National Library of Energy BETA

Sample records for ready mix concrete

  1. Use of Residual Solids from Pulp and Paper Mills for Enhancing Strength and Durability of Ready-Mixed Concrete

    SciTech Connect (OSTI)

    Tarun R. Naik; Yoon-moon Chun; Rudolph N. Kraus

    2003-09-18

    This research was conducted to establish mixture proportioning and production technologies for ready-mixed concrete containing pulp and paper mill residual solids and to study technical, economical, and performance benefits of using the residual solids in the concrete. Fibrous residuals generated from pulp and paper mills were used, and concrete mixture proportions and productions technologies were first optimized under controlled laboratory conditions. Based on the mixture proportions established in the laboratory, prototype field concrete mixtures were manufactured at a ready-mixed concrete plant. Afterward, a field construction demonstration was held to demonstrate the production and placement of structural-grade cold-weather-resistant concrete containing residual solids.

  2. Robertsons Ready Mix | Open Energy Information

    Open Energy Info (EERE)

    Ready Mix Jump to: navigation, search Name Robertsons Ready Mix Facility Robertsons Ready Mix Sector Wind energy Facility Type Community Wind Facility Status In Service Owner...

  3. readiness | National Nuclear Security Administration

    National Nuclear Security Administration (NNSA)

    readiness

  4. Readiness assessment plan for the Radioactive Mixed Waste Land Disposal Facility (Trench 31)

    SciTech Connect (OSTI)

    Irons, L.G.

    1994-11-22

    This document provides the Readiness Assessment Plan (RAP) for the Project W-025 (Radioactive Mixed Waste Land Disposal Facility) Readiness Assessment (RA). The RAP documents prerequisites to be met by the operating organization prior to the RA. The RAP is to be implemented by the RA Team identified in the RAP. The RA Team is to verify the facility`s compliance with criteria identified in the RAP. The criteria are based upon the {open_quotes}Core Requirements{close_quotes} listed in DOE Order 5480.31, {open_quotes}Startup and Restart of Nuclear Facilities{close_quotes}.

  5. Energy Efficiency Improvement and Cost Saving Oportunities for the Concrete Industry

    SciTech Connect (OSTI)

    Kermeli, Katerina; Worrell, Ernst; Masanet, Eric

    2011-12-01

    The U.S. concrete industry is the main consumer of U.S.-produced cement. The manufacturing of ready mixed concrete accounts for more than 75% of the U.S. concrete production following the manufacturing of precast concrete and masonry units. The most significant expenditure is the cost of materials accounting for more than 50% of total concrete production costs - cement only accounts for nearly 24%. In 2009, energy costs of the U.S. concrete industry were over $610 million. Hence, energy efficiency improvements along with efficient use of materials without negatively affecting product quality and yield, especially in times of increased fuel and material costs, can significantly reduce production costs and increase competitiveness. The Energy Guide starts with an overview of the U.S. concrete industry’s structure and energy use, a description of the various manufacturing processes, and identification of the major energy consuming areas in the different industry segments. This is followed by a description of general and process related energy- and cost-efficiency measures applicable to the concrete industry. Specific energy and cost savings and a typical payback period are included based on literature and case studies, when available. The Energy Guide intends to provide information on cost reduction opportunities to energy and plant managers in the U.S. concrete industry. Every cost saving opportunity should be assessed carefully prior to implementation in individual plants, as the economics and the potential energy and material savings may differ.

  6. Readiness Assurance

    National Nuclear Security Administration (NNSA)

    planning, resource allocation, program assistance activities, evaluations, training, drills, and exercises; and,

  7. Emergency Readiness Assurance Plans (ERAPs)<...

  8. Readiness Review Training- Member

    Broader source: Energy.gov [DOE]

    Slides used for November 10, 2010 Readiness Review Member Training at the Idaho National Laboratory. Course provides tools and tips to be an effective readiness review team member.

  9. Ready, set...go!

    SciTech Connect (OSTI)

    Alexandre, Melanie

    2010-06-16

    The objectives of this paper are: (1) Discuss organizational readiness for changes in an ergonomics program or intervention; (2) Assessing organizational readiness; (3) Benefits and challenges of change; and (4) Case studies of ergonomic programs that were 'not ready' and 'ready'.

  10. TECHNOLOGY READINESS ASSESSMENT

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    DECEMBER 2012 Pathway for readying the next generation of affordable clean energy technology -Carbon Capture, Utilization, and Storage (CCUS) 2012 TECHNOLOGY READINESS ASSESSMENT -OVERVIEW 2 2012 TECHNOLOGY READINESS ASSESSMENT-OVERVIEW 2012 TECHNOLOGY READINESS ASSESSMENT-OVERVIEW 3 DISCLAIMER This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any

  11. Quick-setting concrete and a method for making quick-setting concrete

    DOE Patents [OSTI]

    Wagh, A.S.; Singh, D.; Pullockaran, J.D.; Knox, L.

    1997-04-29

    A method for producing quick setting concrete is provided comprising mixing a concrete dry mixture with carbonate solution to create a slurry, and allowing the slurry to cure. The invention also provides for a quick setting concrete having a predetermined proportion of CaCO{sub 3} of between 5 and 23 weight percent of the entire concrete mixture, and whereby the concrete has a compression strength of approximately 4,000 pounds per square inch (psi) within 24 hours after pouring. 2 figs.

  12. Community Readiness Assessments | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Readiness Assessments Community Readiness Assessments Better Buildings Residential Network Program Sustainability Peer Exchange Call Series: Community Readiness Assessments, Call ...

  13. Concrete material characterization reinforced concrete tank structure Multi-Function Waste Tank Facility

    SciTech Connect (OSTI)

    Winkel, B.V.

    1995-03-03

    The purpose of this report is to document the Multi-Function Waste Tank Facility (MWTF) Project position on the concrete mechanical properties needed to perform design/analysis calculations for the MWTF secondary concrete structure. This report provides a position on MWTF concrete properties for the Title 1 and Title 2 calculations. The scope of the report is limited to mechanical properties and does not include the thermophysical properties of concrete needed to perform heat transfer calculations. In the 1970`s, a comprehensive series of tests were performed at Construction Technology Laboratories (CTL) on two different Hanford concrete mix designs. Statistical correlations of the CTL data were later generated by Pacific Northwest Laboratories (PNL). These test results and property correlations have been utilized in various design/analysis efforts of Hanford waste tanks. However, due to changes in the concrete design mix and the lower range of MWTF operating temperatures, plus uncertainties in the CTL data and PNL correlations, it was prudent to evaluate the CTL data base and PNL correlations, relative to the MWTF application, and develop a defendable position. The CTL test program for Hanford concrete involved two different mix designs: a 3 kip/in{sup 2} mix and a 4.5 kip/in{sup 2} mix. The proposed 28-day design strength for the MWTF tanks is 5 kip/in{sup 2}. In addition to this design strength difference, there are also differences between the CTL and MWTF mix design details. Also of interest, are the appropriate application of the MWTF concrete properties in performing calculations demonstrating ACI Code compliance. Mix design details and ACI Code issues are addressed in Sections 3.0 and 5.0, respectively. The CTL test program and PNL data correlations focused on a temperature range of 250 to 450 F. The temperature range of interest for the MWTF tank concrete application is 70 to 200 F.

  14. Refractory concretes

    DOE Patents [OSTI]

    Holcombe, Jr., Cressie E.

    1979-01-01

    Novel concrete compositions comprise particles of aggregate material embedded in a cement matrix, said cement matrix produced by contacting an oxide selected from the group of Y.sub.2 O.sub.3, La.sub.2 O.sub.3, Nd.sub.2 O.sub.3, Sm.sub.2 O.sub.3, Eu.sub.2 O.sub.3 and Gd.sub.2 O.sub.3 with an aqueous solution of a salt selected from the group of NH.sub.4 NO.sub.3, NH.sub.4 Cl, YCl.sub.3 and Mg(NO.sub.3).sub.2 to form a fluid mixture; and allowing the fluid mixture to harden.

  15. Technology Readiness Assessment Guide

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2011-09-15

    The Guide assists individuals and teams involved in conducting Technology Readiness Assessments (TRAs) and developing Technology Maturation Plans (TMPs) for the DOE capital asset projects subject to DOE O 413.3B. Supersedes DOE G 413.3-4.

  16. TECHNOLOGY READINESS ASSESSMENT

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ASSESSMENT JANUARY 2015 -A CHECKPOINT ALONG A CHALLENGING JOURNEY DOE/NETL-2015/1710 U.S. Department of Energy 2014 TECHNOLOGY READINESS ASSESSMENT-CLEAN COAL RESEARCH PROGRAM 2 2014 TECHNOLOGY READINESS ASSESSMENT-CLEAN COAL RESEARCH PROGRAM Office of Fossil Energy | National Energy Technology Laboratory DISCLAIMER 3 DISCLAIMER This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor

  17. Emergency Readiness Assurance Program

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    1992-02-27

    To establish the requirements of the Emergency Readiness Assurance Program with a goal of assurting that the Department of Energy (DOE) Emergency Management System (EMS) is ready to respond promptly, efficiently, and effectively to any emergency involving DOE facilities or requiring DOE assistance. Cancels DOE O 5500.10 dated 4-30-91. Chg 1 dated 2-27-92. Change 1 canceled by DOE O 151.1 of 9-25-95.

  18. Readiness Review | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Readiness Assurance Readiness Assurance NNSA ensures that capabilities are in place to respond to any NNSA and Department of Energy facility emergency. It is also the nation's premier responder to any nuclear or radiological incident within the United States or abroad and provides operational planning and training to counter both

    Readiness Review The Ames Laboratory Readiness Review process provides strong support for Integrated Safety Management. Readiness Review is begun during initial

  19. Learning from Roman Seawater Concrete

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    cohesion and stability of the seawater concrete. Another striking find concerns the hydration products in concrete. In theory, C-S-H in concrete made with Portland cement...

  20. Learning from Roman Seawater Concrete

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Learning from Roman Seawater Concrete Learning from Roman Seawater Concrete Print Wednesday, 25 September 2013 00:00 The material secrets of a concrete Roman breakwater that has...

  21. Construction Readiness RM

    Office of Environmental Management (EM)

    Construction Readiness Review Module March 2010 CD- [This Rev Readiness -0 view Module w s Review (CRR OFFICE O CD-1 was used to dev R). This Review OF ENVIRO Standard R Construc Rev Critical D CD-2 M velop the Revie w Module cont ONMENTA Review Pla ction Rea view Modul Decision (CD C March 2010 ew Plan for Sal tains the lesson Review.] AL MANAG an (SRP) adiness le D) Applicabili D-3 lt Waste Proce ns learned from GEMENT ity CD-4 ssing Facility ( m the SWPF Co Post Ope (SWPF) Const onstruction

  1. Insulating polymer concrete

    DOE Patents [OSTI]

    Schorr, H. Peter; Fontana, Jack J.; Steinberg, Meyer

    1987-01-01

    A lightweight insulating polymer concrete formed from a lightweight closed cell aggregate and a water resistance polymeric binder.

  2. Readiness Review Training- Team Leader

    Broader source: Energy.gov [DOE]

    Slides used for November 10, 2010 Readiness Review Team Leader Training at the Idaho National Laboratory. Course provides tools and tips to be an effective readiness review team leader.

  3. Method for incorporating radioactive phosphoric acid solutions in concrete

    DOE Patents [OSTI]

    Wolf, G.A.; Smith, J.W.; Ihle, N.C.

    1982-07-08

    A method for incorporating radioactive phosphoric acid solutions in concrete is described wherein the phosphoric acid is reacted with Ca(OH)/sub 2/ to form a precipitate of hydroxyapatite and the hydroxyapatite is mixed with Portland cement to form concrete.

  4. Method for incorporating radioactive phosphoric acid solutions in concrete

    DOE Patents [OSTI]

    Wolf, Gary A [Kennewick, WA; Smith, Jeffrey W [Lancaster, OH; Ihle, Nathan C [Walla Walla, WA

    1984-01-01

    A method for incorporating radioactive phosphoric acid solutions in concrete is described wherein the phosphoric acid is reacted with Ca(OH).sub.2 to form a precipitate of hydroxyapatite and the hydroxyapatite is mixed with portland cement to form concrete.

  5. DOE Zero Energy Ready Home Case Study: e2 Homes, Winter Park, FL, Custom

    Energy Savers [EERE]

    Homes | Department of Energy e2 Homes, Winter Park, FL, Custom Homes DOE Zero Energy Ready Home Case Study: e2 Homes, Winter Park, FL, Custom Homes Case study of a DOE Zero Energy Ready Home in Winter Park, FL, that scored HERS 57 without PV or HERS -7 with PV. This 4,305-square-foot custom home has autoclaved aerated concrete walls, a sealed attic with R-20 spray foam, and ductless mini-split heat pumps. PDF icon BA_ZeroEnergyReady_e2Homes_062414.pdf More Documents & Publications

  6. DOE Zero Energy Ready Home Case Study: Habitat for Humanity South Sarasota

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    County, Nokomis, FL | Department of Energy Sarasota County, Nokomis, FL DOE Zero Energy Ready Home Case Study: Habitat for Humanity South Sarasota County, Nokomis, FL DOE Zero Energy Ready Home Case Study: Habitat for Humanity South Sarasota County, Nokomis, FL Case study of a DOE Zero Energy Ready affordable home in Nokomis, FL, achieves a HERS 51 without PV. The 1,290-ft2 1-story home has foam-filled concrete block walls, a sealed attic insulated under the roof deck with open-cell spray

  7. DOE Zero Energy Ready Home Case Study: e2 Homes, Winter Park, FL, Custom

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Homes | Department of Energy e2 Homes, Winter Park, FL, Custom Homes DOE Zero Energy Ready Home Case Study: e2 Homes, Winter Park, FL, Custom Homes Case study of a DOE Zero Energy Ready Home in Winter Park, FL, that scored HERS 57 without PV or HERS -7 with PV. This 4,305-square-foot custom home has autoclaved aerated concrete walls, a sealed attic with R-20 spray foam, and ductless mini-split heat pumps. PDF icon BA_ZeroEnergyReady_e2Homes_062414.pdf More Documents & Publications

  8. Technology Readiness Assessment Guide

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2011-09-15

    This document was developed to assist individuals and teams that will be involved in conducting Technology Readiness Assessments (TRAs) and developing Technology Maturation Plans (TMPs) for the Department of Energy (DOE) capital acquisition assets subjects to DOE O 413.3B.

  9. Renewable Energy Ready Home Solar Photovoltaic Specifications...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Renewable Energy Ready Home Solar Photovoltaic Specifications Renewable Energy Ready Home Solar Photovoltaic Specifications Solar Photovoltaic Specification, Checklist and Guide, ...

  10. Ready, set, go . . . well maybe

    SciTech Connect (OSTI)

    Alexandre, Melanie M; Bartolome, Terri-Lynn C

    2011-02-28

    The agenda for this presentation is: (1) understand organizational readiness for changes; (2) review benefits and challenges of change; (3) share case studies of ergonomic programs that were 'not ready' and some that were 'ready'; and (4) provide some ideas for facilitating change.

  11. Technology Readiness Assessment Report

    Office of Environmental Management (EM)

    Technology Readiness Assessment Report March 2010 U U . . S S . . D D e e p p a a r r t t m m e e n n t t o o f f E E n n e e r r g g y y O O f f f f i i c c e e o o f f E E n n v ...

  12. DOE Zero Energy Ready Home Solar Hot Water-Ready Checklist |...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    checklist. PDF icon SHW-Ready Checklists.pdf More Documents & Publications Solar Water Heating: SPECIFICATION, CHECKLIST AND GUIDE DOE Zero Energy Ready Home PV-Ready Checklist ...

  13. Learning from Roman Seawater Concrete

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    of the ancient samples pinpointed why the best Roman concrete was superior to most modern concrete in durability, why its manufacture was less environmentally damaging, and how...

  14. Learning from Roman Seawater Concrete

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    high-pressure x-ray diffraction. Analyses of the ancient samples pinpointed why the best Roman concrete was superior to most modern concrete in durability, why its...

  15. Learning from Roman Seawater Concrete

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Learning from Roman Seawater Concrete Print The material secrets of a concrete Roman breakwater that has spent the last 2000 years submerged in the Mediterranean Sea have been...

  16. Concrete growth problems and remedial measures at TVA projects

    SciTech Connect (OSTI)

    Hammer, J.J.

    1984-01-01

    Most concrete structures are designed and detailed to provide for a volume decrease without excessive cracking. Occasionally, however, a concrete structure exhibits a long-term increase in volume termed concrete growth. Concrete growth may result from a variety of reactions, such as the hydration of unstable oxides included in the concrete mix, or the oxidation of minerals or from an outside attack of sulfates. The most important reaction creating concrete growth is that between minor alkali hydroxides from cement and the concrete aggregates. Two distinctly different harmful reactions have been recognized: the alkali-silicate and alkali-carbonate reactions. Concrete deteriorating from an alkali-aggregate reaction, regardless of the type, develops an obvious network of cracks called pattern or map cracking. These alkali-aggregate reactions and their accompanying concrete growth have presented numerous problems at TVA's Fontana Dam, Chickamauga Dam and lock, and Hiwassee Dam. Much has been learned about alkali-aggregate reaction since 1940. Most harmful reactions can now be prevented in proposed structures by interpreting the results of standard test methods. It is not possible, however, in existing structures to determine how far the growth phenomenon has progressed, how long the effects will have to be dealt with, or what the future effects will be. A program of close surveillance and monitoring is maintained at these projects, and problems are dealt with as they arise.

  17. NanoReady Ltd | Open Energy Information

    Open Energy Info (EERE)

    NanoReady Ltd Jump to: navigation, search Name: NanoReady Ltd Place: Caesarea, Israel Zip: 38900 Sector: Solar Product: String representation "NanoReady devel ... nd solar cells."...

  18. SLAM: a sodium-limestone concrete ablation model

    SciTech Connect (OSTI)

    Suo-Anttila, A.J.

    1983-12-01

    SLAM is a three-region model, containing a pool (sodium and reaction debris) region, a dry (boundary layer and dehydrated concrete) region, and a wet (hydrated concrete) region. The model includes a solution to the mass, momentum, and energy equations in each region. A chemical kinetics model is included to provide heat sources due to chemical reactions between the sodium and the concrete. Both isolated model as well as integrated whole code evaluations have been made with good results. The chemical kinetics and water migration models were evaluated separately, with good results. Several small and large-scale sodium limestone concrete experiments were simulated with reasonable agreement between SLAM and the experimental results. The SLAM code was applied to investigate the effects of mixing, pool temperature, pool depth and fluidization. All these phenomena were found to be of significance in the predicted response of the sodium concrete interaction. Pool fluidization is predicted to be the most important variable in large scale interactions.

  19. DOE Zero Energy Ready Home Case Study: Shore Road Project - Old Greenwich,

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Connecticut | Department of Energy Shore Road Project - Old Greenwich, Connecticut DOE Zero Energy Ready Home Case Study: Shore Road Project - Old Greenwich, Connecticut Case study of a DOE Zero Energy Ready Home in Old Greenwich, CT, that scored HERS 40 without PV and HERS 27 with PV. This 4,100 ft2 custom home has 13-inch ICF basement walls and 11-inch insulated concrete form (ICF) above-grade walls with a closed-cell spray foam-insulated roof deck, and a continuously running energy

  20. Community Readiness Assessments | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Readiness Assessments Community Readiness Assessments Better Buildings Residential Network Program Sustainability Peer Exchange Call Series: Community Readiness Assessments, Call Slides and Discussion Summary, December 5, 2013. PDF icon Call Slides and Discussion Summary More Documents & Publications Focus Series: Program Finds Community "Readiness" Is the Key to More Retrofits Contractor-Funded Incentives Better Buildings Network View | April 2015

  1. DOE Zero Energy Ready Home PV-Ready Checklist | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    PV-Ready Checklist DOE Zero Energy Ready Home PV-Ready Checklist All homes certified as DOE Zero Energy Ready Homes must meet the mandatory requirements listed in Exhibit 1 of the National Program Requirements, including Requirement 7 Renewable Ready, which requires that homes meet the requirements listed in the PV-Ready Checklist. See the Checklist document for exceptions PDF icon PV-Ready Checklist.pdf More Documents & Publications DOE Zero Energy Ready Home Solar Hot Water-Ready Checklist

  2. Implementation plan for WRAP Module 1 operational readiness review

    SciTech Connect (OSTI)

    Irons, L.G.

    1994-11-04

    The Waste Receiving and Processing Module 1 (WRAP 1) will be used to receive, sample, treat, and ship contact-handled (CH) transuranic (TRU), low-level waste (LLW), and low-level mixed waste (LLMW) to storage and disposal sites both on the Hanford site and off-site. The primary mission of WRAP 1 is to characterize and certify CH waste in 55-gallon and 85-gallon drums; and its secondary function is to certify CH waste standard waste boxes (SWB) and boxes of similar size for disposal. The WRAP 1 will provide the capability for examination (including x-ray, visual, and contents sampling), limited treatment, repackaging, and certification of CH suspect-TRU waste in 55-gallon drums retrieved from storage, as well as newly generated CH LLW and CH TRU waste drums. The WRAP 1 will also provide examination (X-ray and visual only) and certification of CH LLW and CH TRU waste in small boxes. The decision to perform an Operational Readiness Review (ORR) was made in accordance with WHC-CM-5-34, Solid Waste Disposal Operations Administration, Section 1.4, Operational Readiness Activities. The ORR will ensure plant and equipment readiness, management and personnel readiness, and management programs readiness for the initial startup of the facility. This implementation plan is provided for defining the conduct of the WHC ORR.

  3. Hydrogen Infrastructure Market Readiness Workshop

    Broader source: Energy.gov [DOE]

    The U.S. Department of Energy's (DOE's) National Renewable Energy Laboratory (NREL) hosted the Hydrogen Infrastructure Market Readiness Workshop February 16–17, 2011, in Washington, D.C....

  4. Getting Ready for Adaptive RTSs

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    RTS) and runtime auto-tuning * What can app developers do to get ready for exascalearts - Note: our solution (OMA) was needed for dynamic irregular apps even on yesterday's...

  5. DOE Zero Energy Ready Home Case Study: One Sky Homes — Cottle Zero Net Energy Home, San Jose, CA

    SciTech Connect (OSTI)

    none,

    2014-09-01

    This builder took home the Grand Winner prize in the Custom Builder category in the 2014 Housing Innovation Awards for its high performance building science approach. The builder used insulated concrete form blocks to create the insulated crawlspace foundation for its first DOE Zero Energy Ready Home, the first net zero energy new home certified in the state of California.

  6. TECHNOLOGY READINESS ASSESSMENT-OVERVIEW

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ASSESSMENT-OVERVIEW JANUARY 2015 -A CHECKPOINT ALONG A CHALLENGING JOURNEY DOE/NETL-2015/1711 U.S. Department of Energy 2014 TECHNOLOGY READINESS ASSESSMENT-OVERVIEW 2 2014 TECHNOLOGY READINESS ASSESSMENT-OVERVIEW Office of Fossil Energy | National Energy Technology Laboratory DISCLAIMER 3 DISCLAIMER This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes

  7. EERE Success Story-Concrete Company Moving to Natural Gas with Clean

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Cities | Department of Energy Concrete Company Moving to Natural Gas with Clean Cities EERE Success Story-Concrete Company Moving to Natural Gas with Clean Cities March 10, 2015 - 10:25am Addthis Concrete mixing in the Great Lakes region is increasingly fueled by compressed natural gas (CNG), thanks to the help of the Vehicle Technologies Office's Clean Cities program. In 2010, the Chicago Area Clean Cities Coalition's American Recovery and Reinvestment Act project covered the incremental

  8. Learning from Roman Seawater Concrete

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Learning from Roman Seawater Concrete Print The material secrets of a concrete Roman breakwater that has spent the last 2000 years submerged in the Mediterranean Sea have been uncovered by an international team of researchers using a variety of techniques, including x-ray microdiffraction, x-ray spectroscopy, and synchrotron-based high-pressure x-ray diffraction. Analyses of the ancient samples pinpointed why the best Roman concrete was superior to most modern concrete in durability, why its

  9. DOE Zero Energy Ready Home: Durable Energy Builders, Houston...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    DOE Zero Energy Ready Home: Durable Energy Builders, Houston, Texas DOE Zero Energy Ready Home: Durable Energy Builders, Houston, Texas This DOE Zero Energy Ready Home features...

  10. Operational Readiness Team: OPERATIONAL READINESS REVIEW PLAN FOR THE

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    oak ridge 12 ...... Prepared by the Operational Readiness Team: OPERATIONAL READINESS REVIEW PLAN FOR THE RAD1 0 1 SOT0 PE THERMOELECTRIC GENERATOR MATERIALS PRODUCTION TASKS R. H. Cooper M. M. Martin C. R. Riggs R. L. Beatty E. K. Ohriner R. N. Escher OISTRIBUTIQM OF THIS DOCUMENT IS UNLIMITED DISCLAIMER This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency Thereof, nor any of their employees,

  11. High temperature polymer concrete

    DOE Patents [OSTI]

    Fontana, J.J.; Reams, W.

    1984-05-29

    This invention is concerned with a polymer concrete composition, which is a two-component composition useful with many bases including metal. Component A, the aggregate composition, is broadly composed of silica, silica flour, portland cement, and acrylamide, whereas Component B, which is primarily vinyl and acrylyl reactive monomers, is a liquid system.

  12. DOE Zero Energy Ready Home

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Zero Energy Ready Home National Program Requirements (Rev. 05) May 11, 2015 Effective for Homes Revised May 11, 2015 Page 1 of 10 Permitted Starting 8/11/2015 To qualify as a DOE Zero Energy Ready Home, a home shall meet the minimum requirements specified below, be verified and field-tested in accordance with HERS Standards by an approved verifier, and meet all applicable codes 1 . Builders may meet the requirements of either the Performance Path or the Prescriptive path to qualify a home. 2

  13. Treatment of fly ash for use in concrete

    DOE Patents [OSTI]

    Boxley, Chett

    2012-05-15

    A process for treating fly ash to render it highly usable as a concrete additive. A quantity of fly ash is obtained that contains carbon and which is considered unusable fly ash for concrete based upon foam index testing. The fly ash is mixed with a quantity of spray dryer ash (SDA) and water to initiate a geopolymerization reaction and form a geopolymerized fly ash. The geopolymerized fly ash is granulated. The geopolymerized fly ash is considered usable fly ash for concrete according to foam index testing. The geopolymerized fly ash may have a foam index less than 40%, and in some cases less than 20%, of the foam index of the untreated fly ash. An optional alkaline activator may be mixed with the fly ash and SDA to facilitate the geopolymerization reaction. The alkaline activator may contain an alkali metal hydroxide, carbonate, silicate, aluminate, or mixtures thereof.

  14. Readiness Certification Assurance Process Tracking System

    Energy Science and Technology Software Center (OSTI)

    2011-06-08

    Without the use of an electronic system for managing Readiness activities, the effort to complete large Readiness reviews would be overwhelming. This system is intended to replace or supplement paper-based administrative tasks performed by Readiness personnel and other involved organizations. RCAPTS helps manage issues and affirmations pertaining to Readiness projects and reviews. This is accomplished through a series of web scripts and a Microsoft Access database.

  15. Project Get Ready | Open Energy Information

    Open Energy Info (EERE)

    Equivalent URI http:cleanenergysolutions.orgcontentproject-get-ready-pgr-total-cost-vehicle-ownership-calculator-0, http:cleanenergysolutions.orgcontent...

  16. Readiness Assurance | National Nuclear Security Administration

    National Nuclear Security Administration (NNSA)

    Readiness Assurance NNSA ensures that capabilities are in place to respond to any NNSA and Department of Energy facility emergency. It is also the nation's premier responder to any nuclear or radiological incident within the United States or abroad and provides operational planning and training to counter both domestic and international nuclear terrorism. "Readiness Assurance" is the ongoing process of verifying and demonstrating readiness to respond. A readiness assurance program

  17. Solar Ready: An Overview of Implementation Practices

    SciTech Connect (OSTI)

    Watson, A.; Guidice, L.; Lisell, L.; Doris, L.; Busche, S.

    2012-01-01

    This report explores three mechanisms for encouraging solar ready building design and construction: solar ready legislation, certification programs for solar ready design and construction, and stakeholder education. These methods are not mutually exclusive, and all, if implemented well, could contribute to more solar ready construction. Solar ready itself does not reduce energy use or create clean energy. Nevertheless, solar ready building practices are needed to reach the full potential of solar deployment. Without forethought on incorporating solar into design, buildings may be incompatible with solar due to roof structure or excessive shading. In these cases, retrofitting the roof or removing shading elements is cost prohibitive. Furthermore, higher up-front costs due to structural adaptations and production losses caused by less than optimal roof orientation, roof equipment, or shading will lengthen payback periods, making solar more expensive. With millions of new buildings constructed each year in the United States, solar ready can remove installation barriers and increase the potential for widespread solar adoption. There are many approaches to promoting solar ready, including solar ready legislation, certification programs, and education of stakeholders. Federal, state, and local governments have the potential to implement programs that encourage solar ready and in turn reduce barriers to solar deployment. With the guidance in this document and the examples of jurisdictions and organizations already working to promote solar ready building practices, federal, state, and local governments can guide the market toward solar ready implementation.

  18. Uranium Downblending and Disposition Project Technology Readiness

    Energy Savers [EERE]

    Assessment | Department of Energy Uranium Downblending and Disposition Project Technology Readiness Assessment Uranium Downblending and Disposition Project Technology Readiness Assessment Full Document and Summary Versions are available for download PDF icon Uranium Downblending and Disposition Project Technology Readiness Assessment PDF icon Summary - Uranium233 Downblending and Disposition Project More Documents & Publications Compilation of TRA Summaries EA-1574: Final Environmental

  19. Laser ablation of concrete.

    SciTech Connect (OSTI)

    Savina, M.

    1998-10-05

    Laser ablation is effective both as an analytical tool and as a means of removing surface coatings. The elemental composition of surfaces can be determined by either mass spectrometry or atomic emission spectroscopy of the atomized effluent. Paint can be removed from aircraft without damage to the underlying aluminum substrate, and environmentally damaged buildings and sculptures can be restored by ablating away deposited grime. A recent application of laser ablation is the removal of radioactive contaminants from the surface and near-surface regions of concrete. We present the results of ablation tests on concrete samples using a high power pulsed Nd:YAG laser with fiber optic beam delivery. The laser-surface interaction was studied on various model systems consisting of Type I Portland cement with varying amounts of either fine silica or sand in an effort to understand the effect of substrate composition on ablation rates and mechanisms. A sample of non-contaminated concrete from a nuclear power plant was also studied. In addition, cement and concrete samples were doped with non-radioactive isotopes of elements representative of cooling waterspills, such as cesium and strontium, and analyzed by laser-resorption mass spectrometry to determine the contamination pathways. These samples were also ablated at high power to determine the efficiency with which surface contaminants are removed and captured. The results show that the neat cement matrix melts and vaporizes when little or no sand or aggregate is present. Surface flows of liquid material are readily apparent on the ablated surface and the captured aerosol takes the form of glassy beads up to a few tens of microns in diameter. The presence of sand and aggregate particles causes the material to disaggregate on ablation, with intact particles on the millimeter size scale leaving the surface. Laser resorption mass spectrometric analysis showed that cesium and potassium have similar chemical environments in the matrix, as do strontium and calcium.

  20. CONCRETE SUPPORT DESIGN FOR MISCELLANEOUS ESF UTILITIES

    SciTech Connect (OSTI)

    T.A. Misiak

    1999-06-21

    The purpose and objective of this analysis is to design concrete supports for the miscellaneous utility equipment used at the Exploratory Studies Facility (ESF). Two utility systems are analyzed: (1) the surface collection tanks of the Waste Water System, and (2) the chemical tracer mixing and storage tanks of the Non-Potable Water System. This analysis satisfies design recommended in the Title III Evaluation Reports for the Subsurface Fire Water System and Subsurface Portion of the Non-Potable Water System (CRWMS M&O 1998a) and Waste Water Systems (CRWMS M&O 1998b).

  1. Fly ash and concrete: a study determines whether biomass, or coal co-firing fly ash, can be used in concrete

    SciTech Connect (OSTI)

    Wang, Shuangzhen; Baxter, Larry

    2006-08-01

    Current US national standards for using fly ash in concrete (ASTM C618) state that fly ash must come from coal combustion, thus precluding biomass-coal co-firing fly ash. The co-fired ash comes from a large and increasing fraction of US power plants due to rapid increases in co-firing opportunity fuels with coal. The fly ashes include coal fly ash, wood fly ash from pure wood combustion, biomass and coal co-fired fly ash SW1 and SW2. Also wood fly ash is blended with Class C or Class F to produce Wood C and Wood E. Concrete samples were prepared with fly ash replacing cement by 25%. All fly ash mixes except wood have a lower water demand than the pure cement mix. Fly ashes, either from coal or non coal combustion, increase the required air entraining agent (AEA) to meet the design specification of the mixes. If AEA is added arbitrarily without considering the amount or existence of fly ash results could lead to air content in concrete that is either too low or too high. Biomass fly ash does not impact concrete setting behaviour disproportionately. Switch grass-coal co-fired fly ash and blended wood fly ash generally lie within the range of pure coal fly ash strength. The 56 day flexure strength of all the fly ash mixes is comparable to that of the pure cement mix. The flexure strength from the coal-biomass co-fired fly ash does not differ much from pure coal fly ash. All fly ash concrete mixes exhibit lower chloride permeability than the pure cement mixes. In conclusion biomass coal co-fired fly ash perform similarly to coal fly ash in fresh and hardened concrete. As a result, there is no reason to exclude biomass-coal co-fired fly ash in concrete.

  2. Learning from Roman Seawater Concrete

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Learning from Roman Seawater Concrete Learning from Roman Seawater Concrete Print Wednesday, 25 September 2013 00:00 The material secrets of a concrete Roman breakwater that has spent the last 2000 years submerged in the Mediterranean Sea have been uncovered by an international team of researchers using a variety of techniques, including x-ray microdiffraction, x-ray spectroscopy, and synchrotron-based high-pressure x-ray diffraction. Analyses of the ancient samples pinpointed why the best Roman

  3. Learning from Roman Seawater Concrete

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    microdiffraction, x-ray spectroscopy, and synchrotron-based high-pressure x-ray diffraction. Analyses of the ancient samples pinpointed why the best Roman concrete was...

  4. Quick setting water-compatible furfuryl alcohol polymer concretes

    DOE Patents [OSTI]

    Sugama, Toshifumi; Kukacka, Lawrence E.; Horn, William H.

    1982-11-30

    A novel quick setting polymer concrete composite comprising a furfuryl alcohol monomer, an aggregate containing a maximum of 8% by weight water, and about 1-10% trichlorotoluene initiator and about 20-80% powdered metal salt promoter, such as zinc chloride, based on the weight of said monomer, to initiate and promote polymerization of said monomer in the presence of said aggregate, within 1 hour after mixing at a temperature of -20.degree. C. to 40.degree. C., to produce a polymer concrete having a 1 hour compressive strength greater than 2000 psi.

  5. Technology Solutions Case Study: Insulating Concrete Forms

    SciTech Connect (OSTI)

    none,

    2012-10-01

    This Pacific Northwest National Laboratory project investigated insulating concrete forms—rigid foam, hollow walls that are filled with concrete for highly insulated, hurricane-resistant construction.

  6. Diamond Shaving of Contaminated Concrete Surfaces

    SciTech Connect (OSTI)

    Mullen, Lisa K.

