National Library of Energy BETA

Sample records for real-time chemical imaging

  1. Real-Time Chemical Imaging of Bacterial Biofilm Development

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Real-Time Chemical Imaging of Bacterial Biofilm Development Print Scientists have ... The ability to image the chemical reactions in living cells in real time, especially in ...

  2. Real-Time Chemical Imaging of Bacterial Biofilm Development

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Real-Time Chemical Imaging of Bacterial Biofilm Development Real-Time Chemical Imaging of Bacterial Biofilm Development Print Wednesday, 25 August 2010 00:00 Scientists have ...

  3. Real-Time Chemical Imaging of Bacterial Biofilm Development

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Real-Time Chemical Imaging of Bacterial Biofilm Development Print Scientists have developed a robust and label-free method to probe the chemical underpinnings of developing bacterial ...

  4. Real-Time Chemical Imaging of Bacterial Biofilm Development

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Real-Time Chemical Imaging of Bacterial Biofilm Development Real-Time Chemical Imaging of Bacterial Biofilm Development Print Wednesday, 25 August 2010 00:00 Scientists have developed a robust and label-free method to probe the chemical underpinnings of developing bacterial biofilms. Almost all bacteria can form biofilms-dynamic communities of cells enclosed in self-produced matrices of polymers that stick to other bacteria or surfaces in water-containing environments. Coordinated collectively,

  5. Real-Time Chemical Imaging of Bacterial Biofilm Development

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Real-Time Chemical Imaging of Bacterial Biofilm Development Print Scientists have developed a robust and label-free method to probe the chemical underpinnings of developing bacterial biofilms. Almost all bacteria can form biofilms-dynamic communities of cells enclosed in self-produced matrices of polymers that stick to other bacteria or surfaces in water-containing environments. Coordinated collectively, these bacteria defend against antagonists, break down recalcitrant materials, and produce

  6. Real-Time Chemical Imaging of Bacterial Biofilm Development

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Real-Time Chemical Imaging of Bacterial Biofilm Development Print Scientists have developed a robust and label-free method to probe the chemical underpinnings of developing bacterial biofilms. Almost all bacteria can form biofilms-dynamic communities of cells enclosed in self-produced matrices of polymers that stick to other bacteria or surfaces in water-containing environments. Coordinated collectively, these bacteria defend against antagonists, break down recalcitrant materials, and produce

  7. Real-Time Chemical Imaging of Bacterial Biofilm Development

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Real-Time Chemical Imaging of Bacterial Biofilm Development Print Scientists have developed a robust and label-free method to probe the chemical underpinnings of developing bacterial biofilms. Almost all bacteria can form biofilms-dynamic communities of cells enclosed in self-produced matrices of polymers that stick to other bacteria or surfaces in water-containing environments. Coordinated collectively, these bacteria defend against antagonists, break down recalcitrant materials, and produce

  8. Real-Time Chemical Imaging of Bacterial Biofilm Development

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Real-Time Chemical Imaging of Bacterial Biofilm Development Print Scientists have developed a robust and label-free method to probe the chemical underpinnings of developing bacterial biofilms. Almost all bacteria can form biofilms-dynamic communities of cells enclosed in self-produced matrices of polymers that stick to other bacteria or surfaces in water-containing environments. Coordinated collectively, these bacteria defend against antagonists, break down recalcitrant materials, and produce

  9. Real-Time Chemical Imaging of Bacterial Biofilm Development

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Real-Time Chemical Imaging of Bacterial Biofilm Development Print Scientists have developed a robust and label-free method to probe the chemical underpinnings of developing bacterial biofilms. Almost all bacteria can form biofilms-dynamic communities of cells enclosed in self-produced matrices of polymers that stick to other bacteria or surfaces in water-containing environments. Coordinated collectively, these bacteria defend against antagonists, break down recalcitrant materials, and produce

  10. Real-Time Chemical Imaging of Bacterial Biofilm Development

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Real-Time Chemical Imaging of Bacterial Biofilm Development Print Scientists have developed a robust and label-free method to probe the chemical underpinnings of developing bacterial biofilms. Almost all bacteria can form biofilms-dynamic communities of cells enclosed in self-produced matrices of polymers that stick to other bacteria or surfaces in water-containing environments. Coordinated collectively, these bacteria defend against antagonists, break down recalcitrant materials, and produce

  11. Real-Time Chemical Imaging of Bacterial Biofilm Development

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Real-Time Chemical Imaging of Bacterial Biofilm Development Print Scientists have developed a robust and label-free method to probe the chemical underpinnings of developing bacterial biofilms. Almost all bacteria can form biofilms-dynamic communities of cells enclosed in self-produced matrices of polymers that stick to other bacteria or surfaces in water-containing environments. Coordinated collectively, these bacteria defend against antagonists, break down recalcitrant materials, and produce

  12. Real-Time Chemical Imaging of Bacterial Biofilm Development

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Real-Time Chemical Imaging of Bacterial Biofilm Development Print Scientists have developed a robust and label-free method to probe the chemical underpinnings of developing bacterial biofilms. Almost all bacteria can form biofilms-dynamic communities of cells enclosed in self-produced matrices of polymers that stick to other bacteria or surfaces in water-containing environments. Coordinated collectively, these bacteria defend against antagonists, break down recalcitrant materials, and produce

  13. Real-Time Quantitative Imaging of Failure Events in Materials...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Real-Time Quantitative Imaging of Failure Events in Materials Under Load at Temperatures Above 1,600 C Real-Time Quantitative Imaging of Failure Events in Materials Under Load at ...

  14. Ames Lab 101: Real-Time 3D Imaging

    ScienceCinema (OSTI)

    Zhang, Song

    2012-08-29

    Ames Laboratory scientist Song Zhang explains his real-time 3-D imaging technology. The technique can be used to create high-resolution, real-time, precise, 3-D images for use in healthcare, security, and entertainment applications.

  15. Real time chemical exposure and risk monitor

    DOE Patents [OSTI]

    Thrall, Karla D.; Kenny, Donald V.; Endres, George W. R.; Sisk, Daniel R.

    1997-01-01

    The apparatus of the present invention is a combination of a breath interface and an external exposure dosimeter interface to a chemical analysis device, all controlled by an electronic processor for quantitatively analyzing chemical analysis data from both the breath interface and the external exposure dosimeter for determining internal tissue dose. The method of the present invention is a combination of steps of measuring an external dose, measuring breath content, then analyzing the external dose and breath content and determining internal tissue dose.

  16. Real time chemical exposure and risk monitor

    DOE Patents [OSTI]

    Thrall, K.D.; Kenny, D.V.; Endres, G.W.R.; Sisk, D.R.

    1997-07-08

    The apparatus of the present invention is a combination of a breath interface and an external exposure dosimeter interface to a chemical analysis device, all controlled by an electronic processor for quantitatively analyzing chemical analysis data from both the breath interface and the external exposure dosimeter for determining internal tissue dose. The method of the present invention is a combination of steps of measuring an external dose, measuring breath content, then analyzing the external dose and breath content and determining internal tissue dose. 7 figs.

  17. Vector processing enhancements for real-time image analysis.

    SciTech Connect (OSTI)

    Shoaf, S.; APS Engineering Support Division

    2008-01-01

    A real-time image analysis system was developed for beam imaging diagnostics. An Apple Power Mac G5 with an Active Silicon LFG frame grabber was used to capture video images that were processed and analyzed. Software routines were created to utilize vector-processing hardware to reduce the time to process images as compared to conventional methods. These improvements allow for more advanced image processing diagnostics to be performed in real time.

  18. Real-time sub- Å ngstrom imaging of reversible and irreversible...

    Office of Scientific and Technical Information (OSTI)

    Real-time sub- ngstrom imaging of reversible and irreversible conformations in rhodium catalysts and graphene Title: Real-time sub- ngstrom imaging of reversible and ...

  19. Bioanalytical Applications of Real-Time ATP Imaging Via Bioluminescence

    SciTech Connect (OSTI)

    Jason Alan Gruenhagen

    2003-12-12

    The research discussed within involves the development of novel applications of real-time imaging of adenosine 5'-triphosphate (ATP). ATP was detected via bioluminescence and the firefly luciferase-catalyzed reaction of ATP and luciferin. The use of a microscope and an imaging detector allowed for spatially resolved quantitation of ATP release. Employing this method, applications in both biological and chemical systems were developed. First, the mechanism by which the compound 48/80 induces release of ATP from human umbilical vein endothelial cells (HUVECs) was investigated. Numerous enzyme activators and inhibitors were utilized to probe the second messenger systems involved in release. Compound 48/80 activated a G{sub q}-type protein to initiate ATP release from HUVECs. Ca{sup 2+} imaging along with ATP imaging revealed that activation of phospholipase C and induction of intracellular Ca{sup 2+} signaling were necessary for release of ATP. Furthermore, activation of protein kinase C inhibited the activity of phospholipase C and thus decreased the magnitude of ATP release. This novel release mechanism was compared to the existing theories of extracellular release of ATP. Bioluminescence imaging was also employed to examine the role of ATP in the field of neuroscience. The central nervous system (CNS) was dissected from the freshwater snail Lymnaea stagnalis. Electrophysiological experiments demonstrated that the neurons of the Lymnaea were not damaged by any of the components of the imaging solution. ATP was continuously released by the ganglia of the CNS for over eight hours and varied from ganglion to ganglion and within individual ganglia. Addition of the neurotransmitters K{sup +} and serotonin increased release of ATP in certain regions of the Lymnaea CNS. Finally, the ATP imaging technique was investigated for the study of drug release systems. MCM-41-type mesoporous nanospheres were loaded with ATP and end-capped with mercaptoethanol functionalized Cd

  20. Imaging gene expression in real-time using aptamers

    SciTech Connect (OSTI)

    Shin, Il Chung

    2011-01-01

    Signal transduction pathways are usually activated by external stimuli and are transient. The downstream changes such as transcription of the activated genes are also transient. Real-time detection of promoter activity is useful for understanding changes in gene expression, especially during cell differentiation and in development. A simple and reliable method for viewing gene expression in real time is not yet available. Reporter proteins such as fluorescent proteins and luciferase allow for non-invasive detection of the products of gene expression in living cells. However, current reporter systems do not provide for real-time imaging of promoter activity in living cells. This is because of the long time period after transcription required for fluorescent protein synthesis and maturation. We have developed an RNA reporter system for imaging in real-time to detect changes in promoter activity as they occur. The RNA reporter uses strings of RNA aptamers that constitute IMAGEtags (Intracellular MultiAptamer GEnetic tags), which can be expressed from a promoter of choice. The tobramycin, neomycin and PDC RNA aptamers have been utilized for this system and expressed in yeast from the GAL1 promoter. The IMAGEtag RNA kinetics were quantified by RT-qPCR. In yeast precultured in raffinose containing media the GAL1 promoter responded faster than in yeast precultured in glucose containing media. IMAGEtag RNA has relatively short half-life (5.5 min) in yeast. For imaging, the yeast cells are incubated with their ligands that are labeled with fluorescent dyes. To increase signal to noise, ligands have been separately conjugated with the FRET (Förster resonance energy transfer) pairs, Cy3 and Cy5. With these constructs, the transcribed aptamers can be imaged after activation of the promoter by galactose. FRET was confirmed with three different approaches, which were sensitized emission, acceptor photobleaching and donor lifetime by FLIM (fluorescence lifetime imaging

  1. In-situ, Real-Time Monitoring of Mechanical and Chemical Structure...

    Office of Scientific and Technical Information (OSTI)

    Conference: In-situ, Real-Time Monitoring of Mechanical and Chemical Structure Changes in ... Citation Details In-Document Search Title: In-situ, Real-Time Monitoring of Mechanical and ...

  2. In-situ, Real-Time Monitoring of Mechanical and Chemical Structure Changes

    Office of Scientific and Technical Information (OSTI)

    in a V2O5 Battery Electrode Using a MEMS Optical Sensor (Conference) | SciTech Connect In-situ, Real-Time Monitoring of Mechanical and Chemical Structure Changes in a V2O5 Battery Electrode Using a MEMS Optical Sensor Citation Details In-Document Search Title: In-situ, Real-Time Monitoring of Mechanical and Chemical Structure Changes in a V2O5 Battery Electrode Using a MEMS Optical Sensor This work presents the first demonstration of a MEMS optical sensor for in-situ, real-time monitoring of

  3. Forming rotated SAR images by real-time motion compensation....

    Office of Scientific and Technical Information (OSTI)

    collecting Synthetic Aperture Radar (SAR) phase history data on a rotated grid in the Fourier Space of the scene being imaged. Subsequent image formation preserves the rotated...

  4. Forming rotated SAR images by real-time motion compensation.

    SciTech Connect (OSTI)

    Doerry, Armin Walter

    2012-12-01

    Proper waveform parameter selection allows collecting Synthetic Aperture Radar (SAR) phase history data on a rotated grid in the Fourier Space of the scene being imaged. Subsequent image formation preserves the rotated geometry to allow SAR images to be formed at arbitrary rotation angles without the use of computationally expensive interpolation or resampling operations. This should be useful where control of image orientation is desired such as generating squinted stripmaps and VideoSAR applications, among others.

  5. System, device, and methods for real-time screening of live cells, biomarkers, and chemical signatures

    DOE Patents [OSTI]

    Sundaram, S Kamakshi [Richland, WA; Riley, Brian J [West Richland, WA; Weber, Thomas J [Richland, WA; Sacksteder, Colette A [West Richland, WA; Addleman, R Shane [Benton City, WA

    2011-06-07

    An ATR-FTIR device and system are described that defect live-cell responses to stimuli and perturbations in real-time. The system and device can monitor perturbations resulting from exposures to various physical, chemical, and biological materials in real-time, as well as those sustained over a long period of time, including those associated with stimuli having unknown modes-of-action (e.g. nanoparticles). The device and system can also be used to identify specific chemical species or substances that profile cellular responses to these perturbations.

  6. Real-Time Quantitative Imaging of Failure Events in Materials Under Load at

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Temperatures Above 1,600 °C Real-Time Quantitative Imaging of Failure Events in Materials Under Load at Temperatures Above 1,600 °C Real-Time Quantitative Imaging of Failure Events in Materials Under Load at Temperatures Above 1,600 °C Print Monday, 25 March 2013 00:00 Gathering information on the evolution of small cracks in ceramic matrix composites used in hostile environments such as in gas turbines and hypersonic flights has been a challenge. It is now shown that sequences of

  7. Ultrasound contrast agent imaging: Real-time imaging of the superharmonics

    SciTech Connect (OSTI)

    Peruzzini, D.; Viti, J.; Tortoli, P.; Verweij, M. D.; Jong, N. de; Vos, H. J.

    2015-10-28

    Currently, in medical ultrasound contrast agent (UCA) imaging the second harmonic scattering of the microbubbles is regularly used. This scattering is in competition with the signal that is caused by nonlinear wave propagation in tissue. It was reported that UCA imaging based on the third or higher harmonics, i.e. “superharmonic” imaging, shows better contrast. However, the superharmonic scattering has a lower signal level compared to e.g. second harmonic signals. This study investigates the contrast-to-tissue ratio (CTR) and signal to noise ratio (SNR) of superharmonic UCA scattering in a tissue/vessel mimicking phantom using a real-time clinical scanner. Numerical simulations were performed to estimate the level of harmonics generated by the microbubbles. Data were acquired with a custom built dual-frequency cardiac phased array probe. Fundamental real-time images were produced while beam formed radiofrequency (RF) data was stored for further offline processing. The phantom consisted of a cavity filled with UCA surrounded by tissue mimicking material. The acoustic pressure in the cavity of the phantom was 110 kPa (MI = 0.11) ensuring non-destructivity of UCA. After processing of the acquired data from the phantom, the UCA-filled cavity could be clearly observed in the images, while tissue signals were suppressed at or below the noise floor. The measured CTR values were 36 dB, >38 dB, and >32 dB, for the second, third, and fourth harmonic respectively, which were in agreement with those reported earlier for preliminary contrast superharmonic imaging. The single frame SNR values (in which ‘signal’ denotes the signal level from the UCA area) were 23 dB, 18 dB, and 11 dB, respectively. This indicates that noise, and not the tissue signal, is the limiting factor for the UCA detection when using the superharmonics in nondestructive mode.

  8. Method and apparatus for real time imaging and monitoring of radiotherapy beams

    DOE Patents [OSTI]

    Majewski, Stanislaw; Proffitt, James; Macey, Daniel J.; Weisenberger, Andrew G.

    2011-11-01

    A method and apparatus for real time imaging and monitoring of radiation therapy beams is designed to preferentially distinguish and image low energy radiation from high energy secondary radiation emitted from a target as the result of therapeutic beam deposition. A detector having low sensitivity to high energy photons combined with a collimator designed to dynamically image in the region of the therapeutic beam target is used.

  9. Real-Time High Resolution Quantitative Imaging by Three Wavelength Digital

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Holography - Energy Innovation Portal Real-Time High Resolution Quantitative Imaging by Three Wavelength Digital Holography Oak Ridge National Laboratory Contact ORNL About This Technology Technology Marketing Summary An optical system capable of reproducing three-dimensional images was invented at ORNL. This system can detect height changes of a few nanometers or less and render clear, single shot images. These types of precise, high speed measurements are important for a variety of

  10. Real-time heterodyne speckle pattern interferometry using the correlation image sensor

    SciTech Connect (OSTI)

    Kimachi, Akira

    2010-12-10

    A real-time method for heterodyne speckle pattern interferometry using the correlation image sensor (CIS) is proposed. The CIS demodulates the interference phase of heterodyned speckle wavefronts pixelwise at an ordinary video frame rate. The proposed method neither suffers loss of spatial resolution nor requires a high frame rate. Interferometers for out-of-plane and in-plane deformation are developed with a 200x200 pixel CIS camera. Experimental results confirm that the proposed method realizes real-time imaging of a rough-surfaced object under deformation. The average standard deviations of demodulated phase-difference images for the out-of-plane and in-plane interferometers are 0.33 and 0.13 rad, respectively.

  11. The first clinical treatment with kilovoltage intrafraction monitoring (KIM): A real-time image guidance method

    SciTech Connect (OSTI)

    Keall, Paul J. O’Brien, Ricky; Huang, Chen-Yu; Aun Ng, Jin; Colvill, Emma; Rugaard Poulsen, Per; Fledelius, Walther; Juneja, Prabhjot; Booth, Jeremy T.; Simpson, Emma; Bell, Linda; Alfieri, Florencia; Eade, Thomas; Kneebone, Andrew

    2015-01-15

    Purpose: Kilovoltage intrafraction monitoring (KIM) is a real-time image guidance method that uses widely available radiotherapy technology, i.e., a gantry-mounted x-ray imager. The authors report on the geometric and dosimetric results of the first patient treatment using KIM which occurred on September 16, 2014. Methods: KIM uses current and prior 2D x-ray images to estimate the 3D target position during cancer radiotherapy treatment delivery. KIM software was written to process kilovoltage (kV) images streamed from a standard C-arm linear accelerator with a gantry-mounted kV x-ray imaging system. A 120° pretreatment kV imaging arc was acquired to build the patient-specific 2D to 3D motion correlation. The kV imager was activated during the megavoltage (MV) treatment, a dual arc VMAT prostate treatment, to estimate the 3D prostate position in real-time. All necessary ethics, legal, and regulatory requirements were met for this clinical study. The quality assurance processes were completed and peer reviewed. Results: During treatment, a prostate position offset of nearly 3 mm in the posterior direction was observed with KIM. This position offset did not trigger a gating event. After the treatment, the prostate motion was independently measured using kV/MV triangulation, resulting in a mean difference of less than 0.6 mm and standard deviation of less than 0.6 mm in each direction. The accuracy of the marker segmentation was visually assessed during and after treatment and found to be performing well. During treatment, there were no interruptions due to performance of the KIM software. Conclusions: For the first time, KIM has been used for real-time image guidance during cancer radiotherapy. The measured accuracy and precision were both submillimeter for the first treatment fraction. This clinical translational research milestone paves the way for the broad implementation of real-time image guidance to facilitate the detection and correction of geometric and

  12. Cherenkov Video Imaging Allows for the First Visualization of Radiation Therapy in Real Time

    SciTech Connect (OSTI)

    Jarvis, Lesley A.; Zhang, Rongxiao; Gladstone, David J.; Jiang, Shudong; Hitchcock, Whitney; Friedman, Oscar D.; Glaser, Adam K.; Jermyn, Michael; Pogue, Brian W.

    2014-07-01

    Purpose: To determine whether Cherenkov light imaging can visualize radiation therapy in real time during breast radiation therapy. Methods and Materials: An intensified charge-coupled device (CCD) camera was synchronized to the 3.25-μs radiation pulses of the clinical linear accelerator with the intensifier set × 100. Cherenkov images were acquired continuously (2.8 frames/s) during fractionated whole breast irradiation with each frame an accumulation of 100 radiation pulses (approximately 5 monitor units). Results: The first patient images ever created are used to illustrate that Cherenkov emission can be visualized as a video during conditions typical for breast radiation therapy, even with complex treatment plans, mixed energies, and modulated treatment fields. Images were generated correlating to the superficial dose received by the patient and potentially the location of the resulting skin reactions. Major blood vessels are visible in the image, providing the potential to use these as biological landmarks for improved geometric accuracy. The potential for this system to detect radiation therapy misadministrations, which can result from hardware malfunction or patient positioning setup errors during individual fractions, is shown. Conclusions: Cherenkoscopy is a unique method for visualizing surface dose resulting in real-time quality control. We propose that this system could detect radiation therapy errors in everyday clinical practice at a time when these errors can be corrected to result in improved safety and quality of radiation therapy.

  13. Real-time automatic fiducial marker tracking in low contrast cine-MV images

    SciTech Connect (OSTI)

    Lin, Wei-Yang; Lin, Shu-Fang; Yang, Sheng-Chang; Liou, Shu-Cheng; Nath, Ravinder; Liu Wu

    2013-01-15

    Purpose: To develop a real-time automatic method for tracking implanted radiographic markers in low-contrast cine-MV patient images used in image-guided radiation therapy (IGRT). Methods: Intrafraction motion tracking using radiotherapy beam-line MV images have gained some attention recently in IGRT because no additional imaging dose is introduced. However, MV images have much lower contrast than kV images, therefore a robust and automatic algorithm for marker detection in MV images is a prerequisite. Previous marker detection methods are all based on template matching or its derivatives. Template matching needs to match object shape that changes significantly for different implantation and projection angle. While these methods require a large number of templates to cover various situations, they are often forced to use a smaller number of templates to reduce the computation load because their methods all require exhaustive search in the region of interest. The authors solve this problem by synergetic use of modern but well-tested computer vision and artificial intelligence techniques; specifically the authors detect implanted markers utilizing discriminant analysis for initialization and use mean-shift feature space analysis for sequential tracking. This novel approach avoids exhaustive search by exploiting the temporal correlation between consecutive frames and makes it possible to perform more sophisticated detection at the beginning to improve the accuracy, followed by ultrafast sequential tracking after the initialization. The method was evaluated and validated using 1149 cine-MV images from two prostate IGRT patients and compared with manual marker detection results from six researchers. The average of the manual detection results is considered as the ground truth for comparisons. Results: The average root-mean-square errors of our real-time automatic tracking method from the ground truth are 1.9 and 2.1 pixels for the two patients (0.26 mm/pixel). The

  14. Camera selection for real-time in vivo radiation treatment verification systems using Cherenkov imaging

    SciTech Connect (OSTI)

    Andreozzi, Jacqueline M. Glaser, Adam K.; Zhang, Rongxiao; Jarvis, Lesley A.; Gladstone, David J.; Pogue, Brian W.

    2015-02-15

    Purpose: To identify achievable camera performance and hardware needs in a clinical Cherenkov imaging system for real-time, in vivo monitoring of the surface beam profile on patients, as novel visual information, documentation, and possible treatment verification for clinicians. Methods: Complementary metal-oxide-semiconductor (CMOS), charge-coupled device (CCD), intensified charge-coupled device (ICCD), and electron multiplying-intensified charge coupled device (EM-ICCD) cameras were investigated to determine Cherenkov imaging performance in a clinical radiotherapy setting, with one emphasis on the maximum supportable frame rate. Where possible, the image intensifier was synchronized using a pulse signal from the Linac in order to image with room lighting conditions comparable to patient treatment scenarios. A solid water phantom irradiated with a 6 MV photon beam was imaged by the cameras to evaluate the maximum frame rate for adequate Cherenkov detection. Adequate detection was defined as an average electron count in the background-subtracted Cherenkov image region of interest in excess of 0.5% (327 counts) of the 16-bit maximum electron count value. Additionally, an ICCD and an EM-ICCD were each used clinically to image two patients undergoing whole-breast radiotherapy to compare clinical advantages and limitations of each system. Results: Intensifier-coupled cameras were required for imaging Cherenkov emission on the phantom surface with ambient room lighting; standalone CMOS and CCD cameras were not viable. The EM-ICCD was able to collect images from a single Linac pulse delivering less than 0.05 cGy of dose at 30 frames/s (fps) and pixel resolution of 512 × 512, compared to an ICCD which was limited to 4.7 fps at 1024 × 1024 resolution. An intensifier with higher quantum efficiency at the entrance photocathode in the red wavelengths [30% quantum efficiency (QE) vs previous 19%] promises at least 8.6 fps at a resolution of 1024 × 1024 and lower monetary

  15. Real-Time Chemical Imaging of Bacterial Biofilm Development

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    microwell edge. To evaluate this technique's potential, researchers studied why the antimicrobial agent mitomycin-C (MMC) does not kill some E. coli in biofilms, focusing on the...

