    CDC Realty Inc., Tucson, Arizona Building America Whole-House Solutions for New Homes: CDC Realty Inc., Tucson, Arizona Case study of CDC Realty Inc. who worked with Building...

  5. CERTIFIED REALTY SPECIALIST

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion |Energyon ArmedWaste andAccess toSustainableClimateSealingColdEnergyClimateC CREALTY

  6. Webinar: Make Your Building Sing!: Building-Retuning to Reduce Energy Waste

    Broader source: Energy.gov [DOE]

    Panelists: Eileen Gohr and Steve Harrison, Parameter Realty Partners; Dennis Bohlayer, Towson University; Benjamin Goldstein, U.S. Department of Energy; Lisa Shulock, Building Owners and Managers...

  7. Energy design for architects

    SciTech Connect (OSTI)

    Shaw, A. (ed.)

    1989-01-01T23:59:59.000Z

    This book contains techniques for energy efficiency in architectural design. Many aspects are covered including: cost; comfort and health; energy use; the design process; and analytical techniques. 202 figs. (JF)

  8. Advanced Energy Design Guides | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Advanced Energy Design Guides Advanced Energy Design Guides EERE Building Technologies Program - This fact sheet discusses the Advanced Energy Design Guides (AEDGs) and how they...

  9. Alternative energy design toolkit

    E-Print Network [OSTI]

    Sukkasi, Sittha

    2004-01-01T23:59:59.000Z

    This thesis concerns the concepts, structure, and applications of the Alternative Energy Design Toolkit. The toolkit is aimed to provide a widely accessible, easy to use, flexible, yet powerful modeling environment for ...

  10. Solar Energy Control System Design.

    E-Print Network [OSTI]

    Yang, Sun

    2013-01-01T23:59:59.000Z

    ?? This thesis covers design, simulation and implementation of a solar energy control system for an on grid energy storage device. The design covers several… (more)

  11. Energy Efficient Nanoelectronic System Design

    E-Print Network [OSTI]

    Mohanty, Saraju P.

    ://www.newairplane.com One 787 Battery: 12 Cells / 32 V DC 05/21/2013 6 #12;Why Energy Efficient Design ? Environmental energy-efficient designs. How to perform high-yield, energy efficient designs. How to perform effortless, high-yield, energy efficient designs. Gate Gate Gate Source D rain Graphene Layer 05/21/2013 14

  12. State Energy Efficiency Design Program

    Broader source: Energy.gov [DOE]

    Oregon's State Energy Efficiency Design Program (SEED) was originally established in 1991. This program, codified in state law, directs state agencies to work with the Oregon Department of Energy...

  13. Energy-conserving site design

    SciTech Connect (OSTI)

    McPherson, E.G. (ed.)

    1984-01-01T23:59:59.000Z

    Information useful to landscape architects, architects, planners, engineers, students, and homeowners is presented. The concepts and examples needed to create more energy-efficient landscapes are described. The book is organized into five sections, including: an overview and history of energy-efficient design research; detailed information and new strategies on site analysis and planning; energy-efficient landscape design of clustered and single residences; alternative energy-conserving scenarios for the future; and appendices. The appendices contain such technical information as: lists of energy-conserving design options, formulas to calculate solar radiation and soil temperatures, tools for climatic analysis, and techniques for precision planting for solar control and access.

  14. Center for Energy Efficient Design

    High Performance Buildings Database

    Rocky Mount, VA As the first Passivhaus public school in North America, the Center for Energy Efficient Design (CEED) in Rocky Mount, Virginia, is a national model for green school construction. An extension of The Leonard A.

  15. Advanced Energy Design Guides

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-Up fromDepartment of EnergyAdministrative2 DOE Hydrogen and Fueland Outreachofof way

  16. Low-Energy Parking Structure Design (Brochure)

    SciTech Connect (OSTI)

    Not Available

    2013-01-01T23:59:59.000Z

    This guide provides design teams with best practices for parking structure energy efficiency in the form of goals for each design aspect that affects energy use.

  17. Design Competitions | Department of Energy

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of EnergyEnergy CooperationRequirements Matrix U.S. Department of|AL 2010-07ARMY USScarcityDesign

  18. Designing a Benchmarking Plan | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Indian tribes, and overseas U.S. territories can design a plan to benchmark the energy consumption in public buildings. Designing a Benchmark Plan More Documents & Publications...

  19. Design Specification | Department of Energy

    Energy Savers [EERE]

    Design Specification Design Specification PARS II Extraction Utility Design Spec v8020130510.pdf More Documents & Publications Design Specifications for the PARS II Extraction...

  20. System Design | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    System Design System Design This template is used to define the system design System Design More Documents & Publications Transition Plan Training Plan Feasibility Study Report...

  1. Integrated Building Energy Systems Design Considering Storage Technologies

    E-Print Network [OSTI]

    Stadler, Michael

    2009-01-01T23:59:59.000Z

    L ABORATORY Integrated Building Energy Systems Design7301 Integrated building energy systems design considering

  2. Energy Design Guides for Army Barracks: Preprint

    SciTech Connect (OSTI)

    Deru, M.; Zhivov, A.; Herron, D.

    2008-08-01T23:59:59.000Z

    The U.S. Army Corps of Engineers and NREL are developing target energy budgets and design guides to achieve 30% energy savings. This paper focuses the design guide for one type of barracks called unaccompanied enlisted personal housing.

  3. Energy Security: Microgrid Planning and Design (Presentation)

    SciTech Connect (OSTI)

    Giraldez, J.

    2012-05-01T23:59:59.000Z

    Energy Security: Microgrid Planning and Design presentation to be given at the 2012 WREF in Denver, CO.

  4. Integrating energy expertise into building design

    SciTech Connect (OSTI)

    Brambley, M.R.; Stratton, R.C. (Pacific Northwest Lab., Richland, WA (USA)); Bailey, M.L. (USDOE Assistant Secretary for Conservation and Renewable Energy, Washington, DC (USA). Office of the Deputy Assistant Secretary for Building Technologies)

    1990-08-01T23:59:59.000Z

    Most commercial buildings designed to today will use more energy to operate, and cost more to design and construct than necessary. Significant energy savings cold be achieved with little or not increase in first cost if energy-efficient design technologies were used. Research into integration of building systems indicates that by considering energy performance early in the design process, energy savings between 30% and 50% of current energy consumption rates are technically and economically feasible. However, most building design teams do not adequately consider the energy impacts of design decisions to achieve these savings. The US Department of Energy has initiated a project, led by Pacific Northwest Laboratory, to develop advanced computer-based technologies that will help designers take advantage of these large potential energy savings. The objective of this work is to develop automated, intelligent, energy design assistance that can be integrated into computer aided design systems of the future. This paper examines the need for this technology by identifying the impediments to energy-efficient design, identifies essential and desirable features of such systems, presents the concept under development in this effort, illustrates how energy expertise might be incorporated into design, and discusses the importance of an integrated approach. 8 refs., 1 fig.

  5. Energy Research and Development Division FINAL PROJECT REPORT

    E-Print Network [OSTI]

    Smith Architectural Energy Corporation 2540 Frontier Avenue, Suite 201 Boulder, CO 80301-2400 303 & Electric James Bryan Arden Realty Scott Duncan Retrofit Originality, Inc. (ROI) Carlos Haiad Southern Marina Mechanical Ron Kent Southern California Gas Company Mark Levi General Services Administration

  6. Energy bounds in designer gravity

    SciTech Connect (OSTI)

    Amsel, Aaron J.; Marolf, Donald [Physics Department, UCSB, Santa Barbara, California 93106 (United States)

    2006-09-15T23:59:59.000Z

    We consider asymptotically anti-de Sitter gravity coupled to tachyonic scalar fields with mass at or slightly above the Breitenlohner-Freedman bound in d{>=}4 spacetime dimensions. The boundary conditions in these ''designer gravity'' theories are defined in terms of an arbitrary function W. We give a general argument that the Hamiltonian generators of asymptotic symmetries for such systems will be finite, and proceed to construct these generators using the covariant phase space method. The direct calculation confirms that the generators are finite and shows that they take the form of the pure gravity result plus additional contributions from the scalar fields. By comparing the generators to the spinor charge, we derive a lower bound on the gravitational energy when W has a global minimum and the Breitenlohner-Freedman bound is not saturated.

  7. CALIFORNIA ENERGY Small HVAC System Design Guide

    E-Print Network [OSTI]

    CALIFORNIA ENERGY COMMISSION Small HVAC System Design Guide DESIGNGUIDELINES October 2003 500;#12;Small HVAC System Design Guide Acknowledgements i Acknowledgements The products and outcomes presented; Darren Goody, PECI, Design Guide review. #12;Small HVAC System Design Guide Preface ii Preface The Small

  8. Advanced energy design and operation technologies

    SciTech Connect (OSTI)

    Brambley, M.R.; Crawley, D.B.

    1988-09-01T23:59:59.000Z

    Current practice in design of commercial buildings does not adequately consider the relationships between design decisions and energy performance. Estimates indicate that if energy criteria were integral to the design process, more than 15% of the energy used in new buildings could be conserved. This could be done using readily available energy-efficient design knowledge, without any increase in first costs. Furthermore, building design necessarily involves assumptions concerning use and operation of the building once it is built. Currently, operations practices intended by the designer are not adequately transferred during commissioning to building operators for use as guides during operation. Advanced technologies for overcoming these problems are described in this paper. The advanced energy design and operations technologies will consist of an intelligent automated design advisor that utilizes artificial intelligence and other advanced computer technologies to provide assistance to and encourage interaction among all participants in the design process. Assistance will be provided at all points in the building design process, especially in the early phases of design (e.g., during building programming) where decisions can have particularly significant impacts on energy consumption. The technology used for the design advisor will facilitate transfer of critical operation guidance to building operators and, coupled with monitoring technology, provide feedback on performance to the design process. 4 refs., 1 fig.

  9. HVAC Energy Recovery Design and Economic Evaluation

    E-Print Network [OSTI]

    Kinnier, R. J.

    1979-01-01T23:59:59.000Z

    ENRECO has prepared this paper on HVAC energy recovery to provide the engineer with an overview of the design engineering as well as the economic analysis considerations necessary to evaluate the potential benefits of energy recovery....

  10. Energy Design Reviews: The End of the Energy Audit?

    E-Print Network [OSTI]

    Corthat, E. T.; Griesbach, R.

    2013-01-01T23:59:59.000Z

    It is much more cost effective to design an industrial plant upfront for optimum energy efficiency rather than retrofit an existing plant, yet typically design engineers and project managers continue to focus on capital costs, not lifecycle costs...

  11. 50% Advanced Energy Design Guides: Preprint

    SciTech Connect (OSTI)

    Bonnema, E.; Leach, M.; Pless, S.; Liu, B.; Wang, W.; Thornton, B.; Williams, J.

    2012-07-01T23:59:59.000Z

    This paper presents the process, methodology, and assumptions for the development of the 50% Energy Savings Advanced Energy Design Guides (AEDGs), a design guidance document that provides specific recommendations for achieving 50% energy savings above the requirements of ANSI/ASHRAE/IESNA Standard 90.1-2004 in four building types: (1) Small to medium office buildings, (2) K-12 school buildings, (3) Medium to big box retail buildings, (4) Large hospital buildings.

  12. Lighting Design | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of EnergyEnergyENERGYWomen OwnedofDepartment ofJared Temanson -of Energy 1procedures,Light Water

  13. Exceeding Energy Consumption Design Expectations

    E-Print Network [OSTI]

    Castleton, H. F.; Beck, S. B. M.; Hathwat, E. A.; Murphy, E.

    2013-01-01T23:59:59.000Z

    ) the building consumed 208.7 kWh m-2 yr-1, 83% of the expected energy consumption (250 kWh m-2 yr-1). This dropped further to 176.1 kWh m-2 yr-1 in 2012 (70% below expected). Factors affecting building energy consumption have been discussed and appraised...

  14. Designing Energy-Efficient Fetch Engines

    E-Print Network [OSTI]

    Co, Michele

    Designing Energy-Efficient Fetch Engines Michele Co Department of Computer Science University · Results · Summary #12;3 Introduction · Energy efficiency ­ Balance power and performance (runtime) · Fetch & Ranganathan] #12;7 Why Study Fetch Engine Energy Efficiency? · High fetch bandwidth mechanisms ­ Rotenberg, et

  15. Energy Efficient Industrial Building Design

    E-Print Network [OSTI]

    Holness, G. V. R.

    1983-01-01T23:59:59.000Z

    " or precooled air concept of ventilation, with a high temperature hot-water/chilled-water changeover piping system. Extensive energy recovery systems would be provided for production equipment and oil mist control would be by local captive systems, rather...

  16. Establishing Design Requirements for Energy

    Broader source: Energy.gov [DOE]

    Programming defines details about the project, including square footage, types of building space, and use. The team should make decisions to define the energy needs of the building. Beyond...

  17. Energy manager design for microgrids

    SciTech Connect (OSTI)

    Firestone, Ryan; Marnay, Chris

    2005-01-01T23:59:59.000Z

    On-site energy production, known as distributed energy resources (DER), offers consumers many benefits, such as bill savings and predictability, improved system efficiency, improved reliability, control over power quality, and in many cases, greener electricity. Additionally, DER systems can benefit electric utilities by reducing congestion on the grid, reducing the need for new generation and transmission capacity, and offering ancillary services such as voltage support and emergency demand response. Local aggregations of distributed energy resources (DER) that may include active control of on-site end-use energy devices can be called microgrids. Microgrids require control to ensure safe operation and to make dispatch decisions that achieve system objectives such as cost minimization, reliability, efficiency and emissions requirements, while abiding by system constraints and regulatory rules. This control is performed by an energy manager (EM). Preferably, an EM will achieve operation reasonably close to the attainable optimum, it will do this by means robust to deviations from expected conditions, and it will not itself incur insupportable capital or operation and maintenance costs. Also, microgrids can include supervision over end-uses, such as curtailing or rescheduling certain loads. By viewing a unified microgrid as a system of supply and demand, rather than simply a system of on-site generation devices, the benefits of integrated supply and demand control can be exploited, such as economic savings and improved system energy efficiency.

  18. Precision Designs | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia: Energy ResourcesLoadingPenobscot County, Maine:Plug Power IncPowder RiverPratt, Kansas:Preble County,Precision

  19. The Next Generation Energy Management System Design

    E-Print Network [OSTI]

    Paul Myrda, EPRI Naim Logic SRP George Stefopoulos, NYPA Michael Swider, New York ISO. i #12;iiThe Next Generation Energy Management System Design Final Project Report Power Systems Engineering Research Center Empowering Minds to Engineer the Future Electric Energy System #12;#12;The Next Generation

  20. Energy Signatures: a proposed new design tool

    SciTech Connect (OSTI)

    Balcomb, J.D.

    1986-04-01T23:59:59.000Z

    Energy Signatures is a proposed new technique for aiding a designer in selecting and sizing passive solar elements on a building. Hourly heat flux profiles for each candidate design element are determined. These profiles are then matched to the hourly energy requirement of the space accounting for weather conditions, internal heat profiles of the space, and the mass characteristics of the building. Simulation analysis techniques are used to determine the Energy Signatures, the load profiles, and check the final result. Least-squares techniques are used to determine the optimum mix of strategies. Examples are given to illustrate development of the method up to the present. Future directions and possibilities are outlined.

  1. Designing Silicon Nanostructures for High Energy Lithium Ion...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Designing Silicon Nanostructures for High Energy Lithium Ion Battery Anodes Designing Silicon Nanostructures for High Energy Lithium Ion Battery Anodes 2012 DOE Hydrogen and Fuel...

  2. How to Design and Market Energy Efficiency Programs to Specific...

    Broader source: Energy.gov (indexed) [DOE]

    How to Design and Market Energy Efficiency Programs to Specific Neighborhoods How to Design and Market Energy Efficiency Programs to Specific Neighborhoods This presentation, given...

  3. DOE Defends Decision to Revoke Energy Star Designation for Certain...

    Broader source: Energy.gov (indexed) [DOE]

    Decision to Revoke Energy Star Designation for Certain LG Refrigerators DOE Defends Decision to Revoke Energy Star Designation for Certain LG Refrigerators December 23, 2009 -...

  4. Application of Target Value Design to Energy Efficiency Investments

    E-Print Network [OSTI]

    Lee, Hyun Woo

    2012-01-01T23:59:59.000Z

    of Integrated Design for Sustainable Building, John Wiley &low- energy, sustainable buildings by considering all designlow-energy, sustainable buildings by considering all design

  5. QA in Design Guidance | Department of Energy

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of Energy Power Systems Engineering Research and DevelopmentDepartmentin Design Guidance QA in Design

  6. Low-energy neutrino factory design

    SciTech Connect (OSTI)

    Ankenbrandt, C.; /Fermilab /MUONS Inc., Batavia; Bogacz, S.A.; /Jefferson Lab; Bross, A.; Geer, S.; Johnstone, C.; Neuffer, D.; Popovic, M.; /Fermilab

    2009-07-01T23:59:59.000Z

    The design of a low-energy (4 GeV) neutrino factory (NF) is described, along with its expected performance. The neutrino factory uses a high-energy proton beam to produce charged pions. The {pi}{sup {+-}} decay to produce muons ({mu}{sup {+-}}), which are collected, accelerated, and stored in a ring with long straight sections. Muons decaying in the straight sections produce neutrino beams. The scheme is based on previous designs for higher energy neutrino factories, but has an improved bunching and phase rotation system, and new acceleration, storage ring, and detector schemes tailored to the needs of the lower energy facility. Our simulations suggest that the NF scheme we describe can produce neutrino beams generated by {approx} 1.4 x 10{sup 21} {mu}{sup +} per year decaying in a long straight section of the storage ring, and a similar number of {mu}{sup -} decays.

  7. International Energy Agency design tool evaluation procedure

    SciTech Connect (OSTI)

    Judkoff, R.; Barakat, S.; Bloomfield, D.; Poel, B.; Stricker, R.; van Haaster, P.; Wortman, D.

    1988-07-01T23:59:59.000Z

    Detailed state-of-the-art building energy simulation models from nations participating in International Energy Agency (IEA) Task VIII are used to develop a quantitative procedure to evaluate more simplified design tools. Simulations are performed with the detailed models on a series of cases that progress systematically from the extremely simple to the relatively realistic. Output values for the cases, such as annual loads, annual maximum and minimum temperatures, and peak loads, are used to set target ranges with which the results from more simplified design tools can be compared. The more realistic cases, although geometrically simple, test the ability of the design tools to model such combined effects as thermal mass, direct gain windows, overhangs, internally generated heat, and dead-band and set-back thermostat control strategies. 5 refs., 9 figs., 4 tabs.

  8. Energy Signatures: A passive solar design tool

    SciTech Connect (OSTI)

    Balcomb, J.D.; Lekov, A.B.

    1987-12-01T23:59:59.000Z

    Energy signatures is a new technique for aiding a designer in selecting and sizing passive solar elements in a building. Hourly heat flux profiles for each candidate design element are determined. These profiles are then matched to the hourly energy requirement of the space accounting for weather conditions, internal heat profiles of the space, and the mass characteristics of the building. Simulation analysis techniques are used to determine the energy signatures and the building load profile, and to check the final result. Least-squares techniques are used to determine the optimum mix of strategies. Examples are given to illustrate development of the method up to the present time. In addition, future directions and possibilities are outlined. 5 refs., 28 figs., 3 tabs.

  9. Beyond Design Basis Events | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:Year in Review: Top Five EEREDepartment ofEnergyEnergyBetter PlantsBeyond Design Basis

  10. Preliminary Safety Design RM | Department of Energy

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of Energy Power Systems Engineering Research and Development (PSE R&D) PowerSafety Design RM Preliminary

  11. Green Design Systems | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia: Energy Resources Jump to: navigation,Ohio: EnergyGrasslands RenewableGreatwood, Texas:Open45. It isDesign

  12. Design and Manufacture of Energy Absorbing Materials

    SciTech Connect (OSTI)

    Duoss, Eric

    2014-05-28T23:59:59.000Z

    Learn about an ordered cellular material that has been designed and manufactured using direct ink writing (DIW), a 3-D printing technology being developed at LLNL. The new material is a patterned cellular material that can absorb mechanical energy-a cushion-while also providing protection against sheering. This material is expected to find utility in application spaces that currently use unordered foams, such as sporting and consumer goods as well as defense and aerospace.

  13. Guidelines in Wave Energy Conversion System Design

    E-Print Network [OSTI]

    Guiberteau, K. L.; Liu, Y.; Lee, J.; Kozman, T.

    2014-01-01T23:59:59.000Z

    absorber systems are used in arrays, where multiple devices are attached in series or parallel to capture more energy. Point absorbers can be used offshore in various depths of water. Submerged Pressure Differentials SPDs are completely submerged... that they can capture the most effective bending motion. Most attenuators are used near shore, but there are some designs that could be used further offshore. Attenuators need to be positioned parallel with the wave direction of travel in order to capture...

  14. Design and Manufacture of Energy Absorbing Materials

    ScienceCinema (OSTI)

    Duoss, Eric

    2014-05-30T23:59:59.000Z

    Learn about an ordered cellular material that has been designed and manufactured using direct ink writing (DIW), a 3-D printing technology being developed at LLNL. The new material is a patterned cellular material that can absorb mechanical energy-a cushion-while also providing protection against sheering. This material is expected to find utility in application spaces that currently use unordered foams, such as sporting and consumer goods as well as defense and aerospace.

  15. Lighting Control Design | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia: Energy Resources Jump to:46 - 429Lacey,(Monaster And Coolbaugh, 2007) JumpDesign Jump to: navigation, search

  16. Designing a Benchmarking Plan | Department of Energy

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of Inspector General Office of Audit Services AuditTransatlantic Relations &EnergyDesigning a

  17. Creating Parameterized and Energy-Efficient System Generator Designs

    E-Print Network [OSTI]

    Prasanna, Viktor K.

    important, it is desired that the designer can derive energy efficient designs using these design tools efficient designs using MATLAB/Simulink based design tools. The implementation of an adap- tive beamforming. In the paper, we propose a new tool called PyGen, which can be used to develop parameterized and energy

  18. Low-Energy Building Design Guidelines: Energy-Efficient Design for New Federal Facilities

    SciTech Connect (OSTI)

    Zachman, W.; Carlisle, N.

    2001-07-19T23:59:59.000Z

    This guidebook has been prepared primarily for Federal energy managers to provide practical information for applying the principles of low-energy, whole-building design in new Federal buildings. An important objective of this guidebook is to teach energy managers how to be advocates for renewable energy and energy-efficient technologies, and how to apply specific strategies during each phase of a given project's time line. These key action items are broken out by phase and appear in abbreviated form in this guidebook.

  19. Additions to a Design Tool for Visualizing the Energy Implications of California’s Climates

    E-Print Network [OSTI]

    Milne, Murray; Liggett, Robin rliggett@ucla.edu; Benson, Andrew; Bhattacharya, Yasmin

    2009-01-01T23:59:59.000Z

    Labs, Climatic Building Design, Energy Efficient BuildingLabs, Climatic Building Design, Energy Efficient Building

  20. Energy Design Guidelines for High Performance Schools: Hot and...

    Energy Savers [EERE]

    Climates Energy Design Guidelines for High Performance Schools: Hot and Humid Climates School districts around the country are finding that the smart energy choices can help them...

  1. Final Design RM | Department of Energy

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelinesProvedDecember 2005DepartmentDecember U.S. Department-5FederalFeds feedFerrinFinal Design

  2. Energy Design Assistance Project Tracker (EDAPT)

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-UpHeat PumpRecord ofESPC ENABLE:2009 DOEDeployment | Department ofEnergyofEnergy Design

  3. Green Integrated Design | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of InspectorConcentrating Solar Power BasicsGermany: Energy ResourcesNews Home > Blogs >GrowthDesign Jump

  4. Proper Design Saves Energy for Molecular Sieve Dehydration Systems

    E-Print Network [OSTI]

    Barrow, J. A.; Veldman, R.

    1984-01-01T23:59:59.000Z

    The molecular sieve system is a significant energy user in the cryogenic gas plant. Designing and operating the system properly can save thousands of dollars in fuel each year. A poorly designed energy saving system can result in poor plant...

  5. Energy efficient building design: Guidelines for local government

    SciTech Connect (OSTI)

    Balon, R.J.

    1989-07-01T23:59:59.000Z

    The aim of the project was to develop an effective, in-house energy review process for County building design, covering new buildings and major renovations of existing buildings. Montgomery County enacted regulations for energy efficient design of buildings in July 1986. In essence, the regulation sets energy consumption limits for buildings and calls for life-cycle-cost analysis of design choices. In the course of this project significant achievements were realized in the following areas: Energy Design Guidelines were established or refined in several areas of energy technology and design practice. The Energy Review Process was formalized and implemented. Energy personnel received supplemental training in lighting technologies and design methods, energy analysis programs and commercial design standards. The key technical findings of the project are as follows: A combination of energy design tools was found to provide optimum results, including energy analysis, life-cycle-cost analysis, prescriptive standards and guide specifications. There is a dramatic decrease in design energy consumption in buildings processed under the guidelines, ranging from 30 % to 50 % decrease in energy consumption compared to existing County buildings. On average, it was found that energy-efficient new buildings cost no more to build than energy-hog buildings. An economic analysis indicates a very high rate of return in utility savings compared to the cost of implementing the program. 10 figs.

  6. Energy Mobility Network : system design, interfaces, and future interactions

    E-Print Network [OSTI]

    Cheung, Natalie Wen Yua

    2011-01-01T23:59:59.000Z

    The Energy Mobility Network is a mobile, networked energy production, consumption and sharing system that is designed to motivate users to be more aware of their energy consumption. In particular, the system provides a ...

  7. Design Considerations for Solar Energy Harvesting Wireless Embedded Systems

    E-Print Network [OSTI]

    Raghunathan, Vijay; Kansal, Aman; Hsu, Jason; Friedman, Jonathan K; Srivastava, Mani B

    2005-01-01T23:59:59.000Z

    sensor node using our solar energy harvesting module. VI. Care not speci?c to solar energy harvesting, but representin the design of a solar energy harvesting module and their

  8. University of California Energy Institute Design Choices in the

    E-Print Network [OSTI]

    California at Berkeley. University of

    University of California Energy Institute Design Choices in the Organization of Electricity Markets Electricity Market » Transmission pricing #12;University of California Energy Institute Restructuring Goals of California Energy Institute Organization of Firms · Public vs. Private Ownership ­ Restructuring

  9. New Electrode Designs for Ultrahigh Energy Density | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion | Department ofT ib l L d F S i DOETowardExecutiveRateEnergy EmissionsElectrode Designs

  10. Towards Energy-Efficient Database Cluster Design Willis Lang

    E-Print Network [OSTI]

    Patel, Jignesh

    Towards Energy-Efficient Database Cluster Design Willis Lang University of Wisconsin wlang efficiency of DBMSs, none of these studies have looked at the architectural design space of energy-efficient the appropriate energy-efficient hardware. In this paper, we experimentally examine and analyze a number of key

  11. Fair Energy-Efficient Network Design for Multihop Communications

    E-Print Network [OSTI]

    Wang, Xin

    Fair Energy-Efficient Network Design for Multihop Communications Xin Wang Department of Computer--We consider the energy-efficient network resource allocation that minimizes a cost function of average user between efficiency and fairness in energy-efficient designs. Based on such cost functions, optimal routing

  12. Product Design for Energy: An Inverted Pyramid Approach

    E-Print Network [OSTI]

    Gopalakrishnan, B.; Alkadi, N. M.; Plummer, R. W.

    The product design function is important within the spectrum of the product life cycle. Manufacturing processes are likely to consume much energy, as evidenced in aluminum and steel industries. The product design parameters such as the material...

  13. Wind Energy Status and Perspectives Senior Scientist in Aeroelastic Design

    E-Print Network [OSTI]

    employees Systems Analysis Fuel cells Hydrogen storage PV polymer cells Bio Energy Materials #12;Risø, DTU Small Wind Turbines at Risø - 1979 #12;Aeroelastic Design #12;2D CFD Airfoil design (+ optimization

  14. Energy Design Assistance Project Tracker - 2014 BTO Peer Review...

    Energy Savers [EERE]

    checks of energy model designs, and generates project documentation and reports for commercial buildings. The ultimate goal of this project is to develop cost control best...

  15. The MIT Design Advisor : simple and rapid energy simulation of early-stage building designs

    E-Print Network [OSTI]

    Urban, Bryan J. (Bryan James)

    2007-01-01T23:59:59.000Z

    Simulation tools, when applied early in the design process, can considerably reduce the energy demand of newly constructed buildings. For a simulation tool to assist with design, it must be easy to use, provide feedback ...

  16. Statement of Secretary of Energy-Designate

    E-Print Network [OSTI]

    , solar, geothermal, and other renewable energy sources; aggressive efforts to increase energy efficiency have worked to focus the lab on our energy problems. In particular, I have challenged some of the best scientists at the Berkeley lab to turn their attention to the energy and climate change problem and to bridge

  17. Energy-efficient Housing Design. A combined approach

    SciTech Connect (OSTI)

    Lane, J.

    1985-01-01T23:59:59.000Z

    Energy-efficient Housing Design explains how to combine passive solar, superinsulation, and earth-shelter techniques to create the most energy-efficient, cost-effective housing designs. It addresses the concerns of architects, planners, contractors, developers, and homeowners, providing layouts for suburban tract housing and construction plans and details, as well as cost and performance analyses. Contents: Current approaches to Energy-efficient Design. Superinsulation Methods. Combining Approaches. Design Characteristics with the Combined Approach. Materials and Construction Methods. Wall and Roof Design. Windows and Window Protection. Passive Solar Storage Methods. Winter Heating Performance. The Passive Solar Storage System. Designing for Summer Cooling. Analyzing Cost-effectiveness. Construction Cost with Energy-efficient Design. The Balance Sheet. Site Planning. Landscaping the Lot. Subdivision-planning Methods. Streetscape and Landscape. Appendices.

  18. The ENERGY-10 design-tool computer program

    SciTech Connect (OSTI)

    Balcomb, J.D.; Crowder, R.S. III. [National Renewable Energy Lab., Golden, CO (United States)

    1995-11-01T23:59:59.000Z

    ENERGY-10 is a PC-based building energy simulation program for smaller commercial and institutional buildings that is specifically designed to evaluate energy-efficient features in the very early stages of the architectural design process. Developed specifically as a design tool, the program makes it easy to evaluate the integration of daylighting, passive solar design, low-energy cooling, and energy-efficient equipment into high-performance buildings. The simulation engines perform whole-building energy analysis for 8760 hours per year including both daylighting and dynamic thermal calculations. The primary target audience for the program is building designers, especially architects, but also includes HVAC engineers, utility officials, and architecture and engineering students and professors.

  19. 2008 Erik Hinterbichler DESIGNING A BETTER ENERGY CONSUMPTION INDICATOR

    E-Print Network [OSTI]

    Karahalios, Karrie G.

    in which HCI can contribute to energy conservation is in interfaces for residential energy consumption on the effects of energy consumption feedback in the home. From this analysis, we created a theoretical framework© 2008 Erik Hinterbichler #12;DESIGNING A BETTER ENERGY CONSUMPTION INDICATOR INTERFACE

  20. Energy-Performance Tradeoffs in Processor Architecture and Circuit Design: A Marginal Cost Analysis

    E-Print Network [OSTI]

    Lee, Benjamin C.

    Design, Performance Keywords Microarchitecture, Energy efficiency, Design trade-offs, Op- timization

  1. The urban design of distributed energy resources

    E-Print Network [OSTI]

    Sheehan, Travis (Travis P.)

    2012-01-01T23:59:59.000Z

    Distributed energy resources (DERs) are a considerable research focus for cities to reach emissions reduction goals and meet growing energy demand. DERs, consisting of local power plants and distribution infrastructure, ...

  2. Design of subsea energy storage chamber

    E-Print Network [OSTI]

    Greenlee, Alison S

    2009-01-01T23:59:59.000Z

    Energy generated from offshore resources is not reliable over short periods of time. Although wind and wave energy is fairly consistent in the long run, their short term capacity fluctuations prohibit these resources from ...

  3. Designing pricing strategies for coordination of networked distributed energy resources

    E-Print Network [OSTI]

    Liberzon, Daniel

    Designing pricing strategies for coordination of networked distributed energy resources Bahman, by a group of distributed energy resources (DERs). The aggregator interacts with the wholesale electricity. The objective is for the aggregator to design a pricing strategy for incentivizing DERs to modify their active

  4. A Holistic Approach to Designing Energy-Efficient Cluster Interconnects

    E-Print Network [OSTI]

    Kim, Eun Jung "EJ"

    , new data centers in the Seattle area are forecast to increase the city's power demands by 25 percentA Holistic Approach to Designing Energy-Efficient Cluster Interconnects Eun Jung Kim, Member, IEEE--Designing energy-efficient clusters has recently become an important concern to make these systems economically

  5. Developing an energy design tool: Phase 1 report

    SciTech Connect (OSTI)

    Heidell, J.A.; Deringer, J.D.

    1987-02-01T23:59:59.000Z

    This report documents the planning phase of a proposed four-phase project for creating computer software to provide energy expertise in a manageable form to architects and engineers - thereby decreasing energy use in new buildings. The government sponsored software would be integrated with commercially developed software for use in the design of buildings. The result would be an integrated software package to aid the designer in the building design process and to provide expert insight into the energy related implications of a proposed design.

  6. ENERGY-10: The making of a design tool

    SciTech Connect (OSTI)

    Balcomb, J.D. [National Renewable Energy Lab., Golden, CO (United States); Prowler, D.

    1997-12-31T23:59:59.000Z

    The ENERGY-10 computer program, released in June 1996, is a design tool, distinct from other energy-evaluation programs. Energy performance simulation, based on an hourly time step through a year of typical data, is an essential part of the process, however, ENERGY-10 goes far beyond this to facilitate the integration of energy efficiency into the design process of a building, ENERGY-10 incorporates time-saving features, AutoBuild, APPLY, RANK, and KEEP, and produces a rich graphical output. The program was described in a paper, The ENERGY-10 Design Tool Computer Program, presented at the American Solar Energy Society (ASES) conference, Solar 95, in Minneapolis, MN, and in a Solar Today article, ENERGY-10, Saving Energy by Design, by Rick Clyne (May/June 1996, pp 24-27). This paper describes the origins of ENERGY-10. It evaluates how well the approach has succeeded and describes proposed remedies to shortcomings. The purpose is fourfold--to expand on the rationale for the design of the program, to describe enhancements that are planned for future releases of the program, to evaluate user feedback, and to discuss ENERGY-10 as a tool for getting new strategies into the marketplace.