    2008-01-15

    Decommissioning and decontamination of existing facilities presents technological challenges. One major challenge is the removal of surface contamination from concrete floors and walls while eliminating the spread of contamination and volumetric reduction of the waste stream. Numerous methods have been tried with a varying degree of success. Recent technology has made this goal achievable and has been used successfully. This new technology is the Diamond Floor Shaver and Diamond Wall shaver. The Diamond Floor Shaver is a self-propelled, walk behind machine that literally shaves the contaminated concrete surface to specified depths. This is accomplished by using a patented system of 100 dry cutting diamond blades with offset diamond segments that interlock to provide complete shaving of the concrete surface. Grooves are eliminated which allows for a direct frisk reading to analyze results. When attached to an appropriate size vacuum, the dust produced is 100% contained. Dust is collected in drums ready for disposition and disposal. The waste produced in shaving 7,500 square feet at 1/8 inch thickness would fill a single 55 gallon drum. Production is dependent on depth of shaving but averages 100 square feet per hour. The wall shaver uses the same patented diamond drum and blades but is hydraulically driven and is deployed using a robotic arm allowing its operation to be to totally remote. It can reach ceilings as high as 20 feet. Numerous small projects were successfully completed using this technology. Large scale deployment came in 2003. Bluegrass, in conjunction with Bartlett Services, deployed this technology to support decontamination activities for closing of the Rocky Flats nuclear weapons site. Up to six floor shavers and one wall shaver were deployed in buildings B371 and B374. These buildings had up to one half-inch, fixed plutonium and beryllium contamination. Hundred-thousands of square feet of floors and walls were shaved successfully to depths of up to one half inch. Decontamination efforts were so successful the balance of the buildings could be demolished using conventional methods. The shavers helped keep the project on schedule while the vacuum system eliminated the potential for contaminants becoming airborne.

  7. Treatment of fly ash for use in concrete

    DOE Patents [OSTI]

    Boxley, Chett; Akash, Akash; Zhao, Qiang

    2013-01-08

    A process for treating fly ash to render it highly usable as a concrete additive. A quantity of fly ash is obtained that contains carbon and which is considered unusable fly ash for concrete based upon foam index testing. The fly ash is mixed with an activator solution sufficient to initiate a geopolymerization reaction and for a geopolymerized fly ash. The geopolymerized fly ash is granulated. The geopolymerized fly ash is considered usable fly ash for concrete according to foam index testing. The geopolymerized fly ash may have a foam index less than 35% of the foam index of the untreated fly ash, and in some cases less than 10% of the foam index of the untreated fly ash. The activator solution may contain an alkali metal hydroxide, carbonate, silicate, aluminate, or mixtures thereof.

  8. Treatment of fly ash for use in concrete

    DOE Patents [OSTI]

    Boxley, Chett; Akash, Akash; Zhao, Qiang

    2012-05-08

    A process for treating fly ash to render it highly usable as a concrete additive. A quantity of fly ash is obtained that contains carbon and which is considered unusable fly ash for concrete based upon foam index testing. The fly ash is mixed with an activator solution sufficient to initiate a geopolymerization reaction and for a geopolymerized fly ash. The geopolymerized fly ash is granulated. The geopolymerized fly ash is considered usable fly ash for concrete according to foam index testing. The geopolymerized fly ash may have a foam index less than 35% of the foam index of the untreated fly ash, and in some cases less than 10% of the foam index of the untreated fly ash. The activator solution may contain an alkali metal hydroxide, carbonate, silicate, aluminate, or mixtures thereof.

  9. Technology Readiness Assessments | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Waste Management » Tank Waste and Waste Processing » Technology Readiness Assessments Technology Readiness Assessments Documents Available for Download August 1, 2013 Technology Readiness Assessment (TRA)/Technology Maturation Plan (TMP) Process Guide This document is a guide for those involved in conducting TRAs and developing TMPs for DOE-EM. January 1, 2012 Compilation of TRA Summaries A compilation of all TRA Summaries November 1, 2011 Small Column Ion Exchange at Savannah River Site

  10. Readiness Review RM | Department of Energy

    Energy Savers [EERE]

    Readiness Review RM Readiness Review RM This module assists DOE Federal line management in their efforts to bring a project or facility into a condition where it is sufficiently prepared to start or resume operations prior to CD-4 approval. It is intended to be used after some, but not all, of the Standard Review Plan Commissioning Module activities are performed and before the Transition to Operations Module activities begin. PDF icon Readiness Review RM More Documents & Publications

  11. Hydrogen Infrastructure Market Readiness Workshop: Preliminary...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    attendees to convey the aggregate and "raw" feedback collected during the workshop. ... Market Readiness Workshop and Summary of Feedback Provided through the Hydrogen Station ...

  12. Project Execution and Operational Readiness Reviews

    Broader source: Energy.gov [DOE]

    PMCDP is offering its annual delivery of the 3-day course, Project Execution and Operational Readiness Reviews, December 15-17, in Washington, D.C.

  13. Get Ready for Autumn! | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Get Ready for Autumn! Get Ready for Autumn! September 22, 2015 - 6:08pm Addthis Don’t let those bright autumn leaves and clear fall sky fool you—cold weather is just around the corner. Get your home ready for the chill ahead of schedule. <em>Photo by David Parsons, NREL 6317419</em> Don't let those bright autumn leaves and clear fall sky fool you-cold weather is just around the corner. Get your home ready for the chill ahead of schedule. Photo by David Parsons, NREL 6317419

  14. Solar Ready Vets | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    The SunShot Initiative's Solar Ready Vets program connects our nation's skilled veterans to the solar energy industry, preparing them for careers as solar photovoltaic (PV) system ...

  15. EM Performs Tenth Technology Readiness Assessment

    Broader source: Energy.gov [DOE]

    WASHINGTON, D.C. – EM recently completed its tenth Technology Readiness Assessment (TRA) since piloting the TRA process in 2006.

  16. Mira Computational Readiness Assessment | Argonne Leadership...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    INCITE Program 5 Checks & 5 Tips for INCITE Mira Computational Readiness Assessment ALCC Program Director's Discretionary (DD) Program Early Science Program INCITE 2016 Projects ...

  17. ORISE: Asset Readiness Management System (ARMS)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    enables users to track the operations of scheduled exercises; determine the whereabouts, inventory and condition of DOE's equipment; and obtain readiness information on the...

  18. Technology Readiness Assessment Guide - DOE Directives, Delegations...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    4A, Technology Readiness Assessment Guide by Ruben Sanchez Functional areas: Technical Capability The Guide assists individuals and teams involved in conducting Technology...

  19. Richmond Electric Vehicle Initiative Electric Vehicle Readiness...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Florida Regional Planning Council; Virginia Department of Mines, Minerals and Energy EV Community Readiness projects: Center for Transportation and the Environment (GA, AL, SC); ...

  20. DOE Zero Energy Ready Home Verification...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Ready Home Verification Summary DRAFT REMRate - Residential ... annual energy savings Electric: 12024 kWh Natural Gas: ... Home access to utility bill data for one year ...

  1. DOE Zero Energy Ready Home Verification | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Verification DOE Zero Energy Ready Home Verification DOE Zero Energy Ready Homes Verification, a publication of the U.S. Department of Energy Zero Energy Ready Homes program. PDF icon DOE Zero Energy Ready Home - Verification Report.pdf More Documents & Publications The Appraisal Process: Be Your Own Advocate Prescriptive Path compliance form ZERO ENERGY READY HOME UPDATE NEWSLETTER AUGUST 2014

  2. Zero Energy Ready Home Training Presentation | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Zero Energy Ready Home Training Presentation Zero Energy Ready Home Training Presentation Download the DOE Zero Energy Ready Home Training, from the U.S. Department of Energy's Office of Energy Efficiency and Renewable Energy. PDF icon DOE Zero Energy Ready Home Training Presentation - October 2014 More Documents & Publications DOE ZERH Webinar: Technical Resources for Marketing and Selling Zero Energy Ready Homes

  3. DOE Zero Energy Ready Home Solar Hot Water-Ready Checklist

    Broader source: Energy.gov [DOE]

    DOE Zero Energy Ready Home National Program encourages, but does not require, consideration of this checklist. 

  4. New SPOs Ready for Duty

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    SPOs Ready for Duty 'We-Lead' ing the Way WSI-Nevada graduates new class of Security Police Officers for the NNSS. Contractors awarded DOE honor for superior safety. NNSS management embraces leadership as path to future. See page 7. See pages 4-5. "Father of Stockpile Stewardship" Reis Pays Visit to NNSS Dr. Victor H. Reis recalls with certainty the details from 1993 when he was waiting to become Assistant Secretary of Defense Programs for the U.S. Department of Energy. President

  5. DOE Zero Energy Ready Home Case Study 2013: Dwell Development...

    Energy Savers [EERE]

    ... RENEWABLE READY meets EPA Renewable Energy- Ready Home. 1 2 3 4 5 6 7 DOE ZERO ENERGY READY HOME Dwell Development 3 The home's one mini-split heat pump is almost overkill given ...

  6. DOE Zero Energy Ready Home Case Study: Mandalay Homes, Phoenix...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    DOE Zero Energy Ready Home Case Study: Mandalay Homes, Phoenix, AZ, Affordable DOE Zero Energy Ready Home Case Study: Mandalay Homes, Prescott Valley, AZ DOE Zero Energy Ready Home ...

  7. Testing of concrete by laser ablation

    DOE Patents [OSTI]

    Flesher, Dann J.; Becker, David L.; Beem, William L.; Berry, Tommy C.; Cannon, N. Scott

    1997-01-01

    A method of testing concrete in a structure in situ, by: directing a succession of pulses of laser radiation at a point on the structure so that each pulse effects removal of a quantity of concrete and transfers energy to the concrete; detecting a characteristic of energy which has been transferred to the concrete; determining, separately from the detecting step, the total quantity of concrete removed by the succession of pulses; and calculating a property of the concrete on the basis of the detected energy characteristic and the determined total quantity of concrete removed.

  8. Testing of concrete by laser ablation

    DOE Patents [OSTI]

    Flesher, D.J.; Becker, D.L.; Beem, W.L.; Berry, T.C.; Cannon, N.S.

    1997-01-07

    A method is disclosed for testing concrete in a structure in situ, by: directing a succession of pulses of laser radiation at a point on the structure so that each pulse effects removal of a quantity of concrete and transfers energy to the concrete; detecting a characteristic of energy which has been transferred to the concrete; determining, separately from the detecting step, the total quantity of concrete removed by the succession of pulses; and calculating a property of the concrete on the basis of the detected energy characteristic and the determined total quantity of concrete removed. 1 fig.

  9. Learning from Roman Seawater Concrete

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    including x-ray microdiffraction, x-ray spectroscopy, and synchrotron-based high-pressure x-ray diffraction. Analyses of the ancient samples pinpointed why the best Roman concrete...

  10. DOE Zero Energy Ready Home Resources | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Resources DOE Zero Energy Ready Home Resources DOE Zero Energy Ready Home provides resources for successfully building and selling zero-energy ready homes in today's market. DOE Zero Energy Ready Home Builder Profiles Learn more about DOE Zero Energy Ready Home Builders on their individual profiles, look up their case studies in the Building America Program Publication and Product Library, or search the Building America Solution Center. DOE Zero Energy Ready Home Sales and Marketing Building

  11. Electrically conductive polymer concrete coatings

    DOE Patents [OSTI]

    Fontana, J.J.; Elling, D.; Reams, W.

    1990-03-13

    A sprayable electrically conductive polymer concrete coating for vertical d overhead applications is described. The coating is permeable yet has low electrical resistivity (<10 ohm-cm), good bond strength to concrete substrates, and good weatherability. A preferred formulation contains about 60 wt % calcined coke breeze, 40 wt % vinyl ester with 3.5 wt % modified bentonite clay. Such formulations apply evenly and provide enough rigidity for vertical or overhead structures so there is no drip or sag.

  12. Electrically conductive polymer concrete coatings

    DOE Patents [OSTI]

    Fontana, Jack J.; Elling, David; Reams, Walter

    1990-01-01

    A sprayable electrically conductive polymer concrete coating for vertical d overhead applications is described. The coating is permeable yet has low electrical resistivity (<10 ohm-cm), good bond strength to concrete substrates, and good weatherability. A preferred formulation contains about 60 wt % calcined coke breeze, 40 wt % vinyl ester with 3.5 wt % modified bentonite clay. Such formulations apply evenly and provide enough rigidity for vertical or overhead structures so there is no drip or sag.

  13. Electrically conductive polymer concrete coatings

    DOE Patents [OSTI]

    Fontana, J.J.; Elling, D.; Reams, W.

    1988-05-26

    A sprayable electrically conductive polymer concrete coating for vertical and overhead applications is described. The coating is permeable yet has low electrical resistivity (<10 ohm-cm), good bond strength to concrete substrates, and good weatherability. A preferred formulation contains about 60 wt% calcined coke breeze, 40 wt% vinyl ester resin with 3.5 wt% modified bentonite clay. Such formulations apply evenly and provide enough rigidity for vertical or overhead structures so there is no drip or sag. 4 tabs.

  14. DOE Zero Energy Ready Home Case Study: Addison Homes, Cobbler Lane,

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Simpsonville, SC | Department of Energy Addison Homes, Cobbler Lane, Simpsonville, SC DOE Zero Energy Ready Home Case Study: Addison Homes, Cobbler Lane, Simpsonville, SC DOE Zero Energy Ready Home Case Study: Addison Homes, Cobbler Lane, Simpsonville, SC Case study of a DOE 2015 Housing Innovation Award winning custom home in the mixed humid climate that got a HERS 41 without PV, with 2x4 16" on-center walls with 1 inch rigid foam, a sealed conditioned crawl space insulated on inside

  15. DOE Zero Energy Ready Home Case Study: Caldwell and Johnson,...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Home DOE Zero Energy Ready Home Case Study: Transformations Inc., Custom House, Devens, MA DOE Zero Energy Ready Home Case Study: Heirloom Design Build, Euclid Avenue, Atlanta, GA

  16. DOE Zero Energy Ready Home Case Study, Caldwell and Johnson,...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Charlestown, RI DOE Zero Energy Ready Home: Healthy Efficient Homes - Spirit Lake, Iowa DOE Zero Energy Ready Home Case Study: Preferred Builders, Old Greenwich, CT, Custom

  17. DOE Zero Energy Ready Home Case Study: Southern Energy Homes...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Southern Energy Homes, Russellville, AL DOE Zero Energy Ready Home Case Study: Southern Energy Homes, Russellville, AL DOE Zero Energy Ready Home Case Study: Southern Energy Homes,...

  18. ZERH Webinar: Selling Zero Energy Ready Homes Made Easy: Tools...

    Office of Environmental Management (EM)

    ZERH Webinar: Selling Zero Energy Ready Homes Made Easy: Tools and Resources that Work ZERH Webinar: Selling Zero Energy Ready Homes Made Easy: Tools and Resources that Work...

  19. ZERH Webinar: Getting Enclosures Right in Zero Energy Ready Homes...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Getting Enclosures Right in Zero Energy Ready Homes ZERH Webinar: Getting Enclosures Right in Zero Energy Ready Homes Without a doubt, Joe Lstiburek is a leading authority on ...

  20. Declaration of Construction Completion and Verification of Readiness...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Declaration of Construction Completion and Verification of Readiness to Test Declaration of Construction Completion and Verification of Readiness to Test Salt Waste Processing ...

  1. The Strategic Petroleum Reserves Drawdown Readiness

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Strategic Petroleum Reserve's Drawdown Readiness DOEIG-0916 July 2014 U.S. Department of ... Audit Report on "The Strategic Petroleum Reserve's Drawdown Readiness" BACKGROUND ...

  2. DOE Zero Energy Ready Home Case Study: High Performance Homes...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    DOE Zero Energy Ready Home Case Study: High Performance Homes, Chamberlain Court 75, Gettysburg, PA DOE Zero Energy Ready Home Case Study: Sunroc Builders, Bates Avenue, Lakeland, ...

  3. DOE Zero Energy Ready Home Case Study: Sunroc Builders, Bates...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Sunroc Builders, Bates Avenue, Lakeland, FL DOE Zero Energy Ready Home Case Study: Sunroc Builders, Bates Avenue, Lakeland, FL DOE Zero Energy Ready Home Case Study: Sunroc ...

  4. UNEP-Ethiopia-Facilitating Implementation and Readiness for Mitigation...

    Open Energy Info (EERE)

    UNEP-Ethiopia-Facilitating Implementation and Readiness for Mitigation (FIRM) Redirect page Jump to: navigation, search REDIRECT Facilitating Implementation and Readiness for...

  5. Implementing a Zero Energy Ready Home Multifamily Project (Technical...

    Office of Scientific and Technical Information (OSTI)

    Implementing a Zero Energy Ready Home Multifamily Project Citation Details In-Document Search Title: Implementing a Zero Energy Ready Home Multifamily Project You are accessing ...

  6. Smart Grid Ready PV Inverters with Utility Communication | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Smart Grid Ready PV Inverters with Utility Communication Smart Grid Ready PV Inverters with Utility Communication EPRI logo.jpg -- This project is inactive -- Electric Power ...

  7. Module Embedded Microinverter Smart Grid Ready Residential Solar...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Module Embedded Microinverter Smart Grid Ready Residential Solar Electric System Module Embedded Microinverter Smart Grid Ready Residential Solar Electric System GE logo.png -- ...

  8. DOE Zero Energy Ready Home: Durable Energy Builders, Houston...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    New Paltz, NY Building America Zero Energy Ready Home Case Study: Southeast Volusia Habitat for Humanity, Edgewater, Florida DOE Zero Energy Ready Home Case Study: Shore Road ...

  9. Technology Readiness Assessment (TRA)/Technology Maturation Plan...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Technology Readiness Assessment (TRA)Technology Maturation Plan (TMP) Process Guide Technology Readiness Assessment (TRA)Technology Maturation Plan (TMP) Process Guide This ...

  10. DOE Zero Energy Ready Home: Montlake Modern - Seattle, Washington...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Montlake Modern - Seattle, Washington DOE Zero Energy Ready Home: Montlake Modern - Seattle, Washington Case study of a DOE Zero Energy Ready Home in Seattle, WA, that scored HERS ...

  11. DOE Zero Energy Ready Home Case Study: Mandalay Homes, Prescott...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Mandalay Homes, Prescott Valley, AZ DOE Zero Energy Ready Home Case Study: Mandalay Homes, Prescott Valley, AZ DOE Zero Energy Ready Home Case Study: Mandalay Homes, Prescott ...

  12. Focus Series: Program Finds Community "Readiness" Is the Key...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Program Finds Community "Readiness" Is the Key to More Retrofits Focus Series: Program Finds Community "Readiness" Is the Key to More Retrofits Focus Series: Program Finds ...

  13. Radionuclide Retention in Concrete Wasteforms - FY13

    SciTech Connect (OSTI)

    Snyder, Michelle MV; Golovich, Elizabeth C.; Wellman, Dawn M.; Crum, Jarrod V.; Lapierre, Robert; Dage, Denomy C.; Parker, Kent E.; Cordova, Elsa A.

    2013-10-15

    Assessing long-term performance of Category 3 waste cement grouts for radionuclide encasement requires knowledge of the radionuclide-cement interactions and mechanisms of retention (i.e., sorption or precipitation); the mechanism of contaminant release; the significance of contaminant release pathways; how wasteform performance is affected by the full range of environmental conditions within the disposal facility; the process of wasteform aging under conditions that are representative of processes occurring in response to changing environmental conditions within the disposal facility; the effect of wasteform aging on chemical, physical, and radiological properties; and the associated impact on contaminant release. This knowledge will enable accurate prediction of radionuclide fate when the wasteforms come in contact with groundwater. Data collected throughout the course of this work will be used to quantify the efficacy of concrete wasteforms, similar to those used in the disposal of low-level waste and mixed low-level waste, for the immobilization of key radionuclides (i.e., uranium, technetium, and iodine). Data collected will also be used to quantify the physical and chemical properties of the concrete affecting radionuclide retention.

  14. Lightning Arrestor Connectors Production Readiness

    SciTech Connect (OSTI)

    Marten, Steve; Linder, Kim; Emmons, Jim; Gomez, Antonio; Hasam, Dawud; Maurer, Michelle

    2008-10-20

    The Lightning Arrestor Connector (LAC), part “M”, presented opportunities to improve the processes used to fabricate LACs. The A## LACs were the first production LACs produced at the KCP, after the product was transferred from Pinnellas. The new LAC relied on the lessons learned from the A## LACs; however, additional improvements were needed to meet the required budget, yield, and schedule requirements. Improvement projects completed since 2001 include Hermetic Connector Sealing Improvement, Contact Assembly molding Improvement, development of a second vendor for LAC shells, general process improvement, tooling improvement, reduction of the LAC production cycle time, and documention of the LAC granule fabrication process. This report summarizes the accomplishments achieved in improving the LAC Production Readiness.

  15. Hawaii Gets 'EV Ready' | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Gets 'EV Ready' Hawaii Gets 'EV Ready' January 31, 2012 - 11:09am Addthis Last July, Governor Neil Abercrombie unveiled the first public charging station installed in the state capitol’s underground parking garage with the "Hawaii EV Ready" program. In 2011, rebates were approved for 237 electric vehicles and 168 chargers. | Photo courtesy of the Office of the Governor. Last July, Governor Neil Abercrombie unveiled the first public charging station installed in the state capitol's

  16. Time to Start Getting Ready for Cori

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Time to Start Getting Ready for Cori Time to Start Getting Ready for Cori February 4, 2015 by Richard Gerber Cori is coming and it's time to start getting ready. Yes, NERSC's Intel Xeon Phi-based system is still more than a year away, but if you're not already thinking about how you're going to use it, you need to get started. That's because to get your codes to run well (or maybe at all) on NERSC's first "many-core" system it is going to take more than a simple recompile. It's no

  17. Zero Energy Ready Home | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    2-story, 1,650-ft2 cabin built by a custom home builder for his own family meets Passive House Standards with 5.5-in. ZERH Events ZERH Webinar: Selling Zero Energy Ready Homes...

  18. Hydrogen Infrastructure Market Readiness Workshop: Preliminary Results

    Broader source: Energy.gov [DOE]

    Preliminary results from the Hydrogen Infrastructure Market Readiness Workshop held February 16-17, 2011. This presentation was disseminated to workshop attendees to convey the aggregate and "raw" feedback collected during the workshop.

  19. Hydrogen Infrastructure Market Readiness Workshop Agenda

    Broader source: Energy.gov [DOE]

    Agenda from the Hydrogen Infrastructure Market Readiness Workshop, hosted by the U.S. Department of Energy's National Renewable Energy Laboratory, February 16-17, 2011, in Washington, DC.

  20. Connecting Ready-to-Work Americans with Ready-to-Be-Filled Jobs in

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Southwest Louisiana | Department of Energy Connecting Ready-to-Work Americans with Ready-to-Be-Filled Jobs in Southwest Louisiana Connecting Ready-to-Work Americans with Ready-to-Be-Filled Jobs in Southwest Louisiana August 7, 2014 - 1:21pm Addthis On July 9, 2014, nearly 60 participants gathered at SOWELA Technical Community College to share information and learn about energy investments that will bring billions of dollars and thousands of in-demand energy jobs to the region. On July 9,

  1. Materials Discovery across Technological Readiness Levels | Materials

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Science | NREL Materials Discovery across Technological Readiness Levels Materials discovery is important across technology readiness levels: basic science, applied research, and device development. Over the past several years, NREL has worked at each of these levels, demonstrating our competence in a broad range of materials discovery problems. Basic Science An image of a triangular diagram with tantalum-cobalt-tin at the top vertex, tantalum at the lower left vertex, and cobalt at the

  2. Zero Energy Ready Home Update Newsletter | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Zero Energy Ready Home Update Newsletter Zero Energy Ready Home Update Newsletter Zero Energy Ready Home Update Newsletter Welcome to Zero Energy Ready Home Update-your connection to news from the U.S. Department of Energy's Zero Energy Ready Home program, which supports housing industry leaders with the tools necessary to reach a whole new level of home performance that ensures outstanding levels of energy savings, comfort, health and durability. Each monthly edition brings you the latest

  3. Zero Energy Ready Home Newsletter: April 2016 | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Newsletter: April 2016 Zero Energy Ready Home Newsletter: April 2016 TABLE OF CONTENTS A Note From Sam Rashkin: Welcome to the Zero Energy Ready Home Housing Innovation Awards ZERH Webinar: Successful Strategies for the Housing Innovation Awards PDF icon ZERH Update April 2016.pdf More Documents & Publications ZERO ENERGY READY HOME UPDATE NEWSLETTER AUGUST 2014 DOE ZERO ENERGY READY HOME UPDATE NEWSLETTER APRIL 2015 DOE ZERO ENERGY READY HOME UPDATE NEWSLETTER JANUARY 2016

  4. Quick-setting concrete and a method for making quick-setting concrete

    DOE Patents [OSTI]

    Wagh, Arun S. (Joliet, IL); Singh, Dileep (Westmont, IL); Pullockaran, Jose D. (Trenton, NJ); Knox, Lerry (Glen Ellyn, IL)

    1997-01-01

    A method for producing quick setting concrete is provided comprising hydrng a concrete dry mixture with carbonate solution to create a slurry, and allowing the slurry to cure. The invention also provides for a quick setting concrete having a predetermined proportion of CaCO.sub.3 of between 5 and 23 weight percent of the entire concrete mixture, and whereby the concrete has a compression strength of approximately 4,000 pounds per square inch (psi) within 24 hours after pouring.

  5. Radionuclide Migration through Sediment and Concrete: 16 Years of Investigations

    SciTech Connect (OSTI)

    Golovich, Elizabeth C.; Mattigod, Shas V.; Snyder, Michelle MV; Powers, Laura; Whyatt, Greg A.; Wellman, Dawn M.

    2014-11-06

    The Waste Management Project provides safe, compliant, and cost-effective waste management services for the Hanford Site and the U.S. Department of Energy (DOE) complex. Part of these services includes safe disposal of low-level waste and mixed low-level waste at the Hanford Low-Level Waste Burial Grounds in accordance with the requirements of DOE Order 435.1, Radioactive Waste Management. To partially satisfy these requirements, performance assessment analyses were completed and approved. DOE Order 435.1 also requires continuing data collection to increase confidence in the critical assumptions used in these analyses to characterize the operational features of the disposal facility that are relied on to satisfy the performance objectives identified in the order. Cement-based solidification and stabilization is considered for hazardous waste disposal because it is easily done and cost-efficient. One critical assumption is that concrete will be used as a waste form or container material at the Hanford Site to control and minimize the release of radionuclide constituents in waste into the surrounding environment. Concrete encasement would contain and isolate the waste packages from the hydrologic environment and act as an intrusion barrier. Any failure of concrete encasement may result in water intrusion and consequent mobilization of radionuclides from the waste packages. The radionuclides iodine-129, selenium-75, technetium-99, and uranium-238 have been identified as long-term dose contributors (Mann et al. 2001; Wood et al. 1995). Because of their anionic nature in aqueous solutions, these constituents of potential concern may be released from the encased concrete by mass flow and/or diffusion and migrate into the surrounding subsurface environment (Serne et al. 1989; 1992; 1993a, b; 1995). Therefore, it is necessary to assess the performance of the concrete encasement structure and the ability of the surrounding soil to retard radionuclide migration. Each of the test methods performed throughout the lifetime of the project has focused on different aspects of the concrete waste form weathering process. Diffusion of different analytes [technetium-99 (Tc-99), iodine-125 (I-125), stable iodine (I), uranium (U), and rhenium (Re)] has been quantified from experiments under both saturated and unsaturated conditions. The water-saturated conditions provide a conservative estimate of the concrete’s performance in situ, and the unsaturated conditions provide a more accurate estimate of the diffusion of contaminants from the concrete.

  6. Technology Readiness and the Smart Grid

    SciTech Connect (OSTI)

    Kirkham, Harold; Marinovici, Maria C.

    2013-02-27

    Technology Readiness Levels (TRLs) originated as a way for the National Aeronautics and Space Administration (NASA) to monitor the development of systems being readied for space. The technique has found wide application as part of the more general topic of system engineering. In this paper, we consider the applicability of TRLs to systems being readied for the smart grid. We find that there are many useful parallels, and much to be gained by this application. However, TRLs were designed for a developer who was also a user. That is not usually the case for smart grid developments. We consider the matter from the point of view of the company responsible for implementation, typically a utility, and we find that there is a need for connecting the many standards in the industry. That connection is explored, and some new considerations are introduced.

  7. Zero Energy Ready Home | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Home Zero Energy Ready Home A DOE Zero Energy Ready Home is a high performance home which is so energy efficient, that a renewable energy system can offset all or most of its annual energy consumption. Since 2008, the U.S. De Zero_Home_MASTER_Mark ZERH site.jpg partment of Energy's (DOE) Builders Challenge program has recognized hundreds of leading builders for their achievements in energy efficiency-resulting in over 14,000 energy efficient homes and millions of dollars in energy savings. The

  8. NHI Component Technical Readiness Evaluation System

    SciTech Connect (OSTI)

    Steven R. Sherman; Dane F. Wilson; Steven J. Pawel

    2007-09-01

    A decision process for evaluating the technical readiness or maturity of components (i.e., heat exchangers, chemical reactors, valves, etc.) for use by the U.S. DOE Nuclear Hydrogen Initiative is described. This system is used by the DOE NHI to assess individual components in relation to their readiness for pilot-scale and larger-scale deployment and to drive the research and development work needed to attain technical maturity. A description of the evaluation system is provided, and examples are given to illustrate how it is used to assist in component R&D decisions.

  9. Constructing earth sheltered housing with concrete

    SciTech Connect (OSTI)

    Spears, R.E.

    1981-01-01

    This manual provides a state - of - the - art review of the design and construction of an earth - sheltered house using cast - in - place concrete, precast concrete, and concrete masonry. Based on a literature survey, theoretical work, and discussions with researchers and engineers in the concrete industry, the text is designed for use by architects, engineers, and homebuilders. The features of concrete construction that are current accepted practice for the concrete products discussed are shown to be applicable with reasonable care to building a safe, dry, and comfortable earth - sheltered house. The main considerations underlying the recommendations were the use of the earth's mass and passive solar effects to minimize energy needs, the structural capacity of the separate concrete products and their construction methods, and drainage principles and waterproofing details. Shelter ranging from those with at least 2 feet of earth cover to those with an uncovered roof of usual construction are included. To be considered an earth - sheltered residential building, at least half of the exterior wall and roof area that is in direct contact with the conditioned living space must be sheltered from the environment by earth berm or earthfill. Siting considerations, the fundamentals of passive solar heating, planning considerations, and structural considerations are discussed. Detailed guidelines are provided on concrete masonry construction, joint details in walls and floors, waterproofing, formwork and form removal, concrete construction practices, concrete masonry, and surface finishes. Numerous illustrations, tables, and a list of 32 references are provided. (Author abstract modified).

  10. DOE Zero Energy Ready Home Case Study: Heirloom Design Build...

    Broader source: Energy.gov (indexed) [DOE]

    PDF icon DOE Zero Energy Ready Home Case Study: Heirloom Design Build, Atlanta, GA More Documents & Publications DOE Zero Energy Ready Home Case Study: The Imery Group, Serenbe, GA ...

  11. DOE Zero Energy Ready Home Case Study: Weiss Building & Development...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    LLC., Custom Home, Downers Grove, IL DOE Zero Energy Ready Home Case Study: Weiss Building & Development LLC., Custom Home, Downers Grove, IL Case study of a DOE Zero Energy Ready ...

  12. Guidelines for Correctly Using the DOE Zero Energy Ready Home...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Guidelines for Correctly Using the DOE Zero Energy Ready Home Name and Logo Guidelines for Correctly Using the DOE Zero Energy Ready Home Name and Logo PDF icon ZERH Logo Use ...

  13. DOE Zero Energy Ready Home Case Study: Dwell Development, Reclaimed...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Seattle, WA, Systems Home DOE Zero Energy Ready Home: Montlake Modern - Seattle, Washington DOE Zero Energy Ready Home Case Study: Palo Duro Homes, Via del Cielo, Santa Fe, NM

  14. Building America Top Innovations 2013 Profile - Zero Energy-Ready...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Building America Top Innovations 2013 Profile - Zero Energy-Ready Single-Family Homes Building America Top Innovations 2013 Profile - Zero Energy-Ready Single-Family Homes Many ...

  15. DOE Zero Energy Ready Home Savings and Cost Estimate Summary...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Savings and Cost Estimate Summary DOE Zero Energy Ready Home Savings and Cost Estimate Summary The U.S. Department of Energy Zero Energy Ready Home Savings and Cost Estimate ...

  16. DOE Zero Energy Ready Home Case Study: Brookside Development...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    DOE Zero Energy Ready Home Case Study: Brookside Development, Derby, CT Case study of a DOE Zero Energy Ready home in Derby, CT, that achieves a HERS score of 45 without PV or HERS ...

  17. DOE Zero Ready Home Case Study: Greenhill Contracting, The Preserve...

    Energy Savers [EERE]

    solar-ready components for low or no utility bills in a ... a checklist of "renewable-ready" solar power measures. Aebi's homes also meet the LEED for Homes silver level. "They ...

  18. DOE Zero Ready Home Case Study: Caldwell and Johnson, Church...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... U.S. DOE ZERO ENERGY READY HOME DOE ZERO ENERGY READY HOME Caldwell and Johnson 2 "There is a perception that energy-efficient construction is too expensive to be affordable," said ...

  19. DOE Zero Energy Ready Home Case Study: Garbett Homes, Herriman...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    More Documents & Publications DOE Zero Energy Ready Home Case Study: Palo Duro Homes, Via del Cielo, Santa Fe, NM DOE Zero Energy Ready Home Case Study: Charles Thomas Homes, Anna ...

  20. ZERH Webinar: Getting Enclosures Right in Zero Energy Ready Homes...

    Office of Environmental Management (EM)

    ZERH Webinar: Getting Enclosures Right in Zero Energy Ready Homes ZERH Webinar: Getting Enclosures Right in Zero Energy Ready Homes February 16, 2016 12:00PM to 1:15PM EST...

  1. ZERH Webinar: Sales and Value Recognition of Zero Energy Ready...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ZERH Webinar: Sales and Value Recognition of Zero Energy Ready Homes ZERH Webinar: Sales and Value Recognition of Zero Energy Ready Homes December 18, 2014 12:00PM to 1:15PM EST ...

  2. ENERGY STAR Webinar: Zero Energy Ready Home Program

    Broader source: Energy.gov [DOE]

    Once a home is as good as ENERGY STAR, the modest added lift to bring a home up to DOEs Zero Energy Ready specs unleashes a wave of powerful value messages. DOE Zero Energy Ready Homes live...

  3. DOE Zero Energy Ready Home Case Study: Green Extreme Homes &...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Green Extreme Homes & Carl Franklin Homes, Garland, TX DOE Zero Energy Ready Home Case Study: Green Extreme Homes & Carl Franklin Homes, Garland, TX DOE Zero Energy Ready Home Case ...

  4. University of Michigan Gets Offshore Wind Ready for Winter on...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Michigan Gets Offshore Wind Ready for Winter on Lake Michigan University of Michigan Gets Offshore Wind Ready for Winter on Lake Michigan April 16, 2013 - 12:00am Addthis The ...

  5. DOE Zero Energy Ready Home Case Study: Ithaca Neighborhood Housing...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    DOE Zero Energy Ready Home Case Study: Ithaca Neighborhood Housing Services, Ithaca, NY Case study of a DOE Zero Energy Ready Home in Ithaca, NY, that scored HERS 50 without PV. ...

  6. DOE Zero Energy Ready Home Case Study: Mandalay Homes, Vision...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    DOE Zero Energy Ready Home Case Study: Mandalay Homes, Vision Hill Lot 1, Glendale, AZ DOE Zero Energy Ready Home Case Study: Mandalay Homes, Prescott Valley, AZ DOE Zero Energy ...

