National Library of Energy BETA

Sample records for real-time grid reliability

  1. Real Time Grid Reliability Management 2005

    SciTech Connect (OSTI)

    Eto, Joe; Eto, Joe; Lesieutre, Bernard; Lewis, Nancy Jo; Parashar, Manu

    2008-07-07

    The increased need to manage California?s electricity grid in real time is a result of the ongoing transition from a system operated by vertically-integrated utilities serving native loads to one operated by an independent system operator supporting competitive energy markets. During this transition period, the traditional approach to reliability management -- construction of new transmission lines -- has not been pursued due to unresolved issues related to the financing and recovery of transmission project costs. In the absence of investments in new transmission infrastructure, the best strategy for managing reliability is to equip system operators with better real-time information about actual operating margins so that they can better understand and manage the risk of operating closer to the edge. A companion strategy is to address known deficiencies in offline modeling tools that are needed to ground the use of improved real-time tools. This project: (1) developed and conducted first-ever demonstrations of two prototype real-time software tools for voltage security assessment and phasor monitoring; and (2) prepared a scoping study on improving load and generator response models. Additional funding through two separate subsequent work authorizations has already been provided to build upon the work initiated in this project.

  2. Real Time Simulation of Power Grid Disruptions

    SciTech Connect (OSTI)

    Chinthavali, Supriya; Dimitrovski, Aleksandar D; Fernandez, Steven J; Groer, Christopher S; Nutaro, James J; Olama, Mohammed M; Omitaomu, Olufemi A; Shankar, Mallikarjun; Spafford, Kyle L; Vacaliuc, Bogdan

    2012-11-01

    DOE-OE and DOE-SC workshops (Reference 1-3) identified the key power grid problem that requires insight addressable by the next generation of exascale computing is coupling of real-time data streams (1-2 TB per hour) as the streams are ingested to dynamic models. These models would then identify predicted disruptions in time (2-4 seconds) to trigger the smart grid s self healing functions. This project attempted to establish the feasibility of this approach and defined the scientific issues, and demonstrated example solutions to important smart grid simulation problems. These objectives were accomplished by 1) using the existing frequency recorders on the national grid to establish a representative and scalable real-time data stream; 2) invoking ORNL signature identification algorithms; 3) modeling dynamically a representative region of the Eastern interconnect using an institutional cluster, measuring the scalability and computational benchmarks for a national capability; and 4) constructing a prototype simulation for the system s concept of smart grid deployment. The delivered ORNL enduring capability included: 1) data processing and simulation metrics to design a national capability justifying exascale applications; 2) Software and intellectual property built around the example solutions; 3) demonstrated dynamic models to design few second self-healing.

  3. Funding Opportunity Announcement: Enabling Extreme Real-Time Grid

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Integration of Solar Energy (ENERGISE) | Department of Energy Enabling Extreme Real-Time Grid Integration of Solar Energy (ENERGISE) Funding Opportunity Announcement: Enabling Extreme Real-Time Grid Integration of Solar Energy (ENERGISE) Funding Opportunity Announcement: Enabling Extreme Real-Time Grid Integration of Solar Energy (ENERGISE) Funding Number: DE-FOA-0001495 Funding Amount: $25,000,000 Description The Enabling Extreme Real-Time Grid Integration of Solar Energy (ENERGISE) funding

  4. Toward Real Time Data Analysis for Smart Grids

    SciTech Connect (OSTI)

    Yin, Jian; Gorton, Ian; Sharma, Poorva

    2012-11-10

    This paper describes the architecture and design of a novel system for supporting large-scale real-time data analysis for future power grid systems. The widespread deployment of renewable generation, smart grid controls, energy storage, plug-in hybrids, and new conducting materials will require fundamental changes in the operational concepts and principal components of the grid. As a result, the whole system becomes highly dynamic and requires constant adjusting based on real time data. Even though millions of sensors such as phase measurement units (PMU) and smart meters are being widely deployed, a data layer that can analyze this amount of data in real time is needed. Unlike the data fabric in other cloud services, the data layer for smart grids has some unique design requirements. First, this layer must provide real time guarantees. Second, this layer must be scalable to allow a large number of applications to access the data from millions of sensors in real time. Third, reliability is critical and this layer must be able to continue to provide service in face of failures. Fourth, this layer must be secure. We address these challenges though a scalable system architecture that integrates the I/O and data processing capability in a devise set of devices. Data process operations can be placed anywhere from sensors, data storage devices, to control centers. We further employ compression to improve performance. We design a lightweight compression customized for power grid data. Our system can reduce end-to-end response time by reduce I/O overhead through compression and overlap compression operations with I/O. The initial prototype of our system was demonstrated with several use cases from PNNL’s FPGI and show that our system can provide real time guarantees to a diverse set of applications.

  5. Scalable Real Time Data Management for Smart Grid

    SciTech Connect (OSTI)

    Yin, Jian; Kulkarni, Anand V.; Purohit, Sumit; Gorton, Ian; Akyol, Bora A.

    2011-12-16

    This paper presents GridMW, a scalable and reliable data middleware for smart grids. Smart grids promise to improve the efficiency of power grid systems and reduce green house emissions through incorporating power generation from renewable sources and shaping demand to match the supply. As a result, power grid systems will become much more dynamic and require constant adjustments, which requires analysis and decision making applications to improve the efficiency and reliability of smart grid systems.

  6. Towards a Scalable and Reliable Real Time In-Network Data Analysis Infrastructure

    SciTech Connect (OSTI)

    Ciraci, Selim; Yin, Jian

    2011-12-01

    The smart grid applications requires real time analysis, response within the order of milliseconds and high-reliability because of the mission critical structure of the power grid system. The only way to satisfy these requirements is in network data analysis and build-in redundancy routing for failures. To achieve this, we propose a data dissemination system that builds routes using network flow algorithms, have in network processing of the data and utilize data encoding to cope with high latencies.

  7. High-Performance Computing for Real-Time Grid Analysis and Operation

    SciTech Connect (OSTI)

    Huang, Zhenyu; Chen, Yousu; Chavarría-Miranda, Daniel

    2013-10-31

    Power grids worldwide are undergoing an unprecedented transition as a result of grid evolution meeting information revolution. The grid evolution is largely driven by the desire for green energy. Emerging grid technologies such as renewable generation, smart loads, plug-in hybrid vehicles, and distributed generation provide opportunities to generate energy from green sources and to manage energy use for better system efficiency. With utility companies actively deploying these technologies, a high level of penetration of these new technologies is expected in the next 5-10 years, bringing in a level of intermittency, uncertainties, and complexity that the grid did not see nor design for. On the other hand, the information infrastructure in the power grid is being revolutionized with large-scale deployment of sensors and meters in both the transmission and distribution networks. The future grid will have two-way flows of both electrons and information. The challenge is how to take advantage of the information revolution: pull the large amount of data in, process it in real time, and put information out to manage grid evolution. Without addressing this challenge, the opportunities in grid evolution will remain unfulfilled. This transition poses grand challenges in grid modeling, simulation, and information presentation. The computational complexity of underlying power grid modeling and simulation will significantly increase in the next decade due to an increased model size and a decreased time window allowed to compute model solutions. High-performance computing is essential to enable this transition. The essential technical barrier is to vastly increase the computational speed so operation response time can be reduced from minutes to seconds and sub-seconds. The speed at which key functions such as state estimation and contingency analysis are conducted (typically every 3-5 minutes) needs to be dramatically increased so that the analysis of contingencies is both comprehensive and real time. An even bigger challenge is how to incorporate dynamic information into real-time grid operation. Today’s online grid operation is based on a static grid model and can only provide a static snapshot of current system operation status, while dynamic analysis is conducted offline because of low computational efficiency. The offline analysis uses a worst-case scenario to determine transmission limits, resulting in under-utilization of grid assets. This conservative approach does not necessarily lead to reliability. Many times, actual power grid scenarios are not studied, and they will push the grid over the edge and resulting in outages and blackouts. This chapter addresses the HPC needs in power grid analysis and operations. Example applications such as state estimation and contingency analysis are given to demonstrate the value of HPC in power grid applications. Future research directions are suggested for high performance computing applications in power grids to improve the transparency, efficiency, and reliability of power grids.

  8. Smart Grid Investments Improve Grid Reliability, Resilience,...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Investments Improve Grid Reliability, Resilience, and Storm Responses (November 2014) Smart Grid Investments Improve Grid Reliability, Resilience, and Storm Responses (November ...

  9. NREL: Performance and Reliability R&D - Real-Time Reliability R&D

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Real-Time Reliability R&D NREL's scientists and engineers study long-term performance, reliability, and failures of PV components and systems both in house and via external collaborations. Through analysis, they quantify long-term degradation and then share the results with the PV community. Real-time reliability R&D focuses on these two primary areas: Failure analysis Outdoor Testing PV Modules and Small Systems Photo of a building on the left with a tiered roof that has photovoltaic

  10. Design and Implementation of Real-Time Off-Grid Detection Tool Based on FNET/GridEye

    SciTech Connect (OSTI)

    Guo, Jiahui; Zhang, Ye; Liu, Yilu; Young II, Marcus Aaron; Irminger, Philip; Dimitrovski, Aleksandar D; Willging, Patrick

    2014-01-01

    Real-time situational awareness tools are of critical importance to power system operators, especially during emergencies. The availability of electric power has become a linchpin of most post disaster response efforts as it is the primary dependency for public and private sector services, as well as individuals. Knowledge of the scope and extent of facilities impacted, as well as the duration of their dependence on backup power, enables emergency response officials to plan for contingencies and provide better overall response. Based on real-time data acquired by Frequency Disturbance Recorders (FDRs) deployed in the North American power grid, a real-time detection method is proposed. This method monitors critical electrical loads and detects the transition of these loads from an on-grid state, where the loads are fed by the power grid to an off-grid state, where the loads are fed by an Uninterrupted Power Supply (UPS) or a backup generation system. The details of the proposed detection algorithm are presented, and some case studies and off-grid detection scenarios are also provided to verify the effectiveness and robustness. Meanwhile, the algorithm has already been implemented based on the Grid Solutions Framework (GSF) and has effectively detected several off-grid situations.

  11. Towards Real-Time High Performance Computing For Power Grid Analysis

    SciTech Connect (OSTI)

    Hui, Peter SY; Lee, Barry; Chikkagoudar, Satish

    2012-11-16

    Real-time computing has traditionally been considered largely in the context of single-processor and embedded systems, and indeed, the terms real-time computing, embedded systems, and control systems are often mentioned in closely related contexts. However, real-time computing in the context of multinode systems, specifically high-performance, cluster-computing systems, remains relatively unexplored. Imposing real-time constraints on a parallel (cluster) computing environment introduces a variety of challenges with respect to the formal verification of the system's timing properties. In this paper, we give a motivating example to demonstrate the need for such a system--- an application to estimate the electromechanical states of the power grid--- and we introduce a formal method for performing verification of certain temporal properties within a system of parallel processes. We describe our work towards a full real-time implementation of the target application--- namely, our progress towards extracting a key mathematical kernel from the application, the formal process by which we analyze the intricate timing behavior of the processes on the cluster, as well as timing measurements taken on our test cluster to demonstrate use of these concepts.

  12. Now Available: Smart Grid Investments Improve Grid Reliability...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Smart Grid Investments Improve Grid Reliability, Resilience, and Storm Responses (November 2014) Now Available: Smart Grid Investments Improve Grid Reliability, Resilience, and ...

  13. POWER GRID RELIABILITY AND SECURITY

    SciTech Connect (OSTI)

    Bose, Anjan; Venkatasubramanian, Vaithianathan; Hauser, Carl; Bakken, David; Anderson, David; Zhao, Chuanlin; Liu, Dong; Yang, Tao; Meng, Ming; Zhang, Lin; Ning, Jiawei; Tashman, Zaid

    2014-09-30

    This project has led to the development of a real-time simulation platform for electric power grids called Grid Simulator or GridSim for simulating the dynamic and information network interactions of large- scale power systems. The platform consists of physical models of power system components including synchronous generators, loads and control, which are simulated using a modified commercial power simulator namely Transient Stability Analysis Tool (TSAT) [1] together with data cleanup components, as well as an emulated substation level and wide-area power analysis components. The platform also includes realistic representations of communication network middleware that can emulate the real-time information flow back and forth between substations and control centers in wide-area power systems. The platform has been validated on a realistic 6000-bus model of the western American power system. The simulator GridSim developed in this project is the first of its kind in its ability to simulate real-time response of large-scale power grids, and serves as a cost effective real-time stability and control simulation platform for power industry.

  14. Now Available: Smart Grid Investments Improve Grid Reliability...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Improve Grid Reliability, Resilience, and Storm Responses (November 2014) Now Available: Smart Grid Investments Improve Grid Reliability, Resilience, and Storm Responses ...

  15. AEP Ohio gridSMART Demonstration Project Real-Time Pricing Demonstration Analysis

    SciTech Connect (OSTI)

    Widergren, Steven E.; Subbarao, Krishnappa; Fuller, Jason C.; Chassin, David P.; Somani, Abhishek; Marinovici, Maria C.; Hammerstrom, Janelle L.

    2014-02-01

    This report contributes initial findings from an analysis of significant aspects of the gridSMART® Real-Time Pricing (RTP) – Double Auction demonstration project. Over the course of four years, Pacific Northwest National Laboratory (PNNL) worked with American Electric Power (AEP), Ohio and Battelle Memorial Institute to design, build, and operate an innovative system to engage residential consumers and their end-use resources in a participatory approach to electric system operations, an incentive-based approach that has the promise of providing greater efficiency under normal operating conditions and greater flexibility to react under situations of system stress. The material contained in this report supplements the findings documented by AEP Ohio in the main body of the gridSMART report. It delves into three main areas: impacts on system operations, impacts on households, and observations about the sensitivity of load to price changes.

  16. Now Available: Smart Grid Investments Improve Grid Reliability, Resilience,

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    and Storm Responses (November 2014) | Department of Energy Smart Grid Investments Improve Grid Reliability, Resilience, and Storm Responses (November 2014) Now Available: Smart Grid Investments Improve Grid Reliability, Resilience, and Storm Responses (November 2014) December 8, 2014 - 2:35pm Addthis Smart grid technologies are helping utilities to speed outage restoration following major storm events, reduce the total number of affected customers, and improve overall service reliability to

  17. PhotoVoltaic distributed generation for Lanai power grid real-time simulation and control integration scenario.

    SciTech Connect (OSTI)

    Robinett, Rush D., III; Kukolich, Keith; Wilson, David Gerald; Schenkman, Benjamin L.

    2010-06-01

    This paper discusses the modeling, analysis, and testing in a real-time simulation environment of the Lanai power grid system for the integration and control of PhotoVoltaic (PV) distributed generation. The Lanai Island in Hawaii is part of the Hawaii Clean Energy Initiative (HCEI) to transition to 30% renewable green energy penetration by 2030. In Lanai the primary loads come from two Castle and Cook Resorts, in addition to residential needs. The total peak load profile is 12470 V, 5.5 MW. Currently there are several diesel generators that meet these loading requirements. As part of the HCEI, Lanai has initially installed 1.2 MW of PV generation. The goal of this study has been to evaluate the impact of the PV with respect to the conventional carbon-based diesel generation in real time simulation. For intermittent PV distributed generation, the overall stability and transient responses are investigated. A simple Lanai 'like' model has been developed in the Matlab/Simulink environment (see Fig. 1) and to accommodate real-time simulation of the hybrid power grid system the Opal-RT Technologies RT-Lab environment is used. The diesel generators have been modelled using the SimPowerSystems toolbox swing equations and a custom Simulink module has been developed for the High level PV generation. All of the loads have been characterized primarily as distribution lines with series resistive load banks with one VAR load bank. Three-phase faults are implemented for each bus. Both conventional and advanced control architectures will be used to evaluate the integration of the PV onto the current power grid system. The baseline numerical results include the stable performance of the power grid during varying cloud cover (PV generation ramping up/down) scenarios. The importance of assessing the real-time scenario is included.

  18. Smart Grid Investments Improve Grid reliability, Resilience and Storm Responses

    Energy Savers [EERE]

    November 2014 Smart Grid Investments Improve Grid Reliability, Resilience, and Storm Responses Page ii Table of Contents Executive Summary ...................................................................................................................................... iii 1. Introduction .............................................................................................................................................. 1 2. Overview of the Featured SGIG Projects

  19. Grid Performance and Reliability | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Systems Integration » Grid Performance and Reliability Grid Performance and Reliability 2 way power flow orange2.png As the solar industry moves towards achieving the SunShot Initiative goals, the electric power system must evolve to handle large-scale changes in transmission and distribution (T&D) planning and operations in order to accommodate increasing penetrations of distributed PV systems. Effectively interconnecting variable PV generation requires forward thinking and dynamic

  20. Improving the Reliability and Resiliency of the US Electric Grid...

    Energy Savers [EERE]

    Improving the Reliability and Resiliency of the US Electric Grid: SGIG Article in Metering International, March 2012 Improving the Reliability and Resiliency of the US Electric Grid: ...

  1. Smart Grid Update: Delivering More Reliable and Efficient Power...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Update: Delivering More Reliable and Efficient Power to the Nation's Capital Smart Grid Update: Delivering More Reliable and Efficient Power to the Nation's Capital March 6, 2014 - ...

  2. REAL TIME SYSTEM OPERATIONS 2006-2007

    SciTech Connect (OSTI)

    Eto, Joseph H.; Parashar, Manu; Lewis, Nancy Jo

    2008-08-15

    The Real Time System Operations (RTSO) 2006-2007 project focused on two parallel technical tasks: (1) Real-Time Applications of Phasors for Monitoring, Alarming and Control; and (2) Real-Time Voltage Security Assessment (RTVSA) Prototype Tool. The overall goal of the phasor applications project was to accelerate adoption and foster greater use of new, more accurate, time-synchronized phasor measurements by conducting research and prototyping applications on California ISO's phasor platform - Real-Time Dynamics Monitoring System (RTDMS) -- that provide previously unavailable information on the dynamic stability of the grid. Feasibility assessment studies were conducted on potential application of this technology for small-signal stability monitoring, validating/improving existing stability nomograms, conducting frequency response analysis, and obtaining real-time sensitivity information on key metrics to assess grid stress. Based on study findings, prototype applications for real-time visualization and alarming, small-signal stability monitoring, measurement based sensitivity analysis and frequency response assessment were developed, factory- and field-tested at the California ISO and at BPA. The goal of the RTVSA project was to provide California ISO with a prototype voltage security assessment tool that runs in real time within California ISO?s new reliability and congestion management system. CERTS conducted a technical assessment of appropriate algorithms, developed a prototype incorporating state-of-art algorithms (such as the continuation power flow, direct method, boundary orbiting method, and hyperplanes) into a framework most suitable for an operations environment. Based on study findings, a functional specification was prepared, which the California ISO has since used to procure a production-quality tool that is now a part of a suite of advanced computational tools that is used by California ISO for reliability and congestion management.

  3. Wide-area, real-time monitoring and visualization system

    DOE Patents [OSTI]

    Budhraja, Vikram S.; Dyer, James D.; Martinez Morales, Carlos A.

    2011-11-15

    A real-time performance monitoring system for monitoring an electric power grid. The electric power grid has a plurality of grid portions, each grid portion corresponding to one of a plurality of control areas. The real-time performance monitoring system includes a monitor computer for monitoring at least one of reliability metrics, generation metrics, transmission metrics, suppliers metrics, grid infrastructure security metrics, and markets metrics for the electric power grid. The data for metrics being monitored by the monitor computer are stored in a data base, and a visualization of the metrics is displayed on at least one display computer having a monitor. The at least one display computer in one said control area enables an operator to monitor the grid portion corresponding to a different said control area.

  4. Wide-area, real-time monitoring and visualization system

    DOE Patents [OSTI]

    Budhraja, Vikram S.; Dyer, James D.; Martinez Morales, Carlos A.

    2013-03-19

    A real-time performance monitoring system for monitoring an electric power grid. The electric power grid has a plurality of grid portions, each grid portion corresponding to one of a plurality of control areas. The real-time performance monitoring system includes a monitor computer for monitoring at least one of reliability metrics, generation metrics, transmission metrics, suppliers metrics, grid infrastructure security metrics, and markets metrics for the electric power grid. The data for metrics being monitored by the monitor computer are stored in a data base, and a visualization of the metrics is displayed on at least one display computer having a monitor. The at least one display computer in one said control area enables an operator to monitor the grid portion corresponding to a different said control area.

  5. Real-time performance monitoring and management system

    DOE Patents [OSTI]

    Budhraja, Vikram S.; Dyer, James D.; Martinez Morales, Carlos A.

    2007-06-19

    A real-time performance monitoring system for monitoring an electric power grid. The electric power grid has a plurality of grid portions, each grid portion corresponding to one of a plurality of control areas. The real-time performance monitoring system includes a monitor computer for monitoring at least one of reliability metrics, generation metrics, transmission metrics, suppliers metrics, grid infrastructure security metrics, and markets metrics for the electric power grid. The data for metrics being monitored by the monitor computer are stored in a data base, and a visualization of the metrics is displayed on at least one display computer having a monitor. The at least one display computer in one said control area enables an operator to monitor the grid portion corresponding to a different said control area.

  6. 2010 Transmission Reliability Program Peer Review | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    on two key areas: 1) Real-Time Grid Reliability Management and 2) Reliability and Markets. ... and performing real-time analysis of market behavior and its impact on market performance. ...

  7. The Relationship between Competitive Power Markets and Grid Reliability. |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy The Relationship between Competitive Power Markets and Grid Reliability. The Relationship between Competitive Power Markets and Grid Reliability. The U.S. Department of Energy and Natural Resources Canada should commission an independent study of the relationships among industry restructuring, competition in power markets, and grid reliability, and how those relationships should be managed to best serve the public interest. PDF icon The Relationship between Competitive

  8. Advancing Visibility of Grid Operations to Improve Reliability | Department

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    of Energy Visibility of Grid Operations to Improve Reliability Advancing Visibility of Grid Operations to Improve Reliability June 6, 2014 - 1:30pm Addthis David Ortiz David Ortiz Former Deputy Assistant Secretary, Energy Infrastructure Modeling and Analysis The nation's electricity transmission system, which consists of three grids (one in the West, one in the East, and one in Texas), is one of the biggest and most complex machines ever constructed. Commonly referred to as "the

  9. Reliability Considerations from Integration of Smart Grid

    Energy Savers [EERE]

    ... 2010 potentially low cost (synergy with PEVs). 32 ... at the distribution level to secure system ... IVVC enables voltage and VAr management of distribution grid ...

  10. Increasing Reliability of the Nation's Power Grid through Greater

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Visibility | Department of Energy Increasing Reliability of the Nation's Power Grid through Greater Visibility Increasing Reliability of the Nation's Power Grid through Greater Visibility March 22, 2016 - 10:15am Addthis Patricia A. Hoffman Patricia A. Hoffman Assistant Secretary, Office of Electricity Delivery & Energy Reliability DOE's Deputy Under Secretary for Science and Energy Adam Cohen today announced new funding that will build on recent progress in giving system operators

  11. Smart Grid Investments Improve Grid Reliability, Resilience, and Storm Responses (November 2014)

    Broader source: Energy.gov [DOE]

    Smart grid technologies are helping utilities to speed outage restoration following major storm events, reduce the total number of affected customers, and improve overall service reliability to reduce customer losses from power disruptions. This report presents findings on smart grid improvements in outage management from OE's Smart Grid Investment Grant (SGIG) program, based on the recent experiences of three SGIG projects.

  12. New York Completes Smart Grid Project to Build a More Reliable...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    York Completes Smart Grid Project to Build a More Reliable, Resilient Power Grid New York Completes Smart Grid Project to Build a More Reliable, Resilient Power Grid April 15, 2014 ...

  13. Smart Grid: Creating Jobs while Delivering Reliable,Environmentally...

    Open Energy Info (EERE)

    Department of Energy was planning to develop a stronger, more reliable energy grid. The plan would allocate 3.4 billion in funds to be distributed across the nation, aiding...

  14. Coming Full Circle in Florida: Improving Electric Grid Reliability and

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Resiliency | Department of Energy Coming Full Circle in Florida: Improving Electric Grid Reliability and Resiliency Coming Full Circle in Florida: Improving Electric Grid Reliability and Resiliency May 2, 2013 - 11:16am Addthis Inside Florida Power & Light's Transmission Performance Diagnostic Center. | Photo courtesy of Florida Power & Light. Inside Florida Power & Light's Transmission Performance Diagnostic Center. | Photo courtesy of Florida Power & Light. In 2009, at the

  15. Real-Time Dynamics Monitoring System with Synchronized Phasor Measurements

    Energy Science and Technology Software Center (OSTI)

    2005-01-01

    The Real-Time Dynamics Monitoring System is designed to monitor the dynamics within the power grid and assess the system behavior during normal and disturbance conditions. The RTDMS application was built on the Grid-3P technology platform and takes real-time information collected by Synchronized Phasor Measurement Units (PMU5) or other collection devices and transmitted to a central Phasor Data Concentrator (PDC) for monitoring grid dynamics. The data is sampled 30 times per second and is time-synchronized. Thismore » data is processed to create graphical and geographical displays to provide visualization for frequency/frequency response, voltage magnitudes and angles, voltage angle differences across critical paths as well as real and reactive power-flows on a sub-second and second basis. Software allows for monitoring, tracking, historical data archiving and electric system troubleshooting for reliability management.« less

  16. New York Completes Smart Grid Project to Build a More Reliable, Resilient

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Power Grid | Department of Energy York Completes Smart Grid Project to Build a More Reliable, Resilient Power Grid New York Completes Smart Grid Project to Build a More Reliable, Resilient Power Grid April 15, 2014 - 11:49am Addthis News Media Contact (202) 586-4940 WASHINGTON - As part of the Obama Administration's broader efforts to strengthen critical energy infrastructure and build a stronger, more reliable power grid, the Energy Department today recognized the completion of New York

  17. Real-Time Occupancy Change Analyzer

    Energy Science and Technology Software Center (OSTI)

    2005-03-30

    The Real-Time Occupancy Change Analyzer (ROCA) produces an occupancy grid map of an environment around the robot, scans the environment to generate a current obstacle map relative to a current robot position, and converts the current obstacle map to a current occupancy grid map. Changes in the occupancy grid can be reported in real time to support a number of tracking capabilities. The benefit of ROCA is that rather than only providing a vector tomore » the detected change, it provides the actual x,y position of the change.« less

  18. Funding Opportunity Announcement: Enabling Extreme Real-Time...

    Office of Environmental Management (EM)

    Funding Opportunity Announcement: Enabling Extreme Real-Time Grid Integration of Solar Energy ... These software and hardware solutions will be highly scalable, data-driven, and capable ...

  19. Real time Faraday spectrometer

    DOE Patents [OSTI]

    Smith, Jr., Tommy E. (Fremont, CA); Struve, Kenneth W. (Albuquerque, NM); Colella, Nicholas J. (Livermore, CA)

    1991-01-01

    This invention uses a dipole magnet to bend the path of a charged particle beam. As the deflected particles exit the magnet, they are spatially dispersed in the bend-plane of the magnet according to their respective momenta and pass to a plurality of chambers having Faraday probes positioned therein. Both the current and energy distribution of the particles is then determined by the non-intersecting Faraday probes located along the chambers. The Faraday probes are magnetically isolated from each other by thin metal walls of the chambers, effectively providing real time current-versus-energy particle measurements.

  20. Real time automated inspection

    DOE Patents [OSTI]

    Fant, K.M.; Fundakowski, R.A.; Levitt, T.S.; Overland, J.E.; Suresh, B.R.; Ulrich, F.W.

    1985-05-21

    A method and apparatus are described relating to the real time automatic detection and classification of characteristic type surface imperfections occurring on the surfaces of material of interest such as moving hot metal slabs produced by a continuous steel caster. A data camera transversely scans continuous lines of such a surface to sense light intensities of scanned pixels and generates corresponding voltage values. The voltage values are converted to corresponding digital values to form a digital image of the surface which is subsequently processed to form an edge-enhanced image having scan lines characterized by intervals corresponding to the edges of the image. The edge-enhanced image is thresholded to segment out the edges and objects formed by the edges by interval matching and bin tracking. Features of the objects are derived and such features are utilized to classify the objects into characteristic type surface imperfections. 43 figs.

  1. Real time automated inspection

    DOE Patents [OSTI]

    Fant, Karl M.; Fundakowski, Richard A.; Levitt, Tod S.; Overland, John E.; Suresh, Bindinganavle R.; Ulrich, Franz W.

    1985-01-01

    A method and apparatus relating to the real time automatic detection and classification of characteristic type surface imperfections occurring on the surfaces of material of interest such as moving hot metal slabs produced by a continuous steel caster. A data camera transversely scans continuous lines of such a surface to sense light intensities of scanned pixels and generates corresponding voltage values. The voltage values are converted to corresponding digital values to form a digital image of the surface which is subsequently processed to form an edge-enhanced image having scan lines characterized by intervals corresponding to the edges of the image. The edge-enhanced image is thresholded to segment out the edges and objects formed by the edges are segmented out by interval matching and bin tracking. Features of the objects are derived and such features are utilized to classify the objects into characteristic type surface imperfections.

  2. Energy Department Invests Over $10 Million to Improve Grid Reliability and

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Resiliency | Department of Energy 10 Million to Improve Grid Reliability and Resiliency Energy Department Invests Over $10 Million to Improve Grid Reliability and Resiliency June 11, 2014 - 6:20pm Addthis NEWS MEDIA CONTACT (202) 586-4940 As part of the Obama Administration's commitment to a strong and secure power grid, the Energy Department today announced more than $10 million for projects that will improve the reliability and resiliency of the U.S. electric grid and facilitate quick and

  3. Improving the Reliability and Resiliency of the US Electric Grid: SGIG

    Energy Savers [EERE]

    Article in Metering International, March 2012 | Department of Energy Improving the Reliability and Resiliency of the US Electric Grid: SGIG Article in Metering International, March 2012 Improving the Reliability and Resiliency of the US Electric Grid: SGIG Article in Metering International, March 2012 The quarterly magazine Metering International is a resource for information on trends and developments in the industry. Issue 1 2012 (March) featured an article on DOE's Smart Grid Investment

  4. Real-Time Benchmark Suite

    Energy Science and Technology Software Center (OSTI)

    1992-01-17

    This software provides a portable benchmark suite for real time kernels. It tests the performance of many of the system calls, as well as the interrupt response time and task response time to interrupts. These numbers provide a baseline for comparing various real-time kernels and hardware platforms.

  5. Coming Full Circle in Florida: Improving Electric Grid Reliability...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    In 2009, at the DeSoto Next Generation Solar Energy Center, President Obama announced the launch of the 3.4 billion Smart Grid Investment Grant program. In 2009, at the DeSoto ...

  6. Radiation Levels in Real Time?

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Levels in Real Time? There's an App for That Gamma radiation levels in the southern Nevada area will soon be accessible around the world at the touch of a finger. Makers of the ...

  7. Smart Grid Update: Delivering More Reliable and Efficient Power to the

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Nation's Capital | Department of Energy Update: Delivering More Reliable and Efficient Power to the Nation's Capital Smart Grid Update: Delivering More Reliable and Efficient Power to the Nation's Capital March 6, 2014 - 1:37pm Addthis Ryan Egidi Ryan Egidi Energy Delivery Technologies Technical Project Officer Smart grid investments are transforming power delivery in the nation's Capital and nearby states. I saw this first-hand when I visited Pepco Holdings Inc. (PHI) last month to mark the

  8. Towards a Real-Time Cluster Computing Infrastructure

    SciTech Connect (OSTI)

    Hui, Peter SY; Chikkagoudar, Satish; Chavarría-Miranda, Daniel; Johnston, Mark R.

    2011-11-01

    Real-time computing has traditionally been considered largely in the context of single-processor and embedded systems, and indeed, the terms real-time computing, embedded systems, and control systems are often mentioned in closely related contexts. However, real-time computing in the context of multinode systems, specifically high-performance, cluster-computing systems, remains relatively unexplored, largely due to the fact that until now, there has not been a need for such an environment. In this paper, we motivate the need for a cluster computing infrastructure capable of supporting computation over large datasets in real-time. Our motivating example is an analytical framework to support the next generation North American power grid, which is growing both in size and complexity. With streaming sensor data in the future power grid potentially reaching rates on the order of terabytes per day, the task of analyzing this data subject to real-time guarantees becomes a daunting task which will require the power of high-performance cluster computing capable of functioning under real-time constraints. One specific challenge that such an environment presents is the need for real-time networked communication between cluster nodes. In this paper, we discuss the need for real-time high-performance cluster computation, along with our work-in-progress towards an infrastructure which will ultimately enable such an environment.

  9. Utility-scale grid-tied PV inverter reliability workshop summary report.

    SciTech Connect (OSTI)

    Granata, Jennifer E.; Quintana, Michael A.; Tasca, Coryne Adelle; Atcitty, Stanley

    2011-07-01

    A key to the long-term success of the photovoltaic (PV) industry is confidence in the reliability of PV systems. Inverters are the most commonly noted cause of PV system incidents triggered in the field. While not all of these incidents are reliability-related or even necessarily failures, they still result in a loss of generated power. With support from the U.S. Department of Energy's Solar Energy Technologies Program, Sandia National Laboratories organized a Utility-Scale Grid-Tied Inverter Reliability Workshop in Albuquerque, New Mexico, January 27-28, 2011. The workshop addressed the reliability of large (100-kilowatt+) grid-tied inverters and the implications when such inverters fail, evaluated inverter codes and standards, and provided discussion about opportunities to enhance inverter reliability. This report summarizes discussions and presentations from the workshop and identifies opportunities for future efforts.

  10. Radiation Levels in Real Time?

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Levels in Real Time? There's an App for That! Gamma radiation levels in the southern Nevada area will soon be accessible around the world at the touch of a finger. Makers of the cell phone application EcoData: Radiation are expanding their global network of radiation monitoring stations to include up-to-date readings from the Community Environmental Monitoring Program (CEMP) based out of southern Nevada. The CEMP was established in 1981 to monitor manmade and natural radiation levels surrounding

  11. Case Study - Florida Power & Light - Smart Grid Solutions Strengthen Reliability and Services - July 2012.pdf

    Energy Savers [EERE]

    Florida Power & Light July 2012 1 Smart devices have been installed on 78 substation transformer banks. Smart Grid Solutions Strengthen Electric Reliability and Customer Services in Florida With 4.6 million customers, nearly 70,000 miles of power lines and 16 power plants, Florida Power and Light Company (FPL) is one of the nation's largest electric utilities. FPL says maintaining reliable service while keeping rates affordable is "Job One." While pursuing its mission, FPL is

  12. Real time infrared aerosol analyzer

    DOE Patents [OSTI]

    Johnson, Stanley A.; Reedy, Gerald T.; Kumar, Romesh

    1990-01-01

    Apparatus for analyzing aerosols in essentially real time includes a virtual impactor which separates coarse particles from fine and ultrafine particles in an aerosol sample. The coarse and ultrafine particles are captured in PTFE filters, and the fine particles impact onto an internal light reflection element. The composition and quantity of the particles on the PTFE filter and on the internal reflection element are measured by alternately passing infrared light through the filter and the internal light reflection element, and analyzing the light through infrared spectrophotometry to identify the particles in the sample.

  13. Real time analysis under EDS

    SciTech Connect (OSTI)

    Schneberk, D.

    1985-07-01

    This paper describes the analysis component of the Enrichment Diagnostic System (EDS) developed for the Atomic Vapor Laser Isotope Separation Program (AVLIS) at Lawrence Livermore National Laboratory (LLNL). Four different types of analysis are performed on data acquired through EDS: (1) absorption spectroscopy on laser-generated spectral lines, (2) mass spectrometer analysis, (3) general purpose waveform analysis, and (4) separation performance calculations. The information produced from this data includes: measures of particle density and velocity, partial pressures of residual gases, and overall measures of isotope enrichment. The analysis component supports a variety of real-time modeling tasks, a means for broadcasting data to other nodes, and a great degree of flexibility for tailoring computations to the exact needs of the process. A particular data base structure and program flow is common to all types of analysis. Key elements of the analysis component are: (1) a fast access data base which can configure all types of analysis, (2) a selected set of analysis routines, (3) a general purpose data manipulation and graphics package for the results of real time analysis. Each of these components are described with an emphasis upon how each contributes to overall system capability. 3 figs.

  14. Integrating smart sensors into grid systems

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Integrating smart sensors into grid systems will enable more complex modeling and adaptation to unknown problems for preventing future catastrophic failures. Passive Microsensor for Autonomous Sensing Grid health and reliability forms the backbone of our Nation's infrastructure. Real time monitoring and fast failure location and identification is critical for electrical grid sustainability. We propose the development of a cheap, fast (µs), fully integrated, passive micro-sensor capable of

  15. Reliable, high repetition rate thyratron grid driver used with a magnetic modulator

    SciTech Connect (OSTI)

    Hill, J.V.; Ball, D.G.; Garrett, D.N.

    1991-06-14

    The Atomic Vapor Laser Isotope Separation (AVLIS) Program at Lawrence Livermore National Laboratory uses a magnetic modulator switched by a high voltage thyratron to drive a gas discharge laser. The thyratron trigger source must provide an extremely reliable, low jitter, high- rep-rate grid pulse. This paper describes a thyratron grid driver which delivers a 1.2 kV, 80 ns rise time grid pulse into a 50 ohm load at up to 4.5 kHz repetition rate and has demonstrated approximately 10,000 hours MTBF. Since the thyratron is used with a magnetic compression circuit having a delay time of 1.4 ms this grid driver incorporates a jitter compensation circuit to adjust the trigger timing of the thyratron to provide overall modulator/laser jitter of less than {plus minus} 2 ns. The specific grid driver requirements will be discussed followed by a description of the circuit design and theory of operation. Construction comments will be followed by performance data (for a specific thyratron and magnetic compression circuit), including pulse shape, jitter, and lifetime. 1 ref., 10 figs.

  16. Integration of Real-Time Data Into Building Automation Systems

    SciTech Connect (OSTI)

    Mark J. Stunder; Perry Sebastian; Brenda A. Chube; Michael D. Koontz

    2003-04-16

    The project goal was to investigate the possibility of using predictive real-time information from the Internet as an input to building management system algorithms. The objectives were to identify the types of information most valuable to commercial and residential building owners, managers, and system designers. To comprehensively investigate and document currently available electronic real-time information suitable for use in building management systems. Verify the reliability of the information and recommend accreditation methods for data and providers. Assess methodologies to automatically retrieve and utilize the information. Characterize equipment required to implement automated integration. Demonstrate the feasibility and benefits of using the information in building management systems. Identify evolutionary control strategies.

  17. In-Situ, Real Time Measurement of Elemental Constituents | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    In-Situ, Real Time Measurement of Elemental Constituents In-Situ, Real Time Measurement of Elemental Constituents New Laser System Provides Real-Time Measurements for Improved ...

  18. Solar Real-Time Pricing: Is Real-Time Electricity Pricing Beneficial...

    Broader source: Energy.gov (indexed) [DOE]

    PDF icon Solar Real-Time Pricing: Is Real-Time Electriciy Pricing Beneficial to Solar PV in New York City? More Documents & Publications FERC Presendation: Demand Response as Power ...

  19. Real time sensor for therapeutic radiation delivery

    DOE Patents [OSTI]

    Bliss, Mary; Craig, Richard A.; Reeder, Paul L.

    1998-01-01

    The invention is a real time sensor for therapeutic radiation. A probe is placed in or near the patient that senses in real time the dose at the location of the probe. The strength of the dose is determined by either an insertion or an exit probe. The location is determined by a series of vertical and horizontal sensing elements that gives the operator a real time read out dose location relative to placement of the patient. The increased accuracy prevents serious tissue damage to the patient by preventing overdose or delivery of a dose to a wrong location within the body.

  20. Real time sensor for therapeutic radiation delivery

    DOE Patents [OSTI]

    Bliss, M.; Craig, R.A.; Reeder, P.L.

    1998-01-06

    The invention is a real time sensor for therapeutic radiation. A probe is placed in or near the patient that senses in real time the dose at the location of the probe. The strength of the dose is determined by either an insertion or an exit probe. The location is determined by a series of vertical and horizontal sensing elements that gives the operator a real time read out dose location relative to placement of the patient. The increased accuracy prevents serious tissue damage to the patient by preventing overdose or delivery of a dose to a wrong location within the body. 14 figs.

  1. Capturing Real-Time Power System Dynamics: Opportunities and Challenges

    SciTech Connect (OSTI)

    Huang, Zhenyu; Zhou, Ning; Diao, Ruisheng; Wang, Shaobu; Elbert, Stephen T.; Meng, Da; Lu, Shuai

    2015-09-01

    The power grid evolves towards a new mix of generation and consumption that introduces new dynamic and stochastic behaviors. These emerging grid behaviors would invalidate the steady-state assumption in today’s state estimation – an essential function for real-time power grid operation. This paper examines this steady-state assumption and identifies the need for estimating dynamic states. Supporting technologies are presented as well as a proposed formulation for estimating dynamic states. Metrics for evaluating methods for solving the dynamic state estimation problem are proposed, with example results to illustrate the use of these metrics. The overall objective of this paper is to provide a basis that more research on this topic can follow.

  2. Development of Real-Time, Gas Quality Sensor Technology - Fact Sheet 2015

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    | Department of Energy Real-Time, Gas Quality Sensor Technology - Fact Sheet 2015 Development of Real-Time, Gas Quality Sensor Technology - Fact Sheet 2015 The Gas Technology Institute, in collaboration with several project partners, will bring together real-time, gas quality sensor technology with engine management for opportunity fuels. The project is a unique industry effort that will improve the performance, increase efficiency, raise system reliability, and provide improved project

  3. Continuous, real time microwave plasma element sensor

    DOE Patents [OSTI]

    Woskov, P.P.; Smatlak, D.L.; Cohn, D.R.; Wittle, J.K.; Titus, C.H.; Surma, J.E.

    1995-12-26

    Microwave-induced plasma is described for continuous, real time trace element monitoring under harsh and variable conditions. The sensor includes a source of high power microwave energy and a shorted waveguide made of a microwave conductive, refractory material communicating with the source of the microwave energy to generate a plasma. The high power waveguide is constructed to be robust in a hot, hostile environment. It includes an aperture for the passage of gases to be analyzed and a spectrometer is connected to receive light from the plasma. Provision is made for real time in situ calibration. The spectrometer disperses the light, which is then analyzed by a computer. The sensor is capable of making continuous, real time quantitative measurements of desired elements, such as the heavy metals lead and mercury. 3 figs.

  4. Continuous, real time microwave plasma element sensor

    DOE Patents [OSTI]

    Woskov, Paul P.; Smatlak, Donna L.; Cohn, Daniel R.; Wittle, J. Kenneth; Titus, Charles H.; Surma, Jeffrey E.

    1995-01-01

    Microwave-induced plasma for continuous, real time trace element monitoring under harsh and variable conditions. The sensor includes a source of high power microwave energy and a shorted waveguide made of a microwave conductive, refractory material communicating with the source of the microwave energy to generate a plasma. The high power waveguide is constructed to be robust in a hot, hostile environment. It includes an aperture for the passage of gases to be analyzed and a spectrometer is connected to receive light from the plasma. Provision is made for real time in situ calibration. The spectrometer disperses the light, which is then analyzed by a computer. The sensor is capable of making continuous, real time quantitative measurements of desired elements, such as the heavy metals lead and mercury.

  5. Real-time distributed multimedia systems

    SciTech Connect (OSTI)

    Rahurkar, S.S.; Bourbakis, N.G.

    1996-12-31

    This paper presents a survey on distributed multimedia systems and discusses real-time issues. In particular, different subsystems are reviewed that impact on multimedia networking, the networking for multimedia, the networked multimedia systems, and the leading edge research and developments efforts and issues in networking.

  6. Final Scientific/ Technical Report. Playas Grid Reliability and Distributed Energy Research

    SciTech Connect (OSTI)

    Romero, Van; Weinkauf, Don; Khan, Mushtaq; Helgeson, Wes; Weedeward, Kevin; LeClerc, Corey; Fuierer, Paul

    2012-06-30

    The future looks bright for solar and renewable energies in the United States. Recent studies claim that by 2050, solar power could supply a third of all electricity demand in the country’s western states. Technology advances, soft policy changes, and increased energy consciousness will all have to happen to achieve this goal. But the larger question is, what would it take to do more throughout the United States? The studies tie future solar and renewable growth in the United States to programs that aim to lower the soft costs of solar adoption, streamline utility interconnections, and increase technology advances through research and development. At the state and local levels, the most important steps are; Net metering: Net metering policies lets customers offset their electric bills with onsite solar and receive reliable and fair compensation for the excess electricity they provide to the grid. Not surprisingly, what utilities consider fair is not necessarily a rate that’s favorable to solar customers; Renewable portfolio standards (RPS): RPS policies require utilities to provide a certain amount of their power from renewable sources; some set specific targets for solar and other renewables. California’s aggressive RPS of 33% renewable energy by 2020 is not bankrupting the state, or its residents; Strong statewide interconnection policies: Solar projects can experience significant delays and hassles just to get connected to the grid. Streamlined feasibility and impact analysis are needed. Good interconnection policies are crucial to the success of solar or renewable energy development; Financing options: Financing is often the biggest obstacle to solar adoption. Those obstacles can be surmounted with policies that support creative financing options like third-party ownership (TPO) and property assessed clean energy (PACE). Attesting to the significance of TPO is the fact that in Arizona, it accounted for 86% of all residential photovoltaic (PV) installations in Q1 2013. Policies beyond those at the state level are also important for solar. The federal government must play a role including continuation of the federal Investment tax credit, responsible development of solar resources on public lands, and support for research and development (R&D) to reduce the cost of solar and help incorporate large amounts of solar into the grid. The local level can’t be ignored. Local governments should support: solar rights laws, feed-in tariffs (FITs), and solar-friendly zoning rules. A great example of how effective local policies can be is a city like Gainesville, Florida , whose FIT policy has put it on the map as a solar leader. This is particularly noteworthy because the Sunshine State does not appear anywhere on the list of top solar states, despite its abundant solar resource. Lancaster, California, began by streamlining the solar permitting process and now requires solar on every new home. Cities like these point to the power of local policies, and the ability of local governments to get things done. A conspicuously absent policy is Community Choice energy, also called community choice aggregation (CCA). This model allows local governments to pool residential, business, and municipal electricity loads and to purchase or generate on their behalf. It provides rate stability and savings and allows more consumer choice and local control. The model need not be focused on clean energy, but it has been in California, where Marin Clean Energy, the first CCA in California, was enabled by a state law -- highlighting the interplay of state and local action. Basic net metering8 has been getting a lot of attention. Utilities are attacking it in a number of states, claiming it’s unfair to ratepayers who don’t go solar. On the other hand, proponents of net metering say utilities’ fighting stance is driven by worries about their bottom line, not concern for their customers. Studies in California, Vermont , New York and Texas have found that the benefits of net metering (like savings on investments in infrastructure and on meeting state renewables requirements) outweigh the costs (like the lowered revenue to cover utility infrastructure costs). Many are eagerly awaiting a California Public Utilities Commission study due later this year, in the hopes that it will provide a relatively unbiased look at the issue. Meanwhile, some states continue to pursue virtual net metering policies. Under Colorado’s Solar Gardens Act, for example, utility customers can subscribe to power generated somewhere other than their own homes. The program allowed by that bill sold out in 30 minutes, evidence of the pent-up demand for this kind of arrangement. And California solar advocates are hoping for passage of a “shared renewables” bill in that state, which would provide for similar solar are significant in bringing solar power to the estimated 75% (likely a conservative number) of can’t put solar on our own roof. As great a resource as the sun is, when it comes to actually implementing solar or other renewables, technology advances, policy changes, bureaucratic practices, and increased energy consciousness will all have to happen to achieve a 30% by 2050 national goal. This project incorporated research activities focused on addressing each of these challenges. First, the project researchers evaluated several leading edge solar technologies by actually implementing these technologies at Playas, New Mexico, a remote town built in the 1970s by Phelps Dodge Mining Company for the company’s employees. This town was purchased by the New Mexico Institute of Mining and Technology in 2005 and converted to a training and research center. Playas is an all-electric town served by a substation about seven miles away. The town is the last user on a 240 kV utility transmission line owned by the Columbus Electric Cooperative (CEC) making it easy to isolate for experiment purposes. The New Mexico Institute of Mining and Technology (NMT) and the Department of Homeland Security (DHS) perform various training and research activities at this site. Given its unique nature, Playas was chosen to test Micro-Grids and other examples of renewable distributed energy resources (DER). Several proposed distributed energy sources (DERs) were not implemented as planned including the Micro-Grid. However, Micro-Grid design and computer modeling were completed and these results are included in this report. As part of this research, four PV (solar) generating systems were installed with remote Internet based communication and control capabilities. These systems have been integrated into and can interact with the local grid So that (for example) excess power produced by the solar arrays can be exported to the utility grid. Energy efficient LED lighting was installed in several buildings to further reduce consumption of utility-supplied power. By combining reduced lighting costs; lowering HVAC loads; and installing smart PV generating equipment with energy storage (battery banks) these systems can greatly reduce electrical usage drawn from an older rural electrical cooperative (Co-Op) while providing clean dependable power. Several additional tasks under this project involved conducting research to develop methods of producing electricity from organic materials (i.e. biofuels, biomass. etc.), the most successful being the biodiesel reactor. Improvements with Proton Exchange Membranes (PEM) for fuels cells were demonstrated and advances in Dye Sensitized Solar Cells (DSSC) were also shown. The specific goals of the project include; Instrumentation of the power distribution system with distributed energy resources, demand-side control and intelligent homes within the town of Playas, NM; Creation of models (power flow and dynamic) of the Playas power distribution system; Validation of the models through comparison of predicted behavior to data collected from instrumentation; and Utilization of the models and test grid to characterize the impact of new devices and approaches (e.g., distributed generation and load management) on the local distribution system as well as the grid at large. In addition to the above stated objectives, the research also focused on three critical challenges facing renewable distributed energy platforms: 1) hydrogen from biomass, 2) improved catalyst support systems for electrolysis membranes and fuel cell systems, and 3) improved manufacturing methodologies of low cost photovoltaics. The following sections describe activities performed during this project. The various tasks were focused on establishing Playas as a “…theoretical and experimental test bed…” through which components of a modern/smart grid could be characterized. On a broader scale, project efforts were aimed at development of tools and gathering of experience/expertise that would accelerate progress toward implementation of a modern grid.