  7. Design Considerations for a Universal Smart Energy Module for Energy Harvesting in Wireless

    E-Print Network [OSTI]

    Turau, Volker

    size and type harvester energy modules. Handling this complexity, discussing the problems, and giving]. Their goal is a cheap and easy circuit design for harvesting solar energy and storing it in a rechargeable NiDesign Considerations for a Universal Smart Energy Module for Energy Harvesting in Wireless Sensor

  8. A general design for energy test procedures

    SciTech Connect (OSTI)

    Meier, Alan

    2000-06-15T23:59:59.000Z

    Appliances are increasingly controlled by microprocessors. Unfortunately, energy test procedures have not been modified to capture the positive and negative contributions of the microprocessor to the appliance's energy use. A new test procedure is described which captures both the mechanical and logical features present in many new appliances. We developed an energy test procedure for refrigerators that incorporates most aspects of the proposed new approach. Some of the strengths and weaknesses of the new test are described.

  9. Home Design & Remodeling | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of EnergyEnergyENERGYWomen Owned SmallOfCoal_Budget_Fact_Sheet.pdf More DocumentsAtA Energy Saver 101

  10. Career Map: Design Engineer | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of EnergyEnergyENERGYWomenthe HouseStudents Heal thePrepared for Energy Secretary Samuel Bodmanproduct

  11. EXPLORATION OF ENERGY-DELAY TRADEOFFS IN DIGITAL CIRCUIT DESIGN Yoni Aizik and Avinoam Kolodny

    E-Print Network [OSTI]

    Kolodny, Avinoam

    the optimal operating point in terms of energy - performance tradeoff. 2. ENERGY EFFICIENT DESIGN In trading

  12. Designing Energy-Efficient Fetch Engines A Dissertation

    E-Print Network [OSTI]

    Co, Michele

    Designing Energy-Efficient Fetch Engines A Dissertation Presented to the faculty of the School;Abstract This dissertation evaluates factors that affect the energy-efficiency of the fetch engine overall processor energy-efficiency. Cooling costs, extending battery life in mobile devices, and reducing

  13. Designing EnergyEfficient Fetch Engines A Dissertation

    E-Print Network [OSTI]

    Co, Michele

    Designing Energy­Efficient Fetch Engines A Dissertation Presented to the faculty of the School; Abstract This dissertation evaluates factors that affect the energy­efficiency of the fetch engine overall processor energy­efficiency. Cooling costs, extending battery life in mobile devices, and reducing

  14. Designing and Managing Datacenters Powered by Renewable Energy

    E-Print Network [OSTI]

    energy supply [1, 4, 6, 9, 11]. For high- est benefits, green datacenter operators must intelligently an expected load peak when the renewable energy is not avail- able). As far as we know, current greenDesigning and Managing Datacenters Powered by Renewable Energy ´I~nigo Goiri, William Katsak, Kien

  15. Clean Power Design | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of InspectorConcentrating SolarElectricEnergyCTBarreisVolcanicPower Address: 13615 StoweClean EnergyCESADesign

  16. Preliminary Design RM | Department of Energy

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of Energy Power Systems Engineering Research and Development (PSE R&D) Power

  17. Sandia National Laboratories: Energy Surety Design Methodology

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the1 -the Mid-Infrared0EnergySandiaConsortiumAct

  18. Conceptual Design RM | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-Up fromDepartmentTieCelebrate Earth Codestheatfor Optimized9 *Concentrating SolarDesign

  19. Modeling and design of a MEMS piezoelectric vibration energy harvester

    E-Print Network [OSTI]

    Du Toit, Noël Eduard

    2005-01-01T23:59:59.000Z

    The modeling and design of MEMS-scale piezoelectric-based vibration energy harvesters (MPVEH) are presented. The work is motivated by the need for pervasive and limitless power for wireless sensor nodes that have application ...

  20. Design of test bench apparatus for piezoelectric energy harvesters

    E-Print Network [OSTI]

    Yoon, You C. (You Chang)

    2013-01-01T23:59:59.000Z

    This thesis presents the design and analysis of an experimental test bench for the characterization of piezoelectric microelectromechanical system (MEMS) energy harvester being developed by the Micro & Nano Systems Laboratory ...

  1. Design for Energy Efficiency in Residential Buildings

    E-Print Network [OSTI]

    Song, M.; Zhang, Y.; Yang, G.

    2006-01-01T23:59:59.000Z

    -saving efficiency was 50%. Tab. 1 Difference of over all heat transfer coefficient limitation of building Exterior wall Exterior window Roof 65% energy-saving residence buildings in Beijing (>5 stories) 0.6 2.8 0.6 South of Sweden 0.17 2.5 0...

  2. High efficiency waste to energy facility -- Pilot plant design

    SciTech Connect (OSTI)

    Orita, Norihiko; Kawahara, Yuuzou; Takahashi, Kazuyoshi; Yamauchi, Toru; Hosoda, Takuo

    1998-07-01T23:59:59.000Z

    Waste To Energy facilities are commonly acceptable to the environment and give benefits in two main areas: one is a hygienic waste disposal and another is waste heat energy recovery to save fossil fuel consumption. Recovered energy is used for electricity supply, and it is required to increase the efficiency of refuse to electric energy conversion, and to spread the plant construction throughout the country of Japan, by the government. The national project started in 1992, and pilot plant design details were established in 1995. The objective of the project is to get 30% of energy conversion efficiency through the measure by raising the steam temperature and pressure to 500 C and 9.8 MPa respectively. The pilot plant is operating under the design conditions, which verify the success of applied technologies. This paper describes key technologies which were used to design the refuse burning boiler, which generates the highest steam temperature and pressure steam.

  3. Separation Design Group LLC | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revisionEnvReviewNonInvasiveExplorationUT-g Grant ofRichardton AbbeyARaft River, Idaho |SenateSentral SchoolDesign

  4. Solar Site Design | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revisionEnvReviewNonInvasiveExplorationUT-g GrantAtlas (PACA Region - France) JumpBeginner JumpSolar SentryDesign

  5. Design Code Survey Form | Department of Energy

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of Inspector General Office of Audit Services AuditTransatlantic Relations & the196-2011Waste viaDesign Code

  6. Seawood Designs Inc | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia:FAQ < RAPID Jump to:Seadov Pty Ltd Jump to: navigation, search Name: Seadov Pty LtdSearcySeawood Designs Inc

  7. Ecowatt Design LLC | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revision has beenFfe2fb55-352f-473b-a2dd-50ae8b27f0a6 No revision hasESEInformationFans onEcowatt Design LLC

  8. Passive Solar Home Design | Department of Energy

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion |Energy UsageAUDITVehicles »Exchange VisitorsforDepartmentPOET-DSM biorefinery inPassive

  9. Safety Design Strategy RM | Department of Energy

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of Inspector GeneralDepartment of Energy fromCommentsRevolving STATEMENT OF Peter Malati,

  10. Seismic Design Expectations Report | Department of Energy

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of Inspector GeneralDepartment of Energyof the Americas | DepartmentDepartment of EnergySecurity

  11. CASE Design/Remodeling | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of InspectorConcentrating SolarElectricEnergyCTBarreis a city in Chittenden County,47 Geothermal0

  12. Functional Design Engineering Inc | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia: Energy Resources Jump to: navigation, search Equivalent URIFrontier,Jump to: navigation, search

  13. Modeling of dielectric elastomers: Design of actuators and energy harvesting devices

    E-Print Network [OSTI]

    Modeling of dielectric elastomers: Design of actuators and energy harvesting devices David L Keywords: Dielectric elastomers Large deformations Actuators Energy harvesting devices Finite and energy harvesting devices that convert mechanical energy into electrical energy. Numerically based design

  14. Money for Research, Not for Energy Bills: Finding Energy and Cost Savings in High Performance Computer Facility Designs

    E-Print Network [OSTI]

    Sartor, Dale

    2011-01-01T23:59:59.000Z

    simply through the energy-efficient design of the facilitywas able to design a very energy-efficient building with a

  15. A design guide for energy-efficient research laboratories

    SciTech Connect (OSTI)

    Wishner, N.; Chen, A.; Cook, L. [eds.; Bell, G.C.; Mills, E.; Sartor, D.; Avery, D.; Siminovitch, M.; Piette, M.A.

    1996-09-24T23:59:59.000Z

    This document--A Design Guide for Energy-Efficient Research Laboratories--provides a detailed and holistic framework to assist designers and energy managers in identifying and applying advanced energy-efficiency features in laboratory-type environments. The Guide fills an important void in the general literature and compliments existing in-depth technical manuals. Considerable information is available pertaining to overall laboratory design issues, but no single document focuses comprehensively on energy issues in these highly specialized environments. Furthermore, practitioners may utilize many antiquated rules of thumb, which often inadvertently cause energy inefficiency. The Guide helps its user to: introduce energy decision-making into the earliest phases of the design process, access the literature of pertinent issues, and become aware of debates and issues on related topics. The Guide does focus on individual technologies, as well as control systems, and important operational factors such as building commissioning. However, most importantly, the Guide is intended to foster a systems perspective (e.g. right sizing) and to present current leading-edge, energy-efficient design practices and principles.

  16. Cogeneration Plant is Designed for Total Energy

    E-Print Network [OSTI]

    Howell, H. D.; Vera, R. L.

    ,000 1b/hr of 250-psig steam and 95,000 1b/hr of 300-psig steam to the ch10rine caustic process. The combined cycle plant configur ation shown in Figure 1 comprises: 1. Two.Genera1 Electric natural gas fired gas turbine-generators (GTG), with a size... depends on 271 ESL-IE-87-09-45 Proceedings from the Ninth Annual Industrial Energy Technology Conference, Houston, TX, September 16-18, 1987 two factors - ambient temperature and process steam demand. The gas turbines are operated at baseload, the HRSG...

  17. NREL: Energy Systems Integration Facility - Facility Design

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLas Conchas recoveryLaboratory | National Nuclearover twoPrintableContact Us For more

  18. SRPO Designation and Responsibilities | Department of Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the1 -the Mid-Infrared0 ResourceAwards SAGE Awards ,#2446SmallnAboutEducation |SRPO

  19. Cambridge Design & Development | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 NoPublic Utilities Address: 160Benin: EnergyBoston Areais3:Information USCallowayCalumetCambria County,Park,&

  20. Chemical Design Inc CDI | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 NoPublic Utilities Address: 160Benin:Energy Information on PV2009Information17.3180919°,Faults In Utah |Inc

  1. China Building Design Consultants | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 NoPublic Utilities Address: 160Benin:Energy Information onChemithon842667°,Cheviot,3.Chimayo, New

  2. Design and Power Management of Energy Harvesting Embedded Systems

    E-Print Network [OSTI]

    Chou, Pai H.

    America Princeton, NJ 08540 vijay@nec-labs.com Pai H. Chou University of California Irvine, CA 92697 factors such as the characteristics of the harvesting transducers, chemistry and capacity of the batteries, Design Keywords Energy harvesting, power management, wireless sensors, solar power 1. INTRODUCTION Energy

  3. Application of Target Value Design to Energy Efficiency Investments

    E-Print Network [OSTI]

    Lee, Hyun Woo

    2012-01-01T23:59:59.000Z

    DC, 29 pp. DOE (2010b). “Net-Zero Energy Commercial Buildingrecently launched its ‘Net-Zero Energy Commercial Buildingenergy use of 16.4 kBtu/ft 2 , while its design goal had been set to net-zero,

  4. Energy codes and the building design process: Opportunities for improvement

    SciTech Connect (OSTI)

    Sandahl, L.J.; Shankle, D.L.; Rigler, E.J.

    1994-05-01T23:59:59.000Z

    The Energy Policy Act (EPAct), passed by Congress in 1992, requires states to adopt building energy codes for new commercial buildings that meet or exceed the American Society of Heating, Refrigerating, and Air Conditioning Engineers (ASHRAE) and Illuminating Engineers Society of North America (IES) Standard 90.1-1989 by October 24, 1994. In response to EPAct many states will be adopting a state-wide energy code for the first time. Understanding the role of stakeholders in the building design process is key to the successful implementation of these codes. In 1993, the Pacific Northwest Laboratory (PNL) conducted a survey of architects and designers to determine how much they know about energy codes, to what extent energy-efficiency concerns influence the design process, and how they convey information about energy-efficient designs and products to their clients. Findings of the PNL survey, together with related information from a survey by the American Institute of Architects (AIA) and other reports, are presented in this report. This information may be helpful for state and utility energy program managers and others who will be involved in promoting the adoption and implementation of state energy codes that meet the requirements of EPAct.

  5. advanced energy design: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    advanced energy design First Page Previous Page 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 Next Page Last Page Topic Index 1 Advances in Energy Reduction in...

  6. Department of Energy Seeks Public Comment on Designation of Energy Corridors in the West

    Broader source: Energy.gov [DOE]

    The U.S. Department of Energy (DOE) announced that it and several other federal agencies will host eleven public meetings to discuss the designation of multi-purpose energy corridors on federal lands in the western United States.

  7. Building energy calculator : a design tool for energy analysis of residential buildings in Developing countries

    E-Print Network [OSTI]

    Smith, Jonathan Y. (Jonathan York), 1979-

    2004-01-01T23:59:59.000Z

    Buildings are one of the world's largest consumers of energy, yet measures to reduce energy consumption are often ignored during the building design process. In developing countries, enormous numbers of new residential ...

  8. The Dark Energy Survey instrument design

    SciTech Connect (OSTI)

    Flaugher, B.; /Fermilab

    2006-05-01T23:59:59.000Z

    We describe a new project, the Dark Energy Survey (DES), aimed at measuring the dark energy equation of state parameter, w, to a statistical precision of {approx}5%, with four complementary techniques. The survey will use a new 3 sq. deg. mosaic camera (DECam) mounted at the prime focus of the Blanco 4m telescope at the Cerro-Tololo International Observatory (CTIO). DECam includes a large mosaic camera, a five element optical corrector, four filters (g,r,i,z), and the associated infrastructure for operation in the prime focus cage. The focal plane consists of 62 2K x 4K CCD modules (0.27''/pixel) arranged in a hexagon inscribed within the 2.2 deg. diameter field of view. We plan to use the 250 micron thick fully-depleted CCDs that have been developed at the Lawrence Berkeley National Laboratory (LBNL). At Fermilab, we will establish a packaging factory to produce four-side buttable modules for the LBNL devices, as well as to test and grade the CCDs. R&D is underway and delivery of DECam to CTIO is scheduled for 2009.

  9. Incentive program for energy efficient design of state buildings

    SciTech Connect (OSTI)

    Case, M.E.; Wingerden, J. [and others

    1998-07-01T23:59:59.000Z

    In 1996, the State of Utah instigated a pilot program intended to improve the energy efficiency of newly designed State buildings. The goal of the program was to show that buildings could be designed to be more energy efficient than the State's energy code, ASHRAE/IES 90.1, without adding to the construction costs. Four of the eight buildings beat the code by at least 50%; one by 40% and one by only 22%. One project is still in design. This paper summarizes the program's design, implementation and results through May 3, 1998. It presents an informal evaluation and discusses program highlights - both positive and negative. The difficulties--both technical and political--in using the ASHRAE Standard for Energy Efficient Design of New Buildings (ASHRAE/IES 90.1) in an incentive-based program are discussed. Possible solutions to specific problems are presented. The impact of incentives on the design teams, their methods and the resulting design are also discussed.

  10. Energy Efficient Design, Air Conditioning Correspondence to Author:

    E-Print Network [OSTI]

    Parth Patel; Parth Patel

    ABSTRACT: HVAC maintain both comfort and safety of indoor air quality. The challenge of maintaining high product quality while simultaneously reducing production costs can often be met through investments in energy efficient technologies and energy efficiency practices. The greatest opportunities for energy efficiency exist at the design stage for HVAC systems in new industrial facilities. By sizing components of HVAC systems generally include dampers, supply and exhaust fans, filters, humidifiers, dehumidifiers, heating and cooling coils, ducts, and various sensors properly and designing energy efficiency into a new facility, an industry can minimize the energy consumption and operational costs of its plant HVAC systems from the outset. Optimizing system design and operations, such as minimizing laboratory ventilation, can also lead to significant reductions in energy use. Energy efficiency improvement is an important way to reduce these costs and to increase predictable earnings, especially in times of high energy price volatility. There are a variety of opportunities available at individual plants in the industry to reduce energy consumption in a cost-effective manner.

  11. Designing a Residential Hybrid Electrical Energy Storage System Based on the Energy Buffering Strategy

    E-Print Network [OSTI]

    Pedram, Massoud

    Designing a Residential Hybrid Electrical Energy Storage System Based on the Energy Buffering-connected hybrid electrical energy storage (HEES) system can help residential users lower their electric bills system consists of different types of electrical energy storage (EES) elements, utilizing the benefits

  12. Does Low-Power Design Imply Energy Efficiency for Data Centers?

    E-Print Network [OSTI]

    Wenisch, Thomas F.

    is arbitrary and higher power design choices can be more energy efficient. We analyze the energy efficiency design space of past commercial server designs and find that high-power servers are generally more energy

  13. Building design guidelines for solar energy technologies

    SciTech Connect (OSTI)

    Givoni, B.

    1989-01-01T23:59:59.000Z

    There are two main objectives to this publication. The first is to find out the communalities in the experience gained in previous studies and in actual applications of solar technologies in buildings, residential as well as nonresidential. The second objective is to review innovative concepts and products which may have an impact on future developments and applications of solar technologies in buildings. The available information and common lessons were collated and presented in a form which, hopefully, is useful for architects and solar engineers, as well as for teachers of solar architecture'' and students in Architectural Schools. The publication is based mainly on the collection and analysis of relevant information. The information included previous studies in which the performance of solar buildings was evaluated, as well as the personal experience of the Author and the research consultants. The state of the art, as indicated by these studies and personal experience, was summarized and has served as basis for the development of the Design Guidelines. In addition to the summary of the state of the art, as was already applied in solar buildings, an account was given of innovative concepts and products. Such innovations have occurred in the areas of thermal storage by Phase Change Materials (PCM) and in glazing with specialized or changeable properties. Interesting concepts were also developed for light transfer, which may enable to transfer sunlight to the core areas of large multi story nonresidential buildings. These innovations may have a significant impact on future developments of solar technologies and their applications in buildings. 15 refs., 19 figs., 3 tabs.

  14. Energy-Efficient Home Design | Department of Energy

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelinesProvedDecember 2005DepartmentDecember 2011District |Department ofEnergy and ClimateHome

  15. Dynamically Reconfigurable Hybrid Cache: An Energy-Efficient Last-Level Cache Design

    E-Print Network [OSTI]

    Potkonjak, Miodrag

    -chip cache has become a bottleneck for energy-efficient design due to its high leakage power. Designers have

  16. An internet tool for designing energy efficient homes

    SciTech Connect (OSTI)

    Milne, M.; Gomez, C.; Leeper, D.; Zurick, J.; Nindra, A.; Shen, J.; Kobayashi, Y.

    1999-07-01T23:59:59.000Z

    To help their 4.5 million residential customers make energy efficient decisions, Southern California Gas asked UCLA to develop an Internet-based simulation tool called Project REED (Residential Energy Efficient Design). The critical problem is to give these ratepayers an easy way to visualize the relative effectiveness of their various options. REED is a internet-based tool that calculates the annual gas and electricity cost for each separate building design or operating decision. Hourly climate data for the Typical Meteorological Year (TMY2) in all the climate zones in the SoCalGas service area are built in, as well as utility rates for each type of residential service. REED's Expert System first designs a basic Code Compliant home, then designs a more Energy Efficient design based on local climate, and it shows how much money ratepayers would save. The simulation engine inside REED is SOLAR-5, one of the nation's most widely used whole building energy design tools. SOLAR-5 has been validated against DOE-2 using the BESTEST procedure. This paper, one of a pair describing REED, explains the project from the user's point of view and describes what was learned from the Ratepayer Usability Test. The second paper explains the project from the simulation and software engineering point of view.

  17. Energy Efficiency Opportunities in Highway Lodging Buildings: Development of 50% Energy Savings Design Technology Packages

    SciTech Connect (OSTI)

    Jiang, Wei; Gowri, Krishnan; Thornton, Brian A.; Liu, Bing

    2010-06-30T23:59:59.000Z

    This paper presents the process, methodology, and assumptions for development of the 50% Energy Savings Design Technology Packages for Highway Lodging Buildings, a design guidance document that provides specific recommendations for achieving 50% energy savings in roadside motels (highway lodging) above the requirements of ANSI/ASHRAE/IESNA Standard 90.1-2004. This 50% solution represents a further step toward realization of the U.S. Department of Energy’s net-zero energy building goal, and go beyond the 30% savings in the Advanced Energy Design Guide series (upon which this work was built). This work can serve as the technical feasibility study for the development of a 50% saving Advanced Energy Design Guide for highway lodging, and thus should greatly expedite the development process. The purpose of this design package is to provide user-friendly design assistance to designers, developers, and owners of highway lodging properties. It is intended to encourage energy-efficient design by providing prescriptive energy-efficiency recommendations for each climate zone that attains the 50% the energy savings target. This paper describes the steps that were taken to demonstrate the technical feasibility of achieving a 50% reduction in whole-building energy use with practical and commercially available technologies. The energy analysis results are presented, indicating the recommended energy-efficient measures achieved a national-weighted average energy savings of 55%, relative to Standard 90.1-2004. The cost-effectiveness of the recommended technology package is evaluated and the result shows an average simple payback of 11.3 years.

  18. Energy Design Plugin: An EnergyPlus Plugin for SketchUp; Preprint

    SciTech Connect (OSTI)

    Ellis, P. G.; Torcellini, P. A.; Crawley, D. B.

    2008-08-01T23:59:59.000Z

    This paper describes the Energy Design Plugin, a new software plugin that aims to integrate simulation as a tool during the earliest phases of the design process. The plugin couples the EnergyPlus whole-building simulation engine to the Google SketchUp drawing program.

  19. An Estimation and Simulation Framework for Energy Efficient Design using Platform FPGAs

    E-Print Network [OSTI]

    Prasanna, Viktor K.

    An Estimation and Simulation Framework for Energy Efficient Design using Platform FPGAs Sumit modeling technique, domain specific modeling, and a methodology for energy-efficient design of application

  20. Additions to a Design Tool for Visualizing the Energy Implications of California’s Climates

    E-Print Network [OSTI]

    Milne, Murray; Liggett, Robin rliggett@ucla.edu; Benson, Andrew; Bhattacharya, Yasmin

    2009-01-01T23:59:59.000Z

    Passive Solar Energy Book, Rodale Press 1979 Milne, Murray, and Baruch Givoni, Chapter 6, "Architectural Design Based on Climate", Energy Conservation through Building Design,

  1. Advanced Energy Design Guides Fact Sheet | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:Year in Review: Top Five EERE Blog Posts1-034 Advance Patent WaiverLeslie PezzulloDesign Guides

  2. Energy program of requirements for a new detention center -- Energy design criteria for prisons

    SciTech Connect (OSTI)

    Tseng, P.C.; Stanton-Hoyle, D. [Montgomery County Government, Rockville, MD (United States). Capitol Projects Management Division; Krout, R. [HEC Inc., Arlington, VA (United States)

    1995-08-01T23:59:59.000Z

    Correctional facilities are typically ``energy hogs.`` Prison facilities normally have the highest energy costs and are the most energy-intensive building type for local and state jurisdictions. The 24-hour operation and continuous, year-round use of these facilities means very high maintenance and operating costs. To minimize future utility costs, an integrated energy planning approach for a new detention facility is highly desirable at the earliest stages of programming. When energy-efficiency criteria are integrated early in a planning and design process, significant energy and operating cost savings can be achieved with little or no additional construction costs. A planning document in the form of an energy program of requirements (EPOR) can be incorporated into the solicitation of design proposals and can be very effective in ensuring energy-efficient design for a new facility.

  3. Achieving 50% Energy Savings in Office Buildings, Advanced Energy Design Guides: Office Buildings (Brochure)

    SciTech Connect (OSTI)

    Not Available

    2014-09-01T23:59:59.000Z

    This fact sheet summarizes recommendations for designing new office buildings that result in 50% less energy use than conventional designs meeting minimum code requirements. The recommendations are drawn from the Advanced Energy Design Guide for Small to Medium Office Buildings, an ASHRAE publication that provides comprehensive recommendations for designing low-energy-use office buildings with gross floor areas up to 100,000 ft2 (see sidebar). Designed as a stand-alone document, this fact sheet provides key principles and a set of prescriptive design recommendations appropriate for smaller office buildings with insufficient budgets to fully implement best practices for integrated design and optimized performance. The recommendations have undergone a thorough analysis and review process through ASHRAE, and have been deemed the best combination of measures to achieve 50% savings in the greatest number of office buildings.

  4. iREED 2008 Renewable Energies and Eco-Design in Electrical Engineering, 10-11 December 2008 ECO-DESIGN OF ELECTRO-MECHANICAL ENERGY CONVERTERS

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    iREED 2008 Renewable Energies and Eco-Design in Electrical Engineering, 10-11 December 2008 ECO-DESIGN OF ELECTRO-MECHANICAL ENERGY CONVERTERS: THE CASE OF THE THREE-PHASE SQUIRREL-CAGE INDUCTION MACHINE V-design problematic on the single criterion of energy for electro-mechanical energy converters through the model

  5. Advanced Design and Commissioning Tools for Energy-Efficient Building Technologies

    E-Print Network [OSTI]

    Bauman, Fred; Webster, Tom; Zhang, Hui; Arens, Ed

    2012-01-01T23:59:59.000Z

    energy building was achieved through an integrated design2. Integrated Design Associates, Inc. (IDeAs) Building, Santhe Integrated Design Associates, Inc. (IDeAs) Building, San

  6. Process Integration: Designing for Energy, Capital and Operability

    E-Print Network [OSTI]

    Linnhoff, B.

    INTEGRATED COMPUTER SOFTWARE FOR PROCESS DESIGN METHODOLOGY Rajeev Gautam Union Carbide Corporation South Charleston, West Virginia A computer-aided system for synthesis, simulation and optimization of heat exchanger networks will be described... as expert users. It uses a micro-computer based environment to provide an integrated system with an interactive graphics process engineering interface. Process Integration: Designing for Energy, Capital and Operability Bodo Linnhoff University...

  7. Design for Process Integration and Efficient Energy Utilization

    E-Print Network [OSTI]

    James, A. J.

    1982-01-01T23:59:59.000Z

    within a process unit is provided by a Fluid Catalytic Cracker (FCCU) operating at design capacity and 80% of design capacity. The process is energy intensive and cracks hydrocarbons into lighter components, with incidental deposition of carbon onto..., with the energy balance closed by power import or export. To facilitate start-up, a steam turbine is added to the shaft. RfGlNERATDll flUE GAS AlII TO RfGINERATDll BY?PASS ~===:(I MIG EXHAUST Figure 8. FCCU Expander/ Compressor Hot combustion gases...

  8. Synergico: a new "Design for Energy Efficiency" Method enhancing the Design of more environmentally friendly Electr(on)ic Equipments

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    efficient products and infrastructures. For the electr(on)ic industry, in-use energy consumption to the Design for Energy Efficiency of electr(on)ic equipments focusing on the use phase. This paper presentsSynergico: a new "Design for Energy Efficiency" Method enhancing the Design of more environmentally

  9. International Solar Centre, Berlin - A Comprehensive Energy Design

    E-Print Network [OSTI]

    Fisch, M. N.; Himmler, R.

    2005-01-01T23:59:59.000Z

    ESL-IC-10/05-06 1 INTERNATIONAL SOLAR CENTRE BERLIN - A COMPREHENSIVE ENERGY DESIGN Robert Himmler M. Norbert Fisch Technical University Braunschweig Institute of Building and Solar Technology (IGS) Mühlenpfordtstr. 23 38106 Braunschweig... / Germany ABSTRACT The International Solar Centre is a unique development in Berlin, combining a historic building and contemporary architecture to create 20 700 m² of customised office workspace. The building promotes a sustainable energy economy...

  10. Indicator for in Use Energy Consumption (IUE): a tool enhancing Design for Energy Efficiency of

    E-Print Network [OSTI]

    Boyer, Edmond

    impact of Electric and Electronic Product and the potential of Design for Energy Efficiency in Use, it explains the increasing interest on efficient management of energy during use of electr(on)ic equipment Union can decrease by 27%. The potential for decreasing is based on the estimated wastage of energy

  11. Achieving 50% Energy Savings in New Schools, Advanced Energy Design Guides: K-12 Schools (Brochure)

    SciTech Connect (OSTI)

    Not Available

    2014-09-01T23:59:59.000Z

    This fact sheet summarizes recommendations for designing elementary, middle, and high school buildings that will result in 50% less energy use than conventional new schools built to minimum code requirements. The recommendations are drawn from the Advanced Energy Design Guide for K-12 School Buildings, an ASHRAE publication that provides comprehensive recommendations for designing low-energy-use school buildings (see sidebar). Designed as a stand-alone document, this fact sheet provides key principles and a set of prescriptive design recommendations appropriate for smaller schools with insufficient budgets to fully implement best practices for integrated design and optimized performance. The recommendations have undergone a thorough analysis and review process through ASHRAE, and have been deemed the best combination of measures to achieve 50% savings in the greatest number of schools.

  12. Design for a High Energy Density Kelvin-Helmholtz Experiment

    SciTech Connect (OSTI)

    Hurricane, O A

    2007-10-29T23:59:59.000Z

    While many high energy density physics (HEDP) Rayleigh-Taylor and Richtmyer-Meshkov instability experiments have been fielded as part of basic HEDP and astrophysics studies, not one HEDP Kelvin-Helmholtz (KH) experiment has been successfully performed. Herein, a design for a novel HEDP x-ray driven KH experiment is presented along with supporting radiation-hydrodynamic simulation and theory.

  13. Design and Application of Low Compaction Energy Concrete for

    E-Print Network [OSTI]

    Design and Application of Low Compaction Energy Concrete for Use in Slip-form Concrete Paving of cement pastes and the green strength of concretes Slipform self-consolidating concrete (SFSCC) requires sufficient flowability in order to consolidate without the use of internal vibration. However, this concrete

  14. Redelegation Order No. 00-011.01-08 to the Senior Realty Officer Department

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the1 -the Mid-Infrared at 278, 298,NIST 800-53 Revision 3Reddy,Operationsof Energy - DOE

  15. Energy master planning: Innovative Design and Energy Analysis Service (IDEAS) for new commercial construction

    SciTech Connect (OSTI)

    Not Available

    1989-11-01T23:59:59.000Z

    This report describes a research and development strategy that a municipal energy management office took to adopt and promote an energy design and analysis program for commercial building development projects. Included are details of the technical information, technology transfer tools, marketing strategies and methods of integrating the energy efficient design suggestion program into the existing city development process for maximizing the administration and effectiveness of the service. The Office of Environmental Management of the City of San Jose developed and is offering a Pilot Program aimed at improving the energy efficiency of its commercial and light industrial building stock. The proposed Innovative Design and Energy Analysis Service (IDEAS) would offer technical information and assistance to Developers, Architects and Engineers in the area of energy conscious design of new commercial construction in the City of San Jose. The main thrust of the service will be to influence new building design through the implementation of cost-effective energy conservation options such that building operational performance is better than that resulting from implementing mandated state energy standards. 21 refs., 10 figs., 6 tabs.

  16. Technical Support Document: Development of the Advanced Energy Design Guide for Grocery Stores--50% Energy Savings

    SciTech Connect (OSTI)

    Hale, E. T.; Macumber, D. L.; Long, N. L.; Griffith, B. T.; Benne, K. S.; Pless, S. D.; Torcellini, P. A.

    2008-09-01T23:59:59.000Z

    This report provides recommendations that architects, designers, contractors, developers, owners, and lessees of grocery store buildings can use to achieve whole-building energy savings of at least 50% over ASHRAE Standard 90.1-2004.

  17. Sample design for the residential energy consumption survey

    SciTech Connect (OSTI)

    Not Available

    1994-08-01T23:59:59.000Z

    The purpose of this report is to provide detailed information about the multistage area-probability sample design used for the Residential Energy Consumption Survey (RECS). It is intended as a technical report, for use by statisticians, to better understand the theory and procedures followed in the creation of the RECS sample frame. For a more cursory overview of the RECS sample design, refer to the appendix entitled ``How the Survey was Conducted,`` which is included in the statistical reports produced for each RECS survey year.

  18. The Early U.S. Market for PHEVs: Anticipating Consumer Awareness, Recharge Potential, Design Priorities and Energy Impacts

    E-Print Network [OSTI]

    Axsen, Jonn; Kurani, Kenneth S

    2008-01-01T23:59:59.000Z

    Awareness, Recharge Potential, Design Priorities and Energyawareness, recharge potential, design interests, and energyawareness, recharge potential, design priorities, and energy

  19. New Whole-House Solutions Case Study: CDC Realty Inc., Tucson, AZ

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of Inspector General Office0-72.pdfGeorgeDoesn't32DepartmentWells |of Energy New StepsVoicesDepartmentCDC

  20. Redelegation of Authority Order No. 00-011.01-03 to the Senior Realty

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the1 -the Mid-Infrared at 278, 298,NIST 800-53 RevisionDivision and Team

  1. Redelegation of Authority Order No. 011.01-04 to the Realty Specialist,

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the1 -the Mid-Infrared at 278, 298,NIST 800-53 RevisionDivision and TeamOffice of

  2. Designing Renewable Energy Financing Mechanism Terms of Reference | Open

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 NoPublic Utilities Address:011-DNA Jump to:52c8ff988c1Dering Harbor, New York: EnergyEnergy Information Designing

  3. OPSAID Initial Design and TestingReport | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:Year in3.pdfEnergyDepartment of Energy(National1 - AcquisitionOPSAID Initial Design and

  4. Distributing many points on spheres: minimal energy and designs

    E-Print Network [OSTI]

    Johann S. Brauchart; Peter J. Grabner

    2014-11-07T23:59:59.000Z

    This survey discusses recent developments in the context of spherical designs and minimal energy point configurations on spheres. The recent solution of the long standing problem of the existence of spherical $t$-designs on $\\mathbb{S}^d$ with $\\mathcal{O}(t^d)$ number of points by A. Bondarenko, D. Radchenko, and M. Viazovska attracted new interest to this subject. Secondly, D. P. Hardin and E. B. Saff proved that point sets minimising the discrete Riesz energy on $\\mathbb{S}^d$ in the hypersingular case are asymptotically uniformly distributed. Both results are of great relevance to the problem of describing the quality of point distributions on $\\mathbb{S}^d$, as well as finding point sets, which exhibit good distribution behaviour with respect to various quality measures.