  7. Solar Ready Vets: Preparing Veterans for the Solar Workforce | Department

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    of Energy Solar Ready Vets: Preparing Veterans for the Solar Workforce Solar Ready Vets: Preparing Veterans for the Solar Workforce Addthis Description Solar Ready Vets, created by the Department of Energy's SunShot Initiative, connects our nation's transitioning veterans to the growing solar energy industry. As these active duty service members prepare to enter the civilian world, the Solar Ready Vets program offers them the opportunity to learn about all aspects of the solar industry in a

  8. Communities Plug In To Electric Vehicle Readiness | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Communities Plug In To Electric Vehicle Readiness Communities Plug In To Electric Vehicle Readiness September 16, 2014 - 4:24pm Addthis The City of Auburn Hills, Michigan, participated in one of 16 Clean Cities plug-in electric vehicle (PEV) community-readiness projects across the country. | Photo courtesy of City of Auburn Hills. The City of Auburn Hills, Michigan, participated in one of 16 Clean Cities plug-in electric vehicle (PEV) community-readiness projects across the country. | Photo

  9. What's Your PEV Readiness Score? | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    What's Your PEV Readiness Score? What's Your PEV Readiness Score? February 14, 2013 - 10:30am Addthis PEV readiness is a community-wide effort that requires charging infrastructure, planning, regulations and support services. The new PEV Scorecard helps communities determine their PEV friendliness. | Photo courtesy of IKEA Orlando. PEV readiness is a community-wide effort that requires charging infrastructure, planning, regulations and support services. The new PEV Scorecard helps communities

  10. Technology Readiness Assessment (TRA)/Technology Maturation Plan (TMP)

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Process Guide | Department of Energy Technology Readiness Assessment (TRA)/Technology Maturation Plan (TMP) Process Guide Technology Readiness Assessment (TRA)/Technology Maturation Plan (TMP) Process Guide This document is a guide for those involved in conducting TRAs and developing TMPs for DOE-EM. PDF icon Technology Readiness Assessment (TRA)/Technology Maturation Plan (TMP) Process Guide More Documents & Publications Technology Readiness Assessment Report Small Column Ion Exchange

  11. DOE Zero Energy Ready Home National Program Requirements (Rev. 04) |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Home National Program Requirements (Rev. 04) DOE Zero Energy Ready Home National Program Requirements (Rev. 04) U.S. Department of Energy Zero Energy Ready Home National Program Requirements (Rev. 04) PDF icon DOE Zero Energy Ready Home National Program Requirements Rev04.pdf More Documents & Publications DOE Zero Energy Ready Home National Program Requirements (Rev. 05) California DOE ZERH Program Requiremets DOE Challenge Home, California Program Requirements

  12. DOE Zero Energy Ready Home National Program Requirements (Rev. 05)

    Broader source: Energy.gov [DOE]

    U.S. Department of Energy Zero Energy Ready Home National Program Requirements (Rev. 05), May, 11, 2015.

  13. Properties of slag concrete for low-level waste containment

    SciTech Connect (OSTI)

    Langton, C.A. (Westinghouse Savannah River Co., Aiken, SC (United States)); Wong, P.B. (Bechtel National, Inc., Aiken, SC (United States))

    1991-01-01

    Ground granulated blast furnace slag was incorporated in the concrete mix used for construction of low-level radioactive waste disposal vaults. The vaults were constructed as six 100 {times} 100 {times} 25 ft cells with each cell sharing internal walls with the two adjacent cells. The vaults were designed to contain a low-level radioactive wasteform called saltstone and to isolate the saltstone from the environment until the landfill is closed. Closure involves backfilling with native soil, installation of clay cap, and run-off control. The design criteria for the slag-substituted concrete included compressive strength, 4000 psi after 28 days; slump, 6 inch; permeability, less than 10{sup {minus}7} cm/sec; and effective nitrate, chromium and technetium diffusivities of 10{sup {minus}8}, 10{sup {minus}12} and 10{sup {minus}12} cm{sup 2}/sec, respectively. The reducing capacity of the slag resulted in chemically reducing Cr{sup +6} to Cr{sup +3} and Tc{sup +7} to Tc{sup +4} and subsequent precipitation of the respective hydroxides in the alkaline pore solution. Consequently, the concrete vault enhances containment of otherwise mobile waste ions and contributes to the overall protection of the groundwater at the disposal site.

  14. Properties of slag concrete for low-level waste containment

    SciTech Connect (OSTI)

    Langton, C.A. [Westinghouse Savannah River Co., Aiken, SC (United States); Wong, P.B. [Bechtel National, Inc., Aiken, SC (United States)

    1991-12-31

    Ground granulated blast furnace slag was incorporated in the concrete mix used for construction of low-level radioactive waste disposal vaults. The vaults were constructed as six 100 {times} 100 {times} 25 ft cells with each cell sharing internal walls with the two adjacent cells. The vaults were designed to contain a low-level radioactive wasteform called saltstone and to isolate the saltstone from the environment until the landfill is closed. Closure involves backfilling with native soil, installation of clay cap, and run-off control. The design criteria for the slag-substituted concrete included compressive strength, 4000 psi after 28 days; slump, 6 inch; permeability, less than 10{sup {minus}7} cm/sec; and effective nitrate, chromium and technetium diffusivities of 10{sup {minus}8}, 10{sup {minus}12} and 10{sup {minus}12} cm{sup 2}/sec, respectively. The reducing capacity of the slag resulted in chemically reducing Cr{sup +6} to Cr{sup +3} and Tc{sup +7} to Tc{sup +4} and subsequent precipitation of the respective hydroxides in the alkaline pore solution. Consequently, the concrete vault enhances containment of otherwise mobile waste ions and contributes to the overall protection of the groundwater at the disposal site.

  15. Readiness to proceed: Characterization planning basis

    SciTech Connect (OSTI)

    Adams, M.R.

    1998-01-19

    This report summarizes characterization requirements, data availability, and data acquisition plans in support of the Phase 1 Waste Feed Readiness to Proceed Mid-Level Logic. It summarizes characterization requirements for the following program planning documents: Waste Feed Readiness Mid-Level Logic and Decomposition (in development); Master blue print (not available); Tank Waste Remediation System (TWRS) Operations and Utilization Plan and Privatization Contract; Enabling assumptions (not available); Privatization low-activity waste (LAW) Data Quality Objective (DQO); Privatization high-level waste (HLW) DQO (draft); Problem-specific DQOs (in development); Interface control documents (draft). Section 2.0 defines the primary objectives for this report, Section 3.0 discusses the scope and assumptions, and Section 4.0 identifies general characterization needs and analyte-specific characterization needs or potential needs included in program documents and charts. Section 4.0 also shows the analyses that have been conducted, and the archive samples that are available for additional analyses. Section 5.0 discusses current plans for obtaining additional samples and analyses to meet readiness-to-proceed requirements. Section 6.0 summarizes sampling needs based on preliminary requirements and discusses other potential characterization needs. Many requirements documents are preliminary. In many cases, problem-specific DQOs have not been drafted, and only general assumptions about the document contents could be obtained from the authors. As a result, the readiness-to-proceed characterization requirements provided in this document are evolving and may change.

  16. Solar Ready Vets: Inside the Training

    Broader source: Energy.gov [DOE]

    EERE's Solar Ready Vets program provides training in solar technology for service members leaving the military. It's a win for both: veterans enter the workforce equipped with skills that are increasingly in demand, while solar technology companies get workers with military discipline and can-do spirit.

  17. CRAD, Facility Safety- Readiness Review Program

    Broader source: Energy.gov [DOE]

    A section of Appendix C to DOE G 226.1-2 "Federal Line Management Oversight of Department of Energy Nuclear Facilities." Consists of Criteria Review and Approach Documents (CRADs) that can be used for assessment of a contractor's Readiness Review Program.

  18. Concrete Pour in NSLS-II Ring

    ScienceCinema (OSTI)

    Bruno Semon

    2013-07-22

    The mezzanine floor of the ring building tunnel for NSLS-II was completed when the last concrete was placed in February 2011.

  19. EVALUATION OF SULFATE ATTACK ON SALTSTONE VAULT CONCRETE AND SALTSTONESIMCO TECHNOLOGIES, INC. PART1 FINAL REPORT

    SciTech Connect (OSTI)

    Langton, C

    2008-08-19

    This report summarizes the preliminary results of a durability analysis performed by SIMCO Technologies Inc. to assess the effects of contacting saltstone Vaults 1/4 and Disposal Unit 2 concretes with highly alkaline solutions containing high concentrations of dissolved sulfate. The STADIUM{reg_sign} code and data from two surrogate concretes which are similar to the Vaults 1/4 and Disposal Unit 2 concretes were used in the preliminary durability analysis. Simulation results for these surrogate concrete mixes are provided in this report. The STADIUM{reg_sign} code will be re-run using transport properties measured for the SRS Vaults 1/4 and Disposal Unit 2 concrete samples after SIMCO personnel complete characterization testing on samples of these materials. Simulation results which utilize properties measured for samples of Vaults 1/4 and Disposal Unit 2 concretes will be provided in Revision 1 of this report after property data become available. The modeling performed to date provided the following information on two concrete mixes that will be used to support the Saltstone PA: (1) Relationship between the rate of advancement of the sulfate front (depth of sulfate ion penetration into the concrete) and the rate of change of the concrete permeability and diffusivity. (2) Relationship between the sulfate ion concentration in the corrosive leachate and the rate of the sulfate front progression. (3) Equation describing the change in hydraulic properties (hydraulic conductivity and diffusivity) as a function of sulfate ion concentration in the corrosive leachate. These results have been incorporated into the current Saltstone PA analysis by G. Flach (Flach, 2008). In addition, samples of the Saltstone Vaults 1/4 and Disposal Unit 2 concretes have been prepared by SIMCO Technologies, Inc. Transport and physical properties for these materials are currently being measured and sulfate exposure testing to three high alkaline, high sulfate leachates provided by SRNL is underway to validate the predicted results. Samples of saltstone were also prepared and will be evaluated for durability using the STADIUM{reg_sign} code and SIMCO methodology. Results available as of August 15 are included in this draft report. A complete set of results for saltstone will be available by December 31, 2008.

  20. High temperature polymer concrete compositions

    DOE Patents [OSTI]

    Fontana, Jack J.; Reams, Walter

    1985-01-01

    This invention is concerned with a polymer concrete composition, which is a two-component composition useful with many bases including metal. Component A, the aggregate composition, is broadly composed of silica, silica flour, portland cement, and acrylamide, whereas Component B, which is primarily vinyl and acrylyl reactive monomers, is a liquid system. A preferred formulation emphasizing the major necessary components is as follows: ______________________________________ Component A: Silica sand 60-77 wt. % Silica flour 5-10 wt. % Portland cement 15-25 wt. % Acrylamide 1-5 wt. % Component B: Styrene 50-60 wt. % Trimethylolpropane 35-40 wt. % trimethacrylate ______________________________________ and necessary initiators, accelerators, and surfactants.

  1. NGNP Infrastructure Readiness Assessment: Consolidation Report

    SciTech Connect (OSTI)

    Brian K Castle

    2011-02-01

    The Next Generation Nuclear Plant (NGNP) project supports the development, demonstration, and deployment of high temperature gas-cooled reactors (HTGRs). The NGNP project is being reviewed by the Nuclear Energy Advisory Council (NEAC) to provide input to the DOE, who will make a recommendation to the Secretary of Energy, whether or not to continue with Phase 2 of the NGNP project. The NEAC review will be based on, in part, the infrastructure readiness assessment, which is an assessment of industry's current ability to provide specified components for the FOAK NGNP, meet quality assurance requirements, transport components, have the necessary workforce in place, and have the necessary construction capabilities. AREVA and Westinghouse were contracted to perform independent assessments of industry's capabilities because of their experience with nuclear supply chains, which is a result of their experiences with the EPR and AP-1000 reactors. Both vendors produced infrastructure readiness assessment reports that identified key components and categorized these components into three groups based on their ability to be deployed in the FOAK plant. The NGNP project has several programs that are developing key components and capabilities. For these components, the NGNP project have provided input to properly assess the infrastructure readiness for these components.

  2. Radiation Damage In Reactor Cavity Concrete

    SciTech Connect (OSTI)

    Field, Kevin G; Le Pape, Yann; Naus, Dan J; Remec, Igor; Busby, Jeremy T; Rosseel, Thomas M; Wall, Dr. James Joseph

    2015-01-01

    License renewal up to 60 years and the possibility of subsequent license renewal to 80 years has established a renewed focus on long-term aging of nuclear generating stations materials, and recently, on concrete. Large irreplaceable sections of most nuclear generating stations include concrete. The Expanded Materials Degradation Analysis (EMDA), jointly performed by the Department of Energy, the Nuclear Regulatory Commission and Industry, identified the urgent need to develop a consistent knowledge base on irradiation effects in concrete [1]. Much of the historical mechanical performance data of irradiated concrete [2] does not accurately reflect typical radiation conditions in NPPs or conditions out to 60 or 80 years of radiation exposure [3]. To address these potential gaps in the knowledge base, The Electric Power Research Institute and Oak Ridge National Laboratory are working to disposition radiation damage as a degradation mechanism. This paper outlines the research program within this pathway including: (i) defining the upper bound of the neutron and gamma dose levels expected in the biological shield concrete for extended operation (80 years of operation and beyond), (ii) determining the effects of neutron and gamma irradiation as well as extended time at temperature on concrete, (iii) evaluating opportunities to irradiate prototypical concrete under accelerated neutron and gamma dose levels to establish a conservative bound and share data obtained from different flux, temperature, and fluence levels, (iv) evaluating opportunities to harvest and test irradiated concrete from international NPPs, (v) developing cooperative test programs to improve confidence in the results from the various concretes and research reactors, (vi) furthering the understanding of the effects of radiation on concrete (see companion paper) and (vii) establishing an international collaborative research and information exchange effort to leverage capabilities and knowledge.

  3. Radiation Damage In Reactor Cavity Concrete

    SciTech Connect (OSTI)

    Field, Kevin G; Le Pape, Yann; Naus, Dan J; Remec, Igor; Busby, Jeremy T; Rosseel, Thomas M; Wall, Dr. James Joseph

    2015-01-01

    License renewal up to 60 years and the possibility of subsequent license renewal to 80 years has established a renewed focus on long-term aging of nuclear generating stations materials, and recently, on concrete. Large irreplaceable sections of most nuclear generating stations include concrete. The Expanded Materials Degradation Analysis (EMDA), jointly performed by the Department of Energy, the Nuclear Regulatory Commission and Industry, identified the urgent need to develop a consistent knowledge base on irradiation effects in concrete. Much of the historical mechanical performance data of irradiated concrete does not accurately reflect typical radiation conditions in NPPs or conditions out to 60 or 80 years of radiation exposure. To address these potential gaps in the knowledge base, The Electric Power Research Institute and Oak Ridge National Laboratory are working to disposition radiation damage as a degradation mechanism. This paper outlines the research program within this pathway including: (i) defining the upper bound of the neutron and gamma dose levels expected in the biological shield concrete for extended operation (80 years of operation and beyond), (ii) determining the effects of neutron and gamma irradiation as well as extended time at temperature on concrete, (iii) evaluating opportunities to irradiate prototypical concrete under accelerated neutron and gamma dose levels to establish a conservative bound and share data obtained from different flux, temperature, and fluence levels, (iv) evaluating opportunities to harvest and test irradiated concrete from international NPPs, (v) developing cooperative test programs to improve confidence in the results from the various concretes and research reactors, (vi) furthering the understanding of the effects of radiation on concrete (see companion paper) and (vii) establishing an international collaborative research and information exchange effort to leverage capabilities and knowledge.

  4. Analytical Results For MOX Colemanite Concrete Samples Received On November, 2013

    SciTech Connect (OSTI)

    Reigel, Marissa M.

    2013-12-18

    The Mixed Oxide Fuel Fabrication Facility (MFFF) will use colemanite bearing concrete neutron absorber panels credited with attenuating neutron flux in the criticality design analyses and shielding operators from radiation. The Savannah River National Laboratory (SRNL) is tasked with measuring the total density, partial hydrogen density, and partial boron density of the colemanite concrete. SRNL received two samples of colemanite concrete for analysis on November 21, 2013. The average total density of each of the samples measured by the ASTM method C 642, the average partial hydrogen density was measured using method ASTM E 1131, and the average partial boron density of each sample was measured according to ASTM C 1301. For all the samples tested, the total density and the boron partial density met or exceeded the specified limit. None of the samples met the lower limit for hydrogen partial density.

  5. ANALYTICAL RESULTS FOR MOX COLEMANITE CONCRETE SAMPLES RECEIVED ON SEPTEMBER 4, 2013

    SciTech Connect (OSTI)

    Reigel, M.

    2014-05-19

    The Mixed Oxide Fuel Fabrication Facility (MFFF) will use colemanite bearing concrete neutron absorber panels credited with attenuating neutron flux in the criticality design analyses and shielding operators from radiation. The Savannah River National Laboratory (SRNL) is tasked with measuring the total density, partial hydrogen density, and partial boron density of the colemanite concrete. SRNL received three samples of colemanite concrete for analysis on September 4, 2013. The average total density of each of the samples measured by the ASTM method C 642, the average partial hydrogen density was measured using method ASTM E 1131, and the average partial boron density of each sample was measured according to ASTM C 1301. The lower limits and measured values for the total density, hydrogen partial density, and boron partial density are presented. For all the samples tested, the total density and the boron partial density met or exceeded the specified limit. None of the samples met the lower limit for hydrogen partial density.

  6. ANALYTICAL RESULTS FOR MOX COLEMANITE CONCRETE SAMPLES RECEIVED ON NOVEMBER 21, 2013

    SciTech Connect (OSTI)

    Reigel, M.

    2014-05-19

    The Mixed Oxide Fuel Fabrication Facility (MFFF) will use colemanite bearing concrete neutron absorber panels credited with attenuating neutron flux in the criticality design analyses and shielding operators from radiation. The Savannah River National Laboratory (SRNL) is tasked with measuring the total density, partial hydrogen density, and partial boron density of the colemanite concrete. SRNL received two samples of colemanite concrete for analysis on November 21, 2013. The average total density of each of the samples measured by the ASTM method C 642, the average partial hydrogen density was measured using method ASTM E 1131, and the average partial boron density of each sample was measured according to ASTM C 1301. The lower limits and measured values for the total density, hydrogen partial density, and boron partial density are presented. For all the samples tested, the total density and the boron partial density met or exceeded the specified limit. None of the samples met the lower limit for hydrogen partial density.

  7. Application of Nonlinear Elastic Resonance Spectroscopy For Damage Detection In Concrete: An Interesting Story

    SciTech Connect (OSTI)

    Byers, Loren W.; Ten Cate, James A.; Johnson, Paul A.

    2012-06-28

    Nonlinear resonance ultrasound spectroscopy experiments conducted on concrete cores, one chemically and mechanically damaged by alkali-silica reactivity, and one undamaged, show that this material displays highly nonlinear wave behavior, similar to many other damaged materials. They find that the damaged sample responds more nonlinearly, manifested by a larger resonant peak and modulus shift as a function of strain amplitude. The nonlinear response indicates that there is a hysteretic influence in the stress-strain equation of state. Further, as in some other materials, slow dynamics are present. The nonlinear response they observe in concrete is an extremely sensitive indicator of damage. Ultimately, nonlinear wave methods applied to concrete may be used to guide mixing, curing, or other production techniques, in order to develop materials with particular desired qualities such as enhanced strength or chemical resistance, and to be used for damage inspection.

  8. Analytical Results For MOX Colemanite Concrete Samples Received On September 4, 2013

    SciTech Connect (OSTI)

    Reigel, Marissa M.

    2013-09-24

    The Mixed Oxide Fuel Fabrication Facility (MFFF) will use colemanite bearing concrete neutron absorber panels credited with attenuating neutron flux in the criticality design analyses and shielding operators from radiation. The Savannah River National Laboratory (SRNL) is tasked with measuring the total density, partial hydrogen density, and partial boron density of the colemanite concrete. SRNL received three samples of colemanite concrete for analysis on September 4, 2013. The average total density of each of the samples measured by the ASTM method C 642, the average partial hydrogen density was measured using method ASTM E 1131, and the average partial boron density of each sample was measured according to ASTM C 1301. The lower limits and measured values for the total density, hydrogen partial density, and boron partial density are presented. For all the samples tested, the total density and the boron partial density met or exceeded the specified limit. None of the samples met the lower limit for hydrogen partial density.

  9. Immobilization of iodine in concrete

    DOE Patents [OSTI]

    Clark, Walter E.; Thompson, Clarence T.

    1977-04-12

    A method for immobilizing fission product radioactive iodine recovered from irradiated nuclear fuel comprises combining material comprising water, Portland cement and about 3-20 wt. % iodine as Ba(IO.sub.3).sub.2 to provide a fluid mixture and allowing the fluid mixture to harden, said Ba(IO.sub.3).sub.2 comprising said radioactive iodine. An article for solid waste disposal comprises concrete prepared by this method. BACKGROUND OF THE INVENTION This invention was made in the course of, or under a contract with the Energy Research and Development Administration. It relates in general to reactor waste solidification and more specifically to the immobilization of fission product radioactive iodine recovered from irradiated nuclear fuel for underground storage.

  10. NERSC Hosts Application Readiness and Portability Meeting with OLCF and

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ALCF Hosts Application Readiness and Portability Meeting with OLCF and ALCF NERSC Hosts Application Readiness and Portability Meeting with OLCF and ALCF September 25, 2014 Over 30 staff members from NERSC, Oak Ridge Leadership Computing Facility and Argonne Leadership Computing Facility met at Berkeley Lab's Oakland Scientific Facility September 24-25 to coordinate strategies for application readiness in preparation for the next generation of supercomputers. The meeting also included

  11. Sustainability Assessment of Workforce Well-Being and Mission Readiness |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Sustainability Assessment of Workforce Well-Being and Mission Readiness Sustainability Assessment of Workforce Well-Being and Mission Readiness Presentation by Dr. Jodi Jacobsen, Associate Professor, University of Maryland, Baltimore September 2008 PDF icon Sustainability Assessment of Workforce Well-being and Mission Readiness More Documents & Publications Moving Away from Silos Health and Productivity Questionnaire (HPQ) Survey Report Focus Group Meeting

  12. Savannah River Site Salt Waste Processing Facility Technology Readiness

    Energy Savers [EERE]

    Assessment Report | Department of Energy Salt Waste Processing Facility Technology Readiness Assessment Report Savannah River Site Salt Waste Processing Facility Technology Readiness Assessment Report Full Document and Summary Versions are available for download PDF icon Savannah River Site Salt Waste Processing Facility Technology Readiness Assessment Report PDF icon Summary - SRS Salt Waste Processing Facility More Documents & Publications Compilation of TRA Summaries Basis for Section

  13. DOE Zero Energy Ready Home Partner Central | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Partner Central DOE Zero Energy Ready Home Partner Central The DOE Zero Energy Ready Home offers leading builders and architects/designers a timely solution for differentiating their product from existing homes as well as minimum code new homes. The DOE Zero Energy Ready Home label - the home of the future today - makes it easy for consumers to identify high-performance homes that are so energy efficient a renewable energy system can offset most or all annual energy consumption. Zero Energy

  14. SRS Tank 48H Waste Treatment Project Technology Readiness Assessment |

    Energy Savers [EERE]

    Department of Energy Tank 48H Waste Treatment Project Technology Readiness Assessment SRS Tank 48H Waste Treatment Project Technology Readiness Assessment Full Document and Summary Versions are available for download PDF icon SRS Tank 48H Waste Treatment Project Technology Readiness Assessment PDF icon Summary - Savannah River Site Tank 48H Waste Treatment Project More Documents & Publications Technology Maturation Plan (TMP) Fluidized Bed Steam Reforming (FBSR) Technology for Tank 48H

  15. NREL Helps Communities Assess Their Readiness for Electric Vehicles - News

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Releases | NREL Helps Communities Assess Their Readiness for Electric Vehicles The PEV Scorecard gives local leaders tips for improvement February 14, 2013 The U.S. Department of Energy's (DOE) National Renewable Energy Laboratory (NREL) has launched a new tool to help local and regional leaders assess the readiness of their communities for the arrival of plug-in electric vehicles (PEVs). The Plug-In Electric Vehicle Community Readiness Scorecard (PEV Scorecard), developed by NREL for DOE's

  16. DOE Zero Energy Ready Home Partner Resources | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Partner Resources DOE Zero Energy Ready Home Partner Resources DOE Zero Energy Ready Home Partner Labe, Label Methodology, and Point of Sale Fact Sheet. PDF icon DOE Zero Energy Ready Home Point of Sale Fact Sheet Image icon Zero_Home_PARTNER_ZERH Site.jpg PDF icon Label_methodology_1012.pdf More Documents & Publications DOE Challenge Home Label Methodology Indoor airPLUS Construction Specifications Indoor airPLUS Construction Specifications Version 1 (Rev. 02)

  17. Preliminary Technology Readiness Assessment (TRA) for the Calcine

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Disposition Project Volume 1 (CDP) | Department of Energy Preliminary Technology Readiness Assessment (TRA) for the Calcine Disposition Project Volume 1 (CDP) Preliminary Technology Readiness Assessment (TRA) for the Calcine Disposition Project Volume 1 (CDP) Full Document and Summary Versions are available for download PDF icon Preliminary Technology Readiness Assessment (TRA) for the Calcine Disposition Project Volume 1 (CDP) PDF icon Summary - Preliminary TRA of the Calcine Disposition

  18. Development of Technology Readiness Level (TRL) Metrics and Risk Measures

    SciTech Connect (OSTI)

    Engel, David W.; Dalton, Angela C.; Anderson, K. K.; Sivaramakrishnan, Chandrika; Lansing, Carina

    2012-10-01

    This is an internal project milestone report to document the CCSI Element 7 team's progress on developing Technology Readiness Level (TRL) metrics and risk measures. In this report, we provide a brief overview of the current technology readiness assessment research, document the development of technology readiness levels (TRLs) specific to carbon capture technologies, describe the risk measures and uncertainty quantification approaches used in our research, and conclude by discussing the next steps that the CCSI Task 7 team aims to accomplish.

  19. Uranium Processing Facility Site Readiness Subproject Completed on Time and

    National Nuclear Security Administration (NNSA)

    Under Budget | National Nuclear Security Administration Uranium Processing Facility Site Readiness Subproject Completed on Time and Under Budget March 13, 2015 WASHINGTON, D.C.--The Uranium Processing Facility (UPF) project celebrates its first major milestone with the completion of site readiness work, delivered on time and under budget. "UPF is essential to our Nation's uranium mission," said John Eschenberg, UPF Federal Project Director. "Site readiness work sets the

  20. Zero Energy Ready Home March 2014 Newsletter | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    March 2014 Newsletter Zero Energy Ready Home March 2014 Newsletter Table of Contents: A Note from Sam Rashkin, "100,000 builders ready for Challenge Home" Verifiers recognized at 2014 RESNET Conference Upcoming webinars Upcoming trainings Building America Resources Partners in the news Reminder: Send in verification forms Click the PDF below to download the newsletter PDF icon ZER Update March 2014.pdf More Documents & Publications Zero Energy Ready Home March 2014 Newsletter Zero

  1. Advanced Technical Solutions for Zero Energy Ready Homes | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Technical Solutions for Zero Energy Ready Homes Advanced Technical Solutions for Zero Energy Ready Homes Lead Performer: U.S. Department of Energy - Washington, D.C. Project Term: Current Funding Type: Direct Funding Program Webpage: http://energy.gov/eere/buildings/zero-energy-ready-home PROJECT OBJECTIVE This project focuses on identifying, developing, and demonstrating technology packages that overcome market barriers to homes that provide cost-effective, optimized thermal comfort

  2. DOE Zero Energy Ready Home Case Study: Heirloom Design Build, Euclid

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Avenue, Atlanta, GA | Department of Energy Heirloom Design Build, Euclid Avenue, Atlanta, GA DOE Zero Energy Ready Home Case Study: Heirloom Design Build, Euclid Avenue, Atlanta, GA Case study of a DOE 2015 Housing Innovation Award winning custom home in the mixed-humid climate that got a HERS 50 without PV, with 2x6 16" on center walls with R-19 ocsf; basement with R-28 ccsf, R-5 rigid foam under slab; sealed attic with R-28 ocsf under roof deck; 22.8 SEER; 12.5 HSPF heat pump. PDF

  3. DOE Zero Energy Ready Home Case Study: Palo Duro Homes, Via del Cielo,

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Santa Fe, NM | Department of Energy Via del Cielo, Santa Fe, NM DOE Zero Energy Ready Home Case Study: Palo Duro Homes, Via del Cielo, Santa Fe, NM Case study of a DOE 2015 Housing Innovation Award winning production home in the mixed-dry climate that got a HERS 48 without PV, with 2x6 24" on center walls with R-21 blown fiberglass; slab foundation with R-10 under slab and R-5rigid foam at slab edge; vented attic with R-75 blown fiberglass; ducted minisplit heat pump 16.5 SEER, 9.5

  4. DOE Zero Energy Ready Home Case Study: Mutual Housing California...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Mutual Housing California, Mutual Housing at Spring Lake, Woodland, CA DOE Zero Energy Ready Home Case Study: Mutual Housing California, Mutual Housing at Spring Lake, Woodland, CA ...

  5. DOE Zero Energy Ready Home Case Study: Amaris Homes, Fishers...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Homes, Fishers Circle, Vadnais Heights, MN DOE Zero Energy Ready Home Case Study: Amaris Homes, Fishers Circle, Vadnais Heights, MN Case study of a DOE 2015 Housing Innovation ...

  6. DOE Zero Energy Ready Home Case Study: Glastonbury Housesmith...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Glastonbury Housesmith, Hickory Drive, South Glastonbury, CT DOE Zero Energy Ready Home Case Study: Glastonbury Housesmith, Hickory Drive, South Glastonbury, CT Case study of a DOE ...

  7. REDD+ Country Readiness Preparation Proposals | Open Energy Informatio...

    Open Energy Info (EERE)

    getting-ready Country: Democratic Republic of Congo, Ghana, Guyana, Indonesia, Madagascar, Mexico, Suriname, Panama Middle Africa, Western Africa, South America,...

  8. UPF site readiness subproject completed on time and under budget...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    uranium mission," said John Eschenberg, UPF Federal Project Director. "Site readiness work sets the standard for UPF and opens the door for other site infrastructure projects...

  9. Richmond Electric Vehicle Initiative Electric Vehicle Readiness Plan

    Broader source: Energy.gov [DOE]

    The REVi plan addresses the electric vehicle market in Richmond and then addresses a regional plan, policies, and analysis of the the communities readiness.

  10. Readiness Review Training- Development of Criteria And Review Approach Documents

    Broader source: Energy.gov [DOE]

    Slides used for November 8-9, 2010 Readiness Review Training - Development of Criteria And Review Approach Documents at the Idaho National Laboratory.

  11. DOE Zero Energy Ready Home Webinar: Building Energy Optimization...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Building Energy Optimization (BEopt) Software DOE Zero Energy Ready Home Webinar: Building Energy Optimization (BEopt) Software This webinar was presented on May 15, 2014 and gives ...

  12. Small Column Ion Exchange at Savannah River Site Technology Readiness...

    Broader source: Energy.gov (indexed) [DOE]

    Small Column Ion Exchange at Savannah River Site Technology Readiness Assessment Report More Documents & Publications Small Column Ion Exchange Technology at Savannah River Site ...

  13. DOE Zero Energy Ready Home National Program Requirements

    Energy Savers [EERE]

    ... permitting. See www.energystar.govwindows for current ENERGY STAR Window Product Criteria. For homes achieving PHIUS+ DOE Zero Energy Ready Home National Program Requirements ...

  14. DOE Zero Energy Ready Home: Lighting Efficiency Webinar (Text...

    Broader source: Energy.gov (indexed) [DOE]

    webinar, DOE Zero Energy Ready Home: Lighting Efficiency, presented in May 2015. Alex Krowka: Presentation cover slide: ... join us today for this session on LED lighting design...

  15. Accelerating the Electrification of U.S. Drive Trains: Ready...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Accelerating the Electrification of U.S. Drive Trains: Ready and Affordable Technology Solutions for Domestically Manufactured Advanced Batteries Accelerating the Electrification...

  16. Preliminary Technology Readiness Assessment (TRA) for the Calcine...

    Office of Environmental Management (EM)

    PRELIMINARY TECHNOLOGY OF THE CALCINE Prepared by the U.S. Department of Energy ECHNOLOGY READINESS ASSESSMENT ALCINE DISPOSITION PROJECT VOLUME TWO Anthony F. Kluk Hoyt C. Johnson ...

  17. Rough and Ready Biomass Facility | Open Energy Information

    Open Energy Info (EERE)

    National Map Retrieved from "http:en.openei.orgwindex.php?titleRoughandReadyBiomassFacility&oldid398020" Feedback Contact needs updating Image needs updating...

  18. Energy -- and Water -- Efficiency in the DOE Zero Energy Ready...

    Broader source: Energy.gov (indexed) [DOE]

    Below is the text version of the webinar, Energy -- and Water -- Efficiency in the DOE Zero Energy Ready Home Program, presented in October 2014. Watch the presentation. ...

  19. DOE Zero Energy Ready Home Case Study: Southeast Volusia Habitat...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Southeast Volusia Habitat for Humanity, Edgewater, FL DOE Zero Energy Ready Home Case Study: Southeast Volusia Habitat for Humanity, Edgewater, FL Case study of a DOE Zero Energy ...

  20. DOE Zero Energy Ready Home Case Study: Manatee County Habitat...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Manatee County Habitat for Humanity, Ellenton, FL, Affordable DOE Zero Energy Ready Home Case Study: Manatee County Habitat for Humanity, Ellenton, FL, Affordable Case study of a ...

  1. Building America Zero Energy Ready Home Case Study: Southeast...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Southeast Volusia Habitat for Humanity, Edgewater, Florida Building America Zero Energy Ready Home Case Study: Southeast Volusia Habitat for Humanity, Edgewater, Florida Case study ...

  2. DOE Zero Energy Ready Home Webinar: Comprehensive Building Science...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Version 3 of the ENERGY STAR Certified Homes program, a prerequisite for every Zero Energy Ready Home, delivers three key systems that improve comfort, indoor air quality, and ...

  3. Building America Zero Energy Ready Home Case Study: Imery Group...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Imery Group, Proud Green Home, Serenbe GA Building America Zero Energy Ready Home Case Study: Imery Group, Proud Green Home, Serenbe GA Case study describing the first ...

  4. Smart-Grid Ready PV Inverters with Utility Communication

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    INTEGRATION Smart-Grid Ready PV Inverters with Utility Communication Electric Power ... required utility communication links to capture the full value of distributed PV plants. ...

  5. Smart-Grid Ready PV Inverter with Utility Communication

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Advancement of PV system capabilities, communication systems and open standards, ... Smart-Grid Ready PV Inverter With Utility Communication BRIAN SEAL ELECTRIC POWER ...

  6. DOE Zero Energy Ready Home Case Study: Weiss Building & Development...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Weiss Building & Development LLC, System Home, River Forest, IL DOE Zero Energy Ready Home Case Study: Weiss Building & Development LLC, System Home, River Forest, IL Case study of ...

  7. Accelerating the Electrification of U.S. Drive Trains: Ready...

    Broader source: Energy.gov (indexed) [DOE]

    Advanced Batteries Accelerating the Electrification of U.S. Drive Trains: Ready and Affordable Technology Solutions for Domestically Manufactured Advanced Batteries EA-1712: ...

  8. Accelerating the Electrification of U.S. Drive Trains: Ready...

    Broader source: Energy.gov (indexed) [DOE]

    Advanced Batteries Accelerating the Electrification of U.S. Drive Trains: Ready and Affordable Technology Solutions for Domestically Manufactured Advanced Batteries FY 2012 ...

  9. Alternative Fuels Data Center: Plug-In Electric Vehicle Readiness...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    option that has the potential to benefit a community's economy, energy security, and environment. As local and regional leaders know, PEV readiness is a community-wide effort,...

  10. Building America Top Innovations 2013 Profile - Zero Energy-Ready

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Single-Family Homes | Department of Energy Building America Top Innovations 2013 Profile - Zero Energy-Ready Single-Family Homes Building America Top Innovations 2013 Profile - Zero Energy-Ready Single-Family Homes Many Building America teams (ARBI, BA-PIRC, BSC, CARB, IBACOS, NorthernSTAR, PHI, etc.) have worked with home builders to design and test zero-energy-ready homes. PDF icon ba_in_2.1.6_zeroenergyhomes_100213.pdf More Documents & Publications Zero Energy-Ready Single-Family

  11. Marketing and Sales Solutions for Zero Energy Ready Homes Webinar...

    Broader source: Energy.gov (indexed) [DOE]

    Below is the text version of the webinar, Marketing and Sales Solutions for Zero Energy Ready Homes, presented in June 2014. Lindsay Parker: ... the Department of Energy Zero...

  12. DOE ZERO ENERGY READY HOME UPDATE NEWSLETTER JULY 2015 | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    DOE Help Tell Your Story Zero Energy Ready Home at Appraisal Institute Annual Conference ... PDF icon ZERH Update July 2015.pdf More Documents & Publications DOE ZERO ...

  13. Progress Update: H4 Basin Concrete Pour

    ScienceCinema (OSTI)

    None

    2012-06-14

    The Recovery Act funded project in the H area basin. A concrete ditch built longer than half a mile to prevent contaminated water from expanding and to reduce the footprint on the environment.