  16. Real-Time Chemical Imaging of Bacterial Biofilm Development

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    1-cm-diameter silicon chip (light green) that has been subjected to deep reactive ion etching to form a hydrophilic microchannel or microwell (measuring 1 mm 20-40 m 10-15...

  17. Real-Time Chemical Imaging of Bacterial Biofilm Development

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    researchers studied why the antimicrobial agent mitomycin-C (MMC) does not kill some E. coli in biofilms, focusing on the entrance of MMC into bacterial cells and the subsequent...

  18. Real-Time Chemical Imaging of Bacterial Biofilm Development

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    from Berkeley Lab, Lawrence Livermore National Lab, and UC Berkeley coupled infrared (IR) rays from ALS Beamline 1.4.3 to the first open-channel microfluidic platform to...

  19. Real-Time Chemical Imaging of Bacterial Biofilm Development

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    provides enough water to sustain the living cells without producing interference on mid-IR spectroscopy. The mid-IR light (2.5-15.5 mm wavelength, or 4000-650 cm-1 wavenumber)...

  20. Use of external cavity quantum cascade laser compliance voltage in real-time trace gas sensing of multiple chemicals

    SciTech Connect (OSTI)

    Phillips, Mark C.; Taubman, Matthew S.; Kriesel, Jason M.

    2015-02-08

    We describe a prototype trace gas sensor designed for real-time detection of multiple chemicals. The sensor uses an external cavity quantum cascade laser (ECQCL) swept over its tuning range of 940-1075 cm-1 (9.30-10.7 µm) at a 10 Hz repetition rate.

  1. Registration of clinical volumes to beams-eye-view images for real-time tracking

    SciTech Connect (OSTI)

    Bryant, Jonathan H.; Rottmann, Joerg; Lewis, John H.; Mishra, Pankaj; Berbeco, Ross I.; Keall, Paul J.

    2014-12-15

    Purpose: The authors combine the registration of 2D beam’s eye view (BEV) images and 3D planning computed tomography (CT) images, with relative, markerless tumor tracking to provide automatic absolute tracking of physician defined volumes such as the gross tumor volume (GTV). Methods: During treatment of lung SBRT cases, BEV images were continuously acquired with an electronic portal imaging device (EPID) operating in cine mode. For absolute registration of physician-defined volumes, an intensity based 2D/3D registration to the planning CT was performed using the end-of-exhale (EoE) phase of the four dimensional computed tomography (4DCT). The volume was converted from Hounsfield units into electron density by a calibration curve and digitally reconstructed radiographs (DRRs) were generated for each beam geometry. Using normalized cross correlation between the DRR and an EoE BEV image, the best in-plane rigid transformation was found. The transformation was applied to physician-defined contours in the planning CT, mapping them into the EPID image domain. A robust multiregion method of relative markerless lung tumor tracking quantified deviations from the EoE position. Results: The success of 2D/3D registration was demonstrated at the EoE breathing phase. By registering at this phase and then employing a separate technique for relative tracking, the authors are able to successfully track target volumes in the BEV images throughout the entire treatment delivery. Conclusions: Through the combination of EPID/4DCT registration and relative tracking, a necessary step toward the clinical implementation of BEV tracking has been completed. The knowledge of tumor volumes relative to the treatment field is important for future applications like real-time motion management, adaptive radiotherapy, and delivered dose calculations.

  2. In-situ, Real-Time Monitoring of Mechanical and Chemical Structure...

    Office of Scientific and Technical Information (OSTI)

    of Mechanical and Chemical Structure Changes in a V2O5 Battery Electrode Using a MEMS Optical Sensor Jung, H. University of Maryland; Gerasopoulos, K. University of...

  3. Dynamic keyhole: A novel method to improve MR images in the presence of respiratory motion for real-time MRI

    SciTech Connect (OSTI)

    Lee, Danny; Pollock, Sean; Whelan, Brendan; Keall, Paul; Kim, Taeho

    2014-07-15

    Purpose: In this work, the authors present a novel magnetic resonance imaging reconstruction method to improve the quality of MR images in the presence of respiratory motion for real-time thoracic image-guided radiotherapy. Methods: This new reconstruction method is called dynamic keyhole and utilizes a library of previously acquired, peripheral k-space datasets from the same (or similar) respiratory state in conjunction with central k-space datasets acquired in real-time. Internal or external respiratory signals are utilized to sort, match, and combine the two separate peripheral and central k-space datasets with respect to respiratory displacement, thereby reducing acquisition time and improving image quality without respiratory-related artifacts. In this study, the dynamic keyhole, conventional keyhole, and zero-filling methods were compared to full k-space acquisition (ground truth) for 60 coronal datasets acquired from 15 healthy human subjects. Results: For the same image-quality difference from the ground-truth image, the dynamic keyhole method reused 79% of the prior peripheral phase-encoding lines, while the conventional keyhole reused 73% and zero-filling 63% (p-value < 0.0001), corresponding to faster acquisition speed of dynamic keyhole for real-time imaging applications. Conclusions: This study demonstrates that the dynamic keyhole method is a promising technique for clinical applications such as image-guided radiotherapy requiring real-time MR monitoring of the thoracic region. Based on the results from this study, the dynamic keyhole method could increase the temporal resolution by a factor of five compared with full k-space methods.

  4. Real-time monitoring of volatile organic compounds using chemical ionization mass spectrometry

    DOE Patents [OSTI]

    Mowry, Curtis Dale; Thornberg, Steven Michael

    1999-01-01

    A system for on-line quantitative monitoring of volatile organic compounds (VOCs) includes pressure reduction means for carrying a gaseous sample from a first location to a measuring input location maintained at a low pressure, the system utilizing active feedback to keep both the vapor flow and pressure to a chemical ionization mode mass spectrometer constant. A multiple input manifold for VOC and gas distribution permits a combination of calibration gases or samples to be applied to the spectrometer.

  5. Real-time system for imaging and object detection with a multistatic GPR array

    DOE Patents [OSTI]

    Paglieroni, David W; Beer, N Reginald; Bond, Steven W; Top, Philip L; Chambers, David H; Mast, Jeffrey E; Donetti, John G; Mason, Blake C; Jones, Steven M

    2014-10-07

    A method and system for detecting the presence of subsurface objects within a medium is provided. In some embodiments, the imaging and detection system operates in a multistatic mode to collect radar return signals generated by an array of transceiver antenna pairs that is positioned across the surface and that travels down the surface. The imaging and detection system pre-processes the return signal to suppress certain undesirable effects. The imaging and detection system then generates synthetic aperture radar images from real aperture radar images generated from the pre-processed return signal. The imaging and detection system then post-processes the synthetic aperture radar images to improve detection of subsurface objects. The imaging and detection system identifies peaks in the energy levels of the post-processed image frame, which indicates the presence of a subsurface object.

  6. Real-time Molecular Study of Bystander Effects of Low dose Low LET radiation Using Living Cell Imaging and Nanoparticale Optics

    SciTech Connect (OSTI)

    Natarajan, Mohan; Xu, Nancy R; Mohan, Sumathy

    2013-06-03

    In this study two novel approaches are proposed to investigate precisely the low dose low LET radiation damage and its effect on bystander cells in real time. First, a flow shear model system, which would provide us a near in vivo situation where endothelial cells in the presence of extra cellular matrix experiencing continuous flow shear stress, will be used. Endothelial cells on matri-gel (simulated extra cellular matrix) will be subjected to physiological flow shear (that occurs in normal blood vessels). Second, a unique tool (Single nano particle/single live cell/single molecule microscopy and spectroscopy; Figure A) will be used to track the molecular trafficking by single live cell imaging. Single molecule chemical microscopy allows one to single out and study rare events that otherwise might be lost in assembled average measurement, and monitor many target single molecules simultaneously in real-time. Multi color single novel metal nanoparticle probes allow one to prepare multicolor probes (Figure B) to monitor many single components (events) simultaneously and perform multi-complex analysis in real-time. These nano-particles resist to photo bleaching and hence serve as probes for unlimited timeframe of analysis. Single live cell microscopy allows one to image many single cells simultaneously in real-time. With the combination of these unique tools, we will be able to study under near-physiological conditions the cellular and sub-cellular responses (even subtle changes at one molecule level) to low and very low doses of low LET radiation in real time (milli-second or nano-second) at sub-10 nanometer spatial resolution. This would allow us to precisely identify, at least in part, the molecular mediators that are responsible of radiation damage in the irradiated cells and the mediators that are responsible for initiating the signaling in the neighboring cells. Endothelial cells subjected to flow shear (2 dynes/cm2 or 16 dynes/cm2) and exposed to 0.1, 1 and 10

  7. Non-intrusive, high-resolution, real-time, two-dimensional imaging of multiphase materials using acoustic array sensors

    SciTech Connect (OSTI)

    Cassiède, M.; Shaw, J. M.

    2015-04-15

    Two parallel multi-element ultrasonic acoustic arrays combined with sets of focal laws for acoustic signal generation and a classical tomographic inversion algorithm are used to generate real-time two-dimensional micro seismic acoustic images of multiphase materials. Proof of concept and calibration measurements were performed for single phase and two phase liquids, uniform polyvinyl chloride (PVC) plates, and aluminum cylinders imbedded in PVC plates. Measurement artefacts, arising from the limited range of viewing angles, and the compromise between data acquisition rate and image quality are discussed. The angle range of scanning and the image resolution were varied, and the effects on the quality of the reproduction of the speed of sound profiles of model solids and liquids with known geometries and compositions were analysed in detail. The best image quality results were obtained for a scanning angle range of [−35°, 35°] at a step size of 2.5° post processed to generate images on a 40 μm square grid. The data acquisition time for high quality images with a 30 mm × 40 mm view field is 10 min. Representation of two-phase solids with large differences in speed of sound between phases and where one phase is dispersed in the form of macroscopic objects (greater than 1 mm in diameter) proved to be the most difficult to image accurately. Liquid-liquid and liquid-vapor phase boundaries, in micro porous solids by contrast, were more readily defined. Displacement of air by water and water by heptane in natural porous limestone provides illustrative kinetic examples. Measurement results with these realistic cases demonstrate the feasibility of the technique to monitor in real time and on the micrometer length scale local composition and flow of organic liquids in inorganic porous media, one of many envisioned engineering applications. Improvement of data acquisition rate is an area for future collaborative study.

  8. First Demonstration of Combined kV/MV Image-Guided Real-Time Dynamic Multileaf-Collimator Target Tracking

    SciTech Connect (OSTI)

    Cho, Byungchul Poulsen, Per R.; Sloutsky, Alex; Sawant, Amit; Keall, Paul J.

    2009-07-01

    Purpose: For intrafraction motion management, a real-time tracking system was developed by combining fiducial marker-based tracking via simultaneous kilovoltage (kV) and megavoltage (MV) imaging and a dynamic multileaf collimator (DMLC) beam-tracking system. Methods and Materials: The integrated tracking system employed a Varian Trilogy system equipped with kV/MV imaging systems and a Millennium 120-leaf MLC. A gold marker in elliptical motion (2-cm superior-inferior, 1-cm left-right, 10 cycles/min) was simultaneously imaged by the kV and MV imagers at 6.7 Hz and segmented in real time. With these two-dimensional projections, the tracking software triangulated the three-dimensional marker position and repositioned the MLC leaves to follow the motion. Phantom studies were performed to evaluate time delay from image acquisition to MLC adjustment, tracking error, and dosimetric impact of target motion with and without tracking. Results: The time delay of the integrated tracking system was {approx}450 ms. The tracking error using a prediction algorithm was 0.9 {+-} 0.5 mm for the elliptical motion. The dose distribution with tracking showed better target coverage and less dose to surrounding region over no tracking. The failure rate of the gamma test (3%/3-mm criteria) was 22.5% without tracking but was reduced to 0.2% with tracking. Conclusion: For the first time, a complete tracking system combining kV/MV image-guided target tracking and DMLC beam tracking was demonstrated. The average geometric error was less than 1 mm, and the dosimetric error was negligible. This system is a promising method for intrafraction motion management.

  9. Real time, TV-based, point-image quantizer and sorter

    DOE Patents [OSTI]

    Case, Arthur L.; Davidson, Jackson B.

    1976-01-01

    A device is provided for improving the vertical resolution in a television-based, two-dimensional readout for radiation detection systems such as are used to determine the location of light or nuclear radiation impinging a target area viewed by a television camera, where it is desired to store the data indicative of the centroid location of such images. In the example embodiment, impinging nuclear radiation detected in the form of a scintillation occurring in a crystal is stored as a charge image on a television camera tube target. The target is scanned in a raster and the image position is stored according to a corresponding vertical scan number and horizontal position number along the scan. To determine the centroid location of an image that may overlap a number of horizontal scan lines along the vertical axis of the raster, digital logic circuits are provided with at least four series-connected shift registers, each having 512 bit positions according to a selected 512 horizontal increment of resolutions along a scan line. The registers are shifted by clock pulses at a rate of 512 pulses per scan line. When an image or portion thereof is detected along a scan, its horizontal center location is determined and the present front bit is set in the first shift register and shifted through the registers one at a time for each horizontal scan. Each register is compared bit-by-bit with the preceding register to detect coincident set bit positions until the last scan line detecting a portion of the image is determined. Depending on the number of shift registers through which the first detection of the image is shifted, circuitry is provided to store the vertical center position of the event according to the number of shift registers through which the first detection of the event is shifted. Interpolation circuitry is provided to determine if the event centroid is between adjacent scan lines and stored in a vertical address accordingly. The horizontal location of the event

  10. Real time imaging of live cell ATP leaking or release events by chemiluminescence microscopy

    SciTech Connect (OSTI)

    Zhang, Yun

    2008-12-18

    The purpose of this research was to expand the chemiluminescence microscopy applications in live bacterial/mammalian cell imaging and to improve the detection sensitivity for ATP leaking or release events. We first demonstrated that chemiluminescence (CL) imaging can be used to interrogate single bacterial cells. While using a luminometer allows detecting ATP from cell lysate extracted from at least 10 bacterial cells, all previous cell CL detection never reached this sensitivity of single bacteria level. We approached this goal with a different strategy from before: instead of breaking bacterial cell membrane and trying to capture the transiently diluted ATP with the firefly luciferase CL assay, we introduced the firefly luciferase enzyme into bacteria using the modern genetic techniques and placed the CL reaction substrate D-luciferin outside the cells. By damaging the cell membrane with various antibacterial drugs including antibiotics such as Penicillins and bacteriophages, the D-luciferin molecules diffused inside the cell and initiated the reaction that produces CL light. As firefly luciferases are large protein molecules which are retained within the cells before the total rupture and intracellular ATP concentration is high at the millmolar level, the CL reaction of firefly luciferase, ATP and D-luciferin can be kept for a relatively long time within the cells acting as a reaction container to generate enough photons for detection by the extremely sensitive intensified charge coupled device (ICCD) camera. The result was inspiring as various single bacterium lysis and leakage events were monitored with 10-s temporal resolution movies. We also found a new way of enhancing diffusion D-luciferin into cells by dehydrating the bacteria. Then we started with this novel single bacterial CL imaging technique, and applied it for quantifying gene expression levels from individual bacterial cells. Previous published result in single cell gene expression quantification

  11. SU-E-J-205: Monte Carlo Modeling of Ultrasound Probes for Real-Time Ultrasound Image-Guided Radiotherapy

    SciTech Connect (OSTI)

    Hristov, D; Schlosser, J; Bazalova, M; Chen, J

    2014-06-01

    Purpose: To quantify the effect of ultrasound (US) probe beam attenuation for radiation therapy delivered under real-time US image guidance by means of Monte Carlo (MC) simulations. Methods: MC models of two Philips US probes, an X6-1 matrix-array transducer and a C5-2 curved-array transducer, were built based on their CT images in the EGSnrc BEAMnrc and DOSXYZnrc codes. Due to the metal parts, the probes were scanned in a Tomotherapy machine with a 3.5 MV beam. Mass densities in the probes were assigned based on an electron density calibration phantom consisting of cylinders with mass densities between 0.2–8.0 g/cm{sup 3}. Beam attenuation due to the probes was measured in a solid water phantom for a 6 MV and 15 MV 15x15 cm{sup 2} beam delivered on a Varian Trilogy linear accelerator. The dose was measured with the PTW-729 ionization chamber array at two depths and compared to MC simulations. The extreme case beam attenuation expected in robotic US image guided radiotherapy for probes in upright position was quantified by means of MC simulations. Results: The 3.5 MV CT number to mass density calibration curve was found to be linear with R{sup 2} > 0.99. The maximum mass densities were 4.6 and 4.2 g/cm{sup 3} in the C5-2 and X6-1 probe, respectively. Gamma analysis of the simulated and measured doses revealed that over 98% of measurement points passed the 3%/3mm criteria for both probes and measurement depths. The extreme attenuation for probes in upright position was found to be 25% and 31% for the C5-2 and X6-1 probe, respectively, for both 6 and 15 MV beams at 10 cm depth. Conclusion: MC models of two US probes used for real-time image guidance during radiotherapy have been built. As a Result, radiotherapy treatment planning with the imaging probes in place can now be performed. J Schlosser is an employee of SoniTrack Systems, Inc. D Hristov has financial interest in SoniTrack Systems, Inc.

  12. SU-E-J-61: Monitoring Tumor Motion in Real-Time with EPID Imaging During Cervical Cancer Treatment

    SciTech Connect (OSTI)

    Mao, W; Hrycushko, B; Yan, Y; Foster, R; Albuquerque, K

    2015-06-15

    Purpose: Traditional external beam radiotherapy for cervical cancer requires setup by external skin marks. In order to improve treatment accuracy and reduce planning margin for more conformal therapy, it is essential to monitor tumor positions interfractionally and intrafractionally. We demonstrate feasibility of monitoring cervical tumor motion online using EPID imaging from Beam’s Eye View. Methods: Prior to treatment, 1∼2 cylindrical radio opaque markers were implanted into inferior aspect of cervix tumor. During external beam treatments on a Varian 2100C by 4-field 3D plans, treatment beam images were acquired continuously by an EPID. A Matlab program was developed to locate internal markers on MV images. Based on 2D marker positions obtained from different treatment fields, their 3D positions were estimated for every treatment fraction. Results: There were 398 images acquired during different treatment fractions of three cervical cancer patients. Markers were successfully located on every frame of image at an analysis speed of about 1 second per frame. Intrafraction motions were evaluated by comparing marker positions relative to the position on the first frame of image. The maximum intrafraction motion of the markers was 1.6 mm. Interfraction motions were evaluated by comparing 3D marker positions at different treatment fractions. The maximum interfraction motion was up to 10 mm. Careful comparison found that this is due to patient positioning since the bony structures shifted with the markers. Conclusion: This method provides a cost-free and simple solution for online tumor tracking for cervical cancer treatment since it is feasible to acquire and export EPID images with fast analysis in real time. This method does not need any extra equipment or deliver extra dose to patients. The online tumor motion information will be very useful to reduce planning margins and improve treatment accuracy, which is particularly important for SBRT treatment with long

  13. Real time automated inspection

    DOE Patents [OSTI]

    Fant, K.M.; Fundakowski, R.A.; Levitt, T.S.; Overland, J.E.; Suresh, B.R.; Ulrich, F.W.

    1985-05-21

    A method and apparatus are described relating to the real time automatic detection and classification of characteristic type surface imperfections occurring on the surfaces of material of interest such as moving hot metal slabs produced by a continuous steel caster. A data camera transversely scans continuous lines of such a surface to sense light intensities of scanned pixels and generates corresponding voltage values. The voltage values are converted to corresponding digital values to form a digital image of the surface which is subsequently processed to form an edge-enhanced image having scan lines characterized by intervals corresponding to the edges of the image. The edge-enhanced image is thresholded to segment out the edges and objects formed by the edges by interval matching and bin tracking. Features of the objects are derived and such features are utilized to classify the objects into characteristic type surface imperfections. 43 figs.

  14. Real time automated inspection

    DOE Patents [OSTI]

    Fant, Karl M.; Fundakowski, Richard A.; Levitt, Tod S.; Overland, John E.; Suresh, Bindinganavle R.; Ulrich, Franz W.

    1985-01-01

    A method and apparatus relating to the real time automatic detection and classification of characteristic type surface imperfections occurring on the surfaces of material of interest such as moving hot metal slabs produced by a continuous steel caster. A data camera transversely scans continuous lines of such a surface to sense light intensities of scanned pixels and generates corresponding voltage values. The voltage values are converted to corresponding digital values to form a digital image of the surface which is subsequently processed to form an edge-enhanced image having scan lines characterized by intervals corresponding to the edges of the image. The edge-enhanced image is thresholded to segment out the edges and objects formed by the edges are segmented out by interval matching and bin tracking. Features of the objects are derived and such features are utilized to classify the objects into characteristic type surface imperfections.

  15. SU-E-T-248: Near Real-Time Analysis of Radiation Delivery and Imaging, Accuracy to Ensure Patient Safety

    SciTech Connect (OSTI)

    Wijesooriya, K; Seitter, K; Desai, V; Read, P; Larner, J

    2014-06-01

    Purpose: To develop and optimize an effective software method for comparing planned to delivered control point machine parameters for all VARIAN TrueBeam treatments so as to permit (1) assessment of a large patient pool throughout their treatment course to quantify treatment technique specific systematic and random uncertainty of observables, (2) quantify the site specific daily imaging shifts required for target alignment, and (3) define tolerance levels for mechanical parameters and imaging parameters based on statistical analysis data gathered, and the dosimetric impact of variations. Methods: Treatment and imaging log files were directly compared to plan parameters for Eclipse and Pinnacle planned treatments via 3D, IMRT, control point, RapidArc, and electrons. Each control point from all beams/arcs (7984) for all fractions (1940) of all patients treated over six months were analyzed. At each control point gantry angle, collimator angle, couch angle, jaw positions, MLC positions, MU were compared. Additionally per-treatment isocenter shifts were calculated. Results were analyzed as a whole in treatment type subsets: IMRT, 3D, RapidArc; and in treatment site subsets: brain, chest/mediastinum, esophagus, H and N, lung, pelvis, prostate. Results: Daily imaging isocenter shifts from initial external tattoo alignment were dependent on the treatment site with < 0.5 cm translational shifts for H and N, Brain, and lung SBRT, while pelvis, esophagus shifts were ?1 cm. Mechanical delivery parameters were within tolerance levels for all sub-beams. The largest variations were for RapidArc plans: gantry angle 0.110.12,collimator angle 0.000.00, jaw positions 0.480.26, MLC leaf positions 0.660.08, MU 0.140.34. Conclusion: Per-control point validation reveals deviations between planned and delivered parameters. If used in a near real-time error checking system, patient safety can be improved by equipping the treatment delivery system with additional forcing functions

  16. Real-Time Imaging of Plant Cell Wall Structure at Nanometer Scale, with Respect to Cellulase Accessibility and Degradation Kinetics (Presentation)

    SciTech Connect (OSTI)

    Ding, S. Y.

    2012-05-01

    Presentation on real-time imaging of plant cell wall structure at nanometer scale. Objectives are to develop tools to measure biomass at the nanometer scale; elucidate the molecular bases of biomass deconstruction; and identify factors that affect the conversion efficiency of biomass-to-biofuels.

  17. Real-time vision systems

    SciTech Connect (OSTI)

    Johnson, R.; Hernandez, J.E.; Lu, Shin-yee

    1994-11-15

    Many industrial and defence applications require an ability to make instantaneous decisions based on sensor input of a time varying process. Such systems are referred to as `real-time systems` because they process and act on data as it occurs in time. When a vision sensor is used in a real-time system, the processing demands can be quite substantial, with typical data rates of 10-20 million samples per second. A real-time Machine Vision Laboratory (MVL) was established in FY94 to extend our years of experience in developing computer vision algorithms to include the development and implementation of real-time vision systems. The laboratory is equipped with a variety of hardware components, including Datacube image acquisition and processing boards, a Sun workstation, and several different types of CCD cameras, including monochrome and color area cameras and analog and digital line-scan cameras. The equipment is reconfigurable for prototyping different applications. This facility has been used to support several programs at LLNL, including O Division`s Peacemaker and Deadeye Projects as well as the CRADA with the U.S. Textile Industry, CAFE (Computer Aided Fabric Inspection). To date, we have successfully demonstrated several real-time applications: bullet tracking, stereo tracking and ranging, and web inspection. This work has been documented in the ongoing development of a real-time software library.

  18. Tracking Living Cells as They Differentiate in Real Time

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Tracking Living Cells as They Differentiate in Real Time Print Protein phosphorylation ... cells, enabling them to follow cellular chemical changes in real time, without bias. ...