  5. Chamber Design for the Laser Inertial Fusion Energy (LIFE) Engine

    SciTech Connect (OSTI)

    Latkowski, J F; Abbott, R P; Aceves, S; Anklam, T; Badders, D; Cook, A W; DeMuth, J; Divol, L; El-Dasher, B; Farmer, J C; Flowers, D; Fratoni, M; ONeil, R G; Heltemes, T; Kane, J; Kramer, K J; Kramer, R; Lafuente, A; Loosmore, G A; Morris, K R; Moses, G A; Olson, B; Pantano, C; Reyes, S; Rhodes, M; Roe, K; Sawicki, R; Scott, H; Spaeth, M; Tabak, M; Wilks, S

    2010-11-30T23:59:59.000Z

    The Laser Inertial Fusion Energy (LIFE) concept is being designed to operate as either a pure fusion or hybrid fusion-fission system. The present work focuses on the pure fusion option. A key component of a LIFE engine is the fusion chamber subsystem. It must absorb the fusion energy, produce fusion fuel to replace that burned in previous targets, and enable both target and laser beam transport to the ignition point. The chamber system also must mitigate target emissions, including ions, x-rays and neutrons and reset itself to enable operation at 10-15 Hz. Finally, the chamber must offer a high level of availability, which implies both a reasonable lifetime and the ability to rapidly replace damaged components. An integrated design that meets all of these requirements is described herein.

  6. Project Screening and Design Toolkit | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia: Energy ResourcesLoadingPenobscot County, Maine:Plug Power IncPowderClimateMeadows,Progressiveand Design Toolkit

  7. Project Screening and Design Toolkit | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia: Energy ResourcesLoadingPenobscot County, Maine:Plug Power IncPowderClimateMeadows,Progressiveand Design

  8. State Energy Efficiency Resource Standards: Design, Status, and Impacts

    SciTech Connect (OSTI)

    Steinberg, D.; Zinaman, O.

    2014-05-01T23:59:59.000Z

    An energy efficiency resource standard (EERS) is a policy that requires utilities or other entities to achieve a specified amount of energy savings through customer energy efficiency programs within a specified timeframe. EERSs may apply to electricity usage, natural gas usage, or both. This paper provides an overview of the key design features of EERSs for electricity, reviews the variation in design of EERSs across states, and provides an estimate of the amount of savings required by currently specified EERSs in each state. As of December, 2013, 23 states have active and binding EERSs for electricity. We estimate that state EERSs will require annual electricity savings of approximately 8-11% of total projected demand by 2020 in states with EERSs, however the level of savings targeted by the policies varies significantly across states. In addition to the variation in targeted savings, the design of EERSs varies significantly across states leading to differences in the suite of incentives created by the policy, the flexibility of compliance with the policy, the balance of benefits and costs of the policy between producers and consumers, and the certainty with which the policy will drive long-term savings.

  9. Design for energy efficiency: Energy efficient industrialized housing research program. Progress report

    SciTech Connect (OSTI)

    Kellett, R.; Berg, R.; Paz, A.; Brown, G.Z.

    1991-03-01T23:59:59.000Z

    Since 1989, the U.S. Department of Energy has sponsored the Energy Efficient Industrialized Housing research program (EEIH) to improve the energy efficiency of industrialized housing. Two research centers share responsibility for this program: The Center for Housing Innovation at the University of Oregon and the Florida Solar Energy Center, a research institute of the University of Central Florida. Additional funding is provided through the participation of private industry, state governments and utilities. The program is guided by a steering committee comprised of industry and government representatives. This report summarizes Fiscal Year (FY) 1990 activities and progress, and proposed activities for FY 1991 in Task 2.1 Design for Energy Efficiency. This task establishes a vision of energy conservation opportunities in critical regions, market segments, climate zones and manufacturing strategies significant to industrialized housing in the 21st Century. In early FY 1990, four problem statements were developed to define future housing demand scenarios inclusive of issues of energy efficiency, housing design and manufacturing. Literature surveys were completed to assess seven areas of influence for industrialized housing and energy conservation in the future. Fifty-five future trends were identified in computing and design process; manufacturing process; construction materials, components and systems; energy and environment; demographic context; economic context; and planning policy and regulatory context.

  10. Application of Target Value Design to Energy Efficiency Investments

    E-Print Network [OSTI]

    Lee, Hyun Woo

    2012-01-01T23:59:59.000Z

    Energy Saving Perform Energy Audit Develop Options of EnergyEnergy Retrofit Perform Energy Audit Evaluate Proposals andan investment- grade energy audit. The consultant develops

  11. Investigation of design options for improving the energy efficiency of conventionally designed refrigerator-freezers

    SciTech Connect (OSTI)

    Sand, J.R.; Vineyard, E.A. [Oak Ridge National Lab., TN (United States); Bohman, R.H. [Consulting Engineer, Cedar Rapids, IA (United States)

    1993-11-01T23:59:59.000Z

    Several design options for improving the energy efficiency of conventionally-designed, domestic refrigerator freezers (RFs) were incorporated into two 1990 production RF cabinets and refrigeration systems. The baseline performance of the original units and unit components were extensively documented to provide a firm basis for experimentally measured energy savings. A detailed refrigerator system computer model which could simulate cycling behavior was used to evaluate the daily energy use impacts for each modification, and modeled versus experimental results are compared. The model was shown to track measured RF performance improvement sufficiently well that it was used with some confidence to investigate additional options that could not be experimentally investigated. Substantial improvements in RF efficiency were demonstrated with relatively minor changes in system components and refrigeration circuit design. However, each improvement exacts a penalty in terms of increased cost or system complexity/reliability. For RF sizes typically sold in the United States (18-22 ft{sup 3} [510--620 1]), alternative, more-elaborate, refrigeration cycles may be required to achieve the program goal (1.00 Kilowatt-hour per day for a 560 l, top mount RF.

  12. DOE Zero Energy Ready Home Case Study, Ferguson Design and Constructio...

    Energy Savers [EERE]

    Home Case Study, Ferguson Design and Construction, Inc., Sagaponak, NY, Custom Home DOE Zero Energy Ready Home Case Study, Ferguson Design and Construction, Inc., Sagaponak, NY,...

  13. Integration of energy analyses in design through the use of microcomputers

    E-Print Network [OSTI]

    Krinkel, David L

    1983-01-01T23:59:59.000Z

    Social, economic, and professional forces are compelling architectural designers to evaluate the effects of design decisions upon environmental comfort and energy efficiency in buildings. Siting, massing, locations of ...

  14. Residential Retrofit Design Guide Overview | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Residential Retrofit Design Guide Overview Residential Retrofit Design Guide Overview Residential Retrofit Design Guide Overview Webinar. Res Retro Design Guide Webinar 5-3-11...

  15. Conceptual design and engineering studies of adiabatic compressed air energy storage (CAES) with thermal energy storage

    SciTech Connect (OSTI)

    Hobson, M.J.

    1981-11-01T23:59:59.000Z

    The objective of this study was to perform a conceptual engineering design and evaluation study and to develop a design for an adiabatic CAES system using water-compensated hard rock caverns for compressed air storage. The conceptual plant design was to feature underground containment for thermal energy storage and water-compensated hard rock caverns for high pressure air storage. Other design constraints included the selection of turbomachinery designs that would require little development and would therefore be available for near-term plant construction and demonstration. The design was to be based upon the DOE/EPRI/PEPCO-funded 231 MW/unit conventional CAES plant design prepared for a site in Maryland. This report summarizes the project, its findings, and the recommendations of the study team; presents the development and optimization of the plant heat cycle and the selection and thermal design of the thermal energy storage system; discusses the selection of turbomachinery and estimated plant performance and operational capability; describes the control system concept; and presents the conceptual design of the adiabatic CAES plant, the cost estimates and economic evaluation, and an assessment of technical and economic feasibility. Particular areas in the plant design requiring further development or investigation are discussed. It is concluded that the adiabatic concept appears to be the most attractive candidate for utility application in the near future. It is operationally viable, economically attractive compared with competing concerns, and will require relatively little development before the construction of a plant can be undertaken. It is estimated that a utility could start the design of a demonstration plant in 2 to 3 years if research regarding TES system design is undertaken in a timely manner. (LCL)

  16. Design and installation manual for thermal energy storage

    SciTech Connect (OSTI)

    Cole, R L; Nield, K J; Rohde, R R; Wolosewicz, R M

    1980-01-01T23:59:59.000Z

    The purpose of this manual is to provide information on the design and installation of thermal energy storage in active solar systems. It is intended for contractors, installers, solar system designers, engineers, architects, and manufacturers who intend to enter the solar energy business. The reader should have general knowledge of how solar heating and cooling systems operate and knowledge of construction methods and building codes. Knowledge of solar analysis methods such as f-Chart, SOLCOST, DOE-1, or TRNSYS would be helpful. The information contained in the manual includes sizing storage, choosing a location for the storage device, and insulation requirements. Both air-based and liquid-based systems are covered with topics on designing rock beds, tank types, pump and fan selection, installation, costs, and operation and maintenance. Topics relevant to latent heat storage include properties of phase-change materials, sizing the storage unit, insulating the storage unit, available systems, and cost. Topics relevant to heating domestic water include safety, single- and dual-tank systems, domestic water heating with air- and liquid-based space heating systems, and stand alone domestics hot water systems. Several appendices present common problems with storage systems and their solutions, heat transfer fluid properties, economic insulation thickness, heat exchanger sizing, and sample specifications for heat exchangers, wooden rock bins, steel tanks, concrete tanks, and fiberglass-reinforced plastic tanks.

  17. Co-Designing Sustainable Communities: The Identification and Incorporation of Social Performance Metrics in Native American Sustainable Housing and Renewable Energy System Design

    E-Print Network [OSTI]

    Shelby, Ryan

    2013-01-01T23:59:59.000Z

    systems and sustainable building design and development (inspired sustainable building design and the whole buildinginspired Sustainable Building Design & Energy Analysis 5

  18. Designing Radiation Resistance in Materials for Fusion Energy

    SciTech Connect (OSTI)

    Zinkle, Steven J [University of Tennessee (UT)] [University of Tennessee (UT); Snead, Lance Lewis [ORNL] [ORNL

    2014-01-01T23:59:59.000Z

    Proposed fusion and advanced (Generation IV) fission energy systems require high performance materials capable of satisfactory operation up to neutron damage levels approaching 200 atomic displacements per atom with large amounts of transmutant hydrogen and helium isotopes. After a brief overview of fusion reactor concepts and radiation effects phenomena in structural and functional (non-structural) materials, three fundamental options for designing radiation resistance are outlined: Utilize matrix phases with inherent radiation tolerance, select materials where vacancies are immobile at the design operating temperatures, or construct high densities of point defect recombination sinks. Environmental and safety considerations impose several additional restrictions on potential materials systems, but reduced activation ferritic/martensitic steels (including thermomechanically treated and oxide dispersion strengthened options) and silicon carbide ceramic composites emerge as robust structural materials options. Materials modeling (including computational thermodynamics) and advanced manufacturing methods are poised to exert a major impact in the next ten years.

  19. National Geothermal Data System Design and Testing | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:Year in3.pdfEnergy HealthCommentsAugust 2012NEVADA SPARKSNVEnergyDesign and Testing

  20. Developing an integrated building design tool by coupling building energy simulation and computational fluid dynamics programs

    E-Print Network [OSTI]

    Zhai, Zhiqiang, 1971-

    2003-01-01T23:59:59.000Z

    Building energy simulation (ES) and computational fluid dynamics (CFD) can play important roles in building design by providing essential information to help design energy-efficient, thermally comfortable and healthy ...

  1. Development of the Advanced Energy Design Guide for K-12 Schools -- 50% Energy Savings

    SciTech Connect (OSTI)

    Bonnema, E.; Leach, M.; Pless, S.; Torcellini, P.

    2013-02-01T23:59:59.000Z

    This Technical Support Document (TSD) describes the process and methodology for the development of the Advanced Energy Design Guide for K-12 School Buildings: Achieving 50% Energy Savings Toward a Net Zero Energy Building (AEDG-K12) (ASHRAE et al. 2011a). The AEDG-K12 provides recommendations for achieving 50% whole-building energy savings in K-12 schools over levels achieved by following ANSI/ASHRAE/IESNA Standard 90.1-2004, Energy Standard for Buildings Except Low-Rise Residential Buildings (Standard 90.1-2004) (ASHRAE 2004b). The AEDG-K12 was developed in collaboration with the American Society of Heating, Refrigerating and Air-Conditioning Engineers (ASHRAE), the American Institute of Architects (AIA), the Illuminating Engineering Society of North America (IES), the U.S. Green Building Council (USGBC), and the U.S. Department of Energy (DOE).

  2. Model Reduction for Indoor-Air Behavior in Control Design for Energy-Efficient Buildings

    E-Print Network [OSTI]

    Gugercin, Serkan

    Model Reduction for Indoor-Air Behavior in Control Design for Energy-Efficient Buildings Jeff models for the indoor-air environment in control design for energy efficient buildings. In one method by a desire to incorporate models of the indoor-air environment in the design of energy efficient buildings

  3. Energy Efficient Design in MIMO Multicell Systems with Time Average QoS Constraints

    E-Print Network [OSTI]

    Boyer, Edmond

    1 Energy Efficient Design in MIMO Multicell Systems with Time Average QoS Constraints Subhash Abstract--In this work, we address the issue of energy efficient design in a MIMO multi-cell network. Energy efficient design in cellular networks addresses the concerns of ICT related carbon emissions [1

  4. Resilient Design Methodology for Energy-Efficient SRAM by Brian Zimmer

    E-Print Network [OSTI]

    Asanoviæ, Krste

    Resilient Design Methodology for Energy-Efficient SRAM by Brian Zimmer Research Project Submitted. Asanovi´c Research Advisor Date #12;Resilient Design Methodology for Energy-Efficient SRAM Brian Zimmer, tolerating variability with resilient designs can prevent these limitations and enable future energy-efficiency

  5. Application of Target Value Design to Energy Efficiency Investments

    E-Print Network [OSTI]

    Lee, Hyun Woo

    2012-01-01T23:59:59.000Z

    approaches. Integrated Design regards building systems asof Integrated Design for Sustainable Building, John Wiley &of Integrated Design in whole- building simulation programs

  6. Events Beyond Design Safety Basis Analysis | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Events Beyond Design Safety Basis Analysis Events Beyond Design Safety Basis Analysis March 23, 2011 Safety Bulletin 2011-01, Events Beyond Design Safety Basis Analysis This Safety...

  7. Application of Target Value Design to Energy Efficiency Investments

    E-Print Network [OSTI]

    Lee, Hyun Woo

    2012-01-01T23:59:59.000Z

    22 Definition of Energy Efficiency in Commercialor ENERGY STAR certified. Definition of Energy Efficiency inDefinition 122 Developing Feasible Energy

  8. Energy Aware Algorithm Design via Probabilistic Computing: From Algorithms and Models to Moore's Law

    E-Print Network [OSTI]

    Palem, Krishna V.

    Energy Aware Algorithm Design via Probabilistic Computing: From Algorithms and Models to Moore opportunities for being energy-aware, the most fundamental limits are truly rooted in the physics of energy of models of computing for energy-aware al- gorithm design and analysis, culminating in establishing

  9. Optimal Energy Consumption Scheduling Using Mechanism Design for the Future Smart Grid

    E-Print Network [OSTI]

    Wong, Vincent

    Optimal Energy Consumption Scheduling Using Mechanism Design for the Future Smart Grid Pedram may need to collect various information about users and their energy consumption behavior, which can the total energy cost. Our design requires that each user provides some information about its energy demand

  10. Hot-and-Cold: Using Criticality in the Design of Energy-Efficient Caches Rajeev Balasubramonian

    E-Print Network [OSTI]

    Dwarkadas, Sandhya

    Hot-and-Cold: Using Criticality in the Design of Energy-Efficient Caches Rajeev Balasubramonian is designed to be highly energy-efficient (consuming 20% of the dynamic and leakage energy of the hot cache not in the critical path are serviced by a lower energy (and lower performance (cold)) cache bank. The resulting

  11. Postdoctoral Scholar position Area: SUSTAINABLE ENERGY FUTURES SCENARIO DESIGN AND APPLICATIONS

    E-Print Network [OSTI]

    de Leon, Alex R.

    Postdoctoral Scholar position Area: SUSTAINABLE ENERGY FUTURES SCENARIO DESIGN AND APPLICATIONS Fellow in SUSTAINABLE ENERGY Job Description: The Enbridge Centre for Corporate Sustainability-doctoral fellow to explore how energy companies engage in planning for sustainable futures. More specifically

  12. Technical Support Document: Development of the Advanced Energy Design Guide for Large Hospitals - 50% Energy Savings

    SciTech Connect (OSTI)

    Bonnema, E.; Leach, M.; Pless, S.

    2013-06-01T23:59:59.000Z

    This Technical Support Document describes the process and methodology for the development of the Advanced Energy Design Guide for Large Hospitals: Achieving 50% Energy Savings Toward a Net Zero Energy Building (AEDG-LH) ASHRAE et al. (2011b). The AEDG-LH is intended to provide recommendations for achieving 50% whole-building energy savings in large hospitals over levels achieved by following Standard 90.1-2004. The AEDG-LH was created for a 'standard' mid- to large-size hospital, typically at least 100,000 ft2, but the strategies apply to all sizes and classifications of new construction hospital buildings. Its primary focus is new construction, but recommendations may be applicable to facilities undergoing total renovation, and in part to many other hospital renovation, addition, remodeling, and modernization projects (including changes to one or more systems in existing buildings).

  13. Role of Modeling When Designing for Absolute Energy Use Intensity Requirements in a Design-Build Framework: Preprint

    SciTech Connect (OSTI)

    Hirsch, A.; Pless, S.; Guglielmetti, R.; Torcellini, P. A.; Okada, D.; Antia, P.

    2011-03-01T23:59:59.000Z

    The Research Support Facility was designed to use half the energy of an equivalent minimally code-compliant building, and to produce as much renewable energy as it consumes on an annual basis. These energy goals and their substantiation through simulation were explicitly included in the project's fixed firm price design-build contract. The energy model had to be continuously updated during the design process and to match the final building as-built to the greatest degree possible. Computer modeling played a key role throughout the design process and in verifying that the contractual energy goals would be met within the specified budget. The main tool was a whole building energy simulation program. Other models were used to provide more detail or to complement the whole building simulation tool. Results from these specialized models were fed back into the main whole building simulation tool to provide the most accurate possible inputs for annual simulations. This paper will detail the models used in the design process and how they informed important program and design decisions on the path from preliminary design to the completed building.

  14. Application of Target Value Design to Energy Efficiency Investments

    E-Print Network [OSTI]

    Lee, Hyun Woo

    2012-01-01T23:59:59.000Z

    and Examples. ” Energy Efficiency, 2(2), 139-163. Horman, M.288 pp. IBEF (2011). “Energy Efficiency Indicator: GlobalInstitute for Building Energy Efficiency (IBEF), Washington

  15. Rational Material Architecture Design for Better Energy Storage

    E-Print Network [OSTI]

    Chen, Zheng

    2012-01-01T23:59:59.000Z

    energy and power storage systems, Renewable and Sustainable Energyeconomical and sustainable energy storage devices. Moreover,performance and sustainable energy storage systems. Figure.

  16. Rational Material Architecture Design for Better Energy Storage

    E-Print Network [OSTI]

    Chen, Zheng

    2012-01-01T23:59:59.000Z

    onto carbon nanotubes for energy-storage applications.and Carbon Nanotubes, Advanced Energy Materials, 2011, 1,Energy Storage Architectures from Carbon Nanotubes and

  17. Thermochemical energy storage systems: modelling, analysis and design.

    E-Print Network [OSTI]

    Haji Abedin, Ali

    2010-01-01T23:59:59.000Z

    ??Thermal energy storage (TES) is an advanced technology for storing thermal energy that can mitigate environmental impacts and facilitate more efficient and clean energy systems.… (more)

  18. Energy Security: a robust optimization approach to design a robust ...

    E-Print Network [OSTI]

    2010-06-11T23:59:59.000Z

    Energy supply routes to a given TIAM region (say E.U.) are subject to .... equilibrium on energy/emission markets where demands for energy services are exoge-.

  19. Application of Target Value Design to Energy Efficiency Investments

    E-Print Network [OSTI]

    Lee, Hyun Woo

    2012-01-01T23:59:59.000Z

    Buildings to Be Green and Energy-Efficient: Optimizingdevelopment such as green buildings and energy-efficientin making their properties green or energy efficient (mostly

  20. Application of Target Value Design to Energy Efficiency Investments

    E-Print Network [OSTI]

    Lee, Hyun Woo

    2012-01-01T23:59:59.000Z

    for 39% of the US primary energy consumption, and of that,2-­?? 5: Energy Consumption within the US Building Sector inreduce energy consumption in the US. Total Buildings

  1. Rational Material Architecture Design for Better Energy Storage

    E-Print Network [OSTI]

    Chen, Zheng

    2012-01-01T23:59:59.000Z

    for electrochemical energy storage. Adv. Funct. Mater. 2009,electrochemical capacitive energy storage. Angew. Chem. Int.for Electrochemical Energy Storage. Adv. Funct. Mater. 2009,

  2. Innovative High Energy Density Capacitor Design Offers Potential...

    Broader source: Energy.gov (indexed) [DOE]

    like TroyCap's High Density Energy Nanolaminate Capacitor (HEDCAP) that may offer new clean energy applications to meet the nation's strategic energy goals and secure...

  3. Design Considerations for Solar Energy Harvesting Wireless Embedded Systems

    E-Print Network [OSTI]

    Raghunathan, Vijay; Kansal, Aman; Hsu, Jason; Friedman, Jonathan K; Srivastava, Mani B

    2005-01-01T23:59:59.000Z

    sensor node using our solar energy harvesting module. VI. CDesign Considerations for Solar Energy Harvesting Wirelessfactors. For example, solar energy supply is highly time

  4. Implementing a Hydrogen Energy Infrastructure: Storage Options and System Design

    E-Print Network [OSTI]

    Ogden, Joan M; Yang, Christopher

    2005-01-01T23:59:59.000Z

    to International Journal of Hydrogen Energy (November 2005).05—28 Implementing a Hydrogen Energy Infrastructure: StorageImplementing a Hydrogen Energy Infrastructure: Storage

  5. Water-related planning and design at energy firms

    SciTech Connect (OSTI)

    Abbey, D; Lucero, F

    1980-11-01T23:59:59.000Z

    Water related planning and design at energy firms are examined. By identifying production alternatives and specifying the cost of these alternatives under a variety of conditions, one gains insight into the future pattern of water use in the energy industry and the response of industry to water-related regulation. In Part II, the three principal decisions of industry that affect water allocation are reviewed: where to build plants, where to get water, and how much water to use. The cost of water use alternatives is reviewed. Part III presents empirical data to substantiate the inferences derived from engineering/economic analysis. The source of water, type of cooling system, and pattern of discharge for electric plants constructed during the 1970s or projected to come on line in this decade are reported. In the 1970s in the US, there was a trend away from once-through cooling toward use of evaporative cooling. Freshwater, as a source of supply, and discharge of effluent were standard practice. In the 1980s, almost all new capacity in the states and basins surveyed will use evaporative cooling. It is pointed out that a thorough understanding of industrial water use economics and water markets is a precursor to successful regulation.

  6. Rational Material Architecture Design for Better Energy Storage

    E-Print Network [OSTI]

    Chen, Zheng

    2012-01-01T23:59:59.000Z

    Webb, C. Nelson, Compressed Air Energy Storage in Hard RockEnergy Program: Compressed Air Energy Storage, United StatesOn the other hand, compressed air energy storage is based on

  7. Money for Research, Not for Energy Bills: Finding Energy and Cost Savings in High Performance Computer Facility Designs

    SciTech Connect (OSTI)

    Drewmark Communications; Sartor, Dale; Wilson, Mark

    2010-07-01T23:59:59.000Z

    High-performance computing facilities in the United States consume an enormous amount of electricity, cutting into research budgets and challenging public- and private-sector efforts to reduce energy consumption and meet environmental goals. However, these facilities can greatly reduce their energy demand through energy-efficient design of the facility itself. Using a case study of a facility under design, this article discusses strategies and technologies that can be used to help achieve energy reductions.

  8. A new "In-Use Energy consumption" indicator for the design of energy efficient electr(on)ics

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    A new "In-Use Energy consumption" indicator for the design of energy efficient electr(on)ics Lucie(on)ic equipment is proposed for illustration purposes. Keywords: Energy efficiency; energy consumption; electric version received 23 February 2011) One of the challenging environmental issues faced by the electr

  9. ENERGY-EFFICIENT AND PARAMETERIZED DESIGNS FOR FAST FOURIER TRANSFORM ON FPGAS

    E-Print Network [OSTI]

    Jang, Ju-Wook

    , mobile devices. One such energy con- scious application is software-defined radio (SDR) [4]. A FPGA implemented and simulated a set of designs on Xilinx Virtex-II FPGA using Xilinx ISE tools to ob- tain energyENERGY-EFFICIENT AND PARAMETERIZED DESIGNS FOR FAST FOURIER TRANSFORM ON FPGAS Seonil Choi1 , Gokul

  10. Integrated mechatronic design of precision and energy saving electro-hydraulic systems

    E-Print Network [OSTI]

    Yao, Bin

    - 360 - Integrated mechatronic design of precision and energy saving electro-hydraulic systems Bin less energy consumption are the goals for the design of any industrial systems including electro-hydraulics on the precision and energy saving control of electro-hydraulic systems. Specifically, instead of the traditional

  11. Energy-efficient wireless communication net-work design is an important and challenging

    E-Print Network [OSTI]

    methodology achieves over traditional design methodologies, and the trade- off between energy consumption communication system and understand the trade-off between performance and energy consumption in each individualABSTRACT Energy-efficient wireless communication net- work design is an important and challenging

  12. TREND: Toward Real Energy-efficient Network Design Marco Ajmone Marsan

    E-Print Network [OSTI]

    Wichmann, Felix

    TREND: Toward Real Energy-efficient Network Design Marco Ajmone Marsan Politecnico di of the TREND (Toward Real Energy-efficient Network Design) Network of Excellence of the European Commission 7th at wireless access networks, core networks, and content distribution issues. Keywords ­ energy-efficient

  13. On Energy-Aware Communication and Control Co-design in Wireless Networked Control Systems

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    On Energy-Aware Communication and Control Co-design in Wireless Networked Control Systems Nicolas that concern energy-aware management in wireless communication and control co-design. It is argued focus on advances that concern energy-aware management in communication and control co- This work

  14. Energy-Efficient Modulation Design for Reliable Communication in Wireless Networks

    E-Print Network [OSTI]

    Gursoy, Mustafa Cenk

    Energy-Efficient Modulation Design for Reliable Communication in Wireless Networks Qing Chen transmit power scenarios. We have noted that variable power schemes can attain higher energy-efficiencies. The analysis of energy-efficient modulation design is also conducted in multi- hop linear networks

  15. Designing of Hybrid Power Generation System using Wind energy- Photovoltaic Solar energy- Solar energy with Nanoantenna

    E-Print Network [OSTI]

    All the natural wastage energies are used for production of Electricity. Thus, the Electrical Power or Electricity is available with a minimum cost and pollution free to anywhere in the world at all times. This process reveals a unique step in electricity generation and availability from natural resources without hampering the ecological balance. This paper describes a new and evolving Electrical Power Generation System by integrating simultaneously photovoltaic Solar Energy, solar Energy with Nano-antenna, Wind Energy and non conventional energy sources. We can have an uninterrupted power supply irrespective of the natural condition without any sort of environmental pollution. Moreover this process yields the least production cost for electricity generation. Utilization of lightning energy for generation of electricity reveals a new step. The set-up consists of combination of photo-voltaic solar-cell array & Nano-anteena array, a mast mounted wind generator, lead-acid storage batteries, an inverter unit to convert DC power to AC power, electrical lighting loads and electrical heating loads, several fuse and junction boxes and associated wiring, and test instruments for measuring voltages, currents, power factors, and harmonic contamination data throughout the system. This hybrid solar-wind power generating system will extensively use in the Industries and also in external use like home appliance.

  16. Improvements to building energy usage modeling during early design stages and retrofits

    E-Print Network [OSTI]

    Mandelbaum, Andrew (Andrew Joseph)

    2014-01-01T23:59:59.000Z

    A variety of improvements to the MIT Design Advisor, a whole-building energy usage modeling tool intended for use during early design stages, are investigated. These include changes to the thermal mass temperature distribution ...

  17. Green Streets/Safe Routes

    E-Print Network [OSTI]

    Gietema, W.

    2011-01-01T23:59:59.000Z

    Energy Efficient Neighborhood Design William Gietema Arcadia Realty The Human Transect Community Design 58 Hours Texas Transportation Institute 79 Hours NCTCOG Where We Are Really Driving To Parents driving their children to school... Walking and Biking to School Transportation Issues NCTCOG Smart-Growth Neighborhood Feature Preferences Source: National Association of Realtors & Smart Growth America, 2004. Residential Collectors ...

  18. Project title: Natural ventilation, solar heating and integrated low-energy building design

    E-Print Network [OSTI]

    2009-07-10T23:59:59.000Z

    emissions targets. That is why the Cambridge-MIT Institute set up a project to design buildings that consume less energy. The Challenge Their work focuses on the design of energy efficient buildings that use natural ventilation processes, solar... Awards E-stack brings a breath of fresh air to UK schools HOME ABOUT US FUNDING OPPORTUNITIES PROJECTS EDUCATION NEWS EVENTS DOWNLOADS CONTACT US PROJECTS Natural Ventilation Solar Heating and Integrated Low-Energy Building Design SEARCH: Go Page 1...

  19. The Combination of Renewable Energy Effective Use and Architecture Design

    E-Print Network [OSTI]

    Zhou, Y.

    2006-01-01T23:59:59.000Z

    Through introducing the renewable energy and its characteristics, it is illuminated that renewable energy use has much superiority. At the same time, through introducing renewable energy technology, which is used in architecture, and elaborating...

  20. Rational Material Architecture Design for Better Energy Storage.

    E-Print Network [OSTI]

    Chen, Zheng

    2012-01-01T23:59:59.000Z

    ??Human civilization relies on an abundant and sustainable supply of energy. Rapidly increasing energy consumption in past decades has resulted in a fossil-fuel shortage and… (more)

  1. Rational Material Architecture Design for Better Energy Storage

    E-Print Network [OSTI]

    Chen, Zheng

    2012-01-01T23:59:59.000Z

    renewable energy will be a leading factor contributing to total energy growthenergy growth (right). [4] (toe: term of oil equivalent) In this context, clean, safe and renewable

  2. Jump-Starting Zero Energy Home Design and Student Careers | Department...

    Broader source: Energy.gov (indexed) [DOE]

    of Minnesota team created a home design that meets the unique challenges of the state's climate -- extreme winter cold and hot, humid summers -- while minimizing energy use. |...

  3. Zero Energy Ready Home Program: Race to Zero Student Design Competitio...

    Office of Environmental Management (EM)

    Home Student Design Competition Inspiring and Building the Next Generation of Residential Energy Professionals Montage Builders Northern Forest, Ryerson University Selected as...

  4. Designing New Alloys to be Used in New Energy Conversion Technologies

    ScienceCinema (OSTI)

    Dr. Omer Dogan

    2010-09-01T23:59:59.000Z

    Dr. Omer Dogan of NETL Albany discusses using computer simulation and modeling to design new alloys to be used in new energy conversion technologies.

  5. How to Design and Market Energy Efficiency Programs to Specific Neighborhoods

    Broader source: Energy.gov [DOE]

    This presentation, given through the DOE's Technical Assitance Program (TAP), identifies how to design and market energy efficiency programs to specific neighborhoods.

  6. Representation of thermal energy in the design process

    E-Print Network [OSTI]

    Roth, Shaun

    1995-01-01T23:59:59.000Z

    The goal of thermal design is to go beyond the comfort zone. In spatial design architects don't just look up square footage requirements and then draw a rectangle that satisfies the givens. There must be an interpretation. ...

  7. Design of Safer High-Energy Density Materials for Lithium-Ion...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    of Safer High-Energy Density Materials for Lithium-Ion Cells Design of Safer High-Energy Density Materials for Lithium-Ion Cells 2012 DOE Hydrogen and Fuel Cells Program and...

  8. Voith High Efficiency HM Rotor Energy Data, A Repulper Rotor Design Case Study

    E-Print Network [OSTI]

    Aue, J.; Fineran, B.

    2005-01-01T23:59:59.000Z

    A recently completed demonstration project, funded partly by the Wisconsin Focus on Energy program and Wisconsin Public Service Corporation, shows the effectiveness of an energy efficient repulper rotor design compared with that of a conventional...

  9. Design of a hybrid energy-generation system for autonomous kayaks

    E-Print Network [OSTI]

    Plumer, Kevin E. (Kevin Edward)

    2010-01-01T23:59:59.000Z

    The goal of this research is to design and analyze a series-hybrid energy-production system for an autonomous kayak. Currently these vehicles have limited range due to energy storage in lead acid batteries. Extending the ...

  10. The design of low-frequency, low-g piezoelectric micro energy harvesters

    E-Print Network [OSTI]

    Xu, Ruize, S.M. Massachusetts Institute of Technology

    2012-01-01T23:59:59.000Z

    A low-frequency, low-g piezoelectric MEMS energy harvester has been designed. Theoretically, this new generation energy harvester will generate electric power from ambient vibrations in the frequency range of 200~30OHz at ...