  7. Real-time Pricing Demand Response in Operations

    SciTech Connect (OSTI)

    Widergren, Steven E.; Marinovici, Maria C.; Berliner, Teri; Graves, Alan

    2012-07-26

    AbstractDynamic pricing schemes have been implemented in commercial and industrial application settings, and recently they are getting attention for application to residential customers. Time-of-use and critical-peak-pricing rates are in place in various regions and are being piloted in many more. These programs are proving themselves useful for balancing energy during peak periods; however, real-time (5 minute) pricing signals combined with automation in end-use systems have the potential to deliver even more benefits to operators and consumers. Besides system peak shaving, a real-time pricing system can contribute demand response based on the locational marginal price of electricity, reduce load in response to a generator outage, and respond to local distribution system capacity limiting situations. The US Department of Energy (DOE) is teaming with a mid-west electricity service provider to run a distribution feeder-based retail electricity market that negotiates with residential automation equipment and clears every 5 minutes, thus providing a signal for lowering or raising electric consumption based on operational objectives of economic efficiency and reliability. This paper outlines the capability of the real-time pricing system and the operational scenarios being tested as the system is rolled-out starting in the first half of 2012.

  8. Real time gamma-ray signature identifier

    DOE Patents [OSTI]

    Rowland, Mark; Gosnell, Tom B.; Ham, Cheryl; Perkins, Dwight; Wong, James

    2012-05-15

    A real time gamma-ray signature/source identification method and system using principal components analysis (PCA) for transforming and substantially reducing one or more comprehensive spectral libraries of nuclear materials types and configurations into a corresponding concise representation/signature(s) representing and indexing each individual predetermined spectrum in principal component (PC) space, wherein an unknown gamma-ray signature may be compared against the representative signature to find a match or at least characterize the unknown signature from among all the entries in the library with a single regression or simple projection into the PC space, so as to substantially reduce processing time and computing resources and enable real-time characterization and/or identification.

  9. Visualizations for Real-time Pricing Demonstration

    SciTech Connect (OSTI)

    Marinovici, Maria C.; Hammerstrom, Janelle L.; Widergren, Steven E.; Dayley, Greg K.

    2014-10-13

    In this paper, the visualization tools created for monitoring the operations of a real-time pricing demonstration system that runs at a distribution feeder level are presented. The information these tools provide gives insights into demand behavior from automated price responsive devices, distribution feeder characteristics, impact of weather on system’s development, and other significant dynamics. Given the large number of devices that bid into a feeder-level real-time electricity market, new techniques are explored to summarize the present state of the system and contrast that with previous trends as well as future projections. To better understand the system behavior and correctly inform decision-making procedures, effective visualization of the data is imperative.

  10. Real-Time Chemical Imaging of Bacterial Biofilm Development

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Real-Time Chemical Imaging of Bacterial Biofilm Development Real-Time Chemical Imaging of Bacterial Biofilm Development Print Wednesday, 25 August 2010 00:00 Scientists have ...

  11. Steps to Establish a Real-Time Transmission Monitoring System...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Steps to Establish a Real-Time Transmission Monitoring System for Transmission Owners and Operators within the Eastern and Western Interconnections Steps to Establish a Real-Time ...

  12. Genetically encoded sensors enable real-time observation of metabolite...

    Office of Scientific and Technical Information (OSTI)

    Genetically encoded sensors enable real-time observation of metabolite production Citation ... Title: Genetically encoded sensors enable real-time observation of metabolite production ...

  13. Development of Real-Time, Gas Quality Sensor Technology - Fact...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Real-Time, Gas Quality Sensor Technology - Fact Sheet 2015 Development of Real-Time, Gas Quality Sensor Technology - Fact Sheet 2015 The Gas Technology Institute, in collaboration ...

  14. Real-Time Chemical Imaging of Bacterial Biofilm Development

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Real-Time Chemical Imaging of Bacterial Biofilm Development Print Scientists have ... The ability to image the chemical reactions in living cells in real time, especially in ...

  15. Tracking Living Cells as They Differentiate in Real Time

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Tracking Living Cells as They Differentiate in Real Time Print Protein phosphorylation ... cells, enabling them to follow cellular chemical changes in real time, without bias. ...

  16. Real Time Diagnostics for Algae-final-sm

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Real-time Monitoring And Diagnostics Detecting pathogens and predators to quickly recover ... Real-time Monitoring With Online Algal Reflectance Monitor System Researchers have ...

  17. Tracking Living Cells as They Differentiate in Real Time

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Tracking Living Cells as They Differentiate in Real Time Tracking Living Cells as They Differentiate in Real Time Print Thursday, 27 September 2012 00:00 Protein phosphorylation ...

  18. Wireless technology collects real-time information from oil and...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Wireless technology collects real-time information from oil and gas wells Wireless technology collects real-time information from oil and gas wells The patented system delivers ...

  19. Distributed Intelligence Architecture for Real-Time Control,...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Distributed Intelligence Architecture for Real-Time Control, Protection and Instrumentation Systems Architecture of complex, high-speed, Real-Time Instrumentation, Acquisition, Control ...

  20. Vehicle to Micro-Grid: Leveraging Existing Assets for Reliable Energy Management (Poster)

    SciTech Connect (OSTI)

    Simpson, M.; Markel, T.; O'Keefe, M.

    2010-12-01

    Fort Carson, a United States Army installation located south of Colorado Springs, Colorado, is seeking to be a net-zero energy facility. As part of this initiative, the base will be constructing a micro-grid that ties to various forms of renewable energy. To reduce petroleum consumption, Fort Carson is considering grid-connected vehicles (GCVs) such as pure electric trucks to replace some of its on-base truck fleet. As the availability and affordability of distributed renewable energy generation options increase, so will the GCV options (currently, three all-electric trucks are available on the GSA schedule). The presence of GCVs on-base opens up the possibility to utilize these vehicles to provide stability to the base micro-grid. This poster summarizes work to estimate the potential impacts of three electric vehicle grid interactions between the electric truck fleet and the Fort Carson micro-grid: 1) full-power charging without management, 2) full-power charging capability controlled by the local grid authority, and 3) full-power charge and discharge capability controlled by the local grid authority. We found that even at relatively small adoption rates, the control of electric vehicle charging at Fort Carson will aid in regulation of variable renewable generation loads and help stabilize the micro-grid.

  1. Autonomous, Decentralized Grid Architecture: Prosumer-Based Distributed Autonomous Cyber-Physical Architecture for Ultra-Reliable Green Electricity Networks

    SciTech Connect (OSTI)

    2012-01-11

    GENI Project: Georgia Tech is developing a decentralized, autonomous, internet-like control architecture and control software system for the electric power grid. Georgia Techs new architecture is based on the emerging concept of electricity prosumerseconomically motivated actors that can produce, consume, or store electricity. Under Georgia Techs architecture, all of the actors in an energy system are empowered to offer associated energy services based on their capabilities. The actors achieve their sustainability, efficiency, reliability, and economic objectives, while contributing to system-wide reliability and efficiency goals. This is in marked contrast to the current one-way, centralized control paradigm.

  2. Vehicle to Micro-Grid: Leveraging Existing Assets for Reliable Energy Management (Poster), NREL (National Renewable Energy Laboratory)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    to Micro-Grid: Leveraging Existing Assets for Reliable Energy Management Mike Simpson, Tony Markel, and Michael O'Keefe National Renewable Energy Laboratory INTRODUCTION OPPORTUNITY National Renewable Energy Laboratory Presented at the 4th International Conference on Integration of Renewable & Distributed Energy Resources, December 6-10 , 2010 * Albuquerque, New Mexico U.S. military bases, such as Fort Carson, are interested in opportunities to lower energy consumption and use renewable

  3. Maui Smart Grid Demonstration Project Managing Distribution System Resources for Improved Service Quality and Reliability, Transmission Congestion Relief, and Grid Support Functions

    SciTech Connect (OSTI)

    none,

    2014-09-30

    The Maui Smart Grid Project (MSGP) is under the leadership of the Hawaii Natural Energy Institute (HNEI) of the University of Hawaii at Manoa. The project team includes Maui Electric Company, Ltd. (MECO), Hawaiian Electric Company, Inc. (HECO), Sentech (a division of SRA International, Inc.), Silver Spring Networks (SSN), Alstom Grid, Maui Economic Development Board (MEDB), University of Hawaii-Maui College (UHMC), and the County of Maui. MSGP was supported by the U.S. Department of Energy (DOE) under Cooperative Agreement Number DE-FC26-08NT02871, with approximately 50% co-funding supplied by MECO. The project was designed to develop and demonstrate an integrated monitoring, communications, database, applications, and decision support solution that aggregates renewable energy (RE), other distributed generation (DG), energy storage, and demand response technologies in a distribution system to achieve both distribution and transmission-level benefits. The application of these new technologies and procedures will increase MECO’s visibility into system conditions, with the expected benefits of enabling more renewable energy resources to be integrated into the grid, improving service quality, increasing overall reliability of the power system, and ultimately reducing costs to both MECO and its customers.

  4. Imaging gene expression in real-time using aptamers

    SciTech Connect (OSTI)

    Shin, Il Chung

    2011-12-13

    Signal transduction pathways are usually activated by external stimuli and are transient. The downstream changes such as transcription of the activated genes are also transient. Real-time detection of promoter activity is useful for understanding changes in gene expression, especially during cell differentiation and in development. A simple and reliable method for viewing gene expression in real time is not yet available. Reporter proteins such as fluorescent proteins and luciferase allow for non-invasive detection of the products of gene expression in living cells. However, current reporter systems do not provide for real-time imaging of promoter activity in living cells. This is because of the long time period after transcription required for fluorescent protein synthesis and maturation. We have developed an RNA reporter system for imaging in real-time to detect changes in promoter activity as they occur. The RNA reporter uses strings of RNA aptamers that constitute IMAGEtags (Intracellular MultiAptamer GEnetic tags), which can be expressed from a promoter of choice. The tobramycin, neomycin and PDC RNA aptamers have been utilized for this system and expressed in yeast from the GAL1 promoter. The IMAGEtag RNA kinetics were quantified by RT-qPCR. In yeast precultured in raffinose containing media the GAL1 promoter responded faster than in yeast precultured in glucose containing media. IMAGEtag RNA has relatively short half-life (5.5 min) in yeast. For imaging, the yeast cells are incubated with their ligands that are labeled with fluorescent dyes. To increase signal to noise, ligands have been separately conjugated with the FRET (Förster resonance energy transfer) pairs, Cy3 and Cy5. With these constructs, the transcribed aptamers can be imaged after activation of the promoter by galactose. FRET was confirmed with three different approaches, which were sensitized emission, acceptor photobleaching and donor lifetime by FLIM (fluorescence lifetime imaging microscopy). Real-time transcription was measured by FLIM-FRET, which was detected by the decrease in donor lifetime resulting from ligand binding to IMAGEtags that were newly synthesized from the activated GAL1 promoter. The FRET signal was specific for transcribed IMAGEtags.

  5. In-line real time air monitor

    DOE Patents [OSTI]

    Wise, Marcus B.; Thompson, Cyril V.

    1998-01-01

    An in-line gas monitor capable of accurate gas composition analysis in a continuous real time manner even under strong applied vacuum conditions operates by mixing an air sample with helium forming a sample gas in two complementary sample loops embedded in a manifold which includes two pairs of 3-way solenoid valves. The sample gas is then analyzed in an ion trap mass spectrometer on a continuous basis. Two valve drivers actuate the two pairs of 3-way valves in a reciprocating fashion, so that there is always flow through the in-line gas monitor via one or the other of the sample loops. The duty cycle for the two pairs of 3-way valves is varied by tuning the two valve drivers to a duty cycle typically between 0.2 to 0.7 seconds.

  6. REAL TIME DATA FOR REMEDIATION ACTIVITIES [11505

    SciTech Connect (OSTI)

    BROCK CT

    2011-01-13

    Health physicists from the CH2M HILL Plateau Remediation Company collaborated with Berkeley Nucleonics Corporation to modify the SAM 940 isotope identifier instrument to be used for nuclear waste remediation. These modifications coupled with existing capabilities of the SAM 940 have proven to be invaluable during remediation activities, reducing disposal costs by allowing swift remediation of targeted areas that have been identified as having isotopes of concern (IOC), and eliminating multiple visits to sites by declaring an excavation site clear of IOCs before demobilizing from the site. These advantages are enabled by accumulating spectral data for specific isotopes that is nearly 100 percent free of false positives, which are filtered out in 'real time.'

  7. Real time speech formant analyzer and display

    DOE Patents [OSTI]

    Holland, G.E.; Struve, W.S.; Homer, J.F.

    1987-02-03

    A speech analyzer for interpretation of sound includes a sound input which converts the sound into a signal representing the sound. The signal is passed through a plurality of frequency pass filters to derive a plurality of frequency formants. These formants are converted to voltage signals by frequency-to-voltage converters and then are prepared for visual display in continuous real time. Parameters from the inputted sound are also derived and displayed. The display may then be interpreted by the user. The preferred embodiment includes a microprocessor which is interfaced with a television set for displaying of the sound formants. The microprocessor software enables the sound analyzer to present a variety of display modes for interpretive and therapeutic used by the user. 19 figs.

  8. Real time speech formant analyzer and display

    DOE Patents [OSTI]

    Holland, George E.; Struve, Walter S.; Homer, John F.

    1987-01-01

    A speech analyzer for interpretation of sound includes a sound input which converts the sound into a signal representing the sound. The signal is passed through a plurality of frequency pass filters to derive a plurality of frequency formants. These formants are converted to voltage signals by frequency-to-voltage converters and then are prepared for visual display in continuous real time. Parameters from the inputted sound are also derived and displayed. The display may then be interpreted by the user. The preferred embodiment includes a microprocessor which is interfaced with a television set for displaying of the sound formants. The microprocessor software enables the sound analyzer to present a variety of display modes for interpretive and therapeutic used by the user.

  9. In-line real time air monitor

    DOE Patents [OSTI]

    Wise, M.B.; Thompson, C.V.

    1998-07-14

    An in-line gas monitor capable of accurate gas composition analysis in a continuous real time manner even under strong applied vacuum conditions operates by mixing an air sample with helium forming a sample gas in two complementary sample loops embedded in a manifold which includes two pairs of 3-way solenoid valves. The sample gas is then analyzed in an ion trap mass spectrometer on a continuous basis. Two valve drivers actuate the two pairs of 3-way valves in a reciprocating fashion, so that there is always flow through the in-line gas monitor via one or the other of the sample loops. The duty cycle for the two pairs of 3-way valves is varied by tuning the two valve drivers to a duty cycle typically between 0.2 to 0.7 seconds. 3 figs.

  10. Efficient Real-Time Time-Dependent Density Functional Theory...

    Office of Scientific and Technical Information (OSTI)

    Efficient Real-Time Time-Dependent Density Functional Theory Method and its Application to a Collision of an Ion with a 2D Material Title: Efficient Real-Time Time-Dependent ...

  11. Ames Lab 101: Real-Time 3D Imaging

    ScienceCinema (OSTI)

    Zhang, Song

    2012-08-29

    Ames Laboratory scientist Song Zhang explains his real-time 3-D imaging technology. The technique can be used to create high-resolution, real-time, precise, 3-D images for use in healthcare, security, and entertainment applications.

  12. Forming rotated SAR images by real-time motion compensation....

    Office of Scientific and Technical Information (OSTI)

    Forming rotated SAR images by real-time motion compensation. Citation Details In-Document Search Title: Forming rotated SAR images by real-time motion compensation. Proper waveform...

  13. Autonomous global sky monitoring with real-time robotic follow...

    Office of Scientific and Technical Information (OSTI)

    Conference: Autonomous global sky monitoring with real-time robotic follow-up Citation Details In-Document Search Title: Autonomous global sky monitoring with real-time robotic...

  14. Looking at Transistor Gate Oxide Formation in Real Time

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Looking at Transistor Gate Oxide Formation in Real Time Print The oxide gate layer is ... Now, for the first time, a group of researchers has obtained real-time oxidation results ...

  15. Real-Time Quantitative Imaging of Failure Events in Materials...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Real-Time Quantitative Imaging of Failure Events in Materials Under Load at Temperatures Above 1,600 C Real-Time Quantitative Imaging of Failure Events in Materials Under Load at ...

  16. Profiling Real-Time Electricity Consumption Data for Process Monitoring and Control

    SciTech Connect (OSTI)

    Omitaomu, Olufemi A

    2013-01-01

    Today, smart meters serve as key assets to utilities and their customers because they are capable of recording and communicating real-time energy usage data; thus, enabling better understanding of energy usage patterns. Other potential benefits of smart meters data include the ability to improve customer experience, grid reliability, outage management, and operational efficiency. Despite these tangible benefits, many utilities are inundated by data and remain uncertain about how to extract additional value from these deployed assets outside of billing operations. One way to overcome this challenge is the development of new metrics for classifying utility customers. Traditionally, utilities classified their customers based on their business nature (residential, commercial, and industrial) and/or their total annual consumption. While this classification is useful for some operational functions, it is too limited for designing effective monitoring and control strategies. In this paper, a data mining methodology is proposed for clustering and profiling smart meters data in order to form unique classes of customers exhibiting similar usage patterns. The developed clusters could help utilities in identifying opportunities for achieving some of the benefits of smart meters data.

  17. PROJECT PROFILE: An Integrated Tool for Improving Grid Performance and Reliability of Combined Transmission-Distribution with High Solar Penetration (SuNLaMP)

    Broader source: Energy.gov [DOE]

    High penetration of solar photovoltaics (PV) in electric power grids has created a need for changes to power system planning and operations analysis. Important technical issues such as two-way power flow, coordination of protection devices, transmission-distribution interaction, and reduction in inertia need to be resolved to enable a greater deployment of solar generation. To overcome these technical barriers, this project will develop a suite of software tools that creates a holistic understanding of the steady-state and transient behavior of transmission-distribution networks’ interaction under high PV penetration levels, along with the capability of real-time monitoring of the distribution systems and integration of system protection.

  18. Real time PV manufacturing diagnostic system

    SciTech Connect (OSTI)

    Kochergin, Vladimir; Crawford, Michael A.

    2015-09-01

    The main obstacle Photovoltaic (PV) industry is facing at present is the higher cost of PV energy compared to that of fossil energy. While solar cell efficiencies continue to make incremental gains these improvements are so far insufficient to drive PV costs down to match that of fossil energy. Improved in-line diagnostics however, has the potential to significantly increase the productivity and reduce cost by improving the yield of the process. On this Phase I/Phase II SBIR project MicroXact developed and demonstrated at CIGS pilot manufacturing line a high-throughput in-line PV manufacturing diagnostic system, which was verified to provide fast and accurate data on the spatial uniformity of thickness, an composition of the thin films comprising the solar cell as the solar cell is processed reel-to-reel. In Phase II project MicroXact developed a stand-alone system prototype and demonstrated the following technical characteristics: 1) ability of real time defect/composition inconsistency detection over 60cm wide web at web speeds up to 3m/minute; 2) Better than 1mm spatial resolution on 60cm wide web; 3) an average better than 20nm spectral resolution resulting in more than sufficient sensitivity to composition imperfections (copper-rich and copper-poor regions were detected). The system was verified to be high vacuum compatible. Phase II results completely validated both technical and economic feasibility of the proposed concept. MicroXact’s solution is an enabling technique for in-line PV manufacturing diagnostics to increase the productivity of PV manufacturing lines and reduce the cost of solar energy, thus reducing the US dependency on foreign oil while simultaneously reducing emission of greenhouse gasses.

  19. Microsoft PowerPoint - 2-A-3-OK-Real-Time Data Infrastructure for Large Scale Wind Fleets.pptx

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Real Time Data Infrastructure for Large Real-Time Data Infrastructure for Large Scale Wind Fleets - Return on Investment vs Fundamental Business Requirements Value now. Value over time. © Copyright 2011, OSIsoft, LLC All Rights Reserved. vs. Fundamental Business Requirements Reliability - 4 Ws and an H * What is reliability? - Uptime, OEE, profitable wind plants? (OEE Availability % * Production % * Quality %) * (OEE = Availability % * Production % * Quality %) * Why should money be spent to

  20. Real Time Flux Control in PM Motors

    SciTech Connect (OSTI)

    Otaduy, P.J.

    2005-09-27

    Significant research at the Oak Ridge National Laboratory (ORNL) Power Electronics and Electric Machinery Research Center (PEEMRC) is being conducted to develop ways to increase (1) torque, (2) speed range, and (3) efficiency of traction electric motors for hybrid electric vehicles (HEV) within existing current and voltage bounds. Current is limited by the inverter semiconductor devices' capability and voltage is limited by the stator wire insulation's ability to withstand the maximum back-electromotive force (emf), which occurs at the upper end of the speed range. One research track has been to explore ways to control the path and magnitude of magnetic flux while the motor is operating. The phrase, real time flux control (RTFC), refers to this mode of operation in which system parameters are changed while the motor is operating to improve its performance and speed range. RTFC has potential to meet an increased torque demand by introducing additional flux through the main air gap from an external source. It can augment the speed range by diverting flux away from the main air gap to reduce back-emf at high speeds. Conventional RTFC technology is known as vector control [1]. Vector control decomposes the stator current into two components; one that produces torque and a second that opposes (weakens) the magnetic field generated by the rotor, thereby requiring more overall stator current and reducing the efficiency. Efficiency can be improved by selecting a RTFC method that reduces the back-emf without increasing the average current. This favors methods that use pulse currents or very low currents to achieve field weakening. Foremost in ORNL's effort to develop flux control is the work of J. S. Hsu. Early research [2,3] introduced direct control of air-gap flux in permanent magnet (PM) machines and demonstrated it with a flux-controlled generator. The configuration eliminates the problem of demagnetization because it diverts all the flux from the magnets instead of trying to oppose it. It is robust and could be particularly useful for PM generators and electric vehicle drives. Recent efforts have introduced a brushless machine that transfers a magneto-motive force (MMF) generated by a stationary excitation coil to the rotor [4]. Although a conventional PM machine may be field weakened using vector control, the air-gap flux density cannot be effectively enhanced. In Hsu's new machine, the magnetic field generated by the rotor's PM may be augmented by the field from the stationery excitation coil and channeled with flux guides to its desired destination to enhance the air-gap flux that produces torque. The magnetic field can also be weakened by reversing the current in the stationary excitation winding. A patent for advanced technology in this area is pending. Several additional RTFC methods have been discussed in open literature. These include methods of changing the number of poles by magnetizing and demagnetizing the magnets poles with pulses of current corresponding to direct-axis (d-axis) current of vector control [5,6], changing the number of stator coils [7], and controlling the air gap [8]. Test experience has shown that the magnet strengths may vary and weaken naturally as rotor temperature increases suggesting that careful control of the rotor temperature, which is no easy task, could yield another method of RTFC. The purpose of this report is to (1) examine the interaction of rotor and stator flux with regard to RTFC, (2) review and summarize the status of RTFC technology, and (3) compare and evaluate methods for RTFC with respect to maturity, advantages and limitations, deployment difficulty and relative complexity.

  1. North American Electric Reliability Corporation (NERC): Reliability...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    (NERC): Reliability Considerations from the Integration of Smart Grid North American Electric Reliability Corporation (NERC): Reliability Considerations from the Integration of ...

  2. Real Time Tailpipe Emission Measurements | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    More Documents & Publications Real-Time Simultaneous Measurements of Size, Density, and Composition of Single Ultrafine Diesel Tailpipe Particles Microsoft PowerPoint - 4. ORNL- ...

  3. Real-Time Simultaneous Measurements of Size, Density, and Composition...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Simultaneous Measurements of Size, Density, and Composition of Single Ultrafine Diesel Tailpipe Particles Real-Time Simultaneous Measurements of Size, Density, and Composition of ...

  4. Real-Time Chemical Imaging of Bacterial Biofilm Development

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Real-Time Chemical Imaging of Bacterial Biofilm Development Print Scientists have developed a robust and label-free method to probe the chemical underpinnings of developing bacterial ...

  5. Autonomous global sky monitoring with real-time robotic follow...

    Office of Scientific and Technical Information (OSTI)

    anomalous behavior, selecting targets for detailed investigation, and making real-time anomaly detection to enable rapid recognition and a swift response to transients as...

  6. Tracking Living Cells as They Differentiate in Real Time

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Tracking Living Cells as They Differentiate in Real Time Print Protein phosphorylation regulates protein function in a cell, either activating or inactivating the proteins...

  7. Scientists Probe Lithium-Sulfur Batteries in Real Time - Joint...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    7, 2012, Videos Scientists Probe Lithium-Sulfur Batteries in Real Time Lithium-sulfur batteries are a promising technology that could some day power electric vehicles. Scientists ...

  8. Reliability Testing Beyond Qualification as a Key Component in Photovoltaic's Progress Toward Grid Parity: Preprint

    SciTech Connect (OSTI)

    Wohlgemuth, J. H.; Kurtz, S.

    2011-02-01

    This paper discusses why it is necessary for new lower cost PV modules to be tested using a reliability test sequence that goes beyond the Qualification test sequence now utilized for modules. Today most PV modules are warranted for 25 years, but the Qualification Test Sequence does not test for 25-year life. There is no accepted test protocol to validate a 25-year lifetime. This paper recommends the use of long term accelerated testing to compare now designs directly with older designs that have achieved long lifetimes in outdoor exposure. If the new designs do as well or better than the older ones, then it is likely that they will survive an equivalent length of time in the field.

  9. CERTS: Consortium for Electric Reliability Technology Solutions - Research Highlights

    SciTech Connect (OSTI)

    Eto, Joseph

    2003-07-30

    Historically, the U.S. electric power industry was vertically integrated, and utilities were responsible for system planning, operations, and reliability management. As the nation moves to a competitive market structure, these functions have been disaggregated, and no single entity is responsible for reliability management. As a result, new tools, technologies, systems, and management processes are needed to manage the reliability of the electricity grid. However, a number of simultaneous trends prevent electricity market participants from pursuing development of these reliability tools: utilities are preoccupied with restructuring their businesses, research funding has declined, and the formation of Independent System Operators (ISOs) and Regional Transmission Organizations (RTOs) to operate the grid means that control of transmission assets is separate from ownership of these assets; at the same time, business uncertainty, and changing regulatory policies have created a climate in which needed investment for transmission infrastructure and tools for reliability management has dried up. To address the resulting emerging gaps in reliability R&D, CERTS has undertaken much-needed public interest research on reliability technologies for the electricity grid. CERTS' vision is to: (1) Transform the electricity grid into an intelligent network that can sense and respond automatically to changing flows of power and emerging problems; (2) Enhance reliability management through market mechanisms, including transparency of real-time information on the status of the grid; (3) Empower customers to manage their energy use and reliability needs in response to real-time market price signals; and (4) Seamlessly integrate distributed technologies--including those for generation, storage, controls, and communications--to support the reliability needs of both the grid and individual customers.

  10. North American Electric Reliability Corporation (NERC): Reliability

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Considerations from the Integration of Smart Grid | Department of Energy (NERC): Reliability Considerations from the Integration of Smart Grid North American Electric Reliability Corporation (NERC): Reliability Considerations from the Integration of Smart Grid North American Electric Reliability Corporation (NERC): Reliability Considerations from the Integration of Smart Grid. NERC develops and enforces Reliability Standards; assesses adequacy annually via a ten-year forcast and winter and

  11. 2012 Smart Grid Peer Review Presentations - Day 2 Smart Grid...

    Energy Savers [EERE]

    Smart Grid Panel Discussion 2012 Smart Grid Peer Review Presentations - Day 2 Smart Grid Panel Discussion The Office of Electricity Delivery and Energy Reliability held its ...

  12. Principal Characteristics of a Modern Grid

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Reliability Joe Miller, Modern Grid Strategy Team Lead Grid Econ - The Economics of a Smarter Electric Grid March 16, 2009 Office of Electricity Delivery and Energy Reliability ...

  13. Real-time hydro coordination and economic hydro optimization

    SciTech Connect (OSTI)

    Dasigenis, A.T.; Garcia-San Pedro, A.R.

    1995-12-31

    This paper addresses the real-time aspects of the Hydro-Thermal Coordination problem. It describes the real-time modeling and monitoring of hydro resources, and the use of the resulting real-time hydraulic data in the on-line Economic Dispatch algorithm. A variable head, hydro loss model is incorporated that allows for on-line changes to the hydro topology. The method presented provides the operator with a current view of the available water resources, enables the validation of the real-time hydro data received from the field, and enables real-time optimization of the Hydro-Thermal Unit Commitment plan. The implementation of this approach on the Iberdrola system in Spain is described.

  14. A Comparison of Real-Time Thermal Rating Systems in the U.S. and the U.K.

    SciTech Connect (OSTI)

    Gentle, Jake P.; Myers, Kurt S.; Bush, Jason W.; West, Isaac J.; Greenwood, David M.; Ingram, Grant L.; Davison, Peter J.; Troffaes, Matthias C.M.

    2014-08-01

    Real-time thermal rating is a smart-grid technology that allows the rating of electrical conductors to be increased based on local weather conditions. Overhead lines are conventionally given a conservative, constant seasonal rating based on seasonal and regional worst case scenarios rather than actual, say, local hourly weather predictions. This paper provides a report of two pioneering schemes-one in the U.S. and one in the U.K.-where real-time thermal ratings have been applied. Thereby, we demonstrate that observing the local weather conditions in real time leads to additional capacity and safer operation. Second, we critically compare both approaches and discuss their limitations. In doing so, we arrive at novel insights which will inform and improve future real-time thermal rating projects.

  15. Advanced Kalman Filter for Real-Time Responsiveness in Complex Systems

    SciTech Connect (OSTI)

    Welch, Gregory Francis

    2014-06-10

    Complex engineering systems pose fundamental challenges in real-time operations and control because they are highly dynamic systems consisting of a large number of elements with severe nonlinearities and discontinuities. Today’s tools for real-time complex system operations are mostly based on steady state models, unable to capture the dynamic nature and too slow to prevent system failures. We developed advanced Kalman filtering techniques and the formulation of dynamic state estimation using Kalman filtering techniques to capture complex system dynamics in aiding real-time operations and control. In this work, we looked at complex system issues including severe nonlinearity of system equations, discontinuities caused by system controls and network switches, sparse measurements in space and time, and real-time requirements of power grid operations. We sought to bridge the disciplinary boundaries between Computer Science and Power Systems Engineering, by introducing methods that leverage both existing and new techniques. While our methods were developed in the context of electrical power systems, they should generalize to other large-scale scientific and engineering applications.

  16. DOE Announces Webinars on Real Time Energy Management, Solar Forecasting

    Broader source: Energy.gov (indexed) [DOE]

    Metrics, and More | Department of Energy February 4: Live Webinar on Real Time Energy Management Webinar Sponsor: Better Buildings Challenge The Energy Department will present a live webinar titled "Real-time Energy Management: Improving Energy Efficiency Every 15 Minutes" on Tuesday, February 4, from 3:00 p.m. to 4:00 p.m. Eastern Standard Time. This webinar will feature three Better Buildings Challenge partners that are employing real-time energy management to achieve their

  17. Test Cases for Wind Power Plant Dynamic Models on Real-Time Digital Simulator: Preprint

    SciTech Connect (OSTI)

    Singh, M.; Muljadi, E.; Gevorgian, V.

    2012-06-01

    The objective of this paper is to present test cases for wind turbine generator and wind power plant models commonly used during commissioning of wind power plants to ensure grid integration compatibility. In this paper, different types of wind power plant models based on the Western Electricity Coordinating Council Wind Generator Modeling Group's standardization efforts are implemented on a real-time digital simulator, and different test cases are used to gauge their grid integration capability. The low-voltage ride through and reactive power support capability and limitations of wind turbine generators under different grid conditions are explored. Several types of transient events (e.g., symmetrical and unsymmetrical faults, frequency dips) are included in the test cases. The differences in responses from different types of wind turbine are discussed in detail.

  18. Scalable Distributed Automation System: Scalable Real-time Decentralized Volt/VAR Control

    SciTech Connect (OSTI)

    2012-03-01

    GENI Project: Caltech is developing a distributed automation system that allows distributed generators—solar panels, wind farms, thermal co-generation systems—to effectively manage their own power. To date, the main stumbling block for distributed automation systems has been the inability to develop software that can handle more than 100,000 distributed generators and be implemented in real time. Caltech’s software could allow millions of generators to self-manage through local sensing, computation, and communication. Taken together, localized algorithms can support certain global objectives, such as maintaining the balance of energy supply and demand, regulating voltage and frequency, and minimizing cost. An automated, grid-wide power control system would ease the integration of renewable energy sources like solar power into the grid by quickly transmitting power when it is created, eliminating the energy loss associated with the lack of renewable energy storage capacity of the grid.

  19. New Real-Time Quantum Efficiency Measurement System: Preprint

    SciTech Connect (OSTI)

    Young, D. L.; Egaas, B.; Pinegar, S.; Stradins, P.

    2008-05-01

    This paper describes a newly developed technique for measuring the quantum eficiiency in solar cells in real-time using a unique, electronically controlled, full-spectrum light source.

  20. Looking at Transistor Gate Oxide Formation in Real Time

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Looking at Transistor Gate Oxide Formation in Real Time Print The oxide gate layer is critical to every transistor, and present-day layer thicknesses are in the 10-20 range (1-2...

  1. Deployment of High Resolution Real-Time Distribution Level Metering on Maui: Preprint

    SciTech Connect (OSTI)

    Bank, J.

    2013-01-01

    In order to support the ongoing Maui Smart Grid demonstration project advanced metering has been deployed at the distribution transformer level in Maui Electric Company's Kihei Circuit on the Island of Maui. This equipment has been custom designed to provide accurately time-stamped Phasor and Power Quality data in real time. Additionally, irradiance sensors have been deployed at a few selected locations in proximity to photovoltaic (PV) installations. The received data is being used for validation of existing system models and for impact studies of future system hardware. Descriptions of the hardware and its installation, and some preliminary metering results are presented. Real-time circuit visualization applications for the data are also under development.

  2. Genetically encoded sensors enable real-time observation of metabolite

    Office of Scientific and Technical Information (OSTI)

    production (Journal Article) | SciTech Connect Genetically encoded sensors enable real-time observation of metabolite production Citation Details In-Document Search This content will become publicly available on August 8, 2016 Title: Genetically encoded sensors enable real-time observation of metabolite production Authors: Rogers, Jameson K. ; Church, George M. Publication Date: 2016-02-08 OSTI Identifier: 1237386 Type: Published Article Journal Name: Proceedings of the National Academy of

  3. Tracking Living Cells as They Differentiate in Real Time

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Tracking Living Cells as They Differentiate in Real Time Tracking Living Cells as They Differentiate in Real Time Print Thursday, 27 September 2012 00:00 Protein phosphorylation regulates protein function in a cell, either activating or inactivating the proteins responsible for many cell functions ranging from cell proliferation to differentiation to metabolism to signaling, and even programmed cell death. This chemical process has been studied intensively, but until now it has been impossible

  4. Vector processing enhancements for real-time image analysis.

    SciTech Connect (OSTI)

    Shoaf, S.; APS Engineering Support Division

    2008-01-01

    A real-time image analysis system was developed for beam imaging diagnostics. An Apple Power Mac G5 with an Active Silicon LFG frame grabber was used to capture video images that were processed and analyzed. Software routines were created to utilize vector-processing hardware to reduce the time to process images as compared to conventional methods. These improvements allow for more advanced image processing diagnostics to be performed in real time.

  5. Real-time condition assessment of RAPTOR telescope systems (Conference) |

    Office of Scientific and Technical Information (OSTI)

    SciTech Connect Conference: Real-time condition assessment of RAPTOR telescope systems Citation Details In-Document Search Title: Real-time condition assessment of RAPTOR telescope systems × You are accessing a document from the Department of Energy's (DOE) SciTech Connect. This site is a product of DOE's Office of Scientific and Technical Information (OSTI) and is provided as a public service. Visit OSTI to utilize additional information resources in energy science and technology. A paper

  6. Real-time condition assessment of RAPTOR telescope systems (Journal

    Office of Scientific and Technical Information (OSTI)

    Article) | SciTech Connect Journal Article: Real-time condition assessment of RAPTOR telescope systems Citation Details In-Document Search Title: Real-time condition assessment of RAPTOR telescope systems × You are accessing a document from the Department of Energy's (DOE) SciTech Connect. This site is a product of DOE's Office of Scientific and Technical Information (OSTI) and is provided as a public service. Visit OSTI to utilize additional information resources in energy science and

  7. Real-Time Chemical Imaging of Bacterial Biofilm Development

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Real-Time Chemical Imaging of Bacterial Biofilm Development Real-Time Chemical Imaging of Bacterial Biofilm Development Print Wednesday, 25 August 2010 00:00 Scientists have developed a robust and label-free method to probe the chemical underpinnings of developing bacterial biofilms. Almost all bacteria can form biofilms-dynamic communities of cells enclosed in self-produced matrices of polymers that stick to other bacteria or surfaces in water-containing environments. Coordinated collectively,

  8. High speed, real-time, camera bandwidth converter

    DOE Patents [OSTI]

    Bower, Dan E; Bloom, David A; Curry, James R

    2014-10-21

    Image data from a CMOS sensor with 10 bit resolution is reformatted in real time to allow the data to stream through communications equipment that is designed to transport data with 8 bit resolution. The incoming image data has 10 bit resolution. The communication equipment can transport image data with 8 bit resolution. Image data with 10 bit resolution is transmitted in real-time, without a frame delay, through the communication equipment by reformatting the image data.

  9. Real Time Pricing and the Real Live Firm

    SciTech Connect (OSTI)

    Moezzi, Mithra; Goldman, Charles; Sezgen, Osman; Bharvirkar, Ranjit; Hopper, Nicole

    2004-05-26

    Energy economists have long argued the benefits of real time pricing (RTP) of electricity. Their basis for modeling customers response to short-term fluctuations in electricity prices are based on theories of rational firm behavior, where management strives to minimize operating costs and optimize profit, and labor, capital and energy are potential substitutes in the firm's production function. How well do private firms and public sector institutions operating conditions, knowledge structures, decision-making practices, and external relationships comport with these assumptions and how might this impact price response? We discuss these issues on the basis of interviews with 29 large (over 2 MW) industrial, commercial, and institutional customers in the Niagara Mohawk Power Corporation service territory that have faced day-ahead electricity market prices since 1998. We look at stories interviewees told about why and how they respond to RTP, why some customers report that they can't, and why even if they can, they don't. Some firms respond as theorized, and we describe their load curtailment strategies. About half of our interviewees reported that they were unable to either shift or forego electricity consumption even when prices are high ($0.50/kWh). Reasons customers gave for why they weren't price-responsive include implicit value placed on reliability, pricing structures, lack of flexibility in adjusting production inputs, just-in-time practices, perceived barriers to onsite generation, and insufficient time. We draw these observations into a framework that could help refine economic theory of dynamic pricing by providing real-world descriptions of how firms behave and why.

  10. Real-Time SCADA Cyber Protection Using Compression Techniques

    SciTech Connect (OSTI)

    Lyle G. Roybal; Gordon H Rueff

    2013-11-01

    The Department of Energys Office of Electricity Delivery and Energy Reliability (DOE-OE) has a critical mission to secure the energy infrastructure from cyber attack. Through DOE-OEs Cybersecurity for Energy Delivery Systems (CEDS) program, the Idaho National Laboratory (INL) has developed a method to detect malicious traffic on Supervisory, Control, and Data Acquisition (SCADA) network using a data compression technique. SCADA network traffic is often repetitive with only minor differences between packets. Research performed at the INL showed that SCADA network traffic has traits desirable for using compression analysis to identify abnormal network traffic. An open source implementation of a Lempel-Ziv-Welch (LZW) lossless data compression algorithm was used to compress and analyze surrogate SCADA traffic. Infected SCADA traffic was found to have statistically significant differences in compression when compared against normal SCADA traffic at the packet level. The initial analyses and results are clearly able to identify malicious network traffic from normal traffic at the packet level with a very high confidence level across multiple ports and traffic streams. Statistical differentiation between infected and normal traffic level was possible using a modified data compression technique at the 99% probability level for all data analyzed. However, the conditions tested were rather limited in scope and need to be expanded into more realistic simulations of hacking events using techniques and approaches that are better representative of a real-world attack on a SCADA system. Nonetheless, the use of compression techniques to identify malicious traffic on SCADA networks in real time appears to have significant merit for infrastructure protection.

  11. Large-Scale Data Challenges in Future Power Grids

    SciTech Connect (OSTI)

    Yin, Jian; Sharma, Poorva; Gorton, Ian; Akyol, Bora A.

    2013-03-25

    This paper describes technical challenges in supporting large-scale real-time data analysis for future power grid systems and discusses various design options to address these challenges. Even though the existing U.S. power grid has served the nation remarkably well over the last 120 years, big changes are in the horizon. The widespread deployment of renewable generation, smart grid controls, energy storage, plug-in hybrids, and new conducting materials will require fundamental changes in the operational concepts and principal components. The whole system becomes highly dynamic and needs constant adjustments based on real time data. Even though millions of sensors such as phase measurement units (PMUs) and smart meters are being widely deployed, a data layer that can support this amount of data in real time is needed. Unlike the data fabric in cloud services, the data layer for smart grids must address some unique challenges. This layer must be scalable to support millions of sensors and a large number of diverse applications and still provide real time guarantees. Moreover, the system needs to be highly reliable and highly secure because the power grid is a critical piece of infrastructure. No existing systems can satisfy all the requirements at the same time. We examine various design options. In particular, we explore the special characteristics of power grid data to meet both scalability and quality of service requirements. Our initial prototype can improve performance by orders of magnitude over existing general-purpose systems. The prototype was demonstrated with several use cases from PNNL’s FPGI and was shown to be able to integrate huge amount of data from a large number of sensors and a diverse set of applications.

  12. The National Opportunity for Interoperability and its Benefits for a Reliable, Robust, and Future Grid Realized through Buildings

    Broader source: Energy.gov [DOE]

    In this report, the Building Technologies Office (BTO) discusses interoperability as it applies to buildings and building interactions with the grid and other systems, its impact and opportunity...

  13. Real-time Series Resistance Monitoring in PV Systems; NREL (National Renewable Energy Laboratory)

    SciTech Connect (OSTI)

    Deceglie, M. G.; Silverman, T. J.; Marion, B.; Kurtz, S. R.

    2015-06-14

    We apply the physical principles of a familiar method, suns-Voc, to a new application: the real-time detection of series resistance changes in modules and systems operating outside. The real-time series resistance (RTSR) method that we describe avoids the need for collecting IV curves or constructing full series-resistance-free IV curves. RTSR is most readily deployable at the module level on apply the physical principles of a familiar method, suns-Voc, to a new application: the real-time detection of series resistance changes in modules and systems operating outside. The real-time series resistance (RTSR) method that we describe avoids the need for collecting IV curves or constructing full series-resistance-free IV curves. RTSR is most readily deployable at the module level on micro-inverters or module-integrated electronics, but it can also be extended to full strings. Automated detection of series resistance increases can provide early warnings of some of the most common reliability issues, which also pose fire risks, including broken ribbons, broken solder bonds, and contact problems in the junction or combiner box. We describe the method in detail and describe a sample application to data collected from modules operating in the field.

  14. Development of a Real-Time, High-Speed Distribution Level Data Acquisition System

    SciTech Connect (OSTI)

    Bank, J.; Kroposki, B.

    2012-01-01

    With the development of smart grids and the deployment of their enabling technologies, improved data acquisition will be needed at the distribution level to understand the full impact of these changes. With this in mind, NREL has developed a high-speed measurement and data collection network targeted specifically at the distribution level. This network is based around adaptable, rugged measurement devices designed for deployment at a variety of low and medium voltage locations below the sub-station. Each of these devices is capable of real-time data transmission via an Internet connection. Additionally, several analysis and visualization applications have been developed around the incoming data streams.

  15. Pilot evaluation of electricity-reliability and power-quality monitoring in California's Silicon Valley with the I-Grid(R) system

    SciTech Connect (OSTI)

    Eto, Joseph; Divan, Deepak; Brumsickle, William

    2004-02-01

    Power-quality events are of increasing concern for the economy because today's equipment, particularly computers and automated manufacturing devices, is susceptible to these imperceptible voltage changes. A small variation in voltage can cause this equipment to shut down for long periods, resulting in significant business losses. Tiny variations in power quality are difficult to detect except with expensive monitoring equipment used by trained technicians, so many electricity customers are unaware of the role of power-quality events in equipment malfunctioning. This report describes the findings from a pilot study coordinated through the Silicon Valley Manufacturers Group in California to explore the capabilities of I-Grid(R), a new power-quality monitoring system. This system is designed to improve the accessibility of power-quality in formation and to increase understanding of the growing importance of electricity reliability and power quality to the economy. The study used data collected by I-Grid sensors at seven Silicon Valley firms to investigate the impacts of power quality on individual study participants as well as to explore the capabilities of the I-Grid system to detect events on the larger electricity grid by means of correlation of data from the sensors at the different sites. In addition, study participants were interviewed about the value they place on power quality, and their efforts to address electricity-reliability and power-quality problems. Issues were identified that should be taken into consideration in developing a larger, potentially nationwide, network of power-quality sensors.

  16. Parallel architecture for real-time simulation. Master's thesis

    SciTech Connect (OSTI)

    Cockrell, C.D.

    1989-01-01

    This thesis is concerned with the development of a very fast and highly efficient parallel computer architecture for real-time simulation of continuous systems. Currently, several parallel processing systems exist that may be capable of executing a complex simulation in real-time. These systems are examined and the pros and cons of each system discussed. The thesis then introduced a custom-designed parallel architecture based upon The University of Alabama's OPERA architecture. Each component of this system is discussed and rationale presented for its selection. The problem selected, real-time simulation of the Space Shuttle Main Engine for the test and evaluation of the proposed architecture, is explored, identifying the areas where parallelism can be exploited and parallel processing applied. Results from the test and evaluation phase are presented and compared with the results of the same problem that has been processed on a uniprocessor system.