  19. Nanoscale Chemical Imaging of a Working Catalyst

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Nanoscale Chemical Imaging of a Working Catalyst Print The heterogeneous catalysts used in most chemical processes typically consist of nanoscale metal or metal oxide particles dispersed on high-surface-area supports. While these particles are the active elements of the catalyst, the overall performance depends not only on their size and composition but also on their multiple interactions with the support, reactants, and products. Probing this chemical soup in real time under realistic reaction

  20. Nanoscale Chemical Imaging of a Working Catalyst

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Nanoscale Chemical Imaging of a Working Catalyst Print The heterogeneous catalysts used in most chemical processes typically consist of nanoscale metal or metal oxide particles dispersed on high-surface-area supports. While these particles are the active elements of the catalyst, the overall performance depends not only on their size and composition but also on their multiple interactions with the support, reactants, and products. Probing this chemical soup in real time under realistic reaction

  1. Nanoscale Chemical Imaging of a Working Catalyst

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Nanoscale Chemical Imaging of a Working Catalyst Print The heterogeneous catalysts used in most chemical processes typically consist of nanoscale metal or metal oxide particles dispersed on high-surface-area supports. While these particles are the active elements of the catalyst, the overall performance depends not only on their size and composition but also on their multiple interactions with the support, reactants, and products. Probing this chemical soup in real time under realistic reaction

  2. Nanoscale Chemical Imaging of a Working Catalyst

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Nanoscale Chemical Imaging of a Working Catalyst Print The heterogeneous catalysts used in most chemical processes typically consist of nanoscale metal or metal oxide particles dispersed on high-surface-area supports. While these particles are the active elements of the catalyst, the overall performance depends not only on their size and composition but also on their multiple interactions with the support, reactants, and products. Probing this chemical soup in real time under realistic reaction

  3. Nanoscale Chemical Imaging of a Working Catalyst

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Nanoscale Chemical Imaging of a Working Catalyst Print The heterogeneous catalysts used in most chemical processes typically consist of nanoscale metal or metal oxide particles dispersed on high-surface-area supports. While these particles are the active elements of the catalyst, the overall performance depends not only on their size and composition but also on their multiple interactions with the support, reactants, and products. Probing this chemical soup in real time under realistic reaction

  4. Nanoscale Chemical Imaging of a Working Catalyst

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Nanoscale Chemical Imaging of a Working Catalyst Print The heterogeneous catalysts used in most chemical processes typically consist of nanoscale metal or metal oxide particles dispersed on high-surface-area supports. While these particles are the active elements of the catalyst, the overall performance depends not only on their size and composition but also on their multiple interactions with the support, reactants, and products. Probing this chemical soup in real time under realistic reaction

  5. Nanoscale Chemical Imaging of a Working Catalyst

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Nanoscale Chemical Imaging of a Working Catalyst Print The heterogeneous catalysts used in most chemical processes typically consist of nanoscale metal or metal oxide particles dispersed on high-surface-area supports. While these particles are the active elements of the catalyst, the overall performance depends not only on their size and composition but also on their multiple interactions with the support, reactants, and products. Probing this chemical soup in real time under realistic reaction

  6. Nanoscale Chemical Imaging of a Working Catalyst

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Nanoscale Chemical Imaging of a Working Catalyst Print The heterogeneous catalysts used in most chemical processes typically consist of nanoscale metal or metal oxide particles dispersed on high-surface-area supports. While these particles are the active elements of the catalyst, the overall performance depends not only on their size and composition but also on their multiple interactions with the support, reactants, and products. Probing this chemical soup in real time under realistic reaction

  7. Nanoscale Chemical Imaging of a Working Catalyst

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Nanoscale Chemical Imaging of a Working Catalyst Print The heterogeneous catalysts used in most chemical processes typically consist of nanoscale metal or metal oxide particles dispersed on high-surface-area supports. While these particles are the active elements of the catalyst, the overall performance depends not only on their size and composition but also on their multiple interactions with the support, reactants, and products. Probing this chemical soup in real time under realistic reaction

  8. Position tracking of moving liver lesion based on real-time registration between 2D ultrasound and 3D preoperative images

    SciTech Connect (OSTI)

    Weon, Chijun; Hyun Nam, Woo; Lee, Duhgoon; Ra, Jong Beom; Lee, Jae Young

    2015-01-15

    Purpose: Registration between 2D ultrasound (US) and 3D preoperative magnetic resonance (MR) (or computed tomography, CT) images has been studied recently for US-guided intervention. However, the existing techniques have some limits, either in the registration speed or the performance. The purpose of this work is to develop a real-time and fully automatic registration system between two intermodal images of the liver, and subsequently an indirect lesion positioning/tracking algorithm based on the registration result, for image-guided interventions. Methods: The proposed position tracking system consists of three stages. In the preoperative stage, the authors acquire several 3D preoperative MR (or CT) images at different respiratory phases. Based on the transformations obtained from nonrigid registration of the acquired 3D images, they then generate a 4D preoperative image along the respiratory phase. In the intraoperative preparatory stage, they properly attach a 3D US transducer to the patient’s body and fix its pose using a holding mechanism. They then acquire a couple of respiratory-controlled 3D US images. Via the rigid registration of these US images to the 3D preoperative images in the 4D image, the pose information of the fixed-pose 3D US transducer is determined with respect to the preoperative image coordinates. As feature(s) to use for the rigid registration, they may choose either internal liver vessels or the inferior vena cava. Since the latter is especially useful in patients with a diffuse liver disease, the authors newly propose using it. In the intraoperative real-time stage, they acquire 2D US images in real-time from the fixed-pose transducer. For each US image, they select candidates for its corresponding 2D preoperative slice from the 4D preoperative MR (or CT) image, based on the predetermined pose information of the transducer. The correct corresponding image is then found among those candidates via real-time 2D registration based on a

  9. Real-Time Target Position Estimation Using Stereoscopic Kilovoltage/Megavoltage Imaging and External Respiratory Monitoring for Dynamic Multileaf Collimator Tracking

    SciTech Connect (OSTI)

    Cho, Byungchul; Poulsen, Per Rugaard; Sawant, Amit; Ruan, Dan; Keall, Paul J.

    2011-01-01

    Purpose: To develop a real-time target position estimation method using stereoscopic kilovoltage (kV)/megavoltage (MV) imaging and external respiratory monitoring, and to investigate the performance of a dynamic multileaf collimator tracking system using this method. Methods and Materials: The real-time three-dimensional internal target position estimation was established by creating a time-varying correlation model that connected the external respiratory signals with the internal target motion measured intermittently using kV/MV imaging. The method was integrated into a dynamic multileaf collimator tracking system. Tracking experiments were performed for 10 thoracic/abdominal traces. A three-dimensional motion platform carrying a gold marker and a separate one-dimensional motion platform were used to reproduce the target and external respiratory motion, respectively. The target positions were detected by kV (1 Hz) and MV (5.2 Hz) imaging, and external respiratory motion was captured by an optical system (30 Hz). The beam-target alignment error was quantified as the positional difference between the target and circular beam center on the MV images acquired during tracking. The correlation model error was quantified by comparing a model estimate and measured target positions. Results: The root-mean-square errors in the beam-target alignment that had ranged from 3.1 to 7.6 mm without tracking were reduced to <1.5 mm with tracking, except during the model building period (6 s). The root-mean-square error in the correlation model was submillimeters in all directions. Conclusion: A novel real-time target position estimation method was developed and integrated into a dynamic multileaf collimator tracking system and demonstrated an average submillimeter geometric accuracy after initializing the internal/external correlation model. The method used hardware tools available on linear accelerators and therefore shows promise for clinical implementation.

  10. TH-C-17A-07: Visualizing and Quantifying Radiation Therapy in Real-Time Using a Novel Beam Imaging Technique

    SciTech Connect (OSTI)

    Jenkins, C; Naczynski, D; Xing, L

    2014-06-15

    Purpose: Radiation therapy uses invisible high energy X-rays to treat an invisible tumor. Proper positioning of the treatment beam relative to the patient's anatomy during dose delivery is critically important to the success of treatment. We develop and characterize a novel radiation therapy beam visualization technique for real-time monitoring of patient treatment. Methods: Custom made flexible scintillator sheets were fabricated from gadolinium oxysulfide (GOS) particles that had been doped with terbium within a silicone elastomer matrix. Sheets of several thicknesses ranging from 0.3 to 1mm were prepared and tested. Sheets were exposed to megavoltage X-ray and electron beams from a Varian linac and the resulting optical signal was collected by multiple CMOS cameras placed in the treatment room. Real-time images were collected for different beam energies and dose rates. Signal intensity and SNR were calculated by processing the acquired images. Results: All signals were detectable in the presence of full room lighting and at an integration time of 45ms. Average signal intensity and SNR increased with both sheet thickness and dose rate and decreased with beam energy and incident light. For a given sheet thickness and beam energy the correlation between dose rate and signal intensity was highly linear. Increased sheet thickness or dose rate results in a linear increase in the detected signal. All results are consistent with analytical approximations. Conclusion: The technique offers a means of accurately visualizing a radiation therapy beam shape and fluence in real time. The effects of salient parameters have been characterized and will enable further optimization of the technique as it is implemented into the clinical workflow. The project described was supported by the National Center for Advancing Translational Sciences of the National Institutes of Health through UL1 TR001085.

  11. TH-C-17A-01: Imaging Sensor Comparison for Real-Time Cherenkov Signal Detection From Tissue for Treatment Verification

    SciTech Connect (OSTI)

    Andreozzi, J; Zhang, R; Glaser, A; Pogue, B; Jarvis, L; Gladstone, D

    2014-06-15

    Purpose: To identify the optimum imaging sensor for a clinical system that would provide real-time imaging of the surface beam profile on patients as novel visual information to radiation therapy technologists, and more rapidly collect clinical data for large-scale studies of Cherenkov applications in radiotherapy. Methods: Four camera types, CMOS, CCD, ICCD and EMICCD, were tested to determine proficiency in the detection of Cherenkov signal in the clinical radiotherapy setting, and subsequent maximum supportable frame rate. Where possible, time-gating between the trigger signal from the LINAC and the intensifiers was implemented to detect signal with room lighting conditions comparable to patient treatment scenarios. A solid water phantom was imaged by the EM-ICCD and ICCD to evaluate the minimum number of accumulations-on-chip required for adequate Cherenkov detection, defined as >200% electron counts per pixel over background signal. Additionally, an ICCD and EM-ICCD were used clinically to image patients undergoing whole-breast radiation therapy, to understand the impact of the resolution limitation of the EM-ICCD. Results: The intensifier-coupled cameras performed best at imaging Cherenkov signal, even with room lights on, which is essential for patient comfort. The tested EM-ICCD was able to support single-shot imaging and frame rates of 30 fps, however, the current maximum resolution of 512 512 pixels was restricting. The ICCD used in current clinical trials was limited to 4.7 fps at a 1024 1024 resolution. An intensifier with higher quantum efficiency at the entrance photocathode in the red wavelengths (30% QE vs current 7%) promises 16 fps at the same resolution at lower cost than the EM-ICCD. Conclusion: The ICCD with the better red wavelength QE intensifier was determined to be the best suited commercial-off-the-shelf camera to detect real-time Cherenkov signal and provide the best potential for real-time display of radiation dose on the skin during

  12. Real time Faraday spectrometer

    DOE Patents [OSTI]

    Smith, Jr., Tommy E. (Fremont, CA); Struve, Kenneth W. (Albuquerque, NM); Colella, Nicholas J. (Livermore, CA)

    1991-01-01

    This invention uses a dipole magnet to bend the path of a charged particle beam. As the deflected particles exit the magnet, they are spatially dispersed in the bend-plane of the magnet according to their respective momenta and pass to a plurality of chambers having Faraday probes positioned therein. Both the current and energy distribution of the particles is then determined by the non-intersecting Faraday probes located along the chambers. The Faraday probes are magnetically isolated from each other by thin metal walls of the chambers, effectively providing real time current-versus-energy particle measurements.

  13. SU-D-BRF-06: A Brachytherapy Simulator with Realistic Haptic Force Feedback and Real-Time Ultrasounds Image Simulation for Training and Teaching

    SciTech Connect (OSTI)

    Beaulieu, L; Carette, A; Comtois, S; Lavigueur, M; Cardou, P; Laurendeau, D

    2014-06-01

    Purpose: Surgical procedures require dexterity, expertise and repetition to reach optimal patient outcomes. However, efficient training opportunities are usually limited. This work presents a simulator system with realistic haptic force-feedback and full, real-time ultrasounds image simulation. Methods: The simulator is composed of a custom-made Linear-DELTA force-feedback robotic platform. The needle tip is mounted on a force gauge at the end effector of the robot, which responds to needle insertion by providing reaction forces. 3D geometry of the tissue is using a tetrahedral finite element mesh (FEM) mimicking tissue properties. As the needle is inserted/retracted, tissue deformation is computed using a mass-tensor nonlinear visco-elastic FEM. The real-time deformation is fed to the L-DELTA to take into account the force imparted to the needle, providing feedback to the end-user when crossing tissue boundaries or needle bending. Real-time 2D US image is also generated synchronously showing anatomy, needle insertion and tissue deformation. The simulator is running on an Intel I7 6- core CPU at 3.26 MHz. 3D tissue rendering and ultrasound display are performed on a Windows 7 computer; the FEM computation and L-DELTA control are executed on a similar PC using the Neutrino real-time OS. Both machines communicate through an Ethernet link. Results: The system runs at 500 Hz for a 8333-tetrahedron tissue mesh and a 100-node angular spring needle model. This frame rate ensures a relatively smooth displacement of the needle when pushed or retracted (±20 N in all directions at speeds of up to 2 m/s). Unlike commercially-available haptic platforms, the oblong workspace of the L-DELTA robot complies with that required for brachytherapy needle displacements of 0.1m by 0.1m by 0.25m. Conclusion: We have demonstrated a real-life, realistic brachytherapy simulator developed for prostate implants (LDR/HDR). The platform could be adapted to other sites or training for other

  14. Nanoscale Chemical Imaging of a Working Catalyst

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    interactions with the support, reactants, and products. Probing this chemical soup in real time under realistic reaction conditions is such a tall order that in some cases even...

  15. Accuracy of real time noninvasive temperature measurements using magnetic resonance thermal imaging in patients treated for high grade extremity soft tissue sarcomas

    SciTech Connect (OSTI)

    Craciunescu, Oana I.; Stauffer, Paul R.; Soher, Brian J.; Wyatt, Cory R.; Arabe, Omar; Maccarini, Paolo; Das, Shiva K.; Cheng, Kung-Shan; Wong, Terence Z.; Jones, Ellen L.; Dewhirst, Mark W.; Vujaskovic, Zeljko; MacFall, James R.

    2009-11-15

    Purpose: To establish accuracy of real time noninvasive temperature measurements using magnetic resonance thermal imaging in patients treated for high grade extremity soft tissue sarcomas. Methods: Protocol patients with advanced extremity sarcomas were treated with external beam radiation therapy and hyperthermia. Invasive temperature measures were compared to noninvasive magnetic resonance thermal imaging (MRTI) at 1.5 T performed during hyperthermia. Volumetric temperature rise images were obtained using the proton resonance frequency shift (PRFS) technique during heating in a 140 MHz miniannular phased array applicator. MRTI temperature changes were compared to invasive measurements of temperature with a multisensor fiber optic probe inside a no. 15 g catheter in the tumor. Since the PRFS technique is sensitive to drifts in the primary imaging magnetic field, temperature change distributions were corrected automatically during treatment using temperature-stable reference materials to characterize field changes in 3D. The authors analyzed MRT images and compared, in evaluable treatments, MR-derived temperatures to invasive temperatures measured in extremity sarcomas. Small regions of interest (ROIs) were specified near each invasive sensor identified on MR images. Temperature changes in the interstitial sensors were compared to the corresponding ROI PRFS-based temperature changes over the entire treatment and over the steady-state period. Nonevaluable treatments (motion/imaging artifacts, noncorrectable drifts) were not included in the analysis. Results: The mean difference between MRTI and interstitial probe measurements was 0.91 deg. C for the entire heating time and 0.85 deg. C for the time at steady state. These values were obtained from both tumor and normal tissue ROIs. When the analysis is done on just the tumor ROIs, the mean difference for the whole power on time was 0.74 deg. C and during the period of steady state was 0.62 deg. C. Conclusions: The

  16. Real-Time US-CT/MRI Image Fusion for Guidance of Thermal Ablation of Liver Tumors Undetectable with US: Results in 295 Cases

    SciTech Connect (OSTI)

    Mauri, Giovanni Cova, Luca; Beni, Stefano De; Ierace, Tiziana Tondolo, Tania Cerri, Anna; Goldberg, S. Nahum; Solbiati, Luigi

    2015-02-15

    PurposeThis study was designed to assess feasibility of US-CT/MRI fusion-guided ablation in liver tumors undetectable with US.MethodsFrom 2002 to 2012, 295 tumors (162 HCCs and 133 metastases; mean diameter 1.3 ± 0.6 cm, range 0.5–2.5 cm) detectable on contrast-enhanced CT/MRI, but completely undetectable with unenhanced US and either totally undetectable or incompletely conspicuous with contrast-enhanced US (CEUS), were treated in 215 sessions using either internally cooled radiofrequency or microwave with standard ablation protocols, guided by an image fusion system (Virtual Navigation System, Esaote S.p.A., Genova, Italy) that combines US with CT/ MRI images. Correct targeting and successful ablation of tumor were verified after 24 hours with CT or MRI.ResultsA total of 282 of 295 (95.6 %) tumors were correctly targeted with successful ablation achieved in 266 of 295 (90.2 %). Sixteen of 295 (5.4 %) tumors were correctly targeted, but unsuccessfully ablated, and 13 of 295 (4.4 %) tumors were unsuccessfully ablated due to inaccurate targeting. There were no perioperative deaths. Major complications were observed in 2 of the 215 treatments sessions (0.9 %).ConclusionsReal-time virtual navigation system with US-CT/MRI fusion imaging is precise for targeting and achieving successful ablation of target tumors undetectable with US alone. Therefore, a larger population could benefit from ultrasound guided ablation procedures.

  17. Axial Tomography from Digitized Real Time Radiography

    DOE R&D Accomplishments [OSTI]

    Zolnay, A. S.; McDonald, W. M.; Doupont, P. A.; McKinney, R. L.; Lee, M. M.

    1985-01-18

    Axial tomography from digitized real time radiographs provides a useful tool for industrial radiography and tomography. The components of this system are: x-ray source, image intensifier, video camera, video line extractor and digitizer, data storage and reconstruction computers. With this system it is possible to view a two dimensional x-ray image in real time at each angle of rotation and select the tomography plane of interest by choosing which video line to digitize. The digitization of a video line requires less than a second making data acquisition relatively short. Further improvements on this system are planned and initial results are reported.

  18. Real-Time Benchmark Suite

    Energy Science and Technology Software Center (OSTI)

    1992-01-17

    This software provides a portable benchmark suite for real time kernels. It tests the performance of many of the system calls, as well as the interrupt response time and task response time to interrupts. These numbers provide a baseline for comparing various real-time kernels and hardware platforms.

  19. SU-D-18A-02: Towards Real-Time On-Board Volumetric Image Reconstruction for Intrafraction Target Verification in Radiation Therapy

    SciTech Connect (OSTI)

    Xu, X; Iliopoulos, A; Zhang, Y; Pitsianis, N; Sun, X; Yin, F; Ren, L

    2014-06-01

    Purpose: To expedite on-board volumetric image reconstruction from limited-angle kVMV projections for intrafraction verification. Methods: A limited-angle intrafraction verification (LIVE) system has recently been developed for real-time volumetric verification of moving targets, using limited-angle kVMV projections. Currently, it is challenged by the intensive computational load of the prior-knowledge-based reconstruction method. To accelerate LIVE, we restructure the software pipeline to make it adaptable to model and algorithm parameter changes, while enabling efficient utilization of rapidly advancing, modern computer architectures. In particular, an innovative two-level parallelization scheme has been designed: At the macroscopic level, data and operations are adaptively partitioned, taking into account algorithmic parameters and the processing capacity or constraints of underlying hardware. The control and data flows of the pipeline are scheduled in such a way as to maximize operation concurrency and minimize total processing time. At the microscopic level, the partitioned functions act as independent modules, operating on data partitions in parallel. Each module is pre-parallelized and optimized for multi-core processors (CPUs) and graphics processing units (GPUs). Results: We present results from a parallel prototype, where most of the controls and module parallelization are carried out via Matlab and its Parallel Computing Toolbox. The reconstruction is 5 times faster on a data-set of twice the size, compared to recently reported results, without compromising on algorithmic optimization control. Conclusion: The prototype implementation and its results have served to assess the efficacy of our system concept. While a production implementation will yield much higher processing rates by approaching full-capacity utilization of CPUs and GPUs, some mutual constraints between algorithmic flow and architecture specifics remain. Based on a careful analysis of

  20. SU-E-I-37: Low-Dose Real-Time Region-Of-Interest X-Ray Fluoroscopic Imaging with a GPU-Accelerated Spatially Different Bilateral Filtering

    SciTech Connect (OSTI)

    Chung, H; Lee, J; Pua, R; Cho, S; Jung, W

    2014-06-01

    Purpose: The purpose of our study is to reduce imaging radiation dose while maintaining image quality of region of interest (ROI) in X-ray fluoroscopy. A low-dose real-time ROI fluoroscopic imaging technique which includes graphics-processing-unit- (GPU-) accelerated image processing for brightness compensation and noise filtering was developed in this study. Methods: In our ROI fluoroscopic imaging, a copper filter is placed in front of the X-ray tube. The filter contains a round aperture to reduce radiation dose to outside of the aperture. To equalize the brightness difference between inner and outer ROI regions, brightness compensation was performed by use of a simple weighting method that applies selectively to the inner ROI, the outer ROI, and the boundary zone. A bilateral filtering was applied to the images to reduce relatively high noise in the outer ROI images. To speed up the calculation of our technique for real-time application, the GPU-acceleration was applied to the image processing algorithm. We performed a dosimetric measurement using an ion-chamber dosimeter to evaluate the amount of radiation dose reduction. The reduction of calculation time compared to a CPU-only computation was also measured, and the assessment of image quality in terms of image noise and spatial resolution was conducted. Results: More than 80% of dose was reduced by use of the ROI filter. The reduction rate depended on the thickness of the filter and the size of ROI aperture. The image noise outside the ROI was remarkably reduced by the bilateral filtering technique. The computation time for processing each frame image was reduced from 3.43 seconds with single CPU to 9.85 milliseconds with GPU-acceleration. Conclusion: The proposed technique for X-ray fluoroscopy can substantially reduce imaging radiation dose to the patient while maintaining image quality particularly in the ROI region in real-time.

  1. High speed, real-time, camera bandwidth converter

    DOE Patents [OSTI]

    Bower, Dan E; Bloom, David A; Curry, James R

    2014-10-21

    Image data from a CMOS sensor with 10 bit resolution is reformatted in real time to allow the data to stream through communications equipment that is designed to transport data with 8 bit resolution. The incoming image data has 10 bit resolution. The communication equipment can transport image data with 8 bit resolution. Image data with 10 bit resolution is transmitted in real-time, without a frame delay, through the communication equipment by reformatting the image data.

  2. Radiation Levels in Real Time?

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Levels in Real Time? There's an App for That! Gamma radiation levels in the southern Nevada area will soon be accessible around the world at the touch of a finger. Makers of the cell phone application EcoData: Radiation are expanding their global network of radiation monitoring stations to include up-to-date readings from the Community Environmental Monitoring Program (CEMP) based out of southern Nevada. The CEMP was established in 1981 to monitor manmade and natural radiation levels surrounding

  3. Real time infrared aerosol analyzer

    DOE Patents [OSTI]

    Johnson, Stanley A.; Reedy, Gerald T.; Kumar, Romesh

    1990-01-01

    Apparatus for analyzing aerosols in essentially real time includes a virtual impactor which separates coarse particles from fine and ultrafine particles in an aerosol sample. The coarse and ultrafine particles are captured in PTFE filters, and the fine particles impact onto an internal light reflection element. The composition and quantity of the particles on the PTFE filter and on the internal reflection element are measured by alternately passing infrared light through the filter and the internal light reflection element, and analyzing the light through infrared spectrophotometry to identify the particles in the sample.

  4. Real time analysis under EDS

    SciTech Connect (OSTI)

    Schneberk, D.

    1985-07-01

    This paper describes the analysis component of the Enrichment Diagnostic System (EDS) developed for the Atomic Vapor Laser Isotope Separation Program (AVLIS) at Lawrence Livermore National Laboratory (LLNL). Four different types of analysis are performed on data acquired through EDS: (1) absorption spectroscopy on laser-generated spectral lines, (2) mass spectrometer analysis, (3) general purpose waveform analysis, and (4) separation performance calculations. The information produced from this data includes: measures of particle density and velocity, partial pressures of residual gases, and overall measures of isotope enrichment. The analysis component supports a variety of real-time modeling tasks, a means for broadcasting data to other nodes, and a great degree of flexibility for tailoring computations to the exact needs of the process. A particular data base structure and program flow is common to all types of analysis. Key elements of the analysis component are: (1) a fast access data base which can configure all types of analysis, (2) a selected set of analysis routines, (3) a general purpose data manipulation and graphics package for the results of real time analysis. Each of these components are described with an emphasis upon how each contributes to overall system capability. 3 figs.

  5. Tracking Living Cells as They Differentiate in Real Time

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Tracking Living Cells as They Differentiate in Real Time Tracking Living Cells as They Differentiate in Real Time Print Thursday, 27 September 2012 00:00 Protein phosphorylation regulates protein function in a cell, either activating or inactivating the proteins responsible for many cell functions ranging from cell proliferation to differentiation to metabolism to signaling, and even programmed cell death. This chemical process has been studied intensively, but until now it has been impossible

  6. SU-E-J-44: A Novel Approach to Quantify Patient Setup and Target Motion for Real-Time Image-Guided Radiotherapy (IGRT)

    SciTech Connect (OSTI)

    Li, S; Charpentier, P; Sayler, E; Micaily, B; Miyamoto, C; Geng, J

    2015-06-15

    Purpose Isocenter shifts and rotations to correct patient setup errors and organ motion cannot remedy some shape changes of large targets. We are investigating new methods in quantification of target deformation for realtime IGRT of breast and chest wall cancer. Methods Ninety-five patients of breast or chest wall cancer were accrued in an IRB-approved clinical trial of IGRT using 3D surface images acquired at daily setup and beam-on time via an in-room camera. Shifts and rotations relating to the planned reference surface were determined using iterative-closest-point alignment. Local surface displacements and target deformation are measured via a ray-surface intersection and principal component analysis (PCA) of external surface, respectively. Isocenter shift, upper-abdominal displacement, and vectors of the surface projected onto the two principal components, PC1 and PC2, were evaluated for sensitivity and accuracy in detection of target deformation. Setup errors for some deformed targets were estimated by superlatively registering target volume, inner surface, or external surface in weekly CBCT or these outlines on weekly EPI. Results Setup difference according to the inner-surface, external surface, or target volume could be 1.5 cm. Video surface-guided setup agreed with EPI results to within < 0.5 cm while CBCT results were sometimes (∼20%) different from that of EPI (>0.5 cm) due to target deformation for some large breasts and some chest walls undergoing deep-breath-hold irradiation. Square root of PC1 and PC2 is very sensitive to external surface deformation and irregular breathing. Conclusion PCA of external surfaces is quick and simple way to detect target deformation in IGRT of breast and chest wall cancer. Setup corrections based on the target volume, inner surface, and external surface could be significant different. Thus, checking of target shape changes is essential for accurate image-guided patient setup and motion tracking of large deformable

  7. Nanoscale Chemical Imaging of a Working Catalyst

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Nanoscale Chemical Imaging of a Working Catalyst Nanoscale Chemical Imaging of a Working Catalyst Print Wednesday, 28 January 2009 00:00 The heterogeneous catalysts used in most ...

