Sample records for reactors laboratory field

  1. Westinghouse Advanced Reactors Division Plutonium Fuel Laboratories

    Office of Legacy Management (LM)

    Radiological Condition of the Westinghouse Advanced Reactors Division Plutonium Fuel Laboratories Cheswick, Pennsylvania -. -, -- AGENCY: Office of Operational Safety, Department...

  2. BROOKHAVEN NATIONAL LABORATORY'S HIGH FLUX BEAM REACTOR

    E-Print Network [OSTI]

    Ohta, Shigemi

    1 BROOKHAVEN NATIONAL LABORATORY'S HIGH FLUX BEAM REACTOR Compiled by S. M. Shapiro I. PICTORIAL with fiberglass insulation and a protective aluminum skin. The reactor vessel is shaped somewhat like a very large at the spherical end. It is located at the center of the reactor building and is surrounded by a lead and steel

  3. Idaho National Laboratory Advanced Test Reactor Probabilistic Risk Assessment

    Broader source: Energy.gov [DOE]

    Presenter: Bentley Harwood, Advanced Test Reactor Nuclear Safety Engineer Battelle Energy Alliance Idaho National Laboratory

  4. Zero Power Reactor simulation | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Zero Power Reactor simulation Share Description Ever wanted to see a nuclear reactor core in action? Here's a detailed simulation of the Zero Power Reactor experiment, run by...

  5. Annular Core Research Reactor at Sandia National Laboratories...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    at Sandia National Laboratories achieves 10,000th reactor pulse operation | National Nuclear Security Administration Facebook Twitter Youtube Flickr RSS People Mission Managing the...

  6. The Endurance Bioenergy Reactor | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    The Endurance Bioenergy Reactor Share Description Argonne biophysicist Dr. Philip Laible and Air Force Major Matt Michaud talks about he endurance bioenergy reactor-a device that...

  7. Reactor D and D at Argonne National Laboratory - lessons learned.

    SciTech Connect (OSTI)

    Fellhauer, C. R.

    1998-03-23T23:59:59.000Z

    This paper focuses on the lessons learned during the decontamination and decommissioning (D and D) of two reactors at Argonne National Laboratory-East (ANL-E). The Experimental Boiling Water Reactor (EBWR) was a 100 MW(t), 5 MSV(e) proof-of-concept facility. The Janus Reactor was a 200 kW(t) reactor located at the Biological Irradiation Facility and was used to study the effects of neutron radiation on animals.

  8. Sandia National Laboratories: Small Modular Reactors

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    advanced computing capabilities that serve as a virtual version of existing, operating nuclear reactors-to enable nuclear energy to continue to provide dependable, afford-able...

  9. An Account of Oak Ridge National Laboratory's Thirteen Research Reactors

    SciTech Connect (OSTI)

    Rosenthal, Murray Wilford [ORNL

    2009-08-01T23:59:59.000Z

    The Oak Ridge National Laboratory has built and operated 13 nuclear reactors in its 66-year history. The first was the graphite reactor, the world's first operational nuclear reactor, which served as a plutonium production pilot plant during World War II. It was followed by two aqueous-homogeneous reactors and two red-hot molten-salt reactors that were parts of power-reactor development programs and by eight others designed for research and radioisotope production. One of the eight was an all-metal fast burst reactor used for health physics studies. All of the others were light-water cooled and moderated, including the famous swimming-pool reactor that was copied dozens of times around the world. Two of the reactors were hoisted 200 feet into the air to study the shielding needs of proposed nuclear-powered aircraft. The final reactor, and the only one still operating today, is the High Flux Isotope Reactor (HFIR) that was built particularly for the production of californium and other heavy elements. With the world's highest flux and recent upgrades that include the addition of a cold neutron source, the 44-year-old HFIR continues to be a valuable tool for research and isotope production, attracting some 500 scientific visitors and guests to Oak Ridge each year. This report describes all of the reactors and their histories.

  10. Simulation of methane production in a laboratory-scale reactor containing hydrate-bearing porous medium

    SciTech Connect (OSTI)

    Gamwo, I.K.; Myshakin, E.M.; Zhang, Wu; Warzinski, R.P.

    2008-01-01T23:59:59.000Z

    Production of methane, induced by depressurization of hydrate sediment in a reactor, was investigated by numerical simulations using a computational fluid dynamics code TOUGH+/Hydrate. The methane production rates were computed at well-pressure drops of 4.2, 14.7, and 29.5 MPa and at a reactor temperature of 21 0C. The predicted behavior of methane production from the reactor is consistent with field-scale simulations and observations. The production rate increases with pressure drop at the well. Evolution patterns of gas and hydrate distributions are similar to those obtained in field-scale simulations. These preliminary results clearly indicate that numerical simulators can be applied to laboratory-scale reactors to anticipate scenarios observed in field experiments.

  11. CRAD, Maintenance- Oak Ridge National Laboratory High Flux Isotope Reactor

    Broader source: Energy.gov [DOE]

    A section of Appendix C to DOE G 226.1-2 "Federal Line Management Oversight of Department of Energy Nuclear Facilities." Consists of Criteria Review and Approach Documents (CRADs) used for a February 2007 assessment of the Maintenance Program in preparation for restart of the Oak Ridge National Laboratory High Flux Isotope Reactor.

  12. CRAD, Management- Oak Ridge National Laboratory High Flux Isotope Reactor

    Broader source: Energy.gov [DOE]

    A section of Appendix C to DOE G 226.1-2 "Federal Line Management Oversight of Department of Energy Nuclear Facilities." Consists of Criteria Review and Approach Documents (CRADs) used for a February 2007 assessment of the Management in preparation for restart of the Oak Ridge National Laboratory High Flux Isotope Reactor.

  13. CRAD, Training- Oak Ridge National Laboratory High Flux Isotope Reactor

    Broader source: Energy.gov [DOE]

    A section of Appendix C to DOE G 226.1-2 "Federal Line Management Oversight of Department of Energy Nuclear Facilities." Consists of Criteria Review and Approach Documents (CRADs) used for a February 2007 assessment of the Training Program in preparation for restart of the Oak Ridge National Laboratory High Flux Isotope Reactor.

  14. CRAD, Engineering- Oak Ridge National Laboratory High Flux Isotope Reactor

    Broader source: Energy.gov [DOE]

    A section of Appendix C to DOE G 226.1-2 "Federal Line Management Oversight of Department of Energy Nuclear Facilities." Consists of Criteria Review and Approach Documents (CRADs) used for a February 2007 assessment of the Engineering Program in preparation for restart of the Oak Ridge National Laboratory High Flux Isotope Reactor.

  15. Sandia National Laboratories: organic field effect transistor

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    organic field effect transistor ECIS and Compass Metals: Platinum Nanostructures for Enhanced Catalysis On March 29, 2013, in Advanced Materials Laboratory, Capabilities, Energy,...

  16. Current Reactor Physics Benchmark Activities at the Idaho National Laboratory

    SciTech Connect (OSTI)

    John D. Bess; Margaret A. Marshall; Mackenzie L. Gorham; Joseph Christensen; James C. Turnbull; Kim Clark

    2011-11-01T23:59:59.000Z

    The International Reactor Physics Experiment Evaluation Project (IRPhEP) [1] and the International Criticality Safety Benchmark Evaluation Project (ICSBEP) [2] were established to preserve integral reactor physics and criticality experiment data for present and future research. These valuable assets provide the basis for recording, developing, and validating our integral nuclear data, and experimental and computational methods. These projects are managed through the Idaho National Laboratory (INL) and the Organisation for Economic Co-operation and Development Nuclear Energy Agency (OECD-NEA). Staff and students at the Department of Energy - Idaho (DOE-ID) and INL are engaged in the development of benchmarks to support ongoing research activities. These benchmarks include reactors or assemblies that support Next Generation Nuclear Plant (NGNP) research, space nuclear Fission Surface Power System (FSPS) design validation, and currently operational facilities in Southeastern Idaho.

  17. The High Flux Beam Reactor at Brookhaven National Laboratory

    SciTech Connect (OSTI)

    Shapiro, S.M.

    1994-12-31T23:59:59.000Z

    Brookhaven National Laboratory`s High Flux Beam Reactor (HFBR) was built because of the need of the scientist to always want `more`. In the mid-50`s the Brookhaven Graphite reactor was churning away producing a number of new results when the current generation of scientists, led by Donald Hughes, realized the need for a high flux reactor and started down the political, scientific and engineering path that led to the BFBR. The effort was joined by a number of engineers and scientists among them, Chemick, Hastings, Kouts, and Hendrie, who came up with the novel design of the HFBR. The two innovative features that have been incorporated in nearly all other research reactors built since are: (i) an under moderated core arrangement which enables the thermal flux to peak outside the core region where beam tubes can be placed, and (ii) beam tubes that are tangential to the core which decrease the fast neutron background without affecting the thermal beam intensity. Construction began in the fall of 1961 and four years later, at a cost of $12 Million, criticality was achieved on Halloween Night, 1965. Thus began 30 years of scientific accomplishments.

  18. * Department of Reactor Technology Rie#-*-ltt 2 Ris National Laboratory April 1978

    E-Print Network [OSTI]

    Storaae of Gas . Solar Heating and Underground Heat Storage . Wind Power Copies to Biblioteket 100 Technology within the following fields is described: . Reactor Engineering . Reactor Operation . Structural Simulators . Experimental Activation Measurements and Neutron Radiography at the DR 1 Reactor · Underground

  19. The TITAN reversed-field-pinch fusion reactor study

    SciTech Connect (OSTI)

    Not Available

    1990-01-01T23:59:59.000Z

    This paper on titan plasma engineering contains papers on the following topics: reversed-field pinch as a fusion reactor; parametric systems studies; magnetics; burning-plasma simulations; plasma transient operations; current drive; and physics issues for compact RFP reactors.

  20. Department of Reactor Technology Ris#-M-213S Ris# National Laboratory (August 1975)

    E-Print Network [OSTI]

    Department of Reactor Technology Ris#-M-213S Ris# National Laboratory (August 1975) £-4.0, ,,.,,in of Reactor Technology Group's ewm rofistratwn :·) Abstract CORECOOL, Convection and Radiation Emergen- cy «*. Example on a CORECOOu-calculation 57 5. Discussion and Conclusion 67 6. Acknowledgements $· 7. References

  1. Physics of reactor safety. Quarterly report, October-December 1982. [LMFBR; Argonne National Laboratory

    SciTech Connect (OSTI)

    Not Available

    1983-02-01T23:59:59.000Z

    This Quarterly progress report summarizes work done during the months of October-December 1982 in Argonne National Laboratory's Applied Physics and Components Technology Divisions for the Division of Reactor Safety Research of the US Nuclear Regulatory Commission. The work in the Applied Physics Division includes reports on reactor safety modeling and assessment by members of the Reactor Safety Appraisals Section. Work on reactor core thermal-hydraulics is performed in ANL's Components Technology Division, emphasizing 3-dimensional code development for LMFBR accidents under natural convection conditions. An executive summary is provided including a statement of the findings and recommendations of the report.

  2. Independent Confirmatory Survey Report for the University of Arizona Nuclear Reactor Laboratory, Tucson, Arizona

    SciTech Connect (OSTI)

    Nick A. Altic

    2011-11-11T23:59:59.000Z

    The University of Arizona (University) research reactor is a TRIGA swimming pool type reactor designed by General Atomics and constructed at the University in 1958. The reactor first went into operation in December of 1958 under U.S. Nuclear Regulatory Commission (NRC) license R-52 until final shut down on May 18, 2010. Initial site characterization activities were conducted in February 2009 during ongoing reactor operations to assess the radiological status of the Nuclear Reactor Laboratory (NRL) excluding the reactor tank, associated components, and operating systems. Additional post-shutdown characterization activities were performed to complete characterization activities as well as verify assumptions made in the Decommissioning Plan (DP) that were based on a separate activation analysis (ESI 2009 and WMG 2009). Final status survey (FSS) activities began shortly after the issuance of the FSS plan in May 2011. The contractor completed measurement and sampling activities during the week of August 29, 2011.

  3. ames laboratory research reactor: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    of the authors Perona, Pietro 75 Ris National Laboratory DTU Optics and Plasma Research Department Multidisciplinary Databases and Resources Websites Summary: Ris...

  4. INDEPENDENT VERIFICATION SURVEY OF THE HIGH FLUX BEAM REACTOR DECOMMISSIONING PROJECT OUTSIDE AREAS BROOKHAVEN NATIONAL LABORATORY UPTON, NEW YORK

    SciTech Connect (OSTI)

    P.C. Weaver

    2010-12-15T23:59:59.000Z

    5098-SR-03-0 FINAL REPORT- INDEPENDENT VERIFICATION SURVEY OF THE HIGH FLUX BEAM REACTOR DECOMMISSIONING PROJECT OUTSIDE AREAS, BROOKHAVEN NATIONAL LABORATORY

  5. EIS-0291: High Flux Beam Reactor (HFBR) Transition Project at the Brookhaven National Laboratory, Upton, New York

    Broader source: Energy.gov [DOE]

    The EIS evaluates the range of reasonable alternatives and their impacts regarding the future management of the High Flux Beam Reactor (HFBR) at Brookhaven National Laboratory (BNL).

  6. Modern Status of Neutrino Experiments at the Underground Neutrino Laboratory of Kurchatov Institute Near Krasnoyarsk Nuclear Reactor

    E-Print Network [OSTI]

    Yu. V. Kozlov; S. V. Khalturtsev; I. N. Machulin; A. V. Martemyanov; V. P. Martemyanov; A. A. Sabelnikov; S. V. Sukhotin; V. G. Tarasenkov; E. V. Turbin; V. N. Vyrodov

    1998-11-11T23:59:59.000Z

    The investigation of antineutrino-deuteron interaction at Krasnoyarsk reactor are discussed. The characteristics of the installation ''Deuteron'', present results and perspectives of Krasnoyarsk neutrino laboratory are presented.

  7. CRAD, Radiological Controls- Oak Ridge National Laboratory High Flux Isotope Reactor

    Broader source: Energy.gov [DOE]

    A section of Appendix C to DOE G 226.1-2 "Federal Line Management Oversight of Department of Energy Nuclear Facilities." Consists of Criteria Review and Approach Documents (CRADs) used for a February 2007 assessment of the Radiation Protection Program in preparation for restart of the Oak Ridge National Laboratory High Flux Isotope Reactor.

  8. CRAD, Training- Oak Ridge National Laboratory High Flux Isotope Reactor Contractor ORR

    Broader source: Energy.gov [DOE]

    A section of Appendix C to DOE G 226.1-2 "Federal Line Management Oversight of Department of Energy Nuclear Facilities." Consists of Criteria Review and Approach Documents (CRADs) used for a February 2007 assessment of the Training Program portion of an Operational Readiness Review of the Oak Ridge National Laboratory High Flux Isotope Reactor.

  9. CRAD, Management- Oak Ridge National Laboratory High Flux Isotope Reactor Contractor ORR

    Broader source: Energy.gov [DOE]

    A section of Appendix C to DOE G 226.1-2 "Federal Line Management Oversight of Department of Energy Nuclear Facilities." Consists of Criteria Review and Approach Documents (CRADs) used for a February 2007 assessment of the Management portion of an Operational Readiness Review of the Oak Ridge National Laboratory High Flux Isotope Reactor.

  10. CRAD, Conduct of Operations- Oak Ridge National Laboratory High Flux Isotope Reactor

    Broader source: Energy.gov [DOE]

    A section of Appendix C to DOE G 226.1-2 "Federal Line Management Oversight of Department of Energy Nuclear Facilities." Consists of Criteria Review and Approach Documents (CRADs) used for a February, 2007 assessment of the Conduct of Operations Program in preparation for restart of the Oak Ridge National Laboratory, High Flux Isotope Reactor.

  11. CRAD, Engineering- Oak Ridge National Laboratory High Flux Isotope Reactor Contractor ORR

    Broader source: Energy.gov [DOE]

    A section of Appendix C to DOE G 226.1-2 "Federal Line Management Oversight of Department of Energy Nuclear Facilities." Consists of Criteria Review and Approach Documents (CRADs) used for a February 2007 assessment of the Engineering Program portion of an Operational Readiness Review of the Oak Ridge National Laboratory High Flux Isotope Reactor.

  12. CRAD, Environmental Protection- Oak Ridge National Laboratory High Flux Isotope Reactor

    Broader source: Energy.gov [DOE]

    A section of Appendix C to DOE G 226.1-2 "Federal Line Management Oversight of Department of Energy Nuclear Facilities." Consists of Criteria Review and Approach Documents (CRADs) used for a February 2007 assessment of the Environmental Compliance Program in preparation for restart of the Oak Ridge National Laboratory High Flux Isotope Reactor.

  13. CRAD, Configuration Management- Oak Ridge National Laboratory High Flux Isotope Reactor Contractor ORR

    Broader source: Energy.gov [DOE]

    A section of Appendix C to DOE G 226.1-2 "Federal Line Management Oversight of Department of Energy Nuclear Facilities." Consists of Criteria Review and Approach Documents (CRADs) used for a February 2007 assessment of the Configuration Management Program portion of an Operational Readiness Review of the Oak Ridge National Laboratory, High Flux Isotope Reactor.

  14. CRAD, Emergency Management- Oak Ridge National Laboratory High Flux Isotope Reactor Contractor ORR

    Broader source: Energy.gov [DOE]

    A section of Appendix C to DOE G 226.1-2 "Federal Line Management Oversight of Department of Energy Nuclear Facilities." Consists of Criteria Review and Approach Documents (CRADs) used for a February 2007 assessment of the Emergency Management Program portion of an Operational Readiness Review of the Oak Ridge National Laboratory High Flux Isotope Reactor.

  15. CRAD, Quality Assurance- Oak Ridge National Laboratory High Flux Isotope Reactor

    Broader source: Energy.gov [DOE]

    A section of Appendix C to DOE G 226.1-2 "Federal Line Management Oversight of Department of Energy Nuclear Facilities." Consists of Criteria Review and Approach Documents (CRADs) used for a February 2007 assessment of the Quality Assurance Program in preparation for restart of the Oak Ridge National Laboratory High Flux Isotope Reactor.

  16. CRAD, Safety Basis- Oak Ridge National Laboratory High Flux Isotope Reactor

    Broader source: Energy.gov [DOE]

    A section of Appendix C to DOE G 226.1-2 "Federal Line Management Oversight of Department of Energy Nuclear Facilities." Consists of Criteria Review and Approach Documents (CRADs) used for a February 2007 assessment of the Safety Basis in preparation for restart of the Oak Ridge National Laboratory High Flux Isotope Reactor.

  17. CRAD, Maintenance- Oak Ridge National Laboratory High Flux Isotope Reactor Contractor ORR

    Broader source: Energy.gov [DOE]

    A section of Appendix C to DOE G 226.1-2 "Federal Line Management Oversight of Department of Energy Nuclear Facilities." Consists of Criteria Review and Approach Documents (CRADs) used for a February 2007 assessment of the Maintenance Program portion of an Operational Readiness Review of the Oak Ridge National Laboratory High Flux Isotope Reactor.

  18. CRAD, Conduct of Operations- Oak Ridge National Laboratory High Flux Isotope Reactor Contractor ORR

    Broader source: Energy.gov [DOE]

    A section of Appendix C to DOE G 226.1-2 "Federal Line Management Oversight of Department of Energy Nuclear Facilities." Consists of Criteria Review and Approach Documents (CRADs) used for a February, 2007 assessment of the Conduct of Operations Program portion of an Operational Readiness Review of the Oak Ridge National Laboratory, High Flux Isotope Reactor.

  19. CRAD, Occupational Safety & Health- Oak Ridge National Laboratory High Flux Isotope Reactor Contractor ORR

    Broader source: Energy.gov [DOE]

    A section of Appendix C to DOE G 226.1-2 "Federal Line Management Oversight of Department of Energy Nuclear Facilities." Consists of Criteria Review and Approach Documents (CRADs) used for a February 2007 assessment of the Occupational Safety and Health Program portion of an Operational Readiness Review of the Oak Ridge National Laboratory High Flux Isotope Reactor.

  20. CRAD, Nuclear Safety- Oak Ridge National Laboratory High Flux Isotope Reactor

    Broader source: Energy.gov [DOE]

    A section of Appendix C to DOE G 226.1-2 "Federal Line Management Oversight of Department of Energy Nuclear Facilities." Consists of Criteria Review and Approach Documents (CRADs) used for a February 2007 assessment of the Nuclear Safety Program in preparation for restart of the Oak Ridge National Laboratory High Flux Isotope Reactor.

  1. CRAD, Occupational Safety & Health- Oak Ridge National Laboratory High Flux Isotope Reactor

    Broader source: Energy.gov [DOE]

    A section of Appendix C to DOE G 226.1-2 "Federal Line Management Oversight of Department of Energy Nuclear Facilities." Consists of Criteria Review and Approach Documents (CRADs) used for a February 2007 assessment of the Industrial Safety and Hygiene Program in preparation for restart of the Oak Ridge National Laboratory High Flux Isotope Reactor.

  2. CRAD, Safety Basis- Oak Ridge National Laboratory High Flux Isotope Reactor Contractor ORR

    Broader source: Energy.gov [DOE]

    A section of Appendix C to DOE G 226.1-2 "Federal Line Management Oversight of Department of Energy Nuclear Facilities." Consists of Criteria Review and Approach Documents (CRADs) used for a February 2007 assessment of the Safety Basis portion of an Operational Readiness Review of the Oak Ridge National Laboratory High Flux Isotope Reactor.

  3. CRAD, Configuration Management- Oak Ridge National Laboratory High Flux Isotope Reactor

    Broader source: Energy.gov [DOE]

    A section of Appendix C to DOE G 226.1-2 "Federal Line Management Oversight of Department of Energy Nuclear Facilities." Consists of Criteria Review and Approach Documents (CRADs) used for a February 2007 assessment of the Configuration Management Program in preparation for restart of the Oak Ridge National Laboratory, High Flux Isotope Reactor.

  4. CRAD, Emergency Management- Oak Ridge National Laboratory High Flux Isotope Reactor

    Broader source: Energy.gov [DOE]

    A section of Appendix C to DOE G 226.1-2 "Federal Line Management Oversight of Department of Energy Nuclear Facilities." Consists of Criteria Review and Approach Documents (CRADs) used for a February 2007 assessment of the Emergency Management Program in preparation for restart of the Oak Ridge National Laboratory High Flux Isotope Reactor.

  5. Compact Reversed-Field Pinch Reactors (CRFPR): preliminary engineering considerations

    SciTech Connect (OSTI)

    Hagenson, R.L.; Krakowski, R.A.; Bathke, C.G.; Miller, R.L.; Embrechts, M.J.; Schnurr, N.M.; Battat, M.E.; LaBauve, R.J.; Davidson, J.W.

    1984-08-01T23:59:59.000Z

    The unique confinement physics of the Reversed-Field Pinch (RFP) projects to a compact, high-power-density fusion reactor that promises a significant reduction in the cost of electricity. The compact reactor also promises a factor-of-two reduction in the fraction of total cost devoted to the reactor plant equipment (i.e., fusion power core (FPC) plus support systems). In addition to operational and developmental benefits, these physically smaller systems can operate economically over a range of total power output. After giving an extended background and rationale for the compact fusion approaches, key FPC subsystems for the Compact RFP Reactor (CRFPR) are developed, designed, and integrated for a minimum-cost, 1000-MWe(net) system. Both the problems and promise of the compact, high-power-density fusion reactor are quantitatively evaluated on the basis of this conceptual design. The material presented in this report both forms a framework for a broader, more expanded conceptual design as well as suggests directions and emphases for related research and development.

  6. Sandia National Laboratories: optical electric field

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    electric field New Sandia Mirror Isn't Shiny: Instead It Reflects Infrared Light Using a Metamaterial On December 12, 2014, in Capabilities, Materials Science, News, News & Events,...

  7. The TITAN Reversed-Field Pinch fusion reactor study

    SciTech Connect (OSTI)

    Not Available

    1988-03-01T23:59:59.000Z

    The TITAN Reversed-Field Pinch (RFP) fusion reactor study is a multi-institutional research effort to determine the technical feasibility and key developmental issues of an RFP fusion reactor, especially at high power density, and to determine the potential economics, operations, safety, and environmental features of high-mass-power-density fusion systems. The TITAN conceptual designs are DT burning, 1000 MWe power reactors based on the RFP confinement concept. The designs are compact, have a high neutron wall loading of 18 MW/m{sup 2} and a mass power density of 700 kWe/tonne. The inherent characteristics of the RFP confinement concept make fusion reactors with such a high mass power density possible. Two different detailed designs have emerged: the TITAN-I lithium-vanadium design, incorporating the integrated-blanket-coil concept; and the TITAN-II aqueous loop-in-pool design with ferritic steel structure. This report contains a collection of 16 papers on the results of the TITAN study which were presented at the International Symposium on Fusion Nuclear Technology. This collection describes the TITAN research effort, and specifically the TITAN-I and TITAN-II designs, summarizing the major results, the key technical issues, and the central conclusions and recommendations. Overall, the basic conclusions are that high-mass power-density fusion reactors appear to be technically feasible even with neutron wall loadings up to 20 MW/m{sup 2}; that single-piece maintenance of the FPC is possible and advantageous; that the economics of the reactor is enhanced by its compactness; and the safety and environmental features need not to be sacrificed in high-power-density designs. The fact that two design approaches have emerged, and others may also be possible, in some sense indicates the robustness of the general findings.

  8. Behavioural Ecology Field Course Mols Laboratories, Denmark 2007

    E-Print Network [OSTI]

    Hamburg,.Universität

    1 REPORTS Behavioural Ecology Field Course Mols Laboratories, Denmark 2007 Teachers: Dr. Trine ................................................................................................................................... 64 Receptor based feeding preferences; An investigation of the taste perception of three classes ............................................................................................................................ 79 Taste perception in the wood ant, Formica rufa Jeppe Jensen

  9. Dynamic Impregnator Reactor System (Poster), NREL (National Renewable Energy Laboratory)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville Power AdministrationField Campaign:INEA :Work with Jefferson Lab |Nuclear

  10. Dark Field Microscopy for Analytical Laboratory Courses

    SciTech Connect (OSTI)

    Augspurger, Ashley E.; Stender, Anthony S.; Marchuk, Kyle; Greenbowe, Thomas J.; Fang, Ning

    2014-06-10T23:59:59.000Z

    An innovative and inexpensive optical microscopy experiment for a quantitative analysis or an instrumental analysis chemistry course is described. The students have hands-on experience with a dark field microscope and investigate the wavelength dependence of localized surface plasmon resonance in gold and silver nanoparticles. Students also observe and measure individual crystal growth during a replacement reaction between copper and silver nitrate. The experiment allows for quantitative, qualitative, and image data analyses for undergraduate students.

  11. Field Work Proposal (FWP) | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville Power AdministrationField8,Dist.New Mexico Feb. 13,Conservation

  12. Memorandum Approval of a Permanenet Variance Regarding Static Magnetic Fields at Brookhaven National Laboratory (Variance 1021)

    Broader source: Energy.gov [DOE]

    Approval of a Permanenet Variance Regarding Static Magnetic Fields at Brookhaven National Laboratory (Variance 1021)

  13. System Upgrades at the Advanced Test Reactor Help Ensure that Nuclear Energy Research Continues at the Idaho National Laboratory

    SciTech Connect (OSTI)

    Craig Wise

    2011-12-01T23:59:59.000Z

    Fully operational in 1967, the Advanced Test Reactor (ATR) is a first-of-its-kind materials test reactor. Located on the Idaho National Laboratory’s desert site, this reactor remains at the forefront of nuclear science, producing extremely high neutron irradiation in a relatively short time span. The Advanced Test Reactor is also the only U.S. reactor that can replicate multiple reactor environments concurrently. The Idaho National Laboratory and the Department of Energy recently invested over 13 million dollars to replace three of ATR’s instrumentation and control systems. The new systems offer the latest software and technology advancements, ensuring the availability of the reactor for future energy research. Engineers and project managers successfully completed the four year project in March while the ATR was in a scheduled maintenance outage. “These new systems represent state-of-the-art monitoring and annunciation capabilities,” said Don Feldman, ATR Station Manager. “They are comparable to systems currently used for advanced reactor designs planned for construction in the U.S. and in operation in some foreign countries.”

  14. Environmental assessment for decontaminating and decommissioning the Westinghouse Advanced Reactors Division Plutonium Fuel Laboratories, Cheswick, PA

    SciTech Connect (OSTI)

    Not Available

    1980-12-01T23:59:59.000Z

    The Department of Energy has prepared an environmental assessment on the proposed decontamination and decommissioning of the Westinghouse Advanced Reactors Division Plutonium Fuel Laboratories, Cheswick, Pennsylvania. Based on the environmental assessment, which is available to the public on request, the Department has determined that the proposed action does not constitute a major Federal action significantly affecting the quality of the human environment within the meaning of the National Environmental Policy Act of 1969, 42 USC 4321 et seq. Therefore, no environmental impact statement is required. The proposed action is to decontaminate and decommission the Westinghouse Advanced Reactors Division fuel fabrication facilities (the Plutonium Laboratory - Building 7, and the Advanced Fuels Laboratory - Building 8). Decontamination and decommissioning of the facilities would require removal of all process equipment, the associated service lines, and decontamination of the interior surfaces of the buildings so that the empty buildings could be released for unrestricted use. Radioactive waste generated during these activities would be transported in licensed containers by truck for disposal at the Department's facility at Hanford, Washington. Useable non-radioactive materials would be sold as excess material, and non-radioactive waste would be disposed of by burial as sanitary landfill at an approved site.

  15. Computerization upgrade project for the Rocky Flats Plant Critical Mass Laboratory Reactor Control Console

    SciTech Connect (OSTI)

    Bachman, H.C.; Miles, R.E.; Sachs, R.D.

    1987-01-01T23:59:59.000Z

    This report discusses present and planned future work on computerization of the Rocky Flats Plant (RFP) Critical Mass Laboratory (CML) Nuclear Reactor Control Console. No computerized control functions are planned or anticipated at this time. The scope of this computerization effort is limited to Data Acquisition and Analysis. In this work an IBM-PC will be connected to four (4) Nuclear Safety channels, and two (2) nonnuclear safety channels. Programming is being done in interpretive advanced BASIC. At the present time only two channels, Linear Picoammeters 1 and 2, are having their signals processed by the IBM-PC.

  16. PROJECT-SPECIFIC TYPE A VERIFICATION FOR THE HIGH FLUX BEAM REACTOR UNDERGROUND UTILITIES REMOVAL PHASE 3 TRENCH 1, BROOKHAVEN NATIONAL LABORATORY UPTON, NEW YORK

    SciTech Connect (OSTI)

    E.M. Harpenau

    2010-12-15T23:59:59.000Z

    5098-SR-05-0 PROJECT-SPECIFIC TYPE A VERIFICATION FOR THE HIGH FLUX BEAM REACTOR UNDERGROUND UTILITIES REMOVAL PHASE 3 TRENCH 1 BROOKHAVEN NATIONAL LABORATORY

  17. PROJECT-SPECIFIC TYPE A VERIFICATION FOR THE HIGH FLUX BEAM REACTOR UNDERGROUND UTILITIES REMOVAL PHASE 3 TRENCH 5, BROOKHAVEN NATIONAL LABORATORY UPTON, NEW YORK

    SciTech Connect (OSTI)

    P.C. Weaver

    2010-11-03T23:59:59.000Z

    5098-SR-04-0 PROJECT-SPECIFIC TYPE A VERIFICATION FOR THE HIGH FLUX BEAM REACTOR UNDERGROUND UTILITIES REMOVAL PHASE 3 TRENCH 5, BROOKHAVEN NATIONAL LABORATORY

  18. Containment performance analyses for the Advanced Neutron Source Reactor at the Oak Ridge National Laboratory

    SciTech Connect (OSTI)

    Kim, S.H.; Taleyarkhan, R.P.; Georgevich, V.

    1992-10-01T23:59:59.000Z

    This paper discusses salient aspects of methodology, assumptions, and modeling of various features related to estimation of source terms from two conservatively scoped severe accident scenarios in the Advanced Neutron Source (ANS) reactor at the Oak Ridge National Laboratory. Various containment configurations are considered for steaming-pool-type accidents and an accident involving molten core-concrete interaction. Several design features (such as rupture disks) are examined to study containment response during postulated severe accidents. Also, thermal-hydraulic response of the containment and radionuclide transport and retention in the containment are studied. The results are described as transient variations of source terms for each scenario, which are to be used for studying off-site radiological consequences and health effects for these postulated severe accidents. Also highlighted will be a comparison of source terms estimated by two different versions of the MELCOR code.

  19. History of the 185-/189-D thermal hydraulics laboratory and its effects on reactor operations at the Hanford Site

    SciTech Connect (OSTI)

    Gerber, M.S.

    1994-09-01T23:59:59.000Z

    The 185-D deaeration building and the 189-D refrigeration building were constructed at Hanford during 1943 and 1944. Both buildings were constructed as part of the influent water cooling system for D reactor. The CMS studies eliminated the need for 185-D function. Early gains in knowledge ended the original function of the 189-D building mission. In 1951, 185-D and 189-D were converted to a thermal-hydraulic laboratory. The experiments held in the thermal-hydraulic lab lead to historic changes in Hanford reactor operations. In late 1951, the exponential physics experiments were moved to the 189-D building. In 1958, new production reactor experiments were begun in 185/189-D. In 1959, Plutonium Recycle Test Reactor experiments were added to the 185/189-D facility. By 1960, the 185/189-D thermal hydraulics laboratory was one of the few full service facilities of its type in the nation. During the years 1961--1963 tests continued in the facility in support of existing reactors, new production reactors, and the Plutonium Recycle Test Reactor. In 1969, Fast Flux Test Facility developmental testings began in the facility. Simulations in 185/189-D building aided in the N Reactor repairs in the 1980`s. In 1994 the facility was nominated to the National Register of Historic Places, because of its pioneering role over many years in thermal hydraulics, flow studies, heat transfer, and other reactor coolant support work. During 1994 and 1995 it was demolished in the largest decontamination and decommissioning project thus far in Hanford Site history.

  20. Polymer Reaction Engineering Laboratory -University of Maryland at College Park Reactor Dynamics, Control, Optimization

    E-Print Network [OSTI]

    Rubloff, Gary W.

    , Control, Optimization Exothermic polymerization reactions in continuous flow reactors may cause complex reactors and model-based control of polymerization reactors using extended Kalman filter. 1. Analysis of a continuous stirred tank polymerization reactor (K.Y. Kim and K.Y. Choi), J. Process Control, 1(3), 96

  1. Utilization of the High Flux Isotope Reactor at Oak Ridge National Laboratory

    SciTech Connect (OSTI)

    Selby, Douglas L [ORNL; Bilheux, Hassina Z [ORNL; Meilleur, Flora [ORNL; Jones, Amy [ORNL; Bailey, William Barton [ORNL; Vandergriff, David H [ORNL

    2015-01-01T23:59:59.000Z

    This paper addresses several aspects of the scientific utilization of the Oak Ridge National Laboratory High Flux Isotope Reactor (HFIR). Topics to be covered will include: 1) HFIR neutron scattering instruments and the formal instrument user program; 2) Recent upgrades to the neutron scattering instrument stations at the reactor, and 3) eMod a new tool for addressing instrument modifications and providing configuration control and design process for scientific instruments at HFIR and the Spallation Neutron Source (SNS). There are 15 operating neutron instrument stations at HFIR with 12 of them organized into a formal user program. Since the last presentation on HFIR instruments at IGORR we have installed a Single Crystal Quasi-Laue Diffractometer instrument called IMAGINE; and we have made significant upgrades to HFIR neutron scattering instruments including the Cold Triple Axis Instrument, the Wide Angle Neutron Diffractometer, the Powder Diffractometer, and the Neutron Imaging station. In addition, we have initiated upgrades to the Thermal Triple Axis Instrument and the Bio-SANS cold neutron instrument detector system. All of these upgrades are tied to a continuous effort to maintain a high level neutron scattering user program at the HFIR. For the purpose of tracking modifications such as those mentioned and configuration control we have been developing an electronic system for entering instrument modification requests that follows a modification or instrument project through concept development, design, fabrication, installation, and commissioning. This system, which we call eMod, electronically leads the task leader through a series of questions and checklists that then identifies such things as ES&H and radiological issues and then automatically designates specific individuals for the activity review process. The system has been in use for less than a year and we are still working out some of the inefficiencies, but we believe that this will become a very effective tool for achieving the configuration and process control believed to be necessary for scientific instrument systems.

  2. Waste Stream Generated and Waste Disposal Plans for Molten Salt Reactor Experiment at Oak Ridge National Laboratory

    SciTech Connect (OSTI)

    Haghighi, M. H.; Szozda, R. M.; Jugan, M. R.

    2002-02-26T23:59:59.000Z

    The Molten Salt Reactor Experiment (MSRE) site is located in Tennessee, on the U.S. Department of Energy (DOE) Oak Ridge Reservation (ORR), south of the Oak Ridge National Laboratory (ORNL) main plant across Haw Ridge in Melton Valley. The MSRE was run by ORNL to demonstrate the desirable features of the molten-salt concept in a practical reactor that could be operated safely and reliably. It introduced the idea of a homogeneous reactor using fuel salt media and graphite moderation for power and breeder reactors. The MSRE reactor and associated components are located in cells beneath the floor in the high-bay area of Building 7503 (Figure 1). The reactor was operated from June 1965 to December 1969. When the reactor was shut down, fuel salt was drained from the reactor circuit to two drain tanks. A ''clean'' salt was then circulated through the reactor as a decontamination measure and drained to a third drain tank. When operations ceased, the fuel and flush salts were allowed t o cool and solidify in the drain tanks. At shutdown, the MSRE facility complex was placed in a surveillance and maintenance program. As a result of the S&M program, it was discovered in 1994 that gaseous uranium (233U/232U) hexafluoride (UF6) had moved throughout the MSRE process systems. The UF6 was generated when radiolysis of the fluorine salts caused the individual constituents to dissociate to their component atoms, including free fluorine.Some of the free fluorine combined with uranium fluorides (UF4) in the salt to form UF6. UF6 is gaseous at slightly above ambient temperatures; thus, periodic heating of the fuel salts (which was intended to remedy the radiolysis problems) and simple diffusion had allowed the UF6 to move out of the salt and into the process systems of MSRE.

  3. Debye size microprobes for electric field measurements in laboratory plasmas

    SciTech Connect (OSTI)

    Pribyl, P.; Gekelman, W.; Nakamoto, M.; Lawrence, E.; Chiang, F.; Stillman, J.; Judy, J.; Katz, N.; Kintner, P.; Niknejadi, P. [Department of Physics Astronomy, University of California, Los Angeles, California 90095 (United States); Department of Electrical Engineering, University of California, Los Angeles, California 90095 (United States); Department of Physics, MIT, Cambridge, Massachussetts (United States); Department of Electrical Engineering, Cornell University, Ithaca, New York 14850 (United States); Cal Poly, Pomona, California 91768 (United States)

    2006-07-15T23:59:59.000Z

    Microelectromechanical systems (MEMS) have led to the development of a host of tiny machines and sensors over the past decade. Plasma physics is in great need of small detectors for several reasons. First of all, very small detectors do not disturb a plasma, and secondly some detectors can only work because they are very small. We report on the first of a series of small (sub-Debye length) probes for laboratory plasmas undertaken at the basic Plasma Science Facility at UCLA. The goal of the work is to develop robust and sensitive diagnostic probes that can survive in a plasma. The probes must have electronics packages in close proximity. We report on the construction and testing of probes that measure the electric field.

  4. Laboratory measurements on reservoir rocks from The Geysers geothermal field

    SciTech Connect (OSTI)

    Boitnott, G.N.

    1995-01-26T23:59:59.000Z

    A suite of laboratory measurements have been conducted on Geysers metagraywacke and metashale recovered from a drilled depth of 2599 to 2602 meters in NEGU-17. The tests have been designed to constrain the mechanical and water-storage properties of the matrix material. Various measurements have been made at a variety of pressures and at varying degrees of saturation. Both compressional and shear velocities exhibit relatively little change with effective confining pressure. In all of the samples, water saturation causes an increase in the compressional velocity. In some samples, saturation results in a moderate decrease in shear velocity greater in magnitude than would be expected based on the slight increase in bulk density. It is found that the effect of saturation on the velocities can be quantitatively modeled through a modification of Biot-Gassmann theory to include weakening of the shear modulus with saturation. The decrease is attributed to chemo-mechanical weakening caused by the presence of water. The degree of frame weakening of the shear modulus is variable between samples, and appears correlated with petrographic features of the cores. Two related models are presented through which we can study the importance of saturation effects on field-scale velocity variations. The model results indicate that the saturation effects within the matrix are significant and may contribute to previously observed field anomalies. The results help to define ways in which we may be able to separate the effects of variations in rock properties, caused by phenomena such as degree of fracturing, from similar effects caused by variations in matrix saturation. The need for both compressional and shear velocity data in order to interpret field anomalies is illustrated through comparisons of model results with the field observations.

  5. Spectral Mapping of Protein Torsion Angles National High Magnetic Field Laboratory

    E-Print Network [OSTI]

    Weston, Ken

    Spectral Mapping of Protein Torsion Angles National High Magnetic Field Laboratory NMR Spectroscopy spectra. #12;Spectral Mapping of Protein Torsion Angles National High Magnetic Field Laboratory NMR, in recording signals that are dependent on the orientation of the atoms with respect to the magnetic field, we

  6. NATIONAL HIGH MAGNETIC FIELD LABORATORY REPORTSSPRING EDITION VOLUME 13 N0. 2 2006

    E-Print Network [OSTI]

    Weston, Ken

    NATIONAL HIGH MAGNETIC FIELD LABORATORY REPORTSSPRING EDITION VOLUME 13 · N0. 2 · 2006 SUPPORTED BY OF FLORIDA · LOS ALAMOS NATIONAL LABORATORY Pulsed Field Facility: Heat caPacity in tHe 20 t dilution ReFRigeRatoR tRiPle Resonance PRobe #12;NHMFLREPORTS C O N T E N T S Published by: National High Magnetic Field

  7. Monitoring Uranium Transformations Determined by the Evolution of Biogeochemical Processes: Design of Mixed Batch Reactor and Column Studies at Oak Ridge National Laboratory

    SciTech Connect (OSTI)

    Criddle, Craig S.; Wu, Weimin

    2013-04-17T23:59:59.000Z

    With funds provided by the US DOE, Argonne National Laboratory subcontracted the design of batch and column studies to a Stanford University team with field experience at the ORNL IFRC, Oak Ridge, TN. The contribution of the Stanford group ended in 2011 due to budget reduction in ANL. Over the funded research period, the Stanford research team characterized ORNL IFRC groundwater and sediments and set up microcosm reactors and columns at ANL to ensure that experiments were relevant to field conditions at Oak Ridge. The results of microcosm testing demonstrated that U(VI) in sediments was reduced to U(IV) with the addition of ethanol. The reduced products were not uraninite but were instead U(IV) complexes associated with Fe. Fe(III) in solid phase was only partially reduced. The Stanford team communicated with the ANL team members through email and conference calls and face to face at the annual ERSP PI meeting and national meetings.

  8. Memorandum, Approval of a Permanent Variance Regarding Static Magnetic Fields at Brookhaven National Laboratory (Variance 102 1)

    Broader source: Energy.gov [DOE]

    Approval of a Permanenet Variance Regarding Static Magnetic Fields at Brookhaven National Laboratory (Variance 1021)

  9. TEMPERATURE MONITORING OPTIONS AVAILABLE AT THE IDAHO NATIONAL LABORATORY ADVANCED TEST REACTOR

    SciTech Connect (OSTI)

    J.E. Daw; J.L. Rempe; D.L. Knudson; T. Unruh; B.M. Chase; K.L Davis

    2012-03-01T23:59:59.000Z

    As part of the Advanced Test Reactor National Scientific User Facility (ATR NSUF) program, the Idaho National Laboratory (INL) has developed in-house capabilities to fabricate, test, and qualify new and enhanced sensors for irradiation testing. To meet recent customer requests, an array of temperature monitoring options is now available to ATR users. The method selected is determined by test requirements and budget. Melt wires are the simplest and least expensive option for monitoring temperature. INL has recently verified the melting temperature of a collection of materials with melt temperatures ranging from 100 to 1000 C with a differential scanning calorimeter installed at INL’s High Temperature Test Laboratory (HTTL). INL encapsulates these melt wires in quartz or metal tubes. In the case of quartz tubes, multiple wires can be encapsulated in a single 1.6 mm diameter tube. The second option available to ATR users is a silicon carbide temperature monitor. The benefit of this option is that a single small monitor (typically 1 mm x 1 mm x 10 mm or 1 mm diameter x 10 mm length) can be used to detect peak irradiation temperatures ranging from 200 to 800 C. Equipment has been installed at INL’s HTTL to complete post-irradiation resistivity measurements on SiC monitors, a technique that has been found to yield the most accurate temperatures from these monitors. For instrumented tests, thermocouples may be used. In addition to Type-K and Type-N thermocouples, a High Temperature Irradiation Resistant ThermoCouple (HTIR-TC) was developed at the HTTL that contains commercially-available doped molybdenum paired with a niobium alloy thermoelements. Long duration high temperature tests, in furnaces and in the ATR and other MTRs, demonstrate that the HTIR-TC is accurate up to 1800 C and insensitive to thermal neutron interactions. Thus, degradation observed at temperatures above 1100 C with Type K and N thermocouples and decalibration due to transmutation with tungsten-rhenium and platinum rhodium thermocouples can be avoided. INL is also developing an Ultrasonic Thermometry (UT) capability. In addition to small size, UT’s offer several potential advantages over other temperature sensors. Measurements may be made near the melting point of the sensor material, potentially allowing monitoring of temperatures up to 3000 C. In addition, because no electrical insulation is required, shunting effects are avoided. Most attractive, however, is the ability to introduce acoustic discontinuities to the sensor, as this enables temperature measurements at several points along the sensor length. As discussed in this paper, the suite of temperature monitors offered by INL is not only available to ATR users, but also to users at other MTRs.

  10. Material Sample Collection with Tritium and Gamma Analyses at the University of Illinois's Nuclear Research Laboratory TRIGA Nuclear Research Reactor

    SciTech Connect (OSTI)

    Charters, G.; Aggarwal, S. [New Millennium Nuclear Technologies, 575 Union Blvd, Suite 102, Lakewood, CO 80228 (United States)

    2006-07-01T23:59:59.000Z

    The University of Illinois in Champaign-Urbana has an Advanced TRIGA reactor facility which was built in 1960 and operated until August 1998. The facility was shutdown for a variety of reasons, primarily due to a lack of usage by the host institution. In 1998 the reactor went into SAFSTOR and finally shipped its fuel in 2004. At the present time a site characterization and decommissioning plan are in process and hope to be submitted to the NRC in early 2006. The facility had to be fully characterized and part of this characterization involved the collection and analysis of samples. This included various solid media such as, concrete, graphite, metals, and sub-slab surface soils for immediate analysis of Activation and Tritium contamination well below the easily measured surfaces. This detailed facility investigation provided a case to eliminate historical unknowns, increasing the confidence for the segregation and packaging of high specific activity Low Level Radwaste (LLRW), from which a strategy of 'surgical-demolition' and segregation could be derived thus maximizing the volumes of 'clean material'. Performing quantitative volumetric concrete or metal radio-analyses safer and faster (without lab intervention) was a key objective of this dynamic characterization approach. Currently, concrete core bores are shipped to certified laboratories where the concrete residue is run through a battery of tests to determine the contaminants. The existing core boring operation volatilises or washes out some of the contaminants (like tritium) and oftentimes cross-contaminates the are a around the core bore site. The volatilization of the contaminants can lead to airborne problems in the immediate vicinity of the core bore. Cross-contamination can increase the contamination area and thereby increase the amount of waste generated that needs to be treated and stabilized before disposal. The goal was to avoid those field activities that could cause this type of release. Therefore, TRUPRO{sup R}, a sampling and profiling tool in conjunction with radiometric instrumentation was utilized to produce contamination profiles through the material being studied. All samples (except metals) on-site were analyzed within 10 minutes for tritium using a calibrated portable liquid scintillation counter (LSC) and analyzed for gamma activation products using a calibrated ISOCS. Improved sample collection with near real time analysis along with more historical hazard analysis enhanced significantly over the baseline coring approach the understanding of the depth distribution of contaminants. The water used in traditional coring can result in a radioactive liquid waste that needs to be dealt with. This would have been an issue at University of Illinois. Considerable time, risk reduction and money are saved using this profiling approach. (authors)

  11. Magnetic Field Generation in Planets and Satellites by Natural Nuclear Fission Reactors

    E-Print Network [OSTI]

    J. Marvin Herndon

    2007-09-27T23:59:59.000Z

    One of the most fundamental problems in physics has been to understand the nature of the mechanism that generates the geomagnetic field and the magnetic fields of other planets and satellites. For decades, the dynamo mechanism, thought to be responsible for generating the geomagnetic field and other planetary magnetic fields, has been ascribed to convection in each planet's iron-alloy core. Recently, I described the problems inherent in Earth-core convection and proposed instead that the geomagnetic field is produced by a dynamo mechanism involving convection, not in the fluid core, but in the electrically conductive, fluid, fission-product sub-shell of a natural nuclear fission reactor at the center of the Earth, called the georeactor. Here I set forth in detail the commonality in the Solar System of the matter like that of the inside of the Earth, which is my basis for generalizing the concept of planetary magnetic field generation by natural planetocentric nuclear fission reactors.

  12. SRS Small Modular Reactors

    SciTech Connect (OSTI)

    None

    2012-04-27T23:59:59.000Z

    The small modular reactor program at the Savannah River Site and the Savannah River National Laboratory.

  13. SRS Small Modular Reactors

    ScienceCinema (OSTI)

    None

    2014-05-21T23:59:59.000Z

    The small modular reactor program at the Savannah River Site and the Savannah River National Laboratory.