  17. Integrated real-time fracture-diagnostics instrumentation system

    SciTech Connect (OSTI)

    Engi, D

    1983-01-01

    The use of an integrated, real-time fracture-diagnostics instrumentation system for the control of the fracturing treatment during massive hydraulic fracturing is proposed. The proposed system consists of four subsystems: an internal-fracture-pressure measurement system, a fluid-flow measurement system, a borehole seismic system, and a surface-electric-potential measurement system. This use of borehole seismic and surface-electric-potential measurements, which are essentially away-from-the-wellbore measurements, in conjunction with the use of the more commonly used types of measurements, i.e., at-the-wellbore pressure and fluid-flow measurements, is a distinctive feature of the composite real-time diagnostics system. Currently, the real-time capabilities of the individual subsystems are being developed, and the problems associated with their integration into a complete, computer-linked instrumentation system are being addressed. 2 figures.

  18. Supervisory Feed-Forward Control for Real-Time Topping Cycle CHP Operation

    SciTech Connect (OSTI)

    Cho, Heejin; Luck, Rogelio; Chamra, Louay M.

    2010-03-01

    This paper presents an energy dispatch algorithm for real-time topping cycle Cooling, Heating, and Power (CHP) operation for buildings with the objective of minimizing the operational cost, primary energy consumption (PEC), or carbon dioxide emission (CDE). The algorithm features a supervisory feed-forward control for real-time CHP operation using short-term weather forecasting. The advantages of the proposed control scheme for CHP operation are (a) relatively simple and efficient implementation allowing realistic real-time operation , (b) optimized CHP operation with respect to operational cost, PEC, or CDE, and (c) increased site-energy consumption (SEC) resulting in less dependence on the electric grid. In the feed-forward portion of the control scheme, short-term electric, cooling, and heating loads are predicted using the U.S. Department of Energy (DOE) benchmark small office building model. The results are encouraging regarding the potential saving of operational cost, PEC, and CDE from using the control system for a CHP system with electric and thermal energy storages.

  19. Towards Real Time Diagnostics of Hybrid Welding Laser/GMAW

    SciTech Connect (OSTI)

    Timothy Mcjunkin; Dennis C. Kunerth; Corrie Nichol; Evgueni Todorov; Steve Levesque; Feng Yu; Robert Danna Couch

    2013-07-01

    Methods are currently being developed towards a more robust system real time feedback in the high throughput process combining laser welding with gas metal arc welding. A combination of ultrasonic, eddy current, electronic monitoring, and visual techniques are being applied to the welding process. Initial simulation and bench top evaluation of proposed real time techniques on weld samples are presented along with the concepts to apply the techniques concurrently to the weld process. Consideration for the eventual code acceptance of the methods and system are also being researched as a component of this project. The goal is to detect defects or precursors to defects and correct when possible during the weld process.

  20. Towards real time diagnostics of Hybrid Welding Laser/GMAW

    SciTech Connect (OSTI)

    McJunkin, T. R.; Kunerth, D. C.; Nichol, C. I. [Idaho National Laboratory, Idaho Falls, ID 83415-3570 (United States); Todorov, E.; Levesque, S. [Edison Welding Institute, Columbus, OH (United States)

    2014-02-18

    Methods are currently being developed towards a more robust system real time feedback in the high throughput process combining laser welding with gas metal arc welding. A combination of ultrasonic, eddy current, electronic monitoring, and visual techniques are being applied to the welding process. Initial simulation and bench top evaluation of proposed real time techniques on weld samples are presented along with the concepts to apply the techniques concurrently to the weld process. Consideration for the eventual code acceptance of the methods and system are also being researched as a component of this project. The goal is to detect defects or precursors to defects and correct when possible during the weld process.

  1. Handheld portable real-time tracking and communications device

    DOE Patents [OSTI]

    Wiseman, James M.; Riblett, Jr., Loren E.; Green, Karl L.; Hunter, John A.; Cook, III, Robert N.; Stevens, James R.

    2012-05-22

    Portable handheld real-time tracking and communications devices include; a controller module, communications module including global positioning and mesh network radio module, data transfer and storage module, and a user interface module enclosed in a water-resistant enclosure. Real-time tracking and communications devices can be used by protective force, security and first responder personnel to provide situational awareness allowing for enhance coordination and effectiveness in rapid response situations. Such devices communicate to other authorized devices via mobile ad-hoc wireless networks, and do not require fixed infrastructure for their operation.

  2. Real-time condition assessment of RAPTOR telescope systems (Conference) |

    Office of Scientific and Technical Information (OSTI)

    SciTech Connect Conference: Real-time condition assessment of RAPTOR telescope systems Citation Details In-Document Search Title: Real-time condition assessment of RAPTOR telescope systems Authors: Stull, Christopher J [1] ; Taylor, Stuart G [1] ; Wren, James [1] ; Mascarenas, David L [1] ; Farrar, Charles R [1] + Show Author Affiliations Los Alamos National Laboratory Publication Date: 2011-05-12 OSTI Identifier: 1067412 Report Number(s): LA-UR-11-02858; LA-UR-11-2858 DOE Contract Number:

  3. Real-time condition assessment of RAPTOR telescope systems (Journal

    Office of Scientific and Technical Information (OSTI)

    Article) | SciTech Connect Journal Article: Real-time condition assessment of RAPTOR telescope systems Citation Details In-Document Search Title: Real-time condition assessment of RAPTOR telescope systems Authors: Stull, Christopher J [1] ; Taylor, Stuart G [1] ; Wren, James [1] ; Mascarenas, David L [1] ; Farrar, Charles R [1] + Show Author Affiliations Los Alamos National Laboratory Publication Date: 2011-09-08 OSTI Identifier: 1095860 Report Number(s): LA-UR-11-05218; LA-UR-11-5218 DOE

  4. Looking at Transistor Gate Oxide Formation in Real Time

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Looking at Transistor Gate Oxide Formation in Real Time Looking at Transistor Gate Oxide Formation in Real Time Print Wednesday, 25 June 2008 00:00 The oxide gate layer is critical to every transistor, and present-day layer thicknesses are in the 10-20 Å range (1-2 nm). However, little information exists on the oxidation process at this thickness. Available results are either for thicker layers grown under high-pressure conditions or for only the first couple of monolayers studied under

  5. A heterogeneous hierarchical architecture for real-time computing

    SciTech Connect (OSTI)

    Skroch, D.A.; Fornaro, R.J.

    1988-12-01

    The need for high-speed data acquisition and control algorithms has prompted continued research in the area of multiprocessor systems and related programming techniques. The result presented here is a unique hardware and software architecture for high-speed real-time computer systems. The implementation of a prototype of this architecture has required the integration of architecture, operating systems and programming languages into a cohesive unit. This report describes a Heterogeneous Hierarchial Architecture for Real-Time (H{sup 2} ART) and system software for program loading and interprocessor communication.

  6. Strategies and Decision Support Systems for Integrating Variable Energy Resources in Control Centers for Reliable Grid Operations

    SciTech Connect (OSTI)

    Jones, Lawrence E.

    2011-11-01

    This report provides findings from the field regarding the best ways in which to guide operational strategies, business processes and control room tools to support the integration of renewable energy into electrical grids.

  7. Strategies and Decision Support Systems for Integrating Variable Energy Resources in Control Centers for Reliable Grid Operations. Executive Summary

    SciTech Connect (OSTI)

    Jones, Lawrence E.

    2011-11-01

    This is the executive summary for a report that provides findings from the field regarding the best ways in which to guide operational strategies, business processes and control room tools to support the integration of renewable energy into electrical grids.

  8. Real-time graphic displays in Mars. [AVLIS process

    SciTech Connect (OSTI)

    Treadway, T.

    1985-12-01

    Real-time diagnostic data of the AVLIS process is displayed in the form of a two-dimensional plot on selected monitors in the Mars Control Room. Each Mars workstation contains a HP2622 terminal for computer interface to the experiment and a Raster Technologies graphic controller driving a Conrac high resolution color monitor for graphics output.

  9. US Recovery Act Smart Grid Energy Storage Demonstration Projects...

    Open Energy Info (EERE)

    consumers. The projects include streamlined communication technologies that will allow different parts of the grid to "talk" to each other in real time; sensing and control...

  10. Forming rotated SAR images by real-time motion compensation....

    Office of Scientific and Technical Information (OSTI)

    collecting Synthetic Aperture Radar (SAR) phase history data on a rotated grid in the Fourier Space of the scene being imaged. Subsequent image formation preserves the rotated...

  11. Real-time multiplexed digital cavity-enhanced spectroscopy

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Boyson, Toby K.; Dagdigian, Paul J.; Pavey, Karl D.; Fitzgerald, Nicholas J.; Spence, Thomas G.; Moore, David S.; Harb, Charles C.

    2015-10-01

    Cavity-enhanced spectroscopy is a sensitive optical absorption technique but one where the practical applications have been limited to studying small wavelength ranges. In addition, this Letter shows that wideband operation can be achieved by combining techniques usually reserved for the communications community with that of cavity-enhanced spectroscopy, producing a multiplexed real-time cavity-enhanced spectrometer. We use multiple collinear laser sources operating asynchronously and simultaneously while being detected on a single photodetector. This is synonymous with radio frequency (RF) cellular systems in which signals are detected on a single antenna but decoded uniquely. Here, we demonstrate results with spectra of methyl salicylatemore » and show parts-per-billion per root hertz sensitivity measured in real-time.« less

  12. Real-time multiplexed digital cavity-enhanced spectroscopy

    SciTech Connect (OSTI)

    Boyson, Toby K.; Dagdigian, Paul J.; Pavey, Karl D.; Fitzgerald, Nicholas J.; Spence, Thomas G.; Moore, David S.; Harb, Charles C.

    2015-10-01

    Cavity-enhanced spectroscopy is a sensitive optical absorption technique but one where the practical applications have been limited to studying small wavelength ranges. In addition, this Letter shows that wideband operation can be achieved by combining techniques usually reserved for the communications community with that of cavity-enhanced spectroscopy, producing a multiplexed real-time cavity-enhanced spectrometer. We use multiple collinear laser sources operating asynchronously and simultaneously while being detected on a single photodetector. This is synonymous with radio frequency (RF) cellular systems in which signals are detected on a single antenna but decoded uniquely. Here, we demonstrate results with spectra of methyl salicylate and show parts-per-billion per root hertz sensitivity measured in real-time.

  13. Real time markerless motion tracking using linked kinematic chains

    DOE Patents [OSTI]

    Luck, Jason P.; Small, Daniel E.

    2007-08-14

    A markerless method is described for tracking the motion of subjects in a three dimensional environment using a model based on linked kinematic chains. The invention is suitable for tracking robotic, animal or human subjects in real-time using a single computer with inexpensive video equipment, and does not require the use of markers or specialized clothing. A simple model of rigid linked segments is constructed of the subject and tracked using three dimensional volumetric data collected by a multiple camera video imaging system. A physics based method is then used to compute forces to align the model with subsequent volumetric data sets in real-time. The method is able to handle occlusion of segments and accommodates joint limits, velocity constraints, and collision constraints and provides for error recovery. The method further provides for elimination of singularities in Jacobian based calculations, which has been problematic in alternative methods.

  14. Tracking Living Cells as They Differentiate in Real Time

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Tracking Living Cells as They Differentiate in Real Time Print Protein phosphorylation regulates protein function in a cell, either activating or inactivating the proteins responsible for many cell functions ranging from cell proliferation to differentiation to metabolism to signaling, and even programmed cell death. This chemical process has been studied intensively, but until now it has been impossible to watch phosphorylation at the molecular level without damaging cells or interfering with

  15. Tracking Living Cells as They Differentiate in Real Time

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Tracking Living Cells as They Differentiate in Real Time Print Protein phosphorylation regulates protein function in a cell, either activating or inactivating the proteins responsible for many cell functions ranging from cell proliferation to differentiation to metabolism to signaling, and even programmed cell death. This chemical process has been studied intensively, but until now it has been impossible to watch phosphorylation at the molecular level without damaging cells or interfering with

  16. Tracking Living Cells as They Differentiate in Real Time

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Tracking Living Cells as They Differentiate in Real Time Print Protein phosphorylation regulates protein function in a cell, either activating or inactivating the proteins responsible for many cell functions ranging from cell proliferation to differentiation to metabolism to signaling, and even programmed cell death. This chemical process has been studied intensively, but until now it has been impossible to watch phosphorylation at the molecular level without damaging cells or interfering with

  17. Tracking Living Cells as They Differentiate in Real Time

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Tracking Living Cells as They Differentiate in Real Time Print Protein phosphorylation regulates protein function in a cell, either activating or inactivating the proteins responsible for many cell functions ranging from cell proliferation to differentiation to metabolism to signaling, and even programmed cell death. This chemical process has been studied intensively, but until now it has been impossible to watch phosphorylation at the molecular level without damaging cells or interfering with

  18. Tracking Living Cells as They Differentiate in Real Time

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Tracking Living Cells as They Differentiate in Real Time Print Protein phosphorylation regulates protein function in a cell, either activating or inactivating the proteins responsible for many cell functions ranging from cell proliferation to differentiation to metabolism to signaling, and even programmed cell death. This chemical process has been studied intensively, but until now it has been impossible to watch phosphorylation at the molecular level without damaging cells or interfering with

  19. Optical Method for Automated Real Time Control of Elemental Composition,

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Distribution, and Film Thickness in CIGS Solar Cell Production - Energy Innovation Portal Find More Like This Return to Search Optical Method for Automated Real Time Control of Elemental Composition, Distribution, and Film Thickness in CIGS Solar Cell Production National Renewable Energy Laboratory Contact NREL About This Technology Technology Marketing Summary The solar industry has shown significant growth over the past decade. From 2002 to 2007 the market for Copper Indium Gallium

  20. Real-Time Chemical Imaging of Bacterial Biofilm Development

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Real-Time Chemical Imaging of Bacterial Biofilm Development Print Scientists have developed a robust and label-free method to probe the chemical underpinnings of developing bacterial biofilms. Almost all bacteria can form biofilms-dynamic communities of cells enclosed in self-produced matrices of polymers that stick to other bacteria or surfaces in water-containing environments. Coordinated collectively, these bacteria defend against antagonists, break down recalcitrant materials, and produce

  1. Real-Time Chemical Imaging of Bacterial Biofilm Development

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Real-Time Chemical Imaging of Bacterial Biofilm Development Print Scientists have developed a robust and label-free method to probe the chemical underpinnings of developing bacterial biofilms. Almost all bacteria can form biofilms-dynamic communities of cells enclosed in self-produced matrices of polymers that stick to other bacteria or surfaces in water-containing environments. Coordinated collectively, these bacteria defend against antagonists, break down recalcitrant materials, and produce

  2. Real-Time Chemical Imaging of Bacterial Biofilm Development

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Real-Time Chemical Imaging of Bacterial Biofilm Development Print Scientists have developed a robust and label-free method to probe the chemical underpinnings of developing bacterial biofilms. Almost all bacteria can form biofilms-dynamic communities of cells enclosed in self-produced matrices of polymers that stick to other bacteria or surfaces in water-containing environments. Coordinated collectively, these bacteria defend against antagonists, break down recalcitrant materials, and produce

  3. Real-Time Chemical Imaging of Bacterial Biofilm Development

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Real-Time Chemical Imaging of Bacterial Biofilm Development Print Scientists have developed a robust and label-free method to probe the chemical underpinnings of developing bacterial biofilms. Almost all bacteria can form biofilms-dynamic communities of cells enclosed in self-produced matrices of polymers that stick to other bacteria or surfaces in water-containing environments. Coordinated collectively, these bacteria defend against antagonists, break down recalcitrant materials, and produce

  4. Real-Time Chemical Imaging of Bacterial Biofilm Development

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Real-Time Chemical Imaging of Bacterial Biofilm Development Print Scientists have developed a robust and label-free method to probe the chemical underpinnings of developing bacterial biofilms. Almost all bacteria can form biofilms-dynamic communities of cells enclosed in self-produced matrices of polymers that stick to other bacteria or surfaces in water-containing environments. Coordinated collectively, these bacteria defend against antagonists, break down recalcitrant materials, and produce

  5. Real Time Diagnostics for Algae-final-sm

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Real-time Monitoring And Diagnostics Detecting pathogens and predators to quickly recover from pond crashes Algal Pond Crash Detection Sandia National Laboratories is developing a suite of complementary technologies to help the emerging algae industry detect and quickly recover from algal pond crashes, an obstacle to large-scale algae cultivation for biofuels. Because of the way algae is grown and produced in most algal ponds, they are prone to attack by fungi, rotifers, viruses or other

  6. Real-Time Airborne Particle Analyzer - Energy Innovation Portal

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Find More Like This Return to Search Real-Time Airborne Particle Analyzer Oak Ridge National Laboratory Contact ORNL About This Technology Technology Marketing Summary Particle analysis is useful for determining chemical compositions in a wide range of disciplines, from ascertaining the source of a petroleum sample to duplicating a fragrance. The technique is appealing to a broad cross section of analytical sciences, but its applications are limited because, for existing equipment, sample size

  7. Real-Time Chemical Imaging of Bacterial Biofilm Development

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Real-Time Chemical Imaging of Bacterial Biofilm Development Print Scientists have developed a robust and label-free method to probe the chemical underpinnings of developing bacterial biofilms. Almost all bacteria can form biofilms-dynamic communities of cells enclosed in self-produced matrices of polymers that stick to other bacteria or surfaces in water-containing environments. Coordinated collectively, these bacteria defend against antagonists, break down recalcitrant materials, and produce

  8. Real-Time Chemical Imaging of Bacterial Biofilm Development

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Real-Time Chemical Imaging of Bacterial Biofilm Development Print Scientists have developed a robust and label-free method to probe the chemical underpinnings of developing bacterial biofilms. Almost all bacteria can form biofilms-dynamic communities of cells enclosed in self-produced matrices of polymers that stick to other bacteria or surfaces in water-containing environments. Coordinated collectively, these bacteria defend against antagonists, break down recalcitrant materials, and produce

  9. Real-Time Chemical Imaging of Bacterial Biofilm Development

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Real-Time Chemical Imaging of Bacterial Biofilm Development Print Scientists have developed a robust and label-free method to probe the chemical underpinnings of developing bacterial biofilms. Almost all bacteria can form biofilms-dynamic communities of cells enclosed in self-produced matrices of polymers that stick to other bacteria or surfaces in water-containing environments. Coordinated collectively, these bacteria defend against antagonists, break down recalcitrant materials, and produce

  10. Development of Real-Time, Gas Quality Sensor Technology

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Real-Time, Gas Quality Sensor Technology Introduction Landfll gas (LFG), composed largely of methane and carbon dioxide, is used in over 645 operational projects in 48 states. These projects convert a large source of greenhouse gases into a fuel that currently provides approximately 51 trillion Btu of electricity and supplies 108 billion cubic feet of LFG annually to direct use applications and natural gas pipelines. However, there is still a signifcant resource base for new projects, with over

  11. FINAL REPORT - CENTER FOR GRID MODERNIZATION

    SciTech Connect (OSTI)

    Markiewicz, Daniel R

    2008-06-30

    The objective of the CGM was to develop high-priority grid modernization technologies in advanced sensors, communications, controls and smart systems to enable use of real-time or near real-time information for monitoring, analyzing and managing distribution and transmission grid conditions. The key strategic approach to carry out individual CGM research and development (R&D) projects was through partnerships, primarily with the GridApp™ Consortium utility members.

  12. Real-time sub- Å ngstrom imaging of reversible and irreversible...

    Office of Scientific and Technical Information (OSTI)

    Real-time sub- ngstrom imaging of reversible and irreversible conformations in rhodium catalysts and graphene Title: Real-time sub- ngstrom imaging of reversible and ...

  13. Principal Characteristics of a Modern Grid

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    and Energy Reliability Steve Pullins, Modern Grid Strategy Team Utility Field Services 2009 29 April 2009 Office of Electricity Delivery and Energy Reliability MODERN GRID S T ...

  14. Power Grid Optimization | GE Global Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Optimization and Reliability Protect the Power Grid Click to email this to a friend (Opens ... Optimization and Reliability Protect the Power Grid Using the power of software, machine ...

  15. Real-Time Traffic Information for Emergency Evacuation Operations: Phase A Final Report

    SciTech Connect (OSTI)

    Franzese, Oscar; Zhang, Li; Mahmoud, Anas M.; Lascurain, Mary Beth; Wen, Yi

    2010-05-01

    There are many instances in which it is possible to plan ahead for an emergency evacuation (e.g., an explosion at a chemical processing facility). For those cases, if an accident (or an attack) were to happen, then the best evacuation plan for the prevailing network and weather conditions would be deployed. In other cases (e.g., the derailment of a train transporting hazardous materials), there may not be any previously developed plan to be implemented and decisions must be made ad-hoc on how to proceed with an emergency evacuation. In both situations, the availability of real-time traffic information plays a critical role in the management of the evacuation operations. To improve public safety during a vehicular emergency evacuation it is necessary to detect losses of road capacity (due to incidents, for example) as early as possible. Once these bottlenecks are identified, re-routing strategies must be determined in real-time and deployed in the field to help dissipate the congestion and increase the efficiency of the evacuation. Due to cost constraints, only large urban areas have traffic sensor deployments that permit access to some sort of real-time traffic information; any evacuation taking place in any other areas of the country would have to proceed without real-time traffic information. The latter was the focus of this SERRI/DHS (Southeast Region Research Initiative/Department of Homeland Security) sponsored project. That is, the main objective on the project was to improve the operations during a vehicular emergency evacuation anywhere by using newly developed real-time traffic-information-gathering technologies to assess traffic conditions and therefore to potentially detect incidents on the main evacuation routes. Phase A of the project consisted in the development and testing of a prototype system composed of sensors that are engineered in such a way that they can be rapidly deployed in the field where and when they are needed. Each one of these sensors is also equipped with their own power supply and a GPS (Global Positioning System) device to auto-determine its spatial location on the transportation network under surveillance. The system is capable of assessing traffic parameters by identifying and re-identifying vehicles in the traffic stream as those vehicles pass over the sensors. The system of sensors transmits, through wireless communication, real-time traffic information (travel time and other parameters) to a command and control center via an NTCIP (National Transportation Communication for ITS Protocol) -compatible interface. As an alternative, an existing NTCIP-compatible system accepts the real-time traffic information mentioned and broadcasts the traffic information to emergency managers, the media and the public via the existing channels. A series of tests, both in a controlled environment and on the field, were conducted to study the feasibility of rapidly deploying the system of traffic sensors and to assess its ability to provide real-time traffic information during an emergency evacuation. The results of these tests indicated that the prototype sensors are reliable and accurate for the type of application that is the focus of this project.

  16. Utility-Scale Power Router: Dynamic Control of Grid Assets Using Direct AC Converter Cells

    SciTech Connect (OSTI)

    2010-09-01

    ADEPT Project: Georgia Tech is developing a cost-effective, utility-scale power router that uses an enhanced transformer to more efficiently direct power on the grid. Existing power routing technologies are too expensive for widespread use, but the ability to route grid power to match real-time demand and power outages would significantly reduce energy costs for utilities, municipalities, and consumers. Georgia Tech is adding a power converter to an existing grid transformer to better control power flows at about 1/10th the cost of existing power routing solutions. Transformers convert the high-voltage electricity that is transmitted through the grid into the low-voltage electricity that is used by homes and businesses. The added converter uses fewer steps to convert some types of power and eliminates unnecessary power storage, among other improvements. The enhanced transformer is more efficient, and it would still work even if the converter fails, ensuring grid reliability.

  17. Smart Grid Primer (Smart Grid Books) | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Educational Resources » Smart Grid Primer (Smart Grid Books) Smart Grid Primer (Smart Grid Books) Smart Grid Primer (Smart Grid Books) The Smart Grid: An Introduction, prepared 2008, is a publication sponsored by DOE's Office of Electricity Delivery and Energy Reliability that explores - in layman's terms - the nature, challenges, opportunities and necessity of Smart Grid implementation. Additional books, released in 2009, target the interests of specific stakeholder groups: Consumer Advocates,

  18. Real-time human collaboration monitoring and intervention

    DOE Patents [OSTI]

    Merkle, Peter B.; Johnson, Curtis M.; Jones, Wendell B.; Yonas, Gerold; Doser, Adele B.; Warner, David J.

    2010-07-13

    A method of and apparatus for monitoring and intervening in, in real time, a collaboration between a plurality of subjects comprising measuring indicia of physiological and cognitive states of each of the plurality of subjects, communicating the indicia to a monitoring computer system, with the monitoring computer system, comparing the indicia with one or more models of previous collaborative performance of one or more of the plurality of subjects, and with the monitoring computer system, employing the results of the comparison to communicate commands or suggestions to one or more of the plurality of subjects.

  19. Continuous real-time measurement of aqueous cyanide

    DOE Patents [OSTI]

    Rosentreter, Jeffrey J.; Gering, Kevin L.

    2007-03-06

    This invention provides a method and system capable of the continuous, real-time measurement of low concentrations of aqueous free cyanide (CN) using an on-line, flow through system. The system is based on the selective reactivity of cyanide anions and the characteristically nonreactive nature of metallic gold films, wherein this selective reactivity is exploited as an indirect measurement for aqueous cyanide. In the present invention the dissolution of gold, due to the solubilization reaction with the analyte cyanide anion, is monitored using a piezoelectric microbalance contained within a flow cell.

  20. Real Time Technology Application Demonstration Project Final Report

    SciTech Connect (OSTI)

    Volpe, John; Hampson, Steve; Johnson, Robert L

    2008-09-01

    The work and results described in this final report pertain to the demonstration of real-time characterization technologies applied to potentially contaminated surface soils in and around Area of Concern (AOC) 492 at the Paducah Gaseous Diffusion Plant (PGDP). The work was conducted under the auspices of Kentucky Research Consortium for Energy and Environment (KRCEE). KRCEE was created to support the Department of Energy's (DOE) efforts to complete the expeditious and economically viable environmental restoration of the Paducah Gaseous Diffusion Plant (PGDP), the Western Kentucky Wildlife Management Area (WKWMA), and surrounding areas.

  1. Real-time nonlinear optimization as a generalized equation.

    SciTech Connect (OSTI)

    Zavala, V. M.; Anitescu, M. (Mathematics and Computer Science)

    2010-11-11

    We establish results for the problem of tracking a time-dependent manifold arising in real-time optimization by casting this as a parametric generalized equation. We demonstrate that if points along a solution manifold are consistently strongly regular, it is possible to track the manifold approximately by solving a single linear complementarity problem (LCP) at each time step. We derive sufficient conditions guaranteeing that the tracking error remains bounded to second order with the size of the time step even if the LCP is solved only approximately. We use these results to derive a fast, augmented Lagrangian tracking algorithm and demonstrate the developments through a numerical case study.

  2. Near real time vapor detection and enhancement using aerosol adsorption

    DOE Patents [OSTI]

    Novick, Vincent J.; Johnson, Stanley A.

    1999-01-01

    A vapor sample detection method where the vapor sample contains vapor and ambient air and surrounding natural background particles. The vapor sample detection method includes the steps of generating a supply of aerosol that have a particular effective median particle size, mixing the aerosol with the vapor sample forming aerosol and adsorbed vapor suspended in an air stream, impacting the suspended aerosol and adsorbed vapor upon a reflecting element, alternatively directing infrared light to the impacted aerosol and adsorbed vapor, detecting and analyzing the alternatively directed infrared light in essentially real time using a spectrometer and a microcomputer and identifying the vapor sample.

  3. Near real time vapor detection and enhancement using aerosol adsorption

    DOE Patents [OSTI]

    Novick, V.J.; Johnson, S.A.

    1999-08-03

    A vapor sample detection method is described where the vapor sample contains vapor and ambient air and surrounding natural background particles. The vapor sample detection method includes the steps of generating a supply of aerosol that have a particular effective median particle size, mixing the aerosol with the vapor sample forming aerosol and adsorbed vapor suspended in an air stream, impacting the suspended aerosol and adsorbed vapor upon a reflecting element, alternatively directing infrared light to the impacted aerosol and adsorbed vapor, detecting and analyzing the alternatively directed infrared light in essentially real time using a spectrometer and a microcomputer and identifying the vapor sample. 13 figs.

  4. Looking at Transistor Gate Oxide Formation in Real Time

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Looking at Transistor Gate Oxide Formation in Real Time Print The oxide gate layer is critical to every transistor, and present-day layer thicknesses are in the 10-20 Å range (1-2 nm). However, little information exists on the oxidation process at this thickness. Available results are either for thicker layers grown under high-pressure conditions or for only the first couple of monolayers studied under high-vacuum conditions. Now, for the first time, a group of researchers has obtained

  5. Looking at Transistor Gate Oxide Formation in Real Time

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Looking at Transistor Gate Oxide Formation in Real Time Print The oxide gate layer is critical to every transistor, and present-day layer thicknesses are in the 10-20 Å range (1-2 nm). However, little information exists on the oxidation process at this thickness. Available results are either for thicker layers grown under high-pressure conditions or for only the first couple of monolayers studied under high-vacuum conditions. Now, for the first time, a group of researchers has obtained

  6. Looking at Transistor Gate Oxide Formation in Real Time

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Looking at Transistor Gate Oxide Formation in Real Time Print The oxide gate layer is critical to every transistor, and present-day layer thicknesses are in the 10-20 Å range (1-2 nm). However, little information exists on the oxidation process at this thickness. Available results are either for thicker layers grown under high-pressure conditions or for only the first couple of monolayers studied under high-vacuum conditions. Now, for the first time, a group of researchers has obtained

  7. Looking at Transistor Gate Oxide Formation in Real Time

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Looking at Transistor Gate Oxide Formation in Real Time Print The oxide gate layer is critical to every transistor, and present-day layer thicknesses are in the 10-20 Å range (1-2 nm). However, little information exists on the oxidation process at this thickness. Available results are either for thicker layers grown under high-pressure conditions or for only the first couple of monolayers studied under high-vacuum conditions. Now, for the first time, a group of researchers has obtained

  8. Looking at Transistor Gate Oxide Formation in Real Time

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Looking at Transistor Gate Oxide Formation in Real Time Print The oxide gate layer is critical to every transistor, and present-day layer thicknesses are in the 10-20 Å range (1-2 nm). However, little information exists on the oxidation process at this thickness. Available results are either for thicker layers grown under high-pressure conditions or for only the first couple of monolayers studied under high-vacuum conditions. Now, for the first time, a group of researchers has obtained

  9. Looking at Transistor Gate Oxide Formation in Real Time

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Looking at Transistor Gate Oxide Formation in Real Time Print The oxide gate layer is critical to every transistor, and present-day layer thicknesses are in the 10-20 Å range (1-2 nm). However, little information exists on the oxidation process at this thickness. Available results are either for thicker layers grown under high-pressure conditions or for only the first couple of monolayers studied under high-vacuum conditions. Now, for the first time, a group of researchers has obtained

  10. Looking at Transistor Gate Oxide Formation in Real Time

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Looking at Transistor Gate Oxide Formation in Real Time Print The oxide gate layer is critical to every transistor, and present-day layer thicknesses are in the 10-20 Å range (1-2 nm). However, little information exists on the oxidation process at this thickness. Available results are either for thicker layers grown under high-pressure conditions or for only the first couple of monolayers studied under high-vacuum conditions. Now, for the first time, a group of researchers has obtained

  11. Wide-area situation awareness in electric power grid

    SciTech Connect (OSTI)

    Greitzer, Frank L.

    2010-04-28

    Two primary elements of the US energy policy are demand management and efficiency and renewable sources. Major objectives are clean energy transmission and integration, reliable energy transmission, and grid cyber security. Development of the Smart Grid seeks to achieve these goals by lowering energy costs for consumers, achieving energy independence and reducing greenhouse gas emissions. The Smart Grid is expected to enable real time wide-area situation awareness (SA) for operators. Requirements for wide-area SA have been identified among interoperability standards proposed by the Federal Energy Regulatory Commission and the National Institute of Standards and Technology to ensure smart-grid functionality. Wide-area SA and enhanced decision support and visualization tools are key elements in the transformation to the Smart Grid. This paper discusses human factors research to promote SA in the electric power grid and the Smart Grid. Topics that will be discussed include the role of human factors in meeting US energy policy goals, the impact and challenges for Smart Grid development, and cyber security challenges.

  12. High-Performance Computing for Advanced Smart Grid Applications

    SciTech Connect (OSTI)

    Huang, Zhenyu; Chen, Yousu

    2012-07-06

    The power grid is becoming far more complex as a result of the grid evolution meeting an information revolution. Due to the penetration of smart grid technologies, the grid is evolving as an unprecedented speed and the information infrastructure is fundamentally improved with a large number of smart meters and sensors that produce several orders of magnitude larger amounts of data. How to pull data in, perform analysis, and put information out in a real-time manner is a fundamental challenge in smart grid operation and planning. The future power grid requires high performance computing to be one of the foundational technologies in developing the algorithms and tools for the significantly increased complexity. New techniques and computational capabilities are required to meet the demands for higher reliability and better asset utilization, including advanced algorithms and computing hardware for large-scale modeling, simulation, and analysis. This chapter summarizes the computational challenges in smart grid and the need for high performance computing, and present examples of how high performance computing might be used for future smart grid operation and planning.

  13. Smart Grid Outreach and Communication Strategy: Next Steps -...

    Energy Savers [EERE]

    ... at all, in addition to providing customers with near-real-time energy-usage information. ... Grid web portal, IEEE Xplore digital library, IEEE Smart Grid e-newsletter, IEEE ...

  14. REAL TIME ULTRASONIC ALUMINUM SPOT WELD MONITORING SYSTEM

    SciTech Connect (OSTI)

    Regalado, W. Perez; Chertov, A. M.; Maev, R. Gr. [Institute for Diagnostic Imaging Research, Physics Department, University of Windsor, 292 Essex Hall, 401 Sunset Ave. N9B 3P4 Windsor, Ontario (Canada)

    2010-02-22

    Aluminum alloys pose several properties that make them one of the most popular engineering materials: they have excellent corrosion resistance, and high weight-to-strength ratio. Resistance spot welding of aluminum alloys is widely used today but oxide film and aluminum thermal and electrical properties make spot welding a difficult task. Electrode degradation due to pitting, alloying and mushrooming decreases the weld quality and adjustment of parameters like current and force is required. To realize these adjustments and ensure weld quality, a tool to measure weld quality in real time is required. In this paper, a real time ultrasonic non-destructive evaluation system for aluminum spot welds is presented. The system is able to monitor nugget growth while the spot weld is being made. This is achieved by interpreting the echoes of an ultrasound transducer located in one of the welding electrodes. The transducer receives and transmits an ultrasound signal at different times during the welding cycle. Valuable information of the weld quality is embedded in this signal. The system is able to determine the weld nugget diameter by measuring the delays of the ultrasound signals received during the complete welding cycle. The article presents the system performance on aluminum alloy AA6022.

  15. Real-time individualized training vectors for experiential learning.

    SciTech Connect (OSTI)

    Willis, Matt; Tucker, Eilish Marie; Raybourn, Elaine Marie; Glickman, Matthew R.; Fabian, Nathan

    2011-01-01

    Military training utilizing serious games or virtual worlds potentially generate data that can be mined to better understand how trainees learn in experiential exercises. Few data mining approaches for deployed military training games exist. Opportunities exist to collect and analyze these data, as well as to construct a full-history learner model. Outcomes discussed in the present document include results from a quasi-experimental research study on military game-based experiential learning, the deployment of an online game for training evidence collection, and results from a proof-of-concept pilot study on the development of individualized training vectors. This Lab Directed Research & Development (LDRD) project leveraged products within projects, such as Titan (Network Grand Challenge), Real-Time Feedback and Evaluation System, (America's Army Adaptive Thinking and Leadership, DARWARS Ambush! NK), and Dynamic Bayesian Networks to investigate whether machine learning capabilities could perform real-time, in-game similarity vectors of learner performance, toward adaptation of content delivery, and quantitative measurement of experiential learning.

  16. Monitoring external beam radiotherapy using real-time beam visualization

    SciTech Connect (OSTI)

    Jenkins, Cesare H.; Naczynski, Dominik J.; Yu, Shu-Jung S.; Xing, Lei

    2015-01-15

    Purpose: To characterize the performance of a novel radiation therapy monitoring technique that utilizes a flexible scintillating film, common optical detectors, and image processing algorithms for real-time beam visualization (RT-BV). Methods: Scintillating films were formed by mixing Gd{sub 2}O{sub 2}S:Tb (GOS) with silicone and casting the mixture at room temperature. The films were placed in the path of therapeutic beams generated by medical linear accelerators (LINAC). The emitted light was subsequently captured using a CMOS digital camera. Image processing algorithms were used to extract the intensity, shape, and location of the radiation field at various beam energies, dose rates, and collimator locations. The measurement results were compared with known collimator settings to validate the performance of the imaging system. Results: The RT-BV system achieved a sufficient contrast-to-noise ratio to enable real-time monitoring of the LINAC beam at 20 fps with normal ambient lighting in the LINAC room. The RT-BV system successfully identified collimator movements with sub-millimeter resolution. Conclusions: The RT-BV system is capable of localizing radiation therapy beams with sub-millimeter precision and tracking beam movement at video-rate exposure.

  17. Quantitative real-time single particle analysis of virions

    SciTech Connect (OSTI)

    Heider, Susanne; Metzner, Christoph

    2014-08-15

    Providing information about single virus particles has for a long time been mainly the domain of electron microscopy. More recently, technologies have been developed—or adapted from other fields, such as nanotechnology—to allow for the real-time quantification of physical virion particles, while supplying additional information such as particle diameter concomitantly. These technologies have progressed to the stage of commercialization increasing the speed of viral titer measurements from hours to minutes, thus providing a significant advantage for many aspects of virology research and biotechnology applications. Additional advantages lie in the broad spectrum of virus species that may be measured and the possibility to determine the ratio of infectious to total particles. A series of disadvantages remain associated with these technologies, such as a low specificity for viral particles. In this review we will discuss these technologies by comparing four systems for real-time single virus particle analysis and quantification. - Highlights: • We introduce four methods for virus particle-based quantification of viruses. • They allow for quantification of a wide range of samples in under an hour time. • The additional measurement of size and zeta potential is possible for some.

  18. Task 1. Monitoring real time materials degradation. NRC extended In-situ and real-time Zonitoring

    SciTech Connect (OSTI)

    Bakhtiari, Sasan

    2012-03-01

    The overall objective of this project was to perform a scoping study to identify, in concert with the nuclear industry, those sensors and techniques that have the most promising commercial viability and fill a critical inspection or monitoring need. Candidates to be considered include sensors to monitor real-time material degradation, characterize residual stress, monitor and inspect component fabrication, assess radionuclide and associated chemical species concentrations in ground water and soil, characterize fuel properties, and monitor severe accident conditions. Under Task 1—Monitoring Real-Time Materials Degradation—scoping studies were conducted to assess the feasibility of potential inspection and monitoring technologies (i.e., a combination of sensors, advanced signal processing techniques, and data analysis methods) that could be utilized in LWR and/or advanced reactor applications for continuous monitoring of degradation in-situ. The goal was to identify those techniques that appear to be the most promising, i.e., those that are closest to being both technically and commercially viable and that the nuclear industry is most likely to pursue. Current limitations and associated issues that must be overcome before commercial application of certain techniques have also been addressed.

  19. Real-Time Bioluminescent Tracking of Cellular Population Dynamics

    SciTech Connect (OSTI)

    Close, Dan; Sayler, Gary Steven; Xu, Tingting; Ripp, Steven Anthony

    2014-01-01

    Cellular population dynamics are routinely monitored across many diverse fields for a variety of purposes. In general, these dynamics are assayed either through the direct counting of cellular aliquots followed by extrapolation to the total population size, or through the monitoring of signal intensity from any number of externally stimulated reporter proteins. While both viable methods, here we describe a novel technique that allows for the automated, non-destructive tracking of cellular population dynamics in real-time. This method, which relies on the detection of a continuous bioluminescent signal produced through expression of the bacterial luciferase gene cassette, provides a low cost, low time-intensive means for generating additional data compared to alternative methods.

  20. Smart preamplifier for real-time turbine meter diagnostics

    SciTech Connect (OSTI)

    Breter, J.C.

    1995-12-31

    A new, dual-purpose device for turbine meters, which functions as a traditional signal preamplifier and accomplishes real-time performance diagnostics, is now available. This smart preamplifier (patent pending) utilizes high speed microprocessor technology to continuously monitor and analyze the rotation of a turbine meter rotor. Continuous monitoring allows the device to detect rotational anomalies that can lead to erroneous measurements as they occur. The smart preamplifier works on liquid or gas turbine meters that use a variable reluctance pickup coil for signal generation. This paper will discuss the technology and capabilities of the smart preamplifier. To simplify this discussion, it is assumed that the signal generated will be via a non-rimmed rotor. Thus, the term ``blade`` is used throughout. However, all discussions relevant to signal generation are also true for a rimmed rotor using either buttons or slots for signal generation.

  1. Real-time neural network earthquake profile predictor

    DOE Patents [OSTI]

    Leach, Richard R. (Castro Valley, CA); Dowla, Farid U. (Castro Valley, CA)

    1996-01-01

    A neural network has been developed that uses first-arrival energy to predict the characteristics of impending earthquake seismograph signals. The propagation of ground motion energy through the earth is a highly nonlinear function. This is due to different forms of ground motion as well as to changes in the elastic properties of the media throughout the propagation path. The neural network is trained using seismogram data from earthquakes. Presented with a previously unseen earthquake, the neural network produces a profile of the complete earthquake signal using data from the first seconds of the signal. This offers a significant advance in the real-time monitoring, warning, and subsequent hazard minimization of catastrophic ground motion.

  2. RTDB: A memory resident real-time object database

    SciTech Connect (OSTI)

    Jerzy M. Nogiec; Eugene Desavouret

    2003-06-04

    RTDB is a fast, memory-resident object database with built-in support for distribution. It constitutes an attractive alternative for architecting real-time solutions with multiple, possibly distributed, processes or agents sharing data. RTDB offers both direct and navigational access to stored objects, with local and remote random access by object identifiers, and immediate direct access via object indices. The database supports transparent access to objects stored in multiple collaborating dispersed databases and includes a built-in cache mechanism that allows for keeping local copies of remote objects, with specifiable invalidation deadlines. Additional features of RTDB include a trigger mechanism on objects that allows for issuing events or activating handlers when objects are accessed or modified and a very fast, attribute based search/query mechanism. The overall architecture and application of RTDB in a control and monitoring system is presented.

  3. Real-time calibration of a feedback trap

    SciTech Connect (OSTI)

    Gavrilov, Momčilo; Jun, Yonggun; Bechhoefer, John

    2014-09-15

    Feedback traps use closed-loop control to trap or manipulate small particles and molecules in solution. They have been applied to the measurement of physical and chemical properties of particles and to explore fundamental questions in the non-equilibrium statistical mechanics of small systems. These applications have been hampered by drifts in the electric forces used to manipulate the particles. Although the drifts are small for measurements on the order of seconds, they dominate on time scales of minutes or slower. Here, we show that a recursive maximum likelihood (RML) algorithm can allow real-time measurement and control of electric and stochastic forces over time scales of hours. Simulations show that the RML algorithm recovers known parameters accurately. Experimental estimates of diffusion coefficients are also consistent with expected physical properties.

  4. Method and apparatus for real time weld monitoring

    DOE Patents [OSTI]

    Leong, Keng H. (Lemont, IL); Hunter, Boyd V. (Bolingbrook, IL)

    1997-01-01

    An improved method and apparatus are provided for real time weld monitoring. An infrared signature emitted by a hot weld surface during welding is detected and this signature is compared with an infrared signature emitted by the weld surface during steady state conditions. The result is correlated with weld penetration. The signal processing is simpler than for either UV or acoustic techniques. Changes in the weld process, such as changes in the transmitted laser beam power, quality or positioning of the laser beam, change the resulting weld surface features and temperature of the weld surface, thereby resulting in a change in the direction and amount of infrared emissions. This change in emissions is monitored by an IR sensitive detecting apparatus that is sensitive to the appropriate wavelength region for the hot weld surface.

  5. Real-time neural network earthquake profile predictor

    DOE Patents [OSTI]

    Leach, R.R.; Dowla, F.U.

    1996-02-06

    A neural network has been developed that uses first-arrival energy to predict the characteristics of impending earthquake seismograph signals. The propagation of ground motion energy through the earth is a highly nonlinear function. This is due to different forms of ground motion as well as to changes in the elastic properties of the media throughout the propagation path. The neural network is trained using seismogram data from earthquakes. Presented with a previously unseen earthquake, the neural network produces a profile of the complete earthquake signal using data from the first seconds of the signal. This offers a significant advance in the real-time monitoring, warning, and subsequent hazard minimization of catastrophic ground motion. 17 figs.

  6. Development of Real-Time, Gas Quality Sensor Technology

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... This increases output of electric power from the system, increases system reliability, ... controller with a necessary feed-forward input * Development of software and a control ...

  7. Sharing Smart Grid Experiences

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Electricity Delivery and Energy Reliability Prepared by: National Energy Technology Laboratory Sharing Smart Grid Experiences through Performance Feedback v1.0 Page ii Disclaimer ...

  8. In-situ, Real-Time Monitoring of Mechanical and Chemical Structure...

    Office of Scientific and Technical Information (OSTI)

    In-situ, Real-Time Monitoring of Mechanical and Chemical Structure Changes in a V2O5 ... Title: In-situ, Real-Time Monitoring of Mechanical and Chemical Structure Changes in a ...

  9. In-situ, Real-Time Monitoring of Mechanical and Chemical Structure...

    Office of Scientific and Technical Information (OSTI)

    Conference: In-situ, Real-Time Monitoring of Mechanical and Chemical Structure Changes in ... Title: In-situ, Real-Time Monitoring of Mechanical and Chemical Structure Changes in a ...

  10. Is there a source of help for setting up real time wind turbine...

    Open Energy Info (EERE)

    Is there a source of help for setting up real time wind turbine data reporting ? Home I'd like our students to be able to see historical data as well as real time power generation...

  11. Real-time Process Monitoring and Temperature Mapping of the 3D...

    Office of Scientific and Technical Information (OSTI)

    Real-time Process Monitoring and Temperature Mapping of the 3D Polymer Printing Process Citation Details In-Document Search Title: Real-time Process Monitoring and Temperature Mapping ...

  12. Real-time Data Access Monitoring in Distributed, Multi-petabyte...

    Office of Scientific and Technical Information (OSTI)

    Real-time Data Access Monitoring in Distributed, Multi-petabyte Systems Citation Details In-Document Search Title: Real-time Data Access Monitoring in Distributed, Multi-petabyte ...

  13. Direct Real-Time Detection of Vapors from Explosive Compounds

    SciTech Connect (OSTI)

    Ewing, Robert G.; Clowers, Brian H.; Atkinson, David A.

    2013-10-03

    The real-time detection of vapors from low volatility explosives including PETN, tetryl, RDX and nitroglycerine along with various compositions containing these substances is demonstrated. This was accomplished with an atmospheric flow tube (AFT) using a non-radioactive ionization source and coupled to a mass spectrometer. Direct vapor detection was demonstrated in less than 5 seconds at ambient temperature without sample pre-concentration. The several seconds of residence time of analytes in the AFT provides a significant opportunity for reactant ions to interact with analyte vapors to achieve ionization. This extended reaction time, combined with the selective ionization using the nitrate reactant ions (NO3- and NO3-HNO3), enables highly sensitive explosives detection. Observed signals from diluted explosive vapors indicate detection limits below 10 ppqv using selected ion monitoring (SIM) of the explosive-nitrate adduct at m/z 349, 378, 284 and 289 for tetryl, PETN, RDX and NG respectively. Also provided is a demonstration of the vapor detection from 10 different energetic formulations, including double base propellants, plastic explosives and commercial blasting explosives using SIM for the NG, PETN and RDX product ions.

  14. Real-time multi-mode neutron multiplicity counter

    DOE Patents [OSTI]

    Rowland, Mark S; Alvarez, Raymond A

    2013-02-26

    Embodiments are directed to a digital data acquisition method that collects data regarding nuclear fission at high rates and performs real-time preprocessing of large volumes of data into directly useable forms for use in a system that performs non-destructive assaying of nuclear material and assemblies for mass and multiplication of special nuclear material (SNM). Pulses from a multi-detector array are fed in parallel to individual inputs that are tied to individual bits in a digital word. Data is collected by loading a word at the individual bit level in parallel, to reduce the latency associated with current shift-register systems. The word is read at regular intervals, all bits simultaneously, with no manipulation. The word is passed to a number of storage locations for subsequent processing, thereby removing the front-end problem of pulse pileup. The word is used simultaneously in several internal processing schemes that assemble the data in a number of more directly useable forms. The detector includes a multi-mode counter that executes a number of different count algorithms in parallel to determine different attributes of the count data.