  8. In-Situ, Real Time Measurement of Elemental Constituents | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    In-Situ, Real Time Measurement of Elemental Constituents In-Situ, Real Time Measurement of Elemental Constituents New Laser System Provides Real-Time Measurements for Improved ...

  9. Real-time sub-ngstrom...

    Office of Scientific and Technical Information (OSTI)

    Real-time sub-ngstrom imaging of reversible and irreversible conformations in rhodium catalysts and graphene Kisielowski, Christian; Wang,...

  10. Real time sensor for therapeutic radiation delivery

    DOE Patents [OSTI]

    Bliss, Mary; Craig, Richard A.; Reeder, Paul L.

    1998-01-01

    The invention is a real time sensor for therapeutic radiation. A probe is placed in or near the patient that senses in real time the dose at the location of the probe. The strength of the dose is determined by either an insertion or an exit probe. The location is determined by a series of vertical and horizontal sensing elements that gives the operator a real time read out dose location relative to placement of the patient. The increased accuracy prevents serious tissue damage to the patient by preventing overdose or delivery of a dose to a wrong location within the body.

  11. Real time sensor for therapeutic radiation delivery

    DOE Patents [OSTI]

    Bliss, M.; Craig, R.A.; Reeder, P.L.

    1998-01-06

    The invention is a real time sensor for therapeutic radiation. A probe is placed in or near the patient that senses in real time the dose at the location of the probe. The strength of the dose is determined by either an insertion or an exit probe. The location is determined by a series of vertical and horizontal sensing elements that gives the operator a real time read out dose location relative to placement of the patient. The increased accuracy prevents serious tissue damage to the patient by preventing overdose or delivery of a dose to a wrong location within the body. 14 figs.

  12. Utility experience with real time rates

    SciTech Connect (OSTI)

    Tabors, R.D.; Schweppe, F.C.; Caramanis, M.C.

    1989-05-01

    The structure of electric utility is undergoing dramatic changes as new and expanded service options are added. The concepts of unbundling or of priority service are expanding the options open to customers. Spot pricing, or real time pricing of electricity provides the economic structure for many of these new service options. It is frequently stated that customers can not adapt to real time prices. This paper identifies the dimensions of real time rates and identifies existing rate structures in the United States and other OECD countries which incorporate these dimensions.

  13. Real time capable infrared thermography for ASDEX Upgrade

    SciTech Connect (OSTI)

    Sieglin, B. Faitsch, M.; Herrmann, A.; Brucker, B.; Eich, T.; Kammerloher, L.; Martinov, S.

    2015-11-15

    Infrared (IR) thermography is widely used in fusion research to study power exhaust and incident heat load onto the plasma facing components. Due to the short pulse duration of today’s fusion experiments, IR systems have mostly been designed for off-line data analysis. For future long pulse devices (e.g., Wendelstein 7-X, ITER), a real time evaluation of the target temperature and heat flux is mandatory. This paper shows the development of a real time capable IR system for ASDEX Upgrade. A compact IR camera has been designed incorporating the necessary magnetic and electric shielding for the detector, cooler assembly. The camera communication is based on the Camera Link industry standard. The data acquisition hardware is based on National Instruments hardware, consisting of a PXIe chassis inside and a fibre optical connected industry computer outside the torus hall. Image processing and data evaluation are performed using real time LabVIEW.

  14. The LAA real-time benchmarks

    SciTech Connect (OSTI)

    Block, R.K.; Krischer, W.; Lone, S.

    1989-04-01

    In the context of the LAA detector development program a subgroup Real Time Data Processing has tackled the problem of intelligent triggering. The main goal of this group is to show how fast digital devices, implemented as custom-made or commercial processors, can execute some basic algorithms, and how they can be embedded in the data flow between detector readout components and fully programmable commercial processors, which are expected to be the final data processing filter in real time.

  15. Nanoscale Chemical Imaging of a Working Catalyst

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Nanoscale Chemical Imaging of a Working Catalyst Print The heterogeneous catalysts used in most chemical processes typically consist of nanoscale metal or metal oxide particles ...

  16. REAL TIME SYSTEM OPERATIONS 2006-2007

    SciTech Connect (OSTI)

    Eto, Joseph H.; Parashar, Manu; Lewis, Nancy Jo

    2008-08-15

    The Real Time System Operations (RTSO) 2006-2007 project focused on two parallel technical tasks: (1) Real-Time Applications of Phasors for Monitoring, Alarming and Control; and (2) Real-Time Voltage Security Assessment (RTVSA) Prototype Tool. The overall goal of the phasor applications project was to accelerate adoption and foster greater use of new, more accurate, time-synchronized phasor measurements by conducting research and prototyping applications on California ISO's phasor platform - Real-Time Dynamics Monitoring System (RTDMS) -- that provide previously unavailable information on the dynamic stability of the grid. Feasibility assessment studies were conducted on potential application of this technology for small-signal stability monitoring, validating/improving existing stability nomograms, conducting frequency response analysis, and obtaining real-time sensitivity information on key metrics to assess grid stress. Based on study findings, prototype applications for real-time visualization and alarming, small-signal stability monitoring, measurement based sensitivity analysis and frequency response assessment were developed, factory- and field-tested at the California ISO and at BPA. The goal of the RTVSA project was to provide California ISO with a prototype voltage security assessment tool that runs in real time within California ISO?s new reliability and congestion management system. CERTS conducted a technical assessment of appropriate algorithms, developed a prototype incorporating state-of-art algorithms (such as the continuation power flow, direct method, boundary orbiting method, and hyperplanes) into a framework most suitable for an operations environment. Based on study findings, a functional specification was prepared, which the California ISO has since used to procure a production-quality tool that is now a part of a suite of advanced computational tools that is used by California ISO for reliability and congestion management.

  17. Continuous, real time microwave plasma element sensor

    DOE Patents [OSTI]

    Woskov, P.P.; Smatlak, D.L.; Cohn, D.R.; Wittle, J.K.; Titus, C.H.; Surma, J.E.

    1995-12-26

    Microwave-induced plasma is described for continuous, real time trace element monitoring under harsh and variable conditions. The sensor includes a source of high power microwave energy and a shorted waveguide made of a microwave conductive, refractory material communicating with the source of the microwave energy to generate a plasma. The high power waveguide is constructed to be robust in a hot, hostile environment. It includes an aperture for the passage of gases to be analyzed and a spectrometer is connected to receive light from the plasma. Provision is made for real time in situ calibration. The spectrometer disperses the light, which is then analyzed by a computer. The sensor is capable of making continuous, real time quantitative measurements of desired elements, such as the heavy metals lead and mercury. 3 figs.

  18. Continuous, real time microwave plasma element sensor

    DOE Patents [OSTI]

    Woskov, Paul P.; Smatlak, Donna L.; Cohn, Daniel R.; Wittle, J. Kenneth; Titus, Charles H.; Surma, Jeffrey E.

    1995-01-01

    Microwave-induced plasma for continuous, real time trace element monitoring under harsh and variable conditions. The sensor includes a source of high power microwave energy and a shorted waveguide made of a microwave conductive, refractory material communicating with the source of the microwave energy to generate a plasma. The high power waveguide is constructed to be robust in a hot, hostile environment. It includes an aperture for the passage of gases to be analyzed and a spectrometer is connected to receive light from the plasma. Provision is made for real time in situ calibration. The spectrometer disperses the light, which is then analyzed by a computer. The sensor is capable of making continuous, real time quantitative measurements of desired elements, such as the heavy metals lead and mercury.

  19. Solar Real-Time Pricing: Is Real-Time Electricity Pricing Beneficial...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    & Market Analysis Codes, Standards & Utility Policies Subprogram Soft Costs Author Bright Power, Inc. for New York City Economic Development Corporation Solar Real-Time ...

  20. Real-Time Occupancy Change Analyzer

    Energy Science and Technology Software Center (OSTI)

    2005-03-30

    The Real-Time Occupancy Change Analyzer (ROCA) produces an occupancy grid map of an environment around the robot, scans the environment to generate a current obstacle map relative to a current robot position, and converts the current obstacle map to a current occupancy grid map. Changes in the occupancy grid can be reported in real time to support a number of tracking capabilities. The benefit of ROCA is that rather than only providing a vector tomore » the detected change, it provides the actual x,y position of the change.« less

    1. Real time 3D and heterogeneous data fusion

      SciTech Connect (OSTI)

      Little, C.Q.; Small, D.E.

      1998-03-01

      This project visualizes characterization data in a 3D setting, in real time. Real time in this sense means collecting the data and presenting it before it delays the user, and processing faster than the acquisition systems so no bottlenecks occur. The goals have been to build a volumetric viewer to display 3D data, demonstrate projecting other data, such as images, onto the 3D data, and display both the 3D and projected images as fast as the data became available. The authors have examined several ways to display 3D surface data. The most effective was generating polygonal surface meshes. They have created surface maps form a continuous stream of 3D range data, fused image data onto the geometry, and displayed the data with a standard 3D rendering package. In parallel with this, they have developed a method to project real-time images onto the surface created. A key component is mapping the data on the correct surfaces, which requires a-priori positional information along with accurate calibration of the camera and lens system.

    2. Tracking Living Cells as They Differentiate in Real Time

      Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

      Tracking Living Cells as They Differentiate in Real Time Print Protein phosphorylation regulates protein function in a cell, either activating or inactivating the proteins responsible for many cell functions ranging from cell proliferation to differentiation to metabolism to signaling, and even programmed cell death. This chemical process has been studied intensively, but until now it has been impossible to watch phosphorylation at the molecular level without damaging cells or interfering with

    3. Tracking Living Cells as They Differentiate in Real Time

      Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

      Tracking Living Cells as They Differentiate in Real Time Print Protein phosphorylation regulates protein function in a cell, either activating or inactivating the proteins responsible for many cell functions ranging from cell proliferation to differentiation to metabolism to signaling, and even programmed cell death. This chemical process has been studied intensively, but until now it has been impossible to watch phosphorylation at the molecular level without damaging cells or interfering with

    4. Tracking Living Cells as They Differentiate in Real Time

      Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

      Tracking Living Cells as They Differentiate in Real Time Print Protein phosphorylation regulates protein function in a cell, either activating or inactivating the proteins responsible for many cell functions ranging from cell proliferation to differentiation to metabolism to signaling, and even programmed cell death. This chemical process has been studied intensively, but until now it has been impossible to watch phosphorylation at the molecular level without damaging cells or interfering with

    5. Tracking Living Cells as They Differentiate in Real Time

      Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

      Tracking Living Cells as They Differentiate in Real Time Print Protein phosphorylation regulates protein function in a cell, either activating or inactivating the proteins responsible for many cell functions ranging from cell proliferation to differentiation to metabolism to signaling, and even programmed cell death. This chemical process has been studied intensively, but until now it has been impossible to watch phosphorylation at the molecular level without damaging cells or interfering with

    6. Tracking Living Cells as They Differentiate in Real Time

      Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

      Tracking Living Cells as They Differentiate in Real Time Print Protein phosphorylation regulates protein function in a cell, either activating or inactivating the proteins responsible for many cell functions ranging from cell proliferation to differentiation to metabolism to signaling, and even programmed cell death. This chemical process has been studied intensively, but until now it has been impossible to watch phosphorylation at the molecular level without damaging cells or interfering with

    7. Real-Time Airborne Particle Analyzer - Energy Innovation Portal

      Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

      Find More Like This Return to Search Real-Time Airborne Particle Analyzer Oak Ridge National Laboratory Contact ORNL About This Technology Technology Marketing Summary Particle analysis is useful for determining chemical compositions in a wide range of disciplines, from ascertaining the source of a petroleum sample to duplicating a fragrance. The technique is appealing to a broad cross section of analytical sciences, but its applications are limited because, for existing equipment, sample size

    8. Real Time Grid Reliability Management 2005

      SciTech Connect (OSTI)

      Eto, Joe; Eto, Joe; Lesieutre, Bernard; Lewis, Nancy Jo; Parashar, Manu

      2008-07-07

      The increased need to manage California?s electricity grid in real time is a result of the ongoing transition from a system operated by vertically-integrated utilities serving native loads to one operated by an independent system operator supporting competitive energy markets. During this transition period, the traditional approach to reliability management -- construction of new transmission lines -- has not been pursued due to unresolved issues related to the financing and recovery of transmission project costs. In the absence of investments in new transmission infrastructure, the best strategy for managing reliability is to equip system operators with better real-time information about actual operating margins so that they can better understand and manage the risk of operating closer to the edge. A companion strategy is to address known deficiencies in offline modeling tools that are needed to ground the use of improved real-time tools. This project: (1) developed and conducted first-ever demonstrations of two prototype real-time software tools for voltage security assessment and phasor monitoring; and (2) prepared a scoping study on improving load and generator response models. Additional funding through two separate subsequent work authorizations has already been provided to build upon the work initiated in this project.

    9. Real-time distributed multimedia systems

      SciTech Connect (OSTI)

      Rahurkar, S.S.; Bourbakis, N.G.

      1996-12-31

      This paper presents a survey on distributed multimedia systems and discusses real-time issues. In particular, different subsystems are reviewed that impact on multimedia networking, the networking for multimedia, the networked multimedia systems, and the leading edge research and developments efforts and issues in networking.

    10. Distributed Real-Time Computing with Harness

      SciTech Connect (OSTI)

      Di Saverio, Emanuele; Cesati, Marco; Di Biagio, Christian; Pennella, Guido; Engelmann, Christian

      2007-01-01

      Modern parallel and distributed computing solutions are often built onto a ''middleware'' software layer providing a higher and common level of service between computational nodes. Harness is an adaptable, plugin-based middleware framework for parallel and distributed computing. This paper reports recent research and development results of using Harness for real-time distributed computing applications in the context of an industrial environment with the needs to perform several safety critical tasks. The presented work exploits the modular architecture of Harness in conjunction with a lightweight threaded implementation to resolve several real-time issues by adding three new Harness plug-ins to provide a prioritized lightweight execution environment, low latency communication facilities, and local timestamped event logging.

    11. Real time gamma-ray signature identifier

      DOE Patents [OSTI]

      Rowland, Mark; Gosnell, Tom B.; Ham, Cheryl; Perkins, Dwight; Wong, James

      2012-05-15

      A real time gamma-ray signature/source identification method and system using principal components analysis (PCA) for transforming and substantially reducing one or more comprehensive spectral libraries of nuclear materials types and configurations into a corresponding concise representation/signature(s) representing and indexing each individual predetermined spectrum in principal component (PC) space, wherein an unknown gamma-ray signature may be compared against the representative signature to find a match or at least characterize the unknown signature from among all the entries in the library with a single regression or simple projection into the PC space, so as to substantially reduce processing time and computing resources and enable real-time characterization and/or identification.

    12. Visualizations for Real-time Pricing Demonstration

      SciTech Connect (OSTI)

      Marinovici, Maria C.; Hammerstrom, Janelle L.; Widergren, Steven E.; Dayley, Greg K.

      2014-10-13

      In this paper, the visualization tools created for monitoring the operations of a real-time pricing demonstration system that runs at a distribution feeder level are presented. The information these tools provide gives insights into demand behavior from automated price responsive devices, distribution feeder characteristics, impact of weather on system’s development, and other significant dynamics. Given the large number of devices that bid into a feeder-level real-time electricity market, new techniques are explored to summarize the present state of the system and contrast that with previous trends as well as future projections. To better understand the system behavior and correctly inform decision-making procedures, effective visualization of the data is imperative.

    13. Real Time Diagnostics for Algae-final-sm

      Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

      Real-time Monitoring And Diagnostics Detecting pathogens and predators to quickly recover ... Real-time Monitoring With Online Algal Reflectance Monitor System Researchers have ...

    14. Tracking Living Cells as They Differentiate in Real Time

      Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

      Tracking Living Cells as They Differentiate in Real Time Tracking Living Cells as They Differentiate in Real Time Print Thursday, 27 September 2012 00:00 Protein phosphorylation ...

    15. Wireless technology collects real-time information from oil and...

      Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

      Wireless technology collects real-time information from oil and gas wells Wireless technology collects real-time information from oil and gas wells The patented system delivers ...

    16. Distributed Intelligence Architecture for Real-Time Control,...

      Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

      Distributed Intelligence Architecture for Real-Time Control, Protection and Instrumentation Systems Architecture of complex, high-speed, Real-Time Instrumentation, Acquisition, Control ...

    17. Real time markerless motion tracking using linked kinematic chains

      DOE Patents [OSTI]

      Luck, Jason P.; Small, Daniel E.

      2007-08-14

      A markerless method is described for tracking the motion of subjects in a three dimensional environment using a model based on linked kinematic chains. The invention is suitable for tracking robotic, animal or human subjects in real-time using a single computer with inexpensive video equipment, and does not require the use of markers or specialized clothing. A simple model of rigid linked segments is constructed of the subject and tracked using three dimensional volumetric data collected by a multiple camera video imaging system. A physics based method is then used to compute forces to align the model with subsequent volumetric data sets in real-time. The method is able to handle occlusion of segments and accommodates joint limits, velocity constraints, and collision constraints and provides for error recovery. The method further provides for elimination of singularities in Jacobian based calculations, which has been problematic in alternative methods.

    18. Real Time Simulation of Power Grid Disruptions

      SciTech Connect (OSTI)

      Chinthavali, Supriya; Dimitrovski, Aleksandar D; Fernandez, Steven J; Groer, Christopher S; Nutaro, James J; Olama, Mohammed M; Omitaomu, Olufemi A; Shankar, Mallikarjun; Spafford, Kyle L; Vacaliuc, Bogdan

      2012-11-01

      DOE-OE and DOE-SC workshops (Reference 1-3) identified the key power grid problem that requires insight addressable by the next generation of exascale computing is coupling of real-time data streams (1-2 TB per hour) as the streams are ingested to dynamic models. These models would then identify predicted disruptions in time (2-4 seconds) to trigger the smart grid s self healing functions. This project attempted to establish the feasibility of this approach and defined the scientific issues, and demonstrated example solutions to important smart grid simulation problems. These objectives were accomplished by 1) using the existing frequency recorders on the national grid to establish a representative and scalable real-time data stream; 2) invoking ORNL signature identification algorithms; 3) modeling dynamically a representative region of the Eastern interconnect using an institutional cluster, measuring the scalability and computational benchmarks for a national capability; and 4) constructing a prototype simulation for the system s concept of smart grid deployment. The delivered ORNL enduring capability included: 1) data processing and simulation metrics to design a national capability justifying exascale applications; 2) Software and intellectual property built around the example solutions; 3) demonstrated dynamic models to design few second self-healing.

    19. NSTX power supply real time controller

      SciTech Connect (OSTI)

      Neumeyer, C.; Hatcher, R.; Marsala, R.; Ramakrishnan, S.

      2000-01-06

      The NSTX is a new national facility for the study of plasma confinement, heating, and current drive in a low aspect ratio, spherical torus (ST) configuration. The ST configuration is an alternate magnetic confinement concept which is characterized by high beta (ratio plasma pressure to magnetic field pressure) and low toroidal field compared to conventional tokamaks, and could provide a pathway to the realization of a practical fusion power source. The NSTX depends on a real time, high speed, synchronous, and deterministic control system acting on a system of thyristor rectifier power supplies to (1) establish the initial magnetic field configuration; (2) initiate plasma within the vacuum vessel; (3) inductively drive plasma current; and (4) control plasma position and shape. For the initial ``day 0'' 1st plasma operations (Feb. 1999), the system was limited to closed loop proportional-integral current control of the power supplies based on preprogrammed reference waveforms. For the ``day 1'' phase of operations beginning Sept. 1999 the loop has been closed on plasma current and position. This paper focuses on the Power Supply Real Time Controller (PSRTC).

    20. Nanoscale Chemical Imaging of a Working Catalyst

      Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

      Nanoscale Chemical Imaging of a Working Catalyst Nanoscale Chemical Imaging of a Working Catalyst Print Wednesday, 28 January 2009 00:00 The heterogeneous catalysts used in most chemical processes typically consist of nanoscale metal or metal oxide particles dispersed on high-surface-area supports. While these particles are the active elements of the catalyst, the overall performance depends not only on their size and composition but also on their multiple interactions with the support,

    1. Monitoring external beam radiotherapy using real-time beam visualization

      SciTech Connect (OSTI)

      Jenkins, Cesare H.; Naczynski, Dominik J.; Yu, Shu-Jung S.; Xing, Lei

      2015-01-15

      Purpose: To characterize the performance of a novel radiation therapy monitoring technique that utilizes a flexible scintillating film, common optical detectors, and image processing algorithms for real-time beam visualization (RT-BV). Methods: Scintillating films were formed by mixing Gd{sub 2}O{sub 2}S:Tb (GOS) with silicone and casting the mixture at room temperature. The films were placed in the path of therapeutic beams generated by medical linear accelerators (LINAC). The emitted light was subsequently captured using a CMOS digital camera. Image processing algorithms were used to extract the intensity, shape, and location of the radiation field at various beam energies, dose rates, and collimator locations. The measurement results were compared with known collimator settings to validate the performance of the imaging system. Results: The RT-BV system achieved a sufficient contrast-to-noise ratio to enable real-time monitoring of the LINAC beam at 20 fps with normal ambient lighting in the LINAC room. The RT-BV system successfully identified collimator movements with sub-millimeter resolution. Conclusions: The RT-BV system is capable of localizing radiation therapy beams with sub-millimeter precision and tracking beam movement at video-rate exposure.

    2. Real time speech formant analyzer and display

      DOE Patents [OSTI]

      Holland, G.E.; Struve, W.S.; Homer, J.F.

      1987-02-03

      A speech analyzer for interpretation of sound includes a sound input which converts the sound into a signal representing the sound. The signal is passed through a plurality of frequency pass filters to derive a plurality of frequency formants. These formants are converted to voltage signals by frequency-to-voltage converters and then are prepared for visual display in continuous real time. Parameters from the inputted sound are also derived and displayed. The display may then be interpreted by the user. The preferred embodiment includes a microprocessor which is interfaced with a television set for displaying of the sound formants. The microprocessor software enables the sound analyzer to present a variety of display modes for interpretive and therapeutic used by the user. 19 figs.

    3. Real time speech formant analyzer and display

      DOE Patents [OSTI]

      Holland, George E.; Struve, Walter S.; Homer, John F.

      1987-01-01

      A speech analyzer for interpretation of sound includes a sound input which converts the sound into a signal representing the sound. The signal is passed through a plurality of frequency pass filters to derive a plurality of frequency formants. These formants are converted to voltage signals by frequency-to-voltage converters and then are prepared for visual display in continuous real time. Parameters from the inputted sound are also derived and displayed. The display may then be interpreted by the user. The preferred embodiment includes a microprocessor which is interfaced with a television set for displaying of the sound formants. The microprocessor software enables the sound analyzer to present a variety of display modes for interpretive and therapeutic used by the user.

    4. REAL TIME DATA FOR REMEDIATION ACTIVITIES [11505

      SciTech Connect (OSTI)

      BROCK CT

      2011-01-13

      Health physicists from the CH2M HILL Plateau Remediation Company collaborated with Berkeley Nucleonics Corporation to modify the SAM 940 isotope identifier instrument to be used for nuclear waste remediation. These modifications coupled with existing capabilities of the SAM 940 have proven to be invaluable during remediation activities, reducing disposal costs by allowing swift remediation of targeted areas that have been identified as having isotopes of concern (IOC), and eliminating multiple visits to sites by declaring an excavation site clear of IOCs before demobilizing from the site. These advantages are enabled by accumulating spectral data for specific isotopes that is nearly 100 percent free of false positives, which are filtered out in 'real time.'

    5. In-line real time air monitor

      DOE Patents [OSTI]

      Wise, M.B.; Thompson, C.V.

      1998-07-14

      An in-line gas monitor capable of accurate gas composition analysis in a continuous real time manner even under strong applied vacuum conditions operates by mixing an air sample with helium forming a sample gas in two complementary sample loops embedded in a manifold which includes two pairs of 3-way solenoid valves. The sample gas is then analyzed in an ion trap mass spectrometer on a continuous basis. Two valve drivers actuate the two pairs of 3-way valves in a reciprocating fashion, so that there is always flow through the in-line gas monitor via one or the other of the sample loops. The duty cycle for the two pairs of 3-way valves is varied by tuning the two valve drivers to a duty cycle typically between 0.2 to 0.7 seconds. 3 figs.