  11. Design and Evaluation of an Energy Agile Computing Andrew Krioukov

    E-Print Network [OSTI]

    California at Irvine, University of

    - scale energy storage. Thus, it will be crucial to have energy agile loads: electric loads that can with energy storage alone would require sufficient battery capacity to run a cluster for five hours. 1 Introduction Transitioning from fossil fuels to the use of sustainable energy sources is one of the most

  12. Interfacial Properties and Design of Functional Energy Materials

    SciTech Connect (OSTI)

    Sumpter, Bobby G [ORNL] [ORNL; Liang, Liangbo [ORNL] [ORNL; Nicolai, Adrien [Rensselaer Polytechnic Institute (RPI)] [Rensselaer Polytechnic Institute (RPI); Meunier, V. [Rensselaer Polytechnic Institute (RPI)] [Rensselaer Polytechnic Institute (RPI)

    2014-01-01T23:59:59.000Z

    The vital importance of energy to society continues to demand a relentless pursuit of energy responsive materials that can bridge fundamental chemical structures at the molecular level and achieve improved functionality, such as efficient energy conversion/storage/transmission, over multiple length scales. This demand can potentially be realized by harnessing the power of self-assembly a spontaneous process where molecules or much larger entities form ordered aggregates as a consequence of predominately non-covalent (weak) interactions. Self-assembly is the key to bottom-up design of molecular devices, because the nearly atomic-level control is very difficult to realize in a top-down, e.g., lithographic approach. However, while function (e.g., charge mobility) in simple systems such as single crystals can often be predicted, predicting the function of the great variety of self-assembled molecular architectures is complicated by the lack of understanding and control over nanoscale interactions, mesoscale architectures, and macroscale (long-range) order. To establish a foundation toward delivering practical solutions, it is critical to develop an understanding of the chemical and physical mechanisms responsible for the self-assembly of molecular and hybrid materials on various substrates. Typically molecular self-assembly involves poorly understood non-covalent intermolecular and substrate-molecule interactions compounded by local and/or collective influences from the substrate atomic lattice (symmetry and/or topological features) and electronic structure. Thus, progress towards unraveling the underlying physicochemical processes that control the structure and macroscopic physical, mechanical, electrical, and transport properties of materials increasingly requires tight integration of theory, modeling and simulation with precision synthesis, advanced experimental characterization, and device measurements. In this mode, theory and simulation can greatly accelerate the process of materials discovery by providing atomic level understanding of physicochemical phenomena and for making predictions of trends. In particular, this approach can provide understanding, prediction and exploration of new materials and conditions before they are realized in the lab, to illuminate connections between experimental observations, and help identify new materials for targeted synthesis. Toward this end, Density Functional Theory (DFT) can provide a suitable computational framework for investigating the inter- and intramolecular bonding, molecular conformation, charge and spin configurations that are intrinsic to self-assembly of molecules on substrates. This Account highlights recent advances in using an integrated approach based on DFT and scanning probe microscopy [STM(s), AFM] to study/develop electronic materials formed from the self-assembly of molecules into supramolecular or polymeric architectures on substrates. Here it is the interplay between molecular interactions and surface electrons that is used to control the final architecture and subsequent bulk properties of the two-dimensional patterns/assemblies. Indeed a rich variety of functional energy materials become possible.

  13. Technical Support Document: 50% Energy Savings Design Technology Packages for Highway Lodging Buildings

    SciTech Connect (OSTI)

    Jiang, Wei; Gowri, Krishnan; Lane, Michael D.; Thornton, Brian A.; Rosenberg, Michael I.; Liu, Bing

    2009-09-28T23:59:59.000Z

    This Technical Support Document (TSD) describes the process, methodology and assumptions for development of the 50% Energy Savings Design Technology Packages for Highway Lodging Buildings, a design guidance document intended to provide recommendations for achieving 50% energy savings in highway lodging properties over the energy-efficiency levels contained in ANSI/ASHRAE/IESNA Standard 90.1-2004, Energy Standard for Buildings Except Low-Rise Residential Buildings.

  14. An automated tool for evaluating compliance and providing assistance with building energy standards during design

    SciTech Connect (OSTI)

    Quadrel, R.W.; Brambley, M.R.; Stratton, R.C.

    1992-04-30T23:59:59.000Z

    In an effort to encourage the maximum cost-effective level of energy efficiency in new building design, energy-efficiency standards have become more location-specific and performance-based. As a result, standards often provide more than one path for ensuring and demonstrating that a design complies, but at the cost of increased complexity. In addition, the burden of remedying a noncompliant design rests on the designers` knowledge and experience, with only general guidance provided by the standards. As part of efforts in the US Department of Energy`s (DOE`s) Advanced Energy Design and Operation Technologies (AEDOT) project, a team at DOE`s Pacific Northwest Laboratory is developing a computer program known as the Energy Standards Intelligent Design Tool (ES-IDT). The ES-IDT is one component of a prototype computer-based building design environment. It performs automatic compliance checking for parts of ASHRAE/IES Standard 90.1-1989 and provides designers assistance in bringing noncomplying designs into compliance. This paper describes the ES-IDT, the functions it provides, and how it is integrated into the design process via the AEDOT prototype building design environment. 9 refs.

  15. DESIGN FOR ENERGY EFFICIENCY: PROPOSITION OF A GUIDELINES-BASED TOOL

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    1 DESIGN FOR ENERGY EFFICIENCY: PROPOSITION OF A GUIDELINES-BASED TOOL J. Bonvoisin, F. Mathieux, L. Domingo, and D. Brissaud Keywords: ecodesign, energy efficiency, guideline, energy using products (Eu. In spite of all the improvements made to the energy efficiency of several appliances, the savings

  16. Above Ground Geothermal and Allied Technologies Masters Scholarship in Energy & Materials: design of a rig

    E-Print Network [OSTI]

    Hickman, Mark

    Above Ground Geothermal and Allied Technologies Masters Scholarship in Energy & Materials: design into the largest green energy resources; industrial waste heat, biomass combustion and geothermal energy. Research of geothermal energy after completing the degree. Proficiency in English is essential. Contact: mark

  17. Cluster Before You Hallucinate: Approximating Node-Capacitated Network Design and Energy Efficient Routing

    E-Print Network [OSTI]

    Treuille, Adrien

    this energy usage is an important problem. Ac- cording to the US Department of Energy [1], data networks,4,6,10]. In the Energy Efficient Vertex Routing Problem (EEVRP), the input consists of an undirected multi-graph G = (VCluster Before You Hallucinate: Approximating Node-Capacitated Network Design and Energy Efficient

  18. Energy-aware 3-level coding and control co-design for sensor network systems

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    Energy-aware 3-level coding and control co-design for sensor network systems CARLOS CANUDAS energy consumption (energy-aware). To this aim, we propose to use a coding strategy with the ability that this coding algorithm preserves closed loop stability. Index Terms-- Control of sensor networks, energy-aware

  19. Mechanism design for aggregating energy consumption and quality of service in speed

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    in a way that minimizes energy while respecting the jobs' deadlines. The energy consumption is then chargedScale. Higher speed means that jobs finish earlier at the price of a higher energy consumption. Each job hasMechanism design for aggregating energy consumption and quality of service in speed scaling

  20. NEW MOTOR DESIGN CONCEPT FOR ENERGY SAVING APPLIED TO

    E-Print Network [OSTI]

    -Mari Tataru Kjær Institute of Energy Technology, Aalborg University #12;#12;i Preface This thesis is submitted Ewen Ritchie and Associate Professor Peter Omand Rasmussen, both of the Institute of Energy Technology

  1. Design and Predictive Control of a Net Zero Energy Home

    E-Print Network [OSTI]

    Morelli, F.; Abbarno, N.; Boese, E.; Bullock, J.; Carter, B.; Edwards, R.; Lapite, O.; Mann, D.; Mulvihill, C.; Purcell, E.; Stein, M. IV; Rasmussen, B. P.

    2013-01-01T23:59:59.000Z

    the same amount of light as traditional incandescent bulbs with less energy. Incandescent bulbs are inherently inefficient as most of the energy they consume goes towards heat generation. Compact fluorescent (CFL) and light emitting diode (LED) bulbs... as heat [1]. Compact fluorescent lamps (CFLs) and Light Emitting Diodes (LEDs) were analyzed in comparison with incandescent lamps. To determine the most energy efficient bulb, energy consumption for each type of bulb is needed. To do this, the amount...

  2. Design and Analysis for a Floating Oscillating Surge Wave Energy Converter: Preprint

    SciTech Connect (OSTI)

    Yu, Y. H.; Li, Y.; Hallett, K.; Hotimsky, C.

    2014-03-01T23:59:59.000Z

    This paper presents a recent study on the design and analysis of an oscillating surge wave energy converter. A successful wave energy conversion design requires the balance between the design performance and cost. The cost of energy is often used as the metric to judge the design of the wave energy conversion system. It is often determined based on the device power performance, the cost for manufacturing, deployment, operation and maintenance, as well as the effort to ensure the environmental compliance. The objective of this study is to demonstrate the importance of a cost driven design strategy and how it can affect a WEC design. Three oscillating surge wave energy converter (OSWEC) designs were used as the example. The power generation performance of the design was modeled using a time-domain numerical simulation tool, and the mass properties of the design were determined based on a simple structure analysis. The results of those power performance simulations, the structure analysis and a simple economic assessment were then used to determine the cost-efficiency of selected OSWEC designs. Finally, a discussion on the environmental barrier, integrated design strategy and the key areas that need further investigation is also presented.

  3. An automated tool for evaluating compliance and providing assistance with building energy standards during design

    SciTech Connect (OSTI)

    Quadrel, R.W.; Brambley, M.R.; Stratton, R.C.

    1992-04-30T23:59:59.000Z

    In an effort to encourage the maximum cost-effective level of energy efficiency in new building design, energy-efficiency standards have become more location-specific and performance-based. As a result, standards often provide more than one path for ensuring and demonstrating that a design complies, but at the cost of increased complexity. In addition, the burden of remedying a noncompliant design rests on the designers' knowledge and experience, with only general guidance provided by the standards. As part of efforts in the US Department of Energy's (DOE's) Advanced Energy Design and Operation Technologies (AEDOT) project, a team at DOE's Pacific Northwest Laboratory is developing a computer program known as the Energy Standards Intelligent Design Tool (ES-IDT). The ES-IDT is one component of a prototype computer-based building design environment. It performs automatic compliance checking for parts of ASHRAE/IES Standard 90.1-1989 and provides designers assistance in bringing noncomplying designs into compliance. This paper describes the ES-IDT, the functions it provides, and how it is integrated into the design process via the AEDOT prototype building design environment. 9 refs.

  4. Notice of proposed rulemaking, Energy Efficiency and Sustainable Design

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of EnergyEnergyENERGY TAXBalanced Scorecard Federal2EnergyDepartment ofNewsNortheastB O NStandards for

  5. Super Cool Appliance Design Wins Student Competition | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of EnergyEnergyENERGYWomenthe House Committee on EnergyEnergy Secretary ChuAs much as halfThe winners of

  6. Heteropolymer Sequence Design and Preferential Solvation of Hydrophilic Monomers: One More Application of Random Energy Model

    E-Print Network [OSTI]

    Longhua Hu; Alexander Y. Grosberg

    2007-01-24T23:59:59.000Z

    In this paper, we study the role of surface of the globule and the role of interactions with the solvent for designed sequence heteropolymers using random energy model (REM). We investigate the ground state energy and surface monomer composition distribution. By comparing the freezing transition in random and designed sequence heteropolymers, we discuss the effects of design. Based on our results, we are able to show under which conditions solvation effect improves the quality of sequence design. Finally, we study sequence space entropy and discuss the number of available sequences as a function of imposed requirements for the design quality.

  7. Field Study and Energy-Plus Benchmarks for Energy Saver Homes having Different Envelope Designs

    SciTech Connect (OSTI)

    Shrestha, Som S [ORNL] [ORNL; Childs, Kenneth W [ORNL] [ORNL; Stannard, Eric E [ORNL] [ORNL

    2012-01-01T23:59:59.000Z

    An alliance to maximize energy efficiency and cost-effective residential construction (ZEBRAlliance) built and field tested four homes that are 50 percent more energy efficient than a code compliant home. The homes are unoccupied for the duration of a two-year field study, thereby eliminating the confounding issue of occupancy habits. All homes have about the same consistent and scheduled internal load. Each home showcases a unique envelope strategy: 1) structural insulated panel (SIP), 2) optimal value wall framing (OVF), 3) advanced framing featuring the benefits of insulations mixed with phase change materials (PCM), and 4) an exterior insulation and finish system (EIFS). All homes have different weather resistive barriers (WRBs) and/or air barriers to limit air and moisture infiltration. Three homes provide space conditioning and water heating via a ground loop heat exchanger, while the fourth home uses a high efficiency air-to-air heat pump and heat pump water heater. Field performance and results of EnergyPlus V7.0 benchmarks were made for roof and attics as compared to cathedral design and for wall heat flows to validate models. The moisture content of the wall sheathing is shown to prove the protecting effectiveness of WRBs. Temperature distributions through insulations in the wall and ceiling with and without PCMs are described to characterize the performance of the PCM building envelopes.

  8. Technical Support Document: 50% Energy Savings Design Technology Packages for Medium Office Buildings

    SciTech Connect (OSTI)

    Thornton, Brian A.; Wang, Weimin; Lane, Michael D.; Rosenberg, Michael I.; Liu, Bing

    2009-09-01T23:59:59.000Z

    This Technical Support Document (TSD) describes the process and methodology for development of the Advanced Energy Design Guide for Medium Offices (AEDG-MO or the Guide), a design guidance document which intends to provide recommendations for achieving 50% energy savings in medium office buildings that just meet the requirements of ANSI/ASHRAE/IESNA Standard 90.1-2004, Energy Standard for Buildings Except Low-Rise Residential Buildings.

  9. Ground heat exchanger design for direct geothermal energy systems .

    E-Print Network [OSTI]

    COLLS, STUART

    2013-01-01T23:59:59.000Z

    ??Direct geothermal energy systems use the ground to heat and cool buildings. Ground-source heat pump (GSHP) systems are the most widespread form of direct geothermal… (more)

  10. Rational Material Architecture Design for Better Energy Storage

    E-Print Network [OSTI]

    Chen, Zheng

    2012-01-01T23:59:59.000Z

    and their cryogenic hydrogen storage capacities. J. Phys.Hydrogen Spillover for Hydrogen Storage J. Am. Chem. Soc.electrostatic energy storage, hydrogen (H 2 )-based chemical

  11. Energy Use and Design Options for Texas State Buildings

    E-Print Network [OSTI]

    Katipamula, S.; O'Neal, D. L.

    1988-01-01T23:59:59.000Z

    of improved glass type. The results are shown in Table 1. The EUI is defined as the Energy Utilization Index and is a measure of the annual energy consumption of the building in kBtu's per square foot per year. ii Table 1 - Comparison of EUI For Travis....3 ASHRAE Standard Rating Conditions &. Minimum Performance.7 2.4 California Prescriptive Standard 10 2.5 Energy Budget for Offices of Four or Habitable Stories 11 3.1 Comparison of Energy Use for Travis Building at Different Locations in Texas 14 3...

  12. Design of a water tower energy storage system .

    E-Print Network [OSTI]

    Giri, Sagar Kishor

    2013-01-01T23:59:59.000Z

    ??This project is aimed at supporting the Mizzou Advantage strategic initiative in the area of Sustainable Energy. In particular, the project focuses on preparatory studies… (more)

  13. Småhusutformning och solenergiutnyttjande; Villa Design and Solar Energy Utilization.

    E-Print Network [OSTI]

    Olofsson, Martin

    2013-01-01T23:59:59.000Z

    ?? This paper goes through solar energy and what uses it has. It is also a guide in the choice of solar collectors for the… (more)

  14. Dominican Republic-Designing and Communicating Low Carbon Energy...

    Open Energy Info (EERE)

    measures in place or planned Analysis of additional efficiency opportunities 3. Technology Assessment Assess current status of renewable energy deployment. Provide...

  15. Application of Target Value Design to Energy Efficiency Investments

    E-Print Network [OSTI]

    Lee, Hyun Woo

    2012-01-01T23:59:59.000Z

    2006). “Lean Processes for Sustainable Project Delivery. ”Green Buildings: Process Improvements for Sustainableprocess that can achieve high-performance, low- energy, sustainable

  16. Vehicle Technologies Office: Materials by Design | Department of Energy

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of EnergyEnergyENERGYWomen Owned SmallOf The 2012Nuclear GuideReport |(GATE) | Department ofEnergyby

  17. Solar Decathlon Design Models 2009 | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of EnergyEnergyENERGYWomenthe House Committee on Energy andDepartment ofAnShare your

  18. Beyond Design Basis Event Pilot Evaluations | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of EnergyEnergyENERGYWomenthe HouseStudents Heal the Land |Small18,Warren|TheEnergy TheRegionalFALLMay

  19. Fermilab Central Computing Facility: Energy conservation report and mechanical systems design optimization and cost analysis study

    SciTech Connect (OSTI)

    Krstulovich, S.F.

    1986-11-12T23:59:59.000Z

    This report is developed as part of the Fermilab Central Computing Facility Project Title II Design Documentation Update under the provisions of DOE Document 6430.1, Chapter XIII-21, Section 14, paragraph a. As such, it concentrates primarily on HVAC mechanical systems design optimization and cost analysis and should be considered as a supplement to the Title I Design Report date March 1986 wherein energy related issues are discussed pertaining to building envelope and orientation as well as electrical systems design.

  20. Geothermal Energy Utilization via Effective Design of Ground-Coupled

    E-Print Network [OSTI]

    Tennessee, University of

    Efficiency (Data Center Thermal Management and Air Flow) ­ Waste Heat Recovery in Industrial Processes ­ Reactive Flow Film Cooling in Turbine · Renewable Energy ­ Geothermal Energy Heat Exchange System ­ Bio/Alternative Fuel Combustion & Compatibility · Computational Fluid Dynamics Applications X (m) Y(m) -0.2 0 0.2 0.4 0

  1. Implications of Regional Transmission Organization Design for Renewable Energy Technologies

    SciTech Connect (OSTI)

    Porter, K.

    2002-05-01T23:59:59.000Z

    This report summarizes the development of Regional Transmission Organizations (RTOs) and assesses the potential implications of market rules for renewable energy technologies. The report focuses on scheduling provisions, as these have proved problematic in some cases for intermittent renewable energy technologies. Market rules of four RTOs-the Pennsylvania-Maryland-New Jersey ISO, the ERCOT ISO, the Midwest ISO and the New York ISO (NYISO)-were examined to determine the impact on intermittent renewable energy projects such as wind energy generators. Also, a more general look was taken at how biomass power may fare in RTOs, specifically whether these technologies can participate in ancillary service markets. Lastly, an assessment was made regarding the implications for renewable energy technologies of a Northeast-wide RTO that would combine the three existing Northeast ISOs (the aforementioned PJM and NYISOs, as well as ISO New England).

  2. Green Networks: Energy Efficient Design for Optical Networks Balagangadhar G. Bathula, Jaafar M. H. Elmirghani

    E-Print Network [OSTI]

    Bathula, Balagangadhar G

    Green Networks: Energy Efficient Design for Optical Networks Balagangadhar G. Bathula, Jaafar M. H in backbone networks such as optical networks increase. Energy consumption of optical networks is an important the energy consumption of optical networks. We propose sleep cycle protocols for use in the network nodes

  3. Cross-Layer Design for Energy-Efficient Secure Multicast Communications in Ad Hoc Networks

    E-Print Network [OSTI]

    Poovendran, Radha

    ) and the multicast routing tree (network layer property) in order to construct an energy-efficient key distributionCross-Layer Design for Energy-Efficient Secure Multicast Communications in Ad Hoc Networks Loukas, University of Washington, Seattle, WA Abstract-- We consider the problem of secure multicast in an energy

  4. The Design, Implementation, and Evaluation of a Compiler Algorithm for CPU Energy Reduction

    E-Print Network [OSTI]

    Kremer, Ulrich

    . Physical measurements on a high­performance laptop show that total system (i.e., laptop) energy savings, with a performance slowdown of 2%. It was also discovered that the energy usage of the programs using our DVSThe Design, Implementation, and Evaluation of a Compiler Algorithm for CPU Energy Reduction Chung

  5. DRAFT: NONLINEAR CONTROLLER DESIGN WITH BANDWIDTH CONSIDERATION FOR A NOVEL COMPRESSED AIR ENERGY STORAGE SYSTEM

    E-Print Network [OSTI]

    Li, Perry Y.

    regulation and gen- erator power tracking for a Compressed Air Energy Storage (CAES) system, a nonlinearDRAFT: NONLINEAR CONTROLLER DESIGN WITH BANDWIDTH CONSIDERATION FOR A NOVEL COMPRESSED AIR ENERGY available wind power in normal situations. Storing energy in high pressure compressed air is attractive

  6. A scalable and flexible hybrid energy storage system design and implementation

    E-Print Network [OSTI]

    Pedram, Massoud

    A scalable and flexible hybrid energy storage system design and implementation Younghyun Kim and flexibility. Detailed description on implementation of hybrid energy storage system prototype. Power conversion efficiency and energy storage element characteristics considered. a r t i c l e i n f o Article

  7. Designing Building Systems to Save Energy and Improve Indoor Environments: A Practical Demonstration

    E-Print Network [OSTI]

    Commission through the Public Interest Energy Research (PIER) program as Element 6 consumption from switch to gas heating; 50,931 MBtu source energy reduction; and a combined school district and the building sector continue to seek improvement in energy efficiency. Designs achieving good IEQ can

  8. Cross-Layer Design for Energy Conservation in Wireless Sensor Networks

    E-Print Network [OSTI]

    Boutaba, Raouf

    Cross-Layer Design for Energy Conservation in Wireless Sensor Networks Fatma Bouabdallah, Nizar allows significant energy conservation. On the other hand, at the MAC layer, we propose to control limit for each link, further energy conservation can be achieved, improving thus the network lifetime

  9. One Size Does Not Fit All: Applying the Transtheoretical Model to Energy Feedback Technology Design

    E-Print Network [OSTI]

    Greenberg, Saul

    to this problem. The development of energy-efficient technol- ogy (e.g. cars, homes, appliances) is one approach. While important, this is only a partial solution as people do not always use this technology in energy-efficientOne Size Does Not Fit All: Applying the Transtheoretical Model to Energy Feedback Technology Design

  10. Every Joule is Precious: The Case for Revisiting Operating System Design for Energy Efficiency

    E-Print Network [OSTI]

    Vahdat, Amin

    Every Joule is Precious: The Case for Revisiting Operating System Design for Energy Efficiency Amin, it is important to develop low-level mechanisms and higher- level policies to maximize energy efficiency and implementation from the point of view of energy efficiency rather than the more traditional OS metric

  11. Heuristic Approaches to Energy-Efficient Network Design Problem Cigdem Sengul Robin Kravets

    E-Print Network [OSTI]

    Kravets, Robin

    Heuristic Approaches to Energy-Efficient Network Design Problem Cigdem Sengul Robin Kravets@cs.uiuc.edu Abstract Energy management remains a critical problem in wire- less networks since battery technology cannot keep up with rising communication expectations. Current approaches to energy conservation reduce

  12. PROCESS DESIGN AND CONTROL Efficient Conversion of Thermal Energy into Hydrogen: Comparing Two Methods

    E-Print Network [OSTI]

    Kjelstrup, Signe

    PROCESS DESIGN AND CONTROL Efficient Conversion of Thermal Energy into Hydrogen: Comparing Two for the production of hydrogen from water and high temperature thermal energy are presented and compared. Increasing for the production of hydrogen from water has received considerable attention.1 High temperature thermal energy

  13. Energy conserving site design case study: Shenandoah, Georgia. Final report

    SciTech Connect (OSTI)

    Not Available

    1980-01-01T23:59:59.000Z

    The case study examines the means by which energy conservation can be achieved at an aggregate community level by using proper planning and analytical techniques for a new town, Shenandoah, Georgia, located twenty-five miles southwest of Atlanta's Hartsfield International Airport. A potentially implementable energy conservation community plan is achieved by a study team examining the land use options, siting characteristics of each building type, alternate infrastructure plans, possible decentralized energy options, and central utility schemes to determine how community energy conservation can be achieved by use of pre-construction planning. The concept for the development of mixed land uses as a passively sited, energy conserving community is based on a plan (Level 1 Plan) that uses the natural site characteristics, maximizes on passive energy siting requirement, and allows flexibility for the changing needs of the developers. The Level 2 Plan is identical with Level 1 plan plus a series of decentraized systems that have been added to the residential units: the single-family detached, the apartments, and the townhouses. Level 3 Plan is similar to the Level 1 Plan except that higher density dwellings have been moved to areas adjacent to central site. The total energy savings for each plan relative to the conventional plan are indicated. (MCW)

  14. Department of Energy Designates the Idaho National Laboratory Advanced Test

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of EnergyEnergyENERGYWomentheATLANTA, GA - U.S.Development ProjectsCompleted Demo Project inReactor as a

  15. Colorado - Access Permit Pre-Design Checklist | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 NoPublic Utilities Address: 160Benin:EnergyWisconsin: Energy,(EC-LEDS) | Open EnergyColony Mills LimitedNotice

  16. Voluntary Initiative: Designing Incentives Toolkit | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarlyEnergyDepartment ofDepartment of Energy While dry storage technologies areto 40%for

  17. ZERH Architect and Designer Partnership Agreement | Department of Energy

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of EnergyEnergyENERGYWomen Owned SmallOf TheViolations |Join theZ:\ENROLL\H1.ENR Z:\ENROLL\H1.ENRArchitect

  18. Rule to Support Increased Energy Measurement and Efficient Building Design

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of Energy Power.pdf11-161-LNG |September 15,2015DepartmentDepartment ofSoft Costs » RooftopDOE Energy|

  19. ANS Standards to Support DOE NPH Design | Department of Energy

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of EnergyEnergy Cooperation |South Valley ResponsibleSubmissionofDepartmentNo.7-052 ofFocus onANDREW W.ANS

  20. 2015 Race to Zero Student Design Competition | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of EnergyEnergyENERGYWomen Owned SmallOfCoal_Budget_Fact_Sheet.pdf MoreDailyOne of theof14thApril

  1. Toward Net Energy Buildings: Design, Construction, and Performance of the Grand Canyon House

    SciTech Connect (OSTI)

    C. Edward Hancock; Greg Barker; J. Douglas Balcomb.

    1999-06-23T23:59:59.000Z

    The Grand Canyon house is a joint project of the DOE's National Renewable Energy Laboratory and the U.S. National Park Service and is part of the International Energy Agency Solar Heating and Cooling Programme Task 13 (Advanced Solar Low-Energy Buildings). Energy consumption of the house, designed using a whole-building low-energy approach, was reduced by 75% compared to an equivalent house built in accordance with American Building Officials Model Energy Code and the Home Energy Rating System criteria.

  2. Sustainable Development of Renewable Energy Mini-grids for Energy Access: A Framework for Policy Design

    E-Print Network [OSTI]

    Deshmukh, Ranjit

    2014-01-01T23:59:59.000Z

    renewable energy-based mini-grid policies .3: Categories of renewable energy-based mini-grids policyassessing renewable energy-based mini-grid policies Economic

  3. Sustainable Development of Renewable Energy Mini-grids for Energy Access: A Framework for Policy Design

    E-Print Network [OSTI]

    Deshmukh, Ranjit

    2014-01-01T23:59:59.000Z

    electricity supply,” Renewable and Sustainable EnergyGanapathy, “Decetralized Renewable Energy (DRE) Micro-gridsextension, off-grid and renewable energy sources,” in World

  4. Sustainable Development of Renewable Energy Mini-grids for Energy Access: A Framework for Policy Design

    E-Print Network [OSTI]

    Deshmukh, Ranjit

    2014-01-01T23:59:59.000Z

    Ganapathy, “Decetralized Renewable Energy (DRE) Micro-gridsgrid extension, off-grid and renewable energy sources,”in World Renewable Energy Congress. Policy Issues.

  5. Design of PHEVs and Electrolyte Properties | Department of Energy

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of Inspector General Office of Audit Services AuditTransatlantic Relations & the196-2011WasteDesign ofDesign

  6. Optimal design and operation of energy polygeneration systems

    E-Print Network [OSTI]

    Chen, Yang, Ph. D. Massachusetts Institute of Technology. Department of Chemical Engineering

    2013-01-01T23:59:59.000Z

    Polygeneration is a concept where multiple energy products are generated in a single plant by tightly integrating multiple processes into one system. Compared to conventional single-product systems, polygeneration systems ...

  7. Design Considerations for Solar Energy Harvesting Wireless Embedded Systems

    E-Print Network [OSTI]

    Raghunathan, Vijay; Kansal, Aman; Hsu, Jason; Friedman, Jonathan K; Srivastava, Mani B

    2005-01-01T23:59:59.000Z

    is supplied from the solar panel and only the remainder iscompo- nents, such as solar panels, and energy storageSolar World 4-4.0-100 solar panel. components from either

  8. Designing a Thermal Energy Storage Program for Electric Utilities

    E-Print Network [OSTI]

    Niehus, T. L.

    1994-01-01T23:59:59.000Z

    Electric utilities are looking at thermal energy storage technology as a viable demand side management (DSM) option. In order for this DSM measure to be effective, it must be incorporated into a workable, well-structured utility program. This paper...

  9. Advances in Energy Reduction in Methanol Plant Design

    E-Print Network [OSTI]

    Huggins, P. J.; Griffiths, G. W.

    1982-01-01T23:59:59.000Z

    which are still under development are outlined. In particular, the paper presents Davy McKee's version of the next generation of synthesis reactor. The paper also examines the economic justification of the energy saving steps. To complement advances...

  10. Ultra-Efficient Home Design | Department of Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLasDelivered energy consumption by sectorlong version) The0 -ITER's

  11. Materials for Advanced Turbocharger Design | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion | Department of EnergyDevelopment AccidentEnergy Objective:

  12. Designing Energy and User Efficient Interactions with Mobile Systems

    E-Print Network [OSTI]

    Marculescu, Department of Electrical and Computer Engineering Submitted in partial fulfillment, the NSF, ONR, HP Labs, Carnegie Mellon University, the U.S. Government, or any other entity. #12;Keywords design is presented and implemented to optimize display power consumption by adjusting the color

  13. Energy Use Intensity and its Influence on the Integrated Daylighting Design of a Large Net Zero Energy Building: Preprint

    SciTech Connect (OSTI)

    Guglielmetti , R.; Scheib, J.; Pless, S. D.; Torcellini , P.; Petro, R.

    2011-03-01T23:59:59.000Z

    Net-zero energy buildings generate as much energy as they consume and are significant in the sustainable future of building design and construction. The role of daylighting (and its simulation) in the design process becomes critical. In this paper we present the process the National Renewable Energy Laboratory embarked on in the procurement, design, and construction of its newest building, the Research Support Facility (RSF) - particularly the roles of daylighting, electric lighting, and simulation. With a rapid construction schedule, the procurement, design, and construction had to be tightly integrated; with low energy use. We outline the process and measures required to manage a building design that could expect to operate at an efficiency previously unheard of for a building of this type, size, and density. Rigorous simulation of the daylighting and the electric lighting control response was a given, but the oft-ignored disconnect between lighting simulation and whole-building energy use simulation had to be addressed. The RSF project will be thoroughly evaluated for its performance for one year; preliminary data from the postoccupancy monitoring efforts will also be presented with an eye toward the current efficacy of building energy and lighting simulation.

  14. High Performance Sustainable Building Design RM | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarly Career Scientists'Montana.ProgramJulietip sheetK-4In 2013 many| Department of4EnergyBuildingThe High

  15. Improving Department of Energy Capabilities for Mitigating Beyond Design

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarly Career Scientists'Montana.ProgramJulietipDepartment of EnergyDepartment ofPhoto ofDepartment ofBasis

  16. Materials for Advanced Turbocharger Designs | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion | Department of EnergyDevelopment AccidentEnergy Objective:11 DOE Hydrogen and Fuel09

  17. Designing Renewable Energy Financing Mechanism Terms of Reference | Open

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 NoPublic Utilities Address:011-DNA Jump to:52c8ff988c1Dering Harbor, New York: EnergyEnergy Information

  18. Safety Design Strategy Standard Review Plan (SRP) | Department of Energy

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of Energy Power.pdf11-161-LNG |September2-SCORECARD-01-24-13 Page 1 of 1  470.4-7 |Safety

  19. Market Segmentation and Energy Efficiency Program Design | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion | Department of EnergyDevelopment Accident Tolerant Fuel: FeCrAlMarkEnergy Market

  20. Chapter 7: Landscape Design and Management | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarly Career Scientists'Montana. DOCUMENTS AVAILABLE FORSuperior Energy5-1 Chapter 5 Classified Matter:Chapter

  1. Designating Efficiency Levels for Product Categories | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:Year in Review: TopEnergy DOEDealingVehicle Battery Plant |Department ofEnergyMill

  2. Benefits of Sustainable Building Design | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-Up fromDepartmentTie Ltd: ScopeDepartment ofEnergy VictorofPolicyEnergy

  3. Climate, Community and Biodiversity Project Design Standards | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 NoPublic Utilities Address: 160Benin:EnergyWisconsin: Energy ResourcesInformation istype ofdefined in

  4. Utilizing Nature's Designs for Solar Energy Conversion | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion |Energy Usage »of EnergyTheTwo New12.'6/0.2Contract (UESC) is notthe CaseVOCs

  5. Using DOE Industrial Energy Audit Data for Utility Program Design

    E-Print Network [OSTI]

    Glaser, C. J.; Packard, C. P.; Parfomak, P.

    . Baltimore Gas & Electric Company BG&E provides natural gas and electric service to central Maryland, serving approximately 1,000,000 residential customers, 100,000 commercial customers, and 3,000 industrial customers. The industrial customers in BG... time-of-use rates, credits for reducing demand during critical periods, and rebates for efficient lighting, motors, and air compressors. In 1992, BG&E also began the design of its Custom Industrial Plant Upgrade Program, intended to provide custom...

  6. Designing Silicon Nanostructures for High Energy Lithium Ion Battery Anodes

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-UpHeat Pump Models |Conduct, Parent Company Agrees toDepartmentDepartmentDesigning|

  7. Designing Energy-Efficient Low-Diameter On-chip Networks with Equalized Interconnects

    E-Print Network [OSTI]

    Joshi, Ajay J.

    In a power and area constrained multicore system, the on-chip communication network needs to be carefully designed to maximize the system performance and programmer productivity while minimizing energy and area. In this ...

  8. Special Issues for Program Design and Evaluation for Industrial Energy Programs

    E-Print Network [OSTI]

    Megdal, L.

    2007-01-01T23:59:59.000Z

    Designing energy efficiency programs that include serving industrial customers, and evaluating them, carries with it a set of challenges. A summary view from prior efficiency program evaluations will be presented that examines these challenges, how...