  15. Cybersecurity through Real-Time Distributed Control Systems

    SciTech Connect (OSTI)

    Kisner, Roger A; Manges, Wayne W; MacIntyre, Lawrence Paul; Nutaro, James J; Munro Jr, John K; Ewing, Paul D; Howlader, Mostofa; Kuruganti, Phani Teja; Wallace, Richard M; Olama, Mohammed M

    2010-04-01

    Critical infrastructure sites and facilities are becoming increasingly dependent on interconnected physical and cyber-based real-time distributed control systems (RTDCSs). A mounting cybersecurity threat results from the nature of these ubiquitous and sometimes unrestrained communications interconnections. Much work is under way in numerous organizations to characterize the cyber threat, determine means to minimize risk, and develop mitigation strategies to address potential consequences. While it seems natural that a simple application of cyber-protection methods derived from corporate business information technology (IT) domain would lead to an acceptable solution, the reality is that the characteristics of RTDCSs make many of those methods inadequate and unsatisfactory or even harmful. A solution lies in developing a defense-in-depth approach that ranges from protection at communications interconnect levels ultimately to the control system s functional characteristics that are designed to maintain control in the face of malicious intrusion. This paper summarizes the nature of RTDCSs from a cybersecurity perspec tive and discusses issues, vulnerabilities, candidate mitigation approaches, and metrics.

  16. Real-time algorithm for robust coincidence search

    SciTech Connect (OSTI)

    Petrovic, T.; Vencelj, M.; Lipoglavsek, M.; Gajevic, J.; Pelicon, P.

    2012-10-20

    In in-beam {gamma}-ray spectroscopy experiments, we often look for coincident detection events. Among every N events detected, coincidence search is naively of principal complexity O(N{sup 2}). When we limit the approximate width of the coincidence search window, the complexity can be reduced to O(N), permitting the implementation of the algorithm into real-time measurements, carried out indefinitely. We have built an algorithm to find simultaneous events between two detection channels. The algorithm was tested in an experiment where coincidences between X and {gamma} rays detected in two HPGe detectors were observed in the decay of {sup 61}Cu. Functioning of the algorithm was validated by comparing calculated experimental branching ratio for EC decay and theoretical calculation for 3 selected {gamma}-ray energies for {sup 61}Cu decay. Our research opened a question on the validity of the adopted value of total angular momentum of the 656 keV state (J{sup {pi}} = 1/2{sup -}) in {sup 61}Ni.

  17. Managing a Real-Time Embedded Linux Platform with Buildroot (Conference) |

    Office of Scientific and Technical Information (OSTI)

    SciTech Connect Conference: Managing a Real-Time Embedded Linux Platform with Buildroot Citation Details In-Document Search Title: Managing a Real-Time Embedded Linux Platform with Buildroot Developers of real-time embedded software often need to build the operating system, kernel, tools and supporting applications from source to work with the differences in their hardware configuration. The first attempts to introduce Linux-based real-time embedded systems into the Fermilab accelerator

  18. Real-time POD-CFD Wind-Load Calculator for PV Systems

    SciTech Connect (OSTI)

    Huayamave, Victor; Divo, Eduardo; Ceballos, Andres; Barriento, Carolina; Stephen, Barkaszi; Hubert, Seigneur

    2014-03-21

    The primary objective of this project is to create an accurate web-based real-time wind-load calculator. This is of paramount importance for (1) the rapid and accurate assessments of the uplift and downforce loads on a PV mounting system, (2) identifying viable solutions from available mounting systems, and therefore helping reduce the cost of mounting hardware and installation. Wind loading calculations for structures are currently performed according to the American Society of Civil Engineers/ Structural Engineering Institute Standard ASCE/SEI 7; the values in this standard were calculated from simplified models that do not necessarily take into account relevant characteristics such as those from full 3D effects, end effects, turbulence generation and dissipation, as well as minor effects derived from shear forces on installation brackets and other accessories. This standard does not include provisions that address the special requirements of rooftop PV systems, and attempts to apply this standard may lead to significant design errors as wind loads are incorrectly estimated. Therefore, an accurate calculator would be of paramount importance for the preliminary assessments of the uplift and downforce loads on a PV mounting system, identifying viable solutions from available mounting systems, and therefore helping reduce the cost of the mounting system and installation. The challenge is that although a full-fledged three-dimensional computational fluid dynamics (CFD) analysis would properly and accurately capture the complete physical effects of air flow over PV systems, it would be impractical for this tool, which is intended to be a real-time web-based calculator. CFD routinely requires enormous computation times to arrive at solutions that can be deemed accurate and grid-independent even in powerful and massively parallel computer platforms. This work is expected not only to accelerate solar deployment nationwide, but also help reach the SunShot Initiative goals of reducing the total installed cost of solar energy systems by 75%. The largest percentage of the total installed cost of solar energy system is associated with balance of system cost, with up to 40% going to “soft” costs; which include customer acquisition, financing, contracting, permitting, interconnection, inspection, installation, performance, operations, and maintenance. The calculator that is being developed will provide wind loads in real-time for any solar system designs and suggest the proper installation configuration and hardware; and therefore, it is anticipated to reduce system design, installation and permitting costs.

  19. Decision-Support Software for Grid Operators: Transmission Topology Control for Infrastructure Resilience to the Integration of Renewable Generation

    SciTech Connect (OSTI)

    2012-03-16

    GENI Project: The CRA team is developing control technology to help grid operators more actively manage power flows and integrate renewables by optimally turning on and off entire power lines in coordination with traditional control of generation and load resources. The control technology being developed would provide grid operators with tools to help manage transmission congestion by identifying the facilities whose on/off status must change to lower generation costs, increase utilization of renewable resources and improve system reliability. The technology is based on fast optimization algorithms for the near to real-time change in the on/off status of transmission facilities and their software implementation.

  20. Electricity Delivery and Energy Reliability

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Delivery and Energy Reliability The Office of Electricity Delivery and Energy Reliability ... to energy supply disruptions, such as electricity and fuel outages. * Smart Grid (14.4 ...

  1. Microsoft Word - Modern Grid Benefits_Final_v1_0.doc

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ... In addition, effective consumer interfaces will allow the incorporation of demand response and real-time load management as an active factor in grid operations. And advanced ...

  2. Real-Time Series Resistance Monitoring in PV Systems Without the Need for I-V Curves

    SciTech Connect (OSTI)

    Deceglie, Michael G.; Silverman, Timothy J.; Marion, Bill; Kurtz, Sarah R.

    2015-10-01

    We apply the physical principles of a familiar method, suns-Voc, to a new application: the real-time detection of series resistance changes in modules and systems operating outside. The real-time series resistance (RTSR) method that we describe avoids the need for collecting I-V curves or constructing full series resistance-free I-V curves. RTSR is most readily deployable at the module level on microinverters or module-integrated electronics, but it can also be extended to full strings. We found that automated detection of series resistance increases can provide early warnings of some of the most common reliability issues, which also pose fire risks, including broken ribbons, broken solder bonds, and contact problems in the junction or combiner box. We also describe the method in detail and describe a sample application to data collected from modules operating in the field.

  3. PROJECT PROFILE: An Integrated Tool for Improving Grid Performance...

    Broader source: Energy.gov (indexed) [DOE]

    Three software tools will be developed to help improve grid-reliability and performance of ... will improve grid performance and reliability by maintaining and enhancing the ...

  4. Quasi real time in vivo dosimetry for VMAT

    SciTech Connect (OSTI)

    Fidanzio, A.; Azario, L.; U.O.C di Fisica Sanitaria, Università Cattolica del Sacro Cuore, Rome 00168; Istituto Nazionale di Fisica Nucleare , Sezione di Roma Tre, Rome 00146 ; Porcelli, A.; Greco, F.; Istituto Nazionale di Fisica Nucleare , Sezione di Roma Tre, Rome 00146 ; Cilla, S.; Grusio, M.; Balducci, M.; Valentini, V.; Piermattei, A.

    2014-06-15

    Purpose: Results about the feasibility of a method for quasi real timein vivo dosimetry (IVD) at the isocenter point for volumetric modulated arc therapy (VMAT) are here reported. The method is based on correlations between the EPID signal and the dose on the beam central axis. Moreover, the γ-analysis of EPID images was adopted to verify off-axis reproducibility of fractionated plan delivery. Methods: An algorithm to reconstructin vivo the isocenter dose, D{sub iso}, for RapidArc treatments has been developed. 20 VMAT plans, optimized with two opposite arcs, for prostate, pancreas, and head treatments have been delivered by a Varian linac both to a conic PMMA phantom with elliptical section and to patients. The ratios R between reconstructed D{sub iso} and the planned doses were determined for phantom and patient irradiations adopting an acceptance criterion of ±5%. In total, 40 phantom checks and 400 patient checks were analyzed. Moreover, 3% and 3 mm criteria were adopted for portal image γ-analysis to assess patient irradiation reproducibility. Results: The average ratio R, between reconstructed and planned doses for the PMMA phantom irradiations was equal to 1.007 ± 0.024. When the IVD method was applied to the 20 patients, the average R ratio was equal to 1.003 ± 0.017 and 96% of the tests were within the acceptance criteria. The portal image γ-analysis supplied 88% of the tests within the pass rates γ{sub mean} ≤ 0.4 and P{sub γ<1} ≥ 98%. All the warnings were understood comparing the CT and the cone beam CT images and in one case a patient's setup error was detected and corrected for the successive fractions. Conclusions: This preliminary experience suggests that the method is able to detect dosimetric errors in quasi real time at the end of the therapy session. The authors intend to extend this procedure to other pathologies with the integration of in-room imaging verification by cone beam CT.

  5. Real-Time Active Cosmic Neutron Background Reduction Methods

    SciTech Connect (OSTI)

    Mukhopadhyay, Sanjoy; Maurer, Richard; Wolff, Ronald; Mitchell, Stephen; Guss, Paul

    2013-09-01

    Neutron counting using large arrays of pressurized 3He proportional counters from an aerial system or in a maritime environment suffers from the background counts from the primary cosmic neutrons and secondary neutrons caused by cosmic ray?induced mechanisms like spallation and charge-exchange reaction. This paper reports the work performed at the Remote Sensing LaboratoryAndrews (RSL-A) and results obtained when using two different methods to reduce the cosmic neutron background in real time. Both methods used shielding materials with a high concentration (up to 30% by weight) of neutron-absorbing materials, such as natural boron, to remove the low-energy neutron flux from the cosmic background as the first step of the background reduction process. Our first method was to design, prototype, and test an up-looking plastic scintillator (BC-400, manufactured by Saint Gobain Corporation) to tag the cosmic neutrons and then create a logic pulse of a fixed time duration (~120 ?s) to block the data taken by the neutron counter (pressurized 3He tubes running in a proportional counter mode). The second method examined the time correlation between the arrival of two successive neutron signals to the counting array and calculated the excess of variance (Feynman variance Y2F)1 in the neutron count distribution from Poisson distribution. The dilution of this variance from cosmic background values ideally would signal the presence of man-made neutrons.2 The first method has been technically successful in tagging the neutrons in the cosmic-ray flux and preventing them from being counted in the 3He tube array by electronic vetofield measurement work shows the efficiency of the electronic veto counter to be about 87%. The second method has successfully derived an empirical relationship between the percentile non-cosmic component in a neutron flux and the Y2F of the measured neutron count distribution. By using shielding materials alone, approximately 55% of the neutron flux from man-made sources like 252Cf or Am-Be was removed.

  6. Optimal Real-time Dispatch for Integrated Energy Systems

    SciTech Connect (OSTI)

    Firestone, Ryan Michael

    2007-05-31

    This report describes the development and application of a dispatch optimization algorithm for integrated energy systems (IES) comprised of on-site cogeneration of heat and electricity, energy storage devices, and demand response opportunities. This work is intended to aid commercial and industrial sites in making use of modern computing power and optimization algorithms to make informed, near-optimal decisions under significant uncertainty and complex objective functions. The optimization algorithm uses a finite set of randomly generated future scenarios to approximate the true, stochastic future; constraints are included that prevent solutions to this approximate problem from deviating from solutions to the actual problem. The algorithm is then expressed as a mixed integer linear program, to which a powerful commercial solver is applied. A case study of United States Postal Service Processing and Distribution Centers (P&DC) in four cities and under three different electricity tariff structures is conducted to (1) determine the added value of optimal control to a cogeneration system over current, heuristic control strategies; (2) determine the value of limited electric load curtailment opportunities, with and without cogeneration; and (3) determine the trade-off between least-cost and least-carbon operations of a cogeneration system. Key results for the P&DC sites studied include (1) in locations where the average electricity and natural gas prices suggest a marginally profitable cogeneration system, optimal control can add up to 67% to the value of the cogeneration system; optimal control adds less value in locations where cogeneration is more clearly profitable; (2) optimal control under real-time pricing is (a) more complicated than under typical time-of-use tariffs and (b) at times necessary to make cogeneration economic at all; (3) limited electric load curtailment opportunities can be more valuable as a compliment to the cogeneration system than alone; and (4) most of the trade-off between least-cost and least-carbon IES is determined during the system design stage; for the IES system considered, there is little difference between least-cost control and least-carbon control.

  7. Analysis of real-time reservoir monitoring : reservoirs, strategies, & modeling.

    SciTech Connect (OSTI)

    Mani, Seethambal S.; van Bloemen Waanders, Bart Gustaaf; Cooper, Scott Patrick; Jakaboski, Blake Elaine; Normann, Randy Allen; Jennings, Jim; Gilbert, Bob; Lake, Larry W.; Weiss, Chester Joseph; Lorenz, John Clay; Elbring, Gregory Jay; Wheeler, Mary Fanett; Thomas, Sunil G.; Rightley, Michael J.; Rodriguez, Adolfo; Klie, Hector; Banchs, Rafael; Nunez, Emilio J.; Jablonowski, Chris

    2006-11-01

    The project objective was to detail better ways to assess and exploit intelligent oil and gas field information through improved modeling, sensor technology, and process control to increase ultimate recovery of domestic hydrocarbons. To meet this objective we investigated the use of permanent downhole sensors systems (Smart Wells) whose data is fed real-time into computational reservoir models that are integrated with optimized production control systems. The project utilized a three-pronged approach (1) a value of information analysis to address the economic advantages, (2) reservoir simulation modeling and control optimization to prove the capability, and (3) evaluation of new generation sensor packaging to survive the borehole environment for long periods of time. The Value of Information (VOI) decision tree method was developed and used to assess the economic advantage of using the proposed technology; the VOI demonstrated the increased subsurface resolution through additional sensor data. Our findings show that the VOI studies are a practical means of ascertaining the value associated with a technology, in this case application of sensors to production. The procedure acknowledges the uncertainty in predictions but nevertheless assigns monetary value to the predictions. The best aspect of the procedure is that it builds consensus within interdisciplinary teams The reservoir simulation and modeling aspect of the project was developed to show the capability of exploiting sensor information both for reservoir characterization and to optimize control of the production system. Our findings indicate history matching is improved as more information is added to the objective function, clearly indicating that sensor information can help in reducing the uncertainty associated with reservoir characterization. Additional findings and approaches used are described in detail within the report. The next generation sensors aspect of the project evaluated sensors and packaging survivability issues. Our findings indicate that packaging represents the most significant technical challenge associated with application of sensors in the downhole environment for long periods (5+ years) of time. These issues are described in detail within the report. The impact of successful reservoir monitoring programs and coincident improved reservoir management is measured by the production of additional oil and gas volumes from existing reservoirs, revitalization of nearly depleted reservoirs, possible re-establishment of already abandoned reservoirs, and improved economics for all cases. Smart Well monitoring provides the means to understand how a reservoir process is developing and to provide active reservoir management. At the same time it also provides data for developing high-fidelity simulation models. This work has been a joint effort with Sandia National Laboratories and UT-Austin's Bureau of Economic Geology, Department of Petroleum and Geosystems Engineering, and the Institute of Computational and Engineering Mathematics.

  8. GROWDERS Demonstration of Grid Connected Electricity Systems...

    Open Energy Info (EERE)

    2011 References EU Smart Grid Projects Map1 Overview The GROWDERS project (Grid Reliability and Operability with Distributed Generation using Flexible Storage) investigates...

  9. Waukesha Electric Systems Smart Grid Demonstration Project |...

    Open Energy Info (EERE)

    transformer, lower power consumption through reduction of losses, and increase the reliability of the electrical grid. References ARRA Smart Grid Demonstration Projects...

  10. Real-time graphic display utility for nuclear safety applications

    SciTech Connect (OSTI)

    Yang, S.; Huang, X.; Taylor, J.; Stevens, J.; Gerardis, T.; Hsu, A.; McCreary, T.

    2006-07-01

    With the increasing interests in the nuclear energy, new nuclear power plants will be constructed and licensed, and older generation ones will be upgraded for assuring continuing operation. The tendency of adopting the latest proven technology and the fact of older parts becoming obsolete have made the upgrades imperative. One of the areas for upgrades is the older CRT display being replaced by the latest graphics displays running under modern real time operating system (RTOS) with safety graded modern computer. HFC has developed a graphic display utility (GDU) under the QNX RTOS. A standard off-the-shelf software with a long history of performance in industrial applications, QNX RTOS used for safety applications has been examined via a commercial dedication process that is consistent with the regulatory guidelines. Through a commercial survey, a design life cycle and an operating history evaluation, and necessary tests dictated by the dedication plan, it is reasonably confirmed that the QNX RTOS was essentially equivalent to what would be expected in the nuclear industry. The developed GDU operates and communicates with the existing equipment through a dedicated serial channel of a flat panel controller (FPC) module. The FPC module drives a flat panel display (FPD) monitor. A touch screen mounted on the FPD serves as the normal operator interface with the FPC/FPD monitor system. The GDU can be used not only for replacing older CRTs but also in new applications. The replacement of the older CRT does not disturb the function of the existing equipment. It not only provides modern proven technology upgrade but also improves human ergonomics. The FPC, which can be used as a standalone controller running with the GDU, is an integrated hardware and software module. It operates as a single board computer within a control system, and applies primarily to the graphics display, targeting, keyboard and mouse. During normal system operation, the GDU has two sources of data input: a serial interface with field equipment and a serial input from the FPD touch screen. The mechanism for data collection from the field equipment consists of the regular exchange of the data update request messages and target commands sent to the equipment and the update messages returned to the FPC. The data updates from field equipment control displays presented on the graphic pages. Touch screen contacts are decoded to identify physical position that was contacted. If that position corresponds with one of the buttons on the graphic page, the software uses that input to initiate the function defined for the particular button contacted. In this paper, the FPC will be illustrated as a standalone system as well as a module in a dedicated control system. The GDU design concepts and its design flow will be demonstrated. The dedication process of the QNX RTOS needed for the GDU will be highlighted. Finally, the GDU with a specific application example used in one of the nuclear power plants will be presented. (authors)

  11. Organizing the Extremely Large LSST Database forReal-Time Astronomical

    Office of Scientific and Technical Information (OSTI)

    Processing (Conference) | SciTech Connect Organizing the Extremely Large LSST Database forReal-Time Astronomical Processing Citation Details In-Document Search Title: Organizing the Extremely Large LSST Database forReal-Time Astronomical Processing The Large Synoptic Survey Telescope (LSST) will catalog billions of astronomical objects and trillions of sources, all of which will be stored and managed by a database management system. One of the main challenges is real-time alert generation.

  12. Real-time Data Access Monitoring in Distributed, Multi-petabyte Systems

    Office of Scientific and Technical Information (OSTI)

    (Conference) | SciTech Connect Real-time Data Access Monitoring in Distributed, Multi-petabyte Systems Citation Details In-Document Search Title: Real-time Data Access Monitoring in Distributed, Multi-petabyte Systems Petascale systems are in existence today and will become common in the next few years. Such systems are inevitably very complex, highly distributed and heterogeneous. Monitoring a petascale system in real-time and understanding its status at any given moment without impacting

  13. Wireless technology collects real-time information from oil and gas wells

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Wireless technology collects real-time information from oil and gas wells Wireless technology collects real-time information from oil and gas wells The patented system delivers continuous electromagnetic data on the reservoir conditions, enabling economical and effective monitoring and analysis. April 3, 2012 One of several active projects, LANL and Chevron co-developed INFICOMM(tm), a wireless technology used to collect real-time temperature and pressure information from sensors in oil and gas

  14. NREL's Controllable Grid Interface Saves Time and Resources, Improves Reliability of Renewable Energy Technologies (Fact Sheet), NREL (National Renewable Energy Laboratory)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Researchers at the National Renewable Energy Laboratory (NREL) developed a controllable grid interface (CGI) test system that can significantly reduce certification testing time and costs. The CGI also provides system engineers with a better understanding of how wind turbines, photovoltaic (PV) inverters, and energy storage systems interact with the grid and react to grid disturbances. For the energy industry, this will save time and resources while minimizing integration issues, improve

  15. NNSA sites prepared for disasters using real-time response management...

    National Nuclear Security Administration (NNSA)

    disasters using real-time response management system | National Nuclear Security ... Apply for Our Jobs Our Jobs Working at NNSA Blog Home NNSA Blog NNSA sites ...

  16. Real-time Data Access Monitoring in Distributed, Multi-petabyte...

    Office of Scientific and Technical Information (OSTI)

    Such systems are inevitably very complex, highly distributed and heterogeneous. Monitoring a petascale system in real-time and understanding its status at any given moment without ...

  17. Search Method for Real-time Knowledge Discovery Modeled on the...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Search Method for Real-time Knowledge Discovery Modeled on the Human Brain Oak Ridge ... information processing properties of the human brain to computational knowledge discovery. ...

  18. A MEMS platform for in situ, real-time monitoring of electrochemically...

    Office of Scientific and Technical Information (OSTI)

    Title: A MEMS platform for in situ, real-time monitoring of electrochemically induced mechanical changes in lithium-ion battery electrodes Authors: Pomerantseva, Ekaterina ; Jung, ...

  19. Real-Time Particulate Mass Measurements Pre and Post Diesel Particulat...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Particulate Mass Measurements Pre and Post Diesel Particulate Filters for LIght-Duty Diesel Vehicles Real-Time Particulate Mass Measurements Pre and Post Diesel Particulate Filters ...

  20. Real-time sub-ngstrom...

    Office of Scientific and Technical Information (OSTI)

    Real-time sub-ngstrom imaging of reversible and irreversible conformations in rhodium catalysts and graphene Kisielowski, Christian; Wang,...

    1. Sandia Energy - North American Electric Reliability Corporation...

      Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

      North American Electric Reliability Corporation (NERC) Report Posted Home Energy Assurance Infrastructure Security Grid Integration News News & Events Transmission Grid Integration...

    2. The Emerging Interdependence of the Electric Power Grid & Information and Communication Technology

      SciTech Connect (OSTI)

      Taft, Jeffrey D.; Becker-Dippmann, Angela S.

      2015-08-01

      This paper examines the implications of emerging interdependencies between the electric power grid and Information and Communication Technology (ICT). Over the past two decades, electricity and ICT infrastructure have become increasingly interdependent, driven by a combination of factors including advances in sensor, network and software technologies and progress in their deployment, the need to provide increasing levels of wide-area situational awareness regarding grid conditions, and the promise of enhanced operational efficiencies. Grid operators’ ability to utilize new and closer-to-real-time data generated by sensors throughout the system is providing early returns, particularly with respect to management of the transmission system for purposes of reliability, coordination, congestion management, and integration of variable electricity resources such as wind generation.

    3. Real Time Flame Monitoring of Gasifier and Injectors

      SciTech Connect (OSTI)

      Zelepouga, Serguei; Saveliev, Alexei

      2011-12-31

      This project is a multistage effort with the final goal to develop a practical and reliable nonintrusive gasifier injector monitor to assess burner wear and need for replacement. The project team included the National Energy Technology Laboratory (NETL), Gas Technology Institute (GTI), North Carolina State University, and ConocoPhillips. This report presents the results of the sensor development and testing initially at GTI combustion laboratory with natural gas flames, then at the Canada Energy Technology Center (CANMET), Canada in the atmospheric coal combustor as well as in the pilot scale pressurized entrained flow gasifier, and finally the sensor capabilities were demonstrated at the Pratt and Whitney Rocketdyne (PWR) Gasifier and the Wabash River Repowering plant located in West Terre Haute, IN. The initial tests demonstrated that GTI gasifier sensor technology was capable of detecting shape and rich/lean properties of natural gas air/oxygen enriched air flames. The following testing at the Vertical Combustor Research Facility (VCRF) was a logical transition step from the atmospheric natural gas flames to pressurized coal gasification environment. The results of testing with atmospheric coal flames showed that light emitted by excited OH* and CH* radicals in coal/air flames can be detected and quantified. The maximum emission intensities of OH*, CH*, and black body (char combustion) occur at different axial positions along the flame length. Therefore, the excitation rates of CH* and OH* are distinct at different stages of coal combustion and can be utilized to identify and characterize processes which occur during coal combustion such as devolatilization, char heating and burning. To accomplish the goals set for Tasks 4 and 5, GTI utilized the CANMET Pressurized Entrained Flow Gasifier (PEFG). The testing parameters of the PEFG were selected to simulate optimum gasifier operation as well as gasifier conditions normally resulting from improper operation or failed gasifier injectors. The sensor developed under previous tasks was used to assess the spectroscopic characteristics of the gasifier flame. The obtained spectral data were successfully translated into flame temperature measurements. It was also demonstrated that the reduced spectral data could be very well correlated with very important gasification process parameters such as the air/fuel and water/fuel ratio. Any of these parameters (temperature, air/fuel, and water/fuel) is sufficient to assess burner wear; however, the tested sensor was capable of monitoring all three of them plus the flame shape as functions of burner wear. This will likely be a very powerful tool which should enable significant improvements in gasifier efficiency, reliability, and availability. The sensor technology was presented to the project’s industrial partner (ConocoPhillips). The partner expressed its strong interest in continuing to participate in the field validation phase of GTI's Flame Monitor Project. Finally the sensor was tested in the PWR (Pratt & Whitney Rocketdyne) gasification plant located at GTI’s research campus and at the ConocoPhillips industrial scale gasifier at Wabash River Indiana. The field trials of the GTI Gasifier sensor modified to withstand high temperature and pressure corrosive atmosphere of the industrial entrain flow gasifier. The project team successfully demonstrated the Gasifier Sensor system ability to monitor gasifier interior temperature maintaining unobstructed optical access for in excess of six week without any maintenance. The sensor examination upon completion of the trial revealed that the system did not sustain any damage and required minor cleanup of the optics.

    4. PNNL Data-Intensive Computing for a Smarter Energy Grid

      ScienceCinema (OSTI)

      Carol Imhoff; Zhenyu (Henry) Huang; Daniel Chavarria

      2012-12-31

      The Middleware for Data-Intensive Computing (MeDICi) Integration Framework, an integrated platform to solve data analysis and processing needs, supports PNNL research on the U.S. electric power grid. MeDICi is enabling development of visualizations of grid operations and vulnerabilities, with goal of near real-time analysis to aid operators in preventing and mitigating grid failures.

    5. Grid Architecture 2

      SciTech Connect (OSTI)

      Taft, Jeffrey D.

      2016-01-01

      The report describes work done on Grid Architecture under the auspices of the Department of Electricity Office of Electricity Delivery and Reliability in 2015. As described in the first Grid Architecture report, the primary purpose of this work is to provide stakeholder insight about grid issues so as to enable superior decision making on their part. Doing this requires the creation of various work products, including oft-times complex diagrams, analyses, and explanations. This report provides architectural insights into several important grid topics and also describes work done to advance the science of Grid Architecture as well.

    6. NSTX-U Advances in Real-Time C++11 on Linux

      DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

      Erickson, Keith G.

      2015-08-14

      Programming languages like C and Ada combined with proprietary embedded operating systems have dominated the real-time application space for decades. The new C++11standard includes native, language-level support for concurrency, a required feature for any nontrivial event-oriented real-time software. Threads, Locks, and Atomics now exist to provide the necessary tools to build the structures that make up the foundation of a complex real-time system. The National Spherical Torus Experiment Upgrade (NSTX-U) at the Princeton Plasma Physics Laboratory (PPPL) is breaking new ground with the language as applied to the needs of fusion devices. A new Digital Coil Protection System (DCPS) willmore »serve as the main protection mechanism for the magnetic coils, and it is written entirely in C++11 running on Concurrent Computer Corporation's real-time operating system, RedHawk Linux. It runs over 600 algorithms in a 5 kHz control loop that determine whether or not to shut down operations before physical damage occurs. To accomplish this, NSTX-U engineers developed software tools that do not currently exist elsewhere, including real-time atomic synchronization, real-time containers, and a real-time logging framework. Together with a recent (and carefully configured) version of the GCC compiler, these tools enable data acquisition, processing, and output using a conventional operating system to meet a hard real-time deadline (that is, missing one periodic is a failure) of 200 microseconds.« less

    7. NSTX-U Advances in Real-Time C++11 on Linux

      SciTech Connect (OSTI)

      Erickson, Keith G.

      2015-08-14

      Programming languages like C and Ada combined with proprietary embedded operating systems have dominated the real-time application space for decades. The new C++11standard includes native, language-level support for concurrency, a required feature for any nontrivial event-oriented real-time software. Threads, Locks, and Atomics now exist to provide the necessary tools to build the structures that make up the foundation of a complex real-time system. The National Spherical Torus Experiment Upgrade (NSTX-U) at the Princeton Plasma Physics Laboratory (PPPL) is breaking new ground with the language as applied to the needs of fusion devices. A new Digital Coil Protection System (DCPS) will serve as the main protection mechanism for the magnetic coils, and it is written entirely in C++11 running on Concurrent Computer Corporation's real-time operating system, RedHawk Linux. It runs over 600 algorithms in a 5 kHz control loop that determine whether or not to shut down operations before physical damage occurs. To accomplish this, NSTX-U engineers developed software tools that do not currently exist elsewhere, including real-time atomic synchronization, real-time containers, and a real-time logging framework. Together with a recent (and carefully configured) version of the GCC compiler, these tools enable data acquisition, processing, and output using a conventional operating system to meet a hard real-time deadline (that is, missing one periodic is a failure) of 200 microseconds.

    8. NSTX-U Advances in Real-Time C++11 on Linux

      DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

      Erickson, Keith G.

      2015-08-14

      Programming languages like C and Ada combined with proprietary embedded operating systems have dominated the real-time application space for decades. The new C++11standard includes native, language-level support for concurrency, a required feature for any nontrivial event-oriented real-time software. Threads, Locks, and Atomics now exist to provide the necessary tools to build the structures that make up the foundation of a complex real-time system. The National Spherical Torus Experiment Upgrade (NSTX-U) at the Princeton Plasma Physics Laboratory (PPPL) is breaking new ground with the language as applied to the needs of fusion devices. A new Digital Coil Protection System (DCPS) willmore » serve as the main protection mechanism for the magnetic coils, and it is written entirely in C++11 running on Concurrent Computer Corporation's real-time operating system, RedHawk Linux. It runs over 600 algorithms in a 5 kHz control loop that determine whether or not to shut down operations before physical damage occurs. To accomplish this, NSTX-U engineers developed software tools that do not currently exist elsewhere, including real-time atomic synchronization, real-time containers, and a real-time logging framework. Together with a recent (and carefully configured) version of the GCC compiler, these tools enable data acquisition, processing, and output using a conventional operating system to meet a hard real-time deadline (that is, missing one periodic is a failure) of 200 microseconds.« less

    9. GRIDS: Grid-Scale Rampable Intermittent Dispatchable Storage

      SciTech Connect (OSTI)

      2010-09-01

      GRIDS Project: The 12 projects that comprise ARPA-Es GRIDS Project, short for Grid-Scale Rampable Intermittent Dispatchable Storage, are developing storage technologies that can store renewable energy for use at any location on the grid at an investment cost less than $100 per kilowatt hour. Flexible, large-scale storage would create a stronger and more robust electric grid by enabling renewables to contribute to reliable power generation.

    10. Principal Characteristics of a Modern Grid

      Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

      Delivery and Energy Reliability Joe Miller, Modern Grid Strategy Team Lead ACSessions 2009 April 27, 2009 Office of Electricity Delivery and Energy Reliability MODERN GRID S T R A ...

    11. Principal Characteristics of a Modern Grid

      Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

      Delivery and Energy Reliability Steve Pullins, Modern Grid Strategy Team April 27, 2009 Office of Electricity Delivery and Energy Reliability MODERN GRID S T R A T E G Y 2 ...

    12. Principal Characteristics of a Modern Grid

      Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

      Delivery and Energy Reliability Steve Pullins, Modern Grid Strategy Team Morgantown, WV March 20, 2009 Office of Electricity Delivery and Energy Reliability MODERN GRID S T R A T ...

    13. Principal Characteristics of a Modern Grid

      Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

      Delivery and Energy Reliability Conducted by the National Energy Technology Laboratory Office of Electricity Delivery and Energy Reliability MODERN GRID S T R A T E G Y ...

    14. Grid Integration | Department of Energy

      Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

      Research & Development » Grid Integration Grid Integration Grid Integration The Wind Program works with electric grid operators, utilities, regulators, and industry to create new strategies for incorporating increasing amounts of wind energy into the power system while maintaining economic and reliable operation of the grid. Utilities have been increasingly deploying wind power to provide larger portions of electricity generation. However, many utilities also express concerns about wind

    15. Renewable Energy and a Smart Grid

      Office of Energy Efficiency and Renewable Energy (EERE)

      A diagram of how smarter technologies enable more reliable, renewable energy sources to be integrated onto our electrical grid.

    16. NREL’s Controllable Grid Interface Saves Time and Resources, Improves Reliability of Renewable Energy Technologies; NREL (National Renewable Energy Laboratory)

      SciTech Connect (OSTI)

      2015-07-01

      The National Renewable Energy Laboratory's (NREL) controllable grid interface (CGI) test system at the National Wind Technology Center (NWTC) is one of two user facilities at NREL capable of testing and analyzing the integration of megawatt-scale renewable energy systems. The CGI specializes in testing of multimegawatt-scale wind and photovoltaic (PV) technologies as well as energy storage devices, transformers, control and protection equipment at medium-voltage levels, allowing the determination of the grid impacts of the tested technology.

    17. The BNL Smarter Grid Research Strategy

      Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

      BNL Smarter Grid Research Strategy: Plans and Status Brookhaven National Laboratory Dr. Gerald Stokes, Global & Regional Solutions STEAB October 10,2012 Building the Smarter Grid R&D Vision  The heart of BNL's approach to grid R&D for a Smarter Grid is begins with a geospatially referenced model with access to historical and real time data and measurements.  Next, as a federal enclave, BNL has the ability to perform certain experiments and test new equipment on its grid prior

    18. Advanced Grid Integration (AGI) | Department of Energy

      Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

      Mission » Advanced Grid Integration (AGI) Advanced Grid Integration (AGI) Advanced Grid Integration (AGI) The Advanced Grid Integration (AGI) Division leads the federal government's efforts to accelerate modernization of the U.S. electric power grid. By enabling the two-way flow of electricity and information, a Smart Grid will increase the reliability, efficiency, and security of electric transmission, distribution, and use. A modern grid provides the foundation for a strong economy by

    19. Electricity Advisory Committee Smart Grid Subcommittee

      Energy Savers [EERE]

      Electricity Advisory Committee Smart Grid Subcommittee Update to the 2008 EAC Report Smart Grid: Enabler of the New Energy Economy Report Recommendations May 10, 2011 Recommendations from the 2008 EAC Smart Grid Report (http://www.oe.energy.gov/DocumentsandMedia/final-smart-grid-report.pdf) 1. Create a Smart Grid Program office within DOE. Update: Completed. DOE's Office of Electricity Delivery and Energy Reliability (OE) has an active Smart Grid Program, which includes the Smart Grid Investment

    20. Grid Certificates

      Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

      Grid certificates are credentials that must be initialized for use with grid tools. Once a certificate is initialized it is automatically used by the grid tools to authenticate...

    1. In-situ, Real-Time Monitoring of Mechanical and Chemical Structure Changes

      Office of Scientific and Technical Information (OSTI)

      in a V2O5 Battery Electrode Using a MEMS Optical Sensor (Conference) | SciTech Connect Conference: In-situ, Real-Time Monitoring of Mechanical and Chemical Structure Changes in a V2O5 Battery Electrode Using a MEMS Optical Sensor Citation Details In-Document Search Title: In-situ, Real-Time Monitoring of Mechanical and Chemical Structure Changes in a V2O5 Battery Electrode Using a MEMS Optical Sensor This work presents the first demonstration of a MEMS optical sensor for in-situ, real-time

    2. Real-time and imaginary-time quantum hierarchal Fokker-Planck equations

      Office of Scientific and Technical Information (OSTI)

      (Journal Article) | SciTech Connect Real-time and imaginary-time quantum hierarchal Fokker-Planck equations Citation Details In-Document Search Title: Real-time and imaginary-time quantum hierarchal Fokker-Planck equations We consider a quantum mechanical system represented in phase space (referred to hereafter as "Wigner space"), coupled to a harmonic oscillator bath. We derive quantum hierarchal Fokker-Planck (QHFP) equations not only in real time but also in imaginary time,

    3. Real-time automatic fiducial marker tracking in low contrast cine-MV images

      Office of Scientific and Technical Information (OSTI)

      (Journal Article) | SciTech Connect Real-time automatic fiducial marker tracking in low contrast cine-MV images Citation Details In-Document Search Title: Real-time automatic fiducial marker tracking in low contrast cine-MV images Purpose: To develop a real-time automatic method for tracking implanted radiographic markers in low-contrast cine-MV patient images used in image-guided radiation therapy (IGRT). Methods: Intrafraction motion tracking using radiotherapy beam-line MV images have

    4. Real-Time Met Data from Around the Site - Hanford Site

      Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

      Real Time Met Data from Around the Site Hanford Meteorological Station Real Time Met Data from Around the Site Current and Past 48 Hours HMS Observations Daily HMS Extremes in Met Data Met and Climate Data Summary Products Contacts / Hours Current NWS Forecast for the Tri-Cities NWS Windchill Chart Real-Time Met Data from Around the Site Email Email Page | Print Print Page |Text Increase Font Size Decrease Font Size These tables show the most recent 15-minute poll from each of the remote

    5. Comments of North American Electric Reliability Corporation ...

      Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

      North American Electric Reliability Corporation (NERC) to DOE Smart Grid RFI: Addressing Policy and Logistical Challenges Comments of North American Electric Reliability ...

    6. SU-E-J-66: Evaluation of a Real-Time Positioning Assistance Simulator...

      Office of Scientific and Technical Information (OSTI)

      SU-E-J-66: Evaluation of a Real-Time Positioning Assistance Simulator System for Skull Radiography Using the Microsoft Kinect Citation Details In-Document Search Title: SU-E-J-66:...

    7. NREL: MIDC/NWTC M2 Real-Time Weather Display

      Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

      NWTC M2 Real-Time Weather Display This page should automatically refresh every minute. A text based weather display for PDAs is also available. [NREL] [MIDC] [NWTC M2]

    8. Toward Real-time Modeling of Human Heart Ventricles at Cellular...

      Office of Scientific and Technical Information (OSTI)

      Simulation of Drug-induced Arrhythmias Citation Details In-Document Search Title: Toward Real-time Modeling of Human Heart Ventricles at Cellular Resolution: Multi-hour Simulation ...

    9. Real-time and imaginary-time quantum hierarchal Fokker-Planck...

      Office of Scientific and Technical Information (OSTI)

      space (referred to hereafter as "Wigner space"), coupled to a harmonic oscillator bath. ... Through numerical integration of the real-time QHFP for a harmonic system, we obtain the ...

    10. Field Evaluation of Real-time Cloud OD Sensor TWST during the...

      Office of Scientific and Technical Information (OSTI)

      ...l-time Cloud OD Sensor TWST during the DOE ARM TCAP Campaign 2013 Final Campaign Report Citation Details In-Document Search Title: Field Evaluation of Real-time Cloud OD Sensor ...

    11. Towards More Transmission Asset Utilization through Real-time Path Rating

      SciTech Connect (OSTI)

      Diao, Ruisheng; Huang, Zhenyu; Jin, Chunlian; Vyakaranam, Bharat GNVSR; Jin, Shuangshuang; Makarov, Yuri V.

      2013-10-21

      Ratings of transmission paths, typically determined in an offline environment, are static and tend to be conservative, leading to underutilization of transmission assets, higher costs of system operation and renewable energy integration, and lower efficiency and savings. With the ever-increasing transmission congestion costs and new challenges from renewable integration, increasing transfer capacity of existing transmission lines is essential. Real-time path rating provides a promising approach to enabling additional power transfer capability and fully utilizing transfer capability. In this paper, the feasibility of real-time path rating is investigated. Several promising technologies to achieve real-time path rating are discussed. Various benefits that can be expected from real-time path rating, such as increased transfer capability and reduced total generation cost, are demonstrated through simulations conducted on the Western Electricity Coordinating Council system model.

    12. SU-E-J-127: Real-Time Dosimetric Assessment for Adaptive Head...

      Office of Scientific and Technical Information (OSTI)

      Citation Details In-Document Search Title: SU-E-J-127: Real-Time Dosimetric Assessment for ... Authors: Qi, S ; Neylon, J ; Chen, A ; Low, D ; Kupelian, P ; Steinberg, M ; Santhanam, A ...

    13. A MEMS platform for in situ, real-time monitoring of electrochemically

      Office of Scientific and Technical Information (OSTI)

      induced mechanical changes in lithium-ion battery electrodes (Journal Article) | SciTech Connect A MEMS platform for in situ, real-time monitoring of electrochemically induced mechanical changes in lithium-ion battery electrodes Citation Details In-Document Search Title: A MEMS platform for in situ, real-time monitoring of electrochemically induced mechanical changes in lithium-ion battery electrodes Authors: Pomerantseva, Ekaterina ; Jung, H. ; Gnerlich, Markus ; Gerasopoulos, K ; Ghodssi,

    14. Organizing the Extremely Large LSST Database forReal-Time Astronomical

      Office of Scientific and Technical Information (OSTI)

      Processing (Conference) | SciTech Connect Organizing the Extremely Large LSST Database forReal-Time Astronomical Processing Citation Details In-Document Search Title: Organizing the Extremely Large LSST Database forReal-Time Astronomical Processing × You are accessing a document from the Department of Energy's (DOE) SciTech Connect. This site is a product of DOE's Office of Scientific and Technical Information (OSTI) and is provided as a public service. Visit OSTI to utilize additional

    15. Real-time Process Monitoring and Temperature Mapping of the 3D Polymer

      Office of Scientific and Technical Information (OSTI)

      Printing Process (Conference) | SciTech Connect Real-time Process Monitoring and Temperature Mapping of the 3D Polymer Printing Process Citation Details In-Document Search Title: Real-time Process Monitoring and Temperature Mapping of the 3D Polymer Printing Process An extended range IR camera was used to make temperature measurements of samples as they are being manufactured. The objective is to quantify the temperature variation inside the system as parts are being fabricated, as well as

    16. Real-time sub- Å ngstrom imaging of reversible and irreversible

      Office of Scientific and Technical Information (OSTI)

      conformations in rhodium catalysts and graphene (Journal Article) | DOE PAGES Real-time sub- Å ngstrom imaging of reversible and irreversible conformations in rhodium catalysts and graphene Title: Real-time sub- Å ngstrom imaging of reversible and irreversible conformations in rhodium catalysts and graphene Authors: Kisielowski, Christian ; Wang, Lin-Wang ; Specht, Petra ; Calderon, Hector A. ; Barton, Bastian ; Jiang, Bin ; Kang, Joo H. ; Cieslinski, Robert Publication Date: 2013-07-29

    17. Method and Apparatus for In-Situ Real Time Characterization of Energy

      Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

      Storage and Energy Conversion Devices - Energy Innovation Portal Energy Storage Energy Storage Find More Like This Return to Search Method and Apparatus for In-Situ Real Time Characterization of Energy Storage and Energy Conversion Devices Opening the door to real time battery health assessment Idaho National Laboratory Contact INL About This Technology Publications: PDF Document Publication Technology Fact Sheet (1,110 KB) Impedance Measurement Box in situ testing Impedance Measurement Box

    18. STELLAR LOCUS REGRESSION: ACCURATE COLOR CALIBRATION AND THE REAL-TIME

      Office of Scientific and Technical Information (OSTI)

      DETERMINATION OF GALAXY CLUSTER PHOTOMETRIC REDSHIFTS (Journal Article) | SciTech Connect STELLAR LOCUS REGRESSION: ACCURATE COLOR CALIBRATION AND THE REAL-TIME DETERMINATION OF GALAXY CLUSTER PHOTOMETRIC REDSHIFTS Citation Details In-Document Search Title: STELLAR LOCUS REGRESSION: ACCURATE COLOR CALIBRATION AND THE REAL-TIME DETERMINATION OF GALAXY CLUSTER PHOTOMETRIC REDSHIFTS We present stellar locus regression (SLR), a method of directly adjusting the instrumental broadband optical

    19. A real-time intercepting beam-profile monitor for a medical cyclotron

      SciTech Connect (OSTI)

      Hendriks, C.; Uittenbosch, T.; Cameron, D.; Kellogg, S.; Gray, D.; Buckley, K.; Schaffer, P.; Verzilov, V.; Hoehr, C.

      2013-11-15

      There is a lack of real-time continuous beam-diagnostic tools for medical cyclotrons due to high power deposition during proton irradiation. To overcome this limitation, we have developed a profile monitor that is capable of providing continuous feedback about beam shape and current in real time while it is inserted in the beam path. This enables users to optimize the beam profile and observe fluctuations in the beam over time with periodic insertion of the monitor.

    20. Automated on-line L-edge measurement of SNM concentration for near-real-time accounting

      SciTech Connect (OSTI)

      Russo, P.A.; Marks, T. Jr.; Stephens, M.M.; Hsue, S.T.; Baker, A.L.; Cobb, D.D.

      1982-01-01

      The L-edge densitometer developed at Los Alamos National Laboratory has been modified, tested, and demonstrated for on-line assay of special nuclear material concentration in flowing solution streams. The demonstration was part of a larger demonstration of near-real-time nuclear materials accounting during a continuous, week-long, cold operation of the Allied General Nuclear Services facility in Barnwell, South Carolina. The L-edge data were automatically analyzed and the results were transmitted to the materials accounting computer once every 5.5 min for the duration of the cold run. This report compares the results of the L-edge analyses with the delayed results obtained from destructive analysis of samples withdrawn from the same process line. Comparisons are also made with the results obtained in near real time from an automated process control instrument installed in series with the L-edge densitometer. The performance of the L-edge instrument was reliable throughout the continous operation. The assay precision was consistent with that predicted by the counting statistics of the measurement. The results of the L-edge assays show good agreement with those of the destructive assays. A gradually varying discrepancy (of a few percent) between the L-edge and the process control results remains unexplained. 9 figures.