  14. DOE Zero Energy Ready Home™ Innovation Partner Agreement

    Broader source: Energy.gov [DOE]

    U.S. Department of Energy Zero Energy Ready Home™ Innovation Partner Agreement, dated September 15, 2015. Innovation partners are leaders who support a national campaign to educate consumers on the benefits of DOE Zero Energy Ready Homes by promoting the Tour of Zero.

  15. DOE Zero Energy Ready Home Recommended Quality Management Provisions |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Recommended Quality Management Provisions DOE Zero Energy Ready Home Recommended Quality Management Provisions DOE Zero Energy Ready Home Recommended Quality Management Provisions. PDF icon QM Cheklist.pdf More Documents & Publications Version Tracking Document for DOE Challenge Homes, National Program Requirements (Rev. 03) Washington DOE ZERH Program Requirements Indoor airPLUS Version 1 (Rev. 01) Verification Checklist

  16. Designing and Building Houses that are Solar Ready

    Broader source: Energy.gov [DOE]

    Builders considering adding photovoltaic (PV) systems to new houses after initial construction is completed can save time and money by following new house Solar Ready design guidelines. Solar Ready houses are designed and built with integrated electrical and mechanical features that streamline the integration of PV systems.

  17. Uranium Processing Facility Site Readiness Subproject Completed on Time and

    National Nuclear Security Administration (NNSA)

    Under Budget | National Nuclear Security Administration Uranium Processing Facility Site Readiness Subproject Completed on Time and Under Budget March 13, 2015 The Uranium Processing Facility (UPF) project celebrates its first major milestone with the completion of site readiness work, delivered on time and under budget. File 2015-03-13

  18. DOE ZERO ENERGY READY HOME NEWSLETTER DECEMBER 2015 | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ZERO ENERGY READY HOME NEWSLETTER DECEMBER 2015 DOE ZERO ENERGY READY HOME NEWSLETTER DECEMBER 2015 TABLE OF CONTENTS A Note from Sam Rashkin: Why Buy a Zero Energy Ready Home...Stay Tuned! Your Best Friend Just Got Better: Are You Taking Advantage? PDF icon ZERH Update December 2015.pdf More Documents & Publications ZERO ENERGY READY HOME UPDATE NEWSLETTER AUGUST 2014 DOE ZERO ENERGY READY HOME UPDATE NEWSLETTER JANUARY 2016 Zero Energy Ready Home Newsletter: April 2016

  19. Concrete shaver. Innovative technology summary report

    SciTech Connect (OSTI)

    1998-12-01

    The US Department of Energy (DOE) is in the process of decontamination and decommissioning (D and D) for many of its nuclear facilities throughout the United States. These facilities must be dismantled and the demolition waste sized into manageable pieces for handling and disposal. The facilities undergoing D and D are typically chemically and/or radiologically contaminated. To facilitate this work, DOE requires a tool capable of removing the surface of radiologically contaminated concrete floors. Operating requirements for the tool include simple and economical operation, the capability of operating in ambient temperatures from 3 C to 40 C (37 F to 104 F), and the ability to be easily decontaminated. The tool also must be safe for workers. The Marcrist Industries Limited concrete shaver is an electrically driven, self-propelled concrete and coating removal system. This technology consists of a 25-cm (10-in.)-wide diamond impregnated shaving drum powered by an electric motor and contains a vacuum port for dust extraction. The concrete shaver is ideal for use on open, flat, floor areas. The shaver may also be used on slightly curved surfaces. This shaver is self-propelled and produces a smooth, even surface with little vibration. The concrete shaver is an attractive alternative to traditional pneumatic scabbling tools, which were considered the baseline in this demonstration. The use of this tool reduces worker fatigue (compared to the baseline) due to lower vibration. The shaver is more than five times faster than the five-piston pneumatic scabbler at removing contamination from concrete. Because of this increased productivity, the shaver is 50% less costly to operate than baseline technologies. The DOE has successfully demonstrated the concrete shaver for decontaminating floors for free-release surveys prior to demolition work.

  20. DOE Zero Energy Ready Home Case Study: Habitat for Humanity South...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Sarasota, Laurel Gardens 794, Nakomis, FL DOE Zero Energy Ready Home Case Study: Habitat ... PDF icon DOE Zero Energy Ready Home Case Study: Habitat for Humanity South Sarasota, ...

  1. DOE Zero Energy Ready Home Case Study: TC Legend Homes, Bellingham...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    DOE Zero Energy Ready Home Case Study: TC Legend Homes, Bellingham Power House, ... DOE Zero Energy Ready Home Case Study: TC Legend Homes, Bellingham Power House, ...

  2. Nuclear Concrete Materials Database Phase I Development

    SciTech Connect (OSTI)

    Ren, Weiju; Naus, Dan J

    2012-05-01

    The FY 2011 accomplishments in Phase I development of the Nuclear Concrete Materials Database to support the Light Water Reactor Sustainability Program are summarized. The database has been developed using the ORNL materials database infrastructure established for the Gen IV Materials Handbook to achieve cost reduction and development efficiency. In this Phase I development, the database has been successfully designed and constructed to manage documents in the Portable Document Format generated from the Structural Materials Handbook that contains nuclear concrete materials data and related information. The completion of the Phase I database has established a solid foundation for Phase II development, in which a digital database will be designed and constructed to manage nuclear concrete materials data in various digitized formats to facilitate electronic and mathematical processing for analysis, modeling, and design applications.

  3. Innovative technology summary report: Concrete grinder

    SciTech Connect (OSTI)

    1998-09-01

    The Flex concrete grinder is a lightweight, hand-held concrete and coating removal system used for decontaminating or stripping concrete surfaces. The US Department of Energy has successfully demonstrated it for decontaminating walls and floors for free release surveys prior to demolition work. The grinder is an electric-powered tool with a vacuum port for dust extraction and a diamond grinding wheel. The grinder is suitable for flat or slightly curved surfaces and results in a smooth surface, which makes release surveys more reliable. The grinder is lightweight and produces very little vibration, thus reducing worker fatigue. The grinder is more efficient than traditional baseline, tools at removing contamination from concrete surfaces (more than four times faster than hand-held pneumatic scabbling and scaling tools). Grinder consumables (i.e., replacement diamond grinding wheel) are more expensive than the replacement carbide parts for the scaler and scabbler. However, operating costs are outweighed by the lower purchase price of the grinder (50% of the price of the baseline scaler and 8% of the price of the baseline scabbler). Overall, the concrete grinder is an attractive alternative to traditional scabbling and scaling pneumatic tools. To this end, in July 1998, the outer rod room exposed walls of the Safe Storage Enclosure (SSE), an area measuring approximately 150 m{sup 2}, may be decontaminated with the hand-held grinder. This concrete grinder technology was demonstrated for the first time at the DOE`s Hanford Site. Decontamination of a sample room walls was performed at the C Reactor to free release the walls prior to demolition. The demonstration was conducted by onsite D and D workers, who were instructed by the vendor prior to and during the demonstration.

  4. TRANSPORT THROUGH CRACKED CONCRETE: LITERATURE REVIEW

    SciTech Connect (OSTI)

    Langton, C.

    2012-05-11

    Concrete containment structures and cement-based fills and waste forms are used at the Savannah River Site to enhance the performance of shallow land disposal systems designed for containment of low-level radioactive waste. Understanding and measuring transport through cracked concrete is important for describing the initial condition of radioactive waste containment structures at the Savannah River Site (SRS) and for predicting performance of these structures over time. This report transmits the results of a literature review on transport through cracked concrete which was performed by Professor Jason Weiss, Purdue University per SRR0000678 (RFP-RQ00001029-WY). This review complements the NRC-sponsored literature review and assessment of factors relevant to performance of grouted systems for radioactive waste disposal. This review was performed by The Center for Nuclear Waste Regulatory Analyses, San Antonio, TX, and The University of Aberdeen, Aberdeen Scotland and was focused on tank closure. The objective of the literature review on transport through cracked concrete was to identify information in the open literature which can be applied to SRS transport models for cementitious containment structures, fills, and waste forms. In addition, the literature review was intended to: (1) Provide a framework for describing and classifying cracks in containment structures and cementitious materials used in radioactive waste disposal, (2) Document the state of knowledge and research related to transport through cracks in concrete for various exposure conditions, (3) Provide information or methodology for answering several specific questions related to cracking and transport in concrete, and (4) Provide information that can be used to design experiments on transport through cracked samples and actual structures.

  5. Detection Of Concrete Deterioration By Staining

    DOE Patents [OSTI]

    Guthrie, Jr., George D.; Carey, J. William

    1999-09-21

    A method using concentrated aqueous solutions of sodium cobaltinitrite and a rhodamine dye is described which can be used to identify concrete that contains gels formed by the alkali-silica reaction (ASR), and to identify degraded concrete which results in a porous or semi-permeable paste due to carbonation or leaching. These solutions present little health or environmental risk, are readily applied, and rapidly discriminate between two chemically distinct gels; K-rich, Na--K--Ca--Si gels are identified by yellow staining, and alkali-poor, Ca--Si gels are identified by pink staining.

  6. Advanced Numerical Model for Irradiated Concrete

    SciTech Connect (OSTI)

    Giorla, Alain B.

    2015-03-01

    In this report, we establish a numerical model for concrete exposed to irradiation to address these three critical points. The model accounts for creep in the cement paste and its coupling with damage, temperature and relative humidity. The shift in failure mode with the loading rate is also properly represented. The numerical model for creep has been validated and calibrated against different experiments in the literature [Wittmann, 1970, Le Roy, 1995]. Results from a simplified model are shown to showcase the ability of numerical homogenization to simulate irradiation effects in concrete. In future works, the complete model will be applied to the analysis of the irradiation experiments of Elleuch et al. [1972] and Kelly et al. [1969]. This requires a careful examination of the experimental environmental conditions as in both cases certain critical information are missing, including the relative humidity history. A sensitivity analysis will be conducted to provide lower and upper bounds of the concrete expansion under irradiation, and check if the scatter in the simulated results matches the one found in experiments. The numerical and experimental results will be compared in terms of expansion and loss of mechanical stiffness and strength. Both effects should be captured accordingly by the model to validate it. Once the model has been validated on these two experiments, it can be applied to simulate concrete from nuclear power plants. To do so, the materials used in these concrete must be as well characterized as possible. The main parameters required are the mechanical properties of each constituent in the concrete (aggregates, cement paste), namely the elastic modulus, the creep properties, the tensile and compressive strength, the thermal expansion coefficient, and the drying shrinkage. These can be either measured experimentally, estimated from the initial composition in the case of cement paste, or back-calculated from mechanical tests on concrete. If some are unknown, a sensitivity analysis must be carried out to provide lower and upper bounds of the material behaviour. Finally, the model can be used as a basis to formulate a macroscopic material model for concrete subject to irradiation, which later can be used in structural analyses to estimate the structural impact of irradiation on nuclear power plants.

  7. DOE Zero Energy Ready Home Case Study: Promethean Homes, Charlottesville,

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    VA | Department of Energy Promethean Homes, Charlottesville, VA DOE Zero Energy Ready Home Case Study: Promethean Homes, Charlottesville, VA DOE Zero Energy Ready Home Case Study: Promethean Homes, Charlottesville, VA Case study of a DOE Zero Energy Ready home in Charlottesville, VA, that achieves a HERS 33 without PV. The 2,572-ft2 custom home with daylight basement, has 2x6 advanced framed walls filled with R-21 cellulose plus 2-in. rigid mineral wool insulation over the plywood sheathing,

  8. Zero Energy Ready Home Events | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Zero Energy Ready Home » Zero Energy Ready Home Events Zero Energy Ready Home Events May 2016 < prev next > Sun Mon Tue Wed Thu Fri Sat 1 2 3 4 5 6 7 8 9 10 11 12 13 14 ZERH Webinar: Successful Strategies for the Housing Innovation Awards 12:00AM to 1:00PM EDT 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 1 2 3 4 Buildings Home About Emerging Technologies Residential Buildings Building America Home Energy Score Home Performance with ENERGY STAR Better Buildings Residential Network

  9. Quality Management Systems for Zero Energy Ready Home Webinar (Text

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Version) | Department of Energy Quality Management Systems for Zero Energy Ready Home Webinar (Text Version) Quality Management Systems for Zero Energy Ready Home Webinar (Text Version) Below is the text version of the webinar, Quality Management Systems for Zero Energy Ready Home, presented in October 2014. Watch the presentation. GoToWebinar voice: The broadcast is now starting. All attendees are in listen-only mode. Lindsay Parker: Hi, everyone. We're really glad that you can make it here

  10. Beneficial Use of Carbon Dioxide in Precast Concrete Production (Technical

    Office of Scientific and Technical Information (OSTI)

    Report) | SciTech Connect Beneficial Use of Carbon Dioxide in Precast Concrete Production Citation Details In-Document Search Title: Beneficial Use of Carbon Dioxide in Precast Concrete Production The feasibility of using carbon dioxide as feedstock in precast concrete production is studied. Carbon dioxide reacts with calcium compounds in concrete, producing solid calcium carbonates in binding matrix. Two typical precast products are examined for their capacity to store carbon dioxide during

  11. Beneficial Use of Carbon Dioxide in Precast Concrete Production (Technical

    Office of Scientific and Technical Information (OSTI)

    Report) | SciTech Connect SciTech Connect Search Results Technical Report: Beneficial Use of Carbon Dioxide in Precast Concrete Production Citation Details In-Document Search Title: Beneficial Use of Carbon Dioxide in Precast Concrete Production The feasibility of using carbon dioxide as feedstock in precast concrete production is studied. Carbon dioxide reacts with calcium compounds in concrete, producing solid calcium carbonates in binding matrix. Two typical precast products are examined

  12. Using ISMS Principles and Functions in Developing an ARRA Readiness Review Process

    Broader source: Energy.gov [DOE]

    Presenter: Linda K. Rogers, Assessments & Readiness Programs Manager, Bechtel Jacobs Company, LLC Track 8-8

  13. DOE Zero Energy Ready Home Case Study 2014: Healthy Efficient...

    Energy Savers [EERE]

    Healthy Efficient Homes Spirit Lake, Iowa DOE ZERO ENERGY READY HOME(tm) CASE STUDY The ... 3.0 for an energy-efficient home built on a solid foundation of building science research. ...

  14. EV Community Readiness projects: New York City and Lower Hudson...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    City and Lower Hudson Valley Clean Communities, Inc. (NY, MA, PA); NYSERDA (ME, NH, VT, MA, RI, CT, NY, NJ, PA, DE, MD, DC) EV Community Readiness projects: New York City and ...

  15. DOE Zero Energy Ready Home Ducts in Conditioned Space Webinar...

    Broader source: Energy.gov (indexed) [DOE]

    is design strategies for locating the ductwork within the conditioned envelope of the building. And this is sort of a must-have for zero energy ready homes, because if these homes...

  16. Planning and Conducting Readiness Reviews - DOE Directives, Delegation...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    for this document. Invoked by: DOE O 425.1D Admin Chg 1, Verification of Readiness to Start Up or Restart Nuclear Facilities DOE O 413.3B, Program and Project Management for the...

  17. DOE Zero Energy Ready Home Case Study: Dwell Development, Seattle...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Case study of a DOE Zero Energy Ready Home in Seattle, WA, that scored HERS 34 without PV. This 2,000-square-foot system home has R-45 double-stud walls, an unvented flat roof with ...

  18. Subscribe to the DOE Zero Energy Ready Home News | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    to the DOE Zero Energy Ready Home e-newsletter, please enter your email address below. Once you have submitted your email address, you will have a chance to subscribe to other...

  19. DOE Zero Energy Ready Home: Durable Energy Builders, Houston, Texas

    Broader source: Energy.gov [DOE]

    This DOE Zero Energy Ready Home features super-insulated roof, 11,500 gallon rainwater cistern to supply most of the home’s drinking water, hurricane-proof roof, and triple-pane windows.

  20. DOE Zero Energy Ready Home Webinar: Ducts in Conditioned Space

    Broader source: Energy.gov [DOE]

    DOE Challenge Home is a blueprint for zero energy ready homes. When we make that statement its impossible to justify huge thermal losses from ducts in unconditioned spaces. Thats why one of...

  1. DOE Zero Energy Ready Home Case Study: Evolutionary Home Builders...

    Office of Environmental Management (EM)

    blown cellulose; wo air-to-air heat pumps SEER 14.1; HSPF 9.6; heat pump water heater. PDF icon DOE Zero Energy Ready Home Case Study: Evolutionary Home Builders, Geneva, IL More ...

  2. Webinar: Marketing and Sales Solutions for Zero Energy Ready Homes

    Broader source: Energy.gov [DOE]

    The U.S. Department of Energy Zero Energy Ready Home (ZERH) Program represents a whole new level of home performance, with rigorous requirements that ensure outstanding levels of energy savings,...

  3. DOE Zero Energy Ready Home Efficient Hot Water Distribution I...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    I -- What's At Stake Webinar (Text Version) DOE Zero Energy Ready Home Efficient Hot Water Distribution I -- What's At Stake Webinar (Text Version) Below is the text version of the...

  4. SRS Tank 48H Waste Treatment Project Technology Readiness Assessment

    Office of Environmental Management (EM)

    Savannah River Site Tank 48H Waste Treatment Project Technology Readiness Assessment Harry ... Energy Aiken, South Carolina SRS Tank 48H Waste Treatment Project SPD-07-195 Technology ...

  5. Text-Alt Sekaric Ready to Tackle Solar Challenges

    Broader source: Energy.gov [DOE]

    Lidija Sekaric is an award-winning physicist and the new acting director of the Solar Energy Technologies Office. She ready to utilize her background in nanoscale science and engineering to tackle the current challenges facing solar.

  6. DOE ZERH Webinar: Selling Zero Energy Ready Homes Made Easy ...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    If you haven't been watching closely, the Zero Energy Ready Home now has an impressive array of tools that can help builder partners effectively communicate the value of their ...

  7. Building Technologies Office: DOE Zero Energy Ready Home Partner...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    become DOE Zero Energy Ready Home partners. The interactive map below allows you to view the number of partners by state and organizational type. Search for partners by typing...

  8. DOE Zero Energy Ready Home Case Study, Caldwell and Johnson,...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Exeter, RI, Custom Home Case study of a DOE Zero Energy Ready Home in Exeter, Rhode Island, that scored HERS 43 without PV. This 2,000 ft2 custom home has a spray- foamed...

  9. DOE Zero Energy Ready Home Case Study: Greenhill Contracting...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Green Acres 20, 26, 28, New Paltz, NY DOE Zero Energy Ready Home Case Study: Greenhill Contracting, Green Acres 20, 26, 28, New Paltz, NY Case study of three DOE 2015 Housing ...

  10. DOE Zero Energy Ready Home Case Study: Charles Thomas Homes,...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Charles Thomas Homes, Anna Model, Omaha, NE DOE Zero Energy Ready Home Case Study: Charles Thomas Homes, Anna Model, Omaha, NE Case study of a DOE 2015 Housing Innovation Award ...

  11. DOE Challenge Home (Now Zero Energy Ready Home) - Building America...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    The DOE Challenge Home will build on this progress with a much more rigorous set of guidelines that establish a national definition for Zero Net-Energy Ready performance. Read ...

  12. DOE Zero Energy Ready Home’ Innovation Partner Agreement

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... and resources via the DOE web site, webinars, newsletters, e-mail, and presentations. 5. DOE will provide participants with access to the DOE Zero Energy Ready Home partner logos. ...

  13. DOE Zero Energy Ready Home Case Study: Transformation Inc., Production...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Case study of a DOE Zero Energy Ready Home in Devens, MA, that scored HERS 35 without PV or HERS -37 with PV. This 2,508-square-foot custom home has R-46 double-stud walls with ...

  14. DOE Zero Energy Ready Home Case Study: Transformations Inc.,...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Case study of a DOE Zero Energy Ready Home in Devens, MA, that scored HERS 34 without PV or HERS -21 with PV. This 3,168-square-foot custom home has R-46 double-stud walls, a ...

  15. Nuclear waste package fabricated from concrete

    SciTech Connect (OSTI)

    Pfeiffer, P.A.; Kennedy, J.M.

    1987-03-01

    After the United States enacted the Nuclear Waste Policy Act in 1983, the Department of Energy must design, site, build and operate permanent geologic repositories for high-level nuclear waste. The Department of Energy has recently selected three sites, one being the Hanford Site in the state of Washington. At this particular site, the repository will be located in basalt at a depth of approximately 3000 feet deep. The main concern of this site, is contamination of the groundwater by release of radionuclides from the waste package. The waste package basically has three components: the containment barrier (metal or concrete container, in this study concrete will be considered), the waste form, and other materials (such as packing material, emplacement hole liners, etc.). The containment barriers are the primary waste container structural materials and are intended to provide containment of the nuclear waste up to a thousand years after emplacement. After the containment barriers are breached by groundwater, the packing material (expanding sodium bentonite clay) is expected to provide the primary control of release of radionuclide into the immediate repository environment. The loading conditions on the concrete container (from emplacement to approximately 1000 years), will be twofold; (1) internal heat of the high-level waste which could be up to 400/sup 0/C; (2) external hydrostatic pressure up to 1300 psi after the seepage of groundwater has occurred in the emplacement tunnel. A suggested container is a hollow plain concrete cylinder with both ends capped. 7 refs.

  16. Concrete Property and Radionuclide Migration Tests

    SciTech Connect (OSTI)

    Wellman, Dawn M.; Mattigod, Shas V.; Powers, Laura; Parker, Kent E.; Clayton, Libby N.; Wood, Marcus I.

    2008-10-01

    The Waste Management Project provides safe, compliant, and cost-effective waste management services for the Hanford Site and the DOE Complex. Part of theses services includes safe disposal of LLW and MLLW at the Hanford Low-Level Waste Burial Grounds (LLBG) in accordance with the requirements listed in DOE Order 435.1, Radioactive Waste Management. To partially satisfy these requirements, a Performance Assessment (PA) analyses were completed and approved. DOE Order 435.1 also requires that continuing data collection be conducted to enhance confidence in the critical assumptions used in these analyses to characterize the operational features of the disposal facility that are relied upon to satisfy the performance objectives identified in the Order. One critical assumption is that concrete will frequently be used as waste form or container material to control and minimize the release of radionuclide constituents in waste into the surrounding environment. Data was collected to (1) quantify radionuclide migration through concrete materials similar to those used to encapsulate waste in the LLBG, (2) measure the properties of the concrete materials, especially those likely to influence radionuclide migration, and (3) quantify the stability of U-bearing solid phases of limited solubility in concrete.

  17. Intermediate-scale sodium-concrete reaction tests with basalt and limestone concrete

    SciTech Connect (OSTI)

    Hassberger, J.A.; Muhlestein, L.D.

    1981-01-01

    Ten tests were performed to investigate the chemical reactions and rate and extent of attack between sodium and basalt and limestone concretes. Test temperatures ranged from 510 to 870/sup 0/C (950 to 1600/sup 0/F) and test times from 2 to 24 hours. Sodium hydroxide was added to some of the tests to assess the impact of a sodium hydroxide-aided reaction on the overall penetration characteristics. Data suggest that the sodium penetration of concrete surfaces is limited. Penetration of basalt concrete in the presence of sodium hydroxide is shown to be less severe than attack by the metallic sodium alone. Presence of sodium hydroxide changes the characteristics of sodium penetration of limestone concrete, but no major differences in bulk penetration were observed as compared to penetration by metallic sodium.

  18. LWRS ATR Irradiation Testing Readiness Status

    SciTech Connect (OSTI)

    Kristine Barrett

    2012-09-01

    The Light Water Reactor Sustainability (LWRS) Program was established by the U.S. Department of Energy Office of Nuclear Energy (DOE-NE) to develop technologies and other solutions that can improve the reliability, sustain the safety, and extend the life of the current reactors. The LWRS Program is divided into four R&D Pathways: (1) Materials Aging and Degradation; (2) Advanced Light Water Reactor Nuclear Fuels; (3) Advanced Instrumentation, Information and Control Systems; and (4) Risk-Informed Safety Margin Characterization. This report describes an irradiation testing readiness analysis in preparation of LWRS experiments for irradiation testing at the Idaho National Laboratory (INL) Advanced Test Reactor (ATR) under Pathway (2). The focus of the Advanced LWR Nuclear Fuels Pathway is to improve the scientific knowledge basis for understanding and predicting fundamental performance of advanced nuclear fuel and cladding in nuclear power plants during both nominal and off-nominal conditions. This information will be applied in the design and development of high-performance, high burn-up fuels with improved safety, cladding integrity, and improved nuclear fuel cycle economics

  19. Launching Apps for Energy! Developers, Are You Ready? | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Apps for Energy! Developers, Are You Ready? Launching Apps for Energy! Developers, Are You Ready? April 5, 2012 - 4:00pm Addthis Apps for Energy is open for submissions. Sign-up at appsforenergy.challenge.gov. Erin R. Pierce Erin R. Pierce Former Digital Communications Specialist, Office of Public Affairs What are the key facts? Today, the Energy Department's Apps for Energy competition is open for submissions. Apps for Energy leverages Green Button -- an open standard for sharing

  20. Module Embedded Microinverter Smart Grid Ready Residential Solar Electric

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    System | Department of Energy Module Embedded Microinverter Smart Grid Ready Residential Solar Electric System Module Embedded Microinverter Smart Grid Ready Residential Solar Electric System GE logo.png -- This project is inactive -- This project is developing and demonstrating a cost-reduction approach for an alternating-current (AC) photovoltaic (PV) module that is driven by innovations in microinverter design, module integration and packaging, and integration with a new intelligent

  1. NREL Readies New Wind Turbine Drivetrain for Commercialization | Department

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    of Energy Readies New Wind Turbine Drivetrain for Commercialization NREL Readies New Wind Turbine Drivetrain for Commercialization May 18, 2015 - 3:52pm Addthis Illustration of a wind turbine drivetrain with a transparent case that shows the internal gears. In February, engineers at the U.S. Department of Energy's (DOE's) National Renewable Energy Laboratory (NREL) assembled the innovative, medium-speed, medium-voltage wind turbine drivetrain that was the result of a study funded by DOE's

  2. Tank Waste Feed Delivery System Readiness at the Hanford Site

    Energy Savers [EERE]

    Audit Report Tank Waste Feed Delivery System Readiness at the Hanford Site OAS-L-12-09 August 2012 Department of Energy Washington, DC 20585 August 23, 2012 MEMORANDUM FOR THE MANAGER, OFFICE OF RIVER PROTECTION FROM: David Sedillo, Director Western Audits Division Office of Audits and Inspections Office of Inspector General SUBJECT: INFORMATION: Audit Report on "Tank Waste Feed Delivery System Readiness at the Hanford Site" BACKGROUND The Department of Energy's largest cleanup task

  3. Preliminary Technology Readiness Assessment (TRA) for the Calcine

    Energy Savers [EERE]

    Disposition Project Volume 1 (CDP) | Department of Energy 1 (CDP) Preliminary Technology Readiness Assessment (TRA) for the Calcine Disposition Project Volume 1 (CDP) Full Document and Summary Versions are available for download PDF icon Preliminary Technology Readiness Assessment (TRA) for the Calcine Disposition Project Volume 1 (CDP) PDF icon Summary - Preliminary TRA of the Calcine Disposition Project More Documents & Publications Compilation of TRA Summaries Preliminary Technology

  4. Declaration of Construction Completion and Verification of Readiness to

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Test | Department of Energy Declaration of Construction Completion and Verification of Readiness to Test Declaration of Construction Completion and Verification of Readiness to Test Salt Waste Processing Facility, Project No. 05-D-405 Pam Marks, FPD, DOE-SR March 2, 2016 File Presentation Key Resources PMCDP EVMS PARS IIe FPD Resource Center PM Newsletter Forms and Templates More Documents & Publications Salt Waste Processing Facility, Construction Turnover to Testing and Commissioning

  5. Clean Energy Technologies Ready for Climate Change Challenge

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Technologies Ready for Climate Change Challenge Media contact: George Douglas (303) 275-4096 Golden, Colo., Oct. 23, 1997 -- President Clinton's faith in clean energy technology as a solution to environmental problems is well founded, the director of the National Renewable Energy Laboratory said today. "Renewable energy technologies developed during the past 20 years are ready to take their place in the nation's energy portfolio," Admiral Richard Truly said. "We've proven that we

  6. Slideshow: Ready, Set, NASCAR Green at Richmond International Raceway |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Slideshow: Ready, Set, NASCAR Green at Richmond International Raceway Slideshow: Ready, Set, NASCAR Green at Richmond International Raceway April 28, 2014 - 3:54pm Addthis 1 of 9 Secretary Ernest Moniz displays the green flag prior to the NASCAR race at the Richmond International Raceway. | Photo courtesy of Jeff Zelevansky, NASCAR via Getty Images. 2 of 9 NASCAR drivers use some of the most advanced fuel technologies, helping educate fans about new technology. Before

  7. ZERH Webinar: Getting Enclosures Right in Zero Energy Ready Homes |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Getting Enclosures Right in Zero Energy Ready Homes ZERH Webinar: Getting Enclosures Right in Zero Energy Ready Homes Without a doubt, Joe Lstiburek is a leading authority on high-performance buildings. What' s unique about Joe is that he provides specific, actionable guidance based on decades of experience, extensive research, and a unique ability to identify and communicate common sense solutions. Attendees to this webinar will learn best practices for high-R

  8. ZERO ENERGY READY HOME UPDATE NEWSLETTER NOVEMBER 2014 | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy ZERO ENERGY READY HOME UPDATE NEWSLETTER NOVEMBER 2014 ZERO ENERGY READY HOME UPDATE NEWSLETTER NOVEMBER 2014 TABLE OF CONTENTS A note from Sam Rashkin: "It's the window, stupid..." And the winners are... Leading ZERH builders discuss what DOE can do for them You have spoken: Building Science to Sales Translator reviltalized Calling all lenders: DOE establishes lending partners to recognize efficiency in the financing process Architects and designers can get in on the act

  9. Zero Energy Ready Home January 2014 Newsletter | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    January 2014 Newsletter Zero Energy Ready Home January 2014 Newsletter Table of Contents: "Happy New Year!" Introduction by Sam Rashkin, Chief Architect, DOE Upcoming Webinars Upcoming Trainings DOE Challenge Home Savings & Cost Estimate Summary Indoor airPLUS specifications Information on RESNET, February 24-26, 2014 Click the PDF below to download the newsletter PDF icon ZER Update January 2014.pdf More Documents & Publications Zero Energy Ready Home March 2014 Newsletter

  10. A new generation of refractory concretes colloid-chemical aspect of their technology

    SciTech Connect (OSTI)

    Pivinskii, Y.E.

    1994-09-01

    Some peculiarities of the technology of new refractory concretes (ceramoconcretes, low-cement refractory concretes, and vibrocompacted thixotropic fluid refractory pastes) are analyzed from the standpoint of modern colloid chemistry. Interactions of disperse particles and the aggregation stability of disperse systems are discussed. Using a highly concentrated binding suspension (HCBS) of quartz glass as an example, a diagram of the regions of stability and coagulation of particles depending on the pH index of the suspension has been constructed. The state and form of the bonds of water in disperse systems are analyzed. It is shown for clays and HCBS of a number of materials that the strength properties of binders depend on the electrokinetic potential of the initial disperse system. A correlation between the acid-basic properties of the solid phase and the characteristics of the binder is demonstrated. The effects of heterocoagulation in systems with a mixed solid phase are also discussed.

  11. Guidelines for Participating in the DOE Zero Energy Ready Home | Department

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    of Energy Zero Energy Ready Home » Guidelines for Participating in the DOE Zero Energy Ready Home Guidelines for Participating in the DOE Zero Energy Ready Home The DOE Zero Energy Ready Home is a new and compelling way to recognize builders for their leadership in increasing energy efficiency, improving indoor air quality, and making homes zero energy ready. The program builds upon the comprehensive building science requirements of ENERGY STAR® for Homes Version 3, along with proven

  12. Concrete decontamination by Electro-Hydraulic Scabbling (EHS)

    SciTech Connect (OSTI)

    1994-11-01

    EHS is being developed for decontaminating concrete structures from radionuclides, organic substances, and hazardous metals. EHS involves the generation of powerful shock waves and intense cavitation by a strong pulsed electric discharge in a water layer at the concrete surface; high impulse pressure results in stresses which crack and peel off a concrete layer of controllable thickness. Scabbling produces contaminated debris of relatively small volume which can be easily removed, leaving clean bulk concrete. Objective of Phase I was to prove the technical feasibility of EH for controlled scabbling and decontamination of concrete. Phase I is complete.

  13. An Alternative Mechanism for Accelerated Carbon Sequestration in Concrete

    SciTech Connect (OSTI)

    Haselbach, Liv M.; Thomle, Jonathan N.

    2014-07-01

    The increased rate of carbon dioxide sequestration (carbonation) is desired in many primary and secondary life applications of concrete in order to make the life cycle of concrete structures more carbon neutral. Most carbonation rate studies have focused on concrete exposed to air under various conditions. An alternative mechanism for accelerated carbon sequestration in concrete was investigated in this research based on the pH change of waters in contact with pervious concrete which have been submerged in carbonate laden waters. The results indicate that the concrete exposed to high levels of carbonate species in water may carbonate faster than when exposed to ambient air, and that the rate is higher with higher concentrations. Validation of increased carbon dioxide sequestration was also performed via thermogravimetric analysis (TGA). It is theorized that the proposed alternative mechanism reduces a limiting rate effect of carbon dioxide dissolution in water in the micro pores of the concrete.

  14. Brittle failure kinetics model for concrete

    SciTech Connect (OSTI)

    Silling, S.A.

    1997-03-01

    A new constitutive model is proposed for the modeling of penetration and large stress waves in concrete. Rate effects are incorporated explicitly into the damage evolution law, hence the term brittle failure kinetics. The damage variable parameterizes a family of Mohr-Coulomb strength curves. The model, which has been implemented in the CTH code, has been shown to reproduce some distinctive phenomena that occur in penetration of concrete targets. Among these are the sharp spike in deceleration of a rigid penetrator immediately after impact. Another is the size scale effect, which leads to a nonlinear scaling of penetration depth with penetrator size. This paper discusses the theory of the model and some results of an extensive validation effort.

  15. DOE Zero Energy Ready Home Case Study: KB Home, Double ZeroHouse 3.0, El

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Dorado Hill, CA | Department of Energy Double ZeroHouse 3.0, El Dorado Hill, CA DOE Zero Energy Ready Home Case Study: KB Home, Double ZeroHouse 3.0, El Dorado Hill, CA Case study of a DOE 2015 Housing Innovation Award winning production home in the mixed-dry climate that got a HERS 44 without PV, or HERS -2 with PV, with 2x4 walls 16" on center walls with R-15 cavity plus 1" EPS exterior rigid foam, slab on grade with R-10 slab edge; unvented attic with R-38 blown fiberglass

  16. A THERMAL MODEL OF THE IMMOBILIZATION OF LOW-LEVEL RADIOACTIVE WASTE AS GROUT IN CONCRETE VAULTS

    SciTech Connect (OSTI)

    Shadday, M

    2008-10-27

    Salt solution will be mixed with cement and flyash/slag to form a grout which will be immobilized in above ground concrete vaults. The curing process is exothermic, and a transient thermal model of the pouring and curing process is herein described. A peak temperature limit of 85 C for the curing grout restricts the rate at which it can be poured into a vault. The model is used to optimize the pouring.

  17. Sylgard Mixing Study

    SciTech Connect (OSTI)

    Bello, Mollie [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Welch, Cynthia F. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Goodwin, Lynne Alese [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Keller, Jennie [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2014-08-22

    Sylgard 184 and Sylgard 186 silicone elastomers form Dow Corning are used as potting agents across the Nuclear Weapons Complex. A standardized mixing procedure is required for filled versions of these products. The present study is a follow-up to a mixing study performed by MST-7 which established the best mixing procedure to use when adding filler to either 184 or 186 base resins. The most effective and consistent method of mixing resin and curing agent for three modified silicone elastomer recipes is outlined in this report. For each recipe, sample size, mixing type, and mixing time was varied over 10 separate runs. The results show that the THINKY Mixer gives reliable mixing over varying batch sizes and mixing times. Hand Mixing can give improved mixing, as indicated by reduced initial viscosity; however, this method is not consistent.

  18. AGR-5/6/7 LEUCO Kernel Fabrication Readiness Review

    SciTech Connect (OSTI)

    Marshall, Douglas W.; Bailey, Kirk W.