  9. Energy-aware system design using circuit reconfigurability with a focus on low-power SRAMs

    E-Print Network [OSTI]

    Sinangil, Yildiz

    2014-01-01T23:59:59.000Z

    Today's complex systems generally target competing design goals such as maximizing performance while minimizing energy. Moreover, they have to work efficiently under changing system dynamics and application loads. Thus, ...

  10. Optimal operation and design of solar-thermal energy storage systems

    E-Print Network [OSTI]

    Lizarraga-García, Enrique

    2012-01-01T23:59:59.000Z

    The present thesis focuses on the optimal operation and design of solar-thermal energy storage systems. First, optimization of time-variable operation to maximize revenue through selling and purchasing electricity to/from ...

  11. NREL showcase solar systems and energy efficient design

    SciTech Connect (OSTI)

    NONE

    1995-12-31T23:59:59.000Z

    THe Thermal Test Facility at NREL, which should be completed in the summer of 1996, will incorporate natural lighting from clerestories and may other solar and energy-efficiency features; roof-mounted solar collectors, which will be monitored as part of NREL`s work on active solar systems, will help to heat water and interior spaces in the building.

  12. Laser Intertial Fusion Energy: Neutronic Design Aspects of a Hybrid Fusion-Fission Nuclear Energy System

    SciTech Connect (OSTI)

    Kramer, K

    2010-04-08T23:59:59.000Z

    This study investigates the neutronics design aspects of a hybrid fusion-fission energy system called the Laser Fusion-Fission Hybrid (LFFH). A LFFH combines current Laser Inertial Confinement fusion technology with that of advanced fission reactor technology to produce a system that eliminates many of the negative aspects of pure fusion or pure fission systems. When examining the LFFH energy mission, a significant portion of the United States and world energy production could be supplied by LFFH plants. The LFFH engine described utilizes a central fusion chamber surrounded by multiple layers of multiplying and moderating media. These layers, or blankets, include coolant plenums, a beryllium (Be) multiplier layer, a fertile fission blanket and a graphite-pebble reflector. Each layer is separated by perforated oxide dispersion strengthened (ODS) ferritic steel walls. The central fusion chamber is surrounded by an ODS ferritic steel first wall. The first wall is coated with 250-500 {micro}m of tungsten to mitigate x-ray damage. The first wall is cooled by Li{sub 17}Pb{sub 83} eutectic, chosen for its neutron multiplication and good heat transfer properties. The {sub 17}Pb{sub 83} flows in a jacket around the first wall to an extraction plenum. The main coolant injection plenum is immediately behind the Li{sub 17}Pb{sub 83}, separated from the Li{sub 17}Pb{sub 83} by a solid ODS wall. This main system coolant is the molten salt flibe (2LiF-BeF{sub 2}), chosen for beneficial neutronics and heat transfer properties. The use of flibe enables both fusion fuel production (tritium) and neutron moderation and multiplication for the fission blanket. A Be pebble (1 cm diameter) multiplier layer surrounds the coolant injection plenum and the coolant flows radially through perforated walls across the bed. Outside the Be layer, a fission fuel layer comprised of depleted uranium contained in Tristructural-isotropic (TRISO) fuel particles having a packing fraction of 20% in 2 cm diameter fuel pebbles. The fission blanket is cooled by the same radial flibe flow that travels through perforated ODS walls to the reflector blanket. This reflector blanket is 75 cm thick comprised of 2 cm diameter graphite pebbles cooled by flibe. The flibe extraction plenum surrounds the reflector bed. Detailed neutronics designs studies are performed to arrive at the described design. The LFFH engine thermal power is controlled using a technique of adjusting the {sup 6}Li/{sup 7}Li enrichment in the primary and secondary coolants. The enrichment adjusts system thermal power in the design by increasing tritium production while reducing fission. To perform the simulations and design of the LFFH engine, a new software program named LFFH Nuclear Control (LNC) was developed in C++ to extend the functionality of existing neutron transport and depletion software programs. Neutron transport calculations are performed with MCNP5. Depletion calculations are performed using Monteburns 2.0, which utilizes ORIGEN 2.0 and MCNP5 to perform a burnup calculation. LNC supports many design parameters and is capable of performing a full 3D system simulation from initial startup to full burnup. It is able to iteratively search for coolant {sup 6}Li enrichments and resulting material compositions that meet user defined performance criteria. LNC is utilized throughout this study for time dependent simulation of the LFFH engine. Two additional methods were developed to improve the computation efficiency of LNC calculations. These methods, termed adaptive time stepping and adaptive mesh refinement were incorporated into a separate stand alone C++ library name the Adaptive Burnup Library (ABL). The ABL allows for other client codes to call and utilize its functionality. Adaptive time stepping is useful for automatically maximizing the size of the depletion time step while maintaining a desired level of accuracy. Adaptive meshing allows for analysis of fixed fuel configurations that would normally require a computationally burdensome number of depletion zones. Alternatively, Adaptive M

  13. Integrated Building Energy Systems Design Considering Storage Technologies

    SciTech Connect (OSTI)

    Stadler, Michael; Marnay, Chris; Siddiqui, Afzal; Lai, Judy; Aki, Hirohisa

    2009-04-07T23:59:59.000Z

    The addition of storage technologies such as flow batteries, conventional batteries, and heat storage can improve the economic, as well as environmental attraction of micro-generation systems (e.g., PV or fuel cells with or without CHP) and contribute to enhanced demand response. The interactions among PV, solar thermal, and storage systems can be complex, depending on the tariff structure, load profile, etc. In order to examine the impact of storage technologies on demand response and CO2 emissions, a microgrid's distributed energy resources (DER) adoption problem is formulated as a mixed-integer linear program that can pursue two strategies as its objective function. These two strategies are minimization of its annual energy costs or of its CO2 emissions. The problem is solved for a given test year at representative customer sites, e.g., nursing homes, to obtain not only the optimal investment portfolio, but also the optimal hourly operating schedules for the selected technologies. This paper focuses on analysis of storage technologies in micro-generation optimization on a building level, with example applications in New York State and California. It shows results from a two-year research projectperformed for the U.S. Department of Energy and ongoing work. Contrary to established expectations, our results indicate that PV and electric storage adoption compete rather than supplement each other considering the tariff structure and costs of electricity supply. The work shows that high electricity tariffs during on-peak hours are a significant driver for the adoption of electric storage technologies. To satisfy the site's objective of minimizing energy costs, the batteries have to be charged by grid power during off-peak hours instead of PV during on-peak hours. In contrast, we also show a CO2 minimization strategy where the common assumption that batteries can be charged by PV can be fulfilled at extraordinarily high energy costs for the site.

  14. SC Beta Graded Cavity Design for a Proposed 350 MHZ Linac for Waste Transmutation and Energy Production

    E-Print Network [OSTI]

    Barni, D; Pagani, C; Pierini, P; Visona, S; Gemme, G; Parodi, R

    1998-01-01T23:59:59.000Z

    SC Beta Graded Cavity Design for a Proposed 350 MHZ Linac for Waste Transmutation and Energy Production

  15. Integration of Low Energy Technologies for Optimal Building and Space Conditioning Design

    SciTech Connect (OSTI)

    D.E. Fisher

    2006-01-07T23:59:59.000Z

    EnergyPlus is the DOE's newest building energy simulation engine. It was developed specifically to support the design of low energy building systems. This project focused on developing new low energy building simulation models for EnergyPlus, verifying and validating new and existing EnergyPlus models and transferring the new technology to the private sector. The project focused primarily on geothermal and radiant technologies, which are related by the fact that both are based on hydronic system design. As a result of this project eight peer reviewed journal and conference papers were added to the archival literature and five technical reports were published as M.S. theses and are available in the archival literature. In addition, several reports, including a trombe wall validation report were written for web publication. Thirteen new or significantly enhanced modules were added to the EnergyPlus source code and forty-two new or significantly enhanced sections were added to the EnergyPlus documentation as a result of this work. A low energy design guide was also developed as a pedagogical tool and is available for web publication. Finally several tools including a hybrid ground source heat pump optimization program and a geothermal heat pump parameter estimation tool were developed for research and design and are available for web publication.

  16. Best Practices Guide for Energy-Efficient Data Center Design: Revised March 2011 (Brochure)

    SciTech Connect (OSTI)

    Not Available

    2011-03-01T23:59:59.000Z

    This guide provides an overview of best practices for energy-efficient data center design which spans the categories of Information Technology (IT) systems and their environmental conditions, data center air management, cooling and electrical systems, on-site generation, and heat recovery. IT system energy efficiency and environmental conditions are presented first because measures taken in these areas have a cascading effect of secondary energy savings for the mechanical and electrical systems. This guide concludes with a section on metrics and benchmarking values by which a data center and its systems energy efficiency can be evaluated. No design guide can offer 'the most energy-efficient' data center design but the guidelines that follow offer suggestions that provide efficiency benefits for a wide variety of data center scenarios.

  17. Financing investments in renewable energy: The role of policy design and restructuring

    SciTech Connect (OSTI)

    Wiser, R.; Pickle, S. [Lawrence Berkeley National Lab., CA (United States). Environmental Energy Technologies Div.

    1997-03-01T23:59:59.000Z

    The costs of electric power projects utilizing renewable energy technologies are highly sensitive to financing terms. Consequently, as the electricity industry is restructured and new renewables policies are created, it is important for policymakers to consider the impacts of renewables policy design on project financing. This report describes the power plant financing process and provides insights to policymakers on the important nexus between renewables policy design and finance. A cash-flow model is used to estimate the impact of various financing variables on renewable energy costs. Past and current renewable energy policies are then evaluated to demonstrate the influence of policy design on the financing process and on financing costs. The possible impacts of electricity restructuring on power plant financing are discussed and key design issues are identified for three specific renewable energy programs being considered in the restructuring process: (1) surcharge-funded policies; (2) renewables portfolio standards; and (3) green marketing programs. Finally, several policies that are intended to directly reduce financing costs and barriers are analyzed. The authors find that one of the key reasons that renewables policies are not more effective is that project development and financing processes are frequently ignored or misunderstood when designing and implementing renewable energy incentives. A policy that is carefully designed can reduce renewable energy costs dramatically by providing revenue certainty that will, in turn, reduce financing risk premiums.

  18. Design of wind farm layout for maximum wind energy capture Andrew Kusiak*, Zhe Song

    E-Print Network [OSTI]

    Kusiak, Andrew

    Design of wind farm layout for maximum wind energy capture Andrew Kusiak*, Zhe Song Intelligent Accepted 24 August 2009 Available online 22 September 2009 Keywords: Wind farm Wind turbine Layout design Optimization Evolutionary algorithms Operations research a b s t r a c t Wind is one of the most promising

  19. Design and Application of Low Compaction Energy Concrete for Use in Slip-form Concrete

    E-Print Network [OSTI]

    Design and Application of Low Compaction Energy Concrete for Use in Slip-form Concrete Paving for the contents or use thereof. #12;1 Optimization of Self-Consolidating Concrete for Slip-form pavement A thesis-form process. Various mix designs based on the concept of Self-Consolidated Concrete were studied, so

  20. Using an Energy Performance Based Design-Build Process to Procure a Large Scale Low-Energy Building: Preprint

    SciTech Connect (OSTI)

    Pless, S.; Torcellini, P.; Shelton, D.

    2011-05-01T23:59:59.000Z

    This paper will review a procurement, acquisition, and contract process of a large-scale replicable net zero energy (ZEB) office building. The owners developed and implemented an energy performance based design-build process to procure a 220,000 ft2 office building with contractual requirements to meet demand side energy and LEED goals. We will outline the key procurement steps needed to ensure achievement of our energy efficiency and ZEB goals. The development of a clear and comprehensive Request for Proposals (RFP) that includes specific and measurable energy use intensity goals is critical to ensure energy goals are met in a cost effective manner. The RFP includes a contractual requirement to meet an absolute demand side energy use requirement of 25 kBtu/ft2, with specific calculation methods on what loads are included, how to normalize the energy goal based on increased space efficiency and data center allocation, specific plug loads and schedules, and calculation details on how to account for energy used from the campus hot and chilled water supply. Additional advantages of integrating energy requirements into this procurement process include leveraging the voluntary incentive program, which is a financial incentive based on how well the owner feels the design-build team is meeting the RFP goals.

  1. 1220 IEEE JOURNAL OF SOLID-STATE CIRCUITS, VOL. 45, NO. 6, JUNE 2010 Energy-Efficient Design Methodologies

    E-Print Network [OSTI]

    California at Davis, University of

    1220 IEEE JOURNAL OF SOLID-STATE CIRCUITS, VOL. 45, NO. 6, JUNE 2010 Energy-Efficient Design and system constraints. In this paper, methodology for energy-efficient design applied to 64-bit adders Terms--Arithmetic and logic structures, computer arith- metic, energy-efficient design, high

  2. Design & Construct New Buildings | Department of Energy

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of Inspector General Office of Audit Services AuditTransatlantic Relations & the196-2011 AprilDesertDesign

  3. Design of Flexible-Duct Junction Boxes | Department of Energy

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of Inspector General Office of Audit Services AuditTransatlantic Relations & the196-2011WasteDesign of

  4. Designing Auction-Based PV Incentives | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-UpHeat Pump Models |Conduct, Parent Company Agrees toDepartmentDepartment ofDesigning

  5. Designated Ground Water Basin Map | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revision has beenFfe2fb55-352f-473b-a2dd-50ae8b27f0a6 No revision has beenFinancialSilver PeakProjectDesignated

  6. Automotive Thermoelectric Generator Design Issues | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-Up fromDepartmentTie Ltd: Scope ChangeL-01-06 AuditAugust 5,Re evised2009 DOE(TEG)Design

  7. The Design and Analysis of Computer Experiments | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia:FAQ < RAPID Jump to:Seadov Pty LtdSteen,Ltd Jump Jump to:Information 'Grand Paris'Book: The Design and

  8. PyGen: A MATLAB/Simulink Based Tool for Synthesizing Parameterized and Energy Efficient Designs Using FPGAs

    E-Print Network [OSTI]

    Prasanna, Viktor K.

    PyGen: A MATLAB/Simulink Based Tool for Synthesizing Parameterized and Energy Efficient Designs and identification of energy efficient designs. To illustrate the design process using the tool and to show its efficient designs using these tools. In this paper, we propose PyGen, an add-on tool, to address this issue

  9. Designing and Implementing Monitoring Based Energy Cost Reduction Programs

    E-Print Network [OSTI]

    McMullan, A. S.; Pretty, B. L.; Hart, D.

    2006-01-01T23:59:59.000Z

    operation where ambient air is heated and used to remove moisture from a slurry. The site in question has multiple dryers. Figure 1. Schematic of drying operation Figure 2 summarizes historical energy performance. XYZ Chemicals Fuel... Consumption Rate vs. Production 0.00 10.00 20.00 30.00 40.00 50.00 60.00 70.00 80.00 90.00 100.00 0 5,000 10,000 15,000 20,000 25,000 TOTAL PRODUCTION (Units/MONTH) E N E R G Y / Unit XYZ Chemicals Specific Energy Use Vs. Ambient Temperature 25.0 30.0 35...

  10. Industrial Energy Conservation by New Process Design and Efficiency Improvements

    E-Print Network [OSTI]

    Kusik, C. L.; Stickles, R. P.; Machacek, R. F.

    1983-01-01T23:59:59.000Z

    from the Fifth Industrial Energy Technology Conference Volume II, Houston, TX, April 17-20, 1983 Po'.,.lla4 E"*VY Potential Saving, t Totti To,.1 En., " r_-. C0!'1V?11Ional T-ehnotogy PrC)doK:1 __l~~=~1 l~~r;:~ 11:rr:U?Yr) AlumInum Imptovltd Hli...

  11. Design of a Computerized Energy Management System for Marine Applications

    E-Print Network [OSTI]

    Russell, B. D.; Perry, L. W.; Gerloff, G. W.; Heller, R. P.; Pankonien, G.

    1982-01-01T23:59:59.000Z

    DEStGN OF A COtWUTERIZED ENERGY MANAGEtffiNT SYSTEt1 FOR MARINE APPLICATIONS B. Don Russell Leslie W. Perry, Gary W. Gerloff, R. Page Heller Gary Pankonien Texas A&M University MICON, Incorporated ECI College Station, Texas College Station, Texas... formance. In short, engine operators need assistance in two areas: improved data to increase operating efficiencies and improved data to control losses and eliminate fuel theft. In an attempt to solve this problem, Electronic Concepts, Inc. and MICON...

  12. Challenge Home Student Design Competition | Department of Energy

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion |Energy UsageAUDITVehiclesTankless orA BRIEFAprilBudgetAbout5Carmichaeland Assurances

  13. League City Intermediate School - A Study in Energy Efficient Design

    E-Print Network [OSTI]

    Longserre, J. T.; Ahrens, L.

    1984-01-01T23:59:59.000Z

    ,000 square foot League City Intermediate School. The project cost was $8,080,000, or $52.75 per square foot. Due to the architectural firm's careful planning and use of a computer analysis to evaluate potential energy usage, the budget... requirements. The heating, ventilation .. . . 3st for the project was per square foot. 3 of lighting that con- most visible. Natural practicable and is pro- s and insulated skylights. rce center. located at the , permit borrowed light to windows...

  14. Magnesium Front End Design and Development | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion | Department of Energy Low-Temperature CombustionGlassMackle Company:And Developmentand

  15. 2015 Race to ZERO Student Design Competition | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data CenterEnergyAuthorizationSunShot Initiative1 Strategic Plan 201142015 Race

  16. Whole Building Design Guide Courses | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia:FAQ < RAPID Jump to:SeadovCooperative Jump to:Westview,GeothermalHawaii: Energy Resources JumpWhittingham,

  17. Palmetto Fuel Cell Analysis and Design | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia: Energy ResourcesLoading map...(UtilityCounty,Orleans County,PPP EquipmentPartnersPalisadesPalmco PowerPalmetto

  18. Property:Designed to Operate with Shore Connection? | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia: Energy ResourcesLoadingPenobscot County, Maine:Plug PowerAddressDataFormat Jump to: navigation, search

  19. TRIBAL ENERGY BY DESIGN: Developing an Energy Road Map for North Central Montana

    Office of Energy Efficiency and Renewable Energy (EERE)

    Industry experts, energy developers, utility companies, tribal leaders, and other stakeholders are invited to join the discussion in developing community- and commercial-scale energy partnerships...

  20. Energy-conserving site design: case study, The Woodlands, Texas

    SciTech Connect (OSTI)

    Swanson, M

    1980-03-01T23:59:59.000Z

    The Woodlands is a HUD Title VII New Town located north of Houston. It includes 22,000 acres and the plan for the new town consists of 6 residential villages, a town center called the Metro Center and several additional tracts, such as the Trade Center for larger-scale industrial use. Each village is to be structured around one large and several supporting neighborhood centers. Ultimate population is planned to be 150,000. Included in this report are sections on background, team structure and organization, methodological considerations, the conventional and energy-conserving plan, constraints to implementation, and general conclusions and next phases.

  1. Energy Efficient Design of a Waste Heat Rejection System

    E-Print Network [OSTI]

    Mehta, P.

    employees are involved in producing 382 million square feet of film annually. The plant operates 52 weeks per year. Approximate operating schedules of the various areas considered in this report are given below: 234 ESL-IE-00-04-36 Proceedings from... equations: CSP =HP X C 1 x L.P. x T x 1/T1 X R 1 CRP =HP x C 1 x L.P. x M x 1/Tl X R 2 where: CSP = Energy cost savings in pump operation CRP =Demand cost savings in pump operation HP = Rated pump horsepower C 1 =conversion constant (0.746Kw/hp) L...

  2. Integrating Safety into Design and Construction | Department of Energy

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelinesProvedDecemberInitiatives Initiatives Through a variety oftheLaboratory | Department

  3. Industrial Energy Efficiency: Designing Effective State Programs for the

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarly Career Scientists'Montana.ProgramJulietipDepartment ofTheDepartment of2012PathwaysJobs | Department

  4. NREL: Education Center - A Model of Energy-Efficient Design

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLas Conchas recoveryLaboratory | National Nuclearover two ContinuumSolar DataAdditional

  5. Design and Analysis of Computer Experiments | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 NoPublic Utilities Address:011-DNA Jump to:52c8ff988c1Dering Harbor, New York: Energy

  6. Laminated track design for inductrack maglev systems - Energy Innovation

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: VegetationEquipment Surfaces and Interfaces Sample6, 2011 CERN 73-11 Laboratory IPortal 2105 Site Map

  7. Policy and Program Design Toolkit | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of Inspector GeneralDepartmentAUDIT REPORTOpenWende New Energy CoFirstNovosPatriot Wind IncAsia

  8. Composite Tube Trailer Design/Manufacturing Needs | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:Year in Review: Top FiveDepartment ofCarrieofPropertyEnergyWorkshop |ComplexComposite Tube

  9. Designer Catalysts for Next Generation Fuel Synthesis - Energy Innovation

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation Proposed Newcatalyst phasesData FilesShape, Density, andaging effectsOfficePortal Biomass

  10. Energy Design Assistance Project Tracker - 2014 BTO Peer Review |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:Year in Review: TopEnergyIDIQBusinessin Jamaica, N.Y. |Technologies on aRecord HighsDetroit

  11. Fail-Safe, Inexpensive Electrochemical Device Stack Design - Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation ProposedUsing ZirconiaPolicy andExsolutionFES6FYRANDOMOverview The Savannah

  12. LANL Sustainable Design Guide - Appendices | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:Year in3.pdfEnergy Health andofIanJennifer SomersKnown Challenges AssociatedLANL Sustainable

  13. Project Profile: System Design for CSP Technologies | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion | Department ofT ib l L d FNEPA/309DepartmentDepartmentPower GenerationEnergy

  14. Material-Independent Design of Photoluminescent Systems - Energy Innovation

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: VegetationEquipment Surfaces andMapping the Nanoscale LandscapeImports 5.90 4.86 4.77ofMaterialPortal

  15. 2013 and 2014 Hydrogen Student Design Contests | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:Year in Review: Top Five EERE Blog Posts of 2014 Year10Department ofEnergy3and 2014 Hydrogen

  16. NREL: Continuum Magazine - Building Better: Advanced Energy Design Guides

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the Contributions and Achievements of WomenEvents BelowAbout Share this resourceBuilding

  17. NREL: News Feature - Light Inspires Energy Efficient Building Design

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the Contributions and AchievementsResearch Staff MaterialsPrintableHP SupercomputerLight

  18. Laminated track design for inductrack maglev systems - Energy Innovation

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsruc DocumentationP-SeriesFlickrinformationPostdocs space Combined Routes12thnearPortal 58,146

  19. Nanoparticle Superlattices for Custom-designed Metamaterials - Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the Contributions andData andFleet TestAccountsNanoparticle Research CreatesInnovation

  20. Startup Design Features for Supercritical Power Conversion Systems - Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administrationcontroller systemsBiSiteNeutron Scattering4 ByWatching IonsStar Power Star

  1. Optimal Design of Bilateral Contracts for Energy Procurement | Argonne

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLas Conchas recoveryLaboratorySpeeding access1phenol-pyrrolidino[60]fullerenes Optical

  2. Additive Manufacturing - Materials by Design - Energy Innovation Portal

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth (AOD)ProductssondeadjustsondeadjustAbout the Building TechnologiesS1!4T op Document:AddingIndustrial

  3. Quality Guidelines for Energy System Studies Process Modeling Design Parameters

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the1 - SeptemberMicroneedlesAdvancedJanuaryNETL-2010/???? DOE/NETL-341/051314 National

  4. Energy-efficiency design and inspection guides for affordable housing construction

    SciTech Connect (OSTI)

    Ternes, M.P.; Livengood, S.E.; Wendt, R.L.

    1997-12-01T23:59:59.000Z

    This paper focuses on the general methods used in guides developed for the energy efficient design and inspection of new and revitalized housing projects for military family housing. The methods and guides can also benefit the wider market of public and other housing. Inspections performed on military and public housing units were used to identify energy deficiencies. The most common problems found were related to disconnected and deteriorated forced air distribution duct work and poor system design resulting in significant air leakage. Design and inspection guides are summarized for new construction and revitalization projects. 7 refs., 7 figs.

  5. Energy graphics: profiling a building in the pre-design stage

    SciTech Connect (OSTI)

    Kurtz, J.M.

    1982-05-01T23:59:59.000Z

    The design stage is the best time to improve building efficiency by considering site, orientation, landscaping, building shape, and windows in the early planning process. The Energy Graphics technique uses about 20 variables categorized under climate, building design, and occupant needs to get a rough estimate of building performance and identify potential problems and energy-saving opportunities before construction begins. The technique is simple to operate using a desktop computer to analyze internal heat gain and loss. The architect can make design changes on the basis of the computer graphs. 9 figures. (DCK)

  6. Development of Design Guidance for K-12 Schools from 30% to 50% Energy Savings: Preprint

    SciTech Connect (OSTI)

    Pless, S.; Torcellini, P.; Long, N.

    2008-07-01T23:59:59.000Z

    This paper describes the development of energy efficiency recommendations for achieving 30% whole-building energy savings in K-12 schools over levels achieved by following the ANSI/ASHRAE/IESNA Standard 90.1. These design recommendations look at building envelope, fenestration, lighting systems (including electrical lights and daylighting), HVAC systems, building automation and controls, outside air treatment, and service water heating.

  7. Sep 05:"Toward Computational Design of Iron-Based Chromophores for Solar Energy Conversion"

    E-Print Network [OSTI]

    Reid, Scott A.

    Sep 05:"Toward Computational Design of Iron-Based Chromophores for Solar Energy Conversion, Department of Biochemistry, East Carolina University (Dept) Nov 21: "Taking snapshots along the solar energy and Organic-Metal Halide Perovskites for Next Generation Solar Cells" Professor Prashant Kamat, Department

  8. Project REED (Residential Energy Efficiency Design) is a Web-based building performance simulation tool

    E-Print Network [OSTI]

    ABSTRACT Project REED (Residential Energy Efficiency Design) is a Web-based building performance in their particular climate. Reaching The Mass Market: Given this Utility's 4.5 million residential ratepayers residential market. This cost-effective approach can permanently transform the energy con- suming behavior

  9. METHOD AND TOOLS TO MEET ENERGY EFFICIENCY TARGETS AT PRODUCT DESIGN STAGE

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    are energy indicator, guidelines and an environmental checking loop. The following paper is focused its design. · Guidelines tool: provides guidelines to fill the gap between energy consumption assessed is an instantaneous value, easy to measure with simple protocols. Taking into account the time dimension needs more

  10. SIMULATION, DESIGN, AND VERIFICATION OF AN ELECTRIFIED BICYCLE ENERGY MODEL Matt Barnes

    E-Print Network [OSTI]

    Brennan, Sean

    SIMULATION, DESIGN, AND VERIFICATION OF AN ELECTRIFIED BICYCLE ENERGY MODEL Matt Barnes Department and easily predict and optimize the efficiency of an electric bicycle system based on selection of critical. The model is used to guide the construction of an electrified bicycle system to achieve the highest energy

  11. Anole: A Case for Energy-Aware Mobile Application Design Hui Chen, Bing Luo and Weisong Shi

    E-Print Network [OSTI]

    Shi, Weisong

    Anole: A Case for Energy-Aware Mobile Application Design Hui Chen, Bing Luo and Weisong Shi of energy saving for mobile devices, energy-aware application design is one of the main areas that has not yet been explored comprehensively. In this paper, we argue for the case for energy-aware mobile

  12. School of Architecture, Design and the Built Environment Urban Energy Monitoring to Support Sustainable Energy Planning

    E-Print Network [OSTI]

    Evans, Paul

    energy; (3) identify and tackle fuel poverty within the city; etc. In this research project we information model in order to understand in real- time the energy demand within the city and to support in the area of bid data integration in order to support urban energy monitoring and energy planning. Entry

  13. EIS-0406: Designation of Energy Corridors on Federal Land in 39 States

    Broader source: Energy.gov [DOE]

    DOE has canceled this EIS, which was to evaluate the environmental impacts of the designation, under Section 368(b) of the Energy Policy Act of 2005, of energy corridors on federal lands in 39 nonwestern states. The corridors, which were to be jointly identified by the Secretaries of Agriculture, Commerce, Defense, Energy, and the Interior, might have been used for oil, gas, and hydrogen pipelines and electricity transmission and distribution facilities.

  14. Applied & Computational MathematicsChallenges for the Design and Control of Dynamic Energy Systems

    SciTech Connect (OSTI)

    Brown, D L; Burns, J A; Collis, S; Grosh, J; Jacobson, C A; Johansen, H; Mezic, I; Narayanan, S; Wetter, M

    2011-03-10T23:59:59.000Z

    The Energy Independence and Security Act of 2007 (EISA) was passed with the goal 'to move the United States toward greater energy independence and security.' Energy security and independence cannot be achieved unless the United States addresses the issue of energy consumption in the building sector and significantly reduces energy consumption in buildings. Commercial and residential buildings account for approximately 40% of the U.S. energy consumption and emit 50% of CO{sub 2} emissions in the U.S. which is more than twice the total energy consumption of the entire U.S. automobile and light truck fleet. A 50%-80% improvement in building energy efficiency in both new construction and in retrofitting existing buildings could significantly reduce U.S. energy consumption and mitigate climate change. Reaching these aggressive building efficiency goals will not happen without significant Federal investments in areas of computational and mathematical sciences. Applied and computational mathematics are required to enable the development of algorithms and tools to design, control and optimize energy efficient buildings. The challenge has been issued by the U.S. Secretary of Energy, Dr. Steven Chu (emphasis added): 'We need to do more transformational research at DOE including computer design tools for commercial and residential buildings that enable reductions in energy consumption of up to 80 percent with investments that will pay for themselves in less than 10 years.' On July 8-9, 2010 a team of technical experts from industry, government and academia were assembled in Arlington, Virginia to identify the challenges associated with developing and deploying newcomputational methodologies and tools thatwill address building energy efficiency. These experts concluded that investments in fundamental applied and computational mathematics will be required to build enabling technology that can be used to realize the target of 80% reductions in energy consumption. In addition the finding was that there are tools and technologies that can be assembled and deployed in the short term - the next 3-5 years - that can be used to significantly reduce the cost and time effective delivery of moderate energy savings in the U.S. building stock. Simulation tools, which are a core strength of current DOE computational research programs, provide only a part of the answer by providing a basis for simulation enabled design. New investments will be required within a broad dynamics and control research agenda which must focus on dynamics, control, optimization and simulation of multi-scale energy systems during design and operation. U.S. investments in high performance and high productivity computing (HP2C) should be leveraged and coupled with advances in dynamics and control to impact both the existing building stock through retrofits and also new construction. The essential R&D areas requiring investment are: (1) Characterizing the Dynamics of Multi-scale Energy Systems; (2) Control and Optimization Methodologies of Multi-scale Energy Systems Under Uncertainty; and (3) Multiscale Modeling and Simulation Enabled Design and Operation. The concept of using design and control specific computational tools is a new idea for the building industry. The potential payoffs in terms of accelerated design cycle times, performance optimization and optimal supervisory control to obtain and maintain energy savings are huge. Recent advances in computational power, computer science, and mathematical algorithms offer the foundations to address the control problems presented by the complex dynamics of whole building systems. The key areas for focus and associated metrics with targets for establishing competitiveness in energy efficient building design and operation are: (1) Scalability - Current methodology and tools can provide design guidance for very low energy buildings in weeks to months; what is needed is hours to days. A 50X improvement is needed. (2) Installation and commissioning - Current methodology and tools can target a three month window for commissioni

  15. Technical Support Document: Development of the Advanced Energy Design Guide for Medium to Big Box Retail Buildings - 50% Energy Savings

    SciTech Connect (OSTI)

    Bonnema, E.; Leach, M.; Pless, S.

    2013-06-01T23:59:59.000Z

    This Technical Support Document describes the process and methodology for the development of the Advanced Energy Design Guide for Medium to Big Box Retail Buildings: Achieving 50% Energy Savings Toward a Net Zero Energy Building (AEDG-MBBR) ASHRAE et al. (2011b). The AEDG-MBBR is intended to provide recommendations for achieving 50% whole-building energy savings in retail stores over levels achieved by following ANSI/ASHRAE/IESNA Standard 90.1-2004, Energy Standard for Buildings Except Low-Rise Residential Buildings (Standard 90.1-2004) (ASHRAE 2004b). The AEDG-MBBR was developed in collaboration with the American Society of Heating, Refrigerating and Air-Conditioning Engineers (ASHRAE), the American Institute of Architects (AIA), the Illuminating Engineering Society of North America (IES), the U.S. Green Building Council (USGBC), and the U.S. Department of Energy.

  16. Phase 1 Space Fission Propulsion Energy Source Design

    SciTech Connect (OSTI)

    Houts, Mike; Van Dyke, Melissa; Godfroy, Tom; Pedersen, Kevin; Martin, James; Dickens, Ricky; Salvail, Pat; Hrbud, Ivana; Carter, Robert [NASA MSFC, TD40, Marshall Space Flight Center, Alabama, 35812 (United States)

    2002-07-01T23:59:59.000Z

    Fission technology can enable rapid, affordable access to any point in the solar system. If fission propulsion systems are to be developed to their full potential; however, near-term customers must be identified and initial fission systems successfully developed, launched, and operated. Studies conducted in fiscal year 2001 (IISTP, 2001) show that fission electric propulsion (FEP) systems with a specific mass at or below 50 kg/kWjet could enhance or enable numerous robotic outer solar system missions of interest. At the required specific mass, it is possible to develop safe, affordable systems that meet mission requirements. To help select the system design to pursue, eight evaluation criteria were identified: system integration, safety, reliability, testability, specific mass, cost, schedule, and programmatic risk. A top-level comparison of four potential concepts was performed: a Testable, Passive, Redundant Reactor (TPRR), a Testable Multi-Cell In-Core Thermionic Reactor (TMCT), a Direct Gas Cooled Reactor (DGCR), and a Pumped Liquid Metal Reactor (PLMR). Development of any of the four systems appears feasible. However, for power levels up to at least 500 kWt (enabling electric power levels of 125-175 kWe, given 25-35% power conversion efficiency) the TPRR has advantages related to several criteria and is competitive with respect to all. Hardware-based research and development has further increased confidence in the TPRR approach. Successful development and utilization of a 'Phase 1' fission electric propulsion system will enable advanced Phase 2 and Phase 3 systems capable of providing rapid, affordable access to any point in the solar system. (authors)

  17. Process/equipment co-simulation for designe and analysis of advanced energy systems

    SciTech Connect (OSTI)

    Zitney, S.