    6. In-line real time air monitor

      DOE Patents [OSTI]

      Wise, Marcus B.; Thompson, Cyril V.

      1998-01-01

      An in-line gas monitor capable of accurate gas composition analysis in a continuous real time manner even under strong applied vacuum conditions operates by mixing an air sample with helium forming a sample gas in two complementary sample loops embedded in a manifold which includes two pairs of 3-way solenoid valves. The sample gas is then analyzed in an ion trap mass spectrometer on a continuous basis. Two valve drivers actuate the two pairs of 3-way valves in a reciprocating fashion, so that there is always flow through the in-line gas monitor via one or the other of the sample loops. The duty cycle for the two pairs of 3-way valves is varied by tuning the two valve drivers to a duty cycle typically between 0.2 to 0.7 seconds.

    7. Nanoscale Chemical Imaging of a Working Catalyst

      Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

      P.J. Kooyman, H.W. Zandbergen, C. Morin, B.M. Weckhuysen, and F.M.F. de Groot, "Nanoscale chemical imaging of a working catalyst by scanning transmission X-ray microscopy," Nature...

    8. Looking at Transistor Gate Oxide Formation in Real Time

      Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

      Looking at Transistor Gate Oxide Formation in Real Time Print The oxide gate layer is ... Now, for the first time, a group of researchers has obtained real-time oxidation results ...

    9. Autonomous global sky monitoring with real-time robotic follow...

      Office of Scientific and Technical Information (OSTI)

      Conference: Autonomous global sky monitoring with real-time robotic follow-up Citation Details In-Document Search Title: Autonomous global sky monitoring with real-time robotic...

    10. Efficient Real-Time Time-Dependent Density Functional Theory...

      Office of Scientific and Technical Information (OSTI)

      Efficient Real-Time Time-Dependent Density Functional Theory Method and its Application to a Collision of an Ion with a 2D Material Title: Efficient Real-Time Time-Dependent ...

    11. Optimizing near real time accountability for reprocessing.

      SciTech Connect (OSTI)

      Cipiti, Benjamin B.

      2010-06-01

      Near Real Time Accountability (NRTA) of actinides at high precision in reprocessing plants has been a long sought-after goal in the safeguards community. Achieving this goal is hampered by the difficulty of making precision measurements in the reprocessing environment, equipment cost, and impact to plant operations. Thus the design of future reprocessing plants requires an optimization of different approaches. The Separations and Safeguards Performance Model, developed at Sandia National Laboratories, was used to evaluate a number of NRTA strategies in a UREX+ reprocessing plant. Strategies examined include the incorporation of additional actinide measurements of internal plant vessels, more use of process monitoring data, and the option of periodic draining of inventory to key tanks. Preliminary results show that the addition of measurement technologies can increase the overall measurement uncertainty due to additional error propagation, so care must be taken when designing an advanced system. Initial results also show that relying on a combination of different NRTA techniques will likely be the best option. The model provides a platform for integrating all the data. The modeling results for the different NRTA options under various material loss conditions will be presented.

    12. Real Time Tailpipe Emission Measurements | Department of Energy

      Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

      Real Time Tailpipe Emission Measurements Real Time Tailpipe Emission Measurements 2002 DEER Conference Presentation: Brookhaven National Laboratory 2002_deer_imre.pdf (1.23 MB) More Documents & Publications Real-Time Simultaneous Measurements of Size, Density, and Composition of Single Ultrafine Diesel Tailpipe Particles Microsoft PowerPoint - 4. ORNL- deer.ppt [Read-Only] Real-Time Measurement of Diesel Trap Efficiency

    13. Funding Opportunity Announcement: Enabling Extreme Real-Time Grid

      Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

      Integration of Solar Energy (ENERGISE) | Department of Energy Enabling Extreme Real-Time Grid Integration of Solar Energy (ENERGISE) Funding Opportunity Announcement: Enabling Extreme Real-Time Grid Integration of Solar Energy (ENERGISE) Funding Opportunity Announcement: Enabling Extreme Real-Time Grid Integration of Solar Energy (ENERGISE) Funding Number: DE-FOA-0001495 Funding Amount: $25,000,000 Description The Enabling Extreme Real-Time Grid Integration of Solar Energy (ENERGISE) funding

    14. Real time PV manufacturing diagnostic system

      SciTech Connect (OSTI)

      Kochergin, Vladimir; Crawford, Michael A.

      2015-09-01

      The main obstacle Photovoltaic (PV) industry is facing at present is the higher cost of PV energy compared to that of fossil energy. While solar cell efficiencies continue to make incremental gains these improvements are so far insufficient to drive PV costs down to match that of fossil energy. Improved in-line diagnostics however, has the potential to significantly increase the productivity and reduce cost by improving the yield of the process. On this Phase I/Phase II SBIR project MicroXact developed and demonstrated at CIGS pilot manufacturing line a high-throughput in-line PV manufacturing diagnostic system, which was verified to provide fast and accurate data on the spatial uniformity of thickness, an composition of the thin films comprising the solar cell as the solar cell is processed reel-to-reel. In Phase II project MicroXact developed a stand-alone system prototype and demonstrated the following technical characteristics: 1) ability of real time defect/composition inconsistency detection over 60cm wide web at web speeds up to 3m/minute; 2) Better than 1mm spatial resolution on 60cm wide web; 3) an average better than 20nm spectral resolution resulting in more than sufficient sensitivity to composition imperfections (copper-rich and copper-poor regions were detected). The system was verified to be high vacuum compatible. Phase II results completely validated both technical and economic feasibility of the proposed concept. MicroXact’s solution is an enabling technique for in-line PV manufacturing diagnostics to increase the productivity of PV manufacturing lines and reduce the cost of solar energy, thus reducing the US dependency on foreign oil while simultaneously reducing emission of greenhouse gasses.

    15. Managing a Real-Time Embedded Linux Platform with Buildroot

      SciTech Connect (OSTI)

      Diamond, J.; Martin, K.

      2015-01-01

      Developers of real-time embedded software often need to build the operating system, kernel, tools and supporting applications from source to work with the differences in their hardware configuration. The first attempts to introduce Linux-based real-time embedded systems into the Fermilab accelerator controls system used this approach but it was found to be time-consuming, difficult to maintain and difficult to adapt to different hardware configurations. Buildroot is an open source build system with a menu-driven configuration tool (similar to the Linux kernel build system) that automates this process. A customized Buildroot [1] system has been developed for use in the Fermilab accelerator controls system that includes several hardware configuration profiles (including Intel, ARM and PowerPC) and packages for Fermilab support software. A bootable image file is produced containing the Linux kernel, shell and supporting software suite that varies from 3 to 20 megabytes large – ideal for network booting. The result is a platform that is easier to maintain and deploy in diverse hardware configurations

    16. Chemical Imaging and Dynamical Studies of Reactivity and Emergent...

      Office of Scientific and Technical Information (OSTI)

      Chemical Imaging and Dynamical Studies of Reactivity and Emergent Behavior in Complex ... Title: Chemical Imaging and Dynamical Studies of Reactivity and Emergent Behavior in ...

    17. Nanoscale Chemical Imaging of Zinc Oxide Nanowire Corrosion ...

      Office of Scientific and Technical Information (OSTI)

      Nanoscale Chemical Imaging of Zinc Oxide Nanowire Corrosion Citation Details In-Document Search Title: Nanoscale Chemical Imaging of Zinc Oxide Nanowire Corrosion Nanoscale ...

    18. Task 1. Monitoring real time materials degradation. NRC extended In-situ and real-time Monitoring

      SciTech Connect (OSTI)

      Bakhtiari, Sasan

      2012-03-01

      The overall objective of this project was to perform a scoping study to identify, in concert with the nuclear industry, those sensors and techniques that have the most promising commercial viability and fill a critical inspection or monitoring need. Candidates to be considered include sensors to monitor real-time material degradation, characterize residual stress, monitor and inspect component fabrication, assess radionuclide and associated chemical species concentrations in ground water and soil, characterize fuel properties, and monitor severe accident conditions. Under Task 1—Monitoring Real-Time Materials Degradation—scoping studies were conducted to assess the feasibility of potential inspection and monitoring technologies (i.e., a combination of sensors, advanced signal processing techniques, and data analysis methods) that could be utilized in LWR and/or advanced reactor applications for continuous monitoring of degradation in-situ. The goal was to identify those techniques that appear to be the most promising, i.e., those that are closest to being both technically and commercially viable and that the nuclear industry is most likely to pursue. Current limitations and associated issues that must be overcome before commercial application of certain techniques have also been addressed.

    19. Real-time calibration of a feedback trap

      SciTech Connect (OSTI)

      Gavrilov, Momčilo; Jun, Yonggun; Bechhoefer, John

      2014-09-15

      Feedback traps use closed-loop control to trap or manipulate small particles and molecules in solution. They have been applied to the measurement of physical and chemical properties of particles and to explore fundamental questions in the non-equilibrium statistical mechanics of small systems. These applications have been hampered by drifts in the electric forces used to manipulate the particles. Although the drifts are small for measurements on the order of seconds, they dominate on time scales of minutes or slower. Here, we show that a recursive maximum likelihood (RML) algorithm can allow real-time measurement and control of electric and stochastic forces over time scales of hours. Simulations show that the RML algorithm recovers known parameters accurately. Experimental estimates of diffusion coefficients are also consistent with expected physical properties.

    20. Real time three dimensional sensing system

      DOE Patents [OSTI]

      Gordon, Steven J.

      1996-01-01

      The invention is a three dimensional sensing system which utilizes two flexibly located cameras for receiving and recording visual information with respect to a sensed object illuminated by a series of light planes. Each pixel of each image is converted to a digital word and the words are grouped into stripes, each stripe comprising contiguous pixels. One pixel of each stripe in one image is selected and an epi-polar line of that point is drawn in the other image. The three dimensional coordinate of each selected point is determined by determining the point on said epi-polar line which also lies on a stripe in the second image and which is closest to a known light plane.

    1. Real time three dimensional sensing system

      DOE Patents [OSTI]

      Gordon, S.J.

      1996-12-31

      The invention is a three dimensional sensing system which utilizes two flexibly located cameras for receiving and recording visual information with respect to a sensed object illuminated by a series of light planes. Each pixel of each image is converted to a digital word and the words are grouped into stripes, each stripe comprising contiguous pixels. One pixel of each stripe in one image is selected and an epi-polar line of that point is drawn in the other image. The three dimensional coordinate of each selected point is determined by determining the point on said epi-polar line which also lies on a stripe in the second image and which is closest to a known light plane. 7 figs.

    2. Real-time soft tissue motion estimation for lung tumors during radiotherapy delivery

      SciTech Connect (OSTI)

      Rottmann, Joerg; Berbeco, Ross; Keall, Paul

      2013-09-15

      Purpose: To provide real-time lung tumor motion estimation during radiotherapy treatment delivery without the need for implanted fiducial markers or additional imaging dose to the patient.Methods: 2D radiographs from the therapy beam's-eye-view (BEV) perspective are captured at a frame rate of 12.8 Hz with a frame grabber allowing direct RAM access to the image buffer. An in-house developed real-time soft tissue localization algorithm is utilized to calculate soft tissue displacement from these images in real-time. The system is tested with a Varian TX linear accelerator and an AS-1000 amorphous silicon electronic portal imaging device operating at a resolution of 512 × 384 pixels. The accuracy of the motion estimation is verified with a dynamic motion phantom. Clinical accuracy was tested on lung SBRT images acquired at 2 fps.Results: Real-time lung tumor motion estimation from BEV images without fiducial markers is successfully demonstrated. For the phantom study, a mean tracking error <1.0 mm [root mean square (rms) error of 0.3 mm] was observed. The tracking rms accuracy on BEV images from a lung SBRT patient (≈20 mm tumor motion range) is 1.0 mm.Conclusions: The authors demonstrate for the first time real-time markerless lung tumor motion estimation from BEV images alone. The described system can operate at a frame rate of 12.8 Hz and does not require prior knowledge to establish traceable landmarks for tracking on the fly. The authors show that the geometric accuracy is similar to (or better than) previously published markerless algorithms not operating in real-time.

    3. Real Time Flux Control in PM Motors

      SciTech Connect (OSTI)

      Otaduy, P.J.

      2005-09-27

      Significant research at the Oak Ridge National Laboratory (ORNL) Power Electronics and Electric Machinery Research Center (PEEMRC) is being conducted to develop ways to increase (1) torque, (2) speed range, and (3) efficiency of traction electric motors for hybrid electric vehicles (HEV) within existing current and voltage bounds. Current is limited by the inverter semiconductor devices' capability and voltage is limited by the stator wire insulation's ability to withstand the maximum back-electromotive force (emf), which occurs at the upper end of the speed range. One research track has been to explore ways to control the path and magnitude of magnetic flux while the motor is operating. The phrase, real time flux control (RTFC), refers to this mode of operation in which system parameters are changed while the motor is operating to improve its performance and speed range. RTFC has potential to meet an increased torque demand by introducing additional flux through the main air gap from an external source. It can augment the speed range by diverting flux away from the main air gap to reduce back-emf at high speeds. Conventional RTFC technology is known as vector control [1]. Vector control decomposes the stator current into two components; one that produces torque and a second that opposes (weakens) the magnetic field generated by the rotor, thereby requiring more overall stator current and reducing the efficiency. Efficiency can be improved by selecting a RTFC method that reduces the back-emf without increasing the average current. This favors methods that use pulse currents or very low currents to achieve field weakening. Foremost in ORNL's effort to develop flux control is the work of J. S. Hsu. Early research [2,3] introduced direct control of air-gap flux in permanent magnet (PM) machines and demonstrated it with a flux-controlled generator. The configuration eliminates the problem of demagnetization because it diverts all the flux from the magnets instead of

    4. Easy and hard testbeds for real-time search algorithms

      SciTech Connect (OSTI)

      Koenig, S.; Simmons, R.G.

      1996-12-31

      Although researchers have studied which factors influence the behavior of traditional search algorithms, currently not much is known about how domain properties influence the performance of real-time search algorithms. In this paper we demonstrate, both theoretically and experimentally, that Eulerian state spaces (a super set of undirected state spaces) are very easy for some existing real-time search algorithms to solve: even real-time search algorithms that can be intractable, in general, are efficient for Eulerian state spaces. Because traditional real-time search testbeds (such as the eight puzzle and gridworlds) are Eulerian, they cannot be used to distinguish between efficient and inefficient real-time search algorithms. It follows that one has to use non-Eulerian domains to demonstrate the general superiority of a given algorithm. To this end, we present two classes of hard-to-search state spaces and demonstrate the performance of various real-time search algorithms on them.

    5. Autonomous global sky monitoring with real-time robotic follow...

      Office of Scientific and Technical Information (OSTI)

      anomalous behavior, selecting targets for detailed investigation, and making real-time anomaly detection to enable rapid recognition and a swift response to transients as...

    6. Real-Time Simultaneous Measurements of Size, Density, and Composition...

      Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

      Simultaneous Measurements of Size, Density, and Composition of Single Ultrafine Diesel Tailpipe Particles Real-Time Simultaneous Measurements of Size, Density, and Composition of ...

    7. Real-time condition assessment of RAPTOR telescope systems (Journal...

      Office of Scientific and Technical Information (OSTI)

      Journal Article: Real-time condition assessment of RAPTOR telescope systems Citation Details In-Document Search ... Publication Date: 2011-09-08 OSTI Identifier: 1095860 Report ...

    8. Tracking Living Cells as They Differentiate in Real Time

      Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

      Tracking Living Cells as They Differentiate in Real Time Print Protein phosphorylation regulates protein function in a cell, either activating or inactivating the proteins...

    9. Optical Method for Automated Real Time Control of Elemental Compositio...

      Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

      Optical Method for Automated Real Time Control of Elemental Composition, Distribution, and Film Thickness in CIGS Solar Cell Production National Renewable Energy Laboratory Contact ...

    10. Scientists Probe Lithium-Sulfur Batteries in Real Time - Joint...

      Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

      7, 2012, Videos Scientists Probe Lithium-Sulfur Batteries in Real Time Lithium-sulfur batteries are a promising technology that could some day power electric vehicles. Scientists ...

    11. Genetically encoded sensors enable real-time observation of metabolite...

      Office of Scientific and Technical Information (OSTI)

      Title: Genetically encoded sensors enable real-time observation of metabolite production Authors: Rogers, Jameson K. ; Church, George M. Publication Date: 2016-02-08 OSTI ...

    12. Towards a Real-Time Cluster Computing Infrastructure

      SciTech Connect (OSTI)

      Hui, Peter SY; Chikkagoudar, Satish; Chavarría-Miranda, Daniel; Johnston, Mark R.

      2011-11-01

      Real-time computing has traditionally been considered largely in the context of single-processor and embedded systems, and indeed, the terms real-time computing, embedded systems, and control systems are often mentioned in closely related contexts. However, real-time computing in the context of multinode systems, specifically high-performance, cluster-computing systems, remains relatively unexplored, largely due to the fact that until now, there has not been a need for such an environment. In this paper, we motivate the need for a cluster computing infrastructure capable of supporting computation over large datasets in real-time. Our motivating example is an analytical framework to support the next generation North American power grid, which is growing both in size and complexity. With streaming sensor data in the future power grid potentially reaching rates on the order of terabytes per day, the task of analyzing this data subject to real-time guarantees becomes a daunting task which will require the power of high-performance cluster computing capable of functioning under real-time constraints. One specific challenge that such an environment presents is the need for real-time networked communication between cluster nodes. In this paper, we discuss the need for real-time high-performance cluster computation, along with our work-in-progress towards an infrastructure which will ultimately enable such an environment.

    13. Real-time hydro coordination and economic hydro optimization

      SciTech Connect (OSTI)

      Dasigenis, A.T.; Garcia-San Pedro, A.R.

      1995-12-31

      This paper addresses the real-time aspects of the Hydro-Thermal Coordination problem. It describes the real-time modeling and monitoring of hydro resources, and the use of the resulting real-time hydraulic data in the on-line Economic Dispatch algorithm. A variable head, hydro loss model is incorporated that allows for on-line changes to the hydro topology. The method presented provides the operator with a current view of the available water resources, enables the validation of the real-time hydro data received from the field, and enables real-time optimization of the Hydro-Thermal Unit Commitment plan. The implementation of this approach on the Iberdrola system in Spain is described.

    14. New Real-Time Quantum Efficiency Measurement System: Preprint

      SciTech Connect (OSTI)

      Young, D. L.; Egaas, B.; Pinegar, S.; Stradins, P.

      2008-05-01

      This paper describes a newly developed technique for measuring the quantum eficiiency in solar cells in real-time using a unique, electronically controlled, full-spectrum light source.

    15. Looking at Transistor Gate Oxide Formation in Real Time

      Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

      Looking at Transistor Gate Oxide Formation in Real Time Print The oxide gate layer is critical to every transistor, and present-day layer thicknesses are in the 10-20 range (1-2...

    16. Towards Near Real-Time Availability With Enhanced Accuracy Turbo...

      Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

      Turbo" ARSCL Towards Near Real-Time Availability With Enhanced Accuracy Turbo-ARSCL Project The goal is to speed delivery of the widely-used ARSCL product while improving the ...

    17. Steps to Establish a Real-Time Transmission Monitoring System...

      Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

      Finally, this report acknowledges that a feasibility determination is necessary prior to any action to implement a real-time monitoring system and that the implementation of such a ...

    18. Real-Time Electrical Engineer | Department of Energy

      Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

      Real-Time Electrical Engineer Real-Time Electrical Engineer Submitted by admin on Mon, 2016-08-08 00:15 Job Summary Organization Name Department Of Energy Agency SubElement Western Area Power Administration Locations Loveland, Colorado Announcement Number WAPA-16-DE-241 Job Summary (See Frequently Asked Questions for more information). Where would I be working? Western Area Power Administration, Rocky Mountain Region, Power System Operations, Operations Support (J4200), 5555 E. Crossroads Blvd,

    19. Quasi real time in vivo dosimetry for VMAT

      SciTech Connect (OSTI)

      Fidanzio, A.; Azario, L.; U.O.C di Fisica Sanitaria, Università Cattolica del Sacro Cuore, Rome 00168; Istituto Nazionale di Fisica Nucleare , Sezione di Roma Tre, Rome 00146 ; Porcelli, A.; Greco, F.; Istituto Nazionale di Fisica Nucleare , Sezione di Roma Tre, Rome 00146 ; Cilla, S.; Grusio, M.; Balducci, M.; Valentini, V.; Piermattei, A.

      2014-06-15

      Purpose: Results about the feasibility of a method for quasi real timein vivo dosimetry (IVD) at the isocenter point for volumetric modulated arc therapy (VMAT) are here reported. The method is based on correlations between the EPID signal and the dose on the beam central axis. Moreover, the γ-analysis of EPID images was adopted to verify off-axis reproducibility of fractionated plan delivery. Methods: An algorithm to reconstructin vivo the isocenter dose, D{sub iso}, for RapidArc treatments has been developed. 20 VMAT plans, optimized with two opposite arcs, for prostate, pancreas, and head treatments have been delivered by a Varian linac both to a conic PMMA phantom with elliptical section and to patients. The ratios R between reconstructed D{sub iso} and the planned doses were determined for phantom and patient irradiations adopting an acceptance criterion of ±5%. In total, 40 phantom checks and 400 patient checks were analyzed. Moreover, 3% and 3 mm criteria were adopted for portal image γ-analysis to assess patient irradiation reproducibility. Results: The average ratio R, between reconstructed and planned doses for the PMMA phantom irradiations was equal to 1.007 ± 0.024. When the IVD method was applied to the 20 patients, the average R ratio was equal to 1.003 ± 0.017 and 96% of the tests were within the acceptance criteria. The portal image γ-analysis supplied 88% of the tests within the pass rates γ{sub mean} ≤ 0.4 and P{sub γ<1} ≥ 98%. All the warnings were understood comparing the CT and the cone beam CT images and in one case a patient's setup error was detected and corrected for the successive fractions. Conclusions: This preliminary experience suggests that the method is able to detect dosimetric errors in quasi real time at the end of the therapy session. The authors intend to extend this procedure to other pathologies with the integration of in-room imaging verification by cone beam CT.

    20. Real-time geo-registration of imagery using COTS graphics processors

      DOE Patents [OSTI]

      Flath, Laurence M.; Kartz, Michael W.

      2009-06-30

      A method of performing real-time geo-registration of high-resolution digital imagery using existing graphics processing units (GPUs) already found in current personal computers, rather than the main central processing unit (CPU). Digital image data captured by a camera (along with inertial navigation system (INS) data associated with the image data) is transferred to and processed by the GPU to perform the calculations involved in transforming the captured image into a geo-rectified, nadir-looking image. By using the GPU, the order-of-magnitude increase in throughput over conventional software techniques makes real-time geo-registration possible without the significant cost of custom hardware solutions.

    1. Integrated real-time fracture-diagnostics instrumentation system

      SciTech Connect (OSTI)

      Engi, D

      1983-01-01

      The use of an integrated, real-time fracture-diagnostics instrumentation system for the control of the fracturing treatment during massive hydraulic fracturing is proposed. The proposed system consists of four subsystems: an internal-fracture-pressure measurement system, a fluid-flow measurement system, a borehole seismic system, and a surface-electric-potential measurement system. This use of borehole seismic and surface-electric-potential measurements, which are essentially away-from-the-wellbore measurements, in conjunction with the use of the more commonly used types of measurements, i.e., at-the-wellbore pressure and fluid-flow measurements, is a distinctive feature of the composite real-time diagnostics system. Currently, the real-time capabilities of the individual subsystems are being developed, and the problems associated with their integration into a complete, computer-linked instrumentation system are being addressed. 2 figures.

    2. Parallel architecture for real-time simulation. Master's thesis

      SciTech Connect (OSTI)

      Cockrell, C.D.

      1989-01-01

      This thesis is concerned with the development of a very fast and highly efficient parallel computer architecture for real-time simulation of continuous systems. Currently, several parallel processing systems exist that may be capable of executing a complex simulation in real-time. These systems are examined and the pros and cons of each system discussed. The thesis then introduced a custom-designed parallel architecture based upon The University of Alabama's OPERA architecture. Each component of this system is discussed and rationale presented for its selection. The problem selected, real-time simulation of the Space Shuttle Main Engine for the test and evaluation of the proposed architecture, is explored, identifying the areas where parallelism can be exploited and parallel processing applied. Results from the test and evaluation phase are presented and compared with the results of the same problem that has been processed on a uniprocessor system.

    3. Toward Real Time Data Analysis for Smart Grids

      SciTech Connect (OSTI)

      Yin, Jian; Gorton, Ian; Sharma, Poorva

      2012-11-10

      This paper describes the architecture and design of a novel system for supporting large-scale real-time data analysis for future power grid systems. The widespread deployment of renewable generation, smart grid controls, energy storage, plug-in hybrids, and new conducting materials will require fundamental changes in the operational concepts and principal components of the grid. As a result, the whole system becomes highly dynamic and requires constant adjusting based on real time data. Even though millions of sensors such as phase measurement units (PMU) and smart meters are being widely deployed, a data layer that can analyze this amount of data in real time is needed. Unlike the data fabric in other cloud services, the data layer for smart grids has some unique design requirements. First, this layer must provide real time guarantees. Second, this layer must be scalable to allow a large number of applications to access the data from millions of sensors in real time. Third, reliability is critical and this layer must be able to continue to provide service in face of failures. Fourth, this layer must be secure. We address these challenges though a scalable system architecture that integrates the I/O and data processing capability in a devise set of devices. Data process operations can be placed anywhere from sensors, data storage devices, to control centers. We further employ compression to improve performance. We design a lightweight compression customized for power grid data. Our system can reduce end-to-end response time by reduce I/O overhead through compression and overlap compression operations with I/O. The initial prototype of our system was demonstrated with several use cases from PNNL’s FPGI and show that our system can provide real time guarantees to a diverse set of applications.