    2015-02-01

    In preparation for forming low-enriched uranium carbide/oxide (LEUCO) fuel kernels for the Advanced Gas Reactor (AGR) fuel development and qualification program, Idaho National Laboratory conducted an operational readiness review of the Babcock & Wilcox Nuclear Operations Group – Lynchburg (B&W NOG-L) procedures, processes, and equipment from January 14 – January 16, 2015. The readiness review focused on requirements taken from the American Society Mechanical Engineers (ASME) Nuclear Quality Assurance Standard (NQA-1-2008, 1a-2009), a recent occurrence at the B&W NOG-L facility related to preparation of acid-deficient uranyl nitrate solution (ADUN), and a relook at concerns noted in a previous review. Topic areas open for the review were communicated to B&W NOG-L in advance of the on-site visit to facilitate the collection of objective evidences attesting to the state of readiness.

  19. ANALYTICAL RESULTS FOR MOX COLEMANITE CONCRETE SAMPLES RECEIVED ON JANUARY 15, 2013

    SciTech Connect (OSTI)

    Reigel, M.

    2014-05-19

    The Mixed Oxide Fuel Fabrication Facility (MFFF) will use colemanite bearing concrete neutron absorber panels credited with attenuating neutron flux in the criticality design analyses and shielding operators from radiation. The Savannah River National Laboratory (SRNL) is tasked with measuring the total density, partial hydrogen density, and partial boron density of the colemanite concrete. SRNL received twelve samples of colemanite concrete for analysis on January 15, 2013. The average total density of each of the samples measured by the ASTM method C 642, the average partial hydrogen density was measured using method ASTM E 1131, and the average partial boron density of each sample was measured according to ASTM C 1301. The lower limits and measured values for the total density, hydrogen partial density, and boron partial density are presented. For all the samples tested, the total density and the hydrogen partial density met or exceeded the specified limit. All of the samples met or exceeded the boron partial density lower bound with the exception of samples G3-M11-2000-H, G3-M11-3000-M, and G5-M1-3000-H which are below the limit of 1.65E-01 g/cm{sup 3}.

  20. ANALYTICAL RESULTS FOR MOX COLEMANITE CONCRETE SAMPLES RECEIVED ON JANUARY 15, 2013

    SciTech Connect (OSTI)

    Reigel, M.; Best, D.

    2013-02-13

    The Mixed Oxide Fuel Fabrication Facility (MFFF) will use colemanite bearing concrete neutron absorber panels credited with attenuating neutron flux in the criticality design analyses and shielding operators from radiation. The Savannah River National Laboratory (SRNL) is tasked with measuring the total density, partial hydrogen density, and partial boron density of the colemanite concrete. SRNL received twelve samples of colemanite concrete for analysis on January 15, 2013. The average total density of each of the samples measured by the ASTM method C 642, the average partial hydrogen density was measured using method ASTM E 1311, and the average partial boron density of each sample was measured according to ASTM C 1301. The lower limits and measured values for the total density, hydrogen partial density, and boron partial density are presented. For all the samples tested, the total density and the hydrogen partial density met or exceeded the specified limit. All of the samples met or exceeded the boron partial density lower bound with the exception of samples G3-M11-2000-H, G3-M11-3000-M, and G5-M1-3000-H which are below the limit of 1.65E-01 g/cm3.

  1. DOE Zero Energy Ready Home Case Study: Ithaca Neighborhood Housing

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Services, Ithaca, NY | Department of Energy Ithaca Neighborhood Housing Services, Ithaca, NY DOE Zero Energy Ready Home Case Study: Ithaca Neighborhood Housing Services, Ithaca, NY Case study of a DOE Zero Energy Ready Home in Ithaca, NY, that scored HERS 50 without PV. These 1,160-square-foot affordable town houses have R-20 advance framed walls, R-52 blown cellulose in attic, radiant heat with 92.5 AFUE boiler, and triple-pane windows. PDF icon Ithaca Neighborhood Housing Services -

  2. DOE Zero Energy Ready Home: Leganza Residence - Greenbank, Washington |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Leganza Residence - Greenbank, Washington DOE Zero Energy Ready Home: Leganza Residence - Greenbank, Washington Case study of a DOE Zero Energy Ready Home in Greenbank, Washington that scored HERS 37 without PV and a -5 with PV. This 1,955 ft2 custom home has 6.5-inch structural insulated panel (SIPs) walls, a 10.25-inch SIPS roof, an R-20 insulated slab, a 2-ton ground source heat pump, radiant floor heat, 7.1 kWh PV, and triple-pane windows. PDF icon

  3. Idaho National Laboratory Emergency Readiness Assurance Plan - Fiscal Year 2015

    SciTech Connect (OSTI)

    Farmer, Carl J.

    2015-09-01

    Department of Energy Order 151.1C, Comprehensive Emergency Management System requires that each Department of Energy field element documents readiness assurance activities, addressing emergency response planning and preparedness. Battelle Energy Alliance, LLC, as prime contractor at the Idaho National Laboratory (INL), has compiled this Emergency Readiness Assurance Plan to provide this assurance to the Department of Energy Idaho Operations Office. Stated emergency capabilities at the INL are sufficient to implement emergency plans. Summary tables augment descriptive paragraphs to provide easy access to data. Additionally, the plan furnishes budgeting, personnel, and planning forecasts for the next 5 years.

  4. Are You Ready to Make a Difference? | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Are You Ready to Make a Difference? Are You Ready to Make a Difference? September 27, 2010 - 2:23pm Addthis Secretary of Energy Steven Chu talks about the influence of his physics teacher. John Schueler John Schueler Former New Media Specialist, Office of Public Affairs Providing America's students with a quality education is essential to ensuring that we can continue to be leaders of innovation and industry, and we can't fulfill that responsibility without quality teachers. There is already a

  5. Some engineering properties of heavy concrete added silica fume

    SciTech Connect (OSTI)

    Akka?, Ay?e; Ba?yi?it, Celalettin; Esen, Serap

    2013-12-16

    Many different types of building materials have been used in building construction for years. Heavy concretes can be used as a building material for critical building as it can contain a mixture of many heavy elements. The barite itself for radiation shielding can be used and also in concrete to produce the workable concrete with a maximum density and adequate structural strength. In this study, some engineering properties like compressive strength, elasticity modules and flexure strength of heavy concretes added Silica fume have been investigated.

  6. Beneficial Use of Carbon Dioxide in Precast Concrete Production...

    Office of Scientific and Technical Information (OSTI)

    of Carbon Dioxide in Precast Concrete Production Shao, Yixin 36 MATERIALS SCIENCE Clean Coal Technology Coal - Environmental Processes Clean Coal Technology Coal - Environmental...

  7. Development of ultrasonic methods for the nondestructive inspection of concrete

    SciTech Connect (OSTI)

    Claytor, T.N.; Ellingson, W.A.

    1983-08-01

    Nondestructive inspection of Portland cement and refractory concrete is conducted to determine strength, thickness, presence of voids or foreign matter, presence of cracks, amount of degradation due to chemical attack, and other properties without the necessity of coring the structure (which is usually accomplished by destructively removing a sample). This paper reviews the state of the art of acoustic nondestructive testing methods for Portland cement and refractory concrete. Most nondestructive work on concrete has concentrated on measuring acoustic velocity by through transmission methods. Development of a reliable pitch-catch or pulse-echo system would provide a method of measuring thickness with access from only one side of the concrete.

  8. A novel technique for the production of cool colored concrete...

    Office of Scientific and Technical Information (OSTI)

    for the production of cool colored concrete tile and asphalt shingle roofing products Citation Details In-Document Search Title: A novel technique for the production of cool ...

  9. Roman Seawater Concrete Holds the Secret to Cutting Carbon Emissions

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    "one of the most durable construction materials on the planet," says UC Berkeley's Marie Jackson, a leading member of the team. Says Monteiro, "It's not that modern concrete...

  10. Performance of Damaged Soil-Concrete Wraparound Dam Sections...

    Office of Scientific and Technical Information (OSTI)

    Predicting seismic or shock loading damage of the soil-concrete interface where an ... erosion process, and deposition within interface cracks; and (2) to investigate the ...

  11. DOE Zero Energy Ready Home Case Study: Palo Duro Homes, Albuquerque...

    Energy Savers [EERE]

    Energy Ready Home Case Study: Palo Duro Homes, Albuquerque, NM Case study of a New Mexico-based home builder who has built more DOE Zero Energy Ready certified homes than any...

  12. What to Expect When Readying to Move Spent Nuclear Fuel from...

    Energy Savers [EERE]

    What to Expect When Readying to Move Spent Nuclear Fuel from Commercial Nuclear Power Plants What to Expect When Readying to Move Spent Nuclear Fuel from Commercial Nuclear Power ...

  13. L1:PAC.P6.04 Westinghouse Test Stand Technical Readiness Review

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    L1:PAC.P6.04 Westinghouse Test Stand Technical Readiness Review Andrew Godfrey ORNL ... From: Andrew Godfrey Subject: Westinghouse Test Stand Technical Readiness Review Jess, I ...

  14. Ready, Set, Go: New Tool and Report Help Offshore Wind Industry...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Ready, Set, Go: New Tool and Report Help Offshore Wind Industry Take Off Ready, Set, Go: New ... at their facility to support the installation and maintenance of offshore wind farms. ...

  15. DOE Zero Energy Ready Home Case Study: e2 Homes, Winter Park...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Zero Energy Ready Home Case Study: Southeast Volusia Habitat for Humanity, Edgewater, Florida DOE Zero Energy Ready Home Case Study: Palo Duro Homes, Via del Cielo, Santa Fe, NM

  16. Zero Energy-Ready Single-Family Homes - Building America Top...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Zero Energy-Ready Single-Family Homes - Building America Top Innovation Zero Energy-Ready Single-Family Homes - Building America Top Innovation Photo of a zero-energy, ...

  17. DOE Zero Energy Ready Home Case Study: New Town Builders, Denver...

    Energy Savers [EERE]

    Energy Ready Home Case Study: New Town Builders, Town Homes at Perrin's Row, Wheat Ridge, CO DOE Zero Energy Ready Home Case Study: Palo Duro Homes, Via del Cielo, Santa Fe, NM...

  18. DOE Zero Energy Ready Home Case Study: Hammer and Hand, Pumpkin...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    House, North Plains, OR DOE Zero Energy Ready Home Case Study: One Sky Homes, San Jose, CA DOE Zero Energy Ready Home Case Study: Hammer and Hand, Pumpkin Ridge Passive ...

  19. DOE Zero Energy Ready Home Case Study: Clifton View Homes, Coupeville...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    DOE Zero Energy Ready Home Case Study: Clifton View Homes, Coupeville, WA, Systems Home Case study of a DOE Zero Energy Ready Home on Whidbey Island, WA, that scored HERS 45 ...

  20. DOE Zero Energy Ready Home Case Study: Boulder ZED Design Build...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Boulder ZED Design Build - Boulder, Colorado DOE Zero Energy Ready Home Case Study: Boulder ZED Design Build - Boulder, Colorado Case study of a DOE Zero Energy Ready Home in ...

  1. DOE Zero Ready Home Case Study: One Sky Homes, Cottle Zero Net...

    Energy Savers [EERE]

    solar-ready components for low or no utility bills in a ... Zero Energy Ready Home criteria while testing several ... High efficiency starts at the ground level where Gilliland ...

  2. DOE Zero Energy Ready Home Case Study: KB Home, San Marcos, CA...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    More Documents & Publications DOE Zero Energy Ready Home Case Study: KB Home, Lancaster, CA DOE Zero Energy Ready Home Case Study: KB Home, Double ZeroHouse 3.0, El Dorado Hill, CA

  3. DOE Zero Energy Ready Home Case Study: One Sky Homes, San Jose...

    Energy Savers [EERE]

    One Sky Homes, San Jose, CA DOE Zero Energy Ready Home Case Study: One Sky Homes, San Jose, CA DOE Zero Energy Ready Home Case Study: One Sky Homes, San Jose, CA Case study of a...

  4. DOE Zero Energy Ready Home Case Study: BrightLeaf Homes, McCormick...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    More Documents & Publications DOE Zero Energy Ready Home Case Study: Palo Duro Homes, Via del Cielo, Santa Fe, NM DOE Zero Energy Ready Home Case Study: BrightLeaf Homes, McCormick ...

  5. DOE Zero Energy Ready Home Case Study: New Town Builders, Town...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Denver, CO DOE Zero Energy Ready Home Case Study: New Town Builders, Denver, CO, Production Home DOE Zero Energy Ready Home Case Study: Palo Duro Homes, Via del Cielo, Santa Fe, NM

  6. DOE Zero Energy Ready Home Case Study: Palo Duro Homes Inc.,...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    More Documents & Publications DOE Zero Energy Ready Home Case Study: Palo Duro Homes, Via del Cielo, Santa Fe, NM DOE Zero Energy Ready Home Case Study: Palo Duro Homes, ...

  7. DOE Zero Energy Ready Home Case Study: BPC Green Builders, Custom...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    CT DOE Zero Energy Ready Home Case Study: BPC Green Builders, Taft School, Watertown, CT DOE Zero Energy Ready Home Case Study: Palo Duro Homes, Via del Cielo, Santa Fe, NM

  8. DOE Zero Energy Ready Home Case Study: Habitat for Humanity South...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Sarasota County, Nokomis, FL DOE Zero Energy Ready Home Case Study: Habitat for Humanity South Sarasota County, Nokomis, FL DOE Zero Energy Ready Home Case Study: Habitat for Humanity ...

  9. DOE Zero Energy Ready Home Case Study: BPC Green Builders, Custom...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    BPC Green Builders, Custom Home, New Fairfield, CT DOE Zero Energy Ready Home Case Study: BPC Green Builders, Custom Home, New Fairfield, CT Case study of a DOE Zero Energy Ready ...

  10. DOE Zero Energy Ready Home Case Study: BPC Green Builders, Danbury...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Danbury, CT DOE Zero Energy Ready Home Case Study: BPC Green Builders, Danbury, CT DOE Zero Energy Ready Home Case Study: BPC Green Builders, Danbury, CT Case study of a DOE Zero ...

  11. DOE Zero Energy Ready Home Case Study: BPC Green Builders, Danbury...

    Energy Savers [EERE]

    BPC Green Builders, Danbury, CT DOE Zero Energy Ready Home Case Study: BPC Green Builders, Danbury, CT DOE Zero Energy Ready Home Case Study: BPC Green Builders, Danbury, CT Case...

  12. File:CCS EA 2012 Web-ready.pdf | Open Energy Information

    Open Energy Info (EERE)

    CCS EA 2012 Web-ready.pdf Jump to: navigation, search File File history File usage Metadata File:CCS EA 2012 Web-ready.pdf Size of this preview: 463 599 pixels. Other...

  13. DOE Zero Energy Ready Home Case Study: New Town Builders, Denver...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    DOE Zero Energy Ready Home Case Study: New Town Builders, Denver, CO, Production Home Case study of a DOE Zero Energy Ready Home in Denver, CO, that scored HERS 41 without PV, HERS ...

  14. DOE Zero Energy Ready Home Case Study: KB Home, Lancaster, CA...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    KB Home, Lancaster, CA DOE Zero Energy Ready Home Case Study: KB Home, Lancaster, CA Case study of a DOE Zero Energy Ready home in Lancaster, CA, that achieved a HERS 43 without PV ...

  15. DOE Zero Energy Ready Home Case Study: TC Legend Homes, Bellingham...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    TC Legend Homes, Bellingham, WA DOE Zero Energy Ready Home Case Study: TC Legend Homes, Bellingham, WA DOE Zero Energy Ready Home Case Study: TC Legend Homes, Bellingham, WA Case ...

  16. DOE ZERH Webinar: Updates to the DOE Zero Energy Ready Home Specs- Rev05

    Broader source: Energy.gov [DOE]

    TitleUpdates to the DOE Zero Energy Ready Home Specs - Rev05DescriptionIn the year since DOE last updated the DOE Zero Energy Ready Home specs, we've continued to track our partner feedback and...

  17. Text-Alternative Version: ENERGY STAR® for SSL: Getting Ready for September 30

    Broader source: Energy.gov [DOE]

    Below is the text-alternative version of the ENERGY STAR® for SSL: Getting Ready for September 30 webcast.

  18. DOE ZERH Webinar: Marketing and Sales Solutions for Zero Energy Ready Homes

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    (Text Version) | Department of Energy Marketing and Sales Solutions for Zero Energy Ready Homes (Text Version) DOE ZERH Webinar: Marketing and Sales Solutions for Zero Energy Ready Homes (Text Version) Below is the text version of the webinar, Marketing and Sales Solutions for Zero Energy Ready Homes, presented in June 2014. Watch the presentation. Lindsay Parker: ... the Department of Energy Zero Energy Ready Home technical training webinar series. We're really excited that you can join us

  19. DOE ZERH Webinar: Updates to the DOE Zero Energy Ready Home Specs --

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Revision 05 (Text Version) | Department of Energy Updates to the DOE Zero Energy Ready Home Specs -- Revision 05 (Text Version) DOE ZERH Webinar: Updates to the DOE Zero Energy Ready Home Specs -- Revision 05 (Text Version) Below is the text version of the webinar Updates to the DOE Zero Energy Ready Home Specs -- Revision 05, presented in May 2015. Watch the presentation. Lindsay Parker: Presentation cover slide: Hi, everyone. Welcome to the Department of Energy Zero Energy Ready Home

  20. DOE ZERO ENERGY READY HOME UPDATE NEWSLETTER MARCH 2016 | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy MARCH 2016 DOE ZERO ENERGY READY HOME UPDATE NEWSLETTER MARCH 2016 TABLE OF CONTENTS A Note From Sam Rashkin: Zero Has Arrived, Now Let's Bring Her Home Joe Lstiburek's Webinar Now Available Online Home Innovation Seeks Builders for Study PDF icon ZERH Update March 2016.pdf More Documents & Publications DOE ZERO ENERGY READY HOME UPDATE NEWSLETTER JANUARY 2016 DOE ZERO ENERGY READY HOME UPDATE NEWSLETTER JULY 2015 DOE Zero Energy Ready Home Update September 2015

  1. DOE ZERO ENERGY READY HOME UPDATE OCTOBER 2015 | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ZERO ENERGY READY HOME UPDATE OCTOBER 2015 DOE ZERO ENERGY READY HOME UPDATE OCTOBER 2015 TABLE OF CONTENTS A Note From Sam Rashkin: It's Consumer Education...(something that rhymes with Cupid) Race to Zero Webinar: What is Good Housing Design? PDF icon ZERH Update October 2015.pdf More Documents & Publications DOE ZERO ENERGY READY HOME UPDATE NEWSLETTER JANUARY 2016 DOE ZERO ENERGY READY HOME UPDATE NEWSLETTER MARCH 2016

  2. DOE Zero Energy Ready Home Case Study: Green Extreme Homes & Carl Franklin

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Homes, Garland, TX | Department of Energy Green Extreme Homes & Carl Franklin Homes, Garland, TX DOE Zero Energy Ready Home Case Study: Green Extreme Homes & Carl Franklin Homes, Garland, TX DOE Zero Energy Ready Home Case Study: Green Extreme Homes & Carl Franklin Homes, Garland, TX Case study of a DOE Zero Energy Ready affordable home in Garland, TX, that was the first retrofit home certified to the DOE Zero Energy Ready home requirements. The construction team achieved a HERS

  3. DOE Zero Energy Ready Home Case Study: Shore Road Project- Old Greenwich, Connecticut

    Broader source: Energy.gov [DOE]

    This case study describes the builder Murphy Brothers' first DOE Zero Energy Ready Home in Old Greenwich, CT.

  4. CCSI Technology Readiness Levels Likelihood Model (TRL-LM) Users Guide

    SciTech Connect (OSTI)

    Engel, David W.; Dalton, Angela C.; Sivaramakrishnan, Chandrika; Lansing, Carina

    2013-03-26

    This is the manual for the Carbon Capture Simulation Initiative (CCSI) Technology Readiness Level Likelihood model based on PNNL velo.

  5. ZERH Webinar: Getting Enclosures Right in Zero Energy Ready Homes (Text

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Version) | Department of Energy Getting Enclosures Right in Zero Energy Ready Homes (Text Version) ZERH Webinar: Getting Enclosures Right in Zero Energy Ready Homes (Text Version) Here is the text version of the webinar Getting Enclosures Right in Zero Energy Ready Homes, presented in February 2016. Watch the presentation. Alex Krowka: Welcome to DOE Zero Energy Ready Home's technical training webinar series. We're really excited that you can join us today for this session on getting

  6. NMSSUP Phase 2 Transition/Readiness Verification Workshop

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Nuclear Material Safeguards and Security Upgrade Project (NMSSUP) Phase II Transition/Readiness Verification Workshop Tuesday, April 30, 2013 Hilton Santa Fe Buffalo Thunder, Santa Fe, New Mexico Room reservation info Tewa Bay Meeting Room 1 Hosted by Los Alamos National Laboratory and NA-00-LA Field Office nmssup aerial Los Alamos National Laboratory, Technical Area 55

  7. Verification of Readiness to Start Up or Restart Nuclear Facilities

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2010-04-16

    The order establishes requirements for verifying readiness for startup of new Hazard Category 1, 2, and 3 nuclear facilities, activities, and operations, and for restart of existing Hazard Category 1, 2, and 3 nuclear facilities, activities, and operations that have been shut down. Cancels DOE O 425.1C. Adm Chg 1, dated 4-2-13.

  8. Verification of Readiness to Start Up or Restart Nuclear Facilities

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2010-04-16

    The order establishes requirements for verifying readiness for startup of new Hazard Category 1, 2, and 3 nuclear facilities, activities, and operations, and for restart of existing Hazard Category 1, 2, and 3 nuclear facilities, activities, and operations that have been shut down. Adm Chg 1, dated 4-2-13, supersedes DOE O 425.1D.

  9. Colorado Community Readiness Efforts for PEVs Support State Policy Development

    Office of Energy Efficiency and Renewable Energy (EERE)

    Project FEVER (Fostering Electric Vehicle Expansion in the Rockies), funded by EEREs Clean Cities plug-in electric vehicle community readiness award, has supported the development of Colorado state policies to accelerate the adoption of plug-in electric vehicles (PEVs).

  10. Operational Readiness Review: Savannah River Replacement Tritium Facility

    SciTech Connect (OSTI)

    Not Available

    1993-02-01

    The Operational Readiness Review (ORR) is one of several activities to be completed prior to introducing tritium into the Replacement Tritium Facility (RTF) at the Savannah River Site (SRS). The Secretary of Energy will rely in part on the results of this ORR in deciding whether the startup criteria for RTF have been met. The RTF is a new underground facility built to safely service the remaining nuclear weapons stockpile. At RTF, tritium will be unloaded from old components, purified and enriched, and loaded into new or reclaimed reservoirs. The RTF will replace an aging facility at SRS that has processed tritium for more than 35 years. RTF has completed construction and is undergoing facility startup testing. The final stages of this testing will require the introduction of limited amounts of tritium. The US Department of Energy (DOE) ORR was conducted January 19 to February 4, 1993, in accordance with an ORR review plan which was developed considering previous readiness reviews. The plan also considered the Defense Nuclear Facilities Safety Board (DNFSB) Recommendations 90-4 and 92-6, and the judgements of experienced senior experts. The review covered three major areas: (1) Plant and Equipment Readiness, (2) Personnel Readiness, and (3) Management Systems. The ORR Team was comprised of approximately 30 members consisting of a Team Leader, Senior Safety Experts, and Technical Experts. The ORR objectives and criteria were based on DOE Orders, industry standards, Institute of Nuclear Power Operations guidelines, recommendations of external oversight groups, and experience of the team members.

  11. DOE Zero Energy Ready Home: Montlake Modern- Seattle, Washington

    Broader source: Energy.gov [DOE]

    This DOE Zero Energy Ready Home features structural insulated panel walls and roof, an air-to-water heat pump plus radiant floor heat; 100% LED lighting; filtered-fan-powered fresh air intake; triple-pane windows, and 9.7 kWh PV for electric car charging station.

  12. PROJECT PROFILE: The Solar Foundation – Solar Ready Vets

    Broader source: Energy.gov [DOE]

    The Solar Foundation (TSF) is the new national administrator for the Solar Ready Vets (SRV) program. This project takes an innovative approach to providing transitioning active duty service members with promising civilian career paths in solar energy while also providing the solar industry with highly qualified and motivated workers.

  13. Operational readiness review phase-1 final report for WRAP-1

    SciTech Connect (OSTI)

    Bowen, W., Westinghouse Hanford

    1996-12-27

    This report documents the Operational Readiness Review for WRAP-1 Phase-1 operations. The report includes all criteria, lines of inquiry with resulting Findings and Observations. The review included assessing operational capability of the organization and the computer controlled process and facility systems.

  14. Zero Energy Ready Home Events | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    February 2016 < prev next > Sun Mon Tue Wed Thu Fri Sat 31 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 ZERH Webinar: Getting Enclosures Right in Zero Energy Ready Homes...

  15. U.S. Department of Energy Technology Readiness Assessment Guide

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2009-10-12

    This Guide assists individuals and teams involved in conducting Technology Readiness Assessments and developing Technology Maturation Plans for the DOE capital acquisition asset projects subject to DOE O 413.3A, Program and Project Management for the Acquisition of Capital Assets, dated 7-28-06. Canceled by DOE G 413.3-4A. Does not cancel other directives.

  16. Zero Energy Ready Home Certificate Examples | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Certificate Examples Zero Energy Ready Home Certificate Examples These certificates are printed from RESNET Accredited Software, examples from REM/Rate and from EnergyGauge. PDF icon Remrate Cert.pdf More Documents & Publications 2016 U.S. Department of Energy Race to Zero Student Design Competition Guide Review of Selected Home Energy Auditing Tools Overview of Existing Home Energy Labels

  17. Mixing in astrophysics

    SciTech Connect (OSTI)

    Fryer, Christopher Lee

    2011-01-07

    Turbulent mixing plays a vital role in many fields in astronomy. Here I review a few of these sites, discuss the importance of this turbulent mixing and the techniques used by astrophysicists to solve these problems.

  18. Perforation of thin unreinforced concrete slabs

    SciTech Connect (OSTI)

    Cargile, J.D.; Giltrud, M.E.; Luk, V.K.

    1993-10-01

    This report discusses fourteen tests which were conducted to investigate the perforation of thin unreinforced concrete slabs. The 4340-steel projectile used in the test series is 50.8 mm in diameter, 355.6 mm in length, has a mass of 2.34 kg. and an ogive nose with caliber radius head of 3. The slabs, contained within steel culverts, are 1.52 m in diameter and consist of concrete with a nominal unconfined compressive strength of 38.2 MPa and maxima aggregate size of 9.5 mm. Slab thicknesses are 284.4, 254.0, 215.9 and 127.0 mm. Tests were conducted at impact velocities of about 313 m/s on all slab thicknesses and about 379 and 471 m/s on the 254.0-mm-thick slab. All tests were conducted at normal incidence to the slab. All tests were conducted at normal incidence to the slab. Information obtained from the tests used to determine the loading (deceleration) on the projectile during the perforation process, the velocity-displacement of the projectile as it perforated the slab, and the projectile position as damage occurred on the backface of the slab. The test projectile behaved essentially as a rigid body for all of the tests.

  19. Multiscale Concrete Modeling of Aging Degradation

    SciTech Connect (OSTI)

    Hammi, Yousseff; Gullett, Philipp; Horstemeyer, Mark F.

    2015-07-31

    In this work a numerical finite element framework is implemented to enable the integration of coupled multiscale and multiphysics transport processes. A User Element subroutine (UEL) in Abaqus is used to simultaneously solve stress equilibrium, heat conduction, and multiple diffusion equations for 2D and 3D linear and quadratic elements. Transport processes in concrete structures and their degradation mechanisms are presented along with the discretization of the governing equations. The multiphysics modeling framework is theoretically extended to the linear elastic fracture mechanics (LEFM) by introducing the eXtended Finite Element Method (XFEM) and based on the XFEM user element implementation of Giner et al. [2009]. A damage model that takes into account the damage contribution from the different degradation mechanisms is theoretically developed. The total contribution of damage is forwarded to a Multi-Stage Fatigue (MSF) model to enable the assessment of the fatigue life and the deterioration of reinforced concrete structures in a nuclear power plant. Finally, two examples are presented to illustrate the developed multiphysics user element implementation and the XFEM implementation of Giner et al. [2009].

  20. EERE Success Story-Concrete Company Moving to Natural Gas with...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Concrete Company Moving to Natural Gas with Clean Cities EERE Success Story-Concrete Company Moving to Natural Gas with Clean Cities March 10, 2015 - 10:25am Addthis Concrete ...

  1. DOE Zero Energy Ready Home Case Study: Southern Energy Homes — First DOE Zero Energy Ready Manufactured Home, Russellville, AL

    SciTech Connect (OSTI)

    none,

    2014-09-01

    This home is the first manufactured home built to the DOE Zero Energy Ready Home standard and won an Affordable Builder award in the 2014 Housing Innovations Awards. This manufactured home achieved a HERS score of 57 without photovoltaics and includes superior insulation and air sealing.

  2. Concrete decontamination by electro-hydraulic scabbling (EHS). Final report

    SciTech Connect (OSTI)

    1997-10-01

    Contamination of concrete structures by radionuclides, hazardous metals and organic substances (including PCB`s) occurs at many DOE sites. The contamination of concrete structures (walls, floors, ceilings, etc.) varies in type, concentration, and especially depth of penetration into the concrete. In many instances, only the surface layer of concrete is contaminated, up to a depth of one inch, according to estimates provided in the R and D ID document. Then, removal of the concrete surface layer (scabbling) is considered to be the most effective decontamination method. Textron Systems Corp. (TSC) has developed a scabbling concept based on electro-mechanical phenomena accompanying strong electric pulses generated by applying high voltage at the concrete/water interface. Depending on the conditions, the electric discharge may occur either through a waste layer or through the concrete body itself. This report describes the development, testing, and results of this electro-mechanical process. Phase 1 demonstrated the feasibility of the process for the controlled removal of a thin layer of contaminated concrete. Phase 2 designed, fabricated, and tested an integrated subscale unit. This was tested at Fernald. In Phase 3, the scabbling unit was reconfigured to increase its power and processing rate. Technology transfer to an engineering contracting company is continuing.

  3. Electropositive bivalent metallic ion unsaturated polyester complexed polymer concrete

    DOE Patents [OSTI]

    Sugama, Toshifumi; Kukacka, Lawrence E.; Horn, William H.

    1985-01-01

    Quick setting polymer concrete compositions with excellent structural properties are disclosed; these polymer concrete compositions are mixtures of unsaturated polyesters and crosslinking monomers together with appropriate initiators and promoters in association with aggregate, which may be wet, and with a source of bivalent metallic ions.

  4. Electropositive bivalent metallic ion unsaturated polyester complexed polymer concrete

    DOE Patents [OSTI]

    Sugama, T.; Kukacka, L.E.; Horn, W.H.

    1983-05-13

    Quick setting polymer concrete compositions are described which are mixtures of unsaturated polyesters and crosslinking monomers together with appropriate initiators and promoters in association with aggregate which may be wet and a source of bivalent metallic ions which will set to polymer concrete with excellent structural properties.

  5. Electropositive bivalent metallic ion unsaturated polyester complexed polymer concrete

    DOE Patents [OSTI]

    Sugama, T.; Kukacka, L.E.; Horn, W.H.

    1981-11-04

    Quick setting polymer concrete compositions which are mixtures of unsaturated polyesters and crosslinking monomers together with appropriate initiators and promoters in association with aggregate which may be wet and a source of bivalent metallic ions which will set to polymer concrete with excellent structural properties.

  6. Testing and evaluation of electrokinetic decontamination of concrete

    SciTech Connect (OSTI)

    DePaoli, D.W.; Harris, M.T.; Ally, M.R.

    1996-10-01

    The goals and objectives of the technical task plan (TTP) are to (1) describe the nature and extent of concrete contamination within the Department of Energy (DOE) complex and emerging and commercial technologies applicable to these problems; (2) to match technologies to the concrete problems and recommend up to four demonstrations; (3) to initiate recommended demonstrations; and (4) to continue investigation and evaluation of the application of electrokinetic decontamination processes to concrete. This document presents findings of experimental and theoretical studies of the electrokinetic decontamination (EK) process and their implications for field demonstrations. This effort is an extension of the work performed under TTP 142005, ``Electroosmotic Concrete Decontamination. The goals of this task were to determine the applicability of EK for treating contaminated concrete and, if warranted, to evaluate EK as a potential technology for demonstration. 62 refs.

  7. Review of Concrete Biodeterioration in Relation to Buried Nuclear Waste

    SciTech Connect (OSTI)

    Turick, C; Berry, C.

    2012-10-15

    Long-term storage of low level radioactive material in below ground concrete disposal units (DUs) (Saltstone Disposal Facility) is a means of depositing wastes generated from nuclear operations of the U.S. Department of Energy. Based on the currently modeled degradation mechanisms, possible microbial induced effects on the structural integrity of buried low level wastes must be addressed. Previous international efforts related to microbial impacts on concrete structures that house low level radioactive waste showed that microbial activity can play a significant role in the process of concrete degradation and ultimately structural deterioration. This literature review examines the recent research in this field and is focused on specific parameters that are applicable to modeling and prediction of the fate of concrete vaults housing stored wastes and the wastes themselves. Rates of concrete biodegradation vary with the environmental conditions, illustrating a need to understand the bioavailability of key compounds involved in microbial activity. Specific parameters require pH and osmotic pressure to be within a certain range to allow for microbial growth as well as the availability and abundance of energy sources like components involved in sulfur, iron and nitrogen oxidation. Carbon flow and availability are also factors to consider in predicting concrete biodegradation. The results of this review suggest that microbial activity in Saltstone, (grouted low level radioactive waste) is unlikely due to very high pH and osmotic pressure. Biodegradation of the concrete vaults housing the radioactive waste however, is a possibility. The rate and degree of concrete biodegradation is dependent on numerous physical, chemical and biological parameters. Results from this review point to parameters to focus on for modeling activities and also, possible options for mitigation that would minimize concrete biodegradation. In addition, key chemical components that drive microbial activity on concrete surfaces are discussed.

  8. Normal and refractory concretes for LMFBR applications. Volume 2. Evaluation of concretes for LMFBR applications. Final report

    SciTech Connect (OSTI)

    Bazant, Z.P.; Chern, J.C.; Abrams, M.S.; Gillen, M.P.

    1982-06-01

    The extensive literature on the properties and behavior at elevated temperature of portland cement concrete and various refractory concretes was reviewed to collect in concise form the physical and chemical properties of castable refractory concretes and of conventional portland cement concretes at elevated temperature. This survey, together with an extensive bibliography of source documents, is presented in Volume 1. A comparison was made of these properties, the relative advantages of the various concretes was evaluated for possible liquid metal fast breeder reactor applications, and a selection was made of several materials of interest for such applications. Volume 2 concludes with a summary of additional knowledge needed to support such uses of these materials together with recommendations on research to provide that knowledge.

  9. High temperature chemically resistant polymer concrete

    DOE Patents [OSTI]

    Sugama, T.; Kukacka, L.E.

    High temperature chemically resistant, non-aqueous polymer concrete composites consist of about 12 to 20% by weight of a water-insoluble polymer binder. The binder is polymerized in situ from a liquid vinyl-type monomer or mixture of vinyl containing monomers such as triallylcyanurate, styrene, acrylonitrile, acrylamide, methacrylamide, methyl-methacrylate, trimethylolpropane trimethacrylate and divinyl benzene. About 5 to 40% by weight of a reactive inorganic filler selected from the group consisting of tricalcium silicate and dicalcium silicate and mixtures containing less than 2% free lime, and about 48 to 83% by weight of silica sand/ and a free radical initiator such as di-tert-butyl peroxide, azobisisobutyronitrile, benzoyl peroxide, lauryl peroxide, other orgaic peroxides and combinations to initiate polymerization of the monomer in the presence of the inorganic filers are used.

  10. Sulfate and acid resistant concrete and mortar

    DOE Patents [OSTI]

    Liskowitz, John W.; Wecharatana, Methi; Jaturapitakkul, Chai; Cerkanowicz, deceased, Anthony E.