    2010-01-01T23:59:59.000Z

    b s t r a c t The grand challenge facing the power and energy industries is the development of efficient, environmentally friendly, and affordable technologies for next-generation energy systems. To provide solutions for energy and the environment, the U.S. Department of Energy’s (DOE) National Energy Technology Laboratory (NETL) and its research partners in industry and academia are relying increasingly on the use of sophisticated computer-aided process design and optimization tools. In this paper, we describe recent progress toward developing an Advanced Process Engineering Co-Simulator (APECS) for the high-fidelity design, analysis, and optimization of energy plants. The APECS software system combines steady-state process simulation with multiphysics-based equipment simulations, such as those based on computational fluid dynamics (CFD). These co-simulation capabilities enable design engineers to optimize overall process performance with respect to complex thermal and fluid flow phenomena arising in key plant equipment items, such as combustors, gasifiers, turbines, and carbon capture devices. In this paper we review several applications of the APECS co-simulation technology to advanced energy systems, including coal-fired energy plants with carbon capture. This paper also discusses ongoing co-simulation R&D activities and challenges in areas such as CFD-based reduced-order modeling, knowledge management, advanced analysis and optimization, and virtual plant co-simulation. Continued progress in co-simulation technology – through improved integration, solution, and deployment – will have profound positive impacts on the design and optimization of high-efficiency, near-zero emission fossil energy systems.

  18. Advanced energy design and operation technologies research: Recommendations for a US Department of Energy multiyear program plan

    SciTech Connect (OSTI)

    Brambley, M.R.; Crawley, D.B.; Hostetler, D.D.; Stratton, R.C.; Addision, M.S.; Deringer, J.J.; Hall, J.D.; Selkowitz, S.E.

    1988-12-01T23:59:59.000Z

    This document describes recommendations for a multiyear plan developed for the US Department of Energy (DOE) as part of the Advanced Energy Design and Operation Technologies (AEDOT) project. The plan is an outgrowth of earlier planning activities conducted for DOE as part of design process research under the Building System Integration Program (BSIP). The proposed research will produce intelligent computer-based design and operation technologies for commercial buildings. In this document, the concept is explained, the need for these new computer-based environments is discussed, the benefits are described, and a plan for developing the AEDOT technologies is presented for the 9-year period beginning FY 1989. 45 refs., 37 figs., 9 tabs.

  19. Design and Fabrication of Photonic Crystals for Thermal Energy Conservation

    SciTech Connect (OSTI)

    Professor John Joannopoulos; Professor Yoel Fink

    2009-09-17T23:59:59.000Z

    The vision of intelligent and large-area fabrics capable of signal processing, sensing and energy harvesting has made incorporating electronic devices into flexible fibers an active area of research. Fiber-integrated rectifying junctions in the form of photovoltaic cells and light-emitting diodes (LEDs) have been fabricated on optical fiber substrates. However, the length of these fiber devices has been limited by the processing methods and the lack of a sufficiently conductive and transparent electrode. Their cylindrical device geometry is ideal for single device architectures, like photovoltaics and LEDs, but not amenable to building multiple devices into a single fiber. In contrast, the composite preform-to-fiber approach pioneered in our group addresses the key challenges of device density and fiber length simultaneously. It allows one to construct structured fibers composed of metals, insulators and semiconductors and enables the incorporation of many devices into a single fiber capable of performing complex tasks such as of angle of incidence and color detection. However, until now, devices built by the preform-to-fiber approach have demonstrated only ohmic behavior due to the chalcogenide semiconductor's amorphous nature and defect density. From a processing standpoint, non-crystallinity is necessary to ensure that the preform viscosity during thermal drawing is large enough to extend the time-scale of breakup driven by surface tension effects in the fluids to times much longer than that of the actual drawing. The structured preform cross-section is maintained into the microscopic fiber only when this requirement is met. Unfortunately, the same disorder that is integral to the fabrication process is detrimental to the semiconductors' electronic properties, imparting large resistivities and effectively pinning the Fermi level near mid-gap. Indeed, the defect density within the mobility gap of many chalcogenides has been found to be 1018-1019 cm-3 eV-1, resulting in a narrow depletion width and ohmic behavior at metal-semiconductor junctions. In this work we incorporated phase-changing semiconductors, those that may be easily converted between the amorphous and crystalline states, into composite fibers with a goal towards constructing rectifying junctions in fiber.

  20. Technical Support Document: Development of the Advanced Energy Design Guide for Medium Box Retail -- 50% Energy Savings

    SciTech Connect (OSTI)

    Hale, E. T.; Macumber, D. L.; Long, N. L.; Griffith, B. T.; Benne, K. S.; Pless, S. D.; Torcellini, P. A.

    2008-09-01T23:59:59.000Z

    This report provides recommendations that architects, designers, contractors, developers, owners, and lessees of medium box retail buildings can use to achieve whole-building energy savings of at least 50% over ASHRAE Standard 90.1-2004. The recommendations are given by climate zone and address building envelope, fenestration, lighting systems, HVAC systems, building automation and controls, outside air treatment, service water heating, plug loads, and photovoltaic systems. The report presents several paths to 50% savings, which correspond to different levels of integrated design. These are recommendations only, and are not part of a code or standard. The recommendations are not exhaustive, but we do try to emphasize the benefits of integrated building design, that is, a design approach that analyzes a building as a whole system, rather than as a disconnected collection of individually engineered subsystems.

  1. Technical Support Document: Development of the Advanced Energy Design Guide for Small Office Buildings

    SciTech Connect (OSTI)

    Jarnagin, Ronald E.; Liu, Bing; Winiarski, David W.; McBride, Merle F.; Suharli, L.; Walden, D.

    2006-11-30T23:59:59.000Z

    This Technical Support Document (TSD) describes the process and methodology for the development of the Advanced Energy Design Guide for Small Office Buildings (AEDG-SO), a design guidance document intended to provide recommendations for achieving 30% energy savings in small office buildings over levels contained in ANSI/ASHRAE/IESNA Standard 90.1-1999, Energy Standard for Buildings Except Low-Rise Residential Buildings. The AEDG-SO is the first in a series of guides being developed by a partnership of organizations, including the American Society of Heating, Refrigerating and Air-Conditioning Engineers, Inc. (ASHRAE), the American Institute of Architects (AIA), the Illuminating Engineering Society of North America (IESNA), the New Buildings Institute (NBI), and the U.S. Department of Energy (DOE). Each of the guides in the AEDG series will provide recommendations and user-friendly design assistance to designers, developers and owners of small commercial buildings that will encourage steady progress towards net-zero energy buildings. The guides will provide prescriptive recommendation packages that are capable of reaching the energy savings target for each climate zone in order to ease the burden of the design and construction of energy-efficient small commercial buildings The AEDG-SO was developed by an ASHRAE Special Project committee (SP-102) made up of representatives of each of the partner organizations in eight months. This TSD describes the charge given to the committee in developing the office guide and outlines the schedule of the development effort. The project committee developed two prototype office buildings (5,000 ft2 frame building and 20,000 ft2 two-story mass building) to represent the class of small office buildings and performed an energy simulation scoping study to determine the preliminary levels of efficiency necessary to meet the energy savings target. The simulation approach used by the project committee is documented in this TSD along with the characteristics of the prototype buildings. The prototype buildings were simulated in the same climate zones used by the prevailing energy codes and standards to evaluate energy savings. Prescriptive packages of recommendations presented in the guide by climate zone include enhanced envelope technologies, lighting and day lighting technologies and HVAC and SWH technologies. The report also documents the modeling assumptions used in the simulations for both the baseline and advanced buildings. Final efficiency recommendations for each climate zone are included, along with the results of the energy simulations indicating an average energy savings over all buildings and climates of approximately 38%.

  2. Life Cycle Energy and Environmental Assessment of Aluminum-Intensive Vehicle Design

    SciTech Connect (OSTI)

    Das, Sujit [ORNL

    2014-01-01T23:59:59.000Z

    Advanced lightweight materials are increasingly being incorporated into new vehicle designs by automakers to enhance performance and assist in complying with increasing requirements of corporate average fuel economy standards. To assess the primary energy and carbon dioxide equivalent (CO2e) implications of vehicle designs utilizing these materials, this study examines the potential life cycle impacts of two lightweight material alternative vehicle designs, i.e., steel and aluminum of a typical passenger vehicle operated today in North America. LCA for three common alternative lightweight vehicle designs are evaluated: current production ( Baseline ), an advanced high strength steel and aluminum design ( LWSV ), and an aluminum-intensive design (AIV). This study focuses on body-in-white and closures since these are the largest automotive systems by weight accounting for approximately 40% of total curb weight of a typical passenger vehicle. Secondary mass savings resulting from body lightweighting are considered for the vehicles engine, driveline and suspension. A cradle-to-cradle life cycle assessment (LCA) was conducted for these three vehicle material alternatives. LCA methodology for this study included material production, mill semi-fabrication, vehicle use phase operation, and end-of-life recycling. This study followed international standards ISO 14040:2006 [1] and ISO 14044:2006 [2], consistent with the automotive LCA guidance document currently being developed [3]. Vehicle use phase mass reduction was found to account for over 90% of total vehicle life cycle energy and CO2e emissions. The AIV design achieved mass reduction of 25% (versus baseline) resulting in reductions in total life cycle primary energy consumption by 20% and CO2e emissions by 17%. Overall, the AIV design showed the best breakeven vehicle mileage from both primary energy consumption and climate change perspectives.

  3. Origins of Analysis Methods Used to Design High Performance Commercial Buildings: Part II, Solar Energy Analysis

    E-Print Network [OSTI]

    Oh, S.; Haberl, J.S.

    PV, solar thermal, passive solar analysis programs are reivewed using a new comprehensive genealogy chart. In companion papers, the origins of the analysis methods of whole-building energy and daylighting simulation programs are reviewed (Oh... analysis programs evaluate the performance of solar systems that are designed to collect and use solar radiation for thermal or electricity conversion. These programs are used for simulations and design methods: Computer simulations estimate the time...

  4. SOLCOST - Version 3. 0. Solar energy design program for non-thermal specialists

    SciTech Connect (OSTI)

    Not Available

    1980-05-01T23:59:59.000Z

    The SOLCOST solar energy design program is a public domain computerized design tool intended for use by non-thermal specialists to size solar systems with a methodology based on life cycle cost. An overview of SOLCOST capabilities and options is presented. A detailed guide to the SOLCOST input parameters is included. Sample problems showing typical imput decks and resulting SOLCOST output sheets are given. Details of different parts of the analysis are appended. (MHR)

  5. Technical Support Document: The Development of the Advanced Energy Design Guide for Small Retail Buildings

    SciTech Connect (OSTI)

    Liu, Bing; Jarnagin, Ronald E.; Winiarski, David W.; Jiang, Wei; McBride, Merle F.; Crall, C.

    2006-09-30T23:59:59.000Z

    The Advanced Energy Design Guide for Small Retail Buildings (AEDG-SR) was developed by a partnership of organizations, including the American Society of Heating, Refrigerating and Air Conditioning Engineers (ASHRAE), the American Institute of Architects (AIA), the Illuminating Engineering Society of North America (IESNA), the United States Green Buildings Council (USGBC), and the Department of Energy (DOE). The guide is intended to offer recommendations to achieve 30% energy savings and thus to encourage steady progress towards net-zero energy buildings. The baseline level energy use was set at buildings built at the turn of the millennium, which are assumed to be based on ANSI/ASHRAE/IESNA Standard 90.1-1999, Energy Standard for Buildings Except Low-Rise Residential Buildings (refer to as the ?Standard? in this report). ASHRAE and its partners are engaged in the development of a series of guides for small commercial buildings, with the AEDG-SR being the second in the series. Previously the partnership developed the Advanced Energy Design Guide for Small Office Buildings: Achieving 30% Energy Savings Over ANSI/ASHRAE/IESNA Standard 90.1-1999, which was published in late 2004. The technical support document prepared by PNNL details how the energy analysis performed in support of the Guide and documents development of recommendation criteria.

  6. U.S. Department of Energy (DOE) Technical Assistance to Beichuan Reconstruction: Creating and Designing Low- to Zero-carbon Communities in New Beichuan, Sichuan Province

    E-Print Network [OSTI]

    Xu, Tengfang

    2010-01-01T23:59:59.000Z

    systems and energy-efficient designs often need smaller HVACdesign and construction process for energy-efficient

  7. Advanced Energy Design Guides Slash Energy Use in Schools and Retail Buildings by 50% (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2012-04-01T23:59:59.000Z

    Owners, contractors, engineers, and architects can easily achieve significant energy savings by leveraging the complex analyses and expertise captured in these guides.

  8. Applications of Systems Engineering to the Research, Design, and Development of Wind Energy Systems

    SciTech Connect (OSTI)

    Dykes, K.; Meadows, R.; Felker, F.; Graf, P.; Hand, M.; Lunacek, M.; Michalakes, J.; Moriarty, P.; Musial, W.; Veers, P.

    2011-12-01T23:59:59.000Z

    This paper surveys the landscape of systems engineering methods and current wind modeling capabilities to assess the potential for development of a systems engineering to wind energy research, design, and development. Wind energy has evolved from a small industry in a few countries to a large international industry involving major organizations in the manufacturing, development, and utility sectors. Along with this growth, significant technology innovation has led to larger turbines with lower associated costs of energy and ever more complex designs for all major subsystems - from the rotor, hub, and tower to the drivetrain, electronics, and controls. However, as large-scale deployment of the technology continues and its contribution to electricity generation becomes more prominent, so have the expectations of the technology in terms of performance and cost. For the industry to become a sustainable source of electricity, innovation in wind energy technology must continue to improve performance and lower the cost of energy while supporting seamless integration of wind generation into the electric grid without significant negative impacts on local communities and environments. At the same time, issues associated with wind energy research, design, and development are noticeably increasing in complexity. The industry would benefit from an integrated approach that simultaneously addresses turbine design, plant design and development, grid interaction and operation, and mitigation of adverse community and environmental impacts. These activities must be integrated in order to meet this diverse set of goals while recognizing trade-offs that exist between them. While potential exists today to integrate across different domains within the wind energy system design process, organizational barriers such as different institutional objectives and the importance of proprietary information have previously limited a system level approach to wind energy research, design, and development. To address these challenges, NREL has embarked on an initiative to evaluate how methods of systems engineering can be applied to the research, design and development of wind energy systems. Systems engineering is a field within engineering with a long history of research and application to complex technical systems in domains such as aerospace, automotive, and naval architecture. As such, the field holds potential for addressing critical issues that face the wind industry today. This paper represents a first step for understanding this potential through a review of systems engineering methods as applied to related technical systems. It illustrates how this might inform a Wind Energy Systems Engineering (WESE) approach to the research, design, and development needs for the future of the industry. Section 1 provides a brief overview of systems engineering and wind as a complex system. Section 2 describes these system engineering methods in detail. Section 3 provides an overview of different types of design tools for wind energy with emphasis on NREL tools. Finally, Section 4 provides an overview of the role and importance of software architecture and computing to the use of systems engineering methods and the future development of any WESE programs. Section 5 provides a roadmap of potential research integrating systems engineering research methodologies and wind energy design tools for a WESE framework.

  9. Super Energy Efficiency Design (S.E.E.D.) Home Evaluation

    SciTech Connect (OSTI)

    German, A.; Dakin, B.; Backman, C.; Weitzel, E.; Springer, D.

    2012-12-01T23:59:59.000Z

    This report describes the results of evaluation by the Alliance for Residential Building Innovation (ARBI) Building America team of the 'Super Energy Efficient Design' (S.E.E.D) home, a 1,935 sq. ft., single-story spec home located in Tucson, AZ. This prototype design was developed with the goal of providing an exceptionally energy efficient yet affordable home and includes numerous aggressive energy features intended to significantly reduce heating and cooling loads such as structural insulated panel (SIP) walls and roof, high performance windows, an ERV, an air-to-water heat pump with mixed-mode radiant and forced air delivery, solar water heating, and rooftop PV. Source energy savings are estimated at 45% over the Building America B10 Benchmark. System commissioning, short term testing, long term monitoring and detailed analysis of results was conducted to identify the performance attributes and cost effectiveness of the whole house measure package.

  10. Technical Support Document: The Development of the Advanced Energy Design Guide for Highway Lodging Buildings

    SciTech Connect (OSTI)

    Jiang, Wei; Jarnagin, Ronald E.; Gowri, Krishnan; McBride, M.; Liu, Bing

    2008-09-30T23:59:59.000Z

    This Technical Support Document (TSD) describes the process and methodology for development of the Advanced Energy Design Guide for Highway Lodgings (AEDG-HL or the Guide), a design guidance document intended to provide recommendations for achieving 30% energy savings in highway lodging properties over levels contained in ANSI/ASHRAE/IESNA Standard 90.1-1999, Energy Standard for Buildings Except Low-Rise Residential Buildings. The AEDG-HL is the fifth in a series of guides being developed by a partnership of organizations, including the American Society of Heating, Refrigerating and Air-Conditioning Engineers, Inc. (ASHRAE), the American Institute of Architects (AIA), the Illuminating Engineering Society of North America (IESNA), the United States Green Buildings Council (USGBC), and the U.S. Department of Energy (DOE).

  11. Design optimization methodology for power converters based on global energy requirement criteria. Application to a DC-DC flyback structure

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    for power electronic converters according to the Global Energy Requirement (GER) criterion, i.e. the primary-design converters in order to take its environmental impacts (here, only its global primary energy consumptionDesign optimization methodology for power converters based on global energy requirement criteria

  12. KL Energy Corp Formerly KL Process Design Group | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia: Energy Resources Jump to:46 - 429 Throttled (botOpen6 Climate ZoneJeromeCountyKGRA Energy LLC Jump to:KL Energy

  13. EA-1915: Notice of Intent to Prepare an Environmental Assessment...

    Broader source: Energy.gov (indexed) [DOE]

    title transfer, lease, easement, license, or a combination of these realty actions. The Tri-City Development Council, a DOE designated Community Reuse Organization and 501(c)(6)...

  14. Interoperability of Computer Aided Design and Energy Performance Simulation to Improve Building Energy Efficiency and Performance

    E-Print Network [OSTI]

    Chaisuparasmikul, P.

    2006-01-01T23:59:59.000Z

    The paper describes very significant novel interoperability and data modeling technology for existing building that maps a building information parametric model with an energy simulation model, establishing a seamless link between Computer Aided...

  15. Designing a Practical Data Filter Cache to Improve Both Energy Efficiency and Performance

    E-Print Network [OSTI]

    Whalley, David

    A Designing a Practical Data Filter Cache to Improve Both Energy Efficiency and Performance Alen Bardizbanyan, Chalmers University of Technology Magnus Sj¨alander, Florida State University David Whalley, Florida State University Per Larsson-Edefors, Chalmers University of Technology Conventional data filter

  16. Request to the Energy Commission for Designation as Approved Trade Association Directory

    E-Print Network [OSTI]

    ) publishes a paper or electronic directory; (C) is designated, under Sections 1602(a) and 1603(b) of Title 20 ENERGY COMMISSION APPLIANCE PROGRAM ­ SECTION 1606(h), TITLE 20, CALIFORNIA CODE OF REGULATIONS (1 in Section 1606(h) of Title 20 of the California Code of Regulations; and (B) the published directory

  17. BSR/CSA C448-201x, Design and Installation of Earth Energy Bi

    E-Print Network [OSTI]

    -loop earth energy heat pump systems Annex B Site survey worksheet Annex C Method for determining sizing · CM Engineering · HRAI · City of Calgary · Geo-Flo Products · Heat-Line Corporation · Government for Commercial and Institutional Buildings (ICI) C448.1 Design and Installation for Residential / Small Buildings

  18. ENERGY FOR SUSTAINABILITY: HIGHLY COMPLIANT FLOATING OFFSHORE WIND TURBINES: FEASIBILITY ASSESSMENT THROUGH THEORY, SIMULATION AND DESIGN

    E-Print Network [OSTI]

    Sweetman, Bert

    A-1 ENERGY FOR SUSTAINABILITY: HIGHLY COMPLIANT FLOATING OFFSHORE WIND TURBINES: FEASIBILITY ASSESSMENT THROUGH THEORY, SIMULATION AND DESIGN Hundreds of wind turbines have been installed in the oceans surrounding Europe, and plans are in place for offshore developments in the US. Locating these wind turbines

  19. Energy-data Dashboards and Operators: Designing for Usability in New York City Schools

    E-Print Network [OSTI]

    Bobker, M.

    from the U.S. EPA EnergyStar Portfolio Manager and other sources, such as local weather stations, for the city’s 1,400 public schools. A unique aspect of the dashboard design process has been conscious integration with a training program for school...

  20. Implementable Efficient Time and Energy Consumption Trajectories Design For an Autonomous Underwater Vehicle

    E-Print Network [OSTI]

    Smith, Ryan N.

    Implementable Efficient Time and Energy Consumption Trajectories Design For an Autonomous efficient trajectories onto a test-bed autonomous underwater vehicle. The trajectories are losely connected, their autonomy has become a large research interest. Much research has gone into making autonomous vehicles

  1. An Expert System for Determining Compliance with the Texas Building Energy Design Standard

    E-Print Network [OSTI]

    Doan, E. C.; Hunn, B. D.; Jones, J. W.; Gatton, T. M.

    1996-01-01T23:59:59.000Z

    's compliance is provided and the compliance checker must manage the data collected. To assist designers in complying with the Standard and to reduce the time required, the Center for Energy Studies (CES) at the University of Texas at Austin has developed...

  2. Passive solar design strategies: Remodeling guidelines for conserving energy at home

    SciTech Connect (OSTI)

    Not Available

    1991-01-01T23:59:59.000Z

    The idea of passive solar is simple, but applying it effectively does require information and attention to the details of design and construction. Some passive solar techniques are modest and low-cost, and require only small changes in remodeler's typical practice. At the other end of the spectrum, some passive solar systems can almost eliminate a house's need for purchased heating (and in some cases, cooling) energy -- but probably at a relatively high first cost. In between are a broad range of energy-conserving passive solar techniques. Whether or not they are cost-effective, practical and attractive enough to offer a market advantage to any individual remodeler depends on very specific factors such as local costs, climate, and market characteristics. Passive solar design strategies: Remodeling Guidelines For Conserving Energy At Homes is written to help give remodelers the information they need to make these decisions. Passive Solar Design Strategies is a package in three basic parts: The Guidelines contain information about passive solar techniques and how they work, and provides specific examples of systems which will save various percentages of energy; The Worksheets offer a simple, fill-in-the-blank method to pre-evaluate the performance of a specific design; The Worked Example demonstrates how to complete the worksheets for a typical residence.

  3. Passive solar design strategies: Remodeling guidelines for conserving energy at home. [Final report

    SciTech Connect (OSTI)

    Not Available

    1991-12-31T23:59:59.000Z

    The idea of passive solar is simple, but applying it effectively does require information and attention to the details of design and construction. Some passive solar techniques are modest and low-cost, and require only small changes in remodeler`s typical practice. At the other end of the spectrum, some passive solar systems can almost eliminate a house`s need for purchased heating (and in some cases, cooling) energy -- but probably at a relatively high first cost. In between are a broad range of energy-conserving passive solar techniques. Whether or not they are cost-effective, practical and attractive enough to offer a market advantage to any individual remodeler depends on very specific factors such as local costs, climate, and market characteristics. Passive solar design strategies: Remodeling Guidelines For Conserving Energy At Homes is written to help give remodelers the information they need to make these decisions. Passive Solar Design Strategies is a package in three basic parts: The Guidelines contain information about passive solar techniques and how they work, and provides specific examples of systems which will save various percentages of energy; The Worksheets offer a simple, fill-in-the-blank method to pre-evaluate the performance of a specific design; The Worked Example demonstrates how to complete the worksheets for a typical residence.

  4. Title: Designing Energy-Efficient Information Processing Systems Abstract: The semiconductor industry is facing some extraordinary challenges, including process and

    E-Print Network [OSTI]

    Title: Designing Energy-Efficient Information Processing Systems Abstract: The semiconductor than 450 papers, and received six Conference and two IEEE Transactions Best Paper awards for their work

  5. Design, fabrication and measurement of a novel cooling arm for fusion energy source

    E-Print Network [OSTI]

    Shui-Dong Jiang; Jing-Quan Liu; Jia-Bin Mei; Bin Yang; Chun-Sheng Yang

    2012-07-05T23:59:59.000Z

    The issues of energy and environment are the main constraint of sustainable development in worldwide. Nuclear energy source is one important optional choice for long term sustainable development. The nuclear energy consists of fusion energy and fission energy. Compared with fission, inertial confinement fusion (ICF) is a kind of clean fusion energy and can generate large energy and little environmental pollution. ICF mainly consists of peripheral driver unit and target. The cooling arm is an important component of the target, which cools the hohlraum to maintain the required temperature and positions the thermal-mechanical package (TMP) assembly. This paper mainly investigates the cooling arm, including the structural design, the verticality of sidewall and the mechanical properties. The TMP assembly is uniformly clamped in its radial when using (111) crystal orientation silicon to fabricate cooling arm. The finite element method is used to design the structure of cooling arm with 16 clamping arms, and the MEMS technologies are employed to fabricate the micro-size cooling arm structure with high vertical sidewall. Finally, the mechanical test of cooling arm is taken, and the result can meet the requirement of positioning TMP assembly.

  6. The design of a controllable energy recovery device for solar powered reverse osmosis desalination with experimental validation

    E-Print Network [OSTI]

    Reed, Elizabeth Anne, S.M. Massachusetts Institute of Technology

    2012-01-01T23:59:59.000Z

    The purpose of this thesis is to design and validate a controllable energy recovery device with application to photovoltaic powered reverse osmosis (PVRO). The energy consumption of a reverse osmosis plant depends significantly ...

  7. Energy Saving Melting and Revert Reduction Technology (E-SMARRT): Design Support for Tooling Optimization

    SciTech Connect (OSTI)

    Wang, Dongtao

    2011-09-23T23:59:59.000Z

    High pressure die casting is an intrinsically efficient net shape process and improvements in energy efficiency are strongly dependent on design and process improvements that reduce scrap rates so that more of the total consumed energy goes into acceptable, usable castings. Computer simulation has become widely used within the industry but use is not universal. Further, many key design decisions must be made before the simulation can be run and expense in terms of money and time often limits the number of decision iterations that can be explored. This work continues several years of work creating simple, very fast, design tools that can assist with the early stage design decisions so that the benefits of simulation can be maximized and, more importantly, so that the chances of first shot success are maximized. First shot success and better running processes contributes to less scrap and significantly better energy utilization by the process. This new technology was predicted to result in an average energy savings of 1.83 trillion BTUs/year over a 10 year period. Current (2011) annual energy saving estimates over a ten year period, based on commercial introduction in 2012, a market penetration of 30% by 2015 is 1.89 trillion BTUs/year by 2022. Along with these energy savings, reduction of scrap and improvement in yield will result in a reduction of the environmental emissions associated with the melting and pouring of the metal which will be saved as a result of this technology. The average annual estimate of CO2 reduction per year through 2022 is 0.037 Million Metric Tons of Carbon Equivalent (MM TCE).

  8. Extend EnergyPlus to Support Evaluation, Design, and Operation of Low Energy Buildings

    SciTech Connect (OSTI)

    Cho, Heejin; Wang, Weimin; Makhmalbaf, Atefe; Yun, Kyung Tae; Glazer, Jason; Scheier, Larry; Srivastava, Viraj; Gowri, Krishnan

    2011-12-21T23:59:59.000Z

    During FY10-11, Pacific Northwest National Laboratory in collaboration with the EnergyPlus development team implemented the following high priority enhancements to support the simulation of high performance buildings: (1) Improve Autosizing of Heating, Ventilation, and Air Conditioning (HVAC) Components; (2) Life-Cycle Costing to Evaluate Energy Efficiency Upgrades; (3) Develop New Model to Capture Transformer Losses; (4) Enhance the Model for Electric Battery Storage; and (5) Develop New Model for Chiller-Tower Optimization. This report summarizes the technical background, new feature development and implementation details, and testing and validation process for these enhancements. The autosizing, life-cycle costing and transformer model enhancements/developments were included in EnergyPlus release Version 6.0, and the electric battery model development will be included in Version 7.0. The model development of chiller-tower optimization will be included in a later version (after Version 7.0).

  9. Wiring design based on Global Energy Requirement criteria: a first step towards optimization of DC distribution voltage

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    optimization methodology based on the primary energy environmental impact 2.1. The Global Energy RequirementWiring design based on Global Energy Requirement criteria: a first step towards optimization of DC. Introduction Nowadays, the global energy context leads to a need for the development of distributed Renewable

  10. US Department of Energy natural phenomena design/evaluation guidelines/lessons learned

    SciTech Connect (OSTI)

    Conrads, T.J.

    1991-08-01T23:59:59.000Z

    In the spring of 1988, DOE Order 6430.1A, General Design Criteria (1), was issued for use. This document references UCRL-15910, Design and Evaluation Guidelines for DOE Facilities Subjected to Natural Phenomena Hazards (2), which is to be used as the basis for the design and evaluation of new and existing facilities to natural phenomena loading. Rather than use the historical deterministic methods for computing structural and component loading from potential natural phenomena, UCRL-15910 incorporated the years of hazards studies conducted throughout the US Department of Energy complex into probabilistic-based methods. This paper describes the process used to incorporate US Department of Energy natural phenomena design guidelines into the Hanford Plant Standards -- Standard Design Criteria for Architectural and Civil Standards (3). It also addresses the subsequent use of these criteria during structural assessments of facilities, systems, and components of various vintage in support of updating safety analysis reports. The paper includes comparison of results using these most recent probabilistic-based natural phenomena loading criteria to those obtained from previous assessments, and it addresses the lessons learned from the many structural evaluations of 1940--1960 vintage buildings.

  11. US Department of Energy natural phenomena design/evaluation guidelines/lessons learned

    SciTech Connect (OSTI)

    Conrads, T.J.

    1991-08-01T23:59:59.000Z

    In the spring of 1988, DOE Order 6430.1A, General Design Criteria [1], was issued for use. This document references UCRL-15910, Design and Evaluation Guidelines for DOE Facilities Subjected to Natural Phenomena Hazards [2], which is to be used as the basis for the design and evaluation of new and existing facilities to natural phenomena loading. Rather than use the historical deterministic methods for computing structural and component loading from potential natural phenomena, UCRL-15910 incorporated the years of hazards studies conducted throughout the US Department of Energy complex into probabilistic-based methods. This paper describes the process used to incorporate US Department of Energy natural phenomena design guidelines into the Hanford Plant Standards -- Standard Design Criteria for Architectural and Civil Standards [3]. It also addresses the subsequent use of these criteria during structural assessments of facilities, systems, and components of various vintage in support of updating safety analysis reports. The paper includes comparison of results using these most recent probabilistic-based natural phenomena loading criteria to those obtained from previous assessments, and it addresses the lessons learned from the many structural evaluations of 1940--1960 vintage buildings.

  12. Energy Efficiency Design Options for Residential Water Heaters: Economic Impacts on Consumers

    SciTech Connect (OSTI)

    Lekov, Alex; Franco, Victor; Meyers, Steve; Thompson, Lisa; Letschert, Virginie

    2010-11-24T23:59:59.000Z

    The U.S. Department of Energy (DOE) recently completed a rulemaking process in which it amended the existing energy efficiency standards for residential water heaters. A key factor in DOE?s consideration of new standards is the economic impacts on consumers. Determining such impacts requires a comparison of the additional first cost of energy efficiency design options with the savings in operating costs. This paper describes the method used to conduct the life-cycle cost (LCC) and payback period analysis for gas and electric storage water heaters. It presents the estimated change in LCC associated with more energy-efficient equipment, including heat pump electric water heaters and condensing gas water heaters, for a representative sample of U.S. homes. The study included a detailed accounting of installation costs for the considered design options, with a focus on approaches for accommodating the larger dimensions of more efficient water heaters. For heat pump water heaters, the study also considered airflow requirements, venting issues, and the impact of these products on the indoor environment. The results indicate that efficiency improvement relative to the baseline design reduces the LCC in the majority of homes for both gas and electric storage water heaters, and heat pump electric water heaters and condensing gas water heaters provide a lower LCC for homes with large rated volume water heaters.

  13. EnergyGauge USA: A Residential Building Energy Simulation Design Tool

    E-Print Network [OSTI]

    Fairey, P.; Vieira, R. K.; Parker, D. S.; Hanson, B.; Broman, P. A.; Grant, J. B.; Fuehrlein, B.; Gu, L.

    2002-01-01T23:59:59.000Z

    of EnergyGauge USA with significant impact on measures that effect sensible loads. The development of the new correlations is described in Henderson (1998a) and is based on empirical assessment of current generation heating and cooling equipment... moisture capacitance model for the simulation to damp out unrealistic variations in air enthalpy that were observed with the current model. The model, described in Henderson (1998b) assumes that the building has a moisture capacitance that is twenty...

  14. Energy Efficiency Design Challenge in Sensor Networks Q.Gao, D.J.Holding, Y. Peng, K.J.Blow

    E-Print Network [OSTI]

    Haddadi, Hamed

    Energy Efficiency Design Challenge in Sensor Networks Q.Gao, D.J.Holding, Y. Peng, K.J.Blow Aston efficiency design challenge Sensor nodes are likely to be battery powered, and it is often very difficult, and personalization; wildlife observation; battlefield or disaster area monitoring and interactive museums. 2 Energy

  15. ISES'99, International Solar Energy Society, Jrusalem, ISRAEL, Juin 1999 BUILDING DESIGN IN TROPICAL CLIMATES. ELABORATION OF THE ECODOM

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    ISES'99, International Solar Energy Society, Jérusalem, ISRAEL, Juin 1999 BUILDING DESIGN of optimized bioclimatic urban planning and architectural design, the use of passive cooling architectural public and private partners (low cost housing institutions, architects, energy consultant, etc...) to set

  16. Interaction region design for a RHIC-based medium-energy electron-ion collider

    SciTech Connect (OSTI)

    Montag,C.; Beebe-Wang, J.

    2009-05-04T23:59:59.000Z

    As a first step in a staged approach towards a RHIC-based electron-ion collider, installation of a 4 GeV energy-recovery linac (ERL) in one of the RHIC interaction regions is currently under investigation. To minimize costs, the interaction region of this collider has to use the present RHIC magnets for focusing of the high-energy ion beam. Meanwhile, electron low-beta focusing needs to be added in the limited space available between the existing separator dipoles. We discuss the challenges and present the current design status of this e-A interaction region.