    1. Recovery Act: Smart Grid Interoperability Standards and Framework |

      Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

      Department of Energy Interoperability Standards and Framework Recovery Act: Smart Grid Interoperability Standards and Framework May 18, 2009 Locke, Chu Announce Significant Steps in Smart Grid Development WASHINGTON - U.S. Commerce Secretary Gary Locke and U.S. Energy Secretary Steven Chu today announced significant progress that will help expedite development of a nationwide "smart" electric power grid. A Smart Grid would replace the current, outdated system and employ real-time,

    2. The Modern Grid Strategy THE TRANSMISSION SMART GRID IMPERATIVE

      Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

      Modern Grid Strategy THE TRANSMISSION SMART GRID IMPERATIVE Developed for the U.S. Department of Energy Office of Electricity Delivery and Energy Reliability by the National Energy Technology Laboratory September 2009 Office of Electricity Delivery and Energy Reliability Transmission Smart Grid Imperative 1 DISCLAIMER This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their

    3. Technical Assistance to ISO's and Grid Operators For Loads Providing

      Energy Savers [EERE]

      Ancillary Services To Enhance Grid Reliability | Department of Energy Technical Assistance to ISO's and Grid Operators For Loads Providing Ancillary Services To Enhance Grid Reliability Technical Assistance to ISO's and Grid Operators For Loads Providing Ancillary Services To Enhance Grid Reliability Project demonstrates and promotes the use of responsive load to provide ancillary services; helps ISOsand grid operators understand the resource and how best to apply it. PDF icon Technical

    4. Real-Time Distribution Feeder Performance Monitoring, Advisory Control, and Health Management System

      SciTech Connect (OSTI)

      Stoupis, James; Mousavi, Mirrasoul

      2014-09-30

      New data collection system equipment was installed in Xcel Energy substations and data was collected from 6 substations and 20 feeders. During Phase I, ABB collected and analyzed 793 real-time events to date from 6 Xcel Energy substations and continues today. The development and integration of several applications was completed during the course of this project, including a model-based faulted segment identification algorithm, with very positive results validated with field-gathered data discussed and included in this report. For mostly underground feeders, the success rate is 90% and the overreach rate is 90%. For mostly overhead feeders, the success rate is 74% and the overreach rate is 50%. The developed method is producing very accurate results for mostly underground feeders. For mostly overhead feeders, due to the bad OMS data quality and varying fault resistance when arcing, the developed method is producing good results but with much room for improvement. One area where the algorithm can be improved is the accuracy for sub-cycle fault events. In these cases, the accuracy of the conventional signal processing methods suffers due to most of these methods being based on a one-cycle processing window. By improving the signal processing accuracy, the accuracy of the faulted segment identification algorithm will also improve significantly. ABB intends to devote research in this area in the near future to help solve this problem. Other new applications developed during the course of the project include volt/VAR monitoring, unbalanced capacitor switching detection, unbalanced feeder loading detection, and feeder overloading detection. An important aspect of the demonstration phase of the project is to show the ability to provide adequate “heads-up” time ahead of customer calls or AMI reports so that the operators are provided with the much needed time to collect information needed to address an outage. The advance notification feature of the demonstration system provides this time and helps accelerate service restoration ultimately. To demonstrate the effectiveness of this feature, a demo system using substation data alone was set up to compare the minutes saved over a period of 22 months for two feeders where the real-time notification system has been deployed. The metric used for performance assessment is the time difference between the actual outage time from the OMS versus the time the notification email was received on the operators desk. Over the period of 22 months, we have accumulated over 7600 minutes (32 hours) ahead of actual outage time compared to the OMS timestamps. The significance of this analysis is that it shows the potential to reduce the SAIDI minutes and directly impact utility performance in terms of outage duration. If deployed at scale, it would have a significant impact on system reliability. To put this number in perspective, it would be helpful to assign a dollar figure to the potential savings that could be realized. According to the host utility, the average cost for each customer-minute-out (CMO) is approximately $0.30 across the operating company. This includes both direct and indirect costs such as bad press. The outage data over the previous 4 years show that the average customer count on primary/tap level outages is about 56. Accordingly, the total minutes saved amounts to 425,600 CMOs on the average. This would in turn result in a potential cost savings figure of $127,680 for two feeders alone over the period of performance. This empirical evidence validates the strong value proposition of the project that was contemplated at the onset and its potential impact to reduce outage duration in support of DOE’s goal of 20%

    5. Note: Real time optical sensing of alpha-radiation emitting radioactive aerosols based on solid state nuclear track detector

      SciTech Connect (OSTI)

      Kulkarni, A.; Bak, M. S. E-mail: moonsoo@skku.edu; Ha, S.; Joshirao, P.; Manchanda, V.; Kim, T. E-mail: moonsoo@skku.edu

      2015-06-15

      A sensitive radioactive aerosols sensor has been designed and developed. Its design guidance is based on the need for a low operational cost and reliable measurements to provide daily aerosol monitoring. The exposure of diethylene-glycol bis (allylcarbonate) to radiation causes modification of its physico-chemical properties like surface roughness and reflectance. In the present study, optical sensor based on the reflectance measurement has been developed with an aim to monitor real time presence of alpha radioactive aerosols emitted from thorium nitrate hydrate. The results shows that the fabricated sensor can detect 0.0157 kBq to 0.1572 kBq of radio activity by radioactive aerosols generated from (Th(NO{sub 3}){sub 4} ⋅ 5H{sub 2}O) at 0.1 ml/min flow rate. The proposed instrument will be helpful to monitor radioactive aerosols in/around a nuclear facility, building construction sites, mines, and granite polishing factories.

    6. Non-intrusive, high-resolution, real-time, two-dimensional imaging of multiphase materials using acoustic array sensors

      SciTech Connect (OSTI)

      Cassiède, M.; Shaw, J. M.

      2015-04-15

      Two parallel multi-element ultrasonic acoustic arrays combined with sets of focal laws for acoustic signal generation and a classical tomographic inversion algorithm are used to generate real-time two-dimensional micro seismic acoustic images of multiphase materials. Proof of concept and calibration measurements were performed for single phase and two phase liquids, uniform polyvinyl chloride (PVC) plates, and aluminum cylinders imbedded in PVC plates. Measurement artefacts, arising from the limited range of viewing angles, and the compromise between data acquisition rate and image quality are discussed. The angle range of scanning and the image resolution were varied, and the effects on the quality of the reproduction of the speed of sound profiles of model solids and liquids with known geometries and compositions were analysed in detail. The best image quality results were obtained for a scanning angle range of [−35°, 35°] at a step size of 2.5° post processed to generate images on a 40 μm square grid. The data acquisition time for high quality images with a 30 mm × 40 mm view field is 10 min. Representation of two-phase solids with large differences in speed of sound between phases and where one phase is dispersed in the form of macroscopic objects (greater than 1 mm in diameter) proved to be the most difficult to image accurately. Liquid-liquid and liquid-vapor phase boundaries, in micro porous solids by contrast, were more readily defined. Displacement of air by water and water by heptane in natural porous limestone provides illustrative kinetic examples. Measurement results with these realistic cases demonstrate the feasibility of the technique to monitor in real time and on the micrometer length scale local composition and flow of organic liquids in inorganic porous media, one of many envisioned engineering applications. Improvement of data acquisition rate is an area for future collaborative study.

    7. Cloud Computing for the Grid: GridControl: A Software Platform to Support the Smart Grid

      SciTech Connect (OSTI)

      2012-02-08

      GENI Project: Cornell University is creating a new software platform for grid operators called GridControl that will utilize cloud computing to more efficiently control the grid. In a cloud computing system, there are minimal hardware and software demands on users. The user can tap into a network of computers that is housed elsewhere (the cloud) and the network runs computer applications for the user. The user only needs interface software to access all of the cloud’s data resources, which can be as simple as a web browser. Cloud computing can reduce costs, facilitate innovation through sharing, empower users, and improve the overall reliability of a dispersed system. Cornell’s GridControl will focus on 4 elements: delivering the state of the grid to users quickly and reliably; building networked, scalable grid-control software; tailoring services to emerging smart grid uses; and simulating smart grid behavior under various conditions.

    8. Duke Energy Carolinas, LLC Smart Grid Project | Open Energy Informatio...

      Open Energy Info (EERE)

      grid operators' ability to visualize and manage the transmission system, improving reliability and grid operations. Equipment Synchrophasor...

    9. An integrated, subsurface characterization system for real-time, in-situ field analysis

      SciTech Connect (OSTI)

      Baumgart, C.W.; Creager, J.; Mathes, J.; Pounds, T.; VanDeusen, A.; Warthen, B.

      1996-02-01

      This paper describes current efforts at AlliedSignal Federal Manufacturing and Technologies (FM and T) to develop and field an in-situ, data analysis platform to acquire, process, and display site survey data in near real-time. In past years, FM and T has performed a number of site survey tasks. Each of these surveys was unique in application as well as in the type of data processing and analysis that was required to extract and visualize useful site characterization information. However, common to each of these surveys were the following specific computational and operational requirements: (1) a capability to acquire, process, and visualize the site survey data in the field; (2) a capability to perform all processing in a timely fashion (ideally real-time); and (3) a technique for correlating (or fusing) data streams from multiple sensors. Two more general, but no less important, requirements include system architecture modularity and positioning capability. Potential applications include: survey, evaluation, and remediation of numerous Department of Defense and Department of Energy waste sites; real-time detection and characterization of unexploded ordnance and landmines; survey, evaluation, and remediation of industrial waste sites; location of underground utility lines; and providing law enforcement agencies with real-time surveys of crime scenes. The paper describes an integrated data acquisition, processing, and visualization platform that is capable of performing in-situ data processing, interpretation, and visualization in real-time.

    10. Transmission Reliability | Department of Energy

      Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

      Transmission Reliability Transmission Reliability Modernizing America's electricity infrastructure is one of the U.S. Department of Energy's top priorities. The DOE Strategic Plan states that today's electric grid needs to be more efficient, reliable, and secure. A modern, smarter electric grid may save consumers money, help our economy run more efficiently, allow rapid growth in renewable energy sources, and enhance energy reliability. The Department's research into a variety of tools that will

    11. HyperForest: A high performance multi-processor architecture for real-time intelligent systems

      SciTech Connect (OSTI)

      Garcia, P. Jr.; Rebeil, J.P.; Pollard, H.

      1997-04-01

      Intelligent Systems are characterized by the intensive use of computer power. The computer revolution of the last few years is what has made possible the development of the first generation of Intelligent Systems. Software for second generation Intelligent Systems will be more complex and will require more powerful computing engines in order to meet real-time constraints imposed by new robots, sensors, and applications. A multiprocessor architecture was developed that merges the advantages of message-passing and shared-memory structures: expendability and real-time compliance. The HyperForest architecture will provide an expandable real-time computing platform for computationally intensive Intelligent Systems and open the doors for the application of these systems to more complex tasks in environmental restoration and cleanup projects, flexible manufacturing systems, and DOE`s own production and disassembly activities.

    12. Principal Characteristics of a Modern Grid

      Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

      FERC - NARUC Smart Grid Collaborative Meeting Joe Miller - Modern Grid Strategy Team July 23, 2008 Conducted by the National Energy Technology Laboratory Funded by the U.S. Department of Energy Office of Electricity Delivery and Energy Reliability 2 Office of Electricity Delivery and Energy Reliability MODERN GRID S T R A T E G Y 2 Today's topics Smart Grid Background What is the Smart Grid? Some closing thoughts Questions 3 MODERN GRID S T R A T E G Y Smart Grid Background 4 Office of

    13. Principal Characteristics of a Modern Grid

      Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

      Smart Grid - What's so Smart About It? An Educational Forum on Smart Grids Joe Miller - Modern Grid Strategy Team June 24, 2008 1 Conducted by the National Energy Technology Laboratory Funded by the U.S. Department of Energy Office of Electricity Delivery and Energy Reliability 2 Office of Electricity Delivery and Energy Reliability MODERN GRID S T R A T E G Y 2 Agenda What is the Smart Grid? EISA 2007 Highlights DOE Activities Questions MODERN GRID S T R A T E G Y What is the Smart Grid? 4

    14. Principal Characteristics of a Modern Grid

      Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

      Grid: Features, Benefits and Costs Illinois Smart Grid Initiative Joe Miller - Modern Grid Strategy Team July 8, 2008 Conducted by the National Energy Technology Laboratory Funded by the U.S. Department of Energy Office of Electricity Delivery and Energy Reliability 2 Office of Electricity Delivery and Energy Reliability MODERN GRID S T R A T E G Y 2 Today's topics Why modernize the grid? What is the Smart Grid? What is the value proposition? Questions 3 MODERN GRID S T R A T E G Y Why modernize

    15. Real-time soft tissue motion estimation for lung tumors during radiotherapy delivery

      SciTech Connect (OSTI)

      Rottmann, Joerg; Berbeco, Ross; Keall, Paul

      2013-09-15

      Purpose: To provide real-time lung tumor motion estimation during radiotherapy treatment delivery without the need for implanted fiducial markers or additional imaging dose to the patient.Methods: 2D radiographs from the therapy beam's-eye-view (BEV) perspective are captured at a frame rate of 12.8 Hz with a frame grabber allowing direct RAM access to the image buffer. An in-house developed real-time soft tissue localization algorithm is utilized to calculate soft tissue displacement from these images in real-time. The system is tested with a Varian TX linear accelerator and an AS-1000 amorphous silicon electronic portal imaging device operating at a resolution of 512 × 384 pixels. The accuracy of the motion estimation is verified with a dynamic motion phantom. Clinical accuracy was tested on lung SBRT images acquired at 2 fps.Results: Real-time lung tumor motion estimation from BEV images without fiducial markers is successfully demonstrated. For the phantom study, a mean tracking error <1.0 mm [root mean square (rms) error of 0.3 mm] was observed. The tracking rms accuracy on BEV images from a lung SBRT patient (≈20 mm tumor motion range) is 1.0 mm.Conclusions: The authors demonstrate for the first time real-time markerless lung tumor motion estimation from BEV images alone. The described system can operate at a frame rate of 12.8 Hz and does not require prior knowledge to establish traceable landmarks for tracking on the fly. The authors show that the geometric accuracy is similar to (or better than) previously published markerless algorithms not operating in real-time.

    16. Field Evaluation of Real-time Cloud OD Sensor TWST during the DOE ARM TCAP

      Office of Scientific and Technical Information (OSTI)

      Campaign 2013 Final Campaign Report (Technical Report) | SciTech Connect Field Evaluation of Real-time Cloud OD Sensor TWST during the DOE ARM TCAP Campaign 2013 Final Campaign Report Citation Details In-Document Search Title: Field Evaluation of Real-time Cloud OD Sensor TWST during the DOE ARM TCAP Campaign 2013 Final Campaign Report The objective of this internal research and development (IRAD)-funded campaign by Aerodyne Research, Inc. was to demonstrate the field-worthiness and assess

    17. Field Evaluation of Real-time Cloud OD Sensor TWST during the DOE ARM TCAP

      Office of Scientific and Technical Information (OSTI)

      Campaign 2013 Final Campaign Report (Technical Report) | SciTech Connect Field Evaluation of Real-time Cloud OD Sensor TWST during the DOE ARM TCAP Campaign 2013 Final Campaign Report Citation Details In-Document Search Title: Field Evaluation of Real-time Cloud OD Sensor TWST during the DOE ARM TCAP Campaign 2013 Final Campaign Report The objective of this internal research and development (IRAD)-funded campaign by Aerodyne Research, Inc. was to demonstrate the field-worthiness and assess

    18. Real-Time Quantitative Imaging of Failure Events in Materials Under Load at

      Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

      Temperatures Above 1,600 °C Real-Time Quantitative Imaging of Failure Events in Materials Under Load at Temperatures Above 1,600 °C Real-Time Quantitative Imaging of Failure Events in Materials Under Load at Temperatures Above 1,600 °C Print Monday, 25 March 2013 00:00 Gathering information on the evolution of small cracks in ceramic matrix composites used in hostile environments such as in gas turbines and hypersonic flights has been a challenge. It is now shown that sequences of

    19. Method and apparatus for real-time measurement of fuel gas compositions and heating values

      DOE Patents [OSTI]

      Zelepouga, Serguei; Pratapas, John M.; Saveliev, Alexei V.; Jangale, Vilas V.

      2016-03-22

      An exemplary embodiment can be an apparatus for real-time, in situ measurement of gas compositions and heating values. The apparatus includes a near infrared sensor for measuring concentrations of hydrocarbons and carbon dioxide, a mid infrared sensor for measuring concentrations of carbon monoxide and a semiconductor based sensor for measuring concentrations of hydrogen gas. A data processor having a computer program for reducing the effects of cross-sensitivities of the sensors to components other than target components of the sensors is also included. Also provided are corresponding or associated methods for real-time, in situ determination of a composition and heating value of a fuel gas.

    20. System, device, and methods for real-time screening of live cells, biomarkers, and chemical signatures

      DOE Patents [OSTI]

      Sundaram, S Kamakshi [Richland, WA; Riley, Brian J [West Richland, WA; Weber, Thomas J [Richland, WA; Sacksteder, Colette A [West Richland, WA; Addleman, R Shane [Benton City, WA

      2011-06-07

      An ATR-FTIR device and system are described that defect live-cell responses to stimuli and perturbations in real-time. The system and device can monitor perturbations resulting from exposures to various physical, chemical, and biological materials in real-time, as well as those sustained over a long period of time, including those associated with stimuli having unknown modes-of-action (e.g. nanoparticles). The device and system can also be used to identify specific chemical species or substances that profile cellular responses to these perturbations.

    1. Three axis electronic flight motion simulator real time control system design and implementation

      SciTech Connect (OSTI)

      Gao, Zhiyuan; Miao, Zhonghua Wang, Xiaohua; Wang, Xuyong

      2014-12-15

      A three axis electronic flight motion simulator is reported in this paper including the modelling, the controller design as well as the hardware implementation. This flight motion simulator could be used for inertial navigation test and high precision inertial navigation system with good dynamic and static performances. A real time control system is designed, several control system implementation problems were solved including time unification with parallel port interrupt, high speed finding-zero method of rotary inductosyn, zero-crossing management with continuous rotary, etc. Tests were carried out to show the effectiveness of the proposed real time control system.

    2. Real-time, single-step bioassay using nanoplasmonic resonator with ultra-high sensitivity

      DOE Patents [OSTI]

      Zhang, Xiang; Ellman, Jonathan A; Chen, Fanqing Frank; Su, Kai-Hang; Wei, Qi-Huo; Sun, Cheng

      2014-04-01

      A nanoplasmonic resonator (NPR) comprising a metallic nanodisk with alternating shielding layer(s), having a tagged biomolecule conjugated or tethered to the surface of the nanoplasmonic resonator for highly sensitive measurement of enzymatic activity. NPRs enhance Raman signals in a highly reproducible manner, enabling fast detection of protease and enzyme activity, such as Prostate Specific Antigen (paPSA), in real-time, at picomolar sensitivity levels. Experiments on extracellular fluid (ECF) from paPSA-positive cells demonstrate specific detection in a complex bio-fluid background in real-time single-step detection in very small sample volumes.

    3. Toward Real-time Modeling of Human Heart Ventricles at Cellular Resolution:

      Office of Scientific and Technical Information (OSTI)

      Multi-hour Simulation of Drug-induced Arrhythmias (Conference) | SciTech Connect Toward Real-time Modeling of Human Heart Ventricles at Cellular Resolution: Multi-hour Simulation of Drug-induced Arrhythmias Citation Details In-Document Search Title: Toward Real-time Modeling of Human Heart Ventricles at Cellular Resolution: Multi-hour Simulation of Drug-induced Arrhythmias Authors: Mirin, A A ; Richards, D F ; Glosli, J N ; Draeger, E W ; Chan, B ; Fattebert, J ; Krauss, W D ; Oppelstrup, T

    4. A new approach to power quality and electricity reliability monitoring-case study illustrations of the capabilities of the I-GridTM system

      SciTech Connect (OSTI)

      Divan, Deepak; Brumsickle, William; Eto, Joseph

      2003-04-01

      This report describes a new approach for collecting information on power quality and reliability and making it available in the public domain. Making this information readily available in a form that is meaningful to electricity consumers is necessary for enabling more informed private and public decisions regarding electricity reliability. The system dramatically reduces the cost (and expertise) needed for customers to obtain information on the most significant power quality events, called voltage sags and interruptions. The system also offers widespread access to information on power quality collected from multiple sites and the potential for capturing information on the impacts of power quality problems, together enabling a wide variety of analysis and benchmarking to improve system reliability. Six case studies demonstrate selected functionality and capabilities of the system, including: Linking measured power quality events to process interruption and downtime; Demonstrating the ability to correlate events recorded by multiple monitors to narrow and confirm the causes of power quality events; and Benchmarking power quality and reliability on a firm and regional basis.

    5. Smart Grid Technology Interactive Model | Argonne National Laboratory

      Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

      Educational Resources » Smart Grid Primer (Smart Grid Books) Smart Grid Primer (Smart Grid Books) Smart Grid Primer (Smart Grid Books) The Smart Grid: An Introduction, prepared 2008, is a publication sponsored by DOE's Office of Electricity Delivery and Energy Reliability that explores - in layman's terms - the nature, challenges, opportunities and necessity of Smart Grid implementation. Additional books, released in 2009, target the interests of specific stakeholder groups: Consumer Advocates,

    6. Sharing Smart Grid Experiences

      Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

      Sharing Smart Grid Experiences through Performance Feedback March 31, 2011 DOE/NETL- DE-FE0004001 U.S. Department of Energy Office of Electricity Delivery and Energy Reliability Prepared by: National Energy Technology Laboratory Sharing Smart Grid Experiences through Performance Feedback v1.0 Page ii Disclaimer This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their

    7. Real-time fracture monitoring in Engineered Geothermal Systems with seismic waves

      SciTech Connect (OSTI)

      Jose A. Rial; Jonathan Lees

      2009-03-31

      As proposed, the main effort in this project is the development of software capable of performing real-time monitoring of micro-seismic activity recorded by an array of sensors deployed around an EGS. The main milestones are defined by the development of software to perform the following tasks: • Real-time micro-earthquake detection and location • Real-time detection of shear-wave splitting • Delayed-time inversion of shear-wave splitting These algorithms, which are discussed in detail in this report, make possible the automatic and real-time monitoring of subsurface fracture systems in geothermal fields from data collected by an array of seismic sensors. Shear wave splitting (SWS) is parameterized in terms of the polarization of the fast shear wave and the time delay between the fast and slow shear waves, which are automatically measured and stored. The measured parameters are then combined with previously measured SWS parameters at the same station and used to invert for the orientation (strike and dip) and intensity of cracks under that station. In addition, this grant allowed the collection of seismic data from several geothermal regions in the US (Coso) and Iceland (Hengill) to use in the development and testing of the software.

    8. On-chip real-time single-copy polymerase chain reaction in picoliter droplets

      SciTech Connect (OSTI)

      Beer, N R; Hindson, B; Wheeler, E; Hall, S B; Rose, K A; Kennedy, I; Colston, B

      2007-04-20

      The first lab-on-chip system for picoliter droplet generation and PCR amplification with real-time fluorescence detection has performed PCR in isolated droplets at volumes 10{sup 6} smaller than commercial real-time PCR systems. The system utilized a shearing T-junction in a silicon device to generate a stream of monodisperse picoliter droplets that were isolated from the microfluidic channel walls and each other by the oil phase carrier. An off-chip valving system stopped the droplets on-chip, allowing them to be thermal cycled through the PCR protocol without droplet motion. With this system a 10-pL droplet, encapsulating less than one copy of viral genomic DNA through Poisson statistics, showed real-time PCR amplification curves with a cycle threshold of {approx}18, twenty cycles earlier than commercial instruments. This combination of the established real-time PCR assay with digital microfluidics is ideal for isolating single-copy nucleic acids in a complex environment.

    9. In-Situ Real Time Monitoring and Control of Mold Making and Filling Processes

      SciTech Connect (OSTI)

      None

      2004-11-01

      This factsheet describes a research effort to develop an innovative approach to introduce technologies for real-time characterization of sand molds, lost foam patterns, and monitoring of the mold filling process. This will reduce scrap, improve product quality, and save energy.

    10. Real-Time Particulate Mass Measurements Pre and Post Diesel Particulate

      Broader source: Energy.gov (indexed) [DOE]

      Filters for LIght-Duty Diesel Vehicles | Department of Energy PDF icon 2005_deer_anderson.pdf More Documents & Publications Advanced Radio Frequency-Based Sensors for Monitoring Diesel Particulate Filter Loading and Regeneration Real-Time Measurement of Diesel Trap Efficiency TG-1: Portable Instrument for Transient PM Measurements

    11. Real time MHD mode control using ECCD in KSTAR: Plan and requirements

      SciTech Connect (OSTI)

      Joung, M.; Woo, M. H.; Jeong, J. H.; Hahn, S. H.; Yun, S. W.; Lee, W. R.; Bae, Y. S.; Oh, Y. K.; Kwak, J. G.; Yang, H. L.; Namkung, W.; Park, H.; Cho, M. H.; Kim, M. H.; Kim, K. J.; Na, Y. S.; Hosea, J.; Ellis, R.

      2014-02-12

      For a high-performance, advanced tokamak mode in KSTAR, we have been developing a real-time control system of MHD modes such as sawtooth and Neo-classical Tearing Mode (NTM) by ECH/ECCD. The active feedback control loop will be also added to the mirror position and the real-time detection of the mode position. In this year, for the stabilization of NTM that is crucial to plasma performance we have implemented open-loop ECH antenna control system in KSTAR Plasma Control System (PCS) for ECH mirror movement during a single plasma discharge. KSTAR 170 GHz ECH launcher which was designed and fabricated by collaboration with PPPL and POSTECH has a final mirror of a poloidally and toroidally steerable mirror. The poloidal steering motion is only controlled in the real-time NTM control system and its maximum steering speed is 10 degree/sec by DC motor. However, the latency of the mirror control system and the return period of ECH antenna mirror angle are not fast because the existing launcher mirror control system is based on PLC which is connected to the KSTAR machine network through serial to LAN converter. In this paper, we present the design of real time NTM control system, ECH requirements, and the upgrade plan.

    12. Improving Building Performance at Urban Scale with a Framework for Real-time Data Sharing

      SciTech Connect (OSTI)

      Pang, Xiufeng; Hong, Tianzhen; Piette, Mary Ann

      2013-06-03

      This paper describes work in progress toward an urban-scale system aiming to reduce energy use in neighboring buildings by providing three components: a database for accessing past and present weather data from high quality weather stations; a network for communicating energy-saving strategies between building owners; and a set of modeling tools for real-time building energy simulation.

    13. Real time intelligent process control system for thin film solar cell manufacturing

      SciTech Connect (OSTI)

      George Atanasoff

      2010-10-29

      This project addresses the problem of lower solar conversion efficiency and waste in the typical solar cell manufacturing process. The work from the proposed development will lead toward developing a system which should be able to increase solar panel conversion efficiency by an additional 12-15% resulting in lower cost panels, increased solar technology adoption, reduced carbon emissions and reduced dependency on foreign oil. All solar cell manufacturing processes today suffer from manufacturing inefficiencies that currently lead to lower product quality and lower conversion efficiency, increased product cost and greater material and energy consumption. This results in slower solar energy adoption and extends the time solar cells will reach grid parity with traditional energy sources. The thin film solar panel manufacturers struggle on a daily basis with the problem of thin film thickness non-uniformity and other parameters variances over the deposited substrates, which significantly degrade their manufacturing yield and quality. Optical monitoring of the thin films during the process of the film deposition is widely perceived as a necessary step towards resolving the non-uniformity and non-homogeneity problem. In order to enable the development of an optical control system for solar cell manufacturing, a new type of low cost optical sensor is needed, able to acquire local information about the panel under deposition and measure its local characteristics, including the light scattering in very close proximity to the surface of the film. This information cannot be obtained by monitoring from outside the deposition chamber (as traditional monitoring systems do) due to the significant signal attenuation and loss of its scattering component before the reflected beam reaches the detector. In addition, it would be too costly to install traditional external in-situ monitoring systems to perform any real-time monitoring over large solar panels, since it would require significant equipment refurbishing needed for installation of multiple separate ellipsometric systems, and development of customized software to control all of them simultaneously. The proposed optical monitoring system comprises AccuStratas fiber optics sensors installed inside the thin film deposition equipment, a hardware module of different components (beyond the scope of this project) and our software program with iterative predicting capability able to control material bandgap and surface roughness as films are deposited. Our miniature fiber optics monitoring sensors are installed inside the vacuum chamber compartments in very close proximity where the independent layers are deposited (an option patented by us in 2003). The optical monitoring system measures two of the most important parameters of the photovoltaic thin films during deposition on a moving solar panel - material bandgap and surface roughness. In this program each sensor array consists of two fiber optics sensors monitoring two independent areas of the panel under deposition. Based on the monitored parameters and their change in time and from position to position on the panel, the system is able to provide to the equipment operator immediate information about the thin films as they are deposited. This DoE Supply Chain program is considered the first step towards the development of intelligent optical control system capable of dynamically adjusting the manufacturing process on-the-fly in order to achieve better performance. The proposed system will improve the thin film solar cell manufacturing by improving the quality of the individual solar cells and will allow for the manufacturing of more consistent and uniform products resulting in higher solar conversion efficiency and manufacturing yield. It will have a significant impact on the multibillion-dollar thin film solar market. We estimate that the financial impact of these improvements if adopted by only 10% of the industry ($7.7 Billion) would result in about $1.5 Billion in savings by 2015 (at the assumed 20% improvement). This can b

    14. Principal Characteristics of a Modern Grid

      Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

      ... Office of Electricity Delivery and Energy Reliability MODERN GRID S T R A T E G Y Characteristics of the Modern Grid It will "Provide power quality for 21 st century needs" Power ...

    15. REAL-TIME TRACER MONITORING OF RESERVOIR STIMULATION PROCEDURES VIA ELECTRONIC WIRELINE AND TELEMETRY DATA TRANSMISSION

      SciTech Connect (OSTI)

      George L. Scott III

      2005-01-01

      Finalized Phase 2-3 project work has field-proven two separate real-time reservoir processes that were co-developed via funding by the National Energy Technology Laboratory (NETL). Both technologies are presently patented in the United States and select foreign markets; a downhole-commingled reservoir stimulation procedure and a real-time tracer-logged fracturing diagnostic system. Phase 2 and early Phase 3 project work included the research, development and well testing of a U.S. patented gamma tracer fracturing diagnostic system. This stimulation logging process was successfully field-demonstrated; real-time tracer measurement of fracture height while fracturing was accomplished and proven technically possible. However, after the initial well tests, there were several licensing issues that developed between service providers that restricted and minimized Realtimezone's (RTZ) ability to field-test the real-time gamma diagnostic system as was originally outlined for this project. Said restrictions were encountered after when one major provider agreed to license their gamma logging tools to another. Both of these companies previously promised contributory support toward Realtimezone's DE-FC26-99FT40129 project work, however, actual support was less than desired when newly-licensed wireline gamma logging tools from one company were converted by the other from electric wireline into slickline, batter-powered ''memory'' tools for post-stimulation logging purposes. Unfortunately, the converted post-fracture measurement memory tools have no applications in experimentally monitoring real-time movement of tracers in the reservoir concurrent with the fracturing treatment. RTZ subsequently worked with other tracer gamma-logging tool companies for basic gamma logging services, but with lessened results due to lack of multiple-isotope detection capability. In addition to real-time logging system development and well testing, final Phase 2 and Phase 3 project work included the development of a real-time reservoir stimulation procedure, which was successfully field-demonstrated and is presently patented in the U.S. and select foreign countries, including Venezuela, Brazil and Canada. Said patents are co-owned by RTZ and the National Energy Technology Lab (NETL). In 2002, Realtimezone and the NETL licensed said patents to Halliburton Energy Services (HES). Additional licensing agreements (LA) are anticipated with other service industry companies in 2005. Final Phase 3 work has led to commercial applications of the real-time reservoir stimulation procedure. Four successfully downhole-mixed well tests were conducted with commercially expected production results. The most recent, fourth field test was a downhole-mixed stimulated well completed in June, 2004, which currently produces 11 BOPD with 90 barrels of water per day. Conducted Phase 2 and Phase 3 field-test work to date has resulted in the fine-tuning of a real-time enhanced stimulation system that will significantly increase future petroleum well recoveries in the United States and foreign petroleum fields, both onshore and offshore, and in vertical and horizontal wells.

    16. Applied Resiliency for More Trustworthy Grid Operation (ARMORE)

      Energy Savers [EERE]

      Applied Resiliency for More Trustworthy Grid Operation (ARMORE) Secure communications, inspection, and data analysis platform that enhances the security posture for legacy and modern grid devices Background The electric grid increasingly relies on the secure transfer of real-time data between substations to maintain control of system operations. Traditional cybersecurity practices primarily employ perimeter-level protections, such as firewalls or end-point gateways. Additionally, substation

    17. ARPA-E: Advancing the Electric Grid

      ScienceCinema (OSTI)

      Lemmon, John; Ruiz, Pablo; Sommerer, Tim; Aziz, Michael

      2014-03-13

      The electric grid was designed with the assumption that all energy generation sources would be relatively controllable, and grid operators would always be able to predict when and where those sources would be located. With the addition of renewable energy sources like wind and solar, which can be installed faster than traditional generation technologies, this is no longer the case. Furthermore, the fact that renewable energy sources are imperfectly predictable means that the grid has to adapt in real-time to changing patterns of power flow. We need a dynamic grid that is far more flexible. This video highlights three ARPA-E-funded approaches to improving the grid's flexibility: topology control software from Boston University that optimizes power flow, gas tube switches from General Electric that provide efficient power conversion, and flow batteries from Harvard University that offer grid-scale energy storage.

    18. ARPA-E: Advancing the Electric Grid

      SciTech Connect (OSTI)

      Lemmon, John; Ruiz, Pablo; Sommerer, Tim; Aziz, Michael

      2014-02-24

      The electric grid was designed with the assumption that all energy generation sources would be relatively controllable, and grid operators would always be able to predict when and where those sources would be located. With the addition of renewable energy sources like wind and solar, which can be installed faster than traditional generation technologies, this is no longer the case. Furthermore, the fact that renewable energy sources are imperfectly predictable means that the grid has to adapt in real-time to changing patterns of power flow. We need a dynamic grid that is far more flexible. This video highlights three ARPA-E-funded approaches to improving the grid's flexibility: topology control software from Boston University that optimizes power flow, gas tube switches from General Electric that provide efficient power conversion, and flow batteries from Harvard University that offer grid-scale energy storage.

    19. Principal Characteristics of a Modern Grid

      Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

      Joe Miller - Modern Grid Team October 6, 2008 1 Conducted by the National Energy Technology Laboratory Funded by the U.S. Department of Energy, Office of Electricity Delivery and Energy Reliability Office of Electricity Delivery and Energy Reliability MODERN GRID S T R A T E G Y 2 Agenda The Smart Grid - a refresher "Push" drivers - a case for action "Pull" drivers - Smart Grid opportunities Some Smart Grid impacts Office of Electricity Delivery and Energy Reliability MODERN

    20. Principal Characteristics of a Modern Grid

      Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

      Grid Wabash Valley Power Joe Miller - Modern Grid Strategy Team July 15, 2008 Conducted by the National Energy Technology Laboratory Funded by the U.S. Department of Energy Office of Electricity Delivery and Energy Reliability 2 Office of Electricity Delivery and Energy Reliability MODERN GRID S T R A T E G Y 2 Today's topics Smart Grid background Why modernize the grid? What is the Smart Grid? What is the value proposition? How do we get there? What are some of the barriers? Questions 3 MODERN

    1. Case Study - Florida Power & Light - Smart Grid Solutions Strengthen...

      Energy Savers [EERE]

      Smart Grid Solutions Strengthen Electric Reliability and Customer Services in Florida With ... With support from DOE, our SGIG project enables us to enhance service reliability while ...

    2. ECONOMIC BENEFITS OF INCREASING ELECTRIC GRID RESILIENCE TO

      Broader source: Energy.gov (indexed) [DOE]

      of Electricity Delivery and Energy Reliability, with assistance from the White House ... at increasing the grid's efficiency, reliability, and resilience, and making it less ...

    3. Protecting the Grid from All Hazards | Department of Energy

      Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

      & Energy Reliability The Energy Department takes the security and reliability of our power grid very seriously. We work closely with our federal, state and industry partners...

    4. Real Time Corrosion Monitoring in Lead and Lead-Bismuth Systems

      SciTech Connect (OSTI)

      James F. Stubbins; Alan Bolind; Ziang Chen

      2010-02-25

      The objective of this research program is to develop a real-time, in situ corrosion monitoring technique for flowing liquid Pb and eutectic PbBi (LBE) systems in a temperature range of 400 to 650 C. These conditions are relevant to future liquid metal cooled fast reactor operating parameters. THis program was aligned with the Gen IV Reactor initiative to develp technologies to support the design and opertion of a Pb or LBE-cooled fast reactor. The ability to monitor corrosion for protection of structural components is a high priority issue for the safe and prolonged operation of advanced liquid metal fast reactor systems. In those systems, protective oxide layers are intentionally formed and maintained to limit corrosion rates during operation. This program developed a real time, in situ corrosion monitoring tecnique using impedance spectroscopy (IS) technology.

    5. Accelerating the Customer-Driven Microgrid Through Real-Time Digital Simulation

      SciTech Connect (OSTI)

      I. Leonard; T. Baldwin; M. Sloderbeck

      2009-07-01

      Comprehensive design and testing of realistic customer-driven microgrids requires a high performance simulation platform capable of incorporating power system and control models with external hardware systems. Traditional non real-time simulation is unable to fully capture the level of detail necessary to expose real-world implementation issues. With a real-time digital simulator as its foundation, a high-fidelity simulation environment that includes a robust electrical power system model, advanced control architecture, and a highly adaptable communication network is introduced. Hardware-in-the-loop implementation approaches for the hardware-based control and communication systems are included. An overview of the existing power system model and its suitability for investigation of autonomous island formation within the microgrid is additionally presented. Further test plans are also documented.

    6. Real time method and computer system for identifying radioactive materials from HPGe gamma-ray spectroscopy

      DOE Patents [OSTI]

      Rowland, Mark S.; Howard, Douglas E.; Wong, James L.; Jessup, James L.; Bianchini, Greg M.; Miller, Wayne O.

      2007-10-23

      A real-time method and computer system for identifying radioactive materials which collects gamma count rates from a HPGe gamma-radiation detector to produce a high-resolution gamma-ray energy spectrum. A library of nuclear material definitions ("library definitions") is provided, with each uniquely associated with a nuclide or isotope material and each comprising at least one logic condition associated with a spectral parameter of a gamma-ray energy spectrum. The method determines whether the spectral parameters of said high-resolution gamma-ray energy spectrum satisfy all the logic conditions of any one of the library definitions, and subsequently uniquely identifies the material type as that nuclide or isotope material associated with the satisfied library definition. The method is iteratively repeated to update the spectrum and identification in real time.

    7. Real-time geo-registration of imagery using COTS graphics processors

      DOE Patents [OSTI]

      Flath, Laurence M.; Kartz, Michael W.

      2009-06-30

      A method of performing real-time geo-registration of high-resolution digital imagery using existing graphics processing units (GPUs) already found in current personal computers, rather than the main central processing unit (CPU). Digital image data captured by a camera (along with inertial navigation system (INS) data associated with the image data) is transferred to and processed by the GPU to perform the calculations involved in transforming the captured image into a geo-rectified, nadir-looking image. By using the GPU, the order-of-magnitude increase in throughput over conventional software techniques makes real-time geo-registration possible without the significant cost of custom hardware solutions.

    8. Automated high-throughput flow-through real-time diagnostic system

      DOE Patents [OSTI]

      Regan, John Frederick

      2012-10-30

      An automated real-time flow-through system capable of processing multiple samples in an asynchronous, simultaneous, and parallel fashion for nucleic acid extraction and purification, followed by assay assembly, genetic amplification, multiplex detection, analysis, and decontamination. The system is able to hold and access an unlimited number of fluorescent reagents that may be used to screen samples for the presence of specific sequences. The apparatus works by associating extracted and purified sample with a series of reagent plugs that have been formed in a flow channel and delivered to a flow-through real-time amplification detector that has a multiplicity of optical windows, to which the sample-reagent plugs are placed in an operative position. The diagnostic apparatus includes sample multi-position valves, a master sample multi-position valve, a master reagent multi-position valve, reagent multi-position valves, and an optical amplification/detection system.

    9. Towards Near Real-Time Availability With Enhanced Accuracy Turbo-ARSCL Project!

      Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

      Turbo" ARSCL Towards Near Real-Time Availability With Enhanced Accuracy Turbo-ARSCL Project! The goal is to speed delivery of the widely-used ARSCL product while improving the accuracy of cloud boundaries. 1) ARSCL VAP* processing backlog persists. Synthesize MMCR Ceilometer MPL Data *Active Remote Sensing of Clouds Value-Added Product provides cloud boundaries, hydrometeor reflectivity, vertical velocities and spectral widths. Lidar Focus Group is evaluating automated MPL Cloud masking

    10. Evolution of titanium arc weldment macro and microstructures -- Modeling and real time mapping of phases

      SciTech Connect (OSTI)

      Yang, Z.; Elmer, J.W.; Wong, J.; Debroy, T.

      2000-04-01

      Macro and microstructural features in gas tungsten arc (GTA) welded titanium were modeled for the first time based on a combination of transport phenomena and phase transformation theory. A transient, three-dimensional, turbulent heat transfer and fluid flow model was developed to calculate the temperature and velocity fields, thermal cycles, and the shape and size of the fusion zone. The kinetics of the {alpha}{r_arrow}{beta} allotropic transformation during continuous heating and the corresponding ({alpha}+{beta})/{beta} phase boundary were calculated using a modified Johnson-Mehl-Avrami (JMA) equation and the calculated thermal cycles. The modeling results were compared with the real-time phase mapping data obtained using a unique spatially resolved X-ray diffraction technique with synchrotron radiation. The real-time evolution of grain structure within the entire weld heat-affected zone (HAZ) was modeled in three dimensions using a Monte Carlo technique. The following are the major findings. First, the rates of heat transfer and fluid flow in the titanium weld pool during gas tungsten arc welding (GTAW) are significantly enhanced by turbulence, and previous calculations of laminar fluid flow and heat transfer in arc-melted pools need to be re-examined. The fusion zone geometry, and the {alpha}/({alpha}+{beta})/{beta} phase boundaries in the HAZ could be satisfactorily predicted. Second, comparison of real-time {alpha}{r_arrow}{beta} transformation kinetics with the rates computed assuming various alternative reaction mechanisms indicates the transition was most likely controlled by the transport of Ti atoms across the {alpha}/{beta} interface. Third, comparison of the experimental data with the simulated results indicates the real-time evolution of the grain structure around the weld pool could be simulated by the Monte Carlo technique. Finally, the insight developed in this research could not have been achieved without concomitant modeling and experiments.

    11. NSTX-U Advances in Real-time C++11 on Linux | Princeton Plasma Physics Lab

      Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

      NSTX-U Advances in Real-time C++11 on Linux Programming languages like C and Ada combined with proprietary embedded operating systems have dominated the realtime application space for decades. The new C++11 standard includes native, language-level support for concurrency, a requirement for any event-oriented realtime software. Threads, Locks, and Atomics now exist to provide the necessary tools to build the structures that make up the foundation of a complex realtime system. The National

    12. Real time observations of the nucleation and growth of nanowires and

      Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

      nanotubes | MIT-Harvard Center for Excitonics Real time observations of the nucleation and growth of nanowires and nanotubes December 1, 2011 at 3pm/36-428 Eric Stach Center for Functional Nanomaterials, Brookhaven National Laboratories stach003_000 Abstract: Crucial to the application of nanostructured materials is control over their nucleation and growth, as these aspects determine their structure and thus properties. We will review our work concerning these issues in both semiconductor

    13. Real-Time High Resolution Quantitative Imaging by Three Wavelength Digital

      Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

      Holography - Energy Innovation Portal Real-Time High Resolution Quantitative Imaging by Three Wavelength Digital Holography Oak Ridge National Laboratory Contact ORNL About This Technology Technology Marketing Summary An optical system capable of reproducing three-dimensional images was invented at ORNL. This system can detect height changes of a few nanometers or less and render clear, single shot images. These types of precise, high speed measurements are important for a variety of

    14. Method and apparatus for real time imaging and monitoring of radiotherapy beams

      DOE Patents [OSTI]

      Majewski, Stanislaw; Proffitt, James; Macey, Daniel J.; Weisenberger, Andrew G.

      2011-11-01

      A method and apparatus for real time imaging and monitoring of radiation therapy beams is designed to preferentially distinguish and image low energy radiation from high energy secondary radiation emitted from a target as the result of therapeutic beam deposition. A detector having low sensitivity to high energy photons combined with a collimator designed to dynamically image in the region of the therapeutic beam target is used.

    15. REAL-TIME TRACER MONITORING OF RESERVOIR STIMULATION PROCEDURES VIA ELECTRONIC WIRELINE AND TELEMETRY DATA TRANSMISSION

      SciTech Connect (OSTI)

      George Scott III

      2003-08-01

      Ongoing Phase 2-3 work comprises the final development and field-testing of two complementary real-time reservoir technologies; a stimulation process and a tracer fracturing diagnostic system. Initial DE-FC26-99FT40129 project work included research, development, and testing of the patented gamma tracer fracturing diagnostic system. This process was field-proven to be technically useful in providing tracer measurement of fracture height while fracturing; however, technical licensing restrictions blocked Realtimezone from fully field-testing this real-time gamma diagnostic system, as originally planned. Said restrictions were encountered during Phase 2 field test work as result of licensing limitations and potential conflicts between service companies participating in project work, as related to their gamma tracer logging tool technology. Phase 3 work principally demonstrated field-testing of Realtimezone (RTZ) and NETL's Downhole-mixed Reservoir Stimulation process. Early on, the simplicity of and success of downhole-mixing was evident from well tests, which were made commercially productive. A downhole-mixed acid stimulation process was tested successfully and is currently commercially used in Canada. The fourth well test was aborted due to well bore conditions, and an alternate test project is scheduled April, 2004. Realtimezone continues to effectuate ongoing patent protection in the United States and foreign markets. In 2002, Realtimezone and the NETL licensed their United States patent to Halliburton Energy Services (HES). Additional licensing arrangements with other industry companies are anticipated in 2004-2005. Ongoing Phase 2 and Phase 3 field-testing continues to confirm applications of both real-time technologies. Technical data transfer to industry is ongoing via Internet tech-transfer and various industry presentations and publications including Society of Petroleum Engineers. These real-time enhanced stimulation procedures should significantly increase future petroleum well recoveries in the United States, onshore and offshore, and in vertical and horizontal wells.

    16. Sci—Thur PM: Planning and Delivery — 06: Real-Time Interactive Treatment Planning

      SciTech Connect (OSTI)

      Matthews, Q; Mestrovic, A; Otto, K

      2014-08-15

      Purpose: To describe and evaluate a novel system for generalized Real-Time Interactive Planning (RTIP) applied to head and neck (H and N) VMAT. Methods: The clinician interactively manipulates dose distributions using DVHs, isodoses, or rate of dose fall-off, which may be subjected to user-defined constraints. Dose is calculated using a fast Achievable Dose Estimate (ADE) algorithm, which simulates the limits of what can be achieved during treatment. After each manipulation contributing fluence elements are modified and the dose distribution updates in effectively real-time. For H and N VMAT planning, structure sets for 11 patients were imported into RTIP. Each dose distribution was interactively modified to minimize OAR dose while constraining target DVHs. The resulting RTIP DVHs were transferred to the Eclipse™ VMAT optimizer, and conventional VMAT optimization was performed. Results: Dose calculation and update times for the ADE algorithm ranged from 2.4 to 22.6 milliseconds, thus facilitating effectively real-time manipulation of dose distributions. For each of the 11 H and N VMAT cases, the RTIP process took ∼2–10 minutes. All RTIP plans exhibited acceptable PTV coverage, mean dose, and max dose. 10 of 11 RTIP plans achieved substantially improved sparing of one or more OARs without compromising dose to targets or other OARs. Importantly, 10 of the 11 RTIP plans required only one or two post-RTIP optimizations. Conclusions: RTIP is a novel system for manipulating and updating achievable dose distributions in real-time. H and N VMAT plans generated using RTIP demonstrate improved OAR sparing and planning efficiency. Disclosures: One author has a commercial interest in the presented materials.

    17. TU-F-17A-07: Real-Time Personalized Margins

      SciTech Connect (OSTI)

      Rottmann, J; Berbeco, R

      2014-06-15

      Purpose: To maximize normal tissue sparing for treatments requiring motion encompassing margins. Motion mitigation techniques including DMLC or couch tracking can freeze tumor motion within the treatment aperture potentially allowing for smaller treatment margins and thus better sparing of normal tissue. To enable for a safe application of this concept in the clinic we propose adapting margins dynamically in real-time during radiotherapy delivery based on personalized tumor localization confidence. To demonstrate technical feasibility we present a phantom study. Methods: We utilize a realistic anthropomorphic dynamic thorax phantom with a lung tumor model embedded close to the spine. The tumor, a 3D-printout of a patient's GTV, is moved 15mm peak-to-peak by diaphragm compression and monitored by continuous EPID imaging in real-time. Two treatment apertures are created for each beam, one representing ITV -based and the other GTV-based margin expansion. A soft tissue localization (STiL) algorithm utilizing the continuous EPID images is employed to freeze tumor motion within the treatment aperture by means of DMLC tracking. Depending on a tracking confidence measure (TCM), the treatment aperture is adjusted between the ITV and the GTV leaf. Results: We successfully demonstrate real-time personalized margin adjustment in a phantom study. We measured a system latency of about 250 ms which we compensated by utilizing a respiratory motion prediction algorithm (ridge regression). With prediction in place we observe tracking accuracies better than 1mm. For TCM=0 (as during startup) an ITV-based treatment aperture is chosen, for TCM=1 a GTV-based aperture and for 0real-time. Normal tissue sparing is maximized. The worst case scenario results in delivering a plan with standard margins used in the clinic today.