  14. NATIONAL HIGH MAGNETIC FIELD LABORATORY REPORTSVOLUME 11 N0.2 2004

    E-Print Network [OSTI]

    Weston, Ken

    , recognized as the world leader in magnet science, engineering, and experimental infrastructureNATIONAL HIGH MAGNETIC FIELD LABORATORY REPORTSVOLUME 11 · N0.2 · 2004 OPERATED BY: FLORIDA STATE: National High Magnetic Field Laboratory 1800 East Paul Dirac Drive Tallahassee, Florida 32310-3706 Tel: 850

  15. Laboratory measured characteristics of hot-mix asphaltic concrete as related to field performance

    E-Print Network [OSTI]

    TenBrook, James Joseph

    1966-01-01T23:59:59.000Z

    Laboratory Army Corps of Engineers Study o THD 1';otorized Press Gyratory Testing 1'~machine ~'marshall Device California Ilachine 1G Field Test Sites Test Section Layout 12 Maco Section Layout 13 Paving A Test Section 14 Coring One Meek Samples 15... molded in their laboratories at the standard $0 blow compactive effort. These marshall specimens were used to provide density and stability data; and to provide a means of comparison between field and laboratory specimens. The significant conclusions...

  16. Plasma engineering design of a compact reversed-field pinch reactor (CRFPR)

    SciTech Connect (OSTI)

    Bathke, C.G.; Embrechts, M.J.; Hagenson, R.L.; Krakowski, R.A.; Miller, R.L.

    1983-01-01T23:59:59.000Z

    The rationale for and the characteristics of the high-power-density Compact Reversed-Field Pinch Reactor (CRFPR) are discussed. Particular emphasis is given to key plasma engineering aspects of the conceptual design, including plasma operations, current drive, and impurity/ash control by means of pumped limiters or magnetic divertors. A brief description of the Fusion-Power-Core integration is given.

  17. HWMA/RCRA CLOSURE PLAN FOR THE MATERIALS TEST REACTOR WING (TRA-604) LABORATORY COMPONENTS VOLUNTARY CONSENT ORDER ACTION PLAN VCO-5.8 D REVISION2

    SciTech Connect (OSTI)

    KIRK WINTERHOLLER

    2008-02-25T23:59:59.000Z

    This Hazardous Waste Management Act/Resource Conservation and Recovery Act closure plan was developed for the laboratory components of the Test Reactor Area Catch Tank System (TRA-630) that are located in the Materials Test Reactor Wing (TRA-604) at the Reactor Technology Complex, Idaho National Laboratory Site, to meet a further milestone established under Voluntary Consent Order Action Plan VCO-5.8.d. The TRA-604 laboratory components addressed in this closure plan were deferred from the TRA-630 Catch Tank System closure plan due to ongoing laboratory operations in the areas requiring closure actions. The TRA-604 laboratory components include the TRA-604 laboratory warm wastewater drain piping, undersink drains, subheaders, and the east TRA-604 laboratory drain header. Potentially contaminated surfaces located beneath the TRA-604 laboratory warm wastewater drain piping and beneath the island sinks located in Laboratories 126 and 128 (located in TRA-661) are also addressed in this closure plan. The TRA-604 laboratory components will be closed in accordance with the interim status requirements of the Hazardous Waste Management Act/Resource Conservation and Recovery Act as implemented by the Idaho Administrative Procedures Act 58.01.05.009 and 40 Code of Federal Regulations 265, Subparts G and J. This closure plan presents the closure performance standards and the methods for achieving those standards.

  18. Critical experiments at Sandia National Laboratories : technical meeting on low-power critical facilities and small reactors.

    SciTech Connect (OSTI)

    Harms, Gary A.; Ford, John T.; Barber, Allison Delo

    2010-11-01T23:59:59.000Z

    Sandia National Laboratories (SNL) has conducted radiation effects testing for the Department of Energy (DOE) and other contractors supporting the DOE since the 1960's. Over this period, the research reactor facilities at Sandia have had a primary mission to provide appropriate nuclear radiation environments for radiation testing and qualification of electronic components and other devices. The current generation of reactors includes the Annular Core Research Reactor (ACRR), a water-moderated pool-type reactor, fueled by elements constructed from UO2-BeO ceramic fuel pellets, and the Sandia Pulse Reactor III (SPR-III), a bare metal fast burst reactor utilizing a uranium-molybdenum alloy fuel. The SPR-III is currently defueled. The SPR Facility (SPRF) has hosted a series of critical experiments. A purpose-built critical experiment was first operated at the SPRF in the late 1980's. This experiment, called the Space Nuclear Thermal Propulsion Critical Experiment (CX), was designed to explore the reactor physics of a nuclear thermal rocket motor. This experiment was fueled with highly-enriched uranium carbide fuel in annular water-moderated fuel elements. The experiment program was completed and the fuel for the experiment was moved off-site. A second critical experiment, the Burnup Credit Critical Experiment (BUCCX) was operated at Sandia in 2002. The critical assembly for this experiment was based on the assembly used in the CX modified to accommodate low-enriched pin-type fuel in water moderator. This experiment was designed as a platform in which the reactivity effects of specific fission product poisons could be measured. Experiments were carried out on rhodium, an important fission product poison. The fuel and assembly hardware for the BUCCX remains at Sandia and is available for future experimentation. The critical experiment currently in operation at the SPRF is the Seven Percent Critical Experiment (7uPCX). This experiment is designed to provide benchmark reactor physics data to support validation of the reactor physics codes used to design commercial reactor fuel elements in an enrichment range above the current 5% enrichment cap. A first set of critical experiments in the 7uPCX has been completed. More experiments are planned in the 7uPCX series. The critical experiments at Sandia National Laboratories are currently funded by the US Department of Energy Nuclear Criticality Safety Program (NCSP). The NCSP has committed to maintain the critical experiment capability at Sandia and to support the development of a critical experiments training course at the facility. The training course is intended to provide hands-on experiment experience for the training of new and re-training of practicing Nuclear Criticality Safety Engineers. The current plans are for the development of the course to continue through the first part of fiscal year 2011 with the development culminating is the delivery of a prototype of the course in the latter part of the fiscal year. The course will be available in fiscal year 2012.

  19. Sandia National Laboratories results for the 2010 criticality accident dosimetry exercise, at the CALIBAN reactor, CEA Valduc France.

    SciTech Connect (OSTI)

    Ward, Dann C.

    2011-09-01T23:59:59.000Z

    This document describes the personal nuclear accident dosimeter (PNAD) used by Sandia National Laboratories (SNL) and presents PNAD dosimetry results obtained during the Nuclear Accident Dosimeter Intercomparison Study held 20-23 September, 2010, at CEA Valduc, France. SNL PNADs were exposed in two separate irradiations from the CALIBAN reactor. Biases for reported neutron doses ranged from -15% to +0.4% with an average bias of -7.7%. PNADs were also exposed on the back side of phantoms to assess orientation effects.

  20. Department of Reactor Technology Ris#-H-2101 Ris National Laboratory SRE-7-78

    E-Print Network [OSTI]

    . April 1978 Denmark NUCLEAR DISTRICT HEATING PLANT PRELIMINARY DESIGN CONCEPT by Kurt Hansen * Hans Erik-M-fnoi I Title and authors) NUCLEAR DISTRICT HEATING PLANT PRELIMINARY DESIGN CONCEPT by Kurt Hansen ft-7-78 16 0 tabtes + 2 fflvstrMnas Abstract A nuclear reactor for district heating is proposed

  1. Disposition of the fluoride fuel and flush salts from the Molten Salt Reactor experiment at Oak Ridge National Laboratory

    SciTech Connect (OSTI)

    Peretz, F.J.

    1996-03-01T23:59:59.000Z

    The Molten Salt Reactor Experiment (MSRE) is an 8 MW reactor that was operated at Oak Ridge National Laboratory (ORNL) from 1965 through 1969. The reactor used a unique liquid salt fuel, composed of a mixture of LIF, BeF{sub 2}, ZrF{sub 4}, and UF{sub 4}, and operated at temperatures above 600{degrees}C. The primary fuel salt circulation system consisted of the reactor vessel, a single fuel salt pump, and a single primary heat exchanger. Heat was transferred from the fuel salt to a coolant salt circuit in the primary heat exchanger. The coolant salt was similar to the fuel salt, except that it contains only LiF (66%) and BeF, (34%). The coolant salt passed from the primary heat exchanger to an air-cooled radiator and a coolant salt pump, and then returned to the primary heat exchanger. Each of the salt loops was provided with drain tanks, located such that the salt could be drained out of either circuit by gravity. A single drain tank was provided for the non-radioactive coolant salt. Two drain tanks were provided for the fuel salt. Since the fuel salt contained radioactive fuel, fission products, and activation products, and since the reactor was designed such that the fuel salt could be drained immediately into the drain tanks in the event of a problem in the fuel salt loop, the fuel salt drain tanks were provided with a system to remove the heat generated by radioactive decay. A third drain tank connected to the fuel salt loop was provided for a batch of flush salt. This batch of salt, similar in composition to the coolant salt, was used to condition the fuel salt loop after it had been exposed to air and to flush the fuel salt loop of residual fuel salt prior to accessing the reactor circuit for maintenance or experimental activities. This report discusses the disposition of the fluoride fuel and flush salt.

  2. Field metabolomics and laboratory assessments of anaerobic intrinsic bioremediation of hydrocarbons

    E-Print Network [OSTI]

    Alvarez, Pedro J.

    Field metabolomics and laboratory assessments of anaerobic intrinsic bioremediation of hydrocarbons the in situ anaerobic attenuation of hydrocarbons in a contaminated aquifer underly- ing a former refinery. Metabolite profiles associated with anaerobic hydrocarbon decay revealed the microbial utilization

  3. NATIONAL HIGH MAGNETIC FIELD LABORATORY REPORTSVOLUME 12 N0. 1 2005

    E-Print Network [OSTI]

    Weston, Ken

    , and Geochemistry 14 MAGNET SCIENCE & TECHNOLOGY Engineering Materials, Instrumentation, and Magnet Technology Magnet Science & Technology 42 7 including Engineering Materials, Instrumentation, and Magnet TechnologyNATIONAL HIGH MAGNETIC FIELD LABORATORY REPORTSVOLUME 12 · N0. 1 · 2005 OPERATED BY: FLORIDA STATE

  4. Field versus laboratory characterization of clay deposits for use as in situ municipal landfill liners

    E-Print Network [OSTI]

    Wechsler, Sharon Elizabeth

    1990-01-01T23:59:59.000Z

    FIELD VERSUS LABORATORY CHARACTERIZATION OF CLAY DEPOSITS FOR USE AS IN SITU MUNICIPAL LANDFILL LINERS A Thesis by SHARON ELIZABETH WECHSLER Submitted to the Office of Graduate Studies Texas Aa? University in partial fulfillment... of the requirement for the degree of . KASTER OF SCIENCE Nay 1990 Major Subject: Geology FIELD VERSUS LABORATORY CHARACTERIZATION OF CLAY DEPOSITS FOR USE AS IN SITU MUNICIPAL LANDFILL LINERS A Thesis by SHARON ELIZABETH WECHSLER Approved as to style...

  5. Site Environmental Report for Calendar Year 2007. DOE Operations at The Boeing Company, Santa Susana Field Laboratory, Area IV

    SciTech Connect (OSTI)

    none,

    2008-09-30T23:59:59.000Z

    This Annual Site Environmental Report (ASER) for 2007 describes the environmental conditions related to work performed for the Department of Energy (DOE) at Area IV of Boeing’s Santa Susana Field Laboratory (SSFL). The Energy Technology Engineering Center (ETEC), a government-owned, company-operated test facility, was located in Area IV. The operations in Area IV included development, fabrication, and disassembly of nuclear reactors, reactor fuel, and other radioactive materials. Other activities in the area involved the operation of large-scale liquid metal facilities that were used for testing non-nuclear liquid metal fast breeder components. All nuclear work was terminated in 1988; all subsequent radiological work has been directed toward decontamination and decommissioning (D&D) of the former nuclear facilities and their associated sites. In May 2007, the D&D operations in Area IV were suspended until DOE completes the SSFL Area IV Environmental Impact Statement (EIS). The environmental monitoring programs were continued throughout the year. Results of the radiological monitoring program for the calendar year 2007 continue to indicate that there are no significant releases of radioactive material from Area IV of SSFL. All potential exposure pathways are sampled and/or monitored, including air, soil, surface water, groundwater, direct radiation, transfer of property (land, structures, waste), and recycling. All radioactive wastes are processed for disposal at DOE disposal sites and/or other licensed sites approved by DOE for radioactive waste disposal. No liquid radioactive wastes were released into the environment in 2007.

  6. Quality assurance plan for the molten salt reactor experiment Remediation Project at Oak Ridge National Laboratory, Oak Ridge, Tennessee

    SciTech Connect (OSTI)

    NONE

    1998-02-01T23:59:59.000Z

    This Quality Assurance Plan (QAP) identifies and describes the systems utilized by Molten Salt Reactor Experiment (MSRE) Remediation Project personnel to implement the requirements and associated applicable guidance contained in the Quality Program Description, Y/QD-15 Rev. 2 (Martin Marietta Energy Systems, Inc., 1995) and Environmental Management and Enrichment Facilities Work Smart Standards. This QAP defines the quality assurance (QA) requirements applicable to all activities and operations in and directly pertinent to the MSRE Remediation Project. This QAP will be periodically reviewed, revised, and approved as necessary. This QAP identifies and describes the QA activities and procedures implemented by the various Oak Ridge National Laboratory support organizations and personnel to provide confidence that these activities meet the requirements of this project. Specific support organization (Division) quality requirements, including the degree of implementation of each, are contained in the appendixes of this plan.

  7. NHMFL Breaks the 100 Tesla Barrier Gregory S. Boebinger, National High Magnetic Field Laboratory

    E-Print Network [OSTI]

    Weston, Ken

    NHMFL Breaks the 100 Tesla Barrier Gregory S. Boebinger, National High Magnetic Field Laboratory. 109no. 31 12404-12407 On March 22nd 2012, the NHMFL ­ Pulsed Field Facility broke the 100T tesla barrier, setting a world record of 100.75 tesla for a non-destructive magnet. By using advanced

  8. Phase transitions in Dual-Gated Bilayer Graphene Gregory S. Boebinger, National High Magnetic Field Laboratory

    E-Print Network [OSTI]

    Weston, Ken

    Phase transitions in Dual-Gated Bilayer Graphene Gregory S. Boebinger, National High Magnetic Field Laboratory DMR-Award 0654118 DC Field Facility Bilayer graphene, consisting of two layers of carbon atoms of the degeneracy of the electronic states in the graphene bilayer. Resistivity plotted as a function of the front

  9. Fermi Surface of Uranium at Ambient Pressure Gregory S. Boebinger, National High Magnetic Field Laboratory

    E-Print Network [OSTI]

    Weston, Ken

    Fermi Surface of ­Uranium at Ambient Pressure Gregory S. Boebinger, National High Magnetic Field Laboratory DMR-Award 0654118 DC Field Facility User Program The fermi surface of ­Uranium has been measured surface of alpha-uranium at ambient pressure, Phys. Rev. B Rapid Commun., 80, 241101 (2009). B//c-axis B

  10. A COMPARISON OF LABORATORY AND FIELD-TEST MEASUREMENTS OF HEAT PUMP WATER HEATERS

    E-Print Network [OSTI]

    Oak Ridge National Laboratory

    #12;A COMPARISON OF LABORATORY AND FIELD-TEST MEASUREMENTS OF HEAT PUMP WATER HEATERS William P a heat pump water heater (HPWH). After developing the HPWH, a field-test plan was implemented whereby 20 evaluate this effect. #12;INTRODUCTION Domestic water heaters account for approximately 2.5 EJ (2.4 x 1015

  11. CRAD, DOE Oversight- Oak Ridge National Laboratory High Flux Isotope Reactor

    Broader source: Energy.gov [DOE]

    A section of Appendix C to DOE G 226.1-2 "Federal Line Management Oversight of Department of Energy Nuclear Facilities." Consists of Criteria Review and Approach Documents (CRADs) used for a DOE independent oversight assessment of the Oak Ridge National Laboratory programs for oversight of its contractors.

  12. The decontamination, decommissioning, and demolition of loss-of-fluid test reactor at the Idaho National Laboratory Site

    SciTech Connect (OSTI)

    Floerke, J.P.; Borschel, Th.F.; Rhodes, L.K. [CH2M-WG Idaho, Idaho Falls, ID (United States)

    2007-07-01T23:59:59.000Z

    In October 2006, CH2M-WG Idaho completed the decontamination, decommissioning and demolition of the Loss-of-Fluid Test (LOFT) facility. The 30-year-old research reactor, located at the Idaho National Laboratory site, posed significant challenges involving regulations governing the demolition of a historical facility, as well as worker safety issues associated with the removal of the reactor's domed structure. The LOFT facility was located at the west end of Test Area North (TAN), built in the 1950's to support the government's aircraft nuclear propulsion program. When President Kennedy cancelled the nuclear propulsion program in 1961, TAN began to host various other activities. The LOFT reactor became part of the new mission. The LOFT facility, constructed between 1965 and 1975, was a scaled-down version of a commercial pressurized water reactor. Its design allowed engineers, scientists, and operators to create or re-create loss-of-fluid accidents (reactor fuel meltdowns) under controlled conditions. The LOFT dome provided containment for a relatively small, mobile test reactor that was moved into and out of the facility on a railroad car. The dome was roughly 21 meters (70 feet) in diameter and 30 meters (98 feet) in height. The Nuclear Regulatory Commission received the results from the accident tests and incorporated the data into commercial reactor operating codes. The facility conducted 38 experiments, including several small loss-of-coolant experiments designed to simulate events such as the accident that occurred at Three Mile Island in Pennsylvania, before the LOFT facility was closed. Through formal survey and research, the LOFT facility was determined to be a DOE Signature Property, as defined by the 'INEEL Cultural Resource Management Plan', and thus eligible for inclusion in the National Register of Historic Places. Decontamination and decommissioning (D and D) of the facility constituted an adverse effect on the historic property that required resolution through the contractor (CH2M-WG Idaho), the U.S. Department of Energy, the Idaho State Historic Preservation Office (SHPO), and the Advisory Council on Historic Preservation. The project team identified multiple hazards that would result if conventional techniques were used to demolish the dome. The physical structure of the vessel containment facility reached 30 meters (98 feet) above grade, presenting significant worker safety hazards created by hoisting and rigging activities. The dome also included a polar crane, 19 meters (62 feet) above grade, that posed similar hazards to workers. The need to work on significantly elevated surfaces, and the thickness of the dome walls - 30 millimeters (1-3/16 inches) of carbon steel - would prove difficult with traditional arc plasma cutting tools. The dome's proximity to operating facilities with equipment sensitive to vibration added to the demolition challenges. To address cultural resource issues, the project team engaged all parties in negotiations and in mapping a path foreword. Open and frequent communication resulted in a Memorandum of Agreement, with stipulations that mitigated the adverse affects of the intended demolition action. The unique mitigating actions resulted in a favorable agreement being signed and issued. To mitigate hazards posed by the height of the facility, the project team had to abandon traditional D and D techniques and employ other methods to complete demolition safely. A different approach and a change in demolition sequence resulted in the safe and efficient removal of the one-of-a-kind containment facility. The approach reduced the use of aerial lifts, aboveground size reduction, and dangerous hoisting and rigging activities that could pose significant hazards to workers. (authors)

  13. Neutron Scattering Science User Office, neutronusers@ornl.gov or (865) 574-4600. Proposals for beam time at Oak Ridge National Laboratory's High Flux Isotope Reactor (HFIR)

    E-Print Network [OSTI]

    Pennycook, Steve

    Neutron Scattering Science User Office, neutronusers@ornl.gov or (865) 574-4600. Proposals for beam Wildgruber, wildgrubercu@ornl.gov. VISION CallforProposals neutrons.ornl.gov Neutron Scattering Science - Oak time at Oak Ridge National Laboratory's High Flux Isotope Reactor (HFIR) and Spallation Neutron Source

  14. Reactor pressure vessel integrity research at the Oak Ridge National Laboratory

    SciTech Connect (OSTI)

    Corwin, W.R.; Pennell, W.E.; Pace, J.V.

    1995-12-31T23:59:59.000Z

    Maintaining the integrity of the reactor pressure vessel (RPV) in a light-water-cooled nuclear power plant is crucial in preventing and controlling severe accidents that have the potential for major contamination release. The RPV is the only key safety-related component of the plant for which a duplicate or redundant backup system does not exist. It is therefore imperative to understand and be able to predict the integrity inherent in the RPV. For this reason, the U.S. Nuclear Regulatory Commission has established the related research programs at ORNL described herein to provide for the development and confirmation of the methods used for: (1) establishing the irradiation exposure conditions within the RPV in the Embrittlement Data Base and Dosimetry Evaluation Program, (2) assessing the effects of irradiation on the RPV materials in the Heavy-Section Steel Irradiation Program, and (3) developing overall structural and fracture analyses of RPVs in the Heavy-Section Steel Technology Program.

  15. Physical barriers formed from gelling liquids: 1. numerical design of laboratory and field experiments

    SciTech Connect (OSTI)

    Finsterle, S.; Moridis, G.J.; Pruess, K.; Persoff, P.

    1994-01-01T23:59:59.000Z

    The emplacement of liquids under controlled viscosity conditions is investigated by means of numerical simulations. Design calculations are performed for a laboratory experiment on a decimeter scale, and a field experiment on a meter scale. The purpose of the laboratory experiment is to study the behavior of multiple gout plumes when injected in a porous medium. The calculations for the field trial aim at designing a grout injection test from a vertical well in order to create a grout plume of a significant extent in the subsurface.

  16. Engineering Evaluation of Proposed Alternative Salt Transfer Method for the Molten Salt Reactor Experiement for the Oak Ridge National Laboratory

    SciTech Connect (OSTI)

    Carlberg, Jon A.; Roberts, Kenneth T.; Kollie, Thomas G.; Little, Leslie E.; Brady, Sherman D.

    2009-09-30T23:59:59.000Z

    This evaluation was performed by Pro2Serve in accordance with the Technical Specification for an Engineering Evaluation of the Proposed Alternative Salt Transfer Method for the Molten Salt Reactor Experiment at the Oak Ridge National Laboratory (BJC 2009b). The evaluators reviewed the Engineering Evaluation Work Plan for Molten Salt Reactor Experiment Residual Salt Removal, Oak Ridge National Laboratory, Oak Ridge, Tennessee (DOE 2008). The Work Plan (DOE 2008) involves installing a salt transfer probe and new drain line into the Fuel Drain Tanks and Fuel Flush Tank and connecting them to the new salt transfer line at the drain tank cell shield. The probe is to be inserted through the tank ball valve and the molten salt to the bottom of the tank. The tank would then be pressurized through the Reactive Gas Removal System to force the salt into the salt canisters. The Evaluation Team reviewed the work plan, interviewed site personnel, reviewed numerous documents on the Molten Salt Reactor (Sects. 7 and 8), and inspected the probes planned to be used for the transfer. Based on several concerns identified during this review, the team recommends not proceeding with the salt transfer via the proposed alternate salt transfer method. The major concerns identified during this evaluation are: (1) Structural integrity of the tanks - The main concern is with the corrosion that occurred during the fluorination phase of the uranium removal process. This may also apply to the salt transfer line for the Fuel Flush Tank. Corrosion Associated with Fluorination in the Oak Ridge National Laboratory Fluoride Volatility Process (Litman 1961) shows that this problem is significant. (2) Continued generation of Fluorine - Although the generation of Fluorine will be at a lower rate than experienced before the uranium removal, it will continue to be generated. This needs to be taken into consideration regardless of what actions are taken with the salt. (3) More than one phase of material - There are likely multiple phases of material in the salt (metal or compound), either suspended through the salt matrix, layered in the bottom of the tank, or both. These phases may contribute to plugging during any planned transfer. There is not enough data to know for sure. (4) Probe heat trace - The alternate transfer method does not include heat tracing of the bottom of the probe. There is a concern that this may cool the salt and other phases of materials present enough to block the flow of salt. (5) Stress-corrosion cracking - Additionally, there is a concern regarding moisture that may have been introduced into the tanks. Due to time constraints, this concern was not validated. However, if moisture was introduced into the tanks and not removed during heating the tanks before HF and F2 sparging, there would be an additional concern regarding the potential for stress-corrosion cracking of the tank walls.

  17. NATIONAL HIGH MAGNETIC FIELD LABORATORY REPORTSVOLUME 11 N0.1 2004

    E-Print Network [OSTI]

    Weston, Ken

    NATIONAL HIGH MAGNETIC FIELD LABORATORY REPORTSVOLUME 11 · N0.1 · 2004 OPERATED BY: FLORIDA STATE R E V I E W BIOLOGY BIOCHEMISTRY CHEMISTRY CRYOGENICS ENGINEERING MATERIALS GEOCHEMISTRY INSTRUMENTATION KONDO/HEAVY FERMION SYSTEMS MAGNET TECHNOLOGY MAGNETIC RESONANCE TECHNIQUES MAGNETISMAND MAGNETIC

  18. NATIONAL HIGH MAGNETIC FIELD LABORATORY REPORTSSPECIAL EDITION VOLUME 13 N0. 1 2006

    E-Print Network [OSTI]

    Weston, Ken

    , and Geochemistry 16 MAGNET SCIENCE & TECHNOLOGY Engineering Materials, Instrumentation, and Magnet Technology 20NATIONAL HIGH MAGNETIC FIELD LABORATORY REPORTSSPECIAL EDITION VOLUME 13 · N0. 1 · 2006 SUPPORTED HIGHLIGHTS FROM Life Sciences Chemistry Magnet Science & Technology Condensed Matter Page 15 #12;NHMFLREPORTS

  19. Nanoscale Diffusion Studies of Lipid Membranes National High Magnetic Field Laboratory

    E-Print Network [OSTI]

    Weston, Ken

    Magnetic Resonance Imaging & Spectroscopy User Facility, University of Florida Chemical Engineering We haveNanoscale Diffusion Studies of Lipid Membranes National High Magnetic Field Laboratory Advanced for the facility's future use. This will serve to enhance infrastructure for research and education at the Magnet

  20. Instrumentation for Measurement of Strain Dependence of Nb3Sn Conductors National High Magnetic Field Laboratory

    E-Print Network [OSTI]

    Weston, Ken

    Instrumentation for Measurement of Strain Dependence of Nb3Sn Conductors National High Magnetic Field Laboratory Magnet Science and Technology, Florida State University An NHMFL User Collaboration Grants Program (UCGP) award is supporting students from the FAMU-FSU College of Engineering as part

  1. Symmetry Breaking in Graphene Gregory S. Boebinger, National High Magnetic Field Laboratory

    E-Print Network [OSTI]

    Weston, Ken

    Symmetry Breaking in Graphene Gregory S. Boebinger, National High Magnetic Field Laboratory DMR. In this experiment, Landau levels in graphene were used to study the breaking of SU(4) symmetry--a higher dimensional states by their spin polarization. It was found that graphene turns into either a spin ferromagnet

  2. FIELD PERFORMANCE AND LABORATORY EVALUATION OF WARM MIX ASPHALT PRODUCED WITH RUBBERIZED BITUMEN

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    FIELD PERFORMANCE AND LABORATORY EVALUATION OF WARM MIX ASPHALT PRODUCED WITH RUBBERIZED BITUMEN of rubberized bitumen has been spread out mainly due to environmental aspects, but high mixing and compaction temperatures are necessary due to the higher viscosity of this bitumen. A WMA mixture (using a surfactant

  3. Google+ Virtual Field Trip on Vehicle Electrification at Argonne National Laboratory

    Broader source: Energy.gov [DOE]

    Don't miss this exclusive peek into the U.S. Department of Energy's Argonne National Laboratory. Attendees will meet three researchers who will explain a different phase of vehicle electrification research. This field trip is very similar to the tou

  4. Solute and Sediment Transport at Laboratory and Field Scale: Contributions of J.-Y. Parlange1

    E-Print Network [OSTI]

    Lenstra, Arjen K.

    , 1866 Soil moisture, 1838 Infiltration, 1831 Groundwater quality, 1832 Groundwater transport, 1815Solute and Sediment Transport at Laboratory and Field Scale: Contributions of J.-Y. Parlange1 D. A.sander@lboro.ac.uk S. Jomaa, Department of Bioenergy and Department of Aquatic Ecosystem Analysis and Management

  5. Evaluations of Transgenic Potatoes for Resistance to Potato Tuberworm in the Laboratory and Field

    E-Print Network [OSTI]

    Douches, David S.

    Evaluations of Transgenic Potatoes for Resistance to Potato Tuberworm in the Laboratory and Field online: 7 October 2010 # Potato Association of America 2010 Abstract The potato variety `Spunta to potato tuberworm (Phthorimaea operculella Zeller). Because potato tuberworm is becoming a serious pest

  6. Journal of the Korean Physical Society, Vol. 51, No. 3, September 2007, pp. 11131118 Characteristics of Thermal-Flow Fields in a PECVD Reactor

    E-Print Network [OSTI]

    Boo, Jin-Hyo

    Characteristics of Thermal-Flow Fields in a PECVD Reactor with Various Operating Conditions Jae-Sang Baek and Youn be influenced by the reactor geometry, the thermo-flow conditions, and the operation procedure. In this study, the effects of various operating conditions and the shapes of the PECVD reactor are considered to elucidate

  7. 2012 Annual Industrial Wastewater Reuse Report for the Idaho National Laboratory Site's Advanced Test Reactor Complex Cold Waste Pond

    SciTech Connect (OSTI)

    Mike Lewis

    2013-02-01T23:59:59.000Z

    This report describes conditions, as required by the state of Idaho Industrial Wastewater Reuse Permit (#LA 000161 01, Modification B), for the wastewater land application site at the Idaho National Laboratory Site’s Advanced Test Reactor Complex Cold Waste Pond from November 1, 2011 through October 31, 2012. The report contains the following information: Facility and system description Permit required effluent monitoring data and loading rates Groundwater monitoring data Status of compliance activities Noncompliance issues Discussion of the facility’s environmental impacts During the 2012 permit year, approximately 183 million gallons of wastewater were discharged to the Cold Waste Pond. This is well below the maximum annual permit limit of 375 million gallons. As shown by the groundwater sampling data, sulfate and total dissolved solids concentrations are highest near the Cold Waste Pond and decrease rapidly as the distance from the Cold Waste Pond increases. Although concentrations of sulfate and total dissolved solids are elevated near the Cold Waste Pond, both parameters were below the Ground Water Quality Rule Secondary Constituent Standards in the down gradient monitoring wells.

  8. 2011 Annual Industrial Wastewater Reuse Report for the Idaho National Laboratory Site's Advanced Test Reactor Complex Cold Waste Pond

    SciTech Connect (OSTI)

    Mike Lewis

    2012-02-01T23:59:59.000Z

    This report describes conditions, as required by the state of Idaho Industrial Wastewater Reuse Permit (LA 000161 01, Modification B), for the wastewater land application site at the Idaho National Laboratory Site's Advanced Test Reactor Complex Cold Waste Pond from November 1, 2010 through October 31, 2011. The report contains the following information: Facility and system description Permit required effluent monitoring data and loading rates Groundwater monitoring data Status of compliance activities Noncompliance and other issues Discussion of the facility's environmental impacts During the 2011 permit year, approximately 166 million gallons of wastewater were discharged to the Cold Waste Pond. This is well below the maximum annual permit limit of 375 million gallons. As shown by the groundwater sampling data, sulfate and total dissolved solids concentrations are highest near the Cold Waste Pond and decrease rapidly as the distance from the Cold Waste Pond increases. Although concentrations of sulfate and total dissolved solids are elevated near the Cold Waste Pond, both parameters were below the Ground Water Quality Rule Secondary Constituent Standards in the down gradient monitoring wells.

  9. Health and safety plan for the Molten Salt Reactor Experiment remediation project at Oak Ridge National Laboratory, Oak Ridge, Tennessee

    SciTech Connect (OSTI)

    Burman, S.N.; Uziel, M.S.

    1995-12-01T23:59:59.000Z

    The Lockheed Martin Energy Systems, Inc., (Energy Systems) policy is to provide a safe and healthful workplace for all employees and subcontractors. The accomplishment of the policy requires that operations at the Molten Salt Reactor Experiment (MSRE) facility at the Department of Energy (DOE) Oak Ridge National Laboratory (ORNL) are guided by an overall plan and consistent proactive approach to safety and health (S and H) issues. The policy and procedures in this plan apply to all MSRE operations. The provisions of this plan are to be carried out whenever activities are initiated at the MSRE that could be a threat to human health or the environment. This plan implements a policy and establishes criteria for the development of procedures for day-to-day operations to prevent or minimize any adverse impact to the environment and personnel safety and health and to meet standards that define acceptable management of hazardous and radioactive materials and wastes. The plan is written to utilize past experience and the best management practices to minimize hazards to human health or the environment from events such as fires, explosions, falls, mechanical hazards, or any unplanned release of hazardous or radioactive materials to the air.

  10. Laboratory and field evaluation of polyurethane foam for lost circulation control

    SciTech Connect (OSTI)

    Glowka, D.A.; Loeppke, G.E.; Rand, P.B.; Wright, E.K. (Sandia National Labs., Albuquerque, NM (USA))

    1989-01-01T23:59:59.000Z

    A two-part polyurethane foam has been tested in the laboratory and in the field to assess its utility in controlling lost circulation encountered when drilling geothermal wells. A field test was conducted in The Geysers in January, 1988, to evaluate the chemical formulation and downhole tool used to deploy the chemicals. Although the tool apparently functioned properly in the field test, the chemicals failed to expand sufficiently downhole, instead forming a dense polymer that may be ineffective in sealing loss zones. Subsequent laboratory tests conducted under simulated downhole conditions indicate that the foam chemical undergo sever mixing with water in the wellbore, which disturbs the kinetics of the chemical reaction more than was previously contemplated. The results indicate that without significant changes in the foam chemical formulation or delivery technique, the foam system will be ineffective in lost circulation control except under very favorable conditions. 4 refs., 6 figs., 2 tabs.

  11. Type A verification report for the high flux beam reactor stack and grounds, Brookhaven National Laboratory, Upton, New York

    SciTech Connect (OSTI)

    Harpenau, Evan M.

    2012-01-13T23:59:59.000Z

    The U.S. Department of Energy (DOE) Order 458.1 requires independent verification (IV) of DOE cleanup projects (DOE 2011). The Oak Ridge Institute for Science and Education (ORISE) has been designated as the responsible organization for IV of the High Flux Beam Reactor (HFBR) Stack and Grounds area at Brookhaven National Laboratory (BNL) in Upton, New York. The IV evaluation may consist of an in-process inspection with document and data reviews (Type A Verification) or a confirmatory survey of the site (Type B Verification). DOE and ORISE determined that a Type A verification of the documents and data for the HFBR Stack and Grounds: Survey Units (SU) 6, 7, and 8 was appropriate based on the initial survey unit classification, the walkover surveys, and the final analytical results provided by the Brookhaven Science Associates (BSA). The HFBR Stack and Grounds surveys began in June 2011 and were completed in September 2011. Survey activities by BSA included gamma walkover scans and sampling of the as-left soils in accordance with the BSA Work Procedure (BNL 2010a). The Field Sampling Plan - Stack and Remaining HFBR Outside Areas (FSP) stated that gamma walk-over surveys would be conducted with a bare sodium iodide (NaI) detector, and a collimated detector would be used to check areas with elevated count rates to locate the source of the high readings (BNL 2010b). BSA used the Mult- Agency Radiation Survey and Site Investigation Manual (MARSSIM) principles for determining the classifications of each survey unit. Therefore, SUs 6 and 7 were identified as Class 1 and SU 8 was deemed Class 2 (BNL 2010b). Gamma walkover surveys of SUs 6, 7, and 8 were completed using a 2?2 NaI detector coupled to a data-logger with a global positioning system (GPS). The 100% scan surveys conducted prior to the final status survey (FSS) sampling identified two general soil areas and two isolated soil locations with elevated radioactivity. The general areas of elevated activity identified were investigated further with a collimated NaI detector. The uncollimated average gamma count rate was less than 15,000 counts per minute (cpm) for the SU 6, 7, and 8 composite area (BNL 2011a). Elevated count rates were observed in portions of each survey unit. The general areas of elevated counts near the Building 801 ventilation and operations and the entry to the Stack were determined to be directly related to the radioactive processes in those structures. To compensate for this radioactive shine, a collimated or shielded detector was used to lower the background count rate (BNL 2011b and c). This allowed the surveyor(s) to distinguish between background and actual radioactive contamination. Collimated gamma survey count rates in these shine affected areas were below 9,000 cpm (BNL 2011a). The average background count rate of 7,500 cpm was reported by BSA for uncollimated NaI detectors (BNL 2011d). The average collimated background ranged from 4,500-6,500 cpm in the westernmost part of SU 8 and from 2,000-3,500 cpm in all other areas (BNL 2011e). Based on these data, no further investigations were necessary for these general areas. SU 8 was the only survey unit that exhibited verified elevated radioactivity levels. The first of two isolated locations of elevated radioactivity had an uncollimated direct measurement of 50,000 cpm with an area background of 7,500 cpm (BNL 2011f). The second small area exhibiting elevated radiation levels was identified at a depth of 6 inches from the surface. The maximum reported count rate of 28,000 cpm was observed during scanning (BNL 2011g). The affected areas were remediated, and the contaminated soils were placed in an intermodal container for disposal. BSA's post-remediation walkover surveys were expanded to include a 10-foot radius around the excavated locations, and it was determined that further investigation was not required for these areas (BNL 2011 f and g). The post-remediation soil samples were collected and analyzed with onsite gamma spectroscopy equipment. These samples were also included with the FSS s

  12. Dealing with Historical Discrepancies: The Recovery of National Research Experiment (NRX) Reactor Fuel Rods at Chalk River Laboratories (CRL) - 13324

    SciTech Connect (OSTI)

    Vickerd, Meggan [Atomic Energy of Canada Limited, Chalk River Laboratories, Chalk River, ON, K0J 1J0 (Canada)] [Atomic Energy of Canada Limited, Chalk River Laboratories, Chalk River, ON, K0J 1J0 (Canada)

    2013-07-01T23:59:59.000Z

    Following the 1952 National Research Experiment (NRX) Reactor accident, fuel rods which had short irradiation histories were 'temporarily' buried in wooden boxes at the 'disposal grounds' during the cleanup effort. The Nuclear Legacy Liabilities Program (NLLP), funded by Natural Resources Canada (NRCan), strategically retrieves legacy waste and restores lands affected by Atomic Energy of Canada Limited (AECL) early operations. Thus under this program the recovery of still buried NRX reactor fuel rods and their relocation to modern fuel storage was identified as a priority. A suspect inventory of NRX fuels was compiled from historical records and various research activities. Site characterization in 2005 verified the physical location of the fuel rods and determined the wooden boxes they were buried in had degraded such that the fuel rods were in direct contact with the soil. The fuel rods were recovered and transferred to a modern fuel storage facility in 2007. Recovered identification tags and measured radiation fields were used to identify the inventory of these fuels. During the retrieval activity, a discrepancy was discovered between the anticipated number of fuel rods and the number found during the retrieval. A total of 32 fuel rods and cans of cut end pieces were recovered from the specified site, which was greater than the anticipated 19 fuel rods and cans. This discovery delayed the completion of the project, increased the associated costs, and required more than anticipated storage space in the modern fuel storage facility. A number of lessons learned were identified following completion of this project, the most significant of which was the potential for discrepancies within the historical records. Historical discrepancies are more likely to be resolved by comprehensive historical record searches and site characterizations. It was also recommended that a complete review of the wastes generated, and the total affected lands as a result of this historic 1952 NRX accident be undertaken. These lessons and recommendations have lead to changes in how the NLLP is executed in the CRL waste management areas. (authors)

  13. The National High Magnetic Field Laboratory was represented by staff from its Center for Integrating Research and Learning

    E-Print Network [OSTI]

    McQuade, D. Tyler

    to drop a magnet seemingly in slow motion through a copper pipe. The USA Science and Engineering Festival and Engineering Festival National High Magnetic Field Laboratory Funding Grants: G.S. Boebinger (NSF DMR-1157490The National High Magnetic Field Laboratory was represented by staff from its Center

  14. Two-dimensional TBR calculations for conceptual compact reversed-field pinch reactor blanket

    SciTech Connect (OSTI)

    Davidson, J.W.; Battat, M.E.; Dudziak, D.J.

    1985-01-01T23:59:59.000Z

    A detailed two-dimensional nucleonic analysis was performed for a conceptual first wall, blanket, and shield design for the Compact Reversed-Field Pinch Reactor. The design includes significant two-dimensional aspects presented by the limiter, vacuum ducts, and coolant manifolds; these aspects seriously degrade the tritium-breeding reaction (TBR) predicted by one-dimensional calculations. A range of design change to increase the TBR were investigated within the two-dimensional analysis. The results of this investigation indicated that an adequate TBR could be achieved with a thinner copper first wall, a /sup 6/Li enrichment near 90%, the proper selection of reflector, and a small addition to the blanket thickness, determined by the one-dimensional analysis.

  15. Duplex stainless steel corrosion behavior during acidification: Laboratory versus field test results

    SciTech Connect (OSTI)

    Cheldi, T.; Obracaj, I. [AGIP S.p.A. CORM, San Donato Milanese (Italy). Corrosion and Materials Technologies Dept.; Cigada, A.; Cabrini, M. [Politecnico di Milano (Italy). Dipt. di Chimica Fisica Applicata; Vicentini, B.; Rondelli, G. [C.N.R.-I.T.M., Milano (Italy)

    1995-10-01T23:59:59.000Z

    Laboratory tests and field acidizing operations have been conducted on a 25% Cr-140 ksi duplex stainless steel utilizing a 90% HCl 15% + 10% CHs{sub 3}COOH acid mixture inhibited with a commercial package. Laboratory tests proved that the duplex stainless steel can be effectively protected in the adopted experimental conditions at 150 C. Examination of parts of tubings extracted from a real completion showed appreciable corrosion attack only in the sections of the string placed at higher depth (operating temperatures {approximately}130 C): in these cases the estimated rates of corrosion attack can be about one order of magnitude higher than that foreseeable on the basis of laboratory tests. However even in these cases the severity of attack is maintained within acceptable limits.

  16. EA-1440-S1: National Renewable Energy Laboratory's South Table Mountain Complex, Golden Field Office, National Renewable Energy Laboratory

    Broader source: Energy.gov [DOE]

    ThIs EA evaluates the potential environmental impact of a DOE proposal that consists of three site development projects at the National Renewable Energy Laboratory’s (NREL) South Table Mountain ...

  17. SUMMARY AND RESULTS LETTER REPORT – INDEPENDENT VERIFICATION OF THE HIGH FLUX BEAM REACTOR UNDERGROUND UTILITIES REMOVAL PROJECT, PHASE 3: TRENCHES 2, 3, AND 4 BROOKHAVEN NATIONAL LABORATORY UPTON, NEW YORK

    SciTech Connect (OSTI)

    E.M. Harpenau

    2010-11-15T23:59:59.000Z

    5098-LR-02-0 SUMMARY AND RESULTS LETTER REPORT – INDEPENDENT VERIFICATION OF THE HIGH FLUX BEAM REACTOR UNDERGROUND UTILITIES REMOVAL PROJECT, PHASE 3 TRENCHES 2, 3, AND 4 BROOKHAVEN NATIONAL LABORATORY

  18. EA-1266: Proposed Decontamination and Disassembly of the Argonne Thermal Source Reactor (ATSR) At Argonne National Laboratory, Argonne, Illinois

    Broader source: Energy.gov [DOE]

    This EA evaluates the environmental impacts for the proposal for the decontamination and disassembly of the U.S. Department of Energy's Argonne Thermal Source Reactor.

  19. Laboratory and field-scale test methodology for reliable characterization of solidified/stabilized hazardous wastes

    SciTech Connect (OSTI)

    Gray, K.E.; Holder, J. [Univ. of Texas, Austin, TX (United States). Center for Earth Sciences and Engineering; Mollah, M.Y.A.; Hess, T.R.; Vempati, R.K.; Cocke, D.L. [Lamar Univ., Beaumont, TX (United States)

    1995-12-31T23:59:59.000Z

    A methodology for flow through leach testing is proposed and discussed and preliminary testing using strontium doped cement based S/S samples is presented. The complementary and necessary characterization of the S/S matrix before and after testing is discussed and placed in perspective to the total evaluation of the laboratory-field scale leach testing for predicting long term performance and S/S technology design and improvement.

  20. Electrochemistry Facilities The Interdisciplinary Electrochemistry Laboratory is used to pursue research in

    E-Print Network [OSTI]

    Carver, Jeffrey C.

    laboratory scale catalytic reactors. Pictured is the autothermal reactor that produces hydrogen by reacting

  1. Developing a Robust Compact Tokamak Reactor by Exploiting New Superconducting Technologies and the Synergistic Effects of High Field

    E-Print Network [OSTI]

    incurring large, and possibly unacceptable, disruption risk. The good news is that due to the strong power in the reactor power balance. #12;High field, demountable SC coils would be transformative to tokamak design they obviously dictate fusion's economic viability: 1) Adequate fusion power areal density (Pf / Ablanket 4 MW m

  2. Scaling methane oxidation: From laboratory incubation experiments to landfill cover field conditions

    SciTech Connect (OSTI)

    Abichou, Tarek, E-mail: abichou@eng.fsu.edu [Florida State University, Tallahassee, FL 32311 (United States); Mahieu, Koenraad; Chanton, Jeff [Florida State University, Tallahassee, FL 32311 (United States); Romdhane, Mehrez; Mansouri, Imane [Unite de Recherche M.A.C.S., Ecole Nationale d'Ingenieurs de Gabes, Route de Medenine, 6029 Gabes (Tunisia)

    2011-05-15T23:59:59.000Z

    Evaluating field-scale methane oxidation in landfill cover soils using numerical models is gaining interest in the solid waste industry as research has made it clear that methane oxidation in the field is a complex function of climatic conditions, soil type, cover design, and incoming flux of landfill gas from the waste mass. Numerical models can account for these parameters as they change with time and space under field conditions. In this study, we developed temperature, and water content correction factors for methane oxidation parameters. We also introduced a possible correction to account for the different soil structure under field conditions. These parameters were defined in laboratory incubation experiments performed on homogenized soil specimens and were used to predict the actual methane oxidation rates to be expected under field conditions. Water content and temperature corrections factors were obtained for the methane oxidation rate parameter to be used when modeling methane oxidation in the field. To predict in situ measured rates of methane with the model it was necessary to set the half saturation constant of methane and oxygen, K{sub m}, to 5%, approximately five times larger than laboratory measured values. We hypothesize that this discrepancy reflects differences in soil structure between homogenized soil conditions in the lab and actual aggregated soil structure in the field. When all of these correction factors were re-introduced into the oxidation module of our model, it was able to reproduce surface emissions (as measured by static flux chambers) and percent oxidation (as measured by stable isotope techniques) within the range measured in the field.

  3. Decontamination and decommissioning of the Argonne Thermal Source Reactor at Argonne National Laboratory - East project final report.

    SciTech Connect (OSTI)

    Fellhauer, C.; Garlock, G.; Mathiesen, J.

    1998-12-02T23:59:59.000Z

    The ATSR D&D Project was directed toward the following goals: (1) Removal of radioactive and hazardous materials associated with the ATSR Reactor facility; (2) Decontamination of the ATSR Reactor facility to unrestricted use levels; and (3)Documentation of all project activities affecting quality (i.e., waste packaging, instrument calibration, audit results, and personnel exposure). These goals had been set in order to eliminate the radiological and hazardous safety concerns inherent in the ATSR Reactor facility and to allow, upon completion of the project, unescorted and unmonitored access to the area. The reactor aluminum, reactor lead, graphite piles in room E-111, and the contaminated concrete in room E-102 were the primary areas of concern. NES, Incorporated (Danbury, CT) characterized the ATSR Reactor facility from January to March 1998. The characterization identified a total of thirteen radionuclides, with a total activity of 64.84 mCi (2.4 GBq). The primary radionuclides of concern were Co{sup 60}, Eu{sup 152}, Cs{sup 137}, and U{sup 238}. No additional radionuclides were identified during the D&D of the facility. The highest dose rates observed during the project were associated with the reactor tank and shield tank. Contact radiation levels of 30 mrem/hr (0.3 mSv/hr) were measured on reactor internals during dismantlement of the reactor. A level of 3 mrem/hr (0.03 mSv/hr) was observed in a small area (hot spot) in room E-102. DOE Order 5480.2A establishes the maximum whole body exposure for occupational workers at 5 rem/yr (50 mSv/yr); the administrative limit at ANL-E is 1 rem/yr (10 mSv/yr).

  4. An evaluation of new asphaltene inhibitors: Laboratory study and field testing

    SciTech Connect (OSTI)

    Bouts, M.N.; Wiersma, R.J.; Muijs, H.M.; Samuel, A.J.

    1995-11-01T23:59:59.000Z

    Three candidate asphaltene inhibitors have been laboratory tested for their effectiveness on a Canadian crude. One inhibitor, an oil-soluble polymeric dispersant developed by Shell Chemicals, showed superior behavior compared to the others: flocculation titrations with n-heptane resulted in an optimum concentration of 1,300 ppm. PVT calculations, however, indicated that the prevailing conditions downhole can be quite favorable with respect to the amount of effective inhibitor compared to the atmospheric laboratory titrations which appear to be quite severe tests. Therefore, lower initial concentrations were recommended for a field trial. The chemical could be continuously injected through a capillary string, thereby avoiding the lost oil production associated with solvent cleaning operations. It has proved to be very effective at concentrations as low as 66 ppm, resulting in both a technically and an economically successful trial.