  17. Using Passive Solar Design to Save Money and Energy | Department of Energy

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion |Energy UsageAUDITVehiclesTankless or Demand-Type WaterTravel TravelUpcomingUseful Links

  18. Esthetically Designed Municipal PV System Maximizes Energy Production and Revenue Return

    Broader source: Energy.gov [DOE]

    In late 2008, the City of Sebastopol, CA installed a unique 42 kW grid-interactive photovoltaic (PV) system to provide electricity for pumps of the Sebastopol municipal water system. The resulting innovative Sun Dragon PV system, located in a public park, includes design elements that provide optimized electrical performance and revenue generation for the energy produced while also presenting an artistic and unique appearance to park visitors.

  19. Design considerations for a steady state fusion reactor's thermal energy dump (TED) with emphasis on SAFFIRE

    SciTech Connect (OSTI)

    Werley, K.A.

    1980-01-01T23:59:59.000Z

    This work examines the use of a thermal dump to handle the severe particle and energy handling requirements of a diverted plasma. We outline a general approach for evaluating the design parameters and limitations of a thermal dump, considering such things as thermomechanical and erosion effects, compatibility, availability, machinability, coolant recirculation, vacuum pumping, economics, lifetime, etc. To demonstrate how the performance requirements are reflected in design decisions, we apply a solid-walled dump to a small-sized field reversed mirror (FRM). We also examine a liquid-lithium droplet thermal dump and point out some distinct advantages of this new concept over the solid-wall design in reducing stress, erosion, and vacuum pumping problems. The chief disadvantages of this scheme include liquid-metal safe-handling problems, vapor pressure-temperature limitations, and the need for differential pumping if T/sub Li/ > 310/sup 0/C is desired.

  20. The Design-Build Process for the Research Support Facility (RSF), Energy Efficiency & Renewable Energy (EERE)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear SecurityTensile Strain Switched Ferromagnetism in Layered NbS2 and NbSe2 .2004Theapproaches201EvaluationDesign-Build

  1. GEOTHERMAL / SOLAR HYBRID DESIGNS: USE OF GEOTHERMAL ENERGY FOR CSP FEEDWATER HEATING

    SciTech Connect (OSTI)

    Craig Turchi; Guangdong Zhu; Michael Wagner; Tom Williams; Dan Wendt

    2014-10-01T23:59:59.000Z

    This paper examines a hybrid geothermal / solar thermal plant design that uses geothermal energy to provide feedwater heating in a conventional steam-Rankine power cycle deployed by a concentrating solar power (CSP) plant. The geothermal energy represents slightly over 10% of the total thermal input to the hybrid plant. The geothermal energy allows power output from the hybrid plant to increase by about 8% relative to a stand-alone CSP plant with the same solar-thermal input. Geothermal energy is converted to electricity at an efficiency of 1.7 to 2.5 times greater than would occur in a stand-alone, binary-cycle geothermal plant using the same geothermal resource. While the design exhibits a clear advantage during hybrid plant operation, the annual advantage of the hybrid versus two stand-alone power plants depends on the total annual operating hours of the hybrid plant. The annual results in this draft paper are preliminary, and further results are expected prior to submission of a final paper.

  2. Energy Efficient Design of Cognitive Small Cells Matthias Wildemeersch, Tony Q. S. Quek, Alberto Rabbachin, Cornelis H. Slump, and Aiping Huang

    E-Print Network [OSTI]

    Vellekoop, Michel

    Energy Efficient Design of Cognitive Small Cells Matthias Wildemeersch§, Tony Q. S. Quek, Alberto environmental awareness and the high price of energy, the design of energy efficient wireless systems for both, and the aggregate network interference. The proposed framework yields design guidelines for energy efficient small

  3. Design and evaluation guidelines for Department of Energy facilities subjected to natural phenomena hazards

    SciTech Connect (OSTI)

    Kennedy, R.P. (Structural Mechanics Consulting, Inc., Yorba Linda, CA (USA)); Short, S.A. (ABB Impell Corp., Mission Viejo, CA (USA)); McDonald, J.R. (Texas Tech Univ., Lubbock, TX (USA)); McCann, M.W. Jr. (Benjamin (J.R.) and Associates, Inc., Mountain View, CA (USA)); Murray, R.C. (Lawrence Livermore National Lab., CA (USA)); Hill, J.R. (USDOE Assistant Secretary for Environment, Safety, and He

    1990-06-01T23:59:59.000Z

    The Department of Energy (DOE) and the DOE Natural Phenomena Hazards Panel have developed uniform design and evaluation guidelines for protection against natural phenomena hazards at DOE sites throughout the United States. The goal of the guidelines is to assure that DOE facilities can withstand the effects of natural phenomena such as earthquakes, extreme winds, tornadoes, and flooding. The guidelines apply to both new facilities (design) and existing facilities (evaluation, modification, and upgrading). The intended audience is primarily the civil/structural or mechanical engineers conducting the design or evaluation of DOE facilities. The likelihood of occurrence of natural phenomena hazards at each DOE site has been evaluated by the DOE Natural Phenomena Hazard Program. Probabilistic hazard models are available for earthquake, extreme wind/tornado, and flood. Alternatively, site organizations are encouraged to develop site-specific hazard models utilizing the most recent information and techniques available. In this document, performance goals and natural hazard levels are expressed in probabilistic terms, and design and evaluation procedures are presented in deterministic terms. Design/evaluation procedures conform closely to common standard practices so that the procedures will be easily understood by most engineers. Performance goals are expressed in terms of structure or equipment damage to the extent that: (1) the facility cannot function; (2) the facility would need to be replaced; or (3) personnel are endangered. 82 refs., 12 figs., 18 tabs.

  4. The Woodlands Metro Center energy study. Case studies of project planning and design for energy conservation

    SciTech Connect (OSTI)

    Not Available

    1980-03-01T23:59:59.000Z

    The Woodlands is a HUD Title VII New Town located near Houston, including 22,000 acres; the plan for the new town consists of 6 residential villages, a town center (Metro), and a Trade Center for larger-scale industrial use. Included within the program for each village are schools and commercial activities, as well as employment activities. The Woodlands is planned to be developed over a 26-year period (commenced in 1972) with an ultimate population of 150,000. Following a summary chapter, Chapter II presents background material on The Woodlands and results of the study are summarized. Chapter III describes the project team and its organizational structure. Chapter IV outlines and documents the methodology that was employed in developing, analyzing, and evaluating the case study. The next chapter describes and analyzes the conventional plan, documents the process by which energy-conserving methods were selected, and evaluates the application of these methods to the Metro Center Study area. Chapter VI discusses constraints to implementation and is followed by a final chapter that presents the general conclusions from the case study and suggests directions for further investigation.

  5. Natural phenomena hazards design and evaluation criteria for Department of Energy Facilities

    SciTech Connect (OSTI)

    NONE

    1996-01-01T23:59:59.000Z

    The Department of Energy (DOE) has issued an Order 420.1 which establishes policy for its facilities in the event of natural phenomena hazards (NPH) along with associated NPH mitigation requirements. This DOE Standard gives design and evaluation criteria for NPH effects as guidance for implementing the NPH mitigation requirements of DOE Order 420.1 and the associated implementation Guides. These are intended to be consistent design and evaluation criteria for protection against natural phenomena hazards at DOE sites throughout the United States. The goal of these criteria is to assure that DOE facilities can withstand the effects of natural phenomena such as earthquakes, extreme winds, tornadoes, and flooding. These criteria apply to the design of new facilities and the evaluation of existing facilities. They may also be used for modification and upgrading of existing facilities as appropriate. The design and evaluation criteria presented herein control the level of conservatism introduced in the design/evaluation process such that earthquake, wind, and flood hazards are treated on a consistent basis. These criteria also employ a graded approach to ensure that the level of conservatism and rigor in design/evaluation is appropriate for facility characteristics such as importance, hazards to people on and off site, and threat to the environment. For each natural phenomena hazard covered, these criteria consist of the following: Performance Categories and target performance goals as specified in the DOE Order 420.1 NPH Implementation Guide, and DOE-STD-1 021; specified probability levels from which natural phenomena hazard loading on structures, equipment, and systems is developed; and design and evaluation procedures to evaluate response to NPH loads and criteria to assess whether or not computed response is permissible.

  6. Design Methodology for a SEAREV Wave Energy Marie Ruellan, Hamid BenAhmed, Bernard Multon, Christophe Josset, Aurelien Babarit,

    E-Print Network [OSTI]

    Boyer, Edmond

    1 Design Methodology for a SEAREV Wave Energy Converter Marie Ruellan, Hamid BenAhmed, Bernard by presenting two power take-off (PTO) technologies for the SEAREV wave energy converter (WEC) followed technologies in- tended to transform wave energy into electricity. The types of systems are twofold

  7. Using existing technologies, designers and operators of large buildings could slash national energy use across a broad

    E-Print Network [OSTI]

    Using existing technologies, designers and operators of large buildings could slash national energy use across a broad range of climates. Researchers at the National Renewable Energy Laboratory (NREL of large office buildings and hospitals achieve at least a 50% energy savings using existing technology

  8. Reducing the energy consumed in the use of computing devices is becoming a major design challenge. While the

    E-Print Network [OSTI]

    Ellis, Carla

    there is potential value in a higher-level perspective, as well. In our approach, the needs of applications serve in setting energy use policy. Our higher-level perspective on the energy use problem grew out of firsthandAbstract Reducing the energy consumed in the use of computing devices is becoming a major design

  9. Design and Evaluation of a Net Zero Energy Low-Income Residential Housing Development in Lafayette, Colorado

    SciTech Connect (OSTI)

    Dean, J.; Van Geet, O.; Simkus, S.; Eastment, M.

    2012-04-01T23:59:59.000Z

    This abbreviated report outlines the lessons learned and sub-metered energy performance of an ultra low energy single family ranch home and duplex unit, called the Paradigm Pilot Project and presents the final design recommendations for a 153-unit net zero energy residential development called the Josephine Commons Project.

  10. Abstract We describe the preliminary optimal design of an electromechanical above-knee active prosthesis with energy

    E-Print Network [OSTI]

    Simon, Dan

    prosthesis with energy storage and regeneration. A DC motor-generator applies a positive or negative torque to the knee. The control system regulates the exchange of energy between the motor-generator and a supercapacitor. The central idea of the design is motivated by the mechanics, energy management, and sensor

  11. Free Energy Component Analysis for Drug Design: A Case Study of HIV-1 Protease-Inhibitor Binding

    E-Print Network [OSTI]

    Jayaram, Bhyravabotla

    Free Energy Component Analysis for Drug Design: A Case Study of HIV-1 Protease-Inhibitor Binding energy component analysis that conveys information on the physicochemical forces driving the protein for a specific protein target if not in the general case. It is here that the free energy component analysis

  12. IMPACT OF THE CLIMATE ON THE DESIGN OF LOW-ENERGY BUILDINGS FOR AUSTRALIA AND REUNION ISLAND

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    IMPACT OF THE CLIMATE ON THE DESIGN OF LOW-ENERGY BUILDINGS FOR AUSTRALIA AND REUNION ISLAND B of low energy building. This approach is to perform a real evaluation of the sensation of thermal comfort of targets at low energy, some basic principles can be identical and can be applied around the world

  13. Energy-efficient adaptive wireless network design Paul J.M. Havinga, Gerard J.M. Smit, Martinus Bos

    E-Print Network [OSTI]

    Havinga, Paul J.M.

    Energy-efficient adaptive wireless network design Paul J.M. Havinga, Gerard J.M. Smit, Martinus Bos.bos}@cs.utwente.nl Abstract Energy efficiency is an important issue for mobile computers since they must rely on their batteries. We present an energy-efficient highly adaptive architecture of a network interface and novel data

  14. Design Considerations for an On-Demand Minimum Energy Routing Protocol for a Wireless Ad Hoc Network

    E-Print Network [OSTI]

    Brown, Timothy X.

    1 Design Considerations for an On-Demand Minimum Energy Routing Protocol for a Wireless Ad Hoc- demand minimum energy routing protocol and suggests mechanisms for their implementation. We highlight of an 'energy aware' link cache for storing this information. We also compare the performance of an on-demand

  15. Inverse Design: Playing "Jeopardy" in Materials Science (A "Life at the Frontiers of Energy Research" contest entry from the 2011 Energy Frontier Research Centers (EFRCs) Summit and Forum)

    ScienceCinema (OSTI)

    Alex Zunger (former Director, Center for Inverse Design); Tumas, Bill (Director, Center for Inverse Design); CID Staff

    2011-11-02T23:59:59.000Z

    'Inverse Design: Playing 'Jeopardy' in Materials Science' was submitted by the Center for Inverse Design (CID) to the 'Life at the Frontiers of Energy Research' video contest at the 2011 Science for Our Nation's Energy Future: Energy Frontier Research Centers (EFRCs) Summit and Forum. Twenty-six EFRCs created short videos to highlight their mission and their work. CID, an EFRC directed by Bill Tumas at the National Renewable Energy Laboratory is a partnership of scientists from five institutions: NREL (lead), Northwestern University, University of Colorado, Stanford University, and Oregon State University. The Office of Basic Energy Sciences in the U.S. Department of Energy's Office of Science established the 46 Energy Frontier Research Centers (EFRCs) in 2009. These collaboratively-organized centers conduct fundamental research focused on 'grand challenges' and use-inspired 'basic research needs' recently identified in major strategic planning efforts by the scientific community. The overall purpose is to accelerate scientific progress toward meeting the nation's critical energy challenges. The mission of the Center for Inverse Design is 'to replace trial-and-error methods used in the development of materials for solar energy conversion with an inverse design approach powered by theory and computation.' Research topics are: solar photovoltaic, photonic, metamaterial, defects, spin dynamics, matter by design, novel materials synthesis, and defect tolerant materials.

  16. Preliminary design study of compressed-air energy storage in a salt dome. Volume 6. CAES plant design. Final report

    SciTech Connect (OSTI)

    Not Available

    1982-04-01T23:59:59.000Z

    The preliminary plant design for a compressed-air energy storage (CAES) plant located in the Middle South Services, Inc. (MSS), is presented. The design is based upon the facility criteria; the specific site; and the systems, subsystems, and components identified in the other task of this study. The proposed 220-MW(e) plant is located at the Carmichael salt dome near Jackson, Mississippi. The compressed air is stored in two solution-mined caverns in the salt dome. The plant area, exclusive of the remote fuel unloading facility, occupies 20 acres. An equipment list, a plot plan, and general arrangement drawings define the CAES plant. The details concerning the major equipment and the operation of the mechanical systems are described. The capital investment cost (exclusive of owner's cost) of the 220-MW(e) CAES plant is $85.6 million in 1979 dollars or $389/kW. This cost is based on firing the turbines with No. 2 fuel oil. As an alternative, the capital investment cost under the same conditions for a plant firing No. 6 oil is $90.9 million or $413/kW. The project schedule from start of licensing to commercial operation is estimated to be 70 months, with actual construction (including dewatering of the caverns) estimated to be 39 months. Based on the cost estimate developed in this task and the modified financial data and fuel cost projections, the economic introduction of CAES into the MSS system was examined for the No. 2 oil-fired plant. Due to lack of funds, the economic analysis did not extend beyond the year 1988. No system analysis of the No. 6 oil-fired plant was made. The economic introduction of CAES in the MSS system before 1990 is unlikely because the older oil-fired units in the MSS system may be economically used for cycling and peaking, if required. For a system with a different composition of generating units (i.e., low-cost, coal-fired plants), CAES may be economical at an earlier date.

  17. Conceptual Design of Optimized Fossil Energy Systems with Capture and Sequestration of Carbon Dioxide

    SciTech Connect (OSTI)

    Nils Johnson; Joan Ogden

    2010-12-31T23:59:59.000Z

    In this final report, we describe research results from Phase 2 of a technical/economic study of fossil hydrogen energy systems with carbon dioxide (CO{sub 2}) capture and storage (CCS). CO{sub 2} capture and storage, or alternatively, CO{sub 2} capture and sequestration, involves capturing CO{sub 2} from large point sources and then injecting it into deep underground reservoirs for long-term storage. By preventing CO{sub 2} emissions into the atmosphere, this technology has significant potential to reduce greenhouse gas (GHG) emissions from fossil-based facilities in the power and industrial sectors. Furthermore, the application of CCS to power plants and hydrogen production facilities can reduce CO{sub 2} emissions associated with electric vehicles (EVs) and hydrogen fuel cell vehicles (HFCVs) and, thus, can also improve GHG emissions in the transportation sector. This research specifically examines strategies for transitioning to large-scale coal-derived energy systems with CCS for both hydrogen fuel production and electricity generation. A particular emphasis is on the development of spatially-explicit modeling tools for examining how these energy systems might develop in real geographic regions. We employ an integrated modeling approach that addresses all infrastructure components involved in the transition to these energy systems. The overall objective is to better understand the system design issues and economics associated with the widespread deployment of hydrogen and CCS infrastructure in real regions. Specific objectives of this research are to: Develop improved techno-economic models for all components required for the deployment of both hydrogen and CCS infrastructure, Develop novel modeling methods that combine detailed spatial data with optimization tools to explore spatially-explicit transition strategies, Conduct regional case studies to explore how these energy systems might develop in different regions of the United States, and Examine how the design and cost of coal-based H{sub 2} and CCS infrastructure depend on geography and location.

  18. ND:GLASS LASER DESIGN FOR LASER ICF FISSION ENERGY (LIFE)

    SciTech Connect (OSTI)

    Caird, J A; Agrawal, V; Bayramian, A; Beach, R; Britten, J; Chen, D; Cross, R; Ebbers, C; Erlandson, A; Feit, M; Freitas, B; Ghosh, C; Haefner, C; Homoelle, D; Ladran, T; Latkowski, J; Molander, W; Murray, J; Rubenchik, S; Schaffers, K; Siders, C W; Stappaerts, E; Sutton, S; Telford, S; Trenholme, J; Barty, C J

    2008-10-28T23:59:59.000Z

    We have developed preliminary conceptual laser system designs for the Laser ICF (Inertial Confinement Fusion) Fission Energy (LIFE) application. Our approach leverages experience in high-energy Nd:glass laser technology developed for the National Ignition Facility (NIF), along with high-energy-class diode-pumped solid-state laser (HEC-DPSSL) technology developed for the DOE's High Average Power Laser (HAPL) Program and embodied in LLNL's Mercury laser system. We present laser system designs suitable for both indirect-drive, hot spot ignition and indirect-drive, fast ignition targets. Main amplifiers for both systems use laser-diode-pumped Nd:glass slabs oriented at Brewster's angle, as in NIF, but the slabs are much thinner to allow for cooling by high-velocity helium gas as in the Mercury laser system. We also describe a plan to mass-produce pump-diode lasers to bring diode costs down to the order of $0.01 per Watt of peak output power, as needed to make the LIFE application economically attractive.

  19. Empowering Users To Become Designers: Using Meta-Design Environments to Enable and Motivate Sustainable Energy Decisions

    E-Print Network [OSTI]

    Fischer, Gerhard

    Sustainable Energy Decisions Holger Dick, Hal Eden, Gerhard Fischer, and Jason Zietz 1 University of Colorado individuals and communities more broadly in understanding and making more sustainable choices regarding energy-in-use, decision-making, energy sustainability ACM Classification Keywords INTRODUCTION There is overwhelming

  20. Conceptual Design of Optimized Fossil Energy Systems with Capture and Sequestration of Carbon Dioxide

    SciTech Connect (OSTI)

    Joan M. Ogden

    2005-11-29T23:59:59.000Z

    In this final progress report, we describe research results from Phase I of a technical/economic study of fossil hydrogen energy systems with CO{sub 2} sequestration. This work was performed under NETL Award No. DE-FC26-02NT41623, during the period September 2002 through August 2005 The primary objective of the study is to better understand system design issues and economics for a large-scale fossil energy system co-producing H{sub 2} and electricity with CO{sub 2} sequestration. This is accomplished by developing analytic and simulation methods for studying the entire system in an integrated way. We examine the relationships among the different parts of a hydrogen energy system, and identify which variables are the most important in determining both the disposal cost of CO{sub 2} and the delivered cost of H{sub 2}. A second objective is to examine possible transition strategies from today's energy system toward one based on fossil-derived H{sub 2} and electricity with CO{sub 2} sequestration. We carried out a geographically specific case study of development of a fossil H{sub 2} system with CO{sub 2} sequestration, for the Midwestern United States, where there is presently substantial coal conversion capacity in place, coal resources are plentiful and potential sequestration sites in deep saline aquifers are widespread.

  1. Max Tech Appliance Design: Potential for Maximizing U.S. Energy Savings through Standards

    SciTech Connect (OSTI)

    Garbesi, Karina; Desroches, Louis-Benoit; Bolduc, Christopher; Burch, Gabriel; Hosseinzadeh, Griffin; Saltiel, Seth

    2011-05-06T23:59:59.000Z

    This study surveyed the technical potential for efficiency improvements in 150 categories of appliances and equipment representing 33 quads of primary energy use across the US economy in 2010 and (1) documented efficient product designs, (2) identified the most promising cross-cutting strategies, and (3) ranked national energy savings potential by end use. Savings were estimated using a method modeled after US Department of Energy priority-setting reports - simplified versions of the full technical and economic analyses performed for rulemakings. This study demonstrates that large savings are possible by replacing products at the end-of-life with ultra-efficient models that use existing technology. Replacing the 50 top energy-saving end-uses (constituting 30 quads of primary energy consumption in 2010) with today's best-on-market equivalents would save {approx}200 quads of US primary energy over 30 years (25% of consumption anticipated there from). For the 29 products for maximum feasible savings potential could be estimated, the savings were twice as high. These results demonstrate that pushing ultra-efficient products to market could significantly escalate carbon emission reductions and is a viable strategy for sustaining large emissions reductions through standards. The results of this analysis were used by DOE for new coverage prioritization, to identify key opportunities for product prototyping and market development, and will leverage future standards rulemakings by identifying the full scope of maximum feasible technology options. High leverage products include advances lighting systems, HVAC, and televisions. High leverage technologies include electronic lighting, heat pumps, variable speed motors, and a host of controls-related technologies.

  2. Design and Implementation of Geothermal Energy Systems at West Chester University

    SciTech Connect (OSTI)

    Greg Cuprak

    2011-08-31T23:59:59.000Z

    West Chester University is launching a comprehensive transformation of its campus heating and cooling systems from traditional fossil fuels (coal, oil and natural gas) to geothermal. This change will significantly decrease the institution's carbon footprint and serve as a national model for green campus efforts. The institution is in the process of designing and implementing this project to build well fields, a pumping station and install connecting piping to provide the geothermal heat/cooling source for campus buildings. This project addresses the US Department of Energy Office of Energy Efficiency and Renewable Energy (EERE) goal to invest in clean energy technologies that strengthen the economy, protect the environment, and reduce dependence on foreign oil. In addition, this project advances EERE's efforts to establish geothermal energy as an economically competitive contributor to the US energy supply. For this grant, WCU will extend piping for its geo-exchange system. The work involves excavation of a trench approximately 8 feet wide and 10-12 feet deep located about 30 feet north of the curb along the north side of West Rosedale for a distance of approximately 1,300 feet. The trench will then turn north for the remaining distance (60 feet) to connect into the mechanical room in the basement of the Francis Harvey Green Library. This project will include crossing South Church Street near its intersection with West Rosedale, which will involve coordination with the Borough of West Chester. After installation of the piping, the trench will be backfilled and the surface restored to grass as it is now. Because the trench will run along a heavily-used portion of the campus, it will be accomplished in sections to minimize disruption to the campus as much as possible.

  3. ASHRAE standard 90a-1980: energy conservation in new building design - an updated version of ASHRAE 90-75

    SciTech Connect (OSTI)

    Not Available

    1982-02-01T23:59:59.000Z

    A National Voluntary Consensus Standard developed under the auspices of the American Society of Heating, Refrigerating and Air-Conditioning Engineers (ASHRAE) is presented. ASHRAE 90A-1980, like its predecessor, establishes energy-efficient design requirements for: Building exterior envelopes; HVAC systems and equipment; Service water heating systems; Electrical distribution systems. ''The purpose of this standard'', its foreward states, ''is to provide design requirements which will improve utilization on the depletion of energy resources''.

  4. The Design of a Large Booster Ring for the Medium Energy Electron-Ion Collider at Jlab

    SciTech Connect (OSTI)

    Edward Nissen, Todd Satogata, Yuhong Zhang

    2012-07-01T23:59:59.000Z

    In this paper, we present the current design of the large booster ring for the Medium energy Electron-Ion Collider at Jefferson Lab. The booster ring takes 3 GeV protons or ions of equivalent rigidity from a pre-booster ring, and accelerates them to 20 GeV for protons or equivalent energy for light to heavy ions before sending them to the ion collider ring. The present design calls for a figure-8 shape of the ring for superior preservation of ion polarization. The ring is made of warm magnets and shares a tunnel with the two collider rings. Acceleration is achieved by warm RF systems. The linear optics has been designed with the transition energy above the highest beam energy in the ring so crossing of transition energy will be avoided. Preliminary beam dynamics studies including chromaticity compensation are presented in this paper.

  5. Science Requirements and Conceptual Design for a Polarized Medium Energy Electron-Ion Collider at Jlab

    SciTech Connect (OSTI)

    Abeyratne, S; Ahmed, S; Barber, D; Bisognano, J; Bogacz, A; Castilla, A; Chevtsov, P; Corneliussen, S; Deconinck, W; Degtiarenko, P; Delayen, J; Derbenev, Ya; DeSilva, S; Douglas, D; Dudnikov, V; Ent, R; Erdelyi, B; Evtushenko, P; Fujii, Yu; Filatov, Yury; Gaskell, D; Geng, R; Guzey, V; Horn, T; Hutton, A; Hyde, C; Johnson, R; Kim, Y; Klein, F; Kondratenko, A; Kondratenko, M; Krafft, G; Li, R; Lin, F; Manikonda, S; Marhauser, F; McKeown, R; Morozov, V; Dadel-Turonski, P; Nissen, E; Ostroumov, P; Pivi, M; Pilat, F; Poelker, M; Prokudin, A; Rimmer, R; Satogata, T; Sayed, H; Spata, M; Sullivan, M; Tennant, C; Terzic, B; Tiefenback, M; Wang, M; Wang, S; Weiss, C; Yunn, B

    2012-08-01T23:59:59.000Z

    Researchers have envisioned an electron-ion collider with ion species up to heavy ions, high polarization of electrons and light ions, and a well-matched center-of-mass energy range as an ideal gluon microscope to explore new frontiers of nuclear science. In its most recent Long Range Plan, the Nuclear Science Advisory Committee (NSAC) of the US Department of Energy and the National Science Foundation endorsed such a collider in the form of a 'half-recommendation.' As a response to this science need, Jefferson Lab and its user community have been engaged in feasibility studies of a medium energy polarized electron-ion collider (MEIC), cost-effectively utilizing Jefferson Lab's already existing Continuous Electron Beam Accelerator Facility (CEBAF). In close collaboration, this community of nuclear physicists and accelerator scientists has rigorously explored the science case and design concept for this envisioned grand instrument of science. An electron-ion collider embodies the vision of reaching the next frontier in Quantum Chromodynamics - understanding the behavior of hadrons as complex bound states of quarks and gluons. Whereas the 12 GeV Upgrade of CEBAF will map the valence-quark components of the nucleon and nuclear wave functions in detail, an electron-ion collider will determine the largely unknown role sea quarks play and for the first time study the glue that binds all atomic nuclei. The MEIC will allow nuclear scientists to map the spin and spatial structure of quarks and gluons in nucleons, to discover the collective effects of gluons in nuclei, and to understand the emergence of hadrons from quarks and gluons. The proposed electron-ion collider at Jefferson Lab will collide a highly polarized electron beam originating from the CEBAF recirculating superconducting radiofrequency (SRF) linear accelerator (linac) with highly polarized light-ion beams or unpolarized light- to heavy-ion beams from a new ion accelerator and storage complex. Since the very beginning, the design studies at Jefferson Lab have focused on achieving high collider performance, particularly ultrahigh luminosities up to 10{sup 34} cm{sup -2}s{sup -1} per detector with large acceptance, while maintaining high polarization for both the electron and light-ion beams. These are the two key performance requirements of a future electron-ion collider facility as articulated by the NSAC Long Range Plan. In MEIC, a new ion complex is designed specifically to deliver ion beams that match the high bunch repetition and highly polarized electron beam from CEBAF. During the last two years, both development of the science case and optimization of the machine design point toward a medium-energy electron-ion collider as the topmost goal for Jefferson Lab. The MEIC, with relatively compact collider rings, can deliver a luminosity above 10{sup 34} cm{sup -2}s{sup -1} at a center-of-mass energy up to 65 GeV. It offers an electron energy up to 11 GeV, a proton energy up to 100 GeV, and corresponding energies per nucleon for heavy ions with the same magnetic rigidity. This design choice balances the scope of the science program, collider capabilities, accelerator technology innovation, and total project cost. An energy upgrade could be implemented in the future by adding two large collider rings housed in another large tunnel to push the center-of-mass energy up to or exceeding 140 GeV. After careful consideration of an alternative electron energy recovery linac on ion storage ring approach, a ring-ring collider scenario at high bunch repetition frequency was found to offer fully competitive performance while eliminating the uncertainties of challenging R&D on ampere-class polarized electron sources and many-pass energy-recovery linacs (ERLs). The essential new elements of an MEIC facility at Jefferson Lab are an electron storage ring and an entirely new, modern ion acceleration and storage complex. For the high-current electron collider ring, the upgraded 12 GeV CEBAF SRF linac will serve as a full-energy injector, and, if needed, provide top

  6. Energy-Performance-Based Design-Build Process: Strategies for Procuring High-Performance Buildings on Typical Construction Budgets: Preprint

    SciTech Connect (OSTI)

    Scheib, J.; Pless, S.; Torcellini, P.

    2014-08-01T23:59:59.000Z

    NREL experienced a significant increase in employees and facilities on our 327-acre main campus in Golden, Colorado over the past five years. To support this growth, researchers developed and demonstrated a new building acquisition method that successfully integrates energy efficiency requirements into the design-build requests for proposals and contracts. We piloted this energy performance based design-build process with our first new construction project in 2008. We have since replicated and evolved the process for large office buildings, a smart grid research laboratory, a supercomputer, a parking structure, and a cafeteria. Each project incorporated aggressive efficiency strategies using contractual energy use requirements in the design-build contracts, all on typical construction budgets. We have found that when energy efficiency is a core project requirement as defined at the beginning of a project, innovative design-build teams can integrate the most cost effective and high performance efficiency strategies on typical construction budgets. When the design-build contract includes measurable energy requirements and is set up to incentivize design-build teams to focus on achieving high performance in actual operations, owners can now expect their facilities to perform. As NREL completed the new construction in 2013, we have documented our best practices in training materials and a how-to guide so that other owners and owner's representatives can replicate our successes and learn from our experiences in attaining market viable, world-class energy performance in the built environment.

  7. ENI Renewable and Non-conventional Energy Prize 2012 High-efficiency solar cells based on nanophotonic design

    E-Print Network [OSTI]

    Polman, Albert

    new solar cell designs that enable both a higher photovoltaic conversion efficiency and reduced) Photonic design principles for ultrahigh-efficiency photovoltaics, A. Polman and H.A. Atwater, Nature MaterENI Renewable and Non-conventional Energy Prize 2012 High-efficiency solar cells based

  8. New design concepts for energy-conserving buildings. Results of a national competition among students in schools of architecture

    SciTech Connect (OSTI)

    None

    1982-01-01T23:59:59.000Z

    The National Student Competition in Energy Conscious Design held among professional schools of architecture in 1976 is documented. Fifty-five schools participated, submitting 115 entries; twelve were chosen as finalists. Details are presented on the twelve winning designs and excerpts from the remaining 103 entries are published. (MCW)

  9. Laser Inertial Fusion-based Energy: Neutronic Design Aspects of a Hybrid Fusion-Fission Nuclear Energy System

    E-Print Network [OSTI]

    Kramer, Kevin James

    2010-01-01T23:59:59.000Z

    and Hydroelectric 1.1.3 Nuclear Energy . . . . . . . . .Gain GNEP Global Nuclear Energy Partnership HEU HighlyIn Progress in Nuclear Energy, 17. Pergamon Press, 1986.

  10. Laser Inertial Fusion-based Energy: Neutronic Design Aspects of a Hybrid Fusion-Fission Nuclear Energy System

    E-Print Network [OSTI]

    Kramer, Kevin James

    2010-01-01T23:59:59.000Z

    and Hydroelectric 1.1.3 Nuclear Energy . . . . . . . . .microparticles. Annals of Nuclear Energy, [96] F.B. Brown,In Progress in Nuclear Energy, 17. Pergamon Press, 1986.

  11. Laser Inertial Fusion-based Energy: Neutronic Design Aspects of a Hybrid Fusion-Fission Nuclear Energy System

    E-Print Network [OSTI]

    Kramer, Kevin James

    2010-01-01T23:59:59.000Z

    2.1.1 Energy Production . . . . . . . . . 2.1.2 Spentof Figures Current World Energy Production Broken Down byCurrent US Energy Production Broken Down by

  12. Energy recovery and cogeneration from an existing municipal incinerator: Phase IIA progress report on final design

    SciTech Connect (OSTI)

    Not Available

    1982-02-01T23:59:59.000Z

    A feasibility study was prepared on energy recovery and cogeneration from and existing municipal incinerator in Wayne County, Michigan. The mechanical, electrical, structural, and instruments an controls equipment designs were established in sufficient depth to arrive at a construction cost estimate. The designs are described. All of the flue gas generated from each incinerator is directed into a waste heat boiler that will generate steam. A waste heat boiler will be provided for each of the three incinerators. Steam from these waste heat boilers will supply energy to two turbine-generators, which, in turn, will supply auxiliary power to the incinerator plant; the balance of the power will be sold to Detroit Edison Company (DEC). Exhaust steam from each turbine will be directed into a surface condenser operating under vacuum. The water to be supplied to each condenser will be recirculated water that has been cooled by means of a cooling tower. Other cooling water that could be subjected to oil contamination will be supplied from a separate recirculating water system. The water in this system will be cooled by an evaporative condenser. The main steam, boiler feedwater, and condensate systems will be similar to those used in central power stations. Flow diagrams for all systems, together with heat balances, electrical one-line diagrams, and plant layouts, are included in the Appendix. Also included in the Appendix are instruments and controls logic diagrams. (MCW)

  13. RATIONAL MATERIALS DESIGN THROUGH THEORY AND MODELING The rational design of novel electrical energy storage (EES) systems with high energy and

    E-Print Network [OSTI]

    Bazant, Martin Z.

    energy storage (EES) systems with high energy and power density will require the development of a full breakthroughs. Although chemical energy storage (batteries) and ECs share common components such as electrodes the research directions for each are presented separately. Chemical Energy Storage Storage of electrical charge

  14. QAS 2.5 Design Control 3/15/95 | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    5 Design Control 31595 QAS 2.5 Design Control 31595 The objective of this surveillance is to evaluate the effectiveness of the contractor's design control program. The...