    18. Real-time Optimization Method for Optical Parameters of Ion Implanters

      SciTech Connect (OSTI)

      Ogata, Seiji [ULVAC, Inc., Research and Development Div., 2500 Hagizono Chigasaki Kanagawa 253-8543 (Japan); Nishihashi, Tsutomu; Tonari, Kazuhiko [ULVAC, Inc., Inst. Semiconductor Technology, 1220-1 Suyama Susono Shizuoka 410-1231 (Japan); Yokoo, Hidekazu; Suzuki, Hideo; Hisamune, Takeshi [ULVAC, Inc., Semiconductor Equipment Div. 2, 1220-14 Suyama Susono Shizuoka 410-1231 (Japan); Araki, Masasumi [ULVAC, Inc., Software Development Control Solution Div., Hagizono Chigasaki Kanagawa 253-8543 (Japan)

      2006-11-13

      Real-time optimization for optical parameters, such as applied voltage to the electrostatic quadrupole lens, has been realized by using newly developed high-speed computation algorithm for charged particle beams. The virtual optimization code has been incorporated in the control system of SOPHI-200, which is the ULVAC'S new medium current ion implanter. Automatic setup within 5minutes is achieved for any recipe of implantation.

    19. Following a Structural Phase Transition in Real Time with Atomic Spatial

      Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

      Resolution Following a Structural Phase Transition in Real Time with Atmic Spatial Resolution Constructing atomic scale mechanisms for chemical, biological, and physical transformations of matter represents a critical goal for numerous scientific and technological challenges that face modern society. The natural length and time scale for atomic dynamics dictate that the scientific tools needed to construct these mechanisms possess Ångström (Å) spatial resolution with femtosecond (fs)

    20. Are there Gains from Pooling Real-Time Oil Price Forecasts?

      U.S. Energy Information Administration (EIA) Indexed Site

      Are there Gains from Pooling Real- Time Oil Price Forecasts? Christiane Baumeister, Bank of Canada Lutz Kilian, University of Michigan Thomas K. Lee, U.S. Energy Information Administration February 12, 2014 Independent Statistics & Analysis www.eia.gov U.S. Energy Information Administration Washington, DC 20585 This paper is released to encourage discussion and critical comment. The analysis and conclusions expressed here are those of the authors and not necessarily those of the U.S. Energy

    1. Want to Put an End to Capacity Markets? Think Real-Time Pricing

      SciTech Connect (OSTI)

      Reeder, Mark

      2006-07-15

      The amount of generation capacity that must be installed to meet resource adequacy requirements often causes the energy market to be suppressed to the point that it fails to produce sufficient revenues to attract new entry. A significant expansion in the use of real-time pricing can, over time, cause the energy market to become a more bountiful source of revenues for generators, allowing the elimination of the capacity market. (author)

    2. ARM Data Quality Office … Real-Time Assessment of Instrument Performance

      Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

      Data Quality Office Real-Time Assessment of ARM Data *Ken Kehoe *Randy Peppler *Karen Sonntag *Terra Thompson *Nathan Hiers *Chris Schwarz Cooperative Institute for Mesoscale Meteorological Studies, The University of Oklahoma, Norman, OK *Sean Moore ATK Mission Research, Santa Barbara, CA ARM Data Quality History Originally, each Site Scientist and Instrument Mentor was responsible for data quality analysis. This resulted in uneven treatment of instruments at the different ARM climate research

    3. Real-Time Water Quality Management in the Grassland Water District

      SciTech Connect (OSTI)

      Quinn, Nigel W.T.; Hanna, W. Mark; Hanlon, Jeremy S.; Burns, Josphine R.; Taylor, Christophe M.; Marciochi, Don; Lower, Scott; Woodruff, Veronica; Wright, Diane; Poole, Tim

      2004-12-10

      The purpose of the research project was to advance the concept of real-time water quality management in the San Joaquin Basin by developing an application to drainage of seasonal wetlands in the Grassland Water District. Real-time water quality management is defined as the coordination of reservoir releases, return flows and river diversions to improve water quality conditions in the San Joaquin River and ensure compliance with State water quality objectives. Real-time water quality management is achieved through information exchange and cooperation between shakeholders who contribute or withdraw flow and salt load to or from the San Joaquin River. This project complements a larger scale project that was undertaken by members of the Water Quality Subcommittee of the San Joaquin River Management Program (SJRMP) and which produced forecasts of flow, salt load and San Joaquin River assimilative capacity between 1999 and 2003. These forecasts can help those entities exporting salt load to the River to develop salt load targets as a mechanism for improving compliance with salinity objectives. The mass balance model developed by this project is the decision support tool that helps to establish these salt load targets. A second important outcome of this project was the development and application of a methodology for assessing potential impacts of real-time wetland salinity management. Drawdown schedules are typically tied to weather conditions and are optimized in traditional practices to maximize food sources for over-wintering wildfowl as well as providing a biological control (through germination temperature) of undesirable weeds that compete with the more proteinaceous moist soil plants such as swamp timothy, watergrass and smartweed. This methodology combines high resolution remote sensing, ground-truthing vegetation surveys using established survey protocols and soil salinity mapping using rapid, automated electromagnetic sensor technology. This survey methodology could be complemented with biological surveys of bird use and invertebrates to produce a robust long-term monitoring strategy for habitat health and sustainability.

    4. Principal Characteristics of a Modern Grid

      Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

      ... There are many stakeholders Consumers * Industrial * ... peak loads - lowering prices for consumers Improved grid reliability - decreasing today's consumer losses of >125 ...

    5. NSTX-U Advances in Real-Time C++11 on Linux (Journal Article) | SciTech

      Office of Scientific and Technical Information (OSTI)

      Connect NSTX-U Advances in Real-Time C++11 on Linux Citation Details In-Document Search This content will become publicly available on August 14, 2016 Title: NSTX-U Advances in Real-Time C++11 on Linux Programming languages like C and Ada combined with proprietary embedded operating systems have dominated the real-time application space for decades. The new C++11standard includes native, language-level support for concurrency, a required feature for any nontrivial event-oriented real-time

    6. Coiled tubing drilling: Real time MWD with dedicated powers to the BHA

      SciTech Connect (OSTI)

      Leismer, D.; Williams, B.; Pursell, J.

      1996-12-31

      This paper describes and analyzes the development and ongoing field trials of a Real Time MWD Coiled Tubing Drilling System. The new system holds great promise for advancing the state of coiled tubing drilling for certain applications. The system is designed for through-tubing, short radius re-entry and drilling highly deviated wells as horizontal laterals to a geologic target with minimum wellbore tortuosity. Currently, 4-1/2-in production tubing is the smallest re-entry candidate. Real time MWD and Bottom Hole Assembly (BHA) control is achieved by the use of a combination hydraulic and electric umbilical internal to the coiled tubing (CT), allowing continuous data collection and selective surface control of the BHA components. This communication line allows orientation in 10{degree} increments (or less) while drilling, applies weight-on-bit and operates a reusable circulating valve. In addition, the umbilical provides real-time monitoring of weight-on-bit, circulating pressures of the drilling fluid internal and external to the BHA, dedicated hydraulic system bottom hole pressure, downhole temperature and survey data from logging equipment.

    7. Reinventing the National Power Grid

      Broader source: Energy.gov [DOE]

      America’s power grid – while reliable today – needs a 21st century facelift, not only to accommodate the nation’s unfolding economic and security needs, but to achieve U.S. clean energy goals for a...

    8. Radiotherapy beyond cancer: Target localization in real-time MRI and treatment planning for cardiac radiosurgery

      SciTech Connect (OSTI)

      Ipsen, S.; Blanck, O.; Rades, D.; Oborn, B.; Bode, F.; Liney, G.; Hunold, P.; Schweikard, A.; Keall, P. J.

      2014-12-15

      Purpose: Atrial fibrillation (AFib) is the most common cardiac arrhythmia that affects millions of patients world-wide. AFib is usually treated with minimally invasive, time consuming catheter ablation techniques. While recently noninvasive radiosurgery to the pulmonary vein antrum (PVA) in the left atrium has been proposed for AFib treatment, precise target location during treatment is challenging due to complex respiratory and cardiac motion. A MRI linear accelerator (MRI-Linac) could solve the problems of motion tracking and compensation using real-time image guidance. In this study, the authors quantified target motion ranges on cardiac magnetic resonance imaging (MRI) and analyzed the dosimetric benefits of margin reduction assuming real-time motion compensation was applied. Methods: For the imaging study, six human subjects underwent real-time cardiac MRI under free breathing. The target motion was analyzed retrospectively using a template matching algorithm. The planning study was conducted on a CT of an AFib patient with a centrally located esophagus undergoing catheter ablation, representing an ideal case for cardiac radiosurgery. The target definition was similar to the ablation lesions at the PVA created during catheter treatment. Safety margins of 0 mm (perfect tracking) to 8 mm (untracked respiratory motion) were added to the target, defining the planning target volume (PTV). For each margin, a 30 Gy single fraction IMRT plan was generated. Additionally, the influence of 1 and 3 T magnetic fields on the treatment beam delivery was simulated using Monte Carlo calculations to determine the dosimetric impact of MRI guidance for two different Linac positions. Results: Real-time cardiac MRI showed mean respiratory target motion of 10.2 mm (superior–inferior), 2.4 mm (anterior–posterior), and 2 mm (left–right). The planning study showed that increasing safety margins to encompass untracked respiratory motion leads to overlapping structures even in the ideal scenario, compromising either normal tissue dose constraints or PTV coverage. The magnetic field caused a slight increase in the PTV dose with the in-line MRI-Linac configuration. Conclusions: The authors’ results indicate that real-time tracking and motion compensation are mandatory for cardiac radiosurgery and MRI-guidance is feasible, opening the possibility of treating cardiac arrhythmia patients completely noninvasively.

    9. Answering Your Questions about Grid Modernization | Department of Energy

      Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

      Answering Your Questions about Grid Modernization Answering Your Questions about Grid Modernization June 18, 2013 - 10:47am Addthis Patricia A. Hoffman Patricia A. Hoffman Assistant Secretary, Office of Electricity Delivery & Energy Reliability Smart Grid Recap Find other articles in the Smart Grid Week series by visiting our Smart Grid page. During last week's Smart Grid Week, we highlighted some of the efforts currently underway to modernize the nation's electric grid. Below are answers to

    10. Agent Concept for Intelligent Distributed Coordination in the Electric Power Grid

      SciTech Connect (OSTI)

      SMATHERS, DOUGLAS C.; GOLDSMITH, STEVEN Y.

      2001-03-01

      Intelligent agents and multi-agent systems promise to take information management for real-time control of the power grid to a new level. This report presents our concept for intelligent agents to mediate and coordinate communications between Control Areas and Security Coordinators for real-time control of the power grid. An appendix describes the organizations and publications that deal with agent technologies.

    11. Grid Technologies | GE Global Research

      Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

      Systems Integration » Grid Performance and Reliability Grid Performance and Reliability 2 way power flow orange2.png As the solar industry moves towards achieving the SunShot Initiative goals, the electric power system must evolve to handle large-scale changes in transmission and distribution (T&D) planning and operations in order to accommodate increasing penetrations of distributed PV systems. Effectively interconnecting variable PV generation requires forward thinking and dynamic

    12. Grid Integration

      SciTech Connect (OSTI)

      Not Available

      2008-09-01

      Summarizes the goals and activities of the DOE Solar Energy Technologies Program efforts within its grid integration subprogram.

    13. Transmission Planning | Department of Energy

      Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

      Activity Areas Real Time Grid Reliability Management Reliability and Markets Load as a ... and performing real-time analysis of market behavior and its impact on market performance. ...

    14. Principal Characteristics of a Modern Grid

      Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

      Funded by the U.S. Department of Energy, Office of Electricity Delivery and Energy Reliability 2 Office of Electricity Delivery and Energy Reliability MODERN GRID S T R A T E G Y ...

    15. Principal Characteristics of a Modern Grid

      Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

      Funded by the U.S. Department of Energy Office of Electricity Delivery and Energy Reliability 2 Office of Electricity Delivery and Energy Reliability MODERN GRID S T R A T E G Y 2 ...

    16. Principal Characteristics of a Modern Grid

      Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

      Funded by the U.S. Department of Energy, Office of Electricity Delivery and Energy Reliability Office of Electricity Delivery and Energy Reliability MODERN GRID S T R A T E G Y ...

    17. Principal Characteristics of a Modern Grid

      Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

      Funded by the U.S. Department of Energy, Office of Electricity Delivery and Energy Reliability Office of Electricity Delivery and Energy Reliability MODERN GRID S T R A T E G Y 2 ...

    18. Principal Characteristics of a Modern Grid

      Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

      Delivery and Energy Reliability Conducted by the National Energy Technology Laboratory Office of Electricity Delivery and Energy Reliability MODERN GRID S T R A T E G Y 2 ...

    19. Smart Grid Investment Grant Recipient Information

      Broader source: Energy.gov [DOE]

      The Department of Energys Office of Electricity Delivery and Energy Reliabilitys goal was to expeditiously negotiate the Smart Grid Investment Grant awards so each recipient could begin implementing their project in a timely fashion.

    20. Real-time and imaginary-time quantum hierarchal Fokker-Planck equations

      SciTech Connect (OSTI)

      Tanimura, Yoshitaka

      2015-04-14

      We consider a quantum mechanical system represented in phase space (referred to hereafter as “Wigner space”), coupled to a harmonic oscillator bath. We derive quantum hierarchal Fokker-Planck (QHFP) equations not only in real time but also in imaginary time, which represents an inverse temperature. This is an extension of a previous work, in which we studied a spin-boson system, to a Brownian system. It is shown that the QHFP in real time obtained from a correlated thermal equilibrium state of the total system possesses the same form as those obtained from a factorized initial state. A modified terminator for the hierarchal equations of motion is introduced to treat the non-Markovian case more efficiently. Using the imaginary-time QHFP, numerous thermodynamic quantities, including the free energy, entropy, internal energy, heat capacity, and susceptibility, can be evaluated for any potential. These equations allow us to treat non-Markovian, non-perturbative system-bath interactions at finite temperature. Through numerical integration of the real-time QHFP for a harmonic system, we obtain the equilibrium distributions, the auto-correlation function, and the first- and second-order response functions. These results are compared with analytically exact results for the same quantities. This provides a critical test of the formalism for a non-factorized thermal state and elucidates the roles of fluctuation, dissipation, non-Markovian effects, and system-bath coherence. Employing numerical solutions of the imaginary-time QHFP, we demonstrate the capability of this method to obtain thermodynamic quantities for any potential surface. It is shown that both types of QHFP equations can produce numerical results of any desired accuracy. The FORTRAN source codes that we developed, which allow for the treatment of Wigner space dynamics with any potential form (TanimuranFP15 and ImTanimuranFP15), are provided as the supplementary material.

    1. AN INTELLIGENT SENSOR FRAMEWORK FOR THE POWER GRID

      SciTech Connect (OSTI)

      Akyol, Bora A.; Haack, Jereme N.; Tews, Cody W.; Carpenter, Brandon J.; Kulkarni, Anand V.; Craig, Philip A.

      2011-08-10

      The number of sensors connected to the electric power system is expected to grow by several orders of magnitude by 2020. However, the information networks which will transmit and analyze the resulting data are ill-equipped to handle the resulting volume with reliable real-time delivery. Without the ability to manage and use this data, deploying sensors such as phasor measurement units in the transmission system and smart meters in the distribution system will not result in the desired improvements in the power grid. The ability to exploit the massive data being generated by new sensors would allow for more efficient flow of power and increased survivability of the grid. Additionally, the power systems of today are not capable of managing two-way power flow to accommodate distributed generation capabilities due to concerns about system stability and lack of system flexibility. The research that we are performing creates a framework to add 'intelligence' to the sensors and actuators being used today in the electric power system. Sensors that use our framework will be capable of sharing information through the various layers of the electric power system to enable two-way information flow to help facilitate integration of distributed resources. Several techniques are considered including use of peer-to-peer communication as well as distributed agents.

    2. In-Situ Real Time Monitoring and Control of Mold Making and Filling Processes: Final Report

      SciTech Connect (OSTI)

      Mohamed Abdelrahman; Kenneth Currie

      2010-12-22

      This project presents a model for addressing several objectives envisioned by the metal casting industries through the integration of research and educational components. It provides an innovative approach to introduce technologies for real time characterization of sand molds, lost foam patterns and monitoring of the mold filling process. The technology developed will enable better control over the casting process. It is expected to reduce scrap and variance in the casting quality. A strong educational component is integrated into the research plan to utilize increased awareness of the industry professional, the potential benefits of the developed technology, and the potential benefits of cross cutting technologies.

    3. Development plan for an advanced drilling system with real-time diagnostics (Diagnostics-While-Drilling)

      SciTech Connect (OSTI)

      FINGER,JOHN T.; MANSURE,ARTHUR J.; PRAIRIE,MICHAEL R.; GLOWKA,D.A.

      2000-02-01

      This proposal provides the rationale for an advanced system called Diagnostics-while-drilling (DWD) and describes its benefits, preliminary configuration, and essential characteristics. The central concept is a closed data circuit in which downhole sensors collect information and send it to the surface via a high-speed data link, where it is combined with surface measurements and processed through drilling advisory software. The driller then uses this information to adjust the drilling process, sending control signals back downhole with real-time knowledge of their effects on performance. The report presents background of related previous work, and defines a Program Plan for US Department of Energy (DOE), university, and industry cooperation.

    4. Sawtooth Pacing by Real-Time Auxiliary Power Control in a Tokamak Plasma

      SciTech Connect (OSTI)

      Goodman, T. P.; Felici, F.; Sauter, O.; Graves, J. P.

      2011-06-17

      In the standard scenario of tokamak plasma operation, sawtooth crashes are the main perturbations that can trigger performance-degrading, and potentially disruption-generating, neoclassical tearing modes. This Letter demonstrates sawtooth pacing by real-time control of the auxiliary power. It is shown that the sawtooth crash takes place in a reproducible manner shortly after the removal of that power, and this can be used to precisely prescribe, i.e., pace, the individual sawteeth. In combination with preemptive stabilization of the neoclassical tearing modes, sawtooth pacing provides a new sawtooth control paradigm for improved performance in burning plasmas.

    5. Real-time, interactive animation of deformable two- and three-dimensional objects

      DOE Patents [OSTI]

      Desbrun, Mathieu; Schroeder, Peter; Meyer, Mark; Barr, Alan H.

      2003-06-03

      A method of updating in real-time the locations and velocities of mass points of a two- or three-dimensional object represented by a mass-spring system. A modified implicit Euler integration scheme is employed to determine the updated locations and velocities. In an optional post-integration step, the updated locations are corrected to preserve angular momentum. A processor readable medium and a network server each tangibly embodying the method are also provided. A system comprising a processor in combination with the medium, and a system comprising the server in combination with a client for accessing the server over a computer network, are also provided.

    6. Measurement of bow tie profiles in CT scanners using a real-time dosimeter

      SciTech Connect (OSTI)

      Whiting, Bruce R.; Evans, Joshua D.; Williamson, Jeffrey F.; Dohatcu, Andreea C.; Politte, David G.

      2014-10-15

      Purpose: Several areas of computed tomography (CT) research require knowledge about the intensity profile of the x-ray fan beam that is introduced by a bow tie filter. This information is considered proprietary by CT manufacturers, so noninvasive measurement methods are required. One method using real-time dosimeters has been proposed in the literature. A commercially available dosimeter was used to apply that method, and analysis techniques were developed to extract fan beam profiles from measurements. Methods: A real-time ion chamber was placed near the periphery of an empty CT gantry and the dose rate versus time waveform was recorded as the x-ray source rotated about the isocenter. In contrast to previously proposed analysis methods that assumed a pointlike detector, the finite-size ion chamber received varying amounts of coverage by the collimated x-ray beam during rotation, precluding a simple relationship between the source intensity as a function of fan beam angle and measured intensity. A two-parameter model for measurement intensity was developed that included both effective collimation width and source-to-detector distance, which then was iteratively solved to minimize the error between duplicate measurements at corresponding fan beam angles, allowing determination of the fan beam profile from measured dose-rate waveforms. Measurements were performed on five different scanner systems while varying parameters such as collimation, kVp, and bow tie filters. On one system, direct measurements of the bow tie profile were collected for comparison with the real-time dosimeter technique. Results: The data analysis method for a finite-size detector was found to produce a fan beam profile estimate with a relative error between duplicate measurement intensities of <5%. It was robust over a wide range of collimation widths (e.g., 1–40 mm), producing fan beam profiles that agreed with a relative error of 1%–5%. Comparison with a direct measurement technique on one system produced agreement with a relative error of 2%–6%. Fan beam profiles were found to differ for different filter types on a given system and between different vendors. Conclusions: A commercially available real-time dosimeter probe was found to be a convenient and accurate instrument for measuring fan beam profiles. An analysis method was developed that could handle a wide range of collimation widths by explicitly considering the finite width of the ion chamber. Relative errors in the profiles were found to be less than 5%. Measurements of five different clinical scanners demonstrate the variation in bow tie designs, indicating that generic bow tie models will not be adequate for CT system research.

    7. Acoustic sensor for real-time control for the inductive heating process

      DOE Patents [OSTI]

      Kelley, John Bruce; Lu, Wei-Yang; Zutavern, Fred J.

      2003-09-30

      Disclosed is a system and method for providing closed-loop control of the heating of a workpiece by an induction heating machine, including generating an acoustic wave in the workpiece with a pulsed laser; optically measuring displacements of the surface of the workpiece in response to the acoustic wave; calculating a sub-surface material property by analyzing the measured surface displacements; creating an error signal by comparing an attribute of the calculated sub-surface material properties with a desired attribute; and reducing the error signal below an acceptable limit by adjusting, in real-time, as often as necessary, the operation of the inductive heating machine.

    8. Real-time x-ray studies of indium island growth kinetics

      SciTech Connect (OSTI)

      Demasi, Alexander; Rainville, Meliha G.; Ludwig, Karl F.

      2015-03-15

      The authors have investigated the early stages of indium island formation and growth by vapor phase deposition on room temperature sapphire using real-time grazing incidence small angle x-ray scattering (GISAXS), followed by ex-situ atomic force microscopy and scanning electron microscopy. The results are consistent with the formation and coalescence of hemispherical islands, as described by Family and Meakin. Monte Carlo simulations of systems of coalescing islands were used to supplement and quantify the results of GISAXS, and a good agreement is seen between the data and the simulations.

    9. The first clinical treatment with kilovoltage intrafraction monitoring (KIM): A real-time image guidance method

      SciTech Connect (OSTI)

      Keall, Paul J. O’Brien, Ricky; Huang, Chen-Yu; Aun Ng, Jin; Colvill, Emma; Rugaard Poulsen, Per; Fledelius, Walther; Juneja, Prabhjot; Booth, Jeremy T.; Simpson, Emma; Bell, Linda; Alfieri, Florencia; Eade, Thomas; Kneebone, Andrew

      2015-01-15

      Purpose: Kilovoltage intrafraction monitoring (KIM) is a real-time image guidance method that uses widely available radiotherapy technology, i.e., a gantry-mounted x-ray imager. The authors report on the geometric and dosimetric results of the first patient treatment using KIM which occurred on September 16, 2014. Methods: KIM uses current and prior 2D x-ray images to estimate the 3D target position during cancer radiotherapy treatment delivery. KIM software was written to process kilovoltage (kV) images streamed from a standard C-arm linear accelerator with a gantry-mounted kV x-ray imaging system. A 120° pretreatment kV imaging arc was acquired to build the patient-specific 2D to 3D motion correlation. The kV imager was activated during the megavoltage (MV) treatment, a dual arc VMAT prostate treatment, to estimate the 3D prostate position in real-time. All necessary ethics, legal, and regulatory requirements were met for this clinical study. The quality assurance processes were completed and peer reviewed. Results: During treatment, a prostate position offset of nearly 3 mm in the posterior direction was observed with KIM. This position offset did not trigger a gating event. After the treatment, the prostate motion was independently measured using kV/MV triangulation, resulting in a mean difference of less than 0.6 mm and standard deviation of less than 0.6 mm in each direction. The accuracy of the marker segmentation was visually assessed during and after treatment and found to be performing well. During treatment, there were no interruptions due to performance of the KIM software. Conclusions: For the first time, KIM has been used for real-time image guidance during cancer radiotherapy. The measured accuracy and precision were both submillimeter for the first treatment fraction. This clinical translational research milestone paves the way for the broad implementation of real-time image guidance to facilitate the detection and correction of geometric and dosimetric errors, and resultant improved clinical outcomes, in cancer radiotherapy.

    10. NREL Smart Grid Projects

      SciTech Connect (OSTI)

      Hambrick, J.

      2012-01-01

      Although implementing Smart Grid projects at the distribution level provides many advantages and opportunities for advanced operation and control, a number of significant challenges must be overcome to maintain the high level of safety and reliability that the modern grid must provide. For example, while distributed generation (DG) promises to provide opportunities to increase reliability and efficiency and may provide grid support services such as volt/var control, the presence of DG can impact distribution operation and protection schemes. Additionally, the intermittent nature of many DG energy sources such as photovoltaics (PV) can present a number of challenges to voltage regulation, etc. This presentation provides an overview a number of Smart Grid projects being performed by the National Renewable Energy Laboratory (NREL) along with utility, industry, and academic partners. These projects include modeling and analysis of high penetration PV scenarios (with and without energy storage), development and testing of interconnection and microgrid equipment, as well as the development and implementation of advanced instrumentation and data acquisition used to analyze the impacts of intermittent renewable resources. Additionally, standards development associated with DG interconnection and analysis as well as Smart Grid interoperability will be discussed.

    11. Principal Characteristics of a Modern Grid

      Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

      What is the Smart Grid? Illinois Smart Grid Initiative Joe Miller - Modern Grid Strategy Team June 3, 2008 1 Conducted by the National Energy Technology Laboratory Funded by the U.S. Department of Energy Office of Electricity Delivery and Energy Reliability 2 Office of Electricity Delivery and Energy Reliability MODERN GRID S T R A T E G Y 2 What is the role of the MGS? Define a vision for the Modern Grid Reach out to stakeholders to gain consensus Assist in the identification and resolution of

    12. Principal Characteristics of a Modern Grid

      Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

      PSC Missouri - Utility Meeting Joe Miller, Steve Pullins - Modern Grid Team January 9, 2008 1 Conducted by the National Energy Technology Laboratory Funded by the U.S. Department of Energy, Office of Electricity Delivery and Energy Reliability 2 Office of Electricity Delivery and Energy Reliability MODERN GRID S T R A T E G Y Agenda Topics What is the Modern Grid Strategy? What is the Modern Grid? Why do we need to modernize the grid? What are some of the benefits? How do we achieve a Modern

    13. Principal Characteristics of a Modern Grid

      Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

      Modern Grid Wisconsin Public Utility Institute and UW Energy Institute Joe Miller, Steve Pullins, Steve Bossart - Modern Grid Team April 29, 2008 1 Conducted by the National Energy Technology Laboratory Funded by the U.S. Department of Energy, Office of Electricity Delivery and Energy Reliability 2 Office of Electricity Delivery and Energy Reliability MODERN GRID S T R A T E G Y Today's Objectives To share our views on several Modern Grid concepts: What is the Modern Grid Strategy? What is the

    14. ABB Response to Smart Grid RFI. November 1, 2010 | Department of Energy

      Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

      Response to Smart Grid RFI. November 1, 2010 ABB Response to Smart Grid RFI. November 1, 2010 Thank you for the opportunity to provide information to the Department of Energy Federal Register Doc. 2010-23251 filed September 16, 2010. With our recent acquisition of Ventyx, ABB is one of the few companies in the smart grid space that can approach the entire smart grid value chain, from distributed generation at the residential level to distribution automation and real-time conditioned based

    15. Real-time Shape-based Particle Separation and Detailed In-situ Particle Shape Characterization

      SciTech Connect (OSTI)

      Beranek, Josef; Imre, D.; Zelenyuk, Alla

      2012-02-07

      Particle shape is an important attribute that is very difficult to characterize. We present a new portable system that offers, for the first time, the opportunity to separate particles with different shapes and characterize their chemical and physical properties, including their dynamic shape factors (DSFs) in the transition and free-molecular regimes, with high precision, in-situ, and in real-time. The system uses a new generation aerosol particle mass analyzer (APM) to classify particles based on their masses and transport them to a differential mobility analyzer (DMA) that is used to select particles of one charge, one mass, and one shape. These highly uniform particles are ready for use and/or characterization by any application or analytical tool. We combine APM and DMA with our single particle mass spectrometer, SPLAT II, to form the ADS, and demonstrate its utility to measure in real-time individual particle compositions and vacuum aerodynamic diameters to yield, for each selected shape, particle DSFs in two flow regimes. We apply the ADS to characterize aspherical ammonium sulfate and NaCl particles and show that both particle types have wide distribution of particle shapes with DSFs from nearly 1 to 1.5.

    16. Cherenkov Video Imaging Allows for the First Visualization of Radiation Therapy in Real Time

      SciTech Connect (OSTI)

      Jarvis, Lesley A.; Zhang, Rongxiao; Gladstone, David J.; Jiang, Shudong; Hitchcock, Whitney; Friedman, Oscar D.; Glaser, Adam K.; Jermyn, Michael; Pogue, Brian W.

      2014-07-01

      Purpose: To determine whether Cherenkov light imaging can visualize radiation therapy in real time during breast radiation therapy. Methods and Materials: An intensified charge-coupled device (CCD) camera was synchronized to the 3.25-μs radiation pulses of the clinical linear accelerator with the intensifier set × 100. Cherenkov images were acquired continuously (2.8 frames/s) during fractionated whole breast irradiation with each frame an accumulation of 100 radiation pulses (approximately 5 monitor units). Results: The first patient images ever created are used to illustrate that Cherenkov emission can be visualized as a video during conditions typical for breast radiation therapy, even with complex treatment plans, mixed energies, and modulated treatment fields. Images were generated correlating to the superficial dose received by the patient and potentially the location of the resulting skin reactions. Major blood vessels are visible in the image, providing the potential to use these as biological landmarks for improved geometric accuracy. The potential for this system to detect radiation therapy misadministrations, which can result from hardware malfunction or patient positioning setup errors during individual fractions, is shown. Conclusions: Cherenkoscopy is a unique method for visualizing surface dose resulting in real-time quality control. We propose that this system could detect radiation therapy errors in everyday clinical practice at a time when these errors can be corrected to result in improved safety and quality of radiation therapy.

    17. Optimization Based Data Mining Approah for Forecasting Real-Time Energy Demand

      SciTech Connect (OSTI)

      Omitaomu, Olufemi A; Li, Xueping; Zhou, Shengchao

      2015-01-01

      The worldwide concern over environmental degradation, increasing pressure on electric utility companies to meet peak energy demand, and the requirement to avoid purchasing power from the real-time energy market are motivating the utility companies to explore new approaches for forecasting energy demand. Until now, most approaches for forecasting energy demand rely on monthly electrical consumption data. The emergence of smart meters data is changing the data space for electric utility companies, and creating opportunities for utility companies to collect and analyze energy consumption data at a much finer temporal resolution of at least 15-minutes interval. While the data granularity provided by smart meters is important, there are still other challenges in forecasting energy demand; these challenges include lack of information about appliances usage and occupants behavior. Consequently, in this paper, we develop an optimization based data mining approach for forecasting real-time energy demand using smart meters data. The objective of our approach is to develop a robust estimation of energy demand without access to these other building and behavior data. Specifically, the forecasting problem is formulated as a quadratic programming problem and solved using the so-called support vector machine (SVM) technique in an online setting. The parameters of the SVM technique are optimized using simulated annealing approach. The proposed approach is applied to hourly smart meters data for several residential customers over several days.

    18. Automated real-time detection of defects during machining of ceramics

      DOE Patents [OSTI]

      Ellingson, W.A.; Sun, J.

      1997-11-18

      Apparatus for the automated real-time detection and classification of defects during the machining of ceramic components employs an elastic optical scattering technique using polarized laser light. A ceramic specimen is continuously moved while being machined. Polarized laser light is directed onto the ceramic specimen surface at a fixed position just aft of the machining tool for examination of the newly machined surface. Any foreign material near the location of the laser light on the ceramic specimen is cleared by an air blast. As the specimen is moved, its surface is continuously scanned by the polarized laser light beam to provide a two-dimensional image presented in real-time on a video display unit, with the motion of the ceramic specimen synchronized with the data acquisition speed. By storing known ``feature masks`` representing various surface and sub-surface defects and comparing measured defects with the stored feature masks, detected defects may be automatically characterized. Using multiple detectors, various types of defects may be detected and classified. 14 figs.

    19. Automated real-time detection of defects during machining of ceramics

      DOE Patents [OSTI]

      Ellingson, William A.; Sun, Jiangang

      1997-01-01

      Apparatus for the automated real-time detection and classification of defects during the machining of ceramic components employs an elastic optical scattering technique using polarized laser light. A ceramic specimen is continuously moved while being machined. Polarized laser light is directed onto the ceramic specimen surface at a fixed position just aft of the machining tool for examination of the newly machined surface. Any foreign material near the location of the laser light on the ceramic specimen is cleared by an air blast. As the specimen is moved, its surface is continuously scanned by the polarized laser light beam to provide a two-dimensional image presented in real-time on a video display unit, with the motion of the ceramic specimen synchronized with the data acquisition speed. By storing known "feature masks" representing various surface and sub-surface defects and comparing measured defects with the stored feature masks, detected defects may be automatically characterized. Using multiple detectors, various types of defects may be detected and classified.

    20. Real-time Bacterial Detection by Single Cell Based Sensors UsingSynchrotron FTIR Spectromicroscopy

      SciTech Connect (OSTI)

      Veiseh, Mandana; Veiseh, Omid; Martin, Michael C.; Bertozzi,Carolyn; Zhang, Miqin

      2005-08-10

      Microarrays of single macrophage cell based sensors weredeveloped and demonstrated for real time bacterium detection bysynchrotron FTIR microscopy. The cells were patterned on gold-SiO2substrates via a surface engineering technique by which the goldelectrodes were immobilized with fibronectin to mediate cell adhesion andthe silicon oxide background were passivated with PEG to resist proteinadsorption and cell adhesion. Cellular morphology and IR spectra ofsingle, double, and triple cells on gold electrodes exposed tolipopolysaccharide (LPS) of different concentrations were compared toreveal the detection capabilities of these biosensors. The single-cellbased sensors were found to generate the most significant IR wave numbervariation and thus provide the highest detection sensitivity. Changes inmorphology and IR spectrum for single cells exposed to LPS were found tobe time- and concentration-dependent and correlated with each other verywell. FTIR spectra from single cell arrays of gold electrodes withsurface area of 25 mu-m2, 100 mu-m2, and 400 mu-m2 were acquired usingboth synchrotron and conventional FTIR spectromicroscopes to study thesensitivity of detection. The results indicated that the developedsingle-cell platform can be used with conventional FTIRspectromicroscopy. This technique provides real-time, label-free, andrapid bacterial detection, and may allow for statistic and highthroughput analyses, and portability.

    1. Real-time data acquisition and telemetry based irrigation control system

      DOE Patents [OSTI]

      Slater, John M.; Svoboda, John M.

      2005-12-13

      A data acquisition and telemetry based control system for use in facilitating substantially real time management of an agricultural irrigation system. The soil moisture sensor includes a reader and a plurality of probes. The probes each include an electronic circuit having a moisture sensing capacitor in operative communication with the soil whose moisture is to be measured. Each probe also includes a receive/transmit antenna and the reader includes a transmit/receive antenna, so that as the reader passes near the probe, the reader transmits a digital excitation signal to the electronic circuit of the biodegradable probe via an inductive couple formed between the transmit/receive antenna of the reader and the receive/transmit coil of the probe. The electronic circuit uses an energy component of the excitation signal to generate a digital data signal which indicates the moisture content of the soil adjacent to the moisture sensing capacitor. The probe sends the data signal to the reader which then uses the data signal to develop a corresponding set of watering instructions which are then transmitted to a control module in communication with the irrigation system. The control module sends corresponding control signals to nozzles of the irrigation system causing the irrigation system to disperse water in a manner consistent with the moisture content data transmitted by the probes to the reader. Because the irrigation system moves continuously through the field to be irrigated, the moisture content data acquisition and resultant water dispersal by the irrigation system occur substantially in real time.

    2. Principal Characteristics of a Modern Grid

      Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

      Structuring the Smart Grid Framework: Application of Complex Systems Engineering Joe Miller - DOE / NETL Modern Grid Team Lead Committee on Science, Engineering, and Public Policy May 15, 2009 1 Conducted by the National Energy Technology Laboratory Funded by the U.S. Department of Energy, Office of Electricity Delivery and Energy Reliability Office of Electricity Delivery and Energy Reliability MODERN GRID S T R A T E G Y This material is based upon work supported by the Department of Energy

    3. Grid Architecture

      Broader source: Energy.gov [DOE]

      This report describes the discipline of grid architecture and shows how it has been adapted from the combination of system architecture, network theory, and control engineering to apply to the issues of grid modernization. It shows how grid architecture aids in managing complexity, supports stakeholder communication about the grid, supplies methods to identify gaps and constraints, and provides the ability to compare architectural choices analytically. This approach views the grid as a network of structures, including electrical structure, industry, regulatory, and market structure, information systems and communications, and control and coordination structures and provides the means to understand and plan their interactions. The report then provides architectural views of the existing US power grid structures, with regional and other specializations. It illustrates how organized central wholesale markets are integrated with bulk system control, how distribution level changes related to penetration of Distributed Energy Resources impact both distribution and bulk systems operations, and how certain existing grid structures limit the ability to implement forward-looking changes to the grid. Finally the report provides selected forward looking architectural views for advanced distribution, integrated storage, and wide scale coordination via layered decomposition. The report contains a number of explicitly labeled architectural insights to aid in managing the complexity of grid modernization.

    4. Blade Reliability Collaborative

      Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

      Reliability Collaborative - Sandia Energy Energy Search Icon Sandia Home Locations Contact Us Employee Locator Energy & Climate Secure & Sustainable Energy Future Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 Geothermal Natural Gas Safety, Security & Resilience of the Energy Infrastructure Energy Storage Nuclear Power & Engineering Grid Modernization Battery Testing Nuclear Fuel Cycle Defense Waste Management Programs

    5. Locke, Chu Announce Significant Steps in Smart Grid Development |

      Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

      Department of Energy Locke, Chu Announce Significant Steps in Smart Grid Development Locke, Chu Announce Significant Steps in Smart Grid Development May 18, 2009 - 12:00am Addthis WASHINGTON - U.S. Commerce Secretary Gary Locke and U.S. Energy Secretary Steven Chu today announced significant progress that will help expedite development of a nationwide "smart" electric power grid. A Smart Grid would replace the current, outdated system and employ real-time, two-way communication

    6. Real-Time Detection Methods to Monitor TRU Compositions in UREX+Process Streams

      SciTech Connect (OSTI)

      McDeavitt, Sean; Charlton, William; Indacochea, J Ernesto; taleyarkhan, Rusi; Pereira, Candido

      2013-03-01

      The U.S. Department of Energy has developed advanced methods for reprocessing spent nuclear fuel. The majority of this development was accomplished under the Advanced Fuel Cycle Initiative (AFCI), building on the strong legacy of process development R&D over the past 50 years. The most prominent processing method under development is named UREX+. The name refers to a family of processing methods that begin with the Uranium Extraction (UREX) process and incorporate a variety of other methods to separate uranium, selected fission products, and the transuranic (TRU) isotopes from dissolved spent nuclear fuel. It is important to consider issues such as safeguards strategies and materials control and accountability methods. Monitoring of higher actinides during aqueous separations is a critical research area. By providing on-line materials accountability for the processes, covert diversion of the materials streams becomes much more difficult. The importance of the nuclear fuel cycle continues to rise on national and international agendas. The U.S. Department of Energy is evaluating and developing advanced methods for safeguarding nuclear materials along with instrumentation in various stages of the fuel cycle, especially in material balance areas (MBAs) and during reprocessing of used nuclear fuel. One of the challenges related to the implementation of any type of MBA and/or reprocessing technology (e.g., PUREX or UREX) is the real-time quantification and control of the transuranic (TRU) isotopes as they move through the process. Monitoring of higher actinides from their neutron emission (including multiplicity) and alpha signatures during transit in MBAs and in aqueous separations is a critical research area. By providing on-line real-time materials accountability, diversion of the materials becomes much more difficult. The objective of this consortium was to develop real time detection methods to monitor the efficacy of the UREX+ process and to safeguard the separated TRUs against unlawful diversion from within a processing facility. To achieve this, a comprehensive strategy was implemented to incorporate traditional detectors and advanced Tensioned Metastable Fluid (TMFD) metastable fluid detectors (developed, in part, under this project) into a novel detector assembly coupled to the UREX+ centrifugal contactor array. The sections below provide a brief summary of the technical achievements completed during this project. The principal outcomes are documented in more complete details contained the doctoral dissertations and masters theses, journal papers, conference proceedings and additional items for more than the 35 publications that are listed in the program bibliography in Section 3.

    7. Electromagnetic Detection and Real-Time DMLC Adaptation to Target Rotation During Radiotherapy

      SciTech Connect (OSTI)

      Wu Junqing; Ruan, Dan; Cho, Byungchul; Sawant, Amit; Petersen, Jay; Newell, Laurence J.; Cattell, Herbert; Keall, Paul J.

      2012-03-01

      Purpose: Intrafraction rotation of more than 45 Degree-Sign and 25 Degree-Sign has been observed for lung and prostate tumors, respectively. Such rotation is not routinely adapted to during current radiotherapy, which may compromise tumor dose coverage. The aim of the study was to investigate the geometric and dosimetric performance of an electromagnetically guided real-time dynamic multileaf collimator (DMLC) tracking system to adapt to intrafractional tumor rotation. Materials/Methods: Target rotation was provided by changing the treatment couch angle. The target rotation was measured by a research Calypso system integrated with a real-time DMLC tracking system employed on a Varian linac. The geometric beam-target rotational alignment difference was measured using electronic portal images. The dosimetric accuracy was quantified using a two-dimensional ion chamber array. For each beam, the following five delivery modes were tested: 1) nonrotated target (reference); 2) fixed rotated target with tracking; 3) fixed rotated target without tracking; 4) actively rotating target with tracking; and 5) actively rotating target without tracking. Dosimetric performance of the latter four modes was measured and compared to the reference dose distribution using a 3 mm/3% {gamma}-test. Results: Geometrically, the beam-target rotational alignment difference was 0.3 Degree-Sign {+-} 0.6 Degree-Sign for fixed rotation and 0.3 Degree-Sign {+-} 1.3 Degree-Sign for active rotation. Dosimetrically, the average failure rate for the {gamma}-test for a fixed rotated target was 11% with tracking and 36% without tracking. The average failure rate for an actively rotating target was 9% with tracking and 35% without tracking. Conclusions: For the first time, real-time target rotation has been accurately detected and adapted to during radiation delivery via DMLC tracking. The beam-target rotational alignment difference was mostly within 1 Degree-Sign . Dose distributions to fixed and actively rotating targets with DMLC tracking were significantly superior to those without tracking.

    8. Reliability Engineering

      Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

      This document is approved for public release; further dissemination unlimited Reliability Engineering Reliability Engineering Current practice in reliability is often fragmented, ...

    9. Cybersecurity and the Smarter Grid (October 2014) | Department of Energy

      Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

      and the Smarter Grid (October 2014) Cybersecurity and the Smarter Grid (October 2014) An article by OE's Carol Hawk and Akhlesh Kaushiva in The Electricity Journal discusses cybersecurity for the power grid and how DOE and the energy sector are partnering to keep the smart grid reliable and secure. The article also presents insights of four Smart Grid Investment Grant (SGIG) recipients that are advancing state of the art of power grid security by designing cybersecurity into the foundation of

    10. Economic Benefits of Increasing Electric Grid Resilience to Weather Outages

      Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

      | Department of Energy Economic Benefits of Increasing Electric Grid Resilience to Weather Outages Economic Benefits of Increasing Electric Grid Resilience to Weather Outages In June 2011, President Obama released A Policy Framework for the 21st Century Grid which set out a four-pillared strategy for modernizing the electric grid. The initiative directed billions of dollars toward investments in 21st century smart grid technologies focused at increasing the grid's efficiency, reliability,

    11. Overture: The grid classes

      SciTech Connect (OSTI)

      Brislawn, K.; Brown, D.; Chesshire, G.; Henshaw, W.

      1997-01-01

      Overture is a library containing classes for grids, overlapping grid generation and the discretization and solution of PDEs on overlapping grids. This document describes the Overture grid classes, including classes for single grids and classes for collections of grids.

    12. Real time explosive hazard information sensing, processing, and communication for autonomous operation

      DOE Patents [OSTI]

      Versteeg, Roelof J; Few, Douglas A; Kinoshita, Robert A; Johnson, Doug; Linda, Ondrej

      2015-02-24

      Methods, computer readable media, and apparatuses provide robotic explosive hazard detection. A robot intelligence kernel (RIK) includes a dynamic autonomy structure with two or more autonomy levels between operator intervention and robot initiative A mine sensor and processing module (ESPM) operating separately from the RIK perceives environmental variables indicative of a mine using subsurface perceptors. The ESPM processes mine information to determine a likelihood of a presence of a mine. A robot can autonomously modify behavior responsive to an indication of a detected mine. The behavior is modified between detection of mines, detailed scanning and characterization of the mine, developing mine indication parameters, and resuming detection. Real time messages are passed between the RIK and the ESPM. A combination of ESPM bound messages and RIK bound messages cause the robot platform to switch between modes including a calibration mode, the mine detection mode, and the mine characterization mode.

    13. Real time explosive hazard information sensing, processing, and communication for autonomous operation

      DOE Patents [OSTI]

      Versteeg, Roelof J.; Few, Douglas A.; Kinoshita, Robert A.; Johnson, Douglas; Linda, Ondrej

      2015-12-15

      Methods, computer readable media, and apparatuses provide robotic explosive hazard detection. A robot intelligence kernel (RIK) includes a dynamic autonomy structure with two or more autonomy levels between operator intervention and robot initiative A mine sensor and processing module (ESPM) operating separately from the RIK perceives environmental variables indicative of a mine using subsurface perceptors. The ESPM processes mine information to determine a likelihood of a presence of a mine. A robot can autonomously modify behavior responsive to an indication of a detected mine. The behavior is modified between detection of mines, detailed scanning and characterization of the mine, developing mine indication parameters, and resuming detection. Real time messages are passed between the RIK and the ESPM. A combination of ESPM bound messages and RIK bound messages cause the robot platform to switch between modes including a calibration mode, the mine detection mode, and the mine characterization mode.

    14. Apparatus for real-time airborne particulate radionuclide collection and analysis

      DOE Patents [OSTI]

      Smart, John E.; Perkins, Richard W.

      2001-01-01

      An improved apparatus for collecting and analyzing an airborne particulate radionuclide having a filter mounted in a housing, the housing having an air inlet upstream of the filter and an air outlet downstream of the filter, wherein an air stream flows therethrough. The air inlet receives the air stream, the filter collects the airborne particulate radionuclide and permits a filtered air stream to pass through the air outlet. The improvement which permits real time counting is a gamma detecting germanium diode mounted downstream of the filter in the filtered air stream. The gamma detecting germanium diode is spaced apart from a downstream side of the filter a minimum distance for a substantially maximum counting detection while permitting substantially free air flow through the filter and uniform particulate radionuclide deposition on the filter.

    15. Real-Time Detection Method And System For Identifying Individual Aerosol Particles

      DOE Patents [OSTI]

      Gard, Eric Evan; Fergenson, David Philip

      2005-10-25

      A method and system of identifying individual aerosol particles in real time. Sample aerosol particles are compared against and identified with substantially matching known particle types by producing positive and negative test spectra of an individual aerosol particle using a bipolar single particle mass spectrometer. Each test spectrum is compared to spectra of the same respective polarity in a database of predetermined positive and negative spectra for known particle types and a set of substantially matching spectra is obtained. Finally the identity of the individual aerosol particle is determined from the set of substantially matching spectra by determining a best matching one of the known particle types having both a substantially matching positive spectrum and a substantially matching negative spectrum associated with the best matching known particle type.

    16. Real time control and numerical simulation of pipeline subjected to landslide

      SciTech Connect (OSTI)

      Cuscuna, S.; Giusti, G.; Gramola, C.