  5. DOE/EA-1519: Environmental Assessment for the Proposed Decontamination and Decommissioning of the Zero Power Reactors (Building 315) at Argonne National Laboratory (April 2005)

    SciTech Connect (OSTI)

    N /A

    2005-04-30T23:59:59.000Z

    The U.S. Department of Energy (DOE) is proposing to decontaminate and decommission the Zero Power Reactor (ZPR) facilities located in Building 315 at Argonne National Laboratory (ANL) in Argonne, Illinois (Figure 1-1). The proposed action would occur in two phases: ZPR-6 would be the focus of Phase I and ZPR-9 would be the focus of Phase II. DOE has prepared this environmental assessment (EA) in accordance with the National Environmental Policy Act (NEPA), 42 U.S.C. {section} 4321 et seq., and applicable regulations (Title 40, Code of Federal Regulations [CFR] Parts 1500-1508 and 10 CFR Part 1021). This section describes the reactors and their current status.

  6. INDEPENDENT CONFIRMATORY SURVEY REPORT FOR THE REACTOR BUILDING, HOT LABORATORY, PRIMARY PUMP HOUSE, AND LAND AREAS AT THE PLUM BROOK REACTOR FACILITY, SANDUSKY, OHIO

    SciTech Connect (OSTI)

    Erika N. Bailey

    2011-10-10T23:59:59.000Z

    In 1941, the War Department acquired approximately 9,000 acres of land near Sandusky, Ohio and constructed a munitions plant. The Plum Brook Ordnance Works Plant produced munitions, such as TNT, until the end of World War II. Following the war, the land remained idle until the National Advisory Committee for Aeronautics later called the National Aeronautics and Space Administration (NASA) obtained 500 acres to construct a nuclear research reactor designed to study the effects of radiation on materials used in space flight. The research reactor was put into operation in 1961 and was the first of fifteen test facilities eventually built by NASA at the Plum Brook Station. By 1963, NASA had acquired the remaining land at Plum Brook for these additional test facilities

  7. Conceptual Design of the 45 T Hybrid Magnet at the Nijmegen High Field Magnet Laboratory

    E-Print Network [OSTI]

    Wiegers, SAJ; Bird, M D; Rook, J; Perenboom, J A A J; Wiegers, S A J; Bonito-Oliva, A; den Ouden, A

    2010-01-01T23:59:59.000Z

    A 45 T Hybrid Magnet System is being developed at the Nijmegen High Field Magnet Laboratory as part of the Nijmegen Center for Advanced Spectroscopy. The 45 T Hybrid Magnet System will be used in combination with far-infra-red light produced by a Free Electron Laser under construction directly adjacent to the High Field Magnet Laboratory. The superconducting outsert magnet will consist of three CICC coils wound on a single coil form, using Nb3Sn strands. A test program for strand and cable qualification is underway. The CICC will carry 13 kA and the coils will produce 12 T on axis field in a 600 mm warm bore. The nominal operating temperature will be 4.5 K maintained with forced-flow supercritical helium. The insert magnet will produce 33 T at 40 kA in a 32 mm bore consuming 20 MW, and will consist of four coils. The insert magnet will be galvanically and mechanically isolated from the outsert magnet. Complete system availability for users is expected in 2014. In this paper we will report on the conceptual de...

  8. Laboratory and Modeling Evaluations in Support of Field Testing for Desiccation at the Hanford Site

    SciTech Connect (OSTI)

    Truex, Michael J.; Oostrom, Martinus; Freedman, Vicky L.; Strickland, Christopher E.; Wietsma, Thomas W.; Tartakovsky, Guzel D.; Ward, Anderson L.

    2011-02-23T23:59:59.000Z

    The Deep Vadose Zone Treatability Test Plan for the Hanford Central Plateau includes testing of the desiccation technology as a potential technology to be used in conjunction with surface infiltration control to limit the flux of technetium and other contaminants in the vadose zone to the groundwater. Laboratory and modeling efforts were conducted to investigate technical uncertainties related to the desiccation process and its impact on contaminant transport. This information is intended to support planning, operation, and interpretation of a field test for desiccation in the Hanford Central Plateau.

  9. EIS-0402: Remediation of Area IV of the Santa Susana Field Laboratory, California

    Broader source: Energy.gov [DOE]

    DOE is preparing an EIS for cleanup of Area IV, including the Energy Technology Engineering Center (ETEC), as well as the Northern Buffer Zone of the Santa Susana Field Laboratory (SSFL) in eastern Ventura County, California, approximately 29 miles north of downtown Los Angeles. (DOE’s operations bordered the Northern Buffer Zone. DOE is responsible for soil cleanup in Area IV and the Northern Buffer Zone.) In the EIS, DOE will evaluate reasonable alternatives for disposition of radiological facilities and support buildings, remediation of contaminated soil and groundwater, and disposal of all resulting waste at permitted facilities.

  10. Large-Scale Field Study of Landfill Covers at Sandia National Laboratories

    SciTech Connect (OSTI)

    Dwyer, S.F.

    1998-09-01T23:59:59.000Z

    A large-scale field demonstration comparing final landfill cover designs has been constructed and is currently being monitored at Sandia National Laboratories in Albuquerque, New Mexico. Two conventional designs (a RCRA Subtitle `D' Soil Cover and a RCRA Subtitle `C' Compacted Clay Cover) were constructed side-by-side with four alternative cover test plots designed for dry environments. The demonstration is intended to evaluate the various cover designs based on their respective water balance performance, ease and reliability of construction, and cost. This paper presents an overview of the ongoing demonstration.

  11. Laboratory and field corrosion test results on aluminum-transition-steel systems on automobiles

    SciTech Connect (OSTI)

    Haynes, G.; Baboian, R. [Texas Instruments Inc., Attleboro, MA (United States). Electrochemical and Corrosion Lab.

    1995-11-01T23:59:59.000Z

    Use of steel clad aluminum transition material to join aluminum body panels and structural members to steel is demonstrated. The transition material allows joining of aluminum and steel by conventional techniques such as spot welding and eliminates galvanic corrosion at the joints. Corrosion test results for a wide range of aluminum-transition-steel systems in laboratory tests, atmospheric exposure, and field test plates are presented. The break strength of joints containing two, three, or four members was used as a measure of performance after corrosion testing. Statistical analysis of the results showed that the transition material prevented degradation of the mechanical properties of the joints.

  12. DOE - Office of Legacy Management -- Santa Susana Field Laboratory - CA 09

    Office of Legacy Management (LM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn AprilA group currentBradleyTableSelling Corp -K Le BlondSanta Susana Field Laboratory -

  13. Nonperturbative measurement of the local magnetic field using pulsed polarimetry for fusion reactor conditions (invited)

    SciTech Connect (OSTI)

    Smith, Roger J. [University of Washington, Seattle, Washington 98195-2250 (United States)

    2008-10-15T23:59:59.000Z

    A novel diagnostic technique for the remote and nonperturbative sensing of the local magnetic field in reactor relevant plasmas is presented. Pulsed polarimetry [Patent No. 12/150,169 (pending)] combines optical scattering with the Faraday effect. The polarimetric light detection and ranging (LIDAR)-like diagnostic has the potential to be a local B{sub pol} diagnostic on ITER and can achieve spatial resolutions of millimeters on high energy density (HED) plasmas using existing lasers. The pulsed polarimetry method is based on nonlocal measurements and subtle effects are introduced that are not present in either cw polarimetry or Thomson scattering LIDAR. Important features include the capability of simultaneously measuring local T{sub e}, n{sub e}, and B{sub ||} along the line of sight, a resiliency to refractive effects, a short measurement duration providing near instantaneous data in time, and location for real-time feedback and control of magnetohydrodynamic (MHD) instabilities and the realization of a widely applicable internal magnetic field diagnostic for the magnetic fusion energy program. The technique improves for higher n{sub e}B{sub ||} product and higher n{sub e} and is well suited for diagnosing the transient plasmas in the HED program. Larger devices such as ITER and DEMO are also better suited to the technique, allowing longer pulse lengths and thereby relaxing key technology constraints making pulsed polarimetry a valuable asset for next step devices. The pulsed polarimetry technique is clarified by way of illustration on the ITER tokamak and plasmas within the magnetized target fusion program within present technological means.

  14. PROJECT-SPECIFIC TYPE A VERIFICATION FOR THE BROOKHAVEN GRAPHITE RESEARCH REACTOR ENGINEERED CAP, BROOKHAVEN NATIONAL LABORATORY UPTON, NEW YORK DCN 5098-SR-07-0

    SciTech Connect (OSTI)

    Evan Harpenau

    2011-07-15T23:59:59.000Z

    The Oak Ridge Institute for Science and Education (ORISE) has reviewed the project documentation and data for the Brookhaven Graphite Research Reactor (BGRR) Engineered Cap at Brookhaven National Laboratory (BNL) in Upton, New York. The Brookhaven Science Associates (BSA) have completed removal of affected soils and performed as-left surveys by BSA associated with the BGRR Engineered Cap. Sample results have been submitted, as required, to demonstrate that remediation efforts comply with the cleanup goal of {approx}15 mrem/yr above background to a resident in 50 years (BNL 2011a).

  15. Identification and evaluation of alternatives for the disposition of fluoride fuel and flush salts from the molten salt reactor experiment at Oak Ridge National Laboratory, Oak Ridge, Tennessee

    SciTech Connect (OSTI)

    NONE

    1996-08-15T23:59:59.000Z

    This document presents an initial identification and evaluation of the alternatives for disposition of the fluoride fuel and flush salts stored in the drain tanks at the Molten Salt Reactor Experiment (MSRE) at Oak Ridge National Laboratory (ORNL). It will serve as a resource for the U.S. Department of Energy contractor preparing the feasibility study for this activity under the Comprehensive Environmental Response, Compensation and Liability Act (CERCLA). This document will also facilitate further discussion on the range of credible alternatives, and the relative merits of alternatives, throughout the time that a final alternative is selected under the CERCLA process.

  16. Laboratory Studies of the Short-term Responses of Freshwater Fish to Electromagnetic Fields

    SciTech Connect (OSTI)

    Bevelhimer, Mark S [ORNL; Cada, Glenn F [ORNL; Fortner, Allison M [ORNL; Schweizer, Peter E [ORNL; Riemer, Kristina P [ORNL

    2013-01-01T23:59:59.000Z

    Hydrokinetic energy technologies are being proposed as an environmentally preferred means of generating electricity from river and tidal currents. Among the potential issues that must be investigated in order to resolve environmental concerns are the effects on aquatic organisms of electromagnetic fields created by underwater generators and transmission cables. The behavioral responses of common freshwater fishes to static and variable electromagnetic fields (EMF) that may be emitted by hydrokinetic projects were evaluated in laboratory experiments. Various fish species were exposed to either static (DC) EMF fields created by a permanent bar magnet or variable (AC) EMF fields created by a switched electromagnet for 48 h, fish locations were recorded with a digital imaging system, and changes in activity level and distribution relative to the magnet position were quantified at 5-min intervals. Experiments with fathead minnows, redear sunfish, striped bass, lake sturgeon, and channel catfish produced mixed results. Except for fathead minnows there was no effect on activity level. Only redear sunfish and channel catfish exhibited a change in distribution relative to the position of the magnet with an apparent attraction to the EMF source. In separate experiments, rapid behavioral responses of paddlefish and lake sturgeon to onset of the AC field were recorded with high-speed video. Paddlefish did not react to a variable, 60-Hz magnetic field like that which would be emitted by an AC generator or cable, but lake sturgeon consistently responded to the variable, AC-generated magnetic field with a variety of altered swimming behaviors. These results will be useful for determining under what circumstances cables or generators need to be positioned to minimize interactions with sensitive species.

  17. CRAD, Engineering - Oak Ridge National Laboratory High Flux Isotope...

    Broader source: Energy.gov (indexed) [DOE]

    Engineering - Oak Ridge National Laboratory High Flux Isotope Reactor Contractor ORR CRAD, Engineering - Oak Ridge National Laboratory High Flux Isotope Reactor Contractor ORR...

  18. CRAD, Engineering - Oak Ridge National Laboratory High Flux Isotope...

    Broader source: Energy.gov (indexed) [DOE]

    Oak Ridge National Laboratory High Flux Isotope Reactor CRAD, Engineering - Oak Ridge National Laboratory High Flux Isotope Reactor February 2007 A section of Appendix C to DOE G...

  19. Advanced Test Reactor Tour

    SciTech Connect (OSTI)

    Miley, Don

    2011-01-01T23:59:59.000Z

    The Advanced Test Reactor at Idaho National Laboratory is the foremost nuclear materials test reactor in the world. This virtual tour describes the reactor, how experiments are conducted, and how spent nuclear fuel is handled and stored. For more information about INL research, visit http://www.facebook.com/idahonationallaboratory.

  20. Advanced Test Reactor Tour

    ScienceCinema (OSTI)

    Miley, Don

    2013-05-28T23:59:59.000Z

    The Advanced Test Reactor at Idaho National Laboratory is the foremost nuclear materials test reactor in the world. This virtual tour describes the reactor, how experiments are conducted, and how spent nuclear fuel is handled and stored. For more information about INL research, visit http://www.facebook.com/idahonationallaboratory.

  1. Preliminary Results of an On-Line, Multi-Spectrometer Fission Product Monitoring System to Support Advanced Gas Reactor Fuel Testing and Qualification in the Advanced Test Reactor at the Idaho National Laboratory

    SciTech Connect (OSTI)

    Dawn M. Scates; John K. Hartwell; John B. Walter; Mark W. Drigert

    2007-10-01T23:59:59.000Z

    The Advanced Gas Reactor -1 (AGR-1) experiment is the first experiment in a series of eight separate low enriched uranium (LEU) oxycarbide (UCO) tri-isotropic (TRISO) particle fuel (in compact form) experiments scheduled for placement in the Advanced Test Reactor (ATR) located at the Idaho National Laboratory (INL). The experiment began irradiation in the ATR with a cycle that reached full power on December 26, 2006 and will continue irradiation for about 2.5 years. During this time six separate capsules, will be irradiated in an inert sweep gas atmosphere with individual on-line fission product monitoring on its effluent to track performance of the fuel in each individual capsule during irradiation. The goals of the irradiation experiment is to provide irradiation performance data to support fuel process development, to qualify fuel for normal operating conditions, to support development and validation of fuel, and to provide irradiated fuel and materials for post irradiation examination (PIE) and safety testing. This paper presents the preliminary test details of the fuel performance, as measured by the control and acquisition software.

  2. Lawrence Livermore National Laboratory underground coal gasification data base. [US DOE-supported field tests; data

    SciTech Connect (OSTI)

    Cena, R. J.; Thorsness, C. B.

    1981-08-21T23:59:59.000Z

    The Department of Energy has sponsored a number of field projects to determine the feasibility of converting the nation's vast coal reserves into a clean efficient energy source via underground coal gasification (UCG). Due to these tests, a significant data base of process information has developed covering a range of coal seams (flat subbituminous, deep flat bituminous and steeply dipping subbituminous) and processing techniques. A summary of all DOE-sponsored tests to data is shown. The development of UCG on a commercial scale requires involvement from both the public and private sectors. However, without detailed process information, accurate assessments of the commercial viability of UCG cannot be determined. To help overcome this problem the DOE has directed the Lawrence Livermore National Laboratory (LLNL) to develop a UCG data base containing raw and reduced process data from all DOE-sponsored field tests. It is our intent to make the data base available upon request to interested parties, to help them assess the true potential of UCG.

  3. Validation of a Hot Water Distribution Model Using Laboratory and Field Data

    SciTech Connect (OSTI)

    Backman, C.; Hoeschele, M.

    2013-07-01T23:59:59.000Z

    Characterizing the performance of hot water distribution systems is a critical step in developing best practice guidelines for the design and installation of high performance hot water systems. Developing and validating simulation models is critical to this effort, as well as collecting accurate input data to drive the models. In this project, the ARBI team validated the newly developed TRNSYS Type 604 pipe model against both detailed laboratory and field distribution system performance data. Validation efforts indicate that the model performs very well in handling different pipe materials, insulation cases, and varying hot water load conditions. Limitations of the model include the complexity of setting up the input file and long simulation run times. In addition to completing validation activities, this project looked at recent field hot water studies to better understand use patterns and potential behavioral changes as homeowners convert from conventional storage water heaters to gas tankless units. Based on these datasets, we conclude that the current Energy Factor test procedure overestimates typical use and underestimates the number of hot water draws. This has implications for both equipment and distribution system performance. Gas tankless water heaters were found to impact how people use hot water, but the data does not necessarily suggest an increase in usage. Further study in hot water usage and patterns is needed to better define these characteristics in different climates and home vintages.

  4. Undergraduate reactor control experiment

    SciTech Connect (OSTI)

    Edwards, R.M.; Power, M.A.; Bryan, M. (Pennsylvania State Univ., University Park (United States))

    1992-01-01T23:59:59.000Z

    A sequence of reactor and related experiments has been a central element of a senior-level laboratory course at Pennsylvania State University (Penn State) for more than 20 yr. A new experiment has been developed where the students program and operate a computer controller that manipulates the speed of a secondary control rod to regulate TRIGA reactor power. Elementary feedback control theory is introduced to explain the experiment, which emphasizes the nonlinear aspect of reactor control where power level changes are equivalent to a change in control loop gain. Digital control of nuclear reactors has become more visible at Penn State with the replacement of the original analog-based TRIGA reactor control console with a modern computer-based digital control console. Several TRIGA reactor dynamics experiments, which comprise half of the three-credit laboratory course, lead to the control experiment finale: (a) digital simulation, (b) control rod calibration, (c) reactor pulsing, (d) reactivity oscillator, and (e) reactor noise.

  5. TYPE A VERIFICATION REPORT FOR THE HIGH FLUX BEAM REACTOR STACK AND GROUNDS, BROOKHAVEN NATIONAL LABORATORY, UPTON, NEW YORK DCN 5098-SR-08-0

    SciTech Connect (OSTI)

    Evan Harpenau

    2011-11-30T23:59:59.000Z

    The U.S. Department of Energy (DOE) Order 458.1 requires independent verification (IV) of DOE cleanup projects (DOE 2011). The Oak Ridge Institute for Science and Education (ORISE) has been designated as the responsible organization for IV of the High Flux Beam Reactor (HFBR) Stack and Grounds area at Brookhaven National Laboratory (BNL) in Upton, New York. The IV evaluation may consist of an in-process inspection with document and data reviews (Type A Verification) or a confirmatory survey of the site (Type B Verification). DOE and ORISE determined that a Type A verification of the documents and data for the HFBR Stack and Grounds: Survey Units (SU) 6, 7, and 8 was appropriate based on the initial survey unit classification, the walkover surveys, and the final analytical results provided by the Brookhaven Science Associates (BSA).

  6. Validation Work to Support the Idaho National Engineering and Environmental Laboratory Calculational Burnup Methodology Using Shippingport Light Water Breeder Reactor (LWBR) Spent Fuel Assay Data

    SciTech Connect (OSTI)

    J. W. Sterbentz

    1999-08-01T23:59:59.000Z

    Six uranium isotopes and fourteen fission product isotopes were calculated on a mass basis at end-of-life (EOL) conditions for three fuel rods from different Light Water Breeder Reactor (LWBR) measurements. The three fuel rods evaluated here were taken from an LWBR seed module, a standard blanket module, and a reflector (Type IV) module. The calculated results were derived using a depletion methodology previously employed to evaluate many of the radionuclide inventories for spent nuclear fuels at the Idaho National Engineering and Environmental Laboratory. The primary goal of the calculational task was to further support the validation of this particular calculational methodology and its application to diverse reactor types and fuels. Result comparisons between the calculated and measured mass concentrations in the three rods indicate good agreement for the three major uranium isotopes (U-233, U-234, U-235) with differences of less than 20%. For the seed and standard blanket rod, the U-233 and U-234 differences were within 5% of the measured values (these two isotopes alone represent greater than 97% of the EOL total uranium mass). For the major krypton and xenon fission product isotopes, differences of less than 20% and less than 30% were observed, respectively. In general, good agreement was obtained for nearly all the measured isotopes. For these isotopes exhibiting significant differences, possible explanations are discussed in terms of measurement uncertainty, complex transmutations, etc.

  7. Laboratory and Field Evidence for Long-Term Starvation Survival of Microorganisms in Subsurface Terrestrial Environments

    SciTech Connect (OSTI)

    Kieft, T.L. [Biology Dept., New Mexico Inst. of Mining and Technology, Socorro, NM (United States); Murphy, E.M. [Pacific Northwest National Lab., Richland, WA (United States); Amy, P.S.; Haldeman, D.L. [Department of Biological Sciences, University of Nevada, Las Vegas, NV (United States); Ringelberg, D. B. [Center for Environmental Biotechnology, University of Tennessee, Knoxville, TN (United States)]|[Oak Ridge National Lab., TN (United States)

    1997-12-31T23:59:59.000Z

    BIOGEOCHEMICAL MODELING OF GROUNDWATER FLOW AND NUTRIENT FLUX IN SUBSURFACE ENVIRONMENTS INDICATES THAT INHABITANT MICROORGANISMS EXPERIENCE SEVERE NUTRIENT LIMITATION. USING LABORATORY AND FIELD METHODS, WE HAVE BEEN TESTING STARVATION SURVIVAL IN SUBSURFACE MICROORGANISMS. IN MICROCOSM EXPERIMENTS, WE HAVE SHOWN THAT STRAINS OF TWO COMMONLY ISOLATED SUBSURFACE GENERA, ARTHROBACTER AND PSEUDOMONAS, ARE ABLE TO MAINTAIN VIABILITY IN LOW-NUTRIENT, NATURAL SUBSURFACE SEDIMENTS FOR OVER ONE YEAR. THESE NON-SPORE-FORMING BACTERIA UNDERGO RAPID INITIAL MINIATURIZATION FOLLOWED BY A STABILIZATION OF CELL SIZE. MEMBRANE LIPID PHOSPHOLIPID FATTY ACID (PLFA) PROFILES OF THE PSEUDOMONAS ARE CONSISTENT WITH ADAPTATION TO NUTRIENT STRESS; ARTHROBACTER APPARENTLY RESPONDS TO NUTRIENT DEPRIVATION WITHOUT ALTERING MEMBRANE PLFA. TO TEST SURVIVABILITY OF MICROORGANISMS OVER A GEOLOGIC TIME SCALE, WE CHARACTERIZED MICROBIAL COMMUNITIES IN A SEQUENCE OF UNSATURATED SEDIMENTS RANGING IN AGE FROM MODEM TO {gt}780,000 years. Sediments were relatively uniform silts in Eastern Washington State. Porewater ages at depth (measured by the chloride mass-balance approach) were as old as 3,600 years. Microbial abundance, biomass, and activities (measured by direct counts, culture counts, total PLFAs, and radiorespirometry) declined with sediment age. The pattern is consistent with laboratory microcosm studies of Microbial survival: rapid short-term change followed by long-term survival of a proportion of cells. Even the oldest sediments evinced a small but viable Microbial community. Microbial survival appeared to be a function of sediment age. Porewater age appeared to influence the markup of surviving communities, as indicated by PLFA profiles. Sites with different Porewater recharge rates and patterns of Pleistocene flooding had different communities.

  8. Argonne National Laboratory's Nondestructive

    E-Print Network [OSTI]

    Kemner, Ken

    Argonne National Laboratory's Nondestructive Evaluation Technologies NDE #12;Over45yearsexperienceinNondestructiveEvaluation... Argonne National Laboratory's world-renowned researchers have a proven the safe operationof advanced nuclear reactors. Argonne's World-Class Nondestructive Evaluation

  9. Laboratory Studies of the Effects of Static and Variable Magnetic Fields on Freshwater Fish

    SciTech Connect (OSTI)

    Cada, Glenn F [ORNL; Bevelhimer, Mark S [ORNL; Fortner, Allison M [ORNL; Riemer, Kristina P [ORNL; Schweizer, Peter E [ORNL

    2012-04-01T23:59:59.000Z

    There is considerable interest in the development of marine and hydrokinetic energy projects in rivers, estuaries, and coastal ocean waters of the United States. Hydrokinetic (HK) technologies convert the energy of moving water in river or tidal currents into electricity, without the impacts of dams and impoundments associated with conventional hydropower or the extraction and combustion of fossil fuels. The Federal Energy Regulatory Commission (FERC) maintains a database that displays the geographical distribution of proposed HK projects in inland and tidal waters (FERC 2012). As of March 2012, 77 preliminary permits had been issued to private developers to study HK projects in inland waters, the development of which would total over 8,000 MW. Most of these projects are proposed for the lower Mississippi River. In addition, the issuance of another 27 preliminary permits for HK projects in inland waters, and 3 preliminary permits for HK tidal projects (totaling over 3,100 MW) were under consideration by FERC. Although numerous HK designs are under development (see DOE 2009 for a description of the technologies and their potential environmental effects), the most commonly proposed projects entail arrays of rotating devices, much like submerged wind turbines, that are positioned in the high-velocity (high energy) river channels. The many diverse HK designs imply a diversity of environmental impacts, but a potential impact common to most is the effect on aquatic organisms of electromagnetic fields (EMF) created by the projects. The submerged electrical generator will emit an EMF into the surrounding water, as will underwater cables used to transmit electricity from the generator to the shore, between individual units in an array (inter-turbine cables), and between the array and a submerged step-up transformer. The electric current moving through these cables will induce magnetic fields in the immediate vicinity, which may affect the behavior or viability of fish and benthic invertebrates (Gill et al. 2005, 2009). It is known that numerous marine and freshwater organisms are sensitive to electrical and magnetic fields, often depending on them for such diverse activities as prey location and navigation (DOE 2009; Normandeau et al. 2011). Despite the wide range of aquatic organisms that are sensitive to EMF and the increasing numbers of underwater electrical transmitting cables being installed in rivers and coastal waters, little information is available to assess whether animals will be attracted, repelled, or unaffected by these new sources of EMF. This knowledge gap is especially significant for freshwater systems, where electrosensitive organisms such as paddlefish and sturgeon may interact with electrical transmission cables. We carried out a series of laboratory experiments to test the sensitivity of freshwater fish and invertebrates to the levels of EMF that are expected to be produced by HK projects in rivers. In this context, EM fields are likely to be emitted primarily by generators in the water column and by transmission cables on or buried in the substrate. The HK units will be located in areas of high-velocity waters that are used as only temporary habitats for most riverine species, so long-term exposure of fish and benthic invertebrates to EMF is unlikely. Rather, most aquatic organisms will be briefly exposed to the fields as they drift downstream or migrate upstream. Because the exposure of most aquatic organisms to EMF in a river would be relatively brief and non-lethal, we focused our investigations on detecting behavioral effects. For example, attraction to the EM fields could result in prolonged exposures to the fields or the HK rotor. On the other hand, avoidance reactions might hinder upstream migrations of fish. The experiments reported here are a continuation of studies begun in FY 2010, which focused on the potential effects of static magnetic fields on snails, clams, and fathead minnows (Cada et al. 2011). Those experiments found little indication that the behaviors of these freshwater species were a

  10. 1 a publication of the National High Magnetic Field Laboratory1111111 a pa pa pa pa pa pa pppublublubublublublblublblblblbllblbblblbblbbbbbbbbbbbbbblbbbbblubbbbbbbbbbbbblllbbbbbblblbbbbbbbbbbbbbllbbbb icaicaicacicicaicciicicicciiciciciccciciccccciiiiciiii

    E-Print Network [OSTI]

    Weston, Ken

    related research in all areas of science and engineering.The Magnet Lab is supported by the National1 a publication of the National High Magnetic Field Laboratory1111111 a pa pa pa pa pa pa magnet lab packs a big punch. InThisIssue VOLUME 3: ISSUE 2 F E A T U R E S Flux is a twice

  11. Program management plan for the Molten Salt Reactor Experiment Remediation Project at Oak Ridge National Laboratory, Oak Ridge, Tennessee

    SciTech Connect (OSTI)

    NONE

    1996-09-01T23:59:59.000Z

    The primary mission of the Molten Salt Reactor Experiment (MSRE) Remediation Project is to effectively implement the risk-reduction strategies and technical plans to stabilize and prevent further migration of uranium within the MSRE facility, remove the uranium and fuel salts from the system, and dispose of the fuel and flush salts by storage in appropriate depositories to bring the facility to a surveillance and maintenance condition before decontamination and decommissioning. This Project Management Plan (PMP) for the MSRE Remediation Project details project purpose; technical objectives, milestones, and cost objectives; work plan; work breakdown structure (WBS); schedule; management organization and responsibilities; project management performance measurement planning, and control; conduct of operations; configuration management; environmental, safety, and health compliance; quality assurance; operational readiness reviews; and training.

  12. Crack growth rates and metallographic examinations of Alloy 600 and Alloy 82/182 from field components and laboratory materials tested in PWR environments.

    SciTech Connect (OSTI)

    Alexandreanu, B.; Chopra, O. K.; Shack, W. J.

    2008-05-05T23:59:59.000Z

    In light water reactors, components made of nickel-base alloys are susceptible to environmentally assisted cracking. This report summarizes the crack growth rate results and related metallography for field and laboratory-procured Alloy 600 and its weld alloys tested in pressurized water reactor (PWR) environments. The report also presents crack growth rate (CGR) results for a shielded-metal-arc weld of Alloy 182 in a simulated PWR environment as a function of temperature between 290 C and 350 C. These data were used to determine the activation energy for crack growth in Alloy 182 welds. The tests were performed by measuring the changes in the stress corrosion CGR as the temperatures were varied during the test. The difference in electrochemical potential between the specimen and the Ni/NiO line was maintained constant at each temperature by adjusting the hydrogen overpressure on the water supply tank. The CGR data as a function of temperature yielded activation energies of 252 kJ/mol for a double-J weld and 189 kJ/mol for a deep-groove weld. These values are in good agreement with the data reported in the literature. The data reported here and those in the literature suggest that the average activation energy for Alloy 182 welds is on the order of 220-230 kJ/mol, higher than the 130 kJ/mol commonly used for Alloy 600. The consequences of using a larger value of activation energy for SCC CGR data analysis are discussed.

  13. The Tokamak Fusion Test Reactor decontamination and decommissioning project and the Tokamak Physics Experiment at the Princeton Plasma Physics Laboratory. Environmental Assessment

    SciTech Connect (OSTI)

    NONE

    1994-05-27T23:59:59.000Z

    If the US is to meet the energy needs of the future, it is essential that new technologies emerge to compensate for dwindling supplies of fossil fuels and the eventual depletion of fissionable uranium used in present-day nuclear reactors. Fusion energy has the potential to become a major source of energy for the future. Power from fusion energy would provide a substantially reduced environmental impact as compared with other forms of energy generation. Since fusion utilizes no fossil fuels, there would be no release of chemical combustion products to the atmosphere. Additionally, there are no fission products formed to present handling and disposal problems, and runaway fuel reactions are impossible due to the small amounts of deuterium and tritium present. The purpose of the TPX Project is to support the development of the physics and technology to extend tokamak operation into the continuously operating (steady-state) regime, and to demonstrate advances in fundamental tokamak performance. The purpose of TFTR D&D is to ensure compliance with DOE Order 5820.2A ``Radioactive Waste Management`` and to remove environmental and health hazards posed by the TFTR in a non-operational mode. There are two proposed actions evaluated in this environmental assessment (EA). The actions are related because one must take place before the other can proceed. The proposed actions assessed in this EA are: the decontamination and decommissioning (D&D) of the Tokamak Fusion Test Reactor (TFTR); to be followed by the construction and operation of the Tokamak Physics Experiment (TPX). Both of these proposed actions would take place primarily within the TFTR Test Cell Complex at the Princeton Plasma Physics Laboratory (PPPL). The TFTR is located on ``D-site`` at the James Forrestal Campus of Princeton University in Plainsboro Township, Middlesex County, New Jersey, and is operated by PPPL under contract with the United States Department of Energy (DOE).

  14. Underground coal gasification: Development of theory, laboratory experimentation, interpretation, and correlation with the Hanna field tests: Final report

    SciTech Connect (OSTI)

    Gunn, R.D.; Krantz, W.B.

    1987-03-01T23:59:59.000Z

    The following report is a description of a 7 year effort to develop a theoretical understanding of the underground coal gasification process. The approach used is one of the mathematical model development from known chemical and principles, simplification of the models to isolate important effects, and through validation of models to isolate important effects, and through validation of models with laboratory experiments and field test data. Chapter I contains only introductory material. Chapter II describes the development of two models for reverse combustion: a combustion model and a linearized model for combustion front instability. Both models are required for realistic field predictions. Chapter III contains a discussion of a successful forward gasification model. Chapter IV discusses the spalling-enhanced-drying model is applicable to prediction of cavity growth and subsidence. Chapter VI decribes the correct use of energy and material balances for the analysis of UCG field test data. Chapter VII shows how laboratory experiments were used to validate the models for reverse combustion and forward gasification. It is also shown that laboratory combustion tube experiments can be used to simulate gas compositions expected from field tests. Finally, Chapter VII presents results from a comprehensive economic analysis of UCG involving 1296 separate cases. 37 refs., 49 figs., 12 tabs.

  15. Sandia National Laboratories: Geomechanics Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    including studies of coupled effects Extrapolation of laboratory measurements to field conditions In situ stress measurements and evaluation of in situ boundary conditions...

  16. ORGANISATIONAL CHART 2009 Laboratory: Research, Development and Services

    E-Print Network [OSTI]

    of the Centre REACTOR SAFETY COMMITTEE Chairman: I.A. Papazoglou ADMINISTRATIVE SUPPORT SECRETARIAT: I. Marketou G. Pantelias Operation & Maintenance of Research Reactor I. Stamatelatos Nuclear Analytical Technology S. Mesoloras RESEARCH REACTOR LABORATORY Deputy: I. Stamatelatos Reactor Safety C. Housiadas

  17. 2013 Annual Industrial Wastewater Reuse Report for the Idaho National Laboratory Site’s Advanced Test Reactor Complex Cold Waste Pond

    SciTech Connect (OSTI)

    Mike Lewis

    2014-02-01T23:59:59.000Z

    This report describes conditions, as required by the state of Idaho Industrial Wastewater Reuse Permit (#LA 000161 01, Modification B), for the wastewater land application site at the Idaho National Laboratory Site’s Advanced Test Reactor Complex Cold Waste Pond from November 1, 2012–October 31, 2013. The report contains the following information: • Facility and system description • Permit required effluent monitoring data and loading rates • Groundwater monitoring data • Status of compliance activities • Noncompliance issues • Discussion of the facility’s environmental impacts. During the 2013 permit year, approximately 238 million gallons of wastewater was discharged to the Cold Waste Pond. This is well below the maximum annual permit limit of 375 million gallons. As shown by the groundwater sampling data, sulfate and total dissolved solids concentrations are highest near the Cold Waste Pond and decrease rapidly as the distance from the Cold Waste Pond increases. Although concentrations of sulfate and total dissolved solids are elevated near the Cold Waste Pond, both parameters are below the Ground Water Quality Rule Secondary Constituent Standards in the down gradient monitoring wells.

  18. 2010 Annual Industrial Wastewater Reuse Report for the Idaho National Laboratory Site’s Advanced Test Reactor Complex Cold Waste Pond

    SciTech Connect (OSTI)

    mike lewis

    2011-02-01T23:59:59.000Z

    This report describes conditions, as required by the state of Idaho Industrial Wastewater Reuse Permit (#LA 000161 01, Modification B), for the wastewater land application site at the Idaho National Laboratory Site’s Advanced Test Reactor Complex Cold Waste Pond from November 1, 2009 through October 31, 2010. The report contains the following information: • Facility and system description • Permit required effluent monitoring data and loading rates • Groundwater monitoring data • Status of compliance activities • Discussion of the facility’s environmental impacts During the 2010 permit year, approximately 164 million gallons of wastewater were discharged to the Cold Waste Pond. As shown by the groundwater sampling data, sulfate and total dissolved solids concentrations are highest near the Cold Waste Pond and decrease rapidly as the distance from the Cold Waste Pond increases. Although concentrations of sulfate and total dissolved solids are elevated near the Cold Waste Pond, both parameters were below the Ground Water Quality Rule Secondary Constituent Standards in the down gradient monitoring wells.

  19. Environmental health and safety plan for the Molten Salt Reactor Experiment Remediation Project at Oak Ridge National Laboratory, Oak Ridge, Tennessee

    SciTech Connect (OSTI)

    Burman, S.N.; Tiner, P.F.; Gosslee, R.C.

    1998-01-01T23:59:59.000Z

    The Lockheed Martin Energy Systems, Inc. (Energy Systems) policy is to provide a safe and healthful workplace for all employees and subcontractors. The accomplishment of this policy requires that operations at the Molten Salt Reactor Experiment (MSRE) facility at the Department of Energy (DOE) Oak Ridge National Laboratory (ORNL) are guided by an overall plan and consistent proactive approach to environmental protection and safety and health (S and H) issues. The policy and procedures in this plan apply to all MSRE operations. The provisions of this plan are to be carried out whenever activities are initiated at the MSRE that could be a threat to human health or the environment. This plan implements a policy and establishes criteria for the development of procedures for day-to-day operations to prevent or minimize any adverse impact to the environment and personnel safety and health and to meet standards that define acceptable management of hazardous and radioactive materials and wastes. The plan is written to utilize past experience and the best management practices to minimize hazards to human health or the environment from events such as fires, explosions, falls, mechanical hazards, or any unplanned release of hazardous or radioactive materials to the air.

  20. Modeling and analysis framework for core damage propagation during flow-blockage-initiated accidents in the Advanced Neutron Source Reactor at Oak Ridge National Laboratory

    SciTech Connect (OSTI)

    Kim, S.H.; Taleyarkhan, R.P.; Navarro-Valenti, S.; Georgevich, V.

    1995-09-01T23:59:59.000Z

    This paper describes modeling and analysis to evaluate the extent of core damage during flow blockage events in the Advanced Neutron Source (ANS) reactor planned to be built at the Oak Ridge National Laboratory (ORNL). Damage propagation is postulated to occur from thermal conduction between damaged and undamaged plates due to direct thermal contact. Such direct thermal contact may occur because of fuel plate swelling during fission product vapor release or plate buckling. Complex phenomena of damage propagation were modeled using a one-dimensional heat transfer model. A scoping study was conducted to learn what parameters are important for core damage propagation, and to obtain initial estimates of core melt mass for addressing recriticality and steam explosion events. The study included investigating the effects of the plate contact area, the convective heat transfer coefficient, thermal conductivity upon fuel swelling, and the initial temperature of the plate being contacted by the damaged plate. Also, the side support plates were modeled to account for their effects on damage propagation. The results provide useful insights into how various uncertain parameters affect damage propagation.

  1. In Situ Grouting of Liquid Waste Disposal Trenches and Experimental Reactor Fuel Disposal Wells at Oak Ridge National Laboratory

    SciTech Connect (OSTI)

    Johnson, Ch.; Cange, J.; Lambert, R. [Bechtel Jacobs Company, LLC, Oak Ridge, TN (United States); Trujillo, E. [BWXT Pantex, LLC, Amarillo, TX (United States); Julius, J. [U.S. DOE, Oak Ridge Operations Office, Oak Ridge, TN (United States)

    2008-07-01T23:59:59.000Z

    In the early to mid-1960's, liquid low-level wastes (LLLW) generated at Oak Ridge National Laboratory were disposed of in specially-constructed, gravel-filled trenches within the Melton Valley watershed at the lab. The initial selected remedy for Trenches 5 and 7 was in situ vitrification; however, an amendment to the record of decision changed the remedy to in situ grouting of the trenches. The work was accomplished by filling the void space within the crushed stone section of each trench with cementitious grout. The contaminated soil surrounding the trenches (1-m perimeter) was then grouted with acrylamide grout. At the HRE fuel wells, a 1-m ring of soil surrounding the fuel wells was grouted with acrylamide. The results of the hydraulic conductivity tests ranged from 4.74 x 10{sup -6} to 3.60 x 10{sup -7} cm/sec, values that were well below the 1 x 10{sup -5} cm/sec design criterion. In summary: The ISG Project was conducted to decrease hydraulic conductivity and thereby decrease water flow and contaminate migration from the area of the trenches. The initial remedy for Trenches 5 and 7 in the Melton Valley ROD was for in situ vitrification of the trench matrix. The remedy was changed to in situ grouting of the trenches and HRE fuel wells through an amendment to the ROD after moisture was found in the trenches. The grouting of the trenches was accomplished by filling the void space within the crushed stone section of each trench with cementitious grout. The contaminated soil surrounding the trenches (1-m perimeter) was then grouted with acrylamide grout to further reduce water infiltration. Soil backfill above each of the seven HRE fuel wells was removed to a depth of approximately 1 m by augering, and the soils were replaced with a cement plug to prevent water infiltration from migrating down the original borehole. Soil surrounding the fuel wells was then grouted with acrylamide to ensure water infiltration through the HRE fuel wells is prevented. A summary of the quantities used is shown. After completion of grouting, in-situ hydraulic conductivities of the grouted materials were measured to verify attainment of the design objective. The areas were then covered with multi-layer caps as part of the MV hydrologic isolation project. (authors)

  2. B Reactor Tour Registration Opens March 2 - Visitors Have Come...

    Energy Savers [EERE]

    and 21. Visitors will see the front face of the reactor, fan ventilation rooms, water valve pit, water process laboratories, accumulator room, and the reactor's control room. In...

  3. astra research reactor: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    facilities operated by the department include the research reactor DR 3, the Isotope Laboratory 140 Compound cryopump for fusion reactors CERN Preprints Summary: We reconsider an...

  4. DOE - Office of Legacy Management -- Westinghouse Advanced Reactors...

    Office of Legacy Management (LM)

    Advanced Reactors Div Plutonium and Advanced Fuel Labs - PA 10 FUSRAP Considered Sites Site: WESTINGHOUSE ADVANCED REACTORS DIV., PLUTONIUM FUEL LABORATORIES, AND THE ADVANCED FUEL...

  5. Light Water Reactor Sustainability Program: Computer-based procedure for field activities: results from three evaluations at nuclear power plants

    SciTech Connect (OSTI)

    Oxstrand, Johanna [Idaho National Laboratory; Bly, Aaron [Idaho National Laboratory; LeBlanc, Katya [Idaho National Laboratory

    2014-09-01T23:59:59.000Z

    Nearly all activities that involve human interaction with the systems of a nuclear power plant are guided by procedures. The paper-based procedures (PBPs) currently used by industry have a demonstrated history of ensuring safety; however, improving procedure use could yield tremendous savings in increased efficiency and safety. One potential way to improve procedure-based activities is through the use of computer-based procedures (CBPs). Computer-based procedures provide the opportunity to incorporate context driven job aids, such as drawings, photos, just-in-time training, etc into CBP system. One obvious advantage of this capability is reducing the time spent tracking down the applicable documentation. Additionally, human performance tools can be integrated in the CBP system in such way that helps the worker focus on the task rather than the tools. Some tools can be completely incorporated into the CBP system, such as pre-job briefs, placekeeping, correct component verification, and peer checks. Other tools can be partly integrated in a fashion that reduces the time and labor required, such as concurrent and independent verification. Another benefit of CBPs compared to PBPs is dynamic procedure presentation. PBPs are static documents which limits the degree to which the information presented can be tailored to the task and conditions when the procedure is executed. The CBP system could be configured to display only the relevant steps based on operating mode, plant status, and the task at hand. A dynamic presentation of the procedure (also known as context-sensitive procedures) will guide the user down the path of relevant steps based on the current conditions. This feature will reduce the user’s workload and inherently reduce the risk of incorrectly marking a step as not applicable and the risk of incorrectly performing a step that should be marked as not applicable. As part of the Department of Energy’s (DOE) Light Water Reactors Sustainability Program, researchers at Idaho National Laboratory (INL) along with partners from the nuclear industry have been investigating the design requirements for computer-based work instructions (including operations procedures, work orders, maintenance procedures, etc.) to increase efficiency, safety, and cost competitiveness of existing light water reactors.

  6. Laboratory and Field Evaluations of Oviposition Responses of Aedes albopictus and Aedes triseriatus (Diptera: Culicidae)

    E-Print Network [OSTI]

    (Diptera: Culicidae) to Oak Leaf Infusions JONATHAN D. TREXLER, CHARLES S. APPERSON, AND COBY SCHAL. 35(6): 967-976 (1998) ABSTRACT Organic infusions created by fermenting white oak (Quercus alba L for gravid Aedes albopictus (Skuse) and Aedes triseriatus (Say). Infusions were bioassayed in the laboratory

  7. A survey of field instruction laboratories in the United States and Canada

    E-Print Network [OSTI]

    Mikus, Timothy August

    1981-01-01T23:59:59.000Z

    Person in charge of facility Address Enrollment at parent institution Enrollment in recreation and parks department Degrees awarded Major program emphasis areas Location of laboratory 16 When facility was acquired Original state of property raw... housing other buildings Recreational facilities Programming Staff and personnel Manager responsibility breakdown Program and use Other departments using facility Primary purpose of facility Major changes perceived occupies In addition...

  8. NATIONAL HIGH MAGNETIC FIELD LABORATORY REPORTSSUMMER EDITION VOLUME 13 N0. 3 2006

    E-Print Network [OSTI]

    Weston, Ken

    UPPort scientists neWs FroM tHe dc FieLd FaciLitY: QUantUM HaLL eFFect in graPHene at HigH Magnetic FieLds ed NEARING COMPLETION 14 NEWS FROM THE DC FIELD FACILITY QuantuM Hall effect In grapHene at HIgH MagnetIc f

  9. Evaluation of the Molten Salt Reactor Experiment drain tanks for reuse in salt disposal, Oak Ridge National Laboratory, Oak Ridge, Tennessee

    SciTech Connect (OSTI)

    NONE

    1998-05-01T23:59:59.000Z

    This report was prepared to identify the source documentation used to evaluate the drain tanks in the Molten Salt Reactor Experiment (MSRE) at Oak Ridge National Laboratory (ORNL). The evaluation considered the original quality of the tanks, their service history, and their intended use during the removal of fluoride salts. It also includes recommendations for a quality verification plan. The estimates of corrosion damage to the salt containing system at the MSRE are low enough to lend optimism that the system will be fit for its intended use, which is disposal of the salt by transferring it to transport containers. The expected corrosion to date is estimated between 10 and 50 mil, or 2 to 10% of the shell wall. The expected corrosion rate when the tanks are used to remove the salt at 110 F is estimated to be .025 to 0.1 mil per hour of exposure to HF and molten salt. To provide additional assurance that the estimates of corrosion damage are accurate, cost effective nondestructive examination (NDE) has been recommended. The NDE procedures are compared with industry standards and give a perspective for the extent of additional measures taken in the recommendation. A methodology for establishing the remaining life has been recommended, and work is progressing towards providing an engineering evaluation based upon thickness and design conditions for the future use of the tanks. These extra measures and the code based analysis will serve to define the risk of salt or radioactive gases leaking during processing and transfer of the salt as acceptable.

  10. Advanced Control Design and Field Testing for Wind Turbines at the National Renewable Energy Laboratory: Preprint

    SciTech Connect (OSTI)

    Hand, M. M.; Johnson, K. E.; Fingersh, L. J.; Wright, A. D.

    2004-05-01T23:59:59.000Z

    Utility-scale wind turbines require active control systems to operate at variable rotational speeds. As turbines become larger and more flexible, advanced control algorithms become necessary to meet multiple objectives such as speed regulation, blade load mitigation, and mode stabilization. At the same time, they must maximize energy capture. The National Renewable Energy Laboratory has developed control design and testing capabilities to meet these growing challenges.

  11. Exposure assessment of Electromagnetic Fields from Wireless Computer Networks (Wi-Fi); Phase 1 Laboratory Measurements

    E-Print Network [OSTI]

    Haddadi, Hamed

    Exposure assessment of Electromagnetic Fields from Wireless Computer Networks (Wi-Fi); Phase 1 networks, the most popular Wi-Fi devices used in the schools were identified. The regulatory standards bisecting the screen and keyboard. The maximum electric field strength recorded at 1 m varied from 719 mVm-1

  12. New Mexico Geochronology Research Laboratory: Zuni-Bandera volcanic field road log

    SciTech Connect (OSTI)

    Laughlin, A.W.; Charles, R.; Reid, K.; White, C.

    1993-01-01T23:59:59.000Z

    This field conference was designed to assemble a group of Quaternary researchers to examine the possibility of using the Zuni-Bandera volcanic field in western New Mexico as a test area for evaluating and calibrating various Quaternary dating techniques. The Zuni-Bandera volcanic-field is comprised of a large number of basaltic lava flows ranging in age from about 700 to 3 ka. Older basalts are present in the Mount Taylor volcanic field to the north. Geologic mapping has been completed for a large portion of the Zuni-Bandera volcanic field and a number of geochronological investigations have been initiated in the area. While amending this conference, please consider how you might bring your expertise and capabilities to bear on solving the many problem in Quaternary geochronology.

  13. New Mexico Geochronology Research Laboratory: Zuni-Bandera volcanic field road log

    SciTech Connect (OSTI)

    Laughlin, A.W.; Charles, R.; Reid, K.; White, C.

    1993-04-01T23:59:59.000Z

    This field conference was designed to assemble a group of Quaternary researchers to examine the possibility of using the Zuni-Bandera volcanic field in western New Mexico as a test area for evaluating and calibrating various Quaternary dating techniques. The Zuni-Bandera volcanic-field is comprised of a large number of basaltic lava flows ranging in age from about 700 to 3 ka. Older basalts are present in the Mount Taylor volcanic field to the north. Geologic mapping has been completed for a large portion of the Zuni-Bandera volcanic field and a number of geochronological investigations have been initiated in the area. While amending this conference, please consider how you might bring your expertise and capabilities to bear on solving the many problem in Quaternary geochronology.

  14. Field performance of residential refrigerators: A comparison with the laboratory test

    SciTech Connect (OSTI)

    Meier, A.; Jansky, R.

    1991-05-01T23:59:59.000Z

    The field electricity use of 209 refrigerators was compared to their labeled consumption. The mean field use of all units was 1009 kWh/year, 882 kWh/year for top-freezers, and 1366 kWh/year for side-by-sides. There was considerable scatter in the results but, in general, the label overpredicted field use. The relationship could be best described with the formula, Annual Field Use = 0.94 [times] (Annual Label Us) - 85. For a typical unit with a labeled use of 1160 kWh/year, the field use was about 15% lower. There was considerable seasonality in energy use: the peak weeks generally occurred around the beginning of August. However, there was no simple relationship between the label value and the peak-week consumption.