  15. Advanced Design and Commissioning Tools for Energy-Efficient Building Technologies

    E-Print Network [OSTI]

    Bauman, Fred; Webster, Tom; Zhang, Hui; Arens, Ed

    2012-01-01T23:59:59.000Z

    Underfloor Air Distribution (UFAD) Design Guide. Atlanta:Underfloor Air Distribution (UFAD) Design Guide. Atlanta:minimized by good distribution system design whether using

  16. Improved design of proton source and low energy beam transport line for European Spallation Source

    SciTech Connect (OSTI)

    Neri, L., E-mail: neri@lns.infn.it; Celona, L.; Gammino, S.; Mascali, D.; Castro, G.; Ciavola, G. [Laboratori Nazionali del Sud, Istituto Nazionale di Fisica Nucleare, Via S. Sofia 62, 95123 Catania (Italy)] [Laboratori Nazionali del Sud, Istituto Nazionale di Fisica Nucleare, Via S. Sofia 62, 95123 Catania (Italy); Torrisi, G. [Laboratori Nazionali del Sud, Istituto Nazionale di Fisica Nucleare, Via S. Sofia 62, 95123 Catania (Italy) [Laboratori Nazionali del Sud, Istituto Nazionale di Fisica Nucleare, Via S. Sofia 62, 95123 Catania (Italy); Dipartimento di Ingegneria dell’Informazione, delle Infrastrutture e dell’Energia Sostenibile, Università Mediterranea di Reggio Calabria, Via Graziella, 89122 Reggio Calabria (Italy); Cheymol, B.; Ponton, A. [European Spallation Source ESS AB, Lund (Sweden)] [European Spallation Source ESS AB, Lund (Sweden); Galatà, A. [Laboratori Nazionali di Legnaro, Istituto Nazionale di Fisica Nucleare, Viale dell'università 2, 35020 Legnaro (Italy)] [Laboratori Nazionali di Legnaro, Istituto Nazionale di Fisica Nucleare, Viale dell'università 2, 35020 Legnaro (Italy); Patti, G. [Laboratori Nazionali del Sud, Istituto Nazionale di Fisica Nucleare, Via S. Sofia 62, 95123 Catania (Italy) [Laboratori Nazionali del Sud, Istituto Nazionale di Fisica Nucleare, Via S. Sofia 62, 95123 Catania (Italy); Laboratori Nazionali di Legnaro, Istituto Nazionale di Fisica Nucleare, Viale dell'università 2, 35020 Legnaro (Italy); Gozzo, A.; Lega, L. [Laboratori Nazionali del Sud, Istituto Nazionale di Fisica Nucleare, Via S. Sofia 62, 95123 Catania (Italy) [Laboratori Nazionali del Sud, Istituto Nazionale di Fisica Nucleare, Via S. Sofia 62, 95123 Catania (Italy); Dipartimento di Ingegneria Informatica e delle Telecomunicazioni, Università degli Studi di Catania, Viale Andrea Doria 6, 95123 Catania (Italy)

    2014-02-15T23:59:59.000Z

    The design update of the European Spallation Source (ESS) accelerator is almost complete and the construction of the prototype of the microwave discharge ion source able to provide a proton beam current larger than 70 mA to the 3.6 MeV Radio Frequency Quadrupole (RFQ) started. The source named PS-ESS (Proton Source for ESS) was designed with a flexible magnetic system and an extraction system able to merge conservative solutions with significant advances. The ESS injector has taken advantage of recent theoretical updates and new plasma diagnostics tools developed at INFN-LNS (Laboratori Nazionali del Sud, Istituto Nazionale di Fisica Nucleare). The design strategy considers the PS-ESS and the low energy beam transport line as a whole, where the proton beam behaves like an almost neutralized non-thermalized plasma. Innovative solutions have been used as hereinafter described. Thermo-mechanical optimization has been performed to withstand the chopped beam and the misaligned focused beam over the RFQ input collimator; the results are reported here.

  17. System design and dynamic signature identification for intelligent energy management in residential buildings.

    E-Print Network [OSTI]

    Jang, Jaehwi

    2008-01-01T23:59:59.000Z

    for Intelligent Energy Management in Residential Buildingsfor Intelligent Energy Management in Residential Buildingsthat can provide autonomous energy management to residential

  18. Laser Inertial Fusion-based Energy: Neutronic Design Aspects of a Hybrid Fusion-Fission Nuclear Energy System

    E-Print Network [OSTI]

    Kramer, Kevin James

    2010-01-01T23:59:59.000Z

    the HTTR project. Nuclear Engineering and Design, 233:163–measurements. Nuclear Engineering Design, 33(92), [87] L.R.in Engineering - Nuclear Engineering in the Graduate

  19. Design and Evaluation of a Net Zero Energy Low-Income Residential Housing Development in Lafayette, Colorado

    SciTech Connect (OSTI)

    Dean, J.; VanGeet, O.; Simkus, S.; Eastment, M.

    2012-03-01T23:59:59.000Z

    This report outlines the lessons learned and sub-metered energy performance of an ultra low energy single family ranch home and duplex unit, called the Paradigm Pilot Project and presents the final design recommendations for a 153-unit net zero energy residential development called the Josephine Commons Project. Affordable housing development authorities throughout the United States continually struggle to find the most cost-effective pathway to provide quality, durable, and sustainable housing. The challenge for these authorities is to achieve the mission of delivering affordable housing at the lowest cost per square foot in environments that may be rural, urban, suburban, or within a designated redevelopment district. With the challenges the U.S. faces regarding energy, the environmental impacts of consumer use of fossil fuels and the increased focus on reducing greenhouse gas emissions, housing authorities are pursuing the goal of constructing affordable, energy efficient and sustainable housing at the lowest life-cycle cost of ownership. This report outlines the lessons learned and sub-metered energy performance of an ultra-low-energy single family ranch home and duplex unit, called the Paradigm Pilot Project and presents the final design recommendations for a 153-unit net zero energy residential development called the Josephine Commons Project. In addition to describing the results of the performance monitoring from the pilot project, this paper describes the recommended design process of (1) setting performance goals for energy efficiency and renewable energy on a life-cycle cost basis, (2) using an integrated, whole building design approach, and (3) incorporating systems-built housing, a green jobs training program, and renewable energy technologies into a replicable high performance, low-income housing project development model.

  20. Wilderness designation of Bureau of Land Management lands and impacts on the availability of energy resources

    SciTech Connect (OSTI)

    Oakes, E.H.; Voelker, A.H.

    1983-02-01T23:59:59.000Z

    In 1964 Congress mandated the establishment of the National Wilderness Preservation System - a collection of federal lands dedicated to the preservation of selected parts of our once vast wilderness. Because wilderness management precludes many traditional land uses, controversy has plagued the efforts of land-management agencies to select and recommend areas for wilderness inclusion. This study examines potential impacts on the supply of energy resources from the possible withdrawal by the Bureau of Land Management (BLM) of some part of the 24.3 million acres of public lands now under study for inclusion in the wilderness system. Except for uranium, the energy-resource potential of the total WSA-acreage is low. Wilderness designation of some WSAs is therefore not expected to cause serious impacts on the future availability of energy resources. Because the significance of land withdrawals by the BLM will depend to some extent on the availability of other federal lands for mineral activities, an up-to-date estimate of the current and future status-of-access to western federal lands for mineral activities was prepared. Overall conclusions of the report are that (1) the inclusion of some BLM land in the National Wilderness Preservation System will not interfere with the nation's required supply of energy resources, (2) there is sufficient federal land currently available in the West for mineral activities, (3) the availability of western federal land for mineral activities will increase in the future, (4) the administration should continue to support the major land-review programs, and (5) the administration should accelerate the review process for WSAs in regions that have a high energy-resource potential.

  1. Designing Zero Energy Building for TehranB37B36:B44M35B36

    E-Print Network [OSTI]

    Mirkhani, N.; Sadoughi, S.; Eshraghi, J.; Narjabadi, N.; Nakhaei, A.

    2012-01-01T23:59:59.000Z

    In this paper, design of a zero energy building (ZEB), a case study for Tehran, in a moderately warm climate, for a typical single family has been introduced. It is important to develop solar energy resource potential in order to use...

  2. Leadership in Energy and Environmental Design (LEED) - A critical evaluation by LCA and recommendations for improvement

    E-Print Network [OSTI]

    Humbert, Sebastien; Abeck, Heike; Bali, Nishil; Horvath, Arpad

    2007-01-01T23:59:59.000Z

    performance, sustainable buildings. A building design can bebuilding LEED credit (summary) Sustainable Sites (SS) Prerequisite 1: Design

  3. Electromagnetic Design of RF Cavities for Accelerating Low-Energy Muons

    SciTech Connect (OSTI)

    Kurennoy, Sergey S. [Los Alamos National Laboratory

    2012-05-14T23:59:59.000Z

    A high-gradient linear accelerator for accelerating low-energy muons and pions in a strong solenoidal magnetic field has been proposed for homeland defense and industrial applications. The acceleration starts immediately after collection of pions from a target in a solenoidal magnetic field and brings decay muons, which initially have kinetic energies mostly around 15-20 MeV, to 200 MeV over a distance of {approx}10 m. At this energy, both ionization cooling and further, more conventional acceleration of the muon beam become feasible. A normal-conducting linac with external-solenoid focusing can provide the required large beam acceptances. The linac consists of independently fed zero-mode (TM{sub 010}) RF cavities with wide beam apertures closed by thin conducting edge-cooled windows. Electromagnetic design of the cavity, including its RF coupler, tuning and vacuum elements, and field probes, has been developed with the CST MicroWave Studio, and is presented.

  4. The Successful Design Construction and 'Live-ability' of an Energy Efficient Home in a Hot and Humid Climate

    E-Print Network [OSTI]

    Gardner, J. C.

    2006-01-01T23:59:59.000Z

    clothes washer null Energy Star Hunter ceiling fans null 90% of the lighting is fluorescent null Gas fired water heater with solar assist For those ten really cold days in winter we have a wood burning stove with catalytic converter to supplement...The Successful Design, Construction and “Live-ability” of an Energy Efficient Home in a Hot and Humid Climate John C. Gardner, PE Hockley, Texas 77447 ABSTRACT This paper will present a case study of an energy efficient home...

  5. Introduction to Cost Control Strategies for Zero Energy Buildings: High-Performance Design and Construction on a Budget (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2014-09-01T23:59:59.000Z

    Momentum behind zero energy building design and construction is increasing, presenting a tremendous opportunity for advancing energy performance in the commercial building industry. At the same time, there is a lingering perception that zero energy buildings must be cost prohibitive or limited to showcase projects. Fortunately, an increasing number of projects are demonstrating that high performance can be achieved within typical budgets. This factsheet highlights replicable, recommended strategies for achieving high performance on a budget, based on experiences from past projects.

  6. A Feasibility Analysis for the Design of A Low-Cost High-Power Energy Storage System

    E-Print Network [OSTI]

    Sekhon, Jasjeet S.

    A Feasibility Analysis for the Design of A Low-Cost High-Power Energy Storage System Travis Mc://www.funginstitute.berkeley.edu/sites/default/ les/EnergyStorageSystem.pdf May 3, 2014 130 Blum Hall #5580 Berkeley, CA 94720-5580 | (510) 664 of existing systems. Energy storage is a viable method for increasing the e ciency of a broad range of systems

  7. Marine Hydrokinetic Turbine Power-Take-Off Design for Optimal Performance and Low Impact on Cost-of-Energy: Preprint

    SciTech Connect (OSTI)

    Beam, M.; Kline, B.; Elbing, B.; Straka, W.; Fontaine, A.; Lawson, M.; Li, Y.; Thresher, R.; Previsic, M.

    2012-04-01T23:59:59.000Z

    Marine hydrokinetic devices are becoming a popular method for generating marine renewable energy worldwide. These devices generate electricity by converting the kinetic energy of moving water, wave motion or currents, into electrical energy through the use of a Power-Take-Off (PTO) system. Most PTO systems incorporate a mechanical or hydraulic drive train, power generator and electric control/conditioning system to deliver the generated electric power to the grid at the required state. Like wind turbine applications, the PTO system must be designed for high reliability, good efficiency, and long service life with reasonable maintenance requirements, low cost and an appropriate mechanical design for anticipated applied steady and unsteady loads. The ultimate goal of a PTO design is high efficiency, low maintenance and cost with a low impact on the device Cost-of-Energy (CoE).

  8. Marine Hydrokinetic Turbine Power-Take-Off Design for Optimal Performance and Low Impact on Cost-of-Energy: Preprint

    SciTech Connect (OSTI)

    Beam, M.; Kline, B.; Elbing, B.; Straka, W.; Fontaine, A.; Lawson, M.; Li, Y.; Thresher, R.; Previsic, M.

    2013-02-01T23:59:59.000Z

    Marine hydrokinetic devices are becoming a popular method for generating marine renewable energy worldwide. These devices generate electricity by converting the kinetic energy of moving water, wave motion or currents, into electrical energy through the use of a power-take-off (PTO) system. Most PTO systems incorporate a mechanical or hydraulic drivetrain, power generator, and electric control/conditioning system to deliver the generated electric power to the grid at the required state. Like wind turbine applications, the PTO system must be designed for high reliability, good efficiency, and long service life with reasonable maintenance requirements, low cost, and an appropriate mechanical design for anticipated applied steady and unsteady loads. The ultimate goal of a PTO design is high efficiency and low maintenance and cost, with a low impact on the device cost-of-energy (CoE).

  9. A Three-Dimensional Model of Residential Energy Consumer Archetypes for Local Energy Policy Design in the UK

    E-Print Network [OSTI]

    Aickelin, Uwe

    residential energy consumers in the UK by considering property energy efficiency levels, the greenness1 A Three-Dimensional Model of Residential Energy Consumer Archetypes for Local Energy Policy lines of research in residential energy consumption in the UK, i.e. economic/infrastructure, behaviour

  10. Achieving Energy Performance in spite of complex systems and dis-jointed design

    E-Print Network [OSTI]

    Ardren, C.; Bannister, P.

    2012-01-01T23:59:59.000Z

    Achieving Energy Performance in spite of complex systems and dis-jointed design Caoimhin Ardren1 and Dr Paul Bannister2 1 BSc(QS), AAIQS, ICEC, GSAP (Sydney, Australia). 2 BSc (1st Hons, Maths & Physics), PhD (Eng. Physics). M.IPENZB. (Canberra... Jan?12 Feb?12 Mar?12 Apr?12 May?12 Jun?12 To ta l?E m iss io ns ?? Sc op e? 1, 2? &? 3? (k gC O2 ) Base?Building?Actual?Emissions Base?Building?Target?Emissions 5 4.5 4 0 10,000 20,000 30,000 40,000 50,000 60,000 70,000 Oct...

  11. ABSTRACT: Modern seismic codes recommend the design of ductile structures able to absorb seismic energy through high plastic deformation. Since seismic ductile design relies on an accurate control of

    E-Print Network [OSTI]

    Boyer, Edmond

    1 ABSTRACT: Modern seismic codes recommend the design of ductile structures able to absorb seismic energy through high plastic deformation. Since seismic ductile design relies on an accurate control-concrete composite structures; Material properties variability; Seismic design; capacity design. 1 GENERAL CONTEXT

  12. The PEP-II Project: Low-Energy Ring Design and Project Status

    SciTech Connect (OSTI)

    Zisman, Michael S.

    2006-01-02T23:59:59.000Z

    We describe the present status of the PEP-II project. The project comprises four major systems: Injector, High-Energy Ring (HER), Low-Energy Ring (LER), and Interaction Region (IR). We focus in detail on the design of the LER, as its parameters and requirements are most closely related to those required for the Beijing Tau-Charm Factory rings. The PEP-II LER is a high-current, 3.1-GeV positron ring mounted above the 9-GeV HER. The LER uses a wiggler located in one of its six straight sections to provide emittance control and additional damping. We describe the rather complicated IR, which must transport the LER beam into the plane of the HER, focus it to a common beam size, and separate the beams after the head-on collisions. Both permanent magnet and conventional electromagnets are used in this area. The LER lattice has now adopted a simplified non-interleaved sextupole correction scheme that has reduced the required number of sextupoles substantially. We describe the LER vacuum system, one of the most challenging subsystems in PEP-II. It employs several technologies. In the arcs, aluminum extrusions and titanium sublimation pumps are employed; the straight sections use stainless steel chambers with lumped ion pumps. In the wiggler area, an extended copper photon dump with nonevaporable getter (NEG) pumps is employed to handle the very large synchrotron radiation power. The design of the room-temperature RF system, the bunch-by-bunch longitudinal and transverse feedback systems, and some of the special diagnostics will be described briefly. The PEP-II project remains on schedule to begin commissioning of the HER in April 1997, followed by the LER a year later.

  13. Laser Inertial Fusion-based Energy: Neutronic Design Aspects of a Hybrid Fusion-Fission Nuclear Energy System

    E-Print Network [OSTI]

    Kramer, Kevin James

    2010-01-01T23:59:59.000Z

    of Figures Current World Energy Production Broken Down byUnited States and world energy production could be suppliedFigure 1.1: Current World Energy Production Broken Down by

  14. Laser Inertial Fusion-based Energy: Neutronic Design Aspects of a Hybrid Fusion-Fission Nuclear Energy System

    E-Print Network [OSTI]

    Kramer, Kevin James

    2010-01-01T23:59:59.000Z

    aspects of a hybrid fusion-fission energy system called theof a Hybrid Fusion-Fission Nuclear Energy System by Kevinof a Hybrid Fusion-Fission Nuclear Energy System by Kevin

  15. Evaluation of design options for improving the energy efficiency of an environmentally safe domestic refrigerator-freezer

    SciTech Connect (OSTI)

    Vineyard, E.A.; Sand, J.R. [Oak Ridge National Lab., TN (United States); Bohman, R.H.

    1995-03-01T23:59:59.000Z

    In order to reduce greenhouse emissions from power plants and respond to regulatory actions arising from the National Appliance Energy Conservation Act (NAECA), several design options were investigated for improving the energy efficiency of a conventionally designed, domestic refrigerator-freezer. The options, such as improved cabinet insulation and high-efficiency compressor and fans, were incorporated into a prototype refrigerator-freezer cabinet and refrigeration system to produce a unit that is superior from an environmental viewpoint due to its lower energy consumption and the use of refrigerant HFC-134a as a replacement for CFC-12. Baseline energy performance of the original 1993 production refrigerator-freezer, along with cabinet heat load and compressor calorimeter test results, were extensively documented to provide a firm basis for experimentally measured energy savings. A detailed refrigerator system computer model was used to evaluate the energy savings for several design modifications that, collectively, could achieve a targeted energy consumption of 1.00 kWh/d for a 20 ft{sup 3} (570 l) top-mount, automatic-defrost, refrigerator-freezer. The energy consumption goal represents a 50% reduction in the 1993 NAECA standard for units of this size. Following the modeling simulation, laboratory prototypes were fabricated and tested to experimentally verify the analytical results and aid in improving the model in those areas where discrepancies occurred. While the 1.00 kWh/d goal was not achieved with the modifications, a substantial energy efficiency improvement of 22% (1.41 kWh/d) was demonstrated using near-term technologies. It is noted that each improvement exacts a penalty in terms of increased cost or system complexity/reliability. Further work on this project will analyze cost-effectiveness of the design changes and investigate alternative, more-elaborate, refrigeration system changes to further reduce energy consumption.

  16. Energy Efficiency Design Options for Residential Water Heaters: Economic Impacts on Consumers

    E-Print Network [OSTI]

    Lekov, Alex

    2011-01-01T23:59:59.000Z

    Document (TSD): Energy Efficiency Standards for Consumerthe Assistant Secretary for Energy Efficiency and RenewableSummer Study on Energy Efficiency in Buildings. Asilomar,

  17. Max Tech Appliance Design: Potential for Maximizing U.S. Energy Savings through Standards

    E-Print Network [OSTI]

    Garbesi, Karina

    2011-01-01T23:59:59.000Z

    2] U.S. Energy Information Administration, Annual Energyaeo. [3] U.S. Energy Information Administration, Nationalfrom the Energy Information Administration's ( EIA) National

  18. Max Tech Appliance Design: Potential for Maximizing U.S. Energy Savings through Standards

    E-Print Network [OSTI]

    Garbesi, Karina

    2011-01-01T23:59:59.000Z

    30 quads of annual primary energy consumption) with products30 quads of primary energy consumption in 2010) with today’scombined into total primary energy consumption per product.

  19. Max Tech Appliance Design: Potential for Maximizing U.S. Energy Savings through Standards

    E-Print Network [OSTI]

    Garbesi, Karina

    2011-01-01T23:59:59.000Z

    Administration, Annual Energy Outlook. Can be downloaded at:forecasts in its Annual Energy Outlook (AEO) [2], based onaeo/overview/). In its Annual Energy Outlook (AEO) (http://

  20. Cost Control Strategies for Zero Energy Buildings: High-Performance Design and Construction on a Budget (Brochure)

    SciTech Connect (OSTI)

    Not Available

    2014-09-01T23:59:59.000Z

    There is mounting evidence that zero energy can, in many cases, be achieved within typical construction budgets. To ensure that the momentum behind zero energy buildings and other low-energy buildings will continue to grow, this guide assembles recommendations for replicating specific successes of early adopters who have met their energy goals while controlling costs. Contents include: discussion of recommended cost control strategies, which are grouped by project phase (acquisition and delivery, design, and construction) and accompanied by industry examples; recommendations for balancing key decision-making factors; and quick reference tables that can help teams apply strategies to specific projects.

  1. Compressed air energy storage: preliminary design and site development program in an aquifer. Final draft, Task 1: establish facility design criteria and utility benefits

    SciTech Connect (OSTI)

    None

    1980-10-01T23:59:59.000Z

    Compressed air energy storage (CAES) has been identified as one of the principal new energy storage technologies worthy of further research and development. The CAES system stores mechanical energy in the form of compressed air during off-peak hours, using power supplied by a large, high-efficiency baseload power plant. At times of high electrical demand, the compressed air is drawn from storage and is heated in a combustor by the burning of fuel oil, after which the air is expanded in a turbine. In this manner, essentially all of the turbine output can be applied to the generation of electricity, unlike a conventional gas turbine which expends approximately two-thirds of the turbine shaft power in driving the air compressor. The separation of the compression and generation modes in the CAES system results in increased net generation and greater premium fuel economy. The use of CAES systems to meet the utilities' high electrical demand requirements is particularly attractive in view of the reduced availability of premium fuels such as oil and natural gas. This volume documents the Task 1 work performed in establishing facility design criteria for a CAES system with aquifer storage. Information is included on: determination of initial design bases; preliminary analysis of the CAES system; development of data for site-specific analysis of the CAES system; detailed analysis of the CAES system for three selected heat cycles; CAES power plant design; and an economic analysis of CAES.

  2. Published in the Proceedings of ASES-2001, the American Solar Energy Society A DRAG-AND-DROP ENERGY DESIGN TOOL

    E-Print Network [OSTI]

    Published in the Proceedings of ASES-2001, the American Solar Energy Society A DRAG-AND-DROP ENERGY the program to more precisely predict the building's performance and the energy cost savings of the ratepayer a building's energy consumption, yet they are also the most tedious to describe. Therefore we developed

  3. How the institutional organization of Santiago affects its capacity to design and apply urban energy initiatives

    E-Print Network [OSTI]

    Cruzat Correa, Raimundo

    2013-01-01T23:59:59.000Z

    The need for greater levels of energy efficiency has never been as clear as it is now. In the case of Chile, factors such as high energy consumption, high energy prices and growing concern for the environment and energy ...

  4. Energy Efficiency Design Options for Residential Water Heaters: Economic Impacts on Consumers

    E-Print Network [OSTI]

    Lekov, Alex

    2011-01-01T23:59:59.000Z

    Administration. 2010. Annual Energy Outlook 2010 withthe price forecasts in EIA’s Annual Energy Outlook 2010. The

  5. Development of whole-building energy design targets for commercial buildings: Phase 1, Planning: Volume 2, Technical report

    SciTech Connect (OSTI)

    Crawley, D.B.; Briggs, R.S.; Jones, J.W.; Seaton, W.W.; Kaufman, J.E.; Deringer, J.J.; Kennett, E.W.

    1987-08-01T23:59:59.000Z

    This is the second volume of the Phase 1 report and discusses the 10 tasks performed in Phase 1. The objective of this research is to develop a methodology for setting energy design targets to provide voluntary guidelines for the buildings industry. The whole-building energy targets project is being conducted at the Pacific Northwest Laboratory (PNL) for the US Department of Energy (DOE) to encourage the construction of energy-efficient buildings by informing designers and owners about cost-effective goals for energy use in new commercial buildings. The outcome of this research will be a flexible methodology for setting such targets. The tasks are listed and discussed in this report as follows: Task 1 - Develop Detailed Project Goals and Objectives; Task 2 - Establish Buildings-Industry Liaison; Task 3 - Develop Approaches to the Energy Targets Model, Building Operations, and Climate; Task 4 - Develop an Approach for Treating Economic Considerations; Task 5 - Develop an Approach for Treating Energy Sources; Task 6 - Collect Energy-Use Data; Task 7 - Survey Energy Expert Opinion; Task 8 - Evaluation Procedure Specification and Integration; Task 9 - Phase 1 Report Development; and Task 10 - Phase 1 Review Planning.

  6. Conceptual design of an open-cycle ocean thermal energy conversion net power-producing experiment (OC-OTEC NPPE)

    SciTech Connect (OSTI)

    Bharathan, D.; Green, H.J.; Link, H.F.; Parsons, B.K.; Parsons, J.M.; Zangrando, F.

    1990-07-01T23:59:59.000Z

    This report describes the conceptual design of an experiment to investigate heat and mass transfer and to assess the viability of open-cycle ocean thermal energy conversion (OC-OTEC). The experiment will be developed in two stages, the Heat- and Mass-Transfer Experimental Apparatus (HMTEA) and the Net Power-Producing Experiment (NPPE). The goal for the HMTEA is to test heat exchangers. The goal for the NPPE is to experimentally verify OC-OTEC's feasibility by installing a turbine and testing the power-generating system. The design effort met the goals of both the HMTEA and the NPPE, and duplication of hardware was minimal. The choices made for the design resource water flow rates are consistent with the availability of cold and warm seawater as a result of the seawater systems upgrade carried out by the US Department of Energy (DOE), the state of Hawaii, and the Pacific International Center for High Technology Research. The choices regarding configuration of the system were made based on projected performance, degree of technical risk, schedule, and cost. The cost for the future phase of the design and the development of the HMTEA/NPPE is consistent with the projected future program funding levels. The HMTEA and NPPE were designed cooperatively by PICHTR, Argonne National Laboratory, and Solar Energy Research Institute under the guidance of DOE. The experiment will be located at the DOE's Seacoast Test Facility at the Natural Energy Laboratory of Hawaii, Kailua-Kona, Hawaii. 71 refs., 41 figs., 34 tabs.

  7. Technical and economic assessment of fluidized bed augmented compressed air energy storage system. Volume III. Preconceptual design

    SciTech Connect (OSTI)

    Giramonti, A.J.; Lessard, R.D.; Merrick, D.; Hobson, M.J.

    1981-09-01T23:59:59.000Z

    A technical and economic assessment of fluidized bed combustion augmented compressed air energy storage systems is presented. The results of this assessment effort are presented in three volumes. Volume III - Preconceptual Design contains the system analysis which led to the identification of a preferred component configuration for a fluidized bed combustion augmented compressed air energy storage system, the results of the effort which transformed the preferred configuration into preconceptual power plant design, and an introductory evaluation of the performance of the power plant system during part-load operation and while load following.

  8. Preliminary Verification and Validation of WEC-Sim, an Open-Source Wave Energy Converter Design Tool: Preprint

    SciTech Connect (OSTI)

    Ruehl, K.; Michelen, C.; Kanner, S.; Lawson, M.; Yu, Y. H.

    2014-03-01T23:59:59.000Z

    To promote and support the wave energy industry, a wave energy converter (WEC) design tool, WEC-Sim, is being developed by Sandia National Laboratories and the National Renewable Energy Laboratory. In this paper, the WEC-Sim code is used to model a point absorber WEC designed by the U.S. Department of Energy's reference model project. Preliminary verification was performed by comparing results of the WEC-Sim simulation through a code-to-code comparison, utilizing the commercial codes ANSYS-AQWA, WaveDyn, and OrcaFlex. A preliminary validation of the code was also performed by comparing WEC-Sim simulation results to experimental wave tank tests.

  9. Ligand Design for Novel Metal-Organic Polyhedra and Metal-Organic Frameworks for Alternative Energy Applications

    E-Print Network [OSTI]

    Kuppler, Ryan John

    2011-10-21T23:59:59.000Z

    : Chemistry iii ABSTRACT Ligand Design for Novel Metal-Organic Polyhedra and Metal-Organic Frameworks for Alternative Energy Applications. (August 2010) Ryan John Kuppler, B.A., Miami University Chair of Advisory Committee: Dr. Hong-Cai Zhou... The primary goal of this research concerns the synthesis of organic ligands in an effort to create metal-organic porous materials for the storage of gas molecules for alternative energy applications as well as other applications such as catalysis, molecular...

  10. DESIGN FOR A 1.3 MW, 13 MEV BEAM DUMP FOR AN ENERGY RECOVERY LINAC*

    E-Print Network [OSTI]

    an Energy Recovery Linac (ERL) is dumped at an energy close to the injection energy. This energy is chosen a 100 mA average current ERL as a synchrotron radiation source. The 13 MeV optimum injection energy resulting from the abrupt thermal cycles associated with beam trips is a potential failure mechanism. We

  11. Power Electronics Design Implications of Novel Photovoltaic Collector Geometries and Their Application for Increased Energy Harvest

    E-Print Network [OSTI]

    Karavadi, Amulya

    2011-10-21T23:59:59.000Z

    of energy scavenging scenarios in which either total energy harvested needs to be maximized or unusual geometries for the PV active surfaces are required, including building-integrated PV. This thesis develops the analysis of the potential energy harvest...

  12. Design and manufacture study of Ocean Renewable Energy Storage (ORES) prototype

    E-Print Network [OSTI]

    Dündar, Gökhan

    2012-01-01T23:59:59.000Z

    Utility scale energy storage is needed to balance rapidly varying outputs from renewable energy systems such as wind and solar. In order to address this need, an innovative utility scale energy storage concept has been ...

  13. Optimal Life Cycle Cost Design for an Energy Efficient Manufacturing Facility

    E-Print Network [OSTI]

    Thompson, C. T.; Beach, W. P.

    1985-01-01T23:59:59.000Z

    Over the past twelve years, Texas Instruments has developed extensive energy management programs that have enabled them to reduce energy usage by 42%. Typically, these reductions have been a result of the application of microprocessor based energy...

  14. BIM Game : a "serious game" to educate non-experts about energy related design and living

    E-Print Network [OSTI]

    Yang, Lin, S.M. Massachusetts Institute of Technology

    2009-01-01T23:59:59.000Z

    Climate Change is one defining issue of our time. With the increasingly sophisticated uses of energy, we have to face the problem as energy shortage and global warming. Since almost one-fourth of US energy is consumed by ...

  15. Max Tech Appliance Design: Potential for Maximizing U.S. Energy Savings through Standards

    E-Print Network [OSTI]

    Garbesi, Karina

    2011-01-01T23:59:59.000Z

    30-year Best-on-market Primary Energy Savings Potential (30-year Best-on-market Primary Energy Savings Potential (ultra-low-energy-use products to market could significantly

  16. Max Tech Appliance Design: Potential for Maximizing U.S. Energy Savings through Standards

    E-Print Network [OSTI]

    Garbesi, Karina

    2011-01-01T23:59:59.000Z

    quads of US primary energy over 30 years (25% of consumptionof U.S. electricity, cutting lighting energy consumption inUS an estimated 200 quads of primary energy over the next 30 years (25% of their anticipated baseline consumption).

  17. Identification of Changes Needed in Supermarket Design for Energy Demand Reduction

    E-Print Network [OSTI]

    Hill, F.; Edwards, R.; Levermore, G.

    2012-01-01T23:59:59.000Z

    Supermarkets use 3 percent of UK energy. To satisfy building regulations supermarket buildings are modeled in considerable detail. Lighting, occupancy, and small electrical energy impacts are included in this modeling. However, refrigeration energy...

  18. New National Conservation Training Center a model of energy-efficient design: FEMP technical assistance case study fact sheet

    SciTech Connect (OSTI)

    Atkison, K.

    1998-10-07T23:59:59.000Z

    This FEMP technical assistance case study shows that energy efficiency, cost effectiveness, and aesthetics can be incorporated into the design of a Federal facility--in this case the National Conservation Training Center in Shepherdstown, WV, which encompasses many buildings with a variety of purposes.

  19. Preliminary design study of compressed-air energy storage in a salt dome. Volume 4. CAES turbomachinery design. Final report

    SciTech Connect (OSTI)

    Not Available

    1982-06-01T23:59:59.000Z

    A summary is presented of the study undertaken by the Turbomachinery Subcontractor on Task 1, according to instructions received from the Middle South Services (MSS), the US Department of Energy (DOE) and the Electric Power Research Institute (EPRI). The subject of this study was to investigate the question of whether it would be possible to build an air storage generating plant capable of operating economically and using leached-out salt domes as air reservoirs. In the course of the work performed on Task 1, the Turbomachinery Subcontractors have on various occasions supplied information on the results obtained, in the form of preliminary subreports. The present summary includes all the previous reports, most of which have been revised to a large extent.

  20. Organization design for the deployment of geothermal energy initiatives in the Netherlands:.

    E-Print Network [OSTI]

    Bannouh, I.

    2010-01-01T23:59:59.000Z

    ??Geothermal energy has rapidly increased its attractiveness in the Netherlands. However, many geothermal energy initiatives seem to hamper between the feasibility phase and the actual… (more)