    1998-01-01

    The present invention relates to concrete, mortar and other hardenable mixtures comprising cement and fly ash for use in construction and other applications, which hardenable mixtures demonstrate significant levels of acid and sulfate resistance while maintaining acceptable compressive strength properties. The acid and sulfate hardenable mixtures of the invention containing fly ash comprise cementitious materials and a fine aggregate. The cementitous materials may comprise fly ash as well as cement. The fine aggregate may comprise fly ash as well as sand. The total amount of fly ash in the hardenable mixture ranges from about 60% to about 120% of the total amount of cement, by weight, whether the fly ash is included as a cementious material, fine aggregate, or an additive, or any combination of the foregoing. In specific examples, mortar containing 50% fly ash and 50% cement in cementitious materials demonstrated superior properties of corrosion resistance.

  11. Sulfate and acid resistant concrete and mortar

    DOE Patents [OSTI]

    Liskowitz, J.W.; Wecharatana, M.; Jaturapitakkul, C.; Cerkanowicz, A.E.

    1998-06-30

    The present invention relates to concrete, mortar and other hardenable mixtures comprising cement and fly ash for use in construction and other applications, which hardenable mixtures demonstrate significant levels of acid and sulfate resistance while maintaining acceptable compressive strength properties. The acid and sulfate hardenable mixtures of the invention containing fly ash comprise cementitious materials and a fine aggregate. The cementitous materials may comprise fly ash as well as cement. The fine aggregate may comprise fly ash as well as sand. The total amount of fly ash in the hardenable mixture ranges from about 60% to about 120% of the total amount of cement, by weight, whether the fly ash is included as a cementious material, fine aggregate, or an additive, or any combination of the foregoing. In specific examples, mortar containing 50% fly ash and 50% cement in cementitious materials demonstrated superior properties of corrosion resistance. 6 figs.

  12. Technology Readiness Levels for Advanced Nuclear Fuels and Materials Development

    SciTech Connect (OSTI)

    Jon Carmack

    2014-01-01

    The Technology Readiness Level (TRL) process is used to quantitatively assess the maturity of a given technology. The TRL process has been developed and successfully used by the Department of Defense (DOD) for development and deployment of new technology and systems for defense applications. In addition, NASA has also successfully used the TRL process to develop and deploy new systems for space applications. Advanced nuclear fuels and materials development is a critical technology needed for closing the nuclear fuel cycle. Because the deployment of a new nuclear fuel forms requires a lengthy and expensive research, development, and demonstration program, applying the TRL concept to the advanced fuel development program is very useful as a management and tracking tool. This report provides definition of the technology readiness level assessment process as defined for use in assessing nuclear fuel technology development for the Advanced Fuel Campaign (AFC).

  13. EMERGENCY READINESS ASSURANCE PLAN (ERAP) FOR FISCAL YEAR (FY) 2014

    SciTech Connect (OSTI)

    Bush, Shane

    2014-09-01

    This Emergency Readiness Assurance Plan (ERAP) for Fiscal Year (FY) 2014 in accordance with DOE O 151.1C, “Comprehensive Emergency Management System.” The ERAP documents the readiness of the INL Emergency Management Program using emergency response planning and preparedness activities as the basis. It describes emergency response planning and preparedness activities, and where applicable, summarizes and/or provides supporting information in tabular form for easy access to data. The ERAP also provides budget, personnel, and planning forecasts for FY-15. Specifically, the ERAP assures the Department of Energy Idaho Operations Office that stated emergency capabilities at INL are sufficient to implement PLN-114, “INL Emergency Plan/RCRA Contingency Plan.

  14. Building America Zero Energy Ready Home Case Study: Southeast Volusia

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Habitat for Humanity, Edgewater, Florida | Department of Energy Southeast Volusia Habitat for Humanity, Edgewater, Florida Building America Zero Energy Ready Home Case Study: Southeast Volusia Habitat for Humanity, Edgewater, Florida Case study describing a Habitat for Humanity home in coastal Florida with ICF walls, ducts in the thermal envelope in a furred-up ceiling chase, and HERS 49 without PV. PDF icon Southeast Volusia: Habitat for Humanity - Edgewater, Florida More Documents &

  15. Building America Zero Energy Ready Home Case Study: Southeast Volusia

    Energy Savers [EERE]

    August 8, 2014 Building America Update - August 8, 2014 August 8, 2014 - 12:05pm Addthis Top Innovation Spotlight: Quality Management System Guidelines Webinar: High Performance Enclosure Strategies, Part II Building America Code Compliance Briefs Support Market Adoption of Innovations Zero Energy Ready Home Technical Webinars and Trainings New DOE Energy Conservation Standards for Residential Furnace Fans Residential Successes: Community-Scale, Affordable High Performance Homes Other DOE

  16. Microgrid-Ready Solar PV; NREL (National Renewable Energy Laboratory)

    SciTech Connect (OSTI)

    2015-07-01

    Designing new solar projects to be 'microgrid-ready' enables the U.S. DoD, other federal agencies, and the private sector to plan future microgrid initiatives to utilize solar PV as a generating resource. This fact sheet provides background information with suggested language for several up-front considerations that can be added to a solar project procurement or request for proposal (RFP) that will help ensure that PV systems are built for future microgrid connection.

  17. Synthetic muscle developed with PPPL scientists' help ready for launch |

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Princeton Plasma Physics Lab Synthetic muscle developed with PPPL scientists' help ready for launch By Jeanne Jackson DeVoe April 8, 2015 Tweet Widget Google Plus One Share on Facebook Gallery: The Dragon spacecraft in orbit. Photo courtesy of NASA) (Photo by Photo courtesy of NASA) The Dragon spacecraft in orbit. Photo courtesy of NASA) The synthetic muscle material before it was packed for transport to the International Space Station. ( Photo courtesy of NASA ) (Photo by Photo courtesy of

  18. DOE Zero Energy Ready Home Webinar: Building Energy Optimization (BEopt)

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Software | Department of Energy Building Energy Optimization (BEopt) Software DOE Zero Energy Ready Home Webinar: Building Energy Optimization (BEopt) Software This webinar was presented on May 15, 2014 and gives an overview of the BEopt software tool. PDF icon DOE ZERH Technical Webinar_BEopt.pdf More Documents & Publications DOE ZERH Webinar: Building Energy Optimization Tool (BEopt) Training Building America Webinar: BEopt Optimization Tool and National Residential Efficiency Measures

  19. APPLICATION OF RISK MANAGEMENT PRACTICES TO NNSA TRITIUM READINESS SUBPROGRAM

    SciTech Connect (OSTI)

    Shete, S; Srini Venkatesh, S

    2007-01-31

    The National Nuclear Security Administration (NNSA), Office of Stockpile Technology (NNSA/NA-123) chartered a risk assessment of the Tritium Readiness (TR) Subprogram to identify risks and to develop handling strategies with specific action items that could be scheduled and tracked to completion in order to minimize program failures. This assessment was performed by a team of subject matter experts (SMEs) comprised of representatives from various organizations participating in the TR Subprogram. The process was coordinated by Savannah River Site, Systems Engineering (SRS/SE) with support from Subprogram Team. The Risk Management Process steps performed during this risk assessment were: Planning, Identification, Grading, Handling, and Impact Determination. All of the information captured during the risk assessment was recorded in a database. The team provided estimates for the cost and schedule impacts of implementing the recommended handling strategies and facilitated the risk based cost contingency analysis. The application of the Risk Management Practices to the NNSA Tritium Readiness Subprogram resulted in: (1) The quarterly review and update of the Risk Management Database to include an evaluation of all existing risks and the identification/evaluation of any potential new risks. (2) The risk status and handling strategy action item tracking mechanism that has visibility and buy-in throughout the Tritium Readiness Subprogram to ensure that approved actions are completed as scheduled and that risk reduction is being achieved. (3) The generation of a risk-based cost contingency estimate that may be used by the Tritium Readiness Subprogram Manager in establishing future year program budgets.

  20. ZERO ENERGY READY HOME UPDATE NEWSLETTER DECEMBER 2014 | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy DECEMBER 2014 ZERO ENERGY READY HOME UPDATE NEWSLETTER DECEMBER 2014 TABLE OF CONTENTS A note from Sam Rashkin: Special Words for a Special Builder... Your Story, Compellingly Clear Consumer Tour of Zero Big Thanks for Making a Difference! Looking for Leading Lenders Webinars The 2015 Race to Zero Student Design Competition Top Winners to be Constructed! PDF icon Decemeber 2014 Newsletter.pdf More Documents & Publications DOE ZERH Second Leading Builder Round Table Meeting Report

  1. Zero Energy Ready Home April 2014 Newsletter | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    April 2014 Newsletter Zero Energy Ready Home April 2014 Newsletter Table of Contents: A Note From Sam Rashkin: "Goodbye Challenge, Hello Zero" New Release: REV04 of the National Program Requirements Update: Hot water distribution spec Applications for Housing Innovation Awards available Upcoming webinars Upcoming trainings Reminder: Send in your verification forms Click the PDF below to download the newsletter PDF icon ZER Update April 2014.pdf More Documents & Publications Zero

  2. Zero Energy Ready Home May 2014 Newsletter | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    May 2014 Newsletter Zero Energy Ready Home May 2014 Newsletter Table of Contents: A note from Sam Rashkin: "Zero is a big deal...get recognized for it" Applications for Housing Innovation Awards now available Building America Solution Center Resources Upcoming webinars Upcoming trainings Reminder: Send in your verification forms Notice: Transition in progress Click the PDF below to download the newsletter PDF icon ZER Update May 2014.pdf More Documents & Publications DOE ZERH

  3. Demonstration recommendations for accelerated testing of concrete decontamination methods

    SciTech Connect (OSTI)

    Dickerson, K.S.; Ally, M.R.; Brown, C.H.; Morris, M.I.; Wilson-Nichols, M.J.

    1995-12-01

    A large number of aging US Department of Energy (DOE) surplus facilities located throughout the US require deactivation, decontamination, and decommissioning. Although several technologies are available commercially for concrete decontamination, emerging technologies with potential to reduce secondary waste and minimize the impact and risk to workers and the environment are needed. In response to these needs, the Accelerated Testing of Concrete Decontamination Methods project team described the nature and extent of contaminated concrete within the DOE complex and identified applicable emerging technologies. Existing information used to describe the nature and extent of contaminated concrete indicates that the most frequently occurring radiological contaminants are {sup 137}Cs, {sup 238}U (and its daughters), {sup 60}Co, {sup 90}Sr, and tritium. The total area of radionuclide-contaminated concrete within the DOE complex is estimated to be in the range of 7.9 {times} 10{sup 8} ft{sup 2}or approximately 18,000 acres. Concrete decontamination problems were matched with emerging technologies to recommend demonstrations considered to provide the most benefit to decontamination of concrete within the DOE complex. Emerging technologies with the most potential benefit were biological decontamination, electro-hydraulic scabbling, electrokinetics, and microwave scabbling.

  4. Recent Advances in Understanding Radiation Damage in Reactor Cavity Concrete

    SciTech Connect (OSTI)

    Rosseel, Thomas M; Field, Kevin G; Le Pape, Yann; Remec, Igor; Giorla, Alain B; Wall, Dr. James Joseph

    2015-01-01

    License renewal up to 60 years and the possibility of subsequent license renewal to 80 years has resulted in a renewed focus on long-term aging of materials at nuclear power plants (NPPs) including concrete. Large irreplaceable sections of most nuclear generating stations include concrete. The Expanded Materials Degradation Analysis, jointly performed by the Department of Energy, the Nuclear Regulatory Commission and Nuclear Industry, identified the urgent need to develop a consistent knowledge base on irradiation effects in concrete (Graves et al., (2014)). Much of the historical mechanical performance data of irradiated concrete (Hilsdorf et al., (1978)) does not accurately reflect typical radiation conditions in NPPs or conditions out to 60 or 80 years of radiation exposure (Kontani et al., (2011)). To address these potential gaps in the knowledge base, the Electric Power Research Institute and Oak Ridge National Laboratory, are working to better understand radiation damage as a degradation mechanism. This paper outlines recent progress toward: 1) assessing the radiation environment in concrete biological shields and defining the upper bound of the neutron and gamma dose levels expected in the biological shield for extended operation, and estimating adsorbed dose, 2) evaluating opportunities to harvest and test irradiated concrete from international NPPs, 3) evaluating opportunities to irradiate prototypical concrete and its components under accelerated neutron and gamma dose levels to establish conservative bounds and inform damage models, 4) developing improved models to enhance the understanding of the effects of radiation on concrete and 5) establishing an international collaborative research and information exchange effort to leverage capabilities and knowledge including developing cooperative test programs to improve confidence in data obtained from various concretes and from accelerated irradiation experiments.

  5. Mixed oxide solid solutions

    DOE Patents [OSTI]

    Magno, Scott; Wang, Ruiping; Derouane, Eric

    2003-01-01

    The present invention is a mixed oxide solid solution containing a tetravalent and a pentavalent cation that can be used as a support for a metal combustion catalyst. The invention is furthermore a combustion catalyst containing the mixed oxide solid solution and a method of making the mixed oxide solid solution. The tetravalent cation is zirconium(+4), hafnium(+4) or thorium(+4). In one embodiment, the pentavalent cation is tantalum(+5), niobium(+5) or bismuth(+5). Mixed oxide solid solutions of the present invention exhibit enhanced thermal stability, maintaining relatively high surface areas at high temperatures in the presence of water vapor.

  6. Fuel Mix Disclosure

    Broader source: Energy.gov [DOE]

    In January 1999, the Colorado Public Utility Commission (PUC) adopted regulations requiring the state's utilities to disclose information regarding their fuel mix to retail customers. Utilities are...

  7. Roman Seawater Concrete Holds the Secret to Cutting Carbon Emissions

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Roman Seawater Concrete Holds the Secret to Cutting Carbon Emissions Roman Seawater Concrete Holds the Secret to Cutting Carbon Emissions Print Tuesday, 04 June 2013 00:00 An international team led by Paulo Monteiro of the Advanced Light Source and UC Berkeley has analyzed samples of Roman concrete from harbor installations that have survived 2,000 years of chemical attack and wave action, "one of the most durable construction materials on the planet," says UC Berkeley's Marie Jackson,

  8. Roadmap 2030: The U.S. Concrete Industry Technology Roadmap

    SciTech Connect (OSTI)

    none,

    2002-12-01

    Roadmap 2030: The U.S. Concrete Industry Technology Roadmap tracks the eight goals published in the American Concrete Institute Strategic Development Council's Vision 2030: A Vision for the U.S. Concrete Industry. Roadmap 2030 highlights existing state-of-the-art technologies and emerging scientific advances that promise high potential for innovation, and predicts future technological needs. It defines enabling research opportunities and proposes areas where governmental-industrial-academic partnerships can accelerate the pace of development. Roadmap 2030 is a living document designed to continually address technical, institutional, and market changes.

  9. Investigating Radiation Shielding Properties of Different Mineral Origin Heavyweight Concretes

    SciTech Connect (OSTI)

    Basyigit, Celalettin; Uysal, Volkan; Kilincarslan, Semsettin; Akkas, Ayse; Mavi, Betuel; Guenoglu, Kadir; Akkurt, Iskender

    2011-12-26

    The radiation although has hazardous effects for human health, developing technologies bring lots of usage fields to radiation like in medicine and nuclear power station buildings. In this case protecting from undesirable radiation is a necessity for human health. Heavyweight concrete is one of the most important materials used in where radiation should be shielded, like those areas. In this study, used heavyweight aggregates of different mineral origin (Limonite, Siderite), in order to prepare different series in concrete mixtures and investigated radiation shielding properties. The experimental results on measuring the radiation shielding, the heavyweight concrete prepared with heavyweight aggregates of different mineral origin show that, are useful radiation absorbents when they used in concrete mixtures.

  10. Compressive strength of concrete and mortar containing fly ash

    DOE Patents [OSTI]

    Liskowitz, J.W.; Wecharatana, M.; Jaturapitakkul, C.; Cerkanowicz, A.E.

    1997-04-29

    The present invention relates to concrete, mortar and other hardenable mixtures comprising cement and fly ash for use in construction. The invention includes a method for predicting the compressive strength of such a hardenable mixture, which is very important for planning a project. The invention also relates to hardenable mixtures comprising cement and fly ash which can achieve greater compressive strength than hardenable mixtures containing only concrete over the time period relevant for construction. In a specific embodiment, a formula is provided that accurately predicts compressive strength of concrete containing fly ash out to 180 days. In other specific examples, concrete and mortar containing about 15% to 25% fly ash as a replacement for cement, which are capable of meeting design specifications required for building and highway construction, are provided. Such materials can thus significantly reduce construction costs. 33 figs.

  11. Transcending Portland Cement with 100 percent fly ash concrete

    SciTech Connect (OSTI)

    Cross, D.; Akin, M.; Stephens, J.; Cuelh, E.

    2009-07-01

    The use of concrete, made with 100% fly ash and no Portland cement, in buildings at the Transportation Institute in Bozeman, MT, USA, is described. 3 refs., 7 figs.

  12. Geopolymer concretes: a green construction technology rising from the ash

    SciTech Connect (OSTI)

    Allouche, E.

    2009-07-01

    Researchers at Louisiana Tech University have embarked on a multi-year research initiative to develop applications for inorganic polymer concrete, or geopolymer concrete, in the area of civil construction, and to bring solve of these applications to market. One objective was to produce a spray-on coating for use in the harsh environment of wastewater conveyance and treatment facilities. Another project is to establish relationships between fly ash composition and particle size distribution and the mechanical attributes and workability of the resulting geopolymer concrete. A third project is to develop a 'smart' geopolymer concrete whose response to a given electric current can be correlated to the stress level to which the structure is subjected. 1 fig., 6 photos.

  13. Water retention and gas relative permeability of two industrial concretes

    SciTech Connect (OSTI)

    Chen Wei; Liu Jian; Brue, Flore; Skoczylas, Frederic; Davy, C.A.; Bourbon, Xavier; Talandier, Jean

    2012-07-15

    This experimental study aims at identifying the water retention properties of two industrial concretes to be used for long term underground nuclear waste storage structures. Together with water retention, gas transfer properties are identified at varying water saturation level, i.e. relative gas permeability is assessed directly as a function of water saturation level S{sub w}. The influence of the initial de-sorption path and of the subsequent re-saturation are analysed both in terms of water retention and gas transfer properties. Also, the influence of concrete microstructure upon water retention and relative gas permeability is assessed, using porosity measurements, analysis of the BET theory from water retention properties, and MIP. Finally, a single relative gas permeability curve is proposed for each concrete, based on Van Genuchten-Mualem's statistical model, to be used for continuous modelling approaches of concrete structures, both during drying and imbibition.

  14. A novel technique for the production of cool colored concrete...

    Office of Scientific and Technical Information (OSTI)

    The first layer is a titanium dioxide rutile white basecoat that increases the solar reflectance of a gray-cement concrete tile from 0.18 to 0.79, and that of a shingle surfaced ...

  15. Compressive strength of concrete and mortar containing fly ash

    DOE Patents [OSTI]

    Liskowitz, J.W.; Wecharatana, M.; Jaturapitakkul, C.; Cerkanowicz, A.E.

    1998-12-29

    The present invention relates to concrete, mortar and other hardenable mixtures comprising cement and fly ash for use in construction. The invention includes a method for predicting the compressive strength of such a hardenable mixture, which is very important for planning a project. The invention also relates to hardenable mixtures comprising cement and fly ash which can achieve greater compressive strength than hardenable mixtures containing only concrete over the time period relevant for construction. In a specific embodiment, a formula is provided that accurately predicts compressive strength of concrete containing fly ash out to 180 days. In other specific examples, concrete and mortar containing about 15% to 25% fly ash as a replacement for cement, which are capable of meeting design specification required for building and highway construction, are provided. Such materials can thus significantly reduce construction costs. 33 figs.

  16. Compressive strength of concrete and mortar containing fly ash

    DOE Patents [OSTI]

    Liskowitz, John W.; Wecharatana, Methi; Jaturapitakkul, Chai; Cerkanowicz, deceased, Anthony E.

    1997-01-01

    The present invention relates to concrete, mortar and other hardenable mixtures comprising cement and fly ash for use in construction. The invention includes a method for predicting the compressive strength of such a hardenable mixture, which is very important for planning a project. The invention also relates to hardenable mixtures comprising cement and fly ash which can achieve greater compressive strength than hardenable mixtures containing only concrete over the time period relevant for construction. In a specific embodiment, a formula is provided that accurately predicts compressive strength of concrete containing fly ash out to 180 days. In other specific examples, concrete and mortar containing about 15% to 25% fly ash as a replacement for cement, which are capable of meeting design specifications required for building and highway construction, are provided. Such materials can thus significantly reduce construction costs.

  17. Compressive strength of concrete and mortar containing fly ash

    DOE Patents [OSTI]

    Liskowitz, John W.; Wecharatana, Methi; Jaturapitakkul, Chai; Cerkanowicz, deceased, Anthony E.

    1998-01-01

    The present invention relates to concrete, mortar and other hardenable mixtures comprising cement and fly ash for use in construction. The invention includes a method for predicting the compressive strength of such a hardenable mixture, which is very important for planning a project. The invention also relates to hardenable mixtures comprising cement and fly ash which can achieve greater compressive strength than hardenable mixtures containing only concrete over the time period relevant for construction. In a specific embodiment, a formula is provided that accurately predicts compressive strength of concrete containing fly ash out to 180 days. In other specific examples, concrete and mortar containing about 15% to 25% fly ash as a replacement for cement, which are capable of meeting design specification required for building and highway construction, are provided. Such materials can thus significantly reduce construction costs.

  18. Light Water Reactor Sustainability Nondestructive Evaluation for Concrete

    Energy Savers [EERE]

    Research and Development Roadmap | Department of Energy Nondestructive Evaluation for Concrete Research and Development Roadmap Light Water Reactor Sustainability Nondestructive Evaluation for Concrete Research and Development Roadmap Materials issues are a key concern for the existing nuclear reactor fleet as material degradation can lead to increased maintenance, increased downtown, and increased risk. Extending reactor life to 60 years and beyond will likely increase susceptibility and

  19. Shear Behavior of Bridge Columns with Various Fiber Concrete

    Energy Savers [EERE]

    Ultra-High-Performance Concrete and Advanced Manufacturing Methods for Modular Construction NEET-1 Annual Meeting September 29, 2015 Research Team Y. L. Mo and Mo Li - University of Houston James G. Hemrick - Oak Ridge National Lab Maria Guimaraes - Electrical Power Research Institute Project Monitoring Team Alison Hahn (Krager) (Project Manager) Jack Lance (Technical POC) Self-consolidating Ultra-High Performance Concrete (UHPC) * A new type of UHPC which features a compressive strength higher

  20. Laboratory-scale sodium-carbonate aggregate concrete interactions. [LMFBR

    SciTech Connect (OSTI)

    Westrich, H.R.; Stockman, H.W.; Suo-Anttila, A.

    1983-09-01

    A series of laboratory-scale experiments was made at 600/sup 0/C to identify the important heat-producing chemical reactions between sodium and carbonate aggregate concretes. Reactions between sodium and carbonate aggregate were found to be responsible for the bulk of heat production in sodium-concrete tests. Exothermic reactions were initiated at 580+-30/sup 0/C for limestone and dolostone aggregates as well as for hydrated limestone concrete, and at 540+-10/sup 0/C for dehydrated limestone concrete, but were ill-defined for dolostone concrete. Major reaction products included CaO, MgO, Na/sub 2/CO/sub 3/, Na/sub 2/O, NaOH, and elemental carbon. Sodium hydroxide, which forms when water is released from cement phases, causes slow erosion of the concrete with little heat production. The time-temperature profiles of these experiments have been modeled with a simplified version of the SLAM computer code, which has allowed derivation of chemical reaction rate coefficients.

  1. Analytical Results Of MOX Colemanite Concrete Sample PBC-44.2

    SciTech Connect (OSTI)

    Cozzi, A. D.; Best, D. R.; Reigel, M. M.

    2012-10-18

    The Mixed Oxide Fuel Fabrication Facility (MFFF) will use colemanite bearing concrete neutron absorber panels credited with attenuating neutron flux in the criticality design analyses and shielding operators from radiation. The Savannah River National Laboratory is tasked with measuring the total density, partial hydrogen density, and partial boron density of the colemanite concrete. Sample PBC-44.2 was received on 9/20/2012 and analyzed. The average total density measured by the ASTM method C 642 was 2.03 g/cm{sup 3}, within the lower bound of 1.88 g/cm{sup 3}. The average partial hydrogen density was 6.64E-02 g/cm{sup 3} as measured using method ASTM E 1311 and met the lower bound of 6.04E-02 g/cm{sup 3}. The average measured partial boron density was 1.97E-01 g/cm{sup 3} which met the lower bound of 1.65E-01 g/cm{sup 3} measured by the ASTM C 1301 method.

  2. ANALYTICAL RESULTS OF MOX COLEMANITE CONCRETE SAMPLE POURED JULY 25, 2012 - CURED 28 DAYS

    SciTech Connect (OSTI)

    Cozzi, A. D.; Best, D. R.; Reigel, M. M.

    2012-09-18

    The Mixed Oxide Fuel Fabrication Facility (MFFF) will use Colemanite bearing concrete neutron absorber panels credited with attenuating neutron flux in the criticality design analyses and shielding operators from radiation. The Savannah River National Laboratory is tasked with measuring the total density, partial hydrogen density, and partial boron density of the colemanite concrete. Samples 8.1.2, 8.2.2, 8.3.2, and 8.4.2 were received on 8/1/2012 and analyzed after curing for 28 days. The average total density measured by the ASTM method C 642 was 2.09 g/cm{sup 3}, within the lower bound of 1.88 g/cm{sup 3}. The average partial hydrogen density was 7.48E-02 g/cm{sup 3} as measured using method ASTM E 1311 and met the lower bound of 6.04E-02 g/cm{sup 3}. The average measured partial boron density was 1.71E-01 g/cm{sup 3} which met the lower bound of 1.65E-01 g/cm{sup 3} measured by the ASTM C 1301 method.

  3. ANALYTICAL RESULTS OF MOX COLEMANITE CONCRETE SAMPLE PBC-44.2

    SciTech Connect (OSTI)

    Best, D.; Cozzi, A.; Reigel, M.

    2012-12-20

    The Mixed Oxide Fuel Fabrication Facility (MFFF) will use colemanite bearing concrete neutron absorber panels credited with attenuating neutron flux in the criticality design analyses and shielding operators from radiation. The Savannah River National Laboratory is tasked with measuring the total density, partial hydrogen density, and partial boron density of the colemanite concrete. Sample PBC-44.2 was received on 9/20/2012 and analyzed. The average total density measured by the ASTM method C 642 was 2.03 g/cm{sup 3}, within the lower bound of 1.88 g/cm3. The average partial hydrogen density was 6.64E-02 g/cm{sup 3} as measured using method ASTM E 1311 and met the lower bound of 6.04E-02 g/cm{sup 3}. The average measured partial boron density was 1.70E-01 g/cm{sup 3} which met the lower bound of 1.65E-01 g/cm{sup 3} measured by the ASTM C 1301 method.

  4. ANALYTICAL RESULTS OF MOX COLEMANITE CONCRETE SAMPLES POURED AUGUST 29, 2012

    SciTech Connect (OSTI)

    Cozzi, A.; Best, D.; Reigel, M.

    2012-10-30

    The Mixed Oxide Fuel Fabrication Facility (MFFF) will use colemanite bearing concrete neutron absorber panels credited with attenuating neutron flux in the criticality design analyses and shielding operators from radiation. The Savannah River National Laboratory is tasked with measuring the total density, partial hydrogen density, and partial boron density of the colemanite concrete. Samples poured 8/29/12 were received on 9/20/2012 and analyzed. The average total density of each of the samples measured by the ASTM method C 642 was within the lower bound of 1.88 g/cm{sup 3}. The average partial hydrogen density of samples 8.6.1, 8.7.1, and 8.5.3 as measured using method ASTM E 1311 met the lower bound of 6.04E-02 g/cm{sup 3}. The average measured partial boron density of each sample met the lower bound of 1.65E-01 g/cm{sup 3} measured by the ASTM C 1301 method. The average partial hydrogen density of samples 8.5.1, 8.6.3, and 8.7.3 did not meet the lower bound. The samples, as received, were not wrapped in a moist towel as previous samples and appeared to be somewhat drier. This may explain the lower hydrogen partial density with respect to previous samples.

  5. ANALYTICAL RESULTS OF MOX COLEMANITE CONCRETE SAMPLES POURED AUGUST 29, 2012

    SciTech Connect (OSTI)

    Best, D.; Cozzi, A.; Reigel, M.

    2012-12-20

    The Mixed Oxide Fuel Fabrication Facility (MFFF) will use colemanite bearing concrete neutron absorber panels credited with attenuating neutron flux in the criticality design analyses and shielding operators from radiation. The Savannah River National Laboratory is tasked with measuring the total density, partial hydrogen density, and partial boron density of the colemanite concrete. Samples poured 8/29/12 were received on 9/20/2012 and analyzed. The average total density of each of the samples measured by the ASTM method C 642 was within the lower bound of 1.88 g/cm{sup 3}. The average partial hydrogen density of samples 8.6.1, 8.7.1, and 8.5.3 as measured using method ASTM E 1311 met the lower bound of 6.04E-02 g/cm{sup 3}. The average measured partial boron density of each sample met the lower bound of 1.65E-01 g/cm{sup 3} measured by the ASTM C 1301 method. The average partial hydrogen density of samples 8.5.1, 8.6.3, and 8.7.3 did not meet the lower bound. The samples, as received, were not wrapped in a moist towel as previous samples and appeared to be somewhat drier. This may explain the lower hydrogen partial density with respect to previous samples.

  6. HIA 2015 DOE Zero Energy Ready Home Case Study: Glastonbury Housesmith, Hickory Drive, South Glastonbury, CT

    Energy Savers [EERE]

    Dwell Development Reclaimed Modern Seattle, WA DOE ZERO ENERGY READY HOME(tm) The U.S. Department of Energy invites home builders across the country to meet the extraordinary levels of excellence and quality specified in DOE's Zero Energy Ready Home program (formerly known as Challenge Home). Every DOE Zero Energy Ready Home starts with ENERGY STAR Certified Homes Version 3.0 for an energy-efficient home built on a solid foundation of building science research. Advanced technologies are designed

  7. DOE ZERH Webinar: Quality Management Systems for Zero Energy Ready Home |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Quality Management Systems for Zero Energy Ready Home DOE ZERH Webinar: Quality Management Systems for Zero Energy Ready Home The session will provide background and guidance for how Zero Energy Ready Home builders can integrate a quality management program in their business. The focus will be on facilitating builder transition to high-performance homes, minimizing builder risk during that transition, and ensuring consistent delivery on the HPH value proposition. The

  8. DOE ZERH Webinar: Selling Zero Energy Ready Homes Made Easy | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Selling Zero Energy Ready Homes Made Easy DOE ZERH Webinar: Selling Zero Energy Ready Homes Made Easy If you haven't been watching closely, the Zero Energy Ready Home now has an impressive array of tools that can help builder partners effectively communicate the value of their certified homes. In this webinar, Sam Rashkin will be covering these resources: Customized comparison bar fact sheet Customized brochure Housing Innovation Awards Tour of Zero Drop-in messaging ZERH homeowner

  9. DOE ZERO ENERGY READY HOME UPDATE NEWSLETTER JANUARY 2016 | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy JANUARY 2016 DOE ZERO ENERGY READY HOME UPDATE NEWSLETTER JANUARY 2016 TABLE OF CONTENTS A Note From Sam Rashkin: Getting Homebuyers to Act in Their Own Self Interest...it Takes a Village....a Village of Innovation Partners Two High-Performance Home Solutions Webinars You Don't Want to Miss PDF icon ZERH Update January 2016.pdf More Documents & Publications Zero Energy Ready Home Newsletter: April 2016 DOE ZERO ENERGY READY HOME UPDATE NEWSLETTER MARCH 2016

  10. EERE Success Story-Colorado Community Readiness Efforts for PEVs Support

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    State Policy Development | Department of Energy Community Readiness Efforts for PEVs Support State Policy Development EERE Success Story-Colorado Community Readiness Efforts for PEVs Support State Policy Development August 7, 2014 - 10:55am Addthis Project FEVER (Fostering Electric Vehicle Expansion in the Rockies), funded by EERE's Clean Cities plug-in electric vehicle community readiness award, has supported the development of Colorado state policies to accelerate the adoption of plug-in

  11. DOE Zero Energy Ready Home Savings and Cost Estimate Summary | Department

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    of Energy Savings and Cost Estimate Summary DOE Zero Energy Ready Home Savings and Cost Estimate Summary The U.S. Department of Energy Zero Energy Ready Home Savings and Cost Estimate Summary, October 2015 PDF icon DOE Zero Energy Ready Home - Cost & Savings Summary OCT 2015.pdf More Documents & Publications Indoor airPLUS Construction Specifications Indoor airPLUS Construction Specifications Version 1 (Rev. 02) Washington DOE ZERH Program Requirements

  12. DOE Zero Energy Ready Home: Better Business for Builders Webinar Transcript

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    | Department of Energy Home: Better Business for Builders Webinar Transcript DOE Zero Energy Ready Home: Better Business for Builders Webinar Transcript Below is the text version of the webinar, DOE Zero Energy Ready Home: Better Business for Builders, presented in August 2014. GoToWebinar voice: The broadcast is now starting. All attendees are in listen- only mode. Lindsay Parker: ... here today, and welcome to the Department of Energy Zero Energy Ready Home Technical Training Webinar

  13. DOE Zero Ready Home Case Study: Mandalay Homes, Pronghorn Ranch,Prescott Valley, AZ

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Mandalay Homes Pronghorn Ranch Prescott Valley, AZ DOE ZERO ENERGY READY HOME(tm) The U.S. Department of Energy invites home builders across the country to meet the extraordinary levels of excellence and quality specified in DOE's Zero Energy Ready Home program (formerly known as Challenge Home). Every DOE Zero Energy Ready Home starts with ENERGY STAR Certified Homes Version 3.0 for an energy-efficient home built on a solid foundation of building science research. Advanced technologies are

  14. Focus Series: Program Finds Community "Readiness" Is the Key to More

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Retrofits | Department of Energy Program Finds Community "Readiness" Is the Key to More Retrofits Focus Series: Program Finds Community "Readiness" Is the Key to More Retrofits Focus Series: Program Finds Community "Readiness" Is the Key to More Retrofits, a document posted by the U.S. Department of Energy's (DOE'S) Better Buildings Neighborhood Program. PDF icon Focus Series: Michigan More Documents & Publications Better Buildings Network View | June 2014

  15. Energy -- and Water -- Efficiency in the DOE Zero Energy Ready Home Program

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Webinar (Text Version) | Department of Energy Energy -- and Water -- Efficiency in the DOE Zero Energy Ready Home Program Webinar (Text Version) Energy -- and Water -- Efficiency in the DOE Zero Energy Ready Home Program Webinar (Text Version) Below is the text version of the webinar, Energy -- and Water -- Efficiency in the DOE Zero Energy Ready Home Program, presented in October 2014. Watch the presentation. GoToWebinar voice: The broadcast is now starting. All attendees are in listen-only

  16. Zero Energy Ready Home Update Newsletter June 2014 | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Zero Energy Ready Home Update Newsletter June 2014 Zero Energy Ready Home Update Newsletter June 2014 Table of Contents: A note from Sam Rashkin: "Words matter...they matter a lot" Power words feedback First deep zero energy ready rehab goes to veteran Housing Innovation Awards Applications Upcoming webinars Reminder: Send in your ZERH verification form Click below to download the newsletter PDF icon ZER Update_June 2014.pdf More Documents & Publications DOE ZERH Webinar: Going

  17. ADVANCED MIXING MODELS

    SciTech Connect (OSTI)

    Lee, S.; Dimenna, R.; Tamburello, D.