  15. Field performance of residential refrigerators: A comparison with the laboratory test

    SciTech Connect (OSTI)

    Meier, A.; Jansky, R.

    1991-05-01T23:59:59.000Z

    The field electricity use of 209 refrigerators was compared to their labeled consumption. The mean field use of all units was 1009 kWh/year, 882 kWh/year for top-freezers, and 1366 kWh/year for side-by-sides. There was considerable scatter in the results but, in general, the label overpredicted field use. The relationship could be best described with the formula, Annual Field Use = 0.94 {times} (Annual Label Us) - 85. For a typical unit with a labeled use of 1160 kWh/year, the field use was about 15% lower. There was considerable seasonality in energy use: the peak weeks generally occurred around the beginning of August. However, there was no simple relationship between the label value and the peak-week consumption.

  16. Chaotic electron dynamics around a single elliptically shaped antidot High Magnetic Field Laboratory CNRS, Boite Postale 166, F-38042 Grenoble, France

    E-Print Network [OSTI]

    Gusev, Guennady

    , Boite Postale 166, F-38042 Grenoble, France J. C. Portal High Magnetic Field Laboratory CNRS, Boite, Russia Received 30 April 1996 The classical dynamics of a charged particle colliding ballistically around

  17. Procedure of recovery of pin-by-pin fields of energy release in the core of VVER-type reactor for the BIPR-8 code

    SciTech Connect (OSTI)

    Gordienko, P. V., E-mail: gorpavel@vver.kiae.ru; Kotsarev, A. V.; Lizorkin, M. P. [National Research Center Kurchatov Institute (Russian Federation)

    2014-12-15T23:59:59.000Z

    The procedure of recovery of pin-by-pin energy-release fields for the BIPR-8 code and the algorithm of the BIPR-8 code which is used in nodal computation of the reactor core and on which the recovery of pin-by-pin fields of energy release is based are briefly described. The description and results of the verification using the module of recovery of pin-by-pin energy-release fields and the TVS-M program are given.

  18. In Situ NDA Conformation Measurements Performed at Auxiliary Charcoal Bed and Other Main Charcoal Beds After Uranium Removal from Molten Salt Reactor Experiment ACB at Oak Ridge National Laboratory

    SciTech Connect (OSTI)

    Haghighi, M. H.; Kring, C. T.; McGehee, J. T.; Jugan, M. R.; Chapman, J.; Meyer, K. E.

    2002-02-26T23:59:59.000Z

    The Molten Salt Reactor Experiment (MSRE) site is located in Tennessee, on the U.S. Department of Energy (DOE) Oak Ridge Reservation (ORR). The MSRE was run by Oak Ridge National Laboratory (ORNL) to demonstrate the desirable features of the molten-salt concept in a practical reactor that could be operated safely and reliably. It introduced the idea of a homogeneous reactor using fuel salt media and graphite moderation for power and breeder reactors. The MSRE reactor and associated components are located in cells beneath the floor in the high-bay area of Building 7503. The reactor was operated from June 1965 to December 1969. When the reactor was shut down, fuel salt was drained from the reactor circuit to two drain tanks. A ''clean'' salt was then circulated through the reactor as a decontamination measure and drained to a third drain tank. When operations ceased, the fuel and flush salts were allowed to cool and solidify in the drain tanks. At shutdown, the MSRE facility complex was placed in a surveillance and maintenance program. Beginning in 1987, it was discovered that gaseous uranium (U-233/U-232) hexafluoride (UF6) had moved throughout the MSRE process systems. The UF6 had been generated when radiolysis in the fluorine salts caused the individual constituents to dissociate to their component atoms, including free fluorine. Some of the free fluorine combined with uranium fluorides (UF4) in the salt to produce UF6. UF6 is gaseous at slightly above ambient temperatures; thus, periodic heating of the fuel salts (which was intended to remedy the radiolysis problems) and simple diffusion had allowed the UF6 to move out of the salt and into the process systems of MSRE. One of the systems that UF6 migrated into due to this process was the offgas system which is vented to the MSRE main charcoal beds and MSRE auxiliary charcoal bed (ACB). Recently, the majority of the uranium laden-charcoal material residing within the ACB was safely and successfully removed using the uranium deposit removal system and equipment. After removal a series of NDA measurements was performed to determine the amount of uranium material remaining in the ACB, the amount of uranium material removed from the ACB, and the amount of uranium material remaining in the uranium removal equipment due to removal activities.

  19. Implementation of a DOD ELAP Conforming Quality System at a FUSRAP Site Field Temporary Radiological Screening Laboratory - 13500

    SciTech Connect (OSTI)

    Winters, M.S.; McElheny, G. [Cabrera Services Inc. 473 Silver Lane, East Hartford, CT (United States)] [Cabrera Services Inc. 473 Silver Lane, East Hartford, CT (United States); Houston, L.M.; Masset, M.R.; Spector, H.L. [United States Army Corps of Engineers -1776 Niagara Street, Buffalo, NY (United States)] [United States Army Corps of Engineers -1776 Niagara Street, Buffalo, NY (United States)

    2013-07-01T23:59:59.000Z

    A case study is presented on specific program elements that supported the transition of a temporary field radiological screening lab to an accredited operation capable of meeting client quality objectives for definitive results data. The temporary field lab is located at the Formerly Utilized Sites Remedial Action Program Linde Site in Tonawanda, NY. The site is undergoing remediation under the direction of the United States Army Corps of Engineers - Buffalo District, with Cabrera Services Inc. as the remediation contractor and operator of the on-site lab. Analysis methods employed in the on-site lab include gross counting of alpha and beta particle activity on swipes and air filters and gamma spectroscopy of soils and other solid samples. A discussion of key program elements and lessons learned may help other organizations considering pursuit of accreditation for on-site screening laboratories. (authors)

  20. STATEMENT OF CONSIDERATIONS Advance Test Reactor Class Waiver

    Broader source: Energy.gov (indexed) [DOE]

    Advance Test Reactor Class Waiver W(C)-2008-004 The Advanced Test Reactor (A TR) is a pressurized water test reactor at the Idaho National Laboratory (INL) that operates at low...

  1. In situ vitrification application to buried waste: Final report of intermediate field tests at Idaho National Engineering Laboratory

    SciTech Connect (OSTI)

    Callow, R.A.; Weidner, J.R.; Loehr, C.A.; Bates, S.O. (EG and G Idaho, Inc., Idaho Falls, ID (United States)); Thompson, L.E.; McGrail, B.P. (Pacific Northwest Lab., Richland, WA (United States))

    1991-08-01T23:59:59.000Z

    This report describes two in situ vitrification field tests conducted on simulated buried waste pits during June and July 1990 at the Idaho National Engineering Laboratory. In situ vitrification, an emerging technology for in place conversion of contaminated soils into a durable glass and crystalline waste form, is being investigated as a potential remediation technology for buried waste. The overall objective of the two tests was to access the general suitability of the process to remediate waste structures representative of buried waste found at Idaho National Engineering Laboratory. In particular, these tests, as part of a treatability study, were designed to provide essential information on the field performance of the process under conditions of significant combustible and metal wastes and to test a newly developed electrode feed technology. The tests were successfully completed, and the electrode feed technology successfully processed the high metal content waste. Test results indicate the process is a feasible technology for application to buried waste. 33 refs., 109 figs., 39 tabs.

  2. Bose Glass of Quasiparticles in Doped Quantum Magnet Gregory S. Boebinger, National High Magnetic Field Laboratory

    E-Print Network [OSTI]

    Weston, Ken

    Bose Glass of Quasiparticles in Doped Quantum Magnet Gregory S. Boebinger, National High Magnetic. This BEC can localize in the presence of disorder caused by Br- doping to form a Bose Glass. The BEC-Bose Glass (BEC-BG) transition can be carefully controlled by magnetic field, allowing us to sensitively

  3. SUMMERVOLUME 14 No.31 SUMMER 2007 VOLUME 14 NO. 3 NATIONAL HIGH MAGNETIC FIELD LABORATORY

    E-Print Network [OSTI]

    Weston, Ken

    a team of engineers capable of pushing magnetic fields to new highs? you already know the answer to announce that a key person who helped lead the magnet engineering team to world prominence no longer has of the Magnet Science & Technology group, as well as its chief engineer. In addition to keeping many balls

  4. Proton Transport by the Influenza M2 Protein Gregory S. Boebinger, National High Magnetic Field Laboratory

    E-Print Network [OSTI]

    Weston, Ken

    Proton Transport by the Influenza M2 Protein Gregory S. Boebinger, National High Magnetic Field infections) in native like lipid bilayers has allowed us to determine a novel mechanism for proton transport that has not been observed in any other protein. At the heart of this proton channel is a set of 4

  5. There are numerous laboratory and field examples in which low-frequency

    E-Print Network [OSTI]

    Korneev, Valeri A.

    reservoir (marked Ju0, the cracked shale reservoir) is represented by 15-20 m thick fractured shale contains the most important information about the reservoir. Let us consider three examples of field data processing. In all of them, the hydrocarbon-rich zones of the reservoir were localized using low

  6. Wild mouse open field behavior is embedded within the multidimensional data space spanned by laboratory

    E-Print Network [OSTI]

    Golani, Ilan

    Wild mouse open field behavior is embedded within the multidimensional data space spanned- ius), while studies of wild-mouse behavior are relatively rare. An interesting question is the relationship between the phenotypes of M. laboratorius and the phenotypes of their wild ancestors

  7. Reactor Operations informal monthly report September 1994

    SciTech Connect (OSTI)

    Junker, L.

    1994-09-01T23:59:59.000Z

    This paper presents operations at the MRR and HFBR reactors at Brookhaven National Laboratory for September 1994. Reactor run-times, instrumentation, mechanical maintenance, occurrence reports and safety information are listed. Irradiation summaries are included.

  8. Comparison of parameter sensitivities between a laboratory and field scale model of uranium transport in a dual domain, distributed-rate reactive system

    SciTech Connect (OSTI)

    Greskowiak, Janek; Prommer, Henning; Liu, Chongxuan; Post, Vincent; Ma, Rui; Zheng, Chunmiao; Zachara, John M.

    2010-09-16T23:59:59.000Z

    A laboratory-derived conceptual and numerical model for U(VI) transport at the Hanford 300A site, Washington, USA, was applied to a range of field-scale scenarios of different complexity to systematically evaluate model parameter sensitivities. The model, originally developed from column experiment data, included distributed-rate surface complexation kinetics of U(VI), aqueous speciation, and physical non-equilibrium transport processes. A rigorous parameter sensitivity analysis was carried out with respect to different state variables: concentrations, mass fluxes, total mass and spatial moments of dissolved U(VI) for laboratory systems, and various simulation scenarios that represented the field-scale characteristics at the Hanford 300A site. The field-scenarios accounted for transient groundwater flow and variable geochemical conditions driven by frequent water level changes of the nearby Columbia River. Simulations indicated that the transient conditions significantly affected U(VI) plume migration at the site. The parameter sensitivities were largely similar between the laboratory and field scale systems. Where differences existed, they were shown to result from differing degrees of U(VI) adsorption disequilibrium caused by hydraulic or hydrogeochemical conditions. Adorption disequilibrium was found to differ (i) between short duration peak flow events at the field scale and much longer flow events in the laboratory, (ii) for changing groundwater chemical compositions due to river water intrusion, and (iii) for different sampling locations at the field scale. Parameter sensitivities were also found to vary with respect to the different investigated state variables. An approach is demonstrated that elucidates the most important parameters of a laboratory-scale model that must constrained in both the laboratory and field for meaningful field application.

  9. Laboratory and field investigation of the adsorption of gaseous organic compounds onto quartz filters

    SciTech Connect (OSTI)

    Kirchstetter, Thomas W.; Corrigan, Craig E.; Novakov, T.

    2000-07-01T23:59:59.000Z

    A common method for measuring the mass of organic carbon in airborne particulate matter involves collection on a quartz filter and subsequent thermal analysis. If unaccounted for, the adsorption of organic gases onto quartz filters will lead to the overestimation of aerosol organic carbon concentrations (positive artifact). A recommended method of correction for the positive artifact involves sampling with a backup filter. Placed behind either the primary quartz filter, or behind a Teflon filter and collected in parallel with the primary quartz filter, the carbon content of the quartz backup filter is a measure of the adsorbed organic material on the primary quartz filter. In this paper, we illustrate the application of this technique to samples collected in Berkeley, California. While the tandem quartz filter method can be successfully applied to correct for the positive artifact, we discuss two cases when this method will fail. We have found that the capacity for adsorption of organic gases is not uniform for all filters. Instead, filters manufactured by the same company, but having different lot numbers, exhibit variable adsorption capacity. Thus, a filter pair composed of filters from different lots may lead to significant under- or overestimation of particulate organic carbon concentration. Additionally, we have observed that the tandem filter method under-corrects for the positive artifact if the sampling time is short (few hours). Laboratory experiments with vapors of single organic compounds corroborate results based on ambient samples. The evolution of adsorbed organic gases, particularly polar compounds, during thermal analysis indicates that a single compound may experience two distinct adsorbent-adsorbate binding energies. Adsorbed gases may co-evolve with particles at temperatures in excess of 250-degree C.

  10. Geoscience Perspectives in Carbon Sequestration - Educational Training and Research Through Classroom, Field, and Laboratory Investigations

    SciTech Connect (OSTI)

    Wronkiewicz, David; Paul, Varum; Abousif, Alsedik; Ryback, Kyle

    2013-09-30T23:59:59.000Z

    The most effective mechanism to limit CO{sub 2} release from underground Geologic Carbon Sequestration (GCS) sites over multi-century time scales will be to convert the CO{sub 2} into solid carbonate minerals. This report describes the results from four independent research investigations on carbonate mineralization: 1) Colloidal calcite particles forming in Maramec Spring, Missouri, provide a natural analog to evaluate reactions that may occur in a leaking GCS site. The calcite crystals form as a result of physiochemical changes that occur as the spring water rises from a depth of more than 190'?. The resultant pressure decrease induces a loss of CO{sub 2} from the water, rise in pH, lowering of the solubility of Ca{sup 2+} and CO{sub 3}{sup 2-}, and calcite precipitation. Equilibrium modelling of the spring water resulted in a calculated undersaturated state with respect to calcite. The discontinuity between the observed occurrence of calcite and the model result predicting undersaturated conditions can be explained if bicarbonate ions (HCO{sub 3}{sup -}) are directly involved in precipitation process rather than just carbonate ions (CO{sub 3}{sup 2-}). 2) Sedimentary rocks in the Oronto Group of the Midcontinent Rift (MCR) system contain an abundance of labile Ca-, Mg-, and Fe-silicate minerals that will neutralize carbonic acid and provide alkaline earth ions for carbonate mineralization. One of the challenges in using MCR rocks for GCS results from their low porosity and permeability. Oronto Group samples were reacted with both CO{sub 2}-saturated deionized water at 90°C, and a mildly acidic leachant solution in flow-through core-flooding reactor vessels at room temperature. Resulting leachate solutions often exceeded the saturation limit for calcite. Carbonate crystals were also detected in as little as six days of reaction with Oronto Group rocks at 90oC, as well as experiments with forsterite-olivine and augite, both being common minerals this sequence. The Oronto Group samples have poor reservoir rock characteristics, none ever exceeded a permeability value of 2.0 mD even after extensive dissolution of calcite cement during the experiments. The overlying Bayfield Group – Jacobsville Formation sandstones averaged 13.4 ± 4.3% porosity and a single sample tested by core-flooding revealed a permeability of ~340 mD. The high porosity-permeability characteristics of these sandstones will allow them to be used for GCS as a continuous aquifer unit with the overlying Mt. Simon Formation. 3) Anaerobic sulfate reducing bacteria (SRB) can enhance the conversion rate of CO{sub 2} into solid minerals and thereby improve long-term storage. SRB accelerated carbonate mineralization reactions between pCO{sub 2} values of 0.0059 and 14.7 psi. Hydrogen, lactate and formate served as suitable electron donors for SRB metabolism. The use of a {sup 13}CO{sub 2} spiked gas source also produced carbonate minerals with ~53% of the carbon being derived from the gas phase. The sulfate reducing activity of the microbial community was limited, however, at 20 psi pCO{sub 2} and carbonate mineralization did not occur. Inhibition of bacterial metabolism may have resulted from the acidic conditions or CO{sub 2} toxicity. 4) Microbialite communities forming in the high turbidity and hypersaline water of Storrs’ Lake, San Salvador Island, The Bahamas, were investigated for their distribution, mineralogy and microbial diversity. Molecular analysis of the organic mats on the microbialites indicate only a trace amount of cyanobacteria, while anaerobic and photosynthetic non-sulfur bacteria of the phyla Chloroflexi and purple sulfur bacteria of class Gammaproteobacteria were abundant.

  11. Resin-coated sand slurry pack gas deliverabilities: Field and laboratory results

    SciTech Connect (OSTI)

    Wilson, B.; Nelson, C.; Stadleman, J.

    1983-10-01T23:59:59.000Z

    Although through-tubing resin-coated sand slurry packs (RCSSP's) are significantly less expensive than conventional gravel packs, they have not been widely used as a sand control completion technique. This low usage is mainly due to two inherent problems. The first is the high risk of localized pack failure in the perforation tunnels when the RCSSP casing plug is milled out. The second problem is the difficulty associated with predicting flow rates (and therefore economics) of RCSSP completed wells, especially if the casing plug is not milled out. This paper presents a modified velocity coefficient correlation for gas turbulence, an innovative RCSSP completion configuration with an associated simulation technique, and supporting field results that demonstrate an expanded application for RCSSP's in the area of gas well through-tubing plugbacks where, until recently, their general application was thought to be uneconomical.

  12. Laboratory and Field Studies Related to Radionuclide Migration at the Nevada Test Site

    SciTech Connect (OSTI)

    B. A. Martinez; D. L. Finnegan; Joseph L. Thompson; K. S. Kung

    1999-03-01T23:59:59.000Z

    In this report, we describe the work done in FY 1998 at Los Alamos National Laboratory as part of the Hydrologic Resources Management Program (HRMA) funded by the Nevada Operations Office of the US Department of Energy (DOE/NV). The major part of our research effort was to measure radionuclides present in water or soil samples collected from near nuclear tests. We report our measurements for materials collected in both saturated and unsaturated horizons adjacent to nuclear test cavities or collapse chimneys and from within several cavities. Soil samples collected from above the cavities formed by the Halfbeak, Jerboa, and Bobac tests contained no radioactivity, although a test similar to Bobac in the same area had been contaminated with {sup 137}Cs. Water samples from near the Shoal test contained no measurable radionuclides, whereas those from near Faultless and Aleman had concentrations similar to previous measurements. Water from the Tybo-Benham site was similar to earlier collections at that site; this year, we added {sup 241}Am to the list of radionuclides measured at this location. Two Bennett pumps in tandem were used to extract water from the piezometer tube in the cavity of the Dalhart event. This extraction is a significant achievement in that it opens the possibility of purging similar tubes at other locations on the NTS. The Cheshire post shot hole was reconfigured and pumped from two horizons for the first time since mid-1980. We are especially interested in examining water from the level of the working point to determine the hydrologic source term in a cavity filled with groundwater for over 20 years. We devoted much time this year to examining the colloid content of NTS groundwater. After developing protocols for collecting, handling, and storing groundwater samples without altering their colloid content, we analyzed water from the Tybo-Benham and from the Cheshire sites. Whereas the colloid concentration did not vary much with depth at Tybo-Benham, there were 20 times more colloids in groundwater from the Cheshire cavity than were found a few hundred meters higher. Electron micrographs show the wide variety of colloid sizes and shapes present in NTS groundwater. Our experiences with filtration of groundwater samples illustrate the difficulties of colloid size characterization using this methodology. Our report ends with a description of our consultative and educational activities and a list of recent publications.

  13. A laboratory and pilot plant scaled continuous stirred reactor separator for the production of ethanol from sugars, corn grits/starch or biomass streams

    SciTech Connect (OSTI)

    Dale, M.C.; Lei, Shuiwang; Zhou, Chongde

    1995-10-01T23:59:59.000Z

    An improved bio-reactor has been developed to allow the high speed, continues, low energy conversion of various substrates to ethanol. The Continuous Stirred Reactor Separator (CSRS) incorporates gas stripping of the ethanol using a recalculating gas stream between cascading stirred reactors in series. We have operated a 4 liter lab scale unit, and built and operated a 24,000 liter pilot scale version of the bioreactor. High rates of fermentation are maintained in the reactor stages using a highly flocculent yeast strain. Ethanol is recovered from the stripping gas using a hydrophobic solvent absorber (isothermal), after which the gas is returned to the bioreactor. Ethanol can then be removed from the solvent to recover a highly concentrated ethanol product. We have applied the lab scale CSRS to sugars (glucose/sucrose), molasses, and raw starch with simultaneous saccharification and fermentation of the starch granules (SSF). The pilot scale CSRS has been operated as a cascade reactor using dextrins as a feed. Operating data from both the lab and pilot scale CSRS are presented. Details of how the system might be applied to cellulosics, with some preliminary data are also given.

  14. Advanced Reactor Thermal Hydraulic Modeling | Argonne Leadership...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Advanced Reactor Thermal Hydraulic Modeling PI Name: Paul Fischer PI Email: fischer@mcs.anl.gov Institution: Argonne National Laboratory Allocation Program: INCITE Allocation Hours...

  15. Trace Metal Bioremediation: Assessment of Model Components from Laboratory and Field Studies to Identify Critical Variables

    SciTech Connect (OSTI)

    Peter Jaffe; Herschel Rabitz

    2003-02-14T23:59:59.000Z

    The objective of this project was to gain an insight into the modeling support needed for the understanding, design, and operation of trace metal/radionuclide bioremediation. To achieve this objective, a workshop was convened to discuss the elements such a model should contain. A ''protomodel'' was developed, based on the recommendations of the workshop, and was used to perform sensitivity analysis as well as some preliminary simulations in support for bioremediation test experiments at UMTRA sites. To simulate the numerous biogeochemical processes that will occur during the bioremediation of uranium contaminated aquifers, a time-dependent one-dimensional reactive transport model has been developed. The model consists of a set of coupled, steady state mass balance equations, accounting for advection, diffusion, dispersion, and a kinetic formulation of the transformations affecting an organic substrate, electron acceptors, corresponding reduced species, and uranium. This set of equations is solved numerically, using a finite element scheme. The redox conditions of the domain are characterized by estimating the pE, based on the concentrations of the dominant terminal electron acceptor and its corresponding reduced specie. This pE and the concentrations of relevant species are passed to a modified version of MINTEQA2, which calculates the speciation and solubilities of the species of interest. Kinetics of abiotic reactions are described as being proportional to the difference between the actual and equilibrium concentration. A global uncertainty assessment, determined by Random Sampling High Dimensional Model Representation (RS-HDMR), was performed to attain a phenomenological understanding of the origins of output variability and to suggest input parameter refinements as well as to provide guidance for field experiments to improve the quality of the model predictions. Results indicated that for the usually high nitrate contents found ate many DOE sites, overall bioremediation of trace metals was highly sensitive to the formulation of the denitrification process. Simulations were performed to illustrate the effect of biostimulation on the transport and precipitation of uranium in the subsurface, at conditions equivalent to UMTRA sites. These simulations predicted that uranium would precipitate in bands that are located relatively close to the acetate injection well. The simulations also showed the importance of properly determining U(IV) oxidative dissolution rates, in order to assess the stability of precipitates once oxygenated water reenters the aquifer after bioremediation is discontinued. The objective of this project was to provide guidance to NABIR's Systems Integration Element, on the development of models to simulate the bioremediation of trace metals and radionuclides. Such models necessarily need to integrate hydrological, geochemical, and microbiological processes. In order to gain a better understanding of the key processes that such a model should contain, it was deemed desirable to convene a workshop with experts from these different fields. The goal was to obtain a preliminary consensus on the required level of detail for the formulations of these different chemical, physical, and microbiological processes. The workshop was held on December 18, 1998.

  16. Reactor Safety Research Programs

    SciTech Connect (OSTI)

    Edler, S. K.

    1981-07-01T23:59:59.000Z

    This document summarizes the work performed by Pacific Northwest Laboratory (PNL) from January 1 through March 31, 1981, for the Division of Reactor Safety Research within the U.S. Nuclear Regulatory Commission (NRC). Evaluations of nondestructive examination (NDE) techniques and instrumentation are reported; areas of investigation include demonstrating the feasibility of determining the strength of structural graphite, evaluating the feasibility of detecting and analyzing flaw growth in reactor pressure boundary systems, examining NDE reliability and probabilistic fracture mechanics, and assessing the integrity of pressurized water reactor (PWR) steam generator tubes where service-induced degradation has been indicated. Experimental data and analytical models are being provided to aid in decision-making regarding pipeto- pipe impacts following postulated breaks in high-energy fluid system piping. Core thermal models are being developed to provide better digital codes to compute the behavior of full-scale reactor systems under postulated accident conditions. Fuel assemblies and analytical support are being provided for experimental programs at other facilities. These programs include loss-ofcoolant accident (LOCA) simulation tests at the NRU reactor, Chalk River, Canada; fuel rod deformation, severe fuel damage, and postaccident coolability tests for the ESSOR reactor Super Sara Test Program, Ispra, Italy; the instrumented fuel assembly irradiation program at Halden, Norway; and experimental programs at the Power Burst Facility, Idaho National Engineering Laboratory (INEL). These programs will provide data for computer modeling of reactor system and fuel performance during various abnormal operating conditions.

  17. Comparative evaluation of laboratory compaction devices based on their ability to produce mixtures with engineering properties similar to those produced in the field

    E-Print Network [OSTI]

    Consuegra, Alberto Enrique

    1988-01-01T23:59:59.000Z

    COMPARATIVE EVALUATION OF LABORATORY COMPACTION DEVICES BASED ON THEIR ABILITY TO PRODUCE MIXTURES WITH ENGINEERING PROPERTIES SIMILAR TO THOSE PRODUCED IN THE FIELD A Thesis by ALBERTO ENRIQUE CONSUEGRA Submitted to the Office of Graduate... MIXTURES WITH ENGINEERING PROPERTIES SIMILAR TO THOSE PRODUCED IN THE FIELD A Thesis by ALBERTO ENRIQUE CONSUEGRA Approve as to style and content by: Dallas N. tt (Chairman of Committee) Wayne D. Tiner (Member) Demetres Vistas (Member) ames T. P...

  18. Spherical torus fusion reactor

    DOE Patents [OSTI]

    Martin Peng, Y.K.M.

    1985-10-03T23:59:59.000Z

    The object of this invention is to provide a compact torus fusion reactor with dramatic simplification of plasma confinement design. Another object of this invention is to provide a compact torus fusion reactor with low magnetic field and small aspect ratio stable plasma confinement. In accordance with the principles of this invention there is provided a compact toroidal-type plasma confinement fusion reactor in which only the indispensable components inboard of a tokamak type of plasma confinement region, mainly a current conducting medium which carries electrical current for producing a toroidal magnet confinement field about the toroidal plasma region, are retained.

  19. Final Report Independent Verification Survey of the High Flux Beam Reactor, Building 802 Fan House Brookhaven National Laboratory Upton, New York

    SciTech Connect (OSTI)

    Harpeneau, Evan M. [Oak Ridge Institute for Science and Education, Oak Ridge, TN (United States). Independent Environmental Assessment and Verification Program

    2011-06-24T23:59:59.000Z

    On May 9, 2011, ORISE conducted verification survey activities including scans, sampling, and the collection of smears of the remaining soils and off-gas pipe associated with the 802 Fan House within the HFBR (High Flux Beam Reactor) Complex at BNL. ORISE is of the opinion, based on independent scan and sample results obtained during verification activities at the HFBR 802 Fan House, that the FSS (final status survey) unit meets the applicable site cleanup objectives established for as left radiological conditions.

  20. Preliminary Evaluation of the Field and Laboratory Emission Cell (FLEC) for Sampling Attribution Signatures from Building Materials

    SciTech Connect (OSTI)

    Harvey, Scott D.; He, Lijian; Wahl, Jon H.

    2012-08-30T23:59:59.000Z

    This study provides a preliminary evaluation of the Field and Laboratory Emission Cell (FLEC) for its suitability for sampling building materials for toxic compounds and their associated impurities and residues that might remain after a terrorist chemical attack. Chemical warfare (CW) agents and toxic industrial chemicals were represented by a range of test probes that included CW surrogates. The test probes encompassed the acid-base properties, volatilities, and polarities of the expected chemical agents and residual compounds. Results indicated that dissipation of the test probes depended heavily on the underlying material. Near complete dissipation of almost all test probes occurred from galvanized stainless steel within 3.0 hrs, whereas far stronger retention with concomitant slower release was observed for vinyl composition floor tiles. The test probes displayed immediated permanence on Teflon. FLEC sampling was further evaluated by profiling residues remaining after the evaporation of 2-chloroethyl ethyl sulfide, a sulfur mustard simulant. This study lays the groundwork for the eventual goal of applying this sampling approach for collection of forensic attribution signatures that remain after a terrorist chemical attack.

  1. Savannah River Laboratory monthly report, July 1991

    SciTech Connect (OSTI)

    Ferrell, J.M. [comp.

    1991-12-31T23:59:59.000Z

    This document details monthly activities at the Savannah River Laboratory. Topics addressed are reactor operation; tritium facilities and production; separation operations; environmental concerns; and waste management. (FI)

  2. Savannah River Laboratory monthly report, July 1991

    SciTech Connect (OSTI)

    Ferrell, J.M. (comp.)

    1991-01-01T23:59:59.000Z

    This document details monthly activities at the Savannah River Laboratory. Topics addressed are reactor operation; tritium facilities and production; separation operations; environmental concerns; and waste management. (FI)

  3. Physics Division: Los Alamos National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Turbulence Laboratory opens with new Vertical Shock Tube Experiment Next-generation fast reactors being built with Lab's novel Monte Carlo code Ribbons cut for MAJORANA...

  4. Savannah River Laboratory monthly report, August 1991

    SciTech Connect (OSTI)

    Ferrell, J.M. [comp.

    1991-12-31T23:59:59.000Z

    This document details monthly activities at the Savannah River Laboratory. Topics addressed are reactor operation, tritium facilities and production; separation operations; environmental concerns; and waste management. (FI)

  5. Savannah River Laboratory monthly report, August 1991

    SciTech Connect (OSTI)

    Ferrell, J.M. (comp.)

    1991-01-01T23:59:59.000Z

    This document details monthly activities at the Savannah River Laboratory. Topics addressed are reactor operation, tritium facilities and production; separation operations; environmental concerns; and waste management. (FI)

  6. Savannah River Laboratory monthly report, September 1991

    SciTech Connect (OSTI)

    Ferrell, J.M. (comp.)

    1991-01-01T23:59:59.000Z

    This document details monthly activities at the Savannah River Laboratory. Topics addressed are reactor operation, tritium facilities and production; separation operations; environmental concerns; and waste management. (FI)

  7. Savannah River Laboratory monthly report, September 1991

    SciTech Connect (OSTI)

    Ferrell, J.M. [comp.

    1991-12-31T23:59:59.000Z

    This document details monthly activities at the Savannah River Laboratory. Topics addressed are reactor operation, tritium facilities and production; separation operations; environmental concerns; and waste management. (FI)

  8. Measurements of actinide-fission product yields in Caliban and Prospero metallic core reactor fission neutron fields

    SciTech Connect (OSTI)

    Casoli, P.; Authier, N. [CEA, Centre de Valduc, 21120 Is-sur-Tille (France); Laurec, J.; Bauge, E.; Granier, T. [CEA, Centre DIF, 91297 Arpajon (France)

    2011-07-01T23:59:59.000Z

    In the 1970's and early 1980's, an experimental program was performed on the facilities of the CEA Valduc Research Center to measure several actinide-fission product yields. Experiments were, in particular, completed on the Caliban and Prospero metallic core reactors to study fission-neutron-induced reactions on {sup 233}U, {sup 235}U, and {sup 239}Pu. Thick actinide samples were irradiated and the number of nuclei of each fission product was determined by gamma spectrometry. Fission chambers were irradiated simultaneously to measure the numbers of fissions in thin deposits of the same actinides. The masses of the thick samples and the thin deposits were determined by mass spectrometry and alpha spectrometry. The results of these experiments will be fully presented in this paper for the first time. A description of the Caliban and Prospero reactors, their characteristics and performances, and explanations about the experimental approach will also be given in the article. A recent work has been completed to analyze and reinterpret these measurements and particularly to evaluate the associated uncertainties. In this context, calculations have also been carried out with the Monte Carlo transport code Tripoli-4, using the published benchmarked Caliban description and a three-dimensional model of Prospero, to determine the average neutron energy causing fission. Simulation results will be discussed in this paper. Finally, new fission yield measurements will be proposed on Caliban and Prospero reactors to strengthen the results of the first experiments. (authors)

  9. Reactor Safety Research Programs

    SciTech Connect (OSTI)

    Dotson, CW

    1980-08-01T23:59:59.000Z

    This document summarizes the work performed by Pacific Northwest laboratory from October 1 through December 31, 1979, for the Division of Reactor Safety Research within the Nuclear Regulatory Commission. Evaluation of nondestructive examination (NDE) techniques and instrumentation are reported; areas of investigation include demonstrating the feasibilty of determining structural graphite strength, evaluating the feasibilty of detecting and analyzing flaw growth in reactor pressure boundary systems, examining NDE reliability and probabilistic fracture mechanics, and assessing the remaining integrity of pressurized water reactor steam generator tubes where service-induced degradation has been indicated. Test assemblies and analytical support are being provided for experimental programs at other facilities. These programs include the loss-of-coolant accident simulation tests at the NRU reactor, Chalk River, Canada; the fuel rod deformation and post-accident coolability tests for the ESSOR Test Reactor Program, lspra, Italy; the blowdown and reflood tests in the test facility at Cadarache, France; the instrumented fuel assembly irradiation program at Halden, Norway; and the experimental programs at the Power Burst Facility, Idaho National Engineering Laboratory. These programs will provide data for computer modeling of reactor system and fuel performance during various abnormal operating conditions.

  10. Rapid multiplexed data acquisition: Application to three-dimensional magnetic field measurements in a turbulent laboratory plasma

    E-Print Network [OSTI]

    Brown, Michael R.

    acquisition at the Swarthmore Spheromak Experiment SSX and Redmond Plasma Physics Laboratory. An application. The Swarthmore Spheromak Experiment SSX 3 has re- cently completed construction, calibration, and testing

  11. Final Report Independent Verification Survey of the High Flux Beam Reactor, Building 802 Fan House Brookhaven National Laboratory Upton, New York

    SciTech Connect (OSTI)

    Evan Harpeneau

    2011-06-24T23:59:59.000Z

    The Separations Process Research Unit (SPRU) complex located on the Knolls Atomic Power Laboratory (KAPL) site in Niskayuna, New York, was constructed in the late 1940s to research the chemical separation of plutonium and uranium (Figure A-1). SPRU operated as a laboratory scale research facility between February 1950 and October 1953. The research activities ceased following the successful development of the reduction oxidation and plutonium/uranium extraction processes. The oxidation and extraction processes were subsequently developed for large scale use by the Hanford and Savannah River sites (aRc 2008a). Decommissioning of the SPRU facilities began in October 1953 and continued through the 1990s.

  12. Decommissioning of the Tokamak Fusion Test Reactor

    SciTech Connect (OSTI)

    E. Perry; J. Chrzanowski; C. Gentile; R. Parsells; K. Rule; R. Strykowsky; M. Viola

    2003-10-28T23:59:59.000Z

    The Tokamak Fusion Test Reactor (TFTR) at the Princeton Plasma Physics Laboratory was operated from 1982 until 1997. The last several years included operations with mixtures of deuterium and tritium. In September 2002, the three year Decontamination and Decommissioning (D&D) Project for TFTR was successfully completed. The need to deal with tritium contamination as well as activated materials led to the adaptation of many techniques from the maintenance work during TFTR operations to the D&D effort. In addition, techniques from the decommissioning of fission reactors were adapted to the D&D of TFTR and several new technologies, most notably the development of a diamond wire cutting process for complex metal structures, were developed. These techniques, along with a project management system that closely linked the field crews to the engineering staff who developed the techniques and procedures via a Work Control Center, resulted in a project that was completed safely, on time, and well below budget.

  13. Quality assurance plan for the Molten Salt Reactor Experiment Remediation Project at the Oak Ridge National Laboratory. Phase 1 -- Interim corrective measures and Phase 2 -- Purge and trap reactive gases

    SciTech Connect (OSTI)

    NONE

    1995-11-01T23:59:59.000Z

    This Quality Assurance Plan (QAP) identifies and describes the systems utilized by the Molten Salt Reactor Experiment Remediation Project (MSRERP) personnel to implement the requirements and associated applicable guidance contained in the Quality Program Description Y/QD-15 Rev. 2 (Energy Systems 1995f). This QAP defines the quality assurance (QA) requirements applicable to all activities and operations in and directly pertinent to the MSRERP Phase 1--Interim Corrective Measures and Phase 2--Purge and Trap objectives. This QAP will be reviewed, revised, and approved as necessary for Phase 3 and Phase 4 activities. This QAP identifies and describes the QA activities and procedures implemented by the various Oak Ridge National Laboratory support organizations and personnel to provide confidence that these activities meet the requirements of this project. Specific support organization (Division) quality requirements, including the degree of implementation of each, are contained in the appendixes of this plan.

  14. Special Analysis for the Disposal of the Idaho National Laboratory Unirradiated Light Water Breeder Reactor Rods and Pellets Waste Stream at the Area 5 Radioactive Waste Management Site, Nevada National Security Site, Nye County, Nevada

    SciTech Connect (OSTI)

    Shott, Gregory [NSTec

    2014-08-31T23:59:59.000Z

    The purpose of this special analysis (SA) is to determine if the Idaho National Laboratory (INL) Unirradiated Light Water Breeder Reactor (LWBR) Rods and Pellets waste stream (INEL103597TR2, Revision 2) is suitable for disposal by shallow land burial (SLB) at the Area 5 Radioactive Waste Management Site (RWMS). The INL Unirradiated LWBR Rods and Pellets waste stream consists of 24 containers with unirradiated fabricated rods and pellets composed of uranium oxide (UO2) and thorium oxide (ThO2) fuel in zirconium cladding. The INL Unirradiated LWBR Rods and Pellets waste stream requires an SA because the 229Th, 230Th, 232U, 233U, and 234U activity concentrations exceed the Nevada National Security Site (NNSS) Waste Acceptance Criteria (WAC) Action Levels.

  15. DIRECT ENERGY CONVERSION FISSION REACTOR FOR THE PERIOD JANUARY 1, 2002 THROUGH MARCH 31, 2002

    SciTech Connect (OSTI)

    L.C. BROWN

    2002-03-31T23:59:59.000Z

    Direct energy conversion is the only potential means for producing electrical energy from a fission reactor without the Carnot efficiency limitations. This project was undertaken by Sandia National Laboratories, Los Alamos National Laboratories, The University of Florida, Texas A&M University and General Atomics to explore the possibilities of direct energy conversion. Other means of producing electrical energy from a fission reactor, without any moving parts, are also within the statement of proposed work. This report documents the efforts of General Atomics. Sandia National Laboratories, the lead laboratory, provides overall project reporting and documentation. The highlights of this reporting period are: (1) Cooling of the vapor core reactor and the MHD generator was incorporated into the Vapor Core Reactor model using standard heat transfer calculation methods. (2) Fission product removal, previously modeled as independent systems for each class of fission product, was incorporated into the overall fuel recycle loop of the Vapor Core Reactor. The model showed that the circulating activity levels are quite low. (3) Material distribution calculations were made for the ''pom-pom'' style cathode for the Fission Electric Cell. Use of a pom-pom cathode will eliminate the problem of hoop stress in the thin spherical cathode caused by the electric field.

  16. Neutron beam characterization at the Neutron Radiography Reactor (NRAD)

    SciTech Connect (OSTI)

    Imel, G.R.; Urbatsch, T.; Pruett, D.P.; Ross, J.R.

    1990-01-01T23:59:59.000Z

    The Neutron Radiography Reactor (NRAD) is a 250-kW TRIGA Reactor operated by Argonne National Laboratory and is located near Idaho Falls, Idaho. The reactor and its facilities regarding radiography are detailed in another paper at this conference; this paper summarizes neutron flux measurements and calculations that have been performed to better understand and potentially improve the neutronics characteristics of the reactor.

  17. D Ris-R-406 Department of Reactor

    E-Print Network [OSTI]

    D Risø-R-406 Department of Reactor Technology Annual Progress Report 1 January--31 December 1978 Risø National Laboratory, DK-4000 Roskilde, Denmark April 1979 #12;RisØ-R-406 DEPARTMENT OF REACTOR of reactor tech- nology at Risø during 1978 are described. The work is presented in five chapters: Reactor

  18. Laboratory and Field Testing of Commercially Available Detectors for the Identification of Chemicals of Interest in the Nuclear Fuel Cycle for the Detection of Undeclared Activities

    SciTech Connect (OSTI)

    Carla Miller; Mary Adamic; Stacey Barker; Barry Siskind; Joe Brady; Warren Stern; Heidi Smartt; Mike McDaniel; Mike Stern; Rollin Lakis

    2014-07-01T23:59:59.000Z

    Traditionally, IAEA inspectors have focused on the detection of nuclear indicators as part of infield inspection activities. The ability to rapidly detect and identify chemical as well as nuclear signatures can increase the ability of IAEA inspectors to detect undeclared activities at a site. Identification of chemical indicators have been limited to use in the analysis of environmental samples. Although IAEA analytical laboratories are highly effective, environmental sample processing does not allow for immediate or real-time results to an IAEA inspector at a facility. During a complementary access inspection, under the Additional Protocol, the use of fieldable technologies that can quickly provide accurate information on chemicals that may be indicative of undeclared activities can increase the ability of IAEA to effectively and efficiently complete their mission. The Complementary Access Working Group (CAWG) is a multi-laboratory team with members from Brookhaven National Laboratory, Idaho National Laboratory, Los Alamos National Laboratory, and Sandia National Laboratory. The team identified chemicals at each stage of the nuclear fuel cycle that may provide IAEA inspectors with indications that proliferation activities may be occurring. The group eliminated all indicators related to equipment, technology and training, developing a list of by-products/effluents, non-nuclear materials, nuclear materials, and other observables. These proliferation indicators were prioritized based on detectability from a conduct of operations (CONOPS) perspective of a CA inspection (for example, whether an inspector actually can access the S&O or whether it is in process with no physical access), and the IAEA’s interest in the detection technology in conjunction with radiation detectors. The list was consolidated to general categories (nuclear materials from a chemical detection technique, inorganic chemicals, organic chemicals, halogens, and miscellaneous materials). The team then identified commercial off the shelf (COTS) chemical detectors that may detect the chemicals of interest. Three chemical detectors were selected and tested both in laboratory settings and in field operations settings at Idaho National Laboratory. The instruments selected are: Thermo Scientific TruDefender FT (FTIR), Thermo Scientific FirstDefender RM (Raman), and Bruker Tracer III SD (XRF). Functional specifications, operability, and chemical detectability, selectivity, and limits of detection were determined. Results from the laboratory and field tests will be presented. This work is supported by the Next Generation Safeguards Initiative, Office of Nonproliferation and International Security, National Nuclear Security Administration.

  19. Addendum to Engineering Evaluation of Proposed Alternative Salt Transfer Method for the Molten Salt Reactor Experiement for the Oak Ridge National Laboratory

    SciTech Connect (OSTI)

    Wilson, Guy

    2009-10-06T23:59:59.000Z

    The purpose of this addendum is to graphically publish data which indicate moisture in leakage and corrosion may have occurred during heating of the tanks at the Molten Salt Reactor Experiment (MSRE) for and during hydrofluorination, fluorination and transfer of uranium. Corrosion, especially by hydrofluoric acid, is not expected to occur uniformly over the tank and piping inner surfaces and therefore is not easily measured by nondestructive techniques that can measure only limited areas. The rate of corrosion exponentially escalates with both temperature and moisture. The temperature, pressure, and concentration data in this addendum indicate periods when elevated corrosion rates were likely to have been experienced. This data was not available in time to be considered as part of the evaluation that was the focus of the report. Pressure and temperature data were acquired via the LabView{trademark} Software, while concentration data was acquired from the Fourier Transform InfraRed (FTIR) system.

  20. TREAT Upgrade Manual Reactor Control System and its interface with the Automatic Reactor Control System and the Plant Protection System

    SciTech Connect (OSTI)

    McDowell, W.P.

    1985-01-01T23:59:59.000Z

    The Transient Reactor Test Facility (TREAT) at Argonne National Laboratory is being upgraded to simulate extreme conditions in a reactor. This facility will be used to subject test assemblies of fuel bundles to very rapid and intense power transients. This paper will describe in detail the manual reactor control system and its interfaces with the plant protection system the automatic reactor control system.

  1. Argonne National Laboratory 9700 S. Cass Avenue

    E-Print Network [OSTI]

    Kemner, Ken

    Argonne National Laboratory 9700 S. Cass Avenue Argonne, IL 60439 630.252.2525 Fast Reactor Development at Argonne What is a Fast Reactor? Fast reactors avoid the slowing down of neutrons that takes to operator actions or engineered systems Creates additional fuel for sustainability Argonne is developing

  2. High Flux Isotope Reactor named Nuclear Historic Landmark | ornl...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    High Flux Isotope Reactor named Nuclear Historic Landmark The High Flux Isotope Reactor vessel at Oak Ridge National Laboratory resides in a pool of water illuminated by the blue...

  3. Evaluation of Alternate Materials for Coated Particle Fuels for the Gas-Cooled Fast Reactor. Laboratory Directed Research and Development Program FY 2006 Final Report

    SciTech Connect (OSTI)

    Paul A. Demkowicz; Karen Wright; Jian Gan; David Petti; Todd Allen; Jake Blanchard

    2006-09-01T23:59:59.000Z

    Candidate ceramic materials were studied to determine their suitability as Gas-Cooled Fast Reactor particle fuel coatings. The ceramics examined in this work were: TiC, TiN, ZrC, ZrN, AlN, and SiC. The studies focused on (i) chemical reactivity of the ceramics with fission products palladium and rhodium, (ii) the thermomechanical stresses that develop in the fuel coatings from a variety of causes during burnup, and (iii) the radiation resiliency of the materials. The chemical reactivity of TiC, TiN, ZrC, and ZrN with Pd and Rh were all found to be much lower than that of SiC. A number of important chemical behaviors were observed at the ceramic-metal interfaces, including the formation of specific intermetallic phases and a variation in reaction rates for the different ceramics investigated. Based on the data collected in this work, the nitride ceramics (TiN and ZrN) exhibit chemical behavior that is characterized by lower reaction rates with Pd and Rh than the carbides TiC and ZrC. The thermomechanical stresses in spherical fuel particle ceramic coatings were modeled using finite element analysis, and included contributions from differential thermal expansion, fission gas pressure, fuel kernel swelling, and thermal creep. In general the tangential stresses in the coatings during full reactor operation are tensile, with ZrC showing the lowest values among TiC, ZrC, and SiC (TiN and ZrN were excluded from the comprehensive calculations due to a lack of available materials data). The work has highlighted the fact that thermal creep plays a critical role in the development of the stress state of the coatings by relaxing many of the stresses at high temperatures. To perform ion irradiations of sample materials, an irradiation beamline and high-temperature sample irradiation stage was constructed at the University of Wisconsin’s 1.7MV Tandem Accelerator Facility. This facility is now capable of irradiating of materials to high dose while controlling sample temperature up to 800ºC.