      1984-06-01

      This paper describes SNAM research activity in the study of behaviour and real-time control of pipelines in landslide areas. The subject can be delt considering three different aspects: 1. Geotechnical characterization of unstable soils. The mechanical parameters of soil and the landslide types are defined; 2. Structural analysis of pipe-soil system. By means of a finite element program it's possible to study the pipe-soil interaction; in this numerical code the soil parameters attend by the non-linear elastic behaviour of pipe restraints. The results of this analysis are the location of the expected most stressed sections of pipe and the global behaviour of pipe inside the soil. 3. Instrumental control. The adoption of a suitable appliance of vibrating wire strain gauges allows the strain control of pipe in time. The aim is to make possible timely interventions in order to guarantee the installation safety.

    17. Real-time spot size camera for pulsed high-energy radiographic machines

      SciTech Connect (OSTI)

      Watson, S.A.

      1993-06-01

      The focal spot size of an x-ray source is a critical parameter which degrades resolution in a flash radiograph. For best results, a small round focal spot is required. Therefore, a fast and accurate measurement of the spot size is highly desirable to facilitate machine tuning. This paper describes two systems developed for Los Alamos National Laboratory`s Pulsed High-Energy Radiographic Machine Emitting X-rays (PHERMEX) facility. The first uses a CCD camera combined with high-brightness floors, while the second utilizes phosphor storage screens. Other techniques typically record only the line spread function on radiographic film, while systems in this paper measure the more general two-dimensional point-spread function and associated modulation transfer function in real time for shot-to-shot comparison.

    18. Real-time spot size camera for pulsed high-energy radiographic machines

      SciTech Connect (OSTI)

      Watson, S.A.

      1993-01-01

      The focal spot size of an x-ray source is a critical parameter which degrades resolution in a flash radiograph. For best results, a small round focal spot is required. Therefore, a fast and accurate measurement of the spot size is highly desirable to facilitate machine tuning. This paper describes two systems developed for Los Alamos National Laboratory's Pulsed High-Energy Radiographic Machine Emitting X-rays (PHERMEX) facility. The first uses a CCD camera combined with high-brightness floors, while the second utilizes phosphor storage screens. Other techniques typically record only the line spread function on radiographic film, while systems in this paper measure the more general two-dimensional point-spread function and associated modulation transfer function in real time for shot-to-shot comparison.

    19. Induced fission of Pu240 within a real-time microscopic framework

      DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

      Bulgac, Aurel; Magierski, Piotr; Roche, Kenneth J.; Stetcu, Ionel

      2016-03-25

      Here, we describe the fissioning dynamics of 240Pu from a configuration in the proximity of the outer fission barrier to full scission and the formation of the fragments within an implementation of density functional theory extended to superfluid systems and real-time dynamics. The fission fragments emerge with properties similar to those determined experimentally, while the fission dynamics appears to be quite complex, with many excited shape and pairing modes. The evolution is found to be much slower than previously expected, and the ultimate role of the collective inertia is found to be negligible in this fully nonadiabatic treatment of nuclearmore » dynamics, where all collective degrees of freedom (CDOF) are included (unlike adiabatic treatments with a small number of CDOF).« less

    20. Technology survey for real-time monitoring of plutonium in a vitrifier off-gas system

      SciTech Connect (OSTI)

      Berg, J.M.; Veirs, D.K.

      1996-01-01

      We surveyed several promising measurement technologies for the real-time monitoring of plutonium in a vitrifier off-gas system. The vitrifier is being developed by Westinghouse Savannah River Corp. and will be used to demonstrate vitrification of plutonium dissolved in nitric acid for fissile material disposition. The risk of developing a criticality hazard in the off-gas processing equipment can be managed by using available measurement technologies. We identified several potential technologies and methods for detecting plutonium that are sensitive enough to detect the accumulation of a mass sufficient to form a criticality hazard. We recommend gross alpha-monitoring technologies as the most promising option for Westinghouse Savannah River Corp. to consider because that option appears to require the least additional development. We also recommend further consideration for several other technologies because they offer specific advantages and because gross alpha-monitoring could prove unsuitable when tested for this specific application.

    1. Process for fabricating device structures for real-time process control of silicon doping

      DOE Patents [OSTI]

      Weiner, Kurt H.

      2001-01-01

      Silicon device structures designed to allow measurement of important doping process parameters immediately after the doping step has occurred. The test structures are processed through contact formation using standard semiconductor fabrication techniques. After the contacts have been formed, the structures are covered by an oxide layer and an aluminum layer. The aluminum layer is then patterned to expose the contact pads and selected regions of the silicon to be doped. Doping is then performed, and the whole structure is annealed with a pulsed excimer laser. But laser annealing, unlike standard annealing techniques, does not effect the aluminum contacts because the laser light is reflected by the aluminum. Once the annealing process is complete, the structures can be probed, using standard techniques, to ascertain data about the doping step. Analysis of the data can be used to determine probable yield reductions due to improper execution of the doping step and thus provide real-time feedback during integrated circuit fabrication.

    2. Real time cumulant approach for charge-transfer satellites in x-ray photoemission spectra

      SciTech Connect (OSTI)

      Kas, Joshua J.; Vila, Fernando D.; Rehr, John J.; Chambers, Scott A.

      2015-03-01

      X-ray photoemission spectra generally exhibit satellite features in addition to quasi-particle peaks due to many-body excitations which have been of considerable theoretical and experimental interest. However, the satellites attributed to charge-transfer (CT) excitations in correlated materials have proved difficult to calculate from first principles. Here we report a real-time, real-space approach for such calculations based on a cumulant representation of the core-hole Green’s function and time-dependent density functional theory. This approach also yields an interpretation of CT satellites in terms of a complex oscillatory, transient response to a suddenly created core hole. Illustrative results for TiO2 and NiO are in good agreement with experiment.

    3. Real-time detection method and system for identifying individual aerosol particles

      DOE Patents [OSTI]

      Gard, Eric E. (San Francisco, CA); Coffee, Keith R. (Patterson, CA); Frank, Matthias (Oakland, CA); Tobias, Herbert J. (Kensington, CA); Fergenson, David P. (Alamo, CA); Madden, Norm (Livermore, CA); Riot, Vincent J. (Berkeley, CA); Steele, Paul T. (Livermore, CA); Woods, Bruce W. (Livermore, CA)

      2007-08-21

      An improved method and system of identifying individual aerosol particles in real time. Sample aerosol particles are collimated, tracked, and screened to determine which ones qualify for mass spectrometric analysis based on predetermined qualification or selection criteria. Screening techniques include one or more of determining particle size, shape, symmetry, and fluorescence. Only qualifying particles passing all screening criteria are subject to desorption/ionization and single particle mass spectrometry to produce corresponding test spectra, which is used to determine the identities of each of the qualifying aerosol particles by comparing the test spectra against predetermined spectra for known particle types. In this manner, activation cycling of a particle ablation laser of a single particle mass spectrometer is reduced.

    4. Real-time monitoring of plutonium content in uranium-plutonium alloys

      SciTech Connect (OSTI)

      Li, Shelly Xiaowei; Westphal, Brian Robert; Herrmann, Steven Douglas

      2015-09-01

      A method and device for the real-time, in-situ monitoring of Plutonium content in U--Pu Alloys comprising providing a crucible. The crucible has an interior non-reactive to a metallic U--Pu alloy within said interior of said crucible. The U--Pu alloy comprises metallic uranium and plutonium. The U--Pu alloy is heated to a liquid in an inert or reducing atmosphere. The heated U--Pu alloy is then cooled to a solid in an inert or reducing atmosphere. As the U--Pu alloy is cooled, the temperature of the U--Pu alloy is monitored. A solidification temperature signature is determined from the monitored temperature of the U--Pu alloy during the step of cooling. The amount of Uranium and the amount of Plutonium in the U--Pu alloy is then determined from the determined solidification temperature signature.

    5. Monitoring Acidophilic Microbes with Real-Time Polymerase Chain Reaction (PCR) Assays

      SciTech Connect (OSTI)

      Frank F. Roberto

      2008-08-01

      Many techniques that are used to characterize and monitor microbial populations associated with sulfide mineral bioleaching require the cultivation of the organisms on solid or liquid media. Chemolithotrophic species, such as Acidithiobacillus ferrooxidans and Leptospirillum ferrooxidans, or thermophilic chemolithotrophs, such as Acidianus brierleyi and Sulfolobus solfataricus can grow quite slowly, requiring weeks to complete efforts to identify and quantify these microbes associated with bioleach samples. Real-time PCR (polymerase chain reaction) assays in which DNA targets are amplified in the presence of fluorescent oligonucleotide primers, allowing the monitoring and quantification of the amplification reactions as they progress, provide a means of rapidly detecting the presence of microbial species of interest, and their relative abundance in a sample. This presentation will describe the design and use of such assays to monitor acidophilic microbes in the environment and in bioleaching operations. These assays provide results within 2-3 hours, and can detect less than 100 individual microbial cells.

    6. Real Time Optimizing Code for Stabilization and Control of Plasma Reactors

      Energy Science and Technology Software Center (OSTI)

      1995-09-25

      LOOP4 is a flexible real-time control code that acquires signals (input variables) from an array of sensors, that computes therefrom the actual state of the reactor system, that compares the actual state to the desired state (a goal), and that commands changes to reactor controls (output, or manipulated variables) in order to minimize the difference between the actual state of the reactor and the desired state. The difference between actual and desired states is quantifiedmore » in terms of a distance metric in the space defined by the sensor measurements. The desired state of the reactor is specified in terms of target values of sensor readings that were obtained previously during development and optimization of a process engineer using conventional techniques.« less

    7. Vehicle Technologies Office Merit Review 2015: Real-time Metrology for Li-ion Battery R&D and Manufacturing

      Broader source: Energy.gov [DOE]

      Presentation given by Applied Spectra at 2015 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about real-time metrology for Li...

    8. Vehicle Technologies Office Merit Review 2014: Real-time Metrology for Li-ion Battery R&D and Manufacturing

      Broader source: Energy.gov [DOE]

      Presentation given by Applied Spectra, Inc at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about real-time metrology for...

    9. In vivo real-time dosimetric verification in high dose rate prostate brachytherapy

      SciTech Connect (OSTI)

      Seymour, Erin L.; Downes, Simon J.; Fogarty, Gerald B.; Izard, Michael A.; Metcalfe, Peter

      2011-08-15

      Purpose: To evaluate the performance of a diode array in the routine verification of planned dose to points inside the rectum from prostate high dose rate (HDR) brachytherapy using a real-time planning system. Methods: A dosimetric study involving 28 patients was undertaken where measured doses received during treatment were compared to those calculated by the treatment planning system (TPS). After the ultrasound imaging required for treatment planning had been recorded, the ultrasound probe was replaced with a geometric replica that contained an 8 mm diameter cylindrical cavity in which a PTW diode array type 9112 was placed. The replica probe was then positioned inside the rectum with the individual diode positions determined using fluoroscopy. Dose was then recorded during the patients' treatment and compared to associated coordinates in the planning system. Results: Factors influencing diode response and experimental uncertainty were initially investigated to estimate the overall uncertainty involved in dose measurements, which was determined to be {+-}10%. Data was acquired for 28 patients' first fractions, 11 patients' second fractions, and 13 patients' third fractions with collection dependent upon circumstances. Deviations between the diode measurements and predicted values ranged from -42% to +35% with 71% of measurements experiencing less than a 10% deviation from the predicted values. If the {+-}10% measurement uncertainty was combined with a tolerated dose discrepancy of {+-}10% then over 95% of the diode results exhibited agreement with the calculated data to within {+-}20%. It must also be noted that when large dose discrepancies were apparent they did not necessarily occur for all five diodes in the one measurement. Conclusions: This technique provided a method that could be utilized to detect gross errors in dose delivery of a real-time prostate HDR plan. Limitations in the detection system used must be well understood if meaningful results are to be achieved.

    10. Can the ring polymer molecular dynamics method be interpreted as real time quantum dynamics?

      SciTech Connect (OSTI)

      Jang, Seogjoo; Sinitskiy, Anton V.; Voth, Gregory A.

      2014-04-21

      The ring polymer molecular dynamics (RPMD) method has gained popularity in recent years as a simple approximation for calculating real time quantum correlation functions in condensed media. However, the extent to which RPMD captures real dynamical quantum effects and why it fails under certain situations have not been clearly understood. Addressing this issue has been difficult in the absence of a genuine justification for the RPMD algorithm starting from the quantum Liouville equation. To this end, a new and exact path integral formalism for the calculation of real time quantum correlation functions is presented in this work, which can serve as a rigorous foundation for the analysis of the RPMD method as well as providing an alternative derivation of the well established centroid molecular dynamics method. The new formalism utilizes the cyclic symmetry of the imaginary time path integral in the most general sense and enables the expression of Kubo-transformed quantum time correlation functions as that of physical observables pre-averaged over the imaginary time path. Upon filtering with a centroid constraint function, the formulation results in the centroid dynamics formalism. Upon filtering with the position representation of the imaginary time path integral, we obtain an exact quantum dynamics formalism involving the same variables as the RPMD method. The analysis of the RPMD approximation based on this approach clarifies that an explicit quantum dynamical justification does not exist for the use of the ring polymer harmonic potential term (imaginary time kinetic energy) as implemented in the RPMD method. It is analyzed why this can cause substantial errors in nonlinear correlation functions of harmonic oscillators. Such errors can be significant for general correlation functions of anharmonic systems. We also demonstrate that the short time accuracy of the exact path integral limit of RPMD is of lower order than those for finite discretization of path. The present quantum dynamics formulation also serves as the basis for developing new quantum dynamical methods that utilize the cyclic nature of the imaginary time path integral.

    11. Robotic real-time translational and rotational head motion correction during frameless stereotactic radiosurgery

      SciTech Connect (OSTI)

      Liu, Xinmin; Belcher, Andrew H.; Grelewicz, Zachary; Wiersma, Rodney D.

      2015-06-15

      Purpose: To develop a control system to correct both translational and rotational head motion deviations in real-time during frameless stereotactic radiosurgery (SRS). Methods: A novel feedback control with a feed-forward algorithm was utilized to correct for the coupling of translation and rotation present in serial kinematic robotic systems. Input parameters for the algorithm include the real-time 6DOF target position, the frame pitch pivot point to target distance constant, and the translational and angular Linac beam off (gating) tolerance constants for patient safety. Testing of the algorithm was done using a 4D (XY Z + pitch) robotic stage, an infrared head position sensing unit and a control computer. The measured head position signal was processed and a resulting command was sent to the interface of a four-axis motor controller, through which four stepper motors were driven to perform motion compensation. Results: The control of the translation of a brain target was decoupled with the control of the rotation. For a phantom study, the corrected position was within a translational displacement of 0.35 mm and a pitch displacement of 0.15° 100% of the time. For a volunteer study, the corrected position was within displacements of 0.4 mm and 0.2° over 98.5% of the time, while it was 10.7% without correction. Conclusions: The authors report a control design approach for both translational and rotational head motion correction. The experiments demonstrated that control performance of the 4D robotic stage meets the submillimeter and subdegree accuracy required by SRS.

    12. Real-Time Combined Heat and Power Operational Strategy Using a Hierarchical Optimization Algorithm

      SciTech Connect (OSTI)

      Yun, Kyung Tae; Cho, Heejin; Luck, Rogelio; Mago, Pedro J.

      2011-06-01

      Existing attempts to optimize the operation of Combined Heat and Power (CHP) systems for building applications have two major limitations: the electrical and thermal loads are obtained from historical weather profiles; and the CHP system models ignore transient responses by using constant equipment efficiencies. This paper considers the transient response of a building combined with a hierarchical CHP optimal control algorithm to obtain a real-time integrated system that uses the most recent weather and electric load information. This is accomplished by running concurrent simulations of two transient building models. The first transient building model uses current as well as forecast input information to obtain short term predictions of the thermal and electric building loads. The predictions are then used by an optimization algorithm, i.e., a hierarchical controller, that decides the amount of fuel and of electrical energy to be allocated at the current time step. In a simulation, the actual physical building is not available and, hence, to simulate a real-time environment, a second, building model with similar but not identical input loads are used to represent the actual building. A state-variable feedback loop is completed at the beginning of each time step by copying, i.e., measuring, the state variable from the actual building and restarting the predictive model using these ?measured? values as initial conditions. The simulation environment presented in this paper features nonlinear effects such as the dependence of the heat exchanger effectiveness on their operating conditions. The results indicate that the CHP engine operation dictated by the proposed hierarchical controller with uncertain weather conditions have the potential to yield significant savings when compared to conventional systems using current values of electricity and fuel prices.

    13. Framework for Real-Time All-Hazards Global Situational Awareness

      SciTech Connect (OSTI)

      Omitaomu, Olufemi A; Fernandez, Steven J; Bhaduri, Budhendra L

      2013-01-01

      Information systems play a pivotal role in emergency response by making consequence analysis models based on up-to-date data available to decision makers. While consequence analysis models have been used for years on local scales, their application on national and global scales has been constrained by lack of non-proprietary data. This chapter describes how this has changed using a framework for real-time all-hazards situational awareness called the Energy Awareness and Resiliency Standardized Services (EARSS) as an example. EARSS is a system of systems developed to collect non-proprietary data from diverse open content sources to develop a geodatabase of critical infrastructures all over the world. The EARSS system shows that it is feasible to provide global disaster alerts by producing valuable information such as texting messages about detected hazards, emailing reports about affected areas, estimating an expected number of impacted people and their demographic characteristics, identifying critical infrastructures that may be affected, and analyzing potential downstream effects. This information is provided in real-time to federal agencies and subscribers all over the world for decision making in humanitarian assistance and emergency response. The system also uses live streams of power outages, weather, and satellite surveillance data as events unfold. This, in turn, is combined with other public domain or open content information, such as media reports and postings on social networking websites, for complete coverage of the situation as events unfold. Working with up-to-date information from the EARSS system, emergency responders on the ground could pre-position their staff and resources, such as emergency generators and ice, where they are most needed.

    14. Dose reconstruction for real-time patient-specific dose estimation in CT

      SciTech Connect (OSTI)

      De Man, Bruno Yin, Zhye; Wu, Mingye; FitzGerald, Paul; Kalra, Mannudeep

      2015-05-15

      Purpose: Many recent computed tomography (CT) dose reduction approaches belong to one of three categories: statistical reconstruction algorithms, efficient x-ray detectors, and optimized CT acquisition schemes with precise control over the x-ray distribution. The latter category could greatly benefit from fast and accurate methods for dose estimation, which would enable real-time patient-specific protocol optimization. Methods: The authors present a new method for volumetrically reconstructing absorbed dose on a per-voxel basis, directly from the actual CT images. The authors’ specific implementation combines a distance-driven pencil-beam approach to model the first-order x-ray interactions with a set of Gaussian convolution kernels to model the higher-order x-ray interactions. The authors performed a number of 3D simulation experiments comparing the proposed method to a Monte Carlo based ground truth. Results: The authors’ results indicate that the proposed approach offers a good trade-off between accuracy and computational efficiency. The images show a good qualitative correspondence to Monte Carlo estimates. Preliminary quantitative results show errors below 10%, except in bone regions, where the authors see a bigger model mismatch. The computational complexity is similar to that of a low-resolution filtered-backprojection algorithm. Conclusions: The authors present a method for analytic dose reconstruction in CT, similar to the techniques used in radiation therapy planning with megavoltage energies. Future work will include refinements of the proposed method to improve the accuracy as well as a more extensive validation study. The proposed method is not intended to replace methods that track individual x-ray photons, but the authors expect that it may prove useful in applications where real-time patient-specific dose estimation is required.

    15. Long-Range Untethered Real-Time Live Gas Main Robotic Inspection System

      SciTech Connect (OSTI)

      Hagen Schempf; Daphne D'Zurko

      2004-10-31

      Under funding from the Department of Energy (DOE) and the Northeast Gas Association (NGA), Carnegie Mellon University (CMU) developed an untethered, wireless remote controlled inspection robot dubbed Explorer. The project entailed the design and prototyping of a wireless self-powered video-inspection robot capable of accessing live 6- and 8-inch diameter cast-iron and steel mains, while traversing turns and Ts and elbows under real-time control with live video feedback to an operator. The design is that of a segmented actively articulated and wheel-leg powered robot design, with fisheye imaging capability and self-powered battery storage and wireless real-time communication link. The prototype was functionally tested in an above ground pipe-network, in order to debug all mechanical, electrical and software subsystems, and develop the necessary deployment and retrieval, as well as obstacle-handling scripts. A pressurized natural gas test-section was used to certify it for operation in natural gas at up to 60 psig. Two subsequent live-main field-trials in both cast-iron and steel pipe, demonstrated its ability to be safely launched, operated and retrieved under real-world conditions. The system's ability to safely and repeatably exidrecover from angled and vertical launchers, traverse multi-thousand foot long pipe-sections, make T and varied-angle elbow-turns while wirelessly sending live video and handling command and control messages, was clearly demonstrated. Video-inspection was clearly shown to be a viable tool to understand the state of this critical buried infrastructure, irrespective of low- (cast-iron) or high-pressure (steel) conditions. This report covers the different aspects of specifications, requirements, design, prototyping, integration and testing and field-trialing of the Explorer platform.

    16. Grid Modernization Initiative

      Broader source: Energy.gov (indexed) [DOE]

      contingency analysis o Ultra-fast state estimation (< 1sec) and state measurement to arm real-time controls o Sensing and data management to enable real-time model validation...

    17. Providing Grid Flexibility in

      Energy Savers [EERE]

      Providing Grid Flexibility in Wyoming and Montana Introduction Powder River Energy Corporation (PRECorp) is an electric cooperative serving approximately 11,900 customers in a 16,200 square-mile area of rural Wyoming and Montana. PRECorp's customers frequently experience harsh weather conditions. Severe weather conditions in PRECorp's rural and remote service territory present unique challenges in providing reliable electric service to PRECorp's customers. PRECorp's customers include coal mining

    18. ARPA-E Project Takes an Innovative Approach to the Electrical Grid |

      Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

      Department of Energy Project Takes an Innovative Approach to the Electrical Grid ARPA-E Project Takes an Innovative Approach to the Electrical Grid September 10, 2014 - 4:38pm Addthis With support from ARPA-E, AutoGrid Systems developed software to monitor the flow of power through the electric grid and help utilities better meet real-time electricity demands. | Graphic courtesy of AutoGrids. With support from ARPA-E, AutoGrid Systems developed software to monitor the flow of power through

    19. Dynamic Line Rating Oncor Electric Delivery Smart Grid Program

      SciTech Connect (OSTI)

      Johnson, Justin; Smith, Cale; Young, Mike; Donohoo, Ken; Owen, Ross; Clark, Eddit; Espejo, Raul; Aivaliotis, Sandy; Stelmak, Ron; Mohr, Ron; Barba, Cristian; Gonzalez, Guillermo; Malkin, Stuart; Dimitrova, Vessela; Ragsdale, Gary; Mitchem, Sean; Jeirath, Nakul; Loomis, Joe; Trevino, Gerardo; Syracuse, Steve; Hurst, Neil; Mereness, Matt; Johnson, Chad; Bivens, Carrie

      2013-05-04

      Electric transmission lines are the lifeline of the electric utility industry, delivering its product from source to consumer. This critical infrastructure is often constrained such that there is inadequate capacity on existing transmission lines to efficiently deliver the power to meet demand in certain areas or to transport energy from high-generation areas to high-consumption regions. When this happens, the cost of the energy rises; more costly sources of power are used to meet the demand or the system operates less reliably. These economic impacts are known as congestion, and they can amount to substantial dollars for any time frame of reference: hour, day or year. There are several solutions to the transmission constraint problem, including: construction of new generation, construction of new transmission facilities, rebuilding and reconductoring of existing transmission assets, and Dynamic Line Rating (DLR). All of these options except DLR are capital intensive, have long lead times and often experience strong public and regulatory opposition. The Smart Grid Demonstration Program (SGDP) project co-funded by the Department of Energy (DOE) and Oncor Electric Delivery Company developed and deployed the most extensive and advanced DLR installation to demonstrate that DLR technology is capable of resolving many transmission capacity constraint problems with a system that is reliable, safe and very cost competitive. The SGDP DLR deployment is the first application of DLR technology to feed transmission line real-time dynamic ratings directly into the system operation’s State Estimator and load dispatch program, which optimizes the matching of generation with load demand on a security, reliability and economic basis. The integrated Dynamic Line Rating (iDLR)1 collects transmission line parameters at remote locations on the lines, calculates the real-time line rating based on the equivalent conductor temperature, ambient temperature and influence of wind and solar radiation on the stringing section, transmits the data to the Transmission Energy Management System, validates its integrity and passes it on to Oncor and ERCOT (Electric Reliability Council of Texas) respective system operations. The iDLR system is automatic and transparent to ERCOT System Operations, i.e., it operates in parallel with all other system status telemetry collected through Supervisory Control and Data Acquisition (SCADA) employed across the company.

    20. Bus.py: A GridLAB-D Communication Interface for Smart Distribution Grid Simulations

      SciTech Connect (OSTI)

      Hansen, Timothy M.; Palmintier, Bryan; Suryanarayanan, Siddharth; Maciejewski, Anthony A.; Siegel, Howard Jay

      2015-07-03

      As more Smart Grid technologies (e.g., distributed photovoltaic, spatially distributed electric vehicle charging) are integrated into distribution grids, static distribution simulations are no longer sufficient for performing modeling and analysis. GridLAB-D is an agent-based distribution system simulation environment that allows fine-grained end-user models, including geospatial and network topology detail. A problem exists in that, without outside intervention, once the GridLAB-D simulation begins execution, it will run to completion without allowing the real-time interaction of Smart Grid controls, such as home energy management systems and aggregator control. We address this lack of runtime interaction by designing a flexible communication interface, Bus.py (pronounced bus-dot-pie), that uses Python to pass messages between one or more GridLAB-D instances and a Smart Grid simulator. This work describes the design and implementation of Bus.py, discusses its usefulness in terms of some Smart Grid scenarios, and provides an example of an aggregator-based residential demand response system interacting with GridLAB-D through Bus.py. The small scale example demonstrates the validity of the interface and shows that an aggregator using said interface is able to control residential loads in GridLAB-D during runtime to cause a reduction in the peak load on the distribution system in (a) peak reduction and (b) time-of-use pricing cases.

    1. Elforsk Smart grid programme (Smart Grid Project) | Open Energy...

      Open Energy Info (EERE)

      in Europe Smart Grid Projects - Smart Meter and AMI Smart Grid Projects - Grid Automation Transmission Smart Grid Projects - Grid Automation Distribution Smart Grid Projects...

    2. Electrical vehicles impacts on the grids (Smart Grid Project...

      Open Energy Info (EERE)

      Smart Grid Projects Smart Grid Projects in Europe Smart Grid Projects - Grid Automation Distribution Smart Grid Projects - Home application Smart Grid Projects - Customer...

    3. Owner/Operator Perspective on Reliability Customer Needs and...

      Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

      SERVICES AS RELIABLE AS THE SUN OwnerOperator Perspective on Reliability Customer Needs and Field Data Sandia National Laboratories Utility-Scale Grid-Tied PV Inverter Reliability...

    4. Real-time optical diagnostics for the basic oxygen steelmaking process

      SciTech Connect (OSTI)

      Ottesen, D.K.; Hurt, R.H.; Hardesty, D.R.

      1993-02-01

      This article deals with the development of real-time optical diagnostic techniques for process control in basic oxygen steelmaking. Results are presented of pilot-scale feasibility experiments conducted in the two-ton basic oxygen furnace (BOF) at Bethlehem Steel Corporation`s Homer Research Laboratories. Two line-of-sight optical techniques are being evaluated for determining the concentration and temperature of infrared-active gases in the BOF off-gas. The primary objective is to relate the concentration of these gas-phase species to the carbon content of the molten metal, and thereby provide a real-time indication of the process endpoint. Three cw lasers were used to measure the extent of beam attenuation at three different wavelengths in the particle-laden off-gas. The primary attenuation mechanism appears to be scattering by a dense, sub-micron diameter FeO fume. Initial infrared emission experiments with a Fourier transform infrared spectrometer at 1-cm{sup {minus}1} spectral resolution show partially resolved lines in the P-branch of the fundamental CO ground state and first hot-band transitions; CO{sub 2} bandheads are also clearly observed at 2384 and 2397 cm{sup {minus}1}. A second set of experiments was conducted to test the feasibility of oxygen-lance based fiber-optic imaging/pyrometric sensors for measurements of melt temperature and reaction zone properties. During bottom injection of nitrogen, clearly defined images of the melt/slag surface were obtained using both visible and near-infrared video systems. During oxygen blowing, optical emission from the hot spot was observed to fluctuate widely, with characteristic frequencies in the range of 3--10 Hz. Near the end of the process, the emission is characterized by periodic intensity bursts, interpreted as individual ignition events of duration 10--50 msec. Hot spot temperatures were calculated from the emission at 800 and 950 nm wavelengths using a grey-body assumption.

    5. Camera selection for real-time in vivo radiation treatment verification systems using Cherenkov imaging

      SciTech Connect (OSTI)

      Andreozzi, Jacqueline M. Glaser, Adam K.; Zhang, Rongxiao; Jarvis, Lesley A.; Gladstone, David J.; Pogue, Brian W.

      2015-02-15

      Purpose: To identify achievable camera performance and hardware needs in a clinical Cherenkov imaging system for real-time, in vivo monitoring of the surface beam profile on patients, as novel visual information, documentation, and possible treatment verification for clinicians. Methods: Complementary metal-oxide-semiconductor (CMOS), charge-coupled device (CCD), intensified charge-coupled device (ICCD), and electron multiplying-intensified charge coupled device (EM-ICCD) cameras were investigated to determine Cherenkov imaging performance in a clinical radiotherapy setting, with one emphasis on the maximum supportable frame rate. Where possible, the image intensifier was synchronized using a pulse signal from the Linac in order to image with room lighting conditions comparable to patient treatment scenarios. A solid water phantom irradiated with a 6 MV photon beam was imaged by the cameras to evaluate the maximum frame rate for adequate Cherenkov detection. Adequate detection was defined as an average electron count in the background-subtracted Cherenkov image region of interest in excess of 0.5% (327 counts) of the 16-bit maximum electron count value. Additionally, an ICCD and an EM-ICCD were each used clinically to image two patients undergoing whole-breast radiotherapy to compare clinical advantages and limitations of each system. Results: Intensifier-coupled cameras were required for imaging Cherenkov emission on the phantom surface with ambient room lighting; standalone CMOS and CCD cameras were not viable. The EM-ICCD was able to collect images from a single Linac pulse delivering less than 0.05 cGy of dose at 30 frames/s (fps) and pixel resolution of 512 × 512, compared to an ICCD which was limited to 4.7 fps at 1024 × 1024 resolution. An intensifier with higher quantum efficiency at the entrance photocathode in the red wavelengths [30% quantum efficiency (QE) vs previous 19%] promises at least 8.6 fps at a resolution of 1024 × 1024 and lower monetary cost than the EM-ICCD. Conclusions: The ICCD with an intensifier better optimized for red wavelengths was found to provide the best potential for real-time display (at least 8.6 fps) of radiation dose on the skin during treatment at a resolution of 1024 × 1024.

    6. Optical eye tracking system for real-time noninvasive tumor localization in external beam radiotherapy

      SciTech Connect (OSTI)

      Via, Riccardo Fassi, Aurora; Fattori, Giovanni; Fontana, Giulia; Pella, Andrea; Tagaste, Barbara; Ciocca, Mario; Riboldi, Marco; Baroni, Guido; Orecchia, Roberto

      2015-05-15

      Purpose: External beam radiotherapy currently represents an important therapeutic strategy for the treatment of intraocular tumors. Accurate target localization and efficient compensation of involuntary eye movements are crucial to avoid deviations in dose distribution with respect to the treatment plan. This paper describes an eye tracking system (ETS) based on noninvasive infrared video imaging. The system was designed for capturing the tridimensional (3D) ocular motion and provides an on-line estimation of intraocular lesions position based on a priori knowledge coming from volumetric imaging. Methods: Eye tracking is performed by localizing cornea and pupil centers on stereo images captured by two calibrated video cameras, exploiting eye reflections produced by infrared illumination. Additionally, torsional eye movements are detected by template matching in the iris region of eye images. This information allows estimating the 3D position and orientation of the eye by means of an eye local reference system. By combining ETS measurements with volumetric imaging for treatment planning [computed tomography (CT) and magnetic resonance (MR)], one is able to map the position of the lesion to be treated in local eye coordinates, thus enabling real-time tumor referencing during treatment setup and irradiation. Experimental tests on an eye phantom and seven healthy subjects were performed to assess ETS tracking accuracy. Results: Measurements on phantom showed an overall median accuracy within 0.16 mm and 0.40° for translations and rotations, respectively. Torsional movements were affected by 0.28° median uncertainty. On healthy subjects, the gaze direction error ranged between 0.19° and 0.82° at a median working distance of 29 cm. The median processing time of the eye tracking algorithm was 18.60 ms, thus allowing eye monitoring up to 50 Hz. Conclusions: A noninvasive ETS prototype was designed to perform real-time target localization and eye movement monitoring during ocular radiotherapy treatments. The device aims at improving state-of-the-art invasive procedures based on surgical implantation of radiopaque clips and repeated acquisition of X-ray images, with expected positive effects on treatment quality and patient outcome.

    7. Dosimetric feasibility of real-time MRI-guided proton therapy

      SciTech Connect (OSTI)

      Moteabbed, M. Schuemann, J.; Paganetti, H.

      2014-11-01

      Purpose: Magnetic resonance imaging (MRI) is a prime candidate for image-guided radiotherapy. This study was designed to assess the feasibility of real-time MRI-guided proton therapy by quantifying the dosimetric effects induced by the magnetic field in patients’ plans and identifying the associated clinical consequences. Methods: Monte Carlo dose calculation was performed for nine patients of various treatment sites (lung, liver, prostate, brain, skull-base, and spine) and tissue homogeneities, in the presence of 0.5 and 1.5 T magnetic fields. Dose volume histogram (DVH) parameters such as D{sub 95}, D{sub 5}, and V{sub 20} as well as equivalent uniform dose were compared for the target and organs at risk, before and after applying the magnetic field. The authors further assessed whether the plans affected by clinically relevant dose distortions could be corrected independent of the planning system. Results: By comparing the resulting dose distributions and analyzing the respective DVHs, it was determined that despite the observed lateral beam deflection, for magnetic fields of up to 0.5 T, neither was the target coverage jeopardized nor was the dose to the nearby organs increased in all cases except for prostate. However, for a 1.5 T magnetic field, the dose distortions were more pronounced and of clinical concern in all cases except for spine. In such circumstances, the target was severely underdosed, as indicated by a decrease in D{sub 95} of up to 41% of the prescribed dose compared to the nominal situation (no magnetic field). Sites such as liver and spine were less affected due to higher tissue homogeneity, typically smaller beam range, and the choice of beam directions. Simulations revealed that small modifications to certain plan parameters such as beam isocenter (up to 19 mm) and gantry angle (up to 10°) are sufficient to compensate for the magnetic field-induced dose disturbances. The authors’ observations indicate that the degree of required corrections strongly depends on the beam range and direction relative to the magnetic field. This method was also applicable to more heterogeneous scenarios such as skull-base tumors. Conclusions: This study confirmed the dosimetric feasibility of real-time MRI-guided proton therapy and delivering a clinically acceptable dose to patients with various tumor locations within magnetic fields of up to 1.5 T. This work could serve as a guide and encouragement for further efforts toward clinical implementation of hybrid MRI–proton gantry systems.

    8. Red emission phosphor for real-time skin dosimeter for fluoroscopy and interventional radiology

      SciTech Connect (OSTI)

      Nakamura, Masaaki Chida, Koichi; Zuguchi, Masayuki

      2014-10-15

      Purpose: There are no effective real-time direct skin dosimeters for interventional radiology. Such a scintillation dosimeter would be available if there was a suitable red emission phosphor in the medical x-ray range, since the silicon photodiode is a highly efficient device for red light. However, it is unknown whether there is a suitable red emission phosphor. The purpose of this study is to find a suitable red emission phosphor that can be used in x-ray dosimeters. Methods: Five kinds of phosphors which emit red light when irradiated with electron beams or ultraviolet rays in practical devices were chosen. For the brightness measurement, phosphor was put into transparent plastic cells or coated onto plastic sheets. The phosphors were irradiated with medical range x-rays [60120 kV(peak), maximum dose rate of 160 mGy min{sup ?1}], and the emission was measured by a luminance meter. Several characteristics, such as brightness, dose rate dependence, tube voltage dependence, and brightness stability, were investigated. Results: The luminescence of Y V O{sub 4}:Eu, (Y,Gd,Eu) BO{sub 3}, and Y{sub 2}O{sub 3}:Eu significantly deteriorated by 5%10% when irradiated with continuous 2 Gy x-rays. The 0.5MgF{sub 2}?3.5MgO?GeO{sub 2}:Mn phosphor did not emit enough. Only the Y{sub 2}O{sub 2}S:Eu,Sm phosphor had hardly any brightness deterioration, and it had a linear relationship so that the x-ray dose rate could be determined from the brightness with sufficient accuracy. For the tube voltage dependence of the Y{sub 2}O{sub 2}S:Eu,Sm phosphor, the brightness per unit dose rate with 120 kV(peak) x-rays was 30% higher than that with 60 kV(peak) x-rays. Conclusions: Five kinds of phosphors were chosen as an x-ray scintillator for a real-time direct skin dosimeter. The Y V O{sub 4}:Eu, (Y,Gd,Eu)BO{sub 3}, and Y{sub 2}O{sub 3}:Eu phosphors had brightness deterioration caused by the x-rays. Only the Y{sub 2}O{sub 2}S:Eu,Sm phosphor had hardly any brightness deterioration, and it is a candidate for an x-ray scintillator for such a skin dosimeter.

    9. Grid Integration Studies: Data Requirements, Greening the Grid

      SciTech Connect (OSTI)

      Katz, Jessica

      2015-06-01

      A grid integration study is an analytical framework used to evaluate a power system with high penetration levels of variable renewable energy (VRE). A grid integration study simulates the operation of the power system under different VRE scenarios, identifying reliability constraints and evaluating the cost of actions to alleviate those constraints. These VRE scenarios establish where, how much, and over what timeframe to build generation and transmission capacity, ideally capturing the spatial diversity benefits of wind and solar resources. The results help build confidence among policymakers, system operators, and investors to move forward with plans to increase the amount of VRE on the grid.

    10. Grid Architecture

      Broader source: Energy.gov (indexed) [DOE]

      ... Physical and financial exchanges between these separately regulated entities may involve ... 4.21 Architectural Insight 7 In the chaos theory view of grid stability, the seeds of wide ...

    11. Stable a-Si:H-Based Multijunction Solar Cells with Guidance from Real-Time Optics: Final Report, 17 July 1998--16 November 2001

      SciTech Connect (OSTI)

      Wronski, C. R.; Collins, R. W.; Pearce, J. M.; Koval, R. J.; Ferlauto, A. S.; Ferreira, G. M.; Chen C.

      2002-08-01

      This report describes the new insights obtained into the growth of hydrogenated silicon (Si:H) films via real-time spectroscopic ellipsometry (RTSE) measurements. Evolutionary phase diagrams were expanded to include the effects of different deposition conditions, including rf power, pressure, and temperature. Detailed studies of degradation kinetics in thin films and corresponding solar cells have been carried out. Both p-i-n and n-i-p solar cells that incorporate Si:H i-layers deposited with and without H2-dilution have been studied. For the first time, direct and reliable correlations have been obtained between the light-induced changes in thin-film materials and the degradation of the corresponding solar cells.

    12. Principal Characteristics of a Modern Grid

      Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

      NETL Modern Grid Strategy Overview ABB 2008 Power World Conference Bruce Renz January 14, 2008 1 Conducted by the National Energy Technology Laboratory Funded by the U.S. Department of Energy, Office of Electricity Delivery and Energy Reliability 2 Office of Electricity Delivery and Energy Reliability MODERN GRID S T R A T E G Y The Modern Grid Strategy (MGS) President Bush has asked the U.S. Department of Energy to lead a national effort to modernize and expand the electric grid. The Office of

    13. Principal Characteristics of a Modern Grid

      Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

      Basics 1 Conducted by the National Energy Technology Laboratory Funded by the U.S. Department of Energy, Office of Electricity Delivery and Energy Reliability Joe Miller, Modern Grid Strategy Team Lead Grid Econ - The Economics of a Smarter Electric Grid March 16, 2009 Office of Electricity Delivery and Energy Reliability MODERN GRID S T R A T E G Y This material is based upon work supported by the Department of Energy under Award Number DE-AC26- 04NT41817 This presentation was prepared as an

    14. Optimizing artificial lift operations through the use of wireless conveyed real time bottom hole data

      SciTech Connect (OSTI)

      Campbell, B.; MacKinnon, J.; Bandy, T.R.; Hampton, T.

      1996-12-31

      The use of an innovative wireless bottom hole pressure/temperature telemetry acquisition system in artificial lift operations can dramatically improve efficiency and optimize fluid producing rates in those wells. The tool is installed into the producing well in the vicinity of the perforations, measuring and transmitting the producing bottom hole pressures and temperatures to the surface for instantaneous control of the surface pumping motor speed. This insures the lowest possible fluid level back pressures, thus allowing for the highest possible fluid entry into the wellbore from that reservoir`s capacity. Operating costs per barrel are lowered since the maximum oil production can now be realized from existing wells. The telemetry tool is deployed with standard slickline equipment and is installed inside a well in a manner similar to ordinary pressure recorder tools. Several unique advantages of the tool are: (1) no moving parts; (2) no wireline to the surface; (3) real time measurement of bottom hole data; and (4) slickline retrievable. Future versions of the acquisition system tool will improve operating efficiency in the following ways: (1) Temperature monitoring and control of perforation scaling, tubular waxing, and tubular hydrating plugs. (2) Provide data necessary to create diagnostically predictive IPR curves through monitoring of reservoir in-flow rates. (3) Enabling early warning of water encroachment or lensing through fluid resistivity monitoring.

    15. Evaluation of the feasibility of a pipeline field weld real-time radiography (radioscopy) inspection system

      SciTech Connect (OSTI)

      Tucker, J.E.; Rudarmel, M.W.; Sayler, G.C.; Garrison, L.E.

      1996-02-01

      Inspection of pipeline field girth welds during pipeline construction is accomplished by film radiographic methods. Film radiography of materials is a 70 year old technology. There have been many advances in that 70 year history in equipment and films, but the process of making the radiograph is essentially the same. The film radiography process is time-consuming, costly, environmentally impacting and very operator (inspector) dependent. There are recent and almost daily advances in technologies using x-ray imaging other than film. Double-jointed pipe welds at pipe mills and at double-joint operations have been inspected with stationary real-time radioscopic systems for many years. This electronic imaging technology, known as {open_quotes}radioscopy{close_quotes}, has the potential to significantly improve pipeline project schedules and cost by eliminating some of the shortcomings of film radiography. Radioscopy is currently accepted for use by many nationally accepted standards including API-5L, Specification for Line Pipe, and API-1104, Welding of Pipelines and Related Facilities. Seven years ago PRC contracted Southwest Research Institute (SwRI) to research radioscopy for field application. This effort did not yield a suitable field system even though the study by SwRI concluded that it was feasible and would be cost effective.

    16. Agent-based Large-Scale Emergency Evacuation Using Real-Time Open Government Data

      SciTech Connect (OSTI)

      Lu, Wei; Liu, Cheng; Bhaduri, Budhendra L

      2014-01-01

      The open government initiatives have provided tremendous data resources for the transportation system and emergency services in urban areas. This paper proposes a traffic simulation framework using high temporal resolution demographic data and real time open government data for evacuation planning and operation. A comparison study using real-world data in Seattle, Washington is conducted to evaluate the framework accuracy and evacuation efficiency. The successful simulations of selected area prove the concept to take advantage open government data, open source data, and high resolution demographic data in emergency management domain. There are two aspects of parameters considered in this study: user equilibrium (UE) conditions of traffic assignment model (simple Non-UE vs. iterative UE) and data temporal resolution (Daytime vs. Nighttime). Evacuation arrival rate, average travel time, and computation time are adopted as Measure of Effectiveness (MOE) for evacuation performance analysis. The temporal resolution of demographic data has significant impacts on urban transportation dynamics during evacuation scenarios. Better evacuation performance estimation can be approached by integrating both Non-UE and UE scenarios. The new framework shows flexibility in implementing different evacuation strategies and accuracy in evacuation performance. The use of this framework can be explored to day-to-day traffic assignment to support daily traffic operations.

    17. In-Situ Real Time Measurements of Molten Glass Properties, Final Report

      SciTech Connect (OSTI)

      Robert De Saro; Joe Craparo

      2007-12-16

      Energy Research Company (ERCo) of Staten Island, NY has developed a sensor capable of measuring in situ and in real time, both the elemental composition and the temperature of molten glass. A prototype sensor has been designed, constructed and tested in ERCo's laboratory. The sensor was used to collect atomic emission spectra from molten fiberglass via Laser Induced Breakdown Spectroscopy (LIBS). From these spectra, we were able to readily identify all elements of interest (B, Si, Ca, Fe, Mg, Na, Sr, Al). The high signal-to-background signals achieved suggest that data from the sensor can be used to determine elemental concentrations, either through calibration curves or using ERCo's calibrationless method. ERCo's technology fits in well with DOE's Glass Industry Technology Roadmap which emphasizes the need for accurate process and feedstock sensors. Listed first under technological barriers to increased production efficiency is the 'Inability to accurately measure and control the production process'. A large-scale glass melting furnace, developed by SenCer Inc. of Penn Yan, NY was installed in ERCo's laboratory to ensure that a large enough quantity of glass could be melted and held at temperature in the presence of the water-cooled laser sensor without solidifying the glass.

    18. Real-Time Noise Reduction for Mossbauer Spectroscopy through Online Implementation of a Modified Kalman Filter

      SciTech Connect (OSTI)

      Abrecht, David G.; Schwantes, Jon M.; Kukkadapu, Ravi K.; McDonald, Benjamin S.; Eiden, Gregory C.; Sweet, Lucas E.

      2015-02-01

      Spectrum-processing software that incorporates a gaussian smoothing kernel within the statistics of first-order Kalman filtration has been developed to provide cross-channel spectral noise reduction for increased real-time signal-to-noise ratios for Mossbauer spectroscopy. The filter was optimized for the breadth of the gaussian using the Mossbauer spectrum of natural iron foil, and comparisons between the peak broadening, signal-to-noise ratios, and shifts in the calculated hyperfine parameters are presented. The results of optimization give a maximum improvement in the signal-to-noise ratio of 51.1% over the unfiltered spectrum at a gaussian breadth of 27 channels, or 2.5% of the total spectrum width. The full-width half-maximum of the spectrum peaks showed an increase of 19.6% at this optimum point, indicating a relatively weak increase in the peak broadening relative to the signal enhancement, leading to an overall increase in the observable signal. Calculations of the hyperfine parameters showed no statistically significant deviations were introduced from the application of the filter, confirming the utility of this filter for spectroscopy applications.

    19. Los Alamos National Laboratory`s Mobile Real Time Radiography System

      SciTech Connect (OSTI)

      Vigil, J.; Taggart, D.; Betts, S.; Mendez, J.; Rael, C.; Martinez, F.

      1997-01-01

      A 450-KeV Mobile Real Time Radiography (RTR) System was delivered to Los Alamos National Laboratory (LANL) in January 1996. It was purchased to inspect containers of radioactive waste produced at (LANL). Since its delivery it has been used to radiograph greater than 600 drums of radioactive waste at various LANL sites. It has the capability of inspecting waste containers of various sizes. It has three independent X-Ray acquisition formats. The primary system used is a 12 in. image intensifier, the second is a 36 in. linear diode array (LDA) and the last is an open system. It is fully self contained with on board generator, HVAC and a fire suppression system. It is on a 53 ft long X 8 ft. wide X 14 ft. high trailer that can be moved over any highway requiring only a easily obtainable overweight permit because it weighs approximately 38 tons. It was built to conform to industry standards for a cabinet system which does not require an exclusion zone. The fact that this unit is mobile has allowed us to operate where the waste is stored, rather than having to move the waste to a fixed facility.