    4. Integration of Real-Time Data Into Building Automation Systems

      SciTech Connect (OSTI)

      Mark J. Stunder; Perry Sebastian; Brenda A. Chube; Michael D. Koontz

      2003-04-16

      The project goal was to investigate the possibility of using predictive real-time information from the Internet as an input to building management system algorithms. The objectives were to identify the types of information most valuable to commercial and residential building owners, managers, and system designers. To comprehensively investigate and document currently available electronic real-time information suitable for use in building management systems. Verify the reliability of the information and recommend accreditation methods for data and providers. Assess methodologies to automatically retrieve and utilize the information. Characterize equipment required to implement automated integration. Demonstrate the feasibility and benefits of using the information in building management systems. Identify evolutionary control strategies.

    5. Handheld portable real-time tracking and communications device

      SciTech Connect (OSTI)

      Wiseman, James M.; Riblett, Jr., Loren E.; Green, Karl L.; Hunter, John A.; Cook, III, Robert N.; Stevens, James R.

      2012-05-22

      Portable handheld real-time tracking and communications devices include; a controller module, communications module including global positioning and mesh network radio module, data transfer and storage module, and a user interface module enclosed in a water-resistant enclosure. Real-time tracking and communications devices can be used by protective force, security and first responder personnel to provide situational awareness allowing for enhance coordination and effectiveness in rapid response situations. Such devices communicate to other authorized devices via mobile ad-hoc wireless networks, and do not require fixed infrastructure for their operation.

    6. Towards real time diagnostics of Hybrid Welding Laser/GMAW

      SciTech Connect (OSTI)

      McJunkin, T. R.; Kunerth, D. C.; Nichol, C. I. [Idaho National Laboratory, Idaho Falls, ID 83415-3570 (United States); Todorov, E.; Levesque, S. [Edison Welding Institute, Columbus, OH (United States)

      2014-02-18

      Methods are currently being developed towards a more robust system real time feedback in the high throughput process combining laser welding with gas metal arc welding. A combination of ultrasonic, eddy current, electronic monitoring, and visual techniques are being applied to the welding process. Initial simulation and bench top evaluation of proposed real time techniques on weld samples are presented along with the concepts to apply the techniques concurrently to the weld process. Consideration for the eventual code acceptance of the methods and system are also being researched as a component of this project. The goal is to detect defects or precursors to defects and correct when possible during the weld process.

    7. Looking at Transistor Gate Oxide Formation in Real Time

      Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

      Looking at Transistor Gate Oxide Formation in Real Time Looking at Transistor Gate Oxide Formation in Real Time Print Wednesday, 25 June 2008 00:00 The oxide gate layer is critical to every transistor, and present-day layer thicknesses are in the 10-20 Å range (1-2 nm). However, little information exists on the oxidation process at this thickness. Available results are either for thicker layers grown under high-pressure conditions or for only the first couple of monolayers studied under

    8. A heterogeneous hierarchical architecture for real-time computing

      SciTech Connect (OSTI)

      Skroch, D.A.; Fornaro, R.J.

      1988-12-01

      The need for high-speed data acquisition and control algorithms has prompted continued research in the area of multiprocessor systems and related programming techniques. The result presented here is a unique hardware and software architecture for high-speed real-time computer systems. The implementation of a prototype of this architecture has required the integration of architecture, operating systems and programming languages into a cohesive unit. This report describes a Heterogeneous Hierarchial Architecture for Real-Time (H{sup 2} ART) and system software for program loading and interprocessor communication.

    9. Towards Real Time Diagnostics of Hybrid Welding Laser/GMAW

      SciTech Connect (OSTI)

      Timothy Mcjunkin; Dennis C. Kunerth; Corrie Nichol; Evgueni Todorov; Steve Levesque; Feng Yu; Robert Danna Couch

      2013-07-01

      Methods are currently being developed towards a more robust system real time feedback in the high throughput process combining laser welding with gas metal arc welding. A combination of ultrasonic, eddy current, electronic monitoring, and visual techniques are being applied to the welding process. Initial simulation and bench top evaluation of proposed real time techniques on weld samples are presented along with the concepts to apply the techniques concurrently to the weld process. Consideration for the eventual code acceptance of the methods and system are also being researched as a component of this project. The goal is to detect defects or precursors to defects and correct when possible during the weld process.

    10. Real-time graphic displays in Mars. [AVLIS process

      SciTech Connect (OSTI)

      Treadway, T.

      1985-12-01

      Real-time diagnostic data of the AVLIS process is displayed in the form of a two-dimensional plot on selected monitors in the Mars Control Room. Each Mars workstation contains a HP2622 terminal for computer interface to the experiment and a Raster Technologies graphic controller driving a Conrac high resolution color monitor for graphics output.

    11. Nanoscale Chemical Imaging of a Working Catalyst

      Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

      catalysts for maximum selectivity and efficiency in a wide range of chemical processes. ... The measurements generated chemical contour maps for the species present. Quantitative ...

    12. Real-time multiplexed digital cavity-enhanced spectroscopy

      DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

      Boyson, Toby K.; Dagdigian, Paul J.; Pavey, Karl D.; Fitzgerald, Nicholas J.; Spence, Thomas G.; Moore, David S.; Harb, Charles C.

      2015-10-01

      Cavity-enhanced spectroscopy is a sensitive optical absorption technique but one where the practical applications have been limited to studying small wavelength ranges. In addition, this Letter shows that wideband operation can be achieved by combining techniques usually reserved for the communications community with that of cavity-enhanced spectroscopy, producing a multiplexed real-time cavity-enhanced spectrometer. We use multiple collinear laser sources operating asynchronously and simultaneously while being detected on a single photodetector. This is synonymous with radio frequency (RF) cellular systems in which signals are detected on a single antenna but decoded uniquely. Here, we demonstrate results with spectra of methyl salicylatemore » and show parts-per-billion per root hertz sensitivity measured in real-time.« less

    13. Real-time multiplexed digital cavity-enhanced spectroscopy

      SciTech Connect (OSTI)

      Boyson, Toby K.; Dagdigian, Paul J.; Pavey, Karl D.; Fitzgerald, Nicholas J.; Spence, Thomas G.; Moore, David S.; Harb, Charles C.

      2015-10-01

      Cavity-enhanced spectroscopy is a sensitive optical absorption technique but one where the practical applications have been limited to studying small wavelength ranges. In addition, this Letter shows that wideband operation can be achieved by combining techniques usually reserved for the communications community with that of cavity-enhanced spectroscopy, producing a multiplexed real-time cavity-enhanced spectrometer. We use multiple collinear laser sources operating asynchronously and simultaneously while being detected on a single photodetector. This is synonymous with radio frequency (RF) cellular systems in which signals are detected on a single antenna but decoded uniquely. Here, we demonstrate results with spectra of methyl salicylate and show parts-per-billion per root hertz sensitivity measured in real-time.

    14. Wide-area, real-time monitoring and visualization system

      DOE Patents [OSTI]

      Budhraja, Vikram S.; Dyer, James D.; Martinez Morales, Carlos A.

      2011-11-15

      A real-time performance monitoring system for monitoring an electric power grid. The electric power grid has a plurality of grid portions, each grid portion corresponding to one of a plurality of control areas. The real-time performance monitoring system includes a monitor computer for monitoring at least one of reliability metrics, generation metrics, transmission metrics, suppliers metrics, grid infrastructure security metrics, and markets metrics for the electric power grid. The data for metrics being monitored by the monitor computer are stored in a data base, and a visualization of the metrics is displayed on at least one display computer having a monitor. The at least one display computer in one said control area enables an operator to monitor the grid portion corresponding to a different said control area.

    15. Wide-area, real-time monitoring and visualization system

      DOE Patents [OSTI]

      Budhraja, Vikram S.; Dyer, James D.; Martinez Morales, Carlos A.

      2013-03-19

      A real-time performance monitoring system for monitoring an electric power grid. The electric power grid has a plurality of grid portions, each grid portion corresponding to one of a plurality of control areas. The real-time performance monitoring system includes a monitor computer for monitoring at least one of reliability metrics, generation metrics, transmission metrics, suppliers metrics, grid infrastructure security metrics, and markets metrics for the electric power grid. The data for metrics being monitored by the monitor computer are stored in a data base, and a visualization of the metrics is displayed on at least one display computer having a monitor. The at least one display computer in one said control area enables an operator to monitor the grid portion corresponding to a different said control area.

    16. Real-time performance monitoring and management system

      DOE Patents [OSTI]

      Budhraja, Vikram S.; Dyer, James D.; Martinez Morales, Carlos A.

      2007-06-19

      A real-time performance monitoring system for monitoring an electric power grid. The electric power grid has a plurality of grid portions, each grid portion corresponding to one of a plurality of control areas. The real-time performance monitoring system includes a monitor computer for monitoring at least one of reliability metrics, generation metrics, transmission metrics, suppliers metrics, grid infrastructure security metrics, and markets metrics for the electric power grid. The data for metrics being monitored by the monitor computer are stored in a data base, and a visualization of the metrics is displayed on at least one display computer having a monitor. The at least one display computer in one said control area enables an operator to monitor the grid portion corresponding to a different said control area.

    17. Real-Time Dynamics Monitoring System with Synchronized Phasor Measurements

      Energy Science and Technology Software Center (OSTI)

      2005-01-01

      The Real-Time Dynamics Monitoring System is designed to monitor the dynamics within the power grid and assess the system behavior during normal and disturbance conditions. The RTDMS application was built on the Grid-3P technology platform and takes real-time information collected by Synchronized Phasor Measurement Units (PMU5) or other collection devices and transmitted to a central Phasor Data Concentrator (PDC) for monitoring grid dynamics. The data is sampled 30 times per second and is time-synchronized. Thismore » data is processed to create graphical and geographical displays to provide visualization for frequency/frequency response, voltage magnitudes and angles, voltage angle differences across critical paths as well as real and reactive power-flows on a sub-second and second basis. Software allows for monitoring, tracking, historical data archiving and electric system troubleshooting for reliability management.« less

    18. Development of Real-Time, Gas Quality Sensor Technology

      Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

      Real-Time, Gas Quality Sensor Technology Introduction Landfll gas (LFG), composed largely of methane and carbon dioxide, is used in over 645 operational projects in 48 states. These projects convert a large source of greenhouse gases into a fuel that currently provides approximately 51 trillion Btu of electricity and supplies 108 billion cubic feet of LFG annually to direct use applications and natural gas pipelines. However, there is still a signifcant resource base for new projects, with over

    19. Real Time Diagnostics for Algae-final-sm

      Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

      Real-time Monitoring And Diagnostics Detecting pathogens and predators to quickly recover from pond crashes Algal Pond Crash Detection Sandia National Laboratories is developing a suite of complementary technologies to help the emerging algae industry detect and quickly recover from algal pond crashes, an obstacle to large-scale algae cultivation for biofuels. Because of the way algae is grown and produced in most algal ponds, they are prone to attack by fungi, rotifers, viruses or other

    20. Measuring Real-time Biological and Abiotic Manganese Oxide Reduction |

      Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

      Stanford Synchrotron Radiation Lightsource Measuring Real-time Biological and Abiotic Manganese Oxide Reduction Tuesday, May 31, 2016 Manganese(IV) oxides are powerful scavengers of toxins and trace metals, but they are also strong oxidants in the environment (1). Certain common microbes can also 'breathe' manganese oxides, in a process known as anaerobic respiration (2). During these environmental -commonly with sulfur or iron species- and biological interactions, manganese oxides are often

    1. Managing high-bandwidth real-time data storage

      SciTech Connect (OSTI)

      Bigelow, David D.; Brandt, Scott A; Bent, John M; Chen, Hsing-Bung

      2009-09-23

      There exist certain systems which generate real-time data at high bandwidth, but do not necessarily require the long-term retention of that data in normal conditions. In some cases, the data may not actually be useful, and in others, there may be too much data to permanently retain in long-term storage whether it is useful or not. However, certain portions of the data may be identified as being vitally important from time to time, and must therefore be retained for further analysis or permanent storage without interrupting the ongoing collection of new data. We have developed a system, Mahanaxar, intended to address this problem. It provides quality of service guarantees for incoming real-time data streams and simultaneous access to already-recorded data on a best-effort basis utilizing any spare bandwidth. It has built in mechanisms for reliability and indexing, can scale upwards to meet increasing bandwidth requirements, and handles both small and large data elements equally well. We will show that a prototype version of this system provides better performance than a flat file (traditional filesystem) based version, particularly with regard to quality of service guarantees and hard real-time requirements.

    2. Real-time Pricing Demand Response in Operations

      SciTech Connect (OSTI)

      Widergren, Steven E.; Marinovici, Maria C.; Berliner, Teri; Graves, Alan

      2012-07-26

      Abstract—Dynamic pricing schemes have been implemented in commercial and industrial application settings, and recently they are getting attention for application to residential customers. Time-of-use and critical-peak-pricing rates are in place in various regions and are being piloted in many more. These programs are proving themselves useful for balancing energy during peak periods; however, real-time (5 minute) pricing signals combined with automation in end-use systems have the potential to deliver even more benefits to operators and consumers. Besides system peak shaving, a real-time pricing system can contribute demand response based on the locational marginal price of electricity, reduce load in response to a generator outage, and respond to local distribution system capacity limiting situations. The US Department of Energy (DOE) is teaming with a mid-west electricity service provider to run a distribution feeder-based retail electricity market that negotiates with residential automation equipment and clears every 5 minutes, thus providing a signal for lowering or raising electric consumption based on operational objectives of economic efficiency and reliability. This paper outlines the capability of the real-time pricing system and the operational scenarios being tested as the system is rolled-out starting in the first half of 2012.

    3. TU-F-17A-07: Real-Time Personalized Margins

      SciTech Connect (OSTI)

      Rottmann, J; Berbeco, R

      2014-06-15

      Purpose: To maximize normal tissue sparing for treatments requiring motion encompassing margins. Motion mitigation techniques including DMLC or couch tracking can freeze tumor motion within the treatment aperture potentially allowing for smaller treatment margins and thus better sparing of normal tissue. To enable for a safe application of this concept in the clinic we propose adapting margins dynamically in real-time during radiotherapy delivery based on personalized tumor localization confidence. To demonstrate technical feasibility we present a phantom study. Methods: We utilize a realistic anthropomorphic dynamic thorax phantom with a lung tumor model embedded close to the spine. The tumor, a 3D-printout of a patient's GTV, is moved 15mm peak-to-peak by diaphragm compression and monitored by continuous EPID imaging in real-time. Two treatment apertures are created for each beam, one representing ITV -based and the other GTV-based margin expansion. A soft tissue localization (STiL) algorithm utilizing the continuous EPID images is employed to freeze tumor motion within the treatment aperture by means of DMLC tracking. Depending on a tracking confidence measure (TCM), the treatment aperture is adjusted between the ITV and the GTV leaf. Results: We successfully demonstrate real-time personalized margin adjustment in a phantom study. We measured a system latency of about 250 ms which we compensated by utilizing a respiratory motion prediction algorithm (ridge regression). With prediction in place we observe tracking accuracies better than 1mm. For TCM=0 (as during startup) an ITV-based treatment aperture is chosen, for TCM=1 a GTV-based aperture and for 0real-time. Normal tissue sparing is maximized. The worst case scenario results in delivering a plan

    4. Radiotherapy beyond cancer: Target localization in real-time MRI and treatment planning for cardiac radiosurgery

      SciTech Connect (OSTI)

      Ipsen, S.; Blanck, O.; Rades, D.; Oborn, B.; Bode, F.; Liney, G.; Hunold, P.; Schweikard, A.; Keall, P. J.

      2014-12-15

      Purpose: Atrial fibrillation (AFib) is the most common cardiac arrhythmia that affects millions of patients world-wide. AFib is usually treated with minimally invasive, time consuming catheter ablation techniques. While recently noninvasive radiosurgery to the pulmonary vein antrum (PVA) in the left atrium has been proposed for AFib treatment, precise target location during treatment is challenging due to complex respiratory and cardiac motion. A MRI linear accelerator (MRI-Linac) could solve the problems of motion tracking and compensation using real-time image guidance. In this study, the authors quantified target motion ranges on cardiac magnetic resonance imaging (MRI) and analyzed the dosimetric benefits of margin reduction assuming real-time motion compensation was applied. Methods: For the imaging study, six human subjects underwent real-time cardiac MRI under free breathing. The target motion was analyzed retrospectively using a template matching algorithm. The planning study was conducted on a CT of an AFib patient with a centrally located esophagus undergoing catheter ablation, representing an ideal case for cardiac radiosurgery. The target definition was similar to the ablation lesions at the PVA created during catheter treatment. Safety margins of 0 mm (perfect tracking) to 8 mm (untracked respiratory motion) were added to the target, defining the planning target volume (PTV). For each margin, a 30 Gy single fraction IMRT plan was generated. Additionally, the influence of 1 and 3 T magnetic fields on the treatment beam delivery was simulated using Monte Carlo calculations to determine the dosimetric impact of MRI guidance for two different Linac positions. Results: Real-time cardiac MRI showed mean respiratory target motion of 10.2 mm (superior–inferior), 2.4 mm (anterior–posterior), and 2 mm (left–right). The planning study showed that increasing safety margins to encompass untracked respiratory motion leads to overlapping structures even in the

    5. Real-time human collaboration monitoring and intervention

      DOE Patents [OSTI]

      Merkle, Peter B.; Johnson, Curtis M.; Jones, Wendell B.; Yonas, Gerold; Doser, Adele B.; Warner, David J.

      2010-07-13

      A method of and apparatus for monitoring and intervening in, in real time, a collaboration between a plurality of subjects comprising measuring indicia of physiological and cognitive states of each of the plurality of subjects, communicating the indicia to a monitoring computer system, with the monitoring computer system, comparing the indicia with one or more models of previous collaborative performance of one or more of the plurality of subjects, and with the monitoring computer system, employing the results of the comparison to communicate commands or suggestions to one or more of the plurality of subjects.

    6. Near real time vapor detection and enhancement using aerosol adsorption

      DOE Patents [OSTI]

      Novick, V.J.; Johnson, S.A.

      1999-08-03

      A vapor sample detection method is described where the vapor sample contains vapor and ambient air and surrounding natural background particles. The vapor sample detection method includes the steps of generating a supply of aerosol that have a particular effective median particle size, mixing the aerosol with the vapor sample forming aerosol and adsorbed vapor suspended in an air stream, impacting the suspended aerosol and adsorbed vapor upon a reflecting element, alternatively directing infrared light to the impacted aerosol and adsorbed vapor, detecting and analyzing the alternatively directed infrared light in essentially real time using a spectrometer and a microcomputer and identifying the vapor sample. 13 figs.

    7. Near real time vapor detection and enhancement using aerosol adsorption

      DOE Patents [OSTI]

      Novick, Vincent J.; Johnson, Stanley A.

      1999-01-01

      A vapor sample detection method where the vapor sample contains vapor and ambient air and surrounding natural background particles. The vapor sample detection method includes the steps of generating a supply of aerosol that have a particular effective median particle size, mixing the aerosol with the vapor sample forming aerosol and adsorbed vapor suspended in an air stream, impacting the suspended aerosol and adsorbed vapor upon a reflecting element, alternatively directing infrared light to the impacted aerosol and adsorbed vapor, detecting and analyzing the alternatively directed infrared light in essentially real time using a spectrometer and a microcomputer and identifying the vapor sample.

    8. Continuous real-time measurement of aqueous cyanide

      SciTech Connect (OSTI)

      Rosentreter, Jeffrey J.; Gering, Kevin L.

      2007-03-06

      This invention provides a method and system capable of the continuous, real-time measurement of low concentrations of aqueous free cyanide (CN) using an on-line, flow through system. The system is based on the selective reactivity of cyanide anions and the characteristically nonreactive nature of metallic gold films, wherein this selective reactivity is exploited as an indirect measurement for aqueous cyanide. In the present invention the dissolution of gold, due to the solubilization reaction with the analyte cyanide anion, is monitored using a piezoelectric microbalance contained within a flow cell.

    9. Real-time nonlinear optimization as a generalized equation.

      SciTech Connect (OSTI)

      Zavala, V. M.; Anitescu, M. (Mathematics and Computer Science)

      2010-11-11

      We establish results for the problem of tracking a time-dependent manifold arising in real-time optimization by casting this as a parametric generalized equation. We demonstrate that if points along a solution manifold are consistently strongly regular, it is possible to track the manifold approximately by solving a single linear complementarity problem (LCP) at each time step. We derive sufficient conditions guaranteeing that the tracking error remains bounded to second order with the size of the time step even if the LCP is solved only approximately. We use these results to derive a fast, augmented Lagrangian tracking algorithm and demonstrate the developments through a numerical case study.

    10. Looking at Transistor Gate Oxide Formation in Real Time

      Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

      Looking at Transistor Gate Oxide Formation in Real Time Print The oxide gate layer is critical to every transistor, and present-day layer thicknesses are in the 10-20 Å range (1-2 nm). However, little information exists on the oxidation process at this thickness. Available results are either for thicker layers grown under high-pressure conditions or for only the first couple of monolayers studied under high-vacuum conditions. Now, for the first time, a group of researchers has obtained

    11. Looking at Transistor Gate Oxide Formation in Real Time

      Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

      Looking at Transistor Gate Oxide Formation in Real Time Print The oxide gate layer is critical to every transistor, and present-day layer thicknesses are in the 10-20 Å range (1-2 nm). However, little information exists on the oxidation process at this thickness. Available results are either for thicker layers grown under high-pressure conditions or for only the first couple of monolayers studied under high-vacuum conditions. Now, for the first time, a group of researchers has obtained

    12. Looking at Transistor Gate Oxide Formation in Real Time

      Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

      Looking at Transistor Gate Oxide Formation in Real Time Print The oxide gate layer is critical to every transistor, and present-day layer thicknesses are in the 10-20 Å range (1-2 nm). However, little information exists on the oxidation process at this thickness. Available results are either for thicker layers grown under high-pressure conditions or for only the first couple of monolayers studied under high-vacuum conditions. Now, for the first time, a group of researchers has obtained

    13. Looking at Transistor Gate Oxide Formation in Real Time

      Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

      Looking at Transistor Gate Oxide Formation in Real Time Print The oxide gate layer is critical to every transistor, and present-day layer thicknesses are in the 10-20 Å range (1-2 nm). However, little information exists on the oxidation process at this thickness. Available results are either for thicker layers grown under high-pressure conditions or for only the first couple of monolayers studied under high-vacuum conditions. Now, for the first time, a group of researchers has obtained

    14. Real Time Technology Application Demonstration Project Final Report

      SciTech Connect (OSTI)

      Volpe, John; Hampson, Steve; Johnson, Robert L

      2008-09-01

      The work and results described in this final report pertain to the demonstration of real-time characterization technologies applied to potentially contaminated surface soils in and around Area of Concern (AOC) 492 at the Paducah Gaseous Diffusion Plant (PGDP). The work was conducted under the auspices of Kentucky Research Consortium for Energy and Environment (KRCEE). KRCEE was created to support the Department of Energy's (DOE) efforts to complete the expeditious and economically viable environmental restoration of the Paducah Gaseous Diffusion Plant (PGDP), the Western Kentucky Wildlife Management Area (WKWMA), and surrounding areas.

    15. Looking at Transistor Gate Oxide Formation in Real Time

      Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

      Looking at Transistor Gate Oxide Formation in Real Time Print The oxide gate layer is critical to every transistor, and present-day layer thicknesses are in the 10-20 Å range (1-2 nm). However, little information exists on the oxidation process at this thickness. Available results are either for thicker layers grown under high-pressure conditions or for only the first couple of monolayers studied under high-vacuum conditions. Now, for the first time, a group of researchers has obtained

    16. Looking at Transistor Gate Oxide Formation in Real Time

      Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

      Looking at Transistor Gate Oxide Formation in Real Time Print The oxide gate layer is critical to every transistor, and present-day layer thicknesses are in the 10-20 Å range (1-2 nm). However, little information exists on the oxidation process at this thickness. Available results are either for thicker layers grown under high-pressure conditions or for only the first couple of monolayers studied under high-vacuum conditions. Now, for the first time, a group of researchers has obtained

    17. Looking at Transistor Gate Oxide Formation in Real Time

      Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

      Looking at Transistor Gate Oxide Formation in Real Time Print The oxide gate layer is critical to every transistor, and present-day layer thicknesses are in the 10-20 Å range (1-2 nm). However, little information exists on the oxidation process at this thickness. Available results are either for thicker layers grown under high-pressure conditions or for only the first couple of monolayers studied under high-vacuum conditions. Now, for the first time, a group of researchers has obtained

    18. Quantitative real-time single particle analysis of virions

      SciTech Connect (OSTI)

      Heider, Susanne; Metzner, Christoph

      2014-08-15

      Providing information about single virus particles has for a long time been mainly the domain of electron microscopy. More recently, technologies have been developed—or adapted from other fields, such as nanotechnology—to allow for the real-time quantification of physical virion particles, while supplying additional information such as particle diameter concomitantly. These technologies have progressed to the stage of commercialization increasing the speed of viral titer measurements from hours to minutes, thus providing a significant advantage for many aspects of virology research and biotechnology applications. Additional advantages lie in the broad spectrum of virus species that may be measured and the possibility to determine the ratio of infectious to total particles. A series of disadvantages remain associated with these technologies, such as a low specificity for viral particles. In this review we will discuss these technologies by comparing four systems for real-time single virus particle analysis and quantification. - Highlights: • We introduce four methods for virus particle-based quantification of viruses. • They allow for quantification of a wide range of samples in under an hour time. • The additional measurement of size and zeta potential is possible for some.