    2011-02-14

    The process of recovering and processing High Level Waste (HLW) the waste in storage tanks at the Savannah River Site (SRS) typically requires mixing the contents of the tank with one to four mixers (pumps) located within the tank. The typical criteria to establish a mixed condition in a tank are based on the number of pumps in operation and the time duration of operation. To ensure that a mixed condition is achieved, operating times are typically set conservatively long. This approach results in high operational costs because of the long mixing times and high maintenance and repair costs for the same reason. A significant reduction in both of these costs might be realized by reducing the required mixing time based on calculating a reliable indicator of mixing with a suitably validated computer code. The focus of the present work is to establish mixing criteria applicable to miscible fluids, with an ultimate goal of addressing waste processing in HLW tanks at SRS and quantifying the mixing time required to suspend sludge particles with the submersible jet pump. A single-phase computational fluid dynamics (CFD) approach was taken for the analysis of jet flow patterns with an emphasis on the velocity decay and the turbulent flow evolution for the farfield region from the pump. Literature results for a turbulent jet flow are reviewed, since the decay of the axial jet velocity and the evolution of the jet flow patterns are important phenomena affecting sludge suspension and mixing operations. The work described in this report suggests a basis for further development of the theory leading to the identified mixing indicators, with benchmark analyses demonstrating their consistency with widely accepted correlations. Although the indicators are somewhat generic in nature, they are applied to Savannah River Site (SRS) waste tanks to provide a better, physically based estimate of the required mixing time. Waste storage tanks at SRS contain settled sludge which varies in height from zero to 10 ft. The sludge has been characterized and modeled as micron-sized solids, typically 1 to 5 microns, at weight fractions as high as 20 to 30 wt%, specific gravities to 1.4, and viscosities up to 64 cp during motion. The sludge is suspended and mixed through the use of submersible slurry jet pumps. To suspend settled sludge, water is added to the tank as a slurry medium and stirred with the jet pump. Although there is considerable technical literature on mixing and solid suspension in agitated tanks, very little literature has been published on jet mixing in a large-scale tank. One of the main objectives in the waste processing is to provide feed of a uniform slurry composition at a certain weight percentage (e.g. typically {approx}13 wt% at SRS) over an extended period of time. In preparation of the sludge for slurrying, several important questions have been raised with regard to sludge suspension and mixing of the solid suspension in the bulk of the tank: (1) How much time is required to prepare a slurry with a uniform solid composition? (2) How long will it take to suspend and mix the sludge for uniform composition in any particular waste tank? (3) What are good mixing indicators to answer the questions concerning sludge mixing stated above in a general fashion applicable to any waste tank/slurry pump geometry and fluid/sludge combination?

  18. ZERH Webinar: Sales and Value Recognition of Zero Energy Ready Homes |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy ZERH Webinar: Sales and Value Recognition of Zero Energy Ready Homes ZERH Webinar: Sales and Value Recognition of Zero Energy Ready Homes December 18, 2014 12:00PM to 1:15PM EST GoToWebinar The U.S. Department of Energy Zero Energy Ready Home (ZERH) Program represents a whole new level of home performance, with rigorous requirements that ensure outstanding levels of energy savings, comfort, health, and durability. Zero energy ready homes include critical systems that

  19. Zero Energy-Ready Single-Family Homes - Building America Top Innovation |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Zero Energy-Ready Single-Family Homes - Building America Top Innovation Zero Energy-Ready Single-Family Homes - Building America Top Innovation Photo of a zero-energy, single-family home. Building homes that are zero energy ready is a goal of the U.S. Department of Energy's (DOE) Building America program and one embodied in Building America's premier home certification program, the Challenge Home (now Zero Energy Ready Home) program. This Top Innovation highlights

  20. DOE Zero Energy Ready Home Low Load High Efficiency HVAC Webinar (Text Version)

    Broader source: Energy.gov [DOE]

    Below is the text version of the DOE Zero Energy Ready Home webinar, Low Load High Efficiency HVAC, presented in May 2014.

  1. Sales and Value Recognition for Zero Energy Ready Home Webinar (Text Version)

    Broader source: Energy.gov [DOE]

    Below is the text version of the webinar, Sales and Value Recognition for Zero Energy Ready Home, presented in December 2014. Watch the presentation.

  2. Zero Energy Ready Home Program: Race to Zero Student Design Competitio...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    architecture, and construction management to integrate building science in their curriculum and get experience designing zero energy ready homes. This will in turn provide...

  3. DOE ZERH Webinar: Updates to the DOE Zero Energy Ready Home Specs --

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Revision 05 | Department of Energy Updates to the DOE Zero Energy Ready Home Specs -- Revision 05 DOE ZERH Webinar: Updates to the DOE Zero Energy Ready Home Specs -- Revision 05 In the year since DOE last updated the DOE Zero Energy Ready Home specs, we've continued to track our partner feedback and other industry issues. This brings us to the release of Revision 05, which changes the solar hot water ready provisions to "recommended," incorporates a phase-in period for the new

  4. DOE ZERO ENERGY READY HOME UPDATE NEWSLETTER MAY 2015 | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy MAY 2015 DOE ZERO ENERGY READY HOME UPDATE NEWSLETTER MAY 2015 TABLE OF CONTENTS A Note from Sam Rashkin: Good Government...Who Knew 2015 Race to Zero Student Design Competition Changes Lives Are Your Homeowners This Happy? DOE Zero Energy Ready Specs "Rev05" Set to go Live The Value of a Zero Energy Ready Home Upcoming Webinars Virtual Office Hours Use the Tools! PDF icon ZERH Update May 2015.pdf More Documents & Publications DOE ZERO ENERGY READY HOME UPDATE NEWSLETTER

  5. Graduating to a Bright Tomorrow: Solar Ready Vets Class Graduates from Hill

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFB | Department of Energy Graduating to a Bright Tomorrow: Solar Ready Vets Class Graduates from Hill AFB Graduating to a Bright Tomorrow: Solar Ready Vets Class Graduates from Hill AFB March 30, 2016 - 11:49am Addthis Deputy Secretary Liz Sherwood-Randall with the graduates of the Solar Ready Vets program at Hill Air Force Base, Utah. Image courtesy of the U.S. Air Force. Deputy Secretary Liz Sherwood-Randall with the graduates of the Solar Ready Vets program at Hill Air Force Base, Utah.

  6. DOE Zero Energy Ready Home High-Performance Home Sales Training Part II Webinar (Text Version)

    Broader source: Energy.gov [DOE]

    Below is the text version of the webinar DOE Zero Energy Ready Home High-Performance Home Sales Training Part II, presented in February 2015. Watch the presentation.

  7. HIA 2015 DOE Zero Energy Ready Home Case Study: High Performance...

    Energy Savers [EERE]

    ... Verification Checklist RENEWABLE READY ... of the criteria of the EPA's Indoor airPLUS program, including low- or no-VOC ... National Green Building Standards, gold level. ...

  8. DOE Zero Energy Ready Home Case Study: e2 Homes, Winter Park...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Building America DOE Challenge Home Case Study: e2 Homes - Winter Park, Florida Building America Zero Energy Ready Home Case Study: Southeast Volusia Habitat for Humanity, ...

  9. Marketing and Sales Solutions for Zero Energy Ready Homes Webinar (Text Version)

    Broader source: Energy.gov [DOE]

    Below is the text version of the webinar, Marketing and Sales Solutions for Zero Energy Ready Homes, presented in June 2014.

  10. DOE Zero Ready Home Case Study: Green Extreme Homes & Carl Franklin...

    Energy Savers [EERE]

    of Energy's Zero Energy Ready Home program, thanks to a successful collaboration between the non-profit community development corporation Green Extreme Homes (GEH) and ...

  11. HIA 2015 DOE Zero Energy Ready Home Case Study: Glastonbury Housesmith...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... Energy Ready Home combines a building science baseline specified by ENERGY STAR ... For Dykins, this proves his philosophy that "you don't have to go crazy installing ...

  12. DOE Zero Energy Ready Home Case Study: Mantell-Hecathorn Builders...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Mantell-Hecathorn Builders, Shenandoah Circle, Durango, CO DOE Zero Energy Ready Home Case Study: Mantell-Hecathorn Builders, Shenandoah Circle, Durango, CO Case study of a DOE ...

  13. ZERH Webinar: Low Load HVAC in Zero Energy Ready Homes (Text Version) |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Low Load HVAC in Zero Energy Ready Homes (Text Version) ZERH Webinar: Low Load HVAC in Zero Energy Ready Homes (Text Version) Below is the text version of the webinar Low Load HVAC in Zero Energy Ready Homes, presented in January 2016. Watch the presentation. Lindsay Parker: Hi, everyone. Welcome to the Department of Energy Zero Energy Ready Home technical training webinar series. We're very excited that you can join us today for this session on low-load HVAC for Zero

  14. Nearly discontinuous chaotic mixing

    SciTech Connect (OSTI)

    Sharp, David Howland [Los Alamos National Laboratory; Lim, Hyun K [STONYBROOK UNIV.; Yu, Yan [STONYBROOK UNIV.; Glimm, James G [STONYBROOK UNIV.

    2009-01-01

    A new scientific approach is presented for a broad class of chaotic problems involving a high degree of mixing over rapid time scales. Rayleigh-Taylor and Richtmyer-Meshkov unstable flows are typical of such problems. Microscopic mixing properties such as chemical reaction rates for turbulent mixtures can be obtained with feasible grid resolution. The essential dependence of (some) fluid mixing observables on transport phenomena is observed. This dependence includes numerical as well as physical transport and it includes laminar as well as turbulent transport. A new approach to the mathematical theory for the underlying equations is suggested.

  15. Mixing method and apparatus

    DOE Patents [OSTI]

    Green, Norman W.

    1982-06-15

    Method of mixing particulate materials comprising contacting a primary source and a secondary source thereof whereby resulting mixture ensues; preferably at least one of the two sources has enough motion to insure good mixing and the particulate materials may be heat treated if desired. Apparatus for such mixing comprising an inlet for a primary source, a reactor communicating therewith, a feeding means for supplying a secondary source to the reactor, and an inlet for the secondary source. Feeding means is preferably adapted to supply fluidized materials.

  16. OECD MCCI project 2-D Core Concrete Interaction (CCI) tests : CCI-3 test data report-thermalhydraulic results. Rev. 0 October 15, 2005.

    SciTech Connect (OSTI)

    Farmer, M. T.; Lomperski, S.; Kilsdonk, D. J.; Aeschlimann, R. W.; Basu, S.

    2011-05-23

    The Melt Attack and Coolability Experiments (MACE) program addressed the issue of the ability of water to cool and thermally stabilize a molten core-concrete interaction when the reactants are flooded from above. These tests provided data regarding the nature of corium interactions with concrete, the heat transfer rates from the melt to the overlying water pool, and the role of noncondensable gases in the mixing processes that contribute to melt quenching. As a follow-on program to MACE, The Melt Coolability and Concrete Interaction Experiments (MCCI) project is conducting reactor material experiments and associated analysis to achieve the following objectives: (1) resolve the ex-vessel debris coolability issue through a program that focuses on providing both confirmatory evidence and test data for the coolability mechanisms identified in MACE integral effects tests, and (2) address remaining uncertainties related to long-term two-dimensional molten core-concrete interactions under both wet and dry cavity conditions. Achievement of these two program objectives will demonstrate the efficacy of severe accident management guidelines for existing plants, and provide the technical basis for better containment designs for future plants. In terms of satisfying these objectives, the Management Board (MB) approved the conduct of a third long-term 2-D Core-Concrete Interaction (CCI) experiment designed to provide information in several areas, including: (i) lateral vs. axial power split during dry core-concrete interaction, (ii) integral debris coolability data following late phase flooding, and (iii) data regarding the nature and extent of the cooling transient following breach of the crust formed at the melt-water interface. This data report provides thermal hydraulic test results from the CCI-3 experiment, which was conducted on September 22, 2005. Test specifications for CCI-3 are provided in Table 1-1. This experiment investigated the interaction of a fully oxidized 375 kg PWR core melt, initially containing 15 wt% siliceous concrete, with a specially designed two-dimensional siliceous concrete test section with an initial cross-sectional area of 50 cm x 50 cm. The sand and aggregate constituents for this particular siliceous concrete were provided by CEA as an in-kind contribution to the program. The report begins by providing a summary description of the CCI-3 test apparatus and operating procedures, followed by presentation of the thermal-hydraulic results. Detailed posttest debris examination results will be provided in a subsequent publication. Observations drawn within this report regarding the overall cavity erosion behavior may be subject to revision once the posttest examinations are completed, since these examinations will fully reveal the final cavity shape.

  17. Prop-Fan technical progress leading to technology readiness

    SciTech Connect (OSTI)

    Gatzen, B.S.; Adamson, W.M.

    1981-01-01

    Technical activity on Prop-Fan propulsion has reached an impotant milestone. The analytical and scale model efforts now provide verification of design techniques necessary to initiate the large scale rotor technology demonstration required to achieve Prop-Fan technology readiness. Small scale model rotor programs have demonstrated high uninstalled Prop-Fan efficiency, reduced source noise with swept blades, and satisfactory structural dynamics. This paper presents the technical progress to date and the need to conduct a large scale program. The key element of the large scale program is a high speed flight test of the Prop-Fan rotor mounted on a swept wing. 74 refs.

  18. DOE Zero Energy Ready Home Case Study: Glastonbury Housesmith, Hickory

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Drive, South Glastonbury, CT | Department of Energy Glastonbury Housesmith, Hickory Drive, South Glastonbury, CT DOE Zero Energy Ready Home Case Study: Glastonbury Housesmith, Hickory Drive, South Glastonbury, CT Case study of a DOE 2015 Housing Innovation Award winning custom home in a cold climate zone that got a HERS of 29 without PV, -23 with PV; with 2x6 16" on-center walls with 5.5" of blown fiberglass and 2.75" of rigid mineral wool; basement with 4" XPS in

  19. EcoVillage: A Net Zero Energy Ready Community

    SciTech Connect (OSTI)

    Arena, L.; Faakye, O.

    2015-02-01

    CARB is working with the EcoVillage co-housing community in Ithaca, New York, on their third neighborhood called the Third Residential EcoVillage Experience (TREE). This community scale project consists of 40 housing units --15 apartments and 25 single family residences. The community is pursuing certifications for DOE Zero Energy Ready Home, U.S. Green Building Council Leadership in Energy and Environmental Design Gold, and ENERGY STAR for the entire project. Additionally, seven of the 25 homes, along with the four-story apartment building and community center, are being constructed to the Passive House (PH) design standard.

  20. Fuel Mix Disclosure

    Broader source: Energy.gov [DOE]

    California's retail electricity suppliers must disclose to all customers the fuel mix used in the generation of electricity. Utilities must use a standard label created by the California Energy...

  1. Thick Concrete Specimen Construction, Testing, and Preliminary Analysis

    SciTech Connect (OSTI)

    Clayton, Dwight A.; Hoegh, Kyle; Khazanovich, Lev

    2015-03-01

    The purpose of the U.S. Department of Energy Office of Nuclear Energy’s Light Water Reactor Sustainability (LWRS) Program is to develop technologies and other solutions that can improve the reliability, sustain the safety, and extend the operating lifetimes of nuclear power plants (NPPs) beyond 60 years. Since many important safety structures in an NPP are constructed of concrete, inspection techniques must be developed and tested to evaluate the internal condition. In-service containment structures generally do not allow for the destructive measures necessary to validate the accuracy of these inspection techniques. This creates a need for comparative testing of the various nondestructive evaluation (NDE) measurement techniques on concrete specimens with known material properties, voids, internal microstructure flaws, and reinforcement locations. A preliminary report detailed some of the challenges associated with thick reinforced concrete sections and prioritized conceptual designs of specimens that could be fabricated to represent NPP concrete structures for using in NDE evaluation comparisons. This led to the construction of the concrete specimen presented in this report, which has sufficient reinforcement density and cross-sectional size to represent an NPP containment wall. Details on how a suitably thick concrete specimen was constructed are presented, including the construction materials, final nominal design schematic, as well as formwork and rigging required to safely meet the desired dimensions of the concrete structure. The report also details the type and methods of forming the concrete specimen as well as information on how the rebar and simulated defects were embedded. Details on how the resulting specimen was transported, safely anchored, and marked to allow access for systematic comparative NDE testing of defects in a representative NPP containment wall concrete specimen are also given. Data collection using the MIRA Ultrasonic NDE equipment and initial results are also presented along with a discussion of the preliminary findings. Comparative NDE of various defects in reinforced concrete specimens is a key component in identifying the most promising techniques and directing the research and development efforts needed to characterize concrete degradation in commercial NPPs. This requires access to the specimens for data collection using state-of-the-art technology. The construction of the specimen detailed in this report allows for an evaluation of how different NDE techniques may interact with the size and complexities of NPP concrete structures. These factors were taken into account when determining specimen size and features to ensure a realistic design. The lateral dimensions of the specimen were also chosen to mitigate unrealistic boundary effects that would not affect the results of field NPP concrete testing. Preliminary results show that, while the current methods are able to identify some of the deeper defects, improvements in data processing or hardware are necessary to be able to achieve the precision and reliability achieved in evaluating thinner and less heavily reinforced concrete structures.

  2. Mastering the Metabolic Mix

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Mastering the Metabolic Mix 1663 Los Alamos science and technology magazine Latest Issue:March 2016 past issues All Issues » submit Mastering the Metabolic Mix Through the discovery of natural tricks and the invention of new tactics, scientists are harnessing the power of RNA to manipulate gene expression in bacteria. March 8, 2016 Cliff Unkefer, Karissa Sanbonmatsu, and Scott Hennelly Los Alamos scientists Cliff Unkefer, Karissa Sanbonmatsu, and Scott Hennelly lead a larger team that is

  3. OECD MCCI project long-term 2-D molten core concrete interaction test design report, Rev. 0. September 30, 2002.

    SciTech Connect (OSTI)

    Farmer, M. T.; Kilsdonk, D. J.; Lomperski, S.; Aeschliman, R. W.; Basu, S. (Nuclear Engineering Division); (NRC)

    2011-05-23

    The Melt Attack and Coolability Experiments (MACE) program at Argonne National Laboratory addressed the issue of the ability of water to cool and thermally stabilize a molten core-concrete interaction when the reactants are flooded from above. These tests provided data regarding the nature of corium interactions with concrete, the heat transfer rates from the melt to the overlying water pool, and the role of noncondensable gases in the mixing processes that contribute to melt quenching. As a follow-on program to MACE, The Melt Coolability and Concrete Interaction Experiments (MCCI) project is conducting reactor material experiments and associated analysis to achieve the following two technical objectives: (1) resolve the ex-vessel debris coolability issue through a program that focuses on providing both confirmatory evidence and test data for the coolability mechanisms identified in MACE integral effects tests, and (2) address remaining uncertainties related to long-term two-dimensional molten core-concrete interactions under both wet and dry cavity conditions. Achievement of these two objectives will demonstrate the efficacy of severe accident management guidelines for existing plants, and provide the technical basis for better containment designs for future plants. In terms of the first program objective, the Small-Scale Water Ingression and Crust Strength (SSWICS) test series has been initiated to provide fundamental information on the ability of water to ingress into cracks and fissures that form in the debris during quench, thereby augmenting the otherwise conduction-limited heat transfer process. A test plan for Melt Eruption Separate Effects Tests (MESET) has also been developed to provide information on the extent of crust growth and melt eruptions as a function of gas sparging rate under well-controlled experiment conditions. In terms of the second program objective, the project Management Board (MB) has approved startup activities required to carry out experiments to address remaining uncertainties related to long-term two-dimensional molten core-concrete interaction. In particular, for both wet and dry cavity conditions, there is uncertainty insofar as evaluating the lateral vs. axial power split during a core-concrete interaction due to a lack of experiment data. As a result, there are differences in the 2-D cavity erosion predicted by codes such as MELCOR, WECHSL, and COSACO. The first step towards generating this data is to produce a test plan for review by the Project Review Group (PRG). The purpose of this document is to provide this plan.

  4. Integrated Approach to Documenting Readiness for a Potential Criticality Incident

    SciTech Connect (OSTI)

    Carlisle, Bruce S.; Prichard, Andrew W.; Jones, Robert A.

    2013-11-11

    There have been 60 highly publicized criticality accidents1 over the last 60 years and the nature of the hazard is unique. Recent studies2 discuss the benefits of knowing what to expect during and immediately following these events. Emergency planning and response standards2 provide an effective tool for establishing an adequate level of readiness to a criticality accident. While these planning requirements cover a broad spectrum of activities to establish readiness, a concise and routinely reviewed criticality accident scenario may be the most valuable tool in developing a cohesive understanding and response to these challenging events. Using a guideline3 for criticality safety evaluations the analytical work and emergency planning to mitigate a criticality accident at the Radiochemical Processing Laboratory at the Pacific Northwest National Laboratory, was developed. Using a single document the analysis that established the accident characteristics, response scenario based on emergency staffing and planning, and anticipated dose consequences were integrated. This single document approach provides a useful platform to integrate the initial planning and guide the review of proposed changes to emergency response plans.

  5. Final Report on HOLODEC 2 Technology Readiness Level

    SciTech Connect (OSTI)

    Shaw, RA; Spuler, SM; Beals, M; Black, N; Fugal, JP; Lu, L

    2012-06-18

    During the period of this project, the Holographic Detector for Clouds 2 (HOLODEC 2) instrument has advanced from a laboratory-proven instrument with some initial field testing to a fully flight-tested instrument capable of providing useful cloud microphysics measurements. This can be summarized as 'Technology Readiness Level 8: Technology is proven to work - Actual technology completed and qualified through test and demonstration.' As part of this project, improvements and upgrades have been made to the optical system, the instrument power control system, the data acquisition computer, the instrument control software, the data reconstruction and analysis software, and some of the basic algorithms for estimating basic microphysical variables like droplet diameter. Near the end of the project, the instrument flew on several research flights as part of the IDEAS 2011 project, and a small sample of data from the project is included as an example. There is one caveat in the technology readiness level stated above: the upgrades to the instrument power system were made after the flight testing, so they are not fully field proven. We anticipate that there will be an opportunity to fly the instrument as part of the IDEAS project in fall 2012.

  6. MOD-RTG multicouple test results and mission readiness

    SciTech Connect (OSTI)

    Hartman, R.F.; Kelly, C.E. )

    1993-01-10

    MOD-RTG represents the design configuration for the next generation of Radioisotope Thermoelectric Generators (RTG), aimed at improving specific power and efficiency over current General Purpose Heat Source Radioisotope Thermoelectric Generators (GPHS-RTGs). The modular RTG reference design has been described in previous papers (Hartman 1988). The multicouple is a key element required for the successful development of the modular RTG. The multicouple is a high voltage, thermoelectric device employing a close packed, glass bonded thermopile array of twenty thermoelectric couples, connected in a series circuit. The multicouple is designed to operate at a 1270 K hot junction temperature and a 570 K cold junction temperature, yielding a power output of approximately 2.1 watts at 3.5 volts at beginning of life. The objectives of the MOD-RTG program are focused on establishing a multicouple life test data base and life prediction capability which will permit, with reasonable margin, a projected multicouple life of greater than eight (8) years. This paper summarizes the current status of multicouple life testing and performance modeling and the level of technology readiness needed to demonstrate mission readiness for MOD-RTG.

  7. An Effective Waste Management Process for Segregation and Disposal of Legacy Mixed Waste at Sandia National Laboratories/New Mexico

    SciTech Connect (OSTI)

    Hallman, Anne K.; Meyer, Dann; Rellergert, Carla A.; Schriner, Joseph A.

    1998-06-01

    Sandia National Laboratories/New Mexico (SNL/NM) is a research and development facility that generates many highly diverse, low-volume mixed waste streams. Under the Federal Facility Compliance Act, SNL/NM must treat its mixed waste in storage to meet the Land Disposal Restrictions treatment standards. Since 1989, approximately 70 cubic meters (2500 cubic feet) of heterogeneous, poorly characterized and inventoried mixed waste was placed in storage that could not be treated as specified in the SNL/NM Site Treatment Plan. A process was created to sort the legacy waste into sixteen well- defined, properly characterized, and precisely inventoried mixed waste streams (Treatability Groups) and two low-level waste streams ready for treatment or disposal. From June 1995 through September 1996, the entire volume of this stored mixed waste was sorted and inventoried through this process. This process was planned to meet the technical requirements of the sorting operation and to identify and address the hazards this operation presented. The operations were routinely adapted to safely and efficiently handle a variety of waste matrices, hazards, and radiological conditions. This flexibility was accomplished through administrative and physical controls integrated into the sorting operations. Many Department of Energy facilities are currently facing the prospect of sorting, characterizing, and treating a large inventory of mixed waste. The process described in this paper is a proven method for preparing a diverse, heterogeneous mixed waste volume into segregated, characterized, inventoried, and documented waste streams ready for treatment or disposal.

  8. Report on aging of nuclear power plant reinforced concrete structures

    SciTech Connect (OSTI)

    Naus, D.J.; Oland, C.B.; Ellingwood, B.R.

    1996-03-01

    The Structural Aging Program provides the US Nuclear Regulatory Commission with potential structural safety issues and acceptance criteria for use in continued service assessments of nuclear power plant safety-related concrete structures. The program was organized under four task areas: Program Management, Materials Property Data Base, Structural Component Assessment/Repair Technology, and Quantitative Methodology for Continued Service Determinations. Under these tasks, over 90 papers and reports were prepared addressing pertinent aspects associated with aging management of nuclear power plant reinforced concrete structures. Contained in this report is a summary of program results in the form of information related to longevity of nuclear power plant reinforced concrete structures, a Structural Materials Information Center presenting data and information on the time variation of concrete materials under the influence of environmental stressors and aging factors, in-service inspection and condition assessments techniques, repair materials and methods, evaluation of nuclear power plant reinforced concrete structures, and a reliability-based methodology for current and future condition assessments. Recommendations for future activities are also provided. 308 refs., 61 figs., 50 tabs.

  9. Code requirements for concrete repository and processing facilities

    SciTech Connect (OSTI)

    Hookham, C.J. [Black & Veatch, Ann Arbor, MI (United States); Palaniswamy, R. [Bechtel Savannah River, Inc., North Augusta, SC (United States)

    1993-04-01

    The design and construction of facilities and structures for the processing and safe long-term storage of low- and high-level radioactive wastes will likely employ structural concrete. This concrete will be used for many purposes including structural support, shielding, and environmental protection. At the present time, there are no design costs, standards or guidelines for repositories, waste containers, or processing facilities. Recently, the design and construction guidelines contained in American Concrete Institute (ACI), Code Requirements for Nuclear Safety Related Concrete Structures (ACI 349), have been cited for low-level waste (LLW) repositories. Conceptual design of various high-level (HLW) repository surface structures have also cited the ACI 349 Code. However, the present Code was developed for nuclear power generating facilities and its application to radioactive waste repositories was not intended. For low and medium level radioactive wastes, concrete has a greater role and use in processing facilities, engineered barriers, and repository structures. Because of varied uses and performance/safety requirements this review of the current ACI 349 Code document was required to accommodate these special classes of structures.

  10. ADVANCED MIXING MODELS

    SciTech Connect (OSTI)

    Lee, S; Richard Dimenna, R; David Tamburello, D

    2008-11-13

    The process of recovering the waste in storage tanks at the Savannah River Site (SRS) typically requires mixing the contents of the tank with one to four dual-nozzle jet mixers located within the tank. The typical criteria to establish a mixed condition in a tank are based on the number of pumps in operation and the time duration of operation. To ensure that a mixed condition is achieved, operating times are set conservatively long. This approach results in high operational costs because of the long mixing times and high maintenance and repair costs for the same reason. A significant reduction in both of these costs might be realized by reducing the required mixing time based on calculating a reliable indicator of mixing with a suitably validated computer code. The work described in this report establishes the basis for further development of the theory leading to the identified mixing indicators, the benchmark analyses demonstrating their consistency with widely accepted correlations, and the application of those indicators to SRS waste tanks to provide a better, physically based estimate of the required mixing time. Waste storage tanks at SRS contain settled sludge which varies in height from zero to 10 ft. The sludge has been characterized and modeled as micron-sized solids, typically 1 to 5 microns, at weight fractions as high as 20 to 30 wt%, specific gravities to 1.4, and viscosities up to 64 cp during motion. The sludge is suspended and mixed through the use of submersible slurry jet pumps. To suspend settled sludge, water is added to the tank as a slurry medium and stirred with the jet pump. Although there is considerable technical literature on mixing and solid suspension in agitated tanks, very little literature has been published on jet mixing in a large-scale tank. If shorter mixing times can be shown to support Defense Waste Processing Facility (DWPF) or other feed requirements, longer pump lifetimes can be achieved with associated operational cost and schedule savings. The focus of the present work is to establish mixing criteria associated with the waste processing at SRS and to quantify the mixing time required to suspend sludge particles with the submersible jet pump. Literature results for a turbulent jet flow are reviewed briefly, since the decay of the axial jet velocity and the evolution of the jet flow patterns are important phenomena affecting sludge suspension and mixing operations. One of the main objectives in the waste processing is to provide the DWPF a uniform slurry composition at a certain weight percentage (typically {approx}13 wt%) over an extended period of time. In preparation of the sludge for slurrying to DWPF, several important questions have been raised with regard to sludge suspension and mixing of the solid suspension in the bulk of the tank: (1) How much time is required to prepare a slurry with a uniform solid composition for DWPF? (2) How long will it take to suspend and mix the sludge for uniform composition in any particular waste tank? (3) What are good mixing indicators to answer the questions concerning sludge mixing stated above in a general fashion applicable to any waste tank/slurry pump geometry and fluid/sludge combination? Grenville and Tilton (1996) investigated the mixing process by giving a pulse of tracer (electrolyte) through the submersible jet nozzle and by monitoring the conductivity at three locations within the cylindrical tank. They proposed that the mixing process was controlled by the turbulent kinetic energy dissipation rate in the region far away from the jet entrance. They took the energy dissipation rates in the regions remote from the nozzle to be proportional to jet velocity and jet diameter at that location. The reduction in the jet velocity was taken to be proportional to the nozzle velocity and distance from the nozzle. Based on their analysis, a correlation was proposed. The proposed correlation was shown to be valid over a wide range of Reynolds numbers (50,000 to 300,000) with a relative standard deviation of {+-} 11.83%. An improved correlat

  11. Building America Top Innovations 2013 Profile Zero Energy-Ready Single-Family Homes

    SciTech Connect (OSTI)

    none,

    2013-09-01

    Building homes that are zero energy-ready is a goal of the U.S. Department of Energys Building America program and one embodied in Building Americas premier home certification program, the Challenge Home program. This case study describes several examples of successful zero energy-ready home projects completed by Building America teams and partner builders.

  12. Guidelines for Correctly Using the DOE Zero Energy Ready Home Name and Logo

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    | Department of Energy Guidelines for Correctly Using the DOE Zero Energy Ready Home Name and Logo Guidelines for Correctly Using the DOE Zero Energy Ready Home Name and Logo PDF icon ZERH Logo Use Guidelines More Documents & Publications Builder Partner Agreement Verifier Partner Agreement Training Partner Agreement

  13. DOE Zero Energy Ready Home Case Study: Palo Duro Homes — Palo Duro Homes, Albuquerque, NM

    SciTech Connect (OSTI)

    none,

    2014-09-01

    This builder was honored for Most DOE Zero Energy Ready Homes Built in the 2014 Housing Innovation Awards. By July 2014, Palo Duro had completed 152 homes since the program began in 2013 (under the original program title DOE Challenge Home), all of them certified to the stringent efficiency requirements of DOE’s Zero Energy Ready Home program.

  14. Memo of Readiness to Proceed with Phase 1 Privatization for the Tank Farm Contractor

    SciTech Connect (OSTI)

    HONEYMAN, J.O.

    2000-04-24

    This Readiness to Proceed Memorandum provides the CH2M HILL Hanford Group, Inc. formal certification of readiness to proceed with provision of the waste feed and infrastructure to handle the products from the privatization contractor's waste processing plant. Summary information is included from the integrated scope-cost-schedule baseline, the analyses of the baseline, management systems, and systems reviews.

  15. Survey of four damage models for concrete.

    SciTech Connect (OSTI)

    Leelavanichkul, Seubpong; Brannon, Rebecca Moss

    2009-08-01

    Four conventional damage plasticity models for concrete, the Karagozian and Case model (K&C), the Riedel-Hiermaier-Thoma model (RHT), the Brannon-Fossum model (BF1), and the Continuous Surface Cap Model (CSCM) are compared. The K&C and RHT models have been used in commercial finite element programs many years, whereas the BF1 and CSCM models are relatively new. All four models are essentially isotropic plasticity models for which 'plasticity' is regarded as any form of inelasticity. All of the models support nonlinear elasticity, but with different formulations. All four models employ three shear strength surfaces. The 'yield surface' bounds an evolving set of elastically obtainable stress states. The 'limit surface' bounds stress states that can be reached by any means (elastic or plastic). To model softening, it is recognized that some stress states might be reached once, but, because of irreversible damage, might not be achievable again. In other words, softening is the process of collapse of the limit surface, ultimately down to a final 'residual surface' for fully failed material. The four models being compared differ in their softening evolution equations, as well as in their equations used to degrade the elastic stiffness. For all four models, the strength surfaces are cast in stress space. For all four models, it is recognized that scale effects are important for softening, but the models differ significantly in their approaches. The K&C documentation, for example, mentions that a particular material parameter affecting the damage evolution rate must be set by the user according to the mesh size to preserve energy to failure. Similarly, the BF1 model presumes that all material parameters are set to values appropriate to the scale of the element, and automated assignment of scale-appropriate values is available only through an enhanced implementation of BF1 (called BFS) that regards scale effects to be coupled to statistical variability of material properties. The RHT model appears to similarly support optional uncertainty and automated settings for scale-dependent material parameters. The K&C, RHT, and CSCM models support rate dependence by allowing the strength to be a function of strain rate, whereas the BF1 model uses Duvaut-Lion viscoplasticity theory to give a smoother prediction of transient effects. During softening, all four models require a certain amount of strain to develop before allowing significant damage accumulation. For the K&C, RHT, and CSCM models, the strain-to-failure is tied to fracture energy release, whereas a similar effect is achieved indirectly in the BF1 model by a time-based criterion that is tied to crack propagation speed.

  16. Mixed waste: Proceedings

    SciTech Connect (OSTI)

    Moghissi, A.A.; Blauvelt, R.K.; Benda, G.A.; Rothermich, N.E.

    1993-12-31

    This volume contains the peer-reviewed and edited versions of papers submitted for presentation a the Second International Mixed Waste Symposium. Following the tradition of the First International Mixed Waste Symposium, these proceedings were prepared in advance of the meeting for distribution to participants. The symposium was organized by the Mixed Waste Committee of the American Society of Mechanical Engineers. The topics discussed at the symposium include: stabilization technologies, alternative treatment technologies, regulatory issues, vitrification technologies, characterization of wastes, thermal technologies, laboratory and analytical issues, waste storage and disposal, organic treatment technologies, waste minimization, packaging and transportation, treatment of mercury contaminated wastes and bioprocessing, and environmental restoration. Individual abstracts are catalogued separately for the data base.

  17. Electrochemical Aging of Thermal-Sprayed Zinc Anodes on Concrete

    SciTech Connect (OSTI)

    Holcomb, G.R.; Bullard, S.J.; Covino, B.S. Jr.; Cramer, S.D.; Cryer, C.B.; McGill, G.E.

    1996-10-01

    Thermal-sprayed zinc anodes are used in impressed current cathodic protection systems for some of Oregon's coastal reinforced concrete bridges. Electrochemical aging of zinc anodes results in physical and chemical changes at the zinc-concrete interface. Concrete surfaces heated prior to thermal-spraying had initial adhesion strengths 80 pct higher than unheated surfaces. For electrochemical aging greater than 200 kC/m{sup 2} (5.2 A h/ft{sup 2}), there was no difference in adhesion strengths for zinc on preheated and unheated concrete. Adhesion strengths decreased monotonically after about 400 to 600 kC/m{sup 2} (10.4 to 15.6 A-h/ft{sup 2}) as a result of the reaction zones at the zinc-concrete interface. A zone adjacent to the metallic zinc (and originally part of the zinc coating) was primarily zincite (ZnO), with minor constituents of wulfingite (Zn(OH){sub 2}), simonkolleite (Zn{sub 5}(OH) {sub 8}C{sub l2}{sup .}H{sub 2}O), and hydrated zinc hydroxide sulfates (Zn{sub 4}SO{sub 4}(OH){sub 6}{sup .}xH{sub 2}O). This zone is the locus for cohesive fracture when the zinc coating separates from the concrete during adhesion tests. Zinc ions substitute for calcium in the cement paste adjacent to the coating as the result of secondary mineralization. The initial estimate of the coating service life based on adhesion strength measurements in accelerated impressed current cathodic protection tests is about 27 years.