    20. Real time synchrotron X-ray observations of solidification in hypoeutectic AlSi alloys

      SciTech Connect (OSTI)

      Nogita, Kazuhiro [Nihon Superior Centre for the Manufacture of Electronic Materials, The University of Queensland, Brisbane, QLD 4072 (Australia); School of Mechanical and Mining Engineering, The University of Queensland, Brisbane, QLD 4072 (Australia); Yasuda, Hideyuki [Department of Adaptive Machine Systems, Osaka University, Suita, Osaka, 565-0871 (Japan); Prasad, Arvind [School of Mechanical and Mining Engineering, The University of Queensland, Brisbane, QLD 4072 (Australia); McDonald, Stuart D., E-mail: s.mcdonald1@uq.edu.au [Nihon Superior Centre for the Manufacture of Electronic Materials, The University of Queensland, Brisbane, QLD 4072 (Australia); School of Mechanical and Mining Engineering, The University of Queensland, Brisbane, QLD 4072 (Australia); Nagira, Tomoya; Nakatsuka, Noriaki [Department of Adaptive Machine Systems, Osaka University, Suita, Osaka, 565-0871 (Japan); Uesugi, Kentaro [Japan Synchrotron Radiation Research Institute, SPring-8, Sayo, Hyogo, 679-5198 (Japan); StJohn, David H. [School of Mechanical and Mining Engineering, The University of Queensland, Brisbane, QLD 4072 (Australia)

      2013-11-15

      This paper demonstrates how recent advances in synchrotron technology have allowed for the real-time X-ray imaging of solidification in AlSi alloys, despite the small difference in atomic number of these elements. The experiments performed at the SPring-8 synchrotron, involved imaging the solidification of Al1wt.%Si and Al4wt.%Si alloys under a low-temperature gradient and a cooling rate of around 0.3 C/s. The nucleation and growth of the primary aluminum grains as well as the onset of eutectic solidification were clearly observed. In the alloys containing Al4wt.%Si, contrast was sufficient to characterize the nucleation rate and growth velocity of the aluminum grains. The importance of improving observation of solidification in the AlSi system by increasing the time resolution during critical events is discussed. - Highlights: A synchrotron technique was used to observe solidification of Al-Si alloys. Nucleation, coarsening, and the onset of eutectic solidification were observed. Images captured are suitable for quantitative analysis. The resolution that was obtained should be possible for most aluminum alloys.

    1. DESAlert: Enabling real-time transient follow-up with Dark Energy Survey data

      SciTech Connect (OSTI)

      Poci, A.

      2015-04-12

      The Dark Energy Survey (DES) is currently undertaking an observational program imaging 1/4 of the southern hemisphere sky with unprecedented photometric accuracy. In the process of observing millions of faint stars and galaxies to constrain the parameters of the dark energy equation of state, the DES will obtain pre-discovery images of the regions surrounding an estimated 100 gamma-ray bursts (GRBs) over five years. Once GRBs are detected by, e.g., the Swift satellite, the DES data will be extremely useful for follow-up observations by the transient astronomy community. We describe a recently-commissioned suite of software that listens continuously for automated notices of GRB activity, collates useful information from archival DES data, and promulgates relevant data products back to the community in near-real-time. Of particular importance are the opportunities that DES data provide for relative photometry of GRBs or their afterglows, as well as for identifying key characteristics (e.g., photometric redshifts) of potential GRB host galaxies. We provide the functional details of the DESAlert software as it presently operates, as well as the data products that it produces, and we show sample results from the application of DESAlert to several previously-detected GRBs.

    2. Apparatus and methods for real-time detection of explosives devices

      DOE Patents [OSTI]

      Blackburn, Brandon W [Idaho Falls, ID; Hunt, Alan W [Pocatello, ID; Chichester, David L [Idaho Falls, ID

      2014-01-07

      The present disclosure relates, according to some embodiments, to apparatus, devices, systems, and/or methods for real-time detection of a concealed or camouflaged explosive device (e.g., EFPs and IEDs) from a safe stand-off distance. Apparatus, system and/or methods of the disclosure may also be operable to identify and/or spatially locate and/or detect an explosive device. An apparatus or system may comprise an x-ray generator that generates high-energy x-rays and/or electrons operable to contact and activate a metal comprised in an explosive device from a stand-off distance; and a detector operable to detect activation of the metal. Identifying an explosive device may comprise detecting characteristic radiation signatures emitted by metals specific to an EFP, an IED or a landmine. Apparatus and systems of the disclosure may be mounted on vehicles and methods of the disclosure may be performed while moving in the vehicle and from a safe stand-off distance.

    3. Autonomous real-time detection of plumes and jets from moons and comets

      SciTech Connect (OSTI)

      Wagstaff, Kiri L.; Thompson, David R.; Bue, Brian D.; Fuchs, Thomas J.

      2014-10-10

      Dynamic activity on the surface of distant moons, asteroids, and comets can manifest as jets or plumes. These phenomena provide information about the interior of the bodies and the forces (gravitation, radiation, thermal) they experience. Fast detection and follow-up study is imperative since the phenomena may be time-varying and because the observing window may be limited (e.g., during a flyby). We have developed an advanced method for real-time detection of plumes and jets using onboard analysis of the data as it is collected. In contrast to prior work, our technique is not restricted to plume detection from spherical bodies, making it relevant for irregularly shaped bodies such as comets. Further, our study analyzes raw data, the form in which it is available on board the spacecraft, rather than fully processed image products. In summary, we contribute a vital assessment of a technique that can be used on board tomorrow's deep space missions to detect, and respond quickly to, new occurrences of plumes and jets.

    4. Real-time studies of battery electrochemical reactions inside a transmission electron microscope.

      SciTech Connect (OSTI)

      Leung, Kevin; Hudak, Nicholas S.; Liu, Yang; Liu, Xiaohua H.; Fan, Hongyou; Subramanian, Arunkumar; Shaw, Michael J.; Sullivan, John Patrick; Huang, Jian Yu

      2012-01-01

      We report the development of new experimental capabilities and ab initio modeling for real-time studies of Li-ion battery electrochemical reactions. We developed three capabilities for in-situ transmission electron microscopy (TEM) studies: a capability that uses a nanomanipulator inside the TEM to assemble electrochemical cells with ionic liquid or solid state electrolytes, a capability that uses on-chip assembly of battery components on to TEM-compatible multi-electrode arrays, and a capability that uses a TEM-compatible sealed electrochemical cell that we developed for performing in-situ TEM using volatile battery electrolytes. These capabilities were used to understand lithiation mechanisms in nanoscale battery materials, including SnO{sub 2}, Si, Ge, Al, ZnO, and MnO{sub 2}. The modeling approaches used ab initio molecular dynamics to understand early stages of ethylene carbonate reduction on lithiated-graphite and lithium surfaces and constrained density functional theory to understand ethylene carbonate reduction on passivated electrode surfaces.

    5. Real-time Feynman path integral with Picard–Lefschetz theory and its applications to quantum tunneling

      SciTech Connect (OSTI)

      Tanizaki, Yuya; Koike, Takayuki

      2014-12-15

      Picard–Lefschetz theory is applied to path integrals of quantum mechanics, in order to compute real-time dynamics directly. After discussing basic properties of real-time path integrals on Lefschetz thimbles, we demonstrate its computational method in a concrete way by solving three simple examples of quantum mechanics. It is applied to quantum mechanics of a double-well potential, and quantum tunneling is discussed. We identify all of the complex saddle points of the classical action, and their properties are discussed in detail. However a big theoretical difficulty turns out to appear in rewriting the original path integral into a sum of path integrals on Lefschetz thimbles. We discuss generality of that problem and mention its importance. Real-time tunneling processes are shown to be described by those complex saddle points, and thus semi-classical description of real-time quantum tunneling becomes possible on solid ground if we could solve that problem. - Highlights: • Real-time path integral is studied based on Picard–Lefschetz theory. • Lucid demonstration is given through simple examples of quantum mechanics. • This technique is applied to quantum mechanics of the double-well potential. • Difficulty for practical applications is revealed, and we discuss its generality. • Quantum tunneling is shown to be closely related to complex classical solutions.

    6. Reliability and Markets Program Information | Department of Energy

      Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

      Reliability and Markets Program Information Reliability and Markets Program Information Summary of the Tranmission Reliability program's Reliability and Markets activity area. The program helps to increase grid reliability and reduce costs for customers using integrated market and engineering tools. PDF icon Reliability and Markets Program Factsheet.pdf More Documents & Publications 2014 Reliability & Markets Peer Review 2013 Reliability & Markets Peer Review 2012 Reliability &

    7. Principal Characteristics of a Modern Grid

      Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

      An Emerging Option Joe Miller - Modern Grid Team IRPS Conference December 10, 2008 1 Conducted by the National Energy Technology Laboratory Funded by the U.S. Department of Energy, Office of Electricity Delivery and Energy Reliability Office of Electricity Delivery and Energy Reliability MODERN GRID S T R A T E G Y 2 Agenda What is it? Where's the value? What does it mean for consumers? Some current activities Office of Electricity Delivery and Energy Reliability MODERN GRID S T R A T E G Y 3

    8. Principal Characteristics of a Modern Grid

      Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

      Barriers to Smart Grid Implementation - Is There Light at the End of the Tunnel? Utility Field Service Conference Steve Pullins - Modern Grid Team May 29, 2008 1 Conducted by the National Energy Technology Laboratory Funded by the U.S. Department of Energy, Office of Electricity Delivery and Energy Reliability 2 Office of Electricity Delivery and Energy Reliability MODERN GRID S T R A T E G Y Call for Change - Drivers and Trends to Watch The national average in reliability metrics over the last

    9. Transforming Power Grid Operations via High Performance Computing

      SciTech Connect (OSTI)

      Huang, Zhenyu; Nieplocha, Jarek

      2008-07-31

      Past power grid blackout events revealed the adequacy of grid operations in responding to adverse situations partially due to low computational efficiency in grid operation functions. High performance computing (HPC) provides a promising solution to this problem. HPC applications in power grid computation also become necessary to take advantage of parallel computing platforms as the computer industry is undergoing a significant change from the traditional single-processor environment to an era for multi-processor computing platforms. HPC applications to power grid operations are multi-fold. HPC can improve todays grid operation functions like state estimation and contingency analysis and reduce the solution time from minutes to seconds, comparable to SCADA measurement cycles. HPC also enables the integration of dynamic analysis into real-time grid operations. Dynamic state estimation, look-ahead dynamic simulation and real-time dynamic contingency analysis can be implemented and would be three key dynamic functions in future control centers. HPC applications call for better decision support tools, which also need HPC support to handle large volume of data and large number of cases. Given the complexity of the grid and the sheer number of possible configurations, HPC is considered to be an indispensible element in the next generation control centers.

    10. Reliability Engineering

      Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

      LA-UR 15-27450 This document is approved for public release; further dissemination unlimited Reliability Engineering Reliability Engineering Current practice in reliability is often fragmented, does not cover the full system lifecycle * Reliability needs to be addressed in design, development, and operational life * Reliability analysis should integrate information from components and systems Integrate proven reliability methods with world-class statistical science * Use methods and tools

    11. Real-time characterization of partially observed epidemics using surrogate models.

      SciTech Connect (OSTI)

      Safta, Cosmin; Ray, Jaideep; Lefantzi, Sophia; Crary, David; Sargsyan, Khachik; Cheng, Karen

      2011-09-01

      We present a statistical method, predicated on the use of surrogate models, for the 'real-time' characterization of partially observed epidemics. Observations consist of counts of symptomatic patients, diagnosed with the disease, that may be available in the early epoch of an ongoing outbreak. Characterization, in this context, refers to estimation of epidemiological parameters that can be used to provide short-term forecasts of the ongoing epidemic, as well as to provide gross information on the dynamics of the etiologic agent in the affected population e.g., the time-dependent infection rate. The characterization problem is formulated as a Bayesian inverse problem, and epidemiological parameters are estimated as distributions using a Markov chain Monte Carlo (MCMC) method, thus quantifying the uncertainty in the estimates. In some cases, the inverse problem can be computationally expensive, primarily due to the epidemic simulator used inside the inversion algorithm. We present a method, based on replacing the epidemiological model with computationally inexpensive surrogates, that can reduce the computational time to minutes, without a significant loss of accuracy. The surrogates are created by projecting the output of an epidemiological model on a set of polynomial chaos bases; thereafter, computations involving the surrogate model reduce to evaluations of a polynomial. We find that the epidemic characterizations obtained with the surrogate models is very close to that obtained with the original model. We also find that the number of projections required to construct a surrogate model is O(10)-O(10{sup 2}) less than the number of samples required by the MCMC to construct a stationary posterior distribution; thus, depending upon the epidemiological models in question, it may be possible to omit the offline creation and caching of surrogate models, prior to their use in an inverse problem. The technique is demonstrated on synthetic data as well as observations from the 1918 influenza pandemic collected at Camp Custer, Michigan.

    12. SU-GG-T-49: Real Time Dose Verification for Novel Shielded Balloon Brachytherapy

      SciTech Connect (OSTI)

      Govindarajan, Nandakarthik; Nazaryan, Vahagn; Gueye, Paul; Keppel, Cynthia

      2010-06-01

      Purpose: The validation of a novel approach for reducing skindoses to an acceptable level during Accelerated Partial Breast Irradiation (APBI) when the balloon-to-skin distance is inadequate (less than 7 mm) is reported. The study uses a real time dose verification method for a metallic shielded balloon applicator using scintillation fiber technology. Method and Materials: Partial shielding of the radiationdose to the skin using iron or other ferrous powder could enable the extension of APBI to some patients. With small external and pre-determined magnetic fields (

    13. Real-Time Tumor Tracking in the Lung Using an Electromagnetic Tracking System

      SciTech Connect (OSTI)

      Shah, Amish P.; Kupelian, Patrick A.; Waghorn, Benjamin J.; Willoughby, Twyla R.; Rineer, Justin M.; Maon, Rafael R.; Vollenweider, Mark A.; Meeks, Sanford L.

      2013-07-01

      Purpose: To describe the first use of the commercially available Calypso 4D Localization System in the lung. Methods and Materials: Under an institutional review board-approved protocol and an investigational device exemption from the US Food and Drug Administration, the Calypso system was used with nonclinical methods to acquire real-time 4-dimensional lung tumor tracks for 7 lung cancer patients. The aims of the study were to investigate (1) the potential for bronchoscopic implantation; (2) the stability of smooth-surface beacon transponders (transponders) after implantation; and (3) the ability to acquire tracking information within the lung. Electromagnetic tracking was not used for any clinical decision making and could only be performed before any radiation delivery in a research setting. All motion tracks for each patient were reviewed, and values of the average displacement, amplitude of motion, period, and associated correlation to a sinusoidal model (R{sup 2}) were tabulated for all 42 tracks. Results: For all 7 patients at least 1 transponder was successfully implanted. To assist in securing the transponder at the tumor site, it was necessary to implant a secondary fiducial for most transponders owing to the transponder's smooth surface. For 3 patients, insertion into the lung proved difficult, with only 1 transponder remaining fixed during implantation. One patient developed a pneumothorax after implantation of the secondary fiducial. Once implanted, 13 of 14 transponders remained stable within the lung and were successfully tracked with the tracking system. Conclusions: Our initial experience with electromagnetic guidance within the lung demonstrates that transponder implantation and tracking is achievable though not clinically available. This research investigation proved that lung tumor motion exhibits large variations from fraction to fraction within a single patient and that improvements to both transponder and tracking system are still necessary to create a clinical daily-use system to assist with actual lung radiation therapy.

    14. Registration of clinical volumes to beams-eye-view images for real-time tracking

      SciTech Connect (OSTI)

      Bryant, Jonathan H.; Rottmann, Joerg; Lewis, John H.; Mishra, Pankaj; Berbeco, Ross I.; Keall, Paul J.

      2014-12-15

      Purpose: The authors combine the registration of 2D beams eye view (BEV) images and 3D planning computed tomography (CT) images, with relative, markerless tumor tracking to provide automatic absolute tracking of physician defined volumes such as the gross tumor volume (GTV). Methods: During treatment of lung SBRT cases, BEV images were continuously acquired with an electronic portal imaging device (EPID) operating in cine mode. For absolute registration of physician-defined volumes, an intensity based 2D/3D registration to the planning CT was performed using the end-of-exhale (EoE) phase of the four dimensional computed tomography (4DCT). The volume was converted from Hounsfield units into electron density by a calibration curve and digitally reconstructed radiographs (DRRs) were generated for each beam geometry. Using normalized cross correlation between the DRR and an EoE BEV image, the best in-plane rigid transformation was found. The transformation was applied to physician-defined contours in the planning CT, mapping them into the EPID image domain. A robust multiregion method of relative markerless lung tumor tracking quantified deviations from the EoE position. Results: The success of 2D/3D registration was demonstrated at the EoE breathing phase. By registering at this phase and then employing a separate technique for relative tracking, the authors are able to successfully track target volumes in the BEV images throughout the entire treatment delivery. Conclusions: Through the combination of EPID/4DCT registration and relative tracking, a necessary step toward the clinical implementation of BEV tracking has been completed. The knowledge of tumor volumes relative to the treatment field is important for future applications like real-time motion management, adaptive radiotherapy, and delivered dose calculations.

    15. A REAL-TIME COAL CONTENT/ORE GRADE (C2OC) SENSOR

      SciTech Connect (OSTI)

      Rand Swanson

      2005-04-01

      This is the final report of a three year DOE funded project titled ''A real-time coal content/ore grade (C{sub 2}OG) sensor''. The sensor, which is based on hyperspectral imaging technology, was designed to give a machine vision assay of ore or coal. Sensors were designed and built at Resonon, Inc., and then deployed at the Stillwater Mining Company core room in southcentral Montana for analyzing platinum/palladium ore and at the Montana Tech Spectroscopy Lab for analyzing coal and other materials. The Stillwater sensor imaged 91' of core and analyzed this data for surface sulfides which are considered to be pathfinder minerals for platinum/palladium at this mine. Our results indicate that the sensor could deliver a relative ore grade provided tool markings and iron oxidation were kept to a minimum. Coal, talc, and titanium sponge samples were also imaged and analyzed for content and grade with promising results. This research has led directly to a DOE SBIR Phase II award for Resonon to develop a down-hole imaging spectrometer based on the same imaging technology used in the Stillwater core room C{sub 2}OG sensor. The Stillwater Mining Company has estimated that this type of imaging system could lead to a 10% reduction in waste rock from their mine and provide a $650,000 benefit per year. The proposed system may also lead to an additional 10% of ore tonnage, which would provide a total economic benefit of more than $3.1 million per year. If this benefit could be realized on other metal ores for which the proposed technology is suitable, the possible economic benefits to U.S. mines is over $70 million per year. In addition to these currently lost economic benefits, there are also major energy losses from mining waste rock and environmental impacts from mining, processing, and disposing of waste rock.

    16. Real Time Pricing as a Default or Optional Service for C&ICustomers: A Comparative Analysis of Eight Case Studies

      SciTech Connect (OSTI)

      Barbose, Galen; Goldman, Charles; Bharvirkar, Ranjit; Hopper,Nicole; Ting, Michael; Neenan, Bernie

      2005-08-01

      Demand response (DR) has been broadly recognized to be an integral component of well-functioning electricity markets, although currently underdeveloped in most regions. Among the various initiatives undertaken to remedy this deficiency, public utility commissions (PUC) and utilities have considered implementing dynamic pricing tariffs, such as real-time pricing (RTP), and other retail pricing mechanisms that communicate an incentive for electricity consumers to reduce their usage during periods of high generation supply costs or system reliability contingencies. Efforts to introduce DR into retail electricity markets confront a range of basic policy issues. First, a fundamental issue in any market context is how to organize the process for developing and implementing DR mechanisms in a manner that facilitates productive participation by affected stakeholder groups. Second, in regions with retail choice, policymakers and stakeholders face the threshold question of whether it is appropriate for utilities to offer a range of dynamic pricing tariffs and DR programs, or just ''plain vanilla'' default service. Although positions on this issue may be based primarily on principle, two empirical questions may have some bearing--namely, what level of price response can be expected through the competitive retail market, and whether establishing RTP as the default service is likely to result in an appreciable level of DR? Third, if utilities are to have a direct role in developing DR, what types of retail pricing mechanisms are most appropriate and likely to have the desired policy impact (e.g., RTP, other dynamic pricing options, DR programs, or some combination)? Given a decision to develop utility RTP tariffs, three basic implementation issues require attention. First, should it be a default or optional tariff, and for which customer classes? Second, what types of tariff design is most appropriate, given prevailing policy objectives, wholesale market structure, ratemaking practices and standards, and customer preferences? Third, if a primary goal for RTP implementation is to induce DR, what types of supplemental activities are warranted to support customer participation and price response (e.g., interval metering deployment, customer education, and technical assistance)?

    17. WE-G-17A-05: Real-Time Catheter Localization Using An Active MR Tracker for Interstitial Brachytherapy

      SciTech Connect (OSTI)

      Wang, W; Damato, A; Viswanathan, A; Cormack, R; Penzkofer, T; Schmidt, E; Pan, L; Gilson, W; Seethamraju, R

      2014-06-15

      Purpose: To develop a novel active MR-tracking system which can provide accurate and rapid localization of brachytherapy catheters, and assess its reliability and spatial accuracy in comparison to standard catheter digitization using MR images. Methods: An active MR tracker for brachytherapy was constructed by adding three printed-circuit micro-coils to the shaft of a commercial metallic stylet. A gel phantom with an embedded framework was built, into which fifteen 14-Gauge catheters were placed, following either with parallel or crossed paths. The tracker was inserted sequentially into each catheter, with MR-tracking running continuously. Tracking was also performed during the tracker's removal from each catheter. Catheter trajectories measured from the insertion and the removal procedures using the same micro-coil were compared, as well as trajectories obtained using different micro-coils. A 3D high-resolution MR image dataset of the phantom was acquired and imported into a treatment planning system (TPS) for catheter digitization. A comparison between MR-tracked positions and positions digitized from MR images by TPS was performed. Results: The MR tracking shows good consistency for varying catheter paths and for all micro-coils (mean difference ∼1.1 mm). The average distance between the MR-tracking trajectory and catheter digitization from the MR images was 1.1 mm. Ambiguity in catheter assignment from images due to crossed paths was resolved by active tracking. When tracking was interleaved with imaging, real-time images were continuously acquired at the instantaneous tip positions and displayed on an external workstation. Conclusion: The active MR tracker may be used to provide an independent measurement of catheter location in the MR environment, potentially eliminating the need for subsequent CT. It may also be used to control realtime imaging of catheter placement. This will enable MR-based brachytherapy planning of interstitial implants without ionizing radiation, with the potential to enable dosimetric guidance of catheter placement. We gratefully acknowledge support from the American Heart Association SDG 10SDG2610139, NIH 1R21CA158987-01A1, U41-RR019703, and R21 CA 167800, as well as a BWH Department of Radiation Oncology post-doctoral fellowship support. Li Pan and Wesley Gilson are employees of Siemens Corporation, Corporate Technology. Ravi Seethamraju is an employee of Siemens Healthcare.

    18. Buildings-to-Grid Publications | Department of Energy

      Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

      Emerging Technologies » Buildings-to-Grid » Buildings-to-Grid Publications Buildings-to-Grid Publications Below you will find a full listing of all Buildings-to-Grid Integration publications. Framework Documents The National Opportunity for Interoperability and its Benefits for a Reliable, Robust, and Future Grid Realized Through Buildings Buildings Interoperability Landscape Transaction-Based Building Controls Framework, Volume 1: Reference Guide Transaction-Based Building Controls Framework,

    19. Grid Modernization - A View from Abroad | Department of Energy

      Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

      Grid Modernization - A View from Abroad Grid Modernization - A View from Abroad November 21, 2014 - 4:58pm Addthis Thanks for joining us for #GridWeek! | Graphic by Sarah Gerrity, Energy Department. Thanks for joining us for #GridWeek! | Graphic by Sarah Gerrity, Energy Department. Patricia A. Hoffman Patricia A. Hoffman Assistant Secretary, Office of Electricity Delivery & Energy Reliability While Energy.gov was celebrating #GridWeek this week, I traveled to Japan for the 6th International

    20. WHAT THE SMART GRID MEANS TO AMERICANS | Department of Energy

      Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

      WHAT THE SMART GRID MEANS TO AMERICANS WHAT THE SMART GRID MEANS TO AMERICANS The U.S. Department of Energy (DOE) is charged under the Energy Independence and Security Act of 2007 (EISA 2007) with modernizing the nation's electricity grid to improve its reliability and efficiency. As part of this effort, DOE is also responsible for increasing awareness of our nation's Smart Grid. Building upon The Smart Grid: An Introduction, a DOE-sponsored publication released in 2008 and available online at

    1. Department of Energy Announces $8.5 Million to Advance Solar Energy Grid Integration Systems

      Broader source: Energy.gov [DOE]

      Stage III awards through DOE's Sandia National Laboratories to help advance solar energy deployment and grid reliability

    2. Hawaii electric system reliability.

      SciTech Connect (OSTI)

      Silva Monroy, Cesar Augusto; Loose, Verne William

      2012-09-01

      This report addresses Hawaii electric system reliability issues; greater emphasis is placed on short-term reliability but resource adequacy is reviewed in reference to electric consumers' views of reliability %E2%80%9Cworth%E2%80%9D and the reserve capacity required to deliver that value. The report begins with a description of the Hawaii electric system to the extent permitted by publicly available data. Electrical engineering literature in the area of electric reliability is researched and briefly reviewed. North American Electric Reliability Corporation standards and measures for generation and transmission are reviewed and identified as to their appropriateness for various portions of the electric grid and for application in Hawaii. Analysis of frequency data supplied by the State of Hawaii Public Utilities Commission is presented together with comparison and contrast of performance of each of the systems for two years, 2010 and 2011. Literature tracing the development of reliability economics is reviewed and referenced. A method is explained for integrating system cost with outage cost to determine the optimal resource adequacy given customers' views of the value contributed by reliable electric supply. The report concludes with findings and recommendations for reliability in the State of Hawaii.

    3. Sandia Energy - Transmission Grid Integration

      Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

      Transmission Grid Integration Home Stationary Power Energy Conversion Efficiency Solar Energy Photovoltaics Grid Integration Transmission Grid Integration Transmission Grid...

    4. Sandia Energy - Distribution Grid Integration

      Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

      Distribution Grid Integration Home Stationary Power Energy Conversion Efficiency Solar Energy Photovoltaics Grid Integration Distribution Grid Integration Distribution Grid...

    5. PV Performance and Reliability

      Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

      Performance and Reliability - Sandia Energy Energy Search Icon Sandia Home Locations Contact Us Employee Locator Energy & Climate Secure & Sustainable Energy Future Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 Geothermal Natural Gas Safety, Security & Resilience of the Energy Infrastructure Energy Storage Nuclear Power & Engineering Grid Modernization Battery Testing Nuclear Fuel Cycle Defense Waste Management Programs

    6. Energy Department Releases Grid Energy Storage Report | Department...

      Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

      technologies, validated reliability and safety, an equitable ... growing use of renewable power generation, which varies ... The grid's evolution toward more distributed energy systems ...

    7. Consolidated Edison Company of New York, Inc. Smart Grid Demonstration...

      Open Energy Info (EERE)

      cyber security, reduces electricity demand and peak energy use, and increases reliability and energy efficiency. The system will include renewable energy generation, grid...

    8. Powder River Energy Corporation Smart Grid Project | Open Energy...

      Open Energy Info (EERE)

      monitor and respond to grid disturbances, PRECorp expects improvements in electric reliability and reductions in operating costs and emissions from truck rolls for site...

    9. American Transmission Company LLC Smart Grid Project | Open Energy...

      Open Energy Info (EERE)

      and collection networks. Targeted benefits include improved communications reliability and reduced operations and maintenance costs.3 Dictionary.png Smart Grid...

    10. NSTAR Electric & Gas Corporation Smart Grid Demonstration Project...

      Open Energy Info (EERE)

      on low voltage (secondary) networks in downtown Boston to improve grid reliability and safety. The project will provide additional visibility for operators, which...

    11. ISO New England, Incorporated Smart Grid Project | Open Energy...

      Open Energy Info (EERE)

      in conjunction with a set of new applications, enable further improvements of the reliability of the transmission grid and prevent the spread of local disturbances to the...

    12. El Paso Electric Smart Grid Project | Open Energy Information

      Open Energy Info (EERE)

      distribution management software platform. El Paso expects these upgrades to improve reliability and power quality and reduce truck rolls for grid maintenance, operating costs, and...

    13. New York Independent System Operator, Inc. Smart Grid Project...

      Open Energy Info (EERE)

      capacitors across the New York transmission system. The project aims to improve the reliability of the transmission grid and prevent the spread of local outages to neighboring...

    14. Memphis Light, Gas and Water Division Smart Grid Project | Open...

      Open Energy Info (EERE)

      restoration times and the need for truck rolls for grid maintenance, improving reliability and reducing operating costs and pollutant emissions.3 Equipment Distribution...

    15. Midwest Energy Inc. Smart Grid Project | Open Energy Information

      Open Energy Info (EERE)

      allows Midwest to improve power system models and analysis tools, increasing reliability of grid operations.3 Equipment 9 Relay-based Phasor Measurement Units...

    16. Talquin Electric Cooperative, Inc. Smart Grid Project | Open...

      Open Energy Info (EERE)

      also installs automated distribution grid equipment expected to: (1) enhance the reliability and quality of electric delivery, and (2) reduce operations and maintenance...

    17. City of Auburn, IN Smart Grid Project | Open Energy Information

      Open Energy Info (EERE)

      system, including installing a smart meter network, enhancing reliable and fast communication capabilities, upgrading cyber security technologies, expanding grid monitoring and...

    18. Real-time monitoring and manipulation of single bio-molecules in free solution

      SciTech Connect (OSTI)

      Li, Hung-Wing

      2005-08-01

      The observation and manipulation of single biomolecules allow their dynamic behaviors to be studied to provide insight into molecular genetics, biochip assembly, biosensor design, DNA biophysics. In a PDMS/glass microchannel, a nonuniform electroosmotic flow (EOF) was created. By using a scanning confocal fluorescence microscope and total internal-reflection fluorescence microscope (TIRFM), we demonstrated that negatively charged DNA molecules were focused by the nonuniform EOF into a thin layer at the glass surface. This phenomenon was applied to selectively detect target DNA molecules without requiring the separation of excessive probes and can be applied continuously to achieve high throughput. A variable-angle-TIRFM was constructed for imaging single DNA molecule dynamics at a solid/liquid interface. Implications we have are that the measured intensities cannot be used directly to determine the distances of molecules from the surface and the experimental counting results depict the distance-dependent dynamics of molecules near the surface; Molecules at low ionic strengths experience electrostatic repulsion at distances much further away from the surface than the calculated thickness of the electrical double layer. {delta}-DNA was employed as a nanoprobe for different functionalized surfaces to elucidate adsorption in chromatography. The 12-base unpaired ends of this DNA provide exposed purine and pyrimidine groups for adsorption. Patterns of self-assembled monolayers (SAMs) and patterns of metal oxides are generated. By recording the real-time dynamic motion of DNA molecules at the SAMs/aqueous interface, the various parameters governing the retention of an analyte during chromatographic separation can be studied. Even subtle differences among adsorptive forces can be revealed. Dynamic conformational changes of the prosthetic group, flavin adenine dinucleotide (FAD), in flavoprotein NADH peroxidase, in thioredoxin reductase, and in free solution were monitored with TIWM. FAD bound loosely in the proteins changed from the stacked conformation to the unstacked conformation upon laser excitation. FAD in free solution not only underwent conformational changes but also reacted with each other to form a dimer. Direct measurement of the single-molecule enzymatic cleavage rates of ApaI-DNA complex in the presence of various concentrations of MgCl{sub 2} solution is reported. Results suggest that there exists a distribution of ApaI conformations around the restriction site.

    19. Potentiometric Sensor for Real-Time Remote Surveillance of Actinides in Molten Salts

      SciTech Connect (OSTI)

      Natalie J. Gese; Jan-Fong Jue; Brenda E. Serrano; Guy L. Fredrickson

      2012-07-01

      A potentiometric sensor is being developed at the Idaho National Laboratory for real-time remote surveillance of actinides during electrorefining of spent nuclear fuel. During electrorefining, fuel in metallic form is oxidized at the anode while refined uranium metal is reduced at the cathode in a high temperature electrochemical cell containing LiCl-KCl-UCl3 electrolyte. Actinides present in the fuel chemically react with UCl3 and form stable metal chlorides that accumulate in the electrolyte. This sensor will be used for process control and safeguarding of activities in the electrorefiner by monitoring the concentrations of actinides in the electrolyte. The work presented focuses on developing a solid-state cation conducting ceramic sensor for detecting varying concentrations of trivalent actinide metal cations in eutectic LiCl-KCl molten salt. To understand the basic mechanisms for actinide sensor applications in molten salts, gadolinium was used as a surrogate for actinides. The ?-Al2O3 was selected as the solid-state electrolyte for sensor fabrication based on cationic conductivity and other factors. In the present work Gd3+-?-Al2O3 was prepared by ion exchange reactions between trivalent Gd3+ from GdCl3 and K+-, Na+-, and Sr2+-?-Al2O3 precursors. Scanning electron microscopy (SEM) was used for characterization of Gd3+-?-Al2O3 samples. Microfocus X-ray Diffraction (-XRD) was used in conjunction with SEM energy dispersive X-ray spectroscopy (EDS) to identify phase content and elemental composition. The Gd3+-?-Al2O3 materials were tested for mechanical and chemical stability by exposing them to molten LiCl-KCl based salts. The effect of annealing on the exchanged material was studied to determine improvements in material integrity post ion exchange. The stability of the ?-Al2O3 phase after annealing was verified by -XRD. Preliminary sensor tests with different assembly designs will also be presented.

    20. A Fast Topological Trigger for Real Time Analysis of Nanosecond Phenomena; Opening the Gamma Ray Window to Our Universe

      SciTech Connect (OSTI)

      Krennrich, Frank Iowa State University

      2013-09-24

      This work was to enable the development of a proof-of-principle nanosecond trigger system that is designed to perform a real time analysis of fast Cherenkov light flashes from air showers. The basic building blocks of the trigger system have been designed and constructed, and a real world system is now operating in the VERITAS experiment.

    1. Using architecture information and real-time resource state to reduce power consumption and communication costs in parallel applications.

      SciTech Connect (OSTI)

      Brandt, James M.; Devine, Karen D.; Gentile, Ann C.; Leung, Vitus J.; Olivier, Stephen Lecler; Pedretti, Kevin; Rajamanickam, Sivasankaran; Bunde, David P.; Deveci, Mehmet; Catalyurek, Umit V.

      2014-09-01

      As computer systems grow in both size and complexity, the need for applications and run-time systems to adjust to their dynamic environment also grows. The goal of the RAAMP LDRD was to combine static architecture information and real-time system state with algorithms to conserve power, reduce communication costs, and avoid network contention. We devel- oped new data collection and aggregation tools to extract static hardware information (e.g., node/core hierarchy, network routing) as well as real-time performance data (e.g., CPU uti- lization, power consumption, memory bandwidth saturation, percentage of used bandwidth, number of network stalls). We created application interfaces that allowed this data to be used easily by algorithms. Finally, we demonstrated the benefit of integrating system and application information for two use cases. The first used real-time power consumption and memory bandwidth saturation data to throttle concurrency to save power without increasing application execution time. The second used static or real-time network traffic information to reduce or avoid network congestion by remapping MPI tasks to allocated processors. Results from our work are summarized in this report; more details are available in our publications [2, 6, 14, 16, 22, 29, 38, 44, 51, 54].

    2. Use of external cavity quantum cascade laser compliance voltage in real-time trace gas sensing of multiple chemicals

      SciTech Connect (OSTI)

      Phillips, Mark C.; Taubman, Matthew S.; Kriesel, Jason M.

      2015-02-08

      We describe a prototype trace gas sensor designed for real-time detection of multiple chemicals. The sensor uses an external cavity quantum cascade laser (ECQCL) swept over its tuning range of 940-1075 cm-1 (9.30-10.7 µm) at a 10 Hz repetition rate.

    3. Principal Characteristics of a Modern Grid

      Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

      ... options Reduce peak load and prices Improve grid reliability Involving the consumer is win - win 13 Office of ... have the same effect on an industrial process as an outage that ...

    4. GRID INTEGRATION OF SOLAR ENERGY WORKSHOP

      Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

      GRID INTEGRATION OF SOLAR ENERGY WORKSHOP OCTOBER 29, 2015 OVERVIEW The U.S. Department of ... the safe, reliable, and cost-effective integration of large scale solar generation onto ...

    5. Principal Characteristics of a Modern Grid

      Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

      ... AD improves reliability and enables self healing Advanced Distribution Advanced Transmission Advanced Asset Management 6 MODERN GRID S T R A T E G Y What's the Value Proposition? ...

    6. 2014 Advanced Grid Modeling Program Peer Review

      Broader source: Energy.gov [DOE]

      The Office of Electricity Delivery and Energy Reliability held a peer review of the Advanced Grid Modeling Program on June 17-18, 2014 in Alexandria, VA. This page lists the four sessions of the Peer Review.

    7. Comments of North American Electric Reliability Corporation (NERC) to DOE

      Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

      Smart Grid RFI: Addressing Policy and Logistical Challenges | Department of Energy North American Electric Reliability Corporation (NERC) to DOE Smart Grid RFI: Addressing Policy and Logistical Challenges Comments of North American Electric Reliability Corporation (NERC) to DOE Smart Grid RFI: Addressing Policy and Logistical Challenges Response to the Department of Energy's ("DOE") Request for Information (RFI) regarding the "Smart Grid RFI: Addressing Policy and Logistical

    8. Advanced Grid-Friendly Controls Demonstration Project for Utility-Scale PV Power Plants

      Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

      Mission » Advanced Grid Integration (AGI) Advanced Grid Integration (AGI) Advanced Grid Integration (AGI) The Advanced Grid Integration (AGI) Division leads the federal government's efforts to accelerate modernization of the U.S. electric power grid. By enabling the two-way flow of electricity and information, a Smart Grid will increase the reliability, efficiency, and security of electric transmission, distribution, and use. A modern grid provides the foundation for a strong economy by

    9. Customer Value Proposition Smart Grid (KEL) (Smart Grid Project...

      Open Energy Info (EERE)

      Smart Grid Projects Smart Grid Projects in Europe Smart Grid Projects - Smart Meter and AMI Smart Grid Projects - Home application Smart Grid Projects - Customer Behavior...

    10. Real-time Global Flood Estimation using Satellite-based Precipitation and a Coupled Land Surface and Routing Model

      SciTech Connect (OSTI)

      Wu, Huan; Adler, Robert F.; Tian, Yudong; Huffman, George; Li, Hongyi; Wang, Jianjian

      2014-04-09

      A community land surface model, the Variable Infiltration Capacity (VIC) model, is coupled with a newly developed hierarchical dominant river tracing-based runoff-routing model to form the Dominant river tracing-Routing Integrated with VIC Environment (DRIVE) model system, which serves as the new core of the real-time Global Flood Monitoring System (GFMS). The GFMS uses real-time satellite-based precipitation to derive flood-monitoring parameters for the latitude-band 50{degree sign}N-50{degree sign}S at relatively high spatial (~12km) and temporal (3-hourly) resolution. Examples of model results for recent flood events are computed using the real-time GFMS (http://flood.umd.edu). To evaluate the accuracy of the new GFMS, the DRIVE model is run retrospectively for 15 years using both research-quality and real-time satellite precipitation products. Statistical results are slightly better for the research-quality input and significantly better for longer duration events (three-day events vs. one-day events). Basins with fewer dams tend to provide lower false alarm ratios. For events longer than three days in areas with few dams, the probability of detection is ~0.9 and the false alarm ratio is ~0.6. In general, these statistical results are better than those of the previous system. Streamflow was evaluated at 1,121 river gauges across the quasi-global domain. Validation using real-time precipitation across the tropics (30ºS-30ºN) gives positive daily Nash-Sutcliffe Coefficients for 107 out of 375 (28%) stations with a mean of 0.19 and 51% of the same gauges at monthly scale with a mean of 0.33. There were poorer results in higher latitudes, probably due to larger errors in the satellite precipitation input.

    11. MO-G-BRE-01: A Real-Time Virtual Delivery System for Photon Radiotherapy Delivery Monitoring

      SciTech Connect (OSTI)

      Shi, F; Gu, X; Jiang, S; Jia, X; Graves, Y

      2014-06-15

      Purpose: Treatment delivery monitoring is important for radiotherapy, which enables catching dosimetric error at the earliest possible opportunity. This project develops a virtual delivery system to monitor the dose delivery process of photon radiotherapy in real-time using GPU-based Monte Carlo (MC) method. Methods: The simulation process consists of 3 parallel CPU threads. A thread T1 is responsible for communication with a linac, which acquires a set of linac status parameters, e.g. gantry angles, MLC configurations, and beam MUs every 20 ms. Since linac vendors currently do not offer interface to acquire data in real time, we mimic this process by fetching information from a linac dynalog file at the set frequency. Instantaneous beam fluence map (FM) is calculated. A FM buffer is also created in T1 and the instantaneous FM is accumulated to it. This process continues, until a ready signal is received from thread T2 on which an inhouse developed MC dose engine executes on GPU. At that moment, the accumulated FM is transferred to T2 for dose calculations, and the FM buffer in T1 is cleared. Once the calculation finishes, the resulting 3D dose distribution is directed to thread T3, which displays it in three orthogonal planes overlaid on the CT image for treatment monitoring. This process continues to monitor the 3D dose distribution in real-time. Results: An IMRT and a VMAT cases used in our patient-specific QA are studied. Maximum dose differences between our system and treatment planning system are 0.98% and 1.58% for the two cases, respectively. The average time per MC calculation is 0.1sec with <2% relative uncertainty. The update frequency of ∼10Hz is considered as real time. Conclusion: By embedding a GPU-based MC code in a novel data/work flow, it is possible to achieve real-time MC dose calculations to monitor delivery process.

    12. ,"Year",,"Summer",,,"Eastern Power Grid",,,,,,,,,,,,,,,,,,,,,,,,"Texas Power Grid",,,"Western Power Grid"

      U.S. Energy Information Administration (EIA) Indexed Site

      4a. Summer Historic Net Internal Demand, Capacity Resources, and Capacity Margins by North American Electric Reliability Council Region, 1990 through 2004 " ,"(Megawatts and Percent)" ,"Year",,"Summer",,,"Eastern Power Grid",,,,,,,,,,,,,,,,,,,,,,,,"Texas Power Grid",,,"Western Power Grid" ,,,"Contiguous U.S."

    13. Principal Characteristics of a Modern Grid

      Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

      2030 Distributed Electricity Environment - independent, sustainable, and sassy International Student Energy Summit Presented by Steve Pullins, Modern Grid Team June 2009 Funded by the U.S. Department of Energy, Office of Electricity Delivery and Energy Reliability Conducted by the National Energy Technology Laboratory Office of Electricity Delivery and Energy Reliability MODERN GRID S T R A T E G Y 2 Powering the 21 st Century Economy This material is based upon work supported by the Department

    14. Continuous flow PCB radiolysis with real time assessment by gas chromatography

      SciTech Connect (OSTI)

      Bruce J. Mincher; Aaron Ruhter; Rene' Rodriguez; Richard Brey

      2006-05-01

      Recently, the treatment of environmentally recalcitrant pollutants such as PCBs has been studied using a number of so-called, advanced oxidation technologies (AOTs). As a group, the AOTs are ultimate treatment technologies that seek to mineralize the hazardous compounds to be treated (Cooper et al., 2004). One of the most versatile of the AOTs is radiolysis, usually practiced using machine-generated sources of radiation (Cooper et al., 2004, Mincher and Cooper, 2003). The radiolytic decomposition of PCBs has been reviewed (Curry and Mincher, 1999). While earlier experiments have been performed in alkaline isopropanol (Singh et al., 1985, Mucka et al., 1997), recent literature has begun to examine the radiolysis of PCBs in more real-world solvents, such as transformer oil (Arbon and Mincher, 1996, Mincher et al., 2000, Chaychian et al., 1999). These experiments have generally been performed in batch fashion, with small volumes of PCB-contaminated solvents placed in front of a gamma-ray source or the bremmstrahlung or e-beam of an accelerator for predetermined periods of time, to give a desired absorbed dose. These samples were then retrieved to analyze the post-irradiation PCB concentration. We report here what we believe is the first example of the radiolysis of PCBs in a process, continuous flow stream, as opposed to typical batch irradiations. The PCB-containing transformer oil was recirculated through an irradiation cell located in the path of an e-beam. Multiple passes through the cell allowed for the delivery of any desired radiation dose. This system required the development of an on-line analytical system that could provide PCB concentration values in real time. In the current experiment, a pulsed plasma electron capture detector (PDECD) was used in conjunction with a new sample preparation scheme. The new sampling scheme bypasses the need for removal or powering down of the radiation source, which would be undesirable during process PCB treatment. Dilution of the samples using volumetric glassware or balances at a site remote to the irradiation, and manual injection of the diluted samples in a remote GC is not required. Thus, the error and time delays associated with stopping and restarting the accelerator are eliminated and kinetic investigations are more easily performed. The PCB levels can be determined within a few minutes of delivering a specified dose to the sample while the process stream continues to be irradiated. Additionally, any possible chemical species in the oil with reactive lifetimes on the order of just a few minutes could be observed with this method. It has previously been reported that the addition of alkaline isopropanol spikes to PCB oils has a catalytic effect on PCB decomposition by radiolysis (Mincher et al., 2000, Mincher et al., 2002). Here we report the results of process irradiation of transformer oil contaminated with PCBs for unadulterated oils, and for oils spiked with alkaline isopropanol to decrease the time and dose required for treatment.

    15. WWW media distribution via Hopwise reliable multicast

      SciTech Connect (OSTI)

      Donnelley, J.E.

      1994-12-01

      Repeated access to WWW pages currently makes inefficient use of available network bandwidth. A Distribution Point Model is proposed where large and relatively static sets of pages (e.g. magazines or other such media) are distributed via bulk multicast to LAN distribution points for local access. Some access control issues are discussed. Hopwise Reliable Multicast (HRM) is proposed to simplify reliable multicast of non real time bulk data between LANs. HRM uses TCP for reliability and flow control on a hop by hop basis throughout a multicast distribution tree created by today`s Internet MBone.

    16. SMART Grid

      Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

      Sandia Energy Energy Search Icon Sandia Home Locations Contact Us Employee Locator Energy & Climate Secure & Sustainable Energy Future Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 Geothermal Natural Gas Safety, Security & Resilience of the Energy Infrastructure Energy Storage Nuclear Power & Engineering Grid Modernization Battery Testing Nuclear Fuel Cycle Defense Waste Management Programs Advanced Nuclear Energy Nuclear

    17. SMART Grid

      Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

      2 - Sandia Energy Energy Search Icon Sandia Home Locations Contact Us Employee Locator Energy & Climate Secure & Sustainable Energy Future Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 Geothermal Natural Gas Safety, Security & Resilience of the Energy Infrastructure Energy Storage Nuclear Power & Engineering Grid Modernization Battery Testing Nuclear Fuel Cycle Defense Waste Management Programs Advanced Nuclear Energy Nuclear

    18. SMART Grid

      Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

      3 - Sandia Energy Energy Search Icon Sandia Home Locations Contact Us Employee Locator Energy & Climate Secure & Sustainable Energy Future Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 Geothermal Natural Gas Safety, Security & Resilience of the Energy Infrastructure Energy Storage Nuclear Power & Engineering Grid Modernization Battery Testing Nuclear Fuel Cycle Defense Waste Management Programs Advanced Nuclear Energy Nuclear

    19. Grid Modernization

      Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

      - Sandia Energy Energy Search Icon Sandia Home Locations Contact Us Employee Locator Energy & Climate Secure & Sustainable Energy Future Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 Geothermal Natural Gas Safety, Security & Resilience of the Energy Infrastructure Energy Storage Nuclear Power & Engineering Grid Modernization Battery Testing Nuclear Fuel Cycle Defense Waste Management Programs Advanced Nuclear Energy Nuclear

    20. Grid Integration

      Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

      2 - Sandia Energy Energy Search Icon Sandia Home Locations Contact Us Employee Locator Energy & Climate Secure & Sustainable Energy Future Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 Geothermal Natural Gas Safety, Security & Resilience of the Energy Infrastructure Energy Storage Nuclear Power & Engineering Grid Modernization Battery Testing Nuclear Fuel Cycle Defense Waste Management Programs Advanced Nuclear Energy Nuclear