    19. Real-time individualized training vectors for experiential learning.

      SciTech Connect (OSTI)

      Willis, Matt; Tucker, Eilish Marie; Raybourn, Elaine Marie; Glickman, Matthew R.; Fabian, Nathan

      2011-01-01

      Military training utilizing serious games or virtual worlds potentially generate data that can be mined to better understand how trainees learn in experiential exercises. Few data mining approaches for deployed military training games exist. Opportunities exist to collect and analyze these data, as well as to construct a full-history learner model. Outcomes discussed in the present document include results from a quasi-experimental research study on military game-based experiential learning, the deployment of an online game for training evidence collection, and results from a proof-of-concept pilot study on the development of individualized training vectors. This Lab Directed Research & Development (LDRD) project leveraged products within projects, such as Titan (Network Grand Challenge), Real-Time Feedback and Evaluation System, (America's Army Adaptive Thinking and Leadership, DARWARS Ambush! NK), and Dynamic Bayesian Networks to investigate whether machine learning capabilities could perform real-time, in-game similarity vectors of learner performance, toward adaptation of content delivery, and quantitative measurement of experiential learning.

    20. REAL TIME ULTRASONIC ALUMINUM SPOT WELD MONITORING SYSTEM

      SciTech Connect (OSTI)

      Regalado, W. Perez; Chertov, A. M.; Maev, R. Gr.

      2010-02-22

      Aluminum alloys pose several properties that make them one of the most popular engineering materials: they have excellent corrosion resistance, and high weight-to-strength ratio. Resistance spot welding of aluminum alloys is widely used today but oxide film and aluminum thermal and electrical properties make spot welding a difficult task. Electrode degradation due to pitting, alloying and mushrooming decreases the weld quality and adjustment of parameters like current and force is required. To realize these adjustments and ensure weld quality, a tool to measure weld quality in real time is required. In this paper, a real time ultrasonic non-destructive evaluation system for aluminum spot welds is presented. The system is able to monitor nugget growth while the spot weld is being made. This is achieved by interpreting the echoes of an ultrasound transducer located in one of the welding electrodes. The transducer receives and transmits an ultrasound signal at different times during the welding cycle. Valuable information of the weld quality is embedded in this signal. The system is able to determine the weld nugget diameter by measuring the delays of the ultrasound signals received during the complete welding cycle. The article presents the system performance on aluminum alloy AA6022.

    1. Real-Time Traffic Information for Emergency Evacuation Operations: Phase A Final Report

      SciTech Connect (OSTI)

      Franzese, Oscar; Zhang, Li; Mahmoud, Anas M.; Lascurain, Mary Beth; Wen, Yi

      2010-05-01

      There are many instances in which it is possible to plan ahead for an emergency evacuation (e.g., an explosion at a chemical processing facility). For those cases, if an accident (or an attack) were to happen, then the best evacuation plan for the prevailing network and weather conditions would be deployed. In other cases (e.g., the derailment of a train transporting hazardous materials), there may not be any previously developed plan to be implemented and decisions must be made ad-hoc on how to proceed with an emergency evacuation. In both situations, the availability of real-time traffic information plays a critical role in the management of the evacuation operations. To improve public safety during a vehicular emergency evacuation it is necessary to detect losses of road capacity (due to incidents, for example) as early as possible. Once these bottlenecks are identified, re-routing strategies must be determined in real-time and deployed in the field to help dissipate the congestion and increase the efficiency of the evacuation. Due to cost constraints, only large urban areas have traffic sensor deployments that permit access to some sort of real-time traffic information; any evacuation taking place in any other areas of the country would have to proceed without real-time traffic information. The latter was the focus of this SERRI/DHS (Southeast Region Research Initiative/Department of Homeland Security) sponsored project. That is, the main objective on the project was to improve the operations during a vehicular emergency evacuation anywhere by using newly developed real-time traffic-information-gathering technologies to assess traffic conditions and therefore to potentially detect incidents on the main evacuation routes. Phase A of the project consisted in the development and testing of a prototype system composed of sensors that are engineered in such a way that they can be rapidly deployed in the field where and when they are needed. Each one of these sensors

    2. Nanoscale Chemical Imaging of a Working Catalyst

      Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

      heater spirals. Right: Measurements are performed in the circular areas where the windows are etched down to a thickness of 10 nm. Acquiring images at different x-ray...

    3. Capturing Real-Time Power System Dynamics: Opportunities and Challenges

      SciTech Connect (OSTI)

      Huang, Zhenyu; Zhou, Ning; Diao, Ruisheng; Wang, Shaobu; Elbert, Stephen T.; Meng, Da; Lu, Shuai

      2015-09-01

      The power grid evolves towards a new mix of generation and consumption that introduces new dynamic and stochastic behaviors. These emerging grid behaviors would invalidate the steady-state assumption in today’s state estimation – an essential function for real-time power grid operation. This paper examines this steady-state assumption and identifies the need for estimating dynamic states. Supporting technologies are presented as well as a proposed formulation for estimating dynamic states. Metrics for evaluating methods for solving the dynamic state estimation problem are proposed, with example results to illustrate the use of these metrics. The overall objective of this paper is to provide a basis that more research on this topic can follow.

    4. RTDB: A memory resident real-time object database

      SciTech Connect (OSTI)

      Jerzy M. Nogiec; Eugene Desavouret

      2003-06-04

      RTDB is a fast, memory-resident object database with built-in support for distribution. It constitutes an attractive alternative for architecting real-time solutions with multiple, possibly distributed, processes or agents sharing data. RTDB offers both direct and navigational access to stored objects, with local and remote random access by object identifiers, and immediate direct access via object indices. The database supports transparent access to objects stored in multiple collaborating dispersed databases and includes a built-in cache mechanism that allows for keeping local copies of remote objects, with specifiable invalidation deadlines. Additional features of RTDB include a trigger mechanism on objects that allows for issuing events or activating handlers when objects are accessed or modified and a very fast, attribute based search/query mechanism. The overall architecture and application of RTDB in a control and monitoring system is presented.

    5. Development of real time detector for fluorescent particles

      SciTech Connect (OSTI)

      Prevost, C.; Vendel, J.; Seigneur, A.

      1997-08-01

      Aerosols tagged by a fluorescent dye are a worthwhile tool within the framework of ventilation and filtration studies. The detection in real time of a specific particulate tracer allows characterization of ventilation behaviour such as air change rate, the determination of a good or bad mixing zone and transfer coefficient, or the determination of the decontamination factor for High Efficiency Particulate Air (HEPA) filters. Generally, these tests require specific aerosols in order to get rid of the atmospheric aerosol background. Until now the principle of fluorescent aerosol concentration measuring has only allowed an integral response with a time lag by means of sampling on filters and a fluorimetric analysis after specific conditioning of these filters. 5 refs., 13 figs.

    6. Real-Time Bioluminescent Tracking of Cellular Population Dynamics

      SciTech Connect (OSTI)

      Close, Dan; Sayler, Gary Steven; Xu, Tingting; Ripp, Steven Anthony

      2014-01-01

      Cellular population dynamics are routinely monitored across many diverse fields for a variety of purposes. In general, these dynamics are assayed either through the direct counting of cellular aliquots followed by extrapolation to the total population size, or through the monitoring of signal intensity from any number of externally stimulated reporter proteins. While both viable methods, here we describe a novel technique that allows for the automated, non-destructive tracking of cellular population dynamics in real-time. This method, which relies on the detection of a continuous bioluminescent signal produced through expression of the bacterial luciferase gene cassette, provides a low cost, low time-intensive means for generating additional data compared to alternative methods.

    7. Smart preamplifier for real-time turbine meter diagnostics

      SciTech Connect (OSTI)

      Breter, J.C.

      1995-12-31

      A new, dual-purpose device for turbine meters, which functions as a traditional signal preamplifier and accomplishes real-time performance diagnostics, is now available. This smart preamplifier (patent pending) utilizes high speed microprocessor technology to continuously monitor and analyze the rotation of a turbine meter rotor. Continuous monitoring allows the device to detect rotational anomalies that can lead to erroneous measurements as they occur. The smart preamplifier works on liquid or gas turbine meters that use a variable reluctance pickup coil for signal generation. This paper will discuss the technology and capabilities of the smart preamplifier. To simplify this discussion, it is assumed that the signal generated will be via a non-rimmed rotor. Thus, the term ``blade`` is used throughout. However, all discussions relevant to signal generation are also true for a rimmed rotor using either buttons or slots for signal generation.

    8. Real-time neural network earthquake profile predictor

      DOE Patents [OSTI]

      Leach, R.R.; Dowla, F.U.

      1996-02-06

      A neural network has been developed that uses first-arrival energy to predict the characteristics of impending earthquake seismograph signals. The propagation of ground motion energy through the earth is a highly nonlinear function. This is due to different forms of ground motion as well as to changes in the elastic properties of the media throughout the propagation path. The neural network is trained using seismogram data from earthquakes. Presented with a previously unseen earthquake, the neural network produces a profile of the complete earthquake signal using data from the first seconds of the signal. This offers a significant advance in the real-time monitoring, warning, and subsequent hazard minimization of catastrophic ground motion. 17 figs.

    9. Method and apparatus for real time weld monitoring

      DOE Patents [OSTI]

      Leong, Keng H.; Hunter, Boyd V.

      1997-01-01

      An improved method and apparatus are provided for real time weld monitoring. An infrared signature emitted by a hot weld surface during welding is detected and this signature is compared with an infrared signature emitted by the weld surface during steady state conditions. The result is correlated with weld penetration. The signal processing is simpler than for either UV or acoustic techniques. Changes in the weld process, such as changes in the transmitted laser beam power, quality or positioning of the laser beam, change the resulting weld surface features and temperature of the weld surface, thereby resulting in a change in the direction and amount of infrared emissions. This change in emissions is monitored by an IR sensitive detecting apparatus that is sensitive to the appropriate wavelength region for the hot weld surface.

    10. Real time bunch length measurements in the SLC linac

      SciTech Connect (OSTI)

      Sheppard, J.C.; Clendenin, J.E.; James, M.B.; Miller, R.H.; Ross, M.C.

      1985-02-01

      The longitudinal charge distribution of bunches accelerated in the Stanford Linear Collider (SLC) linac will strongly affect the performance of the Collider. Bunch lengths are chosen in a balance between the deleterious effects of longitudinal and transverse wakefields. The former impacts on the beam energy spread whereas the latter is important to the transverse emittance. Two bunch length measurement ports have been installed in the SLC linac: one in the injector region and one after the emittance damping ring to linac reinjection point. These ports utilize a fused quartz Cerenkov radiator in conjunction with an electrooptic streak camera to permit real time monitoring of single s-band buckets with a resolution of several picoseconds. The design of the radiators and light collection optics is discussed with an emphasis on those issues important to high resolution. Experimental results are presented. 7 refs., 4 figs.

    11. Real-time neural network earthquake profile predictor

      DOE Patents [OSTI]

      Leach, Richard R.; Dowla, Farid U.

      1996-01-01

      A neural network has been developed that uses first-arrival energy to predict the characteristics of impending earthquake seismograph signals. The propagation of ground motion energy through the earth is a highly nonlinear function. This is due to different forms of ground motion as well as to changes in the elastic properties of the media throughout the propagation path. The neural network is trained using seismogram data from earthquakes. Presented with a previously unseen earthquake, the neural network produces a profile of the complete earthquake signal using data from the first seconds of the signal. This offers a significant advance in the real-time monitoring, warning, and subsequent hazard minimization of catastrophic ground motion.

    12. Development of Real-Time Coal Monitoring Instrument

      SciTech Connect (OSTI)

      Rajan Gurjar, Ph.D.

      2010-06-17

      Relying on coal for energy requires optimizing the extraction of heat content from various blends of coal fuel and reducing harmful constituents and byproducts. Having a real-time measurement instrument provides relevant information about toxic constituents released in the atmosphere from burning coal and optimizes the performance of a power plant. A few commercial instruments exist and have been in operation for more than a decade. However, most of these instruments are based on radioactive sources and are bulky, expensive and time-consuming. The proposed instrument is based on the Laser Induced Breakdown Spectroscopy (LIBS). The advantage of LIBS is that it is a standoff instrument, does not require sample preparation and provides precise information about sample constituents.

    13. National Instruments Offers Real-Time Course on April 12 | Jefferson...

      Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

      National Instruments Offers Real-Time Linux, LabVIEW Real-Time and LabView FPGA Course at JLab on April 12 For those already using LabView and wanting to learn about embedded ...

    14. Field Evaluation of Real-time Cloud OD Sensor TWST during the...

      Office of Scientific and Technical Information (OSTI)

      Citation Details In-Document Search Title: Field Evaluation of Real-time Cloud OD Sensor ... performance of a real-time cloud optical depth (COD) sensor (dubbed three-waveband ...

    15. Joint Real-Time Energy and Demand-Response Management using a...

      Office of Scientific and Technical Information (OSTI)

      Real-Time Energy and Demand-Response Management using a Hybrid Coalitional-Noncooperative Game Citation Details In-Document Search Title: Joint Real-Time Energy and ...

    16. Real-time Process Monitoring and Temperature Mapping of the 3D...

      Office of Scientific and Technical Information (OSTI)

      Real-time Process Monitoring and Temperature Mapping of the 3D Polymer Printing Process Citation Details In-Document Search Title: Real-time Process Monitoring and Temperature ...

    17. Is there a source of help for setting up real time wind turbine...

      Open Energy Info (EERE)

      Is there a source of help for setting up real time wind turbine data reporting ? Home I'd like our students to be able to see historical data as well as real time power generation...

    18. High-Energy, Pulsed-Laser Diagnostics for Real-Time Measurements...

      Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

      Energy, Pulsed-Laser Diagnostics for Real-Time Measurements of Reciprocating Engine PM Emissions High-Energy, Pulsed-Laser Diagnostics for Real-Time Measurements of Reciprocating ...

    19. Visualizing Chemistry: The Progess and Promise of Advanced Chemical Imaging

      SciTech Connect (OSTI)

      Committee on Revealing Chemistry Through Advanced Chemical Imaging

      2006-09-01

      The field of chemical imaging can provide detailed structural, functional, and applicable information about chemistry and chemical engineering phenomena that have enormous impacts on medicine, materials, and technology. In recognizing the potential for more research development in the field of chemical imaging, the National Academies was asked by the National Science Foundation, Department of Energy, U.S. Army, and National Cancer Institute to complete a study that would review the current state of molecular imaging technology, point to promising future developments and their applications, and suggest a research and educational agenda to enable breakthrough improvements in the ability to image molecular processes simultaneously in multiple physical dimensions as well as time. The study resulted in a consensus report that provides guidance for a focused research and development program in chemical imaging and identifies research needs and possible applications of imaging technologies that can provide the breakthrough knowledge in chemistry, materials science, biology, and engineering for which we should strive. Public release of this report is expected in early October.

    20. Real-time algorithm for robust coincidence search

      SciTech Connect (OSTI)

      Petrovic, T.; Vencelj, M.; Lipoglavsek, M.; Gajevic, J.; Pelicon, P.

      2012-10-20

      In in-beam {gamma}-ray spectroscopy experiments, we often look for coincident detection events. Among every N events detected, coincidence search is naively of principal complexity O(N{sup 2}). When we limit the approximate width of the coincidence search window, the complexity can be reduced to O(N), permitting the implementation of the algorithm into real-time measurements, carried out indefinitely. We have built an algorithm to find simultaneous events between two detection channels. The algorithm was tested in an experiment where coincidences between X and {gamma} rays detected in two HPGe detectors were observed in the decay of {sup 61}Cu. Functioning of the algorithm was validated by comparing calculated experimental branching ratio for EC decay and theoretical calculation for 3 selected {gamma}-ray energies for {sup 61}Cu decay. Our research opened a question on the validity of the adopted value of total angular momentum of the 656 keV state (J{sup {pi}} = 1/2{sup -}) in {sup 61}Ni.

    1. Direct Real-Time Detection of Vapors from Explosive Compounds

      SciTech Connect (OSTI)

      Ewing, Robert G.; Clowers, Brian H.; Atkinson, David A.

      2013-10-03

      The real-time detection of vapors from low volatility explosives including PETN, tetryl, RDX and nitroglycerine along with various compositions containing these substances is demonstrated. This was accomplished with an atmospheric flow tube (AFT) using a non-radioactive ionization source and coupled to a mass spectrometer. Direct vapor detection was demonstrated in less than 5 seconds at ambient temperature without sample pre-concentration. The several seconds of residence time of analytes in the AFT provides a significant opportunity for reactant ions to interact with analyte vapors to achieve ionization. This extended reaction time, combined with the selective ionization using the nitrate reactant ions (NO3- and NO3-HNO3), enables highly sensitive explosives detection. Observed signals from diluted explosive vapors indicate detection limits below 10 ppqv using selected ion monitoring (SIM) of the explosive-nitrate adduct at m/z 349, 378, 284 and 289 for tetryl, PETN, RDX and NG respectively. Also provided is a demonstration of the vapor detection from 10 different energetic formulations, including double base propellants, plastic explosives and commercial blasting explosives using SIM for the NG, PETN and RDX product ions.

    2. Real time detection and correction of distribution feeder operational problems

      SciTech Connect (OSTI)

      Subramanian, A.K.; Huang, J.C.

      1995-12-31

      The paper presents a new technique that detects and corrects distribution operational problems using closed loop control of substation transformers, capacitors and reactors by an online computer. This allows the distribution system to be operated close to its capacity without sacrificing the quality of power supply. Such operations help defer the additional cost of installing new substations. The technique integrates the Distribution Feeder Analysis (DFA) and the Distribution Substation Control (DSC) functions to achieve this. The DFA function provides the topology and power flow results for the feeders using the substation real time measurements. It does not require feeder section measurements. The realtime feeder results are used in detecting any currently existing feeder operational problems such as feeder section voltages and currents outside their limits. The detected feeder problems are transformed into substation distribution bus objectives and then corrected by the DSC function using controls available at the substation. The DSC function has been performing successfully for several years at Potomac Electric Power Company (PEPCO) in Washington, D.C. It uses a closed loop control scheme that controls the substation transformer taps and shunt capacitor and reactor breakers and optimizes the substation operation. By combining the DFA and DSC functions into a single function and with proper transformation of feeder problems into substation objectives, a new closed loop control scheme for the substation controls is achieved. This scheme corrects the detected feeder problems and optimizes the substation operation. This technique is implemented and tested using the actual substation and feeder models of PEPCO.

    3. Cybersecurity through Real-Time Distributed Control Systems

      SciTech Connect (OSTI)

      Kisner, Roger A; Manges, Wayne W; MacIntyre, Lawrence Paul; Nutaro, James J; Munro Jr, John K; Ewing, Paul D; Howlader, Mostofa; Kuruganti, Phani Teja; Wallace, Richard M; Olama, Mohammed M

      2010-04-01

      Critical infrastructure sites and facilities are becoming increasingly dependent on interconnected physical and cyber-based real-time distributed control systems (RTDCSs). A mounting cybersecurity threat results from the nature of these ubiquitous and sometimes unrestrained communications interconnections. Much work is under way in numerous organizations to characterize the cyber threat, determine means to minimize risk, and develop mitigation strategies to address potential consequences. While it seems natural that a simple application of cyber-protection methods derived from corporate business information technology (IT) domain would lead to an acceptable solution, the reality is that the characteristics of RTDCSs make many of those methods inadequate and unsatisfactory or even harmful. A solution lies in developing a defense-in-depth approach that ranges from protection at communications interconnect levels ultimately to the control system s functional characteristics that are designed to maintain control in the face of malicious intrusion. This paper summarizes the nature of RTDCSs from a cybersecurity perspec tive and discusses issues, vulnerabilities, candidate mitigation approaches, and metrics.

    4. Real-time multi-mode neutron multiplicity counter

      DOE Patents [OSTI]

      Rowland, Mark S; Alvarez, Raymond A

      2013-02-26

      Embodiments are directed to a digital data acquisition method that collects data regarding nuclear fission at high rates and performs real-time preprocessing of large volumes of data into directly useable forms for use in a system that performs non-destructive assaying of nuclear material and assemblies for mass and multiplication of special nuclear material (SNM). Pulses from a multi-detector array are fed in parallel to individual inputs that are tied to individual bits in a digital word. Data is collected by loading a word at the individual bit level in parallel, to reduce the latency associated with current shift-register systems. The word is read at regular intervals, all bits simultaneously, with no manipulation. The word is passed to a number of storage locations for subsequent processing, thereby removing the front-end problem of pulse pileup. The word is used simultaneously in several internal processing schemes that assemble the data in a number of more directly useable forms. The detector includes a multi-mode counter that executes a number of different count algorithms in parallel to determine different attributes of the count data.

    5. Real-time Shape-based Particle Separation and Detailed In-situ Particle Shape Characterization

      SciTech Connect (OSTI)

      Beranek, Josef; Imre, D.; Zelenyuk, Alla

      2012-02-07

      Particle shape is an important attribute that is very difficult to characterize. We present a new portable system that offers, for the first time, the opportunity to separate particles with different shapes and characterize their chemical and physical properties, including their dynamic shape factors (DSFs) in the transition and free-molecular regimes, with high precision, in-situ, and in real-time. The system uses a new generation aerosol particle mass analyzer (APM) to classify particles based on their masses and transport them to a differential mobility analyzer (DMA) that is used to select particles of one charge, one mass, and one shape. These highly uniform particles are ready for use and/or characterization by any application or analytical tool. We combine APM and DMA with our single particle mass spectrometer, SPLAT II, to form the ADS, and demonstrate its utility to measure in real-time individual particle compositions and vacuum aerodynamic diameters to yield, for each selected shape, particle DSFs in two flow regimes. We apply the ADS to characterize aspherical ammonium sulfate and NaCl particles and show that both particle types have wide distribution of particle shapes with DSFs from nearly 1 to 1.5.

    6. Real Time Pricing and the Real Live Firm

      SciTech Connect (OSTI)

      Moezzi, Mithra; Goldman, Charles; Sezgen, Osman; Bharvirkar, Ranjit; Hopper, Nicole

      2004-05-26

      Energy economists have long argued the benefits of real time pricing (RTP) of electricity. Their basis for modeling customers response to short-term fluctuations in electricity prices are based on theories of rational firm behavior, where management strives to minimize operating costs and optimize profit, and labor, capital and energy are potential substitutes in the firm's production function. How well do private firms and public sector institutions operating conditions, knowledge structures, decision-making practices, and external relationships comport with these assumptions and how might this impact price response? We discuss these issues on the basis of interviews with 29 large (over 2 MW) industrial, commercial, and institutional customers in the Niagara Mohawk Power Corporation service territory that have faced day-ahead electricity market prices since 1998. We look at stories interviewees told about why and how they respond to RTP, why some customers report that they can't, and why even if they can, they don't. Some firms respond as theorized, and we describe their load curtailment strategies. About half of our interviewees reported that they were unable to either shift or forego electricity consumption even when prices are high ($0.50/kWh). Reasons customers gave for why they weren't price-responsive include implicit value placed on reliability, pricing structures, lack of flexibility in adjusting production inputs, just-in-time practices, perceived barriers to onsite generation, and insufficient time. We draw these observations into a framework that could help refine economic theory of dynamic pricing by providing real-world descriptions of how firms behave and why.

    7. Real-Time SCADA Cyber Protection Using Compression Techniques

      SciTech Connect (OSTI)

      Lyle G. Roybal; Gordon H Rueff

      2013-11-01

      The Department of Energy’s Office of Electricity Delivery and Energy Reliability (DOE-OE) has a critical mission to secure the energy infrastructure from cyber attack. Through DOE-OE’s Cybersecurity for Energy Delivery Systems (CEDS) program, the Idaho National Laboratory (INL) has developed a method to detect malicious traffic on Supervisory, Control, and Data Acquisition (SCADA) network using a data compression technique. SCADA network traffic is often repetitive with only minor differences between packets. Research performed at the INL showed that SCADA network traffic has traits desirable for using compression analysis to identify abnormal network traffic. An open source implementation of a Lempel-Ziv-Welch (LZW) lossless data compression algorithm was used to compress and analyze surrogate SCADA traffic. Infected SCADA traffic was found to have statistically significant differences in compression when compared against normal SCADA traffic at the packet level. The initial analyses and results are clearly able to identify malicious network traffic from normal traffic at the packet level with a very high confidence level across multiple ports and traffic streams. Statistical differentiation between infected and normal traffic level was possible using a modified data compression technique at the 99% probability level for all data analyzed. However, the conditions tested were rather limited in scope and need to be expanded into more realistic simulations of hacking events using techniques and approaches that are better representative of a real-world attack on a SCADA system. Nonetheless, the use of compression techniques to identify malicious traffic on SCADA networks in real time appears to have significant merit for infrastructure protection.

    8. Automated real-time detection of defects during machining of ceramics

      DOE Patents [OSTI]

      Ellingson, W.A.; Sun, J.

      1997-11-18

      Apparatus for the automated real-time detection and classification of defects during the machining of ceramic components employs an elastic optical scattering technique using polarized laser light. A ceramic specimen is continuously moved while being machined. Polarized laser light is directed onto the ceramic specimen surface at a fixed position just aft of the machining tool for examination of the newly machined surface. Any foreign material near the location of the laser light on the ceramic specimen is cleared by an air blast. As the specimen is moved, its surface is continuously scanned by the polarized laser light beam to provide a two-dimensional image presented in real-time on a video display unit, with the motion of the ceramic specimen synchronized with the data acquisition speed. By storing known ``feature masks`` representing various surface and sub-surface defects and comparing measured defects with the stored feature masks, detected defects may be automatically characterized. Using multiple detectors, various types of defects may be detected and classified. 14 figs.