  4. Lessons Learned from the Application of Bulk Characterization to Individual Containers on the Brookhaven Graphite Research Reactor Decommissioning Project at Brookhaven National Laboratory - 12056

    SciTech Connect (OSTI)

    Kneitel, Terri [US DOE, Brookhaven Site Office (United States); Rocco, Diane [Brookhaven National Laboratory (United States)

    2012-07-01T23:59:59.000Z

    When conducting environmental cleanup or decommissioning projects, characterization of the material to be removed is often performed when the material is in-situ. The actual demolition or excavation and removal of the material can result in individual containers that vary significantly from the original bulk characterization profile. This variance, if not detected, can result in individual containers exceeding Department of Transportation regulations or waste disposal site acceptance criteria. Bulk waste characterization processes were performed to initially characterize the Brookhaven Graphite Research Reactor (BGRR) graphite pile and this information was utilized to characterize all of the containers of graphite. When the last waste container was generated containing graphite dust from the bottom of the pile, but no solid graphite blocks, the material contents were significantly different in composition from the bulk waste characterization. This error resulted in exceedance of the disposal site waste acceptance criteria. Brookhaven Science Associates initiated an in-depth investigation to identify the root causes of this failure and to develop appropriate corrective actions. The lessons learned at BNL have applicability to other cleanup and demolition projects which characterize their wastes in bulk or in-situ and then extend that characterization to individual containers. (authors)

  5. Coupling field and laboratory measurements to estimate the emission factors of identified and unidentified trace gases for prescribed fires

    SciTech Connect (OSTI)

    Yokelson, Robert J.; Burling, Ian R.; Gilman, Jessica; Warneke, Carsten; Stockwell, Chelsea E.; de Gouw, Joost A.; Akagi, Sheryl; Urbanski, Shawn; Veres, Patrick; Roberts, James M.; Kuster, W. C.; Reardon, James; Griffith, David WT; Johnson, Timothy J.; Hosseini, SeyedEhsan; Miller, J. Wayne; Cocker, David R.; Jung, H.; Weise, David

    2013-01-07T23:59:59.000Z

    Vegetative fuels commonly consumed in prescribed fires were collected from five locations in the southeastern and southwestern U.S. and burned in a series of 77 fires at the U.S. Forest Service Fire Sciences Laboratory in Missoula, Montana. The particulate matter (PM2.5) emissions were measured by gravimetric filter sampling with subsequent analysis for elemental carbon (EC), organic carbon (OC), and 38 elements. The trace gas emissions were measured with a large suite of state-of-the-art instrumentation including an open-path Fourier transform infrared (OP FTIR) spectrometer, proton-transfer-reaction mass spectrometry (PTR-MS), proton-transfer ion-trap mass spectrometry (PIT-MS), negative-ion proton-transfer chemical-ionization mass spectrometry (NI-PT-CIMS), and gas chromatography with MS detection (GC-MS). 204 trace gas species (mostly non-methane organic compounds (NMOC)) were identified and quantified with the above instruments. An additional 152 significant peaks in the unit mass resolution mass spectra were quantified, but either could not be identified or most of the signal at that molecular mass was unaccounted for by identifiable species. As phase II of this study, we conducted airborne and ground-based sampling of the emissions from real prescribed fires mostly in the same land management units where the fuels for the lab fires were collected. A broad variety, but smaller number of species (21 trace gas species and PM2.5) was measured on 14 fires in chaparral and oak savanna in the southwestern US, as well as pine forest understory in the southeastern US and Sierra Nevada mountains of California. These extensive field measurements of emission factors (EF) for temperate biomass burning are useful both for modeling and to examine the representativeness of our lab fire EF. The lab/field EF ratio for the pine understory fuels was not statistically different from one, on average. However, our lab EF for “smoldering compounds” emitted by burning the semi-arid SW fuels should likely be increased by about a factor of 2.7 to better represent field fires. Based on the lab/field comparison, we present a table with emission factors for 365 pyrogenic species (including unidentified species) for 4 broad fuel types: pine understory, semi-arid shrublands, evergreen canopy, and duff. To our knowledge this is the most complete measurement of biomass burning emissions to date and it should enable improved representation of smoke in atmospheric models. The results provide important insights into the nature of smoke. For example, ~35% (range from 16-71%) of the mass of gas-phase NMOC species was attributed to the species that we could not identify. These unidentified species are likely not represented in most models, but some provision should be made for the fact that they will react in the atmosphere. In addition, the total mass of gas-phase NMOC divided by the mass of co-emitted PM2.5 averaged ~2.6 for the main fire types with a range from ~1.8-8.8. About 36-63% of the NMOC were likely semivolatile or of intermediate volatility. Thus, the gas-phase NMOC represent a large reservoir of potential precursors for secondary formation of organic aerosol. For the one fire in organic soil (Alaskan duff) about 28% of the emitted carbon was present as gas-phase NMOC in contrast to the other fuels for which NMOC accounted for only ~1-3% of emitted carbon. 71% of the mass of NMOC emitted by the smoldering duff was un-identified. The duff results highlight the need to learn more about the emissions from smoldering organic soils. The ?NMOC/“NOx-as-NO” ratio was consistently about ten for the main fire types when accounting for all NMOC, indicating strongly NOx-limited O3 production conditions. Finally, the fuel consumption per unit area was measured on 6 of the 14 prescribed fires and averaged 7.08 ± 2.09 (1?) Mg ha-1.

  6. University Reactor Conversion Lessons Learned Workshop for the University of Florida

    SciTech Connect (OSTI)

    Eric C. Woolstenhulme; Dana M. Meyer

    2007-04-01T23:59:59.000Z

    The Department of Energy’s (DOE) Idaho National Laboratory (INL), under its programmatic responsibility for managing the University Research Reactor Conversions, has completed the conversion of the reactor at the University of Florida. This project was successfully completed through an integrated and collaborative effort involving the INL, Argonne National Laboratory (ANL), DOE (Headquarters and Field Office), the Nuclear Regulatory Commission, the Universities, and contractors involved in analyses, fuel design and fabrication, and SNF shipping and disposition. With the work completed with these two universities, and in anticipation of other impending conversion projects, INL convened and engaged the project participants in a structured discussion to capture lessons learned. The objectives of this meeting were to capture the observations, insights, issues, concerns, and ideas of those involved in the reactor conversions so that future efforts can be conducted with greater effectiveness, efficiency, and with fewer challenges.

  7. Spherical torus fusion reactor

    DOE Patents [OSTI]

    Peng, Yueng-Kay M. (Oak Ridge, TN)

    1989-01-01T23:59:59.000Z

    A fusion reactor is provided having a near spherical-shaped plasma with a modest central opening through which straight segments of toroidal field coils extend that carry electrical current for generating a toroidal magnet plasma confinement fields. By retaining only the indispensable components inboard of the plasma torus, principally the cooled toroidal field conductors and in some cases a vacuum containment vessel wall, the fusion reactor features an exceptionally small aspect ratio (typically about 1.5), a naturally elongated plasma cross section without extensive field shaping, requires low strength magnetic containment fields, small size and high beta. These features combine to produce a spherical torus plasma in a unique physics regime which permits compact fusion at low field and modest cost.

  8. Radiation from Small-Scale Magnetic Field Turbulence: Implications for Gamma-Ray Bursts and Laboratory Astrophysical Plasmas

    E-Print Network [OSTI]

    Reynolds, Sarah J

    2012-05-31T23:59:59.000Z

    Relativistic charged particles moving within regions of small-scale magnetic field turbulence radiate as they undergo transverse accelerations reflective of the magnetic field variation along the particle's path. For a ...

  9. Supported by the National Science Foundation and the State of Florida 1 REPORTSNATIONAL HIGH MAGNETIC FIELD LABORATORY

    E-Print Network [OSTI]

    Weston, Ken

    .S. Shvindlerman3 Magnetic Driving Force cont. on page 6 N H M F L M a g n e t s Engineered for Unique Needs and Sometimes Unworldly Destinations In the first years of the laboratory, NHMFL magnet engineers, designers of magnets engineered to the specific needs of customers. Typically when crystals are grown, the presence

  10. Supported by the National Science Foundation and the State of Florida 1 REPORTSNATIONAL HIGH MAGNETIC FIELD LABORATORY

    E-Print Network [OSTI]

    Weston, Ken

    National Laboratory Power Supplies Installed for Quasi-Continuous Magnet at LANL Power converters five 64 MW converters. The liquid nitrogen cooled magnet, which will be the most powerful of its class, to be completed later. Power Supply Design Each power converter is supplied with 21 kV from the 1430 MVA / 600 MJ

  11. University Reactor Conversion Lessons Learned Workshop for Purdue University Reactor

    SciTech Connect (OSTI)

    Eric C. Woolstenhulme; Dana M. Hewit

    2008-09-01T23:59:59.000Z

    The Department of Energy’s Idaho National Laboratory, under its programmatic responsibility for managing the University Research Reactor Conversions, has completed the conversion of the reactor at Purdue University Reactor. With this work completed and in anticipation of other impending conversion projects, the INL convened and engaged the project participants in a structured discussion to capture the lessons learned. The lessons learned process has allowed us to capture gaps, opportunities, and good practices, drawing from the project team’s experiences. These lessons will be used to raise the standard of excellence, effectiveness, and efficiency in all future conversion projects.

  12. A Sliding Ring Coil for Neuroimaging at 21.1 T Gregory S. Boebinger, National High Magnetic Field Laboratory

    E-Print Network [OSTI]

    Weston, Ken

    A Sliding Ring Coil for Neuroimaging at 21.1 T Gregory S. Boebinger, National High Magnetic Field interference; and 4. anesthesia & vacuum lines for animal care. #12;A Sliding Ring Coil for Neuroimaging at 21 sliding tuner ring for neuroimaging in high field vertical magnets: Ex and in vivo applications at 21.1 T

  13. Coil Winding for the Series-Connected Hybrid Magnet Mark D. Bird, National High Magnetic Field Laboratory

    E-Print Network [OSTI]

    Weston, Ken

    Coil Winding for the Series-Connected Hybrid Magnet Mark D. Bird, National High Magnetic Field will produce for MagLab users magnetic fields of 36T featuring unprecedented (1ppm) homogeneity. Winding of the superconducting coil, the largest component of the magnet windings, is well underway. The superconducting coil

  14. Fast Reactor Fuel Type and Reactor Safety Performance

    SciTech Connect (OSTI)

    R. Wigeland; J. Cahalan

    2009-09-01T23:59:59.000Z

    Fast Reactor Fuel Type and Reactor Safety Performance R. Wigeland , Idaho National Laboratory J. Cahalan, Argonne National Laboratory The sodium-cooled fast neutron reactor is currently being evaluated for the efficient transmutation of the highly-hazardous, long-lived, transuranic elements that are present in spent nuclear fuel. One of the fundamental choices that will be made is the selection of the fuel type for the fast reactor, whether oxide, metal, carbide, nitride, etc. It is likely that a decision on the fuel type will need to be made before many of the related technologies and facilities can be selected, from fuel fabrication to spent fuel reprocessing. A decision on fuel type should consider all impacts on the fast reactor system, including safety. Past work has demonstrated that the choice of fuel type may have a significant impact on the severity of consequences arising from accidents, especially for severe accidents of low probability. In this paper, the response of sodium-cooled fast reactors is discussed for both oxide and metal fuel types, highlighting the similarities and differences in reactor response and accident consequences. Any fast reactor facility must be designed to be able to successfully prevent, mitigate, or accommodate all consequences of potential events, including accidents. This is typically accomplished by using multiple barriers to the release of radiation, including the cladding on the fuel, the intact primary cooling system, and most visibly the reactor containment building. More recently, this has also included the use of ‘inherent safety’ concepts to reduce or eliminate the potential for serious damage in some cases. Past experience with oxide and metal fuel has demonstrated that both fuel types are suitable for use as fuel in a sodium-cooled fast reactor. However, safety analyses for these two fuel types have also shown that there can be substantial differences in accident consequences due to the neutronic and thermophysical properties of the fuel and their compatibility with the reactor coolant, with corresponding differences in the challenges presented to the reactor developers. Accident phenomena are discussed for the sodium-cooled fast reactor based on the mechanistic progression of conditions from accident initiation to accident termination, whether a benign state is achieved or more severe consequences are expected. General principles connecting accident phenomena and fuel properties are developed from the oxide and metal fuel safety analyses, providing guidelines that can be used as part of the evaluation for selection of fuel type for the sodium-cooled fast reactor.

  15. Chemical Concentrations in Field Mice from Open-Detonation Firing Sites TA-36 Minie and TA-39 Point 6 at Los Alamos National Laboratory

    SciTech Connect (OSTI)

    Fresquez, Philip R. [Los Alamos National Laboratory

    2011-01-01T23:59:59.000Z

    Field mice (mostly Peromyscus spp.) were collected at two open-detonation (high explosive) firing sites - Minie at Technical Area (TA) 36 and Point 6 at TA-39 - at Los Alamos National Laboratory in August of 2010 and in February of 2011 for chemical analysis. Samples of whole body field mice from both sites were analyzed for target analyte list elements (mostly metals), dioxin/furans, polychlorinated biphenyl congeners, high explosives, and perchlorate. In addition, uranium isotopes were analyzed in a composite sample collected from TA-36 Minie. In general, all constituents, with the exception of lead at TA-39 Point 6, in whole body field mice samples collected from these two open-detonation firing sites were either not detected or they were detected below regional statistical reference levels (99% confidence level), biota dose screening levels, and/or soil ecological chemical screening levels. The amount of lead in field mice tissue collected from TA-39 Point 6 was higher than regional background, and some lead levels in the soil were higher than the ecological screening level for the field mouse; however, these levels are not expected to affect the viability of the populations over the site as a whole.

  16. Princeton Plasma Physics Laboratory

    SciTech Connect (OSTI)

    Not Available

    1990-01-01T23:59:59.000Z

    This report discusses the following topics: principal parameters achieved in experimental devices fiscal year 1990; tokamak fusion test reactor; compact ignition tokamak; Princeton beta experiment- modification; current drive experiment-upgrade; international collaboration; x-ray laser studies; spacecraft glow experiment; plasma processing: deposition and etching of thin films; theoretical studies; tokamak modeling; international thermonuclear experimental reactor; engineering department; project planning and safety office; quality assurance and reliability; technology transfer; administrative operations; PPPL patent invention disclosures for fiscal year 1990; graduate education; plasma physics; graduate education: plasma science and technology; science education program; and Princeton Plasma Physics Laboratory reports fiscal year 1990.

  17. Department of Energy Designates the Idaho National Laboratory...

    Energy Savers [EERE]

    Department of Energy Designates the Idaho National Laboratory Advanced Test Reactor as a National Scientific User Facility Department of Energy Designates the Idaho National...

  18. Comparative laboratory selection and field testing of polymers for selective control of water production in gas wells

    SciTech Connect (OSTI)

    Ranjbar, M. [Technical Univ., Clausthal (Germany); Czolbe, P. [DBI-GUT, Freiberg (Germany); Kohler, N. [IFP, Rueil-Malmaison (France)

    1995-11-01T23:59:59.000Z

    Intensive comparative feasibility studies were performed in different laboratories in order to select the most promising polymer based technology for water control in gas production and storage wells exhibiting low matrix permeability, high temperature and high produced brine salinity. Core flow experiments performed under reservoir conditions with different commercially available chemical systems have pointed to the superiority of two relatively low-molecular-weight vinyl sulfonated/vinyl amide/acrylamide terpolymers over other polymers to decrease selectively and effectively the water permeability without affecting the gas flow. These polymers have excellent compatibility with all types of reservoir brines and good thermal stability up to 150 C. Furthermore, because of their high shear resistance, and excellent injectability even in low permeability cores, solutions of these polymers can be pumped at high injection rates with a moderate wellhead pressure.

  19. As transport characterization in the vadose zone of the soil: a combined study between field and laboratory experiments

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    knowledge of the mechanisms responsible for heavy metal retention and transfer in soils from the vadose zone occurs in the field. That is why experiments at a pilot scale are necessary to assess heavy metal the ground surface; the water table level variation is about 1 m over a year depending on the season

  20. The TREAT upgrade manual reactor control system and its interface with the automatic reactor control system and the plant protection system

    SciTech Connect (OSTI)

    McDowell, W.P.

    1986-02-01T23:59:59.000Z

    The Transient Reactor Test Facility (TREAT) at Argonne National Laboratory is being upgraded to simulate extreme conditions in a reactor. This facility will be used to subject test assemblies of fuel bundles to very rapid and intense power transients. This paper describes in detail the manual reactor control system and its interfaces with the plant protection system the automatic reactor control system.

  1. United States Domestic Research Reactor Infrastrucutre TRIGA Reactor Fuel Support

    SciTech Connect (OSTI)

    Douglas Morrell

    2011-03-01T23:59:59.000Z

    The United State Domestic Research Reactor Infrastructure Program at the Idaho National Laboratory manages and provides project management, technical, quality engineering, quality inspection and nuclear material support for the United States Department of Energy sponsored University Reactor Fuels Program. This program provides fresh, unirradiated nuclear fuel to Domestic University Research Reactor Facilities and is responsible for the return of the DOE-owned, irradiated nuclear fuel over the life of the program. This presentation will introduce the program management team, the universities supported by the program, the status of the program and focus on the return process of irradiated nuclear fuel for long term storage at DOE managed receipt facilities. It will include lessons learned from research reactor facilities that have successfully shipped spent fuel elements to DOE receipt facilities.

  2. Teaching About Nature's Nuclear Reactors

    E-Print Network [OSTI]

    Herndon, J M

    2005-01-01T23:59:59.000Z

    Naturally occurring nuclear reactors existed in uranium deposits on Earth long before Enrico Fermi built the first man-made nuclear reactor beneath Staggs Field in 1942. In the story of their discovery, there are important lessons to be learned about scientific inquiry and scientific discovery. Now, there is evidence to suggest that the Earth's magnetic field and Jupiter's atmospheric turbulence are driven by planetary-scale nuclear reactors. The subject of planetocentric nuclear fission reactors can be a jumping off point for stimulating classroom discussions about the nature and implications of planetary energy sources and about the geomagnetic field. But more importantly, the subject can help to bring into focus the importance of discussing, debating, and challenging current thinking in a variety of areas.

  3. Polynomial regression with derivative information in nuclear reactor uncertainty quantification*

    E-Print Network [OSTI]

    Anitescu, Mihai

    1 Polynomial regression with derivative information in nuclear reactor uncertainty quantification in the outputs. The usual difficulties in modeling the work of the nuclear reactor models include the large size, Argonne National Laboratory, Argonne, IL, USA b Nuclear Engineering Division, Argonne National Laboratory

  4. Field-reversed Configuration Plasma for Magnetized Target Fusion Manuscript received September 8, 2005. Revised January 16, 2006. This work was supported by the Department of Energy--

    E-Print Network [OSTI]

    . Renneke, and James H. Degnan, Senior Member, IEEE Abstract--Field Reversed Theta Pinch technology ALAMOS NATIONAL LABORATORY Field-Reversed Theta Pinch (FRTP) technology is employed with programmed cusp, plasma generation, plasma pinch, plasma confinement, plasma measurements, fusion reactors #12;ICOPS 2005

  5. Laboratory and Field Evaluation of Imidacloprid against Reticulitermes flavipes (Kollar) and Coptotermes formosanus Shiraki (Isoptera: Rhinotermitidae) Subterranean Termites in Texas

    E-Print Network [OSTI]

    Keefer, Tony Christopher

    2011-08-08T23:59:59.000Z

    3 Urban field setting dominated by grasses surrounded by Q. stellata ......... 17 4 BASF Advance Termite Bait Station with lid and wood insert ................. 18 5 Diagram of individual grid for Premise? Granule 0.5% AI study... marked with survey flags. There was a minimum distance of 10 m between each grid. Six in-ground commercial termite monitors (Advance Termite Bait Station, BASF-formerly Whitmire Micro-Gen, St. Louis, MO) (Fig. 4) were evenly spaced in each grid...

  6. Princeton Plasma Physics Laboratory:

    SciTech Connect (OSTI)

    Phillips, C.A. (ed.)

    1986-01-01T23:59:59.000Z

    This paper discusses progress on experiments at the Princeton Plasma Physics Laboratory. The projects and areas discussed are: Principal Parameters Achieved in Experimental Devices, Tokamak Fusion Test Reactor, Princeton Large Torus, Princeton Beta Experiment, S-1 Spheromak, Current-Drive Experiment, X-ray Laser Studies, Theoretical Division, Tokamak Modeling, Spacecraft Glow Experiment, Compact Ignition Tokamak, Engineering Department, Project Planning and Safety Office, Quality Assurance and Reliability, and Administrative Operations.

  7. Nuclear reactor engineering

    SciTech Connect (OSTI)

    Glasstone, S.; Sesonske, A.

    1981-01-01T23:59:59.000Z

    Chapters are presented concerning energy from nuclear fission; nuclear reactions and radiations; diffusion and slowing-down of neutrons; principles of reactor analysis; nuclear reactor kinetics and control; energy removal; non-fuel reactor materials; the reactor fuel system; radiation protection and environmental effects; nuclear reactor shielding; nuclear reactor safety; and power reactor systems.

  8. Sandia National Laboratories: tokamak power reactor

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Analysis, Systems Engineering Sandian Dean Buchenauer (in Sandia's Hydrogen and Metallurgy Science Dept.) and Professor David Q. Hwang (UC Davis, School of Engineering) will...

  9. Westinghouse Advanced Reactors Division Plutonium Fuel Laboratories

    Office of Legacy Management (LM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn AprilA group currentBradleyTableSelling7 AugustAFRICAN3uj:'I,\ W C -hSinceSite

  10. Ames Laboratory Research Reactor Facility Ames, Iowa

    Office of Legacy Management (LM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn AprilA group currentBradleyTableSelling Corp -KWatertown Arsenal'.I Y.it !D;rC. ,, *' ;

  11. Advanced Test Reactor National Scientific User Facility

    SciTech Connect (OSTI)

    Frances M. Marshall; Jeff Benson; Mary Catherine Thelen

    2011-08-01T23:59:59.000Z

    The Advanced Test Reactor (ATR), at the Idaho National Laboratory (INL), is a large test reactor for providing the capability for studying the effects of intense neutron and gamma radiation on reactor materials and fuels. The ATR is a pressurized, light-water, high flux test reactor with a maximum operating power of 250 MWth. The INL also has several hot cells and other laboratories in which irradiated material can be examined to study material irradiation effects. In 2007 the US Department of Energy (DOE) designated the ATR as a National Scientific User Facility (NSUF) to facilitate greater access to the ATR and the associated INL laboratories for material testing research by a broader user community. This paper highlights the ATR NSUF research program and the associated educational initiatives.

  12. Space power reactor ground test in the Experimental Gas Cooled Reactor (EGCR) at Oak Ridge

    SciTech Connect (OSTI)

    Fontana, M.H.; Holcomb, R.S.; Cooper, R.H.

    1992-08-01T23:59:59.000Z

    The Experimental Gas Cooled Reactor (EGCR) facility and the supporting technical infrastructure at the Oak Ridge National Laboratory have the capabilities of performing ground tests of space nuclear power reactor systems. A candidate test would be a 10 MWt lithium cooled reactor, generating potassium vapor that would drive a power turbine. The facility is a large containment vessel originally intended to test the EGCR. Large, contained, and shielded spaces are available for testing, assembly, disassembly, and post-test examination.

  13. Ris Report No. 356 Ris National Laboratory

    E-Print Network [OSTI]

    Risø Report No. 356 Risø National Laboratory Calculation of the Individual and Population Doses on Danish Territory Resulting from Hypothetical Core-melt Accidents at the Barsebäck Reactor by P. Hedemann Descriptors BARSEBAEK-1 REACTOR BONE MARROW DATA DENMARK FISSION PRODUCTS GASTROINTESTINAL TRACT HUMAN

  14. Riso Report No. 356 Ris National Laboratory

    E-Print Network [OSTI]

    c ae er (O v Riso Report No. 356 Risø National Laboratory Calculation of the Individual Reactor by P. Hedemann Jensen, E. Lundtang Petersen, S. Thykier-Nielsen and F. Heikel Vinther October 1977 REACTOR BONE MARROW DATA DENMARK FISSION PRODUCTS GASTROINTESTINAL TRACT HUMAN POPULATIONS LUNGS MAN

  15. Tiger Team assessment of the Idaho National Engineering Laboratory

    SciTech Connect (OSTI)

    Not Available

    1991-08-01T23:59:59.000Z

    This report documents the Tiger Team Assessment of the Idaho National Engineering Laboratory (INEL) located in Idaho Falls, Idaho. INEL is a multiprogram, laboratory site of the US Department of Energy (DOE). Overall site management is provided by the DOE Field Office, Idaho; however, the DOE Field Office, Chicago has responsibility for the Argonne National Laboratory-West facilities and operations through the Argonne Area Office. In addition, the Idaho Branch Office of the Pittsburgh Naval Reactors Office has responsibility for the Naval Reactor Facility (NRF) at the INEL. The assessment included all DOE elements having ongoing program activities at the site except for the NRF. In addition, the Safety and Health Subteam did not review the Westinghouse Idaho Nuclear Company, Inc. facilities and operations. The Tiger Team Assessment was conducted from June 17 to August 2, 1991, under the auspices of the Office of Special Projects, Office of the Assistant Secretary for Environment, Safety and Health, Headquarters, DOE. The assessment was comprehensive, encompassing environmental, safety, and health (ES H) disciplines; management; and contractor and DOE self-assessments. Compliance with applicable federal, state, and local regulations; applicable DOE Orders; best management practices; and internal INEL site requirements was assessed. In addition, an evaluation of the adequacy and effectiveness of the DOE and the site contractors management of ES H/quality assurance programs was conducted.

  16. Alternate-fuel reactor studies

    SciTech Connect (OSTI)

    Evans, K. Jr.; Ehst, D.A.; Gohar, Y.; Jung, J.; Mattas, R.F.; Turner, L.R.

    1983-02-01T23:59:59.000Z

    A number of studies related to improvements and/or greater understanding of alternate-fueled reactors is presented. These studies cover the areas of non-Maxwellian distributions, materials and lifetime analysis, a /sup 3/He-breeding blanket, tritium-rich startup effects, high field magnet support, and reactor operation spanning the range from full D-T operation to operation with no tritium breeding.

  17. Bioconversion reactor

    DOE Patents [OSTI]

    McCarty, Perry L. (Stanford, CA); Bachmann, Andre (Palo Alto, CA)

    1992-01-01T23:59:59.000Z

    A bioconversion reactor for the anaerobic fermentation of organic material. The bioconversion reactor comprises a shell enclosing a predetermined volume, an inlet port through which a liquid stream containing organic materials enters the shell, and an outlet port through which the stream exits the shell. A series of vertical and spaced-apart baffles are positioned within the shell to force the stream to flow under and over them as it passes from the inlet to the outlet port. The baffles present a barrier to the microorganisms within the shell causing them to rise and fall within the reactor but to move horizontally at a very slow rate. Treatment detention times of one day or less are possible.

  18. Catalytic reactor

    DOE Patents [OSTI]

    Aaron, Timothy Mark (East Amherst, NY); Shah, Minish Mahendra (East Amherst, NY); Jibb, Richard John (Amherst, NY)

    2009-03-10T23:59:59.000Z

    A catalytic reactor is provided with one or more reaction zones each formed of set(s) of reaction tubes containing a catalyst to promote chemical reaction within a feed stream. The reaction tubes are of helical configuration and are arranged in a substantially coaxial relationship to form a coil-like structure. Heat exchangers and steam generators can be formed by similar tube arrangements. In such manner, the reaction zone(s) and hence, the reactor is compact and the pressure drop through components is minimized. The resultant compact form has improved heat transfer characteristics and is far easier to thermally insulate than prior art compact reactor designs. Various chemical reactions are contemplated within such coil-like structures such that as steam methane reforming followed by water-gas shift. The coil-like structures can be housed within annular chambers of a cylindrical housing that also provide flow paths for various heat exchange fluids to heat and cool components.

  19. Paul Kearns | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    at the Golden Field Office, Golden, Colorado, and manager of the National Renewable and Environmental Laboratory and Solar Energy Research Institute (SERI) Area Office. Closer to...

  20. Reactor antineutrino monitoring with a plastic scintillator array as a new safeguards method

    E-Print Network [OSTI]

    S. Oguri; Y. Kuroda; Y. Kato; R. Nakata; Y. Inoue; C. Ito; M. Minowa

    2014-05-23T23:59:59.000Z

    We developed a segmented reactor-antineutrino detector made of plastic scintillators for application as a tool in nuclear safeguards inspection and performed mostly unmanned field operations at a commercial power plant reactor. At a position outside the reactor building, we measured the difference in reactor antineutrino flux above the ground when the reactor was active and inactive.

  1. CRC handbook of nuclear reactors calculations. Vol. II

    SciTech Connect (OSTI)

    Ronen, Y.

    1986-01-01T23:59:59.000Z

    This handbook breaks down the complex field of nuclear reactor calculations into major steps. Each step presents a detailed analysis of the problems to be solved, the parameters involved, and the elaborate computer programs developed to perform the calculations. This book bridges the gap between nuclear reactor theory and the implementation of that theory, including the problems to be encountered and the level of confidence that should be given to the methods described. Volume II: Monte Carlo Calculations for Nuclear Reactors. In-Core Management of Four Reactor Types. In-Core Management in CANDU-PHW Reactors. Reactor Dynamics. The Theory of Neutron Leakage in Reactor Lattices. Index.

  2. Updating reactor control: mini-computers

    SciTech Connect (OSTI)

    Crawford, K.C.; Sandquist, G.M. [University of Utah, Salt Lake City, UT (United States)

    1984-07-01T23:59:59.000Z

    An aging reactor control console and a limited operating budget have impeded many research projects in the TRIGA reactor facility at the University of Utah. The, University's present console is Circa 1959 vintage and repairs to the console are frequently required which present many electronic problems to a staff with little electronic training. As an alternative to a single function control console we are developing a TRIGA control system based upon a mini-computer. The system hardware has been specified and the hardware is currently being acquired. The software will be programmed by the staff to customize the system to the reactor's physical systems and technical specifications. The software will be designed to monitor and control all reactor functions, control a pneumatic sample transfer system, acquire and analyze neutron activation data, provide reactor facility security surveillance, provide reactor documentation including online logging of physical parameters, and record regularly scheduled reactor calibrations and laboratory accounting procedures. The problem of hardware rewiring and changing technical specifications and changing safety system characteristics can be easily handled in the software. Our TRIGA reactor also functions as a major educational resource using available reactor based software. The computer control system can be employed to provide on-line training in reactor physics and kinetics. (author)

  3. Advanced Safeguards Approaches for New Fast Reactors

    SciTech Connect (OSTI)

    Durst, Philip C.; Therios, Ike; Bean, Robert; Dougan, A.; Boyer, Brian; Wallace, Rick L.; Ehinger, Michael H.; Kovacic, Don N.; Tolk, K.

    2007-12-15T23:59:59.000Z

    This third report in the series reviews possible safeguards approaches for new fast reactors in general, and the ABR in particular. Fast-neutron spectrum reactors have been used since the early 1960s on an experimental and developmental level, generally with fertile blanket fuels to “breed” nuclear fuel such as plutonium. Whether the reactor is designed to breed plutonium, or transmute and “burn” actinides depends mainly on the design of the reactor neutron reflector and the whether the blanket fuel is “fertile” or suitable for transmutation. However, the safeguards issues are very similar, since they pertain mainly to the receipt, shipment and storage of fresh and spent plutonium and actinide-bearing “TRU”-fuel. For these reasons, the design of existing fast reactors and details concerning how they have been safeguarded were studied in developing advanced safeguards approaches for the new fast reactors. In this regard, the design of the Experimental Breeder Reactor-II “EBR-II” at the Idaho National Laboratory (INL) was of interest, because it was designed as a collocated fast reactor with a pyrometallurgical reprocessing and fuel fabrication line – a design option being considered for the ABR. Similarly, the design of the Fast Flux Facility (FFTF) on the Hanford Site was studied, because it was a successful prototype fast reactor that ran for two decades to evaluate fuels and the design for commercial-scale fast reactors.

  4. Neutronic reactor

    DOE Patents [OSTI]

    Wende, Charles W. J. (Augusta, GA); Babcock, Dale F. (Wilmington, DE); Menegus, Robert L. (Wilmington, DE)

    1983-01-01T23:59:59.000Z

    A nuclear reactor includes an active portion with fissionable fuel and neutron moderating material surrounded by neutron reflecting material. A control element in the active portion includes a group of movable rods constructed of neutron-absorbing material. Each rod is movable with respect to the other rods to vary the absorption of neutrons and effect control over neutron flux.

  5. Field sampling and analysis plan for the remedial investigation of Waste Area Grouping 2 at Oak Ridge National Laboratory, Oak Ridge, Tennessee. Environmental Restoration Program

    SciTech Connect (OSTI)

    Boston, H.L.; Ashwood, T.L.; Borders, D.M.; Chidambariah, V.; Downing, D.J.; Fontaine, T.A.; Ketelle, R.H.; Lee, S.Y.; Miller, D.E.; Moore, G.K.; Suter, G.W.; Tardiff, M.F.; Watts, J.A.; Wickliff, D.S.

    1992-02-01T23:59:59.000Z

    This field sampling and analysis (S & A) plan has been developed as part of the Department of Energy`s (DOE`s) remedial investigation (RI) of Waste Area Grouping (WAG) 2 at Oak Ridge National Laboratory (ORNL) located in Oak Ridge, Tennessee. The S & A plan has been written in support of the remedial investigation (RI) plan for WAG 2 (ORNL 1990). WAG 2 consists of White Oak Creek (WOC) and its tributaries downstream of the ORNL main plant area, White Oak Lake (WOL), White Oak Creek embayment (WOCE) on the Clinch River, and the associated floodplain and subsurface environment (Fig. 1.1). The WOC system is the surface drainage for the major ORNL WAGs and has been exposed to a diversity of contaminants from operations and waste disposal activities in the WOC watershed. WAG 2 acts as a conduit through which hydrologic fluxes carry contaminants from upgradient areas to the Clinch River. Water, sediment, soil, and biota in WAG 2 are contaminated and continue to receive contaminants from upgradient WAGs. This document describes the following: an overview of the RI plan, background information for the WAG 2 system, and objectives of the S & A plan; the scope and implementation of the first 2 years of effort of the S & A plan and includes recent information about contaminants of concern, organization of S & A activities, interactions with other programs, and quality assurance specific to the S & A activities; provides details of the field sampling plans for sediment, surface water, groundwater, and biota, respectively; and describes the sample tracking and records management plan.

  6. Integral fast reactor safety features

    SciTech Connect (OSTI)

    Cahalan, J.E.; Kramer, J.M.; Marchaterre, J.F.; Mueller, C.J.; Pedersen, D.R.; Sevy, R.H.; Wade, D.C.; Wei, T.Y.C.

    1988-01-01T23:59:59.000Z

    The Integral Fast Reactor (IFR) is an advanced liquid-metal-cooled reactor concept being developed at Argonne National Laboratory. The two major goals of the IFR development effort are improved economics and enhanced safety. In addition to liquid metal cooling, the principal design features that distinguish the IFR are: (1) a pool-type primary system, (2) an advanced ternary alloy metallic fuel, and (3) an integral fuel cycle with on-site fuel reprocessing and fabrication. This paper focuses on the technical aspects of the improved safety margins available in the IFR concept. This increased level of safety is made possible by (1) the liquid metal (sodium) coolant and pool-type primary system layout, which together facilitate passive decay heat removal, and (2) a sodium-bonded metallic fuel pin design with thermal and neutronic properties that provide passive core responses which control and mitigate the consequences of reactor accidents.

  7. 1MIT Lincoln Laboratory MIT Lincoln Laboratory

    E-Print Network [OSTI]

    Clancy, Ted

    · About the Laboratory ­ Overview ­ Research Areas ­ Demographics · The MQP program ­ Logistics Primary Field Sites White Sands Missile Range Socorro, New Mexico Reagan Test Site Kwajalein, Marshall ­ Demographics · The MQP program ­ Logistics ­ Admission ­ Summer & Full-time Employment · Past Projects #12;9MIT

  8. Sandia National Laboratories: Heliostat Field

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Biofuels Biofuels Publications Biochemical Conversion Program Lignocellulosic Biomass Microalgae Thermochemical Conversion Sign up for our E-Newsletter Required.gif?3.21 Email...

  9. Proceedings of the U. S. Nuclear Regulatory Commission review group conference on advanced instrumentation research for reactor safety held at Oak Ridge National Laboratory on July 29-31, 1980. Conference proceedings

    SciTech Connect (OSTI)

    Hon, A.L.; Basdekas, D.; Hsu, Y.Y.; Kondic, N.; Van Houten, R.

    1980-12-01T23:59:59.000Z

    The report compiles the technical presentations during the Advanced Instrumentation Research for the Reactor Safety Review Group Meeting held in July 1980. The three-day meeting covered the Power Plant Instrumentation, Two-Phase Flow Instrumentation, Fuel Behavior Research Instrumentation and Advanced Reactor Instrumentation research programs sponsored by the U.S. Nuclear Regulatory Commission, Division of Reactor Safety Research. In addition, two invited papers from the nuclear industry were also presented. The conference is held each year to review the up-to-date instrumentation research results by the contractors. It also provides the opportunity for the researchers and experts to exchange experience on advanced instrumentation development. The report serves as a vehicle to disseminate the state-of-the-art information to the research community and the nuclear industry.

  10. Solid State Reactor Final Report

    SciTech Connect (OSTI)

    Mays, G.T.

    2004-03-10T23:59:59.000Z

    The Solid State Reactor (SSR) is an advanced reactor concept designed to take advantage of Oak Ridge National Laboratory's (ORNL's) recently developed graphite foam that has enhanced heat transfer characteristics and excellent high-temperature mechanical properties, to provide an inherently safe, self-regulated, source of heat for power and other potential applications. This work was funded by the U.S. Department of Energy's Nuclear Energy Research Initiative (NERI) program (Project No. 99-064) from August 1999 through September 30, 2002. The initial concept of utilizing the graphite foam as a basis for developing an advanced reactor concept envisioned that a suite of reactor configurations and power levels could be developed for several different applications. The initial focus was looking at the reactor as a heat source that was scalable, independent of any heat removal/power conversion process. These applications might include conventional power generation, isotope production and destruction (actinides), and hydrogen production. Having conducted the initial research on the graphite foam and having performed the scoping parametric analyses from neutronics and thermal-hydraulic perspectives, it was necessary to focus on a particular application that would (1) demonstrate the viability of the overall concept and (2) require a reasonably structured design analysis process that would synthesize those important parameters that influence the concept the most as part of a feasible, working reactor system. Thus, the application targeted for this concept was supplying power for remote/harsh environments and a design that was easily deployable, simplistic from an operational standpoint, and utilized the new graphite foam. Specifically, a 500-kW(t) reactor concept was pursued that is naturally load following, inherently safe, optimized via neutronic studies to achieve near-zero reactivity change with burnup, and proliferation resistant. These four major areas of research were undertaken: (1) establishing the design and safety-related basis via neutronic and reactor control assessments with the graphite foam as heat transfer medium; (2) evaluating the thermal performance of the graphite foam for heat removal, reactor stability, reactor operations, and overall core thermal characteristics; (3) characterizing the physical properties of the graphite foam under normal and irradiated conditions to determine any effects on structure, dimensional stability, thermal conductivity, and thermal expansion; and (4) developing a power conversion system design to match the reactor operating parameters.

  11. The First Decommissioning of a Fusion Reactor Fueled by Deuterium-Tritium

    SciTech Connect (OSTI)

    Charles A. Gentile; Erik Perry; Keith Rule; Michael Williams; Robert Parsells; Michael Viola; James Chrzanowski

    2003-10-28T23:59:59.000Z

    The Tokamak Fusion Test Reactor (TFTR) at the Plasma Physics Laboratory of Princeton University (PPPL) was the first fusion reactor fueled by a mixture of deuterium and tritium (D-T) to be decommissioned in the world. The decommissioning was performed over a period of three years and was completed safely, on schedule, and under budget. Provided is an overview of the project and detail of various factors which led to the success of the project. Discussion will cover management of the project, engineering planning before the project started and during the field work as it was being performed, training of workers in the field, the novel adaptation of tools from other industry, and the development of an innovative process for the use of diamond wire to segment the activated/contaminated vacuum vessel. The success of the TFTR decommissioning provides a viable model for the decommissioning of D-T burning fusion devices in the future.

  12. E-Print Network 3.0 - agata reactor Sample Search Results

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ) SRE... -7-78 16 0 tabtes + 2 fflvstrMnas Abstract A nuclear reactor for district heating is proposed Source: Ris National Laboratory Collection: Multidisciplinary...

  13. E-Print Network 3.0 - alto lazio-1 reactor Sample Search Results

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ) SRE... -7-78 16 0 tabtes + 2 fflvstrMnas Abstract A nuclear reactor for district heating is proposed Source: Ris National Laboratory Collection: Multidisciplinary...

  14. E-Print Network 3.0 - alto lazio-2 reactor Sample Search Results

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ) SRE... -7-78 16 0 tabtes + 2 fflvstrMnas Abstract A nuclear reactor for district heating is proposed Source: Ris National Laboratory Collection: Multidisciplinary...

  15. E-Print Network 3.0 - aguirre reactor Sample Search Results

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ) SRE... -7-78 16 0 tabtes + 2 fflvstrMnas Abstract A nuclear reactor for district heating is proposed Source: Ris National Laboratory Collection: Multidisciplinary...

  16. E-Print Network 3.0 - aquilon reactor Sample Search Results

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ) SRE... -7-78 16 0 tabtes + 2 fflvstrMnas Abstract A nuclear reactor for district heating is proposed Source: Ris National Laboratory Collection: Multidisciplinary...

  17. E-Print Network 3.0 - anna reactor Sample Search Results

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ) SRE... -7-78 16 0 tabtes + 2 fflvstrMnas Abstract A nuclear reactor for district heating is proposed Source: Ris National Laboratory Collection: Multidisciplinary...

  18. E-Print Network 3.0 - austrian triga-mk-2 reactor Sample Search...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ) SRE... -7-78 16 0 tabtes + 2 fflvstrMnas Abstract A nuclear reactor for district heating is proposed Source: Ris National Laboratory Collection: Multidisciplinary...

  19. E-Print Network 3.0 - avogadro rs-1 reactor Sample Search Results

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ) SRE... -7-78 16 0 tabtes + 2 fflvstrMnas Abstract A nuclear reactor for district heating is proposed Source: Ris National Laboratory Collection: Multidisciplinary...

  20. E-Print Network 3.0 - afrri reactor Sample Search Results

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ) SRE... -7-78 16 0 tabtes + 2 fflvstrMnas Abstract A nuclear reactor for district heating is proposed Source: Ris National Laboratory Collection: Multidisciplinary...

  1. E-Print Network 3.0 - annular reactor hydrodynamics Sample Search...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ) SRE... -7-78 16 0 tabtes + 2 fflvstrMnas Abstract A nuclear reactor for district heating is proposed Source: Ris National Laboratory Collection: Multidisciplinary...

  2. FISSION REACTORS KEYWORDS: high-temperature

    E-Print Network [OSTI]

    Yildiz, Bilge

    that is directly cou- pled to an advanced gas-cooled reactor (AGR) is pro- posed in this paper. The system features conversion system, and the progress in the electrolysis cell materials field can help the econom- ical by a supercritical CO2 ~SCO2! power conversion system that is directly coupled to an advanced gas-cooled reactor

  3. Using laboratory flow experiments and reactive chemical transport modeling for designing waterflooding of the Agua Fria Reservoir, Poza Rica-Altamira Field, Mexico

    E-Print Network [OSTI]

    Birkle, P.

    2009-01-01T23:59:59.000Z

    into the Agua Fría reservoir, data from laboratory flowChemical analytical data from reservoir water were appliedapplied as input data for initial reservoir conditions. In

  4. Distributed expert systems for nuclear reactor control

    SciTech Connect (OSTI)

    Otaduy, P.J.

    1992-12-01T23:59:59.000Z

    A network of distributed expert systems is the heart of a prototype supervisory control architecture developed at the Oak Ridge National Laboratory (ORNL) for an advanced multimodular reactor. Eight expert systems encode knowledge on signal acquisition, diagnostics, safeguards, and control strategies in a hybrid rule-based, multiprocessing and object-oriented distributed computing environment. An interactive simulation of a power block consisting of three reactors and one turbine provides a realistic, testbed for performance analysis of the integrated control system in real-time. Implementation details and representative reactor transients are discussed.

  5. Distributed expert systems for nuclear reactor control

    SciTech Connect (OSTI)

    Otaduy, P.J.

    1992-01-01T23:59:59.000Z

    A network of distributed expert systems is the heart of a prototype supervisory control architecture developed at the Oak Ridge National Laboratory (ORNL) for an advanced multimodular reactor. Eight expert systems encode knowledge on signal acquisition, diagnostics, safeguards, and control strategies in a hybrid rule-based, multiprocessing and object-oriented distributed computing environment. An interactive simulation of a power block consisting of three reactors and one turbine provides a realistic, testbed for performance analysis of the integrated control system in real-time. Implementation details and representative reactor transients are discussed.

  6. Commercial Light Water Reactor Tritium Extraction Facility Geotechnical Summary Report

    SciTech Connect (OSTI)

    Lewis, M.R.

    2000-01-11T23:59:59.000Z

    A geotechnical investigation program has been completed for the Circulating Light Water Reactor - Tritium Extraction Facility (CLWR-TEF) at the Savannah River Site (SRS). The program consisted of reviewing previous geotechnical and geologic data and reports, performing subsurface field exploration, field and laboratory testing and geologic and engineering analyses. The purpose of this investigation was to characterize the subsurface conditions for the CLWR-TEF in terms of subsurface stratigraphy and engineering properties for design and to perform selected engineering analyses. The objectives of the evaluation were to establish site-specific geologic conditions, obtain representative engineering properties of the subsurface and potential fill materials, evaluate the lateral and vertical extent of any soft zones encountered, and perform engineering analyses for slope stability, bearing capacity and settlement, and liquefaction potential. In addition, provide general recommendations for construction and earthwork.

  7. Structure of processes in flow reactor and closed reactor: Flow reactor

    E-Print Network [OSTI]

    Greifswald, Ernst-Moritz-Arndt-Universität

    Structure of processes in flow reactor and closed reactor: Flow reactor Closed reactor Active Zone -- chemical quasi- equilibria, similarity principles and macroscopic kinetics", in: Lectures on Plasma Physics

  8. Fish distribution studies near N Reactor, Summer 1983

    SciTech Connect (OSTI)

    Dauble, D.D.; Page, T.L.

    1984-06-01T23:59:59.000Z

    This report summarizes field studies that were initiated in July 1983 to provide estimates of the relative distribution of late-summer outmigrant juvenile salmonids and juvenile resident fish upstream of the N Reactor 009 Outfall. Chinook salmon are among the fish species most sensitive to thermal effects, and impacts to the juvenile outmigrant populations are of particular concern to state and federal regulatory and fisheries management agencies. Therefore, the distribution studies were conducted from late July through September, a period when high ambient river temperatures and low river flows make these salmonid populations most susceptible to thermal effects. In addition, data were not available on the spatial distribution of outmigrant juvenile chinook salmon in late summer. Information on the relative distribution of resident fish populations was also gathered. Previous studies of midstream distribution of juvenile resident fish were limited to a description of ichthyoplankton populations (Beak Consultants, Inc. 1980 Page et al. 1982), and no data were available on vertical or horizontal distribution of juvenile resident fish species near N Reactor. Relative densities and spatial distribution estimates of juvenile salmonid and resident fish species will be used in conjunction with laboratory thermal effects studies (Neitzel et al. 1984) and with plume characterization studies (Ecker et al. 1983) to assess potential impacts of thermal discharge on fish populations near N Reactor.

  9. Capillary-Pumped Passive Reactor Concept for Space Nuclear Power

    SciTech Connect (OSTI)

    Dr. Thomas F. Lin; Dr. Thomas G. Hughes; Christopher G. Miller

    2008-05-30T23:59:59.000Z

    To develop the passively-cooled space reactor concept using the capillary-induced lithium flow, since molten lithium possesses a very favorable surface tension characteristic. In space where the gravitational field is minimal, the gravity-assisted natural convection cooling is not effective nor an option for reactor heat removal, the capillary induced cooling becomes an attractive means of providing reactor cooling.

  10. OPTIMIZATION OF STELLARATOR REACTOR PARAMETERS J. F. Lyon1

    E-Print Network [OSTI]

    OPTIMIZATION OF STELLARATOR REACTOR PARAMETERS J. F. Lyon1 , L.P. Ku2 , P. Garabedian3 , L. El-average) approach for optimizing the main reactor parameters allows study of the relationship between global developed to optimize the main reactor parameters (, the average magnetic field on axis , etc

  11. SAFETY METHODOLOGY FOR THE OPERATION OF A CONTINUOUS INTENSIFIED REACTOR

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    SAFETY METHODOLOGY FOR THE OPERATION OF A CONTINUOUS INTENSIFIED REACTOR Wassila Benaissa1 in the development of new reactor technologies: today, miniaturised and continuous processes are being developed and reaction volumes. In this field, new proto- types of "heat-exchanger/reactors" are a good illustration

  12. CRC handbook of nuclear reactors calculations. Vol. III

    SciTech Connect (OSTI)

    Ronen, Y.

    1986-01-01T23:59:59.000Z

    This handbook breaks down the complex field of nuclear reactor calculations into major steps. Each step presents a detailed analysis of the problems to be solved, the parameters involved, and the elaborate computer programs developed to perform the calculations. This book bridges the gap between nuclear reactor theory and the implementation of that theory, including the problems to be encountered and the level of confidence that should be given to the methods described. Volume III: Control Rods and Burnable Absorber Calculations. Perturbation Theory for Nuclear Reactor Analysis. Thermal Reactors Calculations. Fast Reactor Calculations. Seed-Blanket Reactors. Index.

  13. Hybrid adsorptive membrane reactor

    DOE Patents [OSTI]

    Tsotsis, Theodore T. (Huntington Beach, CA); Sahimi, Muhammad (Altadena, CA); Fayyaz-Najafi, Babak (Richmond, CA); Harale, Aadesh (Los Angeles, CA); Park, Byoung-Gi (Yeosu, KR); Liu, Paul K. T. (Lafayette Hill, PA)

    2011-03-01T23:59:59.000Z

    A hybrid adsorbent-membrane reactor in which the chemical reaction, membrane separation, and product adsorption are coupled. Also disclosed are a dual-reactor apparatus and a process using the reactor or the apparatus.

  14. Production capabilities in US nuclear reactors for medical radioisotopes

    SciTech Connect (OSTI)

    Mirzadeh, S.; Callahan, A.P.; Knapp, F.F. Jr. [Oak Ridge National Lab., TN (United States); Schenter, R.E. [Westinghouse Hanford Co., Richland, WA (United States)

    1992-11-01T23:59:59.000Z

    The availability of reactor-produced radioisotopes in the United States for use in medical research and nuclear medicine has traditionally depended on facilities which are an integral part of the US national laboratories and a few reactors at universities. One exception is the reactor in Sterling Forest, New York, originally operated as part of the Cintichem (Union Carbide) system, which is currently in the process of permanent shutdown. Since there are no industry-run reactors in the US, the national laboratories and universities thus play a critical role in providing reactor-produced radioisotopes for medical research and clinical use. The goal of this survey is to provide a comprehensive summary of these production capabilities. With the temporary shutdown of the Oak Ridge National Laboratory (ORNL) High Flux Isotope Reactor (HFIR) in November 1986, the radioisotopes required for DOE-supported radionuclide generators were made available at the Brookhaven National Laboratory (BNL) High Flux Beam Reactor (HFBR). In March 1988, however, the HFBR was temporarily shut down which forced investigators to look at other reactors for production of the radioisotopes. During this period the Missouri University Research Reactor (MURR) played an important role in providing these services. The HFIR resumed routine operation in July 1990 at 85 MW power, and the HFBR resumed operation in June 1991, at 30 MW power. At the time of the HFBR shutdown, there was no available comprehensive overview which could provide information on status of the reactors operating in the US and their capabilities for radioisotope production. The obvious need for a useful overview was thus the impetus for preparing this survey, which would provide an up-to-date summary of those reactors available in the US at both the DOE-funded national laboratories and at US universities where service irradiations are currently or expected to be conducted.