  18. Mixed crystal organic scintillators

    DOE Patents [OSTI]

    Zaitseva, Natalia P; Carman, M Leslie; Glenn, Andrew M; Hamel, Sebastien; Hatarik, Robert; Payne, Stephen A; Stoeffl, Wolfgang

    2014-09-16

    A mixed organic crystal according to one embodiment includes a single mixed crystal having two compounds with different bandgap energies, the organic crystal having a physical property of exhibiting a signal response signature for neutrons from a radioactive source, wherein the signal response signature does not include a significantly-delayed luminescence characteristic of neutrons interacting with the organic crystal relative to a luminescence characteristic of gamma rays interacting with the organic crystal. According to one embodiment, an organic crystal includes bibenzyl and stilbene or a stilbene derivative, the organic crystal having a physical property of exhibiting a signal response signature for neutrons from a radioactive source.

  19. MixDown

    Energy Science and Technology Software Center (OSTI)

    2010-01-01

    MixDown is a meta-build tool that orchestrates and manages the building of multiple 3rd party libraries. It can manage the downloading, uncompressing, unpacking, patching, configuration, build, and installation of 3rd party libraries using a variety of configuration and build tools. As a meta-build tool, it relies on 3rd party tools such as GNU Autotools, make, Cmake, scons, etc. to actually confugure and build libraries. MixDown includes an extensive database of settings to be used formore » general machines and specific leadership class computing resources.« less

  20. OECD MCCI 2-D Core Concrete Interaction (CCI) tests : CCI-2 test data report-thermalhydraulic results, Rev. 0 October 15, 2004.

    SciTech Connect (OSTI)

    Farmer, M. T.; Lomperski, S.; Kilsdonk, D. J.; Aeschlimann, R. W.; Basu, S.

    2011-05-23

    The Melt Attack and Coolability Experiments (MACE) program addressed the issue of the ability of water to cool and thermally stabilize a molten core-concrete interaction when the reactants are flooded from above. These tests provided data regarding the nature of corium interactions with concrete, the heat transfer rates from the melt to the overlying water pool, and the role of noncondensable gases in the mixing processes that contribute to melt quenching. As a follow-on program to MACE, The Melt Coolability and Concrete Interaction Experiments (MCCI) project is conducting reactor material experiments and associated analysis to achieve the following objectives: (1) resolve the ex-vessel debris coolability issue through a program that focuses on providing both confirmatory evidence and test data for the coolability mechanisms identified in MACE integral effects tests, and (2) address remaining uncertainties related to long-term two-dimensional molten core-concrete interactions under both wet and dry cavity conditions. Achievement of these two program objectives will demonstrate the efficacy of severe accident management guidelines for existing plants, and provide the technical basis for better containment designs for future plants. In terms of satisfying these objectives, the Management Board (MB) approved the conduct of two long-term 2-D Core-Concrete Interaction (CCI) experiments designed to provide information in several areas, including: (i) lateral vs. axial power split during dry core-concrete interaction, (ii) integral debris coolability data following late phase flooding, and (iii) data regarding the nature and extent of the cooling transient following breach of the crust formed at the melt-water interface. This data report provides thermal hydraulic test results from the CCI-2 experiment, which was conducted on August 24, 2004. Test specifications for CCI-2 are provided in Table 1-1. This experiment investigated the interaction of a fully oxidized 400 kg PWR core melt, initially containing 8 wt % Limestone/Common Sand (LCS) concrete, with a specially designed two-dimensional LCS concrete test section with an initial cross-sectional area of 50 cm x 50 cm. The report begins by providing a summary description of the CCI-2 test apparatus and operating procedures, followed by presentation of the thermal-hydraulic results. Detailed posttest debris examination results will be provided in a subsequent publication. Observations drawn within this report regarding the overall cavity erosion behavior may be subject to revision once the posttest examinations are completed, since these examinations will fully reveal the final cavity shape.

  1. Tierra Concrete Homes Honored with Energy Star Award

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Tierra Concrete Homes Honored with Energy Star Award For more information contact: Sarah Holmes Barba, 303-275-3023 email: Sarah Homes Barba Golden, Colo., August 8, 2001 - Tierra Concrete Homes, Inc. of Pueblo, Colo., has been recognized as a leader in energy-efficient home building by Energy Star, a national program that develops energy-saving partnerships with the home building industry. The first-ever "Most Energy-Efficient Homes of the New Millennium" award was presented to

  2. High-performance, high-volume fly ash concrete

    SciTech Connect (OSTI)

    2008-01-15

    This booklet offers the construction professional an in-depth description of the use of high-volume fly ash in concrete. Emphasis is placed on the need for increased utilization of coal-fired power plant byproducts in lieu of Portland cement materials to eliminate increased CO{sub 2} emissions during the production of cement. Also addressed is the dramatic increase in concrete performance with the use of 50+ percent fly ash volume. The booklet contains numerous color and black and white photos, charts of test results, mixtures and comparisons, and several HVFA case studies.

  3. Carbon Characterization Laboratory Readiness to Receive Irradiated Graphite Samples

    SciTech Connect (OSTI)

    Karen A. Moore

    2011-05-01

    The Carbon Characterization Laboratory (CCL) is located in Labs C19 and C20 of the Idaho National Laboratory Research Center. The CCL was established under the Next Generation Nuclear Plant Project to support graphite and ceramic composite research and development activities. The research conducted in this laboratory will support the Advanced Graphite Creep experiments—a major series of material irradiation experiments within the Next Generation Nuclear Plant Graphite program. The CCL is designed to characterize and test low activated irradiated materials such as high purity graphite, carbon-carbon composites, silicon-carbide composite, and ceramic materials. The laboratory is fully capable of characterizing material properties for both irradiated and nonirradiated materials. Major infrastructural modifications were undertaken to support this new radiological facility at Idaho National Laboratory. Facility modifications are complete, equipment has been installed, radiological controls and operating procedures have been established and work management documents have been created to place the CCL in readiness to receive irradiated graphite samples.

  4. The Effect of Elevated Temperature on Concrete Materials and Structures - a Literature Review.

    SciTech Connect (OSTI)

    Naus, Dan J

    2006-03-01

    The objective of this limited study was to provide an overview of the effects of elevated temperature on the behavior of concrete materials and structures. In meeting this objective the effects of elevated temperatures on the properties of ordinary Portland cement concrete constituent materials and concretes are summarized. The effects of elevated temperature on high-strength concrete materials are noted and their performance compared to normal strength concretes. A review of concrete materials for elevated-temperature service is presented. Nuclear power plant and general civil engineering design codes are described. Design considerations and analytical techniques for evaluating the response of reinforced concrete structures to elevated-temperature conditions are presented. Pertinent studies in which reinforced concrete structural elements were subjected to elevated temperatures are described.

  5. Mixing It Up

    Broader source: Energy.gov [DOE]

    PADUCAH, Ky. – A 150-foot-tall crane turns an eight-foot-diameter auger performing deep-soil mixing at the Paducah Gaseous Diffusion Plant’s southwest groundwater plume. More than 260 borings are being made to a depth of about 60 feet to remove a source of trichloroethene groundwater contamination.

  6. Concrete Company Aims Higher for More Wind Energy

    Broader source: Energy.gov [DOE]

    Today, most steel towers that support utility-scale turbines stand about 80 meters tall, but the Tindall Corporation wants to go higher using precast concrete to raise turbines over 100 meters in height to capture stronger, steadier winds - and more energy.

  7. Modeling Blast Loading on Buried Reinforced Concrete Structures with Zapotec

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Bessette, Greg C.

    2008-01-01

    A coupled Euler-Lagrange solution approach is used to model the response of a buried reinforced concrete structure subjected to a close-in detonation of a high explosive charge. The coupling algorithm is discussed along with a set of benchmark calculations involving detonations in clay and sand.

  8. Optimizing the use of fly ash in concrete

    SciTech Connect (OSTI)

    Thomas, M.

    2007-07-01

    The optimum amount of fly ash varies not only with the application, but also with composition and proportions of all the materials in the concrete mixture (especially the fly ash), the conditions during placing (especially temperature), construction practices (for example, finishing and curing) and the exposure conditions. This document discusses issues related to using low to very high levels of fly ash in concrete and provides guidance for the use of fly ash without compromising the construction process or the quality of the finished product. The nature of fly ashes including their physical, mineralogical and chemical properties is covered in detail, as well as fly ash variability due to coal composition and plant operating conditions. A discussion on the effects of fly ash characteristics on fresh and hardened concrete properties includes; workability, bleeding, air entrainment, setting time, heat of hydration, compressive strength development, creep, drying shrinkage, abrasion resistance, permeability, resistance to chlorides, alkali-silica reaction (ASR), sulfate resistance, carbonation, and resistance to freezing and thawing and deicer salt scaling. Case studies were selected as examples of some of the more demanding applications of fly ash concrete for ASR mitigation, chloride resistance, and green building.

  9. INTERIM REPORT ON CONCRETE DEGRADATION MECHANISMS AND ONLINE MONITORING TECHNIQUES

    SciTech Connect (OSTI)

    Mahadevan, Sankaran; Agarwal, Vivek; Neal, Kyle; Kosson, David; Adams, Douglas

    2014-09-01

    The existing fleets of nuclear power plants in the United States have initial operating licenses of 40 years, though most these plants have applied for and received license extensions. As plant structures, systems, and components age, their useful life—considering both structural integrity and performance—is reduced as a result of deterioration of the materials. The online monitoring of concrete structure conducted under the Advanced Instrumentation, Information, and Control Technologies Pathway of the Light Water Reactor Sustainability program at Idaho National Laboratory will develop and demonstrate concrete structures health monitoring capabilities. Assessment and management of aging concrete structures in nuclear plants require a more systematic approach than simple reliance on existing code margins of safety. Therefore, the structural health monitoring is required to produce actionable information regarding structural integrity that supports operational and maintenance decisions. Through this research project, several national laboratories and Vanderbilt University proposes to develop a framework of research activities for the health monitoring of nuclear power plant concrete structures that includes integration of four elements—damage modeling, monitoring, data analytics, and uncertainty quantification. This report briefly discusses available techniques and ongoing challenges in each of the four elements of the proposed framework with emphasis on degradation mechanisms and online monitoring techniques.

  10. Pentek concrete scabbling system: Baseline report; Greenbook (chapter)

    SciTech Connect (OSTI)

    1997-07-31

    The Pentek scabbling technology was tested at Florida International University (FIU) and is being evaluated as a baseline technology. This report evaluates it for safety and health issues. It is a commercially available technology and has been used for various projects at locations throughout the country. The Pentek concrete scabbling system consisted of the MOOSE, SQUIRREL-I, and SQUIRREL-III scabblers. The scabblers are designed to scarify concrete floors and slabs using cross-section, tungsten carbide tipped bits. The bits are designed to remove concrete in 318 inch increments. The bits are either 9-tooth or demolition type. The scabblers are used with a vacuum system designed to collect and filter the concrete dust and contamination that is removed from the surface. The safety and health evaluation conducted during the testing demonstration focused on two main areas of exposure: dust and noise. Dust exposure was minimal, but noise exposure was significant. Further testing for each of these exposures is recommended. Because of the outdoor environment where the testing demonstration took place, results may be inaccurate. It is feasible that the dust and noise levels will be higher in an enclosed operating environment. Other areas of concern were arm-hand vibration, whole-body vibration, ergonomics, heat stress, tripping hazards, electrical hazards, machine guarding, and lockout/tagout.

  11. A Simple Demonstration of Concrete Structural Health Monitoring Framework

    SciTech Connect (OSTI)

    Mahadevan, Sankaran; Agarwal, Vivek; Cai, Guowei; Nath, Paromita; Bao, Yanqing; Bru Brea, Jose Maria; Koester, David; Adams, Douglas; Kosson, David

    2015-03-01

    Assessment and management of aging concrete structures in nuclear power plants require a more systematic approach than simple reliance on existing code margins of safety. Structural health monitoring of concrete structures aims to understand the current health condition of a structure based on heterogeneous measurements to produce high confidence actionable information regarding structural integrity that supports operational and maintenance decisions. This ongoing research project is seeking to develop a probabilistic framework for health diagnosis and prognosis of aging concrete structures in a nuclear power plant subjected to physical, chemical, environment, and mechanical degradation. The proposed framework consists of four elements—damage modeling, monitoring, data analytics, and uncertainty quantification. This report describes a proof-of-concept example on a small concrete slab subjected to a freeze-thaw experiment that explores techniques in each of the four elements of the framework and their integration. An experimental set-up at Vanderbilt University’s Laboratory for Systems Integrity and Reliability is used to research effective combination of full-field techniques that include infrared thermography, digital image correlation, and ultrasonic measurement. The measured data are linked to the probabilistic framework: the thermography, digital image correlation data, and ultrasonic measurement data are used for Bayesian calibration of model parameters, for diagnosis of damage, and for prognosis of future damage. The proof-of-concept demonstration presented in this report highlights the significance of each element of the framework and their integration.

  12. Building America Zero Energy Ready Home Case Study: Imery Group, Proud

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Green Home, Serenbe GA | Department of Energy Imery Group, Proud Green Home, Serenbe GA Building America Zero Energy Ready Home Case Study: Imery Group, Proud Green Home, Serenbe GA Case study describing the first DOE-certified zero energy ready home in Georgia, featuring 2x6 advanced framed wall, spray foamed walls and attic plus rigid foam and coated OSB. PDF icon The Imery Group: Proud Green Home - Serenbe, GA More Documents & Publications DOE Zero Energy Ready Home Case Study: The

  13. Hear What Homeowners Are Saying About Their Zero Energy Ready Homes |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Hear What Homeowners Are Saying About Their Zero Energy Ready Homes Hear What Homeowners Are Saying About Their Zero Energy Ready Homes April 20, 2016 - 4:47pm Addthis Palo Duro Homes built this 2,215 square-foot home in Sante Fe, New Mexico to the performance criteria of the U.S. Department of Energy Zero Energy Ready Home (ZERH) program. The project won a 2015 DOE Housing Innovation Award. Photo courtesy Palo Duro Homes Palo Duro Homes built this 2,215 square-foot home

  14. Operational readiness review for the Waste Experimental Reduction Facility. Final report

    SciTech Connect (OSTI)

    Not Available

    1993-11-01

    An Operational Readiness Review (ORR) at the Idaho National Engineering Laboratory`s (INEL`s) Waste Experimental Reduction Facility (WERF) was conducted by EG&G Idaho, Inc., to verify the readiness of WERF to resume operations following a shutdown and modification period of more than two years. It is the conclusion of the ORR Team that, pending satisfactory resolution of all pre-startup findings, WERF has achieved readiness to resume unrestricted operations within the approved safety basis. ORR appraisal forms are included in this report.

  15. HIA 2015 DOE Zero Energy Ready Home Case Study: Addison Homes, Cobbler Lane, Simpsonville, SC

    Energy Savers [EERE]

    Addison Homes Cobbler Lane Simpsonville, SC DOE ZERO ENERGY READY HOME(tm) The U.S. Department of Energy invites home builders across the country to meet the extraordinary levels of excellence and quality specified in DOE's Zero Energy Ready Home program (formerly known as Challenge Home). Every DOE Zero Energy Ready Home starts with ENERGY STAR Certified Homes Version 3.0 for an energy-efficient home built on a solid foundation of building science research. Advanced technologies are designed in

  16. HIA 2015 DOE Zero Energy Ready Home Case Study: BPC Green Builders, Taft School, Watertown, CT

    Energy Savers [EERE]

    Taft School Watertown, CT DOE ZERO ENERGY READY HOME(tm) The U.S. Department of Energy invites home builders across the country to meet the extraordinary levels of excellence and quality specified in DOE's Zero Energy Ready Home program (formerly known as Challenge Home). Every DOE Zero Energy Ready Home starts with ENERGY STAR Certified Homes Version 3.0 for an energy-efficient home built on a solid foundation of building science research. Advanced technologies are designed in to give you

  17. HIA 2015 DOE Zero Energy Ready Home Case Study: Charles Thomas Homes, Anna Model, Omaha, NE

    Energy Savers [EERE]

    Thomas Homes Anna Model Omaha, NE DOE ZERO ENERGY READY HOME(tm) The U.S. Department of Energy invites home builders across the country to meet the extraordinary levels of excellence and quality specified in DOE's Zero Energy Ready Home program (formerly known as Challenge Home). Every DOE Zero Energy Ready Home starts with ENERGY STAR Certified Homes Version 3.0 for an energy-efficient home built on a solid foundation of building science research. Advanced technologies are designed in to give

  18. HIA 2015 DOE Zero Energy Ready Home Case Study: Sunroc Builders, Bates Avenue, Lakeland, FL

    Energy Savers [EERE]

    Sunroc Builders Bates Avenue Lakeland, FL DOE ZERO ENERGY READY HOME(tm) The U.S. Department of Energy invites home builders across the country to meet the extraordinary levels of excellence and quality specified in DOE's Zero Energy Ready Home program (formerly known as Challenge Home). Every DOE Zero Energy Ready Home starts with ENERGY STAR Certified Homes Version 3.0 for an energy-efficient home built on a solid foundation of building science research. Advanced technologies are designed in

  19. DOE ZERO ENERGY READY HOME UPDATE NEWSLETTER APRIL 2015 | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy APRIL 2015 DOE ZERO ENERGY READY HOME UPDATE NEWSLETTER APRIL 2015 TABLE OF CONTENTS A Note from Sam Rashkin: How Many of You are Over 60? Building America Building Science Translator Published Take Caution: Know Your Vendors Virtual Office Hours: Get the Information You Need Quickly and Efficiently Keep an Eye Out for Rev05 of the DOE Zero Energy Ready Specs The Value of a DOE Zero Energy Ready Home 2015 Housing Innovation Awards Applications Upcoming Webinars PDF icon ZERH Update

  20. DOE Zero Energy Ready Home Case Study, Caldwell and Johnson, Exeter, RI,

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Custom Home | Department of Energy Study, Caldwell and Johnson, Exeter, RI, Custom Home DOE Zero Energy Ready Home Case Study, Caldwell and Johnson, Exeter, RI, Custom Home Case study of a DOE Zero Energy Ready Home in Exeter, Rhode Island, that scored HERS 43 without PV. This 2,000 ft2 custom home has a spray- foamed attic and walls, plus rigid foam sheathing, ducted mini-split heat pumps, and an HRV. PDF icon BA_ZeroEnergyReady_CaldwellJohnson_062314.pdf More Documents & Publications

  1. DOE Zero Energy Ready Home Case Study: BPC Green Builders, Danbury, CT |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Danbury, CT DOE Zero Energy Ready Home Case Study: BPC Green Builders, Danbury, CT DOE Zero Energy Ready Home Case Study: BPC Green Builders, Danbury, CT Case study of a DOE Zero Energy Ready home in Danbury, CT, that scored HERS 35 without PV. This 2-story, 1,650-ft2 cabin built by a custom home builder for his own family meets Passive House Standards with 5.5-in. of foil-faced polysiocyanurate foam boards lining the outside walls, R-55 of rigid EPS foam under the slab,

  2. DOE Zero Energy Ready Home Case Study: Brookside Development, Derby, CT |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Brookside Development, Derby, CT DOE Zero Energy Ready Home Case Study: Brookside Development, Derby, CT DOE Zero Energy Ready Home Case Study: Brookside Development, Derby, CT Case study of a DOE Zero Energy Ready home in Derby, CT, that achieves a HERS score of 45 without PV or HERS 26 with PV. The production home is one of a development of 7 two-story, 4,000+-ft2 certified homes that have 2x4 walls filled with 1.5 in. closed-cell spray foam, 2-in. fiberglass batt,

  3. DOE Zero Energy Ready Home Case Study: Caldwell and Johnson, Charlestown,

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    RI | Department of Energy Caldwell and Johnson, Charlestown, RI DOE Zero Energy Ready Home Case Study: Caldwell and Johnson, Charlestown, RI DOE Zero Energy Ready Home Case Study: Caldwell and Johnson, Charlestown, RI Case study of a DOE Zero Energy Ready affordable home in Charlestown, RI, that achieved a HERS Index of 47 without PV. The 2,244-ft2 two-story home with basement has 2x6 walls filled with 5.5 in. (R-23) 2-lb open-cell spray foam, R-12 closed-cell spray foam under the slab, and

  4. DOE Zero Energy Ready Home Case Study: Garbett Homes, Herriman, UT,

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Production Home | Department of Energy Garbett Homes, Herriman, UT, Production Home DOE Zero Energy Ready Home Case Study: Garbett Homes, Herriman, UT, Production Home Case study of a DOE Zero Energy Ready Home in Herriman, UT, that scored HERS 40 without PV, -1 with PV. This 4,111-square-foot production home has R-23 advanced framed walls, and a vented attic with R-60 blown fiberglass. PDF icon Garbett Homes - Herriman, UT More Documents & Publications DOE Zero Energy Ready Home Case

  5. DOE Zero Energy Ready Home Case Study: Greenhill Contracting, New Paltz, NY

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    | Department of Energy New Paltz, NY DOE Zero Energy Ready Home Case Study: Greenhill Contracting, New Paltz, NY DOE Zero Energy Ready Home Case Study: Greenhill Contracting, New Paltz, NY Case study of a DOE Zero Energy Ready home in New Paltz, NY, that achieved a HERS score of 37 without PV or 7 with 7.5-kW PV. The two-story 2,288-ft2 home is one of 9 certified homes. All of the homes have R-22 ICF walls, R-20 closed-cell spray foam under the slab, a ground-source heat pump with

  6. DOE Zero Energy Ready Home Case Study: John Hubert Associates, North Cape

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    May, NJ | Department of Energy John Hubert Associates, North Cape May, NJ DOE Zero Energy Ready Home Case Study: John Hubert Associates, North Cape May, NJ DOE Zero Energy Ready Home Case Study: John Hubert Associates, North Cape May, NJ Case study of a DOE Zero Energy Ready home in North Cape May, NJ, that scored a HERS 46 without PV or HERS 9 with 6.5 kW of PV. The two-story, 1,871-ft2 home has advanced-framed above-grade walls with R-21 fiberglass batt plus an R-3.6-insulated coated OSB

  7. DOE Zero Energy Ready Home Case Study: KB Home, San Marcos, CA, Production

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Home | Department of Energy San Marcos, CA, Production Home DOE Zero Energy Ready Home Case Study: KB Home, San Marcos, CA, Production Home Case study of a DOE Zero Energy Ready Home in San Marcos, CA that scored HERS 52 without PV, -4 with PV. This 52,778-square-foot production home has R-20 advanced framed walls with batts plus rigid foam sheathing, an air-source heat pump for central air in sealed attic, solar water heating and 100% LED lighting. PDF icon BA_ZeroEnergyReady_KB

  8. DOE Zero Energy Ready Home Case Study: M Street Homes, Houston, TX |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy M Street Homes, Houston, TX DOE Zero Energy Ready Home Case Study: M Street Homes, Houston, TX DOE Zero Energy Ready Home Case Study: M Street Homes, Houston, TX Case study of a DOE Zero Energy Ready home in Houston, TX, that achieves a HERS 45 without PV or HERS 32 with 1.2 kW PV. The three-story, 4,507-ft2 custom home is powered by a unique tri-generation system that supplies all of the home's electricity, heating, and cooling on site. The tri-generator is powered by a

  9. DOE Zero Energy Ready Home Case Study: Mandalay Homes, Phoenix, AZ,

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Affordable | Department of Energy Phoenix, AZ, Affordable DOE Zero Energy Ready Home Case Study: Mandalay Homes, Phoenix, AZ, Affordable DOE Zero Energy Ready Home Case Study: Mandalay Homes, Phoenix, AZ, Affordable Case study of a DOE Zero Energy Ready Home in Phoenix, AZ, that scored HERS 58 without PV or HERS 38 with PV. This 1,700-square-foot affordable home has R-21 framed walls, a sealed closed-cell spray foamed attic, an air-source heat pump with forced air, and a solar combo system

  10. DOE Zero Energy Ready Home Case Study: New Town Builders, Denver, CO |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy CO DOE Zero Energy Ready Home Case Study: New Town Builders, Denver, CO DOE Zero Energy Ready Home Case Study: New Town Builders, Denver, CO Case study of a DOE Zero Energy Ready home in Denver, CO, that achieves HERS 38 without PV or HERS -3 with 8.0 kW of PV. The 2,115-ft2 two-story production home has 9.5-in.-thick double-stud walls filled with R-40 of blown fiberglass; a vented attic with R-50 blown fiberglass; an insulated, conditioned basement; a high-efficiency

  11. DOE Zero Energy Ready Home Case Study: New Town Builders, Denver, CO,

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Production Home | Department of Energy CO, Production Home DOE Zero Energy Ready Home Case Study: New Town Builders, Denver, CO, Production Home Case study of a DOE Zero Energy Ready Home in Denver, CO, that scored HERS 41 without PV, HERS 3 with PV. This 3,560-square-foot production home has R-36 double-stud walls, a vented attic with R-50 blown fiberglass, and a 97% efficient gas furnace with ducts in conditioned space. PDF icon DOE Zero Energy Ready Home Case Study: New Town Builders-

  12. DOE Zero Energy Ready Home Case Study: One Sky Homes, San Jose, CA |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy One Sky Homes, San Jose, CA DOE Zero Energy Ready Home Case Study: One Sky Homes, San Jose, CA DOE Zero Energy Ready Home Case Study: One Sky Homes, San Jose, CA Case study of a DOE Zero Energy Ready home in San Jose, CA, that achieved a HERS 69 on the California HERS score without PV, or HERS -1 with 6.4 kW of PV. The custom home has 2x6 advanced framed walls dense packed with R-23 of cellulose plus 1 in. of rigid foam exterior insulation, R-51 blown cellulose in the

  13. DOE Zero Energy Ready Home Case Study: Palo Duro Homes Inc., Albuquerque,

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    NM, Production | Department of Energy Homes Inc., Albuquerque, NM, Production DOE Zero Energy Ready Home Case Study: Palo Duro Homes Inc., Albuquerque, NM, Production Case study of a DOE Zero Energy Ready Home in Aztec, NM, that scored HERS 49 without PV. This 2,064-square-foot production home has advance framed walls, a spray foamed attic, an air source heat pump, and an HRV. PDF icon Palo Duro Homes, Inc.- Albuquerque, NM More Documents & Publications DOE Zero Energy Ready Home Case

  14. DOE Zero Energy Ready Home Case Study: Southern Energy Homes, Russellville,

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AL | Department of Energy Southern Energy Homes, Russellville, AL DOE Zero Energy Ready Home Case Study: Southern Energy Homes, Russellville, AL DOE Zero Energy Ready Home Case Study: Southern Energy Homes, Russellville, AL Case study of the first manufactured home built to the DOE Zero Energy Ready Home standard. This manufactured home achieved a HERS score of 57 without PV. The home has been set up for side-by-side testing with an identical manufactured home built to ENERGY STAR standards

  15. DOE Zero Energy Ready Home Case Study: Sterling Brook Custom Homes, Double

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Oak, TX | Department of Energy Sterling Brook Custom Homes, Double Oak, TX DOE Zero Energy Ready Home Case Study: Sterling Brook Custom Homes, Double Oak, TX DOE Zero Energy Ready Home Case Study: Sterling Brook Custom Homes, Double Oak, TX Case study of a DOE Zero Energy Ready home in Double Oak, TX, north of Dallas, that scored a HERS 44 without PV. The 3,752-ft2 two-story home served as an energy-efficient model home for the custom home builder: 1,300 visitors toured the home, thousands

  16. DOE Zero Energy Ready Home Case Study: Mandalay Homes, Prescott Valley, AZ

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    | Department of Energy Mandalay Homes, Prescott Valley, AZ DOE Zero Energy Ready Home Case Study: Mandalay Homes, Prescott Valley, AZ DOE Zero Energy Ready Home Case Study: Mandalay Homes, Prescott Valley, AZ Case study of a DOE Zero Energy Ready home in northern AZ that achieved a HERS score of 48 without PV or 25 if 3.5 kW PV were added. The two-story, 2,469-ft2 production home has 2x4 walls filled with R-13 open-cell spray foam plus 1-in. rigid foam over plywood sheathing, a sealed R-20

  17. DOE Zero Energy Ready Home Case Study: TC Legend Homes, Bellingham, WA |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Bellingham, WA DOE Zero Energy Ready Home Case Study: TC Legend Homes, Bellingham, WA DOE Zero Energy Ready Home Case Study: TC Legend Homes, Bellingham, WA Case study of a DOE Zero Energy Ready home in Bellingham, WA, that achieves HERS 43 without PV or HERS 13 with 3.2 kW of PV. The 1,055-ft2 two-story production home has 6-in. SIP walls, a 10-in. SIP roof, and ICF foundation walls with R-20 high-density rigid EPS foam under the slab. A single ductless heat pump heats

  18. Mixed Acid Oxidation

    SciTech Connect (OSTI)

    Pierce, R.A.

    1999-10-26

    Several non-thermal processes have been developed to destroy organic waste compounds using chemicals with high oxidation potentials. These efforts have focused on developing technologies that work at low temperatures, relative to incineration, to overcome many of the regulatory issues associated with obtaining permits for waste incinerators. One such technique with great flexibility is mixed acid oxidation. Mixed acid oxidation, developed at the Savannah River Site, uses a mixture of an oxidant (nitric acid) and a carrier acid (phosphoric acid). The carrier acid acts as a non-volatile holding medium for the somewhat volatile oxidant. The combination of acids allows appreciable amounts of the concentrated oxidant to remain in the carrier acid well above the oxidant''s normal boiling point.

  19. Alternative Fuels Data Center: Ozinga Adds 14 Natural Gas Concrete Mixers

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    to Its Fleet Ozinga Adds 14 Natural Gas Concrete Mixers to Its Fleet to someone by E-mail Share Alternative Fuels Data Center: Ozinga Adds 14 Natural Gas Concrete Mixers to Its Fleet on Facebook Tweet about Alternative Fuels Data Center: Ozinga Adds 14 Natural Gas Concrete Mixers to Its Fleet on Twitter Bookmark Alternative Fuels Data Center: Ozinga Adds 14 Natural Gas Concrete Mixers to Its Fleet on Google Bookmark Alternative Fuels Data Center: Ozinga Adds 14 Natural Gas Concrete Mixers to

  20. HIA 2015 DOE Zero Energy Ready Home Case Study: Heirloom Design...

    Energy Savers [EERE]

    Heirloom Design Build Euclid Avenue Atlanta, GA DOE ZERO ENERGY READY HOME(tm) The U.S. Department of Energy invites home builders across the country to meet the extraordinary ...

  1. DOE Zero Energy Ready Home Case Study: United Way of Long Island...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    unvented attic with R-48 ocsf under roof deck; ERV tied to wall hung boiler with hydro coil. DOE Zero Energy Ready Home Case Study: United Way of Long Island Housing...

  2. DOE Zero Energy Ready Home Case Study: BPC Green Builders, Danbury, CT

    Broader source: Energy.gov [DOE]

    Case study of a DOE Zero Energy Ready home in Danbury, CT, that scored HERS 35 without PV. This 2-story, 1,650-ft2 cabin built by a custom home builder for his own family meets Passive House...

  3. DOE Tour of Zero: The First DOE Zero Energy Ready Retrofit by...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    by Green Extreme Homes and Carl Franklin Homes DOE Tour of Zero: The First DOE Zero Energy Ready Retrofit by Green Extreme Homes and Carl Franklin Homes Addthis 1 of 11 Green...

  4. DOE Zero Energy Ready Home Case Study: Southern Energy Homes, Russellville, AL

    Broader source: Energy.gov [DOE]

    Case study of the first manufactured home built to the DOE Zero Energy Ready Home standard. This manufactured home achieved a HERS score of 57 without PV. The home has been set up for side-by-side...

  5. DOE Zero Energy Ready Home Case Study: Amaris Custom Home, St...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... DOE ZERO ENERGY READY HOME Amaris Custom Homes 2 solar system will provide most of the electricity needs and will be grid-tied to Internet and smartphone monitoring capabilities. ...

  6. DOE Zero Energy Ready Home Case Study: One Sky Homes, San Jose, CA

    Broader source: Energy.gov [DOE]

    Case study of a DOE Zero Energy Ready home in San Jose, CA, that achieved a HERS 69 on the California HERS score without PV, or HERS -1 with 6.4 kW of PV.

  7. DOE Zero Energy Ready Home Case Study: KB Home, Double ZeroHouse...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Double ZeroHouse 3.0, El Dorado Hill, CA DOE Zero Energy Ready Home Case Study: KB Home, Double ZeroHouse 3.0, El Dorado Hill, CA Case study of a DOE 2015 Housing Innovation Award ...

  8. DOE Zero Energy Ready Home Going Green and Building Strong: Building...

    Broader source: Energy.gov (indexed) [DOE]

    require participation in the FORTIFIED Home program for certification under the DOE Zero Energy Ready Home program, we do strongly encourage it, and we think that there's a lot of...

  9. DOE Zero Energy Ready Home Case Study 2013: Manatee County Habitat...

    Energy Savers [EERE]

    ... ducted, Manatee chose to install the heat pump in the insulated attic with supply ducts to the bedrooms and living areas. DOE ZERO ENERGY READY HOME Manatee County Habitat for ...

  10. DOE Zero Energy Ready Home Case Study: Promethean Homes, Charlottesville, VA

    Broader source: Energy.gov [DOE]

    Case study of a DOE Zero Energy Ready home in Charlottesville, VA, that achieves a HERS 33 without PV. The 2,572-ft2 custom home with daylight basement, has 2x6 advanced framed walls filled with R...

  11. DOE Zero Energy Ready Home Case Study: Palo Duro Homes, Via del...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Via del Cielo, Santa Fe, NM DOE Zero Energy Ready Home Case Study: Palo Duro Homes, Via del Cielo, Santa Fe, NM Case study of a DOE 2015 Housing Innovation Award winning ...

  12. DOE Zero Energy Ready Home Case Study: Shore Road Project - Old...

    Energy Savers [EERE]

    ventilator. The house has a dual-fuel heat pump, an instantaneous condensing water heater, and 4.5-kW solar shingles. DOE Zero Energy Ready Home: Murphy Brothers Contracting,...

  13. DOE Zero Energy Ready Home Case Study: Shore Road Project - Old...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    The house has a dual-fuel heat pump, an instantaneous condensing water heater, and 4.5-kW solar shingles. PDF icon DOE Zero Energy Ready Home: Murphy Brothers Contracting, Shore ...

  14. DOE ZERH Webinar: Updates to the DOE Zero Energy Ready Home Specs...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    In the year since DOE last updated the DOE Zero Energy Ready Home specs, we've continued to track our partner feedback and other industry issues. This brings us to the release of ...

  15. DOE Zero Energy Ready Home Case Study 2013: New Town Builders...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    and comfort; healthy indoor air; high-performance HVAC, lighting, and appliances; and solar-ready components for low or no utility bills in a quality home that will last for ...

  16. DOE Zero Energy Ready Home Case Study: Carl Franklin Homes, L...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Carl Franklin Homes, L.C.Green Extreme Homes, CDC, McKinley Project, Garland TX DOE Zero Energy Ready Home Case Study: Carl Franklin Homes, L.C.Green Extreme Homes, CDC, McKinley ...

  17. DOE Zero Energy Ready Home Case Study: BPC Green Builders, Taft...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Taft School, Watertown, CT DOE Zero Energy Ready Home Case Study: BPC Green Builders, Taft School, Watertown, CT Case study of a DOE 2015 Housing Innovation Award winning custom ...

  18. DOE Zero Ready Home Case Study: BPC Green Builders, Trolle Residence...

    Energy Savers [EERE]

    ... revenue: NA * Annual Energy Savings: without PV 6,276 kWh DOE ZERO ENERGY READY HOME BPC Green Builders 2 Trolle tore the old cottage down to the foundation, a 24x26 ft ...

  19. HIA 2015 DOE Zero Energy Ready Home Case Study: Carl Franklin...

    Energy Savers [EERE]

    Carl Franklin Homes, L.C. Green Extreme Homes, CDC McKinley Project Garland, TX DOE ZERO ENERGY READY HOME(tm) The U.S. Department of Energy invites home builders across the ...

  20. HIA 2015 DOE Zero Energy Ready Home Case Study: Greenhill Contracting...

    Energy Savers [EERE]

    Green Acres 20, 26, 28 New Paltz, NY DOE ZERO ENERGY READY HOME(tm) The U.S. Department of Energy invites home builders across the country to meet the extraordinary levels of ...