    9. Automated real-time detection of defects during machining of ceramics

      DOE Patents [OSTI]

      Ellingson, William A.; Sun, Jiangang

      1997-01-01

      Apparatus for the automated real-time detection and classification of defects during the machining of ceramic components employs an elastic optical scattering technique using polarized laser light. A ceramic specimen is continuously moved while being machined. Polarized laser light is directed onto the ceramic specimen surface at a fixed position just aft of the machining tool for examination of the newly machined surface. Any foreign material near the location of the laser light on the ceramic specimen is cleared by an air blast. As the specimen is moved, its surface is continuously scanned by the polarized laser light beam to provide a two-dimensional image presented in real-time on a video display unit, with the motion of the ceramic specimen synchronized with the data acquisition speed. By storing known "feature masks" representing various surface and sub-surface defects and comparing measured defects with the stored feature masks, detected defects may be automatically characterized. Using multiple detectors, various types of defects may be detected and classified.

    10. Analysis of real-time reservoir monitoring : reservoirs, strategies, & modeling.

      SciTech Connect (OSTI)

      Mani, Seethambal S.; van Bloemen Waanders, Bart Gustaaf; Cooper, Scott Patrick; Jakaboski, Blake Elaine; Normann, Randy Allen; Jennings, Jim; Gilbert, Bob; Lake, Larry W.; Weiss, Chester Joseph; Lorenz, John Clay; Elbring, Gregory Jay; Wheeler, Mary Fanett; Thomas, Sunil G.; Rightley, Michael J.; Rodriguez, Adolfo; Klie, Hector; Banchs, Rafael; Nunez, Emilio J.; Jablonowski, Chris

      2006-11-01

      The project objective was to detail better ways to assess and exploit intelligent oil and gas field information through improved modeling, sensor technology, and process control to increase ultimate recovery of domestic hydrocarbons. To meet this objective we investigated the use of permanent downhole sensors systems (Smart Wells) whose data is fed real-time into computational reservoir models that are integrated with optimized production control systems. The project utilized a three-pronged approach (1) a value of information analysis to address the economic advantages, (2) reservoir simulation modeling and control optimization to prove the capability, and (3) evaluation of new generation sensor packaging to survive the borehole environment for long periods of time. The Value of Information (VOI) decision tree method was developed and used to assess the economic advantage of using the proposed technology; the VOI demonstrated the increased subsurface resolution through additional sensor data. Our findings show that the VOI studies are a practical means of ascertaining the value associated with a technology, in this case application of sensors to production. The procedure acknowledges the uncertainty in predictions but nevertheless assigns monetary value to the predictions. The best aspect of the procedure is that it builds consensus within interdisciplinary teams The reservoir simulation and modeling aspect of the project was developed to show the capability of exploiting sensor information both for reservoir characterization and to optimize control of the production system. Our findings indicate history matching is improved as more information is added to the objective function, clearly indicating that sensor information can help in reducing the uncertainty associated with reservoir characterization. Additional findings and approaches used are described in detail within the report. The next generation sensors aspect of the project evaluated sensors and packaging

    11. Real-Time Active Cosmic Neutron Background Reduction Methods

      SciTech Connect (OSTI)

      Mukhopadhyay, Sanjoy; Maurer, Richard; Wolff, Ronald; Mitchell, Stephen; Guss, Paul

      2013-09-01

      Neutron counting using large arrays of pressurized 3He proportional counters from an aerial system or in a maritime environment suffers from the background counts from the primary cosmic neutrons and secondary neutrons caused by cosmic ray-induced mechanisms like spallation and charge-exchange reaction. This paper reports the work performed at the Remote Sensing Laboratory–Andrews (RSL-A) and results obtained when using two different methods to reduce the cosmic neutron background in real time. Both methods used shielding materials with a high concentration (up to 30% by weight) of neutron-absorbing materials, such as natural boron, to remove the low-energy neutron flux from the cosmic background as the first step of the background reduction process. Our first method was to design, prototype, and test an up-looking plastic scintillator (BC-400, manufactured by Saint Gobain Corporation) to tag the cosmic neutrons and then create a logic pulse of a fixed time duration (~120 μs) to block the data taken by the neutron counter (pressurized 3He tubes running in a proportional counter mode). The second method examined the time correlation between the arrival of two successive neutron signals to the counting array and calculated the excess of variance (Feynman variance Y2F)1 in the neutron count distribution from Poisson distribution. The dilution of this variance from cosmic background values ideally would signal the presence of man-made neutrons.2 The first method has been technically successful in tagging the neutrons in the cosmic-ray flux and preventing them from being counted in the 3He tube array by electronic veto—field measurement work shows the efficiency of the electronic veto counter to be about 87%. The second method has successfully derived an empirical relationship between the percentile non-cosmic component in a neutron flux and the Y2F of the measured neutron count distribution. By using shielding materials alone, approximately 55% of the neutron flux

    12. Optimal Real-time Dispatch for Integrated Energy Systems

      SciTech Connect (OSTI)

      Firestone, Ryan Michael

      2007-05-31

      This report describes the development and application of a dispatch optimization algorithm for integrated energy systems (IES) comprised of on-site cogeneration of heat and electricity, energy storage devices, and demand response opportunities. This work is intended to aid commercial and industrial sites in making use of modern computing power and optimization algorithms to make informed, near-optimal decisions under significant uncertainty and complex objective functions. The optimization algorithm uses a finite set of randomly generated future scenarios to approximate the true, stochastic future; constraints are included that prevent solutions to this approximate problem from deviating from solutions to the actual problem. The algorithm is then expressed as a mixed integer linear program, to which a powerful commercial solver is applied. A case study of United States Postal Service Processing and Distribution Centers (P&DC) in four cities and under three different electricity tariff structures is conducted to (1) determine the added value of optimal control to a cogeneration system over current, heuristic control strategies; (2) determine the value of limited electric load curtailment opportunities, with and without cogeneration; and (3) determine the trade-off between least-cost and least-carbon operations of a cogeneration system. Key results for the P&DC sites studied include (1) in locations where the average electricity and natural gas prices suggest a marginally profitable cogeneration system, optimal control can add up to 67% to the value of the cogeneration system; optimal control adds less value in locations where cogeneration is more clearly profitable; (2) optimal control under real-time pricing is (a) more complicated than under typical time-of-use tariffs and (b) at times necessary to make cogeneration economic at all; (3) limited electric load curtailment opportunities can be more valuable as a compliment to the cogeneration system than alone; and

    13. Real Time Quantitative Radiological Monitoring Equipment for Environmental Assessment

      SciTech Connect (OSTI)

      John R. Giles; Lyle G. Roybal; Michael V. Carpenter

      2006-03-01

      and measures. These analyses are combined to provide real-time areal activity and coverage maps that are displayed to the operator as the survey progresses. The flexible functionality of the INL systems are well suited to multiple roles supporting homeland security needs.

    14. In Situ Real-Time Radiographic Study of Thin Film Formation Inside Rotating Hollow Spheres

      DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

      Braun, Tom; Walton, Christopher C.; Dawedeit, Christoph; Biener, Monika M.; Kim, Sung Ho; Willey, Trevor M.; Xiao, Xianghui; van Buuren, Anthony; Hamza, Alex V.; Biener, Juergen

      2016-02-03

      The hollow spheres with uniform coatings on the inner surface have applications in optical devices, time- or site-controlled drug release, heat storage devices, and target fabrication for inertial confinement fusion experiments. The fabrication of uniform coatings, which is often critical for the application performance, requires precise understanding and control over the coating process and its parameters. We report on in situ real-time radiography experiments that provide critical spatiotemporal information about the distribution of fluids inside hollow spheres during uniaxial rotation. Furthermore, image analysis and computer fluid dynamics simulations were used to explore the effect of liquid viscosity and rotational velocitymore » on the film uniformity. The data were then used to demonstrate the fabrication of uniform sol–gel chemistry derived porous polymer films inside 2 mm inner diameter diamond shells.« less

    15. Dose reconstruction for real-time patient-specific dose estimation in CT

      SciTech Connect (OSTI)

      De Man, Bruno Yin, Zhye; Wu, Mingye; FitzGerald, Paul; Kalra, Mannudeep

      2015-05-15

      Purpose: Many recent computed tomography (CT) dose reduction approaches belong to one of three categories: statistical reconstruction algorithms, efficient x-ray detectors, and optimized CT acquisition schemes with precise control over the x-ray distribution. The latter category could greatly benefit from fast and accurate methods for dose estimation, which would enable real-time patient-specific protocol optimization. Methods: The authors present a new method for volumetrically reconstructing absorbed dose on a per-voxel basis, directly from the actual CT images. The authors’ specific implementation combines a distance-driven pencil-beam approach to model the first-order x-ray interactions with a set of Gaussian convolution kernels to model the higher-order x-ray interactions. The authors performed a number of 3D simulation experiments comparing the proposed method to a Monte Carlo based ground truth. Results: The authors’ results indicate that the proposed approach offers a good trade-off between accuracy and computational efficiency. The images show a good qualitative correspondence to Monte Carlo estimates. Preliminary quantitative results show errors below 10%, except in bone regions, where the authors see a bigger model mismatch. The computational complexity is similar to that of a low-resolution filtered-backprojection algorithm. Conclusions: The authors present a method for analytic dose reconstruction in CT, similar to the techniques used in radiation therapy planning with megavoltage energies. Future work will include refinements of the proposed method to improve the accuracy as well as a more extensive validation study. The proposed method is not intended to replace methods that track individual x-ray photons, but the authors expect that it may prove useful in applications where real-time patient-specific dose estimation is required.

    16. Optical eye tracking system for real-time noninvasive tumor localization in external beam radiotherapy

      SciTech Connect (OSTI)

      Via, Riccardo Fassi, Aurora; Fattori, Giovanni; Fontana, Giulia; Pella, Andrea; Tagaste, Barbara; Ciocca, Mario; Riboldi, Marco; Baroni, Guido; Orecchia, Roberto

      2015-05-15

      Purpose: External beam radiotherapy currently represents an important therapeutic strategy for the treatment of intraocular tumors. Accurate target localization and efficient compensation of involuntary eye movements are crucial to avoid deviations in dose distribution with respect to the treatment plan. This paper describes an eye tracking system (ETS) based on noninvasive infrared video imaging. The system was designed for capturing the tridimensional (3D) ocular motion and provides an on-line estimation of intraocular lesions position based on a priori knowledge coming from volumetric imaging. Methods: Eye tracking is performed by localizing cornea and pupil centers on stereo images captured by two calibrated video cameras, exploiting eye reflections produced by infrared illumination. Additionally, torsional eye movements are detected by template matching in the iris region of eye images. This information allows estimating the 3D position and orientation of the eye by means of an eye local reference system. By combining ETS measurements with volumetric imaging for treatment planning [computed tomography (CT) and magnetic resonance (MR)], one is able to map the position of the lesion to be treated in local eye coordinates, thus enabling real-time tumor referencing during treatment setup and irradiation. Experimental tests on an eye phantom and seven healthy subjects were performed to assess ETS tracking accuracy. Results: Measurements on phantom showed an overall median accuracy within 0.16 mm and 0.40° for translations and rotations, respectively. Torsional movements were affected by 0.28° median uncertainty. On healthy subjects, the gaze direction error ranged between 0.19° and 0.82° at a median working distance of 29 cm. The median processing time of the eye tracking algorithm was 18.60 ms, thus allowing eye monitoring up to 50 Hz. Conclusions: A noninvasive ETS prototype was designed to perform real-time target localization and eye movement monitoring

    17. Real-time graphic display utility for nuclear safety applications

      SciTech Connect (OSTI)

      Yang, S.; Huang, X.; Taylor, J.; Stevens, J.; Gerardis, T.; Hsu, A.; McCreary, T.

      2006-07-01

      With the increasing interests in the nuclear energy, new nuclear power plants will be constructed and licensed, and older generation ones will be upgraded for assuring continuing operation. The tendency of adopting the latest proven technology and the fact of older parts becoming obsolete have made the upgrades imperative. One of the areas for upgrades is the older CRT display being replaced by the latest graphics displays running under modern real time operating system (RTOS) with safety graded modern computer. HFC has developed a graphic display utility (GDU) under the QNX RTOS. A standard off-the-shelf software with a long history of performance in industrial applications, QNX RTOS used for safety applications has been examined via a commercial dedication process that is consistent with the regulatory guidelines. Through a commercial survey, a design life cycle and an operating history evaluation, and necessary tests dictated by the dedication plan, it is reasonably confirmed that the QNX RTOS was essentially equivalent to what would be expected in the nuclear industry. The developed GDU operates and communicates with the existing equipment through a dedicated serial channel of a flat panel controller (FPC) module. The FPC module drives a flat panel display (FPD) monitor. A touch screen mounted on the FPD serves as the normal operator interface with the FPC/FPD monitor system. The GDU can be used not only for replacing older CRTs but also in new applications. The replacement of the older CRT does not disturb the function of the existing equipment. It not only provides modern proven technology upgrade but also improves human ergonomics. The FPC, which can be used as a standalone controller running with the GDU, is an integrated hardware and software module. It operates as a single board computer within a control system, and applies primarily to the graphics display, targeting, keyboard and mouse. During normal system operation, the GDU has two sources of data

    18. MO-G-BRE-01: A Real-Time Virtual Delivery System for Photon Radiotherapy Delivery Monitoring

      SciTech Connect (OSTI)

      Shi, F; Gu, X; Jiang, S; Jia, X; Graves, Y

      2014-06-15

      Purpose: Treatment delivery monitoring is important for radiotherapy, which enables catching dosimetric error at the earliest possible opportunity. This project develops a virtual delivery system to monitor the dose delivery process of photon radiotherapy in real-time using GPU-based Monte Carlo (MC) method. Methods: The simulation process consists of 3 parallel CPU threads. A thread T1 is responsible for communication with a linac, which acquires a set of linac status parameters, e.g. gantry angles, MLC configurations, and beam MUs every 20 ms. Since linac vendors currently do not offer interface to acquire data in real time, we mimic this process by fetching information from a linac dynalog file at the set frequency. Instantaneous beam fluence map (FM) is calculated. A FM buffer is also created in T1 and the instantaneous FM is accumulated to it. This process continues, until a ready signal is received from thread T2 on which an inhouse developed MC dose engine executes on GPU. At that moment, the accumulated FM is transferred to T2 for dose calculations, and the FM buffer in T1 is cleared. Once the calculation finishes, the resulting 3D dose distribution is directed to thread T3, which displays it in three orthogonal planes overlaid on the CT image for treatment monitoring. This process continues to monitor the 3D dose distribution in real-time. Results: An IMRT and a VMAT cases used in our patient-specific QA are studied. Maximum dose differences between our system and treatment planning system are 0.98% and 1.58% for the two cases, respectively. The average time per MC calculation is 0.1sec with <2% relative uncertainty. The update frequency of ∼10Hz is considered as real time. Conclusion: By embedding a GPU-based MC code in a novel data/work flow, it is possible to achieve real-time MC dose calculations to monitor delivery process.

    19. Real-time ultrasound-tagging to track the 2D motion of the common carotid artery wall in vivo

      SciTech Connect (OSTI)

      Zahnd, Guillaume; Salles, Sébastien; Liebgott, Hervé; Vray, Didier; Sérusclat, André; Moulin, Philippe

      2015-02-15

      Purpose: Tracking the motion of biological tissues represents an important issue in the field of medical ultrasound imaging. However, the longitudinal component of the motion (i.e., perpendicular to the beam axis) remains more challenging to extract due to the rather coarse resolution cell of ultrasound scanners along this direction. The aim of this study is to introduce a real-time beamforming strategy dedicated to acquire tagged images featuring a distinct pattern in the objective to ease the tracking. Methods: Under the conditions of the Fraunhofer approximation, a specific apodization function was applied to the received raw channel data, in real-time during image acquisition, in order to introduce a periodic oscillations pattern along the longitudinal direction of the radio frequency signal. Analytic signals were then extracted from the tagged images, and subpixel motion tracking of the intima–media complex was subsequently performed offline, by means of a previously introduced bidimensional analytic phase-based estimator. Results: The authors’ framework was applied in vivo on the common carotid artery from 20 young healthy volunteers and 6 elderly patients with high atherosclerosis risk. Cine-loops of tagged images were acquired during three cardiac cycles. Evaluated against reference trajectories manually generated by three experienced analysts, the mean absolute tracking error was 98 ± 84 μm and 55 ± 44 μm in the longitudinal and axial directions, respectively. These errors corresponded to 28% ± 23% and 13% ± 9% of the longitudinal and axial amplitude of the assessed motion, respectively. Conclusions: The proposed framework enables tagged ultrasound images of in vivo tissues to be acquired in real-time. Such unconventional beamforming strategy contributes to improve tracking accuracy and could potentially benefit to the interpretation and diagnosis of biomedical images.

    20. Steps to Establish a Real-Time Transmission Monitoring System for

      Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

      Transmission Owners and Operators within the Eastern and Western Interconnections | Department of Energy Steps to Establish a Real-Time Transmission Monitoring System for Transmission Owners and Operators within the Eastern and Western Interconnections Steps to Establish a Real-Time Transmission Monitoring System for Transmission Owners and Operators within the Eastern and Western Interconnections Steps to establish a real-time transmission monitoring system for transmission owners and

    1. Wireless technology collects real-time information from oil and gas wells

      Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

      Wireless technology collects real-time information from oil and gas wells Wireless technology collects real-time information from oil and gas wells The patented system delivers continuous electromagnetic data on the reservoir conditions, enabling economical and effective monitoring and analysis. April 3, 2012 One of several active projects, LANL and Chevron co-developed INFICOMM(tm), a wireless technology used to collect real-time temperature and pressure information from sensors in oil and gas

    2. Development of Real-Time, Gas Quality Sensor Technology - Fact Sheet 2015

      Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

      | Department of Energy Real-Time, Gas Quality Sensor Technology - Fact Sheet 2015 Development of Real-Time, Gas Quality Sensor Technology - Fact Sheet 2015 The Gas Technology Institute, in collaboration with several project partners, will bring together real-time, gas quality sensor technology with engine management for opportunity fuels. The project is a unique industry effort that will improve the performance, increase efficiency, raise system reliability, and provide improved project

    3. Electromagnetic Detection and Real-Time DMLC Adaptation to Target Rotation During Radiotherapy

      SciTech Connect (OSTI)

      Wu Junqing; Ruan, Dan; Cho, Byungchul; Sawant, Amit; Petersen, Jay; Newell, Laurence J.; Cattell, Herbert; Keall, Paul J.

      2012-03-01

      Purpose: Intrafraction rotation of more than 45 Degree-Sign and 25 Degree-Sign has been observed for lung and prostate tumors, respectively. Such rotation is not routinely adapted to during current radiotherapy, which may compromise tumor dose coverage. The aim of the study was to investigate the geometric and dosimetric performance of an electromagnetically guided real-time dynamic multileaf collimator (DMLC) tracking system to adapt to intrafractional tumor rotation. Materials/Methods: Target rotation was provided by changing the treatment couch angle. The target rotation was measured by a research Calypso system integrated with a real-time DMLC tracking system employed on a Varian linac. The geometric beam-target rotational alignment difference was measured using electronic portal images. The dosimetric accuracy was quantified using a two-dimensional ion chamber array. For each beam, the following five delivery modes were tested: 1) nonrotated target (reference); 2) fixed rotated target with tracking; 3) fixed rotated target without tracking; 4) actively rotating target with tracking; and 5) actively rotating target without tracking. Dosimetric performance of the latter four modes was measured and compared to the reference dose distribution using a 3 mm/3% {gamma}-test. Results: Geometrically, the beam-target rotational alignment difference was 0.3 Degree-Sign {+-} 0.6 Degree-Sign for fixed rotation and 0.3 Degree-Sign {+-} 1.3 Degree-Sign for active rotation. Dosimetrically, the average failure rate for the {gamma}-test for a fixed rotated target was 11% with tracking and 36% without tracking. The average failure rate for an actively rotating target was 9% with tracking and 35% without tracking. Conclusions: For the first time, real-time target rotation has been accurately detected and adapted to during radiation delivery via DMLC tracking. The beam-target rotational alignment difference was mostly within 1 Degree-Sign . Dose distributions to fixed and actively

    4. ARM Data Quality Office … Real-Time Assessment of Instrument...

      Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

      Data Quality Office Real-Time Assessment of ARM Data *Ken Kehoe *Randy Peppler *Karen Sonntag *Terra Thompson *Nathan Hiers *Chris Schwarz Cooperative Institute for Mesoscale ...

    5. Real-Time Particulate Mass Measurements Pre and Post Diesel Particulat...

      Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

      More Documents & Publications Advanced Radio Frequency-Based Sensors for Monitoring Diesel Particulate Filter Loading and Regeneration Real-Time Measurement of Diesel Trap ...

    6. Organizing the Extremely Large LSST Database forReal-Time Astronomical...

      Office of Scientific and Technical Information (OSTI)

      Organizing the Extremely Large LSST Database forReal-Time Astronomical Processing Citation Details In-Document Search Title: Organizing the Extremely Large LSST Database ...

    7. Modeling fast electron dynamics with real-time time-dependent...

      Office of Scientific and Technical Information (OSTI)

      Lett. 2005, 94, 043002, demonstrating the utility of a real-time approach in capturing charge transfer processes. Authors: Lopata, Kenneth A. ; Govind, Niranjan Publication Date: ...

    8. Search Method for Real-time Knowledge Discovery Modeled on the...

      Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

      Search Method for Real-time Knowledge Discovery Modeled on the Human Brain Oak Ridge ... information processing properties of the human brain to computational knowledge discovery. ...

    9. Real time synchrotron X-ray observations of solidification in hypoeutectic AlSi alloys

      SciTech Connect (OSTI)

      Nogita, Kazuhiro [Nihon Superior Centre for the Manufacture of Electronic Materials, The University of Queensland, Brisbane, QLD 4072 (Australia); School of Mechanical and Mining Engineering, The University of Queensland, Brisbane, QLD 4072 (Australia); Yasuda, Hideyuki [Department of Adaptive Machine Systems, Osaka University, Suita, Osaka, 565-0871 (Japan); Prasad, Arvind [School of Mechanical and Mining Engineering, The University of Queensland, Brisbane, QLD 4072 (Australia); McDonald, Stuart D., E-mail: s.mcdonald1@uq.edu.au [Nihon Superior Centre for the Manufacture of Electronic Materials, The University of Queensland, Brisbane, QLD 4072 (Australia); School of Mechanical and Mining Engineering, The University of Queensland, Brisbane, QLD 4072 (Australia); Nagira, Tomoya; Nakatsuka, Noriaki [Department of Adaptive Machine Systems, Osaka University, Suita, Osaka, 565-0871 (Japan); Uesugi, Kentaro [Japan Synchrotron Radiation Research Institute, SPring-8, Sayo, Hyogo, 679-5198 (Japan); StJohn, David H. [School of Mechanical and Mining Engineering, The University of Queensland, Brisbane, QLD 4072 (Australia)

      2013-11-15

      This paper demonstrates how recent advances in synchrotron technology have allowed for the real-time X-ray imaging of solidification in AlSi alloys, despite the small difference in atomic number of these elements. The experiments performed at the SPring-8 synchrotron, involved imaging the solidification of Al1wt.%Si and Al4wt.%Si alloys under a low-temperature gradient and a cooling rate of around 0.3 C/s. The nucleation and growth of the primary aluminum grains as well as the onset of eutectic solidification were clearly observed. In the alloys containing Al4wt.%Si, contrast was sufficient to characterize the nucleation rate and growth velocity of the aluminum grains. The importance of improving observation of solidification in the AlSi system by increasing the time resolution during critical events is discussed. - Highlights: A synchrotron technique was used to observe solidification of Al-Si alloys. Nucleation, coarsening, and the onset of eutectic solidification were observed. Images captured are suitable for quantitative analysis. The resolution that was obtained should be possible for most aluminum alloys.

    10. Long-Range Untethered Real-Time Live Gas Main Robotic Inspection System

      SciTech Connect (OSTI)

      Hagen Schempf; Daphne D'Zurko

      2004-10-31

      Under funding from the Department of Energy (DOE) and the Northeast Gas Association (NGA), Carnegie Mellon University (CMU) developed an untethered, wireless remote controlled inspection robot dubbed Explorer. The project entailed the design and prototyping of a wireless self-powered video-inspection robot capable of accessing live 6- and 8-inch diameter cast-iron and steel mains, while traversing turns and Ts and elbows under real-time control with live video feedback to an operator. The design is that of a segmented actively articulated and wheel-leg powered robot design, with fisheye imaging capability and self-powered battery storage and wireless real-time communication link. The prototype was functionally tested in an above ground pipe-network, in order to debug all mechanical, electrical and software subsystems, and develop the necessary deployment and retrieval, as well as obstacle-handling scripts. A pressurized natural gas test-section was used to certify it for operation in natural gas at up to 60 psig. Two subsequent live-main field-trials in both cast-iron and steel pipe, demonstrated its ability to be safely launched, operated and retrieved under real-world conditions. The system's ability to safely and repeatably exidrecover from angled and vertical launchers, traverse multi-thousand foot long pipe-sections, make T and varied-angle elbow-turns while wirelessly sending live video and handling command and control messages, was clearly demonstrated. Video-inspection was clearly shown to be a viable tool to understand the state of this critical buried infrastructure, irrespective of low- (cast-iron) or high-pressure (steel) conditions. This report covers the different aspects of specifications, requirements, design, prototyping, integration and testing and field-trialing of the Explorer platform.