  15. Nozzle for electric dispersion reactor

    DOE Patents [OSTI]

    Sisson, W.G.; Harris, M.T.; Scott, T.C.; Basaran, O.A.

    1996-04-02T23:59:59.000Z

    A nozzle for an electric dispersion reactor includes two coaxial cylindrical bodies, the inner one of the two delivering disperse phase fluid into a continuous phase fluid. A potential difference generated by a voltage source creates a dispersing electric field at the end of the inner electrode. 5 figs.

  16. Nozzle for electric dispersion reactor

    DOE Patents [OSTI]

    Sisson, Warren G. (Oak Ridge, TN); Basaran, Osman A. (Oak Ridge, TN); Harris, Michael T. (Knoxville, TN)

    1995-01-01T23:59:59.000Z

    A nozzle for an electric dispersion reactor includes two concentric electrodes, the inner one of the two delivering disperse phase fluid into a continuous phase fluid. A potential difference generated by a voltage source creates a dispersing electric field at the end of the inner electrode.

  17. Nozzle for electric dispersion reactor

    DOE Patents [OSTI]

    Sisson, Warren G. (Oak Ridge, TN); Harris, Michael T. (Knoxville, TN); Scott, Timothy C. (Knoxville, TN); Basaran, Osman A. (Oak Ridge, TN)

    1998-01-01T23:59:59.000Z

    A nozzle for an electric dispersion reactor includes two coaxial cylindrical bodies, the inner one of the two delivering disperse phase fluid into a continuous phase fluid. A potential difference generated by a voltage source creates a dispersing electric field at the end of the inner electrode.

  18. Nozzle for electric dispersion reactor

    DOE Patents [OSTI]

    Sisson, Warren G. (Oak Ridge, TN); Basaran, Osman A. (Oak Ridge, TN); Harris, Michael T. (Knoxville, TN)

    1998-01-01T23:59:59.000Z

    A nozzle for an electric dispersion reactor includes two concentric electrodes, the inner one of the two delivering disperse phase fluid into a continuous phase fluid. A potential difference generated by a voltage source creates a dispersing electric field at the end of the inner electrode.

  19. Nozzle for electric dispersion reactor

    DOE Patents [OSTI]

    Sisson, Warren G. (Oak Ridge, TN); Harris, Michael T. (Knoxville, TN); Scott, Timothy C. (Knoxville, TN); Basaran, Osman A. (Oak Ridge, TN)

    1996-01-01T23:59:59.000Z

    A nozzle for an electric dispersion reactor includes two coaxial cylindrical bodies, the inner one of the two delivering disperse phase fluid into a continuous phase fluid. A potential difference generated by a voltage source creates a dispersing electric field at the end of the inner electrode.

  20. Nozzle for electric dispersion reactor

    DOE Patents [OSTI]

    Sisson, W.G.; Harris, M.T.; Scott, T.C.; Basaran, O.A.

    1998-06-02T23:59:59.000Z

    A nozzle for an electric dispersion reactor includes two coaxial cylindrical bodies, the inner one of the two delivering disperse phase fluid into a continuous phase fluid. A potential difference generated by a voltage source creates a dispersing electric field at the end of the inner electrode. 5 figs.

  1. Nozzle for electric dispersion reactor

    DOE Patents [OSTI]

    Sisson, W.G.; Basaran, O.A.; Harris, M.T.

    1998-04-14T23:59:59.000Z

    A nozzle for an electric dispersion reactor includes two concentric electrodes, the inner one of the two delivering disperse phase fluid into a continuous phase fluid. A potential difference generated by a voltage source creates a dispersing electric field at the end of the inner electrode. 4 figs.

  2. argentine reactor ra-0: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Websites Summary: field has been known for long time. Low powered and low- pressure electrodeless lamps were utilized in an original photochemical reactor consisting of MWL...

  3. argentine reactor ra-8: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Websites Summary: field has been known for long time. Low powered and low- pressure electrodeless lamps were utilized in an original photochemical reactor consisting of MWL...

  4. atr reactor: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Websites Summary: field has been known for long time. Low powered and low- pressure electrodeless lamps were utilized in an original photochemical reactor consisting of MWL...

  5. argentine reactor ra-4: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Websites Summary: field has been known for long time. Low powered and low- pressure electrodeless lamps were utilized in an original photochemical reactor consisting of MWL...

  6. argentine reactor ra-1: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Websites Summary: field has been known for long time. Low powered and low- pressure electrodeless lamps were utilized in an original photochemical reactor consisting of MWL...

  7. argentine reactor ra-3: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Websites Summary: field has been known for long time. Low powered and low- pressure electrodeless lamps were utilized in an original photochemical reactor consisting of MWL...

  8. argentine reactor ra-5: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Websites Summary: field has been known for long time. Low powered and low- pressure electrodeless lamps were utilized in an original photochemical reactor consisting of MWL...

  9. argonaut bilbao reactor: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Websites Summary: field has been known for long time. Low powered and low- pressure electrodeless lamps were utilized in an original photochemical reactor consisting of MWL...

  10. argentine reactor ra-2: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Websites Summary: field has been known for long time. Low powered and low- pressure electrodeless lamps were utilized in an original photochemical reactor consisting of MWL...

  11. astra reactor: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Websites Summary: field has been known for long time. Low powered and low- pressure electrodeless lamps were utilized in an original photochemical reactor consisting of MWL...

  12. Nuclear reactor engineering

    SciTech Connect (OSTI)

    Glasstone, S.; Sesonske, A.

    1982-07-01T23:59:59.000Z

    A book is reviewed which emphasizes topics directly related to the light water reactor power plant and the fast reactor power system. Current real-world problems are addressed throughout the text, and a chapter on safety includes much of the postThree Mile Island impact on operating systems. Topics covered include Doppler broadening, neutron resonances, multigroup diffusion theory, reactor kinetics, reactor control, energy removal, nonfuel materials, reactor fuel, radiation protection, environmental effects, and reactor safety.

  13. Advanced reactor safety research. Quarterly report, July-September 1981

    SciTech Connect (OSTI)

    Not Available

    1982-10-01T23:59:59.000Z

    Sandia National Laboratories, Albuquerque, New Mexico, is conducting the Advanced Reactor Safety Research Program on behalf of the US Nuclear Regulatory Commission (NRC). Sandia has been given the task to investigate seven major areas of interest which are intimately related to over-all NRC needs. These are: core debris behavior - inherent retention; containment analysis; elevated temperature design assessment; LMFBR accident delineation; advanced reactor core phenomenology; light water reactor (LWR) fuel damage phenomenology; and test and facility technology.

  14. Laboratory directed research and development

    SciTech Connect (OSTI)

    Not Available

    1991-11-15T23:59:59.000Z

    The purposes of Argonne's Laboratory Directed Research and Development (LDRD) Program are to encourage the development of novel concepts, enhance the Laboratory's R D capabilities, and further the development of its strategic initiatives. Among the aims of the projects supported by the Program are establishment of engineering proof-of-principle''; development of an instrumental prototype, method, or system; or discovery in fundamental science. Several of these project are closely associated with major strategic thrusts of the Laboratory as described in Argonne's Five Year Institutional Plan, although the scientific implications of the achieved results extend well beyond Laboratory plans and objectives. The projects supported by the Program are distributed across the major programmatic areas at Argonne. Areas of emphasis are (1) advanced accelerator and detector technology, (2) x-ray techniques in biological and physical sciences, (3) advanced reactor technology, (4) materials science, computational science, biological sciences and environmental sciences. Individual reports summarizing the purpose, approach, and results of projects are presented.

  15. Evaluation of LLNL's Nuclear Accident Dosimeters at the CALIBAN Reactor September 2010

    SciTech Connect (OSTI)

    Hickman, D P; Wysong, A R; Heinrichs, D P; Wong, C T; Merritt, M J; Topper, J D; Gressmann, F A; Madden, D J

    2011-06-21T23:59:59.000Z

    The Lawrence Livermore National Laboratory uses neutron activation elements in a Panasonic TLD holder as a personnel nuclear accident dosimeter (PNAD). The LLNL PNAD has periodically been tested using a Cf-252 neutron source, however until 2009, it was more than 25 years since the PNAD has been tested against a source of neutrons that arise from a reactor generated neutron spectrum that simulates a criticality. In October 2009, LLNL participated in an intercomparison of nuclear accident dosimeters at the CEA Valduc Silene reactor (Hickman, et.al. 2010). In September 2010, LLNL participated in a second intercomparison of nuclear accident dosimeters at CEA Valduc. The reactor generated neutron irradiations for the 2010 exercise were performed at the Caliban reactor. The Caliban results are described in this report. The procedure for measuring the nuclear accident dosimeters in the event of an accident has a solid foundation based on many experimental results and comparisons. The entire process, from receiving the activated NADs to collecting and storing them after counting was executed successfully in a field based operation. Under normal conditions at LLNL, detectors are ready and available 24/7 to perform the necessary measurement of nuclear accident components. Likewise LLNL maintains processing laboratories that are separated from the areas where measurements occur, but contained within the same facility for easy movement from processing area to measurement area. In the event of a loss of LLNL permanent facilities, the Caliban and previous Silene exercises have demonstrated that LLNL can establish field operations that will very good nuclear accident dosimetry results. There are still several aspects of LLNL's nuclear accident dosimetry program that have not been tested or confirmed. For instance, LLNL's method for using of biological samples (blood and hair) has not been verified since the method was first developed in the 1980's. Because LLNL and the other DOE participants were limited in what they were allowed to do at the Caliban and Silene exercises and testing of various elements of the nuclear accident dosimetry programs cannot always be performed as guests at other sites, it has become evident that DOE needs its own capability to test nuclear accident dosimeters. Angular dependence determination and correction factors for NADs desperately need testing as well as more evaluation regarding the correct determination of gamma doses. It will be critical to properly design any testing facility so that the necessary experiments can be performed by DOE laboratories as well as guest laboratories. Alternate methods of dose assessment such as using various metals commonly found in pockets and clothing have yet to be evaluated. The DOE is planning to utilize the Godiva or Flattop reactor for testing nuclear accident dosimeters. LLNL has been assigned the primary operational authority for such testing. Proper testing of nuclear accident dosimeters will require highly specific characterization of the pulse fields. Just as important as the characterization of the pulsed fields will be the design of facilities used to process the NADs. Appropriate facilities will be needed to allow for early access to dosimeters to test and develop quick sorting techniques. These facilities will need appropriate laboratory preparation space and an area for measurements. Finally, such a facility will allow greater numbers of LLNL and DOE laboratory personnel to train on the processing and interpretation of nuclear accident dosimeters and results. Until this facility is fully operational for test purposes, DOE laboratories may need to continue periodic testing as guests of other reactor facilities such as Silene and Caliban.

  16. Advanced Reactor Safety Research Division. Quarterly progress report, January 1-March 31, 1980

    SciTech Connect (OSTI)

    Agrawal, A.K.; Cerbone, R.J.; Sastre, C.

    1980-06-01T23:59:59.000Z

    The Advanced Reactor Safety Research Programs quarterly progress report describes current activities and technical progress in the programs at Brookhaven National Laboratory sponsored by the USNRC Division of Reactor Safety Research. The projects reported each quarter are the following: HTGR Safety Evaluation, SSC Code Development, LMFBR Safety Experiments, and Fast Reactor Safety Code Validation.

  17. Advanced Reactor Safety Research Division quarterly progress report, January 1-March 31, 1981

    SciTech Connect (OSTI)

    Cerbone, R.J.; Ginsberg, T.; Guppy, J.G.; Sastre, C.

    1981-05-01T23:59:59.000Z

    The Advanced Reactor Safety Research Programs Quarterly Progress Report describes current activities and technical progress in the programs at Brookhaven National Laboratory sponsored by the USNRC Division of Reactor Safety Research. The projects reported each quarter are the following: HTGR Safety Evaluation, SSC Code Development, LMFBR Safety Experiments, and Fast Reactor Safety Code Validation.

  18. Advanced Reactor Safety Research Division. Quarterly progress report, July 1-September 30, 1980

    SciTech Connect (OSTI)

    Ramano, A.J. (comp.)

    1980-11-01T23:59:59.000Z

    The Advanced Reactor Safety Research Programs Quarterly Progress Report describes current activities and technical progress in the programs at Brookhaven National Laboratory sponsored by the USNRC Division of Reactor Safety Research. The projects reported each quarter are the following: HTGR Safety Evaluation, SSC Code Development, LMFBR Safety Experiments, and Fast Reactor Safety Code Validation.

  19. Advanced Reactor Safety Research Division quarterly progress report, 1 October-31 December 1980

    SciTech Connect (OSTI)

    Cerbone, R.J.; Ginsberg, T.; Guppy, J.G.; Sastre, C.

    1981-02-01T23:59:59.000Z

    The Advanced Reactor Safety Research Programs quarterly progress report describes current activities and technical progress in the programs at Brookhaven National Laboratory sponsored by the USNRC Division of Reactor Safety Research. The projects reported each quarter are the following: HTGR Safety Evaluation, LMFBR Safety Experiments, SSC Code Development, and Fast Reactor Safety Code Validation.

  20. Advanced Reactor Safety Research Division. Quarterly progress report, July 1-September 30, 1979

    SciTech Connect (OSTI)

    Romano, A.J.

    1980-01-01T23:59:59.000Z

    The Advanced Reactor Safety Research Programs Quarterly Progress Report describes current activities and technical progress in the programs at Brookhaven National Laboratory sponsored by the USNRC Division of Reactor Safety Research. The projects reported each quarter are the following: HTGR Safety Evaluation, SSC Code Development, LMFBR Safety Experiments, and Fast Reactor Safety Code Validation.

  1. Advanced Reactor Safety Research Division. Quarterly progress report, April 1-June 30, 1980

    SciTech Connect (OSTI)

    Romano, A.J.

    1980-01-01T23:59:59.000Z

    The Advanced Reactor Safety Research Programs Quarterly Progress Report describes current activities and technical progress in the programs at Brookhaven National Laboratory sponsored by the USNRC Division of Reactor Safety Research. The projects reported each quarter are the following: HTGR safety evaluation, SSC Code Development, LMFBR Safety Experiments, and Fast Reactor Safety Code Validation.

  2. US graphite reactor D&D experience

    SciTech Connect (OSTI)

    Garrett, S.M.K.; Williams, N.C.

    1997-02-01T23:59:59.000Z

    This report describes the results of the U.S. Graphite Reactor Experience Task for the Decommissioning Strategy Plan for the Leningrad Nuclear Power Plant (NPP) Unit 1 Study. The work described in this report was performed by the Pacific Northwest National Laboratory (PNNL) for the Department of Energy (DOE).

  3. Purdue Hydrogen Systems Laboratory

    SciTech Connect (OSTI)

    Jay P Gore; Robert Kramer; Timothee L Pourpoint; P. V. Ramachandran; Arvind Varma; Yuan Zheng

    2011-12-28T23:59:59.000Z

    The Hydrogen Systems Laboratory in a unique partnership between Purdue University's main campus in West Lafayette and the Calumet campus was established and its capabilities were enhanced towards technology demonstrators. The laboratory engaged in basic research in hydrogen production and storage and initiated engineering systems research with performance goals established as per the USDOE Hydrogen, Fuel Cells, and Infrastructure Technologies Program. In the chemical storage and recycling part of the project, we worked towards maximum recycling yield via novel chemical selection and novel recycling pathways. With the basic potential of a large hydrogen yield from AB, we used it as an example chemical but have also discovered its limitations. Further, we discovered alternate storage chemicals that appear to have advantages over AB. We improved the slurry hydrolysis approach by using advanced slurry/solution mixing techniques. We demonstrated vehicle scale aqueous and non-aqueous slurry reactors to address various engineering issues in on-board chemical hydrogen storage systems. We measured the thermal properties of raw and spent AB. Further, we conducted experiments to determine reaction mechanisms and kinetics of hydrothermolysis in hydride-rich solutions and slurries. We also developed a continuous flow reactor and a laboratory scale fuel cell power generation system. The biological hydrogen production work summarized as Task 4.0 below, included investigating optimal hydrogen production cultures for different substrates, reducing the water content in the substrate, and integrating results from vacuum tube solar collector based pre and post processing tests into an enhanced energy system model. An automated testing device was used to finalize optimal hydrogen production conditions using statistical procedures. A 3 L commercial fermentor (New Brunswick, BioFlo 115) was used to finalize testing of larger samples and to consider issues related to scale up. Efforts continued to explore existing catalytic methods involving nano catalysts for capture of CO2 from the fermentation process.

  4. Irradiation behavior of metallic fast reactor fuels

    SciTech Connect (OSTI)

    Pahl, R.G.; Porter, D.L.; Crawford, D.C.; Walters, L.C.

    1991-01-01T23:59:59.000Z

    Metallic fuels were the first fuels chosen for liquid metal cooled fast reactors (LMR's). In the late 1960's world-wide interest turned toward ceramic LMR fuels before the full potential of metallic fuel was realized. However, during the 1970's the performance limitations of metallic fuel were resolved in order to achieve a high plant factor at the Argonne National Laboratory's Experimental Breeder Reactor II. The 1980's spawned renewed interest in metallic fuel when the Integral Fast Reactor (IFR) concept emerged at Argonne National Laboratory. A fuel performance demonstration program was put into place to obtain the data needed for the eventual licensing of metallic fuel. This paper will summarize the results of the irradiation program carried out since 1985.

  5. THE IDAHO NATIONAL LABORATORY BERYLLIUM TECHNOLOGY UPDATE

    SciTech Connect (OSTI)

    Glen R. Longhurst

    2007-12-01T23:59:59.000Z

    A Beryllium Technology Update meeting was held at the Idaho National Laboratory on July 18, 2007. Participants came from the U.S., Japan, and Russia. There were two main objectives of this meeting. One was a discussion of current technologies for beryllium in fission reactors, particularly the Advanced Test Reactor and the Japan Materials Test Reactor, and prospects for material availability in the coming years. The second objective of the meeting was a discussion of a project of the International Science and Technology Center regarding treatment of irradiated beryllium for disposal. This paper highlights discussions held during that meeting and major conclusions reached

  6. Advanced Computational Thermal Fluid Physics (CTFP) and Its Assessment for Light Water Reactors and Supercritical Reactors

    SciTech Connect (OSTI)

    D.M. McEligot; K. G. Condie; G. E. McCreery; H. M. McIlroy; R. J. Pink; L.E. Hochreiter; J.D. Jackson; R.H. Pletcher; B.L. Smith; P. Vukoslavcevic; J.M. Wallace; J.Y. Yoo; J.S. Lee; S.T. Ro; S.O. Park

    2005-10-01T23:59:59.000Z

    Background: The ultimate goal of the study is the improvement of predictive methods for safety analyses and design of Generation IV reactor systems such as supercritical water reactors (SCWR) for higher efficiency, improved performance and operation, design simplification, enhanced safety and reduced waste and cost. The objective of this Korean / US / laboratory / university collaboration of coupled fundamental computational and experimental studies is to develop the supporting knowledge needed for improved predictive techniques for use in the technology development of Generation IV reactor concepts and their passive safety systems. The present study emphasizes SCWR concepts in the Generation IV program.

  7. Reactor safety method

    DOE Patents [OSTI]

    Vachon, Lawrence J. (Clairton, PA)

    1980-03-11T23:59:59.000Z

    This invention relates to safety means for preventing a gas cooled nuclear reactor from attaining criticality prior to start up in the event the reactor core is immersed in hydrogenous liquid. This is accomplished by coating the inside surface of the reactor coolant channels with a neutral absorbing material that will vaporize at the reactor's operating temperature.

  8. Recent results and challenges in development of metallic Hall sensors for fusion reactors

    SciTech Connect (OSTI)

    ?uran, Ivan; Mušálek, Radek; Kova?ík, Karel [Institute of Plasma Physics AS CR, Za Slovankou 3, 182 00 Praha 8 (Czech Republic); Sentkerestiová, Jana [Faculty of Nuclear Sciences and Physical Engineering, Czech Technical University in Prague, B?ehová 7, 115 19 Praha 1 (Czech Republic); Kohout, Michal [Institute of Physics AS CR, Na Slovance 1999/2, 182 21 Praha 8 (Czech Republic); Viererbl, Ladislav [Research Centre Rez, Hlavní 130, 250 68 Husinec-?ež (Czech Republic)

    2014-08-21T23:59:59.000Z

    Reliable and precise diagnostic of local magnetic field is crucial for successful operation of future thermonuclear fusion reactors based on magnetic confinement. Magnetic sensors at these devices will experience an extremely demanding operational environment with large radiation and thermal loads in combination with required long term, reliable, and service-free performance. Neither present day commercial nor laboratory measurement systems comply with these requirements. Metallic Hall sensors based on e.g. copper or bismuth could potentially satisfy these needs. We present the technology for manufacturing of such sensors and some initial results on characterization of their properties.

  9. Reactor Safety Research: Semiannual report, January-June 1986: Reactor Safety Research Program

    SciTech Connect (OSTI)

    Not Available

    1987-05-01T23:59:59.000Z

    Sandia National Laboratories is conducting, under USNRC sponsorship, phenomenological research related to the safety of commercial nuclear power reactors. The research includes experiments to simulate the phenomenology of accident conditions and the development of analytical models, verified by experiment, which can be used to predict reactor and safety systems performance behavior under abnormal conditions. The objective of this work is to provide NRC requisite data bases and analytical methods to (1) identify and define safety issues, (2) understand the progression of risk-significant accident sequences, and (3) conduct safety assessments. The collective NRC-sponsored effort at Sandia National Laboratories is directed at enhancing the technology base supporting licensing decisions.

  10. Reactivity worth measurements at the IPEN/MB-01 nuclear reactor

    SciTech Connect (OSTI)

    Pinto, Leticia Negrao; Santos, Adimir dos [Nuclear Engineering Center, Nuclear and Energy Research Institute- IPEN/CNEN-SP (Brazil)

    2013-05-06T23:59:59.000Z

    Researches that aim to improve the performance of neutron transport codes and quality of nuclear cross section databases are very important to increase the accuracy of simulations and the quality of the analysis and prediction of phenomena in the nuclear field. In this context, relevant experimental data such as reactivity worth measurements are needed. The objective of this work was to perform a series of experiments of reactivity worth measurements, using a digital reactivity meter developed at IPEN. The experiments employed small metallic and ceramic samples inserted in the central region of the core of the experimental IPEN/MB-01 reactor. The theoretical analysis was performed by the MCNP-5 reactor physics code, developed and maintained by Los Alamos National Laboratory, and the ENDF/B-VII.0 nuclear data library.

  11. Nuclear reactor

    DOE Patents [OSTI]

    Thomson, Wallace B. (Severna Park, MD)

    2004-03-16T23:59:59.000Z

    A nuclear reactor comprising a cylindrical pressure vessel, an elongated annular core centrally disposed within and spaced from the pressure vessel, and a plurality of ducts disposed longitudinally of the pressure vessel about the periphery thereof, said core comprising an annular active portion, an annular reflector just inside the active portion, and an annular reflector just outside the active a portion, said annular active portion comprising rectangular slab, porous fuel elements radially disposed around the inner reflector and extending the length of the active portion, wedge-shaped, porous moderator elements disposed adjacent one face of each fuel element and extending the length of the fuel element, the fuel and moderator elements being oriented so that the fuel elements face each other and the moderator elements do likewise, adjacent moderator elements being spaced to provide air inlet channels, and adjacent fuel elements being spaced to provide air outlet channels which communicate with the interior of the peripheral ducts, and means for introducing air into the air inlet channels which passes through the porous moderator elements and porous fuel elements to the outlet channel.

  12. LETTER REPORT INDEPENDENT VERIFICATION OF THE HIGH FLUX BEAM REACTOR DECOMMISSIONING PROJECT FAN HOUSE, BUILDING 704 BNL

    SciTech Connect (OSTI)

    P.C. Weaver

    2010-10-22T23:59:59.000Z

    5098-LR-01-0 -LETTER REPORT INDEPENDENT VERIFICATION OF THE HIGH FLUX BEAM REACTOR DECOMMISSIONING PROJECT FAN HOUSE, BUILDING 704 BROOKHAVEN NATIONAL LABORATORY

  13. Reduced enrichment for research and test reactors: Proceedings

    SciTech Connect (OSTI)

    Not Available

    1993-07-01T23:59:59.000Z

    The 15th annual Reduced Enrichment for Research and Test Reactors (RERTR) international meeting was organized by Ris{o} National Laboratory in cooperation with the International Atomic Energy Agency and Argonne National Laboratory. The topics of the meeting were the following: National Programs, Fuel Fabrication, Licensing Aspects, States of Conversion, Fuel Testing, and Fuel Cycle. Individual papers have been cataloged separately.

  14. Atmospheric Pressure Reactor System | EMSL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Atmospheric Pressure Reactor System Atmospheric Pressure Reactor System The atmospheric pressure reactor system is designed for testing the efficiency of various catalysts for the...

  15. Proceedings of the NEACRP/IAEA Specialists meeting on the international comparison calculation of a large sodium-cooled fast breeder reactor at Argonne National Laboratory on February 7-9, 1978

    SciTech Connect (OSTI)

    LeSage, L.G.; McKnight, R.D.; Wade, D.C.; Freese, K.E.; Collins, P.J.

    1980-08-01T23:59:59.000Z

    The results of an international comparison calculation of a large (1250 MWe) LMFBR benchmark model are presented and discussed. Eight reactor configurations were calculated. Parameters included with the comparison were: eigenvalue, k/sub infinity/, neutron balance data, breeding reaction rate ratios, reactivity worths, central control rod worth, regional sodium void reactivity, core Doppler and effective delayed neutron fraction. Ten countries participated in the comparison, and sixteen solutions were contributed. The discussion focuses on the variation in parameter values, the degree of consistency among the various parameters and solutions, and the identification of unexpected results. The results are displayed and discussed both by individual participants and by groupings of participants (e.g., results from adjusted data sets versus non-adjusted data sets).

  16. Using laboratory flow experiments and reactive chemical transport modeling for designing waterflooding of the Agua Fria Reservoir, Poza Rica-Altamira Field, Mexico

    E-Print Network [OSTI]

    Birkle, P.

    2009-01-01T23:59:59.000Z

    1. Williams, P. : “Mexico,” Oil and Gas Investor (July 2003)oil field, bordering the Gulf coast in the eastern part of Mexico,

  17. Geophysical Prospecting, 2009, 57, 209224 doi: 10.1111/j.1365-2478.2008.00771.x Laboratory-scale study of field of view and the seismic interpretation

    E-Print Network [OSTI]

    Pyrak-Nolte, Laura J.

    -scale study of field of view and the seismic interpretation of fracture specific stiffness Angel Acosta-Colon1, on the interpretation of fracture properties from seismic wave propagation was investigated using an acous- tic lens of the field of view affected the interpretation of the fracture specific stiffness. Many small

  18. Reactor accident consequence analysis code (MACCS)

    SciTech Connect (OSTI)

    Jow, Hong-Nian; Sprung, J.L.; Chanin, D.I.; Helton, J.C.; Rollstin, J.A. (Sandia National Labs., Albuquerque, NM (USA); Technadyne Engineering Consultants, Inc., Albuquerque, NM (USA); Arizona State Univ., Tempe, AZ (USA); GRAM, Inc., Albuquerque, NM (USA))

    1990-01-01T23:59:59.000Z

    Sandia National Laboratories has been involved in the performance of risk assessments for the US Nuclear Regulatory Commission for more than a decade. As part of this effort, Sandia developed the reactor consequence analysis codes, CRAC2, and more recently, MACCS. CRAC2 is an improved version of CRAC, which was used in the Reactor Safety Study (also known as WASH-1400). MACCS was used in recent risk assessments for five nuclear power plants (NUREG-1150). MACCS incorporates many model improvements over CRAC2. Some of these improvements are discussed. A comparison of results obtained with CRAC2 and MACCS is also presented. 19 refs., 3 tabs.

  19. Reactor Sharing Program

    SciTech Connect (OSTI)

    Vernetson, W.G.

    1993-01-01T23:59:59.000Z

    Progress achieved at the University of Florida Training Reactor (UFTR) facility through the US Department of Energy's University Reactor Sharing Program is reported for the period of 1991--1992.

  20. Attrition reactor system

    DOE Patents [OSTI]

    Scott, Charles D. (Oak Ridge, TN); Davison, Brian H. (Knoxvile, TN)

    1993-01-01T23:59:59.000Z

    A reactor vessel for reacting a solid particulate with a liquid reactant has a centrifugal pump in circulatory flow communication with the reactor vessel for providing particulate attrition, resulting in additional fresh surface where the reaction can occur.

  1. Attrition reactor system

    DOE Patents [OSTI]

    Scott, C.D.; Davison, B.H.

    1993-09-28T23:59:59.000Z

    A reactor vessel for reacting a solid particulate with a liquid reactant has a centrifugal pump in circulatory flow communication with the reactor vessel for providing particulate attrition, resulting in additional fresh surface where the reaction can occur. 2 figures.

  2. Ris National Laboratory DTU Radiation Research Department

    E-Print Network [OSTI]

    in Decommissioning of Nuclear Facilities Xiaolin Hou Risø National Laboratory, NUK-202, DK-4000 Roskilde, Denmark materials for characterization of the waste during the decommissioning of Danish nuclear reactors. Introduction In decommissioning of a nuclear facility, the radioactivity of various radionuclides has

  3. Brookhaven highlights - Brookhaven National Laboratory 1995

    SciTech Connect (OSTI)

    NONE

    1996-09-01T23:59:59.000Z

    This report highlights research conducted at Brookhaven National Laboratory in the following areas: alternating gradient synchrotron; physics; biology; national synchrotron light source; department of applied science; medical; chemistry; department of advanced technology; reactor; safety and environmental protection; instrumentation; and computing and communications.

  4. Design options for a bunsen reactor.

    SciTech Connect (OSTI)

    Moore, Robert Charles

    2013-10-01T23:59:59.000Z

    This work is being performed for Matt Channon Consulting as part of the Sandia National Laboratories New Mexico Small Business Assistance Program (NMSBA). Matt Channon Consulting has requested Sandia's assistance in the design of a chemical Bunsen reactor for the reaction of SO2, I2 and H2O to produce H2SO4 and HI with a SO2 feed rate to the reactor of 50 kg/hour. Based on this value, an assumed reactor efficiency of 33%, and kinetic data from the literature, a plug flow reactor approximately 1%E2%80%9D diameter and and 12 inches long would be needed to meet the specification of the project. Because the Bunsen reaction is exothermic, heat in the amount of approximately 128,000 kJ/hr would need to be removed using a cooling jacket placed around the tubular reactor. The available literature information on Bunsen reactor design and operation, certain support equipment needed for process operation and a design that meet the specification of Matt Channon Consulting are presented.

  5. High solids fermentation reactor

    DOE Patents [OSTI]

    Wyman, Charles E.; Grohmann, Karel; Himmel, Michael E.; Richard, Christopher J.

    1993-03-02T23:59:59.000Z

    A fermentation reactor and method for fermentation of materials having greater than about 10% solids. The reactor includes a rotatable shaft along the central axis, the shaft including rods extending outwardly to mix the materials. The reactor and method are useful for anaerobic digestion of municipal solid wastes to produce methane, for production of commodity chemicals from organic materials, and for microbial fermentation processes.

  6. High solids fermentation reactor

    DOE Patents [OSTI]

    Wyman, Charles E. (Lakewood, CO); Grohmann, Karel (Littleton, CO); Himmel, Michael E. (Littleton, CO); Richard, Christopher J. (Lakewood, CO)

    1993-01-01T23:59:59.000Z

    A fermentation reactor and method for fermentation of materials having greater than about 10% solids. The reactor includes a rotatable shaft along the central axis, the shaft including rods extending outwardly to mix the materials. The reactor and method are useful for anaerobic digestion of municipal solid wastes to produce methane, for production of commodity chemicals from organic materials, and for microbial fermentation processes.

  7. Improved vortex reactor system

    DOE Patents [OSTI]

    Diebold, James P. (Lakewood, CO); Scahill, John W. (Evergreen, CO)

    1995-01-01T23:59:59.000Z

    An improved vortex reactor system for affecting fast pyrolysis of biomass and Refuse Derived Fuel (RDF) feed materials comprising: a vortex reactor having its axis vertically disposed in relation to a jet of a horizontally disposed steam ejector that impels feed materials from a feeder and solids from a recycle loop along with a motive gas into a top part of said reactor.

  8. SULI at Ames Laboratory

    SciTech Connect (OSTI)

    None

    2011-01-01T23:59:59.000Z

    A video snapshot of the Science Undergraduate Laboratory Internship (SULI) program at Ames Laboratory.

  9. Field Laboratory in the Osage Reservation -- Determination of the Status of Oil and Gas Operations: Task 1. Development of Survey Procedures and Protocols

    SciTech Connect (OSTI)

    Carroll, Herbert B.; Johnson, William I.

    1999-04-27T23:59:59.000Z

    Procedures and protocols were developed for the determination of the status of oil, gas, and other mineral operations on the Osage Mineral Reservation Estate. The strategy for surveying Osage County, Oklahoma, was developed and then tested in the field. Two Osage Tribal Council members and two Native American college students (who are members of the Osage Tribe) were trained in the field as a test of the procedures and protocols developed in Task 1. Active and inactive surface mining operations, industrial sites, and hydrocarbon-producing fields were located on maps of the county, which was divided into four more or less equal areas for future investigation. Field testing of the procedures, protocols, and training was successful. No significant damage was found at petroleum production operations in a relatively new production operation and in a mature waterflood operation.

  10. Safety requirements, facility user needs, and reactor concepts for a new Broad Application Test Reactor

    SciTech Connect (OSTI)

    Ryskamp, J.M. [ed.; Liebenthal, J.L.; Denison, A.B.; Fletcher, C.D.

    1992-07-01T23:59:59.000Z

    This report describes the EG&G Laboratory Directed Research and Development Program (LDRD) Broad Application Test Reactor (BATR) Project that was conducted in fiscal year 1991. The scope of this project was divided into three phases: a project process definition phase, a requirements development phase, and a preconceptual reactor design and evaluation phase. Multidisciplinary teams of experts conducted each phase. This report presents the need for a new test reactor, the project process definition, a set of current and projected regulatory compliance and safety requirements, a set of facility user needs for a broad range of projected testing missions, and descriptions of reactor concepts capable of meeting these requirements. This information can be applied to strategic planning to provide the Department of Energy with management options.

  11. Safety requirements, facility user needs, and reactor concepts for a new Broad Application Test Reactor

    SciTech Connect (OSTI)

    Ryskamp, J.M. (ed.); Liebenthal, J.L.; Denison, A.B.; Fletcher, C.D.

    1992-07-01T23:59:59.000Z

    This report describes the EG G Laboratory Directed Research and Development Program (LDRD) Broad Application Test Reactor (BATR) Project that was conducted in fiscal year 1991. The scope of this project was divided into three phases: a project process definition phase, a requirements development phase, and a preconceptual reactor design and evaluation phase. Multidisciplinary teams of experts conducted each phase. This report presents the need for a new test reactor, the project process definition, a set of current and projected regulatory compliance and safety requirements, a set of facility user needs for a broad range of projected testing missions, and descriptions of reactor concepts capable of meeting these requirements. This information can be applied to strategic planning to provide the Department of Energy with management options.

  12. Advanced Test Reactor National Scientific User Facility: Addressing advanced nuclear materials research

    SciTech Connect (OSTI)

    John Jackson; Todd Allen; Frances Marshall; Jim Cole

    2013-03-01T23:59:59.000Z

    The Advanced Test Reactor National Scientific User Facility (ATR NSUF), based at the Idaho National Laboratory in the United States, is supporting Department of Energy and industry research efforts to ensure the properties of materials in light water reactors are well understood. The ATR NSUF is providing this support through three main efforts: establishing unique infrastructure necessary to conduct research on highly radioactive materials, conducting research in conjunction with industry partners on life extension relevant topics, and providing training courses to encourage more U.S. researchers to understand and address LWR materials issues. In 2010 and 2011, several advanced instruments with capability focused on resolving nuclear material performance issues through analysis on the micro (10-6 m) to atomic (10-10 m) scales were installed primarily at the Center for Advanced Energy Studies (CAES) in Idaho Falls, Idaho. These instruments included a local electrode atom probe (LEAP), a field-emission gun scanning transmission electron microscope (FEG-STEM), a focused ion beam (FIB) system, a Raman spectrometer, and an nanoindentor/atomic force microscope. Ongoing capability enhancements intended to support industry efforts include completion of two shielded, irradiation assisted stress corrosion cracking (IASCC) test loops, the first of which will come online in early calendar year 2013, a pressurized and controlled chemistry water loop for the ATR center flux trap, and a dedicated facility intended to house post irradiation examination equipment. In addition to capability enhancements at the main site in Idaho, the ATR NSUF also welcomed two new partner facilities in 2011 and two new partner facilities in 2012; the Oak Ridge National Laboratory, High Flux Isotope Reactor (HFIR) and associated hot cells and the University California Berkeley capabilities in irradiated materials analysis were added in 2011. In 2012, Purdue University’s Interaction of Materials with Particles and Components Testing (IMPACT) facility and the Pacific Northwest Nuclear Laboratory (PNNL) Radiochemistry Processing Laboratory (RPL) and PIE facilities were added. The ATR NSUF annually hosts a weeklong event called User’s Week in which students and faculty from universities as well as other interested parties from regulatory agencies or industry convene in Idaho Falls, Idaho to see presentations from ATR NSUF staff as well as select researchers from the materials research field. User’s week provides an overview of current materials research topics of interest and an opportunity for young researchers to understand the process of performing work through ATR NSUF. Additionally, to increase the number of researchers engaged in LWR materials issues, a series of workshops are in progress to introduce research staff to stress corrosion cracking, zirconium alloy degradation, and uranium dioxide degradation during in-reactor use.

  13. Neutron behavior, reactor control, and reactor heat transfer. Volume four

    SciTech Connect (OSTI)

    Not Available

    1986-01-01T23:59:59.000Z

    Volume four covers neutron behavior (neutron absorption, how big are nuclei, neutron slowing down, neutron losses, the self-sustaining reactor), reactor control (what is controlled in a reactor, controlling neutron population, is it easy to control a reactor, range of reactor control, what happens when the fuel burns up, controlling a PWR, controlling a BWR, inherent safety of reactors), and reactor heat transfer (heat generation in a nuclear reactor, how is heat removed from a reactor core, heat transfer rate, heat transfer properties of the reactor coolant).

  14. Testing of Gas Reactor Fuel and Materials in the Advanced Test Reactor

    SciTech Connect (OSTI)

    S. Blaine Grover

    2006-10-01T23:59:59.000Z

    The recent growth in interest for high temperature gas reactors has resulted in an increased need for materials and fuel testing for this type of reactor. The Advanced Test Reactor (ATR), located at the US Department of Energy’s Idaho National Laboratory, has long been involved in testing gas reactor fuel and materials, and has facilities and capabilities to provide the right environment for gas reactor irradiation experiments. These capabilities include both passive sealed capsule experiments, and instrumented/actively controlled experiments. The instrumented/actively controlled experiments typically contain thermocouples and control the irradiation temperature, but on-line measurements and controls for pressure and gas environment have also been performed in past irradiations. The ATR has an existing automated gas temperature control system that can maintain temperature in an irradiation experiment within very tight bounds, and has developed an on-line fission product monitoring system that is especially well suited for testing gas reactor particle fuel. The ATR’s control system, which consists primarily of vertical cylinders used to rotate neutron poisons/reflectors toward or away from the reactor core, provides a constant vertical flux profile over the duration of each operating cycle. This constant chopped cosine shaped axial flux profile, with a relatively flat peak at the vertical centre of the core, is more desirable for experiments than a constantly moving axial flux peak resulting from a control system of axially positioned control components which are vertically withdrawn from the core.

  15. Reactor vessel support system

    DOE Patents [OSTI]

    Golden, Martin P. (Trafford, PA); Holley, John C. (McKeesport, PA)

    1982-01-01T23:59:59.000Z

    A reactor vessel support system includes a support ring at the reactor top supported through a box ring on a ledge of the reactor containment. The box ring includes an annular space in the center of its cross-section to reduce heat flow and is keyed to the support ledge to transmit seismic forces from the reactor vessel to the containment structure. A coolant channel is provided at the outside circumference of the support ring to supply coolant gas through the keyways to channels between the reactor vessel and support ledge into the containment space.

  16. Light-water-reactor safety materials engineering research programs. Quarterly progress report, January-March 1985. Volume 1

    SciTech Connect (OSTI)

    Not Available

    1986-03-01T23:59:59.000Z

    This progress report summarizes work performed by the Materials Science and Technology Division of Argonne National Laboratory during January, February, and March 1985 on water reactor safety problems. The research and development areas covered are Environmentally Assisted Cracking in Light-Water Reactors and Long-Term Embrittlement of Cast Duplex Stainless Steels in Light-Water-Reactor Systems. 42 refs.

  17. Light-water-reactor safety materials engineering research programs. Volume 3. Quarterly progress report, October-December 1984

    SciTech Connect (OSTI)

    Not Available

    1985-10-01T23:59:59.000Z

    This progress report summarizes work performed by the Materials Science and Technology Division of Argonne National Laboratory during October, November, and December 1984 on water reactor safety problems. The research and development areas covered are Environmentally Assisted Cracking in Light-Water Reactors and Long-Term Embrittlement of Cast Duplex Stainless Steels in Light-Water-Reactor Systems.

  18. REACTOR PHYSICS MODELING OF SPENT RESEARCH REACTOR FUEL FOR TECHNICAL NUCLEAR FORENSICS

    SciTech Connect (OSTI)

    Nichols, T.; Beals, D.; Sternat, M.

    2011-07-18T23:59:59.000Z

    Technical nuclear forensics (TNF) refers to the collection, analysis and evaluation of pre- and post-detonation radiological or nuclear materials, devices, and/or debris. TNF is an integral component, complementing traditional forensics and investigative work, to help enable the attribution of discovered radiological or nuclear material. Research is needed to improve the capabilities of TNF. One research area of interest is determining the isotopic signatures of research reactors. Research reactors are a potential source of both radiological and nuclear material. Research reactors are often the least safeguarded type of reactor; they vary greatly in size, fuel type, enrichment, power, and burn-up. Many research reactors are fueled with highly-enriched uranium (HEU), up to {approx}93% {sup 235}U, which could potentially be used as weapons material. All of them have significant amounts of radiological material with which a radioactive dispersal device (RDD) could be built. Therefore, the ability to attribute if material originated from or was produced in a specific research reactor is an important tool in providing for the security of the United States. Currently there are approximately 237 operating research reactors worldwide, another 12 are in temporary shutdown and 224 research reactors are reported as shut down. Little is currently known about the isotopic signatures of spent research reactor fuel. An effort is underway at Savannah River National Laboratory (SRNL) to analyze spent research reactor fuel to determine these signatures. Computer models, using reactor physics codes, are being compared to the measured analytes in the spent fuel. This allows for improving the reactor physics codes in modeling research reactors for the purpose of nuclear forensics. Currently the Oak Ridge Research reactor (ORR) is being modeled and fuel samples are being analyzed for comparison. Samples of an ORR spent fuel assembly were taken by SRNL for analytical and radiochemical analysis. The fuel assembly was modeled using MONTEBURNS(MCNP5/ ORIGEN2.2) and MCNPX/CINDER90. The results from the models have been compared to each other and to the measured data.

  19. Reactor water cleanup system

    DOE Patents [OSTI]

    Gluntz, D.M.; Taft, W.E.

    1994-12-20T23:59:59.000Z

    A reactor water cleanup system includes a reactor pressure vessel containing a reactor core submerged in reactor water. First and second parallel cleanup trains are provided for extracting portions of the reactor water from the pressure vessel, cleaning the extracted water, and returning the cleaned water to the pressure vessel. Each of the cleanup trains includes a heat exchanger for cooling the reactor water, and a cleaner for cleaning the cooled reactor water. A return line is disposed between the cleaner and the pressure vessel for channeling the cleaned water thereto in a first mode of operation. A portion of the cooled water is bypassed around the cleaner during a second mode of operation and returned through the pressure vessel for shutdown cooling. 1 figure.

  20. Spinning fluids reactor

    SciTech Connect (OSTI)

    Miller, Jan D; Hupka, Jan; Aranowski, Robert

    2012-11-20T23:59:59.000Z

    A spinning fluids reactor, includes a reactor body (24) having a circular cross-section and a fluid contactor screen (26) within the reactor body (24). The fluid contactor screen (26) having a plurality of apertures and a circular cross-section concentric with the reactor body (24) for a length thus forming an inner volume (28) bound by the fluid contactor screen (26) and an outer volume (30) bound by the reactor body (24) and the fluid contactor screen (26). A primary inlet (20) can be operatively connected to the reactor body (24) and can be configured to produce flow-through first spinning flow of a first fluid within the inner volume (28). A secondary inlet (22) can similarly be operatively connected to the reactor body (24) and can be configured to produce a second flow of a second fluid within the outer volume (30) which is optionally spinning.

  1. Determining Reactor Neutrino Flux

    E-Print Network [OSTI]

    Jun Cao

    2012-03-08T23:59:59.000Z

    Flux is an important source of uncertainties for a reactor neutrino experiment. It is determined from thermal power measurements, reactor core simulation, and knowledge of neutrino spectra of fuel isotopes. Past reactor neutrino experiments have determined the flux to (2-3)% precision. Precision measurements of mixing angle $\\theta_{13}$ by reactor neutrino experiments in the coming years will use near-far detector configurations. Most uncertainties from reactor will be canceled out. Understanding of the correlation of uncertainties is required for $\\theta_{13}$ experiments. Precise determination of reactor neutrino flux will also improve the sensitivity of the non-proliferation monitoring and future reactor experiments. We will discuss the flux calculation and recent progresses.

  2. Turing patterns in an open reactor

    SciTech Connect (OSTI)

    Vastano, J.A.; Pearson, J.E.; Horsthemke, W.; Swinney, H.L.

    1988-05-15T23:59:59.000Z

    Steady spatial chemical patterns have been found in model reaction--diffusion systems but have not yet been observed in any laboratory experiments. The reasons for this are discussed and the need for open reactors is stressed. A model open reactor is investigated in order to guide the experimental search for steady patterns. Specifically, Turing bifurcations in this reactor are studied for a simple autocatalytic chemistry (the Gray--Scott model) in order to determine the effects of varying diffusion coefficients, chemical time scales, and residence time. A description of all the steady-state bifurcations from an initially homogeneous state is obtained. The Liapunov--Schmidt reduction is used to determine the stability of the bifurcating solutions and a steady-state continuation technique is used to follow stable and unstable branches of bifurcating solutions.

  3. Technology Options for a Fast Spectrum Test Reactor

    SciTech Connect (OSTI)

    D. M. Wachs; R. W. King; I. Y. Glagolenko; Y. Shatilla

    2006-06-01T23:59:59.000Z

    Idaho National Laboratory in collaboration with Argonne National Laboratory has evaluated technology options for a new fast spectrum reactor to meet the fast-spectrum irradiation requirements for the USDOE Generation IV (Gen IV) and Advanced Fuel Cycle Initiative (AFCI) programs. The US currently has no capability for irradiation testing of large volumes of fuels or materials in a fast-spectrum reactor required to support the development of Gen IV fast reactor systems or to demonstrate actinide burning, a key element of the AFCI program. The technologies evaluated and the process used to select options for a fast irradiation test reactor (FITR) for further evaluation to support these programmatic objectives are outlined in this paper.

  4. Tube-wave Effects in Cross-Well Seismic Data at Stratton Field Valeri Korneev, Lawrence Berkeley National Laboratory, Jorge Parra, South-West Research Institute,

    E-Print Network [OSTI]

    Korneev, Valeri A.

    Tube-wave Effects in Cross-Well Seismic Data at Stratton Field Valeri Korneev, Lawrence Berkeley vertical plane. The data were collected in the receiver wells Ward159 and Ward145, while sources were The analysis of crosswell seismic data for a gas reservoir in Texas revealed two newly detected seismic wave

  5. Laboratory Applications

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't YourTransport(FactDepartment ofLetter Report:40PM toLED Lighting5-15TradeLaboratories

  6. Laboratory Directors

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC)Integrated Codes |Is Your Home asLCLSLaboratory Directors Laboratory Directors A

  7. Laboratory Operations

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville PowerCherries 82981-1cnHigh SchoolIn12electron 9 5 - -/e),,sand CERN 73-11 Laboratory I |

  8. Design of the Advanced Gas Reactor Fuel Experiments for Irradiation in the Advanced Test Reactor

    SciTech Connect (OSTI)

    S. Blaine Grover

    2005-10-01T23:59:59.000Z

    The United States Department of Energy’s Advanced Gas Reactor (AGR) Fuel Development and Qualification Program will be irradiating eight particle fuel tests in the Advanced Test Reactor (ATR) located at the newly formed Idaho National Laboratory (INL) to support development of the next generation Very High Temperature Reactor (VHTR) in the United States. The ATR has a long history of irradiation testing in support of reactor development and the INL has been designated as the new United States Department of Energy’s lead laboratory for nuclear energy development. These AGR fuel experiments will be irradiated over the next ten years to demonstrate and qualify new particle fuel for use in high temperature gas reactors. The experiments will be irradiated in an inert sweep gas atmosphere with on-line temperature monitoring and control combined with on-line fission product monitoring of the sweep gas. The final design phase has just been completed on the first experiment (AGR-1) in this series and the support systems and fission product monitoring system that will monitor and control the experiment during irradiation. This paper discusses the development of the experimental hardware and support system designs and the status of the experiment.

  9. Resource guide for electrokinetics laboratory and field processes applicable to radioactive and hazardous mixed wastes in soil and groundwater from 1992-1997

    SciTech Connect (OSTI)

    NONE

    1997-09-30T23:59:59.000Z

    This document attempted to list and describe all published work on electrokinetic remediation 1992 to 1997. This work includes electrokinetic remediation being used commercially or on a bench, pilot, field, or conceptual scale. There are three categories in this resource guide. The category, Category A, lists all electrokinetic processes that are used as the remediation tool at a contaminated site. Category B lists all electrokinetic processes that are being used on the bench, pilot, or field scale. Finally, Category C lists all electrokinetic process that are in the conceptual development stage. Electrokinetic remediation being used abroad was also included in this resource guide. Information about each electrokinetic system includes the developers` name and address, technical description, status, cost, and illustration (if available).

  10. Action Memorandum for the Engineering Test Reactor under the Idaho Cleanup Project

    SciTech Connect (OSTI)

    A. B. Culp

    2007-01-26T23:59:59.000Z

    This Action Memorandum documents the selected alternative for decommissioning of the Engineering Test Reactor at the Idaho National Laboratory under the Idaho Cleanup Project. Since the missions of the Engineering Test Reactor Complex have been completed, an engineering evaluation/cost analysis that evaluated alternatives to accomplish the decommissioning of the Engineering Test Reactor Complex was prepared adn released for public comment. The scope of this Action Memorandum is to encompass the final end state of the Complex and disposal of the Engineering Test Reactor vessol. The selected removal action includes removing and disposing of the vessel at the Idaho CERCLA Disposal Facility and demolishing the reactor building to ground surface.

  11. Novel Reactor Relevant RF Actuator Schemes for the Lower

    E-Print Network [OSTI]

    location for RF launchers · Transport in tokamak sends heat and particles to low field side SOL: ­ Forces reactor is challenging: ­ Survivability is a major issue because of the harsh environment high heat solution that both mitigates PMI / coupling problems and improves core wave physics issues. #12;Reactor

  12. Field grouting summary report on the WAG 4 seeps 4 and 6 removal action project, Oak Ridge National Laboratory, Oak Ridge, Tennessee. Volume 3. Appendixes E and F

    SciTech Connect (OSTI)

    NONE

    1997-05-01T23:59:59.000Z

    During the summer of 1996, a unique multi-phase, multi-stage, low-pressure permeation grouting pilot program was performed inside portions of four unlined waste disposal trenches at Waste Area Grouping (WAG) 4 at Oak Ridge National Laboratory (ORNL) in Oak Ridge, Tennessee. The project was deemed a non-time-critical removal action under the Comprehensive Environmental Response, Compensation, and Liability Act of 1980 (CERCLA); however, due to a history of heavy precipitation in the fall, the schedule was fast-tracked to meet an October 31, 1996 grouting completion date. The technical objective of the removal action was to reduce the off-site transport of j Strontium 90 ({sup 90}Sr) by grouting portions of four waste disposal trenches believed to be responsible for over 70 percent of the {sup 90}Sr leaving the site. A goal of the grouting operation was to reduce the average in situ hydraulic conductivity of the grouted waste materials to a value equal to or less than 1 x 10{sup -6} cm/sec. This target hydraulic conductivity value was established to be at least two orders of magnitude lower than that of the surrounding natural ground.

  13. Improved vortex reactor system

    DOE Patents [OSTI]

    Diebold, J.P.; Scahill, J.W.

    1995-05-09T23:59:59.000Z

    An improved vortex reactor system is described for affecting fast pyrolysis of biomass and Refuse Derived Fuel (RDF) feed materials comprising: a vortex reactor having its axis vertically disposed in relation to a jet of a horizontally disposed steam ejector that impels feed materials from a feeder and solids from a recycle loop along with a motive gas into a top part of said reactor. 12 figs.

  14. Reactor safety research programs. Quarterly report Apr-Jun 81

    SciTech Connect (OSTI)

    Edler, S.K.

    1981-09-01T23:59:59.000Z

    This document summarizes the work performed by Pacific Northwest Laboratory (PNL) from April 1 through June 30, 1981, for the Division of Reactor Safety Research within the U.S. Nuclear Regulatory Commission (NRC). Evaluations of nondestructive examination (NDE) techniques and instrumentation are reported; areas of investigation include demonstrating the feasibility of determining the strength of structural graphite, evaluating the feasibility of detecting and analyzing flaw growth in reactor pressure boundary systems, examining NDE reliability and probabilistic fracture mechanics, and assessing the integrity of pressurized water reactor (PWR) steam generator tubes where service-induced degradation has been indicated. Experimental data and analytical models are being provided to aid in decision-making regarding pipe-to-pipe impacts following postulated breaks in high-energy fluid system piping. Core thermal models are being developed to provide better digital codes to compute the behavior of full-scale reactor systems under postulated accident conditions. Fuel assemblies and analytical support are being provided for experimental programs at other facilities. These programs include loss-of-coolant accident (LOCA) simulation tests at the NRU reactor, Chalk River, Canada; fuel rod deformation, severe fuel damage, and postaccident coolability tests for the ESSOR reactor Super Sara Test Program, Ispra, Italy; the instrumented fuel assembly irradiation program at Halden, Norway; and experimental programs at the Power Burst Facility, Idaho National Engineering Laboratory (INEL). These programs will provide data for computer modeling of reactor system and fuel performance during various abnormal operating conditions.

  15. Reactor Safety Research Programs Quarterly Report April- June 1981

    SciTech Connect (OSTI)

    Edler, S. K.

    1981-09-01T23:59:59.000Z

    This document summarizes the work performed by Pacific Northwest laboratory (PNL} from April1 through June 30, 1981, for the Division of Reactor Safety Research within the U.S. Nuclear Regulatory Commission (NRC). Evaluations of nondestructive examination (NDE) techniques and instrumentation are reported; areas of investigation include demonstrating the feasibility of determining the strength of structural graphite, evaluating the feasibility of detecting and analyzing flaw growth in reactor pressure boundary systems, examining NDE reliability and probabilistic fracture mechanics, and assessing the integrity of pressurized water reactor (PWR) steam generator tubes where service-induced degradation has been indicated. Experimental data and analytical models are being provided to aid in decision-making regarding pipe-to-pipe impacts following postulated breaks in high-energy fluid system piping. Core thermal models are being developed to provide better digital codes to compute the behavior of full-scale reactor systems under postulated accident conditions. Fuel assemblies and analytical support are being provided for experimental programs at other facilities. These programs include loss-of-coolant accident (LOCA) simulation tests at the NRU reactor, Chalk River, Canada; fuel rod deformation, severe fuel damage, and postaccident coolability tests for the ESSOR reactor Super Sara Test Program, lspra, Italy; the instrumented fuel assembly irradiation program at Halden, Norway; and experimental programs at the Power Burst Facility, Idaho National Engineering Laboratory {INEL). These programs will provide data for computer modeling of reactor system and fuel performance during various abnormal operating conditions.

  16. Laboratory Waste | Sample Preparation Laboratories

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC)Integrated Codes |Is Your Home asLCLSLaboratory Directors LaboratoryPlanning

  17. Geoscience Laboratory | Sample Preparation Laboratories

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC) Environmental AssessmentsGeoffrey CampbelllongApplyingGeorge T.Geoscience Laboratory

  18. The development of resistance to organophosphorus compounds by Tetranychus (T.) urticae Koch and laboratory and field toxicological responses of Tetranychus (T.) Cinnabarinus (Boisduval) to some current acaricides

    E-Print Network [OSTI]

    Contreras Galvez, Saul Edgardo

    1971-01-01T23:59:59.000Z

    conducted to study the toxicological responses of an organophosphorus-re- I. t ot ' ) Ld 't )~th (T. ) nus to Mobil NC-4044, DuPont 1410-1, e Chion, and di azi non, and the results were compared with a standard acaricide, monocrotophos. Spider mites... to monocrotophos. They had an intermediate resistance to Mobil MC-4044 and DuPont 1410-L, and were somewhat more resistant to ethion and diazinon. Field evaluations for control of organophosphorus- resistant carmine spider mites were also conducted. Carzol, 1...

  19. Reactor Safety Research: Semiannual report, July-December 1986

    SciTech Connect (OSTI)

    Not Available

    1987-11-01T23:59:59.000Z

    Sandia National Laboratories is conducting, under USNRC sponsorship, phenomenological research related to the safety of commercial nuclear power reactors. The research includes experiments to simulate the phenomenology of the accident conditions and the development of analytical models, verified by experiment, which can be used to predict reactor and safety systems performance and behavior under abnormal conditions. The objective of this work is to provide NRC requisite data bases and analytical methods to (1) identify and define safety issues, (2) understand the progression of risk-significant accident sequences, and (3) conduct safety assessments. The collective NRC-sponsored effort at Sandia National Laboratories is directed at enhancing the tehcnology base supporting licensing decisions.

  20. Tokamak reactor first wall

    DOE Patents [OSTI]

    Creedon, R.L.; Levine, H.E.; Wong, C.; Battaglia, J.

    1984-11-20T23:59:59.000Z

    This invention relates to an improved first wall construction for a tokamak fusion reactor vessel, or other vessels subjected to similar pressure and thermal stresses.

  1. Pressurized fluidized bed reactor

    DOE Patents [OSTI]

    Isaksson, Juhani (Karhula, FI)

    1996-01-01T23:59:59.000Z

    A pressurized fluid bed reactor power plant includes a fluidized bed reactor contained within a pressure vessel with a pressurized gas volume between the reactor and the vessel. A first conduit supplies primary gas from the gas volume to the reactor, passing outside the pressure vessel and then returning through the pressure vessel to the reactor, and pressurized gas is supplied from a compressor through a second conduit to the gas volume. A third conduit, comprising a hot gas discharge, carries gases from the reactor, through a filter, and ultimately to a turbine. During normal operation of the plant, pressurized gas is withdrawn from the gas volume through the first conduit and introduced into the reactor at a substantially continuously controlled rate as the primary gas to the reactor. In response to an operational disturbance of the plant, the flow of gas in the first, second, and third conduits is terminated, and thereafter the pressure in the gas volume and in the reactor is substantially simultaneously reduced by opening pressure relief valves in the first and third conduits, and optionally by passing air directly from the second conduit to the turbine.

  2. Pressurized fluidized bed reactor

    DOE Patents [OSTI]

    Isaksson, J.

    1996-03-19T23:59:59.000Z

    A pressurized fluid bed reactor power plant includes a fluidized bed reactor contained within a pressure vessel with a pressurized gas volume between the reactor and the vessel. A first conduit supplies primary gas from the gas volume to the reactor, passing outside the pressure vessel and then returning through the pressure vessel to the reactor, and pressurized gas is supplied from a compressor through a second conduit to the gas volume. A third conduit, comprising a hot gas discharge, carries gases from the reactor, through a filter, and ultimately to a turbine. During normal operation of the plant, pressurized gas is withdrawn from the gas volume through the first conduit and introduced into the reactor at a substantially continuously controlled rate as the primary gas to the reactor. In response to an operational disturbance of the plant, the flow of gas in the first, second, and third conduits is terminated, and thereafter the pressure in the gas volume and in the reactor is substantially simultaneously reduced by opening pressure relief valves in the first and third conduits, and optionally by passing air directly from the second conduit to the turbine. 1 fig.

  3. Advanced Test Reactor National Scientific User Facility Partnerships

    SciTech Connect (OSTI)

    Frances M. Marshall; Todd R. Allen; Jeff B. Benson; James I. Cole; Mary Catherine Thelen

    2012-03-01T23:59:59.000Z

    In 2007, the United States Department of Energy designated the Advanced Test Reactor (ATR), located at Idaho National Laboratory, as a National Scientific User Facility (NSUF). This designation made test space within the ATR and post-irradiation examination (PIE) equipment at INL available for use by researchers via a proposal and peer review process. The goal of the ATR NSUF is to provide researchers with the best ideas access to the most advanced test capability, regardless of the proposer's physical location. Since 2007, the ATR NSUF has expanded its available reactor test space, and obtained access to additional PIE equipment. Recognizing that INL may not have all the desired PIE equipment, or that some equipment may become oversubscribed, the ATR NSUF established a Partnership Program. This program enables and facilitates user access to several university and national laboratories. So far, seven universities and one national laboratory have been added to the ATR NSUF with capability that includes reactor-testing space, PIE equipment, and ion beam irradiation facilities. With the addition of these universities, irradiation can occur in multiple reactors and post-irradiation exams can be performed at multiple universities. In each case, the choice of facilities is based on the user's technical needs. Universities and laboratories included in the ATR NSUF partnership program are as follows: (1) Nuclear Services Laboratories at North Carolina State University; (2) PULSTAR Reactor Facility at North Carolina State University; (3) Michigan Ion Beam Laboratory (1.7 MV Tandetron accelerator) at the University of Michigan; (4) Irradiated Materials at the University of Michigan; (5) Harry Reid Center Radiochemistry Laboratories at University of Nevada, Las Vegas; (6) Characterization Laboratory for Irradiated Materials at the University of Wisconsin-Madison; (7) Tandem Accelerator Ion Beam. (1.7 MV terminal voltage tandem ion accelerator) at the University of Wisconsin-Madison; (8) Illinois Institute of Technology (IIT) Materials Research Collaborative Access Team (MRCAT) beamline at Argonne National Laboratory's Advanced Photon Source; and (9) Nanoindenter in the University of California at Berkeley (UCB) Nuclear Engineering laboratory Materials have been analyzed for ATR NSUF users at the Advanced Photon Source at the MRCAT beam, the NIST Center for Neutron Research in Gaithersburg, MD, the Los Alamos Neutron Science Center, and the SHaRE user facility at Oak Ridge National Laboratory (ORNL). Additionally, ORNL has been accepted as a partner facility to enable ATR NSUF users to access the facilities at the High Flux Isotope Reactor and related facilities.

  4. Sandia National Laboratories: Photovoltaics

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    PV Facilities On November 10, 2010, in Photovoltaic System Evaluation Laboratory Distributed Energy Technologies Laboratory Microsystems and Engineering Sciences Applications...

  5. Sandia National Laboratories: Facilities

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Laboratory (PSEL) National Supervisory Control and Data Acquisition (SCADA) Test Bed Center for Integrated Nanotechnologies (CINT) Distributed Energy Technologies Laboratory...

  6. Environmental | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Environmental Management Program at the Ames Laboratory includes Waste Management, Pollution Prevention, Recycling, Cultural Resources, and the Laboratory's Environmental...

  7. Pulsed plasma treatment of polluted gas using wet-/low-temperature corona reactors

    SciTech Connect (OSTI)

    Shimizu, Kazuo; Kinoshita, Katsuhiro; Yanagihara, Kenya; Rajanikanth, B.S.; Katsura, Shinji; Mizuno, Akira [Toyohashi Univ. of Technology, Aichi (Japan). Dept. of Ecological Engineering] [Toyohashi Univ. of Technology, Aichi (Japan). Dept. of Ecological Engineering

    1997-09-01T23:59:59.000Z

    Application of pulsed plasma for gas cleaning is gaining prominence in recent years, mainly from the energy consideration point of view. Normally, the gas treatment is carried out at or above room temperature by the conventional dry-type corona reactor. However, this treatment is still inadequate for the removal of certain stable gases present in the exhaust/flue gas mixture. The authors report here some interesting results of treatment of such stable gases like N{sub 2}O with pulsed plasma at subambient temperature. Also reported in this paper are improvements in DeNO/DeNO{sub x} efficiency using unconventional wet-type reactors, designed and fabricated by us, and operating at different subambient temperatures. DeNO/DeNO{sub x} by the pulsed-plasma process is mainly due to oxidation, but reduction takes place at the same time. When the wet-type reactor was used, the NO{sub 2} product was absorbed by water film and higher DeNO{sub x} efficiency could be achieved. Apart from laboratory tests on simulated gas mixtures, field tests were also carried out on the exhaust gas of an 8-kW diesel engine. A comparative analysis of the various tests are presented, together with a note on the energy consideration.

  8. Nuclear reactors built, being built, or planned 1993

    SciTech Connect (OSTI)

    Not Available

    1993-08-01T23:59:59.000Z

    Nuclear Reactors Built, Being Built, or Planned contains unclassified information about facilities built, being built, or planned in the United States for domestic use or export as of December 31, 1993. The Office of Scientific and Technical Information, US Department of Energy, gathers this information annually from Washington headquarters and field offices of DOE; from the US Nuclear Regulatory Commission (NRC); from the US reactor manufacturers who are the principal nuclear embassies; and from foreign governmental nuclear departments. The book consists of three divisions, as follows: (1) a commercial reactor locator map and tables of the characteristic and statistical data that follow; a table of abbreviations; (2) tables of data for reactors operating, being built, or planned; and (3) tables of data for reactors that have been shut down permanently or dismantled. The reactors are subdivided into the following parts: civilian, production, military, export, and critical assembly.

  9. Micro -Thermonuclear AB-Reactors for Aerospace

    E-Print Network [OSTI]

    Alexander Bolonkin

    2007-01-08T23:59:59.000Z

    The author offers several innovations that he first suggested publicly early in 1983 for the AB multi-reflex engine, space propulsion, getting energy from plasma, etc. (see: A. Bolonkin, Non-Rocket Space Launch and Flight, Elsevier, London, 2006, Chapters 12, 3A). It is the micro-thermonuclear AB-Reactors. That is new micro-thermonuclear reactor with very small fuel pellet that uses plasma confinement generated by multi-reflection of laser beam or its own magnetic field. The Lawson criterion increases by hundreds of times. The author also suggests a new method of heating the power-making fuel pellet by outer electric current as well as new direct method of transformation of ion kinetic energy into harvestable electricity. These offered innovations dramatically decrease the size, weight and cost of thermonuclear reactor, installation, propulsion system and electric generator. Non-industrial countries can produce these researches and constructions. Currently, the author is researching the efficiency of these innovations for two types of the micro-thermonuclear reactors: multi-reflection reactor (ICF) and self-magnetic reactor (MCF).

  10. Brookhaven Graphite Research Reactor Workshop

    Broader source: Energy.gov [DOE]

    The Brookhaven Graphite Research Reactor (BGRR) was the first reactor built in the U.S. for peacetime atomic research following World War II.  Construction began in 1947 and the reactor started...

  11. Spheromak reactor-design study

    SciTech Connect (OSTI)

    Les, J.M.

    1981-06-30T23:59:59.000Z

    A general overview of spheromak reactor characteristics, such as MHD stability, start up, and plasma geometry is presented. In addition, comparisons are made between spheromaks, tokamaks and field reversed mirrors. The computer code Sphero is also discussed. Sphero is a zero dimensional time independent transport code that uses particle confinement times and profile parameters as input since they are not known with certainty at the present time. More specifically, Sphero numerically solves a given set of transport equations whose solutions include such variables as fuel ion (deuterium and tritium) density, electron density, alpha particle density and ion, electron temperatures.

  12. aerated fed-batch reactor: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Websites Summary: field has been known for long time. Low powered and low- pressure electrodeless lamps were utilized in an original photochemical reactor consisting of MWL...

  13. acidogenic fixed-bed reactor: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Websites Summary: field has been known for long time. Low powered and low- pressure electrodeless lamps were utilized in an original photochemical reactor consisting of MWL...

  14. Particle transport in plasma reactors

    SciTech Connect (OSTI)

    Rader, D.J.; Geller, A.S.; Choi, Seung J. [Sandia National Labs., Albuquerque, NM (United States); Kushner, M.J. [Illinois Univ., Urbana, IL (United States)

    1995-01-01T23:59:59.000Z

    SEMATECH and the Department of Energy have established a Contamination Free Manufacturing Research Center (CFMRC) located at Sandia National Laboratories. One of the programs underway at the CFMRC is directed towards defect reduction in semiconductor process reactors by the application of computational modeling. The goal is to use fluid, thermal, plasma, and particle transport models to identify process conditions and tool designs that reduce the deposition rate of particles on wafers. The program is directed toward defect reduction in specific manufacturing tools, although some model development is undertaken when needed. The need to produce quantifiable improvements in tool defect performance requires the close cooperation among Sandia, universities, SEMATECH, SEMATECH member companies, and equipment manufacturers. Currently, both plasma (e.g., etch, PECVD) and nonplasma tools (e.g., LPCVD, rinse tanks) are being worked on under this program. In this paper the authors summarize their recent efforts to reduce particle deposition on wafers during plasma-based semiconductor manufacturing.

  15. Solar Thermal Reactor Materials Characterization

    SciTech Connect (OSTI)

    Lichty, P. R.; Scott, A. M.; Perkins, C. M.; Bingham, C.; Weimer, A. W.

    2008-03-01T23:59:59.000Z

    Current research into hydrogen production through high temperature metal oxide water splitting cycles has created a need for robust high temperature materials. Such cycles are further enhanced by the use of concentrated solar energy as a power source. However, samples subjected to concentrated solar radiation exhibited lifetimes much shorter than expected. Characterization of the power and flux distributions representative of the High Flux Solar Furnace(HFSF) at the National Renewable Energy Laboratory(NREL) were compared to ray trace modeling of the facility. In addition, samples of candidate reactor materials were thermally cycled at the HFSF and tensile failure testing was performed to quantify material degradation. Thermal cycling tests have been completed on super alloy Haynes 214 samples and results indicate that maximum temperature plays a significant role in reduction of strength. The number of cycles was too small to establish long term failure trends for this material due to the high ductility of the material.

  16. E-Print Network 3.0 - autonomous reactor sstar Sample Search...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    aw* ngaMrmkom ) SRE... -7-78 16 0 tabtes + 2 fflvstrMnas Abstract A nuclear reactor for district heating is proposed Source: Ris National Laboratory Collection:...

  17. E-Print Network 3.0 - athene reactor Sample Search Results

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    aw* ngaMrmkom ) SRE... -7-78 16 0 tabtes + 2 fflvstrMnas Abstract A nuclear reactor for district heating is proposed Source: Ris National Laboratory Collection:...

  18. Light-water-reactor safety research program. Quarterly progress report, January-March 1980

    SciTech Connect (OSTI)

    Massey, W.E.; Kyger, J.A.

    1980-08-01T23:59:59.000Z

    This progress report summarizes the Argonne National Laboratory work performed during January, February, and March 1980 on water-reactor-safety problems. The research and development area covered is Transient Fuel Response and Fission-Product Release.

  19. Light-water-reactor safety research program: quarterly progress report, July-September, 1980

    SciTech Connect (OSTI)

    Massey, W.E.; Till, C.E.

    1981-04-01T23:59:59.000Z

    The progress report summarizes the Argonne National Laboratory work performed during July, August, and September 1980 on water-reactor-safety problems. The research and development area covered is Transient Fuel Response and Fission-product Release.

  20. DIRECT ENERGY CONVERSION FISSION REACTOR FOR THE PERIOD JULY 1, 2002 THROUGH SEPTEMBER 30, 2002

    SciTech Connect (OSTI)

    L.C. BROWN

    2002-09-30T23:59:59.000Z

    Direct energy conversion is the only potential means for producing electrical energy from a fission reactor without the Carnot efficiency limitations. This project was undertaken by Sandia National Laboratories, Los Alamos National Laboratories, The University of Florida, Texas A&M University and General Atomics to explore the possibilities of direct energy conversion. Other means of producing electrical energy from a fission reactor, without any moving parts, are also within the statement of proposed work. This report documents the efforts of General Atomics. Sandia National Laboratories, the lead laboratory, provides overall project reporting and documentation.

  1. DIRECT ENERGY CONVERSION FISSION REACTOR FOR THE PERIOD APRIL 1, 2002 THROUGH JUNE 30, 2002

    SciTech Connect (OSTI)

    L.C. BROWN

    2002-06-30T23:59:59.000Z

    Direct energy conversion is the only potential means for producing electrical energy from a fission reactor without the Carnot efficiency limitations. This project was undertaken by Sandia National Laboratories, Los Alamos National Laboratories, The University of Florida, Texas A&M University and General Atomics to explore the possibilities of direct energy conversion. Other means of producing electrical energy from a fission reactor, without any moving parts, are also within the statement of proposed work. This report documents the efforts of General Atomics. Sandia National Laboratories, the lead laboratory, provides overall project reporting and documentation.

  2. REACTOR OPERATIONS AND CONTROL

    E-Print Network [OSTI]

    Pázsit, Imre

    REACTOR OPERATIONS AND CONTROL KEYWORDS: core calculations, neural networks, control rod elevation of a control rod, or a group of control rods, is an important parameter from the viewpoint of reactor control DETERMINATION OF PWR CONTROL ROD POSITION BY CORE PHYSICS AND NEURAL NETWORK METHODS NINOS S. GARIS* and IMRE

  3. FELIX experiments and computational needs for eddy current analysis of fusion reactors

    SciTech Connect (OSTI)

    Turner, L.R.

    1984-01-01T23:59:59.000Z

    In a fusion reactor, changing magnetic fields are closely coupled to the electrically-conducting metal structure. This coupling is particularly pronounced in a tokamak reactor in which magnetic fields are used to confine, stabilize, drive, and heat the plasma. Electromagnetic effects in future fusion reactors will have far-reaching implications in the configuration, operation, and maintenance of the reactors. This paper describes the impact of eddy-current effects on future reactors, the requirements of computer codes for analyzing those effects, and the FELIX experiments which will provide needed data for code validation.

  4. Reed Reactor Facility. Final report

    SciTech Connect (OSTI)

    Frantz, S.G.

    1994-12-31T23:59:59.000Z

    This report discusses the operation and maintenance of the Reed Reactor Facility. The Reed reactor is mostly used for education and train purposes.

  5. Reactor & Nuclear Systems Publications | ORNL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Science Home | Science & Discovery | Nuclear Science | Publications and Reports | Reactor and Nuclear Systems Publications SHARE Reactor and Nuclear Systems Publications The...

  6. Water Reactor Safety Research Division quarterly progress report, January 1-March 31, 1980

    SciTech Connect (OSTI)

    Romano, A.J. (comp.)

    1980-06-01T23:59:59.000Z

    The Water Reactor Safety Research Programs Quarterly Report describes current activities and technical progress in the programs at Brookhaven National Laboratory sponsored by the USNRC Division of Reactor Safety Research. The projects reported each quarter are the following: LWR Thermal Hydraulic Development, Advanced Code Evaluation, TRAC Code Assessment, and Stress Corrosion Cracking of PWR Steam Generator Tubing.

  7. Water Reactor Safety Research Division. Quarterly progress report, April 1-June 30, 1980

    SciTech Connect (OSTI)

    Abuaf, N.; Levine, M.M.; Saha, P.; van Rooyen, D.

    1980-08-01T23:59:59.000Z

    The Water Reactor Safety Research Programs quarterly report describes current activities and technical progress in the programs at Brookhaven National Laboratory sponsored by the USNRC Division of Reactor Safety Research. The projects reported each quarter are the following: LWR Thermal Hydraulic Development, Advanced Code Evlauation, TRAC Code Assessment, and Stress Corrosion Cracking of PWR Steam Generator Tubing.

  8. Water Reactor Safety Research Division. Quarterly progress report, October 1-December 31, 1980

    SciTech Connect (OSTI)

    Cerbone, R.J.; Saha, P.; van Rooyen, D.

    1981-02-01T23:59:59.000Z

    The Water Reactor Safety Research Programs Quarterly Report describes current activities and technical progress in the programs at Brookhaven National Laboratory sponsored by the USNRC Division of Reactor Safety Research. The projects reported each quarter are the following: Stress Corrosion Cracking of PWR Steam Generator Tubing, Advanced Code Evaluation, Simulator Improvement Program, and LWR Assessment and Application.

  9. Materials science division light-water-reactor safety research program. Quarterly progress report, October - December 1981

    SciTech Connect (OSTI)

    Not Available

    1982-05-01T23:59:59.000Z

    This progress report summarizes the Argonne National Laboratory work performed during October, November, and December 1981 on water-reactor-safety problems. The research and development areas covered are environmentally assisted cracking in light water reactors, transient fuel response and fission-product release, and clad properties for code verification.

  10. Light-water-reactor safety research program. Quarterly progress report, April-June 1981

    SciTech Connect (OSTI)

    Not Available

    1981-01-01T23:59:59.000Z

    This progress report summarizes the Argonne National Laboratory work performed during April, May, and June 1981 on water-reactor-safety problems. The research and development areas covered are transient fuel response and fission-product release and environmentally assisted cracking in light water reactors.

  11. Probing Molecular Associations of Field-Collected and Laboratory-Generated SOA with Nano-DESI High-Resolution Mass Spectrometry

    SciTech Connect (OSTI)

    O'Brien, Rachel E.; Nguyen, Tran B.; Laskin, Alexander; Laskin, Julia; Hayes, Patrick L.; Liu, Shang; Jimenez, Jose L.; Russell, Lynn M.; Nizkorodov, Sergey; Goldstein, Allen H.

    2013-01-30T23:59:59.000Z

    Aerosol samples from the 2010 CalNex field study in Bakersfield (BF) and Los Angeles (LA) were analyzed using positive mode nanospray-desorption electrospray ionization mass spectrometry (nano-DESI-MS). Secondary organic aerosol (SOA) produced in a photochemical chamber by photooxidation of diesel (DSL) fuel and isoprene (ISO) under humid, high-NOx conditions, was analyzed for comparison. Three groups of organic compounds with zero, one, or two nitrogen atoms in their molecular formulas (0N, 1N, 2N) were compared in detail. The composition of ambient SOA exhibited greater overlap with DSL than with ISO. The overlap of the chamber experiments with the BF data was relatively consistent throughout the day while the overlap with LA data increased significantly in the noon-6pm sample, consistent with the SOA plume arriving from downtown Los Angeles. BF samples were more oxidized, contained more organic nitrogen, and had more overlap with the chamber data compared to LA samples. The addition of gaseous ammonia (NH3) to the DSL experiment was necessary to generate many of the 2N compounds observed in BF. This analysis demonstrates that DSL and ISO were important sources but cannot account for all of the observed ambient compounds indicating that other sources of organics were also likely important.

  12. Reservoir characterization of Mary Lee and Black Creek coals at the Rock Creek field laboratory, Black Warrior basin. Topical report, May-December 1992

    SciTech Connect (OSTI)

    Young, G.B.C.; Paul, G.W.

    1993-08-01T23:59:59.000Z

    A three-dimensional multi-well simulation study was performed for the Rock Creek project site to better understand the relationships between coal reservoir properties, well completion practices, and actual well performance. The reservoir study provided insights on the efficacy of single versus multiple seam completions, the incremental gas recovery resulting from remedial stimulations, and the impact of well spacing on expected long-term gas recovery. The Mary Lee and Black Creek coal groups were characterized by matching production and pressure history for eight Rock Creek producing wells and their surrounding monitor wells. The simulation grid included the Oak Grove mine and degas field located south of the Rock Creek site. Results of well test analyses, corehole-based gas content measurements, and individual coal group gas production from zone isolation packer tests were used to validate the simulation results. Various hydraulic fracture and remedial stimulations were analyzed to compare the effectiveness of different stimulation designs used at the site. Alternative well spacing strategies were examined to assess the effects of interference on long-term gas recovery.

  13. Decommissioning of the high flux beam reactor at Brookhaven Lab

    SciTech Connect (OSTI)

    Hu, J.P. [National Synchrotron Light Source, Brookhaven Laboratory, Upton, NY 11973 (United States); Reciniello, R.N. [Radiological Control Div., Brookhaven Laboratory, Upton, NY 11973 (United States); Holden, N.E. [National Nuclear Data Center, Brookhaven Laboratory, Upton, NY 11973 (United States)

    2011-07-01T23:59:59.000Z

    The high-flux beam reactor (HFBR) at the Brookhaven National Laboratory was a heavy water cooled and moderated reactor that achieved criticality on Oct. 31, 1965. It operated at a power level of 40 megawatts. An equipment upgrade in 1982 allowed operations at 60 megawatts. After a 1989 reactor shutdown to reanalyze safety impact of a hypothetical loss of coolant accident, the reactor was restarted in 1991 at 30 megawatts. The HFBR was shut down in December 1996 for routine maintenance and refueling. At that time, a leak of tritiated water was identified by routine sampling of groundwater from wells located adjacent to the reactor's spent fuel pool. The reactor remained shut down for almost three years for safety and environmental reviews. In November 1999 the United States Dept. of Energy decided to permanently shut down the HFBR. The decontamination and decommissioning of the HFBR complex, consisting of multiple structures and systems to operate and maintain the reactor, were complete in 2009 after removing and shipping off all the control rod blades. The emptied and cleaned HFBR dome, which still contains the irradiated reactor vessel, is presently under 24/7 surveillance for safety. Detailed dosimetry performed for the HFBR decommissioning during 1996-2009 is described in the paper. (authors)

  14. Sodium fast reactor safety and licensing research plan. Volume II.

    SciTech Connect (OSTI)

    Ludewig, H. (Brokhaven National Laboratory, Upton, NY); Powers, D. A.; Hewson, John C.; LaChance, Jeffrey L.; Wright, A. (Argonne National Laboratory, Argonne, IL); Phillips, J.; Zeyen, R. (Institute for Energy Petten, Saint-Paul-lez-Durance, France); Clement, B. (IRSN/DPAM.SEMIC Bt 702, Saint-Paul-lez-Durance, France); Garner, Frank (Radiation Effects Consulting, Richland, WA); Walters, Leon (Advanced Reactor Concepts, Los Alamos, NM); Wright, Steve; Ott, Larry J. (Oak Ridge National Laboratory, Oak Ridge, TN); Suo-Anttila, Ahti Jorma; Denning, Richard (Ohio State University, Columbus, OH); Ohshima, Hiroyuki (Japan Atomic Energy Agency, Ibaraki, Japan); Ohno, S. (Japan Atomic Energy Agency, Ibaraki, Japan); Miyhara, S. (Japan Atomic Energy Agency, Ibaraki, Japan); Yacout, Abdellatif (Argonne National Laboratory, Argonne, IL); Farmer, M. (Argonne National Laboratory, Argonne, IL); Wade, D. (Argonne National Laboratory, Argonne, IL); Grandy, C. (Argonne National Laboratory, Argonne, IL); Schmidt, R.; Cahalen, J. (Argonne National Laboratory, Argonne, IL); Olivier, Tara Jean; Budnitz, R. (Lawrence Berkeley National Laboratory, Berkeley, CA); Tobita, Yoshiharu (Japan Atomic Energy Agency, Ibaraki, Japan); Serre, Frederic (Centre d'%C3%94etudes nucl%C3%94eaires de Cadarache, Cea, France); Natesan, Ken (Argonne National Laboratory, Argonne, IL); Carbajo, Juan J. (Oak Ridge National Laboratory, Oak Ridge, TN); Jeong, Hae-Yong (Korea Atomic Energy Research Institute, Daejeon, Korea); Wigeland, Roald (Idaho National Laboratory, Idaho Falls, ID); Corradini, Michael (University of Wisconsin-Madison, Madison, WI); Thomas, Justin (Argonne National Laboratory, Argonne, IL); Wei, Tom (Argonne National Laboratory, Argonne, IL); Sofu, Tanju (Argonne National Laboratory, Argonne, IL); Flanagan, George F. (Oak Ridge National Laboratory, Oak Ridge, TN); Bari, R. (Brokhaven National Laboratory, Upton, NY); Porter D. (Idaho National Laboratory, Idaho Falls, ID); Lambert, J. (Argonne National Laboratory, Argonne, IL); Hayes, S. (Idaho National Laboratory, Idaho Falls, ID); Sackett, J. (Idaho National Laboratory, Idaho Falls, ID); Denman, Matthew R.

    2012-05-01T23:59:59.000Z

    Expert panels comprised of subject matter experts identified at the U.S. National Laboratories (SNL, ANL, INL, ORNL, LBL, and BNL), universities (University of Wisconsin and Ohio State University), international agencies (IRSN, CEA, JAEA, KAERI, and JRC-IE) and private consultation companies (Radiation Effects Consulting) were assembled to perform a gap analysis for sodium fast reactor licensing. Expert-opinion elicitation was performed to qualitatively assess the current state of sodium fast reactor technologies. Five independent gap analyses were performed resulting in the following topical reports: (1) Accident Initiators and Sequences (i.e., Initiators/Sequences Technology Gap Analysis), (2) Sodium Technology Phenomena (i.e., Advanced Burner Reactor Sodium Technology Gap Analysis), (3) Fuels and Materials (i.e., Sodium Fast Reactor Fuels and Materials: Research Needs), (4) Source Term Characterization (i.e., Advanced Sodium Fast Reactor Accident Source Terms: Research Needs), and (5) Computer Codes and Models (i.e., Sodium Fast Reactor Gaps Analysis of Computer Codes and Models for Accident Analysis and Reactor Safety). Volume II of the Sodium Research Plan consolidates the five gap analysis reports produced by each expert panel, wherein the importance of the identified phenomena and necessities of further experimental research and code development were addressed. The findings from these five reports comprised the basis for the analysis in Sodium Fast Reactor Research Plan Volume I.

  15. Advanced Test Reactor Capabilities and Future Irradiation Plans

    SciTech Connect (OSTI)

    Frances M. Marshall

    2006-10-01T23:59:59.000Z

    The Advanced Test Reactor (ATR), located at the Idaho National Laboratory (INL), is one of the most versatile operating research reactors in the Untied States. The ATR has a long history of supporting reactor fuel and material research for the US government and other test sponsors. The INL is owned by the US Department of Energy (DOE) and currently operated by Battelle Energy Alliance (BEA). The ATR is the third generation of test reactors built at the Test Reactor Area, now named the Reactor Technology Complex (RTC), whose mission is to study the effects of intense neutron and gamma radiation on reactor materials and fuels. The current experiments in the ATR are for a variety of customers--US DOE, foreign governments and private researchers, and commercial companies that need neutrons. The ATR has several unique features that enable the reactor to perform diverse simultaneous tests for multiple test sponsors. The ATR has been operating since 1967, and is expected to continue operating for several more decades. The remainder of this paper discusses the ATR design features, testing options, previous experiment programs, future plans for the ATR capabilities and experiments, and some introduction to the INL and DOE's expectations for nuclear research in the future.

  16. Direct Energy Conversion Fission Reactor September through November 1999

    SciTech Connect (OSTI)

    Brown, Lloyd C.

    2000-01-15T23:59:59.000Z

    OAK - B135 The initial kickoff meeting/brainstorming session was held as Albuquerque with the other participants in this study. The prompt critical pulse reactor was proposed at the brainstorming session. The other participants in this study, Sandia National Laboratories (lead), Los Alamos National Laboratory, University of Florida and Texas A and M University are separately funded and their work is separately reported. The combined reporting is done by Sandia.

  17. Alkali deposits found in biomass boilers: The behavior of inorganic material in biomass-fired power boilers -- Field and laboratory experiences. Volume 2

    SciTech Connect (OSTI)

    Baxter, L.L. [Sandia National Labs., Livermore, CA (United States). Combustion Research Facility; Miles, T.R.; Miles, T.R. Jr. [Miles (Thomas R.), Portland, OR (United States); Jenkins, B.M. [California Univ., Davis, CA (United States); Dayton, D.C.; Milne, T.A. [National Renewable Energy Lab., Golden, CO (United States); Bryers, R.W. [Foster Wheeler Development Corp., Livingston, NJ (United States); Oden, L.L. [Bureau of Mines, Albany, OR (United States). Albany Research Center

    1996-03-01T23:59:59.000Z

    This report documents the major findings of the Alkali Deposits Investigation, a collaborative effort to understand the causes of unmanageable ash deposits in biomass-fired electric power boilers. Volume 1 of this report provide an overview of the project, with selected highlights. This volume provides more detail and discussion of the data and implications. This document includes six sections. The first, the introduction, provides the motivation, context, and focus for the investigation. The remaining sections discuss fuel properties, bench-scale combustion tests, a framework for considering ash deposition processes, pilot-scale tests of biomass fuels, and field tests in commercially operating biomass power generation stations. Detailed chemical analyses of eleven biomass fuels representing a broad cross-section of commercially available fuels reveal their properties that relate to ash deposition tendencies. The fuels fall into three broad categories: (1) straws and grasses (herbaceous materials); (2) pits, shells, hulls and other agricultural byproducts of a generally ligneous nature; and (3) woods and waste fuels of commercial interest. This report presents a systematic and reasonably detailed analysis of fuel property, operating condition, and boiler design issues that dictate ash deposit formation and property development. The span of investigations from bench-top experiments to commercial operation and observations including both practical illustrations and theoretical background provide a self-consistent and reasonably robust basis to understand the qualitative nature of ash deposit formation in biomass boilers. While there remain many quantitative details to be pursued, this project encapsulates essentially all of the conceptual aspects of the issue. It provides a basis for understanding and potentially resolving the technical and environmental issues associated with ash deposition during biomass combustion. 81 refs., 124 figs., 76 tabs.

  18. Donner Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville Power AdministrationField Campaign:INEA : Papers69 FederalAdministration Donald Hodel_ -

  19. RADCAL Operations Manual Radiation Calibration Laboratory Protocol

    SciTech Connect (OSTI)

    Bogard, J.S.

    1998-12-01T23:59:59.000Z

    The Life Sciences Division (LSD) of Oak Ridge National Laboratory (ORNL) has a long record of radiation dosimetry research, primarily using the Health Physics Research Reactor (HPRR) and the Radiation Calibration Laboratory (RADCAL) in its Dosimetry Applications Research (DOSAR) Program. These facilities have been used by a broad segment of the research community to perform a variety of experiments in areas including, but not limited to, radiobiology, radiation dosimeter and instrumentation development and calibration, and the testing of materials in a variety of radiation environments. Operations of the HPRR were terminated in 1987 and the reactor was moved to storage at the Oak Ridge Y-12 Plant; however, RADCAL will continue to be operated in accordance with the guidelines of the National Institute of Standards and Technology (NIST) Secondary Calibration Laboratory program and will meet all requirements for testing dosimeters under the National Voluntary Laboratory Accreditation Program (NVLAP). This manual is to serve as the primary instruction and operation manual for the Oak Ridge National Laboratory's RADCAL facility. Its purpose is to (1) provide operating protocols for the RADCAL facility, (2) outline the organizational structure, (3) define the Quality Assurance Action Plan, and (4) describe all the procedures, operations, and responsibilities for the safe and proper operation of all routine aspects of the calibration facility.

  20. Development of advanced strain diagnostic techniques for reactor environments.

    SciTech Connect (OSTI)

    Fleming, Darryn D.; Holschuh, Thomas Vernon,; Miller, Timothy J.; Hall, Aaron Christopher; Urrea, David Anthony,; Parma, Edward J.,

    2013-02-01T23:59:59.000Z

    The following research is operated as a Laboratory Directed Research and Development (LDRD) initiative at Sandia National Laboratories. The long-term goals of the program include sophisticated diagnostics of advanced fuels testing for nuclear reactors for the Department of Energy (DOE) Gen IV program, with the future capability to provide real-time measurement of strain in fuel rod cladding during operation in situ at any research or power reactor in the United States. By quantifying the stress and strain in fuel rods, it is possible to significantly improve fuel rod design, and consequently, to improve the performance and lifetime of the cladding. During the past year of this program, two sets of experiments were performed: small-scale tests to ensure reliability of the gages, and reactor pulse experiments involving the most viable samples in the Annulated Core Research Reactor (ACRR), located onsite at Sandia. Strain measurement techniques that can provide useful data in the extreme environment of a nuclear reactor core are needed to characterize nuclear fuel rods. This report documents the progression of solutions to this issue that were explored for feasibility in FY12 at Sandia National Laboratories, Albuquerque, NM.

  1. LABORATORY VI ELECTRICITY FROM MAGNETISM

    E-Print Network [OSTI]

    Minnesota, University of

    LABORATORY VI ELECTRICITY FROM MAGNETISM Lab VI - 1 In the previous problems you explored by electric currents. This lab will carry that investigation one step further, determining how changing magnetic fields can give rise to electric currents. This is the effect that allows the generation

  2. LABORATORY VI ELECTRICITY FROM MAGNETISM

    E-Print Network [OSTI]

    Minnesota, University of

    LABORATORY VI ELECTRICITY FROM MAGNETISM Lab VI - 1 In the previous problems you explored the magnetic field and its effect on moving charges. You also saw how electric currents could create magnetic can give rise to electric currents. This is the effect that allows the generation of electricity

  3. Removal design report for the 108-F Biological Laboratory

    SciTech Connect (OSTI)

    NONE

    1997-09-01T23:59:59.000Z

    Most of the 100-F facilities were deactivated with the reactor and have since been demolished. Of the dozen or so reactor-related structures, only the 105-F Reactor Building and the 108-F Biology Laboratory remain standing today. The 108-F Biology Laboratory was intended to be used as a facility for the mixing and addition of chemicals used in the treatment of the reactor cooling water. Shortly after F Reactor began operation, it was determined that the facility was not needed for this purpose. In 1949, the building was converted for use as a biological laboratory. In 1962, the lab was expanded by adding a three-story annex to the original four-story structure. The resulting lab had a floor area of approximately 2,883 m{sup 2} (main building and annex) that operated until 1973. The building contained 47 laboratories, a number of small offices, a conference room, administrative section, lunch and locker rooms, and a heavily shielded, high-energy exposure cell. The purpose of this removal design report is to establish the methods of decontamination and decommissioning and the supporting functions associated with facility removal and disposal.

  4. Nuclear reactor control column

    SciTech Connect (OSTI)

    Bachovchin, D.M.

    1982-08-10T23:59:59.000Z

    The nuclear reactor control column comprises a column disposed within the nuclear reactor core having a variable cross-section hollow channel and containing balls whose vertical location is determined by the flow of the reactor coolant through the column. The control column is divided into three basic sections wherein each of the sections has a different cross-sectional area. The uppermost section of the control column has the greatest crosssectional area, the intermediate section of the control column has the smallest cross-sectional area, and the lowermost section of the control column has the intermediate cross-sectional area. In this manner, the area of the uppermost section can be established such that when the reactor coolant is flowing under normal conditions therethrough, the absorber balls will be lifted and suspended in a fluidized bed manner in the upper section. However, when the reactor coolant flow falls below a predetermined value, the absorber balls will fall through the intermediate section and into the lowermost section, thereby reducing the reactivity of the reactor core and shutting down the reactor.

  5. Nuclear reactor control column

    DOE Patents [OSTI]

    Bachovchin, Dennis M. (Plum Borough, PA)

    1982-01-01T23:59:59.000Z

    The nuclear reactor control column comprises a column disposed within the nuclear reactor core having a variable cross-section hollow channel and containing balls whose vertical location is determined by the flow of the reactor coolant through the column. The control column is divided into three basic sections wherein each of the sections has a different cross-sectional area. The uppermost section of the control column has the greatest cross-sectional area, the intermediate section of the control column has the smallest cross-sectional area, and the lowermost section of the control column has the intermediate cross-sectional area. In this manner, the area of the uppermost section can be established such that when the reactor coolant is flowing under normal conditions therethrough, the absorber balls will be lifted and suspended in a fluidized bed manner in the upper section. However, when the reactor coolant flow falls below a predetermined value, the absorber balls will fall through the intermediate section and into the lowermost section, thereby reducing the reactivity of the reactor core and shutting down the reactor.

  6. Hybrid Plasma Reactor/Filter for Transportable Collective Protection Systems

    SciTech Connect (OSTI)

    Josephson, Gary B.; Tonkyn, Russell G.; Frye, J. G.; Riley, Brian J.; Rappe, Kenneth G.

    2011-04-06T23:59:59.000Z

    Pacific Northwest National Laboratory (PNNL) has performed an assessment of a Hybrid Plasma/Filter system as an alternative to conventional methods for collective protection. The key premise of the hybrid system is to couple a nonthermal plasma (NTP) reactor with reactive adsorption to provide a broader envelope of protection than can be provided through a single-solution approach. The first step uses highly reactive species (e.g. oxygen radicals, hydroxyl radicals, etc.) created in a nonthermal plasma (NTP) reactor to destroy the majority (~75% - 90%) of an incoming threat. Following the NTP reactor an O3 reactor/filter uses the O3 created in the NTP reactor to further destroy the remaining organic materials. This report summarizes the laboratory development of the Hybrid Plasma Reactor/Filter to protect against a ‘worst-case’ simulant, methyl bromide (CH3Br), and presents a preliminary engineering assessment of the technology to Joint Expeditionary Collective Protection performance specifications for chemical vapor air purification technologies.

  7. Preliminary design studies on the Broad Application Test Reactor

    SciTech Connect (OSTI)

    Terry, W.J. [ed.; Terry, W.K.; Ryskamp, J.M.; Jahshan, S.N.; Fletcher, C.D.; Moore, R.L.; Leyse, C.F.; Ottewitte, E.H.; Motloch, C.G.; Lacy, J.M.

    1992-08-01T23:59:59.000Z

    This report describes progress made at the Idaho National Engineering Laboratory during the first three quarters of Fiscal Year (FY) 1992 on the Laboratory-Directed Research and Development (LDRD) project to perform preliminary design studies on the Broad Application Test Reactor (BATR). This work builds on the FY-92 BATR studies, which identified anticipated mission and safety requirements for BATR and assessed a variety of reactor concepts for their potential capability to meet those requirements. The main accomplishment of the FY-92 BATR program is the development of baseline reactor configurations for the two conventional conceptual test reactors recommended in the FY-91 report. Much of the present report consists of descriptions and neutronics and thermohydraulics analyses of these baseline configurations. In addition, we considered reactor safety issues, compared the consequences of steam explosions for alternative conventional fuel types, explored a Molten Chloride Fast Reactor concept as an alternate BATR design, and examined strategies for the reduction of operating costs. Work planned for the last quarter of FY-92 is discussed, and recommendations for future work are also presented.

  8. Reactor Safety Research Programs Quarterly Report January - March 1980

    SciTech Connect (OSTI)

    Hagen, C. M

    1980-10-01T23:59:59.000Z

    This document summarizes the work performed by Pacific Northwest Laboratory from January 1 through March 31, 1980, for the Division of Reactor Safety Research within the Nuclear Regulatory Commission. Evaluation of nondestructive examination (NDE) techniques and instrumentation are reported; areas of investigation include demonstrating the feasibilty of determining structural graphite strength, evaluating the feasibilty of detecting and analyzing flaw growth in reactor pressure boundary systems, examining NDE reliability and probabilistic fracture mechanics, and assessing the remaining integrity of pressurized water reactor steam generator tubes where serviceinduced degradation has been indicated. Test assemblies and analytical support are being provided for experimental programs at other facilities. These programs include the loss-of-coolant accident simulation tests at the NRU reactor, Chalk River, Canada; the fuel rod deformation and post-accident coolability tests for the ESSOR Test Reactor Program, Ispra, Italy; the blowdown and reflood tests in the test facility at Cadarache, France; the instrumented fuel assembly irradiation program at Halden, Norway; and the experimental programs at the Power Burst Facility, Idaho National Engineering Laboratory. These programs will provide data for computer modeling of reactor system and fuel performance during various abnormal operating conditions.

  9. Reactor Safety Research Programs Quarterly Report July- September 1980

    SciTech Connect (OSTI)

    Edler, S. K.

    1980-12-01T23:59:59.000Z

    This document summarizes the work performed by Pacific Northwest Laboratory (PNL) from April 1 through June 30, 1980, for the Division of Reactor Safety Research within the Nuclear Regulatory Commission {NRC). Evaluations of nondestructive examination (NDE) techniques and instrumentation are reported; areas of investigation include demonstrating the feasibility of determining structural graphite strength, evaluating the feasibility of detecting and analyzing flaw growth in reactor pressure boundary systems, examining NDE reliability and probabilistic fracture mechanics, and assessing the remaining integrity of pressurized water reactor (PWR) steam generator tubes where service-induced degradation has been indicated. Test assemblies and analytical support are being provided for experimental programs at other facilities. These programs include loss-of-coolant accident (LOCA) simulation tests at the NRU reactor, Chalk River, Canada; fuel rod deformation and postaccident coolability tests for the ESSOR Test Reactor Program, Ispra, Italy; blowdown and reflood tests in the test facility at Cadarache, France; the instrumented fuel assembly irradiation program at Halden, Norway; and experimental programs at the Power Burst Facility, Idaho National Engineering Laboratory (INEL). These programs will provide data for computer modeling of reactor system and fuel performance during various abnormal operating conditions.

  10. Reactor Safety Research Programs Quarterly Report October - December 1981

    SciTech Connect (OSTI)

    Edler, S. K.

    1982-03-01T23:59:59.000Z

    This document summarizes the work performed by Pacific Northwest laboratory (PNL) from October 1 through December 31, 1981, for the Division of Accident Evaluation, U.S. Nuclear Regulatory Commission (NRC). Evaluations of nondestructive examination (NDE) techniques and instrumentation are reported; areas of investigation include demonstrating the feasibility of determining the strength of structural graphite, evaluating the feasibility of detecting and analyzing flaw growth in reactor pressure boundary systems, examining NDE reliability and probabilistic fracture mechanics, and assessing the integrity of pressurized water reactor (PWR) steam generator tubes where serviceinduced degradation has been indicated. Experimental data and analytical models are being provided to aid in decision-making regarding pipe-to-pipe impacts following postulated breaks in high-energy fluid system piping. Core thermal models are being developed to provide better digital codes to compute the behavior of full-scale reactor systems under postulated accident conditions. Fuel assemblies and analytical support are being provided for experimental programs at other facilities. These programs include loss-of-coolant accident (LOCA) simulation tests at the NRU reactor, Chalk River, Canada; fuel rod deformation, severe fuel damage, and post accident coolability tests for the ESSOR reactor Super Sara Test Program, lspra, Italy; the instrumented fuel assembly irradiation program at Halden, Norway; and experimental programs at the Power Burst Facility, Idaho National Engineering Laboratory (INEL), Idaho Falls, Idaho. These programs will provide data for computer modeling of reactor system and fuel performance during various abnormal operating conditions.

  11. Reactor Safety Research Programs Quarterly Report April -June 1980

    SciTech Connect (OSTI)

    Edler, S. K.

    1980-11-01T23:59:59.000Z

    This document summarizes the work performed by Pacific Northwest Laboratory (PNL) from April 1 through June 30, 1980, for the Division of Reactor Safety Research within the Nuclear Regulatory Commission {NRC). Evaluations of nondestructive examination (NDE) techniques and instrumentation are reported; areas of investigation include demonstrating the feasibility of determining structural graphite strength, evaluating the feasibility of detecting and analyzing flaw growth in reactor pressure boundary systems, examining NDE reliability and probabilistic fracture mechanics, and assessing the remaining integrity of pressurized water reactor (PWR) steam generator tubes where service-induced degradation has been indicated. Test assemblies and analytical support are being provided for experimental programs at other facilities. These programs include loss-of-coolant accident (LOCA) simulation tests at the NRU reactor, Chalk River, Canada; fuel rod deformation and postaccident coolability tests for the ESSOR Test Reactor Program, Ispra, Italy; blowdown and reflood tests in the test facility at Cadarache, France; the instrumented fuel assembly irradiation program at Halden, Norway; and experimental programs at the Power Burst Facility, Idaho National Engineering Laboratory (INEL). These programs will provide data for computer modeling of reactor system and fuel performance during various abnormal operating conditions.

  12. Reactor Safety Research Programs Quarterly Report July - September 1981

    SciTech Connect (OSTI)

    Edler, S. K.

    1982-01-01T23:59:59.000Z

    This document summarizes the work performed by Pacific Northwest laboratory (PNL) from July 1 through September 30, 1981, for the Division of Accident Evaluation, U.S. Nuclear Regulatory Commission (NRC). Evaluations of nondestructive examination (NDE) techniques and instrumentation are reported; areas of investigation include demonstrating the feasibility of determining the strength of structural graphite, evaluating the feasibility of detecting and analyzing flaw growth in reactor pressure boundary systems, examining NDE reliability and probabilistic fracture mechanics, and assessing the integrity of pressurized water reactor (PWR} steam generator tubes where service-induced degradation has been indicated. Experimental data and analytical models are being provided to aid in decision-making regarding pipe-to-pipe impacts following postulated breaks in high-energy fluid system piping. Core thermal models are being developed to provide better digital codes to compute the behavior of full-scale reactor systems under postulated accident conditions. Fuel assemblies and analytical support are being provided for experimental programs at other facilities. These programs include loss-of-coolant accident (LOCA) simulation tests at the NRU reactor, Chalk River, Canada; fuel rod deformation, severe fuel damage, and postaccident coolability tests for the ESSOR reactor Super Sara Test Program, lspra, Italy; the instrumented fuel assembly irradiation program at Halden, Norway; and experimental programs at the Power Burst Facility, Idaho National Engineering Laboratory (INEL), Idaho Falls, Idaho. These programs will provide data for computer modeling of reactor system and fuel performance during various abnormal operating conditions.

  13. Reactor Safety Research Programs Quarterly Report October - December 1980

    SciTech Connect (OSTI)

    Edler, S K

    1981-04-01T23:59:59.000Z

    This document summarizes the work performed by Pacific Northwest Laboratory (PNL) from October 1 through December 31, 1980, for the Division of Reactor Safety Research within the U.S. Nuclear Regulatory Commission (NRC). Evaluations of nondestructive examination (NDE) techniques and instrumentation are reported; areas of investigation include demonstrating the feasibility of determining structural graphite strength, evaluating the feasibility of detecting and analyzing flaw growth in reactor pressure boundary systems, examining NOE reliability and probabilistic fracture mechanics, and assessing the remaining integrity of pressurized water reactor (PWR) steam generator tubes where service-induced degradation has been indicated. Test assemblies and analytical support are being provided for experimental programs at other facilities. These programs include loss-of-coolant accident (LOCA) simulation tests at the NRU reactor, Chalk River, Canada; fuel rod deformation and postaccident coolability tests for the ESSOR Test Reactor Program, Ispra, Italy; the instrumented fuel assembly irradiation program at Halden, Norway; and experimental programs at the Power Burst Facility, Idaho National Engineering Laboratory (INEL). These programs will provide data for computer modeling of reactor system and fuel performance during various abnormal operating conditions.

  14. Sandia National Laboratories: Research and Innovation in U.S...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    and Paquette is the laboratory's Task Leader for Laboratory and Field Testing of Wind Turbine Blades. When REM caught up with him, Paquette was running between meetings on various...

  15. Fast Breeder Reactor studies

    SciTech Connect (OSTI)

    Till, C.E.; Chang, Y.I.; Kittel, J.H.; Fauske, H.K.; Lineberry, M.J.; Stevenson, M.G.; Amundson, P.I.; Dance, K.D.

    1980-07-01T23:59:59.000Z

    This report is a compilation of Fast Breeder Reactor (FBR) resource documents prepared to provide the technical basis for the US contribution to the International Nuclear Fuel Cycle Evaluation. The eight separate parts deal with the alternative fast breeder reactor fuel cycles in terms of energy demand, resource base, technical potential and current status, safety, proliferation resistance, deployment, and nuclear safeguards. An Annex compares the cost of decommissioning light-water and fast breeder reactors. Separate abstracts are included for each of the parts.

  16. Nuclear reactor reflector

    DOE Patents [OSTI]

    Hopkins, Ronald J. (Pensacola, FL); Land, John T. (Pensacola, FL); Misvel, Michael C. (Pensacola, FL)

    1994-01-01T23:59:59.000Z

    A nuclear reactor reflector is disclosed that comprises a stack of reflector blocks with vertical water flow passages to cool the reflector. The interface between blocks is opposite support points for reactor fuel rods. Water flows between the reflector and the reactor barrel from passages in a bottom block. The top block contains a flange to limit this flow and the flange has a slot to receive an alignment pin that is welded to the barrel. The pin is held in the slot by two removable shims. Alignment bars extend the length of the stack in slots machined in each block when the stack is assembled.

  17. Nuclear reactor reflector

    DOE Patents [OSTI]

    Hopkins, R.J.; Land, J.T.; Misvel, M.C.

    1994-06-07T23:59:59.000Z

    A nuclear reactor reflector is disclosed that comprises a stack of reflector blocks with vertical water flow passages to cool the reflector. The interface between blocks is opposite support points for reactor fuel rods. Water flows between the reflector and the reactor barrel from passages in a bottom block. The top block contains a flange to limit this flow and the flange has a slot to receive an alignment pin that is welded to the barrel. The pin is held in the slot by two removable shims. Alignment bars extend the length of the stack in slots machined in each block when the stack is assembled. 12 figs.

  18. Microfluidic electrochemical reactors

    DOE Patents [OSTI]

    Nuzzo, Ralph G. (Champaign, IL); Mitrovski, Svetlana M. (Urbana, IL)

    2011-03-22T23:59:59.000Z

    A microfluidic electrochemical reactor includes an electrode and one or more microfluidic channels on the electrode, where the microfluidic channels are covered with a membrane containing a gas permeable polymer. The distance between the electrode and the membrane is less than 500 micrometers. The microfluidic electrochemical reactor can provide for increased reaction rates in electrochemical reactions using a gaseous reactant, as compared to conventional electrochemical cells. Microfluidic electrochemical reactors can be incorporated into devices for applications such as fuel cells, electrochemical analysis, microfluidic actuation, pH gradient formation.

  19. Advances in process intensification through multifunctional reactor engineering.

    SciTech Connect (OSTI)

    Cooper, Marcia A.; Miller, James Edward; O'Hern, Timothy John; Gill, Walter; Evans, Lindsey R.

    2011-02-01T23:59:59.000Z

    A multifunctional reactor is a chemical engineering device that exploits enhanced heat and mass transfer to promote production of a desired chemical, combining more than one unit operation in a single system. The main component of the reactor system under study here is a vertical column containing packing material through which liquid(s) and gas flow cocurrently downward. Under certain conditions, a range of hydrodynamic regimes can be achieved within the column that can either enhance or inhibit a desired chemical reaction. To study such reactors in a controlled laboratory environment, two experimental facilities were constructed at Sandia National Laboratories. One experiment, referred to as the Two-Phase Experiment, operates with two phases (air and water). The second experiment, referred to as the Three-Phase Experiment, operates with three phases (immiscible organic liquid and aqueous liquid, and nitrogen). This report describes the motivation, design, construction, operational hazards, and operation of the both of these experiments. Data and conclusions are included.

  20. Beryllium Use in the Advanced Test Reactor

    SciTech Connect (OSTI)

    Glen R. Longhurst

    2007-12-01T23:59:59.000Z

    The Advanced Test Reactor (ATR) at the Idaho National Laboratory (INL) began operation in 1967. It makes use of a unique serpentine fuel core design and a beryllium reflector. Reactor control is achieved with rotating beryllium cylinders to which have been fastened plates of hafnium. Over time, the beryllium develops rather high helium content because of nuclear transmutations and begins to swell. The beryllium must be replaced at nominally 10-year intervals. Determination of when the replacement is made is by visual observation using a periscope to examine the beryllium surface for cracking and swelling. Disposition of the irradiated beryllium was once accomplished in the INL’s Radioactive Waste Management Complex, but that is no longer possible. Among contributing reasons are high levels of specific radioactive contaminants including transuranics. The INL is presently considering disposition pathways for this irradiated beryllium, but presently is storing it in the canal adjacent to the reactor. Numerous issues are associated with this situation including (1) Is there a need for ultra-low uranium material? (2) Is there a need to recover tritium from irradiated beryllium either because this is a strategic material resource or in preparation for disposal? (3) Is there a need to remove activation and fission products from irradiated beryllium? (4) Will there be enough material available to meet requirements for research reactors (fission and fusion)? In this paper will be discussed the present status of considerations on these issues.

  1. Radiation effects on reactor pressure vessel supports

    SciTech Connect (OSTI)

    Johnson, R.E. [Nuclear Regulatory Commission, Washington, DC (United States). Div. of Engineering Technology; Lipinski, R.E. [Idaho National Engineering Lab., Rockville, MD (United States)

    1996-05-01T23:59:59.000Z

    The purpose of this report is to present the findings from the work done in accordance with the Task Action Plan developed to resolve the Nuclear Regulatory Commission (NRC) Generic Safety Issue No. 15, (GSI-15). GSI-15 was established to evaluate the potential for low-temperature, low-flux-level neutron irradiation to embrittle reactor pressure vessel (RPV) supports to the point of compromising plant safety. An evaluation of surveillance samples from the High Flux Isotope Reactor (HFIR) at the Oak Ridge National Laboratory (ORNL) had suggested that some materials used for RPV supports in pressurized-water reactors could exhibit higher than expected embrittlement rates. However, further tests designed to evaluate the applicability of the HFIR data to reactor RPV supports under operating conditions led to the conclusion that RPV supports could be evaluated using traditional method. It was found that the unique HFIR radiation environment allowed the gamma radiation to contribute significantly to the embrittlement. The shielding provided by the thick steel RPV shell ensures that degradation of RPV supports from gamma irradiation is improbable or minimal. The findings reported herein were used, in part, as the basis for technical resolution of the issue.

  2. INITIAL IRRADIATION OF THE FIRST ADVANCED GAS REACTOR FUEL DEVELOPMENT AND QUALIFICATION EXPERIMENT IN THE ADVANCED TEST REACTOR

    SciTech Connect (OSTI)

    S. Blaine Grover; David A. Petti

    2007-09-01T23:59:59.000Z

    The United States Department of Energy’s Advanced Gas Reactor (AGR) Fuel Development and Qualification Program will be irradiating eight separate tri-isotopic (TRISO) particle fuel (in compact form) experiments in the Advanced Test Reactor (ATR) located at the Idaho National Laboratory (INL). These irradiations and fuel development are being accomplished to support development of the next generation reactors in the United States. The ATR has a long history of irradiation testing in support of reactor development and the INL has been designated as the United States Department of Energy’s lead laboratory for nuclear energy development. The ATR is one of the world’s premiere test reactors for performing long term, high flux, and/or large volume irradiation test programs. These AGR fuel experiments will be irradiated over the next ten years to demonstrate and qualify new particle fuel for use in high temperature gas reactors. The experiments, which will each consist of six separate capsules, will be irradiated in an inert sweep gas atmosphere with individual on-line temperature monitoring and control for each capsule. The swept gas will also have on-line fission product monitoring to track performance of the fuel in each individual capsule during irradiation.

  3. Argonne's rich scientific heritage Argonne's Experimental Breeder Reactor-I in Idaho lit this string of four

    E-Print Network [OSTI]

    Kemner, Ken

    Argonne's rich scientific heritage Argonne's Experimental Breeder Reactor-I in Idaho lit was December 20, 1951. Argonne National Laboratory is a U.S. Department of Energy laboratory managed by UChicago Argonne, LLC October 2010Argonne National Laboratory, 9700 South Cass Avenue, Lemont, IL 60439

  4. Plasma-material Interactions in Current Tokamaks and their Implications for Next-step Fusion Reactors

    SciTech Connect (OSTI)

    Federici, G.; Skinner, C.H.; Brooks, J.N.; Coad, J.P.; Grisolia, C. [and others

    2001-01-10T23:59:59.000Z

    The major increase in discharge duration and plasma energy in a next-step DT [deuterium-tritium] fusion reactor will give rise to important plasma-material effects that will critically influence its operation, safety, and performance. Erosion will increase to a scale of several centimeters from being barely measurable at a micron scale in today's tokamaks. Tritium co-deposited with carbon will strongly affect the operation of machines with carbon plasma-facing components. Controlling plasma wall interactions is critical to achieving high performance in present-day tokamaks and this is likely to continue to be the case in the approach to practical fusion reactors. Recognition of the important consequences of these phenomena has stimulated an internationally coordinated effort in the field of plasma-surface interactions supporting the Engineering Design Activities of the International Thermonuclear Experimental Reactor (ITER) project and significant progress has been made in better under standing these issues. This paper reviews the underlying physical processes and the existing experimental database of plasma-material interactions both in tokamaks and laboratory simulation facilities for conditions of direct relevance to next-step fusion reactors. Two main topical groups of interactions are considered: (i) erosion/redeposition from plasma sputtering and disruptions, including dust and flake generation, (ii) tritium retention and removal. The use of modeling tools to interpret the experimental results and make projections for conditions expected in future devices is explained. Outstanding technical issues and specific recommendations on potential R and D [Research and Development] avenues for their resolution are presented.

  5. Review of Reactor Neutrino Oscillation Experiments

    E-Print Network [OSTI]

    C. Mariani

    2012-02-05T23:59:59.000Z

    In this document we will review the current status of reactor neutrino oscillation experiments and present their physics potentials for measuring the $\\theta_{13}$ neutrino mixing angle. The neutrino mixing angle $\\theta_{13}$ is currently a high-priority topic in the field of neutrino physics. There are currently three different reactor neutrino experiments, \\textsc{Double Chooz}, \\textsc{Daya Bay} and \\textsc{Reno} and a few accelerator neutrino experiments searching for neutrino oscillations induced by this angle. A description of the reactor experiments searching for a non-zero value of $\\theta_{13}$ is given, along with a discussion of the sensitivities that these experiments can reach in the near future.

  6. Sandia National Laboratories: Nuclear Energy Systems Laboratory...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Laboratory (NESL) Transient Nuclear Fuels Testing Radiation Effects Sciences Solar Electric Propulsion Nuclear Energy Safety Technologies Experimental Testing...

  7. Sandia National Laboratories: Nuclear Energy Systems Laboratory...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Laboratory (NESL) Transient Nuclear Fuels Testing Radiation Effects Sciences Solar Electric Propulsion Nuclear Energy Safety Technologies Experimental Testing Phenomenological...

  8. LOS ALAMOS, N.M., June 18, 2014-Los Alamos National Laboratory...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    June 18, 2014 Los Alamos to partner with Toshiba to remotely and safely peer inside nuclear reactors LOS ALAMOS, N.M., June 18, 2014-Los Alamos National Laboratory today...

  9. Introduction 1 INTRODUCTION TO BOTANY LABORATORY

    E-Print Network [OSTI]

    Koptur, Suzanne

    · Plant Jargon · Laboratory Safety KEEPING A LAB NOTEBOOK Half of the laboratory "exercises" will be held your portfolio is to use Powerpoint to make a series of slides (perhaps 3 to 5 slides per lab or field (including the first, mid-term part), no more than 60 slides (50 is ideal). The portfolio is not only

  10. Hypothetical Reactor Accident Study

    E-Print Network [OSTI]

    POPULATIONS; IODINE 131; MELTDOWN; METEOROLOGY; NUCLEAR POWER PLANTS; P CODES; PWR TYPE REACTORS; RADIATION in a Typical BWR and in a typical PWR. Comparison with WASH-1400 by C F . Højerup 202 APPENDIX 3. Calculation

  11. P Reactor Grouting

    SciTech Connect (OSTI)

    None

    2010-01-01T23:59:59.000Z

    Filling the P Reactor with grout. This seals the radioactive material and reduces the environmental footprint left from the Cold War. Project sponsored by the Recovery Act at the Savannah River Site.

  12. Simulator platform for fast reactor operation and safety technology demonstration

    SciTech Connect (OSTI)

    Vilim, R. B.; Park, Y. S.; Grandy, C.; Belch, H.; Dworzanski, P.; Misterka, J. (Nuclear Engineering Division)

    2012-07-30T23:59:59.000Z

    A simulator platform for visualization and demonstration of innovative concepts in fast reactor technology is described. The objective is to make more accessible the workings of fast reactor technology innovations and to do so in a human factors environment that uses state-of-the art visualization technologies. In this work the computer codes in use at Argonne National Laboratory (ANL) for the design of fast reactor systems are being integrated to run on this platform. This includes linking reactor systems codes with mechanical structures codes and using advanced graphics to depict the thermo-hydraulic-structure interactions that give rise to an inherently safe response to upsets. It also includes visualization of mechanical systems operation including advanced concepts that make use of robotics for operations, in-service inspection, and maintenance.

  13. Ames Laboratory Ames, Iowa Argonne National Laboratory Argonne...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Laboratory Los Alamos, New Mexico National Energy Technology Laboratory Morgantown, West Virginia Pittsburgh, Pennsylvania Albany, Oregon National Renewable Energy Laboratory...

  14. Nuclear reactor control

    SciTech Connect (OSTI)

    Ingham, R.V.

    1980-01-01T23:59:59.000Z

    A liquid metal cooled fast breeder nuclear reactor has power setback means for use in an emergency. On initiation of a trip-signal a control rod is injected into the core in two stages, firstly, by free fall to effect an immediate power-set back to a safe level and, secondly, by controlled insertion. Total shut-down of the reactor under all emergencies is avoided. 4 claims.

  15. Polymerization reactor control

    SciTech Connect (OSTI)

    Ray, W.H.

    1985-01-01T23:59:59.000Z

    The principal difficulties in achieving good control of polymerization reactors are related to inadequate on-line measurement, a lack of understanding of the dynamics of the process, the highly sensitive and nonlinear behavior of these reactors, and the lack of well-developed techniques for the control of nonlinear processes. Some illustrations of these problems and a discussion of potential techniques for overcoming some of these difficulties is provided.

  16. Molten metal reactors

    DOE Patents [OSTI]

    Bingham, Dennis N; Klingler, Kerry M; Turner, Terry D; Wilding, Bruce M

    2013-11-05T23:59:59.000Z

    A molten metal reactor for converting a carbon material and steam into a gas comprising hydrogen, carbon monoxide, and carbon dioxide is disclosed. The reactor includes an interior crucible having a portion contained within an exterior crucible. The interior crucible includes an inlet and an outlet; the outlet leads to the exterior crucible and may comprise a diffuser. The exterior crucible may contain a molten alkaline metal compound. Contained between the exterior crucible and the interior crucible is at least one baffle.

  17. Reactor- Nuclear Science Center 

    E-Print Network [OSTI]

    Unknown

    2011-08-17T23:59:59.000Z

    A COMPARISON OF NUCLEAR REACTOR CONTROL ROOM DISPLAY PANELS A Thesis by FRANCES RENAE BOWERS Submitted to the Graduate College of Texas A&M University in partial fulfillment of the requirements for the degree of MASTER OF SCIENCE May 1988... Major Subject: Industrial Engineering A COMPARISON OF NUCLEAR REACTOR CONTROL ROOM DISPLAY PANELS A Thesis by FRANCES RENAE BOWERS Approved as to style and content by: Rod er . oppa (Cha' of 'ttee) R. Quinn Brackett (Member) rome . Co gleton...

  18. Ambient Laboratory Coater for Advanced Gas Reactor Fuel Development

    SciTech Connect (OSTI)

    Duane D. Bruns; Robert M. Counce; Irma D. Lima Rojas

    2010-06-09T23:59:59.000Z

    this research is targeted at developing improved experimentally-based scaling relationships for the hydrodynamics of shallow, gas-spouted beds of dense particles. The work is motivated by the need to more effctively scale up shallow spouted beds used in processes such as in the coating of nuclear fuel particles where precise control of solids and gas circulation is critically important. Experimental results reported here are for a 50 mm diameter spouted bed containing two different types of bed solids (alumina and zirconia) at different static bed depths and fluidized by air and helium. Measurements of multiple local average pressures, inlet gas pressure fluctuations, and spout height were used to characterize the bed hydrodynamics for each operating condition. Follow-on studies are planned that include additional variations in bed size, particle properties, and fluidizing gas. The ultimate objective is to identify the most important non-dimensional hydrodynamic scaling groups and possible spouted-bed design correlations based on these groups.

  19. Sandia National Laboratories: Research: Facilities: Sandia Pulsed Reactor

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa del Sol HomeFacebook Twitter YouTube FlickrOpportunities PartnershipFacility

  20. Vertical Pretreatment Reactor System (Poster), NREL (National Renewable Energy Laboratory)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron SpinPrincetonUsing Maps1 - USAFof EnergyVendorwinsVenue and

  1. DOE - Office of Legacy Management -- Ames Laboratory Research Reactor

    Office of Legacy Management (LM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn AprilA group currentBradleyTable ofArizonaBuffalo - NY 63 Buffalo - NY0-01Div

  2. Horizontal Pretreatment Reactor System (Poster), NREL (National Renewable Energy Laboratory)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville PowerCherries 82981-1cnHigh School football Highdefault Sign InData inmaxHorizontal Plate

  3. Annular Core Research Reactor at Sandia National Laboratories achieves

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625govInstrumentstdmadapInactiveVisiting the TWP TWPAlumni Alumni PARC/I-CARESAnalysis forAnnual ReportsAnnual10,000th

  4. BNL Strategic Plan for Nuclear Physics T. Kirk, Associate Laboratory Director, HENP

    E-Print Network [OSTI]

    of the Laboratory to the advance of nuclear physics. To accomplish these guiding principles, we seek to identify- Spin RHIC II eRHIC RHIC II eRHIC Neutrino Physics SNO SNOLAB s Exp. Reactor Exp. Reactor Exp. Theory of nuclear physics. In pursuing this plan, we assume that the national program will be guided by a principle

  5. ME 361F Radiation and Radiation Protection Laboratory ABET EC2000 syllabus

    E-Print Network [OSTI]

    Ben-Yakar, Adela

    8. Reactor Health Physics Practices Class/Laboratory Schedule (Type, number and duration of sessions-Ray Attenuation · Low-Level Gamma Ray Spectrometry · Reactor Health Physics · Neutron Shielding · Sodium Iodide. Apply principles of engineering, basic science, and mathematics (including multivariate calculus

  6. Neutrino Oscillation Experiments at Nuclear Reactors

    E-Print Network [OSTI]

    Giorgio Gratta

    1999-05-06T23:59:59.000Z

    In this paper I give an overview of the status of neutrino oscillation experiments performed using nuclear reactors as sources of neutrinos. I review the present generation of experiments (Chooz and Palo Verde) with baselines of about 1 km as well as the next generation that will search for oscillations with a baseline of about 100 km. While the present detectors provide essential input towards the understanding of the atmospheric neutrino anomaly, in the future, the KamLAND reactor experiment represents our best opportunity to study very small mass neutrino mixing in laboratory conditions. In addition KamLAND with its very large fiducial mass and low energy threshold, will also be sensitive to a broad range of different physics.

  7. Instrumentation to Enhance Advanced Test Reactor Irradiations

    SciTech Connect (OSTI)

    J. L. Rempe; D. L. Knudson; K. G. Condie; J. E. Daw; S. C. Taylor

    2009-09-01T23:59:59.000Z

    The Department of Energy (DOE) designated the Advanced Test Reactor (ATR) as a National Scientific User Facility (NSUF) in April 2007 to support U.S. leadership in nuclear science and technology. By attracting new research users - universities, laboratories, and industry - the ATR will support basic and applied nuclear research and development, further advancing the nation's energy security needs. A key component of the ATR NSUF effort is to prove new in-pile instrumentation techniques that are capable of providing real-time measurements of key parameters during irradiation. To address this need, an assessment of instrumentation available and under-development at other test reactors has been completed. Based on this review, recommendations are made with respect to what instrumentation is needed at the ATR and a strategy has been developed for obtaining these sensors. Progress toward implementing this strategy is reported in this document. It is anticipated that this report will be updated on an annual basis.

  8. Analysis of a research reactor under anticipated transients without scram events using the RELAP5/MOD3.2 computer program

    E-Print Network [OSTI]

    Hari, Sridhar

    1998-01-01T23:59:59.000Z

    . . . 54 III Primary Loop Parameters: Comparison of Research Reactor With a Typical PWR. IV Summary of the Results of the Simulated Transients. . . 57 93 ACRONYMS AAEC ANL Australian Atomic Energy Commission Argonne National Laboratory ANSTO... Basis Accident Emergency Core Cooling System High Flux Australian Reactor HIFAR specific version of the ZAPP code High Flux Isotope Reactor International Atomic Energy Agency Idaho National Engineering Laboratory Loss of Coolant Accident Critical...

  9. Light water reactor mixed-oxide fuel irradiation experiment

    SciTech Connect (OSTI)

    Hodge, S.A.; Cowell, B.S. [Oak Ridge National Lab., TN (United States); Chang, G.S.; Ryskamp, J.M. [Lockheed Martin Idaho Technologies Co., Idaho Falls, ID (United States). Idaho National Engineering and Environmental Lab.

    1998-06-01T23:59:59.000Z

    The United States Department of Energy Office of Fissile Materials Disposition is sponsoring and Oak Ridge National Laboratory (ORNL) is leading an irradiation experiment to test mixed uranium-plutonium oxide (MOX) fuel made from weapons-grade (WG) plutonium. In this multiyear program, sealed capsules containing MOX fuel pellets fabricated at Los Alamos National Laboratory (LANL) are being irradiated in the Advanced Test Reactor (ATR) at the Idaho National Engineering and Environmental Laboratory (INEEL). The planned experiments will investigate the utilization of dry-processed plutonium, the effects of WG plutonium isotopics on MOX performance, and any material interactions of gallium with Zircaloy cladding.

  10. Power Burst Facility (PBF) Reactor Reactor Decommissioning

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's Possible forPortsmouth/Paducah Project Office PressPostdoctoraldecadal7Powder DropperReactor

  11. F Reactor Inspection

    SciTech Connect (OSTI)

    Grindstaff, Keith; Hathaway, Boyd; Wilson, Mike

    2014-10-29T23:59:59.000Z

    Workers from Mission Support Alliance, LLC., removed the welds around the steel door of the F Reactor before stepping inside the reactor to complete its periodic inspection. This is the first time the Department of Energy (DOE) has had the reactor open since 2008. The F Reactor is one of nine reactors along the Columbia River at the Department's Hanford Site in southeastern Washington State, where environmental cleanup has been ongoing since 1989. As part of the Tri-Party Agreement, the Department completes surveillance and maintenance activities of cocooned reactors periodically to evaluate the structural integrity of the safe storage enclosure and to ensure confinement of any remaining hazardous materials. "This entry marks a transition of sorts because the Hanford Long-Term Stewardship Program, for the first time, was responsible for conducting the entry and surveillance and maintenance activities," said Keith Grindstaff, Energy Department Long-Term Stewardship Program Manager. "As the River Corridor cleanup work is completed and transitioned to long-term stewardship, our program will manage any on-going requirements."

  12. F Reactor Inspection

    ScienceCinema (OSTI)

    Grindstaff, Keith; Hathaway, Boyd; Wilson, Mike

    2014-11-24T23:59:59.000Z

    Workers from Mission Support Alliance, LLC., removed the welds around the steel door of the F Reactor before stepping inside the reactor to complete its periodic inspection. This is the first time the Department of Energy (DOE) has had the reactor open since 2008. The F Reactor is one of nine reactors along the Columbia River at the Department's Hanford Site in southeastern Washington State, where environmental cleanup has been ongoing since 1989. As part of the Tri-Party Agreement, the Department completes surveillance and maintenance activities of cocooned reactors periodically to evaluate the structural integrity of the safe storage enclosure and to ensure confinement of any remaining hazardous materials. "This entry marks a transition of sorts because the Hanford Long-Term Stewardship Program, for the first time, was responsible for conducting the entry and surveillance and maintenance activities," said Keith Grindstaff, Energy Department Long-Term Stewardship Program Manager. "As the River Corridor cleanup work is completed and transitioned to long-term stewardship, our program will manage any on-going requirements."

  13. Sandia National Laboratories: IRED

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    SMART Grid, Solar Sandia National Laboratories, the Electric Power Research Institute (EPRI) and European Distributed Energies Research Laboratories (DERlab) have organized a...

  14. Tokamak fusion reactors with less than full tritium breeding

    SciTech Connect (OSTI)

    Evans, K. Jr.; Gilligan, J.G.; Jung, J.

    1983-05-01T23:59:59.000Z

    A study of commercial, tokamak fusion reactors with tritium concentrations and tritium breeding ratios ranging from full deuterium-tritium operation to operation with no tritium breeding is presented. The design basis for these reactors is similar to those of STARFIRE and WILDCAT. Optimum operating temperatures, sizes, toroidal field strengths, and blanket/shield configurations are determined for a sequence of reactor designs spanning the range of tritium breeding, each having the same values of beta, thermal power, and first-wall heat load. Additional reactor parameters, tritium inventories and throughputs, and detailed costs are calculated for each reactor design. The disadvantages, advantages, implications, and ramifications of tritium-depleted operation are presented and discussed.

  15. Nuclear reactors built, being built, or planned 1996

    SciTech Connect (OSTI)

    NONE

    1997-08-01T23:59:59.000Z

    This publication contains unclassified information about facilities, built, being built, or planned in the United States for domestic use or export as of December 31, 1996. The Office of Scientific and Technical Information, U.S. Department of Energy, gathers this information annually from Washington headquarters, and field offices of DOE; from the U.S. Nuclear Regulatory Commission (NRC); from the U. S. reactor manufacturers who are the principal nuclear contractors for foreign reactor locations; from U.S. and foreign embassies; and from foreign governmental nuclear departments. The book consists of three divisions, as follows: (1) a commercial reactor locator map and tables of the characteristic and statistical data that follow; a table of abbreviations; (2) tables of data for reactors operating, being built, or planned; and (3) tables of data for reactors that have been shut down permanently or dismantled.

  16. Isolation of Metals from Liquid Wastes: Reactive Scavenging in Turbulent Thermal Reactors

    SciTech Connect (OSTI)

    Jost O.L. Wendt; Alan R. Kerstein; Alexander Scheeline; Arne Pearlstein; William Linak

    2003-08-06T23:59:59.000Z

    The Overall project demonstrated that toxic metals (cesium Cs and strontium Sr) in aqueous and organic wastes can be isolated from the environment through reaction with kaolinite based sorbent substrates in high temperature reactor environments. In addition, a state-of-the art laser diagnostic tool to measure droplet characteristic in practical 'dirty' laboratory environments was developed, and was featured on the cover of a recent edition of the scientific journal ''applied Spectroscopy''. Furthermore, great strides have been made in developing a theoretical model that has the potential to allow prediction of the position and life history of every particle of waste in a high temperature, turbulent flow field, a very challenging problem involving as it does, the fundamentals of two phase turbulence and of particle drag physics.

  17. First-wall and blanket engineering development for magnetic-fusion reactors

    SciTech Connect (OSTI)

    Baker, C.; Herman, H.; Maroni, V.; Turner, L.; Clemmer, R.; Finn, P.; Johnson, C.; Abdou, M.

    1981-01-01T23:59:59.000Z

    A number of programs in the USA concerned with materials and engineering development of the first wall and breeder blanket systems for magnetic-fusion power reactors are described. Argonne National Laboratory has the lead or coordinating role, with many major elements of the research and engineering tests carried out by a number of organizations including industry and other national laboratories.

  18. The National High Magnetic Field Laboratory

    E-Print Network [OSTI]

    Weston, Ken

    of Contents Table of contents cHaPTeR 1 The Year in Review 6 cHaPTeR 3 Magnets & Materials 44 cHaPTeR 4 User The year in Review cHaPTeR 1 The Year in Review by Gregory Boebinger, MagLab Director 2012: Another

  19. Sandia National Laboratories: Clean Energy Demonstration Field

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Earth Solar (CES) have signed a five-year cooperative research & development agreement (CRADA) that could make solar energy more affordable and accessible. The CRADA calls for...

  20. National High Magnetic Field Laboratory moves closer

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's Possible for Renewable Energy:Nanowire Solar Energy Harvestingproducts (CDPs) that

  1. Sandia National Laboratories: EC

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    primary purpose is to model severe-accident progression in light-water-reactor (LWR) nuclear power plants. Sandia developed MELCOR for the US Nuclear Regulatory ... DOE OE...

  2. Sandia National Laboratories: Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    primary purpose is to model severe-accident progression in light-water-reactor (LWR) nuclear power plants. Sandia developed MELCOR for the US Nuclear Regulatory ... DOE OE...

  3. Sandia National Laboratories: News

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    primary purpose is to model severe-accident progression in light-water-reactor (LWR) nuclear power plants. Sandia developed MELCOR for the US Nuclear Regulatory ... DOE OE...

  4. Reactor Safety Planning for Prometheus Project, for Naval Reactors Information

    SciTech Connect (OSTI)

    P. Delmolino

    2005-05-06T23:59:59.000Z

    The purpose of this letter is to submit to Naval Reactors the initial plan for the Prometheus project Reactor Safety work. The Prometheus project is currently developing plans for cold physics experiments and reactor prototype tests. These tests and facilities may require safety analysis and siting support. In addition to the ground facilities, the flight reactor units will require unique analyses to evaluate the risk to the public from normal operations and credible accident conditions. This letter outlines major safety documents that will be submitted with estimated deliverable dates. Included in this planning is the reactor servicing documentation and shipping analysis that will be submitted to Naval Reactors.

  5. A review of experiments and results from the transient reactor test (TREAT) facility.

    SciTech Connect (OSTI)

    Deitrich, L. W.

    1998-07-28T23:59:59.000Z

    The TREAT Facility was designed and built in the late 1950s at Argonne National Laboratory to provide a transient reactor for safety experiments on samples of reactor fuels. It first operated in 1959. Throughout its history, experiments conducted in TREAT have been important in establishing the behavior of a wide variety of reactor fuel elements under conditions predicted to occur in reactor accidents ranging from mild off normal transients to hypothetical core disruptive accidents. For much of its history, TREAT was used primarily to test liquid-metal reactor fuel elements, initially for the Experimental Breeder Reactor-II (EBR-II), then for the Fast Flux Test Facility (FFTF), the Clinch River Breeder Reactor Plant (CRBRP), the British Prototype Fast Reactor (PFR), and finally, for the Integral Fast Reactor (IFR). Both oxide and metal elements were tested in dry capsules and in flowing sodium loops. The data obtained were instrumental in establishing the behavior of the fuel under off-normal and accident conditions, a necessary part of the safety analysis of the various reactors. In addition, TREAT was used to test light-water reactor (LWR) elements in a steam environment to obtain fission-product release data under meltdown conditions. Studies are now under way on applications of TREAT to testing of the behavior of high-burnup LWR elements under reactivity-initiated accident (RIA) conditions using a high-pressure water loop.

  6. National Renewable Energy Laboratory

    E-Print Network [OSTI]

    National Renewable Energy Laboratory Innovation for Our Energy Future ponsorship Format Reversed Color:White rtical Format Reversed-A ertical Format Reversed-B National Renewable Energy Laboratory National Renewable Energy Laboratory Innovation for Our Energy Future National Renewable Energy Laboratory

  7. Methanation assembly using multiple reactors

    DOE Patents [OSTI]

    Jahnke, Fred C.; Parab, Sanjay C.

    2007-07-24T23:59:59.000Z

    A methanation assembly for use with a water supply and a gas supply containing gas to be methanated in which a reactor assembly has a plurality of methanation reactors each for methanating gas input to the assembly and a gas delivery and cooling assembly adapted to deliver gas from the gas supply to each of said methanation reactors and to combine water from the water supply with the output of each methanation reactor being conveyed to a next methanation reactor and carry the mixture to such next methanation reactor.

  8. MONOLITHIC FUEL FABRICATION PROCESS DEVELOPMENT AT THE IDAHO NATIONAL LABORATORY

    SciTech Connect (OSTI)

    Glenn A. Moore; Francine J. Rice; Nicolas E. Woolstenhulme; W. David SwanK; DeLon C. Haggard; Jan-Fong Jue; Blair H. Park; Steven E. Steffler; N. Pat Hallinan; Michael D. Chapple; Douglas E. Burkes

    2008-10-01T23:59:59.000Z

    Within the Reduced Enrichment for Research and Test Reactors (RERTR) program directed by the US Department of Energy (DOE), UMo fuel-foils are being developed in an effort to realize high density monolithic fuel plates for use in high-flux research and test reactors. Namely, targeted are reactors that are not amenable to Low Enriched Uranium (LEU) fuel conversion via utilization of high density dispersion-based fuels, i.e. 8-9 gU/cc. LEU conversion of reactors having a need for >8-9 gU/cc fuel density will only be possible by way of monolithic fuel forms. The UMo fuel foils under development afford fuel meat density of ~16 gU/cc and thus have the potential to facilitate LEU conversions without any significant reactor-performance penalty. Two primary challenges have been established with respect to UMo monolithic fuel development; namely, fuel element fabrication and in-reactor fuel element performance. Both issues are being addressed concurrently at the Idaho National Laboratory. An overview is provided of the ongoing monolithic UMo fuel development effort at the Idaho National Laboratory (INL); including development of complex/graded fuel foils. Fabrication processes to be discussed include: UMo alloying and casting, foil fabrication via hot rolling, fuel-clad interlayer application via co-rolling and thermal spray processes, clad bonding via Hot Isostatic Pressing (HIP) and Friction Bonding (FB), and fuel plate finishing.

  9. Nuclear reactors built, being built, or planned, 1994

    SciTech Connect (OSTI)

    NONE

    1995-07-01T23:59:59.000Z

    This document contains unclassified information about facilities built, being built, or planned in the United States for domestic use or export as of December 31, 1994. The Office of Scientific and Technical Information, US Department of Energy, gathers this information annually from Washington headquarters and field offices of DOE; from the US Nuclear Regulatory Commission (NRC); from the US reactor manufacturers who are the principal nuclear contractors for foreign reactor locations; from US and foreign embassies; and from foreign governmental nuclear departments. The book consists of three divisions, as follows: a commercial reactor locator map and tables of the characteristic and statistical data that follow; a table of abbreviations; tables of data for reactors operating, being built, or planned; and tables of data for reactors that have been shut down permanently or dismantled. The reactors are subdivided into the following parts: Civilian, Production, Military, Export, and Critical Assembly. Export reactor refers to a reactor for which the principal nuclear contractor is a US company -- working either independently or in cooperation with a foreign company (Part 4). Critical assembly refers to an assembly of fuel and moderator that requires an external source of neutrons to initiate and maintain fission. A critical assembly is used for experimental measurements (Part 5).

  10. Nuclear reactors built, being built, or planned: 1995

    SciTech Connect (OSTI)

    NONE

    1996-08-01T23:59:59.000Z

    This report contains unclassified information about facilities built, being built, or planned in the US for domestic use or export as of December 31, 1995. The Office of Scientific and Technical Information, US Department of Energy, gathers this information annually from Washington headquarters and field offices of DOE; from the US Nuclear Regulatory Commission (NRC); from the US reactor manufacturers who are the principal nuclear contractors for foreign reactor locations; from US and foreign embassies; and from foreign governmental nuclear departments. The book consists of three divisions, as follows: (1) a commercial reactor locator map and tables of the characteristic and statistical data that follow; a table of abbreviations; (2) tables of data for reactors operating, being built, or planned; and (3) tables of data for reactors that have been shut down permanently or dismantled. The reactors are subdivided into the following parts: Civilian, Production, Military, Export, and Critical Assembly. Export reactor refers to a reactor for which the principal nuclear contractor is a US company--working either independently or in cooperation with a foreign company (Part 4). Critical assembly refers to an assembly of fuel and moderator that requires an external source of neutrons to initiate and maintain fission. A critical assembly is used for experimental measurements (Part 5).

  11. Magnetic switch for reactor control rod. [LMFBR

    DOE Patents [OSTI]

    Germer, J.H.

    1982-09-30T23:59:59.000Z

    A magnetic reed switch assembly is described for activating an electromagnetic grapple utilized to hold a control rod in position above a reactor core. In normal operation the magnetic field of a permanent magnet is short-circuited by a magnetic shunt, diverting the magnetic field away from the reed switch. The magnetic shunt is made of a material having a Curie-point at the desired release temperature. Above that temperature the material loses its ferromagnetic properties, and the magnetic path is diverted to the reed switch which closes and short-circuits the control circuit for the control rod electro-magnetic grapple which allows the control rod to drop into the reactor core for controlling the reactivity of the core.

  12. Magnetic switch for reactor control rod

    DOE Patents [OSTI]

    Germer, John H. (San Jose, CA)

    1986-01-01T23:59:59.000Z

    A magnetic reed switch assembly for activating an electromagnetic grapple utilized to hold a control rod in position above a reactor core. In normal operation the magnetic field of a permanent magnet is short-circuited by a magnetic shunt, diverting the magnetic field away from the reed switch. The magnetic shunt is made of a material having a Curie-point at the desired release temperature. Above that temperature the material loses its ferromagnetic properties, and the magnetic path is diverted to the reed switch which closes and short-circuits the control circuit for the control rod electromagnetic grapple which allows the control rod to drop into the reactor core for controlling the reactivity of the core.

  13. 288 Int. J. Nuclear Energy Science and Technology, Vol. 7, No. 4, 2013 Multi-physics modelling of nuclear reactors

    E-Print Network [OSTI]

    Demazière, Christophe

    of nuclear reactors: current practices in a nutshell Christophe Demazière Department of Applied Physics of nuclear reactors are based on the use of different solvers for resolving the different physical fields and the corresponding approximations. Keywords: nuclear reactors; multi-physics; multi-scale; modelling; deterministic

  14. A TEN MEGAWATT BOILING HETEROGENEOUS PACKAGE POWER REACTOR. Reactor...

    Office of Scientific and Technical Information (OSTI)

    A reactor and associated power plant designed to produce 1.05 Mwh and 3.535 Mwh of steam for heating purposes are described. The total thermal output of the reactor is 10 Mwh....

  15. Sandia National Laboratories: Sandia National Laboratories

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    in Hosted by Sandia National Laboratories and the Electric Power Research Institute (EPRI) Inverter reliability drives project life cycle costs and plant performance. This...

  16. Argonne National Laboratory | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Argonne National Laboratory Slip sliding away Graphene and diamonds prove a slippery combination Read More ACT-SO winners Argonne mentors students for the next generation of...

  17. Materials Design Laboratory | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Design Laboratory, scheduled for completion in FY 2020, is designed to meet U.S. Green Building Council Leadership in Energy and Environmental Design (LEED) Gold...

  18. Idaho National Engineering Laboratory: Annual report, 1986

    SciTech Connect (OSTI)

    Not Available

    1986-01-01T23:59:59.000Z

    The INEL underwent a year of transition in 1986. Success with new business initiatives, the prospects of even better things to come, and increased national recognition provided the INEL with a glimpse of its promising and exciting future. Among the highlights were: selection of the INEL as the preferred site for the Special Isotope Separation Facility (SIS); the first shipments of core debris from the Three Mile Island Unit 2 reactor to the INEL; dedication of three new facilities - the Fluorinel Dissolution Process, the Remote Analytical Laboratory, and the Stored Waste Experimental Pilot Plant; groundbreaking for the Fuel Processing Restoration Facility; and the first IR-100 award won by the INEL, given for an innovative machine vision system. The INEL has been assigned project management responsibility for the SDI Office-sponsored Multimegawatt Space Reactor and the Air Force-sponsored Multimegawatt Terrestrial Power Plant Project. New Department of Defense initiatives have been realized in projects involving development of prototype defense electronics systems, materials research, and hazardous waste technology. While some of our major reactor safety research programs have been completed, the INEL continues as a leader in advanced reactor technologies development. In April, successful tests were conducted for the development of the Integral Fast Reactor. Other 1986 highlights included the INEL's increased support to the Office of Civilian Radioactive Waste Management for complying with the Nuclear Waste Policy Act of 1982. Major INEL activities included managing a cask procurement program, demonstrating fuel assembly consolidation, and testing spent fuel storage casks. In addition, the INEL supplied the Tennessee Valley Authority with management and personnel experienced in reactor technology, increased basic research programs at the Idaho Research Center, and made numerous outreach efforts to assist the economies of Idaho communities.

  19. Vita Randall W. Alkire 2012 Argonne National Laboratory

    E-Print Network [OSTI]

    Kemner, Ken

    diffractometer at 0.12Å"; Research assistant at Missouri University Research Reactor (MURR) facility, Columbia, MO, 1977-1982 Chemistry laboratory teaching assistant University of Missouri-Rolla, 1975-1977 B Meeting, Knoxville, TN, May 30-June5, 2008, Poster MP200. Patent No. US 7,162,888 1/16/07: "Robot

  20. Successful neural network projects at the Idaho National Engineering Laboratory

    SciTech Connect (OSTI)

    Cordes, G.A.

    1991-01-01T23:59:59.000Z

    This paper presents recent and current projects at the Idaho National Engineering Laboratory (INEL) that research and apply neural network technology. The projects are summarized in the paper and their direct application to space reactor power and propulsion systems activities is discussed. 9 refs., 10 figs., 3 tabs.